
NONLINEAR PROGRAMMING I:
ONE-DIMENSIONAL MINIMIZATION
METHODS

5.1 INTRODUCTION

In Chapter 2 we saw that if the expressions for the objective function and the
constraints are fairly simple in terms of the design variables, the classical meth-
ods of optimization can be used to solve the problem. On the other hand, if
the optimization problem involves the objective function and/or constraints
that are not stated as explicit functions of the design variables or which are too
complicated to manipulate, we cannot solve it by using the classical analytical
methods. The following example is given to illustrate a case where the con-
straints cannot be stated as explicit functions of the design variables. Example
5.2 illustrates a case where the objective function is a complicated one for
which the classical methods of optimization are difficult to apply.

Example 5.1 Formulate the problem of designing the planar truss shown in
Fig. 5.1 for minimum weight subject to the constraint that the displacement of
any node, either in the vertical or horizontal direction, should not exceed a
value 6.

SOLUTION Let the density p and Young's modulus E of the material, the

length of the members /, and the external loads Q, R, and S be known as design

data. Let the member areas A1, A2, . . . ,An be taken as the design variables

JCi, Jc2, . . . , Jc11, respectively. The equations of equilibrium can be derived in

terms of the unknown nodal displacements M1, M2, . . . , M10 asf (the displace-

according to the matrix methods of structural analysis, the equilibrium equations for the jth

member are given by [5.1]
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Figure 5.1 Planar truss: (a) nodal and member numbers; (b) nodal degrees of free-
dom.

merits M11, M12, M13, and M14 are zero, as they correspond to the fixed nodes)

(4x4 4 x6 4 X1)Ux 4 v 3 ( x 6 — X7)M2 — 4-Jt4M3 — Jc7M7 4- V 3 X 7 M 8 = 0 (E1)

\ /3(x 6 - X1)Ux H- 3(X6 4- X7)M2 + >/3X7M7 - 3X7M8 = - — (E2)

— 4Jt4M1 + (4Jt4 + 4x5 4 X8 4 X9)M3 + V3(X8 — X9)M4 — 4X5M5

- X8M7 - V3X8M8 - X9M9 + V3X9M1O = 0 (E3)

\ /3(x8 - X9)M3 4- 3(x8 + X9)M4 - V3X8M7

— 3X8M8 + V3X 9M 9 — 3X9M10 = 0 (E4)

- 4 X 5 M 3 4 (4x5 + X10 4- X11)M5 4 V3(x1 0 - X11)M6

r 4G'
- X10M9 - V 3 X 1 0 M 1 0 = — (E5)

W »; = Py
4 x 4 4 x 1 4 x 1

where the stiffness matrix can be expressed as

COS2^7 cos Bj sin Bj —cos2Bj —cos Bj sin Bj

A1E; cos B: sin 0. sin20. —cos B1- sin 6. —sin2B,
[k.] = J-L j j j j j j

Ij -COS2Oj —cos Bj sin Bj COs2G7- cos Bj sin Bj

—cos Bj sin G; — sin2Bj cos G7 sin G7 Sm2G7

where G7 is the inclination of the7th member with respect to the x axis, Aj the cross-sectional area
of the jth member, Z7 the length of the jth member, U7 the vector of displacements for the y'th
member, and P7 the vector of loads for the jth member. The formulation of the equilibrium
equations for the complete truss follows fairly standard procedure [5.1].



>/3(*io ~ xu)u5 + 3(x10 4- X11)W6 - V3x10w9 - 3x10w10 = O (E6)

-X7W1 + V3x7w2 - X8W3 - V3x8w4 + (4X1 4- 4x2

+ X7 + X8)W7 - V3(x7 - X8)W8 - 4x2w9 = O (E7)

VSx7W1 — 3x7w2 — v3x8w3 — 3x8w4 — V3(x7 — X8) W7

+ 3(x7 + X8)W8 = O (E8)

-X9W3 + V3x9w4 - X10W5 - V3x10w6 - 4x2w7

+ (4x2 + 4X3 + x9 + X10)W9 - V3(x9 - X10)W10 = O (E9)

V3x9w3 - 3x9w4 - N/3X10W5 - 3x10w6 - V3(x9 - x lo)w9

45/
+ 3(x9 + X10)W10 = - — (E10)

It is important to note that an explicit closed-form solution cannot be obtained
for the displacements as the number of equations becomes large. However,
given any vector X , the system of Eqs. (E1) to (E10) can be solved numerically
to find the nodal displacement W1, W2, . . . , W10.

The optimization problem can be stated as follows:

ii

Minimize/(X) = S px,/, (E11)
I = i

subject to the constraints

gj(X) = |w7(X)| - 8 < 0, J= 1,2,. . .,10 (E12)

JC1- > 0, I = 1,2,... ,11 (E13)

The objective function of this problem is a straightforward function of the
design variables as given in Eq. (E11). The constraints, although written by the
abstract expressions gy(X), cannot easily be written as explicit functions of the
components of X. However, given any vector X we can calculate gj (X) nu-
merically. Many engineering design problems possess this characteristic (i.e.,
the objective and/or the constraints cannot be written explicitly in terms of the
design variables). In such cases we need to use the numerical methods of op-
timization for solution.

Example 5.2 The shear stress induced along the z-axis when two spheres are
in contact with each other is given by

" 2 K 1 + (I)] 1 VfJ]J



Figure 5.2 Contact stress between two spheres.

where a is the radius of the contact area and pm a x is the maximum pressure
developed at the center of the contact area (Fig. 5.2):

1/3

c i - "•,i - "Q
a = 1 8 J_ J_ (Ez)

P™ ~ 2ira
2 (Es)

where F is the contact force, Ex and E2 are Young's moduli of the two spheres,
v\ and V1 are Poisson's ratios of the two spheres, and dx and d2 the diameters
of the two spheres. In many practical applications such as ball bearings, when
the contact load (F) is large, a crack originates at the point of maximum shear
stress and propagates to the surface, leading to a fatigue failure. To locate the
origin of a crack, it is necessary to find the point at which the shear stress
attains its maximum value. Formulate the problem of finding the location of
maximum shear stress for v = vx — V1 = 0.3.
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SOLUTION For j>, = v2 = 0.3, Eq. (E1) reduces to

/ W = T-TT5 + 0 6 5 X t 3 1 1 " ' 7 - ° 6 5 №4)
1 -r A A

where/ = r^//?max and X = zla. Since Eq. (E4) is a nonlinear function of the
distance, X, the application of the necessary condition for the maximum of/,
dfld\ = 0, gives rise to a nonlinear equation from which a closed-form solu-
tion for X* cannot easily be obtained.

The basic philosophy of most of the numerical methods of optimization is
to produce a sequence of improved approximations to the optimum according
to the following scheme.

1. Start with an initial trial point X1.

2. Find a suitable direction S1- (/ = 1 to start with) which points in the
general direction of the optimum.

3. Find an appropriate step length Xf for movement along the direction S1.

4. Obtain the new approximation X1-+ j as

X/ + 1 = X,- + XfS1- (5.1)

5. Test whether X1-+ j is optimum. If X1-+ \ is optimum, stop the procedure.
Otherwise, set a new / = / H- 1 and repeat step (2) onward.

The iterative procedure indicated by Eq. (5.1) is valid for unconstrained as
well as constrained optimization problems. The procedure is represented
graphically for a hypothetical two-variable problem in Fig. 5.3. Equation (5.1)
indicates that the efficiency of an optimization method depends on the effi-
ciency with which the quantities X* and S1- are determined. The methods of
finding the step length Xf are considered in this chapter and the methods of
finding S/ are considered in Chapters 6 and 7.

If/(X) is the objective function to be minimized, the problem of determin-
ing Xf reduces to finding the value \ = Xf that minimizes /(X1- + 0 = /(X, H-
\S/) = f(\) f° r fixed values of X1 and S1-. Since/becomes a function of one
variable X, only, the methods of finding Xf in Eq. (5.1) are called one-dimen-
sional minimization methods. Several methods are available for solving a one-
dimensional minimization problem. These can be classified as shown in Table
5.1.

We saw in Chapter 2 that the differential calculus method of optimization
is an analytical approach and is applicable to continuous, twice-differentiable
functions. In this method, calculation of the numerical value of the objective
function is virtually the last step of the process. The optimal value of the ob-
jective function is calculated after determining the optimal values of the deci-
sion variables. In the numerical methods of optimization, an opposite proce-
dure is followed in that the values of the objective function are first found at



Figure 5.3 Iterative process of optimization.

TABLE 5.1 One-Dimensional Minimization Methods

Analytical methods Numerical methods
(differential calculus methods) |

I I
Elimination Interpolation

methods methods
I

Unrestricted f [
search Requiring no Requiring

Exhaustive search derivatives derivatives
Dichotomous (quadratic) Cubic

search Direct root
Fibonacci method Newton
Golden section Quasi-Newton

method Secant

Optimum point



various combinations of the decision variables and conclusions are then drawn
regarding the optimal solution. The elimination methods can be used for the
minimization of even discontinuous functions. The quadratic and cubic inter-
polation methods involve polynomial approximations to the given function.
The direct root methods are root finding methods that can be considered to be
equivalent to quadratic interpolation.

5.2 UNIMODAL FUNCTION

A unimodal function is one that has only one peak (maximum) or valley (min-
imum) in a given interval. Thus a function of one variable is said to be uni-
modal if, given that two values of the variable are on the same side of the
optimum, the one nearer the optimum gives the better functional value (i.e.,
the smaller value in the case of a minimization problem). This can be stated
mathematically as follows:

A function/(;c) is unimodal if (/) Xx < X2 < JC* implies that/(jc2) < /(Jc1),
and (ii) X2 > Xx > JC* implies that /(JC1) < / (JC 2) , where JC* is the minimum
point.

Some examples of unimodal functions are shown in Fig. 5.4. Thus a unimodal
function can be a nondifferentiable or even a discontinuous function. If a func-
tion is known to be unimodal in a given range, the interval in which the min-
imum lies can be narrowed down provided that the function values are known
at two different points in the range.

For example, consider the normalized interval [0,1] and two function eval-
uations within the interval as shown in Fig. 5.5. There are three possible out-
comes, namely, / < /2 , o r / > /2 , o r / = /2 . If the outcome is t h a t / < /2 ,
the minimizing JC cannot lie to the right of JC2. Thus that part of the interval
[x2,1] can be discarded and a new smaller interval of uncertainty, [0,JC2] , results
as shown in Fig. 5.5a. IfZOc1) > /Oc2), the interval [0,Jc1] can be discarded to

Figure 5.4 Unimodal function.



Figure 5.5 Outcome of first two experiments. (a)f{ < /2; (b) fx > /2; (c)/, = /2.

obtain a new smaller interval of uncertainty, [Jc19I] (Fig. 5.5£), while if/(Jc1)
— f(x2), intervals [0,Jc1] and [JC2,1] can both be discarded to obtain the new
interval of uncertainty as [Jc19JC2] (Fig. 5.5c). Further, if one of the original
experiments1^ remains within the new interval, as will be the situation in Fig.
5.5a and b, only one other experiment need be placed within the new interval
in order that the process be repeated. In situations such as Fig. 5.5c, two more
experiments are to be placed in the new interval in order to find a reduced
interval of uncertainty.

The assumption of unimodality is made in all the elimination techniques. If
a function is known to be multimodal (i.e., having several valleys or peaks),
the range of the function can be subdivided into several parts and the function
treated as a unimodal function in each part.

ELIMINATION METHODS

5.3 UNRESTRICTED SEARCH

In most practical problems, the optimum solution is known to lie within re-
stricted ranges of the design variables. In some cases this range is not known,
and hence the search has to be made with no restrictions on the values of the
variables.

5.3.1 Search with Fixed Step Size

The most elementary approach for such a problem is to use a fixed step size

and move from an initial guess point in a favorable direction (positive or neg-

ative). The step size used must be small in relation to the final accuracy de-

tach function evaluation is termed as an experiment or a trial in the elimination methods.



sired. Although this method is very simple to implement, it is not efficient in
many cases. This method is described in the following steps.

1. Start with an initial guess point, say, Jc1.

2. Find/, = /(JC1).
3. Assuming a step size s, find JC2 = Jc1 + s.

4. Find/, =/(JC2).
5. If/2 < / , and if the problem is one of minimization, the assumption of

unimodality indicates that the desired minimum cannot lie at JC < Jc1.
Hence the search can be continued further along points JC3, JC4, . . . using
the unimodality assumption while testing each pair of experiments. This
procedure is continued until a point, JC, — XX + (i — \)s, shows an in-
crease in the function value.

6. The search is terminated at Jc1, and either jcf-_ i or Jt1- can be taken as the
optimum point.

7. Originally, if/2 > / , the search should be carried in the reverse direction
at points JC_2, JC_3, . . . , where X-j = Xx — (j — l)s.

8. If/2 = / , the desired minimum lies in between Jc1 and Jc2, and the min-
imum point can be taken as either Jc1 or JC2.

9. If it happens that both/> and/_2 are greater t h a n / , it implies that the
desired minimum will lie in the double interval JC_2 < JC < JC2.

5.3.2 Search with Accelerated Step Size

Although the search with a fixed step size appears to be very simple, its major
limitation comes because of the unrestricted nature of the region in which the
minimum can lie. For example, if the minimum point for a particular function
happens to be xopt = 50,000 and, in the absence of knowledge about the lo-
cation of the minimum, if Jc1 and s are chosen as 0.0 and 0.1, respectively, we
have to evaluate the function 5,000,001 times to find the minimum point. This
involves a large amount of computational work. An obvious improvement can
be achieved by increasing the step size gradually until the minimum point is
bracketed. A simple method consists of doubling the step size as long as the
move results in an improvement of the objective function. Several other im-
provements of this method can be developed. One possibility is to reduce the
step length after bracketing the optimum in (JC/.^JC/). By starting either from
X1^x or JC/, the basic procedure can be applied with a reduced step size. This
procedure can be repeated until the bracketed interval becomes sufficiently
small. The following example illustrates the search method with accelerated
step size.

Example 5.3 Find the minimum of/ = JC(JC — 1.5) by starting from 0.0 with
an initial step size of 0.05.



SOLUTION The function value at Xx is fx = 0.0. If we try to start moving
in the negative x direction, we find that JC_2 = —0.05 and/_2 = 0.0775. Since
/_2 > / i , the assumption of unimodality indicates that the minimum cannot lie
toward the left of JC_2. Thus we start moving in the positive x direction and
obtain the following results:

[ Value of s X1 = Xx 4- s ft = /Jx1) Isft > / • - !?

1 - 0.0 0.0 -
2 0.05 0.05 -0.0725 No
3 0.10 0.10 -0.140 No
4 0.20 0.20 -0.260 No
5 0.40 0.40 -0.440 No
6 0.80 0.80 -0.560 No
7 1.60 1.60 +0.160 Yes

From these results, the optimum point can be seen to be jcopt « X6 = 0.8.
In this case, the points X6 and X1 do not really bracket the minimum point but
provide information about it. If a better approximation to the minimum is de-
sired, the procedure can be restarted from X5 with a smaller step size.

5.4 EXHAUSTIVE SEARCH

The exhaustive search method can be used to solve problems where the interval
in which the optimum is known to lie is finite. Let xs and xf denote, respec-
tively, the starting and final points of the interval of uncertainty^ The exhaus-
tive search method consists of evaluating the objective function at a predeter-
mined number of equally spaced points in the interval (xsrXf)9 and reducing the
interval of uncertainty using the assumption of unimodality. Suppose that a
function is defined on the interval (xs,Xf) and let it be evaluated at eight equally
spaced interior points Jc1 to JC8. Assuming that the function values appear as
shown in Fig. 5.6, the minimum point must lie, according to the assumption
of unimodality, between points X5 and X1. Thus the interval (X59X1) can be con-
sidered as the final interval of uncertainty.

In general, if the function is evaluated at n equally spaced points in the
original interval of uncertainty of length L0 = xf — xs, and if the optimum
value of the function (among the n function values) turns out to be at point xj9

the final interval of uncertainty is given by

2
Ln = xj + x - Xj^x = ^ + 1 L0 (5.2)

^ince the interval (xs,xf), but not the exact location of the optimum in this interval, is known to
us, the interval (xs,xf) is called the interval of uncertainty.



Figure 5.6 Exhaustive search.

The final interval of uncertainty obtainable for different number of trials in the
exhaustive search method is given below.

Number of trials 2 3 4 5 6 • • • n

LnIL0 2/3 2/4 2/5 2/6 2/7 • • • 21 {n + 1)

Since the function is evaluated at all n points simultaneously, this method can
be called a simultaneous search method. This method is relatively inefficient
compared to the sequential search methods discussed next, where the infor-
mation gained from the initial trials is used in placing the subsequent experi-
ments.

Example 5.4 Find the minimum of/ = x(x - 1.5) in the interval (0.0,1.00)
to within 10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken
as the approximate optimum point, the maximum deviation could be
\l{n + 1) times the initial interval of uncertainty. Thus, to find the optimum
within 10% of the exact value, we should have

1 1
< — or n > 9

n + 1 10

By taking n = 9, the following function values can be calculated.

/ 1 2 3 4 5 6 7 8 9

X1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

/;.=/(Jt.)-0.14 -0.26 -0.36 -0.44 -0.50 -0.54 -0.56 -0 .56-0 .54

Since X1 .= X8, the assumption of unimodality gives the final interval of
uncertainty as L9 = (0.7,0.8). By taking the middle point OfL9 (i.e., 0.75) as



an approximation to the optimum point, we find that it is, in fact, the true
optimum point.

5.5 DICHOTOMOUS SEARCH

The exhaustive search method is a simultaneous search method in which all
the experiments are conducted before any judgment is made regarding the lo-
cation of the optimum point. The dichotomous search method, as well as the
Fibonacci and the golden section methods discussed in subsequent sections,
are sequential search methods in which the result of any experiment influences
the location of the subsequent experiment.

In the dichotomous search, two experiments are placed as close as possible
at the center of the interval of uncertainty. Based on the relative values of the
objective function at the two points, almost half of the interval of uncertainty
is eliminated. Let the positions of the two experiments be given by (Fig. 5.7)

Xl~ 2 2

2 2 2

where 5 is a small positive number chosen so that the two experiments give
significantly different results. Then the new interval of uncertainty is given by
(Lo/2 + 6/2). The building block of dichotomous search consists of conducting
a pair of experiments at the center of the current interval of uncertainty. The
next pair of experiments is, therefore, conducted at the center of the remaining
interval of uncertainty. This results in the reduction of the interval of uncer-
tainty by nearly a factor of 2. The intervals of uncertainty at the end of different
pairs of experiments are given in the following table.

Figure 5.7 Dichotomous search.



Number of experiments 2 4 6

1 l / L 0 + <5\ 6 If L0 + 6 8\ <5
Final interval of uncertainty -(L0 + o) - I — - — J + ^ ~l — 7 1- — ) H—

In general, the final interval of uncertainty after conducting n experiments (n
even) is given by

Ln = jm + s ( l - ^/2) (5-3)

The following example is given to illustrate the method of search.

Example 5.5 Find the minimum of/ = x(x — 1.5) in the interval (0.0,1.00)
to within 10% of the exact value.

SOLUTION The ratio of final to initial intervals of uncertainty is given by
[from Eq. (5.3)]

L0 ~ T" + L0 V T»)

where 5 is a small quantity, say 0.001, and n is the number of experiments. If
the middle point of the final interval is taken as the optimum point, the re-
quirement can be stated as

2L0-IO

i.e.,

J- — (\ - -L\ I
2"n + L0 V 2n/V ~ 5

Since § = 0.001 and L0 = 1.0, we have

2"'2 + 1000 V 2"'2J ~ 5

i.e.,

999 1 995 „,, 999
1000 2"/2 - 5000 ° r l ~ 199 " 5 U



Since n has to be even, this inequality gives the minimum admissible value of
n as 6.

The search is made as follows: The first two experiments are made at

x = h _ * = o.5 - 0.0005 = 0.4995
2 2

x2 = y + ^ = 0.5 + 0.0005 = 0.5005

with the function values given by

/ =/(JC1) = 0.4995(-1.0005) => -0.49975

/2 = /(JC2) = 0.5005(-0.9995) ^ -0.50025

Since/2 < fu the new interval of uncertainty will be (0.4995,1.0). The second
pair of experiments is conducted at

X3 = (o.4995 + 1 0 ~ 0 4 9 9 5 J _ 0.0005 = 0.74925

Jc4 = (o.4995 + L 0 - 0.4995\ + 0QQ05 = 0 7 5 0 2 5

which give the function values as

/3 =f(x3) = 0.74925(-0.75075) = -0.5624994375

/4 =/(JC4) = 0.75025(-0.74975) = -0.5624999375

Since/3 > f4, we delete (0.4995 ,JC3) and obtain the new interval of uncertainty
as

(Jc3,1.0) = (0.74925,1.0)

The final set of experiments will be conducted at

jc5 = fo.74925 + 0.74925\ _ ^0005 = 0.874125

jc6 = f 0.74925 + L ° ~ 0 - 7 4 9 2 5 j + 0.0005 = 0.875125



The corresponding function values are

/5 =/(JC5) = 0.874125(-0.625875) = -0.5470929844

/6 =f{x6) = 0.875125(-0.624875) = -0.5468437342

Since /5 < /6, the new interval of uncertainty is given by (x3,x6) =
(0.74925,0.875125). The middle point of this interval can be taken as opti-
mum, and hence

xopt ^ 0.8121875 and /opt « -0.5586327148

5.6 INTERVAL HALVING METHOD

In the interval halving method, exactly one-half of the current interval of un-
certainty is deleted in every stage. It requires three experiments in the first
stage and two experiments in each subsequent stage. The procedure can be
described by the following steps:

1. Divide the initial interval of uncertainty L0 = [a,b] into four equal parts
and label the middle point X0 and the quarter-interval points X1 and JC2.

2. Evaluate the function fix) at the three interior points to obtain/! = /(X1),
/o = /(X0), andZ2=Z(X2).

3. (a) If/2 > /o > /i as shown in Fig. 5.8a, delete the interval (xo,£), label
X1 and X0 as the new X0 and b, respectively, and go to step 4.

(b) If/2 < /o < /i as shown in Fig. 5.8fo, delete the interval (a,X0), label
X2 and X0 as the new X0 and a, respectively, and go to step 4.

(c) If/ > /0 and/2 > /0 as shown in Fig. 5.8c, delete both the intervals
(0,X1) and (x2,fo), label X1 and X2 as the new a and b, respectively,
and go to step 4.

4. Test whether the new interval of uncertainty, L = b - a, satisfies the
convergence criterion L < e, where e is a small quantity. If the conver-
gence criterion is satisfied, stop the procedure. Otherwise, set the new
L0 = L and go to step 1.

Remarks:

1. In this method, the function value at the middle point of the interval of
uncertainty, /0, will be available in all the stages except the first stage.

2. The interval of uncertainty remaining at the end of n experiments (n >
3 and odd) is given by

/jV (/!-l)/2

Ln = {-} L0 (5.4)



Figure 5.8 Possibilities in the interval halving method: (a)f2 > /0 > / i ; (b)f{ > /0

>/2Ac)Z1 > / 0 and / 2 > / 0 .



Example 5.6 Find the minimum of/ = x(x — 1.5) in the interval (0.0,1.0)
to within 10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken
as the optimum point, the specified accuracy can be achieved if

Since L0 = 1, Eq. (E1) gives

^ < i or 2<—>'2>5 (E2)

Since n has to be odd, inequality (E2) gives the minimum permissible value of
n as 7. With this value of n = 7, the search is conducted as follows. The first
three experiments are placed at one-fourth points of the interval L0 = [a = 0,
b = 1] as

Jc1 = 0.25, /, = 0.25(-1.25) = -0.3125

JC0 = 0.50, /o = 0.50(-1.00) = -0.5000

X2 = 0.75, /2 = 0.75(-0.75) = -0.5625

Since/j > /0 > /2, we delete the interval (a9x0) = (0.0,0.5), label X2 and X0

as the new X0 and a so that a = 0.5, X0 = 0.75, and b = 1.0. By dividing the
new interval of uncertainty, L3 = (0.5,1.0) into four equal parts, we obtain

X1 = 0.625, /} = 0.625(-0.875) = -0.546875

Jc0 = 0.750, /o = 0.750(-0.750) = -0.562500

Jc2 = 0.875, /2 = 0.875(-0.625) = -0.546875

SmCeZ1 > f0 and/2 > f0, we delete both the intervals (̂ ,Jc1) and (JC2,&), and
label Jc1, JC0, and JC2 as the new a, JC0, and b, respectively. Thus the new interval
of uncertainty will be L5 = (0.625,0.875). Next, this interval is divided into
four equal parts to obtain

Jc1 = 0.6875, Z1 = 0.6875(-0.8125) = -0.558594

Jc0 = 0.75, /o = 0.75(-0.75) = -0.5625

Jc2 = 0.8125, /2 = 0.8125(-0.6875) = -0.558594



Again we note that/, > fQ and/2 > f0 and hence we delete both the intervals
(a,Xi) and (Jt2,6) to obtain the new interval of uncertainty as L1 =
(0.6875,0.8125). By taking the middle point of this interval (L7) as optimum,
we obtain

xopt * 0.75 and /opt * -0.5625

(This solution happens to be the exact solution in this case.)

5.7 FIBONACCI METHOD

As stated earlier, the Fibonacci method can be used to find the minimum of a
function of one variable even if the function is not continuous. This method,
like many other elimination methods, has the following limitations:

1. The initial interval of uncertainty, in which the optimum lies, has to be
known.

2. The function being optimized has to be unimodal in the initial interval
of uncertainty.

3. The exact optimum cannot be located in this method. Only an interval
known as the final interval of uncertainty will be known. The final in-
terval of uncertainty can be made as small as desired by using more
computations.

4. The number of function evaluations to be used in the search or the res-
olution required has to be specified beforehand.

This method makes use of the sequence of Fibonacci numbers, {Fn}9 for plac-
ing the experiments. These numbers are defined as

F0 = Fx = 1

Fn = Fn_x + Fn_2, n = 2 , 3 , 4 , . . .

which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Procedure. Let L0 be the initial interval of uncertainty defined by a < x < b
and n be the total number of experiments to be conducted. Define

LT = ^ L 0 (5.5)

and place the first two experiments at points Jc1 and X2, which are located at a



distance of L* from each end OfL0.1 This gives*

X l = a + I* = a + ^ l L o
K (5.6)

X2 = b - L* = b - ^ L 0 = a + ^ L 0

Discard part of the interval by using the unimodality assumption. Then there
remains a smaller interval of uncertainty L2 given by§

/ F \ F
T T T * T I 1 rn-2 \ _ rn- I j ,c ̂ N.L2 = L0 - L2 = L0[I — I - —— L0 (5.7)

and with one experiment left in it. This experiment will be at a distance of

L 2 * = ^ 1 L 0 = ^ L 2 (5.8)

from one end and

L2 - L 2 * = ^ L 0 = ^ L 2 (5.9)

from the other end. Now place the third experiment in the interval L2 so that
the current two experiments are located at a distance of

£* = ̂ f1L0 = ^jT1L2 (5.10)

from each end of the interval L2. Again the unimodality property will allow us
to reduce the interval of uncertainty to L3 given by

L3=L2-Lf = L2 - ^ L 2 = ^ L 2 =?fl L0 (5.11)
^n — 1 Fn _ i Pn

fIf an experiment is located at a distance of (Fn__2lFn)L0 from one end, it will be at a distance of
(Fn^1ZFn)L0 from the other end. Thus L* = (Fn^1ZFn)L0 will yield the same result as with L? =
(Fn^2IFn)L0.
*It can be seen that

I* = % ^ L0 < \ L0 for n > 2

§The symbol L} is used to denote the interval of uncertainty remaining after conducting j exper-
iments, while the symbol Lf is used to define the position of the 7th experiment.



This process of discarding a certain interval and placing a new experiment in
the remaining interval can be continued, so that the location of thejth exper-
iment and the interval of uncertainty at the end of j experiments are, respec-
tively, given by

Lf =-^Zi-L1 ^1 (5.12)
tn-{j-2)

LJ = ^ ^ 1 L 0 (5.13)

The ratio of the interval of uncertainty remaining after conducting j of the n
predetermined experiments to the initial interval of uncertainty becomes

L1 ^ F 1 ^ 1 ( 5 u )

M) rn

and for j = n, we obtain

Lo Fn Fn

The ratio LJL0 will permit us to determine n, the required number of experi-
ments, to achieve any desired accuracy in locating the optimum point. Table
5.2 gives the reduction ratio in the interval of uncertainty obtainable for dif-
ferent number of experiments.

Position of the Final Experiment. In this method the last experiment has to
be placed with some care. Equation (5.12) gives

- ^ - = § = 1 for all n (5.16)
Ln - i 12 I

Thus, after conducting n — 1 experiments and discarding the appropriate in-
terval in each step, the remaining interval will contain one experiment pre-
cisely at its middle point. However the final experiment, namely, the nth ex-
periment, is also to be placed at the center of the present interval of uncertainty.
That is, the position of the nth experiment will be same as that of (n — l)th
one, and this is true for whatever value we choose for n. Since no new infor-
mation can be gained by placing the nth experiment exactly at the same loca-
tion as that of the (n — l)th experiment, we place the nth experiment very
close to the remaining valid experiment, as in the case of the dichotomous
search method. This enables us to obtain the final interval of uncertainty to
within \Ln _ x. A flowchart for implementing the Fibonacci method of mini-
mization is given in Fig. 5.9.



TABLE 5.2 Reduction Ratios

Value of Fibonacci Number, Reduction Ratio,
n Fn LnIL0

0 1 1.0
1 1 1.0
2 2 0.5
3 3 0.3333
4 5 0.2
5 8 0.1250
6 13 0.07692
7 21 0.04762
8 34 0.02941
9 55 0.01818
10 89 0.01124
11 144 0.006944
12 233 0.004292
13 377 0.002653
14 610 0.001639
15 987 0.001013
16 1,597 0.0006406
17 2,584 0.0003870
18 4,181 0.0002392
19 6,765 0.0001479
20 10,946 0.00009135

Example 5.7 Minimize/(JC) = 0.65 - [0.75/(1 + JC2)] - 0.65* tan'^l/jc)
in the interval [0,3] by the Fibonacci method using n = 6. (Note that this
objective is equivalent to the one stated in Example 5.2.)

SOLUTION Here n = 6 and L0 = 3.0, which yield

L2* = % ^ L0 = - | (3.0) = 1.153846
tn 13

Thus the positions of the first two experiments are given by X1 = 1.153846
and X1 = 3.0 - 1.153846 = 1.846154 with/! =/(JC,) = -0.207270 and/2
= / t o ) = -0.115843. Since/, is less than/2, we can delete the interval
[jc2,3.0] by using the unimodality assumption (Fig. 5.10a). The third experi-
ment is placed at JC3 = 0 + (JC2 - JC,) = 1.846154 - 1.153846 = 0.692308,
with the corresponding function value of/3 = -0.291364.

Since/, > /3, we delete the interval [JC,,JC2] (Fig. 5.10b). The next experi-
ment is located at JC4 = 0 + (JC, - JC3) = 1.153846 - 0.692308 = 0.461538
with/4 = -0.309811. Noting that/4 < /3, we delete the interval [JC3,JC,] (Fig.



Figure 5.9 Flowchart for implementing Fibonacci search method.
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Figure 5.10 Graphical representation of the solution of Example 5.7.



Figure 5.10 (Continued)

5.10c). The location of the next experiment can be obtained as Jt5 = 0 + (Jt3
- Jc4) = 0.692308 - 0.461538 = 0.230770 with the corresponding objective
function value of/5 = —0.263678. Since/5 > /4 , we delete the interval [0,Jt5]
(Fig. 5.10J). The final experiment is positioned at X6 = X5 + (x3 — X4) =
0.230770 + (0.692308 - 0.461538) = 0.461540 with/6 = -0.309810. (Note
that, theoretically, the value of X6 should be same as that of Jt4; however, it is
slightly different from Jt4, due to round-oif error).

Since f6 > /4 , we delete the interval [Jt6,Jt3] and obtain the final interval of
uncertainty as L6 = [x5,x6] = [0.230770,0.461540] (Fig. 5.10e). The ratio of
the final to the initial interval of uncertainty is

L6 0.461540 - 0.230770i r0— -0076923



This value can be compared with Eq. (5.15), which states that if n experiments
(n = 6) are planned, a resolution no finer than MFn = MF6 = 13 = 0.076923
can be expected from the method.

5.8 GOLDEN SECTION METHOD

The golden section method is same as the Fibonacci method except that in the
Fibonacci method the total number of experiments to be conducted has to be
specified before beginning the calculation, whereas this is not required in the
golden section method. In the Fibonacci method, the location of the first two
experiments is determined by the total number of experiments, n. In the golden
section method we start with the assumption that we are going to conduct a
large number of experiments. Of course, the total number of experiments can
be decided during the computation.

The intervals of uncertainty remaining at the end of different number of
experiments can be computed as follows:

L2 = lim ^ 1 L 0 (5.17)
N-+oo r N

T T FN-2 j T FN-2 FN-\ TL3 = hm —— L0 = hm — L0
/v->oo rN yv-x» tjsf-\ rN

- lim (^1) L0 (5.18)
yv^oo \ FN )

This result can be generalized to obtain

Lk= lim ( % ^ ) L0 (5.19)
N-* oo \ tN J

Using the relation

FN = FN _, + FN _2 (5.20)

we obtain, after dividing both sides by FN-u

By defining a ratio y as

7 = lim - ^ (5.22)
/V-> oo rN_ j



Eq. (5.21) can be expressed as

7

that is,

7
2 - y - i = o (5.23)

This gives the root y = 1.618, and hence Eq. (5.19) yields

/l\k'x
Lk = (-) L0 = (0.618)*-1L0 (5.24)

In Eq. (5.18) the ratios FN__2/FN- ] and FN_ XIFN have been taken to be same
for large values of N. The validity of this assumption can be seen from the
following table:

alueofW 2 3 4 5 6 7 8 9 1Oo

atio-^^1 0.5 0.667 0.6 0.625 0.6156 0.619 0.6177 0.6181 0.6184 0.6

The ratio y has a historical background. Ancient Greek architects believed
that a building having the sides d and b satisfying the relation

d H- b d
— = -b = y (5-25)

will be having the most pleasing properties (Fig. 5.11). It is also found in
Euclid's geometry that the division of a line segment into two unequal parts
so that the ratio of the whole to the larger part is equal to the ratio of the larger
to the smaller, being known as the golden section or golden mean—thus the
term golden section method.

Figure 5.11 Rectangular building of sides
b and d.

b

d



Procedure. The procedure is same as the Fibonacci method except that the
location of the first two experiments is defined by

^ = ^ A , = ^ ^ F i L 0 = ^ = 0.382L0 (5.26)

The desired accuracy can be specified to stop the procedure.

Example 5.8 Minimize the function fix) = 0.65 - [0.75/(1 + x2)]
- 0.65 x tan" 1Cl/*) using the golden section method with n = 6.

SOLUTION The locations of the first two experiments are defined by L* =
0.382L0 = (0.382)(3.0) = 1.1460. ThUSJC1 = 1.1460 and X2 = 3.0 - 1.1460
= 1.8540 with/ t = /(JC1) = -0.208654 and/2 = / ( JC 2 ) = -0.115124. Since

/i < />> w e delete the interval [JC2,3.0] based on the assumption of unimodality
and obtain the new interval of uncertainty as L2 = [0,JC2] = [0.0,1.8540]. The
third experiment is placed at X3 = 0 + (JC2 — Jc1) = 1.8540 — 1.1460 =
0.7080. Since/3 = -0.288943 is smaller t h a n / = -0.208654, we delete the
interval [X1,X2] and obtain the new interval of uncertainty as [O.O,JC,] =
[0.0,1.1460]. The position of the next experiment is given by X4 = 0 + (Jc1 —
X3) = 1.1460 - 0.7080 = 0.4380 with/4 = -0.308951.

Since f4 < /3 , we delete [X35X1] and obtain the new interval of uncertainty
as [0,x3] = [0.0,0.7080]. The next experiment is placed at X5 = 0 + (x3 —
X4) = 0.7080 - 0.4380 = 0.2700. Since/5 = -0.278434 is larger than/4 =
—0.308951, we delete the interval [0,x5] and obtain the new interval of un-
certainty as [x5,x3] = [0.2700,0.7080]. The final experiment is placed atx6 =
x5 + (x3 - x4) = 0.2700 + (0.7080 - 0.4380) = 0.5400 with / 6 =
-0.308234. Since/6 > /4 , we delete the interval [x6,x3] and obtain the final
interval of uncertainty as [x5,x6] = [0.2700,0.5400]. Note that this final inter-
val of uncertainty is slightly larger than the one found in the Fibonacci method,
[0.461540,0.230770]. The ratio of the final to the initial interval of uncertainty
in the present case is

U _ 0.5400 - 0.2700 _ O27

L0 ~ 3.0 " 3.0 ~ '

5.9 COMPARISON OF ELIMINATION METHODS

The efficiency of an elimination method can be measured in terms of the ratio
of the final and the initial intervals of uncertainty, LnZL0. The values of this
ratio achieved in various methods for a specified number of experiments (n =
5 and n = 10) are compared in Table 5.3. It can be seen that the Fibonacci
method is the most efficient method, followed by the golden section method,
in reducing the interval of uncertainty.



A similar observation can be made by considering the number of experi-
ments (or function evaluations) needed to achieve a specified accuracy in var-
ious methods. The results are compared in Table 5.4 for maximum permissible
errors of 0.1 and 0.01. It can be seen that to achieve any specified accuracy,
the Fibonacci method requires the least number of experiments, followed by
the golden section method.

INTERPOLATION METHODS

The interpolation methods were originally developed as one-dimensional
searches within multivariable optimization techniques, and are generally more
efficient than Fibonacci-type approaches. The aim of all the one-dimensional
minimization methods is to find X*, the smallest nonnegative value of X, for

TABLE 5.4 Number of Experiments for a Specified Accuracy

TABLE 5.3 Final Intervals of Uncertainty

Method

Exhaustive search

Dichotomous search
(5 = 0.01 and n
= even)

Interval halving
(n > 3 and odd)

Fibonacci

Golden section

Formula

L - U +s(l 1 l̂
L n - ^ / 2 " r o i l ^/1/2 J

Ln = ( I )<- '>%,

Ln = — L0

Ln = (O^lSr-1L0

n = 5

0.33333L0

^L0 + 0.0075
with /i = 4,
IL0 +
0.00875
with n = 6

0.25L0

0.125L0

0.1459L0

n = 10

0.18182L0

0.03125L0 + 0.0096875

0.0625L0 with n = 9,
0.03125L0 with n =
11

0.01124L0

0.01315L0

Method

Exhaustive search
Dichotomous search

(6 = 0.01,L0 = 1)
Interval halving

(n > 3 and odd)
Fibonacci
Golden section

Error: \— < 0.1
2 L0

n > 9
n > 6

n > 7

n > 4
n > 5

Error: - — < 0.01
2L0

n > 99
n > 14

n > 13

n > 9
n > 10



which the function

/(X) = / ( X + XS) (5.27)

attains a local minimum. Hence if the original function/(X) is expressible as
an explicit function of Jt1-(Z = 1,2,. . .,«), we can readily write the expression
for/(X) = / ( X + XS) for any specified vector S, set

TT M = 0 (5.28)

and solve Eq. (5.28) to find X* in terms of X and S. However, in many prac-
tical problems, the function/(X) cannot be expressed explicitly in terms of X
(as shown in Example 5.1). In such cases the interpolation methods can be
used to find the value of X*.

Example 5.9 Derive the one-dimensional minimization problem for the fol-
lowing case:

Minimize / (X) •= (x2 - X2)
2 + (1 - Jt1)

2 (E1)

(-2) f l .Of)
from the starting point Xi = \ \ along the search direction S = I \.

1-2 J (.0.25 J
SOLUTION The new design point X can be expressed as

(xi~) f - 2 + X J
X = = X1 + XS =

Ot2J ( . - 2 + 0.25XJ

By substituting JC, = - 2 + X and X2 = - 2 + 0.25X in Eq. (E,), we obtain/
as a function of X as

/(X) = / ( " 2
2

+
+

X
0 2 5 X ) = K"2 + X>2 " (-2 + °'25X)]2

+ [1 - ( - 2 + X)]2 = X4 - 8.5X3 + 31.0625X2 - 57.0X + 45.0

The value of X at which/(X) attains a minimum gives X*.

In the following sections, we discuss three different interpolation methods
with reference to one-dimensional minimization problems that arise during
multivariable optimization problems.



5.10 QUADRATIC INTERPOLATION METHOD

The quadratic interpolation method uses the function values only; hence it is
useful to find the minimizing step (X*) of functions/(X) for which the partial
derivatives with respect to the variables x{ are not available or difficult to com-
pute [5.2, 5.5]. This method finds the minimizing step length X* in three stages.
In the first stage the S-vector is normalized so that a step length of X = 1 is
acceptable. In the second stage the function/(X) is approximated by a quad-
ratic function h(X) and the minimum, X*, of h(k) is found. If X* is not suffi-
ciently close to the true minimum X*, a third stage is used. In this stage a new
quadratic function (refit) h'(k) = a' + br\ + c'X2 is used to approximate/(X),
and a new value of X* is found. This procedure is continued until a X* that is
sufficiently close to X* is found.

Stage 1. In this stage,f the S vector is normalized as follows: Find A = max

IJ1-I , where st is the ith component of S and divide each component of S by A.
Another method of normalization is to find A = {s\ + s\ + • • • + sl)l/2 and
divide each component of S by A.

Stage 2. Let

A(X) = a + b\ + c\2 (5.29)

be the quadratic function used for approximating the function/(X). It is worth
noting at this point that a quadratic is the lowest-order polynomial for which
a finite minimum can exist. The necessary condition for the minimum of h(K)
is that

^- = b + 2cX = 0
d\

that is,

X* = ~ (5.30)
2c

The sufficiency condition for the minimum of h(\) is that

3 ? « . > 0

1TMs stage is not required if the one-dimensional minimization problem has not arisen within a
multivariable minimization problem.



that is,

c > O (5.31)

To evaluate the constants a, b, and c in Eq. (5.29), we need to evaluate the
function/(X) at three points. Let X = A, X = B, and X = C be the points at
which the function/(X) is evaluated and let/4,/0, and / c be the corresponding
function values, that is,

fA = a + bA + cA2

fB = a + bB + cB2

Sc = a + bC + cC2 (5.32)

The solution of Eqs. (5.32) gives

= SABC(C - B) + SBCA(A - C) + /<y4B(B - A)
a (A - B)(B - C)(C -A) K ' }

_ SA(B2 - C2) + SB(C2 - A2) + /CQ42 - i?2)

04 - B)(B - C)(C -A) - ' ]

= / ^ ~ O +IB(C - ^) + / c ( ^ - B)

(A -B)(B- C)(C-A) P }

From Eqs. (5.30), (5.34), and (5.35), the minimum of h(\) can be obtained
as

** = -fr _ A(^2 ~ C2) + /^(C2 ~ A2) + /CQ42 - B2)
2c 2[SA(B - C) + SB(C -A)+ SC(A -B)] l " j

provided that c, as given by Eq. (5.35), is positive.
To start with, for simplicity, the points A, B9 and C can be chosen as 0, t,

and 2t, respectively, where t is a preselected trial step length. By this proce-
dure, we can save one function evaluation since SA = SQ^ = 0) is generally
known from the previous iteration (of a multivariable search). For this case,
Eqs. (5.33) to (5.36) reduce to

a= SA (5.37)

b = 4 / g " ^ ~ / c (5.38)

c=fc+f*~2fB (5.39)



provided that

c=fc+f*p~
2f">0 (5.41)

The inequality (5.41) can be satisfied if

f A ~ > fs (5.42)

(i.e., the function value fB should be smaller than the average value offA and
f c ) . This can be satisfied iffB lies below the line joining fA and/ c as shown in
Fig. 5.12.

The following procedure can be used not only to satisfy the inequality (5.42)
but also to ensure that the minimum X* lies in the interval 0 < X* < 2t.

1. Assuming that fA = /(X = 0) and the initial step size t0 are known,
evaluate the function/at X = 10 and obtain/ = /(X = t0). The possible
outcomes are shown in Fig. 5.13.

2. If/ > fA is realized (Fig. 5.13c), set / c = / and evaluate the function
/ a t X = fo/2 and X* using Eq. (5.40) with t = to/2.

3. I f / ^ /A is realized (Fig. 5A3a or b), set /5 = / , and evaluate the
function/at X = 2f0 to find/2 = /(X = 2t0). This may result in any one
of the situations shown in Fig. 5.14.

Figure 5.12 fB smaller than (fA + /c)/2.



Figure 5.14 Possible outcomes when function is evaluated at X = t0 and 2t0:
(a)f2 < Z1 and/2 < fA; (b)f2 < fA and/2 > /,; (c)f2 > fA and/2 > /, .

Figure 5.13 Possible outcomes when the function is evaluated at X = t0: (a)/, < fA

and t0 < X*; (b) fx < fA and t0 > X*; (c)/, > fA and t0 > X*.



4. If/2 turns out to be greater than J1 (Fig. 5.14b or c), se t / c = /2 and
compute X* according to Eq. (5.40) with t = t0.

5. If/2 turns out to be smaller than/,, set new/! = /2 and t0 = 2f0, and
repeat steps 2 to 4 until we are able to find X*.

Stage 3. The X* found in stage 2 is the minimum of the approximating quad-
ratic /z(X) and we have to make sure that this X* is sufficiently close to the true
minimum X* of/(X) before taking X* ^ X*. Several tests are possible to
ascertain this. One possible test is to compare /(X*) with /z(X*) and consider
X* a sufficiently good approximation if they differ not more than by a small
amount. This criterion can be stated as

Another possible test is to examine whether df/d\ is close to zero at X*. Since
the derivatives of/are not used in this method, we can use a finite-difference
formula for df/d\ and use the criterion

/(X* + AX*) - / ( X * - AX*) ^ £2 (5M)

to stop the procedure. In Eqs. (5.43) and (5.44), z{ and e2 are small numbers
to be specified depending on the accuracy desired.

If the convergence criteria stated in Eqs. (5.43) and (5.44) are not satisfied,
a new quadratic function

h'(\) = a' + b'\ + c'X2

is used to approximate the function/(X). To evaluate the constants a', b' and
c', the three best function values of the current fA = /(X = 0), fB — /(X =
h)ifc — / ( ^ = 2f0), and/ = /(X = X*) are to be used. This process of trying
to fit another polynomial to obtain a better approximation to X* is known as
refitting the polynomial.

For refitting the quadratic, we consider all possible situations and select the
best three points of the present A9 B, C, and X*. There are four possibilities,
as shown in Fig. 5.15. The best three points to be used in refitting in each case
are given in Table 5.5. A new value of X* is computed by using the general
formula, Eq. (5.36). If this X* also does not satisfy the convergence criteria
stated in Eqs. (5.43) and (5.44), a new quadratic has to be refitted according
to the scheme outlined in Table 5.5.



Figure 5.15 Various possibilities for refitting.

TABLE 5.5 Refitting Scheme

Case

1

2

3

4

Characteristics

X* > B
f<fs

X* > B
f>fs

X* < B
f<fs

X* < B
f>fs

New Points for Refitting

New

A
B
C

Neglect old A
A
B
C

Neglect old C
A
B
C

Neglect old C
A
B
C

Neglect old A

Old

B
X*
C

A
B
X*

A
X*
B

X*
B
C



Example 5.10 Find the minimum of/ = X5 - 5X3 - 2OX + 5.

SOLUTION Since this is not a multivariable optimization problem, we can
proceed directly to stage 2. Let the initial step size be taken as t0 = 0.5 and A
= 0.

Iteration 1

£ = / ( X = O) = 5

/i =/(X = f0) = 0.03125 - 5(0.125) - 20(0.5) + 5 = -5.59375

Since/ < Xi, we set/B = /, = -5.59375, and find that

/2 = / (X = 2/0 = 1.0) = -19.0

As/2 < / , we set new t0 = 1 and/, = -19.0. Again we find that / < fA

and hence set/B = / = -19.0, and find that/, = /(X = 2t0 = 2) = - 4 3 .
Since/2 < / , we again set t0 = 2 and/ = - 4 3 . As this / < Z1, set/B = /
= -43 and evaluate/, =/(X = 2t0 = 4) = 629. This time/, > / and hence
we set/c = /2 = 629 and compute X* from Eq. (5.40) as

= 4(-43) - 3(5) - 629 1632 = 2 3 5

4(-43) - 2(629) - 2(5) l ; 1440

Convergence test: Since A = 0,fA = 5, B = 2,fB = - 4 3 , C = 4, and/c

= 629, the values of a, b, and c can be found to be

0 = 5, b = -204, c = 90

and

/,(X*) = /,(1.135) = 5 - 204(1.135) + 90(1.135)2 = -110.9

Since

/ = /(X*) = (1.135)5 - 5(1.135)3 - 20(1.135) + 5.0 = -23.127

we have

h(\*) ~ /(X*) _ -116.5 + 23.127
/(X*) " -23.127 " '

As this quantity is very large, convergence is not achieved and hence we have
to use refitting.



Iteration 2
Since X* < B and/ > fB, we take the new values of A, B, and C as

A = 1.135, /,, = -23.127

B = 2.0, fB = -43.0

C = 4.0, fc = 629.0

and compute new X*, using Eq. (5.36), as

(-23.127)(4.0 - 16.0) + (-43.0)(16.0 - 1.29)
j . , = + (629.0)(1.29 - 4.0) =

2[(-23.127)(2.0 - 4.0) + (-43.0)(4.0 - 1.135)
+ (629.0) (1.135 - 2.0)]

Convergence test: To test the convergence, we compute the coefficients of
the quadratic as

a = 288.0, b = -417.0, c = 125.3

As

/t(X*) = /i(1.661) = 288.0 - 417.0(1.661) + 125.3(1.661)2 = -59.7

f = f(k*) = 12.8 - 5(4.59) - 20(1.661) + 5.0 = -38.37

we obtain

h(\*)-f(k*) -59.70 + 38.37
—AX^O = =3837^ = °-556

Since this quantity is not sufficiently small, we need to proceed to the next
refit.

5.11 CUBIC INTERPOLATION METHOD

The cubic interpolation method finds the minimizing step length X* in four
stages [5.5, 5.11]. It makes use of the derivative of the function/:

/(X) = ~r = -^-/(X + XS) = S7Vf(X + XS)
ah ah

The first stage normalizes the S vector so that a step size X = 1 is acceptable.
The second stage establishes bounds on X*, and the third stage finds the value



of X* by approximating/(X) by a cubic polynomial h(K). If the X* found in
stage 3 does not satisfy the prescribed convergence criteria, the cubic poly-
nomial is refitted in the fourth stage.

Stage 1. Calculate A = max, |^ | , where |^ | is the absolute value of the /th
component of S, and divide each component of S by A. An alternative method
of normalization is to find

A = (s2 + s\ + • • • + s2
n)

m

and divide each component of S by A.

Stage 2. To establish lower and upper bounds on the optimal step size X*, we
need to find two points A and B at which the slope dfld\ has different signs.
We know that at X = 0,

^- = STVf(X)<0

since S is presumed to be a direction of descent^
Hence, to start with we can take A = O and try to find a point X = B at

which the slope dfld\ is positive. Point B can be taken as the first value out
of % 2r0, 4r0, 8r0, . . . at which / ' is nonnegative, where t0 is a preassigned
initial step size. It then follows that X* is bounded in the interval A < X* <
B (Fig. 5.16).

Stage 3. If the cubic equation

h(k) = a + b\ + cX2 + d\3 (5.45)

fIn this case the angle between the direction of steepest descent and S will be less than 90°.

Figure 5.16 Minimum of/(X) lies between A and B.



is used to approximate the function/(X) between points A and B, we need to
find the values fA = /(X = A)9 f'A = df/d\ (X = A)9 fB = /(X = B)9 and/^
= dfld\ (X = B) in order to evaluate the constants, a, b, c, and d in Eq.
(5.45). By assuming that A =£ 0, we can derive a general formula for X*. From
Eq. (5.45) we have

fA = a + bA + cA2 + dA3

fB = a + bB + cB2 + dB3

f'A = b + IcA + 3dA2

f'B = b + 2cB + 3dB2 (5.46)

Equations (5.46) can be solved to find the constants as

a = fA - bA - cA2 - dA3 (5.47)

with

b = (A _ m2 ^fA + ^V^ + 2ABZ) (5.48)

c = ~fA l mz [ ( /4 + B ) Z + fi/^ + ^ 1 ( 5 ' 4 9 )

and

d = 3 ^ 2 (2Z + /^ + f'B) (5.50)

where

Z = 3igA~AB) +/'A +/'B (5.51)

The necessary condition for the minimum of h(\) given by Eq. (5.45) is that

dh
— = b + 2cX + 3JX2 = 0
d\

that is,

%, . ^ ± ( ^ - 3 « ) - ( 5 5 2 )

The application of the sufficiency condition for the minimum of h(\) leads to
the relation



^ =2c + 6dX* > O (5.53)
dh x~*

By substituting the expressions for b, c, and d given by Eqs. (5.48) to (5.50)
into Eqs. (5.52) and (5.53), we obtain

**-A + / f ^ r i "-^ (554)

where

Q = (Z2 - fM?12 (5-55)

2(B - A)QZ + f'A +f'B)(f'A +Z + Q)

-2(B - A)(fA
2 + Zf >B + 3Zf\ + 2Z2)

-2(B + A)f'AfB > 0 (5.56)

By specializing Eqs. (5.47) to (5.56) for the case where A = 0, we obtain

a=fA

b=f'A

c= ~\(Z+f'A)

d = ^2(2Z+f'A+f'B)

»-• am
Q = (Z2 - f'Af'B)m > 0 (5.58)

where

Z = 3(fA
B

fB) +f'A +fB (5.59)

The two values of X* in Eqs. (5.54) and (5.57) correspond to the two pos-
sibilities for the vanishing of h'(X) [i.e., at a maximum of h(\) and at a min-
imum]. To avoid imaginary values of Q, we should ensure the satisfaction of
the condition

Z2
 - W B ^ 0



in Eq. (5.55). This inequality is satisfied automatically since A and B are se-
lected such that/^ < 0 and f'B > 0. Furthermore, the sufficiency condition
(when A = 0) requires that Q > 0, which is already satisfied. Now we com-
pute X* using Eq. (5.57) and proceed to the next stage.

Stage 4. The value of X* found in stage 3 is the true minimum of h(k) and
may not be close to the minimum of/(X). Hence the following convergence
criteria can be used before choosing X* « X*:

A(X*) - / (X*)
/(X*) * e ' ( 5-6 0 )

^- = S7V/ < C2 (5.61)

where e{ and e2 are small numbers whose values depend on the accuracy de-
sired. The criterion of Eq. (5.61) can be stated in nondimensional form as

S7V/

i S f W F * s E ' < 5-6 2 )

If the criteria stated in Eqs. (5.60) and (5.62) are not satisfied, a new cubic
equation

h'(\) = a
f + b'\ + c'X2 + d'\3

can be used to approximate/(X). The constants a', b'', cr, and d' can be
evaluated by using the function and derivative values at the best two points
out of the three points currently available: A, B, and X*. Now the general
formula given by Eq. (5.54) is to be used for finding the optimal step size
X*. If/'(X*) < 0, the new points A and B are taken as X* and B, respectively;
otherwise [if/'(X*) > 0], the new points A and B are taken as A and X*, and
Eq. (5.54) is applied to find the new value of X*. Equations (5.60) and (5.62)
are again used to test for the convergence of X*. If convergence is achieved,
X* is taken as X* and the procedure is stopped. Otherwise, the entire procedure
is repeated until the desired convergence is achieved.

The flowchart for implementing the cubic interpolation method is given in
Fig. 5.17.

Example 5.11 Find the minimum of/ = X5 — 5X3 — 2OX + 5 by the cubic
interpolation method.



Figure 5.17 Flowchart for cubic interpolation method.
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SOLUTION Since this problem has not arisen during a multivariable opti-
mization process, we can skip stage 1. We take A = O and find that

^- (X = A = 0) = 5X4 - 15X2 - 20 = -20 < 0
dX x = o

To find B at which df/d\ is nonnegative, we start with t0 = 0.4 and evaluate
the derivative at t0, 2t0, 4t0, . . .. This gives

/'(*o = 0.4) = 5(0.4)4 - 15(0.4)2 - 20.0 = -22.272

f(2t0 = 0.8) = 5(0.8)4 - 15(0.8)2 - 20.0 = -27.552

/'(4f0 = 1.6) = 5(1.6)4 - 15(1.6)2 - 20.0 = -25.632

/'(8*o = 3.2) = (3.2)4 - 15(3.2)2 - 20.0 = 350.688

Thus we find thatf

A = 0.0, fA = 5.0, f'A = -20.0

B = 3.2, fB = 113.0, f'B = 350.688

A < X* < B

Iteration 1

To find the value of X* and to test the convergence criteria, we first compute
Z and Q as:

Z = 3 ( 5 ' ° ~ 1 1 3 0 ) - 20.0 + 350.688 = 229.588

Q = [229.5882 + (20.0) (350.688)] "2 = 244.0

Hence

-, - ( - 2 0 - 0 + 229.588 + 244.0 \
X* = 3"2 ( -20 .0 + 350.688 +"459.176J = L 8 4 OT ~0A396

By discarding the negative value, we have

X* = 1.84

1As/' has been found to be negative at X = 1.6 also, we can take A = 1.6 for faster convergence.



Convergence criterion: If X* is close to the true minimum, X*, then/'(X*)
= df(k*)/d\ should be approximately zero. Since/' = 5X4 - 15X2 - 20,

/'(X*) = 5(1.84)4 - 15(1.84)2 - 20 = -13.0

Since this is not small, we go to the next iteration or refitting. As/'(X*) < 0,
we take A = X* and

fA =/(X*) = (1.84)5 - 5(1.84)3 - 20(1.84) + 5 = -41.70

Thus

A = 1.84, fA = -41.70, f'A = -13.0

B = 3.2, fB = 113.0, f'B = 350.688

A < X* < B

Iteration 2

Z = 3^4On7J -I1QA ^ " 1 3 ° + 3 5 0 - 6 8 8 = -3.312

Q = [(-3.312)2 + (13.0)(350.688)]l/2 = 67.5

Hence

Convergence criterion:

/'(X*) = 5.0(2.05)4 - 15.0(2.05)2 - 20.0 = 5.35

Since this value is large, we go the next iteration with B = X* = 2.05 [as
/'(X*) > 0] and

fB = (2.05)5 - 5.0(2.05)3 - 20.0(2.05) + 5.0 = -42.90

Thus

A = 1.84, fA = -41.70, f'A = -13.00

B = 2.05, fB = -42.90, f'B = 5.35

A < X* < B



Iteration 3

3.0(-41.70 H- 42.90)
Z - (2.05-!.84) " 1 3 ° ° + 5 ' 3 5 " 9 ' 4 9

Q = [(9.49)2 + (13.0)(5.35)]1/2 = 12.61

Therefore,

Convergence criterion:

/'(X*) = 5.0(2.0086)4 - 15.0(2.0086)2 - 20.0 = 0.855

Assuming that this value is close to zero, we can stop the iterative process and
take

X* ~ X* = 2.0086

5.12 DIRECT ROOT METHODS

The necessary condition for/(X) to have a minimum of X* is that/'(X*) =
0. The direct root methods seek to find the root (or solution) of the equation,
/'(X) = 0. Three root-finding methods—the Newton, the quasi-Newton, and
the secant methods—are discussed in this section.

5.12.1 Newton Method

Consider the quadratic approximation of the function/(X) at X = X, using the
Taylor's series expansion:

/(X) =f(\) +/'(X1)(X - X,) + l2f"(\)(\ - X,)2 (5.63)

By setting the derivative of Eq. (5.63) equal to zero for the minimum of/(X),
we obtain

/'(X) = /'(X/) + /"(X;)(X - \) = 0 (5.64)

If X1- denotes an approximation to the minimum of/(X), Eq. (5.64) can be
rearranged to obtain an improved approximation as



Thus the Newton method, Eq. (5.65), is equivalent to using a quadratic ap-
proximation for the function/(X) and applying the necessary conditions. The
iterative process given by Eq. (5.65) can be assumed to have converged when
the derivative, /'(X/ + 0, is close to zero:

|/'(Ai+i)| ^ e (5.66)

where e is a small quantity. The convergence process of the method is shown
graphically in Fig. 5.18a.

Remarks:

1. The Newton method was originally developed by Newton for solving
nonlinear equations and later refined by Raphson, and hence the method
is also known as Newton-Raphson method in the literature of numerical
analysis.

2. The method requires both the first- and second-order derivatives of/(X).
3. If/"(X1-) = 0 [in Eq. (5.65)], the Newton iterative method has a pow-

erful (fastest) convergence property, known as quadratic convergence.^
4. If the starting point for the iterative process is not close to the true so-

lution X*, the Newton iterative process might diverge as illustrated in
Fig. 5.18*.

Example 5.12 Find the minimum of the function

/(X) = 0.65 - " ' 7 ^ 2 - °-6 5 X t a n~' \
1 + A X

using the Newton-Raphson method with the starting point X) = 0 . 1 . Use e =
0.01 in Eq. (5.66) for checking the convergence.

SOLUTION The first and second derivatives of the function/(X) are given
by

, , , . , 1.5X 0.65X n ^ _, 1
f (X) = ̂ TW + TTx* - °-65 tan x

ftw - L 5 ( 1 ~ 3^2) 0-65(1 - X2) 0.65 _ 2.8 - 3.2X2

; (A) " a + x2)3 + a + x2)2 + i + x2 " (i + x2)3

1ThC definition of quadratic convergence is given in Section 6.7.



Figure 5.18 Iterative process of Newton method: (a) convergence; (b) divergence.
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Iteration 1

X1 = 0.1, /(X1) = -0.188197, /'(X1) = -0.744832, /"(X1) = 2.68659

X ! - x ' - / w = 0377241

Convergence check: \f '(X2)I = |-0.138230| > e.

Iteration 2

/(X2) = -0.303279, /'(X2) = -0.138230, /"(X2) = 1.57296

Xj-^"7w-0-465"9

Convergence check: | / ' (X3) | = | —0.0179078) > e.

Iteration 3

/(X3) = -0.309881, /'(X3) = -0.0179078, /"(X3) = 1.17126

X4 = X3 - ^ g = 0.480409

Convergence check: 1/'(X4)I = |-O.OOO5O33| > e.
Since the process has converged, the optimum solution is taken as X* ~ X4

= 0.480409.

5.12.2 Quasi-Newton Method

If the function being minimized /(X) is not available in closed form or is
difficult to differentiate, the derivatives/'(X) and/"(X) in Eq. (5.65) can be
approximated by the finite difference formulas as

m ) . / < * - + ^ - * » . - * > ( 5 . 6 7 )
ZZlA

/''(X1) = / ^ + AX)-2 / (X , . ) + / (X , . -AX) ( 5 6 8 )

AX

where AX is a small step size. Substitution of Eqs. (5.67) and (5.68) into Eq.
(5.65) leads to

X = X - AX[/(X,+ AX) - / ( X , - AX)]
A/ +1 A/ 2[/(X1- + AX) - 2/(X1) + /(X1 - AX)] KD'W)



The iterative process indicated by Eq. (5.69) is known as the quasi-Newton
method. To test the convergence of the iterative process, the following crite-
rion can be used:

I / ' C W I - 1 / < ^ + ^ > 2 - / ^ . - ^ | £ « ( 5 . 7 0 )

where a central difference formula has been used for evaluating the derivative
of/and e is a small quantity.

Remarks:

1. The central difference formulas have been used in Eqs. (5.69) and (5.70).
However, the forward or backward difference formulas can also be used
for this purpose.

2. Equation (5.69) requires the evaluation of the function at the points
X1- + AX and \ — AX in addition to \ in each iteration.

Example 5.13 Find the minimum of the function

/(X) = 0.65 - "'7^2 - °-65X tan~! I1 H- X X

using quasi-Newton method with the starting point X1 = 0.1 and the step size
AX = 0.01 in central difference formulas. Use e = 0.01 in Eq. (5.70) for
checking the convergence.

SOLUTION
Iteration 1

X = 0.1, AX = 0.01, e = 0.01, / , = /(X1) = -0.188197,

/ + = / ( \ , H- AX) = -0.195512, / f = / ( X , - AX) = -0.180615

f+ _ f-
Convergence check: | / ' ( X 2 ) I = . A . = 0.137300 > e.

2AX

Iteration 2

/2 =/(X2) = -0.303368, /2
+ = / ( X 2 + AX) = -0.304662,

fi =/(X2 - A^) = -0.301916



^ - «%?*i%'- ° 46539°
Convergence check: \f'(\3)\ = ——r^1- = 0.017700 > e.

2AX
Iteration 3

/3 =/(X3) = -0.309885, /3
+ = / (X 3 + AX) = -0.310004,

f- = / (X 3 - AX) = -0.309650

Convergence check: 1/'(X4) =
 J \ .J 4 = 0.000350 < e.

2AX
Since the process has converged, we take the optimum solution as X* « X4

= 0.480600.

5.12.3 Secant Method

The secant method uses an equation similar to Eq. (5.64) as

/'(X) =f'(\) + S(X-X1) =0 (5.71)

where s is the slope of the line connecting the two points (A J'(A)) and
(BJ' (B)), where A and B denote two different approximations to the correct
solution, X*. The slope s can be expressed as (Fig. 5.19)

Equation (5.71) approximates the function/'(X) between A and B as a linear
equation (secant), and hence the solution of Eq. (5.71) gives the new approx-
imation to the root of/'(X) as

\ . /'(X,) f (A)(B - A)
X< + 1 = X< ~ ~T = A ~ /'(B)-T(A) (5-?3)

The iterative process given by Eq. (5.73) is known as the secant method (Fig.
5.19). Since the secant approaches the second derivative of /(X) at A as B
approaches A, the secant method can also be considered as a quasi-Newton
method. It can also be considered as a form of elimination technique since part



Figure 5.19 Iterative process of the secant method.

of the interval, (̂ 4,A/ + 1) in Fig. 5.19, is eliminated in every iteration. The
iterative process can be implemented by using the following step-by-step pro-
cedure.

1. Set X1 = A = 0 and evaluate/ '^) . The value of/'(,4) will be negative.
Assume an initial trial step length t0. Set i = 1.

2. Evaluate/'Oo).

3. If/'('o) < 0, set A = \ = to,f'(A) = ff(t0)9 new t0 = 2t0, and go to
step 2.

4. Iff (t0) > 0, set B = to,f '(B) = f'(t0), and go to step 5.
5. Find the new approximate solution of the problem as

f (A)(B - A)
X^=A-f>(B)-f>(A) ( 5 ' 7 4 )

6. Test for convergence:

1/'(X1 + 1)I < e (5.75)

Slope, s



Figure 5.20 Situation when f'A varies very slowly.

where e is a small quantity. If Eq. (5.75) is satisfied, take X* « X1 + 1

and stop the procedure. Otherwise, go to step 7.
7. If/'(X / + 1) > 0, set new B = X/ + , , / ' ( £ ) = / ' (X / + 1), / = / + 1, and

go to step 5.
8. I f / ' ( \ + l ) < 0, set new A = X1-+,,/'(^) =/ ' (X 1 + 1 U = i + 1, and

go to step 5.

Remarks:

1. The secand method is identical to assuming a linear equation for/'(X).
This implies that the original function,/(X), is approximated by a quad-
ratic equation.

2. In some cases we may encounter a situation where the function/'(X)
varies very slowly with X, as shown in Fig. 5.20. This situation can be
identified by noticing that the point B remains unaltered for several con-
secutive refits. Once such a situation is suspected, the convergence pro-
cess can be improved by taking the next value of X, + x as (A + B)Il
instead of finding its value from Eq. (5.74).

Example 5.14 Find the minimum of the function

/(X) = 0.65 - - ^ I 1 " °-65^ tan"1 \
1 + A A.

using the secant method with an initial step size of t0 = 0.1, X1 = 0.0, and
e = 0.01.



SOLUTION X1 = A = 0.0, t0 = 0.1, /''(A) = -1.02102, B = A + J0 =
0.1,/'(B) = -0.744832. Since/'(B) < 0, we set new A = OA9 f'(A) =
-0.744832, t0 = 2(0.1) = 0.2, B = X1 + t0 = 0.2, and compute / '(B) =
-0.490343. Since/'(B) < 0, we set new A = OXf(A) = -0.490343, t0

= 2(0.2) = 0.4, B = X1 + t0 = 0.4, and compute/'(B) = -0.103652. Since
/'(B) < 0, we set new A = 0.4, /''(A) = -0.103652, t0 = 2(0.4) = 0.8, B
= X1 + t0 = 0.8, and compute/'(B) = +0.180800. Since/'(B) > 0, we
proceed to find X2.

Iteration 1
Since A = X1 = 0.4, f'(A) = -0.103652, B = 0.8,/'(B) = +0.180800, we
compute

Convergence check: |/'(X2)I = |+0.0105789| > e.

Iteration 2
Since/'(X2) = +0.0105789 > 0, we set new ,4 = OA9 f'(A) = -0.103652,
B = X2 = 0.545757,/'(B) =/ ' (X2) = +0.0105789, and compute

Convergence check: | / '(X3) | = |+0.00151235| < e.
Since the process has converged, the optimum solution is given by X* «

X3 = 0.490632.

5.13 PRACTICAL CONSIDERATIONS

5.13.1 How to Make the Methods Efficient and More Reliable

In some cases, some of the interpolation methods discussed in Sections 5.10
to 5.12 may be very slow to converge, may diverge, or may predict the min-
imum of the function, /(X), outside the initial interval of uncertainty, espe-
cially when the interpolating polynomial is not representative of the variation
of the function being minimized. In such cases we can use the Fibonacci or
golden section method to find the minimum. In some problems it might prove
to be more efficient to combine several techniques. For example, the unre-
stricted search with an accelerated step size can be used to bracket the mini-
mum and then the Fibonacci or the golden section method can be used to find
the optimum point. In some cases the Fibonacci or golden section method can
be used in conjunction with an interpolation method.



5.13.2 Implementation in Multivariable Optimization Problems

As stated earlier, the one-dimensional minimization methods are useful in
multivariable optimization problems to find an improved design vector X1- + \
from the current design vector X, using the formula

X1 + 1 = Xf + XfS1- (5.76)

where S1- is the known search direction and X* is the optimal step length found
by solving the one-dimensional minimization problem as

Xf = min [/(X1 + X1-Sf)] (5.77)

X/

Here the objective function/is to be evaluated at any trial step length J0 as

f(tQ) = /(X1- + t0S() (5.78)
Similarly, the derivative of the function / with respect to X corresponding to
the trial step length t0 is to be found as

^- = SfAfIx-* (5.79)

Separate function programs or subroutines can be written conveniently to im-
plement Eqs. (5.78) to (5.79).

5.13.3 Comparison of Methods

It has been shown in Section 5.9 that the Fibonacci method is the most efficient
elimination technique in finding the minimum of a function if the initial inter-
val of uncertainty is known. In the absence of the initial interval of uncertainty,
the quadratic interpolation method or the quasi-Newton method is expected to
be more efficient when the derivatives of the function are not available. When
the first derivatives of the function being minimized are available, the cubic
interpolation method or the secant method are expected to be very efficient.
On the other hand, if both the first and second derivatives of the function are
available, the Newton method will be the most efficient one in finding the
optimal step length, X*.

In general, the efficiency and reliability of the various methods are problem
dependent and any efficient computer program must include many heuristic
additions not indicated explicitly by the method. The heuristic considerations
are needed to handle multimodal functions (functions with multiple extreme
points), sharp variations in the slopes (first derivatives) and curvatures (second
derivatives) of the function, and the effects of round-off errors resulting from



the precision used in the arithmetic operations. A comparative study of the
efficiencies of the various search methods is given in Ref. [5.10].
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REVIEW QUESTIONS

5.1 What is an one-dimensional minimization problem?

5.2 What are the limitations of classical methods in solving a one-dimen-
sional minimization problem?

5.3 What is the difference between elimination and interpolation methods?

5.4 Define Fibonacci numbers.

5.5 What is the difference between Fibonacci and golden section methods?

5.6 What is a unimodal function?

5.7 What is an interval of uncertainty?



5.8 Suggest a method of finding the minimum of a multimodal function.

5.9 What is an exhaustive search method?

5.10 What is a dichotomous search method?

5.11 Define the golden mean.

5.12 What is the difference between quadratic and cubic interpolation meth-
ods?

5.13 Why is refitting necessary in interpolation methods?

5.14 What is a regula falsi method?

5.15 What is the basis of the interval halving method?

5.16 What is the difference between Newton and quasi-Newton methods?

5.17 What is the secant method?

5.18 Answer true or false.
(a) A unimodal function cannot be discontinuous.
(b) All elimination methods assume the function to be unimodal.

(c) The golden section method is more accurate than the Fibonacci
method.

(d) Nearly 50% of the interval of uncertainty is eliminated with each
pair of experiments in the dichotomous search method.

(e) The number of experiments to be conducted is to be specified be-
forehand in both the Fibonacci and golden section methods.

PROBLEMS

5.1 Find the minimum of the function

f(x) = 0.65 - ° +
7 5

2 - 0.65JC tan"1 ^

using the following methods.

(a) Unrestricted search with a fixed step size of 0.1 from the starting
point 0.0

(b) Unrestricted search with an accelerated step size using an initial
step size of 0.1 and starting point of 0.0

(c) Exhaustive search method in the interval (0,3) to achieve an accu-
racy of within 5 % of the exact value

(d) Dichotomous search method in the interval (0,3) to achieve an ac-
curacy of within 5 % of the exact value using a value of 5 = 0.0001



(e) Interval halving method in the interval (0,3) to achieve an accuracy
of within 5 % of the exact value

5.2 Find the minimum of the function given in Problem 5.1 using the quad-
ratic interpolation method with an initial step size of 0.1.

5.3 Find the minimum of the function given in Problem 5.1 using the cubic
interpolation method with an initial step size of t0 = 0.1.

5.4 Plot the graph of the function/(JC) given in Problem 5.1 in the range
(0,3) and identify its minimum.

5.5 The shear stress induced along the z-axis when two cylinders are in
contact with each other is given by

where 2b is the width of the contact area and /?max is the maximum
pressure developed at the center of the contact area (Fig. 5.21):

/ *-* , 1--A172

I IF E1 E2 \

*-l w i i <2)

\ 4 + * I
IF

/W = ^ (3)

F is the contact force; Ex and E2 are Young's moduli of the two cyl-
inders; vx and V2 are Poisson's ratios of the two cylinders; dx and d2 the
diameters of the two cylinders, and / the axial length of contact (length
of the shorter cylinder). In many practical applications, such as roller
bearings, when the contact load (F) is large, a crack originates at the
point of maximum shear stress and propagates to the surface leading to
a fatigue failure. To locate the origin of a crack, it is necessary to find
the point at which the shear stress attains its maximum value. Show that
the problem of finding the location of the maximum shear stress for



Contact area

Figure 5.21 Contact stress between two cylinders.

P1 = P2 = 0.3 reduces to maximizing the function

/(X) = Wh ~ V r T 7 (' " TTl?) + x (4)

where/ = rzy/pmax and X = zlb.

5.6 Plot the graph of the function/(X) given by Eq. (4) in Problem 5.5 in
the range (0,3) and identify its maximum.

5.7 Find the maximum of the function given by Eq. (4) in Problem 5.5
using the following methods.
(a) Unrestricted search with a fixed step size of 0.1 from the starting

point 0.0
(b) Unrestricted search with an accelerated step size using an initial

step length of 0.1 and a starting point of 0.0
(c) Exhaustive search method in the interval (0,3) to achieve an accu-

racy of within 5 % of the exact value

m̂ax

m̂ax



(d) Dichotomous search method in the interval (0,3) to achieve an ac-
curacy of within 5 % of the exact value using a value of 8 = 0.0001

(e) Interval halving method in the interval (0,3) to achieve an accuracy
of within 5 % of the exact value

5.8 Find the maximum of the function given by Eq. (4) in Problem 5.5
using the following methods.
(a) Fibonacci method with n = 8
(b) Golden section method with n = 8

5.9 Find the maximum of the function given by Eq. (4) in Problem 5.5
using the quadratic interpolation method with an initial step length of
0.1.

5.10 Find the maximum of the function given by Eq. (4) in Problem 5.5
using the cubic interpolation method with an initial step length of t0 =
0.1.

5.11 Find the maximum of the function/(X) given by Eq. (4) in Problem
5.5 using the following methods.
(a) Newton method with the starting point 0.6
(b) Quasi-Newton method with the starting point 0.6 and a finite dif-

ference step size of 0.001
(c) Secant method with the starting point X1 = 0.0 and t0 = OA

5.12 Prove that a convex function is unimodal.

5.13 Compare the ratios of intervals of uncertainty (LJL0) obtainable in the
following methods for n = 2, 3, . . . , 10.
(a) Exhaustive search
(b) Dichotomous search with 5 = 10"4

(c) Interval halving method
(d) Fibonacci method
(e) Golden section method

5.14 Find the number of experiments to be conducted in the following meth-
ods to obtain a value of LnIL0 = 0.001.
(a) Exhaustive search
(b) Dichotomous search with 5 = 10~4

(c) Interval halving method
(d) Fibonacci method
(e) Golden section method

5.15 Find the value of x in the interval (0,1) which minimizes the function
/ = x(x - 1.5) to within ±0.05 by (a) the golden section method and
(b) the Fibonacci method.



5.16 Find the minimum of the function/ = X5 — 5X3 — 2OX + 5 by the
following methods.

(a) Unrestricted search with a fixed step size of 0.1 starting from X =
0.0

(b) Unrestricted search with accelerated step size from the initial point
0.0 with a starting step length of 0.1

(c) Exhaustive search in the interval (0,5)
(d) Dichotomous search in the interval (0,5) with 8 = 0.0001
(e) Interval halving method in the interval (0,5)
(f) Fibonacci search in the interval (0,5)
(g) Golden section method in the interval (0,5)

5.17 Find the minimum of the function/ = (X/log X) by the following meth-
ods (take the initial trial step length as 0.1).
(a) Quadratic interpolation method

(b) Cubic interpolation method

5.18 Find the minimum of the function/ = X/log X using the following meth-
ods.
(a) Newton method
(b) Quasi-Newton method
(c) Secant method

5.19 Consider the function

_ 2JC2 + 2x\ + 3*3 - 2Jc1JC2 - 2JC2JC3

i " x\ + x\ + 2Jc3
1

Substitute X = X1 +XS into this function and derive an exact formula
for the minimizing step length X*.

5.20 Minimize the function/ = Jc1 — JC2 H- 2JC2 H- 2JC1JC2 H- X\ starting from
the point X1 = I o ) along the direction S = { ~o } using the quadratic
interpolation method with an initial step length of 0.1.

5.21 Consider the problem:

Minimize/(X) = 100(JC2 - JC2)2 H - ( I - Jc1)
2

and the starting point, X1 = { " / } . Find the minimum of / (X) along
the direction, S1 = {o} using quadratic interpolation method. Use a
maximum of two refits.

5.22 Solve Problem 5.21 using the cubic interpolation method. Use a max-
imum of two refits.



5.23 Solve Problem 5.21 using the direct root method. Use a maximum of
two refits.

5.24 Solve Problem 5.21 using the Newton method. Use a maximum of two
refits.

5.25 Solve Problem 5.21 using the Fibonacci method with L0 = (0,0.1).

5.26 Write a computer program, in the form of a subroutine, to implement
the Fibonacci method.

5.27 Write a computer program, in the form of a subroutine, to implement
the golden section method.

5.28 Write a computer program, in the form of a subroutine, to implement
the quadratic interpolation method.

5.29 Write a computer program, in the form of a subroutine, to implement
the cubic interpolation method.

5.30 Write a computer program, in the form of a subroutine, to implement
the secant method.
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