
M A N N I N G

Joshua D. Suereth
FOREWORD BY
Martin Odersky

IN DEPTH

Scala in Depth

Scala in Depth
JOSHUA D. SUERETH

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Katharine Osborne
20 Baldwin Road Technical proofreader: Justin Wick
PO Box 261 Copyeditors: Linda Kern, Benjamin Berg
Shelter Island, NY 11964 Proofreader: Elizabeth Martin
 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781935182702
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

www.manning.com

contents
foreword xi
preface xiii
acknowledgments xiv
about this book xvi
about the cover illustration xix

1 Scala—a blended language 1
1.1 Functional programming meets object orientation 2

Discovering existing functional concepts 4 ■ Examining
functional concepts in Google Collections 6

1.2 Static typing and expressiveness 8
Changing sides 8 ■ Type inference 9 ■ Dropping verbose
syntax 9 ■ Implicits are an old concept 10 ■ Using Scala’s
implicit keyword 11

1.3 Transparently working with the JVM 12
Java in Scala 12 ■ Scala in Java 13 ■ The benefits of a
JVM 14

1.4 Summary 15
v

CONTENTSvi

2 The core rules 16
2.1 Learn to use the Read Eval Print Loop (REPL) 16

Experiment-driven development 18 ■ Working around eager
parsing 19 ■ Inexpressible language features 20

2.2 Think in expressions 21
Don’t use return 22 ■ Mutability 24

2.3 Prefer immutability 26
Object equality 27 ■ Concurrency 31

2.4 Use None instead of null 34
Advanced Option techniques 35

2.5 Polymorphic equality 38
Example: A timeline library 38 ■ Polymorphic equals
implementation 40

2.6 Summary 42

3 Modicum of style—coding conventions 43
3.1 Avoid coding conventions from other languages 44

The block debacle 45

3.2 Dangling operators and parenthetical expressions 48
3.3 Use meaningful variable names 49

Avoid $ in names 50 ■ Working with named and default
parameters 53

3.4 Always mark overridden methods 55
3.5 Annotate for expected optimizations 60

Using the tableswitch optimization 61 ■ Using the tail recursion
optimization 64

3.6 Summary 66

4 Utilizing object orientation 68
4.1 Limit code inside an object or trait’s body to initialization

logic 69
Delayed construction 69 ■ And then there’s multiple
inheritance 70

4.2 Provide empty implementations for abstract methods
on traits 72

CONTENTS vii

4.3 Composition can include inheritance 76
Member composition by inheritance 78 ■ Classic constructors with
a twist 80

4.4 Promote abstract interface into its own trait 82
Interfaces you can talk to 84 ■ Learning from the past 85

4.5 Provide return types in your public APIs 86
4.6 Summary 88

5 Using implicits to write expressive code 89
5.1 Introduction to implicits 90

Identifiers: A digression 91 ■ Scope and bindings 92
Implicit resolution 96

5.2 Enhancing existing classes with implicit views 101
5.3 Utilize implicit parameters with defaults 106
5.4 Limiting the scope of implicits 112

Creating implicits for import 113 ■ Implicits without the import
tax 115

5.5 Summary 119

6 The type system 120
6.1 Types 121

Types and paths 122 ■ The type keyword 124 ■ Structural
types 125

6.2 Type constraints 131
6.3 Type parameters and higher-kinded types 134

Type parameter constraints 134 ■ Higher-kinded types 135

6.4 Variance 137
Advanced variance annotations 141

6.5 Existential types 144
The formal syntax of existential types 146

6.6 Summary 149

7 Using implicits and types together 150
7.1 Context bounds and view bounds 151

When to use implicit type constraints 152

CONTENTSviii

7.2 Capturing types with implicits 153
Manifests 153 ■ Using Manifests 154 ■ Capturing type
constraints 156 ■ Specialized methods 158

7.3 Use type classes 159
FileLike as a type class 163 ■ The benefits of type classes 166

7.4 Conditional execution using the type system 167
Heterogeneous typed list 169 ■ IndexedView 172

7.5 Summary 178

8 Using the right collection 179
8.1 Use the right collection 180

The collection hierarchy 180 ■ Traversable 182
Iterable 185 ■ Seq 187 ■ LinearSeq 187
IndexedSeq 189 ■ Set 190 ■ Map 191

8.2 Immutable collections 192
Vector 192 ■ List 194 ■ Stream 195

8.3 Mutable collections 198
ArrayBuffer 198 ■ Mixin mutation event
publishing 199 ■ Mixin synchronization 200

8.4 Changing evaluation with views and parallel
collections 200
Views 201 ■ Parallel collections 203

8.5 Writing methods to use with all collection types 205
Optimizing algorithms for each collections type 209

8.6 Summary 211

9 Actors 212
9.1 Know when to use actors 213

Using actors to search 213

9.2 Use typed, transparent references 216
Scatter-Gather with OutputChannel 217

9.3 Limit failures to zones 221
Scatter-Gather failure zones 221 ■ General failure handling
practices 224

9.4 Limit overload using scheduler zones 225

Scheduling zones 227

CONTENTS ix

9.5 Dynamic actor topology 228
9.6 Summary 233

10 Integrating Scala with Java 234
10.1 The language mismatch between Scala and Java 235

Differences in primitive boxing 236 ■ Differences in
visibility 240 ■ Inexpressible language features 241

10.2 Be wary of implicit conversions 244
Object identity and equality 245 ■ Chaining implicits 246

10.3 Be wary of Java serialization 248
Serializing anonymous classes 250

10.4 Annotate your annotations 252
Annotation targets 254 ■ Scala and static fields 255

10.5 Summary 256

11 Patterns in functional programming 257
11.1 Category theory for computer science 258
11.2 Functors and monads, and how they relate to

categories 262
Monads 264

11.3 Currying and applicative style 266
Currying 266 ■ Applicative style 268

11.4 Monads as workflows 272
11.5 Summary 276

index 277

foreword
Joshua Suereth is one of the most complete programmers I know. Familiar with a
whole gamut of programming languages and techniques, he is an expert in high-
performance systems, build tools, type theory, and many other areas. He is also a
gifted teacher, and all that combined is what makes Scala in Depth special.

 This book provides in-depth coverage of several of the more intricate areas of
Scala, including advanced aspects of its type system, implicits, composition techniques
with traits, collections, actors, functional categories. But this is not a dry recollection
of language and library concepts. The book is full of practical advice on how to apply
these lesser known parts of Scala in useful ways, and what the best practices are. The
explanations and examples demonstrate Joshua’s great experience constructing large-
scale systems in Scala.

Scala in Depth is not a beginner’s introduction; it should primarily appeal to compe-
tent Scala programmers who want to become experts. The techniques that are taught
are handy for constructing flexible and type-safe library abstractions. Many of these
techniques were folklore until now; they have been, for the first time, written-up here.

 I am particularly happy about one other thing: The book fills a gap in that it explains
key parts of the formal Scala specification to programmers who are not language law-
yers. Scala is one of few languages that actually has a specification. That specification
consists mainly of definitions written in highly stylized prose and mathematical formu-
las; so it’s not everybody’s piece of cake. Joshua’s book manages to be both authorative
and understandable as it explains these concepts.

MARTIN ODERSKY

CREATOR OF SCALA

HEAD OF PROGRAMMING

RESEARCH GROUP, EPFL
xi

preface
In fall 2010 Michael Stephens from Manning contacted me about writing a Scala Book.
I was working for a small virtualization/security startup where I had been learning
Scala and applying it to our codebase. During that first conversation Michael and I dis-
cussed the Scala ecosystem and what kind of a book would best serve the community.

 I believed Scala needed a “practical Scala” book to help guide those new to the lan-
guage. Scala is a beautiful language, but it brings many new concepts to the table. I
had watched as the community slowly discovered best practices and a code style that
was wholly “Scala.” But I wasn’t sure whether I was the right person to write such a
book. When it came down to it, I was passionate about the topic, had enough free
time to do the research, and had the support of the magnates of the community to
help achieve what you are reading today—so I decided to go ahead.

 I’ve learned a lot during the writing process. One reason it took so long was the
evolving nature of Scala and the emergence of new best practices. Another reason was
that I realized my own knowledge was woefully inadequate in some areas of Scala. To
all aspiring authors out there, I will tell you that writing a book makes you an expert.
You may think you are one before you start, but true expertise grows from the blood,
sweat, and tears of teaching, of trying to convey complex concepts to your readers
with clarity.

 Working on this book was a journey that I never could have completed without a
very supportive and loving wife, a great publisher, and an amazing community of Scala
developers and readers willing to read my manuscript in various stages, point out my
typos and misspellings, and offer advice on how to make Scala in Depth a much better
book than I could have achieved alone.
xiii

acknowledgments
Many people helped get this book off the ground and into print. While I’m going to
try to list them all, I’m sure I’ll miss a few as there were just too many for my tiny brain
to remember. This book showed me that I have a lot of high quality friends, cowork-
ers, and family.

 The biggest thank you is for my wife and children, who had to deal with a hus-
band/father who was constantly hiding in a corner, writing, when he should have
been helping out. There’s no way an author can write a book without the support of
immediate family, and mine was no exception.

 Next, I’d like to thank Manning Publications and all the work the staff did to
ensure I became a real author. Not only did they review and lay out the book, they also
helped improve my technical writing skills for clear communication. I can’t give
enough thanks to the whole team, but I’d especially like to thank Katherine Osborne
for putting up with my missed deadlines, Pennsylvania-Dutch sentence structures, and
overall poor spelling. Katherine was instrumental to the voice of this book, and those
who’ve been reading the MEAPs will notice the improvement.

 The next group that deserves thanks are the Scala experts and nonexperts who
helped me improve my technical material and descriptions. Tim Perret was authoring
Lift in Action for Manning around the same time I was writing Scala in Depth. Discus-
sions with Tim were both encouraging and motivating. Unfortunately for me, he fin-
ished first. Justin Wick was a reviewer and collaborator on a lot of the content, and
definitely helped me reach a wider audience than I had initially attempted to attract.
He also reviewed the final manuscript and code one last time, just before the book
went into production. Adriaan Moors, as usual, pointed out all my mistakes when
xiv

ACKNOWLEDGMENTS xv
discussing the type system and implicit resolution and helped make the discussions
both practical and correct. Eric Weinberg was an old coworker of mine who helped
provide guidance for reaching non-Scala developers in the book. Viktor Klang
reviewed the “Actors” chapter (and the whole book) and offered improvements.
Thank you also to Martin Odersky for his endorsement and kind words on the final
product that you will read in the foreword, Josh Cough for being a guy I can bounce
ideas off when needed, and Peter Simanyi for an email with a very detailed, thorough,
complete, and awesome review of the entire book.

 Manning also contacted the following reviewers, who read the manuscript at vari-
ous stages of its development, and I would like to thank them for their invaluable
insights and comments: John C. Tyler, Orhan Alkan, Michael Nash, John Griffin,
Jeroen Benckhuijsen, David Biesack, Lutz Hankewitz, Oleksandr Alesinskyy, Cheryl
Jerozal, Edmon Begoli, Ramnivas Laddad, Marco Ughetti, Marcus Kazmierczak, Ted
Neward, Eric Weinberg, Dave Pawson, Patrick Steger, Paul Stusiak, Mark Thomas,
David Dossot, Tariq Ahmed, Ken McDonald, Mark Needham, and James Hatheway.

 Finally, I’d like to thank all of the MEAP reviewers. I received great feedback from
them and appreciate the support and good reviews this book received before it was
even in print. You guys had to bear with lots of typos and errors and deserve credit for
persevering through my rough initial cuts and making it to this final version.

about this book
Scala in Depth is a practical guide to using Scala with deep dives into necessary topics.
This book, picking up where introductory books drop off, enables readers to write idi-
omatic Scala code and understand trade-offs when making use of advanced language
features. In particular, this book covers Scala’s implicit and type systems in detail
before discussing how these can be used to drastically simplify development. The
book promotes the “blended style” of Scala, where paradigms are mixed to achieve
something greater.

Who should read this book?

Scala in Depth is for new or intermediate Scala developers who wish to improve their
skills with the language. While this book covers very advanced concepts in Scala, it
attempts to pull along those new to Scala.

 This book was written for readers who know Java or another object-oriented lan-
guage. Prior experience with Scala is helpful but not required. It covers Scala 2.7.x
through Scala 2.9.x.

Roadmap

Scala in Depth begins with a philosophical discussion of the “xen” of Scala—that Scala
is a blending of concepts that achieve a greater whole when combined. In particular,
three dichotomies are discussed: static typing versus expressiveness, functional pro-
gramming versus object-oriented programming, and powerful language features ver-
sus dead simple Java integration.
xvi

ABOUT THIS BOOK xvii
 Chapter 2 is a discussion of the core rules of Scala. These are the things that every
Scala developer should be aware of and make use of in daily development. This chap-
ter is for every Scala developer and covers the basics that make Scala a great language.

 Chapter 3 is a digression in code style and associated issues. Scala brings a few new
players to the table, and any Scala style guide should reflect that. Some common con-
ventions from popular languages like Ruby and Java can actually be deterrents to
good Scala code.

 Chapter 4 covers new issues arising in object-oriented design due to Scala’s mixin
inheritance. One topic of interest to any Scala developer is the early initializer cover-
age, which gets little coverage in other books.

 After object orientation, the book moves into the implicit system. In chapter 5,
rather than simply discussing best practices, a deep dive is taken into the mechanics of
implicits in Scala. This chapter is a must for all Scala developers who wish to write
expressive libraries and code.

 Chapter 6 is devoted to Scala’s type system. The discussion covers all the ways
types appear in Scala and how to utilize the type system to enforce constraints. The
chapter moves into a discussion of higher-kinded types and finishes with a dive into
existential types.

 Chapter 7 discusses the most advanced usage patterns in the language, the inter-
section of types and implicits. This intersection is where a lot of interesting and power-
ful abstractions occur, the epitome of which is the type class pattern.

 Having covered the most advanced aspects of Scala, in chapter 8 we move into a
discussion of Scala’s collection library. This includes the design and performance of
Scala’s collections as well as how to deal with the powerful type mechanisms.

 Chapter 9 kicks off the discussion on actors in Scala. Actors are a concurrency
mechanism that can provide great throughput and parallelism when used appropri-
ately. The chapter dives into issues of designing actor-based systems and finishes with a
demonstration of how the Akka actors library provides best practices by default.

 Chapter 10 covers Java integration with Scala. While Scala is more compatible with
Java than most other JVM languages, there’s still a mismatch in features between the
two. It’s at these corners that issues arise in Scala-Java integration and this chapter pro-
vides a few simple rules that help avoid these issues.

 Chapter 11 takes concepts from category theory and makes them practical. In pure
functional programming, a lot of concepts from category theory have been applied to
code. These are akin to object-oriented design patterns, but far more abstract. While
they have terrible names, as is common in mathematics, these concepts are immensely
useful in practice. No coverage of functional programming would be complete with-
out a discussion of some of these abstractions, and Scala in Depth does its best to
make these concepts real.

Code downloads and conventions

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key

ABOUT THIS BOOKxviii
concepts. I have tried to format the code so that it fits within the available page space
in the book by adding line breaks and using indentation carefully. Sometimes, how-
ever, very long lines include line-continuation markers.

 Source code for all the working examples is available from www.manning.com/
ScalainDepth and at https://github.com/jsuereth/scala-in-depth-source. To run the
examples, readers should have Scala installed and, optionally, SBT (http://scala-
sbt.org).

 Code examples appear throughout this book. Longer listings appear under clear
listing headers; shorter listings appear between lines of text.

Author online

Purchase of Scala in Depth includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/ScalainDepth. This page
provides information on how to get on the forum once you’re registered, what kind of
help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions lest his interest stray.

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

Josh Suereth is a Senior Software Engineer at Typesafe Inc., the company behind
Scala. He has been a Scala enthusiast since he came to know this beautiful language in
2007. He started his professional career as a software developer in 2004, cutting his
teeth with C++, STL, and Boost. Around the same time, Java fever was spreading and
his interest was migrating to web-hosted distributed Java-delivered solutions to aid
health departments in the discovery of disease outbreaks.

 He introduced Scala into his company code base in 2007, and soon after he was
infected by Scala fever, contributing to the Scala IDE, maven-scala-plugin and Scala
itself. Today, Josh is the author of several open source Scala projects, including the
Scala automated resource management library and the PGP sbt plugin, as well as con-
tributing to key components in the Scala ecosystem, like the maven-scala-plugin. His
current work at Typesafe Inc., has him doing everything from building MSIs to profil-
ing performance issues.

 Josh regularly shares his expertise in articles and talks. He likes short walks on the
beach and dark beer.

www.manning.com/scalaindepth
www.manning.com/scalaindepth
https://github.com/jsuereth/scala-in-depth-source
http://scala-sbt.org
http://scala-sbt.org
www.manningcom/scalaindepth

about the cover illustration
On the cover of Scala in Depth is a figure dressed in “An old Croatian folk costume.”
The illustration is taken from a reproduction of an album of Croatian traditional cos-
tumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethno-
graphic Museum in Split, Croatia, in 2003. The illustrations were obtained from a
helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman
core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement
palace from around AD 304. The book includes finely colored illustrations of figures
from different regions of Croatia, accompanied by descriptions of the costumes and
of everyday life.

 While the caption for the illustration on the cover does not tell us the town or
region of origin, the blue woolen trousers and richly embroidered vest and jacket that
the figure is wearing are typical for the mountainous regions of central Croatia. Dress
codes and lifestyles have changed over the last 200 years, and the diversity by region,
so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of differ-
ent continents, let alone of different hamlets or towns separated by only a few miles.
Perhaps we have traded cultural diversity for a more varied personal life—certainly for
a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
xix

Scala—
a blended language
Scala was born from the mind of Martin Odersky, a man who had helped introduce
generics into the Java programming language. Scala was an offshoot from the Fun-
nel language, an attempt to combine functional programming and Petri nets. Scala
was developed with the premise that you could mix together object orientation,
functional programming, and a powerful type system and still keep elegant, suc-
cinct code. It was hoped that this blending of concepts would create something
that real developers could use and that could be studied for new programming idi-
oms. It was such a large success that industry has started adopting Scala as a viable
and competitive language.

 Understanding Scala requires understanding this mixture of concepts. Scala
attempts to blend three dichotomies of thought into one language. These are:

 Functional programming and object-oriented programming
 Expressive syntax and static typing
 Advanced language features and rich Java integration

In this chapter
 Short introduction to Scala

 Insights into Scala’s design
1

2 CHAPTER 1 Scala— a blended language
Functional programming is programming through the definition and composition of
functions. Object-oriented programming is programming through the definition and
composition of objects. In Scala, functions are objects. Programs can be constructed
through both the definition and composition of objects or functions. This gives Scala
the ability to focus on “nouns” or “verbs” in a program, depending on what is the most
prominent.

 Scala also blends expressive syntax with static typing. Mainstream statically typed
languages tend to suffer from verbose type annotations and boilerplate syntax. Scala
takes a few lessons from the ML programming language and offers static typing with a
nice expressive syntax. Code written in Scala can look as expressive as dynamically
typed languages, like Ruby, while retaining type safety.

 Finally, Scala offers a lot of advanced language features that are not available in
Java. But Scala runs on the Java virtual machine (JVM) and has tight integration with
the Java language. This means that developers can make direct use of existing Java
libraries and integrate Scala into their Java applications while also gaining the addi-
tional power of Scala. This integration makes Scala a practical choice for any JVM-
based project.

 Let’s take a deeper look at the blending of paradigms in Scala.

1.1 Functional programming meets object orientation
Functional programming and object-oriented programming are two different ways of
looking at a problem. Functional programming puts special emphasis on the “verbs”
of a program and ways to combine and manipulate them. Object-oriented program-
ming puts special emphasis on “nouns” and attaches verbs to them. The two
approaches are almost inverses of each other, with one being “top down” and the
other “bottom up.”

 Object-oriented programming is a top-down approach to code design. It
approaches software by dividing code into nouns or objects. Each object has some
form of identity (self/this), behavior (methods), and state (members). After identify-
ing nouns and defining their behaviors, interactions between nouns are defined. The
problem with implementing interactions is that the interactions need to live inside an
object. Modern object-oriented designs tend to have service classes, which are a collec-
tion of methods that operate across several domain objects. Service classes, although
objects, usually don’t have a notion of state or behavior independent of the objects on
which they operate.

 A good example is a program that implements the following story: “A cat catches a
bird and eats it.” An object-oriented programmer would look at this sentence and see
two nouns: cat and bird. The cat has two verbs associated with it: catch and eat. The
following program is a more object-oriented approach:

class Bird
class Cat {

def catch(b: Bird): Unit = ...
def eat(): Unit = ...

3Functional programming meets object orientation
}

val cat = new Cat
val bird = new Bird

cat.catch(bird)
cat.eat()

In the example, when a Cat catches a Bird, it converts the bird to a type of Food,
which it can then eat. The code focuses on the nouns and their actions: Cat.eat(),
Cat.catch(...). In functional programming, the focus is on the verbs.

 Functional programming approaches software as the combination and application
of functions. It tends to decompose software into behaviors, or actions that need to be
performed, usually in a bottom-up fashion. Functions are viewed in a mathematical
sense, purely operations on their input. All variables are considered immutable. This
immutability aids concurrent programming. Functional programming attempts to
defer all side effects in a program as long as possible. Removing side effects makes rea-
soning through a program simpler, in a formal sense. It also provides much more
power in how things can be abstracted and combined.

 In the story “A cat catches a bird and eats it,” a functional program would see the
two verbs catch and eat. A program would create these two functions and compose
them to create the program. The following program is a more functional approach:

trait Cat
trait Bird
trait Catch
trait FullTummy

def catch(hunter: Cat, prey: Bird): Cat with Catch
def eat(consumer: Cat with Catch): Cat with FullTummy

val story = (catch _) andThen (eat _)
story(new Cat, new Bird)

In the example, the catch method takes a Cat and a Bird and returns a new value of
type Cat with Catch. The eat method is defined as taking a CatWithPrey (a cat needs
something to eat) and returns a FullCat (because it’s no longer hungry). Functional
programming makes more use of the type system to describe what a function is doing.
The catch and eat methods use the type signatures to define the expected input and
output states of the function. The with keyword is used to combine a type with
another. In this example, the traits Catch and FullTummy are used to denote the
current state of a Cat. The methods eat and catch return new instances of Cat
attached to different state types. The story value is created by composing the func-
tions catch and eat. This means that the catch method is called and the result is fed
into the eat method. Finally, the story function is called with a Cat and a Bird and
the result is the output of the story: a full cat.

 Functional programming and object orientation offer unique views of software. It’s
these differences that make them useful to each other. Object orientation can deal
with composing the nouns and functional programming can deal with composing

4 CHAPTER 1 Scala— a blended language
verbs. In the example, the functional version was built by composing a set of functions
that encompassed a story and then feeding the initial data into these functions. For the
object-oriented version, a set of objects was created and their internal state was manip-
ulated. Both approaches are useful in designing software. Object orientation can focus
on the nouns of the system and functional programming can compose the verbs.

 In fact, in recent years, many Java developers have started moving toward splitting
nouns and verbs. The Enterprise JavaBeans (EJB) specification splits software into Ses-
sion beans, which tend to contain behaviors, and Entity beans, which tend to model the
nouns in the system. Stateless Session beans start looking more like collections of
functional code (although missing most of the useful features of functional code).

 This push of functional style has come along much further than the EJB specifica-
tions. The Spring Application Framework promotes a functional style with its Tem-
plate classes, and the Google Collections library is very functional in design. Let’s look
at these common Java libraries and see how Scala’s blend of functional programming
with object orientation can enhance these Application Program Interfaces (APIs).

1.1.1 Discovering existing functional concepts

Many modern API designs have been incorporating functional ideas without ascribing
them to functional programming. For Java, things such as Google Collections or the
Spring Application Framework make popular functional concepts accessible to the
Java developer. Scala takes this further and embeds them into the language. To illus-
trate, you’ll do a simple translation of the methods on the popular Spring Jdbc-
Template class and see what it starts to look like in Scala.

public interface JdbcTemplate {
List query(PreparedStatementCreator psc,

RowMapper rowMapper)
...

}

Now for a simple translation into Scala, you’ll convert the interface into a trait having
the same method(s):

trait JdbcTemplate {
def query(psc: PreparedStatementCreator,

rowMapper: RowMapper): List[_]
}

Table 1.1 Attributes commonly ascribed to object-oriented and functional programming

Object-oriented programming Functional programming

Composition of objects (nouns) Composition of functions (verbs)

Encapsulated stateful interaction Deferred side effects

Iterative algorithms Recursive algorithms and continuations

Imperative flow Lazy evaluation

N/A Pattern matching

Query for list of objects

5Functional programming meets object orientation
The simple translation makes a lot of sense but it’s still designed with a distinct Java
flair. Let’s start digging deeper into this design. Specifically, let’s look at the Prepared-
StatementCreator and the RowMapper interfaces.

public interface PreparedStatementCreator {
PreparedStatement createPreparedStatement(Connection con)

throws SQLException;
}

The PreparedStatementCreator interface contains only one method: create-
PreparedStatement. This method takes a JDBC connection and returns a Prepared-
Statement. The RowMapper interface looks similar:

public interface RowMapper {
Object mapRow(ResultSet rs, int rowNum)

throws SQLException;
}

Scala provides first-class functions. This feature lets us change the JdbcTemplate
query method so that it takes functions instead of interfaces. These functions should
have the same signature as the sole method defined on the interface. In this case, the
PreparedStatementCreator argument can be replaced by a function that takes a con-
nection and returns a PreparedStatement. The RowMapper argument can be replaced
by a function that takes a ResultSet and an integer and returns some type of object.
The updated Scala version of the JdbcTemplate interface would look as follows:

trait JdbcTemplate {
def query(psc: Connection => PreparedStatement,

rowMapper: (ResultSet, Int) => AnyRef
): List[AnyRef]

}

The query method is now more functional. It’s using a technique known as the loaner
pattern. This technique involves some controlling entity (the JdbcTemplate) creating a
resource and delegating the use of it to another function. In this case, there are two
functions and three resources. Also, as the name implies, JdbcTemplate is part of a
template method in which pieces of the behavior were deferred for the user to imple-
ment. In pure object-orientation, this is usually done via inheritance. In a more func-
tional approach, these behavioral pieces become arguments to the controlling
function. This provides more flexibility by allowing mixing/matching arguments with-
out having to continually use subclasses.

 You may be wondering why you’re using AnyRef for the second argument’s return
value. AnyRef is equivalent in Scala to java.lang.Object. Because Scala has supported
generics, even when compiling for 1.4 JVMs, we should modify this interface further to
remove the AnyRef and allow users to return specific types.

trait JdbcTemplate {
def query[ResultItem](psc: Connection => PreparedStatement,

rowMapper: (ResultSet, Int) => ResultItem
): List[ResultItem]

}

Use first-class
functions

Typed
return list

6 CHAPTER 1 Scala— a blended language
With a few simple transformations, you’ve created an interface that works directly
against functions. This is a more functional approach because Scala’s function traits
allow composition. By the time you’re finished reading this book, you’ll be able to
approach the design of this interface completely differently.

 Functional programming also shines when used in a collections library. The Ruby
and Python programming languages support some functional aspects directly in their
standard library collections. For Java users, the Google Collections library bring prac-
tices from functional programming.

1.1.2 Examining functional concepts in Google Collections

The Google Collections API adds a lot of power to the standard Java collections. Pri-
marily it brings a nice set of efficient immutable data structures, and some functional
ways of interacting with your collections, primarily the Function interface and the
Predicate interface. These interfaces are used primarily from the Iterables and
Iterators classes. Let’s look at the Predicate interface and its uses.

interface Predicate<T> {
public boolean apply(T input);
public boolean equals(Object other);

}

The Predicate interface is simple. Besides equality, it contains an apply method that
returns true or false against its argument. This is used in an Iterators/Iterables-
filter method. The filter method takes a collection and a predicate. It returns a
new collection containing only elements that pass the predicate apply method. Predi-
cates are also used in the find method. The find method looks in a collection for the
first element passing a Predicate and returns it. The filter and find method signatures
are shown in the following code.

class Iterables {
public static <T> Iterable<T> filter(Iterable<T> unfiltered,

Predicate<? super T> predicate) {...}
public static <T> T find(Iterable<T> iterable,

Predicate<? super T> predicate) {...}
...

}

There also exists a Predicates class that contains static methods for combining predi-
cates (ANDs/ORs) and standard predicates for use, such as “not null.” This simple
interface creates some powerful functionality through the potential combinations
that can be achieved with terse code. Also, because the predicate itself is passed into
the filter function, the function can determine the best way or time to execute the fil-
ter. The data structure may be amenable to lazily evaluating the predicate, making the
iterable returned a “view” of the original collection. It might also determine that it
could best optimize the creation of the new iterable through some form of parallel-
ism. This has been abstracted away, so the library could improve over time with no
code changes on our part.

Filters
using
predicate

Find using
predicate

7Functional programming meets object orientation
 The Predicate interface is rather interesting, because it looks like a simple func-
tion. This function takes some type T and returns a Boolean. In Scala this would be
represented T => Boolean. Let’s rewrite the filter/find methods in Scala and see what
their signatures would look like:

object Iterables {
def filter[T](unfiltered: Iterable[T],

predicate: T => Boolean): Iterable[T] = {...}
def find[T](iterable: Iterable[T],

predicate: T => Boolean): T = {...}
...

}

You’ll immediately notice that in Scala we aren’t using any explicit ? super T type
annotations. This is because Scala defines type variance at declaration time. For this
example, that means that the variance annotation is defined on the Function1 class
rather than requiring it on every method that used the class.

 What about combining predicates in Scala? We can accomplish a few of these
quickly using some functional composition. Let’s make a new Predicates module in
Scala that takes in function predicates and provides commonly used function predi-
cates. The input type of these combination functions should be T => Boolean and the
output should also be T => Boolean. The predefined predicates should also have a
type T => Boolean.

object Predicates {
def or[T](f1: T => Boolean, f2: T => Boolean) =

(t: T) => f1(t) || f2(t)
def and[T](f1: T => Boolean, f2: T => Boolean) =

(t: T) => f1(t) && f2(t)
val notNull[T]: T => Boolean = _ != null

}

We’ve now started to delve into the realm of functional programming. We’re defining
first-class functions and combining them to perform new behaviors. You’ll notice the
or method take two predicates, f1 and f2. It then creates a new anonymous function
that takes an argument t and ORs the results of f1 and f2. Playing with functions also
makes more extensive use of generics and the type system. Scala has put forth a lot of
effort to reduce the overhead for generics in daily usage.

 Functional programming is more than combining functions with other functions.
The essence of functional programming is delaying side effects as long as possible.
This predicate object defines a simple mechanism to combine predicates. The predi-
cate isn’t used to cause side effects until passed to the Iterables object. This distinc-
tion is important. Complex predicates can be built from simple predicates using the
helper methods defined on the object predicates.

 Functional programming grants the means to defer state manipulation in a pro-
gram until a later time. It provides a mechanism to construct verbs that delay side
effects. These verbs can be combined in a fashion that makes reasoning through a
program simpler. Eventually the verbs are applied against the nouns of the system. In

No need
for ?

Explicit
anonymous
function

Placeholder
function syntax

8 CHAPTER 1 Scala— a blended language
traditional FP, side effects are delayed as long as possible. In blended OO-FP, the idi-
oms merge.

1.2 Static typing and expressiveness
The Scala type system allows expressive code. A common misconception among
developers is that static typing leads to verbose code. This myth exists because many
of the languages derived from C, where types must be explicitly specified in many dif-
ferent places. As software has improved, along with compiler theory, this is no longer
true. Scala uses some of these advances to reduce boilerplate in code and keep things
concise.

 Scala made a few simple design decisions that help make it expressive:

 Changing sides of type annotation
 Type inference
 Scalable syntax
 User-defined implicits

Let’s look at how Scala changes the sides of type annotations.

1.2.1 Changing sides

Scala places type annotations on the right-hand side of variables. In some statically
typed languages, like Java or C++, it’s common to have to express the types of vari-
ables, return values, and arguments. When specifying variables or parameters, the
convention, drawn from C, is to place type indicators on the left-hand side of the vari-
able name. For method arguments and return values, this is acceptable, but causes
some confusion when creating different styles of variables. C++ is the best example of
this, as it has a rich set of variable styles, such as volatile, const, pointers, and refer-
ences. Table 1.2 shows a comparison of C++ variables and Scala variables.

 The more complicated a variable type, the more annotations are required directly
on the type of the variable. In C++, this is maximized in the usage of a pointer, because
a pointer can be constant. Scala defines three variable types on the left-hand side, like
var, val, and lazy val. These leave the type of the variable clean. In all instances, the
type of the name x is Int.

Table 1.2 Variable definition in C++ versus Scala

Variable type C++ Java Scala

Mutable integer variable int x int x var x: Int

Immutable integer value const int x final int x val x: Int

Constant pointer to a
volatile integer

volatile int * const x N/A N/A

Lazily evaluated integer
value

N/A N/A lazy val x: Int

9Static typing and expressiveness
 In addition to separating the concerns of how a variable behaves from the variable
type, the placement of types on the right allows type inference to determine the type
of the variables.

1.2.2 Type inference

Scala performs type inference wherever possible. Type inference is when the compiler
determines what the type annotation should be, rather than forcing the user to specify
one. The user can always provide a type annotation, but has the option to let the com-
piler do the work.

val x: Int = 5
val y = 5

This feature can drastically reduce the clutter found in some other typed languages.
Scala takes this even further to do some level of inference on arguments passed into
methods, specifically with first-class functions.

def myMethod(functionLiteral: A => B): Unit
myMethod({ arg: A => new B })
myMethod({ arg => new B })

If a method is known to take a function argument, the compiler can infer the types
used in a function are literal.

1.2.3 Dropping verbose syntax

Scala syntax takes the general approach that when the meaning of a line of code is
straightforward, the verbose syntax can be dropped. This feature can confuse users
first using Scala but can be rather powerful when used wisely. Let’s show a simple
refactoring from the full glory of Scala syntax into the simplistic code that’s seen in
idiomatic usage. Here is a function for Quicksort in Scala.

def qsort[T <% Ordered[T]](list:List[T]):List[T] = {
list.match({

case Nil => Nil;
case x::xs =>

val (before,after) = xs.partition({ i => i.<(x) });
qsort(before).++(qsort(after).::(x)));

});
}

This code accepts a list whose type, T, is able to be implicitly converted into a variable
of type Ordered[T] (T <% Ordered[T]). We’ll discuss type parameters and constraints
in great detail in chapter 6, so don’t focus too much on these. We’re requiring that
the list contain elements that we have some notion of ordering for, specifically a less
than function (<). We then examine the list. If it’s empty, or Nil, then we return a Nil
list. If it encounters a list, we extract the head (x) and tail (xs) of the list. We use the
head element of the list to partition the tail into two lists. We then recursively call the
Quicksort method on each partition. In the same line, we combine the sorted parti-
tions and the head element into a complete list.

<% means “view”

++ and ::
mean aggregate

10 CHAPTER 1 Scala— a blended language
 You may be thinking, “Wow, Scala looks ugly.” In this case you would be right. The
code is cluttered and difficult to read. There’s a lot of syntactic noise preventing the
meaning of the code from being clear. There’s also a lot of type information after
qsort. Let’s pull out our surgical knife and start cutting out cruft. First we’ll start with
Scala’s semicolon inference. The compiler will assume that the end of a line is the end
of an expression, unless you leave some piece of syntax hanging, like the . before a
method call.

 But removing semicolons isn’t quite enough to reduce the clutter. We should also
use an operator notation. This is the name Scala gives to its ability to treat methods as
operators. A method of no arguments can be treated as a postfix operator. A method
of one argument can be treated as an infix operator. There’s also the special rule for
certain characters (for example, :) at the end of a method name that reverses the
order of a method call. These rules are demonstrated as follows:

x.foo(); /*is the same as*/ x foo
x.foo(y); /*is the same as*/ x foo y
x.::(y); /*is the same as*/ y :: x

Scala also provides placeholder notation when defining anonymous functions (aka,
lambdas). This syntax uses the _ keyword as a placeholder for a function argument. If
more than one placeholder is used, each consecutive placeholder refers to consecu-
tive arguments to the function literal. This notation is usually reserved for simple
functions, such as the less-than (<) comparison in our Quicksort.

 We can apply this notation paired with operator notation to achieve the following
on our quick sort algorithm:

def qsort[T <% Ordered[T]](list:List[T]):List[T] = list match {
case Nil => Nil
case x :: xs =>

val (before, after) = xs partition (_ < x)
qsort(before) ++ (x :: qsort(after));

}

Scala offers syntactic shortcuts for simple cases, and it provides a mechanism to bend
the type system via implicits conversions and implicits arguments.

1.2.4 Implicits are an old concept

Scala implicits are a new take on an old concept. The first time I was ever introduced
to the concept of implicit conversions was with primitive types in C++. C++ allows
primitive types to be automatically converted as long as there is no loss of precision.
For example, we can use an int literal when declaring a long value. The types double,
float, int, and long are different to the compiler. It does try to be intelligent and “do the
right thing” when mixing these values. Scala provides this same mechanism, but using
a language feature that’s available for anyone.

 The scala.Predef object is automatically imported into scope by Scala. This
places its members available to all programs. It’s a handy mechanism for providing
convenience functions to users, like directly writing println instead of Console

Placeholder
notation used
instead of =>

11Static typing and expressiveness
.println or System.out.println. Predef also provides what it calls primitive widen-
ings. These are a set of implicit conversions that automatically migrate from lower-
precision types to higher precision types. The following listing shows the set of meth-
ods defined for the Byte type.

implicit def byte2short(x: Byte): Short = x.toShort
implicit def byte2int(x: Byte): Int = x.toInt
implicit def byte2long(x: Byte): Long = x.toLong
implicit def byte2float(x: Byte): Float = x.toFloat
implicit def byte2double(x: Byte): Double = x.toDouble

These methods are calls to the runtime-conversion methods. The implicit before the
method means the compiler may attempt to apply this method to a type Byte, if it’s
required for correct compilation. This means if we attempt to pass a Byte to a method
requiring a Short, it will use the implicit conversion defined as byte2short. Scala also
takes this one step further and looks for methods via implicit conversions if the cur-
rent type doesn’t have the called method. This comes in handy for more than just
primitive conversions.

 Scala also uses the implicit conversion mechanism as a means of extending Java’s
base classes (Integer, String, Double, and so on). This allows Scala to make direct
use of Java classes, for ease of integration, and provide richer methods that make use
of Scala’s more advanced features. Implicits are a powerful feature and are mistrusted
by some. The key to implicits in Scala are knowing how and when to use them.

1.2.5 Using Scala’s implicit keyword

Utilizing implicits is key to manipulating Scala’s type system. They’re primarily used to
automatically convert from one type to another as needed, but can also be used to lim-
ited forms of compiler time metaprogramming. To use, implicits must be associated
with a lexical scope. This can be done via companion objects or by explicitly import-
ing them.

 The implicit keyword is used in two different ways in Scala. First it’s used to iden-
tify and create arguments that are automatically passed when found in the scope. This
can be used to lexically scope certain features of an API. As implicits also have a
lookup policy, the inheritance linearization, they can be used to change the return
type of methods. This allows some advanced APIs and type-system tricks such as that
used in the Scala collections API. These techniques are covered in detail in chapter 7.

 The implicit keyword can also be used to convert from one type to another. This
occurs in two places, the first when passing a parameter to a function. If Scala detects
that a different type is needed, it will check the type hierarchy and then look for an
implicit conversion to apply to the parameter. An implicit conversion is a method,
marked implicit, that takes one argument and returns something. The second place
where Scala will perform an implicit conversion is when a method is called against a
particular type. If the compiler can’t find the desired method, it will apply implicit

Listing 1.1 Byte conversions in scala.Predef object

12 CHAPTER 1 Scala— a blended language
conversations against the variable until it either finds one that contains the method or
it runs out of conversions. This is used in Scala’s “pimp my library” pattern, described
in chapter 7.

 These features combine an expressive syntax with Scala, despite its advanced type
system. Creating expressive libraries requires a deep understanding of the type system,
as well as thorough knowledge of implicit conversions. The type system will be covered
more fully in chapter 6. The type system also interoperates well with Java, which is a
critical design for Scala.

1.3 Transparently working with the JVM
One of Scala’s draws is its seamless integration with Java and the JVM. Scala provides a
rich compatibility with Java, such that Java classes can be mapped directly to Scala
classes. The tightness of this interaction makes migrating from Java to Scala rather
simple, but caution should be used with some of Scala’s advanced feature sets. Scala
has some advanced features not available in Java, and care was taken in the design so
that seamless Java interaction can be achieved. For the most part, libraries written in
Java can be imported into Scala as is.

1.3.1 Java in Scala

Using Java libraries from Scala is seamless because Java idioms map directly into Scala
idioms. Java classes become Scala classes; Java interfaces become abstract Scala traits.
Java static members get added to a pseudo-Scala object. This combined with Scala’s
package import mechanism and method access make Java libraries feel like natural
Scala libraries, albeit with more simplistic designs. In general, this kind of interaction
just works. For example, the following listing shows a Java class that has a constructor,
a method, and a static helper method.

class SimpleJavaClass {
private String name;
public SimpleJavaClass(String name) {

this.name = name;
}
public String getName() {

return name;
}
public static SimpleJavaClass create(String name) {

return new SimpleJavaClass(name);
}

}

Now, let’s use this in Scala.

val x = SimpleJavaClass.create("Test")

x.getName()

val y = new SimpleJavaClass("Test")

Listing 1.2 Simple Java object

Constructor

Class method

Static class helper

Calling Java static methods

Calling Java methods

Using Java constructor

13Transparently working with the JVM
This mapping is rather natural and makes using Java libraries a seamless part of using
Scala. Even with the tight integration, Java libraries usually have a form of thin Scala
wrapper that provides some of the more advanced features a Java API could not pro-
vide. These features are apparent when trying to use Scala libraries inside Java.

1.3.2 Scala in Java

Scala attempts to map its features to Java in the simplest possible fashion. For the
most part, simple Scala features map almost one-to-one with Java features (for exam-
ple, classes, abstract classes, methods). Scala has some rather advanced features that
don’t map easily into Java. These include things like objects, first-class functions, and
implicits.

SCALA OBJECTS IN JAVA

Although Java statics map to Scala objects, Scala objects are instances of a singleton
class. This class name is compiled as the name of the object with a $ appended to the
end. A MODULE$ static field on this class is designed to be the sole instance. All meth-
ods and fields can be accessed via this MODULE$ instance. Scala also provides forwarding
static methods when it can; these exist on the companion class (that is, a class with the
same name as the object). Although the static methods are unused in Scala, they pro-
vide a convenient syntax when called from Java.

object ScalaUtils {
def log(msg : String) : Unit = Console.println(msg)

val MAX_LOG_SIZE = 1056
}

ScalaUtils.log("Hello!");

ScalaUtils$.MODULE$.log("Hello!");

System.out.println(ScalaUtils$.MODULE$.MAX_LOG_SIZE());

System.out.println(ScalaUtils.MAX_LOG_SIZE());

SCALA FUNCTIONS IN JAVA

Scala promotes the use of function as object, or first-class functions. As of Java 1.6,
there is no such concept in the Java language (or the JVM). Therefore, Scala creates
the notion of function traits. These are a set of 23 traits that represent functions of arity
0 through 22. When the compiler encounters the need for passing a method as a func-
tion object, it creates an anonymous subclass of an appropriate function trait. As traits
don’t map into Java, the passing of first-class functions from Java into Scala is also
inhibited but not impossible.

object FunctionUtil {
def testFunction(f : Int => Int) : Int = f(5)

}

abstract class AbstractFunctionIntIntForJava extends
(Int => Int) {

}

Simple Scala method

Simple Scala field

Acts like static call

Use the singleton instance

Variables become

Static forwarder

Special abstract
class to use
from Java

14 CHAPTER 1 Scala— a blended language
We’ve created an abstract class in Scala that Java can implement more easily than a
function trait. Although this eases the implementation in Java, it doesn’t make things
100% simple. There’s still a mismatch between Java’s type system and Scala’s encoding
of types that requires us to coerce the type of the function when making the Scala call,
as you can see in the following listing.

class JavaFunction {
public static void main(String[] args) {

System.out.println(FunctionUtil.testFunction(
(scala.Function1<Integer,Integer>)

new AbstractFunctionIntIntForJava() {
public Integer apply(Integer argument) {

return argument + 5;
}

}));
}

}

It’s possible to use first-class functions and with them a more functional approach
when combining Scala and Java. But other alternatives exist to make this work. A more
detailed discussion of this tweak, along with other Java–Scala related issues can be
found in chapter 10. As you can see, Scala can integrate well with existing Java pro-
grams and be used side by side with existing Java code. Java–Scala interaction isn’t the
only benefit of having Scala run inside the JVM; the JVM itself provides a huge benefit.

1.3.3 The benefits of a JVM

As alluded to earlier, the JVM provides many of the benefits associated with Java.
Through bytecode, libraries become distributable to many differing platforms on an
as is basis. The JVM has also been well tested in many environments and is used for
large-scale enterprise deployments. It has also been a big focus on performance of the
Java platform. The HotSpot compiler can perform various optimizations on code at
runtime. This also enables users to upgrade their JVM and immediately see perfor-
mance improvements, without patches or recompiling.

HOTSPOT-ING

The primary benefit of Scala running on the JVM is the HotSpot runtime optimizer.
This allows runtime profiling of programs, with automatic optimizations applied
against the JVM bytecode. Scala acquires these optimization “for free” by nature of
running against the JVM. Every release of the JVM improves the HotSpot compiler, and
this improves the performance of Scala. The HotSpot compiler does this through var-
ious techniques. Including the following:

 Method inlining
 On Stack Replacement (OSR)
 Escape Analysis
 Dynamic deoptimization

Listing 1.3 Implementing a first-class function in Java

Coerce types

First-class function

Function logic

15Summary
Method inlining is HotSpot’s ability to determine when it can inline a small method
directly at a call-spot. This was a favorite technique of mine in C++, and HotSpot will
dynamically determine when this is optimal. On Stack Replacement refers to HotSpot’s
ability to determine that a variable could be allocated on the stack versus the heap. I
remember in C++ the big question when declaring a variable was whether to place it
on the stack or the heap. Now HotSpot can answer that for me. HotSpot performs
escape analysis to determine if various things “escape” a certain scope. This is primarily
used to reduce locking overhead when synchronized method calls are limited to some
scope, but it can be applied to other situations. Dynamic deoptimization is the key fea-
ture of HotSpot. It’s the ability to determine whether an optimization did not improve
performance and undo that optimization, allowing others to be applied. These fea-
tures combine into a pretty compelling picture of why new and old languages (for
example, Ruby) desire to run on the JVM.

1.4 Summary
In this chapter, you’ve learned a bit about the philosophy of Scala. Scala was designed
with the idea of blending various concepts from other languages. Scala blends func-
tional and object-oriented programming, although this has been done in Java as well.
Scala made choices about syntax that drastically reduced the verbosity of the language
and enabled some powerful features to be elegantly expressed, such as type inference.
Finally, Scala has tight integration with Java and runs on top of the Java virtual
machine, which is perhaps the single most important aspect to make Scala relevant to
us. It can be utilized in our day-to-day jobs with little cost.

 As Scala blends various concepts, users of Scala will find themselves striking a bal-
ance among functional programming techniques, object orientation, integration with
existing Java applications, expressive library APIs, and enforcing requirements
through the type system. Often the best course of action is determined by the require-
ments at hand. It’s the intersection of competing ideas where Scala thrives and also
where the greatest care must be taken. This book will help guide when to use each of
these techniques.

 Let’s start looking at a few key concepts every Scala developer needs to know when
coding Scala.

The core rules
This chapter covers a few topics that every newcomer to Scala needs to know. Not
every topic is covered in depth, but we cover enough to allow you to explore the
subject. You’ll learn about the Read Eval Print Loop and how you can use this to
rapidly prototype software. Next we’ll learn about expression-oriented program-
ming, and how to look at control flow in a different light. From this, we’ll spring
into immutability and why it can help to greatly simplify your programs, and help
them run better concurrently.

2.1 Learn to use the Read Eval Print Loop (REPL)
Scala provides many materials to learn the core language. You can investigate many
tutorials, examples, and projects online. But the single most important thing Scala
provides is a Read Eval Print Loop (REPL). The REPL is an interactive shell that

In this chapter
 Using the Scala Read Eval Print Loop

 Expression-oriented programming

 Immutability

 The Option class
16

17Learn to use the Read Eval Print Loop (REPL)
compiles Scala code and returns results/type immediately. The Scala REPL is instanti-
ated by running scala on the command line, assuming you have Scala installed on
your machine and your path is set correctly. The Scala REPL should output something
like the following:

$ scala
Welcome to Scala version 2.8.0.r21454-b20100411185142

(Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_15).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

From now on, in code examples I’ll use the scala> prompt to imply that these were
entered into the REPL. The following line will be the output. Let’s do a few quick sam-
ples in the REPL and see what it shows us.

scala> "Hello"
res0: java.lang.String = Hello

scala> "Hello".filter(_ != 'l')
res1: String = Heo

scala> "Hello".map(_.toInt + 4)
res2: scala.collection.immutable.IndexedSeq[Int] =

Vector(76, 105, 112, 112, 115)

scala> "Hello".r
res3: scala.util.matching.Regex = Hello

You’ll notice that after every statement we enter into the interpreter, it prints a line
like res0: java.lang.String = Hello (see figure 2.1). The first part of this expres-
sion is a variable name for the expression. In the case of these examples, the REPL is
defining a new variable for the result of each expression (res0 through res3). The
next part of the result expression (after the :) is the static type of the expression. The
first example has a type of java.lang.String, whereas the last has a type of
scala.util.matching.Regex. The last part of the result expression is the stringified
value of the result. This normally comes from calling the toString method defined
on all classes within the JVM.

 As you can see, the REPL is a powerful way to test the Scala language and its type
system. Most build tools also include a mechanism to start the REPL with the same
classpath as your current working project.
This means libraries and compiled classes
from your project are available within the
REPL. You can make API calls and remote
server hits inside the REPL. This can be a
great way to test out a web service or REST
API in a quick manner. This leads to what I
refer to as experiment-driven development.

res0: java.lang.String = Hello

variable name Resulting Type toString of
Result

Figure 2.1 REPL return values

18 CHAPTER 2 The core rules
2.1.1 Experiment-driven development

Experiment-driven development is where you, the developer, first spend some time
experimenting with a live interpreter or REPL before writing tests or production code.
This gives you time to fully understand the external pieces of software you’re interact-
ing with and get a feel for the comings and goings of data within that API. It’s a great
way to learn about a new web service or RESTful API that has just been published, that
latest Apache library, or even learn about something one of your coworkers have writ-
ten. After determining the workings of the API, you can then better write your own
code. If you also ascribe to test-driven development, this means that you would then
write your tests.

Experiment in the REPL

Scala provides the REPL tool so every developer can toy around in the language before commit-
ting any final code. It’s by far the most useful tool in the Scala ecosystem. Development should
start inside the REPL in Scala.

There has been a big push for developers to embrace test-driven development (TDD).
This is an approach to development where one writes the unit tests first, and then any
implementation of those classes. You don’t always know what your API should be
before you write the tests. Part of TDD is defining the API through the tests. It allows
you to see your code in context and get a feel for whether it’s something you would
want to use. Strongly typed languages can present more issues than dynamic lan-
guages with TDD because of expressiveness. Using the REPL, experiment-driven devel-
opment brings this API definition phase before test generation, allowing a developer
to ensure an API is possible in the type system.

 Scala is a strongly typed language with flexible syntax, and as such sometimes
requires some finagling with the type system to attain the API you desire. Because a lot
of developers don’t have strong type theory backgrounds, this often requires more
experimentation. Experiment-driven development is about experimenting in the
REPL with the type system to utilize types as effectively as possible in your API.
Experiment-driven design is more about adding larger features or domains into your
code, rather than new methods or bug fixes.

 Experiment-driven design can also help drastically when defining domain-specific
languages (DSLs). A DSL is a pseudo programming language that deals with a particular
domain. This language is specific to the domain at hand—for example, querying for
data from a database. A DSL may be either internal, as seen in many Scala libraries, or
external like SQL. In Scala, it is popular among library developers to create DSLs cov-
ering the same domain as the library. For example, the Scala actors library defines a DSL
for sending and receiving messages in a thread-safe manner.

 One of the challenges when defining a DSL in Scala is to make effective use of the
type system. A good type-safe DSL can be expressive and easy to read and can catch
many programming errors at compiler time rather then runtime. Also having static
knowledge of types can drastically improve performance. The REPL will let you exper-

Rule
1

19Learn to use the Read Eval Print Loop (REPL)
iment with how to express a particular domain and make sure that expression will com-
pile. When developing Scala, one finds himself adopting the following creative flow:

 Experiment in the REPL with API design
 Copy working API into project files
 Develop unit tests against API

 Adapt code until unit tests pass

When used effectively, experiment-driven development can drastically improve the
quality of your API. It will also help you become more comfortable with Scala syntax as
you progress. The biggest issue remaining is that not every possible API in Scala is
expressible in the REPL. This is because the REPL is interpreted on the fly, and it
eagerly parses input.

2.1.2 Working around eager parsing

The Scala REPL attempts to parse input as soon as it possibly can. This, and a few other
limitations, means that there are some things that are hard to impossible to express
with the REPL. One important function to express are companion objects and classes.

 A companion object and class are a set of object and class definitions that use the
same name. This is easy to accomplish when compiling files; declare the object and
class like so:

class Foo

These statements will also evaluate in the REPL, but they won’t function as compan-
ions of each other. To prove this, in the following listing let’s do something that a com-
panion object can do, that a regular object can’t: access private variables on the class.

scala>class Foo {
| private var x = 5
| }

defined class Foo

scala> object Foo {
| def im_in_yr_foo(f: Foo) = f.x
| }

<console>:7: error: variable x cannot be accessed in Foo
def im_in_yr_foo(f: Foo) = f.x

To fix this issue, we need to embed these objects in some other accessible scope within
the interpreter. In the following listing, let’s place them inside some scope so we can
interpret/compile the class and companion object at the same time:

Listing 2.1 Companion objects in REPL

This would
compile normally

20 CHAPTER 2 The core rules
scala> object holder {
| class Foo {
| private var x = 5
| }
| object Foo {
| def im_in_yr_foo(f: Foo) = f.x
| }
| }

defined module holder

scala> import holder.Foo
import holder.Foo

scala> val x = new Foo
x: holder.Foo = holder$Foo@a5c18ff

scala> Foo.im_in_yr_foo(x)
res0: Int = 5

What we’ve done is create a holder object. This gives us our accessible scope, and defers
the REPL’s compilation until the close of the holder object. We then have to import
Foo from the holder object. This allows us to test/define companion objects within
the REPL.

PASTE AND SCALA 2.9.X Starting in Scala 2.9.x, the REPL supports a :paste
command, where all code copied into the prompt is compiled in the same
run. This provides an alternative to using a container object.

2.1.3 Inexpressible language features

Even working around eager parsing, there are still some language features that the
REPL can’t reproduce. Most of these issues revolve around packages, package objects,
and package visibility restrictions. In particular, you’re unable to effectively create a
package or package object in the REPL the same way you can within a source file. This
also means that other language features dealing with packages, particularly visibility
restrictions using the private keyword, are also inexpressible. Usually packages are
used to namespace your code and separate it from other libraries you might use. This
isn’t normally needed inside the REPL, but there may be times when you’re toying
with some advanced feature of Scala—say, package objects and implicit resolution—
and you would like to do some experiment-driven development. In this case, you can’t
express what you want solely in the REPL; see the following listing.

package foo

package object bar {
private[foo] def baz(...) = ...

}

Listing 2.2 Correct companion object in REPL

Listing 2.3 Inexpressible language features in the REPL

Provides
accessible
scope

Entire holder
object compiled
at once

Package definitions

Package objects
Package private

21Think in expressions
Hope isn’t lost. As stated before, most build utilities allow you to create a Scala REPL
session against your current project. As a last resort you can toy with some concept in
a Scala file, recompile, and restart your REPL session.

 A tool known as JRebel (http://mng.bz/8b4t) can dynamically reload class files
within a running JVM. The JRebel team has graciously provided free licenses when
used with Scala. This tool, combined with some form of continuous compilation, avail-
able in most Scala build tools, will allow you to modify your project files and have the
changed behavior be immediately available within you REPL session. For the maven-
scala-plugin, the details for continuous compilation are located at http://mng.bz/
qG78. The Simple Build Tool (http://mng.bz/2f7Q) provides the cc target for continu-
ous compilation. Whatever build tool you use to start a REPL session must be inte-
grated with a JRebel classloader so that dynamic class reloading can happen. This
technique is a bit detailed and prone to change, so please check your build tool’s doc-
umentation or the JRebel website for help.

 The REPL will allow you to try out Scala code and get a real feel for what you’re
doing before attempting to create some large complicated system. It’s often important
in software development to get a slightly more than cursory knowledge of a system
before tackling a new feature. The Scala REPL should allow you to do so with a mini-
mal amount of time, allowing you to improve your development skills.

 This entire book is enriched with examples of code from the REPL, as it’s the best
tool to teach and learn Scala. I often find myself running sample programs completely
via the REPL before I even create some kind of “main” method, or a unit test, as is
standard within Java development. To help encourage this, the book favors demon-
strating concepts in the REPL using a few simple scripts. Please feel free to follow
along with a REPL of your own.

USE THE REPL EVERYWHERE! No matter what build environment you use, the
REPL can dramatically improve your development process. All the major IDEs
have support for running the Scala REPL and most of the major build tools.
Consult the documentation of the Scala integration for your IDE or build sys-
tem for details on how to ensure a good REPL experience. For bonus points,
use the REPL in combination with a graphical debugger.

The REPL is also a great way to begin learning how to use expressions rather than
statements.

Use expressions not statements

In Scala, a lot of code can be written as small methods of one expression. This style is not only
elegant, but helps in code maintenance.

2.2 Think in expressions
Expression-oriented programming is a term I use to refer to the use of expressions rather
than statements in code. What’s the difference between an expression and a statement?
A statement is something that executes, but an expression is something that evaluates.

Rule
2

http://mng.bz/8b4t
http://mng.bz/qG78
http://mng.bz/qG78
http://mng.bz/2f7Q

22 CHAPTER 2 The core rules
What does this mean in practice? Expressions return values. Statements execute code,
but there’s no value returned. In this section, we’ll learn all about expression-oriented
programming and how it can help simplify your programs. We’ll also look at mutability
of objects, and how it interacts with expression-oriented programming.

STATEMENT VERSUS EXPRESSION A statement is something that executes; an
expression is something that evaluates to a value.

Expressions are blocks of code that evaluate to a value. In Scala, some control blocks
are also expressions. This means that if the control were to branch, each of these
branches must evaluate to a value as well. The if clause is a great example; this checks
a conditional expression and returns one expression or another, depending on the
value of the conditional expression. Let’s look at a simple REPL session:

scala> if(true) "true string" else "false string"
res4: String = true string

scala> if(false) 5 else "hello"
res5: Any = hello

As you can see, in Scala an if block is an expression. Our first if block returns "true
string", the true expression. The second if block returns hello, the result of the false
expression. To accomplish something similar in Java, you would use the ?: syntax as
shown in the following:

String x = true ? "true string" : "false string"

An if block in Java is therefore distinct from a ?: expression in that it doesn’t evaluate
to a value. You can’t assign the result of an if block in Java, but Scala has unified the
concept of ?: with its if blocks. Scala has no ?: syntax; you merely use if blocks. This
is the beginning of expression-oriented programming. In fact, Scala has few state-
ments that do not return values from their last expression.

2.2.1 Don’t use return

One of the keys to using expressions is realizing that there’s no need for a return state-
ment. An expression evaluates to a value, so there’s no need to return.

 While programming in Java, there was a common practice of having a single point
of return for any method. This meant that if there was some kind of conditional logic,
the developer would create a variable that contained the eventual return value. As the
method flowed, this variable would be updated with what the method should return.
The last line in every method would be a return statement. The following listing shows
an example.

def createErrorMessage(errorCode: Int) : String = {
var result : String = _
errorCode match {

case 1 =>

Listing 2.4 Java idiom: one return statement

Initialized to default

23Think in expressions
result = "Network Failure"
case 2 =>

result = "I/O Failure"
case _ =>
result = "Unknown Error"

}
return result;

}

As you can see, the result variable is used to store the final result. The code falls
through a pattern match, assigning error strings as appropriate, then returns the
result variable. We can improve this code slightly by using the expression-oriented syn-
tax that pattern matching allows. A pattern match returns a value. The type of the value
is determined as a common super type from all case statement returns. Pattern match-
ing also throws an exception if no pattern is matched, so we’re guaranteed a return or
error here. The following listing shows the code translated for an expression-oriented
pattern match.

def createErrorMessage(errorCode : Int) : String = {
val result = errorCode match {

case 1 => "Network Failure"
case 2 => "I/O Failure"
case 3 => "Unknown Error"

}
return result

}

You’ll notice two things. First, we changed the result variable to a val and let the type
inferencer determine the type. This is because we no longer have to change the val
after assignment; the pattern match should determine the unique value. Therefore,
we reduced the size and complexity of the code, and we increased immutability in the
program. Immutability refers to the unchanging state of an object or variable; it’s the
opposite of mutability. Mutability is the ability of an object or variable to change or
mutate during its lifetime. We’ll cover mutability and expression-oriented program-
ming in the next section. You’ll frequently find that expression-oriented program-
ming and immutable objects work well together.

 The second thing we’ve done is remove any kind of assignment from the case state-
ments. The last expression in a case statement is the “result” of that case statement.
We could have embedded further logic in each case statement if necessary, as long as
we eventually had some kind of expression at the bottom. The compiler will also warn
us if we accidentally forget to return, or somehow return the wrong type.

 The code is looking a lot more concise, but we can still improve it somewhat. In
Scala, most developers avoid return statements in their code; they prefer to have the
last expression be the return value (similar to all the other expression-oriented styles).
In fact, for the createErrorMessage method, we can remove the intermediate result
variable altogether. The following listing shows the final transformation.

Listing 2.5 Updated createErrorMessage with expression-oriented pattern match

Directly assign result

Assigning pattern match

Returns
expression

24 CHAPTER 2 The core rules
def createErrorMessage(errorCode: Int) : String = errorCode match {
case 1 => "Network Failure"
case 2 => "I/O Failure"
case _ => "Unknown Error"

}

Note how we haven’t even opened up a code block for the method? The pattern
match is the only statement in the method, and it returns an expression of type
String. We’ve completely transformed the method into an expression-oriented syn-
tax. Note how much more concise and expressive the code is. Also note that the com-
piler will warn us of any type infractions or unreachable case statements.

2.2.2 Mutability

Expression-oriented programming becomes slightly more interesting when mixed
with mutability, or the ability to change an object’s state during its lifetime. This is
because code utilizing mutable objects tends to be written in an imperative style.

 Imperative coding is a style that you’re probably used to. Many early languages
such as C, Fortran, and Pascal are imperative. Imperative code tends to be made of
statements, not expressions. Objects are created which have state. Then statements
are executed that “mutate” or change the state of an object. In the case of languages
that don’t have objects, the same mechanisms apply, except with variables and struc-
tures. The following listing shows an example of imperative code.

val x = Vector2D(0.0,0.0)
x.magnify(2.0)

Note how a vector is constructed and then mutated via the magnify method.
Expression-oriented code prefers having all statements return some expression or
value, which would include the move method. In the case of object mutation, what
value should be returned? One option is to return the object that was just mutated, as
in the following listing.

class Vector2D(var x: Double, var y: Double) {
def magnify(amt: Double) : Vector2D = {

x *= amt
y *= amt
this

}
}

This may seem a great option but has some serious drawbacks. In particular, it can get
confusing determining when an object is being mutated, especially when combined
with immutable objects. See if you can determine what values should print at the end

Listing 2.6 Final expression-oriented createErrorMessage method

Listing 2.7 Example of imperative style code

Listing 2.8 Example mutable expression-oriented method

25Think in expressions
of this block of code. Assume that the - method defined on Vector2D follows the
mathematical definition. Now for the listing.

scala> val x = new Vector2D(1.0, 1.0)
x : Vector2D = Vector2D(1.0,1.0)

scala> val y = new Vector2D(-1.0, 1.0)
y : Vector2D = Vector2D(1.0, 1.0)

scala> x.magnify(3.0) - (x - y).magnify(3.0)
res0 : mutable.Vector2D = ???

What is the result of the preceding expression, then? On first look, we would expect it
to be the vector (3.0,3.0) minus the vector (6.0,0.0), which is (-3.0,3.0). But each of
these variables is mutable. This means that the operations are modifying the variables
in the order they’re used. Let’s evaluate this as it’s compiled. First the x vector,
(1.0,1.0) is magnified by 3 to become (3.0,3.0). Next, we subtract y from x to give x
the value (2.0,4.0). Why? Because the right-hand side of the - method must be evalu-
ated next, and (x-y) is the first part of this expression. We then magnify x by 3.0
again, bringing the value to (6.0,12.0). Finally we subtract x from itself, bringing the
resulting value to (0.0,0.0). That’s right—x is subtracted from itself. Why? Because the
expression on the left-hand side of the - and the right-hand side of the minus both
start with the x variable. Because we’re using mutability, this means that each expres-
sion returns x itself. So no matter what we do, we wind up calling x - x which results
in the vector (0.0, 0.0).

 Because of this confusion, it’s best to prefer immutability when using objects and
expression-oriented programming. This is particularly the case with operator over-
loading, as with the previous example. Some examples can demonstrate where muta-
bility works well with expression-oriented programming, particularly with pattern
matching or if statements.

 Code has a common task where you need to look up values on an object based on
some value. These objects may be immutable or mutable. But expression-oriented
programming comes in to simplify the lookup. Let’s consider a simple example of
looking up the action to perform based on a Menu button click. When we click the
Menu button, we receive an event from our event system. This event is marked with
the identifier of the button pressed. We want to perform some action and return a sta-
tus. Let’s check out the code in the following listing.

def performActionForButton(buttonEvent: ButtonEvent,
form: Form) : Boolean =

buttonEvent.getIdentifier match {
case "SUBMIT" if form.isValid() =>

try {
form.submit()

Listing 2.9 Mixing immutable and mutable objects with expression

Listing 2.10 Mutable objects and expressions—the right way

26 CHAPTER 2 The core rules
true
} catch {

case t: FormSubmitError =>
false

}
case "CLEAR" =>

form.clear()
true

case _ =>
false

}

Note how we’re mutating the objects in place and then returning our result. Instead
of an explicit return statement, we state the expression we wish to return. You can see
the code here is more succinct than creating a variable to hold the result variable.
You’ll also notice that mixing mutation statements with our expressions has reduced
some of the clarity of the code. This is one of the reasons why it’s better to prefer
immutable code—the topic of our next section.

 Expression-oriented programming can reduce boilerplate and provide elegant
code. It’s accomplished through having all statements return meaningful values. You
can now reduce clutter and increase expressiveness within your code.

 Expression-oriented programming tends to pair favorably with immutable pro-
gramming, but less so with mutable objects. Immutability is a term to denote that
something doesn’t change, in this case the state of an object, once constructed.

2.3 Prefer immutability
Immutability, in programming, refers to the unchanging state of objects after con-
struction. This is one of the capstones of functional programming and a recom-
mended practice for object-oriented design on the JVM. Scala is no exception here
and prefers immutability in design, making it the default in many cases. This can be
tricky. In this section, you’ll learn how immutability can help when dealing with equal-
ity issues or concurrent programs.

Prefer Immutability

Creating immutable classes drastically reduces the number of potential runtime issues. When in
doubt, it’s safest to stay immutable.

The most important thing to realize in Scala is that there’s a difference between an
immutable object and an immutable reference. In Scala, all variables are references to
objects. Defining a variable as a val means that it’s an immutable reference. All method
parameters are immutable references, and class arguments default to being immuta-
ble references. The only way to create a mutable variable is through the var syntax.
The immutability of the reference doesn’t affect whether the object referred to is
immutable. You can have a mutable reference to an immutable object and vice versa.
This means it’s important to know whether the object itself is immutable or mutable.

 Determining immutability constraints on objects isn’t obvious. In general, it’s safe
to assume that if the documentation states an object is immutable, then it is;

Return
values

Rule
3

27Prefer immutability
otherwise, be careful. The Scala standard library helps make the delineation obvious
in its collections classes by having parallel package hierarchies, one for immutable
classes and one for mutable classes.

 In Scala immutability is important because it can help programmers reason
through their code. If an object’s state doesn’t change, then you can determine where
objects are created to see where state changes. It can also simplify methods that are
based on the state of an object. This benefit is particularly evident when defining
equality or writing concurrent programs.

2.3.1 Object equality

One critical reason to prefer immutability is the simplification of object equality. If an
object won’t change state during its lifetime, one can create an equals implementa-
tion that is both deep and correct for any object of that type. This is also critical when
creating a hash function for objects. A hash function is one that returns a simplified
representation of an object, usually an integer, that can be used to quickly identify the
object. A good hash function and equals method are usually paired, if not through
code, then in logical definition. If state changes during the lifetime of an object, it can
ruin any hash code that was generated for the object. This in turn can affect the equal-
ity tests of the object. The following listing shows a simple example of a two-
dimensional geometric point class.

class Point2(var x: Int, var y: Int) {
def move(mx: Int, my: Int) : Unit = {

x = x + mx
y = y + my

}
}

The Point2D class is simple. It consists of x and y values, corresponding to locations on
the x and y axes. It also has a move method, which is used to move the point around
the two-dimensional plane. Imagine we want to tie labels to particular points on this
2-D plane, where each label is only a string. To do so, we’d like to use a map of
Point2D to string values. For efficient lookup, we’re going to use a hashing function
and a HashMap. Let’s try the simplest possible thing, hashing with the x and y variables
directly, in the following listing.

class Point2(var x: Int, var y: Int) {
def move(mx: Int, my: Int) : Unit = {

x = x + mx
y = y + my

}
override def hashCode(): Int = y + (31*x)

}

Listing 2.11 Mutable Point2 class

Listing 2.12 Mutable Point2 class with hashing function

28 CHAPTER 2 The core rules
scala> val x = new Point2(1,1)
x: Point2 = Point2@20

scala> x.##
res1: Int = 32

scala> val y = new Point2(1,2)
y: Point2 = Point2@21

scala> import collection.immutable.HashMap
import collection.immutable.HashMap

scala> val map = HashMap(x -> "HAI", y -> "ZOMG")
map: scala.collection.immutable.HashMap[

Point2,java.lang.String] =
Map((Point2@21,ZOMG), (Point2@20,HAI))

scala> map(x)
res4: java.lang.String = HAI

scala> val z = new Point2(1,1)
z: Point2 = Point2@20

scala> map(z)
java.util.NoSuchElementException: key not found: Point2@20
...

Things appear to be working exactly as we want—until we attempt to construct a new
point object with the same values as point x. This point should hash into the same sec-
tion of the map, but the equality check will fail because we haven’t created our own
equality method. By default, Scala uses object location equality and hashing, but we’ve
only overridden the hash code. Object location equality is using the address in mem-
ory for an object as the only factor to determine if two objects are equal. In our
Point2 case, object location equality can be a quick check for equality, but we can also
make use of the x and y locations to check for equality.

 You may have noticed that the Point2 class overrides the hashCode method, but
I’m calling the ## method on the instance x. This is a convention in Scala. For com-
patibility with Java, Scala utilizes the same equals and hashCode methods defined on
java.lang.Object. But Scala also abstracts primitives such that they appear as full
objects. The compiler will box and unbox the primitives as needed for you. These
primitive-like objects are all subtypes of scala.AnyVal whereas “standard” objects,
those that would have extended java.lang.Object, are subtypes of scala.AnyRef.
scala.AnyRef can be considered an alias for java.lang.Object. As the hashCode and
equals methods are defined on AnyRef, Scala provides the methods ## and == that
you can use for both AnyRef and AnyVal.

HASHCODE AND EQUALS SHOULD ALWAYS BE PAIRED The equals and hashCode
methods should always be implemented such that if x == y then x.## == y.##.

Let’s implement our own equality method in the following listing and see what the
results are.

29Prefer immutability
class Point2(var x: Int, var y: Int) extends Equals {
def move(mx: Int, my: Int) : Unit = {

x = x + mx
y = y + my

}
override def hashCode(): Int = y + (31*x)
def canEqual(that: Any): Boolean = that match {

case p: Point2 => true
case _ => false

}
override def equals(that: Any): Boolean = {

def strictEquals(other: Point2) =
this.x == other.x && this.y == other.y

that match {
case a: AnyRef if this eq a => true
case p: Point2 => (p canEqual this) && strictEquals(p)
case _ => false

}
}

}

scala> val x = new Point2(1,1)
x: Point2 = Point2@20

scala> val y = new Point2(1,2)
y: Point2 = Point2@21

scala> val z = new Point2(1,1)
z: Point2 = Point2@20

scala> x == z
res6: Boolean = true

scala> x == y
res7: Boolean = false

The implementation of equals may look strange, but will be covered in more detail in
section 2.5.2. For now, note that the strictEquals helper method compares the x
and y values directly. This means that two points are considered equal if they are in the
same location. We’ve now tied our equals and hashCode methods to the same criteria,
the x and y values. Let’s throw our x and y values into a HashMap again, only this time
we’re going to move the x value, and see what happens to the label attached to it.

scala> val map = HashMap(x -> "HAI", y -> "WORLD")
map: scala.collection.immutable.HashMap[Point2,java.lang.String] =

Map((Point2@21,WORLD), (Point2@20,HAI))

scala> x.move(1,1)

scala> map(y)
res9: java.lang.String = WORLD

Listing 2.13 Mutable Point2 class with hashing and equality

Listing 2.14 Mutating Point2 with HashMap

30 CHAPTER 2 The core rules
scala> map(x)
java.util.NoSuchElementException: key not found: Point2@40
...

scala> map(z)
java.util.NoSuchElementException: key not found: Point2@20
...

What happened to the label attached to x? We placed it into the HashMap when x has a
value of (1,1). This means it had a hash code of 32. We then move x to (2,2), changing
its hash code to 64. Now when we try to look up the label in the map using x, it can’t
be found because x was encoding with the hash bucket of 32, and it’s looking in the
hash bucket for 64. Well, what if we try to look up the value using a new point, z, that
still has a hash code of 32? It also fails, because x and z aren’t equal according to our
rules. You see, a HashMap uses the hash at the time of insertion to store values but
doesn’t update when an object’s state mutates. This means we’ve lost our label for x
when using hash-based lookup, but we can still retrieve the value when traversing the
map or using traversal algorithms:

scala> map.find(_._1 == x)
res13: Option[(Point2, java.lang.String)] = Some((Point2@40,HAI))

As you can see, this behavior is rather confusing, and can cause no end of strife when
debugging. As such, it’s generally recommended to ensure the following constraints
when implementing equality:

 If two objects are equal, they should have the same hashCode.
 A hashCode computed for an object won’t change for the life of the object.
 When sending an object to another JVM, equality should be determined using

attributes available in both JVMs.

As you can see, the second constraint implies that all criteria used in creating a hash-
Code should not change with the life of an object. The last statement, when applicable,
means that an object’s hash and equals method should be computed using its own
internal state. Combine this with the first statement, and you find that the only way to
satisfy these requirements is through the use of immutable objects. If the state of an
object never changes, it’s acceptable to use it in computing a hash code or when test-
ing equality. You can also serialize the object to another JVM and continue to have a
consistent hash code and equality.

 You may be wondering, why do I care about sending objects to other JVMs? My soft-
ware will never run on more than one JVM. In fact, my software runs on a mobile
device, where resources are critical. The problem with that thinking is that serializing
an object to another JVM need not be done in real time. I could save some program
state to disk and read it back later. This is effectively the same as sending something to
another JVM. Although you may not be directly sending it over the network, you’re
sending it through time, where the JVM of today is the writer of data, and the JVM
started tomorrow is the user of the data. In these instances, having a hash code and
equals implementation is critical.

31Prefer immutability
 The last constraint makes immutability a necessity. Remove this constraint, and
there are only two simple ways to satisfy the first two constraints:

 Utilize only immutable object internal state in hashCode computation
 Use default concepts for equals and hashCode

As you can see, this means that something in the object must be immutable. Making the
entire object immutable simplifies this whole process greatly.

2.3.2 Concurrency

Immutability doesn’t merely simplify object equality; it can also simplify concurrent
access of data. Programs are becoming increasingly parallelized, and processors are
splitting into multiple cores. The need to run concurrent threads of control in pro-
grams is growing across all forms of computing. Traditionally, this meant using cre-
ative means to protect access to shared data across these various threads of control.
Protected mutable data usually means some form of locking. Immutability can help
share state while reducing the need for locking.

 Locking entails a performance overhead. Threads that wish to read data can’t do
so unless the lock is available to obtain. Even using read-write locks can cause issues,
because a writer may be slow in preventing readers from accessing the data they
desire. On the JVM, there are optimizations in the JIT to attempt to avoid locks when
they aren’t necessary. In general, you want to have as few locks in your software as pos-
sible, but you want enough to encourage a high degree of parallelism. The more you
can design your code to avoid locking the better. For instance, let’s try to measure the
effect of locking on an algorithm and see if we can design a new algorithm that
reduces the amount of locking.

 We’ll create an index service that we can query to find particular items by their key.
The service will also allow users to add new items into the index. We expect to have
many users looking up values and a smaller amount of users adding additional con-
tent to the index. Here’s the initial interface:

trait Service[Key,Value] {
def lookUp(k: Key): Option[Value]
def insert(k: Key, v: Value): Unit

}

The service is made up of two methods: lookUp, which will look up values in the
index by the key, and insert, which will insert new values into the service. This ser-
vice is like a map of key-to-value pairs. Let’s implement this using a locking and a
mutable HashMap.

import collection.mutable.{HashMap=>MutableHashMap}

class MutableService[Key, Value] extends Service[Key, Value] {
val currentIndex = new MutableHashMap[Key, Value]
def lookUp(k: Key): Option[Value] = synchronized(currentIndex.get(k))
def insert(k: Key, v: Value): Unit = synchronized {

currentIndex.put(k,v)
}

}

32 CHAPTER 2 The core rules
This class contains three members. The first is the currentIndex, which is a reference
to the mutable HashMap that we use to store values. The lookUp and insert methods
are both surrounded by a synchronized block, which synchronizes against the
MutableService. You’ll notice that all operations on a MutableService require lock-
ing. But given what was stated about the usage of this service, the lookUp method will
be called far more often than the insert method. A read-write lock could help in this
situation, but let’s look at using immutability instead.

 We’ll change the currentIndex to be an ImmutableHashMap that get overwritten
when the insert method is called. The lookUp method can then be free of any lock-
ing, as shown in the following code:

class ImmutableService[Key, Value] extends Service[Key, Value] {
var currentIndex = new ImmutableHashMap[Key,Value]
def lookUp(k: Key): Option[Value] = currentIndex.get(k)
def insert(k: Key, v: Value): Unit = synchronized {

currentIndex = currentIndex + ((k, v))
}

}

The first thing to notice is that the currentIndex is a mutable reference to an immu-
table variable. We update this reference every time there’s an insert operation. The
second thing to notice is that this service isn’t completely immutable. All that’s hap-
pened is the reduction of locking by utilizing an immutable HashMap. This simple
change can cause a drastic improvement in running time.

 I’ve set up a simple micro-performance benchmark suite for these two classes. The
basics of the suite are simple. We construct a set of tasks that will write items into the
service and a set of tasks that will attempt to read items from the index. We then inter-
leave the two sets of tasks and submit them to a queue of two threads for execution.
We time the speed that this entire process takes and record the results. Figure 2.2
shows some worst-case results.

 The y-axis is the execution time of running a test. The x-axis corresponds to the
number of insert/lookUp tasks submitted to the thread pools. You’ll notice that the
mutable service’s execution time grows faster than the immutable service’s execution
time. This graph certainly shows that extra locking can severely impact performance.
But note that the execution times of this test can greatly vary. Due to the uncertainty of
parallelism, this graph could look anywhere from the one shown above to a graph
where the immutable service and mutable service execution times track relatively the
same. In general, the MutableService implementation was slower than the Immutable-
Service, but don’t judge performance from one graph or on execution alone.

 Figure 2.3 shows another graph where you can see, for one particular test, the Muta-
bleService had all of its stars align and ran with a drastically reduced locking overhead.
You can see in the preceding run where a single test case had all its timing align so
that the MutableService could outperform the ImmutableService. Though possible
for this specific case, the general case involved the ImmutableService outperforming
the MutableService. If the assumptions stated here hold true for a real-life program,

33Prefer immutability
it appears that the ImmutableService will perform better in the general case and not
suffer from random contention slowdowns.

 The most important thing to realize is that immutable objects can be passed
among many threads without fear of contention. The ability to remove locks, and all
the potential bugs associated with them, can drastically improve the stability of a code-
base. Combined with the improved reasoning one can get, as seen with the equals
method, immutability is something to strive to maintain within a codebase.

 Immutability can ease concurrent development by reducing the amount of protec-
tion a developer must use when interacting with immutable objects. Scala also

850,000

800,000

750,000

700,000

650,000

600,000

550,000

500,000

450,000

400,000

350,000

300,000

250,000

200,000

150,000

100,000

50,000

0
0 5 10 15 20 25 30 35 40 45 50

tim
e

size
index-lookup-MutableService index-lookup-ImmutableService

Figure 2.2
Immutable versus
mutable service
worst-case scenario

850,000

800,000

750,000

700,000

650,000

600,000

550,000

500,000

450,000

400,000

350,000

300,000

250,000

200,000

150,000

100,000

50,000

0
0 5 10 15 20 25 30 35 40 45 50

tim
e

size
index-lookup-MutableService index-lookup-ImmutableService

Figure 2.3
Immutable versus
mutable service
“one golden run”
scenario

34 CHAPTER 2 The core rules
provides a class called Option that allows developers to relax the amount of protection
they need when dealing with null.

2.4 Use None instead of null
Scala does its best to discourage the use of null in general programming. It does this
through the scala.Option class found in the standard library. An Option can be con-
sidered a container of something or nothing. This is done through the two subclasses
of Option: Some and None. Some denotes a container of exactly one item. None denotes
an empty container, a role similar to what Nil plays for List.

Use None instead of null

While it was habit in Java to initialize values to null, Scala provides an Option type for the same
purpose. Option is self-documenting for developers and, used correctly, can prevent unin-
tended null pointer exceptions when using Scala.

In Java, and other languages that allow null, null is often used as a placeholder to
denote a nonfatal error as a return value or to denote that a variable isn’t yet initial-
ized. In Scala, one can denote this through the None subclass of Option. Conversely,
one can denote an initialized, or nonfatal variable state through the Some subclass of
Option. Let’s look at the usage of these two classes in the following listing.

scala> var x : Option[String] = None
x: Option[String] = None

scala> x.get
java.util.NoSuchElementException: None.get in

scala> x.getOrElse("default")
res0: String = default

scala> x = Some("Now Initialized")
x: Option[String] = Some(Now Initialized)

scala> x.get
res0: java.lang.String = Now Initialized

scala> x.getOrElse("default")
res1: java.lang.String = Now Initialized

An Option containing no value can be constructed via the None object. An Option that
contains a value is created via the Some factory method. Option provides many differ-
ing ways of retrieving values from its inside. Of particular use are the get and
getOrElse methods. The get method will attempt to access the value stored in an
Option and will throw an exception if it’s empty. This is similar to accessing nullable
values within other languages. The getOrElse method will attempt to access the value
stored in an Option, if one exists; otherwise it will return the value supplied to the
method. You should always prefer getOrElse over using get.

Listing 2.15 Simple usage of Some and None

Rule
4

35Use None instead of null
 Scala provides a factory method on the Option companion object that will convert
from a Java style reference, where null implies an empty variable, into an Option
where this is more explicit. Let’s take a quick look in the following listing.

scala> var x : Option[String] = Option(null)
x: Option[String] = None

scala> x = Option("Initialized")
x: Option[String] = Some(Initialized)

The Option factory method will take a variable and create a None object if the input
was null, or it will create a Some if the input was initialized. This makes it rather easy to
take inputs from an untrusted source—that is, another JVM language—and wrap them
into Options. You might be asking yourself why you would want to do this. Isn’t check-
ing for null just as simple in code? Option provides advanced features that make it far
more ideal than using null and if checks.

2.4.1 Advanced Option techniques

The greatest feature of Option is that you can treat it as a collection. This means you
can perform the standard map, flatMap, and foreach methods, as well as utilize it
inside a for expression. This helps ensure a nice concise syntax, and it opens a variety
of different methods to handling uninitialized values. Let’s look at some common
issues solved using null and their solutions using Option, starting with creating an
object or returning a default.

CREATE AN OBJECT OR RETURN A DEFAULT

You’ll have many times in code when you’ll need to construct something if some other
variable exists, or supply some sort of default. Let’s pretend that we have an applica-
tion that requires some kind of temporary file storage for its execution. The applica-
tion is designed so that a user may optionally specify a directory to store temporary
files on the command line. If the user doesn’t specify a new file, if the argument pro-
vided by the user is not a real directory, or if they didn’t provide a directory, then we
want to return a sensible default temporary directory. The following listing shows a
method that will return this temporary directory:

def getTemporaryDirectory(tmpArg: Option[String]): java.io.File = {

tmpArg.map(name => new java.io.File(name)).

filter(_.isDirectory).

getOrElse(new java.io.File(

System.getProperty("java.io.tmpdir")))
}

Listing 2.16 Usage of the Option factory

Listing 2.17 Creating an object or returning a default

Option.apply(“Initialized”)

Create if defined

Only directories

Specify default

36 CHAPTER 2 The core rules
The getTemporaryDirectory method takes the command-line parameter as an
Option containing a String and returns a File object referencing the temporary
directory we should use. The first thing we do is use the map method on Option to cre-
ate a java.io.File if there was a parameter. Next, we make sure that this newly con-
structed file object is a directory. To do that, we use the filter method. This will
check whether the value in an Option abides by some predicate, and if not, convert to
a None. Finally, we check to see if we have a value in the Option; otherwise we return
the default temporary directory.

 This enables a powerful set of checks without resorting to nested if statements or
blocks. Sometimes we would like a block, such as when we want to execute a block of
code based on the availability of a particular parameter.

EXECUTE BLOCK OF CODE IF VARIABLE IS INITIALIZED

Option can be used to execute a block of code if the Option contains a value. This is
done through the foreach method, which, as expected, iterates over all the elements
in the Option. As an Option can only contain zero or one value, this means the block
either executes or is ignored. This syntax works particularly well with for expressions.
Let’s take a look at the following listing.

val username: Option[String] = ...

for(uname <- username) {
println("User: " + uname)

}

As you can see, this looks like a normal “iterate over a collection” control block. The
syntax remains similar when we need to iterate over several variables. Let’s look at the
case where we have some kind of Java servlet framework, and we want to be able to
authenticate users. If authentication is possible, we want to inject our security token
into the HttpSession so that later filters and servlets can check access privileges for
this user, as in the following listing.

def authenticateSession(session: HttpSession,
username: Option[String],
password: Option[Array[Char]]) = {

for(u <- username;
p <- password;
if canAuthenticate(u, p)) {

val privileges = privilegesFor(u)
injectPrivilegesIntoSession(session, privileges)

}
}

Note that you can embed conditional logic in a for expression. This helps keep less
nested logical blocks within your program. Another important consideration is that all
the helper methods do not need to use the Option class. Option works as a great

Listing 2.18 Executing code if option is defined

Listing 2.19 Executing code if several options are defined

Conditional
logic

No need
for Option

37Use None instead of null
front-line defense for potentially uninitialized variables, but it doesn’t need to pollute
the rest of your code. In Scala, Option as an argument implies that something may not
be initialized. The opposite should be true as well. If a method takes a value that is
not labeled as an Option, you should not pass it null or uninitialized parameters.

 Scala’s for expression syntax is rather robust, even allowing you to produce values,
rather then execute code blocks. This is handy when you have a set of potentially
uninitialized parameters that you want to transform into something else.

USING POTENTIAL UNINITIALIZED VARIABLES TO CONSTRUCT ANOTHER VARIABLE

Sometimes we want to transform a set of potentially uninitialized values so that we
have to deal with only one. To do this, we need to use a for expression again, but this
time using a yield. The following listing shows a case where a user has input some
database credentials, or we attempted to read them from an encrypted location, and
we want to create a database connection using these parameters. We don’t want to
deal with failure in our function, as this is a utility function that won’t have access to
the user. In this case, we’d like to transform our database connection configuration
parameters into a single option containing our database.

def createConnection(conn_url: Option[String],
conn_user: Option[String],
conn_pw: Option[String]) : Option[Connection] =

for {
url <- conn_url
user <- conn_user
pw <- conn_pw

} yield DriverManager.getConnection(url, user, pw)

This function does exactly what we need it to. It does seem, though, that we’re merely
deferring all logic to DriverManager.getConnection. What if we wanted to abstract
this such that we can take any function and create one that’s option-friendly in the
same manner? The following listing shows what we’ll call the “lift” function.

scala> def lift3[A,B,C,D](
| f: Function3[A,B,C,D]): Function3[Option[A], Option[B],
| Option[C], Option[D]] = {
| (oa : Option[A], ob : Option[B], oc : Option[C]) =>
| for(a <- oa; b <- ob; c <- oc) yield f(a,b,c)
| }

lift3: [A,B,C,D](f: (A, B, C) => D)(Option[A],
Option[B],
Option[C]) => Option[D]

scala> lift3(DriverManager.getConnection)
res4: (Option[java.lang.String],

Option[java.lang.String],
Option[java.lang.String]) => Option[java.sql.Connection] =

<function3>

Listing 2.20 Merging options

Listing 2.21 Generically converting functions

Using lift3
directly

38 CHAPTER 2 The core rules
The lift3 method looks somewhat like our earlier createConnection method,
except that it takes a function as its sole parameter. The Function3 trait represents a
function that takes three arguments and returns a result. The lift3 function takes a
function of three arguments as input and outputs a new function of three arguments.
As you can see from the REPL output, we can use this against existing functions to cre-
ate option-friendly functions. We’ve directly taken the DriverManager.get-

Connection method and lifted it into something that’s semantically equivalent to our
earlier createConnection method. This technique works well when used with the
“encapsulation” of uninitialized variables. You can write most of your code, even utility
methods, assuming that everything is initialized, and then lift these functions into
Option-friendly variants when needed.

 One important thing to mention is that Option derives its equality and hashCode
from what it contains. In Scala, understanding equality and hashCode, especially in a
polymorphic setting, is very important.

2.5 Polymorphic equality
Let’s discuss how to properly implement an equals and hashCode function in Scala.
This can be tricky in a polymorphic language, but can be done by following some
basic rules. In general, it’s best to avoid having multiple concrete levels with classes
that also need equality stronger then referential equality. In some cases, classes only
need referential equality, the ability to differentiate two objects to determine if they’re
the same instance. But if the equality comparison needs to determine if two differing
instances are equivalent and there are multiple concrete hierarchies, then things get a
bit more tricky.

 To understand this issue, we’ll look at how to write a good equality method.

2.5.1 Example: A timeline library

We’d like to construct a time line, or calendar, widget. This widget needs to display
dates, times, and time ranges as well as associated events with each day. The funda-
mental concept in this library is going to be an InstantaneousTime.

InstantaneousTime is a class that represents a particular discrete time within the
time series. We could use the java.util.Date class, but we’d prefer something that’s
immutable, as we’ve just learned how this can help simplify writing good equals and
hashCode methods. In an effort to keep things simple, let’s have our underlying time
storage be an integer of seconds since midnight, January 1, 1970, Greenwich Mean
Time on a Gregorian calendar. We’ll assume that all other times can be formatted into
this representation and that time zones are an orthogonal concern to representation.
We’re also going to make the following common assumptions about our equality
usage in the application:

 When equals is called and it will return true, it’s because both objects are the
same reference.

 Most calls to equals result in a return of false.

39Polymorphic equality
 Our implementation of hashCode is sufficiently sparse that for most equality
comparisons, the hashCodes will be different.

 Computing a hashCode is more efficient than a deep equality comparison.
 Testing referential equality is more efficient than a deep equality comparison.

These assumptions are standard for most equality implementations. They might not
always hold for your application. Let’s take a first crack at the class and a simple equals
and hashCode method pair in the following listing, and see what this looks like.

trait InstantaneousTime {
val repr: Int

override def equals(other: Any) : Boolean = other match {
case that: InstantaneousTime =>

if(this eq that) {
true

} else {
(that.## == this.##) &&
(repr == that.repr)

}
case _ => false

}
override def hashCode() : Int = repr.##

}

The class contains only one member, repr, which is a number representing the sec-
onds since midnight, January 1, 1970 Greenwich Mean Time. As this is the only data
value in the class, and it’s immutable, equals and hashCode will be based on this value.
When implementing an equals method within the JVM, it’s usually more performant
to test referential equality before doing any sort of deep equality check. In the case of
this class, it’s not necessary. For a sufficiently complex class, it can drastically help per-
formance, but this class doesn’t need it. The next piece to a good equals method is
usually using the hashCode for an early false check. Given a sufficiently sparse and easy
to compute hashCode, this would be a good idea. Once again, in this class it’s not nec-
essary, but in a sufficiently complex class, this can be performant.

AND == VS. EQUALS AND HASHCODE In Scala, the ## method is equivalent to
the hashCode method in Java as the == method is equivalent to the equals
method in Java. In Scala, when calling the equals or hashCode method it’s bet-
ter to use ## and ==. These methods provide additional support for value
types. But the equals and hashCode method are used when overriding the
behavior. This split provides better runtime consistency and still retains Java
interoperability.

This class helps us illustrate two principles: the importance of a good equality method
and always challenge the assumptions of your code. In this case, the “best practice”
equality method, while great for a sufficiently complex class, provides little benefit for
this simple class.

Listing 2.22 Simple InstantaneousTime class

Referential
equality

Hash code
check

Deep equality

Linked to equals
implementation

40 CHAPTER 2 The core rules
NOTE When implementing equality for your own classes, test the assump-
tions in the standard equality implementation to make sure they hold true.

Our implementation of equals suffers from yet another flaw, that of polymorphism.

2.5.2 Polymorphic equals implementation

In general, it’s best to avoid polymorphism with types requiring deep equality. Scala
no longer supports subclassing case classes for this very reason. But there are still
times in code where this is useful or even necessary. To do so, we need to ensure that
we’ve implemented our equality comparisons correctly, keeping polymorphism in
mind and utilizing it in our solution.

 Let’s create a subclass of InstantaneousTime that also stores labels. This is the
class we’ll use to save events in our timeline, so we’ll call it Event. We’ll make the
assumption that events on the same day will hash into the same bucket, and hence
have the same hashCode, but equality will also include the name of the event. Let’s
take a crack at an implementation in the following listing.

trait Event extends InstantaneousTime {
val name: String
override def equals(other: Any): Boolean = other match {

case that: Event =>
if(this eq that) {

true
} else {

(repr == that.repr) &&
(name == that.name)

}
case _ => false

}
}

We’ve dropped the hashCode early exit in our code, as checking the repr member is
just as performant in our particular class. The other thing you’ll notice is that we’ve
changed the pattern match so that only two Event objects can be equal to each other.
Let’s try to use this in the REPL in the following listing.

scala> val x = new InstantaneousTime {
| val repr = 2
| }

x: java.lang.Object with InstantaneousTime = $anon$1@2

scala> val y = new Event {
| val name = "TestEvent"
| val repr = 2
| }

y: java.lang.Object with Event = $anon$1@2

scala> y == x

Listing 2.23 Event subclass of InstantaneousTime

Listing 2.24 Using Event and InstantaneousTime

Quick
referential
check

Deep
equals
using all

Subclass to original

41Polymorphic equality
res8: Boolean = false

scala> x == y
res9: Boolean = true

Use scala.Equals for polymorphic equality

Polymorphic equality is easy to mess up. scala.Equals provides a template to make it easier to
avoid mistakes.

What’s happened? The old class is using the old implementation of the equality
method, and therefore doesn’t check for the new name field. We need to modify our
original equality method in the base class to account for the fact that subclasses may
wish to modify the meaning of equality. In Scala, there’s a scala.Equals trait that can
help us fix this issue. The Equals trait defines a canEqual method that’s used in tan-
dem with the standard equals method. The canEqual method allows subclasses to opt
out of their parent classes’ equality implementation. This is done by allowing the
other parameter in the equals method an opportunity to cause an equality failure. To
do so, we override canEqual in our subclass with whatever rejection criteria our over-
ridden equals method has. Let’s modify our classes to account for polymorphism
using these two methods in the following listing.

trait InstantaneousTime extends Equals {
val repr: Int
override def canEqual(other: Any) =

other.isInstanceOf[InstantaneousTime]
override def equals(other: Any) : Boolean =

other match {
case that: InstantaneousTime =>

if(this eq that) true else {
(that.## == this.##) &&
(that canEqual this) &&
(repr == that.repr)

}
case _ => false

}
override def hashCode(): Int = repr.hashCode

}

trait Event extends InstantaneousTime {
val name: String
override def canEqual(other: Any) =

other.isInstanceOf[Event]
override def equals(other: Any): Boolean = other match {

case that: Event =>
if(this eq that) {

true
} else {

(that canEqual this) &&
(repr == that.repr) &&
(name == that.name)

Listing 2.25 Using scala.Equals

Original to subclass

Rule
5

Allows any subclass

Call other
object’s
canEqual

Subclass opt
out of equality
canEqual

42 CHAPTER 2 The core rules
}
case _ => false

}
}

The first thing to do is implement canEqual on InstantaneousTime to return true if
the other object is also an InstantaneousTime. Next let’s account for the other
object’s canEqual result in the equality implementation. Finally, an overridden
canEqual in the Event class will only allow equality with other Events.

WHEN OVERRIDING EQUALITY OF A PARENT CLASS, ALSO OVERRIDES CANEQUAL
The canEqual method is a lever, allowing subclasses to opt out of their parent
class’s equality implementation. This allows a subclass to do so without the
usual dangers associated with a parent class equals method returning true
while a subclass would return false for the same two objects.

Let’s look at our earlier REPL session and see if the new equals methods behave bet-
ter, as in the following listing.

scala> val x = new InstantaneousTime {
| val repr = 2
| }

x: java.lang.Object with InstantaneousTime = $anon$1@2

scala> val y = new Event {
| val name = "TestEvent"
| val repr = 2
| }

y: java.lang.Object with Event = $anon$1@2

scala> y == x
res10: Boolean = false

scala> x == y
res11: Boolean = false

We’ve succeeded in defining an appropriate equality method. We can now write a gen-
eral equals method that performs well with general assumptions about our programs,
and we can handle the case where our classes are also polymorphic.

2.6 Summary
In this chapter, we looked at the first crucial items for using Scala. Leveraging the
REPL to do rapid prototyping is crucial to any successful Scala developer. Favoring
expression-oriented programming and immutability helps simplify a program and
improve the ability to reason through code. Option can also help improve reasonabil-
ity of the code by clearly delineating where uninitialized values are accepted. Also,
writing a good equality method in the presence of polymorphism can be difficult. All
of these practices can help make the first steps in Scala successful. For continued suc-
cess, let’s look at code style and how to avoid running into issues with Scala’s parser.

Listing 2.26 Using new equals and canEquals methods

No longer returns true

Modicum of style—
coding conventions
This chapter presents style suggestions that will help you avoid compiler or runtime
errors. Style issues are usually a “holy war” among developers, who each has her
own opinions. But there are certain things that Scala allows from a style perspective
that can cause logic or runtime issues in your programs. This chapter doesn’t try to
proselytize you into whether you should place spaces between parenthesis or what
the best number of spaces for indentation is. This chapter merely presents a few
styles that will cause real issues in Scala, and why you should modify your preferred
style accordingly, if needed.

 We discuss why placing opening braces for block expressions can convey differ-
ent meanings to the compiler. Operator notation can cause issues if the compiler

In this chapter
 The dangers of dragging old coding conventions

into Scala

 Working with end-of-line inference

 Avoiding dangerous names for variables

 Ensuring correct behavior with annotations
43

44 CHAPTER 3 Modicum of style— coding conventions
can’t tell where a line ends. Also, when naming variables in Scala, there are some
names that are syntactically valid but will cause compiler or runtime errors. Finally, we
discuss the benefits of compile-time warnings and how you can use annotations to
increase the helpfulness of the Scala compiler. Let’s start by looking at some common
coding conventions.

3.1 Avoid coding conventions from other languages
I’ve found that my style when writing in a new language tends to borrow heavily from
styles I use in other languages until I’ve learned the language well. Scala is no excep-
tion. A lot of users come from Java or Ruby languages and you can see this influence
in the syntax. Over time, this style will change and adjust to accommodate the new lan-
guage as certain guidelines are found to cause issues in the new language. As such, it’s
important to understand exactly where your style is coming from and whether that
style makes sense in the new language. In fact, it’s not just the language itself that dic-
tates style. You must consider many human social interactions, especially if you work
in a company with a large developer base.

 One thing that always frustrated me when using C++ was coding conventions that
were developed before the ready availability of cheap mature C++ IDEs. An IDE can
negate the need for a lot of coding conventions by visually altering code based on a
good semantic parse. IDEs can also allow developers to click-through method calls
into method definitions or declarations to quickly get a feel for what’s going on in
code. A good modern IDE makes a lot of “standard practice” coding conventions
unnecessary. But this doesn’t erase the need for any coding conventions. Coding con-
ventions do serve a few purposes, which can be boiled down into three categories:
code discovery, uniformity, and error prevention.

 Error prevention conventions are style rules that help avoid bugs in production
code. This could be anything from marking method arguments as final in Java to
marking all single argument constructors as explicit in C++. The goal of these style
rules will be obvious to any experienced developer of that language.

 Uniformity rules are about keeping the look of code the same across a project.
These are a necessary evil in development workshops and the cause of style wars. With-
out them, version control history can become misaligned as developers fight to push
their own personal style, or lack thereof. With them, moving between source files
requires little “readability” mental adjustments. These rules are things like how many
spaces to put between parentheses.

 Code discovery rules are about enabling engineers to easily reason through code
and figure out what another developer intended. These rules usually take the form of
variable naming rules, such as placing m_ in front of member variables or prefixing
interfaces with a capital I. See table 3.1

 Code discovery should align with the development environments that are
expected in a team. If a team is using vanilla VI for editing, it will be more useful to
add more code discovery guidelines than another project. If the team has a set of IDE

45Avoid coding conventions from other languages
power users, it would need less code discovery rules, as the IDE will provide many
alternative means of improving discovery.

 The way you should develop coding conventions for a team is to:

1 Start with error prevention rules. These will usually be copied from other proj-
ects in the same language, but you may need to create new rules.

2 Develop discovery related rules, such as how to name packages and where to
place source files. These should match the development environments used by
team members.

3 Follow up the rules defined above with any uniformity related rules required
for the team. These rules vary from team to team and can be fun to agree upon.
When creating uniformity guidelines, you should keep in mind automated tool
support.

AUTOMATED STYLE TOOLING Many tools can automatically check style rules or
refactor existing code into a given style. This can help new engineers on the
project save time until they become accustomed to the style. For Scala, you
should check out the Scalariform project http://mng.bz/78G9, which is a
tool to automatically refactor Scala code given a set of style rules.

The issue nowadays is that most developers have a set of coding guidelines they prefer
and pull them from project to project regardless of the language or the team. When
starting a new project and developing new coding standards, make sure you don’t just
pull conventions from previous languages. Scala syntax isn’t a direct C-clone; there
are some pitfalls that certain coding styles will create in the language. We show an
example with defining code blocks in Scala.

3.1.1 The block debacle

A common theme to C-style languages is code blocks, typically denoted with {}. Code
blocks are sections of code that execute within loops, if statements, closures, or new
variable namespaces. Coding standards tend to take two approaches with blocks: same
line opening brace or next line opening brace.

if(test) {
...

}

Table 3.1 Coding style examples

Error prevention rules Uniformity rules Code discovery rules

 (C++) Don’t use implicit
conversions

 (Java) Mark all arguments
final

 Indentations are three spaces
 Place one space after opening

parenthesis and one space
before closing parenthesis

 (C++) Member variables pre-
fixed with m_

 (Eclipse) Interface names pre-
fixed with I

http://mng.bz/78G9

46 CHAPTER 3 Modicum of style— coding conventions
This code shows a same line opening brace, which I prefer (go SLOBs!). In many
languages, the choice between same line and next line opening brace doesn’t mat-
ter. This is not the case in Scala, where semicolon inference can cause issues in a few
key places. This makes the next line opening brace style error-prone. The easiest way
to show the issue is with the definition of methods. Let’s look at a common Scala
method:

def triple(x: Int) =
{

x * 3
}

The more idiomatic Scala convention for a function as simple as triple is to define it
on one line with no code block. This is a toy example though, so we’ll assume you
have a good enough reason to use a code block, or your coding convention specifies
you always having code blocks. In any case, the above function works perfectly fine.
Now let’s try to make a function that returns Unit using the convenience syntax:

def foo()
{

println("foo was called")
}

This method will compile fine when used from the interpretive session, however it
fails utterly when used inside a class, object, or trait definition in Scala 2.7.x and
below. To reproduce the behavior in Scala 2.8, we add another line between the
method name and the opening brace. In many C-style languages, including Java, this
change is acceptable. In Scala, we see the issue, as shown in the following listing:

class FooHolder
{

def foo()

{
println("foo was called")

}
}

Inside of the FooHolder class definition block, Scala sees the def foo() line of code as
an abstract method. This is because it doesn’t catch the opening brace on the next
line, so it assumes def foo() is a complete line. When it encounters the block expres-
sion, it assumes it found a new anonymous code block that should be executed in the
construction of the class.

 A simple solution to this problem exists: Add a new style guideline that requires
the = syntax for all method definitions. This should solve any issues you might experi-
ence with opening brackets on the next line. Let’s try it out in the following listing:

Listing 3.1 Next line opening brackets causing issues

This block executed
during construction

47Avoid coding conventions from other languages
trait FooHolder2
{

def foo(): Unit =

{
println("foo2 was called")

}
}

The = added after the def foo(): Unit tells the compiler that you’re expecting an
expression that contains the body of the foo function. The compile will then continue
looking in the file for the code block. This solves the issue for method definitions.
Other types of block expressions can still cause issues. In Scala, if statements don’t
require code blocks at all. This means the same kind of behavior could occur on an if
statement if not properly structured. Luckily in that case, the compiler will catch and
flag an error. The issue comes with else statements. Let’s try the following:

if(true)
{

println("true!")
}
else
{

println("false!")
}

In an interpretive session, you can’t enter this code because it will compile at the end
of the first code block (the if statement) because it assumes the statement is com-
plete. In a class, this should function as desired.

SHOULD MY CODING STYLE ALLOW ME TO PASTE CODE INTO AN INTERPRETIVE SES-
SION TO TEST IT? The choice depends on your development environment.
Most good tools allow you to automatically start an interpretive session against
a compiled instance of your project. This means you wouldn’t have to cut and
paste code from your project into the session; however, in practice I find that
sometimes my project isn’t compiling and I want to test out a feature. In this
case, I have to edit the files before pasting into the interpretive session.

Make sure when you’re setting up a project, especially in a language you haven’t used
extensively before, that you rethink your style guidelines and choose ones that fit the
new language and the environment you will be developing in. Don’t merely pull what
worked before in Language Foo and assume it will work well in Scala. Challenge your
decisions!

 A collaborative effort is in place to create a “good enough” style guide for Scala.
This style guide should act as a good starting point and is currently located at http://
mng.bz/48C2.

Listing 3.2 Next line opening brackets compiling correctly

Expect
upcoming block

http://mng.bz/48C2
http://mng.bz/48C2

48 CHAPTER 3 Modicum of style— coding conventions
3.2 Dangling operators and parenthetical expressions
One style adjustment that can drastically help in Scala is to dangle operators at the
end of lines. A dangling operator is an operator, such as + or - that’s the last non-
whitespace character in a line of code. Dangling operators will help the compiler
determine the true end of a statement. Earlier, we described how this is important
for block expressions. The concept works just as well with other types of expressions
in Scala.

 “Large string aggregation” is a great instance when dangling operators can help
out the compiler or when you’re trying to create a large string such that the whole def-
inition doesn’t fit on one line. Let’s look at an example in Java:

class Test {
private int x = 5;
public String foo() {

return "HAI"
+ x
+ "ZOMG"
+ "\n";

}
}

The Test class has a foo method that’s attempting to create a large string. Rather than
having dangling aggregation operators, the + operator is found on the next line. A
simple translation of this to Scala will fail to compile. Let’s take a look:

object Test {
val x = 5
def foo = "HAI"

+ x
+ "ZOMG"
+ "\n"

}

This will fail to compile with the error message “error: value unary_+ is not a member
of java.lang.String”. Again, this is because the compiler is inferring the end of line
before it should. To solve this issue, we have two options: dangling operators or paren-
theses. A dangling operator is an operator that ends a line, letting the compiler know
there’s more to come, as shown in the following listing:

object Test {
val x = 5
def foo = "HAI" +

x +
"ZOMG" +
"\n"

}

Dangling operators have the advantage of maintaining a minimal amount of syntax.
This is the preferred style for the compiler itself.

Listing 3.3 Using dangling operators

49Use meaningful variable names
 An alternative to dangling operators is wrapping expressions in parentheses. You
wrap any expression that spans multiple lines in parentheses. This has the advantage
of allowing potentially arbitrary amount of whitespace between members of the
expression. Let’s take a look at the following listing:

object Test {
val x = 5
def foo = ("HAI"

+ x
+ "ZOMG"
+ "\n")

}

Whichever one of these style guidelines you choose is up to you and your develop-
ment shop. I prefer dangling operators, but both options are valid Scala syntax and
will help you avoid parsing issues.

 Now that we’ve discussed working around inference in the compiler, let’s discuss
another way to avoid issues in the compiler: the naming of variables.

3.3 Use meaningful variable names
One of the most common adages in any programming language is to use meaningful
argument or variable names. Code clarity is a commonly ascribed benefit of meaning-
ful argument names. Meaningful names can help take an arcane piece of code and
turn it into something a new developer can learn in moments.

 Some variables exist for which it is hard to determine appropriate names. In my
experience this usually comes when implementing some kind of mathematical algo-
rithm, like fast Fourier transforms, where the domain has well-known variable names.
In this case, it’s far better to use the standard symbols rather than invent your own
names. In the case of Fourier transforms, the equation is shown in figure 3.1.

 When implementing a Fourier transform, using a variable named N to represent
the size of the input data, n to represent the index of a summing operation and k to
represent the index to an output array is acceptable, as it’s the notation used in the
function. In many of languages, you end up “spelling” symbols because the language
doesn’t support mathematical symbols directly. In Scala, we can directly write ? rather
than PI if we desire.

 In this section well look at “reserved” characters that you shouldn’t use for variable
names, as well as using named and default parameters effectively. Reserved characters
are characters the compiler reserves for internal use, but it doesn’t warn you if you use
them. This can cause issues at compile time or, even worse, runtime. These issues could
be anything from a warning message
on code that’s perfectly valid, or
exceptions thrown at runtime.

 Scala provides a flexible naming
scheme for variables and methods.

Listing 3.4 Using parentheses

Xk xne
i2πk n

N----–

n 0=

N 1–

= k = 0,..., N - 1.

Figure 3.1 Fourier transform equation

50 CHAPTER 3 Modicum of style— coding conventions
You use extended characters, if you desire to code mathematical equations directly.
This allows you to write functions that look like mathematical symbols if you’re writing
some form of advanced mathematics library. My recommendation here is to ensure
that whatever characters you use in your variable and method names, make sure that
most developers in your shop know how to input them on their keyboards or ensure
there’s a direct key for it. Nothing is worse than having to copy and paste special char-
acters into a program because you desire to use them.

 An example of Scala’s flexible naming is the duality of => and ? for defining clo-
sures and pattern matching. To even use the ? character in this book, I had to look it
up and paste it into my editor. The best example of unicode and non-unicode opera-
tors comes from the Scalaz library. Let’s look at one of the examples from the Scalaz
source code:

val a, b, c, d = List(1)
...
a ? b ? c ? d apply {_ + _ + _ + _}
a |@| b |@| c |@| d apply {_ + _ + _ + _}

As you can see, Scalaz has provided both the |@| and the ? methods on its “Applicative
Builder.” We discuss applicative style application in detail in section 11.3. For now let’s
focus on the method names.

 One name used for the applicative builder is a funny-looking unicode character
(③), and the other is something someone could type without copy-paste or knowing
what the correct keycode is ahead of time (|@|). By providing both, Scalaz has
appealed to average developers and to those situations when using unicode characters
proves you’re the better nerd at the office. I would recommend following in Scalaz’s
footsteps if you wish to provide unicode operator support.

 Although random unicode characters can be frustrating for developers, there’s
one character that’s easy to type that can cause real issues in code: the dollar sign ($).

3.3.1 Avoid $ in names

Scala allows naming to be so flexible, you can even interfere with its own name man-
gling scheme for higher level concepts on the JVM. Name mangling refers to the com-
piler altering, or mangling, the name of a class or method to translate it onto the
underlying platform. This means that if I looked at the classfile binaries Scala gener-
ates, I may not find a class with the same name as what I use in my code. This was a
common technique in C++ so that it could share a similar binary interface with C but
allow for method overloading. For Scala, name mangling is used for nested classes
and helper methods.

 As an example, let’s create a simple trait and object pairing and look at how Scala
names the underlying JVM classes and interfaces. When Scala has to generate anony-
mous function or classes, it uses a name containing the class it was defined in—the
string anonfun and a number. These strings are all joined using the $ character to cre-
ate an entity. Let’s compile a sample and see what the directory looks like afterwards.

51Use meaningful variable names
This sample will be a simple main method that computes the average of a list of num-
bers, as shown in the following listing:

object Average {
def avg(values: List[Double]) = {

val sum = values.foldLeft(0.0) { _ + _ }
sum / values.size.toDouble

}
}

The class is rather simple. We define an Average object that contains a method: avg.
In the avg method, we define a closure { _ + _ } that will compile to an anonymous
function class. Let’s see the compiled files for this class:

$ ls *.class
Average$$anonfun$1.class Average.class Average$.class

Some interesting JVM classes are compiled here. The Average object gets compiled
into the Average$ class with the Average class having the static method forwarded to
the Average$ object. This is the mechanism Scala uses for “singleton objects” to
ensure that they’re true objects but look similar to static method invocations to Java.
The anonymous closure we sent to foldLeft ({ _ + _ }) got compiled into the
Average$$anonfun$1 class. This is because it happens to be the first anonymous func-
tion defined in the Average$ class As you can see, the $ character is used heavily when
creating real JVM classes for advanced Scala features.

 Let’s play a game called “break Scala’s closures.” This game will help outline the
issues with using $ in parameter names, something useful for those who are interested
in adding plugin functionality to Scala, but not for general developers. Feel free to
skip to section 3.3.2 if you’re not interested in this.

 What happens if we define our own class that has the same mangled name as the
anonymous function? Either our class or the anonymous function class will be used at
runtime. Let’s create a new Average.scala file in the following listing and use the ` syn-
tax to create a new mischievous class and see what happens:

object Average {
def avg(values: List[Double]) = {

val sum = values.foldLeft(0.0) { _ + _ }
sum / values.size.toDouble

}
}

class `Average$$anonfun$1` {
println("O MY!")

}

Listing 3.5 Simple method to calculate an average

Listing 3.6 Average.scala file with mischievous class

Same
name

52 CHAPTER 3 Modicum of style— coding conventions
The Average object is the same as defined in listing 3.6, but we’ve created our mis-
chievous class called Average$$anonfun$1. This compiles fine, so we know the com-
piler won’t catch our mischievousness. Let’s see what happens when we try to use it in
an interactive interpreted session:

scala> Average.avg(List(0.0,1.0,0.5))
O MY!
java.lang.IncompatibleClassChangeError: vtable stub

at ...LinearSeqLike$class.foldLeft(LinearSeqLike.scala:159)
at scala.collection.immutable.List.foldLeft(List.scala:46)
at Average$.avg(Average.scala:3)

The mischievous class is instantiated, as seen by the “O MY!” output. The mischievous
class is even passed into the foldLeft method as seen in the stack trace. It isn’t until
the foldLeft function attempts to use the class instance that it realizes that this class
isn’t a closure. Well, what are the odds that someone would name a class the same
kind of arcane string that occurs from name mangling? Probably low, but the $ char-
acter still gives Scala some issues. When defining nested classes, Scala also uses the $
character to mangle names, similar to Java inner classes. We can cause similar errors
by defining mischievous inner classes, as shown in the following listing:

object Average {
def avg(values: List[Double]) = {

val sum = values.foldLeft(0.0) { _ + _ }
sum / values.size.toDouble

}

class `$anonfun` {
class `1` {

println("O MY!")
}

}
}

In general then, it’s best to avoid the $ character altogether in your naming
schemes. It’s also best to avoid making an inner class with the name anonfun or
$anonfun that has its own numbered inner classes, although I have no idea why you
would desire to do so. For completeness, it’s best to totally avoid the mangling
schemes of the compiler.

 The compiler also uses name mangling for default parameters. In Scala default
parameters are also encoded as a method with the name default and an ordinal repre-
senting the order the argument appears in the function. This is in the method
namespace, not the classname namespace. To cause problems, we need to name a
method something simple like avg$default$1.

object Average {
def avg(values: List[Double] = List(0.0,1.0,0.5)) = {

val sum = values.foldLeft(0.0) { _ + _ }

Listing 3.7 Average.scala with mischievous inner classes

Conflicts
with closure

53Use meaningful variable names
sum / values.size.toDouble
}

def `avg$default$1` = List(0.0,0.0,0.0)
}

Luckily in this case the compiler will warn that the method avg$default$1 is a dupli-
cate. This isn’t the most obvious error message, but then again, the method name isn’t
exactly common. So, although it’s possible to use $ in method names and class names,
it can get you into trouble. The examples I’ve posted are somewhat extreme, but illus-
trate that name mangling issues can be rather tricky to track down. Therefore you
should avoid the $ character entirely.

3.3.2 Working with named and default parameters

Scala 2.8.x brings with it the ability to use named parameters. This means that the
names you give parameters of methods become part of the public API. Your parameter
names become part of the API, and changing them can and will break clients. Also,
Scala allows users to define different parameter names in subclasses. Let’s look at the
named and default parameter feature.

Use meaningful parameter names

In Scala, parameter names are part of the API and should follow all the coding conventions
used for method and variable names.

Defining named parameters in Scala is easy, it’s required syntax. Whatever name you
declare for a parameter is the name you can use when calling it. Let’s define a simple
Foo class with a single method foo, but with several parameters. These parameters will
be set with default values. The following listing shows the various types of usage:

class Foo {
def foo(one: Int = 1,

two: String = "two",
three: Double = 2.5): String =

two + one + three
}

scala> val x = new Foo
x: Foo = Foo@565902ca

scala> x.foo()
res0: String = two12.5

scala> x.foo(two = "not two")
res1: String = not two12.5

scala> x.foo(0,"zero",0.1)
res2: String = zero00.1

scala> x.foo(4, three = 0.4)
res3: String = two40.4

Listing 3.8 Simple named parameter usage

Rule
6

Define
default
parameters

Using all
defaults

Using named
parameter

Argument
placement

Mixed placement
and named

54 CHAPTER 3 Modicum of style— coding conventions
First, notice that the foo method declares defaults for all of its parameters. This allows
us to call the method without passing any arguments. Things are more interesting when
we pass arguments using their names, like when we write x.foo(two = "not two").

 Scala still allows argument placement syntax, where the order of the parameters is
the same in the definition site and the call site. This can be seen in the line
x.foo(0,"zero",0.1). On this call, 0 is the first parameter and is referred to in the
function as the argument one. This is a mixed mode usage.

Mixed mode is where you can use argument placement syntax for some arguments,
and named parameters for the rest. This mode is obviously limited in that you can
only use placement syntax for beginning arguments but is shown in the last line:
x.foo(4, three = 0.4). In this line, the first parameter, 4, is passed as argument one
and the argument three is passed as 0.4.

 So, why all the fuss over argument naming? Argument names become confusing
with inheritance in the mix.

 Scala uses the static type of a variable to bind parameter names, however the
defaults are determined by the runtime type. Say it to yourself: Names are static; values
are runtime. Let’s look at a “simple” example of chaos ... er ... inheritance in the follow-
ing listing:

class Parent {
def foo(bar: Int = 1, baz: Int = 2): Int =

bar + baz
}
class Child extends Parent {

override def foo(baz: Int = 3, bar: Int = 4): Int =
super.foo(baz,bar)

}

scala> val p = new Parent
p: Parent = Parent@271a2576

scala> p.foo()
res0: Int = 3

scala> val x = new Child
x: Child = Child@3191394e

scala> x.foo()
res1: Int = 7

scala> val y: Parent = new Child
y: Parent = Child@6c5bdfae

scala> y.foo()
res2: Int = 7

scala> x.foo(bar = 1)

res3: Int = 4

scala> y.foo(bar = 1)
res4: Int = 5

Listing 3.9 Named parameters and inheritance

Initial method
definition

Overridden with
poor names

Default
arguments
on parent

Default
arguments
on child

Static type
determines name

55Always mark overridden methods
Parent is a parent class that defined method foo. Child extends the foo method, but
notice the naming difference. We’ve purposely reused the same names in differing
orders to be confusing, but we’ve left the implementation of the method the same. If
we instantiate a Parent class and execute foo, we see the value 3. When we instantiate
a Child class, and execute foo we see 7 (default values are runtime!). The interesting part
comes when we instantiate the Child class with the static type of Parent. When we call
foo(bar = 1) on a Child instance with a static type of Child, we see the value 4. If we
call foo(bar=1) on a Child instance with static type of Parent we see the value of 5.

 What happened? In the Child class, we defined the argument names in the reverse
order of the Parent class. The unfortunate circumstance of named parameters in
Scala is that they use the static type to determine ordering. Remember our earlier
mantra: values are runtime; names are static.

 Renaming arguments in a child class isn’t a warning in the compiler. As of Scala
2.8.0, there’s no way to make this warning without writing your own compiler plugin.
This naming issue may not be a huge deal when you’re the author of an entire type
hierarchy, but it might be when working on a larger team where others are consuming
classes from others and are unhappy with parameter naming schemes from other
developers.

DEPRECATING PARAMETER NAMES In Scala 2.8.1, there will most likely be a
mechanism for deprecating parameter names. This is to be done with an
annotation on the parameter itself, declaring the old name. Clients of your
library can then use both names, albeit the one will issue a warning. As the
specifics may change, please follow the Scala mailing list and check the
release notes of 2.8.1 for the mechanics of this.

For some shops, particularly ones I’ve worked in, developers were allowed to disagree
on method naming conventions because they never mattered before. As of Scala 2.8.0,
they do. Ensure that your developers are aware of naming in general, and of this par-
ticular surprising change (at least surprising when coming from a language without
named parameters).

 Remember that naming variables, classes, and parameters are all important in
Scala. Misnaming can wind up in anything from a compile-time error to a subtle and
hard-to-fix bug. This is one area where the compiler can’t offer much assistance
besides helpful error messages.

3.4 Always mark overridden methods
Scala did the world a great service when it introduced the override keyword. This
keyword is used to demarcate when a method is intended to override vs. overload a
method. If you neglect the keyword and the compiler finds you’re overriding a super-
class method, it will emit an error. If you add the override keyword and no superclass
has the defined method, the compiler will warn you. Thankfully, this is mostly
enforced by the compiler. One scenario remains where override isn’t required but can
cause issues: purely abstract methods. Scala has no abstract modifier: A purely abstract
method is one that has no implementation.

56 CHAPTER 3 Modicum of style— coding conventions
Always mark overridden methods

In Scala, while the override keyword is optional in some situations, it’s safe to always mark
methods with override.

Let’s take a look at example override usage. We want to define a business service for
an application. This service will be for users. We’ll allow them to log in, change their
password and log out as well as validate that someone is still logged in. We’re going to
make an abstract interface for users of our service. It should look like the following:

trait UserService {
def login(credentials: Credentials): UserSession
def logout(session: UserSession): Unit
def isLoggedIn(session: UserSession): Boolean
def changePassword(session: UserSession,

credentials: Credentials): Boolean
}

The service is rather simple. We define a login method that takes the user’s creden-
tials and returns a new session for that user. We also define a logout method that takes
a UserSession object and invalidates it and performs any cleanup that may be
needed. Finally, we define two methods against the session. The isLoggedIn method
will check to see if a UserSession is valid, meaning the user is logged in. The
changePassword method will change the user’s password but only if the new password
is legal and the UserSession is valid. Now let’s make a simple implementation that
assumes any credentials are okay for any user and that all users are valid.

class UserServiceImpl extends UserService {
def login(credentials: Credentials): UserSession =

new UserSession {}
def logout(session: UserSession): Unit
def isLoggedIn(session: UserSession): Boolean = true
def changePassword(session: UserSession,

credentials: Credentials): Boolean = true
}

But wait, we forgot to add the override keyword. The method still compiles, so that
means the override keyword wasn’t needed. Why? Scala doesn’t require the override
keyword if your class is the first to define an abstract method. It also comes into play
when using multiple inheritances, but we’ll look into this in a moment. For now, let’s
see what happens in the following listing if we change the method signature in the
parent class:

trait UserService {
def login(credentials: Credentials): UserSession
def logout(session: UserSession): Unit
def isLoggedIn(session: UserSession) : Boolean
def changePassword(new_credentials: Credentials,

old_credentials: Credentials): Boolean

Listing 3.10 Changing the underlying method

Rule
7

Modified
definition

57Always mark overridden methods
}

class UserServiceImpl extends UserService {
def login(credentials: Credentials): UserSession =

new UserSession {}
def logout(session: UserSession): Unit
def isLoggedIn(session: UserSession): Boolean = true
def changePassword(session: UserSession,

credentials: Credentials): Boolean = true
}

Notice we’ve changed the changePassword method in the UserService trait. The new
method compiles fine, but the UserServiceImpl class won’t compile. Because it’s con-
crete, the compiler will catch the fact that changePassword defined in the User-
Service isn’t implemented. What happens if instead of an implementation, we’re
providing a library with partial functionality? Let’s change UserServiceImpl to a trait,
as shown in the following listing:

trait UserService {
def login(credentials: Credentials): UserSession
def logout(session: UserSession): Unit
def isLoggedIn(session: UserSession) : Boolean
def changePassword(new_credentials: Credentials,

old_credentials: Credentials): Boolean
}

trait UserServiceImpl extends UserService {
def login(credentials: Credentials): UserSession =

new UserSession {}
def logout(session: UserSession): Unit
def isLoggedIn(session: UserSession): Boolean = true
def changePassword(session: UserSession,

credentials: Credentials): Boolean = true
}

When we migrate UserServiceImpl to a trait, compilation now succeeds. This is an
issue primarily when providing a library with no concrete implementations, or some
form of DSL that’s expected to be extended. Therefore, only users of the library will
notice this easy-to-prevent issue. All that’s required is to use the override modifier
before any overridden method, as shown in the following listing:

trait UserServiceImpl extends UserService {
override def login(credentials: Credentials): UserSession =

new UserSession {}
override def logout(session: UserSession): Unit
override def isLoggedIn(session: UserSession): Boolean = true
override def changePassword(session: UserSession,

credentials: Credentials): Boolean = true
}

Listing 3.11 Traits won’t cause compile errors

Listing 3.12 Traits will cause compile errors

Compile
error

Modified
definition

Compiles

Compile
error

58 CHAPTER 3 Modicum of style— coding conventions
Because this is such an easy error for the compiler to catch, there’s no reason to run
into the issue. What about the multiple inheritance we mentioned earlier? It’s time to
look into how override interacts with multiple inheritance.

 Scala doesn’t require the override keyword when implementing abstract meth-
ods. This was done to help multiple inheritance. Let’s look at the classic “deadly dia-
mond” inheritance problem. A deadly diamond occurs by creating a class that has two
parent classes. Both of the parent classes must also be subclasses of the same parent-
parent class. If you were to draw a picture of the inheritance relationship, you would
see a diamond.

 Let’s start our own diamond by creating two traits, Cat and Dog, that extend a com-
mon base trait Animal. The Animal trait defines a method talk that’s also defined in
Cat and Dog. Now imagine some mad scientist is attempting to combine cats and dogs
to create some new species, the KittyDoggy. How well could they do this using the
override keyword? Let’s define our three classes in the following listing and find out:

trait Animal {
def talk: String

}

trait Cat extends Animal {
override def talk: String = "Meow"

}

trait Dog extends Animal {
override def talk: String = "Woof"

}

We define the talk method on the Animal trait to return a String. We then create
the Cat and Dog traits with their own implementation of the talk method. Let’s pop
open the REPL and try to construct our KittyDoggy experiment. Remember to cackle
when typing, as shown in the following listing:

scala> val kittydoggy = new Cat with Dog
kittydoggy: java.lang.Object with Cat with Dog = $anon$1@631d75b9

scala> kittydoggy.talk
res1: String = Woof

scala> val kittydoggy2 = new Dog with Cat
kittydoggy2: java.lang.Object with Dog with Cat = $anon$1@18e3f02a

scala> kittydoggy2.talk
res2: String = Meow

First we attempt to combine Cat with Dog. This results in the talk operation picking
up the Dog behavior and ignoring the Cat behavior. That’s not quite what our mad-sci-
entist experiment wants to accomplish, so instead we try to combine a Dog with a Cat.

Listing 3.13 Animal hierarchy with override

Listing 3.14 Multiple inheritance and override

59Always mark overridden methods
This ends up pulling in the Cat behavior and ignoring the Dog behavior! In Scala, the
last trait “wins” when it comes to class linearization and method delegation, so this
isn’t unexpected.

Class linearization refers to the order in which parent calls occur for a particular
class. In the preceding example, for the type Cat with Dog, the parent calls would
first try the Dog trait, then Cat and then Animal. Class linearization will be covered in
more detail in the section 4.2.

 What happens now if we remove the override keyword from the Cat and Dog
traits? Let’s find out in the following listing:

trait Animal {
def talk: String

}

trait Cat extends Animal {
def talk: String = "Meow"

}

trait Dog extends Animal {
def talk: String = "Woof"

}

The definitions of Animal, Cat, and Dog are the same as before except that no
override keyword is used. Let’s put on our evil lab coat again and see if we can com-
bine our cats and dogs in the following listing:

scala> val kittydoggy = new Cat with Dog
<console>:8: error: overriding method talk in

trait Cat of type => String;
method talk in trait Dog of type => String
needs `override' modifier

val kittydoggy = new Cat with Dog
^

scala> val kittydoggy2 = new Dog with Cat
<console>:8: error: overriding method talk in

trait Dog of type => String;
method talk in trait Cat of type => String
needs `override' modifier

val kittydoggy2 = new Dog with Cat

When we attempt to construct our Cat with Dog, the compiler issues an error that
we’re trying to override a method without the override keyword. The compiler is pre-
venting us from combining two different concrete methods that aren’t explicitly anno-
tated with override. This means if I want to prevent mixing overrides of behavior,
from mad scientist programmers, then I must not use the override modifier. This fea-
ture makes more sense when the traits don’t share a common ancestor, as it requires
the mad scientist to manually override the conflicting behaviors of two classes and

Listing 3.15 Animal hierarchy without override

Listing 3.16 Multiple inheritance without override

60 CHAPTER 3 Modicum of style— coding conventions
unify them. But in the presence of the base class, things can get strange. Let’s see what
happens in the following listing if Cat defines its talk method with override, but Dog
does not.

scala> val kittydoggy = new Cat with Dog
<console>:8: error: overriding method talk in

trait Cat of type =>
java.lang.String;

method talk in trait Dog of type => String needs `override' modifier
val kittydoggy = new Cat with Dog

^

scala> val kittydoggy2 = new Dog with Cat
kittydoggy2: java.lang.Object with Dog with Cat = $anon$1@5a347448

Mixing a Cat with a Dog is still bad, because Dog doesn’t mark talk method as being
able to override. But extending a Dog with a Cat is acceptable because the Cat’s talk
can override. We can’t use the compiler to force users to pick a talk implementation
every time they inherit from Dog and another Animal. In the case where any of the
Animals defines a talk method with an override, we lose our error message. This
reduces the utility of the feature, specifically for the inheritance case.

In practice, the utility of not using the override keyword for subclass method over-
rides is far outweighed by the benefits of doing so. As such, you should annotate your
objects with the override keyword. When it comes to multiple inheritance and over-
ridden methods, you must understand the inheritance linearization and it conse-
quences. We discuss traits and linearization in detail in section 4.2.

 Another area where the compiler can drastically help us out is with error messages
for missed optimizations.

3.5 Annotate for expected optimizations
The Scala compiler provides several optimizations of functional style code into perfor-
mant runtime bytecodes. The compiler will optimize tail recursion to execute as a
looping construct at runtime, rather than a recursive function call. Tail recursion is

Listing 3.17 Multiple inheritance with mixed override

Multiple inheritance
Scala traits are linearized. For the purposes of overriding methods, a parent can be
mixed in where we instantiate an object, rather than requiring the definition of a
new class.
trait Animal { def talk: String }
trait Mammal extends Animal
trait Cat { def talk = "Meow" }
scala> val x = new Mammal with Cat
x: java.lang.Object with Mammal with Cat = $anon$1@488d12e4
scala> x.talk
res3: java.lang.String = Meow

61Annotate for expected optimizations
when a method calls itself as the last statement, or its tail. Tail recursion can cause the
stack to grow substantially if not optimized. Tail call optimization isn’t as much about
improving speed as preventing stack overflow errors.

 The compiler can also optimize a pattern match that looks like a Java switch state-
ment to act like a switch statement at runtime. The compiler can figure out if it’s more
efficient and still correct to use a branch lookup table. The compiler will then emit a
tableswitch bytecode for this pattern match. The tableswitch bytecode is a branch-
ing statement that can be more efficient than multiple comparison branch statements.

 The switch and tail recursion optimizations come with optional annotations. The
annotations will ensure the optimization is applied where expected or an error is
issued.

3.5.1 Using the tableswitch optimization

The first optimization we’ll look at is treating pattern matching as a switch statement.
What this optimization does is try to compile a pattern match into a branch table
rather than a decision tree. This means that instead of performing many different
comparisons against the value in the pattern match, the value is used to look up a
label in the branch table. The JVM can then jump directly to the appropriate code.
This whole process is done in a single bytecode, the tableswitch operation. In Java,
the switch statement can be compiled into a tableswitch operation. In Scala, the
compiler can optimize a pattern match into a single tableswitch operation if all the
stars align, or at least the right conditions apply.

 For Scala to apply the tableswitch optimization, the following has to hold true:

 The matched value must be a known integer.
 Every match expression must be “simple.” It can’t contain any type checks, if

statements or extractors. The expression must also have its value available at
compile time: The value of the expression must not be computed at runtime
but instead always be the same value.

 There should be more than two case statements, otherwise the optimization is
unneeded.

Let’s take a quick look at some successfully optimized code and what operations will
break it. First let’s start off with a simple switch on an integer. We’re going to switch
on an integer to handle three cases: the integer is one, the integer is two, and all other
possible integer values.

def unannotated(x: Int) = x match {
case 1 => "One"
case 2 => "Two!"
case z => z + "?"

}

This is a match statement with three cases. As previously stated, we’re explicitly look-
ing at the case when an integer is either one or two. The compiler is able to optimize
this to a tableswitch, as you can see in the bytecode. Here’s the Java output:

62 CHAPTER 3 Modicum of style— coding conventions
public java.lang.String unannotated(int);
Code:

0: iload_1
1: tableswitch{ //1 to 2

1: 51;
2: 46;
default: 24 }

...

What you’re seeing here are the bytecode instructions for the unannotated method.
The first instruction at label 0: shows us loading the first argument as an integer
(iload_1). The next instruction is our tableswitch. The tableswitch instruction is
made up of mappings of integer values to bytecode instruction labels (or line num-
bers). Now the rules for the optimization become more apparent. If the compiler is
going to create this tableswitch instruction, it needs to know the values of each case
statement expression in order to do the right thing. It’s fairly easy to mess this up.
Let’s look at a few ways to do this.

 First, we can include a type check in the pattern match. This can be surprising, as
you might expect the type check would be superfluous, and not change the compiled
code. Let’s take our original function and add a type check for Int on one of the case
statements.

def notOptimised(x: Int) = x match {
case 1 => "One"
case 2 => "Two!"
case i: Int => "Other"

}

The difference between this example and the previous one is the type check on the
third case statement: i : Int. Although the type of the variable is already known to be
an Int, the compiler will still create a type check in the pattern match and this will
prevent it from using a tableswitch bytecode. Let’s look at the bytecode (shortened
to fit here):

public java.lang.String notOptimised(int);
Code:
0: iload_1
1: iconst_1
2: if_icmpne 10
...
10: iload_1
11: iconst_2
12: if_icmpne 20
...
20: iload_1
21: invokestatic #43;

//Method scala/runtime/BoxesRunTime.boxToInteger:
(I)Ljava/lang/Integer;

24: instanceof #85; //class java/lang/Integer
27: ifeq 33
30: ldc #87; //String Other

Runtime
type
check

63Annotate for expected optimizations
32: areturn
33: new #89; //class scala/MatchError
...

The first thing you’ll notice is that there’s an if_icmpne comparison bytecode instead
of the tableswitch. Truncating the output, you’ll see that the method is compiled as
a sequence of such comparison bytecodes. We also find that there’s a MatchError con-
structed on line 33. The truncated section is the remaining bytecode to throw the
error. The compiler has inferred that our match was not complete, so it created a
default case that will result in a runtime error.

ON PRIMITIVES AND TYPE CHECKING In the preceding example on lines 21 and
24, you may have noticed that our argument, an Int, is boxed to perform an
instanceof bytecode. The instanceof bytecode is how the JVM performs
typechecks for classes, traits, and objects. But an integer is a primitive on the
JVM, so to perform a type check, Scala must “box” the integer primitive into
an object form of that integer. This is Scala’s standard mechanism for check-
ing the type of any primitive on the JVM; therefore, try not to let any extrane-
ous type checks in your code.

As you can see, it was fairly easy to construct a case where we thought the compiler
would optimize our code, and yet it could not. A simple solution to this problem is
to annotate your expressions so the compiler will warn you if it can’t make an
optimization.

 As of Scala 2.8.0, the compiler currently provides two annotations that can be used
to prevent compilation if an optimization isn’t applied. These are the @tailrec and
@switch annotations, which you can apply to the expression you want optimized. Let’s
look at the following listing to see how the switch annotation could have helped us
earlier:

import annotation.switch
def notOptimised3(x: Int) =

(x: @switch) match {
case 1 => "One"

case 2 => "Two!"
case i: Int => "Other"

}

<console>:6: error: could not emit switch for @switch annotated match
def notOptimised3(x : Int) = (x : @switch) match {

The first thing you’ll notice is the funny (x : @switch) syntax. Scala allows annota-
tions to be ascribed to type expressions. This tells the compiler to know that we expect
the switch optimization to be performed, among other things. You could also fully
ascribe the type by writing (x: Int @switch); however, adding the annotation is fine.

Listing 3.18 Using the @switch annotation

Non-match
exception throwing

Annotated
match
expression

64 CHAPTER 3 Modicum of style— coding conventions
 The compiler has given us the warning statement we desired. We’re unable to com-
pile because our pattern match can’t be optimized. The merits of using a tableswitch
are debatable, and not nearly as universal as the next annotation.

3.5.2 Using the tail recursion optimization

The @tailrec annotation is used to ensure that tail call optimization (usually abbrevi-
ated TCO) can be applied to a method. Tail call optimization is the conversion of a
recursive function that calls itself as the last statement into something that won’t
absorb stack space but rather execute similarly to a traditional while or for loop. The
JVM doesn’t support TCO natively, so tail recursive methods will need to rely on the
Scala compiler performing the optimization.

Annotate tail recursion

Tail recursion is easy to mix up in Scala. By annotating tail recursive methods, we can guarantee
expected runtime performance.

 To optimize tail calls, the Scala compiler requires the following:

 The method must be final or private: It can’t be polymorphic.
 The method must have its return type annotated.
 The method must call itself as the “end” of one of its branches.

Let’s see if we can create a good tail recursive method. My first tail recursive function
was working with a tree structure, so let’s do the same: Implementing a breadth first
search algorithm using tail recursion.

 The breadth first search algorithm is a way to inspect a graph or tree such that you
inspect the top-level elements, then the nearest neighbors of those elements, and
then the nearest neighbors of the nearest neighbors, and so on, until you find the
node you’re looking for. Let’s first decide what the function should look like:

case class Node(name: String, edges: List[Node] = Nil)

def search(start: Node, predicate: Node => Boolean): Option[Node] = {
error("write me")

}

The first thing we do is define a Node class that allows us to construct a graph or tree.
This class is pretty simple and doesn’t allow the creation cycles, but it’s a good starting
point for defining the algorithm. Next is the definition of the search method. It takes
in a starting point, a Node, and a predicate that will return true when the correct node
is found. The algorithm itself is fairly simple and involves maintaining a queue of
nodes to inspect a mechanism to determine if a node has already been seen.

 Let’s create a helper function that will use tail recursion and search for the
node. This function should take the queue of nodes to inspect and a set of nodes
that have already been visited. The search method can then call this helper func-
tion, passing in List(start) for the initial queue of nodes and an empty set for the
list of visited nodes.

Rule
8

65Annotate for expected optimizations
def search(start: Node, p: Node => Boolean) = {
def loop(nodeQueue: List[Node], visited: Set[Node]): Option[Node] =

nodeQueue match {
case head :: tail if p(head) =>

Some(head)
case head :: tail if !visited.contains(head) =>

loop(tail ++ head.edges, visited + head)
case head :: tail =>

loop(tail, visited)
case Nil =>

None
}

loop(List(start), Set())
}

The help method, called loop, is implemented with a pattern match. The first case
pops the first element from the queue of nodes to inspect. It then checks to see if this
is the node we are looking for and returns it. The next case statement also pops the
first element from the work queue and checks to see if it hasn’t already been visited. If
it hasn’t, the node is added to the list of visited nodes and its edges are added to the
end of the work queue of nodes. The next case statement is hit when a node has
already been visited. This case will continue the algorithm with the rest of the nodes
in the queue. The last case statement is hit if the queue is empty. In that case, None is
returned indicating no Node was found.

 The interesting part of this algorithm is what the compiler does to it. Let’s look at
the bytecode for the loop helper method for any sort of function call. We find none,
so the tail call optimization must have kicked in for this method. Let’s check for any
kind of branching in the method to see what happened. Three goto bytecodes and
one return bytecode exist:

private final scala.Option loop$1(scala.collection.immutable.List,
scala.collection.immutable.Set, scala.Function1);

Code:
0: aload_1
...
61: invokespecial #97;

//Method scala/Some."<init>":(Ljava/lang/Object;)V
64: goto 221
...
150: astore_2
151: astore_1
152: goto 0
...
186: astore_1
187: goto 0
...
218: getstatic #158; //Field scala/None$.MODULE$:Lscala/None$;
221: areturn
...

Line 61 shows the byte code constructing a new Some object and then jumping to line
221. Line 221 is our return bytecode for the method. Immediately before line 221 is a

66 CHAPTER 3 Modicum of style— coding conventions
getstatic operation that retrieves a reference to the None object. Finally, lines 152
and 187 both have goto instructions that return to line 0. These lines are the final
bytecodes in each of our case statements. Lines 61, 64, and 221 correspond to the
Some(head) call in our first case statement. Lines 218 and 221 correspond to return-
ing None in which case our work queue is empty. Lines 150, 151, and 152 correspond
to updating the current work queue and visited lists, using the astore bytecodes, and
then jumping back into the algorithm. Finally, lines 186 and 187 correspond to updat-
ing the workQueue and jumping back to the start of the algorithm. The compiler has
converted the tail recursion into a while loop.

 This technique of converting a tail recursive function into a while loop can help
prevent stack overflow issues at runtime for many recursive algorithms. It’s perhaps
the most important optimization to require of the compiler when writing code. No
one wants an unexpected stack overflow in production code! So, once again requiring
the optimization is as simple as annotating the tail recursive method with @tailrec.
Let’s take a look:

def search(start: Node, p: Node => Boolean) = {
@tailrec
def loop(nodeQueue: List[Node], visited: Set[Node]): Option[Node] =

nodeQueue match {
case head :: tail if p(head) =>

Some(head)
case head :: tail if !visited.contains(head) =>

loop(tail ++ head.edges, visited + head)
case head :: tail =>

loop(tail, visited)
case Nil =>

None
}

loop(List(start), Set())
}

Great! Now you can ensure that expected optimizations appear in programs when
needed. Remember that these annotations aren’t asking the compiler to provide an
optimization, but rather requiring that the compile do so or issue a warning.

 In the switch example, if the compiler had been unable to provide a tableswitch
instruction, the code would still have failed to compile. This doesn’t indicate that the
code would have performed slowly. In fact, with only two case statements, it would
possibly be slower to use a tableswitch bytecode. Therefore, make sure you use these
annotations only when you require an optimization.

 Unlike the switch optimization, it’s always a good idea to annotate tail recursion.

3.6 Summary
In this chapter, you’ve learned or refreshed your memory on coding conventions,
their utility, and why you should look at them with fresh eyes when coming to Scala.
This is a modern programming language, with an interesting twist to C style lan-
guages. As such, Scala requires adjustments to syntax and coding styles. Users of Scala
should make sure to:

67Summary
 Keep opening braces on the same line
 Dangle operators or use parentheses
 Use meaningful names
 Consistently name parameters
 Always mark methods with override

These rules should help you avoid simple syntax-related programming errors and be
productive in your efforts.

 With Scala, the syntax was designed in a “scalable” way. This means that if you
attempt to write concise code and run into issues, try to use the less concise, more for-
mal syntax until you resolve the issue. This graceful degradation is helpful in practice
as it lets users “grow” into their understanding of the syntax rules. Syntax is something
that shouldn’t get in the way of development but instead become a vehicle for pro-
grammers to encode their thoughts into programs. Therefore, know the syntax and
how to avoid compilation or runtime problems from poor use of the language.

 Now that we’ve looked at how to use Scala syntax, it’s time to dig into some of its
more advanced features, starting with its object orientation.

Utilizing
object orientation
Scala is a rich object-oriented language. In Scala, every value is an object. Even
operators are method calls against the class of an object. Scala offers mixin inheri-
tance through the use of traits. Objects are core to everything in Scala, and under-
standing the details of how they work is important for using Scala.

 Object, class, and traits are used to define public APIs for libraries. The initial-
ization, comparison, and composition of objects are the bread and butter of Scala
development. Initialization is important because of mixin inheritance and the way
objects get instantiated in various locations. Comparing two objects for equality is
critical and can be made trickier when inheritance gets in the mix. Finally, compo-
sition of functionality is how code reuse is accomplished, and Scala provides a few
new ways to compose objects.

In this chapter
 Object initialization

 Abstract methods

 Composition and Inheritance

 Abstract interfaces

 Type inference and public APIs
68

69Limit code inside an object or trait’s body to initialization logic
4.1 Limit code inside an object or trait’s body
to initialization logic
In Scala, the code inside an object, trait or class’s body is the constructor.

 A common starting point for most developers learning Scala is the standard “Hello,
World” program. You’ll see many examples on the internet with the following code:

object Test extends Application {
println("Hello, World!")

}

Although elegant, this code sample is misleading in its simplicity. The Application
trait uses a nifty trick to simplify creating a new application but comes with a price.
Let’s look at a simplified version of the Application trait in the following listing.

trait Application {
def main(args: Array[String]): Unit = {}

}

That’s it. That one empty method is all that’s needed for the Application trait. Why
does this work? Let’s dig into the bytecode.

 When compiling traits, Scala creates an interface/implementation pair of classes.
The interface is for JVM interoperability and the implementation is a set of static
methods that can be used by classes implementing the trait. When compiling the Test
object, a main method is created that forwards to the Application implementation
class. Although this method is empty, the logic inside the Test object is placed in the
Test object’s constructor. Next, Scala creates “static forwarders” for the object. One of
these static forwarder methods will be the main method, in the signature the JVM
expects. The static forwarder will call the method on the singleton instance of the
Test object. This instance is constructed in a static initialization block. And finally, we
get to the issue. Code inside a static initialization block isn’t eligible for HotSpot opti-
mization. In fact, in older versions of the JVM, methods called from a static initializa-
tion block wouldn’t be optimized either. In the most recent benchmarks, this has
been corrected, such that only the static block itself isn’t optimized.

 Scala 2.9 provides a better solution: the DelayedInit trait.

4.1.1 Delayed construction

Scala 2.9 provides a new mechanism for dealing with constructors. DelayedInit is a
marker trait for the compiler. When implementing a class that extends DelayedInit,
the entire constructor is wrapped into a function and passed to the delayedInit
method. Let’s a look at the DelayedInit trait.

trait DelayedInit {
def delayedInit(x: => Unit): Unit

}

Listing 4.1 Poor Hello World! example in Scala

Listing 4.2 Application trait

70 CHAPTER 4 Utilizing object orientation
The trait has one method, delayedInit. As stated before, this method has a function
object passed to it. This function contains all the regular constructor logic, which pro-
vides a clean solution to the Application trait. Let’s implement your own to demon-
strate the DelayedInit behavior.

trait App extends DelayedInit {
var x: Option[Function0[Unit]] = None
override def delayedInit(cons: => Unit) {

x = Some(() => cons)
}
def main(args: Array[String]): Unit =

x.foreach(_())
}

The new App trait extends DelayedInit. It defines an Option x containing the con-
structor behavior. The delayedInit method is overridden to store the constructor
logic in the x variable. The main method is defined so that it will execute the construc-
tor logic stored in the x variable. Now that the trait is created, let’s try it in the REPL.

scala> val x = new App { println("Now I'm initialized") }
x: java.lang.Object with App = $anon$1@2013b9fb

scala> x.main(Array())
Now I'm initialized

The first line creates a new anonymous subclass of the App trait. This subclass prints
the string "Now I'm initialized" in its constructor. The string isn’t printed to the
console during construction. The next line calls the main method on the App trait.
This calls the delayed constructor, and the string "Now I'm initialized" is printed.

 The DelayedInit trait can be dangerous because it delays the construction of the
object until a later time; methods that expect a fully initialized object may fail subtly at
runtime. The DelayedInit trait is ideal for situations where object construction and
initialization are delayed. For example, in the Spring bean container, objects are con-
structed and then properties are injected before the object is considered complete.
The DelayedInit trait could be used to delay the full construction of an object until
after all properties have been injected. A similar mechanism could be used for objects
created in Android.

 The DelayedInit trait solves the problem where construction and initialization of
objects are required, due to external constraints, to happen at different times. This
separation isn’t recommended in practice but sometimes is necessary. Another initial-
ization problem exists in Scala, and this occurs with multiple inheritance.

4.1.2 And then there’s multiple inheritance

Scala traits provide the means to declare abstract values and define concrete values
that rely on the abstract. For example, let’s create a trait that stores property values
from a config file.

trait Property {
val name: String

71Limit code inside an object or trait’s body to initialization logic
override val toString = "Property(" + name + ")"
}

The Property trait defines an abstract member name which stores the current name of
the Property. The toString method is overridden to create a string using the name
member. Let’s instantiate an instance of this trait.

scala> val x = new Property { override val name = "HI" }
x: java.lang.Object with Property = Property(null)

Avoid abstract val in traits

Using abstract values in traits requires special care with object initialization. While early initial-
izer blocks can solve this, lazy val can be a simpler solution. Even better is to avoid these
dependencies by using constructor parameters and abstract classes.

The val x is defined as an anonymous subclass of the Property trait. The name is over-
ridden to be the string "HI". But when the REPL prints the value of toString, it shows
the value null for name. This is due to order of initialization. The base trait,
Property, is initialized first during construction. When the toString method looks
for the value of name, it hasn’t been initialized yet, so it finds the value null. After this,
the anonymous subclass is constructed and the name property is initialized.

 Two ways to solve the problem exist. The first is to define the toString method as
lazy. Although this delays when the toString method will look for the value of the
name property, it doesn’t guarantee that the initialization order is correct. The better
solution is to use early member definitions.

 Scala 2.8.0 reworked the initialization order of traits. Part of this was the creation
of early member definitions. This is done by creating what looks like an anonymous
class definition before mixing in a trait. Here’s an example:

scala> class X extends { val name = "HI" } with Property
defined class X

scala> new X
res2: X = Property(HI)

The class X is defined such that it extends the Property trait. But before the Property
trait is an anonymous block containing the early member definition. This is a block
containing a definition of the val name. When constructing the class X, the toString
method correctly displays the name HI. A second way to declare early initializers exists.

scala> new { val name = "HI2" } with Property
res3: java.lang.Object with Property{

val name: java.lang.String("HI2")} = Property(HI2)

The next line constructs a new anonymous Property. The anonymous block after the
new keyword is the early member definition. This defines the members that should be
initialized before the Property trait’s constructor is initialized. The REPL prints the
correct toString from the Property value.

 Early member definitions solve issues that occur when a trait defines an abstract
value and relies on it in other concrete values. We usually avoid this situation due to

Rule
9

72 CHAPTER 4 Utilizing object orientation
issues from previous versions of Scala. For any complicated trait hierarchies, early
member initializations provide a more elegant solution to the problem. Because the
members that need early initialization can be buried behind several layers of inheri-
tance, it’s important to document these throughout a type hierarchy.

 Scala makes multiple inheritance simpler and provides mechanisms for dealing
with the complicated situation. Early member definitions are one such way. Some
things can be done to help prevent issues in the future such as providing empty imple-
mentations for abstract methods.

4.2 Provide empty implementations
for abstract methods on traits
One of the first things I tried to do when first toying with the Scala language was use
traits for a kind of “mixin inheritance.” The problem I was trying to solve involved
modeling a real-world situation. I needed to be able to create managed objects,
including physical servers, network switches, and so on. The system needed to emu-
late the real world and create realistic-looking data that would be fed through our
application’s processing stream. We used this simulation shown in the following
figure 4.1 to test “maximum throughput” of the software.

 We want this system to model real-world entities as best as possible. We also want
the ability to mix in different behaviors to our entities, where certain base traits could
provide default behavior. Starting out, we want to model network switches and net-
work servers, including Windows and Linux servers, along with some form of agent
that runs on these services and provides additional functionality. Let’s create a simple
base class for a SimulationEntity.

trait SimulationEntity {
def handleMessage(msg: SimulationMessage,

ctx: SimulationContext): Unit
}

This is a simple trait that contains a handleMessage method. This method takes in a
message and a context and performs some behavior. The design of the simulation is
such that each entity will communicate through a simulation context via messages.

Listing 4.3 SimulationEntity class

SimulationEntity
handleMessage(msg)

Agent NetworkEntity

Router Server

Windows Linux Figure 4.1 Simulation class
hierarchy

73Provide empty implementations for abstract methods on traits
When an entity receives a message, it updates its current state and sends messages
appropriate to that state. The context can also be used to schedule behavior for later
in the simulation. We’re off to a great start. Let’s define a simple NetworkEntity trait
with simple NetworkEntity behavior. Remember that in a chain-of-command pattern,
we want to define a base set of functionality and defer the rest to a parent class.

trait NetworkEntity {
def getMacAddress(ip: String) : String
def hasIpAddress(addr: String) : Boolean

def handleMessage(msg: SimulationMessage, ctx: Simulation): Unit =
msg match {

case PingRequest(ip, sender) if hasIpAddress(ip) =>
ctx respond (sender, PingResponse(getMacAddress(ip)))

case _ =>
super.handleMessage(msg)

}
}

Scala traits have a handy property of not defining their super class until after they
have been mixed in and initialized. This means that an implementer of a trait doesn’t
necessarily know which type super will be until a process called linearization occurs.

Because of linearization, the NetworkEntity trait could be using super correctly, or it
might not, as the compilation output implies:

simulation.scala:21: error: method handleMessage in trait
SimulationEntity is accessed from super.
It may not be abstract unless it's
overridden by a member declared `abstract' and `override'

case _ => super.handleMessage(msg, ctx)
^

one error found

To make this work properly, the Scala compiler must know that no matter what, we
can safely call super.handleMessage. This means we have to do one of two things:
define a self-type or make the abstract method have a default “do nothing” implemen-
tation that would get called. The self-type approach could work, but it limits how your
trait could be mixed in. We would be defining an alternative “base” that the trait had
to be mixed into. This base would then need to have some kind of implementation for
handleMessage. This provides too much restriction for the aims of the application.

Listing 4.4 NetworkEntity trait

Message may or
may not point to an
implementation function.

Class linearization
Linearization is the process of specifying a linear ordering to the superclasses of a
given class. In Scala, this ordering changes for each subclass and is reconstructed
for classes in the hierarchy. This means that two subclasses of some common par-
ent could have different linearizations and therefore different behaviors.

74 CHAPTER 4 Utilizing object orientation
 The right way to approach this is to implement the method in the Simulation-
Entity trait. This gives all our mixed-in traits the ability to delegate to super, which is
a common theme when using traits as mixins. You must select some point in an object
hierarchy where traits may start being mixed in. In our simulation, we desire to start
directly at the top with SimulationEntity. But if you’re attempting to use traits with a
Java hierarchy, this might not be the case. You may desire to start mixing into some
lower-level abstraction. In the case of Java Swing, you could start your trait mixin
classes with a javax.swing.JComponent rather than something lower, like a
java.awt.Component. The point is that you need to select the right location to ensure
that your mixin-delegate behavior will work correctly.

 Sometimes with real-life libraries you can’t find default behaviors to delegate into.
In this case, you might think that you could provide your own “empty implementa-
tion” trait. Let’s see if we can do that on your network simulation example. Let’s
define your classes like so:

trait MixableParent extends SimulationEntity {
override def handleMessage(msg : SimulationMessage,

ctx: SimulationContext): Unit = {}
}

trait NetworkEntity extends MixableParent {
def getMacAddress(ip: String): String

def hasIpAddress(addr: String): Boolean

override def handleMessage(msg: SimulationMessage,
ctx: SimulationContext): Unit = msg match {

case PingRequest(ip, sender) if hasIpAddress(ip) =>
ctx respond (sender, PingResponse(getMacAddress(ip), this))

case _ =>
super.handleMessage(msg, ctx)

}
}

class Router extends SimulationEntity {
override def handleMessage(msg: SimulationMessage,
ctx: SimulationContext): Unit = msg match {

case Test(x) => println("YAY! " + x)
case _ =>

}
}

This code looks like a perfectly reasonable class hierarchy and compiles correctly, but
it doesn’t work in practice. The reason is that the linearization of a concrete entity
(Router in this case) doesn’t work with the MixableParent trait; things aren’t ordered
as we’d like. The issue arises when we try to create a Router with NetworkEntity class.
This class compiles fine but fails to handle the Test message at runtime, because this is
how the linearization works. The following figure 4.2 shows the class hierarchy for a
Router with NetworkEntity class and numbering classes/traits in their linearization

Listing 4.5 Empty implementation trait attempt

Trait that
should enable
mixin behavior

Mixable
behavior for
network devices

Sample
entity used
for testing

75Provide empty implementations for abstract methods on traits

ntity
order. This order determines what super means
for each trait in the hierarchy.

 As you can see, the MixableParent class is
being called directly after NetworkEntity but
before Router. This means that the behavior in
NetworkEntity is never called because the
MixableParent doesn’t call its super! Therefore,
we have to find a way of getting MixableParent
earlier in the linearization. Because things linear-
ize right to left in Scala, we want to try creating a
MixableParent with Router with NetworkEntity.
That first requires turning the Router class into a
trait. This might not be feasible in real life, but
let’s continue the exercise. We’ll see what this
looks like in a Scala REPL session:

Provide empty implementations for abstract methods on composable traits

In Scala, trait linearization means that super calls within a trait may be different depending on
how an object is linearized. To provide full flexibility, each composable trait should be able to
call a super method, even in that super method doesn’t do anything.

$ scala -cp .
...

scala> val rtr = new MixableParent with Router with
| DummyNetworkEntity

rtr: java.lang.Object with MixableParent with Router with
DummyNetworkEntity = $anon$1@169a1c5

scala> rtr.handleMessage(Test(5), null)
YAY! 5

scala> val ctx = new SimulationContext {
| override def respond(entity: SimulationEntity,
| msg: SimulationMessage) : Unit = {
| println("Sending " + msg + " to " + entity)
| }
| }

ctx: java.lang.Object with SimulationContext = $anon$1@13306ad

scala> rtr.handleMessage(PingRequest("HAI", rtr),ctx)
Sending PingResponse(HAI,line2$object$$iw$$iw$$anon$1@169a1c5) to
line2$object$$iw$$iw$$anon$1@169a1c5

As you can see, the behavior is now correct, but it isn’t quite intuitive that you have to
use the MixableParent first in every entity creation. Also, the Router trait suffers
from the same issues as MixableParent. It doesn’t delegate to its parent class! This is
okay because Router is an entity that other behavior is mixed into, but in some cases

Listing 4.6 REPL session with simulation classes

Rule
10

rtr defined
with correct
linearization
of behavior

Behavior
defined in
Router shows
up correctly

Behavior
defined in
NetworkE
shows up
correctly

SimulationEntity
handleMessage(msg)

MixableParent

NetworkEntity

Router

Router with
NetworkEntity

Figure 4.2 Linearization of Router
with NetworkEntity

76 CHAPTER 4 Utilizing object orientation
this would be unacceptable. Also, there are cases where you can’t convert your classes
into traits.

 When creating a hierarchy of mixable behaviors via trait, you need to ensure the
following:

 You have a mixin point that traits can assume as a parent.
 Your mixable traits delegate to their parent in meaningful ways
 You provide default implementations for chain-of-command style methods at

your mixin point.

4.3 Composition can include inheritance
An aphorism among the Java community is “favor composition over inheritance.”
This simple advice means that it’s usually best in object-oriented Java to create new
classes that “contain” other classes, rather than inherit from them. This allows the
new class to use features/functionality of several other classes, whereas inheritance is
limited to one class. This advice also has other benefits, including creating more self-
contained “do one thing well” classes. Interestingly, Scala blurs this aphorism with its
addition of traits.

 Scala traits are composable in flexible ways. You can decide the ordering of poly-
morphic behavior by adjusting the order trait inheritance is declared. Multiple traits
can also be inherited. These features combine to make traits a viable mechanism of
composing functionality. Trait composability isn’t all roses; there are still some issues
that aren’t addressed. Let’s look at the issues associated with composing behavior via
inheritance in Java in table 4.1. Let’s look at the complaints associated with compos-
ing behavior via inheritance in Java and see how they stack up against Scala. I refer to
composing behavior via inheritance as “inheritance-composition” and classes/traits
that can do this as “inheritance-composable.” Composition that’s done via members of
an object I’ll refer to as “member-composition” and classes/traits that can do this as
“member-composable.”

 Scala traits immediately solve the problem of having to reimplement behavior in
subclasses. They also use a clever trick to support multiple-inheritance on the JVM,
making them “inheritance-composable” with more than one parent’s behavior. Scala
traits still suffer from two major issues, breaking encapsulation and needing access to
a constructor. Let’s look at how critical breaking encapsulation is.

Table 4.1 Issues with inheritance versus object composition

Issue Java interfaces
Java abstract

classes
Scala traits

Reimplement behavior in subclasses X

Can only compose with parent behavior X

Breaks encapsulation X X X

Need to call a constructor to compose X X X

77Composition can include inheritance
 Scala traits break encapsulation when used for composable behaviors. Let’s see
what the impact of this would be. Suppose we have a class that represents a data access
service in the system. This class has a set of query-like methods that look for data and
return it. Suppose also that we want to provide a logging ability so we can do
postmortem analysis on a system if it runs into an issue. Let’s see how this would look
with classic composition techniques:

trait Logger {
def log(category: String, msg: String): Unit = {

println(msg)
}

}

trait DataAccess {
val logger = new Logger

def query[A](in: String): A = {
logger.log("QUERY", in)
...

}
}

Notice how the DataAccess class uses the Logger class. The current method of com-
position means that the DataAccess class must be able to instantiate the Logger class.
An alternative would be to pass a logger into the constructor of the DataAccess class.
In either case, the DataAccess trait contains all logging behavior. One point about the
preceding implementation is that the logging behavior is nested in your DataAccess
class. If we instead wanted to also have the ability to use DataAccess with no Logger,
then we need to create a third entity that composes behavior from the first two. It
would look something like this:

trait Logger {
def log(category: String, msg: String) : Unit = {

println(msg)
}

}

trait DataAccess {
def query[A](in: String) : A = {

...
}

}

trait LoggedDataAccess {
val logger = new Logger
val dao = new DataAccess

def query[A](in: String) : A = {
logger.log("QUERY", in)

Listing 4.7 Composition of Logger and DataAccess classes

Listing 4.8 Composition of Logger and DataAccess into third class

Logger exists
as internal
variable

78 CHAPTER 4 Utilizing object orientation
dao.query(in)
}

}

Now we have standalone classes Logger and DataAccess that are minimal in imple-
mentation. We’ve composed their behavior into the third LoggedDataAccess class.
This implementation has all the benefits of DataAccess and Logger being encapsu-
lated and doing only one thing. The LoggedDataAccess class aggregates the two, pro-
viding mixed behavior. The issue here is that LoggedDataAccess doesn’t implement
the DataAccess interface. These two types can’t be used interchangeably in client
code via polymorphism. Let’s see what this would look like with pure inheritance:

trait Logger {
def log(category: String, msg: String) : Unit = {

println(msg)
}

}

trait DataAccess {
def query[A](in: String): A = {

...
}

}

trait LoggedDataAccess extends DataAccess with Logger {
def query[A](in: String): A = {

log("QUERY", in)
super.query(in)

}
}

Notice how the LoggedDataAccess class is now polymorphic on DataAccess and
Logger. This means you could use the new class where you would expect to find a
DataAccess or Logger class, so this class is better for later composition. Something is
still strange here: LoggedDataAccess is also a Logger. This seems an odd dichotomy to
have for a DataAccess class. In this simple example, it seems Logger would be an ideal
candidate for member-composition into the LoggedDataAccess class.

4.3.1 Member composition by inheritance

Another way to design these two classes (outlined in “Scalable Component Abstrac-
tions” by Oderksy and colleagues) involves inheritance-composition and member-
composition. To start, let’s create a Logger trait hierarchy. The hierarchy will have
three logger types, one for local logging, one for remote logging, and one that per-
forms no logging.

Listing 4.9 Inheritance-based composition of Logger and DataAccess

79Composition can include inheritance
trait Logger {
def log(category: String, msg: String): Unit = {

println(msg)
}

}

trait RemoteLogger extends Logger {
val socket = ...
def log(category: String, msg: String): Unit = {

//Send over socket
}

}

trait NullLogger extends Logger {
def log(category: String, msg: String): Unit = {}

}

The next thing we do is create what I’ll call an abstract member-composition class.
This abstract class defines an overridable member. We can then create subclasses
matching all the existing Logger subclasses.

trait HasLogger {
val logger: Logger = new Logger

}

trait HasRemoteLogger extends HasLogger {
override val logger: Logger = new RemoteLogger {}

}

trait HasNullLogger extends HasLogger {
override val logger: Logger = new NullLogger {}

}

The HasLogger trait does one thing: contains a logger member. This class can be sub-
classed by other classes who want to use a Logger. It gives a real “is-a” relationship to
make inheritance worthwhile to Logger users. “Why the indirection?” you may be ask-
ing yourself. The answer comes with the ability to override members as you would
methods in Scala. This allows you to create classes that extend HasLogger and then
mixin the other HasLogger traits later for different behavior. In the following listing,
let’s look at using the HasLogger trait to implement our DataAccess class.

trait DataAccess extends HasLogger {

def query[A](in: String) : A = {
logger.log("QUERY", in)
...

}
}

Listing 4.10 Logger hierarchy

Listing 4.11 Abstract member-composition trait HasLogger

Listing 4.12 DataAccess class with HasLogger trait

80 CHAPTER 4 Utilizing object orientation
Now for the real fun. Let’s write a unit test for the DataAccess class. In the unit test,
we don’t want to be logging output; we want to test the behavior of the function. To
do so, we want to use the NullLogger implementation. Let’s look at a specification test
for DataAccess:

object DataAccessSpec extends Specification {
"A DataAccess Service" should {

"return queried data" in {
val service = new DataAccess with HasNullLogger
service.query("find mah datah!") must notBe(null)

}
}

}

We now have the ability to change the composition of the DataAccess class when we
instantiate it. As you can see, we gain the benefits of member-composition and inheri-
tance composition at the cost of more legwork. Let’s see if Scala has something that
could reduce this legwork.

NOTE A trait containing multiple abstract members is sometimes called an
environment. This is because the trait contains the environment needed for
another class to function.

4.3.2 Classic constructors with a twist

In the case of classic Java-like inheritance, we can try to compose using constructor
arguments. This reduces the number of parent classes to one, as only abstract/con-
crete classes can have arguments, and they can only be singly inherited. But Scala has
two features that will help you out:

 Named and default parameters
 Promote constructor arguments to members

In the following listing, let’s recreate the DataAccess class, but this time as a full up
class where the logger is a constructor argument. Let’s also define a default argument
for logger. We’ll promote this argument to be an immutable member on the Data-
Access class.

class DataAccess(val logger: Logger = new Logger {}) {

def query[A](in: String) : A = {
logger.log("QUERY", in)
...

}
}

This class is simple. It defaults to a particular logger at instantiation time and lets you
supply your own (via constructor) if desired. The real fun comes when we want to

Listing 4.13 Specification test for DataAccess

Listing 4.14 DataAccess as a class with default arguments

Mixing new
logger
behavior to
DataAccess

81Composition can include inheritance
extend this class, provide users with a mechanism to supply a logger to the subclass
and use the same default as the DataAccess class. To do so, we’ll have to understand
how the compiler collects default arguments.

 When a method has default arguments, the compiler generates a static method for
obtaining the default. Then when user code calls a method, if it doesn’t supply an
argument, the compiler calls the static method for the default and supplies the argu-
ment. In the case of a constructor, these arguments get placed on the companion
object for the class. If there’s no companion object, one will be generated. The
companion object will have methods for generating each argument. These argument-
generating methods use a form of name mangling so the compiler can deterministi-
cally call the correct one. The mangling format is method name followed by argument
number, all separated with $. Let’s look at what a subclass of DataAccess would have
to look like for our requirements:

class DoubleDataAccess(
logger: Logger = DataAccess.`init$default$1`

) extends DataAccess(logger) {
...

}

You’ll notice two things in this code. First, the constructor is pickled with a method
name of init. This is because in the JVM bytecode, constructors are called <init>. The
second is the use of the backtick (`) operator. In Scala, this method is used to denote
“I’m going to use an identifier here with potentially nonstandard characters that could
cause parsing issues.” This is handy when calling methods defined in other languages
that have different reserved words and identifiers.

 We’ve finally created a method of simplifying composition using constructor argu-
ments. The method certainly suffers from ugliness when trying to also include inheri-
tance in your classes. Let’s look at the pros and cons of each compositional method in
the following table:

Listing 4.15 Inheritance with default arguments

Table 4.2 Pros/Cons of compositional methods

Method Pros Cons

Member composition  Standard Java practice  No polymorphism
 Inflexible

Inheritance composition  Polymorphism  Violation of encapsulation

Abstract member composition  Most flexible  Code bloat—especially setting up
parallel class hierarchies

Composition using constructor
with default arguments

 Reduction in code size  Doesn’t work well with inheritance

82 CHAPTER 4 Utilizing object orientation
Many “new” methods of doing object composition are possible within Scala. I recom-
mend picking something you’re comfortable with. When it comes to inheritance, I
prefer “is-a” or “acts-as-a” relationships for parents. If there’s no “is-a” or “acts-as-a”
relationship and you still need to use inheritance-composition, use the abstract mem-
ber composition pattern. If you have single-class hierarchies and no “is-a” relation-
ships, your best option is composition using constructors with default arguments.
Scala provides the tools you need to solve the problem you have at hand. Make sure
you understand it fully before deciding on an object-composition strategy.

 In section 11.3.2, we show an alternative means of composing objects using a func-
tional approach. Although the concepts behind this approach are advanced, the
approach offers a good middle ground between using constructors with default argu-
ments and abstract member composition.

4.4 Promote abstract interface into its own trait

 Put the abstract interface into its own trait

It’s possible to mix implementation and interface with traits, but it is still a good idea to provide
a pure abstract interface. This can be used by either Scala or Java libraries. It can then be
extended by a trait which fills in the implementation details.

Modern object-oriented design promotes the use of abstract types to declare inter-
faces. In Java, these use the interface keywords and can’t include implementation. In
C++ the same could be accomplished by using all pure virtual functions. A common
pitfall among new Scala developers was also an issue with C++: With the new power of
traits, it can be tempting to put method implementations into traits. Be careful when
doing so! Scala’s traits do the most to impact binary compatibility of libraries. In the
following listing, let’s look at a simple Scala trait and a class that uses this trait to see
how it compiles:

trait Foo {
def someMethod(): Int = 5

}
class Main() extends Foo{
}

The following listing shows the javap output for the Main class:

public class Main extends java.lang.Object
implements Foo,scala.ScalaObject{

public Main();
Code:
0: aload_0
1: invokespecial #10; //Method java/lang/Object."<init>":()V
4: aload_0

Listing 4.16 Simple Scala trait and implementation class

Listing 4.17 javap disassembly of Main class

Rule
11

83Promote abstract interface into its own trait
5: invokestatic #16; //Method Foo$class.$init$:(LFoo;)V
8: return

public int $tag() throws java.rmi.RemoteException;
Code:
0: aload_0
1: invokestatic #23;

//Method scala/ScalaObject$class.$tag:(Lscala/ScalaObject;)I
4: ireturn

public int someMethod();
Code:
0: aload_0
1: invokestatic #30; //

Method Foo$class.someMethod:(LFoo;)I
4: ireturn

}

As you can see, with some adjustment to reading JVM bytecode, the Main class is given
a delegate class from the compiler. One obvious issue with binary compatibility is that
if the Foo trait is given another method, the Main class won’t be given a delegate
method without recompiling it. The JVM does something funny, though. It will allow
you to link (think binary compatibility) even if a class doesn’t fully implement an
interface. It errors out only when someone tries to use a method on the interface
that’s unimplemented. Let’s take it for a test toast in the following listing. We’ll
change the Foo trait without modifying the Main class.

trait Foo {
def someMethod(): Int = 5
def newMethod() = "HAI"

}

As you can see, we’ve added the newMethod method. We should still be able to use the
compiled Main to instantiate a Foo at runtime. Here’s what it looks like:

object ScalaMain {
def main(args : Array[String]) {

val foo: Foo = new Main();
println(foo.someMethod());
println(foo.newMethod());

}
}

You’ll notice we’re making a new Main object and coercing its type to be a Foo. The
most interesting piece of this class is that it compiles and runs. Let’s look at its output.

java -cp /usr/share/java/scala-library.jar:. ScalaMain
5
Exception in thread "main" java.lang.AbstractMethodError:

Listing 4.18 Modified Foo trait

Listing 4.19 ScalaMain testing class

Delegating
construction
initializer

Delegate method
calls static
implementation

84 CHAPTER 4 Utilizing object orientation
Main.newMethod()Ljava/lang/String;
at ScalaMain$.main(ScalaMain.scala:7)
at ScalaMain.main(ScalaMain.scala)

Notice that the classes link fine; it even runs the first method call! The issue comes
when calling the new method from the Foo trait. This finally causes an Abstract-
MethodError to be thrown, the closest we get to a linking error. The confusing part to
a Scala newcomer is that the trait provides a default implementation! Well, if we want
to call the default implementation, we can do so at runtime. Let’s look at the modified
ScalaMain in the following listing:

object ScalaMain {
def main(args: Array[String]) {

val foo: Foo = new Main()
println(foo.someMethod())

val clazz = java.lang.Class.forName("Foo$class")
val method = clazz.getMethod("newMethod", Array(classOf[Foo]): _*)
println(method.invoke(null, foo));

}
}

You’ll see we’re looking up and using the new method via reflection. Here’s the run-
time output:

java -cp /usr/share/java/scala-library.jar:. ScalaMain
5
HAI

This points out an interesting side of the JVM/Scala’s design; methods added to traits
can cause unexpected runtime behavior. Therefore it’s usually safe to recompile all
downstream users, to be on the safe side. The implementation details of traits can
throw off new users, who expect new methods with implementations to automatically
link with precompiled classes. Not only that, but adding new methods to traits will also
not break binary compatibility unless someone calls the new method!

4.4.1 Interfaces you can talk to

When creating two different “parts” of a software program, it’s helpful to create a
completely abstract interface between them that they can use to talk to each other.
See figure 4.3. This middle piece should be relatively
stable, compared to the others, and have as few
dependencies as possible. One thing you may have
noticed from earlier is that Scala’s traits compile with
a dependency on the ScalaObject trait. It’s possible
to remove this dependency, something that’s handy if
the two pieces of your software wanted to use differing
Scala-library versions.

Listing 4.20 Modified ScalaMain testing class

core.api

module-a module-b

Figure 4.3 Abstract interface
between software modules.

85Promote abstract interface into its own trait
 The key to this interaction is that each module depends on the common interface
code and no artifacts from each other. This strategy is most effective when there are
different developers on module A and module B, such that they evolve at different
rates. Preventing any kind of dependencies between the modules allows the new mod-
ule systems, such as OSGi, to dynamically reload module B without reloading module
A so long as the appropriate framework hooks are in place and all communications
between the modules A and B happen via the core-api module.

 To create a trait that compiles to a pure abstract interface, similar to a Java inter-
face don’t define any methods. Look at the PureAbstract trait in the following listing:

trait PureAbstract {
def myAbstractMethod(): Unit

}

Now let’s look at the javap disassembled code:

javap -c PureAbstract
Compiled from "PureAbstract.scala"
public interface PureAbstract{

public abstract void myAbstractMethod();
}

You’ll notice the PureAbstract trait doesn’t have a dependency on ScalaObject. This
is a handy method of creating abstract interfaces when needed; it becomes important
when used with module systems like OSGi. In fact, this situation is similar to the one
faced when interfacing two C++ libraries using C interfaces.

4.4.2 Learning from the past

Although this rule may seem contradictory to the “Provide empty implementations for
abstract methods,” the two are used to solve differing problems. Use this rule when
trying to create separation between modules, and provide implementations for
abstract methods when creating a library of traits you intend users to extend via mix-
ins. Pure abstract traits also help explicitly identify a minimum interface. A dichotomy
of thought exists here. Some designers prefer “rich” APIs, and others prefer “thin,”
where a thin API would be the minimum necessary to implement a piece of function-
ality, and a rich API would contain a lot of extra helper methods to ease usage.

 Scala traits bring the power to add lots of helper methods, something lacking in
Java’s interfaces. This kind of power was common in C++, which also suffered many
more issues with binary compatibility. In C++, binary compatibility issues forced the
creation of a pure “C” integration layer for libraries. This layer wrapped a rich C++
hierarchy inside the library. Clients of the library would then implement wrappers
around the C layer, converting back from classless world to OO and providing the
“rich” API. In my experience, these classes usually were thin wrappers around the C
layer and mostly lived in header files, such that users of the library could gain binary
compatibility without having to write their own wrapper.

Listing 4.21 PureAbstract trait

86 CHAPTER 4 Utilizing object orientation
 In Scala, we can provide our rich interface via a simple delegate trait and some
mixins. The “thin” interface should be something that we can reasonably expect
someone to implement completely. This way the users of the “abstract interface” can
grow their rich interface as needed for their project, assuming the “thin” interface is
complete.

 When you have two pieces of software that will be interacting but were developed
by diverse or disparate teams, you should promote abstract interfaces into their own
traits and lock those traits down as best as possible for the life of that project. When
the abstract interface needs to be modified, all dependent modules should be
upgraded against the changed traits to ensure proper runtime linkage.

4.5 Provide return types in your public APIs

Provide return types for public APIs

Scala can infer return types to methods. However, for a human reading a nontrivial method
implementation, infering the return type can be troubling. In addition, letting Scala infer the
return type can allow implementation details to slip past an interface. It’s best to explicitly doc-
ument and enforce return types in public APIs.

Imagine you’re developing a messaging library. This library contains a Message-
Dispatcher interface that users of your library can use to send messages. A Factory
method also takes various configuration parameters and returns a MessageDispatcher.
As a library designer, we decide that we want to rework existing implementation to cre-
ate different MessageDispatcher implementations based on the parameters to the
Factory method. Let’s start with a MessageDispatcher trait in the following listing:

trait MessageDispatcher[-T] {
def sendMessage(msg: T) : Unit

}

The trait is rather simple; it provides a mechanism to send messages. Now let’s create
the factory and an implementation class:

class ActorDispatcher[-T, U <: OutputChannel[T]](receiver: U)
extends MessageDispatcher[T] {
override def sendMessage(msg: T) {

receiver ! msg
}

}

object MyFactory {
def createDispatcher(a: OutputChannel[Any]) =

new ActorDispatcher(actor)
}

Listing 4.22 MessageDispatcher trait

Listing 4.23 MessageDispatcher factory and implementation class

Rule
12

87Provide return types in your public APIs
The code is pretty standard. The actor dispatcher will transmit messages to an actor in
the Scala actors library. We’ll discuss that library in depth later. For now, we’ll focus on
the createDispatcher factory method. This method looks standard but has one issue:
The return type isn’t a MessageDispatcher but an ActorDispatcher. This means
we’ve leaked our abstraction. See the javap output for proof:

public final class MyFactory$ extends java.lang.Object
implements scala.ScalaObject{

public static final MyFactory$ MODULE$;
public static {};
public ActorDispatcher createDispatcher(java.lang.Object);

}

We’ve leaked the ActorDispatcher class in the public API. This may be okay in a small
project, but it lends itself to issues if others rely on receiving ActorDispatcher
instances from this method instead of a MessageDispatcher. We can easily change this
by refactoring your API slightly to return more than one type. Let’s create a Null-
Dispatcher that doesn’t send messages. We also change the createDispatcher
method to take in any type of object and return appropriate dispatchers for each. If
we don’t have a useful dispatcher, we’ll use the NullDispatcher.

object NullDispatcher
extends MessageDispatcher[Any] {

override def sendMessage(msg: Any) : Unit = {}
}

object MyFactory {
def createDispatcher(a: Any) = {

a match {
case actor: OutputChannel[Any] => new ActorDispatcher(actor)
case _ => NullDispatcher

}
}

}

This slight change has made the compiler reinfer a different return type. We can see
proof of this in the new javap output:

public final class MyFactory$ extends java.lang.Object
implements scala.ScalaObject{

public static final MyFactory$ MODULE$;
public static {};
public MessageDispatcher createDispatcher(java.lang.Object);

}

The resulting API has inferred MessageDispatcher as the return type. This could
silently break code that was relying on receiving an ActorDispatcher. It’s easy enough
to annotate the return type for a public API. Modify the createDispatcher method as
follows:

Listing 4.24 MessageDispatcher factory with two implementation classes

88 CHAPTER 4 Utilizing object orientation
object MyFactory {
def createDispatcher(a: Any): MessageDispatcher[Any] = {

a match {
case actor: OutputChannel[Any] => new ActorDispatcher(actor)
case _ => NullDispatcher

}
}

}

Now the return type is locked to MessageDispatcher[Any] and anything that violates
this will cause a compiler warning, rather than breaking client code.

 To help avoid confusion or leaking implementation details, it’s best to provide
explicit return types on public methods in your API. This can also help speed compila-
tion slightly, as the type inferences don’t need to figure out a return type, and it gives
a chance for your implicit conversions to kick in, coercing things to the desired type.
The only time it would be okay to not specify return types is in the case of sealed sin-
gle-class hierarchy, a private method, or when overriding a method in a parent that
explicitly declares a return type. Ironically, when coding in a functional style, you find
that you tend not to use inheritance as much as you would think. I find this rule gen-
erally applies to my domain model and perhaps my UI library, but not the more func-
tional aspects of my code.

4.6 Summary
Scala’s object system is powerful and elegant. The body of code in a class definition
defines the constructor of a class. For top-level objects, this means that code in the
body should avoid expensive operations and other non-construction behavior. Scala
also allows mixin inheritance. But when defining methods, only methods marked with
override can override an existing implementation in the hierarchy. Adding override
can help ease mixin inheritance and avoid method typos. Mixin inheritance also pro-
vides a new way to compose software. Mixins can mark objects as having a value and
allow new values to be mixed in via inheritance. This technique provides the most
flexibility when pure abstract interfaces are used for the API systems. Finally, type infer-
ence can change an API as the object model expands. For public methods, it’s best to
explicitly annotate return types on critical interfaces. This leads to the best use of
objects in Scala.

Using implicits to
write expressive code
The implicit system in Scala allows the compiler to adjust code using a well-defined
lookup mechanism. A programmer in Scala can leave out information that the
compiler will attempt to infer at compile time. The Scala compiler can infer one of
two situations:

 A method call or constructor with a missing parameter.
 Missing conversion from one type to another type. This also applies to

method calls on an object that would require a conversion.

In both of these situations, the compiler follows a set of rules to resolve missing
data and allow the code to compile. When the programmer leaves out parameters,
it’s incredibly useful and is done in advanced Scala libraries. When the compiler

In this chapter
 Introduction to implicits

 Mechanics of the implicit resolution system

 Using implicits to enhance classes

 Using implicits to enforce scope rules
89

90 CHAPTER 5 Using implicits to write expressive code
converts types to ensure that an expression compiles is more dangerous and is the
cause of controversy.

 The implicit system is one of the greatest assets of the Scala programming lan-
guage. Using it wisely and conservatively can drastically reduce the size of your code
base. It can also be used to elegantly enforce design considerations. Let’s look at
implicit parameters in Scala.

5.1 Introduction to implicits
Scala provides an implicit keyword that can be used in two ways: method or variable
definitions, and method parameter lists. If this keyword is used on method or variable
definitions, it tells the compiler that those methods or variable definitions can be used
during implicit resolution. Implicit resolution is when the compiler determines that a
piece of information is missing in code, and it must be looked up. The implicit key-
word can also be used at the beginning of a method parameter list. This tells the com-
piler that the parameter list might be missing, in which case the compiler should
resolve the parameters via implicit resolution.

 Let’s look at using the implicit resolution mechanism to resolve a missing parame-
ter list:

scala> def findAnInt(implicit x : Int) = x
findAnInt: (implicit x: Int)Int

The findAnInt method declares a single parameter x of type Int. This function will
return any value that’s passed into it. The parameter list is marked with implicit, which
means that we don’t need to use it. If it’s left off, the compiler will look for a variable
of type Int in the implicit scope. Let’s look at the following example:

scala> findAnInt
<console>:7: error: could not find implicit value for parameter x: Int

findAnInt
^

The findAnInt method is called without specifying any argument list. The compiler
complains that it can’t find an implicit value for the x parameter. We’ll provide one, as
follows:

scala> implicit val test = 5
test: Int = 5

The test value is defined with the implicit keyword. This marks it as available for
implicit resolution. Since this is in the REPL, the test value will be available in the
implicit scope for the rest of the REPL session. Here’s what happens when we can
findAnInt:

scala> findAnInt
res3: Int = 5

The call to findAnInt succeeds and returns the value of the test value. The compiler
was able to successfully complete the function call. We can still provide the parameter
if desired.

91Introduction to implicits
scala> findAnInt(2)
res4: Int = 2

This method call passes a parameter with a value of 2. Because the method call is com-
plete, the compiler doesn’t need to look up a value using implicits. Remember this, as
implicit method parameters can still be explicitly provided. This utility will be dis-
cussed further in section 5.6.

 To understand how the compiler determines if a variable is available for implicit
resolution, it’s important to dig into how the compiler deals with identifiers and scope.

5.1.1 Identifiers: A digression

Before delving into the implicit resolution mechanism, it’s important to understand
how the compiler resolves identifiers within a particular scope. This section refer-
ences chapter 2 of the Scala Language Specification (SLS), I highly recommend read-
ing through the SLS after you have an understanding of the basics. Identifiers play a
crucial role in the selection of implicits, so let’s dig into the nuts and bolts of identifi-
ers in Scala.

 Scala defines the term entity to mean types, values, methods, or classes. These are
the things we use to build our programs. We refer to them using identifiers, or names.
In Scala this is called a binding. For example, in the following code:

class Foo {
def val x = 5

}

the Foo class itself is an entity, a class containing an x method. But we’ve given this
class the name Foo, which is the binding. If we declare this class locally within the
REPL, we can instantiate it using the name Foo because it’s locally bound.

scala> val y = new Foo
y: Foo = Foo@33262bf4

Here we can construct a new variable, named y, of type Foo using the name Foo.
Again, this is because the class Foo was defined locally within the REPL and the name
Foo was bound locally. Let’s complicate things by placing Foo in a package.

package test;

class Foo {
val x = 5

}

The Foo class is now a member of the package test. If we try to access it with the name
Foo, it will fail on the REPL:

scala> new Foo
<console>:7: error: not found: type Foo

new Foo

Trying to call new Foo fails because the name Foo isn’t bound in our scope. The Foo
class is now in the test package. To access it, we must either use the name test.Foo

92 CHAPTER 5 Using implicits to write expressive code
or create a binding of the name Foo to the test.Foo class in the current scope. For
the latter, Scala provides the import keyword:

scala> import test.Foo
import test.Foo

scala> new Foo
res3: test.Foo = test.Foo@60e1e567

The import statement takes test.Foo entity and binds it in the local scope with the
name Foo. This allows us to construct a new test.Foo instance by calling new Foo.
This concept should be familiar from Java’s import statement or C++’s using state-
ment. In Scala, things are a bit more flexible.

 The import statement can be used anywhere in the source file and it will only cre-
ate a binding in the local scope. This feature allows us to control where imported
names are used within our file. This feature can also be used to limit the scope of
implicits views or variables. We’ll cover this aspect in more detail in section 5.4.

 Scala is also more flexible in binding entities with arbitrary names. In Java or C#,
one can only bring the name bound in some other scope, or package, into the current
one. For example, the test.Foo class could only be imported locally with the name
Foo. The Scala import statement can give arbitrary names to imported entities using
the {OriginalBinding=>NewBinding} syntax. Let’s import our test.Foo entity with a
different name:

scala> import test.{Foo=>Bar}
import test.{Foo=>Bar}

scala> new Bar
res1: test.Foo = test.Foo@596b753

The first import statement binds the test.Foo class to the current scope using the
name Bar. The next line constructs a new instance of test.Foo by calling new Bar. You
can use this renaming to avoid conflicts in classes imported from different packages. A
good example is with java.util.List and scala.List. To avoid confusion within
Scala, it’s common to see import java.util.{List=>JList} in code that interacts
with Java.

RENAMING PACKAGES Scala’s import statement can also be used to alter the
names of packages. This can be handy when interacting with Java libraries.
For example, when using the java.io package, I frequently do the following:
import java.{io=>jio}
def someMethod(input : jio.InputStream) = ...

Binding entities allows us to name them within a particular scope. But it’s important
to understand what constitutes a scope and what bindings are found in a scope.

5.1.2 Scope and bindings

A scope is a lexical boundary in which bindings are available. A scope could be any-
thing from the body of a class to the body of a method to an anonymous block. As a
general rule, anytime you use the {} characters you’re creating a new scope.

93Introduction to implicits
 In Scala, scopes can be nested. This means I can construct a new scope inside
another scope. When creating a new scope, the bindings from the outer scope are still
available. This allows us to do the following:

class Foo(x : Int) {
def tmp = {

x
}

}

The Foo class is defined with the constructor parameter x. We then define the tmp
method with a nested scope. We can still access the constructor parameter inside this
scope with the name x. This nested scope has access to bindings in its parent scope,
however we can create new bindings that shadow the parent. In this case, the tmp
method can create a new binding called x that does not refer to the constructor
parameter x. Let’s take a look:

scala> class Foo(x : Int) {
| def tmp = {
| val x = 2
| x
| }
| }

defined class Foo

The Foo class is defined the same as before, but the tmp method defines a variable
named x in the nested scope. This binding shadows the constructor parameter x. Shad-
owing means that the local binding is visible and the constructor parameter is no lon-
ger accessible, at least using the name x. In Scala, bindings of higher precedence
shadow bindings of lower precedence within the same scope. Also, bindings of higher
or the same precedence shadow bindings in an outer scope.

 Scala defines the following precedence on bindings:

1 Definitions and declarations that are
local, inherited, or made available by a
package clause in the same source file
where the definition occurs have highest
precedence.

2 Explicit imports have next highest
precedence.

3 Wildcard imports (import foo._) have
next highest precedence.

4 Definitions made available by a package
clause not in the source file where the def-
inition occurs have lowest precedence.

Let’s look at an example of this precedence.
First, let’s define a test package and an

Bindings and Shadowing
In Scala, a binding shadows
bindings of lower precedence
within the same scope. A bind-
ing shadows bindings of the
same or lower precedence in
an outer scope. This is what
allows us to write:
class Foo(x : Int) {
 def tmp = {
 val x = 2
 x
 }
}

And have calls to tmp return
the value 2.

94 CHAPTER 5 Using implicits to write expressive code
object x within it in a source file called externalbindings.scala, as shown in the fol-
lowing listing:

package test;

object x {
override def toString = "Externally bound x object in package test"

}

This file defines a package test with the x object inside it. The x object overrides the
toString method so we can easily call toString on it. This means that for the pur-
poses of our test, the x object should have the lowest binding precedence with binding
rules. Now, let’s create a file that will test the binding rules:

package test;

object Test {
def main(args : Array[String]) : Unit = {

testSamePackage()
testWildcardImport()
testExplicitImport()
testInlineDefinition()

}
...

}

First, we declare the contents of the file to be in the same test package as our earlier
definition. Next, we define a main method that will call four testing methods, one for
each binding precedence rule. Let’s fill the first one in now:

def testSamePackage() {
println(x)

}

This method calls println on an entity called x. Because the Test object is defined
within the test package, the x object created earlier is available and used for this
method. To prove this, look at the output of this method:

scala> test.Test.testSamePackage()
Externally bound x object in package test

Calling the testSamePackage method produces the string we defined for the object x.
Now let’s see what happens if we add a Wildcard import:

object Wildcard {
def x = "Wildcard Import x"

}

def testWildcardImport() {

Listing 5.1 externalbindings.scala

Listing 5.2 Implicit binding test file

Listing 5.3 Wildcard imports

95Introduction to implicits
import Wildcard._
println(x)

}

The Wildcard object is a nested object used to contain the x entity so that it can later
be imported. The entity x is defined as a method that returns the string "Wildcard
Import x". The testWildcardImport method first calls import Wildcard._. This is a
wildcard import that will bind all the names/entities from the Wildcard object into
the current scope. Because wildcard imports have higher precedence than resources
made available from the same package but in a different source file, the Wildcard.x
entity will be used instead of the test.x entity. We see this when we run the test-
WildcardImport function:

scala> test.Test.testWildcardImport()
Wildcard Import x

When calling the testWildcardImport method, the string Wildcard Import x is
returned—exactly what we expect from the binding precedence. Things get more
interesting when we add explicit imports.

object Explicit {
def x = "Explicit Import x"

}

def testExplicitImport() {
import Explicit.x
import Wildcard._
println(x)

}

Once again, the Explicit object is used to create a new namespace for another x
entity. The testExplicitImport method first imports this entity directly and then
uses the wildcard import against the Wildcard object. Although the wildcard import is
after the explicit import, the binding precedence rules kick in and the method will
use the x binding from the Explicit object. Let’s take a look:

scala> test.Test.testExplicitImport()
Explicit Import x

As expected, the returned string is the one from Explicit.x. This precedence rule is
important when dealing with implicit resolution, but we’ll get to that in section 5.1.3.

 The final precedence rule to test is for local declarations. Let’s modify the test-
ExplicitImport method to define a local binding for the name x:

def testInlineDefinition() {
val x = "Inline definition x"
import Explicit.x
import Wildcard._
println(x)

}

Listing 5.4 Explicit imports

Listing 5.5 Inline definitions

96 CHAPTER 5 Using implicits to write expressive code
The first line in the testInlineDefinition method declares a local variable named x.
The next two lines explicitly import and implicitly import x bindings from the
Explicit and Wildcard objects, as we saw earlier. Finally, we call println(x) and see
which binding is selected.

scala> test.Test.testInlineDefinition()
Inline definition x

Again, even though the import statements come after the val x statement, the local
variable is chosen based on the binding priorities.

Why all the emphasis on name resolution within the compiler? Implicit resolution is
intimately tied to name resolution, so these intricate rules become important when
using implicits. Let’s look at the compiler’s implicit resolution scheme.

5.1.3 Implicit resolution

The Scala Language Specification declares two rules for looking up entities marked as
implicit:

 The implicit entity binding is available at the lookup site with no prefix—that is,
not as foo.x but only x.

 If there are no available entities from this rule, then all implicit members on
objects belong to the implicit scope of an implicit parameter’s type.

The first rule is intimately tied to the binding rules of the previous section. The sec-
ond rule is a bit more complex and we’ll look into it in section 5.1.4.

Non-shadowing bindings
It’s possible to have two bindings available for the same name. In this case, the
compiler will warn you that the name is ambiguous. Here’s an example directly from
the Scala Language Specification:
scala> {
 | val x = 1;
 | {
 | import test.x;
 | x
 | }
 | }
 <console>:11: error: reference to x is ambiguous; it is both defined in

value res7 and imported subsequently by import test.x
 x
 ^

In this example, the name x is bound in an outer scope. The name x is also
imported from the test package in a nested scope. Neither of these bindings shad-
ows the other. The value x from the outer scope isn’t eligible to shadow within the
nested scope, and the imported value x doesn’t have high enough precedence to
shadow.

97Introduction to implicits
 First, let’s look at our earlier example of implicit resolution:

scala> def findAnInt(implicit x : Int) = x
findAnInt: (implicit x: Int)Int

scala> implicit val test = 5
test: Int = 5

The findAnInt method is declared with an implicit parameter list of a single integer.
The next line defines a val test with the implicit marker. This makes the identifier,
test, available on the local scope with no prefix. If we were to write test in the REPL,
it would return the value 5. When we write this method call, findAnInt, the compiler
will rewrite it as findAnInt(test). This lookup uses the binding rules we examined
earlier.

 The second rule for implicit lookup is used when the compiler can’t find any avail-
able implicits using the first rule. In this case, the compiler will look for implicits
defined within any object in the implicit scope of the type it’s looking for. The implicit
scope of a type is defined as all companion modules that are associated with that type.
This means that if the compiler is looking for a parameter to the method def
foo(implicit param : Foo), that parameter will need to conform to the type Foo. If
no value of type Foo is found using the first rule, then the compiler will use the implicit
scope of Foo. The implicit scope of Foo would consist of the companion object to Foo.

 Let’s look at the following listing:

scala> object holder {
| trait Foo
| object Foo {
| implicit val x = new Foo {
| override def toString = "Companion Foo"
| }
| }
| }

defined module holder

scala> import holder.Foo
import holder.Foo

scala> def method(implicit foo : Foo) = println(foo)
method: (implicit foo: holder.Foo)Unit

scala> method
Companion Foo

The holder object is used so we can define a trait and companion object within the
REPL, as described in section 2.1.2. Inside, we define a trait Foo and companion object
Foo. The companion object Foo defines a member x of type Foo that’s available for
implicit resolution. Next we import the Foo type from the holder object into the cur-
rent scope. This step isn’t necessary, it’s done to simplify the method definition. Next
is the definition of method. The method takes an implicit parameter of type Foo.

Listing 5.6 Companion object and implicit lookup

98 CHAPTER 5 Using implicits to write expressive code
When called with no argument lists, the compiler will use the implicit val x defined
on the companion.

 Because the implicit scope is looked at second, we can use the implicit scope to
store default implicits while allowing users to import their own overrides as necessary.
We’ll investigate this a bit further in section 7.2.

 As stated previously, the implicit scope of a type T is the set of companion objects
for all types associated with the type T—that is, there’s a set of types that are associated
with T. All of the companion objects for these types are searched during implicit reso-
lution. The Scala Language Specification defines association as any class that’s a base
class of some part of type T. The parts of type T are:

 The subtypes of T are all parts of T. If type T is defined as A with B with C, then A,
B, and C are all parts of the type T and their companion objects will be searched
during implicit resolution for type T.

 If T is parameterized, then all type parameters and their parts are included in
the parts of type T. For example, an implicit search for the type List[String]
would look in List’s companion object and String’s companion object.

 If T is a singleton type T, then the parts of the type p are included in the parts of
type T. This means that if the type T lives inside an object, then the object itself
is inspected for implicits. Singleton types are covered in more detail in
section 6.1.1.

 If T is a type projection S#T, then the parts of S are included in the parts of type
T. This means that if type T lives in a class or trait, then the class or trait’s com-
panion objects are inspected for implicits. Type projections are covered in more
detail in section 6.1.1.

The implicit scope of a type includes many different locations and grants a lot of flexi-
bility in providing handy implicit resolution.

 Let’s look at a few of the more interesting cases of implicit scope.

IMPLICIT SCOPE VIA TYPE PARAMETERS

The Scala language defines the implicit scope of a type to include the companion
objects of all types or subtypes included in the type’s parameters. This means, for
example, that we can provide an implicit value for List[Foo] by including it in the
type Foo’s companion object. Here’s an example:

scala> object holder {
| trait Foo
| object Foo {
| implicit val list = List(new Foo{})
| }
| }

defined module holder

scala> implicitly[List[holder.Foo]]
res0: List[holder.Foo] = List(holder$Foo$$anon$1@2ed4a1d3)

99Introduction to implicits
The holder object is used, again, to create companion objects in the REPL. The
holder object contains a trait Foo and its companion object. The companion object
contains an implicit definition of a List[Foo] type. The next line calls Scala’s implic-
itly function. We can use this function to look up a type using the current implicit
scope. The implicitly function is defined as def implicitly[T](implicit arg : T)
= arg. It uses the type parameter T to allow us to reuse it for every type we’re looking
for. We’ll cover type parameters in more detail in section 6.2. The call to implicitly
for the type List[holder.Foo] returns the implicit list defined within Foo’s compan-
ion object.

 This mechanism is used to implement type traits sometimes called type classes. Type
traits describe generic interfaces using type parameters such that implementations
can be created for any type. For example, we can define a BinaryFormat[T] type trait.
This trait can be implemented for a given type to describe how it should be serialized
into a binary format. Here’s an example interface:

trait BinaryFormat[T] {
def asBinary(entity: T) : Array[Bytes]

}

The BinaryFormat trait defines one method, asBinary. This method takes in an
instance of the type parameter and returns an array of bytes representing that param-
eter. Code that needs to serialize objects to disk can now attempt to find a Binary-
Format type trait via implicits. We can provide an implementation for our type Foo by
providing an implicit in Foo’s companion object, as follows:

trait Foo {}
object Foo {

implicit lazy val binaryFormat = new BinaryFormat[Foo] {
def asBinary(entity: Foo) = "serializedFoo".toBytes

}
}

The Foo trait is defined as an empty trait. Its companion object is defined with an
implicit val that holds the implementation of the BinaryFormat. Now, when code
that requires a BinaryFormat sees the type Foo, it will be able to find the Binary-
Format implicitly. The details of this mechanism and design techniques are discussed
in detail in section 7.2.

 Implicit lookup from type parameters enables elegant type trait programming.
Nested types provides another great means to supply implicit arguments.

IMPLICIT SCOPE VIA NESTING

Implicit scope also includes companion objects from outer scopes if a type is defined
in an inner scope. This allows us to provide a set of handy implicits for a type in the
outer scope. Let’s look at an example.

scala> object Foo {
| trait Bar
| implicit def newBar = new Bar {
| override def toString = "Implicit Bar"

100 CHAPTER 5 Using implicits to write expressive code
| }
| }

defined module Foo

scala> implicitly[Foo.Bar]
res0: Foo.Bar = Implicit Bar

The object Foo is the outer type. Inside is defined the trait Bar. The Foo object also
defines an implicit method that creates an instance of the Bar trait. When calling
implicitly[Foo.Bar], the implicit value is found from a search of the Foo outer class.
This technique is similar to placing implicits directly in a companion object. Defining
implicits for nested types is convenient when the outer scope contains several sub-
types. We can use this technique in situations where we can’t create an implicit on a
companion object.

 Scala objects can’t have companion objects for implicits. Because of this, implicits
associated with the object’s type, that are desired on the implicit scope of that object’s
type, must be provided from an outer scope. Here’s an example:

scala> object Foo {
| object Bar { override def toString = "Bar" }
| implicit def b : Bar.type = Bar
| }

defined module Foo

scala> implicitly[Foo.Bar.type]
res1: Foo.Bar.type = Bar

The object Bar is nested inside the object Foo. The object Foo also defines an implicit
that returns Bar.type. Now, when calling implicitly[Foo.Bar.type], the object Bar
is returned. This mechanism allows defining an implicit for objects.

 An additional case of nesting that may surprise those not used to it is the case of
package objects. As of Scala 2.8, objects can be defined as package objects. A package
object is an object defined using the package keyword. It’s convention in Scala to
locate all package objects in a file called package.scala in a directory corresponding
to the package name.

 Any class that’s defined within a package is nested inside the package. Any implic-
its defined on a package object will be on the implicit scope for all types defined
inside the package. This provides a handy location to store implicits rather than defin-
ing companion objects for every type in a package, as shown in the following example:

package object foo {
implicit def foo = new Foo

}

package foo {
class Foo {

override def toString = "FOO!"
}

}

101Enhancing existing classes with implicit views
The package object foo is declared with a single implicit that returns a new instance of
the Foo class. Next, the class Foo is defined within the package foo. In Scala, packages
can be defined in multiple files and the types defined in each source file is aggregated
to create the complete package. There can only be one package object defined in all
source files for any given package. The Foo class has an overridden toString method
that will print the string "Foo!". Let’s compile the foo package and use it in the REPL,
as follows:

scala> implicitly[foo.Foo]
res0: foo.Foo = FOO!

Without importing the package object or its members, the compiler can find the
implicit for the foo.Foo object. It’s common in Scala to find a set of implicit defini-
tions within the package object for a library. Usually this package object also contains
implicit views, a mechanism for converting between types.

5.2 Enhancing existing classes with implicit views
An implicit view is an automatic conversion of one type to another to satisfy an expres-
sion. An implicit view definition takes the general form: implicit def <myConversion-
Name>(<argumentName> : OriginalType) : ViewType. The previous conversion would
implicitly convert a value of OriginalType to a value of ViewType if available on the
implicit scope.

 Let’s look at a simple example attempting to convert an integer to a string:

scala> def foo(msg : String) = println(msg)
foo: (msg: String)Unit

scala> foo(5)
<console>:7: error: type mismatch;
found : Int(5)
required: String

foo(5)

The foo method is defined to take a String and print it to the console. The call to foo
using the value 5 fails, as there’s a type mismatch. An implicit view can make this suc-
ceed. Let’s define one:

scala> implicit def intToString(x : Int) = x.toString
intToString: (x: Int)java.lang.String

scala> foo(5)
5

The method intToString is defined using the implicit keyword. It takes a single
value of type Int and returns a String. This method is the implicit view, and is com-
monly referred to as the view Int => String. Now, when calling the foo method with
the value 5, it prints the string 5. The compiler detected that the types did not con-
form and that there was a single implicit view that could correct the situation.

 Implicit views are used in two situations:

102 CHAPTER 5 Using implicits to write expressive code
 If an expression doesn’t meet the type expected by the compiler, the compiler
will look for an implicit view that would make it meet the expected type. An
example of this would be passing a value of type Int to a function that expects a
String would require an implicit view of String => Int in scope.

 Given a selection e.t, where selection means a member access, such that e’s
type doesn’t have a member t, the compiler will look for an implicit view that
will apply to e and whose resulting type contains a member t. If we try to call
method foo on a String, then the compiler will look for an implicit view from
String that can be used to make the expression compile. The expression
"foo".foo() would require an implicit view like the following: implicit def
stringToFoo(x : String) = new { def foo() : Unit = println("foo") }.

The implicit scope used for implicit views is the same as for implicit parameters. But
when the compiler is looking for type associations, it uses the type it’s attempting to
convert from, not the type it’s attempting to convert to. Let’s look at an example:

scala> object test {
| trait Foo
| trait Bar
| object Foo {
| implicit def fooToBar(foo : Foo) = new Bar {}
| }
| }

defined module test

scala> import test._
import test._

The test object is a scoping object used so we can create a companion object in the
REPL. This contains the Foo and Bar traits as well as a companion object to Foo. The
companion object to Foo contains an implicit view from Foo to Bar. Remember that
when the compiler is looking for implicit views, the type it’s converting from defines
the implicit scope. This means the implicit views defined in Foo’s companion object
will be inspected only when attempting to convert an expression of type Foo to some
other expression. Let’s try this out by defining a method that expects the type Bar.

scala> def bar(x : Bar) = println("bar")
bar: (x: test.Bar)Unit

The bar method takes a bar and prints the string bar. Let’s try to call it with a value of
foo and see what happens:

scala> val x = new Foo {}
x: java.lang.Object with test.Foo = $anon$1@15e565bd

scala> bar(x)
bar

The x value is of type Foo. The expression bar(x) triggers the compiler to look for an
implicit view. Because the type of x is Foo, the compiler look in associated types of Foo

103Enhancing existing classes with implicit views
for implicit views. Finding the fooToBar view, the compiler inserts the necessary trans-
formation and the method compiles successfully.

 This style of implicits allows us to adapt libraries to other libraries, or add our own
convenience methods to types. It’s a common practice in Scala to adapt Java libraries
so that they work well with the Scala standard library. For example, the standard
library defines a scala.collection.JavaConversions module that helps the Java col-
lections library interoperate with the Scala collections library. This module is a set of
implicit views that can be imported into the current scope to allow automatic conver-
sion between Java collections and Scala collections and to “add” methods to the Java
collections. Adapting Java libraries, or third party libraries, into your project using
implicit views is a common idiom in Scala. Let’s look at an example.

 We’d like to write a wrapper around the java.security package for easier usage
from Scala. Specifically, we want to simplify the task of running privileged code using
java.security.AccessController. The AccessController class provides the static
method doPrivileged, which allows us to run code in a privileged permission state.
The doPrivileged method has two variants, one that grants the current context’s per-
missions to the privileged code and one that takes an AccessControlContext contain-
ing the privileges to grant the privileged code. The doPrivileged method takes an
argument of type PrivilegedExceptionAction which is a trait that defines one
method: run. The trait is similar to Scala’s Function0 trait, and we’d like to be able to
use an anonymous function when calling the doPrivileged method.

 Let’s create an implicit view from a Function0 type to a doPrivileged method:

object ScalaSecurityImplicits {
implicit def functionToPrivilegedAction[A](func : Function0[A]) =

new PrivilegedAction[A] {
override def run() = func()

}
}

This defines an object ScalaSecurityImplicits which contains the implicit view. The
implicit view functionToPrivilegedAction takes a Function0 and returns a new
PrivilegedAction object such that the run method calls the function. Let’s use this
implicit:

scala> import ScalaSecurityImplicits._
import ScalaSecurityImplicits._

scala> AccessController.doPrivileged(() =>
| println("This is privileged"))

This is privileged

The first statement imports the implicit view into scope. Next, the call to doPrivileged
passed the anonymous function () => println("this is privileged"). Again, the
compiler sees that the anonymous function doesn’t match the expected type. The
compiler then looks and finds the implicit view defined and imported from Scala-
SecurityImplicits. This technique can also be used when wrapping Java objects with
Scala objects

104 CHAPTER 5 Using implicits to write expressive code
 It’s common to write a wrapper class for existing Java libraries that add more
advanced Scala idioms. Scala implicits can be used to convert from the original type
into the wrapped type and vice versa. For example, let’s look at adding some conve-
nience methods onto the java.io.File class.

 We’d like to provide a convenience notation for java.io.File so that the / opera-
tor can be used to create new file objects. Let’s create the wrapper class that will pro-
vide the / operator:

class FileWrapper(val file: java.io.File) {
def /(next : String) = new FileWrapper(new java.io.File(file, next))
override def toString = file.getCanonicalPath

}

The class FileWrapper takes a java.io.File in its constructor. It provides one new
method / that takes a string and returns a new FileWrapper object. The newly
returned FileWrapper object points to a file with the name specified to the / method
inside the directory of the original file. For example, if the original FileWrapper,
called file, pointed at the /tmp directory, then expression file / "mylog.txt" will
return a FileWrapper object that points at the /tmp/mylog.txt file. We’d like to use
implicits to automatically convert between java.io.File and FileWrapper, so let’s
add an implicit view to FileWrapper’s companion object:

object FileWrapper {
implicit def wrap(file : java.io.File) = new FileWrapper(file)

}

The FileWrapper companion object defines one method, wrap, which takes a java
.io.File and returns a new FileWrapper. Let’s look at an example usage in the REPL:

scala> import FileWrapper.wrap
import FileWrapper.wrap

scala> val cur = new java.io.File(".")
cur: java.io.File = .

scala> cur / "temp.txt"
res0: FileWrapper = .../temp.txt

The first line imports the implicit view into scope. The next line creates a new
java.io.File object with the string ".". This string denotes that the file object
should point to the current directory. The last line calls the / method against a
java.io.File. The compiler doesn’t find this method on a standard java.io.File
and looks for an implicit view that would enable this line to compile. Finding the wrap
method in scope, the compiler wraps the java.io.File into a FileWrapper and calls
the / method. The resulting FileWrapper object is returned.

 This mechanism is a great way to append methods onto existing Java classes, or any
library. We have the performance overhead of the wrapper object instantiation, but
the HotSpot optimizer may mitigate this. I say “may” here because there’s no guaran-
tee that the HotSpot optimizer will remove the wrapper allocation, but in some

105Enhancing existing classes with implicit views
microbenchmarks this will occur. Again, it’s best to profile an application to deter-
mine critical regions rather than assuming HotSpot will take care of allocations.

 One issue with the FileWrapper is that calling its / method will return another
FileWrapper object This means we can’t pass the result directly into a method that
expects a vanilla java.io.File. The / method could change to instead return a
java.io.File object, but Scala also provides another solution. When passing a File-
Wrapper to a method that expects a java.io.File type, the compiler will begin a
search for a valid implicit view. As stated earlier, this search will include the compan-
ion object for the FileWrapper type itself. Let’s add an unwrap implicit view to the
companion object and see if this works:

object FileWrapper {
implicit def wrap(file : java.io.File) = new FileWrapper(file)
implicit def unwrap(wrapper : FileWrapper) = wrapper.file

}

The FileWrapper companion object now contains two methods: wrap and unwrap.
The unwrap method takes an instance of FileWrapper and returns the wrapped
java.io.File type. We’ll test this out in the REPL:

scala> import test.FileWrapper.wrap
import test.FileWrapper.wrap

scala> val cur = new java.io.File(".")
cur: java.io.File = .

scala> def useFile(file : java.io.File) = println(file.getCanonicalPath)
useFile: (file: java.io.File)Unit

scala> useFile(cur / "temp.txt")
/home/jsuereth/projects/book/scala-in-depth/chapter5/wrappers/temp.txt

The first line imports the wrap implicit view. The next line construct a java.io.File
object pointing to the current directory. The third line defines a useFile method.
This method expects an input of type java.io.File and will print the path to the file.
The last line calls the useFile method with the expression: cur / "temp.txt". Again,
the compile sees the / method call and looks for an implicit view to resolve the expres-
sion. The resulting type of the expression is a FileWrapper, but the useFile method
requires a java.io.File. The compiler performs another implicit lookup using the
type Function1[java.io.File, FileWrapper]. This search finds the unwrap implicit
view on FileWrapper’s companion object. The types are now satisfied and the com-
piler has completed the expression. The runtime evaluation yields the correct string.

 Notice that utilizing the unwrap implicit view doesn’t require an import, as needed
for the wrap method. This is because the wrap implicit view was used when the com-
pile did not know the required type to satisfy the cur / "temp.txt" expression; there-
fore it looked for only local implicits, as java.io.File has no companion object. This
feature allows us to provide a wrapper object with additional functionality and near-
invisible conversions to and from the wrapper.

106 CHAPTER 5 Using implicits to write expressive code
 Take care when providing additional functionality to existing classes using implicit
views. This mechanism makes it much harder to determine if there’s a name conflict
across differing implicit views of a type. It also has a performance penalty that may not
be mitigated by the HotSpot optimizer. Finally, for folks not using a modern Scala IDE,
it can be difficult to determine which implicit views are providing methods used in a
block of code.

Avoid implicit views

Implicit views are the most abused feature in Scala. While they seem like a good idea in a lot of
situations, Scala provides better alternatives in most cases. Using too many implicit views can
greatly increase the ramp-up time of new developers on a code base. While useful, they should
be limited to situations where they are the right solution.

Scala implicit views provide users with the flexibility to adapt an API to their needs.
Using wrappers and companion object implicit views can drastically ease the pain of
integrating libraries with varied but similar interfaces or can allow developers to add
functionality to older libraries. Implicit views are a key component in writing expres-
sive Scala code, and should be handled with care.

 Implicits also have an interesting interaction with another Scala feature—default
parameters.

5.3 Utilize implicit parameters with defaults
Implicit arguments provide a great mechanism to ensure that users don’t have to spec-
ify redundant arguments. They also work well with default parameters. In the event
that no parameter is specified and no implicit value is found using implicit resolution,
the default parameter is used. This allows us to create default parameters that remove
redundant ones while still allowing users to provide different parameters.

 For example, let’s implement a set of methods designed to perform matrix calcula-
tions. These methods will utilize threads to parallelize work when performing calcula-
tions on matrices. But as a library designer, we don’t know where these methods will
be called. They may be operating within a context where threading isn’t allowed, or
they may already have their own work queue set up. We want to allow users to tell us
how to use threads in their context but provide a default for everyone else.

 Let’s start by defining the Matrix class:

class Matrix(private val repr : Array[Array[Double]]) {
def row(idx : Int) : Seq[Double] = {

repr(idx)
}
def col(idx : Int) : Seq[Double] = {

repr.foldLeft(ArrayBuffer[Double]()) {
(buffer, currentRow) =>

buffer.append(currentRow(idx))
buffer

} toArray

Listing 5.7 Simple Matrix class

Rule
13

107Utilize implicit parameters with defaults
}

lazy val rowRank = repr.size
lazy val colRank = if(rowRank > 0) repr(0).size else 0
override def toString = "Matrix" + repr.foldLeft(") {

(msg, row) => msg + row.mkString("\n|", " | ", "|")
}

}

The Matrix class takes an array of double values and provides two similar methods:
row and col. These methods take an index and return an array of the values for a
given matrix row or column respectively. The Matrix class also provides rowRank and
colRank values which return the number of rows and columns in the matrix respec-
tively. Finally the toString method is overridden to create a prettier output of the
matrix.

 The Matrix class is complete and ready for a parallel multiplication algorithm.
Let’s start by creating an interface we can use in our library for threading:

trait ThreadStrategy {
def execute[A](func : Function0[A]) : Function0[A]

}

The ThreadStrategy interface defines one method, execute. This method takes a
function that returns a value of type A. It also returns a function that returns a value of
type A. The returned function should return the same value as the passed-in function,
but could block the current thread until the function is calculated on its desired
thread. Let’s implement our matrix calculation service using this ThreadStrategy
interface:

object MatrixUtils {
def multiply(a: Matrix,

b: Matrix)(
implicit threading: ThreadStrategy): MatrixN = {

...
}

}

The MatrixUtils object contains the method multiply. The method takes two
Matrix classes, assumed to have the correct dimensions, and will return a new matrix
that’s the multiplication of the passed-in matrices. Matrix multiplication involves mul-
tiplying the elements in Matrix a’s rows by the elements in Matrix b’s columns and
adding the results. This multiplication and summation is done for every element in
the resulting matrix. A simple way to parallelize this is to compute each element of the
result matrix on a separate thread. The algorithm for the MatrixUtils.multiply
method is simple:

 Create a buffer to hold results.
 Create a closure that will compute a single value for a row/column pair and

place it in the buffer.
 Send the closures created to the ThreadStrategy provided.

108 CHAPTER 5 Using implicits to write expressive code
 Call the functions returned from ThreadStrategy to ensure they have
completed.

 Wrap the buffer in a Matrix class and return it.

Let’s start with creating the buffer:

def multiply(a: Matrix,
b: Matrix)(
implicit threading : ThreadStrategy): Matrix = {

assert(a.colRank == b.rowRank)
val buffer = new Array[Array[Double]](a.rowRank)
for (i <- 0 until a.rowRank) {

buffer(i) = new Array[Double](b.colRank)
}
...

}

The initial assert statement is used to ensure that the Matrix objects passed in are com-
patible for multiplication. By definition, the number of columns in Matrix a must equal
the number of rows in Matrix b. We then construct an array of arrays to use as the buf-
fer. The resulting matrix will have the same number of rows as Matrix a and the same
number of columns as Matrix b. Now that the buffer is ready, let’s create a set of clo-
sures in the following listing that will compute the values and place them in the buffer:

def multiply(a: Matrix,
b: Matrix)(
implicit threading : ThreadStrategy) : Matrix = {

...
def computeValue(row : Int, col : Int) : Unit = {

val pairwiseElements =
a.row(row).zip(b.col(col))

val products =
for((x,y) <- pairwiseElements)
yield x*y

val result = products.sum
buffer(row)(col) = result

}
...

The computeValue helper method takes a row and a column attribute and computes
the value in the buffer at that row and column. The first step is matching the elements
of the row of a with the elements of the column of b in a pairwise fashion. Scala pro-
vides the zip function which, given two collections, will match their elements. Next,
the paired elements are multiplied to create a list of the products of each element.
The final calculation takes a sum of all the products. This final value is placed into the
correct row and column in the buffer. The next step is to take this method and con-
struct a function for every row and column in the resulting matrix and pass these func-
tions to the threading strategy, as follows:

Listing 5.8 Matrix multiplication

109Utilize implicit parameters with defaults
val computations = for {
i <- 0 until a.rowRank
j <- 0 until b.colRank

} yield threading.execute { () => computeValue(i,j) }

This for expression loops every row and column in the resulting matrix and passes a
function into the ThreadStrategy parameter threading. The () => syntax is used
when creating anonymous function objects that take no arguments, required by the
type Function0. After farming out the work to threads, the multiply method must
ensure that all work is complete before returning results. We do this by calling each
method returned from the ThreadStrategy.

def multiply(a: Matrix,
b: Matrix)(
implicit threading : ThreadStrategy) : Matrix = {

...
computations.foreach(_())
new Matrix(buffer)

}

The last portion of the multiple method ensures all work is completed and returns the
result Matrix built from the buffer object. Let’s test this in the REPL, but first we need
to implement the ThreadStrategy interface. Let’s create a simple version that exe-
cutes all work on the current thread:

object SameThreadStrategy extends ThreadStrategy {
def execute[A](func : Function0[A]) = func

}

The SameThreadStrategy ensures that all passed-in work operates on the calling
thread by returning the original function. Let’s test out the multiply method in the
REPL, as follows:

scala> implicit val ts = sameThreadStrategy
ts: ThreadStrategy.sameThreadStrategy.type = ...

scala> val x = new Matrix(Array(Array(1,2,3), Array(4,5,6)))
x: library.Matrix =
Matrix
|1.0 | 2.0 | 3.0|
|4.0 | 5.0 | 6.0|

scala> val y = new Matrix(Array(Array(1), Array(1), Array(1)))
y: library.Matrix =
Matrix
|1.0|
|1.0|
|1.0|

scala> MatrixService.multiply(x,y)
res0: library.Matrix =
Matrix
|6.0|
|15.0|

110 CHAPTER 5 Using implicits to write expressive code
The first line is creating an implicit ThreadStrategy that will be used for all remain-
ing calculations. We then construct two matrices and multiply the results. The 2 x 3
matrix is multiplied by a 3 x 1 matrix to product a 2 x 1 matrix, as expected. Every-
thing appears to be working correctly with a single thread, so let’s create a multi-
threaded service, as in the following listing:

import java.util.concurrent.{Callable, Executors}

object ThreadPoolStrategy extends ThreadStrategy {
val pool = Executors.newFixedThreadPool(

java.lang.Runtime.getRuntime.availableProcessors)
def execute[A](func : Function0[A]) = {

val future = pool.submit(new Callable[A] {
def call() : A = {

Console.println("Executing function on thread: " +
Thread.currentThread.getName)

func()
}

})
() => future.get()

}
}

The first thing the ThreadPoolStrategy implementation does is create a pool of
threads using Java’s java.util.concurrent.Executors library. The thread pool is con-
structed with the number of threads equal to the number of available processors. The
execute method takes the passed-in function and creates an anonymous Callable
instance. The Callable interface is used in Java’s concurrent library to pass work into
the thread pool. This returns a Future that can be used to determine when the passed-
in work is completed. The last line of execute returns an anonymous closure that will
call get on future. This call blocks until the original function executes and returns the
value returned by the function. Also, every time a function is executed inside the
Callable, it will print a message informing which thread it’s executing on. Let’s try this
out in the REPL:

scala> implicit val ts = ThreadPoolStrategy
ts: ThreadStrategy.ThreadPoolStrategy.type = ...

scala> val x = new Matrix(Array(Array(1,2,3), Array(4,5,6)))
x: library.Matrix =
Matrix
|1.0 | 2.0 | 3.0|
|4.0 | 5.0 | 6.0|

scala> val y = new Matrix(Array(Array(1), Array(1), Array(1)))
y: library.Matrix =
Matrix
|1.0|
|1.0|
|1.0|

scala> MatrixUtils.multiply(x,y)

Listing 5.9 Concurrent strategey

111Utilize implicit parameters with defaults
Executing function on thread: pool-2-thread-1
Executing function on thread: pool-2-thread-2
res0: library.Matrix =
Matrix
|6.0|
|15.0|

The first line creates an implicit ThreadPoolStrategy that will be used for all remain-
ing calculations within the REPL session. Again, the x and y variables are created as
2 x 3 and 3 x 1 matrices, respectively. But the MatrixService.multiply now outputs
two lines indicating that the calculations for the result matrix are occurring on differ-
ent threads. The resulting matrix displays the correct values, as before.

 Now what if we wanted to provide a default threading strategy for users of the
library, and still allow them to override if desired? We can use the default parameter
mechanism to provide a default. This will be used if no value is available in the
implicit scope, meaning that our users can override the default in a scope by import-
ing or creating their own implicit ThreadStrategy. Users can also override the behav-
ior for a single method call by explicitly passing the ThreadStrategy. Let’s modify the
signature of MatrixService.multiply:

def multiply(a: Matrix, b: Matrix)(
implicit threading: ThreadStrategy = SameThreadStrategy

) : Matrix = {
...

}

The multiply method now defines the SameThreadStrategy as the default strategy.
Now when we use this library, we don’t have to provide our own implicit Thread-
Strategy:

scala> val x = new Matrix(Array(Array(1,2,3), Array(4,5,6)))
x: library.Matrix =
Matrix
|1.0 | 2.0 | 3.0|
|4.0 | 5.0 | 6.0|

scala> val y = new Matrix(Array(Array(1), Array(1), Array(1)))
y: library.Matrix =
Matrix
|1.0|
|1.0|
|1.0|

scala> MatrixService.multiply(x,y)
res0: library.Matrix =
Matrix
|6.0|
|15.0|

Unlike normal default parameters, an implicit parameter list with defaults doesn’t
need to be specified in the method call with an additional (). This means we get the
elegance of implicit parameters with the utility of default parameters. We can still uti-
lize implicits as normal:

112 CHAPTER 5 Using implicits to write expressive code
scala> implicit val ts = ThreadPoolStrategy
ts: ThreadStrategy.ThreadPoolStrategy.type = ...

scala> MatrixUtils.multiply(x,y)
Executing function on thread: pool-2-thread-1
Executing function on thread: pool-2-thread-2
res1: library.Matrix =
Matrix
|6.0|
|15.0|

The first line creates an implicitly available thread strategy. Now when calling the
MatrixService.multiply call, the method is using the ThreadPoolStrategy. This
allows users of the MatrixService to decide when to parallelize computations per-
formed with the library. They can do this for a particular scope by providing an
implicit or for a single method call by explicitly passing the ThreadStrategy.

 This technique of creating an implicit value for a scope of computations is a pow-
erful, flexible means of using the strategy pattern. The strategy pattern is an idiom
where a piece of code needs to perform some operation, but certain behaviors, or
execution “strategy,” can be swapped into the method. The ThreadPoolStrategy is
such a behavior that we’re passing into our MatrixUtils library methods. This same
ThreadPoolStrategy could be used across different subsections of components in our
system. It provides an alternative means of composing behavior than using inheri-
tance, as discussed in section 4.3.

 Another good example of implicits with default parameters is reading the lines of a
file. In the general case, users don’t care if the line endings are \r, \n, or \r\n. However,
a complete library would handle all situations. This can be done by providing an implicit
argument for the line ending strategy and providing a default value of “don’t care.”

 Implicits provide a great way to reduce boilerplate in code, such as repeated
parameters. The most important thing to remember when using them is be careful,
which is the topic of the next section.

5.4 Limiting the scope of implicits
The most important aspect of dealing with implicits is ensuring that programmers can
understand what’s happening in a block of code. Programmers can do this by limiting
the places they must check to discover available implicits. Let’s look at the possible
locations of implicits:

 The companion objects of any associated types, including package objects
 The scala.Predef object
 Any imports that are in scope.

As seen in section 1.1.3, Scala will look in the companion objects of associated types
for implicits. This behavior is core to the Scala language. Companion and package
objects should be considered part of the API of a class. When investigating how to use
a new library, check the companion and package objects for implicit conversions that
you may use.

113Limiting the scope of implicits
Limit the scope of implicits

Because implicit conflicts require explicit passing of arguments and conversions, it’s best to
avoid them. This can be accomplished by limiting the number of implicits that are in scope and
providing implicits in a way that they can overridden or hidden.

At the beginning of every compiled Scala file there’s an implicit import

scala.Predef._. The Predef object contains many useful transformations, in partic-
ular the implicits used to add methods to the java.lang.String type so that it can
support the methods required by the Scala Language Specification. It also contains
implicits that will convert between Java’s boxed types and Scala’s unified types for
primitives. For example, there’s an implicit conversion in scala.Predef for
java.lang.Integer => scala.Int. When coding in Scala, it’s a good idea to know
the implicits are available in the scala.Predef object.

 The last possible location for implicits are explicit import statements within the
source code. Imported implicits can be difficult to track down. They’re also hard to
document when designing a library. Because these are the only form of implicits that
require an explicit import statement in every source file they’re used, they require the
most amount of care.

5.4.1 Creating implicits for import

When defining a new implicit view or parameter that’s intended to be explicitly
imported, you should ensure the following:

 The implicit view or parameter doesn’t conflict with any other implicit.
 The implicit view or parameter’s name doesn’t conflict with anything in the

scala.Predef object.
 The implicit view or parameter is discoverable, which means that users of the

library or module should be able to find the location of the implicit and deter-
mine its use.

Because Scala uses scope resolution to look up implicits, if there’s a naming conflict
between two implicit definitions it can cause issues. These conflicts are hard to detect
because implicit views and parameters can be defined in any scope and imported. The
scala.Predef object has its contents implicitly imported into every Scala file so that
conflicts become immediately apparent. Let’s look at what happens when there’s a
conflict:

object Time {
case class TimeRange(start : Long, end : Long)
implicit def longWrapper(start : Long) = new {

def to(end : Long) = TimeRange(start, end)
}

}

This defines a Time object that contains a TimeRange class. An implicit conversion on
Long provides a to method. You can use this method to construct time range objects.

Rule
14

114 CHAPTER 5 Using implicits to write expressive code
This implicit conflicts with scala.Predef.longWrapper which, among other things,
provides an implicit view that also has a to method. This to method returns a Range
object that can be used in for expressions. Imagine a scenario where someone is
using this TimeRange implicit to construct time ranges, and then desires the original
implicit defined in Predef for a for expression. One way to solve this is to import the
Predef implicit at a higher precedence level in a lower scope where it’s needed. This
can be confusing, as shown in the following example:

object Test {
println(1L to 10L)
import Time._
println(1L to 10L)
def x() = {

import scala.Predef.longWrapper
println(1L to 10L)
def y() = {

import Time.longWrapper
println(1L to 10L)

}
y()

}
x()

}

The Test object is defined and immediately prints the expression (1L to 10L). The
Time implicits are imported and the expression is again printed. Next, in a lower
scope, the Predef longWrapper is imported and the expression is printed. Finally, in
yet a lower scope, the Time longWrapper is imported and the expression is again
printed. The result of this objects construction is:

scala> Test
NumericRange(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
TimeRange(1,10)
NumericRange(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
TimeRange(1,10)
res0: Test.type = Test$@2d34ab9b

The first NumericRange result is the expression (1L to 10L) before any import state-
ments. The second TimeRange result is after the Time implicit conversion is imported.
The next NumericRange result is from the nested scope in method x() and the final
TimeRange result is the result of the statement in the deeply nested y() method. If the
Test object contained a lot of code such that all these scopes were not visible within a
single window, it would be hard to figure out what the result of the expression (1L to
10L) would return at any particular point. Avoid this kind of confusion. The best way
is to avoid conflicts across implicit views, but sometimes this is difficult. In those cases,
it’s better to pick one conversion to be implicit and use the other explicitly.

 Making implicits discoverable also helps make code readable, as it helps a new
developer determine what is and should be happening in a block of code. Making

Listing 5.10 Scoped precedence

115Limiting the scope of implicits
implicits discoverable is important when working on a team. Within the Scala commu-
nity, it’s common practice to limit importable implicits into one of two places:

 Package objects
 Singleton objects that have the postfix Implicits

Package objects make a great place to store implicits because they’re already on the
implicit scope for types defined within the package. Users need to investigate the
package object for implicits relating to the package. Placing implicit definitions that
need explicit import on the package object means that there’s a greater chance a user
will find the implicits and be aware of them. When providing implicits via package
object, make sure to document if they require explicit imports for usage.

 A better option to documenting explicit import of implicits is to avoid import
statements altogether.

5.4.2 Implicits without the import tax

Implicits work well without requiring any sort of import. Their secondary lookup
rules, which inspect companion objects of associated types, allow the definition of
implicit conversions and values that don’t require explicit import statements for these
implicit values. With some creative definitions, expressive libraries can be defined that
make the full use of implicits without requiring any imports. Let’s look at an example
of this: a library for expressing complex numbers.

Complex numbers are numbers that have a rational and imaginary part to them. The
imaginary part is the part multiplied by the square root of -1, also known as i (or j for
electrical engineers). This is simple to model using a case class in Scala:

package complexmath
case class ComplexNumber(real : Double, imaginary : Double)

The ComplexNumber class defines a real component of type Double called real. The
ComplexNumber class also defines an imaginary component of type Double called
imaginary. This class represents complex numbers using floating point arithmetic for
the component parts. Complex numbers allow addition and multiplication. Let’s take
a look at those methods:

package complexmath

case class ComplexNumber(real : Double, imaginary : Double) {
def *(other : ComplexNumber) =

ComplexNumber((real*other.real) + (imaginary * other.imaginary),
(real*other.imaginary) + (imaginary * other.real))

def +(other : ComplexNumber) =
ComplexNumber(real + other.real, imaginary + other.imaginary)

}

Listing 5.11 ComplexNumber class

116 CHAPTER 5 Using implicits to write expressive code
Addition,+, is defined such that the real/imaginary component of the sum of two
complex numbers is the sum of the real/imaginary components of two numbers. Mul-
tiplication,*, is more complicated and defined as follows:

 The real component of the product of two complex numbers is the product of
their real components added to the product of their imaginary components:
(real*other.real) + (imaginary * other.imaginary).

 The imaginary component of the product of two complex numbers is the sum
of the product of the real component of one number with the imaginary
component of the other number: (real*other.imaginary) + (imaginary *
other.real).

The complex number class now supports addition and multiplication. Let’s look at
the class in action:

scala> ComplexNumber(1,0) * ComplexNumber(0,1)
res0: imath.ComplexNumber = ComplexNumber(0.0,1.0)

scala> ComplexNumber(1,0) + ComplexNumber(0,1)
res1: imath.ComplexNumber = ComplexNumber(1.0,1.0)

The first line multiplies a real component by an imaginary component and the result-
ing complex number is imaginary. The second line adds a real component to an imag-
inary component, resulting in a complex number with both real and imaginary parts.
The operators * and + work as desired, but calling the ComplexNumber factory method
is a bit verbose. This can be simplified using a new notation for complex numbers.

 In mathematics, complex numbers are usually represented as a sum of the real and
imaginary parts. An example representation of ComplexNumber(1.0,1.0) would be
1.0 + 1.0*i, where i is the symbol for the imaginary number, the square root of –1.
This notation would make an ideal syntax for the complex number library. Let’s
define the symbol i to refer to the square root of –1.

package object complexmath {
val i = ComplexNumber(0.0,1.0)

}

This defines the val i on the package object for complexmath. This places the name i
available within the complexmath package and allows it to be imported directly. This
name can be used to construct complex numbers from their component parts. But a
piece is missing, as shown in the following REPL session:

scala> i * 1.0
<console>:9: error: type mismatch;
found : Double(1.0)
required: ComplexNumber

i * 1.0

Attempting to multiply the imaginary number i by a Double fails because the Complex-
Number type only defines multiplication on ComplexNumber types. In mathematics, real
numbers can be multiplied by complex numbers because a real number can be

117Limiting the scope of implicits
considered a complex number that has no imaginary component. This property can
be emulated in Scala using an implicit conversion from Double to ComplexNumber:

package object complexmath {
implicit def realToComplex(r : Double) = new ComplexNumber(r, 0.0)
val i = ComplexNumber(0.0, 1.0)

}

The complexmath package object now contains the definition for the value i as well as
an implicit conversion from Double to ComplexNumber called realToComplex. We’d
like to limit the usage of this implicit conversion so that it’s only used when absolutely
needed. Let’s try using the complexmath package without explicitly importing any
implicit conversions:

scala> import complexmath.i
import complexmath.i

scala> val x = i*5.0 + 1.0
x: complexmath.ComplexNumber = ComplexNumber(1.0,5.0)

The val x is declared using the expression i*5 + 1 and has the type ComplexNumber
with a real component of 1.0 and an imaginary component of 5.0. The important
thing to note here is that only the name i is imported from complexmath. The rest of
the implicit conversions are all trigged from the i object when the compiler first sees
the expression i*5. The value i is known to be a ComplexNumber and defines a *
method that takes another ComplexNumber. The literal 5.0 isn’t of the type Complex-
Number, but Double. The compiler issues an implicit search for the type Double =>
complexmath.ComplexNumber. This search finds the realToComplex conversion on the
package object and applies it. Next the compiler sees the expression (... : Complex-
Number) + 1.0. The compiler finds a + method defined on ComplexNumber that
accepts a ComplexNumber. The value 1.0 is of type Double, not ComplexNumber so the
compiler issues another implicit search for the type Double => ComplexNumber. Again
this is found and applied, resulting in the final value for the expression of Complex-
Number(1.0, 5.0).

 Notice how the value i is used to trigger complex arithmetic. Once a complex
number is seen, the compiler can accurately find implicits to ensure that expressions
are compiled. The syntax is elegant and concise, and no implicit conversions were
needed to make this syntax work. The downside is that the value i must be used to
begin a ComplexNumber expression. Let’s look at what happens when i appears at the
end of the expression:

scala> val x = 1.0 + 5.0*i
<console>:6: error: overloaded method value * with alternatives:

(Double)Double <and>
(Float)Float <and>
(Long)Long <and>
(Int)Int <and>
(Char)Int <and>
(Short)Int <and>

118 CHAPTER 5 Using implicits to write expressive code
(Byte)Int
cannot be applied to (complexmath.ComplexNumber)

val x = 1 + 5*i

The compiler complains about the expression because it can’t find a + method
defined for the type Double that takes a ComplexNumber. This issue could be solved by
importing the implicit view of Double => ComplexNumber into scope:

scala> import complexmath.realToComplex
import complexmath.realToComplex

scala> val x = 1.0 + 5.0*i
x: complexmath.ComplexNumber = ComplexNumber(1.0,5.0)

The realToComplex implicit view is imported first. Now the expression 1 + 5*i evalu-
ates correctly to a ComplexNumber(1.0, 5.0). The downside is that there’s now an
additional implicit view in scope for the type Double. This can cause issues if other
implicit views are defined that provide similar methods to ComplexNumber. Let’s define
a new implicit conversion that adds an imaginary method to Double.

scala> implicit def doubleToReal(x : Double) = new {
| def real = "For Reals(" + x + ")"
| }

doubleToReal: (x: Double)java.lang.Object{def real: java.lang.String}

scala> 5.0 real
<console>:10: error: type mismatch;
found : Double
required: ?{val real: ?}

Note that implicit conversions are not applicable
because they are ambiguous:
both method doubleToReal in object $iw of type

(x: Double)java.lang.Object{def real: java.lang.String}
and method realToComplex in package complexmath of type

(r: Double)complexmath.ComplexNumber
are possible conversion functions from

Double to ?{val real: ?}
5.0 real

The first statement defines an implicit view on the Double type that adds a new type
containing a real method. The real method returns a string version of the Double.
The next statement attempts to call the real method and is unable to do so. The com-
piler complains about finding ambiguous implicit conversions. The issue here is the
ComplexNumber type also defines a method real, and so the implicit conversion from
Double => ComplexNumber is getting in the way of our doubleToReal implicit conver-
sion. This conflict can be avoided by not importing the Double => ComplexNumber
conversion:

scala> import complexmath.i
import complexmath.i

scala> implicit def doubleToReal(x : Double) = new {
| def real = "For Reals(" + x + ")"
| }

119Summary
doubleToReal: (x: Double)java.lang.Object{def real: java.lang.String}

scala> 5.0 real
res0: java.lang.String = For Reals(5.0)

The example starts a new REPL session that only imports complexmath.i. The next
statement redefines the doubleToReal conversion. Now the expression 5.0 real suc-
cessfully compiles because there’s no conflict.

 You can use this idiom to successfully create expressive code without all the dan-
gers of implicit conflicts. The pattern takes the following form:

 Define the core abstractions for a library, such as the ComplexNumber class.
 Define the implicit conversions needed for expressive code in one of the asso-

ciated types of the conversion. The Double => ComplexNumber conversion was
created in the complexmath package object which is associated with the
ComplexNumber type and therefore discovered in any implicit lookup involving
the ComplexNumber type.

 Define an entry point into the library such that implicit conversions are disam-
biguated after the entry point. In the complexmath library, the value i is the
entry point.

 Some situations require an explicit import. In the complexmath library, the
entry point i allows certain types of expressions but not others that intuition
would suggest should be there. For example, (i * 5.0 + 1.0) is accepted and
(1.0 + 5.0*i) is rejected. In this situation, it’s acceptable to provide implicit
conversions that can be imported from a well-known location. In complexmath,
this location is the package object.

Following these guidelines helps create expressive APIs that are also discoverable.

5.5 Summary
In this chapter, we discussed the implicit lookup mechanism of Scala. Scala supports
two types of implicits: implicit value and implicit views. Implicit values can be used to
provide arguments to method calls. Implicit views can be used to convert between
types or to allow method calls against a type to succeed. Both implicit values and
implicit views use the same implicit resolution mechanism. Implicit resolution uses a
two stage process. The first stage looks for implicits that have no prefix in the current
scope. The second stage looks in companion objects of associated types. Implicits pro-
vide a powerful way to enhance existing classes. They can also be used with default
parameters to reduce the noise for method calls and tie behavior to the scope of an
implicit value.

 Most importantly, implicits provide a lot of power and should be used responsibly.
Limiting the scope of implicits and defining them in well-known or easily discoverable
locations is key to success. You can do this by providing unambiguous entry points into
implicit conversions and expressive APIs. Implicits also interact with Scala’s type sys-
tem in interesting ways. We’ll discuss these in chapter 7, but first let’s look at Scala’s
type system.

The type system
The type system is an important component of the Scala language. It enables lots of
rich optimizations and constraints to be used during compilation, which helps run-
time speed and prevents programming errors. The type system allows us to create
all sorts of interesting walls around ourselves, known as types. These walls help pre-
vent us from accidentally writing improper code. This is done through the com-
piler tracking information about variables, methods, and classes. The more you
know about Scala’s type system, the more information you can give the compiler,
and the type walls become less restrictive while still providing the same protection.

 When using a type system, it’s best to think of it as an overprotective father. It
will constantly warn you of problems or prevent you from doing things altogether.
The better you communicate with the type system, the less restrictive it becomes.
But if you attempt to do something deemed inappropriate, the compiler will warn

In this chapter
 Structural types

 Using type constraints

 Type parameters and higher-kinded types

 Existential types
120

121Types
you. The compiler can be a great means of detecting errors if you give it enough
information.

 In his book Imperfect C++, Matthew Wilson uses an analogy of comparing the com-
piler to a batman. This batman isn’t a caped crusader but is instead a good friend who
offers advice and supports the programmer. In this chapter, you’ll learn the basics of
the type system so you can begin to rely on it to catch common programming errors.
The next chapter will cover more advanced type system concepts, as well as utilizing
implicits with the type system.

 This chapter will cover the basics of the type system, touching on definitions and
theory. The next chapter covers more practical applications of the type system and the
best practices to use when defining constraints. Feel free to skip this information if
you’re already comfortable with Scala’s type system.

 Understanding Scala’s type system begins in first understanding what a type is and
how to create it.

6.1 Types
A type is a set of information the compiler knows. This could be anything from “what
class was used to instantiate this variable” to “what collection of methods are known to
exist on this variable.” The user can explicitly provide this information, or the com-
piler can infer it through inspection of other code. When passing or manipulating
variables, this information can be expanded or reduced, depending on how you’ve
written your methods. To begin, let’s look at how types are defined in Scala.

WHAT IS A TYPE? A good example is the String type. This type includes a
method substring, among other methods. If the user called a substring on
a variable of type String the compiler would allow the call, because it knows
that it would succeed at runtime (move above when passing or manipulating
variables).

In Scala, types can be defined in two ways:

 Defining a class, trait or object.
 Directly defining a type using the type keyword.

Defining a class, trait, or object automatically creates an associated type for the class,
trait, or object. This type can be referred to using the same name as the class or trait.
For objects we refer to the type slightly differently due to the potential of classes or
traits having the same name as an object. Let’s look at defining a few types and refer-
ring to them in method arguments:

scala> class ClassName
defined class ClassName

scala> trait TraitName
defined trait TraitName

Listing 6.1 Defining types from class, trait, or object keywords

122 CHAPTER 6 The type system
scala> object ObjectName
defined module ObjectName

scala> def foo(x: ClassName) = x

foo: (x: ClassName)ClassName

scala> def bar(x: TraitName) = x
bar: (x: TraitName)TraitName

scala> def baz(x: ObjectName.type) = x
baz: (x: ObjectName.type)object ObjectName

As seen in the example, class and trait names can be referenced directly when anno-
tating types within Scala. When referring to an object’s type, you need to use the type
member of the object. This syntax isn’t normally seen in Scala, because if you know an
object’s type, you can just as easily access the object directly, rather than ask for it in a
parameter.

6.1.1 Types and paths

Types within Scala are referenced relative to a binding or path. As discussed in chap-
ter 5, a binding is the name used to refer to an entity. This name could be imported
from another scope. A path isn’t a type; it’s a location of sorts where the compiler can
find types. A path could be one of the following:

 An empty path. When a type name is used directly, there’s an implicit empty
path preceding it.

 The path C.this where C refers to a class. Using the this keyword directly in a
class C is shorthand for the full path C.this. This path type is useful for refer-
ring to identifiers defined on outer classes.

 The path p.x where p is a path and x is a stable identifier of x. A stable identi-
fier is an identifier that the compiler knows for certain will always be accessible
from the path p. For example, the path scala.Option refers to the Option sin-
gleton defined on the package scala. It’s always known to exist. The formal def-
inition of stable members are packages, objects, or value definitions introduced
on nonvolatile types. A volatile type is a type where the compiler can’t be
certain its members won’t change. An example would be an abstract type

Simple type

Refers to a trait

Refers to object’s type

Using objects as parameters
Using objects as parameters can greatly help when defining domain specific lan-
guages, as you can embed words as objects that become parameters. For exam-
ple, we could define a simulation DSL as follows:
object Now
object simulate {
 def once(behavior : () => Unit) = new {
 def right(now : Now.type) : Unit = ...
 }
}
simulate once { () => someAction() } right Now

123Types
definition on an abstract class. The type definition could change depending on
the subclass and the compiler doesn’t have enough information to compute a
stable identifier from this volatile type.

 The path C.super or C.super[P] where C refers to a class and P refers to a par-
ent type of class C. Using the super keyword directly is shorthand for C.super.
Use this path to disambiguate between identifiers defined on a class and a par-
ent class.

Types within Scala are referred to via two mechanisms: the hash (#) and dot (.)
operators. The dot operator can be thought of doing the same for types as it does for
members of an object. It refers to a type found on a specific object instance. This is
known as a path-dependent type. When a method is defined using the dot operator
to a particular type, that type is bound to a specific instance of the object. This means
that you can’t use a type from a different object, of the same class, to satisfy any type
constraints made using the dot operator. The best way to think of this is that there’s a
path of specific object instances connected by the dot operator. For a variable to
match your type, it must follow the same object instance path. You can see an exam-
ple of this later.

 The hash operator (#) is a looser restriction than the dot operator. It’s known as a
type projection, which is a means of referring to a nested type without requiring a
path of object instances. This means that you can reference a nested type as if it
weren’t nested. You can see an example usage later.

class Outer {
trait Inner
def y = new Inner {}

def foo(x : this.Inner) = null
def bar(x : X#Inner) = null

}

scala> val x = new Outer
x: Outer = Outer@58804a77

scala> val y = new Outer
y: Outer = Outer@20e1ed5b

scala> x.y
res0: java.lang.Object with x.Inner = Outer$$anon$1@5faecf45

scala> x.foo(x.y)
res1: Null = null

scala> x.foo(y.y)
<console>:9: error: type mismatch;
found : java.lang.Object with y.Inner
required: x.Inner

x.foo(y.y)

scala> x.bar(y.y)
res2: Null = null

Listing 6.2 Path-dependent types and type projection examples

Defines nested
type via trait

Type
displays as
x.Y not X.Y
or X#Y

Same instance
type-check
succeeds

Different
instance
fails

Hash type succeeds

124 CHAPTER 6 The type system
In the preceding example, the Outer class defines a nested trait Inner along with two
methods that use the Inner type. Method foo uses a path dependent type and method
bar uses a type projection. Variables x and y are constructed as two different instances
of the Outer class. The reference to the y member of an instance of Outer displays its
type, java.lang.Object with x.Y when we type this into the REPL. This type displays
with the variable instance of Outer, which is x. This is what we meant earlier by our
path. To access the correct type Y, you must travel the path through the x variable. If
we call the foo method on x using the Inner instance from the same x variable, then
the call is successful. But using the Inner instance from the y variable causes the com-
piler to complain with a type error. The type error explicitly states that it’s expecting
the Inner type to come from the same instance as the method call----the x instance.

 The bar method was defined using a type projection. The instance restriction isn’t
in place as it was for the foo method. When calling the bar method on the x instance
using the inner type from the y instance, the call succeeds. This shows that although
path-dependent types (foo.Bar) require the Bar instances to be generated from the
same foo instance, type projections (Foo#Bar) match any Bar instances generated
from any Foo instances. Both path-dependent and type projection rules apply to all
nested types, including those created using the type keyword.

PATH-DEPENDENT TYPES VERSUS TYPE PROJECTS All path-dependent types are
type projections. A path-dependent type foo.Bar is rewritten as foo.type#Bar
by the compiler. The expression foo.type refers to the singleton type of Foo.
This singleton type can only be satisfied by the entity referenced by the name
foo. The path-dependent type (foo.Bar) requires the Bar instances to be gen-
erated from the same foo instance, while a type projection Foo#Bar would
match any Bar instances generated from any Foo instances, not necessarily the
entity referred to by the name Foo.

In Scala, all type references can be written as projects against named enti-
ties. The type scala.String is shorthand for scala.type#String where the
name scala refers to the package scala and the type String is defined by the
String class on the scala package.

There can be some confusion when using path-dependent types for classes
that have companion objects. For example, if the trait bar.Foo has a compan-
ion object bar.Foo, then the type bar.Foo (bar.type#Foo) would refer to
the trait’s type and the type bar.Foo.type would refer to the companion
object’s type.

6.1.2 The type keyword

Scala also allows types to be constructed using the type keyword. This can be used to
create both concrete and abstract types. Concrete types are created by referring to
existing types, or through structural types which we’ll discuss later. Abstract types are
created as place holders that you can later refine in a subclass. This allows a significant
level of abstraction and type safety within programs. We’ll discuss this more later, but
for now let’s create our own types.

125Types
 The type keyword can only define types within some sort of context, specifically
within a class, trait, or object, or within subcontext of one of these. The syntax of the
type keyword is simple. It consists of the keyword itself, an identifier, and, optionally, a
definition or constraint for the type. If a definition is provided, the type is concrete. If
no constraints or assignments are provided, the type is considered abstract. We’ll get
into type constraints a little later; for now let’s look at the syntax for the type keyword:

type AbstractType
type ConcreteType = SomeFooType
type ConcreteType2 = SomeFooType with SomeBarType

Notice that concrete types can be defined through combining other types. This new
type is referred to as a compound type. The new type is satisfied only if an instance meets
all the requirements of both original types. The compiler will ensure that these types
are compatible before allowing the combination.

 As an analogy, think of the initial two types as a bucket of toys. Each toy in a given
bucket is equivalent to a member on the original type. When you create a compound
type of two types using the with keyword, you’re taking two buckets, from two of your
friends, and placing all their toys into one larger, compound bucket. When you’re
combining the buckets, you notice that one friend may have a cooler version of a par-
ticular toy, such as the latest Ninja Turtle action figure, while the other friend, not as
wealthy, has a ninja turtle that’s bright yellow and has teeth marks. In this case, you
pick the coolest toy and leave it in the bucket. Given a sufficient definition of cool, this
is how type unions work in Scala. For Scala, cool refers to type refinement. A type is
more refined if Scala knows more about it. You may also have situations where you dis-
cover that both friends have broken or incomplete toys. In this case, you would take
pieces from each toy and attempt to construct the full toy. For the most part, this anal-
ogy holds for compound types. It’s a simple combination of all the members from the
original types, with various override rules. Type unions are even easier to understand
when looking at them through the lens of structural types.

6.1.3 Structural types

In Scala, a structural type is created using the type keyword and defining what
method signatures and variable signatures you expect on the desired type. This allows
a developer to define an abstract interface without requiring users to extend some
trait or class to meet this interface. One common usage of structural typing is in the
use of resource management code.

Avoid structural types

Structural types are usually implemented with reflection. Reflection isn’t always available on
every platform and it can lead to performance issues. It’s best to provide named interfaces
rather than use structural types in the general case. However for nonperformance sensitive situ-
ations, they can be very useful.

Rule
15

126 CHAPTER 6 The type system
Some of the most annoying bugs, in my experience, are resource-related. We must
always ensure that something acquired is released, and something created is eventu-
ally destroyed. As such, there’s a lot of boilerplate code common when using
resources. I would love to avoid boilerplate code in Scala, so let’s see if structural types
can come to the rescue. Let’s define a simple function that will ensure that a resource
is closed after some block of code is executed. There’s no formal definition for what a
resource is, so we’ll try to define it as anything that has a close method.

object Resources {
type Resource = {

def close() : Unit
}

def closeResource(r : Resource) = r.close()
}

scala> Resources.close(System.in)
Exception in thread "main" java.io.IOException:

Stream is Closed

The first thing we do is define a structural type for resources. We define a type of the
name Resource and assign it to an anonymous, or structural, resource definition. The
resource definition is a block that encloses a bunch of abstract methods or members.
In this case, we define the Resource type to have one member, named close. Finally,
in the closeResource method, you can see that we can accept a method parameter
using the structural type and call the close member we defined in definition. Then
we attempt to use our method against System.in, which has a close method. You can
tell the call succeeds by the exception that’s thrown. In general, you shouldn’t close
the master input or output streams when running inside the interpreter! But it does
show that structural types have the nice feature of working against any object. This is
nice for dealing with libraries or classes we don’t directly control.

 Structural typing also works within nested types and with nested types. We can nest
types within the anonymous structural block. Let’s try implementing a simple nested
abstract type and see if we can create a method that uses this type.

scala> type T = {
| type X = Int
| def x : X

| type Y
| def y : Y

| }
defined type alias T
scala> object Foo {

| type X = Int
| def x : X = 5
| type Y = String
| def y : Y = "Hello, World!"

Listing 6.3 Resource handling utility

Listing 6.4 Nested structural typing

Define type

Require close method

Using method on type

System.in closed!

Nested type alias

Nested abstract type

Concrete type

127Types
| }
defined module Foo

scala> def test(t : T) = t.x
<console>:7: error: illegal dependent method type

def test(t : T) = t.x
^

We start by declaring a structural type T. This type contains two nested types: X and Y. X
is defined to be equivalent to Int, while Y is left abstract. We then implement a real
object Foo that meets this structural type. Now we try to create a test method that
should return the result of calling the x method on an instance of type T. We expect
this to return an integer, as the x method on T returns the X type, and this is aliased to
Int. But the definition of the call fails. Why? Scala doesn’t allow a method to be
defined such that the types used are path-dependent on other arguments to the
method. In this case, the return value of test would be dependent on the argument to
test. We can prove this by writing out the expected return type explicitly:

scala> def test(t : T) : t.X = t.x
<console>:7: error: illegal dependent

Therefore, the compiler inferred the path-dependent type here. If instead of using a
path-dependent type, we wanted the type project against X we can modify our code. The
compiler won’t automatically infer this for us, because the inference engine tries to find
the most specific type it can. In this case, t.X is inferred, which is illegal. T#X, on the
other hand, is valid in this context, and it’s also known to be an Int by the compiler.
Let’s see what signature the compiler creates for something returning the type T#X.

scala> def test(t : T) : T#X = t.x
test: (t: T)Int

scala> test(Foo)
res2: Int = 5

As you can see, the method is defined to return an Int, and works correctly against
our Foo object. What does this code look like if we have it use the abstract type Y
instead? The compiler can make no assumptions about the type Y, so it only allows you
to treat it as the absolute minimum type, or Any. Let’s create a method that returns a
T#Y type to see what it looks like:

scala> def test2(t :T) : T#Y = t.y
test2: (t: T)AnyRef{

type X = Int;
def x: this.X;
type Y;
def y: this.Y}#Y

The return type of the test2 method is AnyRef{type X = Int; def x: this.X; typeY;
def y: this.Y}#Y. The rather verbose signature shows you how far the compiler goes
into enforcing the type of the return. Because T#Y isn’t easily equivalent to another
type, the compiler must drag all the information about T around with the type T#Y.
Because a type projection isn’t tied to a particular instance, the compiler can be sure

Unstable type

128 CHAPTER 6 The type system
that two type projections are compatible. As a quick aside, notice the types of the x
and y methods.

 The x and y methods have return values that are path-dependent on this. When we
defined the x method, we specified only a type of X, and yet the compiler turned the
type into this.X. Because the X type is defined within the structural type T, you can
refer to it via the identifier X; it refers to the path-dependent type this.X.
Understanding when you’ve created a path-dependent type and when it’s acceptable
to refer to these types is important.

 When you reference one type defined inside another, you have a path-dependent
type. Using a path-dependent type inside a block of code is perfectly acceptable. The
compiler can ensure that the nested types refer to the exact object instance through
examining the code. But to escape a path-dependent type outside this original scope,
the compiler needs some way of ensuring the path is the same instance. This can
sometimes boil down to using objects and vals instead of classes and defs.

object Foo {
type T = {

type U
def bar : U

}
val baz : T = new {

type U = String
def bar : U = "Hello World!"

}
}

scala> def test(f : Foo.baz.U) = f
test: (f: Foo.baz.U)Foo.baz.U

scala> test(Foo.baz.bar)
res0: Foo.baz.U = Hello World!

First we set up the nested types T and U. These are nested on the singleton Foo. We then
create an instance of type Foo.T labeled baz. Being a val member, the compiler knows
that this instance is unchanging throughout the lifetime of the program and is there-
fore stable. Finally, we create a method that takes the type Foo.baz.U as an argument.
We accept this because the path-dependent type U is defined on a path known to be sta-
ble:Foo.baz. When running into path-dependent type issues, we can fix things by find-
ing a way for the compiler to know that a type is stable---that the type will also be well
defined. This can usually be accomplished by utilizing some stable reference path.

 Let’s look at a more in-depth example of path-dependent types by designing an
Observable trait that you can use as a generic mechanism to watch for changes or
notify others of a change. The Observable trait should provide two public methods:
one that allows observers to subscribe and another that unsubscribes an observer.
Observers should be able to subscribe to an Observable instance by providing a
simple function callback. The subscription method should return a handle so that

Listing 6.5 Path-dependent and structural types

Nested type
definitions

Stable reference
to T instance

Argument
type is stable

129Types
an observer can unsubscribe from change events on the observer at a future date.
With path-dependent types, we can enforce that this handle is valid only with the orig-
inating Observable instance. Let’s look at the public interface on Observable:

trait Observable {
type Handle
def observe(callback: this.type => Unit): Handle = {

val handle = createHandle(callback)
callbacks += (handle -> callback)
handle

}

def unobserve(handle: Handle) : Unit = {
callbacks -= handle

}

protected def createHandle(callback: this.type => Unit): Handle

protected def notifyListeners() : Unit =
for(callback <- callbacks.values) callback(this)

}

The first thing to notice is the abstract Handle type. We’ll use this type to refer to reg-
istered observer callback functions. The observe method is defined to take a function
of type this.type => Unit and return a handle. Let’s look at the callback type. The
callback is a function that takes something of this.type and returns a Unit. The type
this.type is a mechanism in Scala to refer to the type of the current object. This is
similar to calling Foo.type for a Scala object with one major difference. Unlike
directly referencing the current type of the object, this.type changes with inheri-
tance. In a later example, we’ll show how a subclass of Observable will require call-
backs to take their specific type as their parameter.

 The unobserve function takes in a handle that was previously assigned to a callback
and removes that observer. This handle type is path-dependent and must come from
the current object. This means even if the same callback is registered to different
Observable instances, their handles can’t be interchanged.

 The next thing to notice is that we use a function here that isn’t yet defined:
createHandle. This method should be able to construct handles to callbacks when
they’re registered in an observe method. I’ve purposely left this abstract so that
implementers of the observable pattern can determine their own mechanism for dif-
ferentiating callbacks with handles. Let’s try to implement a default implementation
for handles.

trait DefaultHandles extends Observable {
type Handle = (this.type => Unit)
protected def createHandle(callback: this.type => Unit): Handle =

callback
}

The DefaultHandles trait extends Observable and provides a simple implementation
of Handle: It defines the Handle type to be the same type as the callbacks. This means
that whatever equality and hashing are defined on the callback objects themselves will

130 CHAPTER 6 The type system
be used in the Observable trait to store and look up observers. In the case of Scala’s
Function object equality and hash code are instance-based, as is the default for any
user-defined object. Now that there’s an implementation for the handles, let’s define
an observable object.

 Let’s create a IntHolder class that will hold an integer. The IntHolder will notify
observers every time its internal value changes. The IntHolder class should also allow
a mechanism to get the currently held integer and set the integer:

class IntStore(private var value: Int)
extends Observable with DefaultHandles {

def get : Int = value
def set(newValue : Int) : Unit = {

value = newValue
notifyListeners()

}

override def toString : String = "IntStore(" + value + ")"
}

The IntStore class extends the Observable trait from the previous lines of code and
mixes in the DefaultHandles implementation for handles. The get method returns
the value stored in the IntStore. The set method assigns the new value and then
notifies observers of the change. The toString method has also been overridden to
provide a nicer printed form. Let’s take a look at this class in action:

scala> val x = new IntStore(5)
x: IntStore = IntStore(5)

scala> val handle = x.observe(println)
handle: (x.type) => Unit = <function1>

scala> x.set(2)
IntStore(2)

scala> x.unobserve(handle)

scala> x.set(4)

The x variable is constructed as an IntStore with an initial value of 5. Next an
observer is registered that will print the IntStore to the console on changes. The han-
dle to this observer is saved in the handleval. Notice that the type of the handle uses a
path-dependent x.type. Next, the value stored in x is changed to 2. The observer is
notified and IntStore(2) is printed on the console. Next the handle variable is used
to remove the observer. Now, when the value stored in x is changed to 4, the new value
isn’t printed to the console. The observer functionality is working as desired.

 What happens if we construct multiple IntStore instances and attempt to register
the same callback to both? If it’s the same callback, using the DefaultHandles trait
means that the two handles should be equal. Let’s try to do this in the REPL:

scala> val x = new IntStore(5)
x: IntStore = IntStore(5)

scala> val y = new IntStore(2)
y: IntStore[Int] = IntStore(2)

131Type constraints
scala> y.unobserve(handle1)
<console>:10: error: type mismatch;
found : (x.type) => Unit
required: (y.type) => Unit

y.unobserve(handle1)
^

First we create separate instances, x and y of IntStore. Next we need to create a call-
back we can use on both observers. Let’s use the same println method as before:

scala> val callback = println(_ : Any)
callback: (Any) => Unit = <function1>

Now let’s register the callback on both the x and y variable instances and check to see
if the handles are equal:

scala> val handle1 = x.observe(callback)
handle1: (x.type) => Unit = <function1>

scala> val handle2 = y.observe(callback)
handle2: (y.type) => Unit = <function1>

scala> handle1 == handle2
res3: Boolean = true

The result is that the handle objects are exactly the same. Note that the == method
does a runtime check of equality and works on any two types. This means that theoret-
ically the handle from y could be used to remove the observer on x. Let’s look at what
happens when attempting this on the REPL:

scala> y.unobserve(handle1)
<console>:10: error: type mismatch;
found : (x.type) => Unit
required: (y.type) => Unit

y.unobserve(handle1)
^

The compiler won’t allow this usage. The path-dependent typing restricts our handles
from being generated from the same method. Even though the handles are equal at
runtime, the type system has prevented us from using the wrong handle to unregister
an observer. This is important because the type of the Handle could change in the
future. If we implemented the Handle type differently in the future, then code that
relied on handles being interchangeable between IntStores would be broken. Luck-
ily the compiler enforces the correct behavior here.

 Path-dependent types have other uses, but this should give you a good idea of their
use and utility. What if, in the Observable example, we had wanted to include some
kind of restriction on the Handle type? This is where we can use type constraints.

6.2 Type constraints
Type constraints are rules associated with a type that must be met for a variable to
match the given type. A type can be defined with multiple constraints at once. Each of
these constraints must be satisfied when the compiler is type checking expressions.
Type constraints take the following two forms:

132 CHAPTER 6 The type system
 Lower bounds (subtype restrictions)
 Upper bounds (supertype restrictions, also known as Conformance relations)

Lower bound restrictions can be thought of as super-restrictions. This is where the
type selected must be equal to or a supertype of the lower bound restriction. Let’s
look at an example using Scala’s collection hierarchy.

class A {
type B >: List[Int]
def foo(a : B) = a

}

scala> val x = new A { type B = Traversable[Int] }
x: A{type B = Traversable[Int]} = $anon$1@650b5efb

scala> x.foo(Set(1))
res8: x.B = Set(1)

scala> val y = new A { type B = Set[Int] }
<console>:6: error: overriding type B in class A with

bounds >: List[Int] <: Any;
type B has incompatible type

val y = new A { type B = Set[Int] }

The first thing we do is define type B inside class A to have a lower bound of
List[Int]. Then we instantiate a variable x as an anonymous subclass of A, such that
type B is stabilized at Traversable[Int]. This doesn’t issue any warning, because
Traversable is a parent class of List. The interesting piece here is that we can call
our foo method with a Set class. A Set isn’t a supertype of the List class; it’s a sub-
type of Traversable! Just because the type restriction on type B requires it to be a
superclass of List doesn’t mean that arguments matching against type B need to be
within List’s hierarchy. They only need to match against the concrete form of type B,
which is Traversable. What we can’t do is create a subclass of A where the type B is
assigned as a Set[Int]; a Set could be polymorphically referred to as Iterable or
Traversable.

 Because Scala is a polymorphic object-oriented language, it’s important to under-
stand the difference between the compile-time type constraints and runtime type con-
straints. In this instance, we are enforcing that type B’s compile-time type information
must come from a superclass of List or List itself. Polymorphism means that an
object of class Set, which subclasses Traversable, can be used when the compile-time
type requires a Traversable. When doing so, we aren’t throwing away any behavior of
the object; we’re merely dropping some of our compile-time knowledge of the type.
It’s important to remember this when using with lower bound constraints.

 Upper bound restrictions are far more common in Scala. An upper bound restric-
tion states that any type selected must be equal to or a lower than the upper bound
type. In the case of a class or trait, this means that any selected type must subclass from
the class or trait upper bound. In the case of structural types, it means that whatever

Listing 6.6 Lower bounds on types

Define lower
bound restriction

Refine type A

Set is of type
traversable

Set violates
type constraint

133Type constraints
type is selected must meet the structural type, but can have more information. Let’s
define an upper bound restriction.

class A {
type B <: Traversable[Int]
def count(b : B) = b.foldLeft(0)(_+_)

}

scala> val x = new A { type B = List[Int] }
x: A{type B = List[Int]} = $anon$1@371c1463

scala> x.count(List(1,2))
res11: Int = 3

scala> x.count(Set(1,2))
<console>:8: error: type mismatch;
found : scala.collection.immutable.Set[Int]
required: x.B

x.count(Set(1,2))
^

scala> val y = new A { type B = Set[Int] }
y: A{type B = Set[Int]} = $anon$1@402fbd59

scala> y.count(Set(1,2))
res13: Int = 3

First we create a type B that has a lower bound of Traversable[Int]. When we use an
unrefined type B, we can use any method defined in Traversable[Int] because we
know that any type satisfying B’s type restriction needs to extend Traversable[Int].
Later we can refine type B to be a List[Int], and everything works great. Once
refined, we can’t pass other subtypes of Traversable[Int], such as a Set[Int]. The
parameters to the count method must satisfy the refined type B. We can also create
another refinement of type B that’s a Set[Int], and this will accept Set[Int] argu-
ments. As you can see, upper bounds work the opposite way from lower bounds.
Another nice aspect of upper bounds is that you can utilize methods on the upper
bound without knowing the full type refinement.

MAXIMUM UPPER AND LOWER BOUNDS In Scala, all types have a maximum
upper bound of Any and lower bound of Nothing. If the compiler ever warns
about incompatible type signatures that include Nothing or Any, without your
code referring to them, it’s a good bet that you have an unbounded type
somewhere the compiler is trying to infer.

An interesting side note about Scala is that all types have an upper bound of Any and a
lower bound of Nothing. This is because all types in Scala descend from Any, while all
types are extended by Nothing. If the compiler ever warns about incompatible type
signatures that include Nothing or Any, without you having specified them, it’s a good
bet that you have an unbounded type somewhere the compiler is trying to infer. The

Listing 6.7 Upper bounds on types

Upper bound
definition

Using methods
from upper bound

Refine type
using lower type

Not assignable
to refined type

Works as a
type refinement

134 CHAPTER 6 The type system
usual cause of this is trying to combine incompatible types, or you have a missing
upper or lower bound on a generic type.

AVOID USELESS <: CONSTRAINTS

In Scala, expressions are polymorphic. If a method accepts an argument of type Any, it can be
passed an expression of type Int. When enforcing type constraints on method parameters it
may not be necessary to use a type constraint but instead accept the subtype. For example:

def sum[T <: List[Int]](t: T) = t.foldLeft(0)(_+_)

The sum method has a redundant type constraint. Because the type T doesn’t occur in the
resulting value, the method could be written as

def sum(t: List[Int]) = t.foldLeft(0)(_+_)

without any changes to the meaning.

Bounded types are immensely useful in Scala. They help us define generic methods
that can retain whatever specialized types they’re called with. They help design
generic classes that can interoperate with all sorts of code. The standard collection
library uses them extensively to enable all sorts of powerful combinations of methods.
The collections, and other higher-kinded types, benefit greatly from using both upper
and lower bounds in code. To understand how and when to use them, we must first
delve into type parameters and higher-kinded types.

6.3 Type parameters and higher-kinded types
Type parameters and higher-kinded types are the bread and butter of the type system.
A type parameter is a type definition that’s taken in as a parameter when calling a method,
constructing a type, or extending a type. Higher-kinded types are those that accept other
types and construct a new type. Just as parameters are key to constructing and combining
methods, type parameters are the key to constructing and combining types.

6.3.1 Type parameter constraints

Type parameters are defined within brackets ([])
before any normal parameters are defined. Normal
parameters can then use the types named as param-
eters. Let’s look at a simple method defined using
type parameters in figure 6.1:

 This is the definition of a randomElement
method. The method takes a type parameter A. This type parameter is then used in
the method parameter list. The randomElement method takes a List of some ele-
ment type, named A, and returns an instance of that element type. When calling the
method, we can specify the type parameter as we wish:

scala> randomElement[Int](List(1,2,3))
res0: Int = 3

scala> randomElement[Int](List("1", "2", "3"))
<console>:7: error: type mismatch;
found : java.lang.String("1")

Rule
16

Figure 6.1 Defining type parameters
on a method

135Type parameters and higher-kinded types
required: Int
randomElement[Int](List("1", "2", "3"))

^

scala> randomElement[String](List("1", "2", "3"))
res1: String = 2

You can see that when we specify Int for the type parameter, the method will accept
lists of integers but not lists of strings. But we can specify String as a type parameter
and allow lists of strings but not lists of integers. In the case of methods, we can even
leave off the type parameter, and the compiler will infer one for us if it can:

scala> randomElement[String](List("1", "2", "3"))
res1: String = 2

This inference is pretty powerful. If there are several arguments to a function, the
compiler will attempt to infer a type parameter that matches all the arguments. Scala’s
List.apply is a parameterized method. Let’s look at this type inference in action.

scala> List(1.0, "String")
res7: List[Any] = List(1.0, String)

scala> List("String", Seq(1))
res8: List[java.lang.Object] = List(String, List(1))

When passed an integer and a string, the parameter to List is inferred as Any. This is
the lowest possible type that both parameters will conform to. Any also happens to be
the top type, the one that all values conform to. If we choose different parameters, say
a String and a Seq, the compiler infers a lower type, that of java.lang .Object, oth-
erwise known in Scala as AnyRef.

 The compiler’s goal, and yours as well, is to preserve as much type information as
possible. This is easier to accomplish using type constraints on type parameters.

 It’s possible to specify constraints in line with type parameters. These constraints
ensure that any type used to satisfy the parameter needs to abide by the constraints.
Specifying lower bound constraints also allows you to utilize members defined on the
lower bound. Upper bound constraints don’t imply what members might be on a type
but are useful when combining several parameterized types.

 Type parameters are like method parameters except that they parameterize things
at compilation time. It’s important to remember that all type programming is
enforced during compilation and all type information must be known at compile time
to be useful.

 Type parameters also make possible the creation of higher-kinded types.

6.3.2 Higher-kinded types

Higher-kinded types are those that use other types to construct a new type. This is sim-
ilar to how higher-order functions are those that take other functions as parameters. A
higher-kinded type can have one or more other types as parameters. In Scala, you can
do this using the type keyword. Here’s an example of a higher-kinded type.

136 CHAPTER 6 The type system
type Callback[T] = Function1[T, Unit]

The type definition declares a higher-kinded type called Callback. The Callback type
takes a type parameter and constructs a new Function1 type. The type Callback isn’t
a complete type until it’s parameterized.

TYPE CONSTRUCTORS Higher-kinded types are also called type constructors
because they’re used to construct types. Higher-kinded types can be used to
make a complex type---for example, M[N[T, X], Y] look like a simpler type,
such as F[X].

The Callback type can be used to simplify the signature for functions that take a sin-
gle parameter and return no value. Let’s look at an example:

scala> val x : Callback[Int] = y => println(y + 2)
x: (Int) => Unit = <function1>

scala> x(1)
3

This first statement constructs a Callback[Int] named x that takes an integer, adds it
with the value 2 and prints the result. The type Callback[Int] is converted by the
compiler into the full type (Int) => Unit. The next statement calls the function
defined by x with the value 1.

 Higher-kinded types are used to simplify type signatures for complex types. They
can also be used to make complex types fit the simpler type signature on a method.
Here’s an example:

scala> def foo[M[_]](f : M[Int]) = f
foo: [M[_]](f: M[Int])M[Int]

scala> foo[Callback](x)
res4: Function1[Int, Unit] = <function1>

The foo method is defined as taking a type M that’s parameterized by an unknown
type. The _ keyword is used as a placeholder for an unknown, existential type. Existen-
tial types are covered in more detail in section 6.5. The next statement calls the
method foo with a type parameter of Callback and an argument of x, defined in the
earlier example. This would not work with the Function1 type directly.

scala> foo[Function1](x)
<console>:9: error: Function1 takes two type parameters, expected: one

foo[Function1](x)

The foo method can’t be called directly with the Function1 type because Function1
takes two type parameters and the foo method expects a type with only one type
parameter.

 Higher-kinded types are used to simplify type definitions or to make complex types
conform to simple type parameters. Variance is an additional complication to parame-
terized types and higher-kinded types.

137Variance
6.4 Variance
Variance refers to the ability of type parameters to change or vary on higher-kinded
types, like T[A]. Variance is a way of declaring how type parameters can be changed to
create conformant types. A higher-kinded type T[A] is said to conform to T[B] if you
can assign T[B] to T[A] without causing any errors. The rules of variance govern the
type conformance of types with parameters. Variance takes three forms: invariance,
covariance, and contravariance.

Mutable classes must be invariant

It’s impossible, and unsafe, to define them otherwise. If we want to make use of covariance or con-
travariance, stick to immutable classes, or expose your mutable class in an immutable interface.

Invariance refers to the unchanging nature of a higher-kinded type parameter. A
higher-kinded type that’s invariant implies that for any types T, A, and B if T[A] con-
forms to T[B] then A must be the equivalent type of B. You can’t change the type
parameter of T. Invariance is the default for any higher-kinded type parameter.

Covariance refers to the ability to substitute a type parameter with its parent type:
For any types T, A and B if T[A] conforms to T[B] then A <: B.
Figure 6.2 demonstrates a covariant relationship. The arrows
in the diagram represent type conformance. The Mammal and
Cat relationship is such that the Cat type conforms to the
Mammal type; if a method requires something of type Mammal,
a value of type Cat could be used. If a type T were defined as
covariant, then the type T[Cat] would conform to the type
T[Mammal]: A method requiring a T[Mammal] would accept a
value of type T[Cat].

Type lambdas
Scala supports a limited version of type lambdas. A type lambda, similar to a func-
tion lambda, is a notation where you can define a higher-kinded type directly within
the parameter of a function. For the foo method, we can use a type lambda rather
than define the Callback type. Here’s an example:
scala> foo[({type X[Y] = Function1[Y, Unit]})#X]((x : Int) => println(x))
res7: (Int) => Unit = <function1>

The type lambda is the expression ({type X[Y] = Function1[Y, Unit]})#X. The
type X is defined inside parentheses and braces. This constructs an anonymous
path containing the type X. It then uses type projection (#) to access the type from
the anonymous path. The type X remains hidden behind the anonymous path, and
the expression is a valid type parameter, as it refers to a type.

Type lambdas were discovered and popularized by Jason Zaugg, one of the core
contributors to the Scalaz framework.

Rule
17

Mammal T[Mammal]

Cat T[Cat]

Figure 6.2 Covariance

138 CHAPTER 6 The type system
 Notice that the direction of conformance arrows is the same. The conformance of
T is the same (co-) as the conformance of its type parameters.

 The easiest example of this is a list, which is higher-kinded on the type of its ele-
ments. You could have a list of strings or a list of integers. Because Any is a supertype of
String, we can use a list of strings where a list of Any is expected.

 Creating a Covariant parameter is as easy as adding a + symbol before the type
parameter. Let’s create a covariant type in the REPL and try out the type conformance
it creates.

scala> class T[+A] {}
defined class T

scala> val x = new T[AnyRef]
x: T[AnyRef] = T@11e55d39

scala> val y : T[Any] = x
y: T[Any] = T@11e55d39

scala> val z : T[String] = x
<console>:7: error: type mismatch;
found : T[AnyRef]
required: T[String]

val z : T[String] = x

First we construct a higher-kinded class T that takes a covariant parameter A. Next we
create a new value with the type parameter bound to AnyRef. Now, if we try to assign
our T[AnyRef] to a variable of type T[Any], the call succeeds. This is because Any is
the parent type of AnyRef, and our covariant constraint is satisfied. But when we
attempt to assign a value of type T[AnyRef] to a variable of type T[String], the assign-
ment will fail.

 The compiler has checks in place to ensure that a covariant annotation doesn’t vio-
late a few key rules. In particular, the compiler tracks the usage of a higher-kinded
type and ensures that if it’s covariant, that it occurs only in covariant positions in the
compiler. The same is true for contravariance. We’ll cover the rules for determining
variance positions soon, but for now, we’ll look at what happens if we violate one of
our variance positions:

scala> trait T[+A] {
| def thisWillNotWork(a : A) = a
| }

<console>:6: error: covariant type A occurs in
contravariant position in type A of value a

def thisWillNotWork(a : A) = a

As you can see, the compiler gives us a nice message that we’ve used our type parame-
ter A in a position that’s contravariant, when the type parameter is covariant. We’ll
cover the rules shortly, but for now it’s important to know that full knowledge of the
rules isn’t needed to utilize variance correctly if you have a basic understanding of the

Listing 6.8 Covariance example

Type-parameter
A is covariant

Upcast AnyRef
to Any

Downcast
AnyRef to
String

139Variance
concept. You can reason in your head whether a type should
be covariant or contravariant and then let the compiler tell
you when you’ve misplaced your types. You can use tricks to
avoid placing types in contravariant positions when you
require covariance, but first let’s look at contravariance.

 Contravariance is the opposite of covariance. For any types
T, A and B, if T[A] conforms to T[B] then A >: B. Figure 6.3
shows the same conformance relationship between Mammal
and Cat types. If the type T is defined as contravariant, then a method expecting a type
of T[Cat] would accept a value of type T[Mammal]. Notice that the direction of the con-
formance relationship is opposite (contra-) that of the Mammal--Cat relationship.

 Contravariance can be harder to reason through but makes sense in the context of
a Function object. A Function object is covariant on the return type and contravari-
ant on the argument type. Intuitively this makes sense. You can take the return value
of a function and cast it to any supertype of that return value. As for arguments, you
can pass any subtype of the argument type. You should be able to take a function of
Any => String and cast it to a String => Any but not vice versa. Let’s look at perform-
ing this cast using raw methods:

scala> def foo(x : Any) : String = "Hello, I received a " + x
foo: (x: Any)String

scala> def bar(x : String) : Any = foo(x)
bar: (x: String)Any

scala> bar("test")
res0: Any = Hello, I received a test

scala> foo("test")
res1: String = Hello, I received a test

First we create a foo method of type Any => String. Next we define bar a method of
type String => Any. As you can see, we can implement bar in terms of foo, and both
calls to bar and foo with strings return the same value, as the functions are imple-
mented the same. They do require differing types. We can’t pass an Int variable to the
bar method, as it will fail to compile, but we can pass that Int variable to the foo
method. Now if we want to construct an object that represents a function, we’d like
this same behavior---that is, we’d like to be able to cast the function object as flexibly as
possible. Let’s begin by defining our function object.

scala> trait Function[Arg,Return]
defined trait Function

scala> val x = new Function[Any,String] {}
x: java.lang.Object with Function[Any,String] = $anon$1@39fba2af

Listing 6.9 Implicit variance of methods

Listing 6.10 First attempt at defining a function object

Mammal T[Mammal]

Cat T[Cat]

Figure 6.3 Contravariance

140 CHAPTER 6 The type system
scala> val y : Function[String,Any] = x
<console>:7: error: type mismatch;
found : java.lang.Object with Function[Any,String]
required: Function[String,Any]

val y : Function[String,Any] = x
^

scala> val y : Function[Any,Any] = x
<console>:7: error: type mismatch;
found : java.lang.Object with Function[Any,String]
required: Function[Any,Any]

val y : Function[Any,Any] = x

First we create our Function trait. The first type parameter is for the argument to the
function and the second is for the return type. We then construct a new value with an
argument of type Any and a return value of type String. If we attempt to cast this to a
Function[String,Any] (a function that takes a String and returns an Any), the call
fails. This happens because we haven’t defined any variance annotations. Let’s first
declare our return value as covariant. Return values are actual values, and we know
that we can always take a variable and cast it to a supertype.

scala> trait Function[Arg,+Return]
defined trait Function

scala> val x = new Function[Any,String] {}
x: java.lang.Object with Function[Any,String] = $anon$1@3c56b64c

scala> val y : Function[String,Any] = x
<console>:7: error: type mismatch;
found : java.lang.Object with Function[Any,String]
required: Function[String,Any]

val y : Function[String,Any] = x
^

scala> val y : Function[Any,Any] = x
y: Function[Any,Any] = $anon$1@3c56b64c

Once again, we declare our Function trait; but this time we declare the return value
type covariant. We construct a new value of the Function trait, and again attempt to
cast it. The cast still fails due to type mismatch. But we’re able to cast our return value
type from String to Any. Let’s use contravariance on the argument value:

scala> trait Function[-Arg,+Return]
defined trait Function

scala> val x = new Function[Any,String] {}
x: java.lang.Object with Function[Any,String] = $anon$1@69adff28

scala> val y : Function[String,Any] = x
y: Function[String,Any] = $anon$1@69adff28

Listing 6.11 Function object with only covariance

Listing 6.12 Function with covariance and contravariance

141Variance
Once again we construct a Function trait, only this time the argument type is contra-
variant and the return type is covariant. We instantiate an instance of the trait and
attempt our cast, which succeeds! Let’s extend our trait to include a real implementa-
tion and ensure things work appropriately:

scala> trait Function[-Arg,+Return] {
| def apply(arg : Arg) : Return
| }

defined trait Function

scala> val foo = new Function[Any,String] {
| override def apply(arg : Any) : String =
| "Hello, I received a " + arg
| }

foo: java.lang.Object with Function[Any,String] = $anon$1@38f0b51d

scala> val bar : Function[String,Any] = foo
bar: Function[String,Any] = $anon$1@38f0b51d

scala> bar("test")
res2: Any = Hello, I received a test

We create our Function trait, but this time it has an abstract apply method that will
hold the logic of the function object. Now we construct a new function object foo with
the same logic as the foo method we had earlier. We attempt to construct a bar
Function object using the foo object directly. Notice that no new object is created;
we’re merely assigning one type to another similar to polymorphically assigning a
value of a child class to a reference of the parent class. Now we can call our bar func-
tion and receive the expected output.

 Congratulations! You’re now an initiate of variance annotations. But there are
some situations you may encounter when you need to tweak your code for appropri-
ate variance annotations.

6.4.1 Advanced variance annotations

When designing a higher-kinded type, at some point you’ll you wish it to have a partic-
ular variance, and the compiler won’t let you do this. When the compiler restricts vari-
ance but you know it shouldn’t, there’s usually a simple transform that can fix your
code to compile and keep the type system happy. The easiest example of this is in the
collections library.

 The Scala collections library provides a mechanism for combining two collections
types. It does this through a method called ++. In the actual collections library, the
method signature is pretty complicated due to the library’s advanced features, so for
this example we’ll use a simplified version of the ++ signature. Let’s attempt to define
an abstract List type that can be combined with other lists. We’d like to be able to
convert, for example, a list of strings to a list of Any, so we’re going to annotate the
ItemType parameter as covariant. We’ll define our ++ method such that it takes

Listing 6.13 Complete function example

142 CHAPTER 6 The type system
another list of the same ItemType and returns a new list that’s the combination of the
two lists. Let’s take a look at what happens:

scala> trait List[+ItemType] {
| def ++(other : List[ItemType]): List[ItemType]
| }

<console>:6: error: covariant type ItemType occurs in
contravariant position in type List[ItemType] of value other

def ++(other : List[ItemType]): List[ItemType]

The compiler is complaining that we’re using the ItemType parameter in a contravari-
ant position! This statement is true, but we know that it should be safe to combine two
lists of the same type and still be able to cast them up the ItemType hierarchy. Is the
compiler too restrictive when it comes to variance? Perhaps, but let’s see if we can
work around this.

 We’re going to make the ++ method take a type parameter. We can use this new
type parameter in the argument to avoid having ItemType in a contravariant position.
The new type parameter should capture the ItemType of the other List. Let’s naively
use another type parameter

scala> trait List[+ItemType] {
| def ++[OtherItemType](other: List[OtherItemType]): List[ItemType]
| }

defined trait List

scala> class EmptyList[ItemType] extends List[ItemType] {
| def ++[OtherItemType](other: List[OtherItemType]) = other
| }

<console>:7: error: type mismatch;
found : List[OtherItemType]
required: List[ItemType]

def ++[OtherItemType](other: List[OtherItemType]) = other

Adding the OtherItemType lets the creation of the List trait succeed. Great! Let’s see
if we can use it. We implement an EmptyList class that’s an efficient implementation
of a List of no elements. The combination method,++, should return whatever is
passed to it, because it’s empty. When we define the method, we get a type mismatch.
The issue is that OtherItemType and ItemType aren’t compatible types! We’ve
enforced nothing about OtherItemType in our ++ method and therefore made it
impossible to implement. Well, we know that we need to enforce some kind of type
constraint on OtherItemType and that we’re combining two lists. We’d like Other-
ItemType to be some type that combines well with our list. Because ItemType is covari-
ant, we know that we can cast our current list up the ItemType hierarchy. As such, let’s
use ItemType as the upper bound constraint on OtherItemType. We’ll also need to
change the return type of the ++ method to return the OtherItemType, as OtherItem-
Type may be higher up the hierarchy than ItemType is. Let’s take a look:

Listing 6.14 First attempt at a list interface

Listing 6.15 Naive attempt to work around variance

143Variance
scala> trait List[+ItemType] {
| def ++[OtherItemType >: ItemType](
| other: List[OtherItemType]): List[OtherItemType]
| }

defined trait List

scala> class EmptyList[ItemType] extends List[ItemType] {
| def ++[OtherItemType >: ItemType](
| other: List[OtherItemType]) = other
| }

defined class EmptyList

Our new definition of empty list succeeds. Let’s take it for a test drive through the
REPL and ensure that combining empty lists of various types returns the types we
desire.

scala> val strings = new EmptyList[String]
strings: EmptyList[String] = EmptyList@2cfa930d

scala> val ints = new EmptyList[Int]
ints: EmptyList[Int] = EmptyList@58e5ebd

scala> val anys = new EmptyList[Any]
anys: EmptyList[Any] = EmptyList@65685e30

scala> val anyrefs = new EmptyList[AnyRef]
anyrefs: EmptyList[AnyRef] = EmptyList@1d8806f7

scala> strings ++ ints
res3: List[Any] = EmptyList@58e5ebd

scala> strings ++ anys
res4: List[Any] = EmptyList@65685e30

scala> strings ++ anyrefs
res5: List[AnyRef] = EmptyList@1d8806f7

scala> strings ++ strings
res6: List[String] = EmptyList@2cfa930d

First we declare our variables. These are lists of String, Int, Any, and AnyRef. Now
let’s combine lists and see what happens. First we try to combine our list of Strings
and Ints. You can see that the compiler infers Any as a common superclass to
String and Int and gives you a list of Any. This is exactly what we wanted! Next we
combine our list of strings with a list of anys and we get another list of anys. Once
again, this is as we desired. If we combine the list of strings with a list of AnyRefs, the
compiler infers AnyRef as the lowest possible type, and we retain a small amount of
type information. If we combine the list of strings with another list of strings, we’ll
retain the type of a List[String]. We now have a list interface that’s very powerful
and type-safe.

Listing 6.16 Appropriately working with variance

Listing 6.17 Ensuring the correct type changes

144 CHAPTER 6 The type system
VARIANCE IS HARD In Scala, the choice of making something variant or not is
important. The variance annotation can affect a lot of the mechanics in Scala,
including type inference. The safest bet when working with variance is to start
with everything invariant and mark variance as needed.

In general, when running into covariance or contravariance issues in class methods,
its usually the case of introducing a new type parameter and using that for the signa-
ture of the method. In fact, the final ++ method definition is far more flexible, and
still type-safe; therefore, when you face issues with variance annotations, step back and
try to introduce a few new type parameters.

6.5 Existential types
Existential types are a means of constructing types where portions of the type signa-
ture are existential, where existential means that although some real type meets that
portion of a type signature, we don’t care about the specific type. Existential types
were introduced into Scala as a means to interoperate with Java’s generic types, so
we’ll start by looking at a common idiom found in Java programs.

 In Java, generic types were added to the language later and done so with backward
compatibility in mind. As such, the Java collections API was enhanced to utilize
generic types but still supports code that’s written without generic types This was done
using a combination of erasure and a subdued form of existential types. Scala, seeking
to interoperate as closely as possible with Java, also supports existential types for the
same reason. Scala’s existential types are far more powerful and expressive than Java’s,
as illustrated next.

 Let’s look at Java’s List interface:

interface List<E> extends Collection<E> {
E get(int idx);
...

}

The interface has a type parameter E which is used to specify the type of elements in
the list. The get method is defined using this type parameter for its return value. This
setup should be familiar from the earlier discussion of type parameters. The strange-
ness begins when we look at the backward compatibility. The older List interface in
Java was designed without generic types. Code written for this old interface is still com-
patible with Java Generics. For example:

List foo = ...
System.out.println(foo.get(0));

The generic parameter for the List interface is never specified. Although an experi-
enced Java developer would know that the type returned by the get method is
java.lang.Object, they might not fully understand what’s going on. In this example,
Java is using existential types when type parameters aren’t specified. This means that
the only information known about the missing type parameter is that it must be a
subtype of or equivalent to java.lang.Object because all type parameters in Java are

145Existential types
a subtype of or equivalent to java.lang.Object. This allows the older code, where
List had no generic type parameter and the get method returned the type Object, to
compile directly against the new collections library.

 Is creating a list without any type parameters equivalent to creating a
List<Object>? The answer is no; they have a subtle difference. When compiling the
following code, you’ll see unchecked warnings from the compiler:

import java.util.*;

class Test {
public static void main(String[] args) {

List foo = new ArrayList();
List<Object> bar = foo;

}
}

When passing the -Xlint flag to javac, the following warning is displayed:

es.java:7: warning: [unchecked] unchecked conversion
found : java.util.List
required: java.util.List<java.lang.Object>

List<Object> bar = foo;
^

1 warning

Java doesn’t consider List and List<Object> the same type, but it will automatically
convert between the two. This is done because the practical difference between these
two types, in Java, is minimal. In Scala, existential types take on a slightly different fla-
vor. Let’s create an existential type in a Java class and see what it looks like in the Scala
REPL. First, the Java class:

public class Test {
public static List makeList() {

return new ArrayList();
}

}

The Test class provides a single makeList method that returns a List with existential
type signature. Let’s start up the Scala REPL and call this method:

scala> Test.makeList()
res0: java.util.List[_] = []

The type returned in the REPL is java.util.List[_]. Scala provides a convenience
syntax for creating existential types that uses the underscore in the place of a type
parameter. We’ll cover the full syntax shortly; but this shorthand is more commonly
found in production code. This _ can be considered a place holder for a single valid
type. The _ is different from closure syntax because it isn’t a placeholder for a type
argument, but rather is a hole in the type. The compiler isn’t sure what the specific
type parameter is, but it knows that there is one. You can’t substitute a type parameter
later; the hole remains.

Unchecked type
conversion

146 CHAPTER 6 The type system
DEVIATION FROM JAVA We can’t add things to a List[_] unless the compiler
can determine that they’re of the same type as the list. This means we can’t
add new values to the list without some form of casting. In Java, this operation
would compile and an Unchecked warning would be issued.

Existential types can also have upper and lower bounds in Scala. This can be done by
treating the _ as if it were a type parameter. Let’s take a look:

scala> def foo(x : List[_ >: Int]) = x
foo: (x: List[_ >: Int])List[Any]

The foo method is defined to accept a List of some parameter that has a lower
bound of Int. This parameter could have any type; the compiler doesn’t care which
type, as long as it’s Int or one of its super types. We can call this method with a value
of type String, because Int and String share a parent, Any. Let’s look.

scala> foo(List("Hi"))
res9: List[Any] = List(Hi)

When calling the foo method with a List("Hi") the call succeeds, as expected.

6.5.1 The formal syntax of existential types

Scala’s formal syntax for existential types uses the forSome keyword. Here’s the
excerpt explaining the syntax from the Scala Language Specification:

SCALA LANGUAGE SPECIFICATION—EXCERPT FROM SECTION 3.2.10 An existential
type has the form T forSome {Q} where Q is a sequence of type declarations.

In the preceding definition, the Q block is a set of type declarations. Type declarations,
in the Scala Language Specification could be abstract type statements or abstract val
statements. The declarations in the Q block are existential. The compiler knows that
there’s some type that meets these definitions, but doesn’t remember what that type is
specifically. The type declared in the T section can then use these existential identifi-
ers directly. This is easiest to see by converting the convenient syntax into the formal
syntax. Let’s take a look:

scala> val y: List[_] = List()
y: List[_] = List()

scala> val x: List[X forSome { type X }] = y
x: List[X forSome { type X }] = List()

The y value is constructed having the type List[_]. The x value is constructed to have
the type List[X forSome { type X }]. In x value, the type X is existential and acts the
same as the _ in the y’s type. A more complicated scenario occurs when the existential
type has a lower or upper bound restriction. In that case, the entire lower bound or
upper bound is translated into the forSome block:

scala> val y: List[_ <: AnyRef] = List()
y: List[_ <: AnyRef] = List()

147Existential types
scala> val x: List[X forSome { type X <: AnyRef }] = y
x: List[X forSome { type X <: AnyRef }] = List()

The first value, y, has the type List[_ <: AnyRef]. The existential _ <: AnyRef is trans-
lated to type X <: AnyRef in the forSome section. Remember that all type declarations
in the forSome blocks are treated as existential that can be used in the left hand side
type. In this case, the left-hand side type is X. The forSome block could be used for any
kind of type declaration, including values or other existential types.

 And now it’s time for a more complex example involving existential types. Remem-
ber the Observable trait from the dependent type section? Let’s take another look at
the interface for the Observable trait:

trait Observable {
type Handle

def observe(callback: this.type => Unit) : Handle = ..

def unobserve(handle: Handle) : Unit = ...

...

}

Imagine we wanted some generic way to interact with the Handle types that are
returned from this object. You can declare a type that can represent any Handle using
existential types. Let’s look at this type:

type Ref = x.Handle forSome { val x: Observable }

The type is declared with the name Ref. The forSome block contains a val definition.
This means that the value x is existential: the compiler doesn’t care which Observable
value, only that there is one. On the left-hand side of the type declaration is the path-
dependent type x.Handle. Notice that it isn’t possible to create this existential type
using the convenience syntax, as the _ can only stand in for a type declaration.

 Let’s create a trait that will track all the handles from Observables using the Ref
type. We’d like this trait to maintain a list of handles such that we can appropriately
clean up the class when needed. This cleanup involves unregistering all observers.
Let’s look at the trait:

trait Dependencies {
type Ref = x.Handle forSome { val x : Observable }

var handles = List[Ref]()

protected def addHandle(handle: Ref) : Unit = {
handles :+= handle

}

protected def removeDependencies() {
for(h <- handles) h.remove()
handles = List()

}

protected def observe[T <: Observable](
obj : T)(handler : T => Unit) : Ref = {

148 CHAPTER 6 The type system
val ref = obj.observe(handler)
addHandle(ref)
ref

}
}

The trait Dependencies redefines the type Ref as before. The handles member is
defined as a List of Ref types. An addHandle method is defined, which takes a handle,
the Ref type, and adds it to the list of handles. The removeDependencies method
loops over all registered handles and calls their remove method. Finally, the observe
method is defined such that it registers a handler with an observable and then regis-
ters the Handle returned using the addHandle method.

 You may be wondering how we’re able to call remove on the Handle type. This is
invalid code using the Observable trait as defined earlier. The code will work this
minor addition to the Observable trait:

trait Observable {
type Handle <: {

def remove() : Unit
}
...

}

The Observable trait is now defined such that the Handle type requires a method
remove() : Unit. Now you can use the Dependencies trait to track handlers registered
on observables. Let’s look at a REPL session demonstrating this:

scala> val x = new VariableStore(12)
x: VariableStore[Int] = VariableStore(12)

scala> val d = new Dependencies {}
d: java.lang.Object with Dependencies = $anon$1@153e6f83

scala> val t = x.observe(println)
t: x.Handle = DefaultHandles$HandleClass@662fe032

scala> d.addHandle(t)

scala> x.set(1)
VariableStore(1)

scala> d.removeDependencies()

scala> x.set(2)

The first line creates a new VariableStore which is a subclass of Observable. The
next statement constructs a Dependencies object, d, to track registered observable
handles. The next two lines register the function println with the Observablex and
add the handle to the Dependencies object d. Next, the value inside the Variable-
Store is changed. This invokes the observers with the current value and the registered
observer println is called to print VariableStore(1) on the console. After this, the
removeDependencies method is used on the object d to remove all tracked observers.

149Summary
The next line again changes the value in the VariableStore and no values are output
on the console.

 Existential types provide a convenient syntax to represent these abstract types and
interact with them. Although the formal syntax isn’t frequently used, this uncommon
situation is the most common case where it’s needed. It’s a great tool to understand
and use when running into nested types that seem inexpressible, but it shouldn’t be
needed in most situations.

6.6 Summary
In this chapter, you learned the basic rules governing Scala’s type system. We learned
how to define types and combine them. We looked at structural typing and how you
can use it to emulate duck typing in dynamic languages. We learned how to create
generic types using type parameters and how to enforce upper and lower bounds on
types. We looked at higher-kinded types and type lambdas and how you can use them
to simplify complex types. We also looked into variance and how to create flexible
parameterized classes. Finally we explored existential types and how to create truly
abstract methods. These basic building blocks of the Scala type system are used to con-
struct advanced models of behavior and interactions within a program. In the next
chapter, we use these fundamentals to implement implicit resolution and advanced
type system features.

Using implicits
and types together
The type system and the implicit resolution mechanism provide the tools required
to write expressive, type-safe software. Implicits can encode types into runtime
objects and can enable the creation of type classes that abstract behavior from
classes. Implicits can be used to directly encode type constraints and to construct
types recursively. Combined with some type constructors and type bounds, implicits
and the type system can help you encode complex problems directly into the type
system. Most importantly, you can use implicits to preserve type information and
delegate behavior to type-specific implementations while preserving an abstract
interface. The ultimate goal is the ability to write classes and methods that can be
reused anytime they’re needed.

 To start, let’s look at some type bounds that we didn’t cover in chapter 6.

In this chapter
 Introduction to implicit type bounds

 Type classes and their applications

 Type level programming and compile time
execution
150

151Context bounds and view bounds
7.1 Context bounds and view bounds
Scala supports two types of type constraint operators that aren’t type constraints but
are implicit lookups—context bounds and view bounds. These operators allow us to
define an implicit parameter list as type constraints on generic types. This syntax can
reduce typing in situations where implicit definitions must be available for lookup but
don’t need to be directly accessed.

 View bounds are used to require an available implicit view for converting one type
into another type. Implicit views look like the following:

def foo[A <% B](x: A) = x

The foo method defines a constraint A <% B. This constraint means that the parame-
ter x is of type A and there must be an implicit conversion function A => B available at
any call site. The preceding code can be rewritten as the following:

def foo[A](x: A)(implicit $ev0: A => B) = x

This foo method is also defined with a type parameter A that has no constraints. Two
parameter lists exist: one that accepts an A type and one that requires the implicit con-
version function. Although this second form requires more typing, it places a user-
defined label on the implicit conversion function.

Context bounds, similar to view bounds, declare that there must be an implicit value
available with a given type. Context bounds look like the following:

def foo[A : B](x: A) = x

The foo method defines a constraint A : B. This constraint means that the parameter
x is of type A and there must be an implicit value B[A] available when calling method
foo. Context bounds can be rewritten as follows:

def foo[A](x: A)(implicit $ev0: B[A]) = x

To use implicit type constraints or not
When should you choose to use view/context bounds vs. directly writing an implicit
parameter list? A simple convention is to use view/context bounds in these two
scenarios:

 The code within the method doesn’t need to access the implicit parameter
directly, but relies on the implicit resolution mechanism. In this situation, we
must require an implicit parameter be available to call another function that
requires that implicit parameter, or the implicit is automatically used. This is
most common when using view bounds.

 The meaning conveyed by the type parameter is more clear using context/view
bounds than an implicit parameter list. See section 7.3 on type classes for
examples of this scenario.

152 CHAPTER 7 Using implicits and types together
This foo method defines two parameter lists, with the implicit parameter list accept-
ing a value of type B[A]. The key difference between the two foo versions is that this
one gives an explicit label to the B[A] parameter that can be used within the function.

 Context bounds are extremely useful in helping provide implicit values in com-
panion objects. This naturally leads to type classes, shown in section 7.3. Type classes
are a means of encoding behavior into a wrapper or accessor for another type. They are
the most common use of context bound constraints.

7.1.1 When to use implicit type constraints

Scala’s implicit views are often used to enrich existing types, where enrich means add-
ing additional behavior that doesn’t exist on the raw type (see Odersky’s paper “Pimp
My Library”: http://mng.bz/86Qh). Implicit type constraints are used when we want
to enrich an existing type while preserving that type in the type system. For example,
let’s write a method that will return the first element of a list and the list itself:

scala> def first[T](x : Traversable[T]) =
| (x.head, x)

first: [T](x: Traversable[T])(T, Traversable[T])

scala> first(Array(1,2))
res0: (Int, Traversable[Int]) = (1,WrappedArray(1, 2))

The method defines a type parameter T for the element of the collection. It expects a
variable of type Traversable[T]. It then returns the head of the traversable and the
traversable itself. When calling this method with an array, the resulting type is a
Traversable[Int] and the runtime type is WrappedArray. This method has lost the
original type information about the array.

 Context bounds and view bounds allow developers to enforce complex type con-
straints in a simple fashion. They are best applied when we do not need to access the
captured implicit by name, but the method requires the implicit to be available in its
scope.

A better polymorphism
One of the key tenants of object-oriented programming is polymorphism: the ability
of a complex type to act as a simple type. In the absence of generic types and
bounds, polymorphism usually results in a loss of type information. For example, in
Java’s java.util.Collections class, there are two methods: List
synchronizedList(List) and Collection synchronizedCollection(Collec-
tion). In Scala, utilizing some advanced implicit concepts, we can accomplish the
same feat with one method: def synchronizedCollection[A, CC <: Travers-
able[A] : Manifest](col : CC) : CC.

One of the biggest benefits of using Scala is the ability to preserve specific types
across generic methods. The entire collections API is designed such that methods
defined in the lower level types preserve the original types of the collections as much
as possible.

http://mng.bz/86Qh

153Capturing types with implicits
For example, a method that works with types that could be serialized but doesn’t seri-
alize them might look something like this:

def sendMsgToEach[A : Serializable](receivers : Seq[Receiver[A]],
a : A) = {

receivers foreach (_.send(a))
}

The sendMsgToEach accepts any type that has a serializable implicit context (that is,
the compiler can find the type Serializable[A] on the implicit scope—and a
sequence of receivers of type a. The method implementation calls send on each
receiver, passing the message to each. But the implementation of the send method on
the Receiver type would need to use the Serializable value, so it’s better to explic-
itly specify the implicit argument list in that method.

 Context bound and view bound constraints are used to clarify the intent of an
implicit argument. Implicit arguments can be used to capture a relationship from the
type system.

7.2 Capturing types with implicits
Scala 2.8 formalized the ability to encode type information into implicit parameters. It
does this through two mechanisms: Manifests and implicit type constraints.

 A Manifest for a type is generated by the compiler, when needed, with all the
known information for that type at that time. Manifests were added specifically to
handle arrays and were generalized to be useful in other situations where the type
must be available at runtime.

 Implicit type constraints are direct encoding of supertype and equivalence rela-
tionships between types. These can be useful to restrict a generic type further within a
method. These constraints are static—that is, they happen at compile time.

 The runtime counterpart of a type is the Manifest.

7.2.1 Manifests

As stated earlier, Manifests were first introduced into Scala to help deal with arrays.
They capture types for runtime evaluation. In Scala, an array is a class with a parame-
ter. An array of integers has the type Array[Int]. On the JVM, however, there are dif-
ferent types of arrays for every primitive type and one for objects. Examples include
int[], double[], and Object[]. The Java language distinguishes between these types
and requires programs to do so as well. Scala allows code to be written for generic
Array[T] types. But because the underlying implementation must know whether the
original array was an int[], a double[], or one of the other array types, Scala needed
a way to attach this information to the type so that generic array implementations
would know how to treat the array, and so the birth of Manifests.

Prefer ClassManifest

ClassManifest provides the smallest runtime overhead for the greatest benefit. While
Manifests are extremely useful, any advanced type checking should still be performed by the
compiler and not at runtime. Usually ClassManifest is good enough when reified types are
required.

Rule
18

154 CHAPTER 7 Using implicits and types together
You can use Manifests to pass along more specific type information with a generic type
parameter. In Scala, all methods involving Arrays require an appropriate Manifest for
the array’s type parameter. This was done because although Scala treats Arrays as
generic classes, they are encoded differently by type on the JVM. Rather than encode
these differently in Scala, for example int[] and double[], Scala chose to hide the run-
time behavior behind the Array[T] class and associated methods. Because different
bytecode must be emitted for Array[Int] and Array[Double], Scala uses Manifests to
carry around the type information about arrays. This is done through Manifests.

 Scala provides several types of Manifests:

 Manifest This Manifest stores a reflective instance of the class associated with
a type T as well as Manifest values for each of T’s type parameters. A reflective
instance of a class is a reference to the java.lang.Class object for that class.
This allows reflective invocations of methods defined on that class.

A good example is the type List [Int]. A Manifest[List[Int]] allows
access to the java.lang.Class for the scala.List type. It also contains a
Manifest[Int] that would allow access to the java.lang.Class for the
scala.Int type.

 OptManifest Require an OptManifest for a type makes the Manifest require-
ment optional. If there’s one available, then the OptManifest instance will be
the Manifest subclass. If none can be provided, then the instance will be the
NoManifest class.

 ClassManifest This class is similar to Manifest except that it only stores the
erased class of a given type. This erased class of a type is associated with the type
without any type parameters. For example, the type List[Int] would have the
erased class List.

The Manifest class can be expensive to store/compute, as it must have access to the
java.lang.Class object for every type and type parameter. For a type with a lot of
nesting, this can be quite deep, and methods on the Manifest may traverse the entire
depth. The ClassManifest is designed for scenarios where type parameters don’t
need to be captured. The OptManifest is designed for situations where a Manifest
isn’t needed for runtime behavior, but can be used for runtime improvements if it’s
available.

7.2.2 Using Manifests

Manifests are useful in Scala to create abstract methods whose implementations
diverge based on the types they work on, but the resulting outputs don’t. A good
example of this is any method using generic arrays. Because Scala must use different
bytecode instructions depending on the runtime array type, it requires a Class-
Manifest on the Array element.

scala> def first[A](x : Array[A]) = Array(x(0))
<console>:7: error: could not find implicit value for

155Capturing types with implicits
evidence parameter of type scala.reflect.ClassManifest[A]
def first[A](x : Array[A]) = Array(x(0))

The first method is defined as taking a generic Array of type A. It attempts to con-
struct a new array containing only the first element of the old array. But because we
haven’t captured a Manifest, the compiler can’t figure out which runtime type the
resulting Array should have.

scala> def first[A : ClassManifest](x : Array[A]) =
| Array(x(0))

first: [A](x: Array[A])(implicit evidence$1: ClassManifest[A])Array[A]

scala> first(Array(1,2))
res1: Array[Int] = Array(1)

Now the A type parameter also captures the implicit ClassManifest. When called with
an Array[Int], the compiler constructs a ClassManifest for the type Int, and this is
used to construct a runtime array of the appropriate type.

CLASSMANIFEST AND ARRAYS The ClassManifest class directly contains a
method to construct new arrays of the type it’s captured. This could be used
directly instead of delegating to Scala’s generic Array factory method.

Using Manifests requires capturing the Manifest when a specific type is known
before passing to a generic method. If the type of an array were “lost,” the array
couldn’t be passed into the first method.

scala> val x : Array[_] = Array(1,2)
x: Array[_] = Array(1, 2)

scala> first(x)
<console>:10: error: could not find implicit value for

evidence parameter of type ClassManifest[_$1]
first(x)

The value x is constructed as an Array with existential type. The first method can’t be
called with the value x because a ClassManifest can’t be found for the array’s type.
Although this example is contrived, the situation itself occurs when working with
Arrays in nested generic code. We solve this by attaching Manifests to types all the way
down the generic call stack.

RUNTIME VERSUS COMPILE TIME Manifests are captured at compile time and
encode the type known at the time of capture. This type can then be inspected
and used at runtime, but the Manifest can only capture the type available
when the Manifest is looked for on the implicit scope.

Manifests are useful tools for capturing runtime types, but they can become viral in
code, needing to be specified in many different methods. Use them with caution and
in situations where they’re required. Don’t use them to enforce type constraints when
the type is known by the compiler; instead these can be captured with another implicit
at compile time.

156 CHAPTER 7 Using implicits and types together
7.2.3 Capturing type constraints

The intersection of type inference and type constraints sometimes causes issues where
you need to use reified type constraints. What are reified type constraints? These are
objects whose implicit existence verifies that some type constraint holds true. For
example, there’s a type called <:<[A,B] that, if the compiler can find it on the implicit
scope, then it must be true that A <: B. The <:< class is the reification of the upper
bound constraint.

WHAT DOES REIFICATION MEAN? Think of reification as the process of convert-
ing some concept in a programming language to a class or object that can be
inspected and used at runtime. A Function object is a reification of a method.
It’s an object that you can call methods on at runtime. In this same vein, other
things can be reified.

Why do we need reified type constraints? Sometimes it can help the type inferencer
automatically determine types for a method call. One of the neat aspects of the type
inferencing algorithm is that implicits can defer the resolution of types until later in
the algorithm. Scala’s type inferencer works in a left-to-right fashion across parameter
lists. This allows the types inferred from one parameter list to affect the types inferred
in the next parameter list.

 A great example of this left-to-right inference is with anonymous functions using
collections. Let’s take a look:

scala> def foo[A](col: List[A])(f: A => Boolean) = null
foo: [A](col: List[A])(f: (A) => Boolean)Null

scala> foo(List("String"))(_.isEmpty)
res1: Null = null

The foo method defines two parameter lists with one type parameter: one that takes a
list of the unknown parameter and another that takes a function using the unknown
parameter. When calling foo without a type parameter, the call succeeds because the
compiler is able to infer the type parameter A as equal to String. This type is then
used for the second parameter list, where the compiler knows that the _ should be of
type String. This doesn’t work when we combine the parameter lists into one param-
eter list.

scala> def foo[A](col: List[A], f: A => Boolean) = null
foo: [A](col: List[A],f: (A) => Boolean)Null

scala> foo(List("String"), _.isEmpty)
<console>:10: error: missing parameter type for expanded
function ((x$1) => x$1.isEmpty)

foo(List("String"), _.isEmpty)

In this case, the compiler complains about the anonymous function _.isEmpty
because it has no type. The compiler has not inferred that A = String yet, so it can’t
provide a type for the anonymous function.

157Capturing types with implicits
 This same situation can occur with type parameters. The compiler is unable to
infer all the parameters in one parameter list, so the implicit parameter list is used to
help the type inferencer.

 Let’s create a method peek that will return a tuple containing a collection and its
first element. This method should be able to handle any collection from the Scala
library, and it should retain the original type of the method passed in:

scala> def peek[A, C <: Traversable[A]](col : C) =
| (col.head, col)

foo: [A,C <: Traversable[A]](col: C)(A, C)

The method will have two type parameters: one to capture the specific type of the col-
lection, called C, and another to capture the type of elements in the collection, called
A. The type parameter C has a constraint that it must be a subtype of Traversable[A],
where Traversable is the base type of all collection in Scala. The method returns
types A and C, so specific types are preserved. But the type inferencer can’t detect the
correct types without annotations.

scala> peek(List(1,2,3))
<console>:7: error: inferred type arguments [Nothing,List[Int]] do
not conform to method peek's type parameter

bounds [A,C <: Traversable[A]]
peek(List(1,2,3))

The call to peek with a List[Int] type fails because the type inferencer is unable to find
both types C and A using only one parameter. To solve this, let’s make a new implemen-
tation of peek that defers some type inference for the second parameter list:

scala> def peek[C, A](col: C)(implicit ev: C <:< Traversable[A]) =
| (col.head, col)

foo: [C,A](col: C)(implicit ev: <:<[C,Traversable[A]])(A, C)

This peek method also has two type parameters but no type constraints on the C
parameter. The first argument list is the same as before, but the second argument list
takes an implicit value of type C <:< Traversable[A]. This type is taking advantage of
Scala’s operator notation. Just as methods named after operators can be used in oper-
ator notation, so can types with type parameters. The type C <:< Traversable[A] is a
shorthand notation for the type <:< [C, Traversable[A]]. The <:< type provides
default implicit values in scala.Predef for any two types A and B that have the rela-
tionship A <: B. Let’s look at the code for the <:< type found in scala.Predef:

sealed abstract class <:<[-From, +To] extends
(From => To) with Serializable

implicit def conforms[A]: A <:< A = new (A <:< A) {
def apply(x: A) = x

}

Listing 7.1 The <:< type

158 CHAPTER 7 Using implicits and types together
The first line declares the <:< class. It extends from Function1 and Serializable. This
means that <:< can be used in any context where Java serialization may be used. Next,
the conforms method takes a type parameter A and returns a new <:< type such that it
converts from type A to A. The trick behind <:< is the variance annotations. Because
From is contravariant, if B <: A then <:<[A,A] conforms to the type <:<[B,A] and the
compiler will use the implicit value <:<[A,A] to satisfy a lookup for type <:<[B,A].

 Now when using the peek method without type parameters, the type inferencer
succeeds:

scala> peek(List(1,2,3))
res0: (Int, List[Int]) = (1,List(1, 2, 3))

Calling the peek method with a List[Int] correctly returns an Int and a List[Int]
type. Capturing type relationships can also be used to restrict an existing type parame-
ter at a later time.

7.2.4 Specialized methods

Sometimes a parameterized class allows methods if the parameter supports a set of
features, or extends a class. I call these specialized methods—that is, the method is for a
specialized subset of a generic class. These methods use the implicit resolution system
to enforce the subset of the generic class for which they’re defined. For example, the
Scala collections have a specialized method sum that works only for numerical types.

def sum[B >: A](implicit num: Numeric[B]): B =
foldLeft(num.zero)(num.plus)

The sum method, defined in TraversableOnce.scala, takes a single type parameter B.
This type is any supertype of the type of elements in the collection. The parameter num
is an implicit lookup for the Numeric type class. This type class provides the implemen-
tation of zero and plus, as well as other methods, for a given type. The sum method
uses the methods defined on numeric to fold across the collection and “plus” all the
elements together.

 This method can be called on any collection whose type supports the Numeric type
class. This means that if we desired, we could provide our own type class for types that
aren’t normally considered numeric. For example, let’s use sum on a collection of
strings:

scala> implicit object stringNumeric extends Numeric[String] {
| override def plus(x : String, y : String) = x + y
| override def zero = "
|
| ... elided other methods ...
| }

defined module stringNumeric

scala> List("One", "Two", "Three").sum
res2: java.lang.String = OneTwoThree

Listing 7.2 TraversableOnce.sum method

159Use type classes
The first REPL line constructs an implicitly available Numeric[String] class. The zero
method is defined to return an empty string and the plus method is defined to aggre-
gate two strings together. Next, when calling sum on a List of strings, the result is that
the strings are all appended together. The sum method used the Numeric type class we
provided for the String type.

 Methods can also be specialized using the <:< and =:= classes. For example, a
method that compressed a Set, if that set was of integers, could be written like this:

trait Set[+T] {
...
def compress(implicit ev : T =:= Int) =

new CompressedIntSet(this)
}

The Set trait is defined with a type parameter representing the elements contained in
the set. The compress function will take the current set and return a compressed ver-
sion of it. But the only implementation of a compressed set available is the
CompressedIntSet, is a Set[Int] that optimizes storage space using compression
techniques. The implicit ev parameter is used to ensure that the type of the original
set is exactly Set[Int] such that a CompressedIntSet can be created.

 Specialized methods are a great way to provide a rich API and enforce type safety.
They help smooth out some rough edges between generalized classes and specific use
cases for those generalized classes. In the Scala core library, they’re used to support
numerical operations within the collection framework. They pair well with type
classes, which provide the most flexibility for users of a class.

7.3 Use type classes
A type class is a mechanism of ensuring one type conforms to some abstract inter-
face. The type class pattern became popular as a language feature within the Haskell
programming language. In Scala, the type class idiom manifests itself through
higher-kinded types and implicit resolution. We’ll cover the details of defining your
own type class, but initially let’s look at a motivating example for why you should use
type classes.

 Let’s design a system that synchronizes files and directories between various loca-
tions. These files could be local, remote, or located in some kind of version control
system. We’d like to design some form of abstraction that can handle synchronizing
between all the different location possibilities. Using our object-oriented hats, we start
with trying to define an abstract interface that we can use of. Let’s call our interface
FileLike, and define what methods we need for synchronization.

 To start, we know that we need a method of determining whether a FileLike
object is an aggregate of other FileLike objects. We’ll call this method isDirectory.
When the FileLike object is a directory, we need a mechanism to retrieve the File-
Like objects it contains. We’ll call this method children. We need some way of deter-
mining if a directory contains a file we see in another directory.

160 CHAPTER 7 Using implicits and types together
 To do this, we’ll provide a child method that attempts to discover a FileObject
contained in the current FileLike object with a given relative filename. If there’s no
object, we’ll provide a null object. That is, a FileLike object that is a placeholder for a
real file. We can use the null object to write data into new files. We’d like a mechanism
to check whether the FileLike object exists, so we’ll make a method called exists.
Finally we need mechanisms to generate content. In the case of directories, we add
the mkdirs method to create a directory at the path defined by a null FileLike object.
Next we supply the content and writeContent methods as a mechanism to retrieve
content from FileLike objects and to write content to FileLike objects. For now,
we’ll assume that we always write file contents from one side to another, and there’s no
optimizations for files that might exist on both sides and be equivalent. Let’s look at
our interface:

trait FileLike {
def name : String
def exists : Boolean
def isDirectory : Boolean
def children : Seq[FileLike]
def child(name : String) : FileLike
def mkdirs() : Unit
def content : InputStream
def writeContent(otherContent : InputStream) : Unit

}

The FileLike interface is defined with the methods described earlier. The method
name returns the relative name of the FileLike object. The method exists returns
whether or not the file has been created on the filesystem. The method isDirectory
returns whether the class is an aggregate of other files. The children method returns
a sequence containing all the FileLike objects that are contained in the current
FileLike object, if it is a directory. The child method returns a new FileLike object
for a child file below the current file. This method should throw an exception if the
current file isn’t a directory. The mkdirs method creates directories required to
ensure the current file is a directory. The content method returns an InputStream
containing the contents of the file. Finally, the writeContent method accepts an
InputStream and writes the contents to the file.

 Now, let’s write the synchronizing code.

// Utility to synchronize files
object SynchUtil {

def synchronize(from : FileLike
to : FileLike) : Unit = {

def synchronizeFile(file1 : FileLike,
file2 : FileLike) : Unit = {

Listing 7.3 Initial FileLike interface

Listing 7.4 File synchronization using FileLike

161Use type classes
file2.writeContent(file1.content)
}

def synchronizeDirectory(dir1 : FileLike,
dir2 : FileLike) : Unit = {

def findFile(file : FileLike,
directory : FileLike) : Option[FileLike] =

(for { file2 <- directory.children
if file.name == file2.name

} yield file2).headOption

for(file1 <- dir1.children) {
val file2 = findFile(file1, dir2).

getOrElse(dir2.child(file1.name))
if(file1.isDirectory) {

file2.mkdirs()
}
synchronize(file2, file1)

}
}

if(from.isDirectory) {
synchronizeDirectory(from,to)

} else {
synchronizeFile(from,to)

}
}

}

The synchronize function contains two helper methods, one for directory like
objects and another for FileLike objects. The synchronize method then delegates to
these two helper functions appropriately. There’s only one problem: a subtle bug is in
the code! In the synchronizeDirectory helper method, the argument ordering is
mixed up when recursively calling the synchronize method! This is the kind of error
you can avoid by using the type system more. Let’s try to capture the fromFileLike
type separate from the toFileLike type. These can ensure the method arguments
have the correct order. Let’s try it out:

def synchronize[F <: FileLike,
T <: FileLike](
from : F,

to : T) : Unit = {

def synchronizeFile(file1 : F,
file2 : T) : Unit = {

file2.writeContent(file1.content)
}

def synchronizeDirectory(dir1 : F,
dir2 : T) : Unit = {

def findFile(file : FileLike,
directory : FileLike) : Option[FileLike] =

(for { file2 <- directory.children

Listing 7.5 Enforcing To/From types with type arguments

Synchronize From type

Captures To type

Captures From type

Enforce type ordering

Enforce type ordering

162 CHAPTER 7 Using implicits and types together
if file.name == file2.name
} yield file2).headOption

for(file1 <- dir1.children) {
val file2 = findFile(file1, dir2).

getOrElse(dir2.child(file1.name))
if(file1.isDirectory) {

file2.mkdirs()
}
synchronize[F,T](file2, file1)

}
}

if(from.isDirectory) {
synchronizeDirectory(from,to)

} else {
synchronizeFile(from,to)

}
}

The synchronize method now captures the from type in the type parameter F and the
to type in the type parameter T. Great! Now there’s a compilation failure on the syn-
chronize call. But the exception isn’t quite what’s desired. In fact, if the arguments are
reordered, the exception remains.

synchronize.scala:47: error: type mismatch;
found : file1.type (with underlying type FileLike)
required: F

synchronize[F,T](file1, file2)
^

synchronize.scala:47: error: type mismatch;
found : file2.type (with underlying type FileLike)
required: T

synchronize[F,T](file1, file2)

The compiler is complaining that the types returned from the FileLike.children
method are not the captured type F. The FileLike interface doesn’t preserve the orig-
inal type when getting children! One fix would be to modify the FileLike interface to
be higher-kinded, and use the type parameter to enforce the static checks. Let’s mod-
ify the original FileLike interface to take a type parameter:

trait FileLike[T <: FileLike[T]] {
def name : String

def isDirectory : Boolean
def children : Seq[T]
def child(name : String) : T
def mkdirs() : Unit

def content : InputStream
def writeContent(otherContent : InputStream) : Unit

}

This new definition of FileLike uses a recursive type constraint in its type parameter.
The captured type T must be a subtype of FileLike. This type T is now returned by the

Listing 7.6 Higher-kinded FileLike

Compilation failure

Capture subclass type

Returns subclass type

163Use type classes
child and children methods. This interface works great for the synchronization
method, except it suffers from one problem: the need to create FileLike wrappers
for every FileLike object passed to the method. When synchronizing java.io.File
and java.net.URL instances, a wrapper must be provided. There’s an alternative.
Instead of defining the type FileLike[T <: FileLike[T]], we can define File-

Like[T]. This new trait would allow interacting with any T as if it were a file and
doesn’t require any inheritance relationship. This style of trait is called a type class.

7.3.1 FileLike as a type class

The type class idiom, as it exists in Scala, takes this form: (1) a type class trait that acts
as the accessor or utility library for a given type; (2) an object with the same name as
the trait (this object contains all default implementations of the type class trait for var-
ious types); and (3) methods with context bounds where the type trait need to be
used. Let’s look at the type class trait for our file synchronization library:

trait FileLike[T] {
def name(file : T) : String
def isDirectory(file : T) : Boolean
def children(directory : T) : Seq[T]
def child(parent : T, name : String) : T
def mkdirs(file : T) : Unit
def content(file : T) : InputStream
def writeContent(file : T, otherContent : InputStream) : Unit

}

The FileLike type class trait looks similar to the higher-kinded FileLike trait, except
for two key points. First, it doesn’t have any restriction on type T. The FileLike type
class works for a particular type T and against it. This brings us to the second differ-
ence: All the methods take a parameter of type T. The FileLike type class isn’t
expected to be a wrapper around another class, but instead it’s an accessor of data or
state from another class. It allows us to keep a specific type, while treating it generi-
cally. Let’s look at what the synchronization method becomes using the FileLike type
class trait.

def synchronize[F : FileLike,
T : FileLike](

from : F,
to : T) : Unit = {

val fromHelper =
implicitly[FileLike[F]]

val toHelper =
implicitly[FileLike[T]]

def synchronizeFile(file1 : F, file2 : T) : Unit = {
toHelper.writeContent(file2,

Listing 7.7 FileLike type class trait

Listing 7.8 Synchronize method using type class

Use context bounds

Look up FileLike helpers

Use methods
from type class

164 CHAPTER 7 Using implicits and types together
fromHelper.content(file1))
}

def synchronizeDirectory(dir1 : F,
dir2 : T) : Unit = {

def findFile(file : F,
directory : T) : Option[T] =

(for { file2 <- toHelper.children(directory)
if fromHelper.name(file) == toHelper.name(file2)

} yield file2).headOption

for(file1 <- fromHelper.children(dir1)) {
val file2 = findFile(file1, dir2).

getOrElse(toHelper.child(dir2,
fromHelper.name(file1)))

if(fromHelper.isDirectory(file1)) {
toHelper.mkdirs(file2)

}
synchronize[T,F](file1, file2)

}
}

if(fromHelper.isDirectory(from)) {
synchronizeDirectory(from,to)

} else {
synchronizeFile(from,to)

}
}

Notice the use of the context bounds syntax for FileLike. As described in section 7.1,
this is equivalent to defining an implicit parameter for the FileLike on a given type.
The next thing to notice is the implicitly method lookup of the FileLike parame-
ters. Finally, every call made that utilizes type F or T uses the FileLike type class. The
synchronize method can now work across many different types. Let’s see what hap-
pens when we use it on two java.io.File objects.

scala> synchronize(
| new java.io.File("tmp1"),
| new java.io.File("tmp2"))

<console>:12: error: could not find implicit value for
evidence parameter of type FileLike[java.io.File]

synchronize(new java.io.File("tmp1"), new java.io.File("tmp2"))

The compiler now complains that there’s no implicit value for FileLike

[java.io.File]. This is the error message provided if we attempt to use a type that
doesn’t have a corresponding type trait in the implicit scope. The error message isn’t
quite what we want, and may be improved later, but it’s important to understand what
this message means.

 The synchronize method requires a type trait implementation for java.io.File.
The conventional way to provide default implicit values for a set of types is through a
companion object to the type class trait. Let’s look at the following listing:

165Use type classes
import java.io.File

object FileLike {
implicit val ioFileLike = new FileLike[File] {

override def name(file: File) =
file.getName()

override def isDirectory(file: File) =
file.isDirectory()

override def parent(file : File) =
file.getParentFile()

override def children(directory: File) =
directory.listFiles()

override def child(parent: File, name: String) =
new java.io.File(parent, name)

override def mkdirs(file: File) : Unit =
file.mkdirs()

override def content(file: File) =
new FileInputStream(file)

override def writeContent(file: File, otherContent: InputStream) =
...

}
}

Notice that this implementation of FileLike is simple. Most methods delegate
directly to the underlying implementation. The writeClient method is more com-
plex, so you can find the implementation in the source for this book. Now that the
implicit FileLike[java.io.File] value is in the FileLike companion object, any-
time the compiler needs to find an implicit value of type FileLike[java.io.File],
it’ll find one. Remember that the companion object is one of the last places checked
for implicit values. This means a user can override the default implementation of
Filelike[java.io.File] with their own by importing/defining it at the correct loca-
tion. The type class pattern also provides many benefits.

Listing 7.9 Creating default type class implementation for java.io.File

Implicit lookup error messages
As of Scala 2.8.1, type classes may be annotated to provide different error messages
if the implicit lookup fails. Here’s an example for a Serializable type class:
scala> @annotation.implicitNotFound(msg =
 | "Cannot find Serializable type class for ${T}")
 | trait Serializable[T]
defined trait Serializable
scala> def foo[X : Serializable](x : X) = x
foo: [X](x: X)(implicit evidence$1: Serializable[X])X
scala> foo(5)
 <console>:11: error: Cannot find Serializable type class for Int foo(5) ̂

Automatic
lookup path

Returns
raw file

166 CHAPTER 7 Using implicits and types together
7.3.2 The benefits of type classes

Type classes provide you with four primary benefits:

 Separation of abstractions—Type classes create new abstractions and allow other
types to adapt, or be adapted, to the abstraction. This is helpful when creating
an abstraction that works with preexisting types, and those types can’t be
changed.

 Composability—You can use the context bound syntax to specify multiple types.
This means you can easily require the existence of several type classes when
writing your methods. This is far more flexible than expected for some abstract
interface, or a combination of abstract interfaces. Type classes can also use
inheritance to compose two type classes together into one implicit variable that
provides both. Sometimes this may make sense, but in general type classes
retain the most flexibility by avoiding inheritance.

 Overridable—Type classes allow you to override a default implementation
through the implicit system. By putting an implicit value higher in the lookup
chain, you can completely replace how a type class is implemented. This can be
helpful when providing several type classes with various behaviors because the
user can select a nondefault type class when needed.

 Type safety—You could use several mechanisms, such as reflection, instead of
type classes. The primary reason to prefer type classes over these methods is the
guaranteed type safety. When requiring a specific behavior using a type class,
the compiler will warn if that behavior isn’t found, or isn’t yet implemented.
Although reflection could be used to find methods on any class and call them,
its failure occurs at runtime and isn’t guaranteed to occur during testing.

Type classes are a powerful design tool and can greatly improve the composability and
reusability of methods and abstractions. These abstractions can also compose into
higher-level type classes that are combinations of the lower-level ones.

 Here’s an example:

trait Serializable[T] { ... }
object Serializable {

implicit def tuple2[T,V](implicit t : Serializable[T],
v : Serializable[V]) =

new Serializable[(T,V)] { .. }
}

The Serializable type class is defined such that it can serialize a given type T. A
Serializable type class for Tuple2 values can be constructed using the Serializable
type class against the types of the Tuple2. The method Tuple2 accepts two type param-
eters, T and V, as well as implicit Serializable type classes associated with these
parameters. The Tuple2 method returns a Serializable type class for (T,V) tuples.
Now any Tuple2 of types that support the Serializable type class also supports the
Serializable class.

167Conditional execution using the type system
 Type classes start to show some of the power and complex constraints that can be
encoded into the type system. This can be further extended to encode significantly
complex type dependent algorithms and type level programming.

7.4 Conditional execution using the type system
There comes a time in an algorithm’s life when it needs to do something rather
clever. This clever behavior encodes portions of the algorithm into the type system so
that it can execute at compile time. An example of this could be a sort algorithm.
The sort algorithm can be written against the raw Iterator interface. But if I call
sort against a vector, then I’d like to be able to utilize vector’s natural array separa-
tion in my sorting algorithm. Traditionally this has been solved with two mechanisms:
overloading and overriding.

 Using overloading, the sort method is implemented in terms of Iterable and
another is implemented in terms of Vector. The downside to overloading is that it
prevents you from using named/default parameters, and it can suffer at compile time
due to type erasure.

TYPE ERASURE Type erasure refers to the runtime encoding of parameterized
classes in Scala. The types used in parameters are erased at runtime into a
lower type. This means that functions that operate on parameterized types
can erase to the same bytecode on the JVM causing conflict. For example:

def sum(x : List[Int]) : Unit

and

def sum(x : List[Double]) : Unit

have the same runtime encoding def sum(x : List[_]) : Unit. The com-
piler will complain that the overloading isn’t allowed. This is one of the rea-
sons to avoid overloading in Scala.

Using overriding, the sort method is implemented against a base class. Each subclass
that wishes to specialize the sort method should override the base class implementa-
tion with its own custom sort mechanism. In the case of Iterable and Vector, both
would need to define the same sort method. The downside to overriding is that the
type signatures must be the same and there must be an inheritance relationship
between the classes owning a method.

 Overriding seems like a better option than overloading but imposes some strict
limitations, especially the inheritance relationship. The inheritance restriction pre-
vents external methods from using overriding behavior, limiting them to overloading
and its drawbacks.

 The solution is to use the implicit system to associate a type class with the external
types. For the sort method, it can be modified to accept an implicit parameter of type
Sorter, where the Sorter class contains all the sort logic, as follows:

trait Sorter[A,B] {
def sort(a : A) : B

168 CHAPTER 7 Using implicits and types together
}
def sort[A,B](col: A)(implicit val sorter: Sorter[A,B]) =

sorter.sort(col)

The Sorter class is defined with a single method sort. The sort method accepts a
value of type A and returns type B. It’s assumed that A and B are collections types. The
sort method is constructed such that it accepts a collection of type A and an implicit
Sorter object and sorts the collection.

 The sort algorithm selection has been turned into a type system problem. Each
algorithm has been converted into a type and the selection has been encoded into the
implicit system. This premise can be generalized to encode other types of problems
into the type system.

 It’s simple to encode conditional logic into the type system. This can be done by
encoding Boolean types into the type system.

sealed trait TBool {
type If[TrueType <: Up, FalseType <: Up, Up] <: Up

}

The TBool trait is defined having one type constructor If. This type constructor can
be considered a method working inside the type system with types as its arguments
and types as its results. The If type constructor takes three arguments: the type to
return if the TBool is true, the type to return if the TBool is false, and an upper bound
for the return values. Now let’s encode the true and false types into the type system.

class TTrue extends TBool {
type If[TrueType <: Up, FalseType <: Up, Up] = TrueType

}

class TFalse extends TBool {
type If[TrueType <: Up, FalseType <: Up, Up] = FalseType

}

The TTrue type represents true in the type system. Its If type constructor is overrid-
den to return the first type passed in. The TFalse type represents false in the system.
Its If type constructor is overridden to return the second type passed in. Let’s use
these types:

scala> type X[T <: TBool] = T#If[String, Int, Any]
defined type alias X

scala> val x : X[TTrue] = 5
<console>:11: error: type mismatch;
found : Int(5)
required: X[booleans.TTrue]

val x : X[TTrue] = 5
^

scala> val x : X[TTrue] = "Hi"
x: X[booleans.TTrue] = Hi

The X type constructor is created to accept an encoding Boolean type and return
either the type String or the type Int. In the next line, the value x is defined with a

169Conditional execution using the type system
type of X[TTrue], but because the X type constructor is designed to return the type
String when passed the TTrue type, compilation fails because the value is of type Int.
The next definition of x succeeds because the X type constructor evaluates to String
and the value is of type String.

 This mechanism of encoding logic into the type system can be useful at times. One
example is heterogeneous lists.

7.4.1 Heterogeneous typed list

One feature that’s lacking in the Scala standard library but that’s available in the Meta-
Scala library is a heterogeneous typed list—that is, a type-safe list of values with
unbounded size. This is similar to Scala’s TupleN classes, except that a heterogeneous
typed list supports append operations to grow the list with additional types. The key to
a type-safe list is encoding all the types of the list into the type system and preserving
them throughout the usage of the list.

 Here’s an example of a heterogeneous list instantiation:

scala> val x = "Hello" :: 5 :: false :: HNil
x: HCons[java.lang.String,HCons[Int,HCons[Boolean,HNil]]] =

Hello :: 5 :: false :: Nil

The preceding line constructs a heterogeneous list comprising of a string, an integer,
and a Boolean value. HNil is considered the terminating point of the list, similar to
Nil for scala.immutable.List. The return type is interesting. It contains each of the
types in the list embedded within HCons types, ending with HNil. The structure of the
heterogeneous list is shown in the type. It’s a linked list of cons cells, holding a single
value type and the rest of the list. There’s a special list called HNil, which represents
the termination of a list or an empty list.

 Figure 7.1 is of the heterogeneous list "Hello" :: 5 :: false :: Nil. The HCons
rectangles represent each instance of HCons. The HCons cells are links in the linked
list. They also carry around the current type of the head and the remaining type of the
list. HCons is a linked list both in physical memory and in the type system. The HNil
type represents the termination of the list and is similar to using Nil to terminate ref-
erence/pointer based linked lists. HNil will also represent empty in the type system.

TYPE LEVEL PROGRAMMING The key to writing programs that partially exe-
cute within the type system is to encode all the required information into the
type system. This is the same for creating if/else type constructs or hetero-
geneous lists.

Figure 7.1 Sample
heterogeneous list

170 CHAPTER 7 Using implicits and types together
Let’s look at the implementation:

sealed trait HList {}

final case class HCons[H, T <: HList](head : H,
tail : T)

extends HList {
def ::[T](v : T) = HCons(v,this)
override def toString = head + " :: " + tail

}
final class HNil extends HList {

def ::[T](v : T) = HCons(v,this)
override def toString = "Nil"

}

object HList {
type ::[H, T <: HList] = HCons[H,T]
val :: = HCons
val HNil = new HNil

}

This HList trait is a marker trait for constructing HLists. The HCons type encodes a
link in a linked list. The value for the head is parameterized and can be any type. The
tail is another HList but is parameterized as T. This is how the type system can capture
the complete types of the heterogeneous list. The types are encoded in a linked list of
HCons types as the values are stored in a linked list of HCons values. The HNil class also
extends HList and represents an empty list or the end of list. Finally, the object HList
is used to provide convenience aliases for the HCons and HNil types.

WHY THE DUPLICATED :: METHOD? You may be wondering why, in the simple
HList implementation, the :: method is defined in both the HCons and HNil
classes with the same definition. The answer is the full type of the list is
required when constructing a new HCons cell. If you placed this definition on
HList, the captured type T in any new HCons cell would always be only HList.
This negates the desired effect of preserving the type information in the list.
The source code we include in this book, and describe later, has a solution to
the problem by using a secondary trait, HListLike[FullListType], that cap-
tures the complete type of the current list and defines the :: method using
this type.

The :: and HNil types are encoded as a class with corresponding value because they
must be used in type signatures and expressions. The class types allow them to be
directly referenced in type signatures, and the values allow them to be used as expres-
sions. Let’s look at an example:

scala> val x : (String :: Int :: Boolean :: HNil) =
"Hi" :: 5 :: false :: HNil

x: HList.::[String,HList.::[Int,HList.::[Boolean,HNil]]] =
Hi :: 5 :: false :: Nil

Listing 7.10 Basic HList implementation

Link type

Empty list

Convenience
alias for HCons

171Conditional execution using the type system
The val x is defined with type String :: Int :: Boolean :: HNil and the expression
"Hi" :: 5 :: false :: HNil. If we made HNil an object, the type would instead be
String :: Int :: Boolean :: HNil.type.

 The HCons class was defined as a case class. Combined with the HNil value, this
enables us to extract typed values from a list using pattern matching. Let’s pull the val-
ues out of the x list constructed earlier:

scala> val one :: two :: three :: HNil = x
one: java.lang.String = Hi
two: Int = 5
three: Boolean = false

The first line is a pattern match value assignment from list x. The resulting types of
one, two, and three are String, Int, and Boolean respectively, and the values are
extracted correctly. You can also use this extraction to pull out portions of the list; for
example, let’s pull the first two elements from the x list:

scala> val first :: second :: rest = x
first: String = Hi
second: Int = 5
rest: HList.::[Boolean,HNil] = false :: Nil

This line extracts the first and second value into variables called first and second.
The rest of the list is placed into a variable called rest. Notice the types of each: first
and second have the correct types from the portion of the list, and the rest variables is
of type ::[Boolean,HNil] or Boolean :: HNil. This mechanism of extracting typed
values from the list is handy, but it’d be nice to have an indexing operation.

 The indexing operation can be encoded directly into the type system using func-
tions. Let’s take a look at the following listing:

scala> def indexAt2of3[A,B,C](x : (A :: B :: C :: HNil)) =
| x match {
| case a :: b :: c :: HNil => b
| }

indexAt2of3: [A,B,C](x: HList.::[A,HList.::[B,HList.::[C,HNil]]])B

scala> indexAt2of3(1 :: false :: "Hi" :: HNil)
res5: Boolean = false

The indexAt2of3 method takes a heterogeneous list of three elements and returns
the second element. The next call shows that the method works and will infer the
types from the heterogeneous list.

 This direct encoding of indexing operations is less than ideal. An explosion of
methods is required to index elements into lists of various sizes. The heterogeneous
list would also have support methods like insert into index and remove from index.
These operations would have to be duplicated if we used this style of direct encoding.
Instead, let’s construct a general solution to the problem.

172 CHAPTER 7 Using implicits and types together
7.4.2 IndexedView

Let’s construct a type that looks at a particular index and can perform various opera-
tions like adding, retrieving, or removing the element at the index. This type is called
an IndexedView as it represents a view of the heterogeneous list at a given index into
the list. To be able to append or remove elements from the list, the view must have
access to the types preceding the current index and the types after the current index.
The basic trait looks like this:

sealed trait IndexedView {
type Before <: HList
type After <: HList
type At
def fold[R](f : (Before, At, After) => R) : R
def get = fold((_, value, _) => value)

}

The IndexedView trait defines three abstract types. Before is the types of all the ele-
ments in the list before the current index. After is the types of all elements in the list
after the current index. At is the type at the current index of the list. The Indexed-
View trait defines two operations: fold and get. Fold is used to look at the entire list
and return a given value. Fold takes a function that will look at the before, at and after
portions of the list. This allows us to use fold to perform operations centered at this
current index.

 The get method is implemented in terms of fold to return the value at the cur-
rent index.

 Figure 7.2 shows the IndexedView at the third index of heterogeneous list "Hello"
:: 5 :: false :: Nil. At this index, the Before type would be String :: Int ::HNil.
Notice that the Before type isn’t exactly the same as the previous HCons cell, because
it’s terminated with HNil after the previous two types. The important aspect of the
IndexedView is that it gives us direct access to the type of the current value—that is, we
can name the current type using the type parameter At. It also preserves the types pre-
ceding and following the current type such that we can use them with aggregate func-
tions.

 Constructing an IndexedView at an index in the list is done recursively. Let’s start
with the base case of defining an IndexedView at the first index of a list.

class HListView0[H, T <: HList](val list : H :: T)
extends IndexedView {

type Before = HNil
type After = T
type At = H
def fold[R](f : (Before, At, After) => R): R =

f(HNil, list.head, list.tail)
}

Listing 7.11 IndexedView

173Conditional execution using the type system
The class HListView0 accepts a list of head type H and a tail type of T. The Before type
is an empty list, as there are no elements before for the first index. The After type is
the same as the captured type of the list’s tail, T. The At type is the type of the current
head of the list, H. The fold method is implemented such that it calls the function f
with an empty list, the head and the tail of the list.

 The next case of IndexedView is the recursive case. Let’s create an instance of
IndexedView that delegates to another IndexedView. The idea is that for index N,
there are N-1 classes that deconstruct the HList’s type to the point where the
HListView0 class can be used. Let’s call this recursive class HListViewN.

Figure 7.2 IndexedView

IndexedView folds
We can use the fold operation on IndexedView to implement many methods that
need an index, including remove, append, and split. These methods require a join
operation to join two heterogeneous lists. If this join method was called :::, similar
to normal list joins, we could implement these methods on IndexedView as:
def remove = fold {
(before, _, after) => before ::: after

}

def insertBefore[B](x : B) = fold {
(before, current, after) =>
before ::: (x :: current :: after)

}

def replace[B](x : B) = fold {
(before, _, after) => before ::: (x :: after)

}

def insertAfter[B](x : B) = fold {
(before, current, after) => before ::: (current :: x :: after)

}

The ::: method isn’t covered in this book and left as an exercise for the reader. For
implementation help, see the Meta-Scala library at http://mng.bz/Zw9w.

http://mng.bz/Zw9w

174 CHAPTER 7 Using implicits and types together
final class HListViewN[H, NextIdxView <: IndexedView](
h : H, next : NextIdxView) extends IndexedView {

type Before = H :: NextIdxView#Before
type At = NextIdxView#At
type After = NextIdxView#After
def fold[R](f : (Before, At, After) => R) : R =

next.fold((before, at, after) =>
f(HCons(h, before), at, after))

}

The HListViewN class has two type parameters: H and NextIdxView. H is the type at the
current head of the list. NextIdxView is the type of the next IndexedView class used to
construct an IndexedView. The Before type is the current type parameter H appended
to the next indexer’s HList. The At type is deferred to the next indexer. The After
type is also deferred to the next indexer. The side effect of this is that the At and
After types will be determined by an HListView0 and carried down the recursive
chain by the HListViewN classes. Finally, the fold operation calls fold on the next
IndexedView and wraps the before list with the current value. The HListViewN
expands the previous types of an IndexedView.

 Figure 7.3 shows the recursive nature of HListViewN. To construct an IndexedView
at the third element of an HList requires two HListViewN classes linked to an
HListView0 class. The HListView0 class points directly at the cons cell, which holds
the third element of the HList. Each instance of the HListViewN class appends one of
the previous types of the list to the original HListView0 class. The outer HListViewN
class holds the correct types for an IndexedView of the original list at element 2.

 One important piece to mention about the HListViewN classes is that they retain
references to the elements of the list and recursively rebuild portions of the list in

Figure 7.3 Recursive HListViewN

175Conditional execution using the type system
their fold method. You can see this in the diagram with the arrows labeled “h”. The
runtime performance implications are that the farther down a list an index goes, the
more recursion required to perform operations.

 Now that there’s a mechanism to construct IndexedView classes at arbitrary depths
of the HList, there must be a method of constructing these classes. Let’s split this pro-
cess into two. The first will be a mechanism that takes a list and builds a type for the
view at index N of that list. The second mechanism is a way of constructing the recur-
sive IndexedView types if the final type is known.

 For the first mechanism, let’s add a type to the HList class that will construct an
IndexedView at a given index value for the current list.

sealed trait HList {
type ViewAt[Idx <: Nat] <: IndexedView

}

The ViewAt type constructor is defined as constructing a subclass of IndexedView. The
full value will be assigned in the HCons and HNil classes respectively. The ViewAt type
constructor takes a parameter of type Nat. Nat is a type that we create for this purpose
representing natural numbers encoded into the type system. Nat is constructed the
same way naturally numbers are constructed in mathematical proofs, by building from
a starting point.

sealed trait Nat
object Nat {

sealed trait _0 extends Nat
sealed trait Succ[Prev <: Nat] extends Nat

type _1 = Succ[_0]
type _2 = Succ[_1]

...
type _22 = Succ[_21]

}

The trait Nat is used to mark natural number types. The trait _0 is used to denote the
starting point for all natural numbers, zero. The Succ trait isn’t directly referenced
but is used to construct the rest of the natural number set (or at least as many as we
wish to type). The types _1 through _22 are then defined using the Succ trait applied
to the previously defined type.

 The Nat types _0 through _22 can now be used to denote indexes into an HList.
The next step is to use these index values to construct the IndexedView type for an
HList at that index. To do so, let’s construct a mechanism to pass type lambdas into
natural numbers and build complete types.

sealed trait Nat {
type Expand[NonZero[N <: Nat] <: Up, IfZero <: Up, Up] <: Up

}

The Nat trait is given a new type called Expand. Expand takes three type parameters.
The first is a type lambda that’s applied against the previous natural number if the Nat

Listing 7.12 Natural numbers encoded into types

Encoding of 0

Recursively
created from 0

176 CHAPTER 7 Using implicits and types together
isn’t _0. The second is the type returned if the natural number is _0. The third type is
an upper bound for the first two types to avoid compilation type inference issues. Let’s
implement this type on the _0 and Succ traits:

sealed trait _0 extends Nat {
type Expand[NonZero[N <: Nat] <: Ret, IfZero <: Ret, Ret] =

IfZero
}
sealed trait Succ[Prev <: Nat] extends Nat {

type Expand[NonZero[N <: Nat] <: Ret, IfZero <: Ret, Ret] =
NonZero[Prev]

}

The _0 trait defines its Expand type to be exactly the second parameter. This is similar
to a method call that returns its second parameter. The Succ trait defines its expand
method to call the type constructor passed into the first parameter against the previous
Nat type. This can be used to recursively build a type by providing a type that uses itself
in the NonZero type attribute. Let’s use this trick and define the ViewAt type on HList.

final case class HCons[H, T <: HList](head: H,
tail: T) extends HList {

..
type ViewAt[N <: Nat] = N#Expand[

({ type Z[P <: Nat] = HListViewN[H, T#ViewAt[P]] })#Z,
HListView0[H,T],
IndexedView]

}

The ViewAt type is defined as an expansion against the natural number parameter N.
The first type parameter to Expand is the recursive type constructor. This type con-
structor is defined as HListViewN[H, T#ViewAt[P]]. Deconstructing, the type is an
HListViewN comprised of the current head type and the tail’s ViewAt type applied to
the previous natural number (or N-1). Eventually, there will be a ViewAt called for _0
that will return the second parameter, HListView0[H,T]. If a Nat index is passed into
the ViewAt type that goes beyond the size of the list, it will fail at compile time with the
following message:

scala> val x = 5 :: "Hi" :: true :: HNil
x: HCons[Int,HCons[java.lang.String,HCons[Boolean,HNil]]] =

5 :: Hi :: true :: HNil

scala> type X = x.ViewAt[Nat._11]
<console>:11: error: illegal cyclic reference involving type ViewAt

type X = x.ViewAt[Nat._11]

The compiler will issue an illegal cyclic reference in this instance. Although not
exactly the error message desired in this situation, the compiler prevents the invalid
index operation.

 Now that the indexed type can be constructed for a given index and a given HList,
let’s encode the construction of the IndexedView into the implicit system. We can do
this with a recursive implicit lookup against the constructed IndexedView type.

Recursive
type
lambda

Encoding
of 0

177Conditional execution using the type system
object IndexedView {
implicit def index0[H, T <: HList](list : H :: T) : HListView0[H,T] =

new HListView0[H,T](list)
implicit def indexN[H, T <: HList, Prev <: IndexedView](

list: (H :: T))(
implicit indexTail: T => Prev): HListViewN[H,Prev] =

new HListViewN[H, Prev](list.head, indexTail(list.tail))
}

The IndexedView companion object is given two implicit functions: index0 and
indexN. The function index0 takes an HList and constructs an indexed view of index
_0 on that list. The function indexN takes an HList and an implicit conversion of the
tail of the HList into an IndexedView and returns a new IndexedView of the complete
list. The type parameters on indexN preserve the types of the head and tail of the list
as well as the full type of the IndexedView used against the tail of the list.

 Now when the compiler looks for a type Function1[Int :: Boolean :: Nil,
HListViewN[Int, HListView0[Boolean, HNil]]], the indexN function will be called
with H = Int and T = Boolean :: HNil and Prev = ?. The compiler will then look for
an implicit Function1[Boolean :: Nil, ? <: IndexedView]. This is satisfied by the
index0 implicit, and the Prev type is filled in as HListView0[Boolean, HNil]. The full
implicit value is found, and a constructor of an IndexedView from a HList is available.
Now let’s write the indexing method itself:

trait HCons[H, T <: HList] extends HList {
type FullType = HCons[H,T]
def viewAt[Idx <: Nat](

implicit in: FullType => FullType#ViewAt[Idx]) =
in(this.asInstanceOf[FullType])

...
}

The viewAt method is defined as taking a type parameter of the Nat index and an
implicit function that constructs the IndexedView from the current list. Now the het-
erogeneous lists support indexing.

scala> val x = 5 :: "Hi" :: true :: HNil
x: HCons[Int,HCons[java.lang.String,HCons[Boolean,HNil]]] =

5 :: Hi :: true :: HNil

scala> x.viewAt[Nat._1].get
res3: java.lang.String = Hi

The first line in the example constructs a heterogeneous list and the second shows
how to use a natural number to index into the list (assuming _0 is the first element of
the list).

 The heterogeneous list demonstrates the power of Scala’s type system. It encodes
an arbitrary sequence of types and allows type-safe indexing of this sequence. Most
type-level programming problems within Scala can be handled using the mechanisms
seen with heterogeneous lists, in particular:

178 CHAPTER 7 Using implicits and types together
 Divide and Conquer: Use recursion to loop over types
 Encode Boolean and integer logic into types
 Use implicit lookup to construct recursive types or return types

This type-level programming is the most advanced usage of the Scala type system that
may be required for general development. The simple build tool (SBT) is used to
build Scala code that utilizes a different form of the HList presented earlier.
Although HLists are complicated, the SBT tool introduces them in a way that’s sim-
ple and elegant for the user. It’s worth going to http://mng.bz/Cdgl and reading
how they’re used.

7.5 Summary
In this chapter, you learned the advanced techniques for utilizing Scala’s type system.
Implicits allow the capturing of runtime and compile time type constraints. You can
use type classes as a general purpose abstraction to associate types with functionality.
They are one of the most powerful forms of abstraction within Scala. Finally, we
explored in depth the conditional execution and type level programming. This
advanced technique tends to be used in core libraries and not as much in user code.

 The main theme in all of these sections is that Scala allows developers to preserve
type information while writing low-level generic functions. The more type information
that can be preserved, the more errors the compiler can catch. For example, the
synchronize method defined in section 7.3 was able to prevent accidental argument
reversal by capturing the from and to types. The HList class allows developers to cre-
ate arbitrarily long typed lists of elements that can be modified directly rather than
passing around a List[Any] and having to determine the types of each element at
runtime. This also prevents users from placing the wrong type at a given index.

 Writing low-level generic functions is also important. The less a method or class
assumes about its arguments or types, the more flexible it is and the more often it can
be reused. In section 7.2, the implicit available of the <:< class was used to add a con-
venience method directly on the Set class.

 The next chapter covers the Scala collections library, and we make heavy use of the
concepts defined in this chapter. In particular, the collections library attempts to
return the most specific collection type possible after any method call. This has some
interesting consequences, as you’ll see.

http://mng.bz/Cdgl

Using the right collection
The Scala collections library is the single most impressive library in the Scala eco-
system. It’s used in every project and provides myriad utility functions. The Scala
collections provide many ways of storing and manipulating data, which can be over-
whelming. Because most of the methods defined on Scala collections are available
on every collection, it’s important to know what the collection types imply in terms
of performance and usage patterns.

 Scala’s collections also split into three dichotomies:

 Immutable and mutable collections
 Eager and delayed evaluation
 Sequential and parallel evaluation

In this chapter
 Determining the appropriate collection for an algorithm

 Descriptions of immutable collection types

 Descriptions of mutable collection types

 Changing the execution semantics of a collection from strict
to lazy and back

 Changing the execution semantics of a collection from
sequential to parallel and back

 Writing methods for all collection types
179

180 CHAPTER 8 Using the right collection
Each of these six categories can be useful. Sometimes parallel execution can drasti-
cally improve throughput, and sometimes delaying the evaluation of a method can
improve performance. The Scala collections library provides the means for develop-
ers to choose the attributes their collections should have. We’ll discuss these in sec-
tions 8.2 through 8.4

 The biggest difficulty with all the new power from the collections library is working
generically across collections. We discuss a technique to handle this in section 8.5.

 Let’s look at the key concepts in the Scala collection library and when to use each.

8.1 Use the right collection
With all the new choices in the Scala collections library, choosing the right collection
is important. Each collection has different runtime characteristics and is suited for dif-
ferent styles of algorithms. For example, Scala’s List collection is a single linked-list
and is suited for recursive algorithms that operate by splitting the head off the rest of
the collection. In contrast, Scala’s Vector class is implemented as a set of nested arrays
that’s efficient at splitting and joining. The key to utilizing the Scala collections library
is knowing what the types convey.

 In Scala, there are two places to worry about collection types: creating generic meth-
ods that work against multiple collections and choosing a collection for a datatype.

 Creating generic methods that work across collection types is all about selecting
the lowest possible collection type that keeps the generic method performant, but
isn’t so high up the collections hierarchy that it can’t be used for lots of different col-
lections. In fact, the type-system tricks we discuss in section 7.3 can allow you to use
type-specialized optimizations generically. We’ll show this technique in section 8.5.

 Choosing a collection for a datatype is done by instantiating the right collection
type for the use case of the data. For example, the scala.collection.immutable
.List class is ideal for recursive algorithms that split collections by head and tail. The
scala.collection.immutable.Vector collection is suited toward most general pur-
pose algorithms, due to its efficient indexing and its ability to share much of its inter-
nal structure when using methods like +: and ++. We’ll show this technique in
section 8.3.

 The core abstractions in the collections library illustrate different styles of
collections.

8.1.1 The collection hierarchy

The Scala collection hierarchy is rich in depth. Each level in the hierarchy represents
a new set of abstract functions that can be implemented to define a new collection or
add performance goals onto the parent class. The collections hierarchy starts with the
Traversable abstraction and works it way toward Map, Set, and IndexedSequence
abstractions. Let’s look at the abstract hierarchy of the collections library.

 Let’s look at the collections hierarchy in figure 8.1.
 The collections hierarchy starts with the trait TraversableOnce. This trait repre-

sents a collection that can be traversed at least once. This trait abstracts between

181Use the right collection
Traversable and Iterator. An Iterator is a stream of incoming items where advanc-
ing to the next item consumes the current item. A Traversable represents a collec-
tion that defines a mechanism to traverse the entire collection but can be traversed
repeatedly. The Iterable trait is similar to Traversable but allows the repeated cre-
ation of an Iterator. The hierarchy branches out into sequences, maps (also known
as dictionaries), and sets.

THE GEN* TRAITS In reality, the collection hierarchy has a duplicate generic
variant. Every trait in the hierarchy has a Gen* trait that it inherits from, such
as GenTraversableOnce, GenIterator, and GenSeq. The generic variants of
collections offer no guarantees on serial or parallel execution, while the traits
discussed here enforce sequential execution. The principles behind each col-
lection are the same, but traversal ordering isn’t guaranteed for parallel col-
lections. We discuss parallel collections in detail in section 8.4.2.

Let’s look at when to use each of the collection types.

A rich set of collections
The Scala collections library is rich in choices. It provides a core set of abstractions
for collections. This set is branched into several dichotomies:

 Sequential versus parallel

 Eager evaluation versus lazy evaluation

 Immutable versus mutable collections

The core set of abstractions has variants that allow one or more of these differenti-
ators to be true.

def get(key : K) : Option[V]
def +(kv : (K,V)) : Map[K,V]
def -(k : K) : Map[K,V]
def iterator : Iterator[(K,V)]

def isEmpty : Boolean
def head : T
def tail : LinearSeq[T]

Figure 8.1 Generic collections hierarchy

182 CHAPTER 8 Using the right collection
8.1.2 Traversable

The Traversable trait is defined in terms of the foreach method. This method is an
internal iterator---that is, the foreach method takes a function that operates on a sin-
gle element of the collection and applies it to every element of the collection. Travers-
able collections don’t provide any way to stop traversing inside the foreach. To make
certain operations efficient, the library uses preinitialized exceptions to break out of
the iteration early and prevent wasted cycles. This technique is somewhat efficient on
the JVM, but some simple algorithms will suffer greatly. The index operation, for
example, has complexity O(n) for Traversable.

When using Traversables, it’s best to utilize operations that traverse the entire collec-
tion, such as filter, map, and flatMap. Traversables aren’t often seen in day-to-day
development, but when they are, it’s common to convert them into another sort of
collection for processing. For example, we’ll define a Traversable that opens a file
and reads its lines for every traversal.

class FileLineTraversable(file: File) extends Traversable[String] {
override def foreach[U](f: String => U) : Unit = {

val input = new BufferedReader(new FileReader(file))
try {

var line = input.readLine
while(line != null) {

f(line)
line = input.readLine

}
} finally {

input.close()
}

}
override def toString =

"{Lines of " + file.getAbsolutePath + "}"
}

Internal versus external iterators
Iterators can either be internal or external. An internal iterator is one where the col-
lection or owner of the iterator is responsible for walking it through the collection. An
external iterator is one where the client code can decide when and how to iterate.

Scala supports both types of iterators with the Traversable and Iterable types.
The Traversable trait provides the foreach method for iteration, where a client will
pass a function for the collection to use when iterating. The Iterable trait provides
an iterator method, where a client can obtain an iterator and use it to walk through
the collection.

Scala also defines Iterable as a subclass of Traversable. The downside is that
any collections that only support internal iterators must extend Traversable and
nothing else.

183Use the right collection
The FileLineTraversable class takes a file in its constructor and extends the
Traversable trait for Strings. The foreach method is overridden to open the file and
read lines from the file. The lines are passed into the function f. The method uses a
try-finally block to ensure the file is closed after iteration. This implementation
means that every time the collection is traversed, the file is opened and all of its con-
tents are enumerated. Finally, the toString method is overridden so that when it’s
called within the REPL, the entire file’s contents aren’t enumerated. Let’s use this class.

scala> val x = new FileLineTraversable(new java.io.File("test.txt"))
x: FileLineTraversable = {Lines of
/home/.../chapter8/collections-examples/test.txt}

scala> for { line <- x
| word <- line.split("\\s+")
| } yield word

res0: Traversable[java.lang.String] =
List(Line, 1, Line, 2, Line, 3,

Line, 4, Line, 5, ")

The first line constructs a FileLineTraversable against the test.txt file. This sam-
ple file contains lines that look like the following Line 1. The second line iterates over
all the lines in the file and splits this line into words before constructing a new list with
the words. The result is another Traversable of String that has all the individual
words of the file.

 The return type is Traversable even though the runtime type of the resulting list
of words is a scala.List. The starting type in the for expression was a Traversable,
so the resulting type of the expression will also be a Traversable without any outside
intervention.

 One concern with using the FileLineTraversable class is that the entire file would
have to be traversed for any operation on the collection. Although we can’t create effi-
cient random element access, the traversable can be terminated early if necessary. Let’s
modify the definition of FileLineTraversable to include logging statements.

override def foreach[U](f: String => U): Unit = {
println("Opening file")
val input = new BufferedReader(new FileReader(file))

try {
var line = input.readLine
while(line != null) {

f(line)
line = input.readLine

}
println("Done iterating file"

} finally {
println("Closing file")
input.close()

}
}

Additional logging

184 CHAPTER 8 Using the right collection
The foreach method has been modified with logging statements in three places: The
first is when the file is opened, the second is when the file has reached its termination
state, and the third is when the file is closed. Let’s see what happens with a previous
example usage:

scala> val x = new FileLineTraversable(new java.io.File("test.txt"))
x: FileLineTraversable = {Lines of

/home/.../scala-in-depth/chapter8/collections-examples/test.txt}

scala> for { line <- x
| word <- line.split("\\s+")
| } yield word

Opening file
Done iterating file
Closing file
res0: Traversable[java.lang.String] =

List(Line, 1, Line, 2, Line, 3, Line, 4, Line, 5, ")

The FileLineTraversable is constructed the same as before. But now when trying to
extract all the individual words, the logging statements are printed. The file is
opened, the iteration is completed, and the file is closed. Now what happens if only
the top two lines of the file need to be read?

scala> for { line <- x.take(2)
| word <- line.split("\\s+")

| } yield word
Opening file
Closing file
res1: Traversable[java.lang.String] = List(Line, 1, Line, 2)

This time the take method is
called against the FileLine-

Traversable. The take method
is used to limit a collection to the
first n elements, or in this case the
first two elements. Now when
extracting the lines of the file, the
Opening file and Closing file
logging statements print, but not
the Done iterating file state-
ment. This is because the
Traversable class has an effi-
cient means of terminating
foreach early when necessary.
We do this by throwing a
scala.util.control.Control-

Throwable. This preallocated
exception can be efficiently
thrown and caught on the JVM.

Limit two lines

Carefully catching exceptions
In Scala, some control flows, such as nonlocal
closure returns and break statements, are
encoded using subclasses of the scala
.util.control.ControlThrowable. Due to
JVM optimizations, this leads to an efficient
implementation but requires Scala users to
practice restraint in capturing Exceptions. For
example, instead of catching all throwables,
when using Scala you should make sure to
rethrow ControlThrowable exceptions.
try { ... } catch {
 case ce : ControlThrowable => throw ce
 case t : Throwable => ...
}

It’s usually considered bad practice to catch
Throwable instead of Exception. In Scala, if
you must catch Throwable make sure to
rethrow ControlThrowable.

185Use the right collection
The downside to this approach is that the take method will read three lines of the file
before the exception is thrown to prevent continued iteration.

Traversable is one of the most abstract and powerful traits in the collections hier-
archy. The foreach method is the easiest method to implement for any collection
type, but it’s suboptimal for many algorithms. It doesn’t support random access effi-
ciently and it requires one extra iteration when attempting to terminate traversal
early. The next collection type, Iterable, solves the latter point by using an external
iterator.

8.1.3 Iterable

The Iterable trait is defined in terms of the iterator method. This returns an exter-
nal iterator that you can use to walk through the items in the collection. This class
improves slightly on Traversable performance by allowing methods that need to
parse a portion of the collection stop sooner than Traversable would allow.

 External iterators are objects you can use to iterate the internals of another object.
The Iterable trait’s iterator method returns an external iterator of type Iterator.
The Iterator supports two methods, hasNext and next. The hasNext method returns
true if there are more elements in the collection and returns false otherwise. The
next method returns the next element in the collection or throws an exception if
there are none left.

 One of the downsides to having an external iterator is that collections such as the
FileLineTraversable are hard to implement. The traversal of the collection is exter-
nal to the collection itself, so the FileLineTraversable needs to know when all itera-
tors are completed or no longer used before it can clean up memory/resources. In
the worst case, the file may remain open for the entire life of an application. Because
of this issue, subclasses of Iterable tend to be standard collections.

 The major benefit of the Iterable interface is the ability to coiterate two collec-
tions efficiently. For example, let’s imagine that there are two lists. The first is a list of
names and the second is a list of addresses. We can use the Iterable interface to iter-
ate through both lists at the same time efficiently.

scala> val names = Iterable("Josh", "Jim")
names: Iterable[java.lang.String] = List(Josh, Jim)

scala> val address = Iterable("123 Anyroad, Anytown St 11111",
"125 Anyroad, Anytown St 11111")

address: Iterable[java.lang.String] =
List(123 Anyroad, Anytown St 11111, 125 Anyroad, Anytown St 11111)

scala> val n = names.iterator
n: Iterator[java.lang.String] = non-empty iterator

scala> val a = address.iterator
a: Iterator[java.lang.String] = non-empty iterator

scala> while(n.hasNext && a.hasNext) {
| println(n.next + " lives at " + a.next)
| }

186 CHAPTER 8 Using the right collection
Josh lives at 123 Anyroad, Anytown St 11111
Jim lives at 125 Anyroad, Anytown St 11111

The first line constructs an Iterable of name strings. The second line constructs an
Iterable of address strings. The value n is created as an external iterator on the name
strings. The value a is created as an external iterator on the address strings. The while
loop iterates over both the a and n iterators simultaneously.

When joining information between two collections, requiring the Iterable trait can
greatly improve the efficiency of the operation. But we still have an issue with using
external iterators on mutable collections. The collection could change without the
external iterator being aware of the change:

scala> val x = collection.mutable.ArrayBuffer(1,2,3)
x: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 2, 3)

scala> val i = x.iterator
i: Iterator[Int] = non-empty iterator

The first line constructs a new ArrayBuffer collection (a mutable collection that
extends from Iterable) with the elements 1, 2, and 3. Next, the value i is constructed
as an iterator over the array. Now let’s remove all the elements from the mutable struc-
ture and see what happens to the i instance:

scala> x.remove(0,3)

scala> i.hasNext
res3: Boolean = true
scala> i.next
java.lang.IndexOutOfBoundsException: 0
...

The first line is a call to remove. This will remove all elements in the collection. The
second line calls hasNext on the iterator. Because the iterator is external, it isn’t aware
that the underlying collection has changed and returns true, implying there’s a next
element. The next line calls the next method, which throws a java.lang.Index-
OutOfBoundsException.

 We should use the Iterable trait when explicit external iteration is required for a
collection, but random access isn’t required.

Zipping collection
Scala defines a zip method that will convert two collections into a single collection
of pairs. The coiteration program is equivalent to this line of Scala:
names.iterator zip address.iterator map { case (n, a) => n+" lives at

"+a } foreach println

The zip method is used against names and addresses. The map method decon-
structs the pairs and constructs the statement <name> lives at <address>".
Finally, the statements are sent to the console using the println method.

187Use the right collection
8.1.4 Seq

The Seq trait is defined in terms of the length and apply method. It represents collec-
tions that have a sequential ordering. We can use the apply method to index into the
collection by its ordering. The length method returns the size of the collection. The
Seq trait offers no guarantees on performance of the indexing or length methods. We
should use the Seq trait only to differentiate Sets and Maps from sequential collec-
tions---that is, if the order in which things are placed into a collections is important
and duplicates should be allowed, then the Seq trait should be required.

 A good example of when to use a Sequence is when working with sampled data,
such as audio. Audio data is recorded at a sampling rate and the order in which it
occurs is important in processing that data. Using the Seq trait allows the computation
of sliding windows. Let’s instantiate some data and compute the sum of elements in
sliding windows over the data.

scala> val x = Seq(2,1,30,-2,20,1,2,0)
x: Seq[Int] = List(2, 1, 30, -2, 20, 1, 2, 0)

scala> x.tails map (_.take(2)) filter (_.length > 1) map (_.sum) toList
res24: List[Int] = List(3, 31, 28, 18, 21, 3, 2)

The first line constructs an example input audio sequence. The second line computes
the sum of sliding windows. The sliding windows are created using the tails method.
The tails method returns an iterator over the tail of an existing collection. This
means, each successive collection in the tails iterator has one less element. These
collections can be converted into sliding windows using the take method, which
ensures only N elements exist (in this case two). Next, we use the filter method to
remove windows that are less than the desired size. Finally, the sum method is called
on these windows and the resulting collection is converted to a list.

Sequence tends to be used frequently in abstract methods when the algorithms are
usually targeted at one of its two subclasses: LinearSeq and IndexedSeq. We prefer
these where applicable. Let’s look at LinearSeq first.

8.1.5 LinearSeq

The LinearSeq trait is used to denote that a collection can be split into a head and
tail component. The trait is defined in terms of three “assumed to be efficient”
abstract methods: isEmpty, head, and tail. The isEmpty method returns true if the
collection is empty. The head method returns the first element of the collection if the

The sliding method
Scala defines a sliding method on collections that can be used rather than the tails
method. The preceding example could be rewritten as follows:

scala> Seq(2,1,30,-2,20,1,2,0).sliding(2).map(_.sum).toList
res0: List[Int] = List(3, 31, 28, 18, 21, 3, 2)

188 CHAPTER 8 Using the right collection
collection isn’t empty. The tail method returns the entire collection minus the head.
This type of collection is ideal for tail recursive algorithms that split collections by
their head.

 The canonical example of a LinearSeq is a Stack. A Stack is a collection that oper-
ates like a stack of toys. It’s easy to get the last toy placed on the stack, but it could be
frustrating to continually remove toys to reach the bottom of the stack. A LinearSeq is
similar in that it can be decomposed into the head (or top) element and the rest of
the collection.

 Let’s look at how we can use a LinearSeq as a stack in a tree traversal algorithm.
First, let’s define a binary tree datatype.

sealed trait BinaryTree[+A]
case object NilTree extends BinaryTree[Nothing]
case class Branch[+A](value: A,

lhs: BinaryTree[A],
rhs: BinaryTree[A]) extends BinaryTree[A]

case class Leaf[+A](value: A) extends BinaryTree[A]

The trait BinaryTree is defined as covariant on its type parameter A. It has no meth-
ods and is sealed to prevent subclasses outside of the current compilation unit. The
object NilTree represents a completely empty tree. It’s defined with the type parame-
ter specified to Nothing, which allows it to be used in any BinaryTree. The Branch
class is defined such that it has a value and a left-hand tree and right-hand tree.
Finally, the Leaf type is defined as a BinaryTree that contains only a value. Let’s
define an algorithm to traverse this BinaryTree.

def traverse[A, U](t: BinaryTree[A])(f: A => U): Unit = {
@annotation.tailrec
def traverseHelper(current: BinaryTree[A],

next: LinearSeq[BinaryTree[A]]): Unit =
current match {

case Branch(value, lhs, rhs) =>
f(value)
traverseHelper(lhs, rhs +: next)

case Leaf(value) if !next.isEmpty =>
f(value)
traverseHelper(next.head, next.tail)

case Leaf(value) => f(value)
case NilTree if !next.isEmpty =>

traverseHelper(next.head, next.tail)
case NilTree => ()

}
traverseHelper(t, LinearSeq())

}

The traverse method is defined to take a BinaryTree of content elements A and a
function that operates on the contents and returns values of type U. The traverse
method uses a nested helper method to implement the core of its functionality. The
traverseHelper method is tail recursive and is used to iterate over all the elements
in the tree. The traverseHelper method takes the current tree it’s iterating over and

189Use the right collection
a nextLinearSeq, which contains the elements of the binary tree that it should look
at later.

 The traverseHelper method does a match against the current tree. If the current
tree is a branch, it’ll send the value at the branch to the function f and then recur-
sively call itself. When it does this recursive call, it passes the left-hand tree as the next
node to look at and appends the right-hand tree to the front of the LinearSeq using
the +: method. Appending the right-hand tree to the LinearSeq is a fast operation,
usually O(1), due to the requirements of the LinearSeq trait.

 If the traverseHelper method encounters a Leaf, the value is sent to the function
f. But if the next stack isn’t empty, the stack is decomposed using the head and tail
method. These methods are defined as efficient for the LinearSeq, usually O(1). The
head is passed into the traverseHelper method as the current tree and the tail is
passed as the next stack.

 Finally, if the traverseHelper method encounters a NilTree it operates similarly
to when it encounters a Leaf. Because a NilTree doesn’t contain data, only the recur-
sive traverseHelper call is needed.

 Now, let’s construct a BinaryTree and see what traversal looks like:

scala> Branch(1, Leaf(2), Branch(3, Leaf(4), NilTree))
res0: Branch[Int] = Branch(1,Leaf(2),Branch(3,Leaf(4),NilTree))

scala> BinaryTree.traverse(res0)(println)
1
2
3
4

First, a BinaryTree is created with two branches and two leaves. Next the Binary-
Tree.traverse method is called against the tree with the method println for tra-
versal. The resulting output is each value printed in the expected order: 1, 2, 3, 4.

 This technique of manually creating a Stack on the Heap and deferring work onto
it is a common practice when converting a general recursive algorithm into a tail
recursive algorithm or an iterative algorithm. When using a functional style with tail
recursion, the LinearSeq trait is the right collection to use. Let’s look at a similar col-
lection, the IndexedSeq.

8.1.6 IndexedSeq

The IndexedSeq trait is similar to the Seq trait except that it implies that random
access of collection elements is efficient---that is, accessing elements of a collection
should be constant or near constant. This collection type is ideal for most general-
purpose algorithms that don’t involve head-tail decomposition. Let’s look at some of
the random access methods and their utility.

scala> val x = IndexedSeq(1, 2, 3)
x: IndexedSeq[Int] = Vector(1, 2, 3)

scala> x.updated(1, 5)

190 CHAPTER 8 Using the right collection
res0: IndexedSeq[Int] = Vector(1, 5, 3)

An IndexedSeq can be created using the factory method defined on the IndexedSeq
object. By default, this will create an immutable Vector, described in section 8.2.1.
IndexedSeq collections have an updated method that takes an index and a new value
and returns a new collection with the value at the index updated. In the preceding
example, the value at index 1 is replaced with the integer 5.

 Indexing into an IndexedSeq is done with the apply method. In Scala, a call to an
apply method can be abbreviated so that indexing looks like the following:

scala> x(2)
res1: Int = 3

The expression x(2) is shorthand for x.apply(2). The result of the expression is the
value at index 2 of the collection x. In Scala, indexing into any type of collection,
including arrays, is done with an apply method rather than specialized syntax.

 Sometimes it’s more important to check whether or not a collection contains a par-
ticular item than it is to retain ordering. The Set collection does this.

8.1.7 Set

The Set trait denotes a collection where each element is unique, at least according to
the == method. A Set is the ideal collection to use when testing for the existence of an
element in a collection or to ensure there are no duplicates within a collection.

 Scala supports three types of immutable and mutable sets: TreeSet, HashSet, and
BitSet.

 The TreeSet is implemented as a red black tree of elements. A red black tree is a
data structure that attempts to remain balanced, preserving O(log2n) random access to
elements. We find elements in the tree by checking the current node. If the current
node is greater than the desired value, we check the left subbranch. If the current
node is less than the desired value, then we check the right subbranch. If the elements
are equal, then the appropriate node was found. To create a TreeSet, an implicit
Ordering type class is required so that the less than and greater than comparisons can
be performed.

 The HashSet collection is also implemented as a tree of elements. The biggest dif-
ference is that the HashSet uses the hash of a value to determine which node in the
tree to place an element. This means that elements that have the same hash value are
located at the same tree node. If the hashing algorithm has a low chance of collision,
HashSets generally outperform TreeSets for lookup speed.

 The BitSet collection is implemented as a sequence of Long values. The BitSet
collection can store only integer values. A BitSet stores an integer value by setting the
bit corresponding to that value to true in the underlying Long value. BitSets are
often used to efficiently track and store in memory a large set of flags.

 One of the features of Sets in Scala is that they extend from the type (A) =>

Boolean—that is, a Set can be used as a filtering function. Let’s look at mechanisms to
limit the values in one collection by another.

191Use the right collection
scala> (1 to 100) filter (2 to 4).toSet
res6: scala.collection.immutable.IndexedSeq[Int] = Vector(2, 3, 4)

The range of numbers from 1 to 100 is filtered by the Set of numbers from 2 to 4.
Note that any collection can be converted into a set (with some cost) using the toSet
method. Because a Set is also a filtering function, it can be passed directly to the
filter function on the range. The result is that only the numbers 2 through 4 are
found in the result of the filter call.

 Although Scala’s Set collection provides efficient existence checking on collec-
tions, the Map collection performs a similar operation on key value pairs.

8.1.8 Map

The Map trait denotes a collection of key value pairs where only one value for a given
key exists. Map provides an efficient lookup for values based on their keys:

scala> val errorcodes = Map(1 -> "O NOES", 2 -> "KTHXBAI", 3 -> "ZOMG")
errorcodes: scala.collection.immutable.Map[Int,java.lang.String] =

Map(1 -> O NOES, 2 -> KTHXBAI, 3 -> ZOMG)

scala> errorcodes(1)
res0: java.lang.String = O NOES

The first statement constructs a map of error codes to error messages. The -> method
is from an implicit defined in scala.Predef, which converts an expression of the
form A -> B to a tuple (A,B). The second statement accesses the value at key 1 in the
errorcodes map.

 Scala’s Map has implementation types for HashMaps and TreeMaps. These implemen-
tations are similar to the HashSet and TreeSet implementations. The basic rule of
thumb is that if the key values have an efficient hashing algorithm with low chance of
collisions, then HashMap is preferred.

 Scala’s Map provides two interesting use cases that aren’t directly apparent from the
documentation. The first is that, similarly to Set, a Map can be used as a partial func-
tion from the key type to the value type. Let’s take a look.

scala> List(1,3) map errorcodes
res1: List[java.lang.String] = List(O NOES, ZOMG)

A list of values 1 and 3 is transformed using the errorcodes map. For each element in
the list, a value is searched for in the errorcodes map. The result is a list of error mes-
sages corresponding to the previous list of error values.

 Scala’s Map also provides the ability to specify a default value to return in the event
a key doesn’t yet exist:

scala> val addresses =
| Map("josh" -> "123 someplace dr").withDefaultValue(
| "245 TheCompany St")

addresses: collection.immutable.Map[String,String] =
Map(josh -> 123 someplace dr)

scala> addresses("josh")

192 CHAPTER 8 Using the right collection
res0: java.lang.String = 123 someplace dr

scala> addresses("john")
res1: java.lang.String = 245 TheCompany St

The addresses map is constructed as the configuration of what mailing address to use
for a username. The Map is given a default value corresponding to a local company
address where most users are assumed to be located. When looking up the address for
user josh, a specific address is found. When looking up the address for the user john,
the default is returned.

 In idiomatic Scala, we usually use the generic Map type directly. This may be due to
the underlying implementation being efficient, or from the convenience of three-
letter collection names. Regardless of the original reason, the generic Map type is per-
fect for general purpose development.

 Now that the basic collection types have been outlined, we’ll look at a few specific
immutable implementations.

8.2 Immutable collections
Immutable collections are the default in Scala and have many benefits over mutable
collections in general purpose programming. In particular, immutable collections can
be shared across threads without the need for locking.

 Scala’s immutable collections aim to provide both efficient and safe implementa-
tions. Many of these collections use advanced techniques to ‘share’ memory across dif-
fering versions of the collection. Let’s look at the three most commonly used
immutable collections: Vector,List, and Stream.

8.2.1 Vector

Vectors are the general-purpose utility collection of Scala. Vectors have a log32(N) ran-
dom element access, which is effectively a small constant on the JVM using 32-bit inte-
ger indexes. They’re also completely immutable and have reasonable sharing
characteristics. In the absence of hard performance constraints, you should make
Vectors the default collection. Let’s look at its internal structure to see what makes it
an ideal collection.

Vectors are composed as a trie on the index
position of elements. A trie is a tree where every
child in a given path down the tree shares some
kind of common key as shown in figure 8.2:

 This is an example trie storing index values
from 0 to 7. The root node of the trie is empty.
Each node of the tree contains two values and a
left and right branch. Each branch is labeled 0
or 1. The path to any index in the trie can be
determined from the binary representation of
the number. For example, the number 0 (000)
is the 0th index element in the 0 branch from

Figure 8.2 Example index trie with a
branching factor of two

193Immutable collections
root, while the number 5 (101 in binary) is
down the 1 branch from root, the 0 branch
of the next node and the 1 branch of the
final node. This gives us a well known path
down the trie for any index given the
binary number.

 The binary trie can also be efficient. The
cost of indexing any random element in the
binary index trie is log2(n), but this can be
reduced by using a higher branching factor.
If the branching factor was increased to 32,
the access time for any element would be
log32(n), which for 32-bit indices is about 7 and for 64-bit indices is about 13. For
smaller collections, due to the ordering of the trie, the access time is less. The random
access time of elements scales with the size of the trie.

 The other property of the trie is the level of sharing that can happen. If nodes are
considered immutable, then changing values at a given index can reuse portions of
the trie. Let’s take a look at this in figure 8.3.

 Here’s an updated trie where the value at index 0 is replaced with the value new. To
create the new trie, two new nodes were created and the rest were reused as is. Immu-
table collections can benefit a great deal from sharing structure on every change. This
can help reduce the overhead of changing the collections. In the worst case, the cost
of changing a single element in the trie is log2(n) for a branching factor of 2. This can
be reduced by increasing the branching factor.

 Scala’s Vector collection is similar to an indexed trie with a branch factor of 32.
The key difference is that a Vector represents the branches of a trie as an array. This
turns the entire structure into an array of arrays. Figure 8.4 shows what Scala’s Vector
with branching factor of 2 would look like.

 The binary branched Vector has three primary arrays: display0, display1, and
display2. These arrays represent the depth of the
original trie. Each display element is a successively
deeper nested array: display0 is an array of ele-
ments, display1 is an array of an array of ele-
ments, and display2 is an array of an array of an
array of elements. Finding an element in the col-
lection involves determining the depth of the tree
and indexing into the appropriate display array
the same way that the binary trie was indexed. To
find the number 4, the display depth is 2, so the
display2 array is chosen. The number 4 is 100 in
binary, so the outer array is indexed by 1, the mid-
dle array indexed by 0 and the number 4 is
located at index 0 of the resulting array.

Figure 8.3 Update to trie with sharing

Figure 8.4 Vector’s array structure
with branching factor of 2

194 CHAPTER 8 Using the right collection
 Because Scala’s Vector is branched 32 ways, it provides several benefits. As well as
scaling lookup times and modification times with the size of the collection, it also pro-
vides decent cache coherency because elements that are near each other in the collec-
tion are likely to be in the same array in memory. Essential, like C++’s vector, Scala’s
Vector should be the preferred collection for general-purpose computational needs.
Its efficiency combined with the thread-safety gained from immutability make it the
most powerful sequence in the library.

When in doubt, use Vector

Vector is the most flexible, efficient collection in the Scala collections library. Being immuta-
ble, it’s safe to share across threads. Its indexing performance is excellent, as are append and
prepend. Vector can also become a parallel collection efficiently. When unsure of the runtime
characteristics of an algorithm, it’s best to use a Vector.

In some situations, Vector isn’t the most suited collection. When frequently perform-
ing head/tail decomposition, it’s better to use an immutable descendant of Scala’s
LinearSeq trait: scala.collection.immutable.List

8.2.2 List

Scala’s immutable List collection is a sin-
gly linked list. This can have decent per-
formance if you’re always appending or
removing from the front of the list, but it
can suffer with more advanced usage pat-
terns. Most users coming from Java or
Haskell tend to use List as a go-to default
from habit. Although List has excellent
performance in its intended use case, it’s
less general than the Vector class and
should be reserved for algorithms where
it’s more efficient.

 Let’s look at List’s general structure in figure 8.5.
List is comprised of two classes: An empty list called Nil and a cons cell, some-

times referred to as a linked node. The cons cell holds a reference to a value and a ref-
erence to the rest of the list. Creating a list is as simple as creating cons cells for all the
elements in the list. In Scala, the cons cell is called :: and the empty list is called Nil.
A list can be constructed by appending elements to the empty list Nil.

scala> val x = 1 :: 2 :: 3 :: Nil
x: List[Int] = List(1, 2, 3)

This line appends 3 to the empty list and then appends 2 to that list and finally appends
1 to that list. The final effect is a linked list of 1, then 2, then 3. This uses a feature of
Scala’s operator notation. If an operator ends with the : character, it’s considered right
associative. The preceding line is equivalent to the following method calls:

Rule
19

Figure 8.5 Internal structure of a list

195Immutable collections
scala> val x = Nil.::(3).::(2).::(1)
x: List[Int] = List(1, 2, 3)

In this version, it’s easier to see how the list is constructed. Scala’s treatment of the :
character in operator notation is a general concept designed to handle cases like this
where left associativity is not as expressive as right associativity.

 The List collection extends from LinearSeq, as it supports O(1) head/tail decom-
position and prepends.

Lists can support large amounts of sharing as long as you use prepends and
head/tail decomposition. But if an item in the middle of the list needs to be modified,
the front half of the list needs to be generated. This is what makes List less suited to
general-purpose development than Vector.

List is also an eagerly evaluated collection. The head and tail components of a list
are known when the list is constructed. Scala provides a different type of linked list
where the values aren’t computed until needed. This collection is called a Stream.

8.2.3 Stream

Stream is a lazy persistent collection. A stream can lazily evaluate its members and per-
sist them over time. A stream could represent an infinite sequence without overflow-
ing memory constraints. Streams remember values that were computed during their
lifetime, allowing efficient access to previous elements. This has the benefit of allow-
ing backtracking but the downside of causing potential memory issues.

 Scala’s Stream class is similar to Scala’s List class. A Stream is composed of cons
cells and empty streams. The biggest difference between Stream and List is that
Stream will lazily evaluate itself. Rather than storing elements, a stream stores function-
objects that can be used to compute the head element and the rest of the Stream
(tail). This allows Stream to store infinite sequences: a common tactic to join infor-
mation with another collection. For example, this can be used to join indexes with ele-
ments in a sequence.

scala> List("a", "b", "c") zip (Stream from 1)
res5: List[(java.lang.String, Int)] = List((a,1), (b,2), (c,3))

The list of strings is zipped with an infinite stream of incrementing numbers starting
from 1. The from method on Stream creates an infinitely incrementing stream start-
ing at the passed in number. The zip method does pairwise join at each index ele-
ment of two sequences. The result is that the elements of the original list are joined
with their original indices. Even though the stream is infinite, the code compiles suc-
cessfully because the stream is generated only for the indices required by the list.

 Constructing a stream can be done similarly to list, except the cons (::) cell is con-
structed with the #:: method and an empty stream is referred to as Stream.empty.
Let’s define a stream and see its execution behavior.

scala> val s = 1 #:: {
| println("HI")
| 2

196 CHAPTER 8 Using the right collection
| } #:: {
| println("BAI")
| 3
| } #:: Stream.empty

s: scala.collection.immutable.Stream[Int] = Stream(1, ?)

The stream s is created with three members. The first member is the number 1. The
second is an anonymous function that prints HI and returns the value 2. The third is
another anonymous function that prints BAI and returns the number 3. These three
members are all prepended to an empty stream. The result is a stream of integers
where the head is known to be the value 1. Notice that the strings HI and BAI aren’t
printed. Let’s start accessing elements on the stream.

scala> s(0)
res39: Int = 1

scala> s(1)
HI
res40: Int = 2

scala> s(2)
BAI
res41: Int = 3

When accessing the first element in the stream, the head is returned without touching
the rest of the stream. Nothing is printed to the console. But when the second index is
accessed, the stream needs to compute the value. When computing the value, the
string HI is printed to the console. Only the second value was computed. Next, when
indexing into the third value, it must be computed and the BAI string is printed. Now,
the stream has computed all of its elements.

scala> s
res43: scala.collection.immutable.Stream[Int] = Stream(1, 2, 3)

Now when printing the value of the stream to the console, it displays all three ele-
ments, because they’re persisted. The stream won’t recompute the values for indices it
has already evaluated.

LISTS IN HASKELL VERSUS SCALA One area of confusion when coming to
Scala from Haskell is the List class. The Haskell language has lazy evaluation
by default while Scala has eager evaluation by default. When looking for
something from a lazily evaluated list, like Haskell’s list, use Scala’s Stream,
not its List.

One excellent use of Streams is computing the next value of the stream using previous
values. This is evident when calculating the Fibonacci sequence, which is a sequence
where the next number is calculated using the sum of the previous two numbers.

scala> val fibs = {
| def f(a:Int,b:Int):Stream[Int] = a #:: f(b,a+b)
| f(0,1)
| }

fibs: Stream[Int] = Stream(0, ?)

197Immutable collections
The fibs stream is defined using a helper function. The helper function f is defined
to take two integers and construct the next portion of the Fibonacci sequence from
them. The #:: method is used to prepend the first input number to the stream and
recursively call the helper function f. The recursive call puts the second number in
place of the first and adds the two numbers together to send in as the second number.
Effectively, the function f is keeping track of the next two elements in the sequence
and outputs one every time it’s called, delaying the rest of the calculation. The entire
fibs sequence is created by seeding the helper function f with the numbers 0 and 1.
Let’s take a look at the fib sequence:

scala> fibs drop 3 take 5 toList
res0: List[Int] = List(2, 3, 5, 8, 13)

scala> fibs
res1: Stream[Int] = Stream(0, 1, 1, 2, 3, 5, 8, 13, ?)

This method call drops the first three values of the sequence and takes five values
from it and converts them to a list. The resulting portion of the Fibonacci sequence is
displayed to the screen. Next, the fibs sequence is printed to the console. Notice
that now the fibs sequence prints out the first eight elements. This is because those
eight elements of Stream were evaluated. This is the persistence aspect of the Stream
working.

 Streams don’t work well when the eventual size of the stream won’t fit into mem-
ory. In these instances, it’s better to use a TraversableView to avoid performing work
until necessary while allowing memory to be reclaimed. See section 8.1.1 for an exam-
ple. If you need arbitrary high indices into a Fibonacci sequence, the collection could
be defined as follows:

scala> val fibs2 = new Traversable[Int] {
| def foreach[U](f: Int => U): Unit = {
| def next(a: Int, b: Int): Unit = {
| f(a)
| next(b, a+b)
| }
| next(0,1)
| }
| } view

fibs2: TraversableView[Int,Traversable[Int]] = TraversableView(...)

The fibs2 collection is defined as a Traversable of integers. The foreach method is
defined in terms of a helper method next. The next method is almost the same as the
helper method for the fibs stream except that instead of constructing a Stream, it
loops infinitely, passing Fibonacci sequence values to the traversal function f. This
Traversable is immediately turned into a TraversableView with the view method to
prevent the foreach method from being called immediately. A view is a collection that
lazily evaluates operations. Views are discussed in detail in section 8.4.1. Now, let’s use
this version of a lazily evaluated collection.

198 CHAPTER 8 Using the right collection
scala> fibs2 drop 3 take 5 toList
res52: List[Int] = List(2, 3, 5, 8, 13)

scala> fibs2
res53: TraversableView[Int,Traversable[Int]] = TraversableView(...)

The same drop 3 take 5 toList methods are operated on the fibs2 collection. Sim-
ilarly to Stream, the Fibonacci sequence is calculated on the fly and values are inserted
into the resulting list. But when reinspecting the fibs2 sequence after operating on it,
none of the calculated indices are remembered on the TraversableView. This means
indexing into the TraversableView repeatedly could be expensive. It’s best to save
the TraversableView for scenarios where a Stream would not fit in memory.

Stream provides an elegant way to lazily evaluate elements of a collection. This can
amortize the cost of calculating an expensive sequence or allow infinite streams to be
used. They’re simple and easy to use when needed.

 Sometimes, mutating collections is necessary for performance reasons. Although
mutability should and can be avoided in general development, it’s necessary in situa-
tions and can be beneficial. Let’s look at how to achieve mutability in Scala’s collec-
tion library.

8.3 Mutable collections
Mutable collections are collections that can conceptually change during their life-
time. The perfect example is an array. The individual elements of the array could be
modified at any point during the array’s lifetime.

 In Scala, mutability isn’t the default in the collections API. Using or creating muta-
ble collections requires importing one or more interfaces from the scala.collec-
tions .mutable package and knowing which methods will mutate the existing
collection vs. creating a new collection. For example, the map, flatMap, and filter
methods defined on mutable collections will create new collections rather than
mutate a collection in place.

 The mutable collections library provides a few collections and abstractions that
need to be investigated over and above the core abstractions:

 ArrayBuffer

 Mixin mutation event publishing
 Mixin serialization

Let’s start looking at ArrayBuffer.

8.3.1 ArrayBuffer

The ArrayBuffer collection is a mutable Array that may or may not be the same size
as that of the collection. This allows elements to be added without requiring the entire
array to be copied. Internally, an ArrayBuffer is an Array of elements, as well as the
stored current size. When an element is added to an ArrayBuffer, this size is checked.
If the underlying array isn’t full, then the element is directly added to the array. If the
underlying array is full, then a larger array is constructed and all the elements are

199Mutable collections
copied to the new array. The key is that the new array is constructed larger than
required for the current addition.

 Although the entire array is copied into the new array on some append operations,
the amortized cost for append is a constant. Amortized cost is the cost calculated over a
long time---that is, during the lifetime of an ArrayBuffer, the cost of appending
averages out to be linear across all the operations, even though any given append
operation could be O(1) or O(n). This property makes ArrayBuffer a likely candidate
for most mutable sequence construction.

 The ArrayBuffer collection is similar to Java’s java.util.ArrayList. The main
difference between the two is that Java’s ArrayList attempts to amortize the cost of
removing and appending to the front and back of the list whereas Scala’s ArrayBuffer
is only optimized for adding and removing to the end of the sequence.

 The ArrayBuffer collection is ideal for most situations where mutable sequences
are required. In Scala, it’s the mutable equivalent of the Vector class. Let’s look at one
of the abstractions in the mutable collections library, mixin mutation event publishing.

8.3.2 Mixin mutation event publishing

Scala’s mutable collection library provides three traits, ObservableMap, Observable-
Buffer, and ObservableSet, that can be used to listen to mutation events on collec-
tions. Mixing one of these traits into the appropriate collection will cause all
mutations to get fired as events to observers. These events are sent to observers, and
the observers have a chance to prevent the mutation. Here’s an example:

scala> object x extends ArrayBuffer[Int] with ObservableBuffer[Int] {
| subscribe(new Sub {
| override def notify(pub: Pub,
| evt: Message[Int] with Undoable) = {
| Console.println("Event: " + evt + " from " + pub)
| }
| })
| }

defined module x

The object x is created as an ArrayBuffer that mixes in the ObservableBuffer. In the
constructor, a subscriber is registered that prints events as they happen:

scala> x += 1
Event: Include(End,1) from ArrayBuffer(1)
res2: x.type = ArrayBuffer(1)

scala> x -= 1
Event: Remove(Index(0),1) from ArrayBuffer()
res3: x.type = ArrayBuffer()

Adding the element 1 to the collection causes the Include event to be fired. This
event indicates that a new element is included in the underlying collection. Next the
element 1 is removed from the collection. The result is a Remove event, indicating the
index and value that was removed.

200 CHAPTER 8 Using the right collection
 The full details of the event API for collection mutation is contained in the
scala.collection.script package. The API is designed for advanced use cases such
as data binding. Data binding is a practice where one object’s state is controlled from
another object’s state. This is common in UI programming, where a list displayed
onscreen could be tied directly to a Scala ArrayBufferwithObservableBuffer. That
way, any changes to the underlying ArrayBuffer would update the display of the UI
element.

 Scala’s mutable collection library also allows mixins to be used to synchronize
operations on collections.

8.3.3 Mixin synchronization

Scala defines the traits SynchronizedBuffer, SynchronizedMap, SynchronizedSet,
SynchronizedStack, and SynchronizedPriorityQueue for modifying the behavior of
mutable collections. A Synchronized* trait can be used on its corresponding collec-
tion to enforce atomicity of operations on that collection.

 These traits effectively wrap methods on collections with a this.synchronized{}
call. Although this is a neat trick to aid in thread safety, these traits are little used in
practice. It’s better to use mutable collections in single threaded scenarios and pro-
mote immutable collections for cross thread data sharing.

 Let’s look at an alternative solution to parallelizing and optimizing collection
usage: Views and Parallel collections.

8.4 Changing evaluation with views
and parallel collections
The base collection in the collection hierarchy defaults to strict and sequential evalua-
tion. Strict evaluation is when operations are performed immediately when they’re
defined. This is in contrast to lazy evaluation where operations can be deferred.
Sequential evaluation is when operations are performed sequentially without parallel-
ism against a collection. As shown in figure 8.6, this is in contrast to parallel evaluation
where evaluation could happen on multiple threads across portions of the collection.

Figure 8.6 Changing
evaluation semantics

201Changing evaluation with views and parallel collections
The collections library provides two standard mechanisms to migrate from the default
evaluation semantics into either parallel or lazy evaluation. These take the form of the
view and par methods. The view method can take any collection and efficiently cre-
ate a new collection that will have lazy evaluation. The force method is the inverse of
the view method. It’s used to create a new collection that has strict evaluation of its
operations. Views will be covered in detail in section 8.4.1.

 In a similar fashion, the par method is used to create a collection that uses parallel
execution. The inverse of the par method is the seq method, which converts the cur-
rent collection into one that supports sequential evaluation.

 One important thing to note in the diagram is what happens when calling the par
method on a View. As of Scala 2.9.0.1, this method call converts a sequential lazy col-
lection into a parallel strict collection rather than a parallel lazy collection. This is due
to how the encoding of types work. Let’s investigate this mechanism some more.

8.4.1 Views

The collections in the collections library default to strict evaluation---that is, when
using the map method on a collection, a new collection is immediately created before
continuing with any other function call. Collections views are lazily evaluated. Method
calls on a view will only be performed when they absolutely have to. Let’s look at a sim-
ple example using List.

scala> List(1,2,3,4) map { i => println(i); i+1 }
1
2
3
4
res1: List[Int] = List(2, 3, 4, 5)

This line constructs a list and iterates over each of its elements. During this iteration,
the value is printed and the value is modified by one. The result is that each element
gets printed to the string and the resulting list is created. Let’s do the same thing,
except this time we’ll change from using a List to a ListView.

scala> List(1,2,3,4).view map { i => println(i); i+1 }
res2: scala.collection.SeqView[Int,Seq[_]] = SeqViewM(...)

This expression is the same as the previous one, except the view method is called on
List. The view method returns a view or window looking at the current collection
that delays all functions as long as possible. The map function call against the view is
not performed. Let’s modify the result so that the values are printed.

scala> res2.toList
1
2
3
4
res3: List[Int] = List(2, 3, 4, 5)

202 CHAPTER 8 Using the right collection
The toList method is called against the view from the previous example. Because the
view must construct a new collection, the map function that was deferred before is
executed and the value of each item of the original list is printed. Finally, the value of
the new list, with each element incremented by one, is returned.

 Views pair well with Traversable collections. Let’s reexamine the FileLine-
Traversable class from before. This class opens a file and iterates over the lines for
every traversal. This can be combined with a view to create a collection that will load
and parse a file when it’s iterated.

Use TraversableView for ephemeral streams of data

Traversable views provide the best flexibility between simplicity in implementation, runtime
cost, and utility for ephemeral streams of data. If the data is only streamed once, a
TraversableView can get the job done.

Let’s imagine that a system has a simple property configuration file format. Every line
of a config file is a key-value pair separated by the = character. Any = character is con-
sidered a valid identifier. Also, any line that doesn’t have an = character is assumed to
be a comment. Let’s define the parsing mechanism.

def parsedConfigFile(file: java.io.File) = {
val P = new scala.util.matching.Regex("([^=]+)=(.+)")
for {

P(key,value) <- (new FileLineTraversable(file)).view
} yield key -> value

}

The parsedConfigFile takes in the config file to parse. The value P is instantiated as
a regular expression. The expression matches lines that have a single = sign with con-
tent on both sides. Finally, a for expression is used to parse the file. A FileLine-
Traversable is constructed and the view method is called on this traversable,
delaying any real execution. The regular expression P is used to extract key-value pairs
and return them. Let’s try it out in the REPL.

scala> val config = parsedConfigFile(new java.io.File("config.txt"))
config: TraversableView[(String, String),Traversable[_]] =

TraversableViewFM(...)

The parsedConfigFile method is called with a sample config file. The config con-
tains two attribute value pairs that are numbered. Notice that the file isn’t opened and
traversed. The return type is a TraversableView of (String,String) values. Now,
when the configuration file should be read, the force method can be used to force
evaluation of the view.

scala> config force
Opening file
Done iterating file
Closing file
res13: Traversable[(String, String)] =

List((attribute1,value1), (attribute2,value2))

Rule
20

203Changing evaluation with views and parallel collections
The force method is called on the config TraversableView. This causes strict evalu-
ation of the deferred operations. The file is opened and iterated, pulling out all the
parsable lines; these values are returned into the result.

 Using views with Traversables is a handy way to construct portions of a program
and delay their execution until necessary. For example, in an old Enterprise JavaBeans
application, I constructed a parsable TraversableView that would execute an RMI call
into the ApplicationServer for the current list of “active” data and perform opera-
tions on this list. Although there were several operations to whittle down and trans-
form the data after it was returned from the ApplicationServer, these could be
abstracted behind the TraversableView, similarly to how the config file example
exposed a TraversableView of key value pairs rather than a TraversableView of the
raw file.

 Let’s look at another way to change the execution behavior of collections:
parallelization.

8.4.2 Parallel collections

Parallel collections are collections that attempt to run their
operations in parallel.

 Parallel collections are implemented in terms of
Splitable iterators. A Splitable iterator is an iterator that
can be efficiently split into multiple iterators where each
iterator owns a portion of the original iterator.

 Figure 8.7 shows a Splitable iterator that originally
points to a collection of the numbers 1 through 8. In the
example, the Splitable iterator is split into two iterators. The first covers the num-
bers 1 through 4 and the second covers the numbers 5 through 8. These split iterators
can be fed to different threads for processing.

 The Parallel collection operations are implemented as tasks on Splitable itera-
tors. Each task could be run using a parallel executor, by default a ForkJoinPool, ini-
tialized with a number of worker threads equal to the number of processors available
on the current machine. Tasks themselves can be split, and each task defines a thresh-
old it can use to determine whether it should be
split further.

 Let’s look at figure 8.8 to see what might hap-
pen in parallel when calculating the sum of ele-
ments in a parallel collection.

 The sum method on the collection of one to
eight is split into seven tasks. Each task computes
the sum of the numbers below it. If a task con-
tains more numbers than the threshold, assumed
to be two in this example, the collection is split
and more sum tasks are thrown on the queue.

Figure 8.7 Splitting
parallel collection iterators

Figure 8.8 Parallel task breakdown of
sum method

204 CHAPTER 8 Using the right collection
These tasks are farmed out to a ForkJoinPool and executed in parallel. A ForkJoin-
Pool is like a thread pool, but with better performance for tasks that fork (split) first
and join (combine) later.

 When using parallel collections, there are two things to worry about:

 The efficiency of converting from a sequential to a parallel collection
 The parallelizability of a task

The collections library does its best to reduce the cost of the first. The library defines
a ParArray collection that can take Arrays, and Array-based collections, and convert
them into their parallel variant. The library also defines a ParVector collection that
can efficiently, in 0(1) time, convert from a Vector to a ParVector. In addition to
these, the library has a mechanism to parallelize Set, Map, and the Range collections.
The collections that aren’t converted efficiently are those that subclass from
LinearSeq. Let’s take a look.

scala> List(1,2,3).par
res18: collection.parallel.immutable.ParSeq[Int] = ParVector(1, 2, 3)

In this example, a List of three numbers is converted to a parallel collection using
the par method. The result is a ParVector. The runtime complexity of this operation
is O(N) because the library has to construct a Vector from the List. If this overhead,
combined with the overhead of parallelizing, is less than the runtime of an algorithm,
it can still make sense to parallelize LinearSeq. But in most cases, it’s best to avoid
LinearSeq and its descendants when using parallel collections.

 The second thing to worry about with parallel collections is the parallelizability of
a task. This is the amount of parallelism that can be expected from a given task. For
example, the map method on collections can have a huge amount of parallelism. The
map operation takes each element of a collection and transforms it into something
else, returning a new collection. This is ideal for parallel collections.

scala> ParVector(1,2,3,4) map (_.toString)
res22: collection.parallel.immutable.ParVector[java.lang.String] =

ParVector(1, 2, 3, 4)

The preceding constructs a parallel vector of integers and converts all the elements to
their string representation.

 One method that doesn’t have any parallelism is the foldLeft method. The fold-
Left method on collections takes an initial value and a binary operation and per-
forms the operation over the elements in a left-associative fashion. For example, given
a collection of the values 1, 2, 3, and 4 and an initial value of 0, the binary operation +
would be applied as follows: (((0 + 1) + 2) + 3)+ 4). The association requires that the
operations be performed in sequence. If this were used on a parallel collection to
compute the sum of elements in the collection, it would not execute in parallel. Let’s
take a look:

scala> (1 to 1000).par.foldLeft(0)(_+_)
res25: Int = 500500

205Writing methods to use with all collection types
A parallel range is constructed with the values 1 through 1,000. The foldLeft method
is called with an initial value of 0 and an operation of +. The result is the correct sum,
but there’s no indication of whether this was parallelized. Let’s use a cheap trick to fig-
ure out if the foldLeft is parallelized.

scala> (1 to 1000).par.foldLeft(Set[String]()) {
| (set,value) =>
| set + Thread.currentThread.toString()
| }

res30: scala.collection.immutable.Set[String] =
Set(Thread[Thread-26,5,main])

This time the foldLeft method is called with an empty Set of strings. The binary oper-
ation appends the current executing thread to the set. But if the same trick is used with
the map operation, more than one thread will be displayed on a multicore machine:

scala> (1 to 1000).par map { ignore =>
| Thread.currentThread.toString
| } toSet

res34: collection.parallel.immutable.ParSet[java.lang.String] = ParSet(
Thread[ForkJoinPool-1-worker-0,5,main],
Thread[ForkJoinPool-1-worker-1,5,main])

The parallel range from 1 to 1,000 is created and the map operation is called. The map
operation converts each element to the current thread it’s running in, and the result-
ing list of threads is converted to a Set, effectively removing duplicates. The resulting
list on my dual-core machine has two threads. Notice that unlike the previous exam-
ple, the threads are from the default ForkJoinPool.

 So, using parallel collections for parallelism requires using the parallelizable oper-
ations. The API documentation does a good job marking which operations are paral-
lelizable, so it’s best to take a thorough read through the scaladoc in the scala
.collection.parallel package.

 With all these different collection types, it can be difficult to write generic meth-
ods that need to work against many collection types. We’ll discuss some mechanisms
to do this.

8.5 Writing methods to use with all collection types
The new collections library goes to great lengths to ensure that generic methods, like
map, filter, and flatMap will return the most specific type possible. If you start with a
List, you should expect to retain a List for the duration of computations unless you
perform some sort of transformation. You can do this property through a few type sys-
tem tricks. Let’s look at implementing a generic sort algorithm against collections.

 A naive approach would be the following:

object NaiveQuickSort {
def sort[T](a: Iterable[T])(implicit n: Ordering[T]): Iterable[T] =

if (a.size < 2) a
else {

import n._

206 CHAPTER 8 Using the right collection
val pivot = a.head
sort(a.filter(_ < pivot)) ++
a.filter(_ == pivot) ++
sort(a.filter(_ > pivot))

}
}

The NaiveQuickSort object is defined with a single method sort. The sort method
implements a quick sort. It takes in an Iterable of elements of type T. The implicit
parameter list accepts the type class Ordering for the type T. This is what’s used to
determine if one of the elements of the Iterable is larger, smaller, or equal to
another. Finally, the function returns an Iterable. The implementation pulls a pivot
element and splits the collection into three sets: elements less than the pivot, ele-
ments greater than the pivot, and elements equal to the pivot. These sets are then
sorted and combined to create the final sorted list.

 This algorithm works for most collections but has one obvious flaw:

scala> NaiveQuickSort.sort(List(2,1,3))
res12: Iterable[Int] = List(1, 2, 3)

The NaiveQuickSort.sort method is called with an unsorted List. The result is a
sorted collection, but the type is Iterable, not List. The method does work, but the
loss of the List type is undesirable. Let’s see if the sort can be modified to retain the
original type of the collection, if possible.

object QuickSortBetterTypes {
def sort[T, Coll](a: Coll)(implicit ev0: Coll <:< SeqLike[T, Coll],

cbf: CanBuildFrom[Coll, T, Coll],
n: Ordering[T]): Coll = {

if (a.length < 2)
a

else {
import n._
val pivot = a.head
val (lower : Coll, tmp : Coll) = a.partition(_ < pivot)
val (upper : Coll, same : Coll) = tmp.partition(_ > pivot)
val b = cbf()
b.sizeHint(a.length)
b ++= sort[T,Coll](lower)
b ++= same
b ++= sort[T,Coll](upper)
b.result

}
}

}

The QuickSortBetterTypes object is created with a single method, sort. The guts of
the algorithm are the same as before, except a generic builder is used to construct the
sorted list. The biggest change is in the signature of the sort method, so let’s decon-
struct it.

T is the type parameter representing elements of the collection. T is required to
have an Ordering in this method (the implicit n : Ordering[T] parameter in the

207Writing methods to use with all collection types
second parameter list). The ordering members are imported on the first line of the
method. This allows the < and > operations to be “pimped” onto the type T for conve-
nience. The second type parameters is Coll. This is the concrete Collection type.
Notice that no type bounds are defined. It’s a common habit for folks new to Scala to
define generic collection parameters as follows: Col[T] <: Seq[T]. Don’t do this, as
this type doesn’t quite mean what you want. Instead of allowing any subtype of a
sequence, it allows only subtypes of a sequence that also have type parameters (which
is most collections). You can run into issues if your collection has no type parameters
or more than one type parameter. For example:

object Foo extends Seq[Int] {...}
trait DatabaseResultSetWalker[T, DbType] extends Seq[T] {...}

Both of these will fail type checking when trying to pass them into a method taking
Col[T] <: Seq[T]. For the object Foo, this is because it has no type parameters, but
the constraint Col[T] <: Seq[T] requires a single type parameter. The Database-
ResultSetWalker trait can’t match Col[T] <: Seq[T] because it has two type parame-
ters, where the requirement is for only one. Although there are workarounds, that
requirement can be surprising to users of the function. The workaround is to defer
the type-checking algorithm using the implicit system (see section 7.2.3).

 To get the compiler to infer the type parameter on the lower bound, we have to
defer the type inferencer long enough for it to figure out all the types. To do that, we
don’t enforce the type constraint until we do the implicit lookup using the <:< class.
The first implicit parameter ev0 : Coll <:< SeqLike[T, Coll] is used to ensure that
the type Coll is a valid collection type with elements of T. This signature uses the Seq-
Like class. Although most consider the SeqLike classes to be an implementation
detail, they’re important when implementing any sort of generic method against col-
lections. SeqLike captures the original fully typed collection in its second type param-
eter. This allows the type system to carry the most specific type through a generic
method so that it can be used in the return value.

DEFERRING TYPE INFERENCE OF PARENT-CLASS TYPE PARAMETERS The need to
defer the type inference for a type parameter Foo <: Seq[T] is necessary for
supporting the Scala 2.8.x series. As of the Scala 2.9.x, the type inference
algorithm was improved such that the implicit <:< parameter is no longer
necessary.

The next type parameter in the sort method is the cbf : CanBuildFrom[Coll, T,
Coll]. The CanBuildFrom trait, when looked up implicitly, determines how to build
new collections of a given type. The first type parameter represents the original collec-
tion type. The second type parameter represents the type of elements desired in the
built collection---that is, the type of elements in the collection the method is going to
return. The final type parameter of CanBuildFrom is the full type of the new collec-
tion. This is the same type as the input collection in the case of sort, because the sort
algorithm should return the same type of collection that came in.

208 CHAPTER 8 Using the right collection
 The CanBuildFrom class is used to construct the builder b. This builder is given a
sizeHint for the final collection and is used to construct the final sorted collection
rather than calling the ++ method directly. Let’s look at the final result.

scala> QuickSortBetterTypes.sort(
| Vector(56,1,1,8,9,10,4,5,6,7,8))

res0: scala.collection.immutable.Vector[Int] =
Vector(1, 1, 4, 5, 6, 7, 8, 8, 9, 10, 56)

scala> QuickSortBetterTypes.sort(
| collection.mutable.ArrayBuffer(56,1,1,8,9,10,4,5,6,7,8))

res1: scala.collection.mutable.ArrayBuffer[Int] =
ArrayBuffer(1, 1, 4, 5, 6, 7, 8, 8, 9, 10, 56)

The first line calls the new sort method against an unordered Vector of Ints. The
resulting type is also a Vector of Ints. Next, the sort method is called against an
ArrayBuffer of Ints. The result is again an ArrayBuffer of Ints. The new collection
method now preserves the most specific type possible.

This implementation of sort is generic but may be suboptimal for different types of
collections. It would be ideal if the algorithm could be adapted such that it was opti-
mized for each collection in the hierarchy. This is easy to do as a maintainer of the col-
lections library, because the implementations can be placed directly on the classes.
But when developing new algorithms outside the collections library, type classes can
come to the rescue.

LinearSeqLike and recursive type definitions
The method signature doesn’t work as is against the LinearSeqLike trait, because
the LinearSeqLike trait defines its type parameters as LinearSeqLike[T, Col <:
LinearSeqLike[T,Col]]. The second type parameter is recursive. The type Col
appears in its own type constraint. In Scala 2.9, the type inferencer can still correctly
deduce subclasses of LinearSeqLike. Here’s an example method that will do head-
tail decomposition on subclasses of LinearSeqLike.
def foo[T, Coll <: LinearSeqLike[T, Coll]](t : Coll with
LinearSeqLike[T,Coll]) : Option[(T, Coll)]

The method foo has two type parameters. The parameter T is the type of elements
in the collection. The type parameter Coll is the full type of the collection and is
recursive, like in the definition of the LinearSeqLike trait. This alone won’t allow
Scala to infer the correct types. The parameter list accepts a single parameter t with
type Coll with LinearSeqLike[T,Coll]. Although the Coll type parameter has
the type bound that <: LinearSeqLike[T,Coll], the with keyword must also be
used to explicitly join the Coll type with LinearSeqLike[T,Coll]. Once this is com-
pleted, type inference will work correctly for Coll.

209Writing methods to use with all collection types
8.5.1 Optimizing algorithms for each collections type

You can use the type class paradigm to encode an algorithm against collections and
refine that algorithm when speed improvements are possible. Let’s start by converting
the generic sort algorithm from before into a type class paradigm. First we’ll define
the type class for the sort algorithm.

trait Sortable[A] {
def sort(a : A) : A

}

The Sortable type class is defined against the type parameter A. The type parameter A
is meant to be the full type of a collection. For example, sorting a list of integers would
require a Sortable[List[Int]] object. The sort method takes a value of type A and
returns a sorted version of type A. The generic sort method can now be modified to
look as follows:

object Sorter {
def sort[Col](col : Col)(implicit s : Sortable[Col]) = s.sort(col)

}

The Sorter object defines a single method sort. The generic sort method now takes
in the Sortable type class and uses it to sort the input collection. Now the implicit res-
olution of default Sortable types needs to be defined.

trait GenericSortTrait {
implicit def quicksort[T,Coll](

implicit ev0: Coll <:< IterableLike[T, Coll],
cbf: CanBuildFrom[Coll, T, Coll],
n: Ordering[T]) =

new Sortable[Coll] {
def sort(a: Coll) : Coll =

if (a.size < 2)
a

else {
import n._
val pivot = a.head
val (lower: Coll, tmp: Coll) = a partition (_ < pivot)
val (upper: Coll, same: Coll) = tmp partition (_ > pivot)
val b = cbf()
b.sizeHint(a.size)
b ++= sort(lower)
b ++= same
b ++= sort(upper)
b.result

}
}

The GenericSortTrait is defined to contain the implicit look up for the generic
QuickSort algorithm. It has the single implicit method quicksort. The quicksort
method defines the same type parameters and implicit parameters as the original
sort method. Instead of sorting, it defines a new instance of the Sortable type trait.

210 CHAPTER 8 Using the right collection
The Sortable.sort method is defined the same as before. Now the GenericSort-
Trait has to be placed onto the Sortable companion object so that it can be looked
up in the default implicit resolution.

object Sortable extends GenericSortTrait

The Sortable companion object is defined to extend the GenericSortTrait. This
places the implicit quicksort method in the implicit lookup path when looking for
the Sortable[T] type trait. Let’s try it out.

scala> Sorter.sort(Vector(56,1,1,8,9,10,4,5,6,7,8))
res0: scala.collection.immutable.Vector[Int] =

Vector(1, 1, 4, 5, 6, 7, 8, 8, 9, 10, 56)

The Sorter.sort method is called. The appropriate Sortable type trait is found for
Vector and the collection is sorted using the quicksort algorithm. But if we try to call
the sort method against something that doesn’t extend from IterableLike, it won’t
work. Let’s try the sort method on Array.

scala> Sorter.sort(Array(2,1,3))
<console>:18: error: could not find implicit value for

parameter s: Sorter.Sortable[Array[Int]]
Sorter.sort(Array(2,1,3))

The Sorter.sort method is called with an unsorted array. The compiler complain
that it can’t find a Sortable instance for Array[Int]. This is because Array does not
extend from Iterable. Scala provides an implicit conversion that will wrap an Array
and provide it with standard collection methods. Let’s provide an implementation of
sort for Array. For simplicity, we’ll use a selection sort.

trait ArraySortTrait {
implicit def arraySort[T](implicit mf: ClassManifest[T],

n: Ordering[T]): Sortable[Array[T]] =
new Sortable[Array[T]] {

def sort(a : Array[T]) : Array[T] = {
import n._
val b = a.clone
var i = 0
while (i < a.length) {

var j = i
while (j > 0 && b(j-1) > b(j)) {

val tmp = b(j)
b(j) = b(j-1)
b(j-1) = tmp
j -= 1

}
i += 1

}
b

}
}

}

211Summary
The trait ArraySortTrait is defined with a single method arraySort. This method
constructs a Sortable type trait using a ClassManifest and an Ordering. Using raw
Arrays in Scala requires a ClassManifest so that the bytecode will use the appropri-
ate method against the primitive arrays. The Sortable type trait is parameterized
against Arrays. The algorithm loops through each index in the array and looks for the
smallest element in the remainder of the array to swap into that position. The selec-
tion sort algorithm isn’t the most optimal, but it’s a common algorithm and easier to
understand than what’s used classically in Java. This Sortable implementation needs
to be added to the appropriate companion object for implicit resolution.

object Sortable extends ArraySortTrait with QuickSortTrait

The Sortable companion object is expanded to extend from both the ArraySort-
Trait, containing the Sortable type class for Array, and the QuickSort trait, contain-
ing the Sortable type class for iterable collections. Let’s use this implementation now.

scala> Sorter.sort(Array(2,1,3))
res0: Array[Int] = Array(1, 2, 3)

Now, when calling the sort method with Arrays, the call succeeds. You can use this
technique to support any number of collections and to specialize behavior for collec-
tions using techniques shown in section 7.3.

 Scala provides all the right tools to generically deal with collections. The complex-
ity of doing so can be high, so it’s a judgment call when and how much abstraction is
required for a particular method against collections.

8.6 Summary
The Scala collections library is one of the most compelling reasons to use Scala. From
the power and versatility of the collection to the ability to preserve specific types on
generic methods, Scala collections provide a clean and elegant solution to most prob-
lems. Using the collections API is a matter of understanding what the various type sig-
natures mean and knowing how to flow between collection semantics and evaluation
styles. Although the API is geared for immutability, there’s more than enough support
for mutable collections and interfaces.

 This chapter provides a great introduction to the key concepts behind the collec-
tions API, but knowing the methods defined on the collections and how to string them
together is also important. Because the collections library is always improving, the best
source for learning these methods is the scaladoc documentation for the current
release.

 The next chapter covers Scala actors, which are another important concept in the
Scala ecosystem.

Actors
Actors are an abstraction on a synchronous processes. They communicate to the
external world by sending and receiving messages. An actor will process received
messages sequentially in the order they’re received, but will handle only one mes-
sage at a time. This is critical, because it means that actors can maintain state with-
out explicit locks. Actors can also be asynchronous or synchronous. Most actors
won’t block a thread when waiting for messages, although this can be done if
desired. The default behavior for actors is to share threads among each other when
handling messages. This means a small set of threads could support a large number
of actors, given the right behavior.

In this chapter
 General design principles using actors

 Knowing the difference between react and
receive

 Using typed communication and sealed
message protocols

 Limiting failures to zones using supervisors

 Limiting starvation to zones using schedulers
212

213Know when to use actors
 In fact, actors are great state machines. They accept a limited number of input
messages and update their internal state. All communication is done through mes-
sages and each actor stands alone.

 But actors won’t solve all issues your system faces. You have to know how to use them.

9.1 Know when to use actors
Actors aren’t parallelization factories; they process their messages in single-threaded
fashion. They work best when work is conceptually split and each actor can handle a
portion of the work. If the application needs to farm many similar tasks out for pro-
cessing, this requires a large pool of actors to see any concurrency benefits.

 Actors and I/O should be interleaved carefully. Asynchronous I/O and actors are a
natural pairing, as the execution models for these are similar. Using an actor to per-
form blocking I/O is asking for trouble. That actor can starve other actors during this
processing. This can be mitigated, as we’ll discuss in section 9.4.

 Although many problems can be successfully modeled in actors, some will benefit
more. The architecture of a system designed to use actors will also change fundamen-
tally. Rather than relying on classic Model-View-Controller and client-based parallel-
ism, an actors system parallelizes pieces of the architecture and performs all
communication asynchronously.

 Let’s look at a canonical example of a good system design using actors. This exam-
ple uses several tools found in the old Message Passing Interface (MPI) specification
used in supercomputing. MPI is worth a look, as it holds a lot of concepts that have
naturally translated into actor-based systems.

9.1.1 Using actors to search

Let’s design a classic search program. This
program has a set of documents that live in
some kind of search index. Queries are
accepted from users and the index is
searched. Documents are scored and the
highest scored documents are returned to
the users. To optimize the query time, a
scatter-gather approach is used.

 The scatter-gather approach involves two
phases of the query: scatter and gather (see
figure 9.1).

 The first phase, scatter, is when the
query is farmed out to a set of subnodes.
Classically, these subnodes are divided topi-
cally and store documents about their topic.
These nodes are responsible for finding rel-
evant documents for the query and return-
ing the results, as shown in figure 9.2. Figure 9.1 Scatter phase

214 CHAPTER 9 Actors
The second phase, gather, is when all the topic nodes respond to the main node with
their results. These are pruned and returned for the entire query.

 Let’s start by creating a SearchQuery message that can be sent among the actors.

case class SearchQuery(query : String, maxResults : Int)

The SearchQuery class has two parameters. The first is the actual query, and the sec-
ond is the maximum number of results that should be returned. We’ll implement one
of the topic nodes to handle this message.

trait SearchNode extends Actor {
type ScoredDocument = (Double, String)
val index : HashMap[String, Seq[ScoredDocument]] = ...
override def act = Actor.loop {

react {
case SearchQuery(query, maxResults) =>

reply index.get(query).getOrElse(Seq()).take(maxResults)
}

}
}

The Search node defines the type Scored Document to be a tuple of a double score
and a string document. The index is defined as a HashMap of a query string to scored
documents. The index is implemented such that it pulls in a different set of values for
each SearchNode created. The full implementation of the index is included in the
source code for the book.

 The act method on SearchNode contains its core behavior. When it receives a
SearchQuery message, it looks for results in its index. It replies to the sender of the
SearchQuery all of these results in a truncated manner so that only maxResults are
returned.

Figure 9.2 Gather phase

215Know when to use actors
REACT VERSUS RECEIVE The SearchNode actor uses the react method for
accepting messages. The actors library also supports a receive method.
These methods differ in that react will defer the execution of the actor until
there is a message available. The receive method will block the current
thread until a message is available. Unless absolutely necessary, receive
should be avoided to improve the parallelism in the system.

Now let’s implement the HeadNode actor that’s responsible for scattering queries and
gathering results.

trait HeadNode extends Actor {
val nodes : Seq[SearchNode] = ...
override def act = Actor.loop {

react {
case s @ SearchQuery(_, maxResults) =>

val futureResults = nodes map (n => n !! s)
def combineResults(current : Seq[(Double, String)],

next : Seq[(Double, String)]) =
(current ++ next).view sortBy (_._1) take maxResults force

reply futureResults.foldLeft(Seq[ScoredDocument]()) {
(current, next) =>

combineResults(current,
next().asInstanceOf[Seq[ScoredDocument])

}
}

}
}

The HeadNode actor is a bit more complicated. It defines a member containing all the
SearchNodes that it can scatter to. It then defines its core behavior in the act method.
The HeadNode waits for SearchQuery messages. When it receives one, it sends it to all
the SearchNode children awaiting a future result. The !! method on actors will send a
message and expect a reply at some future time. This reply is called a Future. The
HeadNode can block until the reply is received by calling the apply method on the
Future. This is exactly what it does in the foldLeft over these futures. The HeadNode
is aggregating the next future result with the current query results result to produce
the final result list. This final result list is sent to the original query sender using the
reply method.

USING VIEW TO COMBINE RESULTS In the example the view and force meth-
ods are used around a set of collection methods. Although they offer no ben-
efit for the sortBy method, in practice the take method is usually used, and
the view and force methods can help improve efficiency by avoiding the cre-
ation of intermediate collections.

The system now has a scatter-gather search tree for optimal searching. But there’s still
a lot to be desired. The casting of the result type in the HeadNode actor is less than
ideal in a statically typed language like Scala. Also, the HeadNode blocks for an entire
SearchQuery. This means that the amount of parallelism in the system could be

216 CHAPTER 9 Actors
expanded so that slow-running queries don’t starve faster queries. Finally, the search
tree has no failure handling. If a bad index or query string occurs, the whole system
will crash.

 Actors can improve these downsides. Let’s start with fixing the type-safety issues.

9.2 Use typed, transparent references
One of the biggest dangers in the Scala standard actors library is to give actors refer-
ences to each other. This can lead to accidentally calling a method defined on
another actor instead of sending a message to that actor. Although that may seem
innocuous to some, this behavior can break an actors system, especially if you use lock-
ing. Actors are optimized by minimizing locking to a few minor locations, such as
when scheduling and working with a message buffer. Introducing more locking can
easily lead to deadlocks and frustration.

 Another disadvantage to passing direct references to actors is transparency, where
the location of an actor is tied in to another actor. This locks them in place where they
are. The actors can no longer migrate to other locations, either in memory or on the
network, severely limiting the system’s ability to handle failure. We’ll discuss this in
detail in section 9.3.

 Another downside to sending actors directly in the Scala standard library is that
actors are untyped. This means that all the handy type system utilities you could lever-
age are thrown out the window when using raw actors. Specifically, the compiler’s abil-
ity to find exhausting pattern matches using sealed traits.

USING SEALED TRAITS FOR MESSAGE APIS It’s a best practice in Scala to define
message APIs for actors within a sealed trait hierarchy. This has the benefit of
defining every message that an actor can handle and keeping them in a cen-
tral location for easy lookup. With a bit of machinery, the compiler can be
coerced to warn when an actor doesn’t handle its complete messaging API.

The Scala standard library provides two mechanisms for enforcing type safety and
decoupling references from directly using an actor: the InputChannel and Output-
Channel traits.

 The OutputChannel trait is used to send messages to actors. This is the interface
that should be passed to other actors, and it looks like this:

trait OutputChannel[-Msg] {
def !(msg: Msg @unique): Unit
def send(msg: Msg @unique, replyTo: OutputChannel[Any]): Unit
def forward(msg: Msg @unique): Unit
def receiver: Actor

}

The OutputChannel trait is templatized by the type of messages that can be sent to it.
It supports sending messages via three methods: !, send, and forward. The ! method
sends a message to an actor and doesn’t expect a reply. The send method sends a mes-
sage to an actor and attaches an output channel that the actor can respond to. The

217Use typed, transparent references
forward method is used to send a message to another actor such that the original
reply channel is preserved.

 The receiver method on OutputChannel returns the raw actor used by the Output-
Channel. You should avoid this method.

 Notice the methods that OutputChannel doesn’t have: !! and !?. In the Scala stan-
dard library, !! and !? are used to send messages and expect a reply in the current
scope. This is done through the creation of an anonymous actor that can receive the
response. This anonymous actor is used as the replyTo argument for a send call. The
!? method blocks the current thread until a response is received. The !! method cre-
ates a Future object, which stores the result when it occurs. Any attempt to retrieve
the result blocks the current thread until the result is available. Futures do provide a
map method. This attaches a function that can be run on the value in the future when
it’s available without blocking the current thread.

 In general, using !! and !? is discouraged. The potential for deadlocking a thread
is great. But when used lightly or with caution, these methods can be helpful. It’s
important to understand the size and scope of the project and the type of problem
being solved. If the problem is too complex to ensure !! and !? behave appropriately,
avoid them altogether.

 Let’s modify the scatter-gather example to communicate using OutputChannels.

9.2.1 Scatter-Gather with OutputChannel

The scatter-gather example requires two changes to promote lightweight typesafe ref-
erences: removing the direct Actor references in HeadNode and changing the query
responses to go through a collection channel. The first change is simple.

/** The head node for the scatter/gather algorithm. */
trait HeadNode extends Actor {

val nodes : Seq[OutputChannel[SearchNodeMessage]]
override def act : Unit = {

...
}

}

The nodes member of the HeadNode actor is changed to be a Seq[OutputChannel
[SearchNodeMessage]]. This change ensures that the HeadNode will only send
SearchNodeMessage messages to SearchNodes. The SearchNodeMessage type is a new
sealed trait that will contain all messages that can be sent to SearchNodes.

 The second change is a bit more involved. Rather than directly responding to the
sender of the SearchQuery, let’s allow an output channel to be passed along with the
SearchQuery that can receive results.

sealed trait SearchNodeMessage
case class SearchQuery(query : String,

maxDocs : Int,
gatherer : OutputChannel[QueryResponse])

extends SearchNodeMessage

218 CHAPTER 9 Actors
The SearchQuery message now has three parameters: the query, the maximum num-
ber of results, and the output channel that will receive the query results. The Search-
Query message now extends from the SearchNodeMessage. The new
SearchNodeMessage trait is sealed, ensuring that all messages that can be sent to the
SearchNode are defined in the same file. Let’s update the SearchNodes to handle the
updated SearchQuery message.

trait SearchNode extends Actor {
lazy val index : HashMap[String, Seq[(Double, String)]] = ...

override def act = Actor.loop {
react {

case SearchQuery(q, maxDocs, requester) =>
val result = for {

results <- index.get(q).toList
resultList <- results

} yield resultList
requester ! QueryResponse(result.take(maxDocs))

}
}

}

The SearchNode trait is the same as before except for the last line in the react call.
Instead of calling reply with the QueryResponse, the SearchNode sends the response
to the requestor parameter of the query.

 This new behavior means that the head node can’t just send the same SearchQuery
message to the SearchNodes. Let’s rework the communication of the system, as shown
in figure 9.3.

Figure 9.3 Modified
scatter-gather search

219Use typed, transparent references
The new design has a Gatherer actor. This actor is responsible for receiving all
results from SearchNodes and aggregating them before sending back to the front
end. The Gatherer could be implemented in many ways. One advanced implemen-
tation could use prediction to stream results to the front end as they’re returned,
attempting to ensure high priority results get sent immediately. For now, let’s imple-
ment the GathererNode such that it aggregates all results first and sends them to the
front end.

trait GathererNode extends Actor {
val maxDocs: Int
val maxResponses: Int
val client: OutputChannel[QueryResponse]
..

}

The GathererNode is defined as an Actor. It has three members. The maxDocs mem-
ber is the maximum number of documents to return from a query. The maxResponses
member is the maximum number of nodes that can respond before sending results
for a query. The client member is the OutputChannel where results should be sent.
The GathererNode should be tolerant of errors or timeouts in the search tree. To do
this, it should wait a maximum of one second for each response before returning the
query results. Let’s implement the act method for the GathererNode.

def act = {
def combineResults(current: Seq[(Double, String)],

next: Seq[(Double, String)]) =
(current ++ next).view.sortBy(_._1).take(maxDocs).force

def bundleResult(curCount: Int,
current: Seq[(Double, String)]): Unit =

if (curCount < maxResponses) {
receiveWithin(1000L) {

case QueryResponse(results) =>
bundleResult(curCount+1, combineResults(current, results))

case TIMEOUT =>
bundleResult(maxResponses, current)

}
} else {

client ! QueryResponse(current)
}

bundleResult(0, Seq())
}

The act method defines the core behavior of this actor. The combineResults helper
method is used to take two sets of query results and aggregate them such that the
highest scored results remain. This method also limits the number of results returned
to be the same as the maxDocs member variable.

 The bundleResult method is the core behavior of this actor. The curCount param-
eter is the number of responses seen so far. The current parameter is the aggregate of
all collected query results from all nodes. The bundleResult method first checks to
see if the number of responses is less than the maximum expected results. If so, it calls

220 CHAPTER 9 Actors
receiveWithin to wait for another response. The receiveWithin method will wait for
a given time for messages before sending the special scala.actors.TIMEOUT message.
If another query result is received, the method combines the result with the previous
set of results and recursively calls itself with bumped values. If receiving the message
times out, the bundleResult method calls itself with the number of responses set to
the maximum value. If the number of responses is at or above the maximum, the cur-
rent query results are sent to the client.

 Finally, the act method is implemented by calling the bundleResult method with
an initial count of zero and an empty Seq of results.

 The GathererNode stops trying to receive messages after the query results have
been sent. This effectively ends the life of the actor and allows the node to become
garbage-collected. The Scala standard actors library implements its own garbage col-
lection routine that will have to remove references to the GathererNode before the
JVM garbage collection can recover memory.

 The last piece of implementation required is to adapt the HeadNode to use the
GathererNode instead of collecting all the results in futures.

trait HeadNode extends Actor {

val nodes : Seq[OutputChannel[SearchNodeMessage]]

override def act : Unit = {
this.react {

case SearchQuery(q, max, responder) =>
val gatherer = new GathererNode {

val maxDocs = max
val maxResponses = nodes.size
val client = responder

}
gatherer.start
for (node <- nodes) {
node ! SearchQuery(q, max, gatherer)

}
act

}
}
override def toString = "HeadNode with {\n" +

"\t" + nodes.size + " search nodes\n" +
nodes.mkString("\t", "\n\t", "\n}")

}

The HeadNode has been changed so that when it receives a SearchQuery, it constructs
a new GathererNode. The gatherer is instantiated using the parameters from the
SearchQuery. The gatherer must also be started so that it can receive messages. The
last piece is to send a new SearchQuery message to all the SearchNodes with the
OutputChannel set to the gatherer.

 Splitting the scatter and gather computations into different actors can help with
throughput in the whole system. The HeadNode actor only has to deal with incoming
messages and do any potential preprocessing of queries before scattering them. The
GathererNode can focus on receiving responses from the search tree. A Gatherer

Must start the actor

221Limit failures to zones
node could even be implemented such that it stopped SearchNodes from performing
lookups if enough quality results were received. Most importantly, if there’s any kind
of error gathering the results of one particular query, it won’t adversely affect any
other query in the system.

 This is a key design issue with actors. Failures should be isolated as much as possi-
ble. This can be done through the creation of failure zones.

9.3 Limit failures to zones
Architecting and rationalizing distributed architecture can be difficult. Joe Arm-
strong, the creator of Erlang, popularized the notion of actors and how to handle fail-
ure. The recommended strategy for working with actors is to let them fail and let
another actor, called a supervisor handle that failure. The supervisor is responsible for
bringing the system it manages back into a working state.

 Looking at supervisors and actors from a topological point of view, supervisors cre-
ate zones of failure for the actors they manage. The actors in a system can be partitioned
by the supervisors such that if one section of the system goes down, the supervisor has
a chance to prevent the failure from reaching the rest of the system. Each supervisor
actor can itself have a supervisor actor, creating nested zones of failure.

 The error handling of supervisors is similar to exception handling. A supervisor
should handle any failure that it knows how to, and bubble up those it doesn’t to
outer processes. If no supervisor can handle the error, then this would bring down the
entire system, so bubbling up errors should be done carefully!

 Supervisors can be simpler to write than exception handling code. With exception
handling, it’s difficult to know if a try-catch block contained any state-changing code
and whether it can be retired. With supervisors, if an actor is misbehaving, it can
restart the portion of the system that’s dependent on that actor. Each actor can be
passed an initial good state and continue processing messages.

 Notice the relationship between the supervisor of an actor and the creator of the
actor. If the supervisor needs to recreate an actor upon destruction, the supervisor is
also the ideal candidate to start the actor when the system initializes. This allows all the
initialization logic to live in the same location. Supervisors may also need to act as proxy
to the subsystem they manage. In the event of failure, the supervisor may need to buffer
messages to a subsystem until after it has recovered and can begin processing again.

 Supervisors are created differently in the various Scala actor libraries. In the core
library, supervisors are created through the link method. The Akka actors library pro-
vides many default supervisor implementations and mechanisms of wiring actors and
supervisors together. One thing that’s common across actor libraries is that supervi-
sors are supported and failure zones are encouraged.

9.3.1 Scatter-Gather failure zones

Let’s adapt the scatter-gather example to include failure zones. The first failure zone
should cover the HeadNode and SearchNode actors. Upon failure, the supervisor can
reload a failing search node and wire it back into the head node. The second failure

222 CHAPTER 9 Actors
zone should cover the FrontEnd actor and the supervisors of the first failure zone. In
the event of failure in this outer zone, the supervisor can restart any failed inner zones
and inform the front end of the new actors. A topological view of this failure handling
is shown in figure 9.4.

Design for failure with topological zones

When designing with actors, it’s important to prepare what zones are allowed to fail separately.
The system should be designed such that any one zone does not take down the entire application.

Failure Zones 1 and 2 in the diagram show the HeadNode and SearchNode failure
zones for two parallel search hierarchies. The supervisor for these zones is responsible
for restarting the entire tree, or a particular SearchNode, on failure. Zones 1 and 2 are
each encompassed in Zone 3. This zone manages the search on the front end. In the
event of failure, it restarts the underlying search trees or the front end as needed.

 We’ll start by defining the supervisor for the search nodes:

trait SearchNodeSupervisor extends Actor {
val numThreadsForSearchTree = 5

private def createSearchTree(size : Int) = {
val searchNodes = for(i <- 1 to size) yield {
val tmp = new SearchNode {

override val id = i
}
SearchNodeSupervisor.this link tmp
tmp.start

Listing 9.1 Supervisor for search nodes

Figure 9.4 Failure zones for scatter-gather example

Rule
21

Subtree constructor

Supervise
subnodes

223Limit failures to zones
tmp
}
val headNode = new HeadNode {

val nodes = searchNodes
override val scheduler = s

}
this link headNode
headNode.start

headNode
}
def act() : Unit = {

trapExit = true
def run(head : Actor) : Nothing = react {

case Exit(deadActor, reason) =>
run(createSearchTree(10))

case x =>
head ! x
run(head)

}
run(createSearchTree(10))

}
}

The SearchNodeSupervisor contains
two methods: createSearchTree and
act. The create-SearchTree is
responsible for instantiating nodes of
the search tree and returning the top
node. This method iterates over the
desired size of the tree and creates
the SearchNode class from the previ-
ous examples. Remember that each
SearchNode uses its assigned ID to
load a set of indexed documents and
make them available for queries.
Each search node created is linked to
the supervisor. In the Scala standard
library actors, linking is what creates
a supervisor hierarchy. Linking two
actors means that if one fails, both
are killed. It also allows one of them
to trap errors from the other. This is
done from the call to trapExit =
true in the act method.

 The second method is the stan-
dard library actor’s act method. This
defines the core behavior of the

Supervise
subnodes

Catch errors on
linked actors

Wait for messages

Restart
on failure

Common linking pitfalls
The link method has two restrictions that
simplify its use.

 It must be called from inside a live
actor—that is, from the act method
or one of the continuations passed
to react.

 It should be called on the supervisor
with the other actor as the method
argument.

Because link alters the behavior of failure
handling, it needs to lock both actors it
operates against. Because of this synchro-
nization, it’s possible to deadlock when
waiting for locks. Ordering the locking
behavior can prevent this behavior. The
link method also requires, through run-
time asserts, that it’s called against the
current live actor. The actor must be
actively running in its scheduled thread.
This means linking should be done internal
to the supervisor actor. This is why all the
topological code is pushed down into the
supervisor and why it acts as a natural
proxy to the actors it manages.

224 CHAPTER 9 Actors
supervisor actor. The first line here is the trapExit = true, which allows this actor to
catch errors from others. The next line is a helper function called run, which accepts
one parameter, the current head actor, and calls react, which will block waiting for
messages. The first message it handles is the special Exit message. An Exit message is
passed if one of the linked actors fails. Notice the values that come with an Exit mes-
sage: deadActor and reason. The deadActor link allows the supervisor to attempt to
pull any partial state from the deadActor if needed, or remove it from any control
structures as needed. Note that the deadActor is already gone and won’t be scheduled
anymore at the time of receiving this message.

 For the SearchNodeSupervisor, when handling errors, the entire search tree is
reconstructed and passed back into the run method. This may not be ideal in a real-
life situation because reconstructing the entire tree could be expensive or the tree
might be sprawled over several machines. In that case, the SearchNodeSupervisor
could restart the failed node and notify the search tree of the replacement.

 If the SearchNodeSupervisor encounters any other message, it’s forwarded to the
current HeadNode. This means that the supervisor can block incoming messages when
restarting the system. When the main node crashes, the supervisor receives the Exit
message and stops processing messages while it fixes the system. After restoring
things, it will again pull messages from its queue and delegate them down to the
search tree.

9.3.2 General failure handling practices

The supervisor for the scatter-gather search system demonstrates ways to handle the
issues of failure in an actors system. When designing an actors-based system and out-
lining failure zones, table 9.1 helps make decisions appropriate for that module.

 These three decisions are crucial in defining robust concurrent actor systems. The
first point is the most important. Creating a fail-safe zone implies ensuring that if that

Table 9.1 Actor design decisions

Decision Scatter-Gather example Other options

Providing transparent way to
restart failed components

Forward messages through the
supervisor. If supervisor fails,
restart outer failure zone.

Update name service with refer-
ences to actors.
Directly communicate new loca-
tion to connected components.

Granularity of failure zones The entire search tree fails and
restarts.

Single Search node inner failure
zone with Search Tree outer
failure zone.

Recovery of failed actor state Actor data is statically pulled
from disk. Doesn’t change dur-
ing its lifetime.

Periodic snapshotting to persis-
tent store
Pulling live state from dead actor
and sanitizing
Persisting state after every han-
dled message

225Limit overload using scheduler zones
zone crashes and restarts, it won’t affect external zones. The Scala actors library makes
it easy to lose transparency for actors. This can be done by passing the reference to a
specific actor rather than a proxy or namespace reference.

 The second decision can affect the messaging API for actors. If a subsystem needs
to tolerate failure of one of its actors, the other actors need to be updated to commu-
nicate with the replacement actor. Again, transparent actor references can be a boon
here. For the Scala standard library, using the supervisors as proxies to sub-compo-
nents is the simplest way to provide transparency. This means that for fine-grained fail-
ure zones, many supervisors must be created, possibly one per actor.

 The third decision is one not discussed in the example—that of state recovery.
Most real-life actors maintain some form of state during their lifetimes. This state may
or may not need to be reconstructed for the system to continue functioning. Although
not directly supported in the Scala standard library, one way to ensure state sticks
around is to periodically snapshot the actor by dumping its state to a persistent store.
This could then be recovered later.

 A second method of keeping state would be to pull the last known state from a
dead actor and sanitize it for the reconstructed actor. This method is risky, as the state
of a previous actor isn’t in a consistent state and the sanitization process may not be
able to recover. The sanitization process could also be hard to reason through and
write. This mechanism isn’t recommended.

 Another mechanism for handling state is to persist the state after every message an
actor receives. Although not directly supported by the Scala standard library, this
could easily be added through a subclass of actor.

AKKA TRANSACTORS The Akka actors library provides many ways to synchro-
nize the state of live actors, one of which is transactors. Transactors are actors
whose message handling functions are executed within a transactional context.

One item not on this list is threading strategies. Because actors share threads, an actor
that fails to handle its incoming messages could ruin the performance of other actors
that share the same threading resources. The solution to this is to split actors into
scheduling zones, similar to splitting them into failure zones.

9.4 Limit overload using scheduler zones
One type of failure that a supervisor can’t handle well is thread starvation of actors. If
one actor is receiving a lot of messages and spending a lot of CPU time processing
them, it can starve other actors. The actor schedulers also don’t have any notion of
priority. Maybe a high-priority actor in the system must respond as quickly as possible,
and could get bogged down by lower priority actors stealing all the resources.

 Schedulers are the solution to this problem. A scheduler is the component respon-
sible for sharing actors among threads. The scheduler selects the next actor to run
and assigns it to a particular thread. In the Scala actors library, a scheduler imple-
ments the IScheduler interface.

226 CHAPTER 9 Actors
A variety of scheduling mechanisms are available for the standard library actors, as
shown in table 9.2.

 The ForkJoinScheduler is the default scheduler for Scala actors. This is done
through a nifty work-stealing algorithm where every thread has its own scheduler.
Tasks created in a thread are added to its own scheduler. If a thread runs out of tasks,
it steals work from another thread’s scheduler. This provides great performance for a
lot of situations. The scatter-gather example is a perfect fit for the fork join parallel
executor. Queries are distributed to each SearchNode for executions, and results are
aggregated to create the final query results. The work-stealing pulls and distributes
the forked work for a query. If the system is bogged down, it could degrade to per-
forming similarly to a single-threaded query engine. Although generally efficient, the
ForkJoinScheduler isn’t optimal in situations where task sizes are largely variable.

 The ResizableThreadPoolScheduler constructs a pool of threads that share the
processing of messages for a set of actors. Scheduling is done on a first-come, first-
serve basis. If the workload starts to grow beyond what the current thread pool can
handle, the scheduler will increase the available threads in the pool up until a maxi-
mum pool size. This can help a system handle a large increase in messaging through-
put and back off resources during downtime.

 The ExecutorScheduler is a scheduler that defers scheduling actors to a
java.util.Executor service. There are many implementations of java.util

.Executor in the Java standard library as well as common alternatives. One of these,
from my own codebases, was an Executor that would schedule tasks on the Abstract
Windows Toolkit (AWT)-rendering thread. Using this scheduler for an actor guaran-
tees that it handles messages within a GUI context. This allowed the creation of GUIs
where actors could be used to respond to backend events and update UI state.

 Each of these schedulers may be appropriate to one or more components in a sys-
tem. Some components scheduling may need to be completely isolated from other
components. This is why scheduling zones are important.

Table 9.2 Schedulers

Scheduler Purpose

ForkJoinScheduler Parallelization optimized for tasks that are split up, parallel-
ized, and recovered—that is, things that are forked for pro-
cessing, then joined together.

ResizableThreadPoolScheduler Starts up a persistent thread pool for actors. If load is
increased, it’ll automatically create new threads up to an
environment-specified limit.

ExecutorScheduler Uses a java.util.concurrent.Executor to sched-
ule actors. This allows actors to use any of the standard
Java thread pools and is the recommended way to assign
fixed size thread pool.

227Limit overload using scheduler zones
9.4.1 Scheduling zones

Scheduling zones are groupings of actors that share the same scheduler. Just as failure
zones isolate failure recovery, so do scheduling zones isolate starvation and contention
of subsystems. Scheduling zones can also optimize the scheduler to the component.

 Figure 9.5 shows what a scheduling zone design might be for the scatter-gather
example.

Limit starvation using scheduling zones

Prevent low-latency services from getting clobbered by low-priority processes using scheduling
zones to carve out dedicated resources.

The scatter-gather search service can be split into four scheduling zones: Search
Tree 1, Search Tree 2, Front End, and Supervisor.

 The first scheduling zone handles all actors in a search tree. The ForkJoin-
Scheduler is optimized for the same behavior as the scatter-gather algorithm, so it
makes an ideal choice of scheduler for this zone. The replicated Search tree uses its
own ForkJoinScheduler to isolate failures and load between the two trees.

 The front end scheduling zone uses a customized scheduler that ties its execution
to an asynchronous HTTP server; the handling of messages is done on the same
thread as input is taken, and the results are streamed back into the appropriate socket
using one of the front-end threads. These actors could also use their own thread pool.
This would be ideal if the HTTP server accepting incoming connections used a thread
pool of the same size.

 The last scheduling zone, not shown, is the scheduling of error recovery. Out of
habit, I tend to place these on a separate scheduling routine so they don’t interfere
with any other subcomponent. This isn’t strictly necessary. Error recovery, when it
happens, is the highest priority task for a given subcomponent and shouldn’t steal

Figure 9.5 Scatter-gather scheduling zones

Rule
22

228 CHAPTER 9 Actors
more important work from other threads. But if more than one subcomponent is
sharing the same scheduling zone, then I prefer to keep recovery work separate from
core work.

 Let’s add scheduling zones to the scatter-gather search tree example. The only
changes required are in the constructor function defined on the supervisor, as shown
in the following listing:

private def createSearchTree(size : Int) = {
val numProcessors =

java.lang.Runtime.getRuntime.availableProcessors
val s = new ForkJoinScheduler(

initCoreSize = numProcessors,
maxSize = numThreadsForSearchTree,
daemon = false, fair = true)

val searchNodes = for(i <- 1 to size) yield new SearchNode {
override val id = i
override val scheduler = s

}
searchNodes foreach this.link
searchNodes.foreach(_.start)
val headNode = new HeadNode {

val nodes = searchNodes
override val scheduler = s

}
this link headNode
headNode.start
headNode

}

The original code has two new additions. The first is the creation of the ForkJoin-
Scheduler. This scheduler takes four arguments. The initCoreSize and maxSize
arguments are the minimum and maximum number of threads it should store in its
thread pool. The daemon argument specifies whether threads should be constructed
as daemons. This scheduler can shut itself down if the actors within are no longer per-
forming any work. The last argument is whether or not the scheduler should attempt
to enforce fairness in the work-stealing algorithm.

 The second additions are the overridden scheduler member of the SearchNode
and HeadNode actors. This override causes the actor to use the new scheduler for all of
its behavior. It can do this only at creation time, so the scheduling zones must be
known a-priori.

 The actors are now operating within their own fork-join pool, isolated from load in
other actors.

9.5 Dynamic actor topology
One of the huge benefits of using actors is that the topology of your program can
change drastically at runtime to handle load or data size. For example, let’s redesign
the scatter-gather search tree so that it can accept new documents on the fly and add

Listing 9.2 SearchTree factory

Create
scheduler
for zone

Assign
scheduler
to actor

229Dynamic actor topology
them to the index. The tree should be able to grow in the event that a specific node
gets to be too large. To accomplish this, we can treat an actor as a state machine.

Just use Akka

Akka is the most performant actors framework available on the JVM. It’s designed with actor
best practices baked into the API. Writing efficient, robust actors systems is simplest in the Akka
framework.

The entire scatter-gather tree is composed of two node types: search (leaves) and head
(branches). A search node holds an index, like the previous topic nodes. It’s responsi-
ble for adding new documents to the index and for returning results to queries. A
head node holds the number of children. It’s responsible for delegating queries to all
children and setting up a gatherer to aggregate the results.

USING AKKA The following examples will use the Akka actors library.
Although the Scala standard library is elegant, the Akka library makes the
robust usage of actors easy. Akka builds in the notion of transparent actor ref-
erences, while providing a good set of useful supervisors and schedulers. Cre-
ating failure zones and scheduling zones is much easier in Akka, and the
library is standalone. In general, there’s little reason not to use Akka, espe-
cially when attempting to design a distributed topology, as shown in the fol-
lowing listing:

trait LeafNode { self: AdaptiveSearchNode =>
...
def leafNode: PartialFunction[Any, Unit] = {

case SearchQuery(query, maxDocs, handler) =>
executeLocalQuery(query, maxDocs, handler)

case SearchableDocument(content) =>
addDocumentToLocalIndex(content)

}
...

}

The LeafNode trait is defined with a single PartialFunction[Any,Unit] named
leafNode. This function contains the message handling behavior for the adaptive
search nodes when the node is a leaf. When the node receives a SearchQuery it exe-
cutes that query against the local index. When the node receives a Searchable-
Document, it adds that document to the local index:

trait LeafNode { self: AdaptiveSearchNode =>

var documents: Vector[String] = Vector()
var index: HashMap[String, Seq[(Double, String)]] = HashMap()
...
private def executeLocalQuery(query: String,

Listing 9.3 AdaptiveSearchNode

Listing 9.4 LeafNode.executeLocalQuery

Rule
23

230 CHAPTER 9 Actors
maxDocs: Int,
handler: ActorRef) = {

val result = for {
results <- index.get(query).toList
resultList <- results

} yield resultList
handler ! QueryResponse(result take maxDocs)

}
}

The executeLocalQuery function extracts all the results for a given word. These are
then limited by the desired maximum number of results in the query and sent to the
handler. Note that the handler is of type ActorRef not Actor. In Akka, there’s no way
to gain a direct reference to an actor. This prevents accessing its state directly from a
thread. The only way to talk with an actor is to send a message to it using an ActorRef,
which is a transparent reference to an actor. Messages are still sent to actors using the
! operator. The executeLocalQuery function didn’t change from the Scala actors ver-
sion to the Akka actors version besides the use of ActorRef:

trait LeafNode { self: AdaptiveSearchNode =>

private def addDocumentToLocalIndex(content: String) = {
documents = documents :+ content
if (documents.size > MAX_DOCUMENTS) split()
else for((key,value) <- content.split("\\s+").groupBy(identity)) {

val list = index.get(key) getOrElse Seq()
index += ((key, ((value.length.toDouble, content)) +: list))

}
}
protected def split(): Unit

}

After updating the index, the document is added to the list of stored documents.
Finally, if the number of documents in this node has gone above the maximum
desired per node, the split method is called. The split method should split this leaf
node into several leaf nodes and replace itself with a branch node. Let’s defer defin-
ing the split method until after the parent node is defined. If the index doesn’t need
to be split, the index is updated.

 To update the index, the document string is split into words. These words are
grouped together such that the key refers to a single word in a document and the
value refers to a sequence of all the same words in the document. This sequence is
later used to calculate the score of a given word in the document. The current index
for a word is extracted into the term list. The index for the given word is then updated
to include the new document and the score for that word in the document.

 Let’s first define the branch node functionality before defining the split method:

Listing 9.5 LeafNode.addDocumentToLocalIndex

231Dynamic actor topology
trait ParentNode { self: AdaptiveSearchNode =>
var children = IndexedSeq[ActorRef]()
def parentNode: PartialFunction[Any, Unit] = {

case SearchQuery(q, max, responder) =>
val gatherer: ActorRef = Actor.actorOf(new GathererNode {

val maxDocs = max
val maxResponses = children.size
val query = q
val client = responder

})
gatherer.start
for (node <- children) {

node ! SearchQuery(q, max, gatherer)
}

case s @ SearchableDocument(_) => getNextChild ! s
}
...

}

The ParentNode is also defined with a self type of AdaptiveSearchNode. The parent
node also contains a list of children. Again, the reference to child actors is the Actor-
Ref type. The method parentNode defines a partial function that handles incoming
messages when an actor is a parent. When the parent receives a SearchQuery it con-
structs a new gatherer and farms the query down to its children.

 Notice the difference from Scala actors. In Akka, an actor is constructed using the
Actor.actorOf method. Although the actor is constructed as a gatherer node, the
term gatherer is of type ActorRef not GathererNode.

 When the ParentNode receives a SearchableDocument it calls getNextChild and
sends the document to that child. The getNextChild method, not shown, selects a
child from the children sequence in a round-robin fashion. This is the simplest
attempt to ensure a balanced search tree. In practice, there would be a lot more effort
to ensure the topology of the tree was as
efficient as possible (see figure 9.6).

 The key behavior of the new adap-
tive search tree is that it should dynami-
cally change shape. Any given node
should be able to change its state from
being a leaf node to a parent node that
has children. Let’s call the new state
changing actor an AdaptiveSearchNode.

class AdaptiveSearchNode extends Actor with ParentNode with LeafNode {

def receive = leafNode

protected def split(): Unit = {

Listing 9.6 BranchNode

Listing 9.7 AdaptiveSearchNode

Figure 9.6 Topology state change

232 CHAPTER 9 Actors
children = (for(docs <- documents grouped 5) yield {
val child = Actor.actorOf(new AdaptiveSearchNode)
child.start()
docs foreach (child ! SearchableDocument(_))
child

}).toIndexedSeq
clearIndex()
this become parentNode

}

Similar to Scala actors, an Akka actor must extend the Actor trait. The largest differ-
ence between Akka and Scala actors is the receive method. In Akka, receive defines
the message handle for all messages, not just the next message received. There’s no
need to explicitly loop. Also, receive is called via the Akka library when a message is
ready, so receive is not a blocking call.

 The receive method is defined to return the leafNode behavior by default. This
means any AdaptiveSearchNode instantiated will start of as a leaf node. In Akka, to
switch the behavior of an actor, there’s a become method that accepts a different mes-
sage handler.

 The split method is defined to:

 Create new AdaptiveSearchNode actors for every five documents in the current
index (see listing 9.8. This will begin acting as leaf nodes. These nodes are then
sent the portion of documents they will be responsible for.

 The local index is cleared to allow it to be garbage--collected. In a production
system, this wouldn’t happen until the children acknowledged that they had
received the documents and were ready to begin serving traffic.

 The behavior of the current actor is switched to the parent behavior in the
expression this become parentNode.

def makeTree = {
val searchTree = Actor.actorOf(new AdaptiveSearchNode {

self.dispatcher = searchnodedispatcher
})
searchTree.start()
submitInitialDocuments(searchTree)
searchTree

}

Now, creating a scatter-gather search tree is much easier. Only the root Adaptive-
SearchNode needs to be created and the documents sent into the root node. The tree
will dynamically expand into the size required to handle the number of documents.

AKKA’S SCHEDULER AND SUPERVISORS Akka provides an even richer set of
actor supervisors and schedulers than the Scala actors library. These aren’t
discussed in the book, but can be found in Akka’s documentation at http://
akka.io/docs/

Listing 9.8 Creating an adaptive scatter-gather tree

http://akka.io/docs/
http://akka.io/docs/

233Summary
This technique can be powerful when distributed and clustered. The Akka 2.0 frame-
work is adding the ability to create actors inside a cluster and allow them to be dynam-
ically moved around to machines as needed.

9.6 Summary
Actors provide a simpler parallelization model than traditional locking and threading.
A well-behaved actors system can be fault-tolerant and resistant to total system slow-
down. Actors provide an excellent abstraction for designing high-performance serv-
ers, where throughput and uptime are of the utmost importance. For these systems,
designing failure zones and failure handling behaviors can help keep a system run-
ning even in the event of critical failures. Splitting actors into scheduling zones can
ensure that input overload to any one portion of the system won’t bring the rest of the
system down. Finally, when designing with actors, you should use the Akka library for
production systems.

 The Akka library differs from the standard library in a few key areas:

 Clients of an actor can never obtain a direct reference to that actor. This drasti-
cally simplifies scaling an Akka system to multiple servers because there’s no
chance an actor requires the direct reference to another.

 Messages are handled in the order received. If the current message handling
routine can’t handle an input message, it’s dropped (or handled by the
unknown message handler). This prevents out-of-memory errors due to mes-
sage buffers filling up.

 All core actors library code is designed to allow user code to handle failures
without causing more. For example, Akka goes to great lengths to avoid causing
out-of-memory exceptions within the core library. This allows user code, your
code, to handle failures as needed.

 Akka provides most of the basic supervisor behaviors that can be used as build-
ing blocks for complex supervision strategies.

 Akka provides several means of persisting state “out of the box.”

So, while the Scala actors library is an excellent resource for creating actors applica-
tions, the Akka library provides the features and performance needed to make a pro-
duction application. Akka also supports common features out of the box.

 Actors and actor-related system design is a rich subject. This chapter lightly cov-
ered a few of the key aspects to actor-related design. These should be enough to cre-
ate a fault-tolerant high-performant actors system.

 Next let’s look into a topic of great interest: Java interoperability with Scala.

Integrating Scala
with Java
One of the biggest advantages of the Scala language is its ability to seamlessly inter-
act with existing Java libraries and applications. Although this interaction isn’t com-
pletely seamless, Scala offers the tightest integration to Java of any JVM language.

 The key to knowing how to integrate Scala and Java lies in the Java Virtual
Machine specification and how each language encodes onto that specification.
Scala does its best to translate simple language features directly onto JVM features.
But complicated Scala features are implemented with some compiler tricks, and
these tricks are usually the cause of issues when integrating with Java. For the most
part, the Java language translates simply into JVM bytecode; however, it too has lan-
guage features that use compiler tricks. These will also cause rough spots in Scala/
Java interaction.

In this chapter
 The benefits of using interfaces for Scala-Java interaction

 The dangers of automatic implicit conversions of Java types

 The complications of Java serialization in Scala

 How to effectively use annotations in Scala for Java libraries
234

235The language mismatch between Scala and Java
 Another benefit of understanding how to interface Scala with Java is that it helps
to integrate Scala with every other JVM language. Because Java is king on the JVM, all
alternative JVM languages provide means of using existing Java code. This means that
communications from Scala to another JVM language can be accomplished through
Java in the worst case. Scala is working on language features to integrate directly with
dynamic languages, but even with the 2.9.0 release, these features are considered
experimental.

 This chapter focuses on four big issues in Scala/Java interaction. The first issue is
that Scala treats all types as objects, and Java supports primitives within the language.
This leads to issues that can be solved by creating appropriate interfaces for communi-
cation between Java and Scala. Other mismatches can be alleviated with judicious use
of implicit conversions.

 The second issue is implicit conversions, which tend to be overutilized. While
extremely useful, they can cause subtle bugs in Scala/Java interaction. We’ll cover
these in detail in section 10.2.

 The third issue is Java serialization. Scala does a lot to support Java serialization
seamlessly and succeeds for the most part. A few advanced Scala features can cause
issues with Java serialization. We’ll discuss these in section 10.3.

 The fourth issue is with annotations. Scala adheres to a uniform access principle—
that is, Scala makes no distinction between methods and fields; they share the same
namespace. Java does distinguish between fields and methods. Some Java libraries
require specific methods or fields to have annotations. Scala provides some advanced
annotation features that enable this to succeed. We’ll discuss these in section 10.4.

 Let’s look into the mismatch between Java primitives and Scala objects.

10.1 The language mismatch between Scala and Java
The Scala and Java languages offer tight integration. Scala classes can be instantiated
and extended within Java. Java interfaces and classes can be extended within Java.
Scala trait can be extended within Java using a bit of trickery. But this seemingly tight
integration runs afoul of three rough patches: primitive boxing, visibility differences,
and inexpressible language features.

 Primitive boxing is the (semi-)automatic conversion of primitive values on the JVM
into objects. This is done because generic parameters are implemented through type-
erasure. Type-erasure refers to the practice where, although the generic parameters are
known to the compiler at compile time, they get erased to java.lang.Object at run-
time. This was one of the means with which Java retained backwards compatibility
when it introduced generics. Scala and Java implement this differently, which we’ll
look into in section 10.1.1.

Visibility refers to using protected and private modifiers to change the access
restrictions on classes and their members. Scala prefers to make everything visible at
runtime (that is, in the bytecode) while Java prefers to enforce as much runtime

236 CHAPTER 10 Integrating Scala with Java
visibility restrictions as the JVM allows. These competing goals can lead to runtime vis-
ibility problems. We’ll discuss these in section 10.1.2.

 Inexpressible language features are features within the Scala language that can’t
be expressed within the Java language. Things like curried methods, implicit parame-
ters and higher-kinded types are examples. It’s best to avoid or hide these features in
any code that needs to interface with Scala and Java. We’ll discuss these in more detail
in section 10.1.3.

 The first difference between Scala and Java is the special treatment of primitives,
things created directly on the stack and passed by value, and objects, things created on
the heap and passed by reference. In Java, primitives are isolated from objects. Specif-
ically, code using generic type parameters in Java can’t use primitives. To get around
this, Java defines a set of classes that mimic the types of primitives. When an object is
required, the primitive can be placed into an object. This technique is known as
boxing the primitive. The object makes a box in which to carry the primitive. Scala
makes no distinction between primitives and objects, and performs boxing behind the
scenes on behalf of the developer.

10.1.1 Differences in primitive boxing

In the Scala language, everything is an object and the compiler does its best to hide the
fact that primitives aren’t objects. In the Java language, the programmer is forced to
pay attention to the difference between a primitive and an object containing the same
value. This means that java.util.List<int> isn’t a valid type in Java, but
java.util.List<Integer> is valid.

 To relieve the overhead of boxing, Java introduced auto-(un)boxing in version 1.5.
Autoboxing is an implicit conversion from a primitive type to its boxed type. This
allows you to write a for loop as the following:

List<Integer> foo = ...
for (int item : foo) {

...
}

In the example, the line int item : foo is a for expression that’s unboxing all integers
in the list foo. Although not seen, this is the same code as the following:

List<Integer> foo = ...
for (Integer item_ : foo) {

int item = item_.intValue();
...

}

This example is similar except that the int item is explicitly unboxed from the
Integer returned from the list. Although boxing happens automatically in Java, it can
be an expensive operation at runtime.

 In Scala, there’s no distinction between primitives and objects. The language treats
scala.Int as an object. The compiler tries to optimize the usage of scala.Int such

item is unboxed

Explicit unboxing

237The language mismatch between Scala and Java
that it remains in primitive form throughout the life of a program. For example, we’ll
define the following Scala object:

object Test {
def add(x: Int, y: Int) = x + y

}

This object defines one method, add. The add method takes two scala.Int values and
returns a scala.Int. The bytecode emitted by the compiler is as follows:

public int add(int, int);
Code:
0: iload_1
1: iload_2
2: iadd
3: ireturn

}

The signature for the add method uses the primitive int type. The bytecode emitted
uses iload, iadd, and ireturn. These three bytecodes operate on primitive integers.
What happens if we use a generic type with scala.Int? The compiler will generate
boxing code as needed:

object Test {
def add2(items: List[Int]) = {

var sum = 0
val it = x.iterator
while (it.hasNext) {

sum += it.next
}
sum

}
}

The object Test defines a new method add2. This method take a generic List class
parameterized to have scala.Int elements. The code creates a sum variable, grabs an
iterator to the list, and iterates over the values in the list. Each of these values is
added to the sum variable and the sum is returned. Let’s take a look at the bytecode in
the following listing.

public int add2(scala.collection.immutable.List);
Code:
0: iconst_0
1: istore_2
2: aload_1
3: invokeinterface #28, 1;

//InterfaceMethod
scala/collection/LinearSeqLike.iterator:()Lscala/collection/Iterator;
8: astore_3
9: aload_3
10: invokeinterface #34, 1;

Listing 10.1 The add2 method

238 CHAPTER 10 Integrating Scala with Java
//InterfaceMethod scala/collection/Iterator.hasNext:()Z
15: ifeq 33
18: iload_2
19: aload_3
20: invokeinterface #38, 1;

//InterfaceMethod
scala/collection/Iterator.next:()Ljava/lang/Object;
25: invokestatic #44;

//Method
scala/runtime/BoxesRunTime.unboxToInt:(Ljava/lang/Object;)I
28: iadd
29: istore_2
30: goto 9
33: iload_2
34: ireturn

}

The add2 method is compiled so that it takes the scala.collection.immutable.List
type as a parameter and returns a primitive integer. The List class is generic and suf-
fers from the same problem as Java generics. The implementation of Generic types in
Java forces the use of Object at runtime; therefore, primitives can’t be generic type
parameters. Label 20 in the byte code shows that invoking next against the List’s iter-
ator returns the type Object. Label 25 shows Scala’s version of autoboxing: the Boxes-
RunTime class. Scala uses the scala.runtime.BoxesRunTime class to implement all
boxing/unboxing operations as efficiently as possible.

Avoiding boxing in Scala
Starting in Scala 2.8.0 the @specialized keyword can be used on generic classes
to avoid boxing entirely. This is done through method overloading and type-specific
subclasses. For example, the Iterator class in specialization would be written as
follows:
trait Iterator[@specialized(Int) T] {
 def hasNext: Boolean
 def next: T
}

This results in the following JVM interface:
public interface Iterator {
 public abstract boolean hasNext();
 public abstract java.lang.Object next();
 public abstract int nextmcIsp();
}

The next method is defined to return an Object, as is standard in generic implemen-
tations in Java and Scala. But there’s a specialized version of next called
nextmcIsp that returns a primitive int. When the compiler knows that the
Iterator has a type parameter of Int, it will generate calls to the nextmcIsp
rather than next. This can be used to remove the cost of boxing, albeit by creating
larger classes.

239The language mismatch between Scala and Java
The important point here is that both Scala and Java use boxing with generic classes.
Scala hides boxing entirely behind scala.Int while Java promotes boxing into the
language itself. This mismatch can cause issues when working with Scala from Java or
Java from Scala. These issues can be solved using one simple rule: Use primitives in
methods used from both Scala and Java.

Prefer primitives in methods when integrating Java and Scala

Scala attempts to preserve primitives throughout your code. It’s best to use primitives, and
arrays, for the simplest interface between Java and Scala.

This simple rule can avoid a few of the issues with Scala/Java interaction. We still have
the issue of generic parameters. In Java, a list of integers has the type java.util
.List<java.lang.Integer>. In Scala, a list of integers has the type java.util.List
[scala.Int]. Although the runtime implementation of the two lists is the same,
Scala’s type system does not automatically convert from Java’s boxed primitives to
Scala’s unified object types—the Scala compiler won’t automatically convert a java
.util.List[java.lang.Integer] into a java.util.List[scala.Int] even if such a
conversion would be type-safe.

 Two solutions to this issue exist. One is to perform a cast from java.util.List
[java.lang.Integer] to java.util.List[scala.Int]. The other is to define an
implicit conversion that will shim Java types into Scala types. Let’s look at the casting:

scala> val x = new java.util.ArrayList[java.lang.Integer]
x: java.util.ArrayList[java.lang.Integer] = []

scala> x.add(java.lang.Integer.valueOf(1))
res0: Boolean = true

scala> x.add(java.lang.Integer.valueOf(2))
res1: Boolean = true

scala> val z = x.asInstanceOf[java.util.List[Int]]
z: java.util.List[Int] = [1, 2]

scala> z.get(0)
res3: Int = 1

The first line constructs a new java.util.ArrayList with a generic parameter equal
to java.lang.Integer. The next two lines add data to the list. The third line defines a
new list z, which is a cast from java.util.ArrayList[java.lang.Integer] to java
.util.List[scala.Int]. The REPL prints the values in the list when describing the
return types. Notice that the correct values are shown and there are no runtime
exceptions. The next retrieves the first value from the cast list. Notice that the return
type is scala.Int and there are no ClassCastExceptions. The asInstanceOf cast was
legal because Scala and Java box their primitive integers to the same type:
java.lang.Integer.

 These casts may be considered dangerous. They subvert the type system in Scala and
prevent it from discovering future errors. For example, if a method is changed from tak-
ing a java.util.List[java.lang.Integer] to a java.util.List [MySpecialClass],

Rule
24

240 CHAPTER 10 Integrating Scala with Java
the cast to java.util.List[scala.Int] will still compile and prevent other compile-
time errors.

 The second solution can avoid this pitfall by operating within the type system. The
second solution is to create an implicit conversion from java.util.List [java.lang
.Integer] to java.util.List[scala.Int]:

scala> implicit def convertToScala(
| x: java.util.List[java.lang.Integer]) =
| x.asInstanceOf[java.util.List[Int]]

convertToScala:
(x: java.util.List[java.lang.Integer])java.util.List[Int]

scala> def foo(x: java.util.List[Int]) = x.get(0)
foo: (x: java.util.List[Int])Int

scala> foo(x)
res4: Int = 1

The implicit convertToScala is defined to take a java.util.List[java.lang
.Integer]. It performs the same cast from the previous example. The difference here
is that the dangerous cast is hidden behind the method such that it can only be used
in a type-safe fashion; the method can only take lists of java.lang.Integer types, so if
the generic type parameter of the list is changed, the implicit view won’t be used at all
and the compiler will issue the appropriate type error.

 The scalaj-collections library provides primitive-safe implicit conversions between
Scala and Java collection types. This offers the best mechanism to handle primitives in
collections, but noncollection types may still require a hand-rolled implicit conversion.

 The next big issue is the difference in visibility implementation.

10.1.2 Differences in visibility

Java enforces visibility both statically and dynamically. Visibility is enforced both by the
Java compiler and by the JVM runtime. Java embeds visibility restrictions directly into
the bytecode that the JVM uses to enforce at runtime.

 Scala enforces visibility statically, and does its best to encode visibility constraints
for the JVM. Scala’s visibility design is far more powerful than Java’s and can’t be
directly encoded into bytecode for runtime enforcement. Scala tends to make meth-
ods publicly visible and enforces all constraints at compile time, unless the visibility
rule in Scala lines up directly with one from Java.

 Let’s look at a simple example. Java’s protected modifier differs from Scala’s. Spe-
cifically, in Scala, companion objects are allowed to access protected members of their
companion classes. This means that Scala can’t encode protected members using the
JVM’s protected bytecode because that would restrict companion classes from access-
ing protected members. Let’s look at an example.

class Test {
protected val x = 10

}

241The language mismatch between Scala and Java
The Test class is defined with a single member x. The val x is protected and holds the
value 10. Let’s look at the generated bytecode for this class.

public class Test extends java.lang.Object implements scala.ScalaObject{
private final int x;

public int x();
Code:
0: aload_0
1: getfield #11; //Field x:I
4: ireturn

...

The Test class is defined with a private field x and a public accessor called x. This
means that in Java an external user of the Test class could access the protected x
method. Here’s an example:

class Test2 {
public static void main(String[] args) {

Test obj = new Test();
System.out.println(obj.x());

}
}

The Test2 class is defined in Java. The main method is defined to construct a new
Scala Test instance. The next line calls the protected x method and prints its value to
the console. Even though the value is protected within Scala, the call succeeds in Java.
Let’s run the Test2 class:

$ java -cp /usr/share/java/scala-library.jar:. Test2
10

The program outputs the value 10 with no runtime visibility exception. Java doesn’t
see Scala’s visibility constraints. This means that Java clients of Scala classes need to be
on their best behavior to prevent modifying or accessing values that they shouldn’t.

Don't call methods with $ in the name from Java

Scala’s visibility rules are more advanced than Java and cannot be expressed. When calling into
Scala from Java, avoid calling methods with $ in the name, as these are implementation details
of Scala’s encoding.

Visibility issues are a subset of a bigger issue with Java/Scala integration—that of inex-
pressible language features.

10.1.3 Inexpressible language features

Java and Scala both have features that are inexpressible in the other language.
 Java has static values on classes. These are values that are constructed when a class

is loaded and aren’t associated with any particular instance of the class. In Scala,
everything is an object and there are no static values. We might argue that Scala’s
objects are static values. Scala’s objects are implemented in terms of static values on

Sneaky access

Rule
25

242 CHAPTER 10 Integrating Scala with Java
the JVM but aren’t themselves static values. Consequently, Java libraries that require
static values are hard to interact with from Scala.

 Scala has many features unavailable in Java, such as traits, closures, named and
default parameters, implicit parameters, and type declarations. When interacting with
Scala, Java can’t use implicit resolution to find missing parameters to methods. Java
can’t use Scala’s default parameter definitions.

 For each of these issues, there’s usually a workaround somewhere, but it’s best to
avoid these issues entirely. You can do this with a simple mechanism: Construct inter-
faces in Java that define all the types that will be passed between Java and Scala.

SCALA/JAVA INTEGRATION TIP Construct interfaces in Java that define all types
that will be passed between Java and Scala. Place these interfaces into a proj-
ect that can be shared between the Java portions of code and the Scala por-
tions of code. By limiting the features used in the integration points, there
won’t be any feature mismatch issues.

Because Java is more limited in features and compiles more directly to bytecode, it
makes for a great integration language. Using Java interfaces ensures you avoid the
corner case issues of integration, besides those of boxing.

 One example where using Java is required is on the Android platform which has
an interface called Parcelable. You can use this interface to allow objects to be
passed between processes. Because this could involve serializing the data, the
Parcelable interface requires a static field that the Android platform can use to
instantiate a Parcelable.

 For example, say that an application needs to pass addresses between processes
on the Android platform. In Java, the Address class would look as shown in the fol-
lowing listing:

public class Address implements Parcelable {
public String street;
public String city;
public String state;
public String zip;
public void writeToParcel(Parcel out, int flags) {

out.writeString(street);
out.writeString(city);
out.writeString(state);
out.writeString(zip);

}

private Address(Parcel in) {
street = in.readString();
city = in.readString();
state = in.readString();
zip = in.readString();

}

Listing 10.2 Parcelable Address for Android

243The language mismatch between Scala and Java
public int describeContents() {
return 0;

}

public static final Parcelable.Creator<Address> CREATOR
= new Parcelable.Creator<MyParcelable>() {

public Address createFromParcel(Parcel in) {
return new Address(in);

}

public Address[] newArray(int size) {
return new Address[size];

}
};

}

The Address class is composed of four members: street, city, state, and zip. It has
a writeToParcel method that’s Android’s way of flattening or serializing the class to
send to another process. The private constructor for Address is used to deserialize the
values from the Parcel it was stored in. The describeContents method returns a bit-
mask that tells the Android platform the types of data that are contained in the parcel,
in case any need special treatment. Finally, there’s a public static instance called
CREATOR defined on the class of type Parcelable.Creator<Address>. The Android
system uses this type to create and parse incoming Addresses from other processes.
This mechanism is also inexpressible in Scala.

 The solution in this case is to create a split between the pieces that require Java
and the pieces that require Scala. In the case of Address, it’s such a simple class, that
writing it completely in Java could be a fine solution. But if Address were more com-
plex, this splitting would be appropriate. Let’s pretend that Address uses some
advanced Scala type features in some of its member functions. To get Address to still
be Parcelable in Android and to keep the advanced Scala features, it must be split.
The Scala features can stay in an abstract class that the Java statics can extend. The
Scala class would look as follows:

abstract class AbstractAddress(
val street: String,
val city: String,
val state: String,
val zip: String) extends Parceable {

override def writeToParcel(out: Parcel, flags: Int) {
out.writeString(street)
out.writeString(city)
out.writeString(state)
out.writeString(zip)

}
override def describeContents = 0

}

The AbstractAddress class is defined with street, city, state, and zip as construc-
tors and as val members. The abstract class can also define all the methods required
by the Parcelable interface: writeToParcel and describeContents. But the static

244 CHAPTER 10 Integrating Scala with Java
CREATOR instance can’t be made in Scala. This can be done in Java. Let’s extend the
AbstractAddress class in Java to allow for usage in Android:

public class Address extends AbstractAddress {
private Address(Parcel in) {

super(in.readString(),
in.readString(),
in.readString(),
in.readString());

}
public static final Parcelable.Creator<Address> CREATOR

= new Parcelable.Creator<MyParcelable>() {
public Address createFromParcel(Parcel in) {

return new Address(in);
}
public Address[] newArray(int size) {

return new Address[size];
}

};
}

The Address class is defined with a private constructor that takes in a Parcel and del-
egates to the constructor defined in Scala. Then the static CREATOR instance is defined
similarly to the Java-only version.

 Due to Scala’s tight integration with Java, interfacing with constructors and extend-
ing abstract classes can be seamless. This simple Address Parcelable example high-
lights what to do when running into APIs developed for Java without Scala in mind.

 Another area of concern when integrating with Java is the overuse of implicit con-
versions to adapt Java libraries into Scala idioms.

10.2 Be wary of implicit conversions
One common mechanism of supporting the Scala/Java interaction is to create
implicit conversions within Scala that promote Java types into a more Scala-friendly
form. This can help ease the pain of using classes not designed for Scala but comes at
a cost. Implicit conversions carry a few dangers that developers need to be aware of:

 Object identity and equality
 Chaining implicits.

The most common example of using implicit conversions to ease integration between
Java and Scala are found in the Scala object scala.collection.JavaConverters. This
object contains a set of implicit conversions to convert collections from Java to their
Scala equivalents and vice versa. These implicit conversions are immensely handy but
also suffer from all the issues associated with this design. Let’s look into how object
identity and equality can become a problem when using JavaConversions.

245Be wary of implicit conversions
10.2.1 Object identity and equality

One of the dangers of using implicits to wrap Scala or Java objects for interoperability
is that it can alter object identity. This breaks equality in any code that might require
equality. Let’s look at a simple example of converting a Java collection into a Scala one:

scala> import collection.JavaConversions._
import collection.JavaConversions._

scala> val x = new java.util.ArrayList[String]
x: java.util.ArrayList[String] = []

scala> x.add("Hi"); x.add("You")

scala> val y : Iterable[String] = x
y: Iterable[String] = Buffer(Hi, You)

scala> x == y
res1: Boolean = false

The first line imports the JavaConversions implicit conversions. The next line creates
the Java collection ArrayList. The values "Hi" and "You" are added to the array list.
The val y is constructed with the type of scala.Iterable. This invokes an implicit
conversion to adapt the Java ArrayList into a Scala Iterable. Finally, when testing
equality of the two collections, the value is false. When wrapping a Java collection,
the wrapped collection isn’t equal to the original.

Avoid implicit views

Implicit views, when interfacing with Java, can cause silent object identity issues and other prob-
lems. It’s best to be explicit.

The nuance of this issue can be subtle. For example, the implicit conversion from a
Java collection to a Scala collection isn’t as obvious as in the previous example. Imag-
ine there’s a Java class that looks as follows:

import java.util.ArrayList;

class JavaClass {
public static ArrayList<String> CreateArray() {

ArrayList<String> x = new ArrayList<String>();
x.add("HI");
return x;

}
}

The class JavaClass has one method called CreateArray that returns an ArrayList
containing the value "HI". Now imagine the following Scala class:

object ScalaClass {
def areEqual(x : Iterable[String], y : AnyRef) = x == y

}

The object ScalaClass is defined with one method, areEqual. This method takes a
scala.Iterable and an AnyRef and checks the equality. Now let’s use these two
classes together.

Rule
26

246 CHAPTER 10 Integrating Scala with Java
scala> import collection.JavaConversions._
import collection.JavaConversions._

scala> val x = JavaClass.CreateArray()
x: java.util.ArrayList[String] = [HI]

scala> ScalaClass.areEqual(x,x)
res3: Boolean = false

The first line imports the implicit conversions for Collection. The next line calls the
Java class and constructs the new ArrayList. Finally, the same variable is placed into
both sides of the areEqual method. Because the compiler is running the implicit con-
versions behind the scenes, the fact that x is being wrapped is less apparent in this
code. The result of areEqual is false.

 Although this example is contrived, it demonstrates how the issue can become hid-
den behind method calls. In real-world programming, this issue can be difficult to
track down when it occurs, as the method call chains are often more complex.

10.2.2 Chaining implicits

The second issue facing implicits as a means to ease Java integration is that of chain-
ing implicits. Scala and Java both support generic types. Collections in both languages
have one generic parameter. The implicits that convert from Java to Scala and back
again will alter the collection type, but usually not the underlying generic parameter.
This means that if the generic parameter type also needs to be converted for smooth
Java/Scala integration, then it’s possible the implicit won’t be triggered.

 Let’s look at a common example: boxed types and Java collections.

scala> val x = new java.util.ArrayList[java.lang.Integer]
x: java.util.ArrayList[java.lang.Integer] = []

scala> val y : Iterable[Int] = x
<console>:17: error: type mismatch;
found : java.util.ArrayList[java.lang.Integer]
required: Iterable[Int]

val y : Iterable[Int] = x

The first line constructs a new Java ArrayList collection with generic parameter set to
java.lang.Integer. In Scala, because the compiler doesn’t differentiate between
primitives and objects, the type scala.Int can be safely used for generic parameters.
But Java’s boxed integer, java.lang.Integer, isn’t the same type as scala.Int, but
the two can be converted seamlessly. Scala provides an implicit conversion from
java.lang.Integer to scala.Int:

scala> val x : Int = new java.lang.Integer(1)
x: Int = 1

This line constructs a java.lang.Integer with the value 1 and assigns it to the value x
with the type scala.Int. The implicit in scala.Predef kicks in here and automati-
cally converts from the java.lang.Integer type into scala.Int. This implicit doesn’t
kick in when looking for implicit conversions from Java to Scala.

247Be wary of implicit conversions
 Let’s naively try to construct an implicit that can convert from a collection type and
modify its nested element all in one go.

implicit def naiveWrap[A,B](
col: java.util.Collection[A])(implicit conv: A => B) =

new Iterable[B] { ... }

The naiveWrap method is defined with two type parameters: one for the original type
in the Java collection, A, and another for the Scala version of that type, B. The naive-
Wrap method takes another implicit conversion from the Java type A to the Scala type
B. The hope is that an implicit view will bind the type parameter A to java.lang
.Integer and B to scala.Int and the conversion from java.util.ArrayList
[java.lang.Integet] to scala.Iterable[Int] will succeed.

 Let’s try this out in the REPL:

scala> val x = new java.util.ArrayList[java.lang.Integer]
x: java.util.ArrayList[java.lang.Integer] = []

scala> val y : Iterable[Int] = x
<console>:17: error: type mismatch;
found : java.util.ArrayList[java.lang.Integer]
required: Iterable[Int]

val y : Iterable[Int] = x

This is the same error as before. The Java list x isn’t able to be converted to an
Iterable[Int] directly. This is the same problem we saw before where the type infer-
encer doesn’t like inferring the A and B types from the naiveWrap method.

 The solution to this problem is one used from 7.2.3: We can defer the type infer-
ence of the parameters. Let’s try to implement the wrap method again.

trait CollectionConverter[A] {
val col: java.util.Collection[A]
def asScala[B](implicit fun: A => B) =

new Iterable[B] { ... }
}
object Test {

implicit def wrap[A](i: ju.Collection[A]) =
new CollectionConverter[A] {

override val col = i
}

}

The CollectionConverter type is implemented to capture the original A type from
the naiveWrap method. The Converter trait holds the Java collection that needs to be
converted. The asScala method is defined to capture the B type from the naiveWrap
method. This method takes an implicit argument that captures the conversion from A
to B. The asScala method is what constructs the Scala Iterable. The Test object is
defined with a new implicit wrap method. This method captures the original A type
and constructs a new CollectionConverter.

 The new implicit conversions requires the asScala method to be called directly.
Let’s take a look:

248 CHAPTER 10 Integrating Scala with Java
scala> import Test.wrap
import Test.wrap

scala> val x = new java.util.ArrayList[java.lang.Integer]
x: java.util.ArrayList[java.lang.Integer] = []

scala> x.add(1); x.add(2);

scala> val y: Iterable[Int] = x.asScala
y : Iterable[Int] = CollectionConverter(1, 2)

First, the new implicit wrap method is imported. Next a Java ArrayList[java
.lang.Integer] is constructed and values are added to it. Finally, the conversion is
attempted using the asScala method, and this time it succeeds.

 The downside to this approach is the requirement of the additional method call to
ensure the types are inferred correctly. But as a general solution, this is more ideal. The
explicit asScala method call denotes a transformation to a new object. This makes it
easy to know when a collection is being converted between the Scala and Java libraries.

SCALAJ-COLLECTIONS The scalaj-collections library from Jorge Ortiz provides
collection conversions to and from Scala and Java collections. The library uses
the same technique of having an asScala and asJava method implicitly
added to collections of the respected types. The scalaj library offers a more
robust solution than what’s available in the standard library.

Although using implicits to wrap Java libraries into Scala libraries can be dangerous,
it’s still a helpful technique and is used throughout the standard library. It’s important
to know when only simple implicit conversions won’t be enough and how to solve
these issues. Chaining implicit conversions can solve a lot of the remaining issues.

 The important point here is that implicits aren’t magic and can’t automatically
convert between Scala and Java types for all situations. Implicits can and should be
used to reduce the overhead of these interaction points.

 The next potential issue with Java integration is that of serialization.

10.3 Be wary of Java serialization
For most applications, Java serialization works well within Scala. Scala’s closures are
automatically made serializable and most of the classes are serialization friendly.

SCALA 2.7.X AND SERIALIZATION The Scala 2.7.x series had a lot of issues with
Java serialization that have been fixed in 2.8.x and beyond. When using Scala
with Java serialization, it’s recommended you use one of the newer releases.

A corner case is where Scala’s generation of anonymous classes can cause issues with
serialization. Let’s look at an example.

 We’ll define a set of objects to model characters within a game. This game will be
composed of different people. Each person could be in one of two states: alive or
dead. Let’s define the person class.

object PlayerState {
sealed trait PlayerStatus extends Serializable

249Be wary of Java serialization
val ALIVE = new PlayerStatus { override def toString = "ALIVE" }
val DEAD = new PlayerStatus { override def toString = "DEAD" }

}
case class Player(s : PlayerState.PlayerStatus)

The object PlayerState is used to encapsulate the status enumeration. The sealed
trait PlayerStatus represents the status enumeration. Two status values are defined:
ALIVE and DEAD. Finally, the Player class is constructed with a single member s that
holds the player status.

 Now, imagine a few of these players are created and stored in some semiperma-
nent fashion using Java serialization. The game server is running smoothly and every-
one’s happy, even those who have dead players. To simulate this, let’s serialize a single
dead player to disk.

scala> val x = new Player(PlayerState.DEAD)
x: test.Player = Player(DEAD)

scala> val out = new ObjectOutputStream(
| new FileOutputStream("player.out"))

out: java.io.ObjectOutputStream = java.io.ObjectOutputStream@5acac877

scala> out.writeObject(x); out.flush()

The value x is created with a player in the DEAD status. The value out is constructed as
a Java ObjectOutputStream for the file player.out. The output stream is used to seri-
alize the dead player to disk.

 Around this time, there’s a new feature request to allow players to sleep during the
game. The PlayerStatus enumeration is updated to have a new state: sleeping.

object PlayerState {
sealed trait PlayerStatus extends Serializable
val ALIVE = new PlayerStatus { override def toString = "ALIVE" }
val SLEEPING = new PlayerStatus { override def toString = "SLEEPING"}
val DEAD = new PlayerStatus { override def toString = "DEAD" }

}

The SLEEPING value is added between the ALIVE and DEAD status. Other than the new
value, nothing in the original code has changed. But when trying to load dead players
from disk, there’s an issue:

scala> val input =
| new ObjectInputStream(new FileInputStream("player.out"))

input: java.io.ObjectInputStream = java.io.ObjectInputStream@7e98f9c2

scala> val x = input.readObject
java.io.InvalidClassException: PlayerState$$anon$2;

local class incompatible: stream classdesc
serialVersionUID = -1825168539657690740,

local class serialVersionUID = 6026448029321119659

A new ObjectInputStream is constructed to deserialize the object using Java’s serial-
ization. The next line attempts to read the serialized player object and throws an
InvalidClassException. What’s happened is the class that used to represent the DEAD
value has moved. The ALIVE, SLEEPING, and DEAD classes are constructed anony-
mously: they aren’t given named classes.

250 CHAPTER 10 Integrating Scala with Java
 Scala generates anonymous class names using a simple formula: location in source
code + current count of anonymously generated classes for this location. This means
that the original ALIVE class is generated with the name PlayerState$$annon$1 and
the original DEAD class is generated with the name PlayerState$$annon$2. But when
adding the new SLEEPING status, the anonymous class names are changed. ALIVE stays
the same, but SLEEPING is named PlayerState$$annon$2 and DEAD is moved to
PlayerState$$annon$3.

 The mistake here was using anonymous classes rather than named classes. This
issue could prevent refactoring in the code. Let’s dig deeper into anonymous classes
and their interaction with Java serialization.

10.3.1 Serializing anonymous classes

Scala will generate anonymous classes to express core language features. Here are the
situations where anonymous classes are created:

 Anonymous type refinements
new X { def refinement = ... }

 Anonymous mixin inheritance
new X with Y with Z

 Closures and lambda functions.
List(1,2,3).map(_.toString)

Each of these scenarios has the potential to create a serializable class that can become
a refactoring burden. Let’s see what happens when compiling these three lines. First,
let’s create a Scala file:

trait X extends java.io.Serializable
class Y

object Foo {
def test1 = new X { def foo = "HI" }
def test2 = new Y with X
def test3 = List(1,2,3).map(_.toString)

}

The X and Y traits are defined to illustrate the class generation. The Foo object con-
tains all three scenarios. The test1 method creates an anonymous class for the type
refinement. The test2 method creates an anonymous class from the mixin inheri-
tance. The test3 method creates an anonymous class for the closure _.toString.
Let’s look at the class files that are generated:

> ls
anon.scala Foo$$anonfun$test3$1.class X.class
Foo$$anon$1.class Foo.class Y.class
Foo$$anon$2.class Foo$.class

The test1 method generated the Foo$$anon$1.class file. The test2 method gener-
ated the Foo$$anon$2.class file and the test3 method created the Foo$$anonfun-
$test3$1.class file. Notice that anonymous classes are numbered on a per file basis
and anonymous functions are numbered based on their class/method scope. This

Type refinement

Mixin inheritance

Closure

251Be wary of Java serialization
means that anonymous classes make it easier to break long-term serializability of data,
because any anonymous class defined in the file can change the numbering.

 For anonymous classes, the simple solution is to ensure that any long-term persisted
objects define named objects or classes. Doing this, the preceding example becomes:

class One extends X { def foo = "HI" }
class Two extends Y with X

object Foo {
def test1 = new One
def test2 = new Two
def test3 = List(1,2,3).map(_.toString)

}

The classes One and Two are created to correspond to the anonymous classes from the
earlier test1 and test2 methods. The test1 and test2 methods are changed to use
the new named classes. The benefit to this approach is that the generated classfiles are
file-order independent. Let’s look at the generated classfile directory.

> ls
anon.scala Foo$$anonfun$test3$1.class Foo.class
Foo$.class One.class Two.class
X.class Y.class

The result is that the only remaining anonymous class is the closure defined in the
test3 method. The class One and Two are now explicitly named and can be moved
around within the file or into other files. The only remaining issue is the long-term
serializability of the anonymous function.

AVOID LONG-TERM SERIALIZATION OF CLOSURES Scala’s closure syntax is highly
convenient and used frequently in development. But because of the volatile
nature of randomly generated class names, it’s best to avoid persisting clo-
sures for any long-running applications. When no other option is available,
you should ensure that closure deserialization issues are properly handled.

When it comes to anonymous functions, it’s best to avoid long-term serialization. This
grants the most amount of flexibility in syntax and usage. Sometimes this isn’t an
option. For example, imagine the following scheduling service:

trait SchedulingService {
def schedule(cron_schedule: String, work: () => Unit) : Unit

}

The trait SchedulingService defines the interface for a long-term scheduler. The sin-
gle method schedule is used to schedule tasks to be performed at a later time. The
schedule method takes two parameters, a configuration for when to run the task and
an anonymous closure to run. The SchedulingService could leverage the fact that
closures are serializable and store the task on the filesystem. This would let the
SchedulingService allow persistent schedules in the face of restarts.

 In the face of closure class name instability, this is a bad long-term strategy. The
simple solution to fix the problem is to force users away from using closures, as best

252 CHAPTER 10 Integrating Scala with Java
as possible. For example, the SchedulingService could use a Job trait instead of a
closure.

trait Job extends java.io.Serializable {
def doWork(): Unit

}
trait SchedulingService {

def schedule(cron_schedule: String, work: Job): Unit
}

The Job trait is defined as Serializable and has one abstract method, doWork. The
doWork method will contain the same implementation that used to be in the anony-
mous closure. The SchedulingService is updated to take Jobs instead of Function0
[Unit]. Although this doesn’t prevent users from creating anonymous subclasses of
Job, it does make it easier for them to explicitly name their Job classes and avoid vola-
tile classnames.

 The upside to serialization issues in Scala is that Java serialization is often not used
for long-term serialization. Java’s serialization frequently gets related to remote
method invocations and live machine-to-machine messaging or temporary data stor-
age. Long-term persistence tends to take the form of SQL databases, NoSQL databases
(using something like Protocol Buffers), XML, or JSON (JavaScript Serialized Object
Notation). This means that in the general case, no special care needs to be taken
around anonymous classes. But in those few situations that are troublesome, there are
solutions you can use to avoid refactoring hell.

 The next potential wart in Java integration is that of annotations.

10.4 Annotate your annotations
Many libraries use annotations for runtime code generation and inspection. Annota-
tions are pieces of metadata that can be attached to expressions or types. Annotations
can be used to accomplish many different goals, including the following:

 Ensuring or altering compiler warnings and errors (@tailrec, @switch,
@implicitNotFound).

 Alter the bytecode output from compilation (@serializable, @scala
.annotations.BeanProperty).

 Configure external services (the Java Persistence API uses annotations like
@Column and @ManyToOne, to denote how to serialize classes into a relational
database system [RDBMS]).

 Create and enforce additional type system constraints (the continuations
plugin defines @cpsParam on types to create additional type-system checks for
delimited continuations).

In the JVM ecosystem, many libraries rely on annotations to work properly. Scala pre-
fers annotations instead of keywords for features like Java serialization. Understanding
annotations in Scala and where they wind up within the bytecode of a class is impor-
tant for interoperability with Java frameworks.

253Annotate your annotations
 One of the largest issues facing Scala and Java interoperability is the mismatch of
how Scala compiles class members and annotations compared to how Java compiles
class members and annotations. In Java, there’s a separate namespace for class fields
and class methods. Both of these can be created, named, and annotated separately. In
Scala, there’s one namespace for all members of a type. The compiler takes responsi-
bility for creating fields on a class as needed. Annotations on a member of a Scala class
could compile to multiple methods and fields in the bytecode. Let’s look at an example:

class Simple {
@Id
var value = 5

}

The Simple class defines a single member value. The value member is of type Int and
is variable. It is also annotated with the ID annotation. In Scala 2.9.0, this class is com-
piled approximately into the following Java class:

class Simple {
@Id private int value = 5;
public int value() { return value; }
public void value_$eq(int value) { this.value = value; }

}

The Simple class has three members: A value field, a value method, and a value_$eq
method. The methods are defined public and the field is defined private. The
annotation is only placed on the field representing the value. Even though the single
member var value compiles into three separate locations in a classfile, the annotation
is being placed on only one of them.

JavaBean style getters and setters
Some frameworks in Java rely on a Java naming convention for access properties on
objects. This is a convention of the JavaBean specification, where property accessors
and setters usually take the names getFoo and setFoo. Although the JavaBean
specification doesn’t require that methods have the string get and set in them,
some Java libraries aren’t implemented against the specification, but rather against
the naming convention. To support these frameworks, Scala provides the @Bean-
Property annotation. The simple class mentioned earlier can be modified to support
these libraries, as follows:

class Simple {
 @reflect.BeanProperty
 var value = 5
}

This leads to the creation of the following methods: value, value_$eg, getValue,
and setValue.

For libraries and frameworks that support the full JavaBean specification, the only
annotation required is @reflect.BeanInfo. This can be applied to the class itself
and the compiler will generate an appropriate BeanInfo class for all vars and vals
on the class.

254 CHAPTER 10 Integrating Scala with Java
In the best case, this mismatch where one definition can compile to several locations in
a classfile can confuse annotation libraries designed to work with Java. In the worst case,
the libraries are completely unusable. The solution to this is to use annotations targets.

10.4.1 Annotation targets

Annotation targets are used to assign where in the resulting class files annotations
should be placed. Scala provides the annotation targets shown in table 10.1:

The different annotations each target a separate area of generated bytecode. These
allow complete customization of where annotations are applied. To use one of these
annotations, you must apply them against another annotation—that is, the target anno-
tations annotate other annotations with the desired bytecode location. Here’s an
example:

import javax.persistence.Id

class Data {
@(Id @annotation.target.getter)
var dataId = 1

}

The class Data is defined with a single member dataId. The annotation Id is applied
against the dataId member. The annotation Id also has the annotation annotation
.target.getter applied to it. Scala allows annotations to be placed on expressions,
types, members, and classes. The annotation target classes need to be placed against
the annotation type that they wish to change. The expression @(Id @annotation
.target.getter) is an annotation of the type Id @annotation.target.getter,
which is the annotated type Id. This can be simplified by creating a type alias for the
annotated type.

Table 10.1 Annotation target types

Annotation Bytecode location

@annotation.target.field The field associated with a var or val.

@annotation.target.getter The method used to obtain the value of a var or val. The
method has the same name as the val or var.

@annotation.target.setter The method used to set the value of a var. The method
has the name of the var with _$eq appended for its
name.

@annotation.target.beanGetter The JavaBean style get method. This only works if the
@reflect.BeanProperty annotation is specified on
the Scala member.

@annotation.target.beanSetter The JavaBean style set method. This only works if the
@reflect.BeanProperty annotation is specified on
the Scala member.

255Annotate your annotations
object AnnotationHelpers {
type Id = javax.persistence.Id @annotation.target.getter

}

import AnnotationHelpers._

class Data {
@Id
var dataId = 1

}

The AnnotationHelpers object defines a type alias Id. The type alias is the annotated
type javax.persistence.Id @annotation.target.getter. The next line imports the
type alias. The Data class is now modified to use the type alias for its annotation. This
results in the same bytecode as the previous example.

 When using a library or framework designed to annotate JavaBeans, it’s helpful to
create a wrapper for Scala. This wrapper should consist of an object, similar to Anno-
tationHelpers, that has the Java framework’s annotations assigned to the appropriate
generated code locations. This can ease usage within Scala. This technique is helpful
for defining Scala classes that work with the Java Persistence API (JPA).

 A second issue needs to be dealt with: some libraries require annotations in loca-
tions that Scala doesn’t generate.

10.4.2 Scala and static fields

As discussed in section 10.1, Scala doesn’t have a way to express static fields on classes.
Although the JVM allows fields associated with class instances at runtime, the Scala lan-
guage doesn’t support this notion. You might argue that you can annotate Scala’s
objects because they are compiled to static values. But this doesn’t work in practice.

 Let’s look at a quick example:

object Foo {}

This defines a simple object Foo in the raw namespace. Scala compiles to bytecode an
equivalent to this Java class:

class Foo$ {
public static Foo$ MODULE$ = null;

private Foo$() {}

static {
MODULE$ = new Foo$

}
}

The Foo$ class is defined with a single static member: MODULE$. The static block is run
when the class is loaded into the JVM. This instantiates the Foo object and assigns it to
the MODULE$ static field. Scala converts all objects to JVM classes with the same name
as the object but with a $ appended to the name. This prevents trait/class/object
name clashes.

256 CHAPTER 10 Integrating Scala with Java
 In this example, note that there’s only one static field. You also have no way to pro-
vide an annotation on the static field. If a Java library requires static fields or annota-
tions on static fields to work, this library is unusable against Scala classes.

 But the Java library isn’t completely unusable. The solution here is the same as
before: Use Java for the portion of code that needs to interact with Java.

 This is the unfortunate reality of interacting with Java libraries. A few were
designed in such a way as to not be usable from Scala.

10.5 Summary
Using Java from Scala is usually a painless process. This chapter covered the areas of
concern and offered solutions to each.

 First, is the mismatch between Java’s primitive with boxing and Scala’s unified Any-
Val types. You can simplify this mismatch by preferring primitive types on the Java
side. Because Scala always prefers using the primitive value at runtime, this reduces
the total amount of boxing/unboxing overhead within a program.

 The second area of concern is when there exists a solution to a problem in both
Scala and Java. The canonical example is the differing collections libraries. The Scala
collections API isn’t friendly to use from Java, and the Java collections API lacks many
of the functional features found in the Scala version. To ease integration between Java
portions of code and Scala portions, providing implicit conversions on the Scala side
can be beneficial. It’s important to be careful here to ensure you don’t make assump-
tions about equality. Using explicit conversion functions can help highlight where
object identities are changing. They can also be used to perform more than one
implicit coercion.

 The next area of concern is Java serialization. This works well in Scala. The down-
side is when Java serialization is used for long-term persistence. Scala allows the easy
creation of anonymous classes, classes that could be serialized. If an object is intended
for long-term serialization, the class should be formalized and named. Otherwise the
source code structure may become locked for the lifetime of the serialized object, or
worse. The persistent storage may need to be flushed and migrated.

 Finally, when faced with a Java library that won’t work from Scala, it’s best to avoid
such a library. If this isn’t possible, then constructing the portion of code required to
interact with the library in Java and exposing a Scala-friendly interface is the only
solution.

 The next chapter covers functional programming, which is a way of writing pro-
grams that may be foreign to those of us coming from an object-oriented or impera-
tive background. Let’s look into a world where no effects are side effects and
operations are deferred as long as possible.

Patterns in
functional programming
Functional programming is the practice of composing programs using functions.
It’s an area of software design and architecture that has been neglected in main-
stream books and classes since the emergence of object-oriented programming.
Functional programming offers a lot to the object-oriented developer and can
nicely complement standard object-oriented practices.

 Functional programming is a relatively large topic to try to compress into a sin-
gle chapter. Instead, this chapter introduces a few key abstractions used in func-
tional programming and demonstrates their usage in two different situations. The
goal is to show one of the many styles of functional programming, rather than turn
you into an expert functional programmer.

 First, a discussion on some fundamental concepts behind the patterns in func-
tional programming.

In this chapter
 Functors, monads, and applicative functors

 Configuring applications using applicative style

 Composing workflows using monads and for
expressions
257

258 CHAPTER 11 Patterns in functional programming
11.1 Category theory for computer science
Category theory is the mathematical study of collections of concepts and arrows. For
the purposes of computer science, a concept is a type, like String, Int, and so on. An
arrow is a morphism between concepts—something that converts from one concept
to another. Usually in computer science, a morphism is a function defined against
two types. A category is a grouping of concepts and arrows. For example, the category
of cats includes all the various types of cats in the world as well as the captions
needed to convert from a serious cat into a lol cat. Category theory is the study of cat-
egories like these and relationships between them. The most used category in pro-
gramming is the categories of types: the classes, traits, aliases and object self types
defined in your program.

 Category theory shows up in many corners of programming but may not always be
recognized. This section will introduce a library to configure software and introduce
the concepts from category theory that are used in the library.

 A good way to think of category theory, applied to functional programming, is
design patterns. Category theory defines a few low-level abstract concepts. These con-
cepts can be directly expressed in a functional language like Scala and have library
support. When designing software, if a particular entity fits one of these concepts, a
whole slew of operations immediately becomes available as well as the means to rea-
son through usage. Let’s look at this concept in the context of designing a configura-
tion library.

 In section 2.4 we explored the usage of Scala’s Option class as a replacement for
nullable values. In particular, this section showed how we can use Options to create
walled gardens—that is, functions can be written as if all types aren’t null. These func-
tions can be lifted into functions that will propagate empty values. Let’s look at the
lift3 function from chapter 2:

scala> def lift3[A,B,C,D](f: Function3[A,B,C,D]) = {
| (oa: Option[A], ob: Option[B], oc: Option[C]) =>
| for(a <- oa; b <- ob; c <- oc) yield f(a,b,c)
| }

lift3: [A,B,C,D](f: (A, B, C) => D)(
Option[A], Option[B], Option[C]) => Option[D]

The lift3 function takes a function defined against raw types and converts it to a
function that works with Option types. This lets us wrap Java’s DriverManager.get-
Connection method directly and make it option-safe.

 The lift3 function uses Scala’s for expression syntax. Scala’s for expressions are
syntactic sugar for the map, flatMap, foreach, and withFilter operations defined on
a class. The for expression

for(a <- oa; b <- ob; c <- oc) yield f(a,b,c)

is desugared into the following expression:

oa.flatMap(a => ob.flatMap(b => oc.map(c => f(a,b,c))))

259Category theory for computer science
Each <- of the for expression is converted into a map or flatMap call. These methods
are each associated with a concept in category theory. The map method is associated
with functors, and the flatMap method is associated with monads. For expressions
make an excellent way to define workflows, which we define in section 11.4.

 A monad is something that can be flattened. Option is a monad because it has both
a flatten and flatMap operation that abide by the monadic laws. We’ll cover the
details of monads in section 11.2.2. For now, let’s first generalize the advanced Option
techniques from section 2.4.1.

 Imagine that we’re designing a configuration library. The goal is to use this library,
in combination with a variant of the lift3 method, to construct database connections
based on the current configuration parameters. This library could read configuration
parameters from different locations. If any of these locations are updated, the pro-
gram should automatically alter its behavior the next time a database connection is
requested. Let’s define a new trait, Config, that will wrap this logic for us. Because the
filesystem is volatile and configuration isn’t guaranteed to exist, the Config library will
also make use of the Option trait to represent configuration values that weren’t found.
Let’s define a minimal Config trait.

trait Config[+A] {
def map[B](f : A => B) : Config[B]
def flatMap[B](f : A => Config[B]): : Config[B]
def get : A

}

The Config trait consists of three methods. The first, map, takes a function that oper-
ates on the data stored in the Config object and returns a new Config object. This is
used to transform the underlying configuration data. For example, when reading
environment variables of strings, the map method could be used to convert an environ-
ment variable into an Integer.

 The next method is flatMap. This method takes a function against the current
Config object and returns a second Config object. You can use this to construct new
Config objects based on values stored in an initial Config object. For example, imag-
ine we have a Config[java.io.File] that holds the location of a secondary configu-
ration file. We can use the flatMap operation to read this location and then extract
more configuration values from that location.

 The final method is called get. This method is unsafe, in that it will attempt to
read the current configuration environment, wherever configuration is defined to be,
and return the resulting configuration values. As with Option, you shouldn’t use this
method until the code calling it knows what to do in the event of failure. Also, because
the get method will read the environment, it can be expensive if performed within a
tight loop of the software.

 Let’s define a construction operation for Config. Creating a new Config object is
the case of defining the get method, because map and flatMap can be implemented
in terms of get. For now, let’s assume that map and flatMap are implemented appro-
priately (see the source code for implementations).

260 CHAPTER 11 Patterns in functional programming
object Config {
def apply[A](data : => A) = new Config[A] {

def get = data
}

}

The Config object defines a single method called apply, which is the constructor for
Config objects. The apply method takes one parameter, a by-name parameter. By-name
parameters in Scala are similar to no-argument functions in that they’ll evaluate their
associated expressions every time they’re referenced. This means that defining the
get method to reference the data argument will cause the data parameter to be
reevaluated each time it’s referenced. Here’s an example:

scala> var x = 1
x: Int = 1

scala> Config({ x += 1; x})
res2: java.lang.Object with config.Config[Int] = ...

scala> res2.get
res3: Int = 2

scala> res2.get
res4: Int = 3

First, the variable x is defined as equal to 1. Next, a Config object is constructed. The
argument is the expression { x +=1; x}. This expression should be evaluated every
time the Config’s get method is called. The next line calls the get method, and the
returned value is 2. The next line calls the get method again and the return value is
now 3. Let’s create a few convenience methods to read configuration locations.

def environment(name : String) : Config[Option[String]] =
Config(if (System.getenv.containsKey(name))

Some(System.getenv.get(name))
else None)

The environment method will read configuration values from the process environ-
ment. The method takes a string of the environment variable to read. The Config
object is constructed using an if expression. If the environment variable is available,
the value is returned inside an Option. If the variable isn’t available, a None is
returned. The full type returned is a Config[Option[String]]. Let’s try this out on
the command line:

> export test_prop="test_prop"
> scala -cp .
...
scala> val test = environment("test_prop")
test: Config[String] = Config$$anon$1@659c2931

scala> test.get
res0: String = test_prop

First, the environment variable test_prop is exported. Next, the Scala REPL is started
and a Config object pointing to the test_prop property value is created. When call-
ing get on this test property, the correct value is displayed.

261Category theory for computer science
 Now let’s look into constructing database connections based on environment vari-
ables. Here’s the original code from section 2.4:

scala> def lift3[A,B,C,D](f : Function3[A,B,C,D]) = {
| (oa : Option[A], ob : Option[B], oc : Option[C]) =>
| for(a <- oa; b <- ob; c <- oc) yield f(a,b,c)
| }

lift3: [A,B,C,D](f: (A, B, C) => D)(
Option[A], Option[B], Option[C]) => Option[D]

scala> lift3(DriverManager.getConnection)

The lift3 method takes a three-argument function and converts it into a three-
argument function that works against Option arguments. This is used on the Driver-
Manager.getConnection method to construct a new method that operates on
Options.

 Using DriverManager with the new Config library requires lifting the get-
Connection function to take Config[Option[String]] rather than just Option
[String]. Let’s take the simple approach of defining a new lift function to convert
three-argument methods into methods that operate on Config objects.

def lift3Config[A,B,C,D](f : Function3[A,B,C,D]) = {
(ca : Config[A], cb : Config[B], cc : Config[C]) =>

for(a <- ca; b <- cb; c <- cc) yield f(a,b,c)
}

The lift3Config method takes a three-argument function as its own argument. It
returns a new function that takes Config traits of the original parameters. The imple-
mentation uses for expressions to call the underlying flatMap and map operations on
the Config object. The final result is a Config object wrapping the underlying data.
Let’s use this to define a DatabaseConnection that uses environment variables.

scala> val databaseConnection =
| lift3Config(DriverManager.getConnection)(
| Config.environment("jdbc_url"),
| Config.environment("jdbc_user"),
| Config.environment("jdbc_password"))

databaseConnection: Config[java.sql.Connection]

The lift3Config method is called against the lift3 method called on DriveManager
.getConnection. This creates a three-argument function that works on Config
[Option[String]] types. Finally, this new function is passed three arguments, one for
each environment variable. The resulting Config object will construct a new database
connection if the environment variables jdbc_url, jdbc_user, and jdbc_password
are all available.

 This implementation of lift3Config should look familiar. It’s almost identical to
the lift3 method because both the Config trait and the Option trait are instances of
the same abstract concept from category theory. Let’s try to reverse engineer the raw
concepts behind the lift method to see if we can rescue it for both Option and Config.

262 CHAPTER 11 Patterns in functional programming
11.2 Functors and monads, and how they relate to categories
Functors are transformations from one category to another that can also transform
and preserve morphisms. A morphism is the changing of one value in a category to
another in the same category. In the example of the category of cats, a morphism
would be akin to a box that takes a dim cat and converts it into a neon glowing cat. In
the category of types, the most commonly used in computer science, a morphism is a
function that converts from one type to another. The functor would be something
that converts cats into dogs. The functor would be able to convert dim cats into dim
dogs and glowing cats into glowing dogs. The functor could also convert the box so
that it can convert dim dogs into glowing dogs.

 Figure 11.1 illustrates functors.
 The circle on the bottom represents the category of all possible types. Inside are

the standard String, Double, Int, and any other type that can be defined in Scala.
The functor F is a type constructor in Scala. For any type T that’s in the category on
the bottom, you can place that type in the type constructor F[_] and get a new type
F[T] shown on the top category. For example, for any type T, a Config[T] can be
made. The Config class is a functor.

LAWS OF FUNCTORS AND OTHER PROPERTIES Functors, and the other concepts
described in this chapter, have mathematical laws that govern their behavior.
These laws provide a default set of unit tests as well as standard transforma-
tions that can be performed on code. This book doesn’t cover the laws in
detail, but we give sufficient grounding in Category theory for you to investi-
gate these laws as needed.

For the transformation to be a functor transformation, it means that all morphisms
must be preserved in the transformation. If we have a function that manipulates types

Figure 11.1 Functor transforming
types and functions

263Functors and monads, and how they relate to categories
in the first category, we should have a transformed function that operates on the trans-
formed types. For example, if I have a function that takes a String and converts it to
an Int, I should be able to also take a Config[String] instance and convert it to a
Config[Int] instance. This is what the map method on Option and Config grant. Let’s
convert this into an interface:

trait Functor[T[_]] {
def apply[A](x: A): T[A]
def map[A,B](x : T[A])(f: A=>B) : T[B]

}

The apply method grants the first property of functors. For any type A, a Functor can
construct a type T[A] in the new category. The map method grants the second prop-
erty of functors. Given a transformed type T[A] and a morphism in the original cate-
gory A=>B, a value T[B] can be created. We have a new function that takes T[A] and
returns T[B].

 Let’s implement the Functor interface for Config.

object ConfigAsFunctor extends Functor[Config] {
def apply[A](x : A): Config[A] = Config(x)
def map[A,B](x : Config[A])(f: A=>B) = x.map(f)

}

The Functor implementation for Config is defined such that the apply method calls
the Config companion object’s apply method. The map method can delegate to the
underlying map method on the Config class.

 Finally, let’s create a bit of syntactic sugar so that the map method on the Functor
typeclass appears to be on the raw type.

implicit def functorOps[F[_] : Functor, A](ma: F[A]) = new {
val functor = implicitly[Functor[F]]
final def map[B](f: A => B): F[B] = functor.map(ma)(f)

}

The implicit method functorOps creates a new anonymous class that has a local map
method that accepts only a function A => B. This simplifies the remaining code sam-
ples using Functor.

 Now, we’ll create the lift method so that it’s generic against the Functor
abstraction.

def lift[F[_] : Functor] = new {
val functor = implicitly[Functor[F]]
def apply3[A,B,C,D](f: (A,B,C) => D): (

F[A],F[B],F[C]) => F[F[F[[D]]] = {
(fa, fb, fc) =>

fa map { a =>
fb map { b =>

fc map { c =>
f(a,b,c)

Listing 11.1 Functor typeclass

264 CHAPTER 11 Patterns in functional programming
}
}

}
}

}

The new lift method uses a Functor to promote elements of the function. The
apply3 method accepts a three-argument function and calls map against each of these
methods to chain the method calls. The resulting function is one that accepts all the
original arguments inside the FunctorF[_] and returns a nested result type
F[F[F[D]].

 The issue with this method is that the resulting type is F[F[F[D]]], not F[D]. This
means for the config library, creating a database connection will result in a Config
[Config[Config[Connection]]] instead of a Config[Connection]. To resolve this,
let’s create a new type trait the extends Functor and adds a flatten method. This
method will be responsible for collapsing the pattern F[F[D]] to F[D], which should
allow the above function to work as desired. This new trait is called a Monad.

11.2.1 Monads

Monads are a means of combining a functor application, if that functor is an
endofunctor. An endofunctor is a functor that converts concepts and morphisms in
its category back into the same category. Using the cat example, an endofunctor
would be a way of converting cats and genetic cat manipulations into different types of
cats and cat genetic manipulations. Transforming a cat more than once by the same
functor could be reduced into single functor application. Similarly, altering cat
genetic manipulations more than once can be reduced into a single alteration.

 In computer science, monads are often used to represent computations. A monad
can be used to abstract out the execution behavior of a program. Some monads can
be used to handle concurrency, exceptions, or even side effects. Using monads in
workflows or pipelines is discussed in section 11.4.

 Let’s look at the programming definition of a monad in the following listing:

trait Monad[T[_]] {
def flatten[A](m : T[T[A]]): T[A]
def flatMap[A,B](x : T[A])(f : A => T[B]

)(implicit func: Functor[T]): T[B] =
flatten(func.map(x, f))

}

The Monad trait defines the flatten and flatMap methods. The flatten method is
used to take a double wrapped type and turn it into a wrapped type. If a Functor T[_]
is applied twice, the monad knows how to combine this to one application. For exam-
ple, the List monad can convert a list of lists into a single list with all the underlying
elements of the nested lists. The Monad trait also provides a convenience function
flatMap, which chains the flatten and map calls for convenience.

Listing 11.2 Monad typeclass

265Functors and monads, and how they relate to categories
Monads are, among other things, a means of preventing bloat in types and accessors.
We can take a nested list of lists and treat it as a single list, which has a more conve-
nient syntax.

 Again, let’s create a convenience implicit to reduce the syntactic noise of using the
Monad type trait.

implicit def monadOps[M[_] : Functor : Monad, A](ma: M[A]) = new {
val monad = implicitly[Monad[M]]
def flatten[B](implicit $ev0: M[A] <:< M[M[B]]): M[B] =

monad.flatten(ma)
def flatMap[B](f: A => M[B]): M[B] =

monad.flatMap(ma)(f)
}

The implicit method monadOps creates a single anonymous class. The flatten method
uses the implicit type constraint trick from section 7.2.3 to ensure that the value inside
the monad M[_] is another M[_] value. The flatMap method delegates to the Monad
trait’s flatMap method.

 Now, let’s modify the lift function to make use of the Monad trait.

def lift[F[_] : Monad : Functor] = new {
val m = implicitly[Monad[F]]
val func = implicitly[Functor[F]]
def apply3[A,B,C,D](f: (A,B,C) => D): (F[A], F[B], F[C]) => F[D] = {

(fa, fb, fc) =>
m.flatMap(fa) { a =>

m.flatMap(fb) { b =>
func.map(fc) { c =>

f(a,b,c)
}

}
}

}
}

Monad and functor differences
In reality, a monad is the flatten operation for a functor. If you were to encode the
category theory directly into the type system, the flatMap method would require an
implicit Functor. For category theory applied to computer science, in this instance at
least, everything is in the category of types. The type constructor F[_] applied to a
type T results in the type F[T], which is in the same category of types. A monad is a
means of taking two such applications and reducing them to a single—that is,
F[F[T]] becomes F[T].

If you think of monads as functions, then it’s equivalent to taking the function def
addOne(x: Int) = x +1 and the expression addOne(addOne(5)) and converting it to
the function def addTwo(x: Int) = x +2 and the resulting expression addTwo(5).
Now imagine such a translation done against types.

Monads are means of combining functor applications on types, hence F[F[T]] being
shortened to F[T] through use of a monad.

266 CHAPTER 11 Patterns in functional programming
The new lift method uses a Monad type class instead of a Functor. This lift method
looks similar to the original lift method for Option, except that it can generically
lift functions to operate against monads. Let’s try it out.

scala> lift[Option] apply3 java.sql.DriverManager.getConnection
res4: (Option[String], Option[String],

Option[String]) => Option[java.sql.Connection] =
<function3>

The lift method is called using Option as the type parameter. The apply3 method is
called directly against java.sql.DriverManager.getConnection(...). The result is a
new function that accepts three Option[String] values and returns an
Option[Connection].

 Monads and functors form the basic building blocks of lots of fundamental con-
cepts in programming. We’ll explore these more in depth in section 11.4. An abstrac-
tion lives between monads and functors. This abstraction can be used as an alternative
mechanism of writing the lift function. Instead of relying on a flatMap operation, a
function can curried and values fed into it in an applicative style.

11.3 Currying and applicative style
Currying is the conversion of a function of multiple parameters into a chain of func-
tions that accept a single parameter. A curried function accepts one of its arguments
and returns a function that accepts the next argument. This chain continues until the
last function returns a result. In Scala, any function of multiple parameters can be
curried.

Applicative style refers to using curried functions to drive parameters in applicative
functors through them. Applicative functors are functors that also support a method
to convert mapped morphisms into morphisms against mapped types. In English, this
means that if we have a list of functions, an applicative functor can create a single
function that accepts a list of argument values and returns a new list of results.

11.3.1 Currying

Currying is taking a function of several arguments and turning it into a function that
takes a single argument and returns a function that takes the next argument that
returns a function that takes the next argument and so on, until finally one of the
functions returns a value. In Scala, all functions have a curried method that can be
used to convert them from multiargument functions into curried functions. Let’s try
it out:

scala> val x = (x:Int, y:Double, z: String) => z+y+x
x: (Int, Double, String) => java.lang.String = <function3>

scala> x.curried
res0: (Int) => (Double) => (String) => java.lang.String = <function1>

The first line constructs a function that takes three arguments: an integer, a double,
and a string. The second calls curried against it, which returns a function of the type

267Currying and applicative style
Int => Double => String => String. This function takes an Int and returns another
function Double => String => String. This function takes a Double and returns a
function that takes a String and returns a String. A single function of multiple argu-
ments is converted into a chain of functions, each returning another function until all
arguments have been satisfied and a return value is made. Currying is pretty easy to do
by hand; let’s try it out.

scala> val y = (a: Int) => (b: Double) => (c: String) => x(a,b,c)
y: (Int) => (Double) => (String) => java.lang.String = <function1>

This line constructs an anonymous function y that takes an Int, called a, and returns
the function defined by the rest of the expression. This same trick defines a nested
anonymous function, until eventually the function x defined earlier is called. Note
that this function has the same signature as x.curried. The trick is that each call to a
function captures a portion of the argument list of the original function and returns a
new function for the remaining values.

 This trick can be used when attempting to promote a function of multiple simple
parameters to work with values inside a Functor. Let’s redefine the lift method to
use only a Functor.

def lift[F[_]: Functor] = new {
def apply3[A,B,C,D](f: (A,B,C) => D): (F[A], F[B], F[C]) => F[D] = {

(fa, fb, fc) =>
val tmp: F[B => C => D] = fa.map(f.curried)
...?...

}
}

The new implementation for the apply3 method in lift uses the map operation on
Functor against the curried function. The result is a function B => C => D wrapped
inside the F[_] functor.

 Let’s break this down to see what’s happening in the types. First a curried function
is created.

scala> f.curried
res0: A => (B => C => D) = <function1>

The parentheses in the resulting expression have been adjusted to show the true type.
The result is a single function that takes an A and produces a value. Because the fa
parameter is a value of F[A], we can combine the curried function with the fa value
using the map method.

scala> fa.map[B => C => D](f.curried)
res0: F[B => (C => D)] = Config(<function1>)

The map method on fa is called against the curried function. The result is a F[_] con-
taining the rest of the function. Remember the Functor defines its map method as def
map[A,B](m: F[A])(f: A=> B): F[B]. In this case the second type parameter is a func-
tion B=>C=>D.

268 CHAPTER 11 Patterns in functional programming
 Now there’s a problem. The code can’t continue to use the map method defined on
Functor because the remaining function is wrapped inside the functor F[_]. To solve
this, let’s define a new abstraction, Applicative, as shown in the following listing:

trait Applicative[F[_]] {
def lift2[A,B](f: F[A=>B])(ma: F[A]): F[B]

}

The Applicative trait is defined for the type F[_]. It consists of one method, lift2,
that takes a function inside an F[_] and a value inside an F[_] and returns the result
inside an F[_]. Notice that this is different from a monad, which can flatten F[F[_]].
The lift method can now be completed using applicative functors.

def lift[F[_]: Functor: Applicative] = new {
val func = implicitly[Functor[F]]
val app = implicitly[Applicative[F]]
def apply3[A,B,C,D](f: (A,B,C) => D): (F[A], F[B], F[C]) => F[D] = {

(fa, fb, fc) =>
val tmp: F[B => C => D] = func.map(fa)(f.curried)
val tmp2: F[C => D] = app.lift2(tmp)(fb)
app.lift2(tmp2)(fc)

}
}

The lift function now requires both a Functor and an Applicative context bound.
As before, the function is curried and applied against the first argument using the
functor’s map method. But the applicative functor’s lift2 method can be used to
apply the second argument of the function. Finally, the lift2 method is used again to
apply the third argument of the original function. The final result is the value of type
D wrapped inside the functor F[_].

 Now, let’s try the method against the previous example of using the Driver-
Manager.getConnection method.

scala> lift[Config] apply3 java.sql.DriverManager.getConnection
res0: (Config[String], Config[String],

Config[String]) => Config[java.sql.Connection] =
<function3>

The result is the same as it was for using functor and monad. The two reasons to
choose this style instead is that there are more things that can implement the lift2
method for applicative functors than can implement the flatten method for monads
and that applicative functors can compute in parallel while monadic workflows are
sequential.

11.3.2 Applicative style

An alternative syntax to lifting functions into applicative functors is known as applica-
tive style. This can be used in Scala to simplify the construction of complex function

Listing 11.3 Applicative typeclass

269Currying and applicative style
dependencies, keeping the values inside an applicative functor. For example, using
the Config library defined earlier, you can construct an entire program from func-
tions and applicative applications. Let’s take a look.

Use applicative style to join parallel processes

Applicative functors provide a way to take two computations and join them together using a
function. The Traversable example highlights how two collections can be parallelized into
pairs. Applicative functors and parallel processing go together like bread and butter.

Assuming there’s a software system that’s composed of two subsystems: the DataStore
and the WorkerPool. The class hierarchy for this system looks as follows:

trait DataStore { ... }
trait WorkerPool { ... }
class Application(ds: DataStore, pool: WorkerPool) { ... }

The DataStore class and WorkerPool class are defined with all the methods required
for their subcomponent. The Application class is defined as taking a DataStore
instance and a WorkerPool instance. Now, when constructing the application, the fol-
lowing can be done with applicative style:

def dataStore: Config[DataStore]
def workerPool: Config[WorkerPool]
def system: Config[Application] =

(Applicative build dataStore).and(
workerPool) apply (new Application(_,_))

The dataStore and workerPool methods are defined as abstraction constructors of
DataStore inside a Config object. The entire system is composed by creating an
Applicative instance on the dataStore, combining the workerPool and applying that
to an anonymous function (new Application(_,_)). The result is an Application
embedded in a Config object. The Applicative call creates a builder that will use the
Config[_] instances to construct something that can accept a function of raw types
and return a resulting Config object.

HASKELL VERSUS SCALA Applicative style came to Scala from the Haskell lan-
guage, where functions are curried by default. The syntax presented here is a
Scala idiom and doesn’t mimic the Haskell directly. In Haskell, applicative
style uses the <*> operator, called apply, against a curried function on Applica-
tive functors—that is, Haskell has a <*> method that performs the same func-
tion as the lift2 method in the Applicative trait.

This applicative style, combined with the Config class, can be used to do a form of
dependency injection in Scala. Software can be composed of simple classes that take
their dependencies in the constructor and a separate configuration can be used to
wire all the pieces together using functions. This is an ideal blend of object orienta-
tion and functional programming in Scala. For example, if the DataStore trait had an
implementation that used a single JDBC connection like the following:

class ConnectionDataStore(conn: java.sql.Connection) extends DataStore

Rule
27

270 CHAPTER 11 Patterns in functional programming
Then the entire application can be configured as shown in the following listing:

def jdbcUrl: Config[String] = environment("jdbc.url")
def jdbcUser: Config[String] = environment("jdbc.user")
def jdbcPw: Config[String] = environment("jdbc.pw")
def connection: Config[Connection] =

(Applicative build jdbcUrl).and(jdbcUser).and(jdbcPw).apply(
DriverManager.getConnection)

def dataStore: Config[DataStore] =
connection map (c => new ConnectionDataStore(f))

def workerPool: Config[WorkerPool] = ...

def system: Config[Application] =
Applicative build dataStore and workerPool apply (

new Application(_,_))

The environment function is defined in 11.7. This function pulls the value of an envi-
ronment variable if it exists and is used to pull values for the JDBC connection’s URL,
user, and password. The applicative builder is then used to construct a Config
[Connection] using these config values and the DriverManager.getConnection
method directly. This connection is then used to construct the dataStore configura-
tion using the map method on Config to take the configured JDBC connection and
use it to instantiate the ConnectionDataStore. Finally, the applicative builder is used
to construct the application from the dataStore and workerPool configuration.

 Although this is pure Scala code, the concept should look familiar to users of Java
inversion-of-control containers. This bit of code represents the configuration of soft-
ware separate from the definition of its components. There’s no need to resort to
XML or configuration files in Scala.

 Let’s look at how the Applicative object build method works.

object Applicative {
def build[F[_]: Functor: Applicative, A](m: F[A]) =

new ApplicativeBuilder[F,A](m)
}

The build method on Applicative takes two types, F[_] and A. The F[_] type is
required to have an applicative and functor instance available implicitly. The build
method accepts a parameter of type F[A] and returns a new ApplicativeBuilder
class. Let’s look at the ApplicativeBuilder class in the following listing:

class ApplicativeBuilder[F[_],A](ma: F[A])(
implicit functor: Functor[F], ap: Applicative[F]) {

import Implicits._

def apply[B](f: A => B): F[B] = ma.map(f)

def and[B](mb: F[B]) = new ApplicativeBuilder2(mb)

Listing 11.4 Configuring an application using the Config class and applicative builder

Listing 11.5 ApplicativeBuilder class

271Currying and applicative style
class ApplicativeBuilder2[B](mb: F[B]) {

def apply[C](f: (A, B) => C): F[C] =
ap.lift2((ma.map(f.curried)))(mb)

def and[C](mc: F[C]) = new AppplicativeBuilder3[C](mc)

class AppplicativeBuilder3[C](mc: F[C]) {

def apply[D](f: (A,B,C) => D): F[D] =
ap.lift2(ap.lift2((ma.map(f.curried)))(mb))(mc)

...
}

}
}

The ApplicativeBuilder class takes in its constructor the same arguments as the
Applicative.build method. The class consists of two methods, apply and and, as well
as a nested class ApplicativeBuilder2. The apply method takes a function against
raw types A and B and applies the captured member ma against it, creating an F[B].
The and method takes another applicative functor instance of type F[B] and con-
structs an ApplicativeBuilder2. The ApplicativeBuilder2 class also has two meth-
ods: apply and and. The apply method is a bit more odd. Like the lift example
earlier, this method curries the raw function f and uses the map and lift2 methods to
feed arguments to the lifted function inside the functor. The and method constructs
an ApplicativeBuilder3 that looks a lot like ApplicativeBuilder2 but with one
more parameter. This chain of nested builder classes goes all the way to Scala’s limit
on anonymous function arguments of 23.

 Applicative style is a general concept that can be applied in many situations. For
example, let’s use it to compute all the possible pairings of elements from two
collections.

scala> (Applicative build Traversable(1,2) and
Traversable(3,4) apply (_ -> _))

res1: Traversable[(Int, Int)] =
List((1,3), (1,4), (2,3), (2,4))

The Applicative builder is used to combine two Traversable lists. The apply
method is given a function that takes two arguments and creates a pairing of the two.
The resulting list is each element of the first list paired with each element of the sec-
ond list.

 Functors and monads help express programs through functions and function
transformations. This applicative style, blended with solid object-oriented techniques,
leads to powerful results. As seen from the config library, applicative style can be used
to blend pure functions and those that wall off dangers into things like Option or
Config. Applicative style is usually used at the interface between raw types like String
and wrapped types like Option[String].

 Another common use case in functional programming is creating reusable
workflows.

272 CHAPTER 11 Patterns in functional programming
11.4 Monads as workflows
A monadic workflow is a pipeline of computation that remains embedded inside the
monad. The monad can control the execution and behavior of the computation that’s
nested inside it. Monadic workflows are used to control things like side effects, control
flow, and concurrency. A great example is using monadic workflows for automated
resource management.

Use monadic workflows for sequential computations

Monadic workflows can be used to encapsulate a complicated sequential process. Monadic
workflows are often used with collections to search through a domain model for relevant data.
In the managed resource example, monadic workflows are used to ensure that when a sequen-
tial process is complete, resources are cleaned up. if you need parallelism, use applicative style,
if you need sequencing, use monadic workflows.

Automated resource management is a technique where a resource, such as a file han-
dle, closes automatically for the programmer when that resource is no longer needed.
Though there are many techniques to perform this function, one of the simplest is to
use the loaner pattern. The loaner pattern is where one block of code owns the
resource and delegates its usage to a closure. Here’s an example:

def readFile[T](f: File)(handler: FileInputStream => T): T = {
val resource = new java.io.FileInputStream(f)
try {

handler(resource)
} finally {

resource.close()
}

}

The readFile function accepts a File and a handler function. The file is used to open
a FileInputStream. This stream is loaned to the handler function, ensuring that the
stream is closed in the event of an exception. This method can then be used as follows:

readFile(new java.io.File("test.txt")) { input =>
println(input.readByte)

}

The example shows how to use the readFile method to read the first byte of the
test.txt file. Notice how the code doesn’t open or close the resource; it’s merely loaned
the resource for usage. This technique is powerful, but it can be built up even further.

 It’s possible that a file may need to be read in stages, where each stage performs a
portion of the action. It’s also possible that the file may need to be read repeatedly. All
of this can be handled by creating an automated resource management monad. Let’s
take a cut at defining the class, as shown in the following listing:

trait ManagedResource[T] {
def loan[U](f: T => U): U

}

Listing 11.6 Automated resource management interface

Rule
28

273Monads as workflows
The ManagedResource trait has a type parameter representing the resource it man-
ages. It contains a single method, loan, which external users can utilize to modify the
resource. This captures the loaner pattern. Now let’s create one of these in the read-
File method.

def readFile(file: File) = new ManagedResource[InputStream] {
def loan[U](f: InputStream => U): U = {

val stream = new FileInputStream(file)
try {

f(stream)
} finally {

stream.close()
}

}
}

Now the readFile method constructs a ManagedResource with type parameter
InputStream. The loan method on the ManagedResource first constructs the input
stream, and then loans it to the function f. Finally, the stream is closed regardless
of thrown errors.

 The ManagedResource trait is both a functor and a monad. Like the Config class,
ManagedResource can define the map and flatten operations. Let’s look at the
implementations.

object ManagedResource {
implicit object MrFunctor extends Functor[ManagedResource] {

override final def apply[A](a: A) = new ManagedResource[A] {
override def loan[U](f: A => U) = f(a)
override def toString = "ManagedResource("+a+")"

}
override final def map[A,B](ma: ManagedResource[A]

)(mapping: A => B) =
new ManagedResource[B] {

override def loan[U](f: B => U) = ma.loan(mapping andThen f)
override def toString =

"ManagedResource.map("+ma+")("+mapping+")"
}

}
implicit object MrMonad extends Monad[ManagedResource] {

type MR[A] = ManagedResource[A]
override final def flatten[A](mma: MR[MR[A]]): MR[A] =

new ManagedResource[A] {
override def loan[U](f: A => U): U = mma.loan(ma => ma.loan(f))
override def toString = "ManagedResource.flatten("+mma+")"

}
}

}

The ManagedResource companion object contains the Functor and Monad implemen-
tation so that Scala will find them by default on the implicit context. The Functor
.apply method is implemented by loaning the captured value when the loan method

Listing 11.7 ManagedResource functor and monad instances

274 CHAPTER 11 Patterns in functional programming
is called. The Functor.map method is implemented by calling the loan value of the ma
resource and first wrapping this value with the mapping function before calling the
passed in function. Finally, the Monad.flatten operation is performed by calling loan
on the outer resource and then calling loan on the inner resource that was returned
from the outer resource.

 Now that the ManagedResource trait has been made monadic, we can use it to
define a workflow against a resource. A workflow is a euphemism for a collection of
functions that perform a large task in an incremental way. Let’s create a workflow that
will read in a file, do some calculations, and write out the calculations.

 The first task in reading the file is iterating over all the textual lines in the file. We
can do this by taking the existing readFile method and converting the underlying
InputStream into a collection of lines. First, let’s construct a method to convert an
input stream into a Traversable[String] of lines.

def makeLineTraversable(input: BufferedReader) =
new Traversable[String] {

def foreach[U](f: String => U): Unit = {
var line = input.readLine()
while (line != null) {

f(line)
line = input.readLine()

}
}

} view

The makeLineTraversable method takes a BufferedReader as input and constructs a
Traversable[String] instance. The foreach method is defined by calling readLine
on the BufferedReader until it’s out of input. For each line read, as long as it’s not
null, the line is fed to the anonymous function f. Finally, the view method is called
on the Traversable to return a lazily evaluated collection of lines.

type LazyTraversable[T] = collection.TraversableView[T, Traversable[T]]

The LazyTraversable type alias is constructed to simplify referring to a Traversable
view of type T where the original collection was also a Traversable. From now on,
we’ll use this alias to simplify the code samples. Now let’s define the portion of work-
flow that will read the lines of a file.

def getLines(file: File): ManagedResource[LazyTraversable[String]] =
for {

input <- ManagedResource.readFile(file)
val reader = new InputStreamReader(input)
val buffered = new BufferedReader(reader)

} yield makeLineTraversable(buffered)

The getLines method takes a file and returns a ManagedResource containing a collec-
tion of strings. The method is implemented by a single for expression, workflow. The
workflow first reads the file and pulls the InputStream. This InputStream is converted
into an InputStreamReader, which is then converted into a BufferedReader. Finally,
the BufferedReader is passed to the makeLineTraversable method to construct a

275Monads as workflows
LazyTraversable[String], which is yielded or returned. The result is a Managed-
Resource that loans a collection of line strings, rather than a raw resource.

 Scala’s for expressions allow the creation of workflows. If a class is a monad or
functor, then we can use a for expression to manipulate the types inside the functor
without extracting them. This can be a handy tactic. For example, the getLines
method could be called early in an application’s lifecycle. The input file won’t be read
until the loan method is called on the resulting ManagedResource[LazyTraversable
[String]]. This allows the composition of behavior to be part of the composition of
the application.

 Let’s finish off the example. We should read the input file by line and calculate the
lengths of each line. The resulting calculations will be written to a new file. Let’s
define a new workflow to make this happen.

def lineLengthCount(inFile: File, outFile: File) =
for {

lines <- getLines(inFile)
val counts = lines.map(_.length).toSeq.zipWithIndex
output <- ManagedResource.writeFile(outFile)
val writer = new OutputStreamWriter(output)
val buffered = new BufferedWriter(writer)

} yield buffered.write(counts.mkString("\n"))

The lineLengthCount method takes in two File parameters. The for expression
defines a workflow to first obtain a TraversableView of all the lines in a file using the
getLines method. Next, the line length counts are calculated by calling the length
method on each line and combining that with the line number. Next, the output is
grabbed using the ManagedResource.writeFile method. This method is similar to
the readFile method, except that it returns an OutputStream rather than an Input-
Stream. The next two lines in the workflow adapt the OutputStream into a Buffered-
Writer. Finally, the BufferedWriter is issued to write the counts calculations into the
output file.

MONADIC I/O The Haskell language has a monadic I/O library in which every
side effecting input or output operation is wrapped inside a monad called I/
O. Any kind of file or network manipulation is wrapped into workflows called
do-notation, akin to Scala’s do-notation.

This method doesn’t perform any calculations. Instead it returns a Managed-
Resource[Unit] that will read, calculate, and write the results when its loan method is
called. Again, this workflow has just composed the behavior of calculating counts but
didn’t execute it. This gives the flexibility of defining portions of program behavior as
first-class objects and passing them around or injecting them with a dependency injec-
tion framework.

 A contingent of functional programmers believes that all side-effecting functions
should be hidden inside a monad to give the programmer more control over when
things like database access and filesystem access occur. This is similar to placing a

276 CHAPTER 11 Patterns in functional programming
workflow inside the ManagedResource monad and calling loan when that workflow
should be executed. Though this mind-set can be helpful, it’s also viral in that it con-
taminates an entire code base with monadic workflows. Scala comes from the ML fam-
ily of languages, which don’t mandate the use of a monad for side effects. Therefore,
some code may make heavy use of monads and workflows while others won’t.

 Monadic workflows can be powerful and helpful when used in the right situations.
Monads work well when defining a pipeline of tasks that need to be executed but with-
out defining the execution behavior. A monad can control and enforce this behavior.

MONADIC LAWS AND WADLER’S WORK Monads follow a strict set of mathemati-
cal laws that we don’t cover in this book. These laws—left identity, right iden-
tity and association—are covered in most monad-specific material. In
addition, Philip Wadler, the man who enlightened the functional world on
monads, has a series of papers that describe common monads and common
patterns that are well worth the read.

Monads can also be used to annotate different operations in a pipeline. In the Config
monad, there were several ways to construct a Config instance. In the case where a
Config instance was constructed from a file, the Config monad could use change-
detection to avoid reading the file multiple times. The monad could also construct a
dependency graph for calculations and attempt to optimize them at runtime. Though
not many libraries exist that optimize staged monadic behavior in Scala, this remains a
valid reason to encode sequences of operations into monadic workflows.

11.5 Summary
Functional programming has a lot to offer the object-oriented developer. Functional
programming offers powerful ways to interact with functions. This can be done
through applicative style, such as configuring an application, or through monadic
workflows. Both of these rely heavily on concepts from category theory.

 One important thing to notice in this chapter is the prevalence of typeclass pattern
with functional style. The typeclass pattern offers a flexible form of object orientation
to the functional world. When combined with Scala’s traits and inheritance mecha-
nisms, it can be a powerful foundation for building software. The type classes we pre-
sented in this chapter aren’t available in the standard library but are available in the
Scalaz extension library (http://mng.bz/WgSG). The Scalaz library uses more
advanced abstractions than those we presented here, but it’s well worth a look.

 Scala provides the tools needed to blend the object-oriented and functional pro-
gramming worlds. Scala is at its best when these two evenly share a codebase. The big-
gest danger to misusing Scala is to ignore its object orientation or its functional
programming. But combining the two is the sweet spot that the language was
designed to fulfill.

http://mng.bz/WgSG

index
Symbols

- method 25
:paste command 20
!! method 215, 217
!? method 217
?: syntax 22
@BeanProperty

annotation 253
@Column annotation 252
@cpsParam annotation 252
@ManyToOne annotation 252
@reflect.BeanInfo

annotation 253
@reflect.BeanProperty 254
@serializable annotation 252
@specialized annotation 238
@switch annotation 63, 252
@tailrec annotation 63–64,

66, 252
* method 116–117
method 28, 39
#:: method 195, 197
+ method 116–118
+: method 180, 189
++ method 141–142, 144,

180, 208
<:< 156
== method 28, 39, 131, 190

A

abstract class 243
abstract interfaces 82–86

between software
modules 84–85

reasons for 85–86

AbstractAddress class 243–244
AbstractMethodError 84
AccessControlContext 103
accessor 152, 163
act method 214–215, 219–220,

223
Actor class 217, 219, 230, 232
Actor.actorOf method 231
ActorDispatcher class 87
ActorRef type 230–231
actors

dynamic topology of
228–233

failure zones for 221–225
references for 216–221
scheduling zones for

225–228
supervisor 221
when to use 212

AdaptiveSearchNode 231–232
add method 237
addHandle method 148
Address class 243–244
ALIVE class 249–250
annotation.target.getter 254
AnnotationHelpers 255
annotations 252–256

and static fields 255–256
for variance 141–144
targets 254–255

anonfun class 50, 52
anonymous classes, serializa-

tion of 250–252
anonymous functions 7, 10
AnyRef 5, 28, 135, 138, 143,

245
AnyVal types 256

App trait 69–70
Application class 269
applicative functors 266
applicative style 268, 271
Applicative.build method 271
ApplicativeBuilder class

270–271
apply method 6, 187, 190,

215, 260, 263, 271
areEqual method 245–246
ArrayBuffer 186, 198–200, 208
ArrayList 199, 245–246
ArraySortTrait 211
avg method 51

B

B[A] parameter 151–152
Bar class 92, 100, 102
bar method 102
bar.Foo.type 124
Bar.type 100
bar(x) method 102
BeanInfo class 253
benefits, of type classes

166–167
binary compatibility 83
BinaryFormat type 99
BinaryTree 188–189
bindings 91, 122
BitSet 190
blocks, of code 45–47
boilerplate 26
BoxesRunTime class 238
boxing 235–236
Branch class 188
BufferedReader 274
277

278 INDEX
BufferedWriter 275
build method 270
bundleResult method 219–220
by-name parameters 260
Byte type 11

C

C parameter 157
C.super 123
C++ variables 8
Callback type 136–137
CanBuildFrom class 207–208
canEqual method 41
case statements 23, 62, 65
Cat type 137, 139
Category Theory

and functional
programming 258–261

functors 259, 262
monads 259, 264–272
morphism 258

cc target 21
chaining implicits 246, 248
changePassword method

56–57
Child class 55
children method 159–160, 163
class arguments 26
ClassCastExceptions 239
ClassManifest 154–155, 211
closeResource method 126
code blocks 45, 47
coding conventions

and other languages 44–47
code blocks 45–47

Coll type 207–208
CollectionConverter type 247
collections 180–211

and methods 205–211
ArrayBuffer 198
CanBuildFrom 207
hierarchy of 180–181
immutable collections

192–198
list 194–195
stream 195–198
vector 192–194

IndexedSeq 189–190
Iterable 185–186
iterator 185
LinearSeq 187–189
List 194
Map 191–192

mutable collections 198–200
ArrayBuffer 198–199
observable 199–200
synchronization of 200

Observable collections 199
parallel collections 203, 205
Seq 187
Set 190–191
Splitable iterator 203
Stream 195
Traversable 182–185
TraversableOnce 180
vector 192
views 201–203

colRank 107
combineResults 219
companion class 19
companion object 19
complexmath 117, 119
ComplexNumber class 115–

119
composition

inheritance 76–82
member-composition 78–80
using constructor

arguments 80–82
CompressedIntSet 159
computeValue 108
concurrency, and

immutability 31–34
conditional execution, using

type system 167–178
heterogeneous typed

list 169–171
IndexedView type 172–178

Config class 259, 261–263,
269–271, 276

config file 202–203
ConnectionDataStore 270
constraints

for type parameters 134–135
for types 131–134

constructor arguments, compo-
sition using 80–82

content method 160
context bounds 151, 153
convertToScala 240
count method 133
covariance 137
CreateArray 245
createConnection method 38
createDispatcher method 87
createErrorMessage

method 23
createHandle 129

createPreparedStatement
method 5

createSearchTree 223
CREATOR class 243–244
curCount parameter 219
currentIndex method 32
curried method 266
currying 266, 271

D

dangling operators 48–49
Data class 254–255
DataAccess class 77–80
DatabaseConnection 261
DatabaseResultSetWalker 207
dataId 254
DataStore class 269
DEAD class 249–250
deadActor 224
default concepts 31
default parameters 106
DefaultHandles 129–130
defaults

implicit parameters
with 106–112

returning 35–36
delayed construction, of

objects 69–70
delayedInit method 69–70
DelayedInit trait 69–70
Dependencies object 148
describeContents method 243
Dog class 58–59
domain-specific languages.

See DSLs
doPrivileged method 103
Double type 115–118
doubleToReal 118–119
doWork 252
DriverManager.getConnection

method 258, 261, 268, 270
DSLs (domain-specific

languages) 18
dynamic deoptimization 15
dynamic topology, of

actors 228–233

E

eager parsing, in REPL 19–20
early member definitions 71
EJB (Enterprise JavaBeans) 4
else statements 47

279INDEX
empty implementations 72, 76
EmptyList class 142
endofunctor 264
Enterprise JavaBeans. See EJB
Entity beans 4
environment function 260, 270
equals method 28, 42
escape analysis 15
Event object 40
executeLocalQuery

function 230
ExecutorScheduler 226
existential types 144–149
Expand type 175–176
experiment-driven develop-

ment, and REPL 18–19
Explicit object 95–96
explicit return statement 26
explicit return types 86, 88
expression-oriented

programming 21–26
mutability of 24–26
no return statements 22–24

expression-oriented syntax 24
expressions, with

parentheses 48–49
externalbindings.scala 94

F

F[_] type 262, 264–265,
267–268, 270

fa parameter 267
factory method 86, 190
failure zones, for actors

221–225
File parameters 272, 275
FileInputStream 272
FileLike, as type classes

163–165
FileLike.children method 162
FileLineTraversable class

183–185, 202
FileObject 160
FileWrapper class 104
filter method 6, 36, 187, 191,

198, 205
find method 6
findAnInt method 90, 97
first-class functions 7
flatMap method 258–259, 261,

264–266
flatten method 259, 264–265,

273

foldLeft method 51, 204–205,
215

Foo class 91, 93, 101
foo method 48, 55, 101,

136–137, 151–152, 156
Foo object 19, 127, 141, 250,

255
Foo type 97
Foo.baz 128
foo.Foo object 101
Foo.type 129
foo.type#Bar 124
Foo#Bar 124
FooHolder 46
fooToBar 103
for expression 35
force method 201, 203, 215
foreach method 36, 182–185,

197, 258, 274
ForkJoinPool 203–205
ForkJoinScheduler 226–228
forSome method 146–147
forward method 216–217
FrontEnd 222
Function interface 6
Function object 139–141, 156
function traits 13
Function1 class 7
functional programming

and category theory 258–261
applicative style 268–271
concepts of

in existing frameworks
4–6

in Google Collections 6–8
currying 266–271
functors 262–266
monads 264–266, 272–276
vs. object-oriented

programming 2–8
functions, in Java 13–14
functionToPrivilegedAction

103
Functor interface 263–268, 273
Functor.apply method 273
Functor.map method 274
functorOps 263
functors 262, 266
Future object 215, 217

G

GathererNode 219–220, 231
Generic types 238

GenericSortTrait 209–210
GenIterator 181
GenSeq 181
GenTraversableOnce 181
get method 144–145, 172,

253–254, 259–260
getConnection function 261
getFoo 253
getLines method 274–275
getNextChild method 231
getOrElse method 34
getstatic operation 66
getTemporaryDirectory

method 36
getValue 253
Google Collections, concepts of

functional programming
in 6–8

H

Handle type 129, 131, 147–148
handleMessage method 72–73
hashCode method 28, 30
HashMaps 191, 214
HashSet 190–191
HasLogger 79
hasNext method 185–186
HCons class 169–172, 175
head method 187, 189, 195
HeadNode 215, 217, 220–222,

224, 228
heterogeneous typed list 169,

171
hierarchy, of collections

180–181
higher-kinded types 135–136
HList class 170, 174–178
HListViewN class 173–174, 176
HNil class 169–172, 175
holder object 20
HotSpot runtime

optimizer 14–15
HttpSession 36

I

i object 115–117, 119
identifiers 91–92
if block 22
if clause 22
if statements 25, 47, 61
If type 168
if_icmpne 63

280 INDEX
imaginary method 115, 118
immutability 23–34

and concurrency 31–34
and object equality 27–31

immutable collections 192–198
list 194–195
stream 195–198
vector 192–194

immutable references 26
ImmutableHashMap 32
ImmutableService 33
Imperative coding 24
implicit constraints 151–153,

207
implicit conversions 244–248

and object identity 245–246
chaining implicits 246–248

implicit method 90, 96–97, 101
implicit parameters, with

defaults 106–112
implicit views 101, 106
implicitly function 99–100
implicits

capturing types with
153–159
Manifests 153–155
specialized methods

158–159
type constraints 156–158

context bounds 151
conversions 10
implicit scope 98–102
scope of 112–119

and bindings 92–96
creating implicits for

import 113–115
via nesting 99–101
via type parameters 98–99
without requiring

import 115–119
view bounds 151

import statement 92, 113
index service 31
IndexedSeq class 187, 189–190
IndexedView type 172–178
indexN function 177
inexpressible language fea-

tures, in REPL 20–21
inheritance, composition

including 76, 82
initCoreSize 228
inlining 15
inner type 124
InputChannel 216
InputStream 160, 274–275

InputStreamReader 274
insert method 31
InstantaneousTime class 38
int type 237–238
interfaces, abstract 82–86

between software
modules 84–85

reasons for 85–86
IntHolder class 130
IntStore class 130–131
intToString 101
InvalidClassException 249
IScheduler interface 225
isDirectory 159–160
isEmpty method 187
isLoggedIn method 56
ItemType 141–142
Iterable interface 181–182,

185–186, 206, 210
IterableLike 210
Iterables object 7
Iterator method 181, 185

J

Java and Scala 12–15
annotations 252–256

and static fields 255–256
annotation targets

254–255
benefits of JVM 14–15
implicit conversions 244–248

and object identity
245–246

chaining implicits
246–248

language differences
235–244
in primitive boxing

236–240
in visibility 240–241
unique features 241–244

Scala objects in 13
serialization 248–252

Java class 12
Java interfaces 12
java.awt.Component 74
java.io.File 104–105, 163–164
java.lang.Class 154
java.lang.IndexOutOfBounds-

Exception 186
java.lang.Integer type 239–240,

246–247
java.lang.Object 135, 144–145,

235

java.lang.String type 113
java.net.URL 163
java.security class 103
java.sql.DriverManager.get-

Connection(...)
method 266

java.util.ArrayList 199, 239
java.util.Collections class 152
java.util.concurrent.Executor

226
java.util.concurrent.Executors

110
java.util.Date class 38
java.util.Executor 226
java.util.List 92, 145
JavaClass 245
JavaConversions 244–245
javap 82, 87
javax.swing.JComponent 74
jdbc_password 261
JdbcTemplate class 4
JdbcTemplate method 5
jdbc_url 261
jdbc_user 261
JRebel 21
JVM bytecode 14
JVM, benefits of 14–15

K

KittyDoggy class 58

L

lambdas 10
language differences, Java and

Scala 235–244
in primitive boxing 236–240
in visibility 240–241
unique features 241–244

LazyTraversable type 274–275
Leaf type 188–189
LeafNode 229, 232
limiting scope, of

implicits 112–119
creating implicits for

import 113–115
without requiring

import 115–119
LinearSeq 187–189, 194–195,

204
lineLengthCount method 275
link method 221, 223
List class 134–135, 145–146,

195–196, 237–238

281INDEX
list collections 194–195
List(start) method 64
ListView 201
loan method 273–276
loaner pattern 5
LoggedDataAccess class 78
Logger class 77–79
login method 56
logout method 56
longWrapper 114
lookUp method 31
loop method 65

M

makeLineTraversable
method 274

makeList method 145
ManagedResource 273–276
ManagedResource.writeFile

method 275
Manifest class 154
MatchError 63
MatrixService.multiply

111–112
maxDocs 219
maxResponses 219
maxResults 214
maxSize 228
member-composition 78, 80
menu button click 25
MessageDispatcher 86–88
method inlining 15
method parameters 26
methods

and collections 205–211
overridden, marking

55–60
MixableParent 75
mkdirs method 160
MODULE$ 13, 255
Monad type 264–266, 273
monadOps 265
Monads 264–266, 272–276
move method 27
multiple inheritance, of

objects 70–72
mutability, of expression-ori-

ented programming
24–26

mutable collections 198–200
ArrayBuffer 198–199
observable 199–200
synchronization of 200

Mutable objects 25
MutableService 32
mutation statements 26

N

NaiveQuickSort object 206
naiveWrap method 247
named and default

parameters 49
named parameters 53, 55
naming, variables 49–55
Nat type 175–177
nesting, scope of implicits

via 99–101
NetworkEntity 73, 75
newMethod method 83
next method 185–186, 189,

197, 238
NextIdxView 174
NilTree 188–189
Node class 64–66
NoManifest class 154
None 34–38

creating new object or
returning default 35–36

executing block of code if
variable is initialized
36–37

using potential variables to
construct another 37–38

NonZero type 176
null object 160
NullDispatcher 87
Numeric type 158–159
NumericRange 114

O

object equality, and
immutability 27–31

object identity, and implicit
conversions 245–246

ObjectInputStream 249
object-oriented programming

composition 76
traits 69
vs. functional

programming 2–8
ObjectOutputStream 249
objects 69–72

delayed construction 69–70
in Java 13
multiple inheritance 70–72

observable collections 199–200
ObservableBuffer 199–200
ObservableMap 199
ObservableSet 199
observe method 129
On Stack Replacement 15
operator notation 10
operator overloading 25
operators, dangling 48–49
optimization

tableswitch optimization
61–64

tail recursion
optimization 64–66

Option class 34, 258–261, 263,
266, 271

OptManifest 154
or method 7
Ordering type 190, 206, 211
OriginalType 101
OtherItemType 142
Outer class 124
OutputChannel 216–217,

219–220
OutputStream 275
overridden methods 55
override keyword 55–57, 59–60

P

package.scala 100
par method 201
parallel collections 203, 205
parameters 53, 55
parameterspaths, and

types 122
ParArray 204
Parent class 55
parentheses, expressions

with 48–49
ParentNode 231
parsedConfigFile method 202
parsing, in REPL 19–20
ParVector 204
paths, and types 122, 124
pattern matching 23, 25, 61
Player class 249
PlayerStatus 249
plus method 159
Point2 class 28
Point2D class 27
polymorphic equality 38–42

implementing 40–42
timeline library example 38,

40

282 INDEX
postfix operator 10
Predef class 113–114
Predicate interface 6–7
Predicates class 6
PreparedStatementCreator

interface 5
Prev type 177
primitive boxing, in Java and

Scala 236–240
primitive widenings 11
primitives 236
println method 131, 148, 186,

189
private keyword 20
private variables 19
PrivilegedAction 103
PrivilegedExceptionAction 103
Property trait 71
PureAbstract 85

Q

qsort 10
QueryResponse 218
QuickSort 209, 211
Quicksort method 9
QuickSortBetterTypes

object 206

R

randomElement method 134
Range object 114
react method 215, 224
Read Eval Print Loop. See REPL
readFile method 272–275
readLine method 274
real method 115, 118
realToComplex 117–118
receive method 215, 232
receiver method 217
Receiver type 153
receiveWithin method 220
Ref type 147–148
references, for actors 216–221
regular object 19
reification 156
remove method 148
removeDependencies

method 148
REPL (Read Eval Print

Loop) 16–21
and experiment-driven

development 18–19

eager parsing in 19–20
inexpressible language

features 20–21
reply method 215
replyTo 217
repr member 40
ResizableThreadPoolScheduler

226
Resource type 126
result variable 23
ResultSet 5
return method 65
return statements, lack of

22–24
return types, explicit 86–88
Router class 75
RowMapper interface 5
rowRank 107
run method 224
runtime type 152

S

SameThreadStrategy 109, 111
Scala file 21
Scala functions 13
Scala objects 12–13
Scala type 8
Scala variables 8
Scala, in Java 13–14
scala.actors.TIMEOUT 220
scala.collection.immutable.List

class 180
scala.collection.immutable.List

type 238
scala.collection.immutable

.Vector 180
scala.collection.Java-

Conversions 103
scala.collection.JavaConverters

244
scala.collection.parallel 205
scala.collection.script 200
scala.collections.mutable 198
scala.immutable.List 169
scala.Int 236–237, 239,

246–247
scala.Iterable 245, 247
scala.List 92, 154, 183
scala.Option 34, 122
scala.Predef 10, 112–113, 157,

191, 246
scala.Predef.longWrapper 114
scala.runtime.BoxesRunTime

class 238

scala.String 124
scala.type#String 124
scala.util.control.Control-

Throwable 184
scala> prompt 17
ScalaClass 245
ScalaMain 84
ScalaObject 84
ScalaSecurityImplicits 103
scatter-gather example 217,

221, 225
schedule method 251
scheduling zones 225–228
SchedulingService 251–252
scope, of implicits

and bindings 92–96
limiting 112–119
via nesting 99–101
via type parameters 98–99

sealed trait 216
search method 64
search, using actors to 213–216
SearchableDocument 229, 231
SearchNode 214–215, 218,

221–223, 226, 228
SearchNodeMessage type

217–218
SearchNodes 215, 217–221
SearchNodeSupervisor

223–224
SearchQuery class 214–215,

217–218, 220, 229, 231
self-type 73
send method 153
sendMsgToEach 153
seq method 201
SeqLike class 207
Serializable class 153, 158,

165–166
serialization 248–252
service classes 2
Session beans 4
Set class 132, 159, 178
set method 253–254
setFoo 253
setValue 253
Simple Build Tool 21
SimulationEntity 72, 74
sizeHint 208
SLEEPING class 249–250
sort method 206, 208–209, 211
Sortable type 209–211
sortBy method 215
Sorter class 167–168, 209
Sorter.sort method 210

283INDEX
specialization 238
specialized methods 158–159
split method 230
Splitable 203
Static class 12
static fields, and

annotations 255–256
static methods 13
static typing 8–12

dropping verbose syntax
9–10

implicits 10–12
type annotations for

variables 8–9
type inference 9

statics 241
Stream class 192, 195–196, 198
stream collections 195, 198
Stream.empty 195
strictEquals method 29
String class 121, 124, 135, 138,

140, 143, 146
String object 101–102
structural types 125, 131
style guide 47
Succ trait 175–176
sum method 159, 187
super.handleMessage 73
synchronization, of mutable

collections 200
synchronize function 161, 163,

178
synchronized block 32
SynchronizedBuffer 200
synchronizedCollection

(Collection) 152
synchronizeDirectory 161
SynchronizedMap 200
SynchronizedPriorityQueue

200
SynchronizedSet 200
SynchronizedStack 200
syncronizedList(List) 152

T

T#X type 127
T#Y type 127
tableswitch bytecode 61
tableswitch optimization 61, 64
tail method 187–189
tail recursion optimization 64,

66
take method 184–185, 187, 215
TBool 168

TDD (test-driven
development) 18

Test object 69, 74, 94, 102, 114,
247

test.Foo class 91–92
test.txt file 183, 272
test-driven development.

See TDD
testExplicitImport method 95
testInlineDefinition method 96
test_prop property 260
testSamePackage 94
testWildcardImport method 95
TFalse type 168
ThreadPoolStrategy 110–112
ThreadStrategy 109–112
Time object 113–114
timeline library example, poly-

morphic equality 38, 40
TimeRange class 113–114
tmp method 93
toList method 202
toSet method 191
toString method 17, 71, 94,

101, 107, 130, 183
trait linearization 71
Traversable class 180–185, 197,

202
TraversableOnce 180
TraversableOnce.scala 158
TraversableView 197–198,

202–203, 275
traverse method 188
traverseHelper method

188–189
TreeMaps 191
TreeSet 190–191
TTrue type 168–169
TupleN 169
two-dimensional geometric

point class 27
two-dimensional plane 27
type annotations, for

variables 8–9
type classes 159–167

benefits of 166–167
FileLike as 163–165

type constraints 131, 156, 158
type erasure 167, 235
type inference 9
type keyword 124–125
type lambda 137
type parameters

constraints for 134–135
scope of implicits via 98–99

type system, conditional execu-
tion using 167–178

heterogeneous typed
list 169–171

IndexedView type 172–178
type traits 99
types

abstract types 124
and paths 122–124
capturing with implicits

153–159
Manifests 153–155
specialized methods

158–159
type constraints 156–158

concrete types 124
constraints 131–134
existential types 136, 144–149
higher-kinded types 135–136
path-dependent type 123
structural types 125–131
type keyword 124–125
type parameters,

constraints 134–135
type projection 123
volatile type 122

U

useFile method 105
UserService class 57
UserServiceImpl class 57
UserSession object 56
using statement 92

V

value method 253
value_$eq method 253
var syntax 26
variables

executing block of code if
initialized 36–37

naming of 49–55
type annotations for 8–9

VariableStore 148–149
variance 137–144

annotations for 141–144
contravariance 139
covariance 137
invariance 137

vector collections 192, 194
view bounds 151, 153
view method 197, 201–202, 215

284 INDEX
ViewAt method 175–177
views 201, 203
ViewType 101
visibility, in Java and Scala

240–241

W

Wildcard object 95–96
withFilter 258
workerPool method 269
wrap method 105, 247

WrappedArray 152
writeClient method 165
writeContent method 160
writeToParcel method 243

X

x method 91, 114, 127–128, 241
x object 94
x parameter 90
X type 127–128, 130, 168–169
x-axis 32

Y

y method 91, 111, 124, 128,
131, 146

y-axis 32

Z

zip method 186, 243

Joshua D. Suereth

S
cala is a powerful JVM language that blends the functional
and OO programming models. You’ll have no trouble
getting introductions to Scala in books or online, but it’s

hard to fi nd great examples and insights from experienced
practitioners. You’ll fi nd them in Scala in Depth.

What’s Inside
● Concise, expressive, and readable code style
● Integrate Scala into your existing Java projects
● Scala’s 2.8.0 collections API
● How to use actors for concurrent programming
● Mastering the Scala type system
● Scala’s OO features—type member inheritance,
 multiple inheritance, and composition
● Functional concepts and patterns—immutability,
 applicative functors, and monads

Th ere’s little heavy-handed theory here—just dozens of crisp,
practical techniques for coding in Scala. Written for readers who
know Java, Scala, or another OO language.

Josh Suereth is a soft ware developer with Typesafe. He is a Scala
committer and the maintainer of scala-tools.org.

To download their free eBook in PDF and mobile formats, owners of this
book should visit manning.com/ScalainDepth

$49.99 / Can $52.99 [INCLUDING eBOOK]

Scala IN DEPTH

SCALA/PROGRAMMING

M A N N I N G

 “Authorative and
 understandable.”

—From the Foreword by
Martin Odersky, Creator of Scala

 “Takes you deep into the
 inner workings of Scala.”—John C Tyler, PROS Pricing

“By far the best examples
 I’ve seen in any technical

 book.”
—Eric Weinberg, Wagger Designs

“An eye opener!
 Now I know why Scala

 does what it does.”
—John Griffi n, Coauthor of
Hibernate Search in Action

SEE INSERT

	Scala In Depth
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Code downloads and conventions
	Author online
	About the author

	about the cover illustration
	1 Scala— a blended language
	1.1 Functional programming meets object orientation
	1.1.1 Discovering existing functional concepts
	1.1.2 Examining functional concepts in Google Collections

	1.2 Static typing and expressiveness
	1.2.1 Changing sides
	1.2.2 Type inference
	1.2.3 Dropping verbose syntax
	1.2.4 Implicits are an old concept
	1.2.5 Using Scala’s implicit keyword

	1.3 Transparently working with the JVM
	1.3.1 Java in Scala
	1.3.2 Scala in Java
	1.3.3 The benefits of a JVM

	1.4 Summary

	2 The core rules
	2.1 Learn to use the Read Eval Print Loop (REPL)
	2.1.1 Experiment-driven development
	2.1.2 Working around eager parsing
	2.1.3 Inexpressible language features

	2.2 Think in expressions
	2.2.1 Don’t use return
	2.2.2 Mutability

	2.3 Prefer immutability
	2.3.1 Object equality
	2.3.2 Concurrency

	2.4 Use None instead of null
	2.4.1 Advanced Option techniques

	2.5 Polymorphic equality
	2.5.1 Example: A timeline library
	2.5.2 Polymorphic equals implementation

	2.6 Summary

	3 Modicum of style— coding conventions
	3.1 Avoid coding conventions from other languages
	3.1.1 The block debacle

	3.2 Dangling operators and parenthetical expressions
	3.3 Use meaningful variable names
	3.3.1 Avoid $ in names
	3.3.2 Working with named and default parameters

	3.4 Always mark overridden methods
	3.5 Annotate for expected optimizations
	3.5.1 Using the tableswitch optimization
	3.5.2 Using the tail recursion optimization

	3.6 Summary

	4 Utilizing object orientation
	4.1 Limit code inside an object or trait’s body to initialization logic
	4.1.1 Delayed construction
	4.1.2 And then there’s multiple inheritance

	4.2 Provide empty implementations for abstract methods on traits
	4.3 Composition can include inheritance
	4.3.1 Member composition by inheritance
	4.3.2 Classic constructors with a twist

	4.4 Promote abstract interface into its own trait
	4.4.1 Interfaces you can talk to
	4.4.2 Learning from the past

	4.5 Provide return types in your public APIs
	4.6 Summary

	5 Using implicits to write expressive code
	5.1 Introduction to implicits
	5.1.1 Identifiers: A digression
	5.1.2 Scope and bindings
	5.1.3 Implicit resolution

	5.2 Enhancing existing classes with implicit views
	5.3 Utilize implicit parameters with defaults
	5.4 Limiting the scope of implicits
	5.4.1 Creating implicits for import
	5.4.2 Implicits without the import tax

	5.5 Summary

	6 The type system
	6.1 Types
	6.1.1 Types and paths
	6.1.2 The type keyword
	6.1.3 Structural types

	6.2 Type constraints
	6.3 Type parameters and higher-kinded types
	6.3.1 Type parameter constraints
	6.3.2 Higher-kinded types

	6.4 Variance
	6.4.1 Advanced variance annotations

	6.5 Existential types
	6.5.1 The formal syntax of existential types

	6.6 Summary

	7 Using implicits and types together
	7.1 Context bounds and view bounds
	7.1.1 When to use implicit type constraints

	7.2 Capturing types with implicits
	7.2.1 Manifests
	7.2.2 Using Manifests
	7.2.3 Capturing type constraints
	7.2.4 Specialized methods

	7.3 Use type classes
	7.3.1 FileLike as a type class
	7.3.2 The benefits of type classes

	7.4 Conditional execution using the type system
	7.4.1 Heterogeneous typed list
	7.4.2 IndexedView

	7.5 Summary

	8 Using the right collection
	8.1 Use the right collection
	8.1.1 The collection hierarchy
	8.1.2 Traversable
	8.1.3 Iterable
	8.1.4 Seq
	8.1.5 LinearSeq
	8.1.6 IndexedSeq
	8.1.7 Set
	8.1.8 Map

	8.2 Immutable collections
	8.2.1 Vector
	8.2.2 List
	8.2.3 Stream

	8.3 Mutable collections
	8.3.1 ArrayBuffer
	8.3.2 Mixin mutation event publishing
	8.3.3 Mixin synchronization

	8.4 Changing evaluation with views and parallel collections
	8.4.1 Views
	8.4.2 Parallel collections

	8.5 Writing methods to use with all collection types
	8.5.1 Optimizing algorithms for each collections type

	8.6 Summary

	9 Actors
	9.1 Know when to use actors
	9.1.1 Using actors to search

	9.2 Use typed, transparent references
	9.2.1 Scatter-Gather with OutputChannel

	9.3 Limit failures to zones
	9.3.1 Scatter-Gather failure zones
	9.3.2 General failure handling practices

	9.4 Limit overload using scheduler zones
	9.4.1 Scheduling zones

	9.5 Dynamic actor topology
	9.6 Summary

	10 Integrating Scala with Java
	10.1 The language mismatch between Scala and Java
	10.1.1 Differences in primitive boxing
	10.1.2 Differences in visibility
	10.1.3 Inexpressible language features

	10.2 Be wary of implicit conversions
	10.2.1 Object identity and equality
	10.2.2 Chaining implicits

	10.3 Be wary of Java serialization
	10.3.1 Serializing anonymous classes

	10.4 Annotate your annotations
	10.4.1 Annotation targets
	10.4.2 Scala and static fields

	10.5 Summary

	11 Patterns in functional programming
	11.1 Category theory for computer science
	11.2 Functors and monads, and how they relate to categories
	11.2.1 Monads

	11.3 Currying and applicative style
	11.3.1 Currying
	11.3.2 Applicative style

	11.4 Monads as workflows
	11.5 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

