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Abstract

A method for solving probabilistic linear programming problems with exponential random variables is presented in

this paper. Assuming that either some or all of the parameters are exponential random variables a transformation is

presented to convert the probabilistic linear programming problem to a deterministic mathematical programming

problem. A non-linear programming algorithm can then be used to solve the resulting deterministic problem. Ó 1998
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1. Introduction

Charnes and Cooper [1,2] ®rst introduced chance constrained programming model which is also known

as probabilistic programming. They suggested three models that have di�erent objective functions and

probabilistic types of constraints, a model that maximizes the expected value of the objective function (the

E-model), a model that minimizes the generalized mean square of the objective function (the V-model), and

a model that maximizes the probability of exceeding an aspiration level of the objective function (the P-

model). In the literature of the stochastic linear programming [3,4], various models have been suggested by

several researchers. A bibliography has been presented by Stancu-Minasian and Wets [5]. Most of the

probabilistic models assume normal distribution for model coe�cients. Goicoechea and Duckstein [6]
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presented some deterministic equivalents for some probabilistic programming with non-normal distribu-

tions.

In this paper we investigate a probabilistic linear programming problem with exponential random

variables. A mathematical model of a probabilistic linear programming problem can be presented as fol-

lows:

max: Z �
X

n

j�1

cjxj �1�

s:t: Prob
X

n

j�1

aijxj 6 bi

 !

P 1ÿ ai; i � 1; 2; . . . ;m; �2�

xjP 0; j � 1; 2; . . . ; n; �3�

where 0 < ai < 1 and is a given constant. It is assumed that aij and cj are independent exponential random

variables with known distributions for i � 1; 2; . . . ;m and j � 1; 2; . . . ; n: The results in this paper can be

readily extended to situations where bi's are also exponential random variables [7]. Goicoechea et al. [8]

presented a probabilistic model involving only two independent exponential random parameters. The main

aim of the paper is to present a solution scheme for general probabilistic linear programming problems

involving independent exponential random variables in the probabilistic constraints. At ®rst we ®nd the

probability density function (p.d.f.) of the linear combination of n independent exponential random

variables. Then using the p.d.f., the probabilistic constraints are transformed to the deterministic con-

straints. The resulting equivalent non-linear deterministic model can be then solved by some suitable non-

linear programming solution scheme [9].

2. Probability distribution of Yi � +
n

j�1
aijxj and the deterministic forms of the probabilistic constraints

In this section we present the p.d.f. of the random variable Yi �
Pn

j�1 aijxj, where aij, j � 1; 2; . . . ; n, are
independent exponential random variables with known means and xj; j � 1; 2; . . . ; n, are some scalar

quantities. Then we can use it to ®nd a deterministic form of the probabilistic constraint in a probabilistic

linear programming problem. The density function of Yi and the proof for general situations will be pre-

sented at the end of this section after we study the special cases with n � 2 and n � 3.

We start by considering a mathematical model where only two random variables are involved. The ith

probabilistic constraint can be stated explicitly as

Prob�ai1x1 � ai2x2 6 bi�P 1ÿ ai; i � 1; 2; . . . ;m; �4�

where ai1 and ai2 are the two independent exponential random variables with known means. The joint

probability density function of ai1 and ai2 can be stated as

fi�ai1; ai2� �
ki1ki2e

ÿai1ki1ÿai2ki2 ; ai1; ai2 > 0

0; elsewhere;

(

�5�

where E�ai1�� 1/ki1 and E�ai2�� 1/ki2, ki1, ki2 > 0. The cumulative density function (c.d.f.) of the random

variable Yi � ai1x1 � ai2x2 can be computed as
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Gi�yi� �

Z

yi=x2

ai2�0

Z

�yiÿai2x2�=x1

ai1�0

ki1ki2e
ÿai1ki1ÿai2ki2 dai1 dai2: �6�

After the integration the above integral can be simpli®ed as

Gi�yi� � 1�
x1ki2e

ÿyiki1=x1

x2ki1 ÿ x1ki2
ÿ eÿyiki2=x2 ÿ

x1ki2e
ÿyiki2=x2

x2ki1 ÿ x1ki2
: �7�

Di�erentiating both sides of (7) with respect to yi the p.d.f. of Yi can be obtained as

gi�yi� �
ki1ki2e

ÿyiki1=x1

x1ki2ÿx2ki1
� ki1ki2e

ÿyiki2=x2

x2ki1ÿx1ki2
; if yi > 0;

0; elsewhere:

(

�8�

Hence the ith probabilistic constraint can be made a deterministic constraint by integrating the p.d.f. of Yi
as stated below

Z

bi

0

gi�yi�dyiP 1ÿ ai; i � 1; 2; . . . ;m: �9�

This can be further simpli®ed as follows (see [3]):

ki1ki2
x1e

ÿbiki1=x1

ki1�x1ki2 ÿ x2ki1�
�

x2e
ÿbiki2=x2

ki2�x2ki1 ÿ x1ki2�

� �

6 ai; i � 1; 2; . . . ;m: �10�

We now consider a probabilistic constraint involving three random variables. The ith probabilistic

constraint involving three random variables can be presented as

Prob
X

3

j�1

aijxj 6 bi

 !

P 1ÿ ai; i � 1; 2; . . . ;m; �11�

where ai1, ai2 and ai3 are three independent exponential random variables with known means. The joint

p.d.f. of ai1, ai2 and ai3 can be stated as

gi�ai1; ai2; ai3� �
ki1ki2ki3e

ÿai1ki1ÿai2ki2ÿai3ki3 ; ai1; ai2; ai3 > 0;

0; elsewhere;

(

�12�

where E�ai1� � 1=ki1, E�ai2� � 1=ki2 and E�ai3� � 1=ki3, ki1; ki2; ki3 > 0. The c.d.f. of the random variable

Yi � ai1x1 � ai2x2 � ai3x3 can be computed as

Gi�yi� �

Z

yi=x3

ai3�0

Z

�yiÿai3x3�=x2

ai2�0

Z

�yiÿai2x2ÿai3x3�=x1

ai1�0

ki1ki2ki3e
ÿai1ki1ÿai2ki2ÿai3ki3 dai1 dai2 dai3: �13�

After integrating the above integral, the c.d.f. of Yi can be obtained as
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Gi�yi� � 1ÿ eÿyiki3=x3 �
x2ki3

x3ki2 ÿ x2ki3
eÿyiki2=x2 ÿ

x2ki3

x3ki2 ÿ x2ki3
eÿyiki3=x3

�
x21ki2ki3

�x2ki1 ÿ x1ki2��x3ki1 ÿ x1ki3�
eÿyiki3=x3 ÿ

x21ki2ki3

�x2ki1 ÿ x1ki2��x3ki1 ÿ x1ki3�
eÿki1yi=x1

�
x1x2ki2ki3

�x2ki1 ÿ x1ki2��x3ki2 ÿ x2ki3�
eÿki2yi=x2 ÿ

x1x2ki2ki3

�x2ki1 ÿ x1ki2��x3ki2 ÿ x2ki3�
eÿki3yi=x3 : �14�

Di�erentiating the c.d.f. with respect to yi the p.d.f. of Yi can be obtained as

gi�yi� � ki1ki2ki3
x1e

ÿki1yi=x1

�x1ki2 ÿ x2ki1��x1ki3 ÿ x3ki1�
�

x2e
ÿki2yi=x2

�x2ki1 ÿ x1ki2��x2ki3 ÿ x3ki2�

�

�
x3e

ÿki3yi=x3

�x3ki1 ÿ x1ki3��x3ki2 ÿ x2ki3�

�

if yi > 0: �15�

Hence the ith probabilistic constraint can be converted to a deterministic constraint by integrating the p.d.f.

gi�yi� as follows:

Z

bi

0

gi�yi�dyiP 1ÿ ai; i � 1; 2; . . . ;m: �16�

This can be simpli®ed as follows:

ki1ki2ki3
x21e

ÿki1bi=x1

ki1�x1ki2 ÿ x2ki1��x1ki3 ÿ x3ki1�
�

x22e
ÿki2bi=x2

ki2�x2ki1 ÿ x1ki2��x2ki3 ÿ x3ki2�

�

�
x23e

ÿki3bi=x3

ki3�x3ki1 ÿ x1ki3��x3ki2 ÿ x2ki3�

�

6 ai; i � 1; 2; . . . ;m: �17�

Finally, we generalize the result for n number of random variables by using mathematical induction.

Theorem 1. If aij; j � 1; 2; . . . ; n, are independent exponential random variables with known means, then for

some scalars xj; j � 1; 2; . . . ; n, the probability density function of the random variable Yi �
Pn

j�1 aijxj is given

by

gi�yi� �
Y

n

j�1

kij

X

n

k�1

xnÿ2
k eÿkikyi=xk

Qn
l�1
l 6�k

�xkkil ÿ xlkik�

" #

if yi > 0; �18�

where E�aij� � 1=kij; kij > 0; j � 1; 2; . . . ; n.

Proof. The method of induction is used to prove Theorem 1. For n � 1, Yi � ai1x1. If we set n � 1 in

Eq. (18), then we ®nd the p.d.f. of Yi as:

gi�yi� �
k1

x1
eÿk1yi=x1 ; yi > 0; �19�

which is true for n � 1. For n � 2, Yi � ai1x1 � ai2x2. If we set n � 2 in Eq. (18), then we ®nd the p.d.f. of Yi
as
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gi�yi� �
ki1ki2e

ÿyiki1=x1

x1ki2ÿx2ki1
� ki1ki2e

ÿyiki2=x2

x2ki1ÿx1ki2
; if yi > 0;

0; elsewhere

(

�20�

which is also proven in Eq. (8). We further assume that the result is true for n � s, i.e., the p.d.f. of

Yi �
Ps

j�1 aijxj is given by

gi�yi� �
Y

s

j�1

kij

X

s

k�1

xsÿ2
k eÿkikyi=xk

Qs
l�1
l 6�k

�xkkil ÿ xlkik�

" #

if yi > 0: �21�

Finally, it is necessary to prove that the result is true for n � s� 1. This can be proved as follows: Let

Yi �
Ps�1

j�1 aijxj � a� ai;s�1xs�1, where the p.d.f. of a �
Ps

j�1 aijxj and ai;s�1 are given by g�a� and f �ai;s�1�,
respectively as:

g�a� �
Y

s

j�1

kij

X

s

k�1

xsÿ2
k eÿkika=xk

Qs
l�1
l 6�k
�xkkil ÿ xlkik�

" #

if a > 0; �22�

f �ai;s�1� �
ki;s�1e

ÿai;s�1ki;s�1 ; ai;s�1 > 0;

0; elsewhere:

(

�23�

The c.d.f. of the random variable Yi � a� ai;s�1xs�1 is given by:

Gi�yi� �

Z

yi=xs�1

ai;s�1�0

Z

yiÿai;s�1xs�1

a�0

g�a�f �ai;s�1�dadai;s�1 �24�

or

Gi�yi� �

Z

yi=xs�1

ai;s�1�0

Z

yiÿai;s�1xs�1

a�0

Y

s�1

j�1

kij

 !

eÿai;s�1ki;s�1 �
X

s

k�1

xsÿ2
k eÿkika=xk

Qs
l�1
l 6�k

�xkkil ÿ xlkik�

" #

dadai;s�1 �25�

or

Gi�yi� �

Z

yi=xs�1

ai;s�1�0

Y

s�1

j�1

kij

X

s

k�1

xsÿ1
k eÿki;s�1ai;s�1 ÿ exp ÿkikyi

xk
ÿ ai;s�1�

xkki;s�1ÿxs�1kik

xk
�

n o� �

kik
Qs

l�1
l 6�k
�xkkil ÿ xlkik�

2

4

3

5dai;s�1 �26�

or

Gi�yi� �
Y

s�1

j�1

kij

X

s

k�1

xsÿ1
k �1ÿ eÿki;s�1yi=xs�1�

kikki;s�1

Qs
l�1
l 6�k
�xkkil ÿ xlkik�

ÿ
xsk�e

ÿkikyi=xk ÿ eÿki;s�1yi=xs�1�

kik
Qs

l�1
l 6�k
�xkkil ÿ xlkik�

" #( )

: �27�

Di�erentiating Gi�yi� with respect to yi the p.d.f. of the Yi can be obtained as
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gi�yi� �
Y

s�1

j�1

kij

X

s�1

k�1

xsÿ1
k eÿkikyi=xk

Qs�1
l�1
l 6�k

�xkkil ÿ xlkik�

2

4

3

5 if yi > 0: �28�

This completes the proof. �

As a special case if we assume Yi � ai1 � ai2, where ai1 and ai2 are the two independent exponential

random variables with E�ai1� � E�ai2� � 1=ki, then the random variable Yi can be proven to follow a

gamma distribution. If we set ki1 � ki2 � ki in Eq. (8) we ®nd

gi�yi� �
kie

ÿyiki=x1

x1 ÿ x2
�
kie

ÿyiki=x2

x2 ÿ x1
�29�

or

gi�yi� �
ki

x1 ÿ x2
1ÿ

yiki

x1
�
y2i k

2
i

2!x21
ÿ � � �

 !

ÿ 1ÿ
yiki

x2
�
y2i k

2
i

2!x22
ÿ � � �

 !( )

�30�

or

gi�yi� �
k
2
i yi

�x1 ÿ x2�

�x1 ÿ x2�

x1x2
ÿ
yiki�x

2
1 ÿ x22�

2!x21x
2
2

�
y2i k

2
i �x

3
1 ÿ x32�

3!x31x
3
2

ÿ � � �

( )

: �31�

After cancelling �x1 ÿ x2� from the numerator and denominator and setting x1 � x2 � 1 we ®nd the p.d.f. of

Yi � ai1 � ai2 as:

gi�yi� � k
2
i yi 1ÿ

kiyi

1!
�
k
2
i y

2
i

2!
ÿ � � �

 !

; yi > 0; �32�

or

gi�yi� � k
2
i yie

ÿkiyi ; yi > 0: �33�

Now it is clear that Yi � ai1 � ai2 follows gamma distribution.

For general case the mean and the variance of the random variable Yi can be obtained by using the

properties of the independent random variables as

E�Yi� �
X

n

j�1

xj=kij; �34�

Var�Yi� �
X

n

j�1

x2j=k
2
ij: �35�

Using the p.d.f. of Yi as stated in Eq. (18) again the mean and the variance of Yi can be computed as given in

Eqs. (34) and (35), respectively.

Finally, for the general case a deterministic constraint can be obtained by integrating the p.d.f. of Yi as

stated below
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Z

bi

0

gi�yi�dyiP 1ÿ ai; i � 1; 2; . . . ;m: �36�

The above integral can be simpli®ed as follows:

Y

n

j�1

kij

X

n

k�1

xnÿ1
k eÿkikbi=xk

kik
Qn

l�1
l 6�k
�xkkil ÿ xlkik�

" #

6 ai; i � 1; 2; . . . ;m: �37�

3. Deterministic model of the probabilistic linear programming problem

If we assume aij, and cj are independent exponential random variables with known distributions, then

the probabilistic linear programming model as stated in Eqs. (1)±(3) can be transformed to a deterministic

non-linear programming problem as

max: E�Z� �
X

n

j�1

E�cj�xj �38�

s:t:
Y

n

j�1

kij

X

n

k�1

xnÿ1
k eÿkikbi=xk

kik
Qn

l�1
l 6�k
�xkkil ÿ xlkik�

" #

6 ai; i � 1; 2; . . . ;m; �39�

xjP 0; j � 1; 2; . . . ; n: �40�

In this section one numerical example is presented to illustrate the methodology.

Example 1.

max: Z � c1x1 � c2x2 � c3x3 �41�

s:t Prob�a11x1 � a12x2 � a13x3 6 10�P 0:95; �42�

Prob�a21x1 � a22x2 � a23x3 6 20�P 0:90; �43�

x1; x2; x3P 0: �44�

In the above numerical example aij and cj are independent exponential random variables with known

means

E�a11� � 5; E�a12� � 4; E�a13� � 8; E�a21� � 10; E�a22� � 2; E�a23� � 20;

E�c1� � 5; E�c2� � 6; E�c3� � 3; b1 � 10; b2 � 20; a1 � 0:05; a2 � 0:10:

The deterministic model can be obtained using Eqs. (38)±(40) as

max: E�Z� � 5x1 � 6x2 � 3x3 �45�
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s:t:
0:03125x21e

ÿ2=x1

�0:25x1 ÿ 0:2x2��0:125x1 ÿ 0:2x3�
�

0:025x22e
ÿ2:5=x2

�0:2x2 ÿ 0:25x1��0:125x2 ÿ 0:25x3�

�
0:05x23e

ÿ1:25=x3

�0:2x3 ÿ 0:125x1��0:25x3 ÿ 0:125x2�
6 0:05; �46�

0:025x21e
ÿ2=x1

�0:5x1 ÿ 0:1x2��0:05x1 ÿ 0:1x3�
�

0:005x22e
ÿ10=x2

�0:1x2 ÿ 0:5x1��0:05x2 ÿ 0:5x3�

�
0:05x23e

ÿ1=x3

�0:1x3 ÿ 0:05x1��0:5x3 ÿ 0:05x2�
6 0:10; �47�

x1; x2; x3P 0: �48�

The above deterministic problem is solved by using GINO package [9] and the optimal solution is obtained

as

x1 � 0:001177; x2 � 0:346094; x3 � 0:000010; and E�Z� � 2:082476:

4. Conclusions

In this paper we have established the p.d.f. of the random variable Yi �
Pn

j�1 aijxj, where aij are inde-

pendent exponential random variables with known means. Then using the derived p.d.f. a probabilistic

linear programming problem can be transformed into a deterministic non-linear programming problem.

The result in this paper has generalized the existing literature to cases with n independent exponential

random variables. If there are multiple objective functions present in the probabilistic model, some ex-

tensions can be easily done by using the deterministic model. To solve the multi-objective deterministic

problem we may use either non-inferior solution methodology [10] or fuzzy programming approach [11,12].

We may apply the fuzzy programming approach to obtain the optimal compromise solution. If the pa-

rameter bi is the only exponential random variable in a probabilistic constraint, by integrating the prob-

ability density function of bi the deterministic model can be obtained for a probabilistic linear programming

problem [7]. For situations where all the aij and bi are exponential random variables in a probabilistic

constraint with known means, then the p.d.f. of Yi �
Pn

j�1 aijxj ÿ bi need to be obtained and the deter-

ministic model need to be established.
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