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Abstract—Predictive performance evaluation is a fundamental issue in design, development, and deployment of classification

systems. As predictive performance evaluation is a multidimensional problem, single scalar summaries such as error rate, although

quite convenient due to its simplicity, can seldom evaluate all the aspects that a complete and reliable evaluation must consider. Due to

this, various graphical performance evaluation methods are increasingly drawing the attention of machine learning, data mining, and

pattern recognition communities. The main advantage of these types of methods resides in their ability to depict the trade-offs between

evaluation aspects in a multidimensional space rather than reducing these aspects to an arbitrarily chosen (and often biased) single

scalar measure. Furthermore, to appropriately select a suitable graphical method for a given task, it is crucial to identify its strengths

and weaknesses. This paper surveys various graphical methods often used for predictive performance evaluation. By presenting these

methods in the same framework, we hope this paper may shed some light on deciding which methods are more suitable to use in

different situations.

Index Terms—Machine learning, data mining, performance evaluation, ROC curves, cost curves, lift graphs.
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1 INTRODUCTION

CLASSIFIER performance depends fundamentally on the
characteristics of the data to be classified. Broadly

speaking, the no-free-lunch theorem for supervised machine
learning [1], [2] states that, if all possible hypothesis are
equally likely, the average performance of two different
classifiers over all possible problems are equivalent. As a
corollary of the no-free-lunch theorem, there is no single
classifier that works best on all given problems. Many
approaches for constructing classifiers have been proposed,
including tree classifiers, neural networks, support vector
machines, nearest neighbor methods, Naı̈ve Bayes methods,
linear and quadratic discriminant analysis, to name but a few.

Some attempts have been made aiming to predict whether
some approach for constructing a classifier may perform well
for a given domain [3], either from a theoretical or empirical
point of view. One example is [4], where the authors have
derived metrics based on the eigenvector decompositions of
matrices commonly used in generalized linear discriminant
analysis procedures. Based on these metrics, the authors
carried out a theoretical analysis that demonstrate where and
why the eigen-based linear equations beneath these methods

do not work, so that it is possible to predict where these
methods would not perform well. Furthermore, these
metrics can be used to design more robust algorithms, which
best fit the data at hand [5]. Unfortunately, this analysis could
not be generalized for approaches other than the eigen-based
linear methods. In addition, some approaches for classifier
construction are based on soft computing approaches, and
theoretical analysis is impractical. Thus, determining a
suitable classifier for a given problem is essentially an
empirical enterprise where evaluation procedures play a
major role.

Therefore, evaluating the predictive performance of
classification systems is an issue of great importance in
machine learning, data mining, and pattern recognition as it
is often used as the main indicator of predictive systems’
quality. One of the important issues in performance
evaluation is selecting the criterion to measure classifier
performance. However, this task is not as trivial as it would
seem at a first glance. Even the most widely used methods
such as measuring accuracy or error rate on a test set (even
using resampling techniques such as cross validation) have
severe limitations [6]. Two of the most prominent limitations
of these measures are that they do not consider misclassifica-
tion costs, and can be misleading when classes have very
different prior probabilities. Furthermore, they do not take
into account the fact that, in real-world problems, class
prevalence and misclassification costs are likely to change
due to the inherent evolution of the process which generates
the data [7]. The Area under the ROC curve (AUC), another
performance measure that has been widely used in recent
years, has also been criticized as it may use different
misclassification cost distributions for different classifiers
[8]. Moreover, in application oriented research, quality
measures should reflect the concerns of the end users which
are typically hard to model precisely [9].
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Due to these and other reasons, assessing the quality of a
predictive system has been receiving much attention in
recent years (see, for instance, the series of four recent
workshops on this subject, the first two held together with
the 2006 [10] and 2007 [11] editions of the Association for the
Advancement of Artificial Intelligence—AAAI—confer-
ences, and the latter two held together with the 2008 [12]
and 2009 [13] editions of the International Conference on
Machine Learning—ICML). One lesson that emerges from
these concerns is that the prediction performance is an
inherently multifaceted quantity. That is to say that, although
it is quite common to express performance in terms of a
single scalar (i.e., one-number) quantity (e.g., error rate,
precision, recall, and so on) these considerations are likely to
be insufficient. Any attempt to reduce the performance
evaluation to a single scalar number might lose some
information, imposing an arbitrarily chosen compromise
among the components of performance. Although attractive
from a practical standpoint, these reductions will necessarily
give incomplete pictures of prediction performance. To sum
up, although a single scalar measure may capture some
aspects of performance, it does not capture all the aspects
[14]. Therefore, a complete and reliable analysis must
consider all the various components of performance quality.

Over the last years, various studies have pointed out
alternative methods to evaluate the performance of pre-
dictive systems. Some of these methods are based on
graphical or diagram evaluation and are used as an
alternative to scalar performance measures because they
can display more of the multidimensionality and complex-
ity of the evaluation of the underlying problem. The main
advantage of graphical methods resides in their ability to
depict the trade-offs between evaluation aspects in a
multidimensional space rather than reducing these aspects
to an arbitrarily chosen (and often biased) single scalar
measure. However, graphical methods are not as easy to
interpret and analyze as single scalar values are [15].

The purpose of this paper is two-fold: the first one is to
put various graphical methods for evaluating predictive
systems, which are often used in machine learning, data
mining, and pattern recognition, in the same framework, so
that the reader can get an overall idea of how to use and
interpret them. The methods often used in machine learning
and pattern recognition include precision-recall [16] and
ROC graphs [17], as well as some methods based on
expected profit or return, such as lift and return of
investment (ROI) graphs [18], or costs, such as cost curves
[19]. These methods are related to evaluating the discrimi-
nation aspect of predictive systems. The second purpose is
to call the attention of the machine learning, data mining,
and pattern recognition communities to other methods used
in other areas (mainly weather forecasting) aimed to
evaluate other aspects of predictive performance evalua-
tions. To the best of our knowledge, these methods are
seldom used in machine learning, data mining, and pattern
recognition contexts.

The outline of the paper is as follows: Section 2
introduces the problem of predictive performance evalua-
tion. Section 3 reviews some graphical models for evaluat-
ing discrete binary classifiers. These methods are extended
in Section 4, which approaches the problem of graphical

evaluation of rated or ranked predictions as well as in
Section 5, which deals with continuous predictions. Sec-
tion 6 highlights the main advantages and drawbacks of
each method described in this paper. Section 7 shows an
illustrative example of using graphs to analyze predictive
performance, and Section 8 concludes the work.

2 PREDICTIVE PERFORMANCE EVALUATION

LetX be the true label of an instance (the “ground truth”) and
Y the prediction made by a predictive model. The purpose of
predictive performance evaluation is to assess the agreement
between X and Y . Each of these quantities (X and Y ) might
be continuous, ordinal, or categorical. The prediction of
continuous variables is given the name of regression;
prediction of ordinal variables are often called ordinal
regression, rating or ranking; and prediction of categorical
variables is called classification or categorization.

Although it is often assumed that there is a direct
correspondence between the types of X and Y , i.e., both X
and Y are of the same type, this restriction is not imperative.
One may have, for example, a continuous observation
X 2 < and a discrete prediction Y 2 fc1; c2; . . . ; ckg, where
k 2 @ is the number of possible predicted categories
(classes). In this particular example, we are dealing with a
regression problem through discretization [20]. Other
examples are using ranking-based evaluation of regression
models [21] or a continuous-based function which aims to
minimize classification error for crisp classifiers [22].

In this paper, we are concerned about classification
problems, i.e., problems where the labels are categorical.
Furthermore, as most graphical evaluation methods are
suitable for binary classification problems, we constraint our
discussion to two-class problems, which are given the
general class labels positive and negative. Therefore, in this
paper we are dealing with binary classification problems
(real classX is a discrete variable that can assume one of two
possible values) while prediction Y given by the predictive
models might be used in three possible situations:

. Classification. In this case, we are dealing with
standard “crisp” classifiers, i.e., classifiers which
only predict the class label, and Y may assume
discrete values (one of the class values).

. Ranking. While a crisp classifier aims to distinguish
instances from each class, a ranker orders instances
from high to low expectation where the instance is
of a certain class—generally the positive class. Most
classification models in machine learning output
some score of positiveness, and hence can be used
as rankers. Conversely, any ranker can be turned
into a classifier if we have some instance-indepen-
dent means of splitting the ranking into positive
and negative segments. This could be a fixed score
threshold or a percentage of cases that should be
classified as positive. In this case, we are interested
in two-tier ordering, where we would like to place
as many cases of the target class as possible at the
top of the rank.

. Probability estimation. In this case, Y is a contin-
uous variable that somehow estimates the likelihood
of a given instance, to be classified in one of the
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classes. The continuous variable might be (re)scaled
to represent probabilities. However, unless we are
interested in calibrated probability estimates, this is
an unnecessary step.

Regardless of the type of Y variable, the joint probability

distribution of observations and predictions—pðX;Y Þ—
encapsulates all the components of performance. However,

different graphical tools are necessary to analyze the

different types of Y . This paper presents graphical tools that

can be used to evaluate predictive models for each type of the

predicted Y variable. Table 1 summarizes the methods

presented in this paper according to how the Y value can be

interpreted, as well as the user objectives in carrying out the

evaluation. This table can be used to provide some guidance

on how the paper can be consulted.

3 GRAPHICAL EVALUATION METHODS FOR

DISCRETE PREDICTIONS

For binary discrete observations and predictions, the joint

probability distribution pðX;Y Þ can be cross tabulated into

a 2� 2 contingency table, as shown in Table 2. In this table,

x and x represent the events X ¼ positive and X ¼ negative

and y and y represent the events Y ¼ positive and

Y ¼ negative, respectively, meaning the actual/predicted

class is positive/negative. TPos, FPos, TNeg, and FNeg

represent true/false positive/negative example counts,
respectively. Pos, Neg, PPos, and PNeg represent the
number of examples actual/predicted as positives/nega-
tives, respectively. N is the sample size.

From a contingency table, the joint probability distribution
for each pair of events can be easily estimated by dividing the
respective inner cells by the sample size. For instance,
pðX ¼ x; Y ¼ yÞ ¼ TPos

N . The joint probability distribution of
observations and predictions—pðX;Y Þ—encapsulates all the
components of performance. However, the information
contained in pðX;Y Þ is more accessible when this distribution
is factored into conditional and marginal distributions. Two
such factorizations can be identified, which follows from the
basic laws of probability

pðXjY Þ ¼ pðX;Y Þ
pðY Þ ; and

pðY jXÞ ¼ pðX;Y Þ
pðXÞ ;

where pðXjY Þ is the conditional probability of observing X
given that the prediction is Y and pðY jXÞ is the conditional
probability of predicting Y given that the observation is X.

The former factorization is known in statistics as reliability
or predictive value (in machine learning, it is also known as
precision). Note that, in this case, the direction of the
probability is from prediction to truth. This probability is
of particular interest to the classifier’s user, since it provides
the probability of correct classification given a prediction.
Therefore, these measures can be understood as a confidence
value for a given prediction. The latter factorization is often
referred to as likelihoods, since it specifies the likelihoods that
a particular prevision was made given the occurrence of a
specific observation. The direction of this probability is from
truth to prediction, and is of principal utility when evaluating
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Guidelines for Choosing a Graphical Evaluation Tool for Assessing Binary Classification Models

TABLE 2
A 2� 2 Contingency Table

The two inner rows correspond to actual classes, while the two inner
columns correspond to predicted classes.



predictive systems. These likelihoods indicate the extent to
which predictions discriminate among the values of X.

3.1 Cost-Sensitive Learning

For binary classification, two types of errors may occur:
false positives and false negatives. Most learning systems
deal with these errors as equally costly and try to minimize
the overall error rate. Furthermore, a cost-sensitive learning
system can be used in applications where the misclassifica-
tion costs are known. A misclassification cost is simply a
value that is assigned as a penalty for making a mistake. In
this case, misclassification costs can be used in substitution
for the error rate, and a cost-sensitive learning system
attempts to reduce the cost of misclassified examples
instead of classification errors.

Usually, a cost matrix is used to define the costs
associated to a domain. A cost matrix is similar to a
contingency table. If the values on the main diagonal are
represented with negative costs, then these values can be
interpreted as gains or profits. Each entry of a cost matrix
defines a constant cost/profit for each type of error/hit that
can be made by a classifier. Given a contingency table and a
cost matrix, the expected cost, EC,1 can be computed using

EC ¼
X

X2fx;xg

X
Y 2fy;yg

pðX;Y ÞcðX;Y Þ; ð1Þ

where pðX;Y Þ is the corresponding cell in the contingency
table divided by N and cðX;Y Þ is the cost/profit for that
type of classification.

Some learning systems are not able to integrate cost
information into the learning process. However, there is a
simple and general method to make any learning system
cost sensitive for a binary class problem if costs are known
and are constant [23]. The idea is to change the class
distributions in the training set toward the most costly class.
Suppose that the positive class is five times more costly than
the negative class. If the number of positive examples are
artificially increased by a factor of five, then the learning
system, aiming to reduce the number of classification
errors, will come up with a classifier that is skewed toward
the avoidance of errors in the positive class, since any such
errors are penalized five times more. In [24], a theorem is
provided that shows how to change the proportion of
positive and negative examples in order to make optimal
cost-sensitive classifications for a concept-learning problem.
Moreover, a general method to make a learning system cost
sensitive is presented in [25]. This method has the
advantage of being applicable to multiclass problems.

3.2 ROC Graph

As we are concerned with two class problems, two
conditional probabilities2—pðyjxÞ or true positive rate (tpr)
and pðyjxÞ or false positive rate (fpr)—are sufficient to
provide all the information needed for the evaluation of a
binary classifier. A ROC graph is just a plot of these two
probabilities—fpr on the xx-axis and tpr on the yy-axis. A
binary “discrete” classifier produces a single point with
coordinates ðfpr; tprÞ in the ROC space.

Some points in the ROC space are worth noticing. The
lower left corner ð0; 0Þ represents the classifier which
always predicts negative; such a classifier does not produce
any false positive errors, although it is not able to classify
any positive ones as well. The upper right corner ð1; 1Þ
represents the opposite strategy of unconditionally classify-
ing every case as positive. The upper left corner ð0; 1Þ
represents perfect classification, while the lower right
corner ð1; 0Þ represents the always wrong classifier. Any
classifier which performs no better or worse than chance
falls in a point in the ascending diagonal. Classifiers which
perform worse than random appear in the lower right
triangle formed by the points ð0; 0Þ; ð1; 1Þ, and ð1; 0Þ. For this
reason, this area is usually empty. A point in the ROC space
is better than another if it is to the northwest (tpr is higher
and fpr is lower) of the first.

One advantage of ROC graphs is that they can visualize
and organize classifiers’ performance without considering
class distributions or misclassification costs. This ability is
very important when investigating learning algorithms in
skewed class distributions or cost-sensitive learning situa-
tions. The performance of a set of classifiers can be graphed,
and as long as the class conditional likelihoods do not
change, the graph will remain invariant with respect to the
class skew and misclassification costs (operational condi-
tions). As these operational conditions change, the region of
interest may change, but the graph itself does not change.

In [6], it is shown that the operating conditions may be
easily transformed into the so-called expected cost isoper-
formance line in the ROC space. Two points in this space,
ðfpr1; tpr1Þ and ðfpr2; tpr2Þ, have the same expected cost if

tpr2 � tpr1

fpr2 � fpr1
¼ cðx; yÞpðxÞ
cðx; yÞpðxÞ ¼ m: ð2Þ

This equation defines the slope m of a total cost
isoperformance line. All classifiers lying at points on a line
of slope m have the same expected cost (1). Each set of class
priors and misclassification costs defines a family of
isoperformance lines. The “more northwest” a line is
(having a larger TP-intercept) the better, because it
corresponds to classifiers with a lower expected cost. This
implies that, regardless of operational conditions, a classi-
fier is potentially optimal if and only if it lies on the convex
hull of the set of points in the ROC space. The convex hull of
the set of points in the ROC space is called the ROC convex
hull (ROCCH) of the corresponding set of classifiers.

An example of a ROC graph is shown in Fig. 1. In this
graph, five hypothetical classifiers are depicted: A, B, C, D,
and E. The graph also shows the ROCCH. The convex hull
is bounded only by the trivial points ð0; 0Þ and ð1; 1Þ and by
the points A, B, and C. Points D and E are not in the
ROCCH and therefore are suboptimal. Thus, as we are
looking for optimal classification performance, classifiers D
and E can be entirely removed from consideration. That is
to say that there are no combinations of class and cost
distributions in which classifiers D and E present lower
expected costs than A, B, or C.

However, the choice among A, B, and C depends on
information regarding operational conditions. For example,
the slope of the line segment connecting the origin to
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costs are set to 1.
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pðX ¼ x; Y ¼ yÞ, cðx; yÞ meaning cðX ¼ x; Y ¼ yÞ, and so forth.



point A is 6.5. If committing a false positive error is at least
6.5 times more costly than committing a false negative, or
the proportion of negative cases is at least 6.5 times greater
than the positives, or any combination of these two factors
lead to a slope m (2) greater than 6.5, the trivial classifier of
never issuing a positive classification (the point ð0; 0Þ in the
graph) would be preferred for A, B, and C. If the slope is
exactly 6.5, either the trivial classifier of always classifying
everything as negative or the A classifier would have the
same expected cost. The difference is how these two
approaches perform in the different classes, although the
expected cost (which is a weighed average of each class
performance) is the same. In fact, we can achieve any point
in between these two classifiers by randomly alternating
between them. The points can be obtained by varying the
probability in which we choose one of the classifiers.

3.3 Cost Lines

In [19], a modification of ROC graphs in order to facilitate
the reading of the classifiers’ expected costs is proposed.
The authors proposed a point-line transformation from the
ROC space so that a point in that space is represented by a
line in the cost space. The yy-axis in the cost space is related
to the expected cost (1). The expected cost is normalized so
that the maximum possible expected cost is 1. The xx-axis is
related to the proportion of positive cases (prevalence of
positive) multiplied by its respective cost. This prevalence
weighed by cost is also normalized by the maximum cost so
that it is scaled to 0-1. The formulas of the y- and xx-axes are
given by (3) and (4), respectively,

NormEC ¼ EC

maxEC
; ð3Þ

PC ¼ pðxÞcðx; yÞ
maxEC

; ð4Þ

where maxEC is given by

maxEC ¼ pðxÞcðx; yÞ þ pðxÞcðx; yÞ: ð5Þ

The same set of classifiers represented in the ROC space
in Fig. 1 is depicted in the cost space in Fig. 2. Note that each
classifier represented by a point in the ROC space is now
represented by a line in the cost space. The always negative
trivial classifier, represented by the point ð0; 0Þ in the ROC
space, is represented by the ascending diagonal in the cost
space. In the same way, the always positive classifier,
represented by the point ð1; 1Þ in the ROC space, is
represented by the descending diagonal in the cost space.
On the other hand, random performance, which is
represented by the ascending diagonal in the ROC space,
is represented by the point ð0:5; 0:5Þ in the cost space.

Note that the expected cost performance, which could only
be implicitly observed in the ROC space by taking into
account slopes and isoperformance lines, can be easily read
directly from the graph in the cost space. Indeed, this is one of
the main advantages of this sort of graph. As class or
misclassification distributions change (a situation that may
occur in practice, e.g., in an epidemic crisis in a medical
domain), one can look at the graph of the corresponding PC
(4) and see what classifier is the best one for the new operating
conditions. For instance, by reading the cost graph in Fig. 2,
we can see that the always negative classifier is optimal
whenever the PC lies between 0 and 0.13. Furthermore,
classifier A is optimal whenever the PC is between 0.13 and
0.4, and so forth. Similar to the ROCCH, where all optimal
classifiers lie in the ROC convex hull, in the cost space the
optimal classifiers form a lower envelope of various cost lines.

Although cost curves are very convenient for reading
expected cost performance, this comes with a price: the
performance in each one of the classes, which can be easily
seen in the ROC graph, is not accessible in a cost graph. This
is because the expected cost is a trade-off between the
performance in both classes.

In a sense, ROC and cost graphs are complementary
approaches. ROC graphs are very convenient in helping us
to understand class conditional performance and working
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on possible ways to overcome possible deficiencies of a
classifier in a particular class (e.g., in problems where there
is a strong imbalance between classes). On the other hand,
cost curves are very convenient in helping us to understand
classifiers’ performance in their deployment environment.

4 GRAPHICAL EVALUATION METHODS FOR RANKED

PREDICTIONS

Ranking is prevalent in real-world applications where it is
required to order—or rank—cases rather than simply
classifying each case. An example is a recommendation
system, where the aim is to obtain a ranked list of
goods—say books or movies—a customer is likely to enjoy,
based on his/her preferences. Another example is direct
mail marketing, where the vendor would like to have a
ranked list of potential customers regarding their likelihood
of purchasing a product after receiving a catalog. This list
could be used to mail the catalog only to the top best
potential customers rather than mailing it to all the
customers, thus maximizing the expected profit.

Given a set of cases we are interested in, a rank is an
ordered list of these cases. As we are dealing with binary
class problems, we are interested in a bipartite ranking,
where we would like to rank cases from one of the classes
(the target class) higher than the cases of the other class. In
other words, we are interested in two-tier ordering, where
we would like to place as many cases of the target class as
possible at the top of the rank.

Only a few learning systems are able to directly produce
rankings. The most used approach is to use the continuous
output given by some systems and use this output to order
the cases and produce the ranking. In other words, we
ignore the face value given by these systems and only take
into account the ordering of the set of cases they define. The
reason for this is manifold [21]: such as in the examples at
the beginning of this section, ranking may be the real goal in
building the prediction model; ranking-based measures are
quite interpretable; ranking-based evaluation is robust. In
fact, the scores produced by these learning systems are
sometimes “biased” or “uncalibrated,” and an additional
step is often required to make these scores more useful.
Some graphical methods to assess the quality of continuous
scores will be discussed in Section 5, while this section
describes graphical methods which can be applied to
ranked predictions.

4.1 ROC Curves

As mentioned in Section 3.2, a binary “crisp” classifier—one
that predicts only the class label—produces a single point,
represented by the pair ðfpr; tprÞ in the ROC space. On the
other hand, a ranking function may be thresholded to
produce a binary classifier by predicting the top n-percent
of the cases as positive. By varying this percentage from 0 to
100 percent, we can produce various points so that a curve in
the ROC space can be traced. A similar procedure can be
used to obtain ROC curves of a scoring classifier. In this case,
we may vary the threshold from �1 to þ1 to obtain the
points in the ROC space that compose the ROC curve. Note
that, as we are only interested in true positive and false
positive rates, the values of the scores are not important.

Therefore, from a ROC perspective, a scoring classifier is
equivalent to a ranking function. In other words, we can
think of a ROC curve as a parametrized set of classifiers,
where each parameter value produces a point in the ROC
space. The curve is obtained by joining all these points.

The sharper the curve bends, the greater the ability in
putting positive cases at the top of the rank. The crisper
the curve flattens toward the (0,1)-(1,1) line, the greater the
ability in leaving negative cases at the bottom part of the
rank. If the curve hits the upper left corner (0,1) point, there is
a perfect ranking. An example of two ROC curves is shown in
Fig. 3. For each curve, the two probabilities vary together
from the lower left corner, where both true and false positive
rates are near 0, as they would be for a very strict threshold,
to the upper right corner, where both rates are near 1, as they
would be for a very lenient threshold. In between, the curve
would rise smoothly, having a decreasing slope, to represent
all possible thresholds. Hence, the curve is independent of
whatever threshold is chosen in a particular task.

Analyzing the curves, we can conclude that curve A is
better at the top part of the rank (it is better in grouping
positive cases at the top of the rank), and thus it might be
appropriate in problems such as information retrieval,
where we are interested in classifying the positive cases
better. Curve B is better at the bottom of the rank (it is better
in grouping negative cases at the bottom of the rank), and
thus might be interesting in, for instance, some medical
problems where a cheap test can be used to exclude people
who do not have a certain disease and a more costly test can
be further applied to the remaining people. The line
tangenting both curves is the line where the expected cost
is the same for both models.

A single measure of ranking performance can be derived
by calculating the AUC. This area can be interpreted as the
probability of a randomly chosen positive case being ranked
higher than a randomly chosen negative case. Furthermore,
the AUC is numerically equivalent to the Wilcoxon signed
rank test and correlated to the Gini index [26]. However, the
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AUC also has some drawbacks: for example, both curves in
Fig. 3 have the same AUC value, although one might be
better than the other, depending on the circumstance. This
is because the AUC integrates over all possible thresholds,
and thus treats equally misrankings at the top or at the
bottom of the ranking [27].

4.2 Cost Curves

As for ROC graphs for binary predictions, where each
classifier in the ROC space has its correspondent line in the
cost space, we can derive a cost curve correspondent to a
ROC curve. The process is very similar to the generation
of a ROC curve: by varying the percentage of cases
classified as positive from 0 to 100 percent. This percentage
is used as a parameter so that each possible parameter value
produces a line in the cost space. A set of points in the ROC
space is a set of cost lines, one for each ROC point [19].

Fig. 4 presents the cost curves corresponding to the ROC
curves shown in Fig. 3. For the sake of visualization, the cost
lines which compose the cost curves are omitted and only
the cost curves are shown. As in the cost lines case
(Section 3.3), the reading of the expected cost is facilitated.
Furthermore, the reading of the operating range is quite
simple as well. For instance, model A is outperformed by
the always negative classifier as long as PC is lower than
0.15. Model A is better than the other if and only if the PC
ranges from 0.15 and 0.5, and so forth.

In spite of its advantages, as in the case of cost lines, cost
curves have their drawbacks. We are not able to see the
performance with respect to each class individually.
Furthermore, we are aware of the concavity which lies
between the two ROC curves and the line with the same
expected cost (Fig. 3). This is because this entire line in the
ROC space is mapped to the point where both cost curves
intercept in the cost space. Although the expected cost is the
same in the entire line in the ROC space, we can achieve
different performances in both classes (the expected cost is a

weighed mean of the performance in both classes) and this
cannot be inferred by the cost curve. In other words, cost
curves and ROC graphs are not competitors but are, in fact,
complementary approaches. The remaining part of this
section presents other complementary approaches which
explore different aspects of ranking evaluation.

4.3 Precision-Recall Curves

Precision-recall curves are often used in information
retrieval applications to evaluate ranked retrieval perfor-
mance results [16]. This is because information retrieval
tasks are often characterized by a large skew in the class
distribution, i.e., the number of negative cases heavily
outnumbers the number of positive cases. Furthermore, in
information retrieval tasks, the positive class is of more
interest than the negative one. This particular characteristic
of information retrieval tasks makes the area of interest in a
ROC graph compressed to a small corner in the lower left
side of the ROC space.

The difference between the ROC and precision-recall
space is that the xx-axis, represented by the fpr in the ROC
space, is replaced by tpr (recall) and the yy-axis is
represented by the precision (positive predictive value), as
shown in (6). The objective of this axis setup is to make
differences in the area of interest clearer than in the ROC
space. However, precision-recall curves are dependent on
prior knowledge about class distributions

precision ¼ pðx; yÞ
pðyÞ : ð6Þ

Fig. 5 shows the precision-recall corresponding to the
ROC curves shown in Fig. 3, for an arbitrarily chosen
prevalence of positives of 5 percent. Analyzing the curves,
in spite of both models having the same AUC, we can see
that model A is better at identifying positives than
negatives (has higher precision) in almost all the xx-axis.
Furthermore, due to the low prevalence of positives, this
difference is much more significant in the precision-recall
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space than in the ROC space. The higher the prevalence of
the positives, the closer the curves in the precision-recall
space are. This is because it is easy to obtain high precision
(say 96 percent) in domains where the prevalence of
positives is also high (say 95 percent).

4.4 Lift Graph

Lift graphs are frequently used by the database marketing
community [28]. Similarly to ROC graphs, lift graphs
associate the true positive rate (tpr) with the yy-axis.
However, pðyÞ is associated to the xx-axis instead of the
false positive rate (fpr). This change makes lift graphs
sensitive to operational conditions, since

pðyÞ ¼ pðyjxÞpðxÞ þ pðyjxÞpðxÞ: ð7Þ

Therefore, pðyÞ can be derived from tpr (pðyjxÞ) and fpr
(pðyjxÞ) and the positive (pðxÞ) and negative (pðxÞ) class
prevalence. Furthermore, as the positive class prevalence
tends to 1, pðyÞ tends to tpr and the lift curve approaches the
increasing diagonal line. As the positive class prevalence
tends to 0, pðyÞ tends to fpr, and the lift curve approaches
the ROC curve.

As with ROC graphs, a crisp classifier corresponds to a
point in a lift graph. However, a set of points can be
generated by varying the percentage of cases classified as
positive. A lift curve is defined as the convex hull of all
points generated. Fig. 6 depicts two lift curves correspond-
ing to the ROC curves in Fig. 3. The positive class
prevalence is 5 percent in Fig. 6a and 50 percent in Fig. 6b.
Similar to the ROC graph, the upward diagonal line
represents a random classifier.

Lift graphs are popular in database marketing as market-
ing campaigns, such as mail campaigns, usually have very
low response rates. Therefore, mass mailing, i.e, mailing all
prospects in a customer database, is not usually profitable.
An alternative, known as direct mailing, is to rank the
prospects so that the top ranked prospects are more likely to
purchase the offered product, and the campaign is restricted
to contact a set of likely respondents. Thus, pðyÞ is associated
with the percentage prospects contacted, which is a fraction
of all prospects, and tpr is associated with the percentage of
respondents, which is a fraction of all positive respondents.
Therefore, a lift curve shows the relationship between a set
of top ranked examples and the number of positive
examples in this set, expressed as a percentage of the total
number of positive examples. In Fig. 6a, mailing the
10 percent top-ranked prospects will reach 50 percent of
the respondents for classifier A and 28 percent for B. On the
other hand, mailing the 40 percent top-ranked will reach
78 percent for A and 87 percent for B.

4.5 ROI Graph

Return of Investment (ROI) graphs are similar to lift graphs.
However, ROI graphs associate the total expected profit
(TEP), given by (8), to the yy-axis

TEP ¼ N
X

X2fx;xg

X
Y 2fy;yg

pðX;Y ÞcðX;Y ÞpðXÞ; ð8Þ

where N is the sample size, pðX;Y Þ is the corresponding
cell in the contingency table divided by N , cðX;Y Þ is the

cost/profit for that type of classification and pðXÞ repre-
sents the class prevalence.

In order to compute the TEP, cðX;Y Þ should associate
positive values with profits and negative values with costs.
An association of negative values with profits and positive
values with costs changes (8) to calculate the total expected
cost (TEC). ROI graphs are limited to domains in which
costs and class prevalence are constant and can be
estimated confidently in advance.

In the marketing campaign example, suppose that the
cost matrix is given by Table 3. In this example, $50.00 is the
profit obtained by selling one unit of the advertized product
and $3.00 is the cost of sending each mail. It is assumed that
there is no cost involved in not sending a mail.

Fig. 7 depicts two ROI curves corresponding to the ROC
curves in Fig. 3. The positive class prevalence is 0.05, thus
these classifiers have the same operational conditions as the
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lift curves shown in Fig. 6a. In addition, the sample size N
was fixed in 100,000 prospects. As in ROC and lift graphs,
the diagonal line of a ROI graph shows the performance
obtained by a random classifier.

Fig. 7 shows that campaigns which contact a small
number of prospects are more likely to be profitable if
classifier A is used. For instance, the total expected profit for
a campaign that mails 11 percent of all prospects is $96,500
for classifier A and $41,500 for classifier B. However,
classifier B outperforms classifier A for larger campaigns.
For instance, if 42 percent of all prospects are mailed,
classifier A will have a total expected profit of $81,000 and
classifier B a profit of $103,500. The downward diagonal
line indicates that any random classifier is not able to
provide a profitable campaign.

A ROI curve presents a maximum point that provides a
maximum return of investment. From this point, an
optimum number of prospects to be contacted can be
estimated. The graph in Fig. 7 shows that classifier A
provides the highest total expected profit of $119,750 when
18 percent of all prospects are mailed.

5 GRAPHICAL EVALUATION METHODS FOR

CONTINUOUS PREDICTIONS

For most practical problems where a predictive system
outputs a continuous score, ranking performance evalua-
tion is sufficient for evaluating performance [21]. This is
true in cases where the main objective is to assess the
discrimination ability of the system, i.e., how the system is
able to separate cases of one class from the other by
assigning high scores to one of the classes and low scores to
the other. For these cases, the graphical methods presented
in Section 4 can be used to carry out the analysis.

Common to all these methods is the fact that they
completely ignore the magnitude of the predictions, and
only take into account the relative ordering among the cases.
However, in some situations we do need to take the face
value of the prediction into account. One such situation is
related to reliable probability predictions. In this case,
besides discrimination, we are also interested in other
aspects of performance that can be measured by taking into
account the magnitude of the precision. This section presents
some graphical methods often used in weather forecast
analyses, which can be used to evaluate predictive systems.

5.1 Calibration and Refinement: The Brier Score

One of the most used measures to evaluate probabilistic
forecasts in binary events is the Brier score (BS) [29]. The
Brier score is essentially the mean squared error of the
probability predictions considering that the observation is
x ¼ 1, if the event occurs (a positive class case), and that the

observation is x ¼ 0 if the event does not occur (a negative
class case). It can be estimated as the average deviation
between predicted probabilities for a set of events and their
prediction, i.e.,

BS ¼ 1

N

XN

n¼1

ðyn � xnÞ2;

where xn is either 1 or 0 whether a case is negative or not.
The Brier score is the analogous of the mean squared

error in regression analysis. A minimum Brier score of zero
is obtained for a perfect (deterministic) system in which
yn ¼ xn for all n. This system issues a probability prediction
of 1(0) for each positive (negative) case. On the other hand,
the Brier score takes its maximum value of one for a
systematically erroneous (although perfect resolution)
classifier which predicts the wrong class with confidence.

An instructive algebraic decomposition of the Brier
score is derived in [30]. It is related to two aspects of
probabilistic performance evaluation, namely calibration
and refinement. Suppose there are t distinct values of yj for
j ¼ 1; . . . ; t, and the set of cases with identical associated
probability value yj is nj. Thus, N ¼

Pt
j¼1 jnjj. Therefore,

the set of N predictions can be divided into t subsets,
where each subset consists of the nj predictions. In this
context, and as the Brier score is quadratic, it can be
usefully decomposed into the sum of three parts

BS ¼ pðxÞð1� pðxÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Uncertainty

þ 1

N

Xt

j¼1

jnjjðyj � pðxjjÞÞ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Reliability

� 1

N

Xt

j¼1

jnjjðpðxjjÞ � pðxÞÞ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Resolution

;

ð9Þ

where pðxjjÞ is the probability that the true class is x when
the forecaster predicts x with probability j.
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TABLE 3
A Cost Matrix for the Marketing Campaign Example



One may note that this decomposition is very similar to
the bias-variance decomposition for regression analysis.
However, instead of computing the mean squared error of
the continuous prediction versus the continuous observa-
tion, we calculate the mean of the observations (the relative
frequency of the examples of the positive class) stratified/
conditioned on the different forecast probabilities. The first
term in (9) depends only on the variability of the
observations and cannot be influenced by the predictions,
and is often called observational uncertainty term. The
second and third terms in (9) are related to reliability (bias
of conditional means, or conditional bias) and resolution
(variance of conditional means, or conditional variance) of
probabilistic predictions. The definitions of these two terms
formalize the interpretations of calibration and refinement.

The reliability term in (9) summarizes the calibration of
the predictions. It consists of a weighed average of squared
differences between the prediction probability pðxjjÞ and
the relative frequencies of the predicted event of each
subsample yj. For perfect reliable predictions, the subsam-
ple relative frequency is exactly equal to the prediction
probability. Furthermore, for reliable well-calibrated pre-
dictions, all the squared differences in the reliability term
will be near zero and their weighed average will be small.

The resolution term in (9) summarizes the resolution of
the predictions. It is aimed to assess the ability of the
predictive systems to discern subsamples to which predic-
tions substantially differ from the observed proportion of
cases in the population. Resolution, also known as refine-
ment, scores the usefulness of each forecast. For instance, in
a place that rains 50 percent of the time, a forecaster that
always announces rain with 50 percent of confidence is
calibrated, yet not very useful [31]. Mathematically, the
resolution term is a weighed average of the squared
differences between the subsample relative frequencies
and that of the overall population. Thus, if the prediction
subsamples have substantially different relative frequencies
than the overall distribution, the resolution term will be
large. This is a desirable situation, as the resolution term is
subtracted in (9). Conversely, if the proportion of cases in
the prediction subsamples are very similar to the overall
proportion, this term will be small and the predictions will
weakly distinguish the classes.

5.2 Reliability Diagram

As we are arguing throughout this paper, a single scalar
summary such as the Brier score (or its components) can
provide a convenient idea about some aspect of performance
evaluation, but a comprehensive appreciation of the pre-
dictive system should consider the full joint distribution of
predictions and observations. The reliability diagram is a
graph that shows this joint distribution in order to highlight
the calibration and refinement components of probabilistic
binary predictors. The reliability diagram has some resem-
blance with quantile-quantile plots in the regression analysis.

The reliability diagram contains two curves. The first one
is a plot of the calibration function. It is a plot of
pðxjjÞ distribution by j, and measures the degree to which
predictions agree with the observed frequency of positive
cases given the predictions. An ideally reliable prediction
should be the main diagonal upward line. Well-calibrated

predictions should produce curves close to this line,
yielding a small reliability term (which is a weighed
average of the squared vertical distances between the curve
and the main diagonal). Lines lying entirely above (below)
represent positive (negative) biased predictions. Flat lines
or line segments represent regions of poor resolution.

The second curve in the reliability diagram is a plot of
pðyjÞ distribution by j, and is related to the refinement
component of the Brier score. The dispersion of the
refinement distribution reflects the overall confidence of the
predictive system: predictions which are often extreme (i.e.,
specifying probabilities close to 0 or 1) show high confidence.
On the other hand, predictions that deviate rarely and little
from their average value show little confidence.

Fig. 8 is an example of a reliability diagram. The green
dashed line is relative to the calibration component while
the dotted red line corresponds to the refinement compo-
nent. As can be observed from the graph, apart from a
deviation around j ¼ 0:6 and j ¼ 0:8, the predictions are
quite reliable. Furthermore, the predictions present a good
degree of refinement, as the pðyÞ distribution is concen-
trated at lower values of j.

5.3 Attributes Diagram

The Brier skill score (BSS) is a normalization of the Brier
score with respect to some reference score, given by

BSS ¼ 1� BS

BSref
;

and it is aimed to assess the relative improvement of the
predictive system over some reference predictive system.
The Brier skill score also has a calibration-refinement
decomposition, which corresponds to the reliability and
resolution terms divided by the first term of (9)

BSS ¼ Resolution�Reliability
Uncertainty

¼ RESref �RELref :

The attributes diagram [32] is an extension of the
reliability diagram in order to provide some reference lines
related to the algebraic decomposition of the Brier score and
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the Brier skill score, using the trivial (which always assigns
probabilities equal to the class proportion) predictive
system as a reference. The purpose of the attributes diagram
is to provide a geometrical framework that incorporates
other aspects (or “attributes,” as called in weather forecast-
ing verification) of interest when evaluating probabilistic
predictive systems. The attributes diagram is basically the
reliability diagram with the addition of three lines.

The first one is the no-resolution line (the line where the
resolution term in (9) is equal to zero). This is a horizontal line
where pðxjjÞ ¼ pðxÞ, i.e., the proportion of cases in each
subsample j is the same as the overall population. Points
falling into the nonresolution line indicate predictions yi that
are unable to discern if a case is more or less likely to be a
positive case than chance. The nonresolution line intercepts
the main diagonal at ðpðxÞ; pðxÞÞ. On the other hand, the line
with maximum resolution is the vertical line, intercepting the
main diagonal at the same point. This is the second reference
line in the attributes diagram. The last one is the line forming
a 45 degree between the main diagonal and the nonresolu-
tion line, which represents the points where the accuracy is
lower than the predictive model used as a reference (the Brier
skill score is zero, and thus RESref ¼ RELref ).

An example of an attributes diagram is shown in Fig. 9. It
is the same reliability diagram shown in Fig. 8 with the
addition of the three reference lines, using the trivial model
as a reference (classifying all cases as positive with
probability 1).

The shaded region in Fig. 9 has the following interpreta-
tion: points outside this region contribute positively to the
Brier score. The demonstration is rather tricky and can be
found in [32]. Nevertheless, the intuition is that when the
point falls outside this region, the reliability term is larger
than the resolution term (recall that the 45 degree line
bisecting the main diagonal and the nonresolution line refers
to points where RESref ¼ RELref ), and thus contributes
positively to the Brier score.

5.4 Discrimination Diagram

The discrimination diagram is a plot of pðyÞ by pðyjxÞ. As the
depicted functions are conditional onX, each discrimination

diagram contains two curves—one for pðyjxÞ and another for
pðyjxÞ. Thus, the discrimination diagram consists of super-
imposed plots of the two likelihood distributions as
functions of the forecast probability y. Ideally, the distribu-
tions pðyjxÞ and pðyjxÞ would not overlap. In this case, it is
possible to discriminate perfectly between the two classes. In
real-world problems, however, generally there is some
amount of overlap.

Fig. 10 shows an example of a discrimination diagram.
The red dotted line represents the density function for the
positive class, and the green dashed line represents the
density function for the negative class. Analyzing this figure,
some pieces of information might be obtained. Clearly, the
conditional probabilities given to positive cases are greater
for smaller prediction probabilities, and the conditional
probabilities given to negative cases are greater for inter-
mediate and larger probability predictions. The likelihood
distributions in Fig. 10 overlap somewhat, although they
show substantial nonoverlapped areas, indicating substan-
tial separation between positive and negative cases.

The separation of the two likelihoods in a discrimination
diagram can be summarized by the difference between their
means, called the discrimination distance [33]. This distance
is zero if the two likelihood distributions are the same
(i.e., if the predictive system cannot discriminate between
the classes), and increases as the two likelihood distribu-
tions become more distinct. In the limit, this distance is
equal to 1 for perfect predictions.

The discrimination diagram has some similarities with
the ROC curve. The discrimination distance is equivalent to
a parametrized version of the AUC, assuming normal
distribution for the likelihoods. Furthermore, the over-
lapped area is equivalent to the AUC of the corresponding
ROC graphs. In fact, the ROC graph is a plot of the two
conditional probabilities in the discrimination diagram.
However, as the ROC curve does not take into account the
face value of the predictions, in a sense, the discrimination
diagram has more information than a ROC graph, espe-
cially if we take the face predicted value as an estimator of
how good a prediction is. On the other hand, ROC graphs
have the intuitive interpretation of dominance of one
predictive system over another, which cannot be easily
generalized for the discrimination diagram.
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6 DISCUSSION

Graphical diagrams can be used to analyze the quality of
predictive systems. These tools provide a means of
identifying possible deficiencies of performance in the
predictive models—for example, a tendency to perform
well in one of the classes and poorly in the other.
Furthermore, the feedback provided by these methods can
be used to guide further research to improve predictions.
The methods presented in this paper focus on different
aspects of prediction, and therefore are suitable for different
analyses. The key point of selecting an appropriate
graphical method is to identify its strengths and weak-
nesses. Another point is to know which prediction aspect
we are interested in evaluating.

6.1 Advantages and Drawbacks

The main advantages and drawbacks of each graphical
method described in this paper, as well as their correspond-
ing evaluating aspects, are summarized next.

. ROC graph. By decoupling performance evaluation
in true and false positive rates, a ROC graph
facilitates the performance evaluation for each class.
As long as the class conditional likelihoods do not
change, this evaluation is independent from class
prevalence and misclassification costs. Furthermore,
the ROC convex hull can be used to rule out
suboptimal classifiers for all combinations of class
prevalence and misclassification costs. A drawback
is that the error rate (or expected cost) cannot be
easily obtained from the graph.

. Cost lines. The aim of cost lines is primarily to
facilitate the assessment of the classifier performance
in terms of error rate (or expected cost). This is
accomplished by graphing the normalized preva-
lence of positives weighed by its respective cost on the
xx-axis by the normalized expected cost on the yy-axis.
As ROC graphs, this evaluation is independent from
class prevalence and misclassification costs, as long as
the class conditional likelihoods do not change and
the suboptimal classifiers lie outside the lower
envelope formed by the optimal ones (under different
operational conditions). However, although this
approach overcomes the difficulty in reading the
expected cost in a ROC graph, it does not allow for the
evaluation for each class.

. ROC curves. ROC curves inherit the qualities and
drawbacks of ROC graphs. Furthermore, as the
process of derivating the curve involves ordering the
cases according to their likelihood to be in the positive
class, a ROC curve can evaluate how cases are ranked
disregarding the proportion of cases between the
classes. The area under the ROC curve can also be used
as an index of the quality of the predictive system
instead of the error rate or expected cost.

. Cost curves. Like the ROC curve, the cost curve
inherits the qualities and drawbacks of the cost lines.
Another drawback is that the number of cost lines
which forms the cost curve is quite large (there are as
many lines as there are points in the corresponding
cost curve), which makes the visualization of a single
line clumsy. Furthermore, although quite useful for

analyzing overall classification performance, the cost
curves are not as appropriate as ROC curves for
evaluating ranking performance.

. Precision-recall curves. The precision-recall curve is
an interesting approach if we are primarily inter-
ested in analyzing performance in one of the classes,
especially when dealing with highly skewed do-
mains. However, the precision-recall curve is de-
pendent on the class prevalence, as the curve
changes with different class proportions.

. Lift curve. A lift curve can be seen as a variation of
the ROC curve. It is very useful to visualize how
many cases of the positive class will be correctly
classified as we make the criteria to assign a positive
classification more lenient, since it shows the relation
between the top ranked examples and the number of
positive examples. A drawback is that lift curves are
dependent on class distributions.

. ROI curve. A ROI curve can be seen as a specializa-
tion of cost curves, without taking into account
normalized costs. It can be very useful when costs
are known, as it can be used to determine optimal
response rates. However, its use is limited to
situations where costs can be determined in advance.

. Reliability diagram. A reliability diagram can be
used to evaluate whether a probabilistic predictive
system is well calibrated or not, and how many of
these predictions are spread over the prediction
variable Y . To this end, it uses calibration and
refinement decomposition of the Brier score. Relia-
bility diagrams reveal reliability by plotting the
observed relative frequencies versus the forecast
values. However, this approach is sensitive to the
amount of different forecast values.

. Attributes diagram. An attributes diagram extends
the reliability diagram to incorporate three lines
used as a reference (generally related to the trivial
classifier) aimed to assess how the predictions
improve with respect to this reference. These lines
form a region in which points falling outside this
region degrade the Brier score, and thus have poor
probability estimates. However, the reference classi-
fier must be specified.

. Discrimination diagram. A discrimination diagram is
a plot of the class conditional likelihoods as a function
of predictions. It can be used to show the behavior of
these conditional likelihoods to discriminate among
the classes. It has some similarities with the ROC
curve, although the discrimination diagram makes
the face value of the prediction explicit, while in the
ROC curve this is an implicit parameter. However, the
dominance of one prediction over another cannot
be easily evaluated as in the ROC space.

As can be seen from this summary, various methods
have some properties in common. Furthermore, it is not
possible to claim the superiority of one method over the
others, as they generally produce complimentary views
about the predictive systems performance. In other words, a
complete analysis for a given problem should consider
more than one graph in order to have a clear picture of the
performance of the predictive systems under evaluation.
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6.2 Limitations

Although graphical methods have numerous interesting

properties, they have some limitations, briefly discussed in

this section.

. Necessity of visual inspection. One of them is that
evaluation by means of graphics requires visual
inspection, as well as interpretation of the results
and may carry out some degree of subjectiveness.
On the other hand, as scalars are totally ordered,
scalar measures are objective, and results are easier
to be compared directly than when using graphical
methods (when comparing two predictive models,
one should only compare two numbers and choose
the predictive model which produced the best score
rather than analyzing and interpreting two different
curves). However, as argued throughout this paper,
evaluation has numerous concerns that should be
considered, and it is not possible to capture all these
concerns in a single scalar measure. Furthermore,
graphical analysis provides a health of information
when compared to a single scalar measure. For
instance, when comparing two predictive models, it
is more valuable to know that the curve correspond-
ing to one of them dominates the other in the ROC
space than to know that the area under the ROC
curve of one of them is higher than the other. The
former (dominance) imply the latter (higher AUC),
but the latter does not implies the former. Another
example is that two predictive models with the same
AUC may differ in their curves.

. Difficulty of comparison among different data sets.
This requirement of visual inspection also poses some
difficulties in conducting experiments where many
data sets are used. Comparing many predictive
system over the same data set is straightforward.
For a single data set, the user can plot as many
predictive systems as she/he wants in the same
graph. This might make the interpretation difficult, as
plotting too many lines in the same graph might make
it unclear, but it does not imply increasing the number
of graphs. On the other hand, when the user has
numerous data sets to test, she/he should plot one
graph for each data set. This is because, for the graphs
discussed in this paper, it is meaningless to plot
curves from different data sets in the same graph.

. Multi-class problems. Another drawback is that the
graphical tools discussed in this paper are limited to
two class problems. In some cases, this might be
overcome by using the one-against-all approach,
where one of the classes is designated as the
“positive” class, while the remaining classes are
collapsed as the “negative” class. If necessary, the
process can be repeated by choosing a different class
as the positive one. Another approach is to extend
the methods to the multiclass problem. In [34], an
extension of reliability diagrams to the multiclass
setting is presented. However, for some graphs, this
might not be a trivial task. In the ROC graph, for
instance, the complexity of constructing the graph
grows exponentially as the number of classes

increases. Some approaches to three-class problems
were developed [35]. Nevertheless, for a large
number of classes alternative approaches should be
used to reduce the number of dimensions, as the one
proposed in [36], for example.

. Variability of the test set. Finally, it should be kept
in mind that these graphs are constructed from a test
set which is a sample of a population. Therefore, it is
expected to have some uncertainty due to this
particular sample, and inference techniques should
be used to extrapolate from this sample to the
population. In general, resampling techniques can
often be used to derivate confidence bounds for the
graphs, and average techniques can be used to
produce curves with error bars, as discussed in [17]
for the case of ROC graphs.

7 AN ILLUSTRATIVE EXAMPLE

In this section, we provide an illustrative example of using
graphs to analyze classification performance. To this end,
we selected “The Insurance Company (TIC) Benchmark”
data set [37]. This data set was used in the 2000 meeting of
the Computational Intelligence and Learning (Coil ’2000)
challenge. It contains information about customers consist-
ing of 86 variables which include product usage data and
socio-demographic data derived from zip area codes. The
data come from a real-world business problem of predicting
which customers are potentially interested in buying a
caravan insurance policy. The training set contains 5,822 de-
scriptions of customers, including the information of
whether or not they have a caravan insurance policy. There
are 348 customers who bought the policy and 5,474 who did
not. The test set contains 4,000 customers, where 3,762 did
not buy the policy and the remaining 238 did.

We used the 3.5.8 version of the Weka data mining suit
[38] to generate predictive models for this data set, using
only the training data to build the models. These models
were then used to assign labels, ranks, and scores to the
instances in the test set. To induce the models, we used
Naı̈ve Bayes, a Bayesian Network using the BMA estimator
[39] and NBTree, a decision tree with Naı̈ve Bayes as a
probability estimator on the leaves [40]. All other para-
meters were left with default values.

First, we consider only the assignment of crisp binary
labels for the instances in the test set (i.e., the classifier
predicts whether or not a customer would buy a caravan
insurance policy). The error rates for each model are
21.43 percent for the model induced by Naı̈ve Bayes,
14.77 percent for the Bayesian Network, and 6.05 percent
for the NBTree.

Figs. 11 and 12 show the ROC and cost graphs for the
models induced for this data set. Analyzing the ROC graph
in Fig. 11, we can see that the model induced by the NBTree
is the most conservative in terms of predicting that a
customer would buy an insurance policy (and thus commits
to less false positive errors, although the number of true
positive is also low), while the models induced by Naı̈ve
Bayes and the Bayesian Network are more lenient (i.e., they
achieve a higher true positive rate than the NBTree does
paying the price of a larger false positive rate).
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The low error rate of the model induced by the NBTree
has two reasons. The conservative approach of assigning a
positive classification is one of them. Associated to the fact
that positive examples have low prevalence in the data set,
predicting the negative class more often has advantages in
terms of minimizing classification error rates. Indeed,
numerous learning algorithms available in Weka (including
decision trees, support vector machines, and others)
executed using default parameters generated the trivial
model of always predicting the negative class.

The dashed line in Fig. 11 shows the ROC convex hull for
these three models. As can be seen in the figure, the convex
hull is formed by all points. Thus, without knowing the
operational conditions we cannot discard any model.

Fig. 12 shows the cost graphs for the three models. As
can be seen from the graph, the NBTree has quite a close
performance to the classifier which always predicts
negative (represented by the main diagonal in the cost
graph). The lower envelope (the dashed line in the cost
graph) shows the operational condition, expressed in terms
of cost-weighed prevalence of positives (PC), in which each
classifier is optimal when compared to the others. For PC
ranging from 0 to approximately 0.11, the classifier which
always predicts negative (all the customers would not buy
the insurance policy) is better. The NBTree has an optimal
performance for PC ranging from approximately 0.11 to
0.25 (the difference is quite small and it is hard to see it in
the graph). The Bayesian network has an optimal perfor-
mance for PC ranging from approximately 0.25 to 0.50 while
Naı̈ve Bayes has optimal performance for PC ranking from
0.50 to 0.58. Predicting positive (all the customers would
buy the insurance policy) is the better classifier for PC
ranging from nearly 0.58 to 1.

The ROC and cost graphs presented in Figs. 11 and 12
show two different views for crisp binary classifiers. While
ROC graphs focus on decoupling positive hits/mistakes,
grasping all possible combination of costs and class
distribution, cost graphs try to show whether particular

combinations of cost and class distribution would commit
to a better performance of a particular classifier.

We continue our example by analyzing models where it
is possible to order examples rather than only assign a crisp
label to them. Fig. 13 shows the ROC curves obtained for
each induced model (note that, as we are constructing a
ranking instead of only assigning a label, we now have a
curve rather than a single point in the ROC space).

Analyzing the curves in Fig. 13, we can see that the
model induced by the Bayesian Network dominates the
other two in almost the entire space (the line representing
the NBTree is slightly over the line representing the
Bayesian Network near the lower left corner, and the line
representing the Naı̈ve Bayes is over the line of the Bayesian
Network when the false positive rate is near 50 percent in
the graph). The areas under the ROC curve are 70.7, 68.8,
and 65.5 percent for the models induced by the Bayesian
Network, Naı̈ve Bayes, and NBTree, respectively.
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Fig. 13. ROC curves.

Fig. 11. ROC graph.



Fig. 14 shows the cost curves formed by the lower
envelope for the three models. These lines show the
operational condition clearly (indicating the combination
of class distribution and costs represented by PC in the
graph). The models induced by the NBTree and the
Bayesian Network have a very similar performance in
terms of normalized expected costs (NormEC) for PC
ranging from 0 to 0.2. They are only slightly better than the
classifier which always predicts negative. It is interesting to
note that the model induced by Naı̈ve Bayes has a worse
performance than always predicting negative for PCs
ranging from 0 to 0.25. The model induced by the Bayesian
Network dominates (has a lower expected cost) the other
three in almost all the PCs ranging from near 0.2 to near 0.8.
The model induced by the Naı̈ve Bayes only has a smaller
NormEC for PCs close to 0.55. The models induced by the
Naı̈ve Bayes and the NBTree have a worse performance
than always predicting positive for PCs higher than 0.7,

while the model induced by the Bayesian Network has a
worse performance than always predicting positive for PCs
higher than 0.8.

The precision-recall curves for the models are shown in
Fig. 15. Analyzing the figure, we can see that the Naı̈ve
Bayes presents low precision rates when the recall is below
10 percent. In other words, the Naı̈ve Bayes is less effective
in distinguishing examples of the positive class at the top
part of the rank. Apart from recall rates near 5-10 percent,
where the NBTree has higher precision rates, in general, the
Bayesian Network has the highest precision rates for almost
all levels of recall. However, the precision rate of the
NBTree drops sharply and it presents the lower precision
rates when the recall is higher than 10 percent. When the
recall rate is higher than 70 percent, the precision rate of all
models tends to be very similar. One advantage of the
precision-recall curves over ROC curves is that the differ-
ences at the top part of the rank are highlighted, as
illustrated in Fig. 15. In the ROC curve, these points are
concentrated in the lower left hand corner of the graph.

Fig. 16 shows the lift curve for the three models. As can
be observed the lift curve is very similar to the ROC curve
shown in Fig. 13. This is due to the low prevalence of
positive cases in the data set.

Assuming a profit of US $50.00 per insurance policy
sold and a cost of US $3.00 per mailed customer, Fig. 17
shows the ROI graph for each model evaluated in this
example. This graph can be interpreted as the net profit as
a function of the mailed customers, according to the
ranking given by each model. As can be seen in the graph,
the highest profit (about US $3,700.00) would be obtained
using the model induced by the Bayesian Network. This
profit can be obtained by mailing 20 percent of the top
ranked customers. There is a plateau (with a profit slightly
oscillating between US $3,500.00 to 3,700.00) between the
20 to 45 percent top ranked customers for this model. A
similar profit would be obtained by the model induced by
Naı̈ve Bayes only if about 50 percent of the customers were
mailed using this model. It is worth noticing that the
choice between these two models would depend on the
objectives of the insurance company. If the company would
like to achieve the highest profit by mailing the lowest
number of customers, the model induced by the Bayesian
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Network would be the most appropriate. On the other
hand, a similar profit could be achieved by mailing
customers according to the model induced by Naı̈ve Bayes,
in case the company does not care about junk mailing a
larger number of customers to get a larger number of
positive answers (for instance, to have a larger database in
order to offer other products).

We conclude the analysis of this example by examining
whether the face numerical values predicted by each model
has meaningful information. We start by analyzing the
reliability diagram shown in Fig. 18. For each model, this
diagram has two lines (the continuous and the dashed one).
The continuous line is related to the prediction reliability.
Reliability can be interpreted as whether the probabilities
predicted by the model mean what they say. In other
words, does the accuracy predicted by a given model match
the probabilities it predicts? (For instance, does the model

correctly predict 80 percent of the cases of a given class
when it predicts this class with 80 percent probability?). A
perfect reliable model is represented by the ascending
diagonal in the graph. As can be seen in Fig. 18, the models
are overconfident, i.e., the accuracy of the forecasts is
generally lower than the probability they predict. The most
reliable is the model induced by the NBTree, while the
models induced by the Naı̈ve Bayes and the Bayesian
Network have similar reliability. Observe that all methods
have similar refinement, as can be seen by the dashed lines
in the graph shown in Fig. 18. The model induced by Naı̈ve
Bayes is the one which has better refinement, as it has peaks
either near zero or one, while values within them form a
valley, forming a “U” shaped curve.

Fig. 19 shows the attribute diagram for the three models.
As described earlier, this graph is the reliability diagram
with additional lines added so that it can be analyzed when
compared to a model which always predicts the positive
class. For the sake of visualization, the refinement lines
were removed. The graph makes it clear why the NBTree
has a better resolution, as it has a larger proportion inside
the gray shaded area (recall that the proportion outside this
line contributes to increasing the Brier Score). On the other
hand, the lines representing the Naı̈ve Bayes and the
Bayesian Network models are almost entirely outside the
gray shaded region, and thus have a higher Brier Score than
the model induced by the NBTree.

The last graph presented in this section is the discrimina-
tion diagram, shown in Fig. 20. For the sake of visualization,
we present three graphs, one for each induced model.
Figs. 20a, 20b, and 20c correspond to the discrimination
diagrams of the models induced by the Naı̈ve Bayes, the
Bayesian Network, and NBTree, respectively. The contin-
uous lines correspond to the positive class, while the negative
class is represented by the dashed line. As can be seen from
the graphs, the three models have poor resolution, as the lines
overlap a wide proportion in the three graphs. Furthermore,
the graphs indicate that a hybrid approach which combines
the three models would lead to an increase in performance.
This is because Naı̈ve Bayes has a better discrimination at the
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Fig. 18. Reliability diagram.

Fig. 17. Return of investment graph.
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ends, NBTree has a better discrimination when pðyÞ is around
20 percent, and the Bayesian Network has a region with better
discrimination when pðyÞ ranges from 60 to 80 percent. This
hybrid approach should map the values of pðyÞ to the
corresponding values of the classifier scores, and then choose
the corresponding classifier according to the values corre-
sponding to the best discrimination ranges for the classifiers.

This example illustrates how evaluating performance has
several aspects which could be taken into account when
evaluating a predictive model. Although the NBTree has
the lowest error rate among the three induced models, this
is due to its conservative approach which predicts the
majority class more often. Nevertheless, the NBTree might
not be a better choice if we take different cost scenarios for
this problem. Indeed, it has the lowest area under the ROC
curve, and the ROC and Cost graphs show that the Bayesian
Network dominates the NBTree model and has a perfor-
mance similar or better than the model induced by Naı̈ve
Bayes. The scores predicted by each model do not predict
reliable probabilities and should not be interpreted as such.
Overall, the models have good refinement although they
present poor discrimination ability. As stated earlier, the
graphs also indicate that a hybrid model could be useful in
increasing the classification performance for the problem.

8 CONCLUDING REMARKS

This paper presents a review of various graphical tools that
can be used when evaluating classification predictive
systems. These methods have obvious benefits for machine
learning and data mining research, as they are able to
provide detailed feedback on a number of performance
dimensions, as well as suggesting ways in which predictive
systems can be improved. Furthermore, they are also
valuable to machine learning and data mining practitioners
as they can help them to understand various characteristics
of different systems and to choose among them.

Summarizing, on one hand, if we are primarily interested
in the discriminability of the predictive system, then the face
values of the predictions are not important. In this case, we
can use ROC graphs to evaluate performance in each class,
and precision-recall graphs if we are interested in one (often
low prevalent) class. Furthermore, we might analyze the
expected cost or profit of each model using cost curves, lift,
and ROI graphs. On the other hand, if we are interested in
reliable and calibrated predictions, then the face values of
predictions are important. In this case, we should use
reliability and attributes diagrams.

By presenting various graphical performance evaluation
methods in the same framework, we hope this paper might
shed some light on deciding which methods to use.
Nevertheless, we would like to point out that the methods
presented in this paper are by no means exhaustive. Other
methods may supplement those presented here and may
provide additional insights into the behavior of predictive
systems. Moreover, specific needs may motivate extensions
to these methods.
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Ciências Matemáticas e Computação, Universi-
dade de São Paulo, São Carlos, São Paulo,
Brazil. His research interests include machine
learning and data mining.

Maria Carolina Monard received the PhD
degree in informatics in 1980. She is a professor
of computer science at Instituto de Ciências
Matemáticas e Computação, Universidade de
São Paulo, São Carlos, São Paulo, Brazil. She is
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