Linear Programming,
1: Introduction

George B. Dantzig
Mukund N. Thapa

Springer

Springer Series in Operations Research

Editor:
Peter Glynn

Springer
New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan

Paris

Santa Clara
Singapore
Tokyo

Springer Series in Operations Research

Altiok: Performance Analysis of Manufacturing Systems

Dantzig and Thapa: Linear Programming 1: Introduction

Drezner (Editor): Facility Location: A Survey of Applications
and Methods

Fishman: Monte Carlo: Concepts, Algorithms, and Applications

Olson: Decision Aids for Selection Problems

Yao (Editor): Stochastic Modeling and Analysis of Manufacturing
Systems

George B. Dantzig Mukund N. Thapa

Linear Programming

1: Introduction

With 87 Ilustrations

£)) Springer

George B. Dantzig-

Professor of Operations Research
and Computer Science

Department of Operations Research

Stanford University

Stanford, CA 94305

USA

Series Editor:

Peter Glynn

Department of Operations Research
Stanford University

Stanford, CA 94305

USA

Mukund N. Thapa

President

Stanford Business Software, Inc.

Suite 304

2680 Bayshore Parkway

Mountain View, CA 94043

and

Consulting Professor of Operations
Research

Stanford University

Stanford, CA 94305

USA

Library of Congress Cataloging-in-Publication Data

Dantzig, George Bernard, 1914-

Linear programming 1 : introduction / George B. Dantzig

& Mukund N. Thapa.

p. c¢m. — (Springer series in operations research)
Includes bibliographical references and index.
ISBN (-387-94833-3 (hardcover : alk. paper)
1. Linear programming. I. Thapa, Mukund Narain-Dhami. II. Title.

111. Series.
T57.74.D365 1997
619.7'2—dc20

96-36411

© 1997 George B. Dantzig and Mukund N. Thapa

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar

or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the

Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN 0-387-94833-3 Springer-Verlag New York Berlin Heidelberg SPIN 10523424

ABOUT THE AUTHORS

George B. Dantzig received the National Medal of Science from the President
of the United States “for inventing Linear Programming and for discovering the
Simplex Algorithm that led to wide-scale scientific and technical applications to
important problems in logistics, scheduling, and network optimization, and to the
use of computers in making efficient use of the mathematical theory.” He is world fa-
mous for his twin discoveries; linear programming and the Simplex Algorithm, which
together have enabled mankind for the first time to structure and solve extremely
complex optimal allocation and resource problems. Among his other discoveries
are the Decomposition Principle (with Philip Wolfe) which makes it possible to de-
compose and solve extremely large linear programs having special structures, and
applications of these techniques with sampling to solving practical problems subject
to uncertainty.

Since its discovery in 1947, the field of linear programming, together with its
extensions (mathematical programming), has grown by leaps and bounds and is
today the most widely used tool in industry for planning and scheduling.

George Dantzig received his master’s from Michigan and his doctorate in math-
ematics from Berkeley in 1946. He worked for the U.S. Bureau of Labor Statistics,
served as chief of the Combat Analysts Branch for USAF Headquarters during
World War II, research mathematician for RAND Corporation, and professor and
head of the Operations Research Center at the University of California, Berkeley.
He is currently professor of operations research and computer science at Stanford
University. He served as director of the System Optimization Laboratory and the
PILOT Energy-Economic Model Project. Professor Dantzig’s seminal work has laid
the foundation for the field of systems engineering, which is widely used in network
design and component design in computer, mechanical, and electrical engineering.
His work inspired the formation of the Mathematical Programming Society, a major
section of the Society of Industrial and Applied Mathematics, and numerous pro-
fessional and academic bodies. Generations of Professor Dantzig’s students have
become leaders in industry and academia.

He is a member of the prestigious National Academy of Science, the American
Academy of Arts and Sciences, and the National Academy of Engineering.

vi About the Authors

Mukund N. Thapa is the president of Stanford Business Software, Inc., as well as
a consulting professor of operations research at Stanford University. He received a
bachelor of technology degree in metallurgical engineering from the Indian Institute
of Technology, Bombay, and M.S. and Ph.D. degrees in operations research from
Stanford University. His Ph.D. thesis was concerned with developing specialized
algorithms for solving large-scale unconstrained nonlinear minimization problems.
By profession he is a software developer who produces commercial software prod-
ucts as well as commercial-quality custom software. Since 1978, Dr. Thapa has
been applying the theory of operations research, statistics, and computer science to
develop efficient, practical, and usable solutions to a variety of problems.

At Stanford Business Software, Dr. Thapa, ensures that the company produces
high-quality turnkey software for clients. His expert knowledge of user-friendly
interfaces, data bases, computer science, and modular software design plays an
important role in making the software practical and robust. His speciality is the
application of numerical analysis methodology to solve mathematical optimization
problems. He is also an experienced modeler who is often asked by clients to consult,
prepare analyses, and to write position papers. At the Department of Operations
Research, Dr. Thapa teaches graduate-level courses in mathematical programming
computation and numerical methods of linear programming.

TO

Tobias and Anja Dantzig, my parents, in memoriam,
Anne S. Dantzig, my wife, and to
the great pioneers who made this field possible:
Wassily Leontief, Tjalling Koopmans, John von Neumann,
Albert Tucker, William Orchard-Hays, Martin Beale.

— George B. Dantzig

Devi Thapa and Narain S. Thapa, my parents,
and Radhika H. Thapa, my wife.

— Mukund N. Thapa

This page intentionally left blank

Contents

FOREWORD
PREFACE
DEFINITION OF SYMBOLS

1 THE LINEAR PROGRAMMING PROBLEM

1.1 SOME SIMPLE EXAMPLES
1.2 MATHEMATICAL STATEMENT
1.3 FORMULATING LINEAR PROGRAMS
1.3.1 The Column (Recipe/Activity) Approach
1.3.2 The Row (Material Balance) Approach
1.4 EXAMPLES OF MODEL FORMULATION

1.4.1 Product Mix Problem (Column Approach)

1.4.2 Product Mix Problem (Row Approach)
1.4.3 A Simple Warehouse Problem
1.4.4 On-the-Job Training
1.5 BOUNDS
1.6 AXIOMS
1.7 NOTES & SELECTED BIBLIOGRAPHY
1.8 PROBLEMS

2 SOLVING SIMPLE LINEAR PROGRAMS

2.1 TWO-VARIABLE PROBLEM
2.2 TWO-EQUATION PROBLEM
2.2.1 Graphical Solution
2.2.2 The Dual Linear Program
2.3 FOURIER-MOTZKIN ELIMINATION
2.3.1 Illustration of the FME Process

2.3.2 The Fourier-Motzkin Elimination Algorithm

2.3.3 Fourier-Motzkin Elimination Theory
2.4 INFEASIBILITY THEOREM
2.5 NOTES & SELECTED BIBLIOGRAPHY

xxi

xXxxiii

xxxvii

CONTENTS

2.6 PROBLEMS i 54
THE SIMPLEX METHOD 63
3.1 GRAPHICAL ILLUSTRATION 64
3.2 THE SIMPLEX ALGORITHM 64
3.2.1 Canonical Form and Basic Variables 64
3.2.2 Improving a Nonoptimal Basic Feasible Solution 68
3.2.3 The Simplex Algorithm, 71
3.2.4 Theory Behind the Simplex Algorithm 73
3.3 SIMPLEX METHOD 76
3.3.1 The Method 7
3.3.2 Phase I/Phase IT Algorithm 78
3.3.3 Theory Behind PhaseI 81
3.4 BOUNDED VARIABLES 83
3.5 REVISED SIMPLEX METHOD 89
3.5.1 Motivation Lo 89
3.5.2 Revised Simplex Method Illustrated 92
3.5.3 Revised Simplex Algorithm 93
3.5.4 Computational Remarks 96
3.6 NOTES & SELECTED BIBLIOGRAPHY 97
3.7 PROBLEMS e 98
INTERIOR-POINT METHODS 113
4.1 BASIC CONCEPTS e 115
4.2 PRIMAL AFFINE / DIKIN'S METHOD 118
4.3 INITIAL SOLUTION 121
4.4 NOTES & SELECTED BIBLIOGRAPHY 122
4.5 PROBLEMS e 124
DUALITY 129
5.1 DUAL AND PRIMAL PROBLEMS 129
5.1.1 Von Neumann Symmetric Form 129
5.1.2 Tucker Diagram 130
5.1.3 Duals of Mixed Systems 130
5.1.4 The Dual of the Standard Form 132
5.1.5 Primal-Dual Feasible-Infeasible Cases 133
5.2 DUALITY THEOREMS 134
5.3 COMPLEMENTARY SLACKNESS 135
54 OBTAINING A DUAL SOLUTION 136
5.5 NOTES & SELECTED BIBLIOGRAPHY 138
5.6 PROBLEMS 139

CONTENTS xi

6 EQUIVALENT FORMULATIONS 145
6.1 RESTRICTED VARIABLES 145
6.2 UNRESTRICTED (FREE) VARIABLES 146
6.3 ABSOLUTE VALUES 147
6.4 GOAL PROGRAMMING 150
6.5 MINIMIZING THE MAXIMUM OF LINEAR FUNCTIONS 152
6.6 CURVE FITTING e 154
6.7 PIECEWISE LINEAR APPROXIMATIONS 157

6.7.1 Convex/Concave Functions 157
6.7.2 Piecewise Continuous Linear Functions 159
6.7.3 Separable Piecewise Continuous Linear Functions 160
6.8 NOTES & SELECTED BIBLIOGRAPHY 162
6.9 PROBLEMS 162

7 PRICE MECHANISM AND SENSITIVITY ANALYSIS 171

7.1 THE PRICE MECHANISM OF THE SIMPLEX METHOD 172
7.1.1 Marginal Values or Shadow Prices 173
7.1.2 Economic Interpretation of the Simplex Method 174
7.1.3 The Manager of a Machine Tool Plant 175
7.1.4 The Ambitious Industrialist 181
7.1.5 Sign Convention on Prices 183

7.2 INTRODUCING A NEW VARIABLE 184

7.3 INTRODUCING A NEW CONSTRAINT 186

7.4 COST RANGING e 188

7.5 CHANGES IN THE RIGHT-HAND SIDE 190

7.6 CHANGES IN THE COEFFICIENT MATRIX 192

7.7 THE SUBSTITUTION EFFECT OF NONBASIC ACTIVITIES ON
BASIC ACTIVITIES e 198

7.8 NOTES AND SELECTED BIBLIOGRAPHY 199

7.9 PROBLEMS 199

8 TRANSPORTATION AND ASSIGNMENT PROBLEM 205

8.1 THE CLASSICAL TRANSPORTATION PROBLEM 205
8.1.1 Mathematical Statement 206
8.1.2 Properties of the System 206

8.2 STANDARD TRANSPORTATION ARRAY 212

8.3 FINDING AN INITTIAL SOLUTION 214
8.3.1 Triangularity Rule 214
8.3.2 The Least Remaining Cost Rule 217
8.3.3 Vogel’s Approximation Method 217
8.3.4 Russel’s Approximation Method 218
8.3.5 Cost Preprocessing 219

8.4 FAST SIMPLEX ALGORITHM FOR THE TRANSPORTATION
PROBLEM 222

8.4.1 Simplex Multipliers, Optimality, and the Dual 222

xii CONTENTS
8.4.2 Finding a Better Basic Solution 224
8.4.3 Illustration of the Solution Process 225

8.5 THE ASSIGNMENT PROBLEM 229
8.6 EXCESS AND SHORTAGE 233
8.6.1 Mathematical Statement 234
8.6.2 Properties of the System 236
8.6.3 Conversion to the Classical Form 236
8.6.4 Simplex Multipliers and Reduced Costs 238

8.7 PRE-FIXED VALUES AND INADMISSIBLE SQUARES 239
8.8 THE CAPACITATED TRANSPORTATION PROBLEM 240
8.9 NOTES & SELECTED BIBLIOGRAPHY 244
8.10 PROBLEMS 245
9 NETWORK FLOW THEORY 253
9.1 TERMINOLOGY e 253
9.2 FLOWS AND ARC-CAPACITIES 258
9.3 AUGMENTING PATH ALGORITHM FOR MAXIMAL FLOW . . 262
9.4 CUTSIN ANETWORK 275
9.5 SHORTEST ROUTE. 277
9.6 MINIMAL SPANNING TREE 282
9.7 MINIMUM COST-FLOW PROBLEM 286
9.8 THE NETWORK SIMPLEX METHOD 288
9.9 THE BOUNDED VARIABLE PROBLEM 299
9.10 NOTES & SELECTED BIBLIOGRAPHY 301
9.11 PROBLEMS 304
A LINEAR ALGEBRA 315
A.1 SCALARS, VECTORS, AND MATRICES 315
A.2 ARITHMETIC OPERATIONS WITH VECTORS AND MATRICES 317
A3 LINEAR INDEPENDENCE 320
A4 ORTHOGONALITY e 321
A5 NORMS e 321
A6 VECTORSPACES e 324
A7 RANK OF A MATRIX e 326
A.8 MATRICES WITH SPECIAL STRUCTURE 326
A9 INVERSE OF A MATRIX 329
A.10 INVERSES OF SPECIAL MATRICES 330
A 11 DETERMINANTS e 331
A 12 EIGENVALUES e 333
A 13 POSITIVE-DEFINITENESS 336
A.14 NOTES & SELECTED BIBLIOGRAPHY 337

A15PROBLEMS 337

CONTENTS xiii

B LINEAR EQUATIONS 341
B.1 SOLUTION SETS e 341
B.2 SYSTEMS OF EQUATIONS WITH THE SAME SOLUTION SETS 343
B.3 HOW SYSTEMS ARE SOLVED 345
B.4 ELEMENTARY OPERATIONS 346
B.5 CANONICAL FORMS, PIVOTING, AND SOLUTIONS 349
B.6 PIVOT THEORY 354
B.7 NOTES & SELECTED BIBLIOGRAPHY 357
B.8 PROBLEMS e 357

REFERENCES 361

This page intentionally left blank

List of Figures

1-1 Manufacturing Activity 1 oL o 13
1-2 Slack Activity 5. oL 14
1-3 Input-Output Characteristics for the Warehouse Problem 17
1-4 Activities for the On-the-Job Training Problem 19
2-1 Graphical Solution of a Two-Variable LP 36
2-2 Graphical Solution of the Product Mix Problem 40
2-3 Optimality Check—The Product Mix Problem 42
3-1 Graphical Solution of a Two-Variable LP 65
4-1 Comparison of a Move from a Point £! Near the Center Versus a
Point Z' Near the Boundary. 115
5-1 TIllustration of the Duality Gap 135
6-1 Absolute Value Function 147
6-2 Examples of Convex and General Functions 158
6-3 Piecewise Continuous Linear Functions 159
6-4 Purchase Price of Raw Milk in Region A 166
6-5 Separation of Region A Milk 167
6-6 Purchase Price of Raw Milk in Region B 167
6-7 Separation of Region B Milk 168
8-1 Network Representation of the Transportation Problem 207
8-2 Illustration of the Basis Triangularity Theorem 211
8-3 Example of a Standard Transportation Array 213
8-4 Transportation Array Example 214
8-5 Buy from the Cheapest Source 215
8-6 Illustration of the Triangularity Rule 216
8-7 Tllustration of the Northwest Corner Rule 217
8-8 Illustration of the Least Remaining Cost Rule 218
8-9 Illustration of Vogel’s Approximation Method 219
8-10 Illustration of Russel’s Approximation Method 220
8-11 Cost Preprocessingo 221

XV

xvi FIGURES
8-12 Theta-Adjustments for the Standard Transportation Array 222
8-13 Hitchcock Transportation Problem 226
8-14 Simplex Algorithm on the Prototype Transportation Problem 227
8-15 Compact Representation of an Assignment Problem 230
8-16 Training Cost Data for Assigning Employees to Tasks 231
8-17 Initial Solution to an Assignment Problem by Vogel’s Method 231
8-18 Training Cost Data for Assigning 3 Employees to 4 Tasks 232
8-19 Modified Training Cost Data for Assigning 3 Employees to 4 Tasks . 233
8-20 Transportation Problem with Inequalities 234
8-21 Transportation Problem with Row and Column Slacks 235
8-22 Equivalent Classical Transportation Model 238
8-23 Capacitated Transportation Problem 241
8-24 Capacitated Transportation Problem Example 241
8-25 Initial Solution of a Capacitated Transportation Problem 242
8-26 Solution of a Capacitated Transportation Problem 243
8-27 Allocation of Receivers to Transmitters 250
9-1 A Simple Directed Network 254
9-2 A Path, Chain, Circuit, and Cycle 256
9-3 ATree o o 258
9-4 A Simple Directed Network with Arc-Capacities 259
9-5 Exogenous Flow Balance 260
9-6 Chain Flow, 6 Path Flow, #-Flow Augmentation 262
9-7 Decomposition of Flow in Figure 9-5 263
9-8 Augmentation Not Possible 264
9-9 Finding an Improved Flow 265
9-10 Construction of an Adjusted-Capacity Network 267
9-11 Mlustration of the Augmenting Path Algorithm to Find Maximal Flow268
9-12 Large Number of Iterations of Algorithm 9.1 270
9-13 Infinite Number of Iterations of Algorithm 9.1 271
9-14 Augmenting Path Algorithm with Breadth-First Unblocked Search . 273
9-15 Mlustration of Min-Cut = Max-Flow 276
9-16 Another Example of the Max-Flow Algorithm 278
9-17 Max-Flow Min-Cut Solution 279
9-18 Mlustration of Dijkstra’s Shortest Route Algorithm 280
9-19 Minimal Spanning Tree Example 283
9-20 Mlustration of Minimal Spanning Tree Algorithm 284
9-21 Disconnecting an Arc of 7 Results in Two Trees: 7 and T 286
9-22 Example of a Minimum Cost-Flow Problem 289
9-23 Rooted Spanning Tree 290
9-24 Computation of Flow Values from the End Nodes Towards the Root 292
9-25 Computation of Simplex Multipliers 7 from the Root 293
9-26 Adjustment of Flow Values Around a Cycle 295
9-27 Adjustment of Simplex Multipliers © 297
9-28 Converting Finite Upper Bounds to +0c0 300

9-29
9-30
9-31
9-32
9-33
9-34
9-35
9-36
9-37
9-38
9-39
9-40
9-41
9-42

A-1

Converting Finite Upper Bounds to +o00 in a Small Network 302
Data for a Maximal Flow Problem 305
Data for a Maximal Flow Problem 305
Data for a Maximal Flow Problem 305
Data for a Maximal Flow Problem 306
Data for a Maximal Flow Problem 307
Data for a Shortest Route Problem 307
Shortest Route from Los Angeles to Boston 308
Data for a Shortest Route Problem 308
Data for a Minimal Spanning Tree Problem 309
Data for a Minimal Spanning Tree Problem 309
Data for a Minimum Cost-Flow Problem 310
Another Method to Convert a Finite Upper Bound to +00 310
Data for a Minimum Cost-Flow Problem 311
Six Points in 2-dimensional Space 340

This page intentionally left blank

List of Tables

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8

2-1

5-6

6-1
6-2
6-3

7-1
7-2
7-3

Tableau of Detached Coefficients for a Typical LP
Input-Output Coefficients
Full Tableau: Product Mix Problem
Tableau Form for the Warehouse Problem
The Job Training Model (First Three Weeks)
The Job Training Model (Continued)
Stream Properties and Product Specifications
Selling Prices for the Constituent Streams

The Converted Product Mix Model

Simplex Method: Tableau Form Example
Initial Tableau for Phase I
Tableau Form Example of a Bounded Variable LP
Revised Simplex Tableau Iterationt
Detached Coefficients L.
Revised Simplex Method: Tableau Form Example
Revised Simplex Method: Tableau Form Example (Continued)

Tucker Diagram L
Correspondence Rules Between Primal and Dual LPs
Example of a Dual of a Mixed System
Example of a Dual of a Mixed System (Continued)
Primal/Dual System for Standard Form
Simplex Method: Optimal Tableau

Experimental Points oL
Demand and Selling Price of Milk
Experimental Points for a Cubic

Initial Tableau for Sensitivity Analysis
Optimal Tableau for Sensitivity Analysis
Data for the Grape Grower’s Dilemma,

Data for Dinner Set Production Schedule

Xix

XX

TABLES

9-1 Infinite Number of Iterations of Algorithm 9.1

............. 271

9-2 Bounds on Nurses Allocated to Each Department in Each Shift . . . 307

FOREWORD

By George B. Dantzig

LINEAR PROGRAMMING

The Story About How It Began: Some legends, a little about its historical signifi-
cance, and comments about where its many mathematical programming extensions
may be headed.

Industrial production, the flow of resources in the economy, the exertion of
military effort in a war, the management of finances—all require the coordination
of interrelated activities. What these complex undertakings share in common is
the task of constructing a statement of actions to be performed, their timing and
quantity (called a program or schedule), that, if implemented, would move the system
from a given initial status as much as possible towards some defined goal.

While differences may exist in the goals to be achieved, the particular processes,
and the magnitudes of effort involved, when modeled in mathematical terms these
seemingly disparate systems often have a remarkably similar mathematical struc-
ture. The computational task is then to devise for these systems an algorithm for
choosing the best schedule of actions from among the possible alternatives.

The observation, in particular, that a number of economic, industrial, financial,
and military systems can be modeled (or reasonably approximated) by mathemat-
ical systems of linear inequalities and equations has given rise to the development
of the linear programming field.

The first and most fruitful industrial applications of linear programming were
to the petroleum industry, including oil extraction, refining, blending, and distribu-
tion. The food processing industry is perhaps the second most active user of linear
programming, where it was first used to determine shipping of ketchup from a few
plants to many warehouses. Meat packers use linear programming to determine the
most economical mixture of ingredients for sausages and animal feeds.

In the iron and steel industry, linear programming has been used for evaluating
various iron ores. Pelletization of low-grade ores, additions to coke ovens, and shop

xxi

xxil FOREWORD

loading of rolling mills are additional applications. Linear programming is also
used to decide what products rolling mills should make in order to maximize profit.
Blending of iron ore and scrap to produce steel is another area where it has been
used. Metalworking industries use linear programming for shop loading and for
determining the choice between producing and buying a part.

Paper mills use it to decrease the amount of trim losses. The optimal design
and routing of messages in a communication network, contract award problems,
and the routing of aircraft and ships are other examples where linear programming
methods are applied. The best program of investment in electric power plants and
transmission lines has been developed using linear programming methods.

More recently, linear programming (and its extensions) has found its way into
financial management, and Wall Street firms have been hiring mathematical pro-
grammers that they call “rocket scientists” for a variety of applications, especially
for lease analysis and portfolio analysis.

Linear programming can be viewed as part of a great revolutionary development
that has given mankind the ability to state general goals and to lay out a path of
detailed decisions to be taken in order to “best” achieve these goals when faced
with practical situations of great complexity. Our tools for doing this are ways to
formulate real-world problems in detailed mathematical terms (models), techniques
for solving the models (algorithms), and engines for executing the steps of algorithms
(computers and software).

This ability began in 1947, shortly after World War II, and has been keeping pace
ever since with the extraordinary growth of computing power. So rapid have been
the advances in decision science that few remember the contributions of the great
pioneers that started it all. Some of their names are von Neumann, Kantorovich,
Leontief, and Koopmans. The first two were famous mathematicians. The last
three received the Nobel Prize in economics for their work.

In the years from the time when it was first proposed in 1947 by the author
(in connection with the planning activities of the military), linear programming
and its many extensions have come into wide use. In academic circles decision
scientists (operations researchers and management scientists), as well as numerical
analysts, mathematicians, and economists have written hundreds of books and an
uncountable number of articles on the subject.

Curiously, in spite of its wide applicability today to everyday problems, lin-
ear programming was unknown prior to 1947. This statement is not quite correct;
there were some isolated exceptions. Fourier (of Fourier series fame) in 1823 and the
well-known Belgian mathematician de la Vallée Poussin in 1911 each wrote a paper
about it, but that was about it. Their work had as much influence on post-1947
developments as would the finding in an Egyptian tomb of an electronic computer
built in 3,000 B.C. Leonid Kantorovich’s remarkable 1939 monograph on the sub-
ject was shelved by the communists for ideological reasons in the U.S.S.R. It was
resurrected two decades later after the major developments had already taken place
in the West. An excellent paper by Hitchcock in 1941 on the transportation problem
went unnoticed until after others in the late 1940s and early 50s had independently
rediscovered its properties.

xxiii

What seems to characterize the pre-1947 era was a lack of any interest in trying
to optimize. T. Motzkin in his scholarly thesis written in 1936 cites only 42 papers
on linear inequality systems, none of which mentioned an objective function.

The major influences of the pre-1947 era were Leontief’s work on the input-
output model of the economy (1932), an important paper by von Neumann on
game theory (1928), and another by him on steady economic growth (1937).

My own contributions grew out of my World War II experience in the Pentagon.
During the war period (1941-45), T had become an expert on programs and planning
methods using desk calculators. In 1946 I was mathematical advisor to the U.S. Air
Force comptroller in the Pentagon. I had just received my Ph.D. (for research I had
done mostly before the war) and was looking for an academic position that would
pay better than a low offer I had received from Berkeley. In order to entice me to not
take another job, my Pentagon colleagues D. Hitchcock and M. Wood challenged
me to see what I could do to mechanize the Air Force planning process. 1 was
asked to find a way to compute more rapidly a time-staged deployment, training,
and logistical supply program. In those days “mechanizing” planning meant using
analog devices or punch-card equipment. There were no electronic computers.

Consistent with my training as a mathematician, I set out to formulate a model.
I was fascinated by the work of Wassily Leontief, who proposed in 1932 a large
but simple matrix structure that he called the Interindustry Input-Output Model
of the American Economy. It was simple in concept and could be implemented in
sufficient detail to be useful for practical planning. I greatly admired Leontief for
having taken the three steps necessary to achieve a successful application:

1. Formulating the inter-industry model.
2. Collecting the input data during the Great Depression.
3. Convincing policy makers to use the output.

Leontief received the Nobel Prize in 1976 for developing the input-output model.

For the purpose I had in mind, however, I saw that Leontief’s model had to
be generalized. His was a steady-state model, and what the Air Force wanted was
a highly dynamic model, one that could change over time. In Leontief’s model
there was a one-to-one correspondence between the production processes and the
items being produced by these processes. What was needed was a model with
many alternative activities. Finally, it had to be computable. Once the model was
formulated, there had to be a practical way to compute what quantities of these
activities to engage in consistent with their respective input-output characteristics
and with given resources. This would be no mean task since the military application
had to be large scale, with hundreds and hundreds of items and activities.

The activity analysis model I formulated would be described today as a time-
staged, dynamic linear program with a staircase matrix structure. Initially there was
no objective function; broad goals were never stated explicitly in those days because
practical planners simply had no way to implement such a concept. Noncomputabil-
ity was the chief reason, I believe, for the total lack of interest in optimization prior
to 1947.

XXiv FOREWORD

A simple example may serve to illustrate the fundamental difficulty of finding an
optimal solution to a planning problem once it is formulated. Consider the problem
of assigning 70 men to 70 jobs. Suppose a known value or benefit v;; would result if
the 7th man is assigned to the jth job. An activity consists in assigning the ith man
to the jth job. The restrictions are (i) each man must be assigned a job (there are
70 such), and (ii) each job must be filled (also 70). The level of an activity is either
1, meaning it will be used, or 0, meaning it will not. Thus there are 2 x 70 or 140
restrictions, 70 x 70 or 4,900 activities with 4,900 corresponding zero-one decision
variables x;;. Unfortunately there are 70! = 70 x 69 x 68 - - - x 2 x 1 different possible
solutions or ways to make the assignments x;;. The problem is to compare the 70!
solutions with one another and to select the one that results in the largest sum of
benefits from the assignments.

Now 70! is a big number, greater than 10'°°. Suppose we had a computer capable
of doing a million calculations per second available at the time of the big bang 15
billion years ago. Would it have been able to look at all the 70! combinations by
now? The answer is no! Suppose instead it could perform at nanosecond speed and
make 1 billion complete assignments per second? The answer is still no. Even if
the earth were filled solid with such computers all working in parallel, the answer
would still be no. If, however, there were 100 Earths circling the sun each filled
solid with nanosecond-speed computers all programmed in parallel from the time
of the big bang until the sun grows cold, then perhaps the answer might be yes.

This easy-to-state example illustrates why up to 1947, and for the most part
even to this day, a great gulf exists between man’s aspirations and his actions. Man
may wish to state his wants in complex situations in terms of some general objective
to be optimized, but there are so many different ways to go about it, each with its
advantages and disadvantages, that it would be impossible to compare all the cases
and choose which among them would be the best. Invariably, man in the past has
left the decision of which way is best to a leader whose so called “experience” and
“mature judgment” would guide the way. Those in charge like to do this by issuing
a series of ground rules (edicts) to be executed by those developing the plan.

This was the situation in 1946 before I formulated a model. In place of an
explicit goal or objective function, there were a large number of ad hoc ground
rules issued by those in authority in the Air Force to guide the selection. Without
such rules, there would have been in most cases an astronomical number of feasible
solutions to choose from. Incidentally, “Expert System” software, a software tool
used today (2002) in artificial intelligence, which is very much in vogue, makes use
of this adhoc ground-rule approach.

Impact of linear programming on computers: All that I have related up to now
about the early development took place in late 1946 before the advent of the com-
puter, more precisely, before we were aware that it was going to exist. But once
we were aware, the computer became a vital tool for our mechanization of the
planning process. So vital was the computer going to be for our future progress,
that our group successfully persuaded the Pentagon (in the late 1940’s) to fund the
development of computers.

To digress for a moment, I would like to say a few words about the electronic

XXV

computer itself. To me, and I suppose to all of us, one of the most startling de-
velopments of all time has been the penetration of the computer into almost every
phase of human activity. Before a computer can be intelligently used, a model must
be formulated and good algorithms developed. To build a model, however, requires
the axiomatization of a subject-matter field. In time this axiomatization gives rise
to a whole new mathematical discipline that is then studied for its own sake. Thus,
with each new penetration of the computer, a new science is born. Von Neumann
notes this tendency to axiomatize in his paper on The General and Logical The-
ory of Automata. In it he states that automata have been playing a continuously
increasing role in science. He goes on to say

Automata have begun to invade certain parts of mathematics too, partic-
ularly but not exclusively mathematical physics or applied mathematics.
The natural systems (e.g., central nervous system) are of enormous com-
plexity and it is clearly necessary first to subdivide what they represent
into several parts that to a certain extent are independent, elementary
units. The problem then consists of understanding how these elements
are organized as a whole. It is the latter problem which is likely to at-
tract those who have the background and tastes of the mathematician or
a logician. With this attitude, he will be inclined to forget the origins
and then, after the process of ariomatization is complete, concentrate on
the mathematical aspects.

By mid-1947, T had formulated a model which satisfactorily represented the
technological relations usually encountered in practice. I decided that the myriad
of adhoc ground rules had to be discarded and replaced by an explicit objective
function. I formulated the planning problem in mathematical terms in the form of
axioms that stated

1. the total amount of each type of item produced or consumed by the system
as a whole is the algebraic sum of the amounts inputted or outputted by the
individual activities of the system,

2. the amounts of these items consumed or produced by an activity are propor-
tional to the level of an activity, and

3. these levels are nonnegative.

The resulting mathematical system to be solved was the minimization of a lin-
ear form subject to linear equations and inequalities. The use (at the time it was
proposed) of a linear form as the objective function to be maximized was a novel
feature of the model.

Now came the nontrivial question: Can one solve such systems? At first I as-
sumed that the economists had worked on this problem since it was an important
special case of the central problem of economics, the optimal allocation of scarce
resources. I visited T.C. Koopmans in June 1947 at the Cowles Foundation (which

XxXvi FOREWORD

at that time was at the University of Chicago) to learn what I could from the math-
ematical economists. Koopmans became quite excited. During World War II, he
had worked for the Allied Shipping Board on a transportation model and so had
the theoretical as well as the practical planning background necessary to appreciate
what I was presenting. He saw immediately the implications for general economic
planning. From that time on, Koopmans took the lead in bringing the potentialities
of linear programming models to the attention of other young economists who were
just starting their careers. Some of their names were Kenneth Arrow, Paul Samuel-
son, Herbert Simon, Robert Dorfman, Leonid Hurwicz, and Herbert Scarf, to name
but a few. Some thirty to forty years later the first three and T.C. Koopmans
received the Nobel Prize for their research.

Seeing that economists did not have a method of solution, I next decided to
try my own luck at finding an algorithm. I owe a great debt to Jerzy Neyman,
the leading mathematical statistician of his day, who guided my graduate work at
Berkeley. My thesis was on two famous unsolved problems in mathematical statistics
that I mistakenly thought were a homework assignment and solved. One of the
results, published jointly with Abraham Wald, was on the Neyman-Pearson Lemma.
In today’s terminology, this part of my thesis was on the existence of Lagrange
multipliers (or dual variables) for a semi-infinite linear program whose variables
were bounded between zero and one and satisfied linear constraints expressed in
the form of Lebesgue integrals. There was also a linear objective to be maximized.

Luckily, the particular geometry used in my thesis was the one associated with
the columns of the matrix instead of its rows. This column geometry gave me the
insight that led me to believe that the Simplex Method would be a very efficient
solution technique. I earlier had rejected the method when I viewed it in the row
geometry because running around the outside edges seemed so unpromising.

I proposed the Simplex Method in the summer of 1947. But it took nearly a
year before my colleagues and I in the Pentagon realized just how powerful the
method really was. In the meantime, I decided to consult with the “great” Johnny
von Neumann to see what he could suggest in the way of solution techniques. He
was considered by many as the leading mathematician in the world. On October 3,
1947, I met him for the first time at the Institute for Advanced Study at Princeton.

John von Neumann made a strong impression on everyone. People came to him
for help with their problems because of his great insight. In the initial stages of the
development of a new field like linear programming, atomic physics, computers, or
whatever, his advice proved to be invaluable. Later, after these fields were developed
in greater depth, however, it became much more difficult for him to make the same
spectacular contributions. I guess everyone has a finite capacity, and Johnny was
no exception.

I remember trying to describe to von Neumann (as I would to an ordinary mor-
tal) the Air Force problem. I began with the formulation of the linear programming
model in terms of activities and items, etc. He did something which I believe was
not characteristic of him. “Get to the point,” he snapped at me impatiently. Hav-
ing at times a somewhat low kindling point, I said to myself, “O.K., if he wants a
quickie, then that’s what he’ll get.” In under one minute I slapped on the black-

XxXVvii

board a geometric and algebraic version of the problem. Von Neumann stood up
and said, “Oh, that!” Then, for the next hour and a half, he proceeded to give me
a lecture on the mathematical theory of linear programs.

At one point, seeing me sitting there with my eyes popping and my mouth open
(after all, I had searched the literature and found nothing), von Neumann said

I don’t want you to think I am pulling all this out of my sleeve on the
spur of the moment like a magician. I have recently completed a book
with Oscar Morgenstern on the theory of games. What I am doing is
conjecturing that the two problems are equivalent. The theory that I
am outlining is an analogue to the one we have developed for games.

Thus I learned about Farkas’s Lemma and about duality for the first time. Von
Neumann promised to give my computational problem some thought and to contact
me in a few weeks, which he did. He proposed an iterative nonlinear interior scheme.
Later, Alan Hoffman and his group at the Bureau of Standards (around 1952) tried
it out on a number of test problems. They also compared it to the Simplex Method
and with some interior proposals of T. Motzkin. The Simplex Method came out a
clear winner.

As a result of another visit in June 1948, I met Albert Tucker, who later became
the head of mathematics department at Princeton. Soon Tucker and his students
Harold Kuhn and David Gale and others like Lloyd Shapley began their historic
work on game theory, nonlinear programming, and duality theory. The Princeton
group became the focal point among mathematicians doing research in these fields.

The early days were full of intense excitement. Scientists, free at last from war-
time pressures, entered the post-war period hungry for new areas of research. The
computer came on the scene at just the right time. Economists and mathemati-
cians were intrigued with the possibility that the fundamental problem of optimal
allocation of scarce resources could be numerically solved. Not too long after my
first meeting with Tucker there was a meeting of the Econometric Society in Wis-
consin attended by well-known statisticians and mathematicians like Hotelling and
von Neumann, and economists like Koopmans. I was a young unknown and I re-
member how frightened I was at the idea of presenting for the first time to such a
distinguished audience, the concept of linear programming.

After my talk, the chairman called for discussion. For a moment there was the
usual dead silence; then a hand was raised. It was Hotelling’s. I must hasten to
explain that Hotelling was fat. He used to love to swim in the ocean and when
he did, it is said that the level of the ocean rose perceptibly. This huge whale of
a man stood up in the back of the room, his expressive fat face taking on one of
those all-knowing smiles we all know so well. He said: “But we all know the world is
nonlinear.” Having uttered this devastating criticism of my model, he majestically
sat down. And there I was, a virtual unknown, frantically trying to compose a
proper reply.

Suddenly another hand in the audience was raised. It was von Neumann.
“Mr. Chairman, Mr. Chairman,” he said, “if the speaker doesn’t mind, I would
like to reply for him.” Naturally I agreed. Von Neumann said: “The speaker titled

xXxviii FOREWORD

his talk ‘linear programming’ and carefully stated his axioms. If you have an appli-
cation that satisfies the axioms, well use it. If it does not, then don’t,” and he sat
down. In the final analysis, of course, Hotelling was right. The world is highly non-
linear. Fortunately, systems of linear inequalities (as opposed to equalities) permit
us to approximate most of the kinds of nonlinear relations encountered in practical
planning.

In 1949, exactly two years from the time linear programming was first conceived,
the first conference (sometimes referred to as the Zero Symposium) on mathemat-
ical programming was held at the University of Chicago. Tjalling Koopmans, the
organizer, later titled the proceedings of the conference Activity Analysis of Produc-
tion and Allocation. Economists like Koopmans, Kenneth Arrow, Paul Samuelson,
Leonid Hurwitz, Robert Dorfman, Georgescu-Roegen, and Herbert Simon, academic
mathematicians like Albert Tucker, Harold Kuhn, and David Gale, and Air Force
types like Marshall Wood, Murray Geisler, and myself all made contributions.

The advent or rather, the promise, that the electronic computer would soon
exist, the exposure of theoretical mathematicians and economists to real problems
during the war, the interest in mechanizing the planning process, and last but not
least the availability of money for such applied research all converged during the
period 1947-1949. The time was ripe. The research accomplished in exactly two
years is, in my opinion, one of the remarkable events of history. The proceedings of
the conference remain to this very day an important basic reference, a classic!

The Simplex Method turned out to be a powerful theoretical tool for proving
theorems as well as a powerful computational tool. To prove theorems it is essential
that the algorithm include a way of avoiding degeneracy. Therefore, much of the
early research around 1950 by Alex Orden, Philip Wolfe, and myself at the Pentagon,
by J.H. Edmondson as a class exercise in 1951, and by A. Charnes in 1952 was
concerned with what to do if a degenerate solution is encountered.

In the early 1950, many areas that we collectively call mathematical programming
began to emerge. These subfields grew rapidly with linear programming, playing a
fundamental role in their development. A few words will now be said about each of
these.

Nonlinear Programming began around 1951 with the famous Karush, Kuhn-
Tucker Conditions, which are related to the Fritz John Conditions (1948). In
1954, Ragnar Frisch (who later received the first Nobel Prize in economics)
proposed a nonlinear interior-point method for solving linear programs. Ear-
lier proposals such as those of von Neumann and Motzkin can also be viewed
as interior methods. Later, in the 1960s, G. Zoutendijk, R.T. Rockafellar,
P. Wolfe, R. Cottle, A. Fiacco, G. McCormick, and others developed the the-
ory of nonlinear programming and extended the notions of duality.

Commercial Applications were begun in 1952 by Charnes, Cooper, and Mellon
with their (now classical) optimal blending of petroleum products to make
gasoline. Applications quickly spread to other commercial areas and soon
eclipsed the military applications that had started the field.

XXix

Software—The Role of Orchard-Hays In 1954, William Orchard-Hays of the
RAND Corporation wrote the first commercial-grade software for solving lin-
ear programs. Many theoretical ideas such as ways to compact the inverse,
take advantage of sparsity, and guarantee numerical stability were first imple-
mented in his codes. As a result, his software ideas dominated the field for
many decades and made commercial applications possible. The importance
of Orchard-Hays’s contributions cannot be overstated, for they stimulated the
entire development of the field and transformed linear programming and its
extensions from an interesting mathematical theory into a powerful tool that
changed the way practical planning was done.

Network Flow Theory began to evolve in the early 1950 by Merrill Flood and
a little later by Ford and Fulkerson in 1954. Hoffman and Kuhn in 1956
developed its connections to graph theory. Recent research on combinatorial
optimization benefited from this early research.

Large-Scale Methods began in 1955 with my paper “Upper Bounds, Block Tri-
angular Systems, and Secondary Constraints.” In 1959-60 Wolfe and I pub-
lished our papers on the Decomposition Principle. Its dual form was discovered
by Benders in 1962 and first applied to the solution of mixed integer programs.
It is now extensively used to solve stochastic programs.

Stochastic Programming began in 1955 with my paper “Linear Programming
under Uncertainty” (an approach which has been greatly extended by R. Wets
in the 1960s and J. Birge in the 1980s). Independently, at almost the same
time in 1955, E.M.L. Beale proposed ways to solve stochastic programs. Im-
portant contributions to this field have been made by A. Charnes and W.
Cooper in the late 1950s using chance constraints, i.e., constraints that hold
with a stated probability. Stochastic programming is one of the most promis-
ing fields for future research, one closely tied to large-scale methods. One
approach that the author, Peter Glynn, and Gerd Infanger began in 1989
combines Bender’s decomposition principle with ideas based on importance
sampling, control variables, and the use of parallel processors.

Integer Programming began in 1958 with the work of R. Gomory. Unlike the
earlier work on the traveling salesman problem by D.R. Fulkerson, S. Johnson,
and Dantzig, Gomory showed how to systematically generate the “cutting”
planes. Cuts are extra necessary conditions that when added to an existing
system of inequalities guarantee that the optimization solution will solve in
integers. Ellis Johnson of I.B.M. extended the ideas of Gomory. Egon Balas
and many others have developed clever elimination schemes for solving 0-
1 covering problems. Branch and bound has turned out to be one of the
most successful ways to solve practical integer programs. The most efficient
techniques appear to be those that combine cutting planes with branch and
bound.

XXX FOREWORD

Complementary Pivot Theory was started around 1962-63 by Richard Cottle
and Dantzig and greatly extended by Cottle. It was an outgrowth of Wolfe’s
method for solving quadratic programs. In 1964 Lemke and Howson applied
the approach to bimatrix games. In 1965 Lemke extended it to other non-
convex programs. Lemke’s results represent a historic breakthrough into the
nonconvex domain. In the 1970’s, Scarf, Kuhn, and Eaves extended this ap-
proach once again to the solving of fixed-point problems.

Computational Complexity. Many classes of computational problems, although
they arise from different sources and appear to have quite different mathemati-
cal statements can be “reduced” to one another by a sequence of not-too-costly
computational steps. Those that can be so reduced are said to belong to the
same equivalence class. This means that an algorithm that can solve one
member of a class can be modified to solve any other in same equivalence
class. The computational complexity of an equivalence class is a quantity that
measures the amount of computational effort required to solve the most dif-
ficult problem belonging to the class, i.e., its worst case. A nonpolynomial
algorithm would be one that requires in the worst-case a number of steps not
less than some exponential expression like Ln™, n!, or 100", where n and m
refer to the row and column dimensions of the problem and L the number of
bits needed to store the input data.

Polynomial Time Algorithms. For a long time it was not known whether or not
linear programs belonged to a nonpolynomial class called “hard” (such as the
one the traveling salesman problem belongs to) or to an “easy” polynomial
class (like the one that the shortest path problem belongs to). In 1970, Victor
Klee and George Minty created a worst-case example that showed that the
classical Simplex Algorithm would require an “exponential” number of steps
to solve a worst-case linear program. In 1978, the Russian mathematician,
L.G. Khachian developed a polynomial-time algorithm for solving linear pro-
grams. It is a method that uses ellipsoids that contain points in the feasible
region. He proved that the computational time is guaranteed to be less than
a polynomial expression in the dimensions of the problem and the number of
digits of input data. Although polynomial, the bound he established turned
out to be too high for his algorithm to be used to solve practical problems.

Karmarkar’s algorithm (1984) was an important improvement on the theo-
retical result of Khachian that a linear program can be solved in polynomial
time. Moreover, his algorithm turned out to be one that could be used to
solve practical linear programs. As of this writing, interior algorithms are
in open competition with variants of the Simplex Method. It appears likely
that commercial software for solving linear programs will eventually combine
pivot-type moves used in the Simplex Methods with interior type moves, espe-
cially for those problems with very few polyhedral facets in the neighborhood
of the optimum.

XxXX1

Origins of Certain Terms

Here are some stories about how various linear-programming terms arose. The
military refer to their various plans or proposed schedules of training, logistical
supply, and deployment of combat units as a program. When I had first analyzed
the Air Force planning problem and saw that it could be formulated as a system
of linear inequalities, I called my first paper Programming in a Linear Structure.
Note that the term “program” was used for linear programs long before it was used
for the set of instructions used by a computer to solve problems. In the early days,
these instructions were called codes.

In the summer of 1948, Koopmans and I visited the RAND Corporation. One
day we took a stroll along the Santa Monica beach. Koopmans said “Why not
shorten ‘Programming in a Linear Structure’ to ‘Linear Programming’” 1 agreed:
“That’s it! From now on that will be its name.” Later that same day I gave a talk
at RAND entitled “Linear Programming”; years later Tucker shortened it to Linear
Program.

The term mathematical programming is due to Robert Dorfman of Harvard, who
felt as early as 1949 that the term linear programming was too restrictive.

The term Simplex Method arose out of a discussion with T. Motzkin, who felt
that the approach I was using, when viewed in the geometry of the columns, was
best described as a movement from one simplex to a neighboring one. A simplex is
the generalization of a pyramid-like geometric figure to higher dimension. Mathe-
matical programming is also responsible for many terms that are now standard in
mathematical literature—terms like Arg-Min, Arg-Max, Lexico-Mazx, Lexico-Min.
The term dual is an old mathematical term. But surprisingly, the term primal
is new and was first proposed by my father, Tobias Dantzig, around 1954, after
William Orchard-Hays stated the need for a shorter phrase to call the “original
problem whose dual is...”

Summary of My Own Early Contributions

If I were asked to summarize my early and perhaps my most important contributions
to linear programming, I would say they are three:

1. Recognizing (as a result of my wartime years as a practical program planner)
that most practical planning relations could be reformulated as a system of
linear inequalities.

2. Replacing ground rules for selecting good plans by general objective functions.
(Ground rules typically are statements by those in authority of the means for
carrying out the objective, not the objective itself.)

3. Inventing the Simplex Method which transformed the rather unsophisticated
linear-programming model for expressing economic theory into a powerful tool
for practical planning of large complex systems.

Xxxii FOREWORD

The tremendous power of the Simplex Method is a constant surprise to me. To
solve by brute force the assignment problem that I mentioned earlier would require
a solar system full of nanosecond electronic computers running from the time of
the big bang until the time the universe grows cold to scan all the permutations in
order to select the one that is best. Yet it takes only a moment to find the optimum
solution using a personal computer and standard Simplex Method software.

In retrospect, it is interesting to note that the original class of problems that
started my research is beginning to yield—mamely the problem of planning or
scheduling dynamically over time, particularly when there is uncertainty about the
values of coefficients in the equations. If such problems could be successfully solved,
it could eventually produce better and better plans and thereby contribute to the
well-being and stability of the world.

The area of planning under uncertainty or stochastic programming has become
a very exciting field of research and application, with research taking place in many
countries. Some important long term planning problems have already been solved.
Progress in this field depends on ideas drawn from many fields. For example,
our group at Stanford is working on a solution method that combines the nested
decomposition principle, importance sampling, and the use of parallel processors.

Prior to linear programming, it was not of any use to explicitly state general
goals for planning systems (since such systems could not be solved) and so objectives
were often confused with the ground rules in order to have a way of solving such
systems. Ask a military commander what the goal is and he probably will say,
“The goal is to win the war.” Upon being pressed to be more explicit, a Navy man
might say, “The way to win the war is to build battleships,” or, if he is an Air
Force general, he might say, “The way to win is to build a great fleet of bombers.”
Thus the means to attain the objective becomes an objective in itself which in turn
spawns new ground rules as to how to go about attaining the means such as how
best to go about building bombers or space shuttles. These means in turn become
confused with goals, etc., down the line.

From 1947 on, the notion of what is meant by a goal has been adjusting to our
increasing ability to solve complex problems. As we near the end of the twentieth
century, planners are becoming more and more aware that it is possible to optimize
a specific objective while at the same time hedging against a great variety of un-
favorable contingencies that might happen and taking advantage of any favorable
opportunity that might arise.

The ability to state general objectives and then be able to find optimal policy
solutions to practical decision problems of great complexity is the revolutionary de-
velopment I spoke of earlier. We have come a long way down the road to achieving
this goal, but much work remains to be done, particularly in the area of uncertainty.
The final test will come when we can solve the practical problems under uncertainty
that originated the field back in 1947.

PREFACE

Linear programming and its generalization, mathematical programming, can be
viewed as part of a great revolutionary development that has given mankind the
ability to state general goals and lay out a path of detailed decisions to be taken in
order to “best” achieve these goals when faced with practical situations of great com-
plexity. The tools for accomplishing this are the models that formulate real-world
problems in detailed mathematical terms, the algorithms that solve the models, and
the software that execute the algorithms on computers based on the mathematical
theory.

Our goal then is to provide a simple introduction to these various tools in the
context of linear programming. Because this is an introduction to the field at the
Undergraduate level, no proofs of key ideas are provided except for a few that are
easy to follow. We prefer to state the key ideas as theorems and lemmas, rather
than as facts or properties, as is done in some introductory texts because we wish
to highlight the importance of the mathematical results. Examples are provided to
illustrate the main ideas. Proofs of all the theorems and lemmas can be found in
Linear Programming 2. Selected bibliographical references can be found at the end
of each chapter.

We assume that the reader has some knowledge of elementary linear algebra. For
those whose knowledge is weak or non-existent, necessary details on linear algebra
used in this text are provided in the appendices.

OUTLINE OF CHAPTERS

Chapter 1 (The Linear Programming Problem): This chapter begins with a
formal definition of the mathematical programming field and, in particular,
formulation of the linear programming problem in mathematical terms so
that it can be solved on a computer. A number of examples are formu-
lated. We point out that most text book examples are simple in concept
and small, making it is easy to represent them as system of linear inequali-
ties (the row-oriented approach) and to solve on a computer. However, most
real-life applications tend to be large and complex and are much easier to
formulate and update in an activity (column-oriented) approach. We point
out the advantages of viewing the problem from both the row and column

xxxiii

XXXV PREFACE

perspectives. This chapter concludes with the assumptions (axzioms) that the
linear programming problem must approximately satisfy in practice.

Chapter 2 (Solving Simple Linear Programs): In the second chapter, we in-
troduce methods for solving very simple linear programs. We start with the
graphical solution of a two-variable linear program; here we also introduce the
concept of a dual linear program, properties of which are developed in Chap-
ter 5. Next we discuss how to solve a two-equation linear program graphically.
This is followed by a simple exposition of the Fourier-Motzkin Elimination
(FME) process for solving linear inequalites. It is a powerful theoretical tool
that provides an easy proof of the important Infeasibility Theorem of Linear
Programming. While the FME process is not practical for solving a large
system of inequalities, it can be used to solve systems having a very small
number of inequalities and variables.

Chapter 3 (The Simplex Method): Having introduced the basics, we are now
ready to describe the Simplex Algorithm, which solves a linear program given
a starting basic feasible solution for the standard form. The approach is first
illustrated through examples. The Simplex Method is a two-phase process,
with each phase using the Simplex Algorithm. In the first phase, an initial
feasible solution, if one exists, is obtained. In the second phase, an optimal
solution, if one exists, is obtained, or a class of solutions is obtained whose
objective value goes to +00. Next, the solution method is extended to handle
conveniently linear inequality systems with simple upper and lower bounds
on the variables. Finally, the Revised Simplex Method, which is the Simplex
Method in a form more suitable to large problems, is described.

Chapter 4 (Interior Point Methods): From the 1980s on there has been ex-
ponential growth of interest in solving linear programs using interior-point
methods. We describe the primal-affine algorithm for historical reasons and
because it is easy to understand. Details on this and other interior-point meth-
ods, including a summary of the state of the art as of 1996 in interior-point
methods, can be found in Linear Programming 2.

Chapter 5 (Duality): The important details about the concept of duality is in-
troduced through several examples. The Tucker diagram and von Neumann
primal-dual systems are illustrated. Weak Duality, Strong Duality, the key
theorems of duality, and the central results in duality, are presented and il-
lustrated through examples. Formal proofs can be found in Linear Program-
ming 2.

Chapter 6 (Equivalent Formulations): We take a slight detour and spend some
time describing how a variety of problems encountered in practice can be re-
duced to linear programs. For example, if your software cannot handle prob-
lems whose variables are unrestricted in sign, such problems can be handled
by splitting the variables into the difference of two nonnegative variables.
Next we show how an absolute value in the objective can be modeled. Goal

PREFACE XXXV

programming is discussed next followed by a discussion of how to obtain the
minimum of the maximum of several linear functions. The next topic covered
is curve-fitting. Finally we discuss how to use piecewise linear approximations
to model convex functions.

Chapter 7 (Price Mechanism and Sensitivity Analysis: The chapter starts
by dicussing the price mechanism of the Simplex Method. Sensitivity analysis
is concerned with measuring the effect of changes in cost coefficients, the
right-hand side, the matrix coefficients, or whether or not it is worthwhile to
introduce additional rows and columns. Such analysis is an important aspect
of the solution of any real-world problem.

Chapter 8 (Transportation and Assignment Problem): Network theory is in-
troduced through a detailed discussion of the classical transportation and as-
signment problems. A specialized version of the Simplex Method for solving
such problems is described and illustrated. The important property of triangu-
larity of the basis, which simplifies solutions with integer values, is illustrated
through simple examples.

Chapter 9 (Network Flow Theory): The ideas of the previous chapter are then
extended to cover more general network flow problems. Standard network
flow concepts such as trees (and their properties) are introduced. This is
followed by a discussion on solving mazimal flow, shortest route, and minimum
spanning tree problems. Finally, the Network Simplex Method is described for
solving the minimum-cost network-flow problem. It takes advantage of the
tree stucture of the basis to greatly reduce the computations of each iteration.

Appendix A (Linear Algebra): This appendix summarizes all the key linear
algebra concepts relevant to solving linear programs.

Appendix B (Linear Equations): This appendix discusses the theory for solv-
ing systems of linear equations. The theory for solving linear inequalities
makes use of this theory.

SOFTWARE ACCOMPANYING THE BOOK

In modern times, the use of computers has become essential. We have designed the
software that accompanies this book to work with the popular operating system
Windows 95 as well as with Windows 3.1. The basic software algorithms and their
many variations are designed to be powerful and numerically robust.

The software is fully integrated with the exercises. The use of it in conjunction
with the text will help students understand key ideas behind the algorithms rather
than simply number crunching. A feeling for the path followed by an algorithm to
an optimal solution can probably best be gained by scanning the iterates .

To install the software:

o For Windows 8.1. Run setup.exe from the WIN31 directory on the enclosed
CD-ROM.

XXXVi PREFACE

o For Windows 95. Run setup.exe from the WIN95 directory on the enclosed
CD-ROM.

Note: Before running setup please make sure that all programs are closed (and not
just minimized); otherwise the installation may not execute correctly. If you still
have problems with your installation please refer to the file README in the root
directory of the CD-ROM.

Data for examples in the book can be found on the disk containing the software.
To solve a problem using the software, each exercise in the book specifies which
software option to use. For example: the DTZG Primal Simplex Method, Fourier-
Motzkin Elimination, and so forth.

Linear Programming 2 and 3.

In a graduate course that we have taught together at Stanford, portions of “Linear
Programming 1: Introduction” and “Linear Programming 2: Theory & Implemen-
tation” have been used. In addition some of the material in “Linear Programming 3:
Structured LPs & Planning Under Uncertainty” has been used in seminars and in
large-scale linear optimization.

Professor George B. Dantzig Dr. Mukund N. Thapa
Department of Operations Research President

Stanford University Stanford Business Software, Inc.
Stanford, CA 94305 2680 Bayshore Parkway, Suite 304

Mountain View, CA 94043

DEFINITION OF
SYMBOLS

The notation described below will be followed in general. There may be some
deviations where appropriate.

e Uppercase letters will be used to represent matrices.
e Lowercase letters will be used to represent vectors.
e All vectors will be column vectors unless otherwise noted.

e Greek letters will typically be used to represent scalars.

R — Real space of dimension n.

c — Coefficients of the objective function.

A — Coefficient matrix of the linear program.

B — Basis matrix (nonsingular). Contains basic columns
of A.

N — Nonbasic columns of A.

x — Solution of the linear program (typically the current
one).

Z, — Basic solution (typically the current one).

Ty — Nonbasic solution (typically the current one).

(z,y) — The column vector consisting of components of the
vector z followed by the components of y. This helps
in avoiding notation such as (27, y?)7.

L — Lower triangular matrix with 1’s on the the diagonal.

U — Upper triangular matrix (sometimes R will be used).

R — Alternative notation for an upper triangular matrix.

D — Diagonal matrix.

Diag (d) — Diagonal matrix. Sometimes Diag (dy,da, ... ,dy).

D, — Diag(x).

I — Identity matrix.

XXXVil

XxXxVviii

DEFINITION OF SYMBOLS

€j

argmin,, f(x)
argmin, G;

LP

jth column of an identity matrix.

Vector of 1’s (dimension will be clear from the context).
Elementary matrix (jth column is different from the identity)
The 2-norm of a vector v.

Determinant of the matrix A.

jth column of A.

ith row of A.

The matrix B at the start of iteration ¢.

Alternative form for the matrix B?.

Update from iteration t to iteration ¢ + 1.

Element (i,5) of B~1.

X is a proper subset of Y.

X is a subset of Y.

Set union. That is, the set {w | w € X orw € Y'}.

The set {w | w e X and w € Y'}.

Set difference. That is, the set {w |w € X,w €Y'}

Empty set.

Such that. For example {z | Az < b} means the set of all 2
such that Az < b holds.

A scalar raised to power n.

A square matrix raised to power n.

Transpose of the matrix A.

Approximately equal to.

Much greater (less) than.

Lexicographically greater (less) than.

Store in the computer the value of the quantity on the righ
into the location where the quantity on the left is stored. For
example, x < = + ap.

Implies a number < kv where k, a fixed constant independent
of the value of v, is meant to convey the the notion that k i
some small integer value less than 10 (or possibly less thar
100) and not something ridiculous like k = 10190,

is the value of x where f(z) takes on its global minimum value
is the value of the least index i where (3; takes on its minimun
value.

Linear program.

CHAPTEHR]_

THE LINEAR
PROGRAMMING PROBLEM

Since the time it was first proposed by one of the authors (George B. Dantzig)
in 1947 as a way for planners to set general objectives and arrive at a detailed
schedule to meet these goals, linear programming has come into wide use. It has
many nonlinear and integer extensions collectively known as the mathematical pro-
gramming field, such as integer programming, nonlinear programming, stochastic
programming, combinatorial optimization, and network flow maximization; these
are presented in subsequent volumes.

Here then is a formal definition of the field that has become an important branch
of study in mathematics, economics, computer science, and decision science (i.e.,
operations research and management science):

Mathematical programming (or optimization theory) is that branch of
mathematics dealing with techniques for maximizing or minimizing an
objective function subject to linear, nonlinear, and integer constraints
on the variables.

The special case, linear programming, has a special relationship to this more
general mathematical programming field. It plays a role analogous to that of partial
derivatives to a function in calculus—it is the first-order approximation.

Linear programming is concerned with the mazimization or minimiza-
tion of a linear objective function in many variables subject to linear
equality and inequality constraints.

For many applications, the solution of the mathematical system can be interpreted
as a program, namely, a statement of the time and quantity of actions to be per-
formed by the system so that it may move from its given status towards some
defined objective.

2 THE LINEAR PROGRAMMING PROBLEM

Linear programming problems vary from small to large: The number of con-
straints less than 1,000 is considered “small,” between 1,000 and 2,000 is consid-
ered “medium,” and greater than 2,000 is considered “large.” Linear programming
models can be very large in practice; some have many thousands of constraints and
variables. To solve large systems requires special software that has taken years to
develop. Other special tools, called matriz generators, are often used to help orga-
nize the formulation of the model and direct the generation of the coefficients from
basic data files. As the size of models that can be solved has grown, so has evolved
the art of model management. These include, on the input side, model formulation
and model updating, and, on the output side, summarizing of the detailed solution
output in the form of graphs and other displays (so that the results may be more
easily understood and implemented by decision makers).

1.1 SOME SIMPLE EXAMPLES

What follows are four very simple examples of typical linear programming problems;
they happen to be similar to the very first applications of the field. The objective of
the system in each happens to be the minimization of total costs or maximization
of profits measured in monetary units. In other applications, however, the objective
could be to minimize direct labor costs or to maximize the number of assembled
parts or to maximize the number of trained students having a specified percentage
distribution of skills, etc.

With the exception of the “on-the-job training” problem (Example 1.2), each
of these examples is so small that the reader should have little difficulty expressing
the problem in mathematical terms.

Example 1.1 (A Product Mix Problem) A furniture company manufactures four
models of desks. Each desk is first constructed in the carpentry shop and is next sent to
the finishing shop, where it is varnished, waxed, and polished. The number of man-hours
of labor required in each shop and the number of hours available in each shop are known.
Assuming that raw materials and supplies are available in adequate supply and all desks
produced can be sold, the desk company wants to determine the optimal product mix,
that is, the quantities to make of each type of desk that will maximize profit. This can be
represented as a linear programming problem.

Example 1.2 (On-the-Job Training) A manufacturing plant is contracting to make
some commodity. Its present work force is too small to produce the amount of the com-
modity required to meet the specified schedule of orders to be delivered each week for
several weeks hence. Additional workers must therefore be hired, trained, and put to
work.

The present force can either work and produce at some specified rate of output, or it
can train some fixed number of new workers, or it can do both at the same time according
to some fixed rate of exchange between output and the number of new workers trained.
Even were the crew to spend one entire week training new workers, it would be unable to
train the required number. The next week, the old crew and the newly trained workers
may either work or train new workers, or may both work and train, and so on.

1.1 SOME SIMPLE EXAMPLES 3

The commodity being produced is semiperishable so that any amount manufactured
before needed will have to be stored at a cost. The problem is to determine the hiring, pro-
duction, and storage program that will minimize total costs. This is a linear programming
problem whose output is a schedule of activities over time.

Example 1.3 (The Homemaker’s Problem) A family of five lives on the modest
salary of the head of the household. A constant problem faced by the homemaker is to
plan a weekly menu that reflects the needs and tastes of the family, the limited budget
and the prices of foods. The husband must have 3,000 calories per day, the wife is on a
1,500 calorie reducing diet, and the children require 3,000, 2,700, and 2,500 calories per
day, respectively.

According to the advice provided by a book on nutrition, these calories must be ob-
tained for each member by foods having no more than a certain amount of fats and
carbohydrates and not less than a certain amount of proteins. The diet, in fact, places
emphasis on proteins. In addition, each member of the household must satisfy his or her
daily vitamin needs. The problem is to assemble a menu each week that will minimize
costs based on the current prices for food and subject to these criteria.

This type of linear programming problem, with some additional conditions specified
to make the recommended diet more palatable, has been used to plan menus for patients
in hospitals. An analogous formulation is used by the agricultural industry to determine
the most economical feed mixes for cattle, poultry, and pet foods.

Example 1.4 (A Blending Problem) A type of linear programming problem fre-
quently encountered is one involving blending. Typically a manufacturer wishes to form a
mixture of several commodities that he can purchase so that the blend has known charac-
teristics and costs the least. The percent characteristics of the blend are precisely specified.

A manufacturer wishes to produce an alloy (blend) that is 30 percent lead, 30 percent
zinc, and 40 percent tin. Suppose there are on the market alloys j = 1,...,9 with the
percent composition (of lead, zinc, and tin) and prices as shown in the display below. How
much of each type of alloy should be purchased in order to minimize costs per pound of
blend?

[Alloy [1 2 3 4 5 6 7 8 9 [Blend |

Lead (%) | 20 50 30 30 30 60 40 10 10 | 30
Zine (%) 30 40 20 40 30 30 50 30 10 | 30
Tin (%) 50 10 50 30 40 10 10 60 80 | 40
Cost ($/Ib) | 7.3 69 7.3 75 7.6 60 58 43 41| Min

Obviously the manufacturer can purchase alloy 5 alone, but it will cost him $7.60 per
pound. On the other hand with % pound of alloy 2 and i pound each of alloys 8 and 9 he
will be able to blend a 30-30-40 mixture at a cost of $5.55 per pound. However, if he buys
i pound each of alloys, 6, 7, 8, and 9, he will also be able to blend a 30-30-40 mixture
at a cost of $5.05. After a few trials of this sort, the manufacturer may well seek a more
scientific approach to his problem.

The quantities of lead, zinc, and tin in the final blend have not been specified; only
their proportions have been given, and it is required to minimize the cost per pound of
the output. Often a beginner attempts to formulate the problem without restricting the

4 THE LINEAR PROGRAMMING PROBLEM

total amount produced, in which case the material balance equations become difficult to
interpret when expressed in terms of percentages instead of amounts.

We shall require that a definite amount of blended metal be produced. It is clear that
the most economical purchasing plan for producing one pound of a specified blend can be
immediately converted into the most economical purchasing plan for producing n pounds
of output simply by multiplying the fractional amounts of each type of alloy by n; and
thus we will restrict the quantity of alloys to those combinations that produce one pound of
specified blend of metal. This stipulation has the further happy result that the percentage
requirements of the original statement of the problem now become concrete: the mixture
must contain 0.3 pounds of lead, 0.3 pounds of zinc, and 0.4 pounds of tin.

We shall formulate this model by writing down the material balance constraints. The
decision variables are

'1:]207 j:17"'797

where z; is the fractional pounds of alloy j to be used in the blend.

There are five items (not four as may have been expected): one for each of the three
components (lead, zinc, and tin) of the alloy, the cost of purchasing the alloy, and its
weight. As per our discussion above, we shall solve the blending problem for producing
exactly one pound of the blend. It is now clear that the problem to be solved is

Minimize the Objective

7.3x1 + 6922 + 7.3x3 + 7.5x4 + 7.6z5 + 6.0x¢ + 5.8x7 + 4.3z + 4.1x9g = 2
subject to
T + T2 + r3 + T4 + T5 + Te + Tr7 + rs + To = 1
2x1 + bxo + 3Bxs + 3x4 + 3xs + .6x¢ + 4dxr + lxs + dxg = .3
3Bx1 + A4dxe + 223 + 4xs + 3x5 + 3w + Dx7 + 38 + .l = .3
bry + dxe + Dxs + 3xs + 4dxs + dlxg + laxr + 6xs + 8xg9 = 4

and x; >0, j=1,...,9.

Only minor changes in the model are required in the event the blend specifications are not
given precisely but they must lie between certain lower and upper bounds.

Exercise 1.1 Solve Example 1.4 numerically using the DTZG Simplex Primal software
option. Find the amount of each type of alloy to purchase and find the minimum cost to
produce one pound of the blend.

Exercise 1.2 Prove that any one of the above equations (excluding the objective) in
Example 1.4 can be dropped as redundant.

Example 1.5 (A Transportation Problem) Suppose that a distributor has two
canneries labeled 1 and 2, and three warehouses labeled a, b, and ¢ in different geographical
locations. The canneries can fill 250 and 450 cases of tins per day, respectively. Each of the
warehouses can sell 200 cases per day. The distributor wishes to determine the number of
cases to be shipped from the two canneries to the three warehouses so that each warehouse
obtains as many cases as it can sell daily at the minimum total transportation cost. The
availability of cases at the canneries and the demands which must be met exactly at each
warehouse are summarized in the table below:

1.1 SOME SIMPLE EXAMPLES 5

l Cases Available “ Cases Demanded ‘
Cannery | Cases || Warehouse | Cases
1 250 a 200
2 450 b 200
c 200
Total 700 | Total 600

The excess production of 100 cases will be stored without cost. The shipping cost per case
from each cannery to each warehouse is given in the Shipping Cost schedule in the display
below. The problem is to determine the number of cases that each cannery should ship to
each warehouse in order to minimize the total transportation cost.

Shipping Cost ($/case)
Warehouses
Canneries a b c
1 3.4 | 22|29
2 34| 24| 25

We shall formulate this model by writing down the material balance constraints. The
decision variables are
zi; >0, i=1,2, j=a,b,c (1.1)

where x;; is the number of cases to ship from cannery ¢ = 1,2 to warehouse j = a,b, c.
There are six items: dollars (associated with the cost of shipping), cases available at each
of the two canneries, and cases demanded at each of the three warehouses.

The material balance constraints on availability are that the number of cases shipped
out of each cannery cannot be greater than the number of cases available. Thus,

Tla + T1b + Tic S 250>

Toa 4 Tap + T2 < 450. (1.2)

The material balance constraints on demand are: The amount demanded at each ware-
house must be equal to the amount shipped from each cannery to the warehouse. The
problem specifies that the demand must be met exactly. Thus,

T1a + T2, = 200,
T1p + 2 = 200, (1.3)
Tie + x2. = 200.

Finally, the cost to be minimized is set to an unspecified dollar amount z:
3.4x1q + 2.221p + 2.921c + 34224 + 2.422p + 2.522. = 2.
We consolidate below the mathematical constraints of the transportation example.

Minimize the objective

3.4x14 + 2221 + 2971 + 3.4w20 + 2.4T0p + 2532 = 2z
subject to
Tia + T + Tic < 250
T2q + Top + T2¢ S 450 (14)
Tla +4 T2a = 200
ZT1b + b = 200
Tlc —|— T2e = 200

and x14 > 0, z1p >0, T1c >0, 24 > 0, 22 > 0, 22 > 0.

6 THE LINEAR PROGRAMMING PROBLEM

Properties of the Transportation Problem:

1. Feasibility Theorem. If the total availability is not less than the total demand,
a solution always exists to (1.1), (1.2), and (1.3).

2. Infeasibility Theorem. If the total availability is less than the total demand
no solution exists to (1.1), (1.2), and (1.3).

3. Structure. The transportation problem has a very special structure. Observe
that all the input-output coefficients (excluding those of the objective) are
either 1 or 0 with exactly two 1’s per column. As a result, the transportation
problem can be stored very compactly in a computer since we need to record
only the cost coefficients, right-hand sides, and the locations of the coefficients
that are 1. This compact storage property will be exploited in the algorithm
presented in Chapter 8.

4. Integer Property. In a transportation problem, if all the availabilities and
demands are positive integers and if the problem has a solution satisfying
(1.1), (1.2), and (1.3), then we will show in Chapter 8 that it has at least one
optimal solution in which all the variables x;; have integer values.

Note that the objective function can have only one optimal value; however,
there could be many combinations of the variables z;; that generate the same
optimal value. If there is exactly one combination of the x;; that generates
the optimal value of the objective, the value of each x;; must necessarily turn
out to be an integer. If there is more than one combination of z;; values
that generate the optimal value of the objective, it can be shown that there
are other integer solutions as well as other solutions in which x;; can have
noninteger values. All of these properties will also be shown in Chapter 8.

> Exercise 1.3 Solve Example 1.5 numerically using the DTZG Simplex Primal software
option. Find the optimal amount of shipment from each cannery to warehouse and the
minimum cost of the shipments.

> Exercise 1.4 As a way of illustration of the above Infeasibility Theorem, change the
number of cases available at Cannery 1 to 100.

> Exercise 1.5 Prove the above Feasibility and Infeasibility Theorems for (1.1), (1.2),
and (1.3).

> Exercise 1.6 Generalize the transportation problem to any number of origins (canner-
ies) and any number of destinations (warehouses) and prove the Feasibility and Infeasibility
Theorems for this system.

1.2 MATHEMATICAL STATEMENT

Exercise 1.7 Prove that if for the transportation problem (1.4) there is more than

one optimal integer solution, then noninteger solutions can be found by forming certain
weighted linear combinations of two integer solutions.

1.2 MATHEMATICAL STATEMENT

The mathematical definition of a linear program in standard form is to find values

of x1 > 0,22 >0, ..., x, > 0 and min z satisfying
cxy + ey + -+ cpx, = 2z (Min)
annry + aipTz + o0+ AT, = b
a1r1 + agrz + -+ a2uT, = by (1.5)
Am1T1 + AmaZ2 + - + AmpTn = bm
In vector-matrix notation we may restate the above as
Minimize e =z
subject to Az = b, A: mxn, (1.6)
x > 0.

The definition of a dual of a linear program in standard form is to find values of

M1, T2, - , Tm, and max v satisfying
bimi + bame + -+ + bypm, = v (Max)
aiim + anme + o0 A QT <0
G12M1 + Q22T2 + <+ + GmaTm < C2 (1.7)
A1nT1 + 20,72 + -+ AmnTm S Cm-
In vector-matrix notation we may restate the above as
Maximize Ve = v (1.8)
subject to ATm < ¢, A: mxn. :

Other definitions of a linear program, all equivalent to each other, are those of
linear programs in inequality form, von Neumann symmetric form, and others that
will be described later. For many applications it is easy to formulate the model
as a system of equations and inequalities with possibly upper and lower bounds on
the variables. In many large-scale applications one needs a formal procedure for
organizing the basic data of the model and inputting it into the computer.

See Table 1-1 for a standard layout for linear programming data. It is called a
tableau.

8 THE LINEAR PROGRAMMING PROBLEM

Activity (1) e () e (n)
Level 2120 |- |2; 20| |2, 20 RHS
(1) ail e ai; e ain = b1
I (2) as | agg | agn = ba
t
e (i) a1 e ag el i = b;
m
(m) Am1 c Amj cU Gmn = bm
Cost c1 e cj e Cn, = z

Table 1-1: Tableau of Detached Coefficients for a Typical LP

1.3 FORMULATING LINEAR PROGRAMS

Computers are now being applied to almost every aspect of human activity. Every
field of science, medicine, engineering, business—you name it—is being computer-
ized in some way. However, before you can put a problem into a computer and
efficiently find a solution, you must first abstract it, which means you have to build
a mathematical model.

It is the process of abstracting applications from every aspect of life that has
given rise to a vast new world of mathematics that has developed for the most
part outside mathematics departments. This mathematics, you will see, is just as
interesting and exciting as any mathematics that is taught in the standard courses,
perhaps more so because it is still new and challenging.

The mathematical model of a system is the collection of mathematical
relationships which, for the purpose of developing a design or plan, char-
acterize the set of feasible solutions of the system.

The process of building a mathematical model is often considered to be as im-
portant as solving it because this process provides insight about how the system
works and helps organize essential information about it. Models of the real world
are not always easy to formulate because of the richness, variety, and ambiguity that
exists in the real world or because of our ambiguous understanding of it. Neverthe-
less, it is possible to state certain principles that distinguish the separate steps in
the model-building process when the system can be modeled as a linear program.

The linear programming problem is to determine the values of the variables of
the system that (a) are nonnegative or satisfy certain bounds, (b) satisfy a system
of linear constraints, and (¢) minimize or maximize a linear form in the variables
called an objective.

There are two general ways in which we can formulate a problem as a linear
program: the column (recipe/activity) approach and the row (material balance)
approach. Both ways result in the same final model; the approach you take will

1.8 FORMULATING LINEAR PROGRAMS 9

depend primarily on how you like to think about and organize the data for the
problem.

In certain situations, it is convenient for the modeler to view the system as
(i) a collection of activities or processes that may be engaged in rather than (ii) a
collection of statements about limitations on the use of scarce resources. As we will
see, there are points in common between these two seemingly quite different ways of
viewing the system. Indeed, there are benefits to be gained by viewing the system
both ways and this is recommended. We shall describe both the approaches and
illustrate them through various examples.

1.3.1 THE COLUMN (RECIPE/ACTIVITY) APPROACH

The column approach is to consider a system as decomposable into a number of
elementary functions, the activities. An activity is thought of as a kind of “black
box” into which flow tangible inputs, such as men, material, and equipment, and out
of which flow final or intermediate products of manufacture, or trained personnel.
An activity is analogous to a recipe in a cookbook. What happens to the inputs
inside the “box” is the concern of the engineer in the same way as what chemistry
takes place in the cookpot is the concern of a chemist; to the decision maker, only
the rates of flow into and out of the activity are of interest. The various kinds of
flow are called items.

The quantity of each activity is called its activity level. To change the activity
level it is necessary to change the quantity of each kind of flow into and out of the
activity. In linear programming the activity levels are not given but are the decision
variables to be determined to meet certain specified requirements.

The steps for formulating a linear program by the column approach are as fol-
lows.

Step 1 Define the Activity Set. Decompose the entire system under study into
all of its elementary functions, the activities or processes and choose a
unit for each type of activity or process in terms of which its quantity or
level can be measured. For example, manufacturing a desk is an activity.
It is defined for the purpose of developing a plan for the recipe of items
needed to produce one desk. The number of desks manufactured is the
level of the activity, which is the decision variable to be determined.

Activity levels are usually denoted by x1, 2,23, . .., where z; is the level
of activity j.

Step 2 Define the Item Set. Determine the classes of objects, the items, that
are required as inputs or are produced as outputs by the activities, and
choose a unit for measuring each type of item. Obviously the only items
that need be considered are those that are potential bottlenecks. Select
one item such that the net quantity of it produced by the system as
a whole measures the “cost” (or such that its negative measures the
“profit” of the entire system). For example, time in the carpentry shop,

10

THE LINEAR PROGRAMMING PROBLEM

Step 3

Step 4

Step 5

measured in hours, is an item. Time in the finishing shop, measured
in hours, is a different item, and, money is another item, measured in
dollars. The negative of the price in dollars at which a desk is sold affects
the profit of selling a desk.

In many situations, “costs” are measured in terms of money; however,
in other economic situations, they could be measured in terms of labor
or any scarce resource whose input is to be conserved or any item whose
total output from the system is to be maximized.

The label i is usually used to refer to the type of item consumed or
produced by the activities. The role that items play will become clearer
in the next step.

Define the Input-Output Coefficients. Determine the quantity of each
item consumed or produced by the operation of each activity at its unit
level. These numbers are analogous to the quantities of various ingre-
dients in a cookbook recipe and are called the input-output coefficients
of the activity. They are the factors of proportionality between activity
levels and item flows.

The input-output coefficients are usually denoted by a;;, where 4 refers to
the item and j refers to the activity. For example, when manufacturing
desks, a;; could be the amount of time in shop ¢ required to manufacture
one desk j. If a;; of item ¢ is required by activity j enter it in column j
with a plus sign; if it is produced by activity j enter it in column j
with a negative sign. Often in economic applications the opposite sign
convention for entering is used. The sign convention is arbitrary as long
as it is kept consistent. Every item that is either required or produced
by an activity j is entered in column j of the tableau.

Specify the Ezxogenous Flows. Everything outside the system is called
exogenous. Specify the exogenous amounts of each item being supplied
from the outside to the system as a whole and specify the exogenous
amounts required by the outside from the system as a whole. They are
usually denoted by b; for item ¢ and are entered in the rightmost tableau
column. Each of these, by our additivity assumption, is equal to the net
of the total amounts of each item used by the activities less the total
amounts of each item produced by the activities.

These net quantities item by item balance out to the exogenously given
right-hand sides of the material balance equations described next.

Set Up the Material Balance Equations. Assign unknown activity levels
x1,%2,x3, ..., usually nonnegative, to all the activities. Then, for each
item, one can easily write the material balance equation by referring to
the tableau which asserts that the algebraic sum of the flows of that
item into each activity (given as the product of the activity levels on the

1.8 FORMULATING LINEAR PROGRAMS 11

top row by the appropriate input-output coefficients a;;) is equal to the
exogenous flow of the item.

There could be a surplus and shortage of items. These should be kept in
mind and appropriate surplus and shortage activities should be included.
If no costs are associated with the surplus or shortage amount then we
could write the constraint as an inequality instead of an equality. How-
ever, if the modeler wishes to force the solution not to have any deficit or
surplus (or wishes to be sure that all costs, or penalties, associated with a
shortage or revenues gained from selling off a surplus are accounted for),
then the relation would be written as shown in Table 1-1 as an equation.

The activity approach as defined requires setting up all the activities to be
nonnegative and all the constraints (material balances) to be specified as equalities.
Hence we will probably not always be successful in completing the model in the
first sequence of steps. It frequently happens that certain activities (referred to as
slack activities), commonly those related to the disposal of unused resources or the
overfulfillment of requirements, are overlooked until the formulation of the material
balance equations forces their inclusion. Thus a return from Step 5 to Step 1 will
sometimes be necessary before the model is complete.

1.3.2 THE ROW (MATERIAL BALANCE) APPROACH

For many modelers the natural way to set up a linear programming model is to
state directly the material balance relations in terms of the decision variables. The
steps are as follows.

Step 1 Define the Decision Variables. This step is similar to that for the ac-
tivity approach. Define all the decision variables, that is variables that
represent the quantity to produce, buy, etc. For example, the number of
desks of type 1 to manufacture is a decision variable. Recall that man-
ufacturing a desk is an activity, and the number of desks manufactured
is the level of this activity.

Decision variables are usually denoted by x1,xg, 3, ..., where x; is the
number of desks of type j to manufacture.

Step 2 Define the Item Set. As in the column approach determine the classes
of objects, the items, that are considered to be potential bottlenecks
and choose a unit for measuring each type of item. See Step 2 of the
activity approach for details.

The label 4 is usually used to refer to a type of item.

Step 3 Set Up Constraints and the Objective Function. For each item, write
down the constraints associated with the bottleneck by noting how
much of each item is used or produced by a unit of each decision variable
z;. This amounts to filling a row of the tableau shown in Table 1-1.

12 THE LINEAR PROGRAMMING PROBLEM

This results in a system of material balance inequalities (or material
balance equations) depending on whether or not a shortage or surplus
of an item is allowed. Next write down the objective function which
is formed by multiplying each decision variable by its unit cost (or
negative unit profit) and summing.

1.4 EXAMPLES OF MODEL FORMULATION
1.4.1 PRODUCT MIX (COLUMN APPROACH)

We next describe how to formulate the Product Mix Problem described earlier by
the Column Approach.

A furniture company manufactures four models of desks. Each desk is first
constructed in the carpentry shop and is next sent to the finishing shop, where it
is varnished, waxed, and polished. The number of man hours of labor required in
each shop is as shown in the display below.

Desk 1 | Desk 2 | Desk 3 | Desk 4 || Available
(hrs) (hrs) (hrs) (hrs) (hrs)
Carpentry Shop 4 9 7 10 6,000
Finishing Shop 1 1 3 40 4,000

Because of limitations in capacity of the plant, no more than 6,000 man hours can
be expected in the carpentry shop and 4,000 in the finishing shop in the next six
months. The profit (revenue minus labor costs) from the sale of each item is as
follows:

[| Desk 1 [Desk 2 | Desk 3 | Desk 4 ||
[Profit [$12 [$20 [S$18 | $40 ||

Assuming that raw materials and supplies are available in adequate supply and all
desks produced can be sold, the desk company wants to determine the optimal prod-
uct mix, that is, the quantities to make of each type product which will maximize
profit.

Step 1 The Activity Set. The four manufacturing activities, each of which are
measured in desks produced, are
1. Manufacturing Desk 1.
2. Manufacturing Desk 2.
3. Manufacturing Desk 3.
4. Manufacturing Desk 4.

There are other activities, but these will be discussed later.

1.4 EXAMPLES OF MODEL FORMULATION

4 hours of carpentry capacity

1 hour of finishing capacity

Manufacturing
1 unit of

$12

Step 2

Step 3

Step 4

Step 5

Desk 1

Figure 1-1: Manufacturing Activity 1

Activities Manufacturing Desks
Items 1 2 3 4
1. Carpentry capacity (hours) 4 9 7 10
2. Finishing capacity (hours) 1 1 3 40
3. Cost (—Profit) ($) —-12 —-20 -18 —-40

Table 1-2: Input-Output Coeflicients

The Item Set. The items are

1. Capacity in Carpentry Shop (measured in man hours).
2. Capacity in Finishing Shop (measured in man hours).

3. Costs (measured in dollars).

The Input-Output Coefficients. Manufacturing activity 1, for example,
can be diagramed as shown in Figure 1-1. The table of input-output
coefficients for the four manufacturing activities is shown in Table 1-2.

Ezxogenous flows. Since capacities in carpentry and finishing are inputs
to each of these activities, they must be inputs to the system as a whole.
At this point, however, we must face the fact that a feasible program
need not use up all of this capacity. The total inputs must not be more
than 6,000 carpentry hours and 4,000 finishing hours, but they can be
less, and so cannot be specified precisely in material balance equations.

Material balances. If we went ahead with the formulation anyway, using
this data for the exogenous flows, then in order to have a correct math-
ematical formulation, we would have to write the material balances as
inequalities instead of equations. For example, the carpentry capacity
limitation is

4171 + QIQ + 7583 + 101‘4 S 6000,

which is not in accordance with our rules for the activity approach.

14 THE LINEAR PROGRAMMING PROBLEM

Not using 1 unit
of carpentry-shop
capacity

1 hour of carpentry capacity

Figure 1-2: Slack Activity 5

Activities | Manufacturing Desks| Slack | Exogenous
Items Ty X2 T3 T4| x5 Tg
1. Carpentry capacity (hrs) 4 9 7 10 1 6,000
2. Finishing capacity (hrs) 1 1 3 40 1| 4,000
3. Cost ($) —-12 —20 —18 —40 z (Min)

Table 1-3: Full Tableau: Product Mix Problem

We see that the model cannot be completed with the lists of activities
and items given above, and we have here the situation mentioned in the
first section in which a second pass at the initial building of the model
is necessary. In this instance all we need to do is add activities to the
model that account for the carpentry and finishing capacity not used by
the remainder of the program. If we specify “not using capacity” as an
activity, we have the two additional activities, called slack activities, to
add to those listed in Step 1:

5. Not Using Carpentry Shop Capacity (measured in man hours).
6. Not Using Finishing Shop Capacity (measured in man hours).

Activity 5 can be abstracted as diagramed in Figure 1-2. The full tableau
of inputs and outputs of the activities and the exogenous availabilities
to the system as a whole are shown in Table 1-3.

Thus the linear programming problem is to determine the numbers
2120, 2220, 23 20, 24 >0, x5 20, 26 > 0,
and minimum z satisfying
—12z17 — 20x9 — 18x3 — 40x4 =z

4:E1 + 9932 + 7IE3 + 10174 + Is = 6000
r1 + o + 3$3 + 401’4 + xg = 4000.

1.4 EXAMPLES OF MODEL FORMULATION 15

Note that the same values of the x;’s that minimize the cost function will also
maximize the profit function p given by

1221 + 202 + 18z3 + 4024 = p.

Thus, a profit maximization problem can be stated as an equivalent to a cost min-
imization problem. It is obtained by reversing the sign of the coefficients of the
objective function of the cost minimization problem.

Exercise 1.8 Solve the product mix problem numerically using the DTZG Simplex
Primal software option. Find the optimal amount of each type of desk to manufacture
and the maximum profit obtained by manufacturing these amounts.

1.4.2 PRODUCT MIX (ROW APPROACH)

We next describe how to formulate the product mix problem described earlier by
the row approach.

Step 1 Define the Decision Variables. The decision variables are how many
desks to manufacture of each type. Let x; = the number of desks j to
manufacture per month, for j = 1,2, 3,4. Associated with each of these
variables z; is the activity of manufacturing a desk. With the column
approach described in the previous section, only these activities were
defined in the first step.

Step 2 Define the Item Set. As with the column approach, the items are

1. Capacity in Carpentry Shop (measured in man hours).
2. Capacity in Finishing Shop (measured in man hours).

3. Costs (measured in dollars).

Step 3 Set Up Constraints and the Objective Function. The cost item leads to
the objective function to be minimized:

z=—12x1 — 20x5 — 18x3 — 40x4.

The two capacity items each lead to inequality constraints. Manufac-
turing one unit of desk 1, one unit of desk 2, one unit of desk 3, and
one unit of desk 4 requires 4 hours, 9 hours, 7 hours, and 10 hours re-
spectively of carpentry capacity. The total carpentry capacity cannot
exceed 6,000 hours per month. Thus, the material balance inequality
for the carpentry item is

421 4+ 929 + T3 + 1024 < 6000.

In a similar manner, we can write down the constraint for the finishing
shop as
11‘1 + 1x2 + 3$3 + 401’4 S 4000.

16 THE LINEAR PROGRAMMING PROBLEM

Thus, the linear programming problem is to determine the numbers
T1 Z 0,%2 Z Oax?) Z 05334 Z 07

and minimum z satisfying

—12x7 — 20zy — 18x3 — 4024 = z
4x1 + 9x9 + Txz + 10z4 < 6000
1 + To + 31’3 + 40584 S 4000 .

1.4.3 A SIMPLE WAREHOUSE PROBLEM

Consider the problem of stocking a warehouse with a commodity for sale at a later
date. The warehouse can stock only 100 units of the commodity. The storage costs
are $1.00 per quarter year for each unit. In each quarter the purchase price equals
the selling price. This price varies, however, from quarter to quarter as shown in
the display below.

Quarter (t) | Price ($/Unit)
1 10
2 12
3 8
4 9

Assuming that the warehouse has an initial stock of 50 units, this suggests that a
profit may be realized by selling when the price is high and buying when the price
is low. The problem is to determine the optimal selling, storing, and buying plan
for a one-year period by quarters.

In each period (quarter) ¢, we distinguish four types of activities:

Activity Quantity
1. Selling Stock T
2. Storing Stock Tto
3. Buying Stock T3
4. Not Using Capacity (slack) Ttq

and three types of items:

Items
1. Stock
2. Storage Capacity
3. Costs

These activities have the input-output characteristics shown in Figure 1-3 for a
typical time period t.

With four quarters, each item and activity appears four times in Table 1-4,
the tableau for the warehouse problem, once each quarter with a different time
subscript. The problem here is to find the values of x;; > 0 which satisfy the
equations implied by the tableau and which minimize the total cost.

1.4 EXAMPLES OF MODEL FORMULATION

17

INPUTS OUTPUTS
ACTIVITY

1 unit of stock on hand
at time ¢ Selling Revenue/unit
> 1-unit
stock

1 unit of stock on hand
at time ¢

1 unit of capacity 1 unit of stock on hand

. Storing .
during quarter ¢ _ Lounit at time £ + 1
stock
Storage cost/unit
Stock on hand
Cost of 1 unit Buying at time ¢
> 1-unit >
stock
1 unit of capacity Not using
during quarter ¢ 1-unit
> capacity
(slack)

Figure 1-3: Input-Output Characteristics for the Warehouse Problem

18 THE LINEAR PROGRAMMING PROBLEM

Activities

1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter

S S B S|{S SBS|ISSBS|S S B S

? t ou 1 (15 t u 1 (13 t ou 1 (13 t u 1
e Vel 2 Vel YT el v ¢ Exes
e k e k e k e k | enous
Items T11 T12 T13 T14| T21 T22 T23 T24|T31 T32 T33 T34|T41 T42 T43 Taa|| Flows
t = 0 Stock 1 1-1 50
Capac. 1 1 100
t = 1 Stock -1 1 1-1 0
Capac. 1 1 100
t = 2 Stock -1 1 1-1 0
Capac. 1 1 100
t = 3 Stock -1 1 1-1 0
Capac. 1 1 100
[Cost [-10 110 0-12 112 0[-8 1 8 0[-9 1 9 0z (Min)]

Table 1-4: Tableau Form for the Warehouse Problem

Exercise 1.9 Solve the simple warehouse problem using the DTZG Simplex Primal soft-
ware option. Find the optimal selling, storing, and buying policy and associated total cost.

Exercise 1.10 Consider the cyclic warehouse problem, where the 4 quarters of each
year are followed by four quarters of next year for year after year indefinitely into the
future. Assume the levels of corresponding activities in different years in the same season
repeat. Further assume that all the data with respect to costs, selling price, and capacity
are the same. Instead of having an initial stock of 50 units on hand suppose the problem
is to determine the ideal stock level to have on hand at the start of each year so that the
net profit per unit is maximized. Formulate the linear programming model to be solved.

1.4.4 ON-THE-JOB TRAINING

The purpose of this example is to illustrate the ability of the linear programming
model to cover the many and varied conditions that are so characteristic of practical
applications.

A manufacturing plant has a contract to produce 1,500 units of some commodity,
C, with the required delivery schedule r; as shown in the display below.

End of Week 1 2 3 4 5
No. of units r1 =100 | ro =200 | r3 =300 | r4 =400 | r5 = 500

1.4 EXAMPLES OF MODEL FORMULATION

19

Training Productlon Idling
Iy
1-Wi_q 1- Wiy 1-Wy 1- Wi 1-W;
$m
Firing Storing Borrowing
By
1-Wi_q 1-Ci—q 1'Ct+1 1-Cy
$f $s $p

Figure 1-4: Activities for the On-the-Job Training Problem

What hiring, firing, producing, and storing schedule should the manufacturer adopt
to minimize the cost of his contract under the following conditions?

1. Each unit of production not delivered on schedule involves a penalty of p = $90
per week until delivery is effective.

2. Any production ahead of schedule requires storage at s = $30/unit/week.

3. All required deliveries must be met by the end of the fifth week.

4. Initially there are g = 20 workers and h = 10 units of C' on hand.

5. Each worker used in production during a week can turn out & = 8 units of C.

6. Each worker used for training recruits during a week can train [— 1 = 5 new
workers (that is, produce [= 6 trained workers including himself).

7. Wages of a worker are m = $300/week when used in production or when idle.

8. Wages of a worker plus [— 1 recruits used in training for one week are n =
$1, 800.

9. The cost to fire one worker is f = $300.

We shall choose for our unit of time a period of one week. At the beginning of
each week we shall assign the necessary number of workers and units of C' to carry
out an activity that takes place during the week. Accordingly, at each of the six

times ¢ = 0,1,...,

display below will need to be set up:

5, material balance equations for the two items named in the

Type of Item

Symbol for Item

Workers
Commodity

Wi
Ci

20 THE LINEAR PROGRAMMING PROBLEM

1st Week 2nd Week 3rd Week

T11 T12 T13 T14 T15 T16 |T21 T22 X23 T24 T25 T26 | T31 T32 T33 T34 T35 T36
Wo 1 1 1 1

Co 1
Wy | -1 -1 -1 1 1 1 1

C1 —k -1 -1 1
Wao - -1 -1 1 1 1 1

Ca 1 —k -1 -1 1

Table 1-5: The Job Training Model (First Three Weeks)

In addition to equations of these types, there will be a cost equation for the cost
item. In each of five weekly periods, six types of activities named in the display
below will need to be set up.

Type of Activity | Symbol for Activity
1. Training T
2. Producing P,
3. Idling I
4. Firing F;
5. Storing St
6. Borrowing By

The input-output characteristics of each of these activities are displayed in Figure 1-
4. Except perhaps the borrowing activity, they are straightforward. Each failure
to produce enough of commodity C' makes it necessary to borrow one unit of com-
modity C' in period ¢ from a competitor and to return one unit to the competitor
in the next time period at a penalty cost of p dollars.

These activities are shown in conventional tableau form in Table 1-5. In the
fifth week the borrowing activity is omitted because condition (3) on page 19 states
that all deliveries must be met by the end of the fifth week. In the sixth week a
firing activity Fg has been introduced to get rid of all workers and to terminate the
program.

> Exercise 1.11 Why is it necessary to terminate the program in this manner?

1.5 BOUNDS 21

4th Week 5th Week Exog-
Item| Ty Py Iy Fy Sy By| Ts Ps Is Fs Ss| Fg| enous
T41 T42 T43 T44 T45 T46 |T51 Ts52 Ts53 T4 Tss | Tea | Flows
Wo g
Co h
Wi 0
1 —r1
Wo 0
Co —ry
Ws 1 1 1 1 0
Cs 1 —rs
Wy - -1 -1 1 1 1 1 0
Cy —k -1 -1 1 -7y
Ws - -1 -1 1 0
Cs 1 —k -1 —rs
Cost| n m m f s p|l n m m f s f|z (Min)

Table 1-6: The Job Training Model (Continued)

> Exercise 1.12 Assuming that firing is the opposite of hiring, give reasons why it is
better to treat these as two nonnegative activities rather than as a single activity with
positive and negative activity levels.

> Exercise 1.13 Solve the simple job training model numerically using the DTZG Simplex
Primal software option. Find the optimal hiring, firing, and storing schedule that the
manufacturer should adopt.

1.5 BOUNDS

In a linear program in standard form the levels of the activities are nonnegative. In
many real-world problems the levels of the activities are between bounds.

NONNEGATIVITY

Typically, in linear programming models, the levels of activities are nonnegative.
For example, it is not possible to train a negative number of workers or to combine
negative quantities of food items to determine the optimal diet. A subtle example
of nonnegativity occurs in a well-known classic: the Mad Hatter, you may recall,
in Alice’s Adventures in Wonderland, was urging Alice to have some more tea, and
Alice was objecting that she couldn’t see how she could take more when she hadn’t
had any. The hatter replied: “You mean, you don’t see how you can take less tea.
It is very easy to take more than nothing.”

Lewis Carroll, the author, was a mathematician, and his point was probably lost
on his pre-linear-programming audience, for why should one emphasize the obvious

22 THE LINEAR PROGRAMMING PROBLEM

fact that the activity of “taking tea” cannot be done in negative quantity? Perhaps
it was Carroll’s way of saying that mathematicians had been so busy for centuries
extending the number system, from integers to fractions to negative to imaginary
numbers, that they had forgotten the art of keeping the variables of their problems
in their original nonnegative range. This characteristic of the variables of the linear
programming model in most situations is known as the nonnegativity assumption.
In linear programs, nonnegativity restrictions on variables are denoted by x; > 0.

UPPER AND LOWER BOUNDS

Sometimes an activity level is required to be not less than some quantity called
a lower bound. This bound may be positive or negative. There may be other
restrictions on the variables as well, such that they cannot exceed a certain quantity
called an upper bound. For activity j, this can be represented by I; < z; < u;.

In some of applications of linear programs, variables may be allowed to have
negative values. For example, in financial applications, there may be no restriction
on the sign of the level of an activity measuring cash flow. In certain situations it
may even be advantageous for computational reasons to restrict certain variables
to always be nonpositive or to allow certain variables to be temporarily negative.

1.6 AXIOMS

A linear programming model satisfies certain assumptions (or axioms), namely pro-
portionality, additivity, and continuity. Other types of mathematical programs do
not satisfy these, for example, integer program models do not satisfy the axiom of
continuity.

PROPORTIONALITY

For example, suppose 1 slice of bread provides 77.5 calories; if the number of slices
is doubled it provides 155 calories. That is, in the linear programming model the
quantities of flow of various items into and out of the activity are always proportional
to the activity level. The ingredients to make two loaves of bread are double those
for one loaf. If we wish to double the activity level, we simply double all the
corresponding flows for the unit activity level.

In general, the proportionality assumption implies that if a;; units of the ith
item are required by 1 unit level of the jth activity, then z; units of the jth activity
require a;;x; units of item ¢. The proportionality assumptions also implies that if
it costs ¢; to buy 1 unit level of the jth activity then it costs c;z; to buy x; units
of the jth activity.

ADDITIVITY

For example, if 2 slices of bread provide 155 calories and a boiled egg provides
80 calories, then 235 calories are provided by eating 2 slices of bread and 1 boiled

1.7 NOTES € SELECTED BIBLIOGRAPHY 23

egg.

In general, the additivity assumption implies that if a;; units of the ith item are
provided by 1 unit of the jth activity and a;; units of the ith item are provided by
1 unit of the kth activity then a;;x; 4 a1, units of the ith item are provided by z;
units of the jth activity and zj units of the kth activity. The additivity assumption
also implies that if it costs c¢; to buy 1 unit of the jth activity and costs ¢ to buy
1 unit of the kth activity, then it costs ¢;x; +cix) to buy x; units of the jth activity
and xj units of the kth activity. That is, the additivity assumption implies that
the objective function is additively separable in the variables; there are no mixed
variable terms like cy;zrx;.

CONTINUITY

The activity levels, or variables, can take on any real values within their allowable
range. Thus, if a problem requires that some activity level must take on one of a
finite set of values (such as a discrete number of real or integer values), the problem
cannot be represented as a linear program. Such problems can be reformulated as
integer programs, which, in general, belong to a class of problems that have been
shown to be much harder to solve than linear programming problems.

1.7 NOTES & SELECTED BIBLIOGRAPHY

From the time that the Simplex Method was first proposed by George Dantzig in 1947,
applications and new theories have grown at an astounding rate. They have grown so
rapidly that it is not possible to treat every aspect of linear programming and extensions
here. In fact, the early funding of the development of computers was done to make it
possible to solve linear programs (see the Foreword)! For another brief history of linear
programming see Orden [1993]. A classic book on linear programming is due to Dantzig
[1963]. For a history of mathematical programming, see Lenstra, Rinnooy Kan, & Schrijver
[1991].

Since the early 1950s many areas that we collectively call mathematical programming
began to emerge. These subfields have all grown rapidly, with linear programming playing
a fundamental role in their development. They are briefly described in the foreword
and are: nonlinear programming, commercial applications, software, network flow theory,
large scale methods, stochastic programming, integer programming, complementary pivot
theory, computational complexity, and polynomial time algorithms.

One of the first known applications of the Simplex Algorithm was the determination of
an adequate diet that was of least cost. J. Cornfield, of the U.S. government, formulated
such a mathematical model in 1940. Later, in the fall of 1947, J. Laderman, of the Math-
ematical Tables Project of the National Bureau of Standards, undertook as a test of the
newly proposed Simplex Method, what was the first large scale computation in this field.
It was a system with 9 equations and 77 variables. This problem took approximately
120 man-days to solve using hand-operated desk calculators. Today such a problem is
considered tiny and can be solved in a matter of seconds on a personal computer! This
particular problem was one that had been studied by G.J. Stigler [1945], who had deter-
mined a nonoptimal solution by selecting a handful of food combinations to be examined

24 THE LINEAR PROGRAMMING PROBLEM

in an attempt to reduce the annual cost.

Among other early applications of linear programming were these: scheduling job
shop production (Dantzig [1957a], Jackson [1957], and Salveson [1953]); applications to
the oil industry (for example, Manne [1956], Charnes, Cooper, & Mellon [1952], Garvin,
Crandall, John, & Spellman [1957]); food processing industry (Henderson & Schlaifer
[1954] and Fisher & Schruben [1953]); the iron & steel industry (Fabian [1954, 1955,
1958]); metalworking industries (Lewis [1955], Maynard [1955], and Morin [1955]); paper
mills (Doig & Belz [1956], Land & Doig [1960], Eisemann [1957], and Paull & Walter
[1955]); optimal routing of messages in a communications network (Kalaba & Juncosa
[1956]); contract award problems (Gainen [1956], Goldstein [1952]); routing of aircraft
and ships (Dantzig & Fulkerson [1954]; Ferguson & Dantzig [1955, 1956]); investment in
electric power (Massé & Gibrat [1957]); among others.

Since the early days, the number of applications has exploded, and it is impossible to
even attempt to list them. An example of a commercially successful application of network
analysis is the award-winning study by Klingman, Philips, Steiger, & Young [1987] and
Klingman, Philips, Steiger, Wirth & Young [1986] at Citgo Petroleum Corporation. It was
developed with full top management and support, and is estimated to have saved Citgo
approximately $2.4 million as a result of better pricing, transportation, and coordination.
Many successful applications have been those for the oil industry (Rigby, Lasdon, & Waren
[1995], and Thapa [1991,1992]).

Applications that result in savings to management are published in Interfaces, Manage-
ment Science, etc. For example, valuation and planning of New Zealand Plantation forests
(Manley & Threadgill [1991]); forest management (Vertinsky, Brown, Schreier, Thompson,
van Kooten [1994] mortgage valuation models (Ben-Dov, Hayre, & Pica [1992]); telephone
network planning (Jack, Kai & Shulman [1992]); managing consumer credit delinquency
(Makuch, Dodge, Ecker, Granfors, & Hahn [1992]); freight routing using network optimiza-
tion (Roy & Crainic [1992]); plant closure (Clements & Reid [1994]); optimal leveraged
lease analysis through linear programming (Litty [1994], and Thapa [1984a]); portfolio
optimization (Feinstein & Thapa [1993]); strategic and Operational Management in the
Steel Industry (Sinha, Chandrasekaran, Mitter, Dutta, Singh, Choudhry, & Roy [1995]);
supply chain management (Arntzen, Brown, Harrison, & Trafton [1995]); a new linear
programming benchmarking technique (see Sherman & Ladino [1995]). Recent advances
in stochastic linear programming have made it possible to build stochastic linear programs
for a variety of problems, for example, portfolio optimization (Dantzig & Infanger [1993]),
asset/liability management (see Carifio, Kent, Myers, Stacy, Sylvanus, Turner, Watanabe,
& Ziemba [1994]); and animal feed formulation (Roush, Stock, Cravener, & D’Alfonso
[1994]).

Extensions of linear programming have been applied to numerous areas. To give you an
idea, a very small set includes mixed integer linear programming formulations in bulk sugar
deliveries (Katz, Sadrian, & Patrick T. [1994] and Vliet, Boender, Rinnooy Kan [1992]);
balancing workloads (Grandzol & Traaen [1995]); telecommunications (Cox, Kuehner, Par-
rish, & Qiu [1993]).

Various other linear programming applications can be found in, for example, Bradley,
Hax, & Magnanti [1977], Hillier & Lieberman [1990]. For additional reading on modeling,
see, for example, Ackoff & Rivett [1963], Gass [1991], Morris [1967], Starfield, Smith, &
Bleloch [1990], and Williams [1985].

The product mix problem, cannery example, on-the-job training, homemaker’s prob-
lem, and the warehouse example are based on examples in Dantzig [1963].

1.8 PROBLEMS 25

1.8 PROBLEMS

1.1

1.2

1.3

14

1.5

Dantzig [1963]. If an activity such as steel production needs capital such as
bricks and cement to build blast furnaces, what would the negative of these
activities imply if they were used as admissible activities?

A Machine Problem (Kantorovich [1939]). Formulate the following problem.
An assembled item consists of two different metal parts. The milling work can
be done on different machines: milling machines, turret lathes, or on automatic
turret lathes. The basic data are available in the following table:

Productivity of the Machines for Two Parts
Maximum Output
Type of Machine Number of || per Machine per Hour
Machines || First Part [Second Part
Milling Machines 3 10 20
Turret Lathes 3 20 30
Automatic Turret Lathes 1 30 80

(a) Divide the work time of each machine to obtain the maximum number of
completed items per hour.

(b) Prove that an optimal solution has the property that there will be no slack
time on any of the machines and that equal numbers of each part will be
made.

(c) State the dual of the primal problem.

Generalize Problem 1.2 to n machines and m parts, where the objective is to
produce the largest number of completed assemblies.

(a) Show, in general, that if each machine is capable of making each part,
and there is no value to the excess capacity of the machines or unmatched
parts, any optimal solution will have only matched parts and will use all
the machine capacity. What can happen if some machines are incapable of
producing certain parts?

(b) State the dual of the primal problem.

(c) Suppose there are two types of assemblies instead of one and a “value” can
be attached to each. Maximize the weighted output.

The Chicken and Egg Problem (Kemeny in Dantzig [1963]). Suppose it takes
a hen two weeks to lay 12 eggs for sale or to hatch 4. What is the best laying
and hatching program if at the end of the fourth period all hens and chicks
accumulated during the period are sold at 60 cents apiece and eggs at 10 cents
a piece. Formulate the problem assuming, in turn

(a) An initial inventory of 100 hens and 100 eggs,
(b) 100 hens and zero eggs,
(c) 100 hens and zero eggs and also a final inventory of 100 hens and zero eggs.

A small refinery blends five raw gasoline types to produce two grades of motor
fuel: regular and premium. The number of barrels per day of each raw gasoline
type available, the performance rating, and cost per barrel are given in the
following table:

26

THE LINEAR PROGRAMMING PROBLEM

1.6

Raw Gasoline | Performance Cost/barrel
Type Rating Barrels/day ()

1 70 2000 0.80

2 80 4000 0.90

3 85 4000 0.95

4 90 5000 1.15

5 99 5000 2.00

Regular motor fuel must have a performance rating of at least 85 and premium
at least 95. The refinery’s contract requires that at least 8,000 barrels/day of
premium be produced; at the same time, the refinery can sell its entire output
of both premium and regular for $3.75/barrel and $2.85/barrel, respectively.
Assume the performance rating of a blend is proportional, i.e., a 50-50 mixture
of raw gasoline types 1 and 2 has a performance of 75.

Formulate a linear program to maximize the refinery’s profit. Be sure to define
all of your variables.

Optimum Blending Of Residual Fuel Oil In a Refinery (Soares, Private Com-
munication in 1986). Residual fuel oil is the major by-product of fuel refineries.
The main uses for residual fuel are in the industrial and electric utility sectors, as
well as for space heating and as marine Bunker C fuel. Rigid product specifica-
tions, combined with continually changing crudes, refinery operating conditions,
and market economics, creates a need for a quick and easy-to-use technique for
developing an optimum blend recipe for residual fuel. The reason for this is
that by the time crude oil has been refined, the optimal blend of residual fuel oil
that is obtained from a possibly large refinery linear programming model may
no longer be valid. Thus, it is important to be able to quickly determine a new
optimal blend recipe.

Critical properties of residual fuel oil include gravity, sulfur content, viscosity,
and flash point. These properties are described next.

e Gravity. API gravity is used widely in the petroleum industry and is
defined by the American Petroleum Institute as follows:

API = (141.5/specific gravity) — 131.5,

where specific gravity is the ratio of the density of the material to the
density of water, and density is defined to be the ratio of mass (weight) to
volume.

Water, with a specific gravity of 1.0, has an API gravity of 10.0, and
fuels heavier than water will have an API gravity below 10.0. Low API
gravity fuels, being heavier, have slightly higher heating values; however,
at gravities below 10 API, water and entrained sediment will not settle
out of the fuel.

API gravity does not blend linearly; however, specific gravity does blend
linearly. Thus, you will need to convert the API gravity specifications to
specific gravity.

e Sulfur. High sulfur fuels require higher cold-end temperatures in the air-
preheaters and economizers of boilers so as to protect against corrosion and

1.8 PROBLEMS 27

resulting fouling of the boiler tubes. In addition, atmospheric pollution
regulations limit the maximum sulfur content of residual fuels.

Typically sulfur concentrations are specified as a percentage by weight,
thus, you will need to be careful that you do not apply this percentage to
a variable that has volume units. Specific gravity can be used to convert
between weight and volume. For example, weight = density X volume.

e Viscosity. This is a measure of the ability of the fuel to flow. Viscosity is

the single most important property because of the difficulties involved in
the handling and atomizing of such fuels at the burner tips. Viscosity is
measured in units of centistokes (cs) at 122 degrees Fahrenheit tempera-
ture.
Although viscosity is highly nonlinear, when converted to a Viscosity Blend
Index (VBI) linear blending is possible. The conversion to VBI is a table
look up and has already been done for you in this case. VBI can be applied
to variables that have volume units.

e Flash Point. This is the temperature at which the vapor above the fuel
will momentarily flash or explode when in the presence of a flame. Flash
point is an indicator of the temperature at which the fuel can be handled
without danger of a fire. A low flash point is extremely difficult to blend
off; consequently, it is most desirable to start off with components that all
meet flash point specification. Assume that all the components meet flash
point specification.

Frequent changes in the quality of crude oil run (high or low sulfur), type of
asphalt produced (heavy or light), and economics of the finished products mar-
ket create a need to develop a quick and easy-to-use method for determining an
optimum blend recipe for finished residual fuel. Assume that a larger refinery
model has been run and it has been determined that the best strategy is to
blend to produce an optimum finished residual fuel oil.

Use the information in Table 1-7 to develop a linear programming model to
provide an optimal blend recipe. For simplicity, consider only three refinery
produced streams for use in blending residual fuel oil: asphalt flux, clarified
oil, and kerosene distillate. Market conditions are such that residual fuel can
be sold at 60.0 cents/gallon and the best possible alternate disposition of the
constituent streams are as shown in Table 1-8. Finally, assume that the cost of
blending the constituent streams to form residual fuel oil is negligible.

Model Formulation and Analysis.

Formulate and solve the resulting linear program by using the DTZG Simplex
Primal software option on it to determine the optimum residual fuel mix (by
fractional volume). Perform any suitable sensitivity analysis that you can think
of. Make sure you justify whatever you choose to do and choose not to do. Write
a report that is organized so that it is easy for management to read and take
prompt action. The following is how you should organize your report.

e First report a complete summary of your LP run(s) indicating clearly what
must be done and why.

e Next report details of your LP run(s) and any sensitivity runs/analysis
that you may have performed. Justify whatever you do.

28

THE LINEAR PROGRAMMING PROBLEM

1.7

Properties
Viscosity

Type of API Sulfur | Viscosity Blend
Stream Gravity | Weight % cs at Index

(%) 122°F
Asphalt Flux 7.5 2.39 1.5 0.966
Clarified Oil -3.0 2.20 96.5 0.740
Kerosene 38.5 0.20 1.3 0.347
Product Specifications
Residual fuel (Max) 18.0 2.00 640.0 0.808
Residual fuel (Min) 10.0 None 92.0 0.738

Table 1-7: Stream Properties and Product Specifications

Constituent Stream Price

Asphalt flux 61.7 cents/gallon
Clarified Oil 40.0 cents/gallon
Kerosene 76.0 cents/gallon

Table 1-8: Selling Prices for the Constituent Streams

e Describe your model formulation in an appendix.

e In a second appendix indicate if you ran into any numerical problems.
Justify your observations.

Adapted from a model developed by Thapa [1991] at Stanford Business Software,
Inc., and by G. Soares. A small refinery would like to optimally distribute
gasoline through the use of various exchanges. The following describes the
problem they face.

e A fixed amount of gasoline is manufactured every month. G grades (for
example, unleaded, premium, super-unleaded, etc.) of gasoline are manu-
factured at the refinery. Exact manufacturing costs are difficult to get a
handle on. Thus, the company assumes that a base amount of one grade,
unleaded, is manufactured at 0 cost and the other volumes are generated
from it at given manufacturing differentials (different for each grade) of a
few cents per gallon.

e The refinery has exchange contracts with exchange partners. There is
a total of P exchange partners, and the partners lift gasoline from the
refinery up to a maximum prespecified amount by grade.

Then gasoline is taken back by the refinery at various terminals owned by
the partners. A location differential (of the order of a few cents or fraction
of cents) independent of the grades is incurred by the refinery.

The gasoline can also be taken back from the partners at a supply source
where exchanges take place. Here too a location differential (of the order
of a few cents or fraction of cents) independent of the grades is incurred

1.8 PROBLEMS 29

by the refinery. There are a total of E supply sources; currently there is
only 1 supply source but there may be more in the future. Usually, the
refinery gets a credit for gasoline lifted back at the supply source.

From the supply source the gasoline can be shipped via pipeline (at a cost
of a few cents per gallon) to various terminals owned by the partners.

It is possible to also obtain a different mix of grades from the partners than
was given to the partners. A regrade differential is incurred in the event
that a different mix of grades is lifted. For example, suppose that a partner
takes 500,000 gallons of unleaded and 500,000 gallons of premium at the
refinery. Then the refinery takes back (at the supply source or terminal)
600, 000 gallons of unleaded and 400,000 gallons of premium. Then the
partner owes the refinery money for having taken more of premium, a
higher valued grade. Note that these costs are computed by assuming
that, one of the grades is the base grade, for example unleaded in the
above example.

The refinery supplies a total of S stations with these grades of gasoline.
Some stations are supplied directly and others are supplied through ex-
changes and other terminals. Each station has a prespecified demand for
each grade. The demand must always be met.

Due to physical constraints some grades must be supplied together, that is,
split-loading is not allowed for certain groups of grades. Typically, super-
unleaded is supplied only from the refinery, and the other grades must
all come either from the refinery or from a terminal. That is, unleaded
cannot come from one terminal and premium from another terminal. If
the economics dictate, it is possible, however, for a station to be supplied
a portion of a group of grades from one terminal and the balance from
another terminal.

There is a freight cost of the order of a few cents per gallon (independent
of the grade) for shipping gasoline from a terminal or from the refinery to
the stations.

It is known in advance which terminals are clearly uneconomical; this
reduces the model size since only a few terminals can supply each station.
Typically, between 5 and 15 terminals supply each station.

Do the following:

(a) Formulate the retail distribution model described above.

(b) Suppose that the refinery would like to analyze buy-and-sell options at

the refinery, terminals, and supply sources. Incorporate this into your
model. How would you model incremental sales (assuming one customer
only); that is, for example, the first 100,000 gallons of unleaded are sold
at 57 cents/gallon and the next 200,000 gallons of unleaded are sold at 55
cents/gallon.

It may be advantageous to blend different grades of gasoline in the truck
once it is picked up at a terminal. For example, 86 octane gasoline can
be obtained by blending 25% of 80 octane and 75% of 88 octane. In your
formulation, incorporate blending of gasoline at terminals only. Assume a
small cost for the blending.

30

THE LINEAR PROGRAMMING PROBLEM

1.8

(d) In some instances it is possible to enhance a grade of gasoline by adding an
octane enhancer in the truck. For example, 1 gallon of 86 octane gasoline
can be obtained by enhancing 1 gallon of 84 octane gasoline. In your for-
mulation, incorporate grade conversion at terminals only. Assume a small
cost for the grade conversion.

(e) How would you modify your formulation to allow the user to specify for
each station any combination of products to be supplied as a group; i.e.,
different split-loading restrictions for each station.

Comment: The making and distribution of asphalt can be formulated as a
very similar model. In this case, however, because asphalt is a seasonal prod-
uct and inventories need to be maintained, a multi-time period is needed (see
Thapa [1992]).

Adapted from a model developed by Hogan and enhanced by Thapa at Stanford
Business Software, Inc., in 1990. A gas and electric company has been ordered
by the Public Utilities Commission (PUC) to allow customers to bid for the
extra gas transportation capacity on their pipelines. The pipeline has many
links but for simplicity assume that we are concerned only with one link.

e The gas company cannot make a profit on the selling of this capacity but
must be fair in assigning capacity.

e The actual capacity available in the pipeline depends on usage by core
customers. Once core usage is satisfied, the other capacity is available to
the noncore customers. Assume that there are N noncore customers.

e Assume that the available capacity is prioritized into blocks 1,..., K,
where block K has the lowest probability of being available. That is,
the capacity in each block is known with a given probability.

e Noncore customers bid for the maximum capacity they would like in each
priority block. They also assign a price to their bid in each priority block
without knowledge of the prices assigned by other noncore customers. Fur-
thermore, they also indicate the maximum capacity they would like to
receive over all blocks.

o Assume that if a customer bids for block k, then this bid is also available
for all higher priority blocks, i.e., for blocks 1,..., k.

The process is best illustrated by an example. Suppose that there are 2 cus-
tomers and that there are two priority blocks. The bids and prices are illustrated
in the table below:

Bid Price Max
for Block Bid

2 1
Customer 1 15 17 250
Customer 2 30 35 250

Max Capacity || 200 200

The optimal award is as follows:

e Customer 1 gets 150 in block 2.

1.8 PROBLEMS 31

1.9

e Customer 2 gets the entire bid amount, that is, 200 in block 1 and 50 in
block 2.

The willingness to pay is then 10,750= 150 x 15 + 50 x 30 4+ 200 x 35. The
revenue to the company is somewhat lower because the market clearing prices
are lower. To understand this, observe that Customer 1 is the marginal bidder
since he/she gets the last available unit in block 2. Thus, the resulting marginal
price is 15 for that block which is what both customers actually pay. It appears
that Customer 2 is indifferent between block 1 and block 2, which is cheaper
by 5. Thus, the market clearing price for block 1 is 20 = 15 + 5, which is what
Customer 2 actually pays. This results in a total revenue to the company of
7,000= 150 x 15+ 50 x 15 + 200 x 20. With this in mind do the following:

(a) Formulate the linear program to maximize the benefits as measured by the
willingness to pay.

(b) Once the bids are assigned, the customer pays the market clearing price
for the block. Write down the dual of the problem and show that the dual
prices are the market clearing prices. This implies that the revenue earned
is actually not necessarily the value of the objective function! Why?

(¢) It turns out that linear programs often have multiple solutions in practice.
This problem is not an exception; the implication here is that it is possible
for only one of two identical bids to be awarded. How would you modify
the model to distribute the bids fairly. Hint: One approach is to use a
quadratic function; in this case, it is no longer a linear program.

(d) Some customers have a minimum acceptable quantity that they would ac-
cept. Modify your formulation to reflect this. Is the resulting formulation
a linear program? Why?

Adapted from a model developed by Thapa [1984] at Stanford Business Software,
Inc. This is a simplified version of a leveraged lease model. A leasing company
(lessor) obtains a loan on a piece of equipment and leases it out to a customer
(lessee) who pays rent every month for 30 years. Formulate the leveraged leasing
model as a linear programming model assuming

e The goal is to minimize the present value of the rents received while ob-
taining the desired yield. The present value of cash in time period ¢ is the
cash divided by (1 + r)’, where r is the monthly discount rate (interest
rate) for the lessee.

e The IRS requires that the sum of the rents received in each year must be
within the range [0.9 x AVG, 1.1 x AVG], where AVG is the average yearly
rent computed over the rents received for the entire lease period of 360
months.

e The lessor’s loan principal is equal to the asset price plus the fee minus
the equity paid by the lessor.

e The rent received in each time period must be greater than or equal to the
debt service. The debt service in a time period is defined to be the sum
of the interest payment and loan principal repayment in that time period.
The interest in any period is defined to be the product of the bank interest
rate charged to the lessor times the principal balance in that time period.

32

THE LINEAR PROGRAMMING PROBLEM

1.10

1.11

e The present value of the cash flow over all time periods for a prespecified
yield (interest rate) must be equal to the investment amount (total loan
principal) for the lessor. The cash flow for the lessor is the difference
between the rents and debt service in each time period.

Problem Under Uncertainty. Suppose that there are three canneries that ship
cases of cans to five warehouses. The number of cases available during each
season at each of the canneries is known in advance and is shown in the table
below together with the cost to ship per case to each of the warehouses.

Availability Shipping Cost ($/case)
‘Warehouses
Canneries Cases a [b [c [d [e
1 50,000 09|20 | 18| 17|25
2 75,000 06|16 |14] 18| 25
3 25,000 27118 15| 1.0 0.9

The seasonal demand at each of the warehouses is uncertain and is shown in
the table below:

Demand at Probability

Warehouse 15% 55% 30%

15,000 | 20,000 | 30,000
16,000 | 20,000 | 28,000
17,000 | 20,000 | 26,000
18,000 | 20,000 | 24,000
19,000 | 20,000 | 22,000

o A0 T

Assume all cases left over at the end of the season must be disposed of at a loss
of $1 per case (they cannot be stored any longer because the food in the cans
will spoil). Failure to supply demand during a season is penalized at $0.25 per
case as the discounted estimated loss of all future sales (turning a customer away
runs the risk that the customer will not return by becoming the customer of
another supplier). Use the DTZG Simplex Primal software option to determine
what shipping schedule will optimize the total shipping cost and expected net
revenues?

Ph.D. Comprehensive Exam, September 25, 1976, at Stanford. You have been
called to appear as an expert witness before the congressional committee that
is reviewing the new budget of the Department of Energy. In the past, this
department and its predecessor agencies have provided a substantial amount of
financial support for the development of mathematical programming, comple-
mentarity, and fixed-point algorithms. Congressman Blank, a member of this
committee, is hostile to this type of research. He has just made newspaper
headlines by reading out the titles of some of the more esoteric publications in
this area.

You are asked to prepare a non-technical statement (not to exceed 500 words
in length) explaining the relevance of such research to the area of energy policy.
Recall that most congressmen have been trained as lawyers, that they have
not had college-level courses in mathematics, and that they are skeptical about
mathematical reasoning.

1.8 PROBLEMS 33

1.12

Ph.D. Comprehensive Exam, September, 1982, at Stanford. 1t is often said that
there is a similarity between market mechanisms and mathematical program-
ming models. For what types of applications does this seem valid? Give an
example in which the analogy breaks down, and explain why.

This page intentionally left blank

CHAPTEHR 2

SOLVING SIMPLE LINEAR
PROGRAMS

Linear programs, except possibly very tiny ones or very special cases, require a
computer for solution. When linear problems have exactly two variables subject to
many inequality constraints or exactly two equations in many nonnegative variables,
it is possible to solve them graphically. In Section 2.1 we illustrate how to solve
the first class graphically. In Section 2.2 we illustrate the second class and also
introduce the concept of duality and the role that it plays in the solution. Finally
in Section 2.3 we show how to solve simple linear programs algebraically using the
Fourier-Motzkin Elimination Method.

2.1 TWO-VARIABLE PROBLEM

Consider the following two-variable case:

Minimize —2x1 — T2 = z
subject to T+ 29 < B
2x1 + 3x9 < 12
T < 4

and z1 > 0, x5 > 0.

To solve this problem graphically we first shade the region in the graph in which all
the feasible solutions must lie and then shift the position of the objective function
line —2x7 — x5 = z by changing the value of its right hand side z until the objective
function cuts the feasible region with the lowest possible value for the objective.
The feasible region is the set of points with coordinates (1, x2) that satisfy all
the constraints. It is shown in Figure 2-1 as the shaded region. It is determined

35

36 SOLVING SIMPLE LINEAR PROGRAMS

)
6 (E1:4
5 Optimal at C:
*
4 ;=4
\ ay =1
' 3 =9
\
v 2
N N\ 271 + 372 = 12
A L \
N w N
\ 1 2 3 45 6 ™M
\ \
\ 2= —2x1 — T9

Figure 2-1: Graphical Solution of a Two-Variable LP

as follows: The nonnegativity constraints x; > 0 and z9 > 0 clearly restrict all the
feasible solutions to lie in the first (or northeast) quadrant. The first constraint,
r1 4+ x2 < 5, implies that all the feasible x1 and x> must lie to one side of its
boundary, the line x1 + 2 = 5. The side on which the feasible x; and x2 must lie
is easily determined by first checking whether the origin lies on the feasible side of
the line; in this case it is easy to see that the feasible side is on the same side as the
origin since (0, 0) obviously satisfies 1 + x5 < 5. In a similar manner we can check
which side of the boundary of the other two constraints is the feasible side.

The objective is to minimize the linear function z = —2x; — xo. If we fix for
the moment the value of z to be zero we see that the objective function can be
represented as a line of slope —2 that passes through the origin. Translating this
objective line (i.e., moving it without changing its slope) to a different position
is equivalent to choosing a different value for z. Clearly, translating the line in
a Southwest direction away from the feasible region is pointless. The origin is
an extreme point (corner) of the feasible region but is not an optimal solution
point since translating the objective line into the feasible region results in a smaller
value for the objective (for example, draw the objective line with z = —3). Thus
translating the objective function in a northeast direction is desirable since it results
in a smaller and smaller objective function value. However, moving the objective
function line past the extreme point marked C = (4,1) in Figure 2-1 causes the
line to no longer intersect the feasible region. Thus, the extreme point C, which is
the intersection of the boundary of constraints 1 and 3, must be the optimal point
for this two-dimensional LP. At the optimal solution point (z1,22) = (4,1), the
minimum (optimal) value of the objective function is —9. We will prove later that
bounded linear programs that have feasible solutions always have optimal solutions

2.2 TWO-EQUATION PROBLEM 37

that are extreme points. If they have more than one optimal extreme point, then
any weighted average of these extreme points is also an optimal solution.

> Exercise 2.1 Use the DTZG Simplex Primal software option to verify that the above
solution is correct.

> Exercise 2.2 Prove that the two-variable problem can have at most two optimal ex-
treme points.

> Exercise 2.3 Construct a graphical example in three dimensions to show that a three-
variable problem can have more than three optimal extreme points.

The following cases can arise for a minimization problem (analogous results hold
if one is maximizing):

1. If the constraints are such that there is no feasible region, then no solution
exists.

2. If the objective function line can be moved indefinitely away from a feasi-
ble point in a direction that decreases z and still intersects the feasible re-
gion, then the feasible region is unbounded and there is a sequence of feasible
points (x1, 23) for which the corresponding values of z approach —oo.

3. If the objective function line can be moved only a finite amount by decreasing
the value of z while still intersecting the feasible region, then the last feasible
point touched by the objective function line, if unique, yields the unique op-
timal solution, and the corresponding value of z is the minimum value for the
objective. If not unique, then any point on the segment of the boundary last
touched yields an optimal solution and the minimum value for the objective.

> Exercise 2.4 Draw a graph of a two-variable linear program to illustrate each of the
above three cases.

> Exercise 2.5 Construct an example where the set of points (x1,x2) where z is mini-
mized is (a) a line segment; (b) an infinite line segment that is bounded at one end;(c) an
infinite line segment not bounded on either end.

2.2 TWO-EQUATION PROBLEM

In order to illustrate how to solve a two-equation problem graphically, we shall make
use of the product mix problem described in Section 1.4.1. The problem, repeated

38 SOLVING SIMPLE LINEAR PROGRAMS

here for convenience, is to minimize z subject to x; > 0 and

4£U1 + 91’2 + 7£C3 +].0£U4 + s = 6000
1 + a9 + 3x3 + 4014 + xg = 4000 (2.1)
—12z1 — 20x9 — 18x3 — 40z4 = z.

2.2.1 GRAPHICAL SOLUTION

Clearly the techniques of the last section cannot be applied directly since it is not
easy to visualize the equations as objects in the six-dimensional space of points
whose coordinates are (z1, x2, x3, T4, 5, Zg). Fortunately, this problem can be con-
verted to one that involves finding a way to average a set of points in a two-
dimensional space to attain a specified average value while simultaneously mini-
mizing the average cost associated with these points.

To convert the product mix problem (2.1) to one that can be solved graphically,
it is first necessary to modify the units used to measure the quantity of items and
activity levels and also to redefine the activity levels so that the activity levels sum
to unity. Algebraically, this is done by first adding the two equations to form a new
equation. This allows us to drop one of the original equations as now redundant.
We next change the units for measuring the z;’s so that they sum to unity. Oper-
ationally we can do this by introducing as a new item total capacity, which is the
sum of the carpentry capacity and the finishing capacity.

51 + 10z + 10z3 + 50x4 4+ x5 + x¢ = 10000

4z + 9x9 + Tx3 + 1024 + x5 = 6000 (2.2)
r1 + To + 31‘3 + 40564 + Teg = 4000 ’
—1221 — 2029 — 18xz3 — 40x4 = z.

We then drop, for example, the finishing capacity equation, which is now redundant.
Next we change the column units that are used for measuring activity levels so that
1 new unit of each activity requires the full 6,000 4+ 4,000 = 10,000 hours of total
capacity.

To change units in (2.1) note that one unit of the first activity requires 4+1 =15
hours of total capacity; thus, 2,000 units of the first activity would require 10,000
hours of capacity and is equivalent to one new unit of the first activity. In general,
if y; is the number of new units, then 2000y; = x; old units of the first activity.
The relationship for each activity between the old and new activity levels after such
a change in units is

2000y1 =T, 1000y2 = T2, 1000y3 = I3,

2.3
200y4 = T4, 10000y5 =I5, 10000y6 = T¢6- ()

It is also convenient to change the row units that are used to measure capacity
and costs. Let 10,000 hours = 1 new capacity unit; $10,000 = 1 new cost unit,
i.e., 10000z = z. Then it is easy to see that the product mix model in Table 1-3
will become, after the changes in the units for activities and items given above,
Table 2-1.

2.2 TWO-EQUATION PROBLEM 39

> Exercise 2.6 Show that the product mix model as described in Table 1-3 becomes,
after the changes in the units for activities and items given by (2.3), Table 2-1.

Activities: || Manufacturing Desks Slacks
Type:|| (1) (2) (3) (4)|Carp. Fin. || Exogenous
Items Levels: Y1 Y2 Ys Y4 Ys Ye
(0): Total Capacity (10,000 hrs) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1): Carpentry Capacity (10,000 hrs) .8 9 72 1.0 0.6
(3): Cost ($10,000) —24 —2.0 —-1.8 —.8 Z (Min)

Table 2-1: The Converted Product Mix Model

Note that the coefficients in the top row of Table 2-1 (Item 0) are now all 1s. If
we set this fact aside for the moment, then for the purpose of graphing the data in
a column we plot the two remaining coefficients in each column j as the coordinates
of a point A; in two-dimensional space. That is,

8 9 7
A = (—24>’A2: <—20)’A3: (—LS)’

2 1.0 0.0
A4"(—08)’A5" (00)’A6" (00)'

The right hand side is a point whose coordinates are

n= (%)

Thus, the coordinates of each point A; are plotted as a point labeled A; in Figure 2-
2. TIts first coordinate is the coefficient for the carpentry capacity and the second
coordinate is the cost coefficient of activity j. The right hand side R is plotted
as a “requirements” line rather than a point since its v coordinate Z is a variable
quantity to be determined.

In physics, if one is given a set of points Ay, As,..., A, with given relative
weights (y1 > 0,y2 > 0,...,y, > 0), where >_"" | y; = 1, then the center of gravity
G of the set of points A1, As, ..., A, is found by the formula

G = Ay + Asyz2 + -+ Anyn, (2.4)
where the weights sum to unity:
ity tyn =1 (2.5)

Relation (2.4) is in vector notation; it means that the relation holds if the first
coordinate of G and A; for j = 1,...,n are substituted for G and A;, and the
relation is also true if the second coordinate is substituted.

40 SOLVING SIMPLE LINEAR PROGRAMS

Figure 2-2: Graphical Solution of the Product Mix Problem

In our application, the center of gravity G is specified as the lowest point on
the requirement line that can be generated by assigning nonnegative weights to the
points. The problem becomes one of determining the weights as unknowns so as to
achieve this lowest point. Because the unknowns y; > 0 sum to unity, the problem
is therefore one of assigning nonnegative weights to points Ay, As, ... , Ag such that
their center of gravity lies on the requirement line given by R at a point where the
cost coordinate Z is minimized.

The optimum solution to the product mix problem is easily found by inspection
of the graph in Figure 2-2. Clearly, the point R* has the minimum cost coordinate,
which is found by assigning zero weights y; to all points, except A; and A4, and
appropriately weighting the latter so that the center of gravity of A; and A4 has
abscissa 0.6. To determine the two remaining weights y1, y4, set yo = 0, y3 = 0,
ys = 0, and yg = 0 in Table 2-1. Recalling from (2.5) that the sum of the weights
must equal unity, this results in

.8y1 + .2y4 =0.6
Y1+ Y4 = 10a

whence solving the two equations in two unknowns for y; and yq4,

2 1
= 3’ Y4 = 3
The corresponding cost Z is given by
z = —2.4y1 - 08y4 = —%.

Thus the optimal solution is to manufacture x; = 2000y; = % x 2000 desks of
1

Type 1, z4 = 200ys = 5 x 200 desks of Type 4, and none of the other types of

2.2 TWO-EQUATION PROBLEM 41

desks. This will use the full capacity of the plant since the slack variables y5 and yg
are zero. The minimum cost z = 10000z = 10000 x (—5.6/3), a profit of $18,666.67.

Despite the fact that the material balance equation for finishing capacity was
omitted in the above calculation, the limitation of 4,000 hours on the use of this
capacity is completely accounted for by this solution. As noted earlier, this is
because the adding of the total capacity equation to the system and dropping one
of the remaining redundant equations yields an equivalent model that properly takes
into account the limitation on the amount of each type of capacity available.

Exercise 2.7 Use the DTZG Simplex Primal software option to verify the correctness
of the above solution. Change the profit on desk 1 to be $8 instead of $12 and rerun the
software. How does the solution change?

ALGEBRAIC CHECK OF OPTIMALITY

We can check algebraically whether our choice of Ay, A4 in Figure 2-2 is correct by
first determining that the calculated values for y; and y4 satisfy nonnegativity and
then testing to see whether the estimate of every point in the shaded region has
value v greater than or equal to that of the point on the line joining A; to A4 with
the same abscissa u. If the latter is true we say the shaded region lies on or above
the extended line joining A; to A4. The extended line joining A; to Ay is called
the solution line. Clearly points Ay, A3z, As, and Ag lie above the solution line in
Figure 2-3, and therefore it is intuitively clear (and can be shown rigorously) that
the feasible solution y; = 2/3, y4 = 1/3 is optimal.

2.2.2 THE DUAL LINEAR PROGRAM

Another way to view the linear program, called the dual view, is to consider the set
L of lines L in the (u,v) plane such that all points A;, Ag, ..., A, lie on or above
each line of £ (See Figure 2-3). The line L in £ that we are most interested in is
the solution line, which is the line L in £ that intersects the requirements line R at
the highest point R*.

We can state this dual problem algebraically. The equation of a general line L
in the (u,v) plane is

V=T + MU

where 71 is the intercept and 7o the slope. In order that the shaded region lies on
or above this line, each of the points Ay, As, ..., Ag in the shaded region must lie
on or above the line. In order to test whether or not the point As = (.9, —2.0),
for example, lies on or above L substitute the coordinate u = .9 of Ay into its
equation; if the v coordinate of As is greater than or equal to the value of the
ordinate v = 71 + m2(.9) of L, then As lies on or above L. Thus, our test for As is
m +m2(.9) < —2.0, and the test for the entire set of points Ay, A, ... , Ag lying on

42 SOLVING SIMPLE LINEAR PROGRAMS

U
Figure 2-3: Optimality Check—The Product Mix Problem
or above the line L is:
T + 772(0.8) < =24,
1 + 72(0.9) < —2.0,
s —|—7T2(O7) S —1.8,
T +m(0.2) < —0.8, (2.6)
1 +772(10) S 00,
71 + m2(0.0) < 0.0.

Let S = (.6,0) for some ¥ be the intersection of the vertical line v = .6 with

v = w1 + mou. In order for S to lie on the line L, we must have © = 71 + m2(.6).

The line L below the shaded region whose v = v coordinate of S is mazimum, is

the line L with slope 7o and intercept m; that satisfies (2.6) and maximizes v given
by (2.7):

m + ma(.6) = v (Max). (2.7)

It is clear from the figure that the line in the figure on or below the convex feasible
region (shaded area) with maximum intercept with the requirement line is the same
as the optimal solution line for the original (primal) problem, namely the line passing
through the optimal pair of points A; and A4.

The problem of finding 71, 72, and max ¥ satisfying (2.6) and (2.7) is called
the dual of our original (primal) problem (2.1). The obvious observation that the
ordinate of R* for these two problems satisfies

max ¥ = min 2z (2.8)

is a particular instance of the famous von Neumann Duality Theorem 5.3 for linear
programs.

2.8 FOURIER-MOTZKIN ELIMINATION 43

In summary, if we conjecture that some pair like A;, A4 (obtained by visual
inspection of the graph or otherwise) is an optimal choice, it is an easy matter to
verify our choice by checking whether (i) the intersection with the requirement line
lies between the selected two points and (ii) all points Ay, As,. .., Ag lie on or above
the extended line joining the selected two points. To check the first, we solve (as
we did earlier)

Sy + 2y4 = 0.6

y1 + ya =10 (29)

to see whether y; and y4 are nonnegative. We obtain y; = 1/3, y4 = 2/3, which
are positive, so S lies between A; and A4. These values, with remaining y; = 0,
satisfy the primal system (2.1). To check the second set of conditions, we must
first determine the coefficients m; and my of the equation of the line v = 7 + mou
which passes through A; and A4. Thus m; and mo are found by substituting the
coordinates of A7 and A4 into the equation of the line:

T + 7T2(.8) = —24
m + ma(.2) = —0.8. (2.10)
Solving the two equations in two unknowns yields 7 = 5.6/3, T3 = —8/3. We then
substitute these values of 71 and 7y into (2.6) to see whether they satisfy the dual
system of relations. Since (2.6) is satisfied, the test is complete, and the solution
y1 = 1/3, ya = 2/3, and all other y; = 0 is optimal.

2.3 FOURIER-MOTZKIN ELIMINATION

In this section we will show how to solve simple linear programs algebraically.
For small linear programming problems, the Fourier-Motzkin Elimination (FME)
Method can be used. This method reduces the number of variables in a system of
linear inequalities by one in each iteration of the algorithm. Its drawback is that it
can greatly increase the number of inequalities in the remaining variables.

Before proceeding we state the following definitions:

Definition (Consistent, Solvable, or Feasible): A mixed system of equations
or inequalities having one or more solutions is called consistent or solvable or
feasible.

Definition (Inconsistent, Unsolvable, or Infeasible): If the solution set is
empty, the system is called inconsistent or unsolvable or infeasible.

Definition (Equivalent Systems): Mixed systems of linear equations or in-
equalities are said to be equivalent if their solution sets are the same.

44 SOLVING SIMPLE LINEAR PROGRAMS

2.3.1 ILLUSTRATION OF THE FME PROCESS

Note that is legitimate to generate a new inequality by positive linear combina-
tions of existing inequalities pointing in the same direction. Moreover, if existing
inequalities have coefficients, of say x;, with opposite signs then we can find a pos-
itive linear combination that generates an inequality with coefficients of x; equal
to 0. We will apply these two ideas to solve a system of linear inequalities by the
Fourier-Motzkin Elimination process.

Example 2.1 (Fourier-Motzkin Elimination) Find a feasible solution to the system
of inequalities in the variables x1, x2, z by eliminating x1, 2, and z in turn.

1 20
1 + 222 < 6
1+ x2 > 2
1’1—&2223

:1'220
—2xr1 — x2 < z.

Note that the inequalities do not all point in the same direction. Rewrite the above
inequalities by reversing signs as necessary so that they point in the same direction. Also,
positively rescale if necessary so that all the nonzero coefficients of x1 are +1 or —1.

1 > 0 1 > 0
—T1 — 2:02 Z —6 —T1 — 2:02 2 —6
1 + X2 > 2 1 + T2 > 2

S) > 3 = 1 — T3 > 3 (211)
2r1 + 22+ 2> 0 T+ 32 + 22> 0
T2 > 0 T2 > 0.

From the representation (2.11) it is clear that there are three classes of inequalities with
respect to x1. The first class consists of inequalities in which the coefficient of x1 is +1;
the second class consists of inequalities in which the coefficient of ;1 is —1; and the third
class of inequalities are those in which the coefficient of x1 is 0. We eliminate the variable
x1 by adding each inequality in the first class to each inequality in the second class. This
results in the following system that appears on the left in (2.12) which, in turn, can be
rewritten as the system that appears on the right of (2.12).

—2%2 Z —6 —X2 Z —3
—T2 > —4 —T2 > —4
—3, > -3 = —x > —1 (2.12)
—%$2 + %Z > —6 —x2 + %Z > —4
T2 Z 0 T2 Z 0.

The next step is to repeat the process with (2.12) by eliminating x2:

0> -3 0> -3
0> —4 0> —4
0>-1 —~ 0> -1
1z > -4 z > —12.

2.8 FOURIER-MOTZKIN ELIMINATION 45

Obviously 0 is greater than or equal to —3, —4, or —1, so that the only inequality of
interest left is
z > —12. (2.13)

It is not possible to eliminate z and therefore the process stops with (2.13) and we are
ready for the back-substitution steps. Choose any value for z that satisfies (2.13), for
example, z = —12, which is the smallest value that z can take which keeps the original
system feasible. Setting z = —12 in (2.12), it turns out that any value of x2 in the range
0 < z2 < 0 may be chosen, implying x2 = 0. Substituting z = —12 and 2 = 0 in (2.11)
yields 6 < 1 < 6 implying =1 = 6.

Thus, the solution that minimizes z, for this relatively small problem, was found easily,
is unique. It is x1 =6, x2 =0, and z = —12.

> Exercise 2.8 Show that other feasible solutions can be obtained that satisfy z > —12.

> Exercise 2.9 Prove that the variable z can never be eliminated during the FME process.

It is straightforward to see that by choosing the smallest z we actually solved
the following linear program.

Minimize —2r1 — To = %
subject to 1 + 229 < 6
r1 + T > 2

r1 — T2 >3

T Z 0

xTo Z 0

> Exercise 2.10 Apply the FME process to the linear program

Minimize -2 — X2 = 2
subject to 1 + 222 > 6
1+ x2 > 2

r1 — X2 Z 3

T1 2 0

T2 2 0

to show that it has a class of feasible solutions in which z tends to —oo. Use the
Fourier-Motzkin Elimination software option to verify this.

> Exercise 2.11 Apply the FME process to the linear program

Minimize —2T1 — X2 = z
subject to 1 + 222 < 6
1+ x2 > 2

r1 + x2 <1

r1 — X2 Z 3

T Z 0

T2 2 0

46 SOLVING SIMPLE LINEAR PROGRAMS

to show that it is infeasible because the process generates an infeasible inequality of the
form
0x1 4 0z2 > d, where d > 0.

Use the Fourier-Motzkin Elimination software option to verify this.

LEMMA 2.1 (FME Applied to a General Linear Program) The FME
process can be applied to the following general linear program:

n
Minimize E cjry = 2
j=1

(2.14)

Y

n
subject to Z aj;r; > by fori=1,...,m
j=1

z; > O0forj=1,...,n,

to obtain a feasible optimal solution if it exists or to determine that it is infeasible
because it generates an infeasible inequality

Z()a:j >d, where d > 0,
j=1

or to obtain a class of feasible solutions in which z tends to —oco.

Generating an infeasible inequality to show that a system of linear inequalities
is infeasible is formalized through the Infeasibility Theorem, which we state and
prove in Section 2.4.

2.3.2 THE FOURIER-MOTZKIN ELIMINATION
ALGORITHM

Algorithm 2.1 (FME) This algorithm is only practical for a very small system of
m inequalities in n variables. Given a system of inequalities labeled as A, initiate the
process by setting R1 = A and k = 0.

1. Set k< k+1. If k=n+1 go to Step 7.

2. Rewrite the inequalities R so that the variable) appears by itself with a coefficient
of —1, 1, or 0 on one side of each inequality written as a > inequality. Consider all
those constraints with zero coefficients for xj, as a part of the reduced system.

3. All the coefficients of xy are zero. Mark the value of x; as “arbitrary,” set
Rk+1 < Rk

and go to Step 1.
4. The coefficients of xi are all +1 (or all —1). If k < n, assign arbitrary values
Tktil,--- ,ZTn. GO to Step 9.

5. All coefficients of xx are a miz of 0 and +1 (or all coefficients are a miz of 0 and
—1). Call the constraints with zero coefficients for x; the reduced system Ri41 and
go to Step 1.

2.3 FOURIER-MOTZKIN ELIMINATION 47

6. This is the case where there is at least one pair of inequalities with a +1 and a —1
coefficient for xj. For each such pair augment the reduced system by their sum. Set
Ri+1 to be the reduced system and go to Step 1.

7. Feasibility Check. Check the right-hand sides of R, +1. If any of them is positive
report the original system as being infeasible and stop; else, set k < n.

8. Determine x,. If kK = n, determine a feasible value for x, from R,. Set k < k — 1.
9. Back Substitution. Start with 7 = k. While 5 > 1 do the following.
(a) If z; has been marked as arbitrary, assign it an arbitrary value (for example

0). If z; is not marked as arbitrary and j < n, substitute the values for
ZTjt+1,...,Tn in R; and determine a feasible value for z;.

(b) Set k + k — 1.

Except for very small problems, a more efficient algorithm is needed because
in general, if half of the m coefficients of z; appear with opposite sign, then the
elimination would cause the number of inequalities to grow on the next step from
m to (m/2)%. Thus, it is possible after a few eliminations that the number of
remaining inequalities could become too numerous. However, from a theoretical
point of view, the method is a powerful one since it can be used to prove such
fundamental theorems as the infeasibility theorem and the duality theorem.

Exercise 2.12 Show that if the worst case described above could occur at each iteration,
then at the end of n iterations the number of inequalities could grow to

1 m\2"
92n—2 (5))

where m is the number of inequalities at the start of the FME algorithm and n is the
number of variables.

2.3.3 FOURIER-MOTZKIN ELIMINATION THEORY

In this section we provide the theoretical background for the Fourier-Motzkin Elim-
ination process.

WHY IT WORKS

Suppose that we wish to find solutions to the following system:
Zaijxj > b;, fori=1,...,m, (2.15)
j=1

where all inequalities are written as in (2.15) with variables on the left and constants
on the right of the > symbol. Since this problem is trivial if m =1 or n = 1, we
assume, to simplify the discussion, that m > 1 and n > 1.

48 SOLVING SIMPLE LINEAR PROGRAMS

In outline, the Fourier-Motzkin elimination process begins by eliminating x1 by
adding every pair of inequalities in which z; appears with a +1 in one and —1 in
the other. This generates a new system of inequalities, called the reduced system, in
which x; appears with zero coefficient in all its inequalities. The process is repeated
with the new system except now zo is eliminated followed by x3, x4, ... ,Z, in turn.
The iterative process stops either when

1. it is not possible to carry out the elimination procedure on the next variable
to be eliminated because all the next variable coefficients are +1 (or all —1),
or

2. all variables have already been eliminated.

For the first of these possibilities, it is easy to find a feasible solution; for the second
of these possibilities it is easy to find a feasible solution of the form Zj 0z; > v, or
show that none exists because v > 0. If the final solution is feasible, then a feasible
solution for the original system can be found by a sequence of back-substitution
steps.

We can reformulate (2.15) by partitioning its constraints into 3 groups, h, k,
and [, depending on whether a particular constraint has its x; coefficient “> 0,”
“<0,” or “=0.” After dividing by the absolute value of the coefficient of x; when
nonzero and rearranging the terms and the order of the inequalities, we can write
these as

214+ Y Dpjz; > dy, h=1,...,H, (2.16)

j=2
—x1+ Y Bgry > e, k=1,... K, (2.17)

j=2

and the remainder .
> Fyz; > fi, 1=1,...,L (2.18)

j=2

Note that H + K + L = m, where we assume for the moment that H > 1 and
K >1.

Clearly this is equivalent to system (2.15). That is, any solution (if one exists)
to (2.16), (2.17), and (2.18) is a solution to (2.15) and vice versa. We refer to
(2.16), (2.17), and (2.18) as the original system. Assume that (z1,22,...2,) =
(x9,28,...22) is a feasible solution. Setting aside (2.18) for the moment, the “elim-
ination” of 2 is done by adding the hth constraint of (2.16) to the kth constraint
of (2.17), thus obtaining

ZEijj + ZDhjl‘j > e + dp,. (2.19)

=2 =2

When we say 7 has been “eliminated” from (2.19), we mean that the coefficient of
x1 is zero. We do this for every combinationof h =1,... ,H,and k=1,..., K. The

2.8 FOURIER-MOTZKIN ELIMINATION 49

new system of inequalities obtained by eliminating x; consists of the L inequalities
(2.18) and the H x K inequalities (2.19). Since the L + H x K inequalities are
implied by (2.16), (2.17), and (2.18), it follows that (x1,z2,...z,) = (2,29, ...22)
is a feasible solution to the “reduced” system (2.18) and (2.19). When we say that
the system (2.18) and (2.19) is “reduced,” we mean it has at least one less variable

than the original system.

> Exercise 2.13 When is it legal to take a linear combination of linear inequalities.
Illustrate by way of examples, cases when it is legal and when it is illegal to do so.

LEMMA 2.2 (Equivalence After Elimination) If a feasible solution exists
for the original system (2.16), (2.17), and (2.18), then one exists for the reduced
system (2.18) and (2.19) and vice versa.

Proof. We have just shown that if (2.16), (2.17), and (2.18) hold for some choice
of (z1,22,...,2n) = (29,29,...,22), then (2.18) and (2.19) hold for the same

values of (x1,22,...,2n) = (29,23,...,22). Conversely, given a feasible solu-
tion (wg,3,...,1,) = (23,2%,... ,2L) to the eliminated system (2.18) and (2.19),
we wish to show that we can find an x; = z1 together with (z2,23,...x,) =

(xd, 23, ... zl) such that (2.16), (2.17), and (2.18) hold. This is easily done by

n
choosing any x; = x} satisfying (2.20):

: 1 1 1
15?%11((2; Eyjxj — ek) >a; > 12}&){}{ (— E;Dhjxj + dh). (2.20)
j= j=

That such an x; = z1 exists follows because we can rewrite (2.19) as

Z Bz} —ep > - Z Dy} + dy, (2.21)
j=2 j=2

for every pair (h,k) and hence for the h that maximizes the left hand side and
the k that minimizes the right-hand side of (2.21); this implies that (2.20) holds.
Therefore, for every h and k combination

n n
ZEijC} — €k > x% > 72Dhjx} + dh
j=2 J=2
and

n
> Fyai>f, l=1,...,L
j=2

> Exercise 2.14 Prove that Lemma 2.2 implies that if the original system is infeasible
then so is the reduced system and vice versa.

50 SOLVING SIMPLE LINEAR PROGRAMS

Thus, the final reduced system of inequalities consists of (2.21), and the set of
inequalities (2.18), which we set aside, i.e.,

n n
> EBgjwj—ex > =Y Dpjwj+dp, h=1,....H, k=1,... . K (2.22)

=2 =2
and

> Fyr;>fi, 1=1,...,L (2.23)

Jj=2

If in fact H = 0 or K = 0, then (2.22) is vacuous and the reduced system consists
of (2.23) only. If H =0and L =0 (or K = 0 and L = 0), the reduced system is
vacuous and we terminate the elimination procedure.

The process of moving from (2.15) to (2.22) and (2.23) is called eliminating x; by
the Fourier-Motzkin Elimination (FME) process. Of course, there is nothing forcing
us to stop here. If we wish, we could proceed to eliminate x5 from the reduced
system provided the reduced system is not vacuous. We keep on eliminating, in
turn, x1,Ts,... until at some step k£ < n, the reduced system is vacuous or all the
variables are eliminated.

However, we pause to observe that there are two cases that could cause our
elimination of x; (or, at a future step, xx) to be impossible to execute.

Case 1. All coefficients of z; in (2.15) are equal to 0. If z; is the last variable
to be eliminated (no more z; remain to be eliminated) then terminate. In
the latter situation terminate infeasible if b; > 0 for some i, otherwise x1
may be chosen arbitrarily. If x; is not the last variable to be eliminated,
then the “elimination” results in just system (2.18) which we had set
aside. In the latter situation, we declare x; “eliminated” and proceed to
solve (2.18). If feasible then any solution za,x3, ... ,Z, to (2.18) with a;
arbitrary is a solution to (2.15).

Case 2. The original system (2.15) consists of just (2.16) or (2.17) (but
not both) and (2.18). If there are no relations (2.18), then terminate.
In the latter situation choose 9, 3, . .. ,Z, (if any remain) arbitrarily; =1
can then be chosen sufficiently positive to satisfy just (2.16) or sufficiently
negative to satisfy (2.17). If relations (2.18) are not vacuous then we
declare x; “eliminated” and (2.18) as the reduced system. Any solution
to (2.18) if it exists can be substituted into (2.16) or (2.17), and a value
of x1 can be found sufficiently positive or negative as above.

INFEASIBILITY MULTIPLIERS

Definition: An inequality is said to be a nonnegative linear combination of in-
equalities (2.15) if it is formed by multiplying each inequality 7 by some y; > 0
for i =1,...,m and summing.

2.4 INFEASIBILITY THEOREM 51

Exercise 2.15 Prove that each inequality of (2.22) and (2.23) is formed as either a
positive linear combination of inequalities of the original system or is one of the original
inequalities.

It is evident from Exercise 2.15 that each inequality generated by the elimination
of 1 can also be formed by nonnegative linear combinations (not all zero) of the
first system of inequalities. The third system of inequalities that are each formed
by the elimination of x5 can also be formed in the same way by nonnegative linear
combinations (not all zero) of the second system of inequalities, which in turn were
formed by nonnegative linear combinations of the first system. Hence the third
system of inequalities can be formed by nonnegative linear combinations of the
first system of inequalities. Eventually the FME process terminates with either a
vacuous set of inequalities and a feasible solution or a final system of inequalities
consisting of some set of P inequalities of the form

0$1+0I‘2++01’n21—‘“ izl,...,P,

where T'; is some constant. The original system is feasible depending on whether or
not all I'; < 0. Each such inequality could have been generated directly by a non-
negative linear combination of the relations of the original system using multipliers
y1 > 0,92 > 0,... ¥y > 0 not all zero. Applying such a set of nonnegative weights
(Y1,Y2, .- ,Ym) to the system (2.15) and adding we have

m n m
Z Yk (Z aijj> > Z Yrbr
k=1 V=1 k=1

which we can rewrite as

n

Z(ykakj>1'j > Zykbk~ (2.24)
J=1 k=1 k=1

Since all variables have been eliminated, it must be that for each such set of
weights (y1,y2,- -+ s Ym),

m
Zykakj:O, forj=1,...,n.
k=1

Thus, we note the following two cases:

Case Feasible: If >}, yxb, < 0 for each such set of m nonnegative weights
(y1,Y2,- - yYm), then (2.24), and hence (2.15), is feasible.

Case Infeasible: If >, yxby > 0 for one or more such set of m nonnegative
weights (y1,%2,-..,Ym), then (2.24), and hence (2.15), is in-
feasible.

52 SOLVING SIMPLE LINEAR PROGRAMS

2.4 INFEASIBILITY THEOREM

A system of inequalities can be written with the inequalities all pointing in the same
direction by multiplying those that do not through by —1. Assuming this is done,
a system of inequalities is clearly infeasible if we can exhibit a nonnegative linear
combination of the inequalities that is an infeasible inequality, that is, an inequality
of the form

The Infeasibility Theorem (Theorem 2.3 below) states that if a system of linear
inequalities is infeasible, then we can always find a nonnegative linear combination
that results in (2.25).

Exercise 2.16 Prove that (2.25) is the only type of single linear inequality that is
infeasible.

Exercise 2.17 Typically, linear programs are stated in the form of equations in nonneg-
ative variables. Prove that the only single infeasible equation in nonnegative variables x;
is of the form

Q111 + aexa + -+ + any, = d, (2.26)

with a; > 0 for all j and d < 0 (or a;; <0 for all j and d > 0).

Exercise 2.18 (Converting Equalities to Inequalities) Show how to convert the
following system in m linear equations in n nonnegative variables

Zaijxj =b;, fori=1tom,
=1
z; >0, forj=1ton,

to a system of linear inequalities in nonnegative variables by two different methods, one
that replaces the equations by 2m inequalities and one that replaces them by only m + 1
inequalities.

Exercise 2.19 Most software to solve linear programs internally converts a system of
inequalities to a system of equalities in bounded variables, where some bounds may be
400 or —oo. Show how this can be done.

THEOREM 2.3 (Infeasibility Theorem) The system of linear inequalities

n
Zaiﬂ?j >b;,, fori=1,...,m (2.27)

Jj=1

is infeasible if and only if there exists a nonnegative linear combination of the in-
equalities that is an infeasible inequality.

2.5 NOTES & SELECTED BIBLIOGRAPHY 53

Comment: In matrix notation, the system Ax > b is infeasible if and only if there
exists a vector y > 0 such that yTAz > y'b is an infeasible inequality, namely one
where y7A = 0 and y’b > 0.

Proof. The theorem states that the system (2.27) is infeasible if and if only there
exist yr > 0, for k =1,...,m, such that

D ykar; =0, j=1,...,n, and > ypby > 0. (2.28)
k=1 k=1

If (2.27) is infeasible then the y, obtained using the Fourier-Motzkin Elimination
(FME) for Case Infeasible in Section 2.3.3 can be used to obtain an infeasible
inequality and hence (y1,¥a2,...,Yym) satisfying (2.28). Thus (2.27) is infeasible
implies that there exists y, > 0, k = 1,...,m such that (2.28) holds. On the other
hand, if (2.28) holds, then it is obvious that system (2.27) is infeasible because mul-
tiplying (2.27) by y1 > 0,y2 > 0,..., ¥y, > 0 and summing results in an infeasible
inequality of the form (2.25). |

Exercise 2.20 Consider the system of linear equations

xr1 + X9 =1
—x2 + 23 =1
x1 + x3 = 1.

Note that the sum of the first two equations results in 1 + x3 = 2, which contradicts the
third equation. Show that eliminating x1 and x2 in turn results in an equation, called an
infeasible equation,

0x1 4+ 0z2 +0x3 =d
where d # 0. What multipliers applied to the original system of equations results in the
infeasible equation above? Show how the process of elimination can be used to find these
multipliers.

COROLLARY 2.4 (Infeasible Equation) If a system of linear equations in
nonnegative variables is infeasible, there exists a linear combination of the equations
that is an infeasible equation in nonnegative variables.

Exercise 2.21 Prove Corollary 2.4 by converting the system of equations into a system
of inequalities and applying Theorem 2.3.

2.5 NOTES & SELECTED BIBLIOGRAPHY

Fourier [1826] first proposed the Fourier-Motzkin Elimination (FME) Method. The paper
in its original form is accessible in Fourier [1890]; an English translation was done by Kohler
[1973]. Fourier’s method was later reintroduced by T. Motzkin [1936] and is sometimes

54 SOLVING SIMPLE LINEAR PROGRAMS

referred to as the Motzkin Elimination Method. A good discussion of the method can be
found in Kuhn [1956].

As originally mentioned by Fourier, the efficiency of the FME process can be greatly
improved by detecting and removing redundant inequalities, where an inequality is said
to be redundant if its removal does not affect the feasible set of solutions. In general the
detection of redundant inequalities is very difficult. (For a discussion on how to identify
redundant constraints so as to be able to obtain the set of feasible solutions with the least
number of constraints see, for example, Adler [1976], Luenberger [1973], and Shefi [1969].)
However, it is possible to detect redundancies in a computationally efficient manner when
they occur as a result of combining inequalities during the iterations of the FME process,
see Duffin [1974]. Unfortunately, even this is not enough to make the method competitive
with the Simplex Method for solving linear programs.

2.6 PROBLEMS

2.1 The Soft Suds Brewing and Bottling Company, because of faulty planning, was
not prepared for the Operations Research Department. There was to be a
big party at Stanford University, and Gus Guzzler, the manager, knew that
Soft Suds would be called upon to supply the refreshments. However, the raw
materials required had not been ordered and could not be obtained before the
party. Gus took an inventory of the available supplies and found the following;:

Malt 75 units,
Hops 60 units,
Yeast 50 units.

Soft Suds produces two types of pick-me-ups: light beer and dark beer, with
the following specifications:

Requirement per gallon
Malt | Hops Yeast
Light beer 2 3 2
Dark beer 3 1 5/3

The light beer brings $2.00/gallon profit, the dark beer $1.00/gallon profit.
Knowing the O.R. Department will buy whatever is made available, formulate
the linear program Gus must solve to maximize his profits, and solve it graphi-
cally. Be sure to define all of your variables.

2.2 For the linear program
Maximize 1 + X2 = 2
subject to —xz1 + a2 < 2
1 + 222 > 2

plot the feasible region graphically and show that the linear program is un-
bounded.

2.6 PROBLEMS 55

2.3 Consider the following linear program:
Maximize 3r1 + a9
subject to —r1 + x2 < —1
—3331 — T2 S -1
4z + 2x2 < 1
2562 < -1

33120, l‘QZO.

a) Plot it graphically and identify all the corner point solutions.
b) Solve it graphically.

c) Solve it with the DTZG Simplex Primal software option.

d) Solve it by hand by the FME algorithm.

e) Solve it by the Fourier-Motzkin Elimination software option.

2.4 Consider the following two-equation linear program:

Minimize 2r1 + 3x2 + x3 + bra + x5 =

subject to 4x1 + 222 + 3x3 + x4 + 4das < 50
3z1 + Txe + x3 + 3z4 + 225 <
x; >0, 5=1,...,5.

(a) Solve it using the DTZG Simplex Primal software option.

(b) Solve it graphically.

(c) Use the graphical representation to write down its dual linear program. Use
it to verify optimality.

2.5 Consider the following two-equation linear program:
Minimize —bx1 + 3x2 — 202 + T4 — 225 = 2
subject to r1 + x2 + 3xs + 2z4 + x5 < 1000
521 + 3z2 + x3 + dra + 25 < 2000

x; >0, j=1,...,5.

(a) Solve it using the DTZG Simplex Primal software option.

(b) Solve it graphically.

(c) Use the graphical representation to write down its dual linear program. Use
it to verify optimality.

2.6 Consider the data for Example 1.4 on page 3. Suppose now that the manufac-
turer wishes to produce an alloy (blend) that is 35 percent lead, 30 percent zinc,
and 35 percent tin.

(a) Formulate this problem and solve it graphically.
(b) Solve it using the DTZG Simplex Primal software option.

2.7 Consider the following two-variable linear program:
Minimize 1 + X9 = 2
subject to T1 + 220 > 2
31 + 222 < 1
z1 + a2 21

Jilzo, :EQZO.

56

SOLVING SIMPLE LINEAR PROGRAMS

2.8

2.9

2.10

2.11

(a) Plot the region graphically and show that it is empty.

(b) Solve it with the DTZG Simplex Primal software option.

(c) Solve it by hand using the FME process.

(d) Solve it using the Fourier-Motzkin Elimination software option.

Consider the following two-variable linear program:

Minimize 911 + 8x9 = 2z
subject to 1 — 222 < 3
3131 — 4.’1}2 2 5
6$1 — 7332 = 8

55120, 1’220.

(a) Plot it graphically and identify all the corner point solutions.
(b) Solve it graphically.

(c) Solve it with the DTZG Simplex Primal software option.

(d) Solve it by hand by the FME algorithm.

(e) Solve it by the Fourier-Motzkin Elimination software option.

Consider the following two-variable linear program:

Minimize —x1 + 4x0 = 2z
subject to —3x1 + z2 < 6
1 + 222 < 4

X Z —1

T2 Z -3.

(a) Plot the region graphically and solve the problem.

(b) Reformulate the problem so that the lower bounds on all the variables are 0.

(¢) Plot the reformulated problem graphically and re-solve the problem. Derive
the solution to the original problem from this solution.

Consider the following two-variable system of inequalities.

z1 + 222 > 2

3r1 + 2z2 < 1
X1 Z 0
T2 Z 0

(a) Solve the problem by the FME process.
(b) Plot graphically and show that it is infeasible by showing that the set of
feasible points is empty.

Graphically show that the two-variable linear program

Minimize —x1 — 229 = 2
subject to —x1 + z2 < -2
dry + z2 < 4

1 >0, 22 >0

has no feasible solution.

2.6 PROBLEMS 57

2.12

2.13

2.14

2.15

Use the DTZG Simplex Primal software option to solve

Maximize 31 + 229 + x3 = 2
subject to bx1 — 2x2 + 3 < 6
207 — T2 — a3 < 4
911 — 4x9 — x3 > 15

z1 >0, 22 >0, 3 > 0.

Consider the following linear program

Minimize 2r1 — X9 + 3x3 + Txa — D5 = 2
subject to 1 + 222 + 3 + x4 + 625 < 10
21 + 3x2 + 4x3 + x4 + 225 > 4
3z1 + 222 4+ 3z4 + x5 < 8

.leo, LEQZO.

(a) Solve it with the DTZG Simplex Primal software option.
(b) Solve it by hand by the FME algorithm.
(c) Solve it by the Fourier-Motzkin Elimination software option.

Consider the linear program

Maximize 1 + 3x2 + 223 = 2
subject to 1+ a2+ x3 = 1
Try + 222 + 323 < 20
1 + dxo + 4x3 < 30

x1207 33220, .’E320

(a) Solve it by the DTZG Simplex Primal software option.
(b) Solve it by hand by the FME algorithm.
(c) Solve it by the Fourier-Motzkin Elimination software option.

Degeneracy. Look at the feasible region defined by

1 + 222 < 8
T + x2 <6 (2.29)
T1, T2 2 0.

(a) Draw the feasible region in (x1, z2)-space and label the constraints.

(b) Notice that including nonnegativity, we have four constraints. What is the
solution corresponding to each extreme point of the feasible region?

(c) Suppose we add the constraint

T2 < 4. (2.30)

In your diagram, the extreme point (4,0) of the feasible region is now the
intersection of three constraints, and any two of them will uniquely specify
that extreme point. Show that there are three ways to do this.

(d) When there is more than one way to specify an extreme point, the ex-
treme point is said to be degenerate. In part (c) we created an example of
degeneracy by using a redundant system of inequalities. The redundancy
can be seen in the diagram in that we could remove one of the constraints
without changing the feasible region. Give an example of degeneracy with
a nonredundant system of inequalities. Draw a picture to demonstrate this.

58

SOLVING SIMPLE LINEAR PROGRAMS

2.16

2.17

2.18

2.19

Sensitivity to Changes in One Objective Coefficient. Consider

(a)
(b)

Minimize 21 + cax2 = 2
subject to 3x1 + 2x2 < 4
2301 — 3302 2 6

1:1207 1:220

Solve the linear program graphically for cz = 0.
By adjusting c2, determine graphically the range of c2 for which the solution
stays optimal.

Sensitivity to Changes in One Right-Hand Side Value. Consider

—
=3
=

—
ET

Minimize x1 + 312 = 2
subject to 3x1 — 2z2 < by
x1 + 310 = 2

551207 .:CQZO

Solve the linear program graphically for by = 2.

By adjusting b1, determine graphically the range of by for which the solution
stays optimal.

What is the range of the objective value for the range of b; in Part(b)?
Deduce the relationship between the change in b1 to the change in objective
value?

By adjusting b1, determine graphically the range of b1 for which the solution
stays feasible.

Sensitivity to Changes in a Matriz Coefficient. Consider

Minimize 31 + 2120 = 2
subject to 1 + o > 1
3r1 — a2 < 6
xr1 — 2332 S 4

1*120, 12220.

Solve the linear program graphically for aze = 2.

By adjusting a2, determine graphically the range of ase for which the
solution stays optimal.

What is the range of the objective value for the range of as2 in Part 27
By adjusting a2z, determine graphically the range of az2 for which the
solution stays feasible.

Shadow Price.

Maximize 2r1 + X2 = 2z
subject to 1 + 220 < 14
3x1 — T2 > 2
xr1 + 4xo < 18

13120, 1‘220.

2.6 PROBLEMS 59

(a) Solve the problem graphically.

(b) The shadow price of an item 7 is the change in objective value as a result of
unit change in b;. Find the shadow prices on each constraint graphically.

(¢) How much would resource 1 have to increase to get an objective value
increase of 87

(d) How much would resource 1 have to increase to get an objective value
increase of 127 Is this increase possible?

2.20 Consider the linear program:

Maximize 2r17 + 12 = 2
subject to 2rx1 + xz2 < 10
31‘1 — T2 2 2

—x1 + x2 < 4

X1 S 5

X1 Z 0, T2 Z 0.

(a) Plot the feasible region graphically.

(b) Show graphically that multiple optimal solutions exist.

(c) Write down the set of feasible optimal solutions (not necessarily corner
points).

2.21 Consider the linear program:

Minimize 2r1 + bxo = z
subject to 1 + 22 <1
21 + 222 < 5

T S 3

T2 S 5

1 Z 0, T2 2 O.

(a) Plot the feasible region graphically.
(b) Identify the redundant inequalities.
(c) Solve the problem graphically.

2.22 Consider the linear program:

r1 + X2 >1
X1 — X2 SQ
z1 + z2 + 23 <5

(a) Plot graphically.
(b) Solve by hand, using the FME process.
(c) Show how to generate the class of all solutions for the problem.

2.23 Show by a graphical representation whether there is no solution, one solution,
or multiple solutions to the following systems of inequalities:

60

SOLVING SIMPLE LINEAR PROGRAMS

2.24

2.25

1 + a2 > 1
X1 Z 0
) 2 0
(b)
x1 + a2 21
1 + 222 < 4
—x1 + 4dx9 > 0
I 2 0
X2 2 O
(c)
T + x2 > 1
1 + 222 < 4
—x1 + 42 > 0
—x1 + x2 > 1
T 2 0
T2 2 O
Consider the following set of inequalities:
—x1 + 2z2 + 23 < 1
X1 — T2 — T3 S 0
X1 — X2 — I3 S -1
— T2 S 0.

(a) Apply the FME process by hand. Stop the algorithm as soon as you en-
counter the inequality 0 < 0. Note that this is possible even if more variables
remain to be eliminated.

(b) Find the nonnegative multipliers 71 > 0, w2 > 0, w3 > 0, and 74 > 0 of the
original system that gives the trivial inequality 0 < 0.

(¢) Show that for all i = 1,...,4 for which m; > 0, we can replace the ith
inequality by an equality without changing the set of feasible solutions.

(d) Prove a generalization of the above, i.e., if a nonnegative linear combina-
tion of a given system of linear inequalities is the trivial inequality 0 < 0,
then that system is equivalent to the system in which all the inequalities
corresponding to the positive multipliers are replaced by equalities.

Consider the following linear program:

Maximize T+ y
subject to 8z + 3y < 24
5z + Ty < 35 (2.31)
-+ y< 4
y > —2.

2.6 PROBLEMS 61

2.26

2.27

(a) Solve (2.31) using the Fourier-Motzkin Elimination process. Find the op-
timal values of z and y as well as the optimal objective value. Hint: it is
convenient to introduce another variable z to keep track of the objective
value. That is, one possibility is z —z —y < 0.

(b) If we change the right-hand side of the third inequality in (2.31) from 4
to —7 then the system becomes infeasible. Use the Fourier-Motzkin Elim-
ination process to find the infeasibility multipliers; that is, the multipliers
Y1,Y2, - - - ,Ym that resulted in the final inequality being infeasible. Note:
It is not necessary to start from scratch. The elimination you have already
done should help.

The infeasibility theorem for inequality systems is called a theorem of the alter-
native when stated as

Theorem of the Alternative. Fither there exists an = such that Ax > b
or there exists a y > 0 such that ATy = 0 and y7b > 0 but not both.
Prove the following theorems of the alternative by using the above theorem

(a) FEither there exists an x > 0 such that Az < b or there exists a y > 0 such
that ATy > 0 and b < 0 but not both.

(b) Either there exists an > 0 (i.e., z; > 0 for all 7) such that Az = 0 or
there exists a 7 such that 0 # ATr > 0 but not both.

Use calculus to solve

Minimize x1 + 222 + 3x3 = 2
subject to 1 + a2 + x3 =1
and 1 >0, 2 >0, z3 >0

as follows. The nonnegativity of x1,x2,x3 may be circumvented by setting
2 2 2
1 = Uy, T2 = Uy, T3 = U3:

Minimize u? + 2u3 + 3ul

subject to u? + ui 4+ u? 1.

Il
©

Form the Lagrangian
L(u1,uz,uz) = ui + 2u3 + 3u3 — A(ui +uj 4+ u3 — 1).
Setting OL/Ou1 = 0, OL/Ous = 0, OL/Jus = 0 results in
u(1—=X) =0, w(2—-X)=0, wu3(3—A)=0.

(a) Try to complete the solution by analyzing which member of each pair is
zero.
(b) Consider the general linear program

Minimize ¢’z
subject to Ax = b, A: mxn,
xz > 0.

Substitute for each CL‘j,'LL? = x;; form the Lagrangian; and set dL/0u; = 0
for all j. Try to discover why the classical approach is not a practical one.

This page intentionally left blank

CHAPTEHR

3

THE SIMPLEX METHOD

In this chapter we develop the Dantzig Simplex Method for solving linear program-
ming problems. For the origins of this method see the Foreword. The Simplex
Method solves linear programs by moving along the boundaries from one vertex
(extreme point) to the next. Later on, in Chapter 4, we will discuss techniques for
solving linear programs that have become very popular since the 1980s that move
instead through the interior of the feasible set of solutions.

The Simplex Method is a very efficient procedure for solving large practical
linear programs on the computer. Classes of examples, however, have been con-
structed where the number of pivot steps required by the method can grow by an
exponential function of the dimensions of the problem. Never to our knowledge has
anything like this worst-case performance been observed in real world problems.
Nevertheless, such unrealistic examples have stimulated the development of a the-
ory of alternative methods for each of which the number of steps are guaranteed
not to grow exponentially with problem size whatever the structure of the matrix
of coefficients.

Given a fized problem, say one with m = 1000 rows with a highly specialized
structure the goal is find the best algorithm for solving it. This theory so far has
provided us with little or no guide as to which algorithm is likely to be best.

Most of the discussion in this chapter and other chapters will refer to a linear
program in standard form, that is,

cixy + cxy + -+ cpr, = 2z (Min)
a11%1 + ai2®2 + -+ anTn, = by
2171 + QT2 + -+ + AT, = by
(3.1)
Am1T1 + AmaX2 + <+ + AmpTn = bm,
and 1 >0, 22 >0, ..., x, > 0.

63

64 THE SIMPLEX METHOD

It is assumed that the reader is familiar with simple matrix notation and operations.
See Appendix A for definitions of these basic concepts. In matrix notation (3.1)
can be rewritten as

Minimize Iz
subject to Az = b, A: mxn, (3.2)
z >0,

where A is a rectangular matrix of dimension m x n, b is a column vector of dimen-
sion m, ¢ is a column vector of dimension n, z is a column vector of dimension n,
and the superscript T stands for transpose.

We start by illustrating the method graphically in Section 3.1. In Section 3.2 the
Simplex Algorithm will be described; its use, as part of the Simplex Method, will
be developed in Section 3.3. Next we will examine linear programs in standard form
with bounds; these are systems whose nonnegativity constraints have been replaced
by upper and lower bounds on each variable x; as shown below:

Minimize Tz
subject to Az = b, A: mxmn, (3.3)
I <x<u.

3.1 GRAPHICAL ILLUSTRATION

To visualize graphically how the Simplex Algorithm solves a linear program in
standard form, consider the example in Figure 3-1, which is the two-variable problem
discussed earlier in Section 2.1. The points labeled O, A, B, C, D are the vertices
(or extreme points), where C' is the optimal vertex. The segments OA, AB, BC,
CD, DO are the edges (or the boundaries) of the feasible region. Starting at O,
say, the Simplex Algorithm either moves from O to A to B to C, or moves from O
to D to C, depending on the criteria used to decide whether to move from O to A
or O to D.

3.2 THE SIMPLEX ALGORITHM

The Simplex Algorithm described in this section assumes that an initial feasible
solution (in fact that an initial basic feasible solution) is given to us. If an initial
feasible solution is not given, finding a feasible solution to a linear program can be
done by solving a different linear program, one with the property that an obvious
starting feasible solution is available.

3.2.1 CANONICAL FORM AND BASIC VARIABLES

The Simplex Method finds an optimal solution (or determines it does not exist) by
a sequence of pivot steps on the original system of equations (3.1). For example,

3.2 THE SIMPLEX ALGORITHM

65

)
6 1 = 4
Optimal at C:
=4
\
\ =1
T z* =-9
\
\
\
\
\ 2x1 + 3xo =12
\
;T
z=—2x1 — X9

Figure 3-1: Graphical Solution of a Two-Variable LP

consider the problem of minimizing z for x; > 0 where

201 + 222 + 2x3 + x4 + 4x5 = 2
dry + 2w0 + 1323 + 3x4 + x5 = 17
Ty + 92+ dxz + x4+ x5 = T.

(3.4)

A pivot consists in choosing some nonzero element (called the pivot) in the array
such as 3x4 and using it to eliminate x4 from the remaining equations by first

dividing its equation by 3, obtaining

2x1/3 + 4a9/3 — Tx3/3 + lla5/3 = 2—-17/3
do1/3 + 229/3 + 1323/3 + x4 + x5/3 = 17/3
—1z1/3 + 1x9/3 + 2z3/3

If we pivot again by choosing say xo/3 as the pivot we obtain

211 — bxg + laxs = z—11
211 3rs + loy — x5 = 3
—x1 + lxg + 2z3 + 25 = 4.

+ 2a5/3 = 4/3.

(3.5)

(3.6)

We say that the original system (3.4) is equivalent to (3.6) because it has the same

solution set. Rewriting (3.6) we obtain

(—=2) + 214 — b3 + las = 11
2131 3173 + 1I4 — X5 =
— X1 + 11’2 —+ 2%3 —+ 21’5 = 4

w

(3.7)

66 THE SIMPLEX METHOD

We say that (3.7) is in canonical form with respect to variables (—z), 4, 22, which
are called the dependent variables, or basic variables, because these values have
been expressed in terms of the independent, or nonbasic variables. In practice, z is
referred to as the objective variable and the other dependents as basic.

The basic feasible solution is found by setting the values of the nonbasics to zero.
In (3.7) it can be read off by inspection:

z=11, z, = (x4,22) = (3,4), =, = (x1,23,25) = (0,0,0). (3.8)

Note that in this example the basic solution turned out to be nonnegative. This is
a necessary requirement for applying the Simplex Algorithm.

Note that choosing (—z) and any arbitrary set of variables as basic variables to
create the canonical form will not necessarily yield a basic feasible solution to (3.4).
For example, had the variables x; and x4 been chosen for pivoting, the basic solution
would have been

z=3, 21 =—4, x4 =11, x9 =23 =125 =0,

which is not feasible because x; is negative. We now formalize the concepts discussed
so far.

Pivoting forms the basis for the operations to reduce a system of equations to a
canonical form, and as we shall see later, to maintain it in such form. The detailed
steps for pivoting on a term a,szg, called the pivot term, where a,s # 0, are as
follows:

1. Replace the rth equation by the rth equation multiplied by (1/as).

2. Foreachi=1,...,m except i = r, replace the ith equation by the sum of the
ith equation and the replaced rth equation multiplied by (—a;s).

Since pivoting is a process that inserts and deletes redundant equations, it does not
alter the solution set, and the resulting system is equivalent to the original system.

Definition (Canonical Form): A system of m equations in n variables z;
is said to be in canonical form with respect to an ordered set of variables
(xj,,2jy,...,2;5,) if and only if z;, has a unit coefficient in equation ¢ and a
zero coefficient in all other equations.

System (3.9) below, with 2, = (21,22,...,2m)" and 2y = (Tmi1s-..)7 is
canonical because for each i, the variable x; has a unit coefficient in the ith equation
and zero elsewhere:

Iz, + Az, =b. (3.9)

Definition (Basic Solution): The special solution obtained by setting the
independent variables equal to zero and solving for the dependent variables is
called a basic solution.

3.2 THE SIMPLEX ALGORITHM 67

Thus, if (3.9) is the canonical system of (3.1) with basic variables 1, z2,... , Zm,
the corresponding basic solution is x, = b and z,, =0, i.e.,

21 =b1, 20 =bo, ..., T =bp; Tyl = Tongo2 = =T, = 0. (3.10)

Definition (Degeneracy): A basic solution is degenerate if the value of one
or more of the dependent (basic) variables is zero. In particular, the basic
solution (3.10) is degenerate if b; = 0 for at least one i.

A set of columns (of a system of equations in detached coefficient form) is said to
be a basis if they are linearly independent and all other columns can be generated
from them by linear combinations. To simplify the discussion we shall assume that
the original system of equations (3.1) is of full rank.

Definition (Basis): In accordance with the special usage in linear program-
ming, the term basis refers to the columns of the original system (in detached
coefficient form), assumed to be full rank, corresponding to the ordered set of
basic variables where the order of a basic variable is i if its coefficient is 41 in
row ¢ of the canonical equivalent.

Definition (Basic Columns/Activities): The columns of the basis are called
basic columns (or basic activities).

The Simplex Algorithm is always initiated with a system of equations in canon-
ical form with respect to some ordered set of basic variables. For example, let
us suppose we have the canonical system (3.11) below with basic variables (—z),

X1,T2,... ,Tm. The (m + 1)-equation (n + 1)-variable canonical system (3.11) is
equivalent to the standard form (3.1).
Our problem is to find values of z1 > 0, x5 > 0, ..., z, > 0, and min z satisfying
-z T Cm1Tmi1r Tt GTi et CpTn=—2
z1 + @1 1T o+ QT+ QT = by
To + G2m+1Tm+1+ -+ Q2T+ -+ GopTp = by (3.11)

Tm +dm,m+1$m+1 +-- +d7n]m] + -+ ATy = bm7

where a;;, ¢;, b;, and Z, are constants. In matrix notation, the same system can be

written compactly as:
—Z
1 0 ¢ [—Z
o7 a)(=]=(7") (3.12)

T . :
where x, = (z1,%9,... , Ty) and ¥y = (Tma1, Tma2,---,Tn) . In this canonical
form, the basic solution is

z2=2%, x,=0b, x,=0. (3.13)

68 THE SIMPLEX METHOD

In the Simplex Algorithm it is required that this initial basic solution be feasible,
by which we mean that -
z=02>0. (3.14)

If such a solution is not readily available, we describe a Phase I procedure in Sec-
tion 3.3 for finding such a feasible solution if it exists.

Definition (Feasible Canonical Form): 1If (3.14) holds, the linear program is
said to be in feasible canonical form.

Exercise 3.1 Why is (3.14) sufficient for the basic solution (3.13) to be feasible for
(3.11).

3.2.2 IMPROVING A NONOPTIMAL BASIC FEASIBLE
SOLUTION

Given the canonical form, it is easy to read off the associated basic solution. It is
also easy to determine, by inspecting b, whether or not the basic solution (3.13) is
feasible; and if it is feasible, it is easy (provided the basic solution is nondegenerate)
to determine by inspecting the “modified” objective equation in (3.11) whether or
not (3.13) is optimal.

Definition (Reduced Costs or Relative Cost Factors): The coefficients ¢; in
the cost or objective form of the canonical system (3.11) are called relative
cost factors—*“relative” because their values depend on the choice of the basic
set of variables. These relative cost factors are also called the reduced costs
associated with a basic set of variables.

Continuing with our example from Section 3.2, we redisplay (3.7) with 3xg
boldfaced.

(—2) + 221 — bz + x5 =-11
+ 22 +3xg+24— 5= 3 (3.15)
— x1 + 22 + 273 + 25 = 4.

The boldfaced term will be used later to improve the solution. The basic feasible
solution to (3.15) can be read off by inspection:

z=11, z, = (x4,22) = (3,4), =, = (x1,23,25) = (0,0,0). (3.16)

One relative cost factor in the canonical form (3.15) is negative, namely é3 = —5,
which is the coefficient of x3. If z3 is increased to any positive value while holding
the values of the other nonbasic at zero and adjusting the basic variables so that
the equations remain satisfied, it is evident that the value of z would be reduced,
because the corresponding value of z is given by

z =11 — bz, (3.17)

3.2 THE SIMPLEX ALGORITHM 69

It seems reasonable, therefore, to try to make 3 as large as possible, since the larger
the value of z3, the smaller will be the value of z. However, in this case, the value of
x3 cannot be increased indefinitely while the other nonbasic variables remain zero
because the corresponding values of the basic variables satisfying (3.15) are

Ty = 3 — 3$3
Tg =4 — 2x3. (3.18)
We see that if z3 increases beyond 3 + 3, then z, becomes negative, and that if
x3 increases beyond 4 + 2 then zo also becomes negative. Obviously, the largest
permissible value of x3 is the smaller of these, namely x3 = 1, which yields upon
substitution in (3.17) and (3.18) a new feasible solution (in fact a basic feasible
solution) with lower cost:

2=06, 23=1, 20 =2, 1 =24 =25 =0. (3.19)

This solution reduces z from 11 to 6.

Our immediate objective is to discover whether or not this new solution is min-
imal. This time a short cut is possible since the new canonical form changes with
respect to only one basic variable, i.e., by making x4, nonbasic since its value has
dropped to zero and making x3 basic because its value is now positive. A new
canonical form with new basic variables, 3 and x5, can be obtained directly by
one pivot from the old canonical form, which has x4 and x4 basic. Choose as pivot
term that x3 term in the equation that limited the maximum amount by which the
basic variables, x5 and x4, could be adjusted without becoming negative, namely
the term 3x3, which we boldfaced 3xg. Pivoting on 3x3, the new canonical form
relative to (—z), x3, and z3 becomes

(—2) + Hay + Say — 2x5 = —6
+ im + a3+ jag — Fas = 1 (3.20)
— %xl + 29 — %x4 + %Xs = 2.

Note that the basic solution,
z =6, Ty = (1’371'2) = (172)a Ty = (.’E1,£L'471'5) = (07070)7

is the same as that obtained by setting z; = 0, 5 = 0, and increasing x3 to
the point where x4 = 0. Since the solution set of the canonical forms before and
after pivoting are the same, the values of x5 and z3 are uniquely determined when
(z1,24,25) = 0 whether obtained via (3.18) or by inspecting the right-hand side
of (3.20).

This gives a new basic feasible solution with z = 6. Although the value of z has
been reduced, it can clearly still be improved upon since ¢ = —2/3. Furthermore,
as before, the coefficient ¢5 = —2/3 together with the fact that the basic solution
is nondegenerate indicates that the solution still is not minimal and that a better

70 THE SIMPLEX METHOD

solution can be obtained by keeping the other nonbasic variables, x1 = z4 = 0, and
solving for new values for zo, x3, and z in terms of x5:

—z = —6 + %x5
3= 1+ 35 (3.21)
T = 2 — %l’5.

Therefore we increase x5 to the maximum possible while keeping x5 and x2 non-
negative. Note that the second relation in (3.21) places no bound on the increase
of 5, but that the third relation restricts x5 to a maximum of (% + 2) at which
value x5 is reduced to zero. Therefore, the pivot term, %x5 in the third equation
of (3.20) is used for the next elimination. Since the value of z9 has dropped to zero
and x5 has become positive, the new set of basic variables is x3 and 5. Reducing
system (3.20) to canonical form relative to x3, x5, (—z) gives

(—2) + Ly + 1z + 34 -4
+ %xl + éxg + x3 + i$4 = % (3.22)
%xl + %IQ — T4+ a5 = 3
and the basic feasible solution
z:%,2322,365:;361::102::34:0. (3.23)

Since all the relative cost factors for the nonbasic variables are now positive, this
solution is minimal. In fact it is the unique minimal solution because all the relative
cost factors are strictly positive; if any of the relative cost factors for the nonbasic
variables, say x;, were zero, we could exchange this x; with one of the basic variables
without changing the value of the objective function. Note that it took two pivot
iterations on our initial canonical system (3.15) to find this optimal solution.

Key Components of the Simplex Algorithm. The example illustrates the
following two key components of the Simplex Algorithm:

1. Optimality Test. If all the relative cost factors are nonnegative, the basic
feasible solution is optimal.

2. Introducing a Nonbasic Variable into the Basis. When bringing a nonbasic
variable into the basis, the amount by which we can increase it is constrained
by requiring that the adjusted values of the basic variables remain nonnega-
tive.

> Exercise 3.2 (Infeasible Problem) It is obvious that the linear program shown below
is infeasible. Show algebraically by generating an infeasible inequality that this is indeed

the case.
Minimize xr1 + X2

subject to x1 + x2 = —2
X1 Z 0
X2 2 0.

3.2 THE SIMPLEX ALGORITHM 71

> Exercise 3.3 (Unique Minimum) Determine by inspection the basic solution to

Minimize gm = z+15
subject to 1 + T2 =3
%LE1 + a3 =4

and 1 >0, x2 >0, z3 > 0.
Why is it feasible, optimal, and unique?

> Exercise 3.4 (Multiple Minima) Prove that the basic solution z = —15, z; = 8/3,
22 = 1/3 is a feasible optimal solution to

Minimize Ozs = z+15
subject to xro9 — %373 = %
2 8
1 + 373 = 3

and z1 >0, z2 >0, 23 >0,

but that it is not unique. Can you find another optimal basic feasible solution? Are there
any nonbasic feasible solutions that are also optimal?

Exercise 3.5 (Unbounded Class of Solutions) Reduce

Minimize —T1 — X2 = 2
subject to r1 — x2 = 1
T 2 O

T2 Z 0

to feasible canonical form and generate a class of solutions that in the limit cause the
objective function to go to —occ.

3.2.3 THE SIMPLEX ALGORITHM

Algorithm 3.1 (Simplex Algorithm) Assume that a linear program in standard
form has been converted to a feasible canonical form

(=2) + Ozp + c‘TmN = —Zo (3.24)
Izgy + Azy = b, ’

which was shown earlier in Equations (3.11). Then the initial basic feasible solution is
Ty =b>0, xy =0, z=Z.

The algorithmic steps are as follows:

1. Smallest Reduced Cost. Find
s = argmin ¢;, (3.25)
J

where s is the index j (argument) where ¢; attains a minimum, that is,

€s = min ¢;. (3.26)
J

72

THE SIMPLEX METHOD

. Test for Optimality. If ¢s > 0, report the basic feasible solution as optimal and

stop.

. Incoming Variable. If ¢; < 0, then s is the index of the incoming basic variable.

. Test for unbounded z. If Aes <0 report the class of feasible solutions x5z = l;fA.SxS,

x; = 0, j nonbasic and j # s, and z = Zyp + ¢sxs such that z - —o0 as xs; — o0,
and stop. This requires reporting the basic feasible solution, the incoming column
index s, and the column A,s.

. Outgoing Variable. Choose the outgoing basic variable x;, and the value of Zs, the

incoming basic variable, as

7 = br min ﬂ >0, (@s>0). (3.27)

Qrs {ila;s>0} Qs

In the case of ties, let R be the set of rows k tied:

r={

NONDEGENERATE CASE: If by, > 0 for all k € R, choice of k among the ties is
arbitrary.

DEGENERATE CASE: If b, = 0 for more than one k € R, the Random Choice
Rule can be used; that is, choose r at random (with equal probability).

}gli-

i

S

Q

Qks

, bi >0, @ >0, aks>07i_1,...,m}. (3.28)

. Pivot on a,s to determine a new basic feasible solution, set j,. = s and return to

Step 1. Note that the pivot step is made regardless of whether or not the value of
z decreases.

The DEGENERATE CASE where b, = 0 for more than one k£ € R is often

ignored in practice, that is, 7 € R is chosen arbitrarily or from among those ¢ with
max a;s. See Problems 3.14 and 3.15 for examples where the rule used results in
a sequence of pivots that repeats, called cycling in the Simplex Algorithm. Several
techniques besides the Random Choice Rule exist for avoiding cycling in the Simplex
Algorithm. A very simple and elegant (but not necessarily efficient) rule due to
R. Bland is as follows.

BLAND’S RULE

Whenever the regular choice for selecting the pivot in the Simplex Method would
result in a 0 change of the objective value of the basic feasible solution, then instead
of the regular choice, do the following;:

1. Incoming Column. Choose the pivot column j = s with relative cost ¢; < 0

having the smallest index j.

2. Outgoing Column. Choose the outgoing basic column j, among those eligible

for dropping with smallest index j;.

3.2 THE SIMPLEX ALGORITHM 73

3.2.4 THEORY BEHIND THE SIMPLEX ALGORITHM

In this section we discuss the technical details behind the Simplex Algorithm as
described so far.

THEOREM 3.1 (Optimality Test) A basic feasible solution is a minimal
feasible solution with total cost Zy if all relative cost factors are nonnegative:

¢ >0 for j=1,...,n. (3.29)

Proof. Referring to the canonical form (3.11), it is obvious that if the coefficients
of the modified cost form are all positive or zero, the smallest value of)" ¢;z; is
greater or equal to zero whatever be the choice of nonnegative x;. Thus, z > %, for
all feasible choices of x. In the particular case of the basic feasible solution (3.13)
however, we have z = Zp; hence min z = zy and the solution is optimal. 1

This proof shows that for all solutions x; > 0 that satisfy the canonical form
(3.11), the basic solution has the smallest value of z. This proof also shows that
for all solutions that satisfy the original system (3.1), the basic solution is optimal
because the original system (3.1) and (3.11) are equivalent, i.e., have the same
feasible sol