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Preface

My research work on the subject of this book started in the mid-1970s while I was 
studying at the Moscow Institute of Physics and Technology. I studied my area of 
specialization at the Chair of Applied Electrodynamics, based at the Research In-
stitute of Radio Physics in Moscow, which became the Company “Radiophyzika” 
after privatization in 1993. The first results based on the application of multiport 
networks for reducing the number of phase shifters in array designed for limited 
field of view were obtained in the process of performing my M.S. thesis supervised 
by Dr. Yu. N. Seryakov.

The results on application of modulated corrugated structures for shaping the 
sector flat-topped array element patterns were obtained in the frame of my Ph.D. 
thesis under direct supervision by Dr. V. D. Korotkov and general supervision by Pro-
fessor G. G. Bubnov. As the director of the Research Institute of Radio Physics and 
simultaneously the head of the chair, Professor Bubnov exerted huge influence on me 
personally and on many other graduates of the chair and associates of the Institute.

Further results were obtained during my work as the associate of “Radio-
phyzika.” Some papers on them were published in coauthorship with my colleagues 
S. A. Ganin, V. V. Denisenko, Yu. B. Dubrov, G. V. Dybtsyn, M. M. Ivanishin, A. E. 
Kazaryan, V. D. Korotkov, A. V. Shishlov, and A. G. Shubov. Useful bibliographic 
information used in the process of writing the book was received from Yu. B.  
Korchemkin, V. V. Denisenko, and A. V. Shishlov. A definite contribution to the re-
search on the subject was made by my students L. L. Mukhamedov, A. S. Vyazigin, 
R. M. Leijon, K. V. Nikitin, and A. A. Yaparova. I always got necessary help and 
support from the administration of the company, in particular from V. V. Petrosov, 
A. A. Tolkachev, B. A. Levitan, A. N. Sheludchenko, I. V. Poplavsky, V. I. Roovinsky,  
and S. V. Ivanov. Assistance associated with using computer technologies could al-
ways be received from Yu. A. Bomstein. Great encouragement during work on the 
book was given by M. A. Kovalyova.

Of great value for me in my work was discussion of its results at the chair semi-
nar headed by Dr. N. P. Malakshinov and Dr. V. N. Garmash, at the Joint Feld’s 
seminar (at the Institute of Radio Engineering and Electronics, Moscow) headed by 
Professor V. V. Shevchenko (previously, Professors B. Ye. Kinber and D. M. Sazonov 
were the chairmen of the seminar), and at the seminar “Numerical Methods of 
Electrodynamics” headed by Professors A. G. Sveshnikov and A. S. Ilyinsky at the 
Moscow State University. My first review paper on arrays with flat-topped element 
patterns was presented in 1993 at the 10th International School Seminar on Wave 
Diffraction and Propagation by invitation from the program committee chairman, 
Professor V. A. Borovikov.

My interaction with a number of foreign specialists has exerted great influence 
on my work. First of all, I would like to mention Dr. R. J. Mailloux of Hanscom 



AFB, Massachusetts. First, the work of R. J. Mailloux on dual-mode horn arrays 
gave me a good example in the beginning of my work for further development of 
the subject. Second, a great honor for me has been the inclusion of some my results 
in the second edition of his handbook (R. J. Mailloux, Phased Array Antenna 
Handbook, Second Edition, Artech House, 2005) and his lectures (R. J. Mailloux, 
Electronically Scanned Arrays, Morgan & Claypool, 2007). Third, due to his 
invitation and support, I could present and discuss my results at three international 
symposia on phased arrays held in the United States in 1996, 2000, and 2003, as 
well as at meetings in his laboratory in Hanscom. During my trip of 1996, I also 
made my presentations at two meetings organized by Dr. L. A. Coryell in Fort Mon-
mouth, New Jersey, and by Mr. R. E. Welch in San Diego, California.

Due to invitation and support from the program committee headed by Dr. L. 
Josefsson, Ericsson Microwave Systems AB, Gothenburg, Sweden, I presented my 
review paper at the Nordic Antenna Symposium of 1997 in Gothenburg, Sweden. 
It was also very useful for me to discuss some my results at the meeting organized 
by Dr. P. Ingvarson in Saab Ericsson Space AB.

The initial experimental results on the application of corrugated rods for shap-
ing flat-topped array element patterns were obtained due to support from Dr. L. E. 
Corey of Georgia Tech, Atlanta, Georgia. Further development of this technology 
was performed in cooperation with Dr. S. Y. Eom and his colleagues from the 
Electronics and Telecommunications Research Institute, Taejeon, R. O. Korea.

Useful bibliographical information that I included in the overview of the net-
works designed for shaping flat-topped subarray patterns was received from Dr. 
A. R. Lopez, GEC-Marconi Hazeltine, Greenlawn, New York. Dr. J. F. Johansson 
from Ericsson AB, Molndal, Sweden, provided me with copies of a few his papers 
on multiple beam antennas, which were very useful for me when working on the 
sections devoting to forming orthogonal beams by a planar aperture and to shaping 
sector patterns by dense arrays.

Of great importance and value for me was also my long-term collaboration with 
Professor P.-S. Kildal from Chalmers University of Technology, Gothenburg, Swe-
den, as well as with Dr. D. Smith from Northumbria University, Newcastle-upon-
Tyne, United Kingdom, in 2006–2007. Though that collaboration was not directly 
related to the subject of the present book, participation in various conferences in its 
framework allowed me to present my results on the arrays with flat-topped patterns 
as well.

I am deeply grateful to all the persons listed here, as well as to many other 
people I was pleased to interact with during many years of everyday work.
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Introduction

Rapid development of the phased array antenna area started in the 1940s after the 
first samples of antennas with electrical beam scanning appeared [1, 2]. As a result, 
large stationary radars with phased arrays, such as “Dnepr,” “Daryal-U,” “Ne-
man,” “Voronezh-M,” “Don-2N,” “Dunay-3U,” “Volga” [3], “Argun” [4], and 
“Ruza” [5], were created in Russia during the second half of the twentieth century. 
Similar examples of the western radar stations are presented in [6–9], and some 
mobile radars of both Russian and foreign production on the basis of multi-element 
phased arrays are described in [8, 10].

Publications on scanning array antennas include a huge number of journal and 
conference papers, chapters in many textbooks and handbooks on antennas, and 
a few dozen books specially devoted to arrays [1, 6, 7, 11–43]. This list, having no 
pretensions of completeness, covers both books of general interest [1, 6, 7, 11–24] 
and books considering specialized issues. The latter include array synthesis [25–32] 
(a chapter devoted to the structural synthesis is available in [17]), active arrays [33], 
adaptive arrays [34–38], conformal arrays [39, 40], multifrequency integrated ar-
rays [41], radio-optical arrays [42], and measurement of array characteristics [43]. 
Analytical solutions of the waveguide array problems that are of great importance 
both themselves and for validation of various numerical methods are given in [6, 
44, 45]. Some results on statistical analysis of the array antennas are presented 
in [46]. Hybrid scanning reflector antennas, where arrays are used as feeds, are 
considered in [47].

The importance of the array antenna subject justifies permanent presence of 
appropriate sessions at national and international symposia and conferences on 
general antenna theory and technology, as well as organization of symposia and 
conferences devoted exclusively to the phased array antennas. Three latest such 
symposia were held in the United States in 1996, 2000, and 2003. Information on 
the earlier array conferences is available in [21].

In the process of developing one- and two-dimensional linear and planar phased 
array antennas, the array element spacing is conventionally determined from the 
well-known condition guaranteeing the absence of the array factor grating lobes 
in the visible space, while the main lobe scans over a specified region. Such an ap-
proach is fully justified if the main lobe is required to deflect to large angles from 
the broadside direction (i.e., at wide-angle scanning). However, there exist several 
important applications where providing high array gain is required only in a rela-
tively narrow angle sector in one plane or in both main planes. Such arrays, also 
called arrays with limited field of view or just limited-scan arrays, are required and 
used in

Aerodrome radar stations (like AN/TPN-19 [7]) for air traffic control and 
instrumental landing of airplanes;

·



Radars for getting images of vessels on a waterway [48];
Automotive radars designed for preventing collisions and other road inci-
dents [49, 50];
Shipboard fire-control radars [1];
Counterbattery radars like COBRA [51] designed for detecting hostile artil-
lery positions by tracing projectile trajectories;
Systems of satellite communications [52, 53], in particular, for communica-
tion with satellites arranged on the geostationary orbit, from which the Earth 
is observed in the angular sector of ±9°;
Earth communications stations for tracking movement of satellites located 
on the geosynchronous orbit whose plane is deflected out of the equatorial 
plane at a small angle.

Beside these applications, fast electrical beam scanning in a narrow sector can 
also be combined with wide-angle mechanical rotation of the whole array, as it has 
been realized in the radar stations “Argun” [4] and “Ruza” [5], which are used for 
tracking objects in the near-Earth space.

Application of the conventional approach to selection of the element spacing 
in the limited-scan arrays would result in strong redundancy of the control devices, 
like phase shifters in passive arrays or transmit-receive (T/R) modules in active 
arrays [54], in comparison with the theoretical minimum of the element number 
equal to the number of orthogonal beams of specified gain filling in a specified 
sector of scan [55]. For instance, as it follows from relation (8-55) in [56] (see also 
Table 1 in [57]), the element number in an array designed for scanning in a conical 
region with flare angle of 20° using the conventional approach would exceed the 
theoretical minimum more than 11 times. Since the phase shifters and especially T/
R modules are the most expensive phased array components, minimization of their 
number is always desirable. Moreover, the indicated minimization corresponds 
to maximization of the array element spacing that can also give some additional 
preferences in the array design.

Selection of the maximum element spacing corresponding to the minimum 
number of controlled elements in the limited-scan arrays results in the presence of 
the array factor grating lobes in real space. Their high level is usually undesirable, 
since it corresponds to lowering the array gain due to taking a part of the radiated 
power away from the main lobe. Besides, the presence of the high grating lobes can 
also result in ambiguity of the target detection finding. The simplest way of suppress-
ing the grating lobes is to utilize large-aperture radiating elements [58, 59] or non-
overlapped subarrays of simple radiators fed in phase [16, 56]. Such an approach 
has been realized, for instance, in an array of dual-reflector antenna elements [60–
62] used in the radar “Ruza” [5]. Application of the large-aperture horn elements 
is considered in [63, 64]. However, more or less effective grating lobe suppression 
in such arrays can be provided only when the main lobe is steered in the broadside 
position. Deflection of the main lobe from the boresight is accompanied with fast 
growing of the grating lobe level and therefore fast lowering of the array gain in 
accordance with the shape of the radiation pattern of a large-aperture element or 
of a cophasal subarray. Application of the large-aperture elements in combination 
with their irregular arrangement in the array aperture [1, 19, 24] allows effective  

·

·

·

·

·

·
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destroying of the grating lobes. However, fast gain reduction with deflection of 
the main lobe from the boresight remains, since the power radiated earlier in the 
grating lobes is lost as well due to spraying into the background. Moreover, the 
irregular arrangement of the antenna element can result in complicating the design 
of both the radiating structure and the feeding system.

The theoretical minimum of the array element number is achieved not only at 
the maximum element spacing corresponding with the specified scan sector width, 
there should also be provided the maximum efficiency of the array aperture when 
the array gain behaves according to the cosq law, where q is the angle of beam de-
flection from the boresight. If the gain drops faster, as takes place in arrays of the 
large-aperture elements or cophasal subarrays, satisfaction of the specification on 
the array gain in the scan region results in the necessity of enlarging the aperture 
area, which, in turn, leads to increasing the element number over its theoretical 
minimum.

Since the behavior of the grating lobes of the array and its main lobe at scan-
ning is determined by the array element pattern shape, the ideal amplitude element 
pattern corresponding to the minimum number of the elements must be propor-
tional to cosθ  in the scan region and have zero level outside it thereby providing 
complete suppression of the grating lobes. Such patterns are referred to as sector or 
contour patterns. The term flat-topped patterns is also widely applied for them in 
the appropriate literature.

The shaping of the flat-topped element patterns is of interest not only 
from the viewpoint of minimization of the element number in the limited-
scan arrays but also by other reasons considered next. In the array designed for 
wide-angle scanning, the element spacing must be small enough. However, the 
density of the array element arrangement can be restricted by the transverse 
dimensions of the existing phase shifters or T/R modules. For instance, ap-
plication of the ferrite phase shifters [65] in the millimeter-wave band arrays  
[60, 66] results in element spacing exceeding the wavelength. Similar spacing may 
take place in some X-band phased arrays of feed-through type where their control 
cells are arranged nearby the phase shifters. Shaping of the sector element patterns 
in such cases allows the suppression of the grating lobes and the provision of 
maximum array gain in a maximally wide scan sector corresponding to the element 
spacing dictated by the phase shifter dimensions.

The sector flat-topped element patterns are of interest also in connection with 
the possibility of using the arrays with such elements as feeds in reflector and lens 
antennas. The sector element patterns in these cases allow the provision of high 
efficiency of the illuminated aperture with minimum loss for spillover. The use of 
such arrays in multiple beam antennas for radiotelescopes of a new generation and 
for the systems of radiovision has been considered in [67–70].

At last, some approaches to shaping the sector and contour array element pat-
terns may be applied to shaping the sector and contour patterns in other antenna 
applications, since antennas with such patterns are required, for instance, in com-
munications systems with contour zones of servicing [71–73] and in the systems of 
power transfer by means of microwave beam [74, 75].

It is known that the sector element pattern cannot be shaped by using currents 
or fields distributed over the aperture of only one array cell. Strictly speaking, 



the appropriate distribution must occupy the entire array aperture and thereby 
use all the array cells. Therefore, the sector array element pattern corresponding 
to excitation of one controlled array input is, in fact, the pattern of the array 
as a whole at the indicated partial excitation. This pattern is referred to in the 
literature as the subarray pattern or the partial array pattern. Since the field 
distribution corresponding to excitation of any array input occupies the entire 
array aperture, the array with the sector element patterns consists of overlapped 
subarrays. 

Publications on studying approaches to the creation of phased arrays with over-
lapped subarrays shaping the sector patterns started to appear in 1970s. A review 
of the results published on this subject over subsequent two decades in Western 
literature was made in Chapter 8 of [19]. The results of Russian and some foreign 
studies were also described in [57, 76]. The interest to the subject has not been 
getting weaker, and more than two dozen papers have been published since the late 
1990s. Some of them have been included in the second edition of [24] and in [1].

The present book is the first separate monograph devoted to a systematic de-
scription of the theory and methods of shaping the sector and contour element 
patterns in linear and planar phased array antennas. The book consists of six chap-
ters based mainly on the results obtained by the author. They are compared to the 
results obtained by other specialists.

Chapter 1 contains basic fundamental relations and restrictions for phased 
arrays obtained using the general antenna theory applied to periodic structures. 
Main attention is paid to the ideal array element pattern defined as a pattern 
corresponding to the highest achievable array gain in the widest possible scan region 
for specified array element spacing. We reveal and describe the properties of the 
ideal sector and contour element patterns. The results obtained with that connection 
have also allowed us to develop a technique for determining the dimensions and 
shape of a planar aperture providing formation of orthogonal beams arranged in 
a specified Cartesian regular skew lattice, as described in Appendix 1B. They have 
also helped to derive new expressions for evaluating the radiation efficiency of the 
dense arrays shaping the contour radiation patterns in general case. The material 
on this subject can be found in Appendix 1C.

In Chapter 2, we consider the formation of overlapped subarrays shaping the 
sector radiation patterns on the basis of feedthrough multiport networks. The con-
sideration includes an overview of various technical solutions available in the previ-
ous literature, as well as a description of a proposed multicascaded beam-forming 
matrix, which we call the chessboard network. Results of its optimization together 
with computed and measured radiation patterns of the array on its basis are pre-
sented and discussed. We also consider the use of a linear array with the chessboard 
network as a feed of a parabolic-cylindrical antenna. Finally, we propose and ana-
lyze some optical analogs of the chessboard network designed for shaping very nar-
row sector flat-topped element patterns.

Chapter 3 is devoted to arrays of dual-mode waveguides coupled to each other 
through the slots in their walls. The amplitude distribution in the aperture corre-
sponding to the sector partial pattern is formed by the first (even) and second (odd) 
modes propagating in the waveguides. The indicated modes are excited and phased 
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in the required relation obtained as a result of optimization of the array geometry. 
The effectiveness of such an approach is confirmed both by computed data and by 
measured characteristics of the appropriate array breadboard.

In Chapters 4, 5, and 6, we investigate approaches based on using the natural 
mutual coupling always existing between radiating elements over free space. Chap-
ter 4 is devoted to the array of densely arranged waveguides with reactive loads 
realized by short circuits, forming a modulated corrugated structure. Each passive 
short-circuited waveguide is excited due to strong coupling both with active (con-
trolled) elements and with other neighbor passive waveguides. The sector partial 
radiation pattern is formed as a result of the appropriate choice of the short-circuit 
positions in the waveguides. We present both a technique of analysis of such arrays 
and some measured results confirming the theory.

The shaping of the flat-topped element patterns in waveguide arrays with pro-
truding dielectric elements characterized by strong mutual coupling in the forward 
direction is investigated in Chapter 5. The numerical analysis of the waveguide-
dielectric arrays is accomplished by a hybrid projection method. This method has 
specially been developed for solution of both two- and three-dimensional problems 
and may be of independent interest.

Finally, Chapter 6 describes shaping of the flat-topped array element patterns 
by using multilayer strip structures, disk structures similar to the corrugated rods, 
and wire structures forming the Yagi-Uda antenna elements, which, similarly to the 
protruding dielectric elements, are also capable of supporting the traveling waves. This 
chapter also considers other wire structures forming semitransparent walls that provide 
distributed coupling between array cells with the same purpose of shaping flat-topped 
element patterns. We present both calculated and measured results characterizing the 
capabilities of such an approach. The arrays of the Yagi-Uda elements are analyzed with 
an efficient method developed for calculation of Green’s function for dually periodic 
structures and described in Appendix 6A. Appendix 6B contains a modification of the 
Kummer’s method developed for accelerating the convergence of series arising in two-
dimensional problems for one-dimensional periodic structures.

This book is designed for researchers and engineers working in the array an-
tenna area, including phased arrays, as well as to students specializing in antennas 
and microwave engineering.
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c h a p t e r  1

General Concepts and Relations

1.1  Basic Characteristics

1.1.1  Element and Array Radiation Patterns

Any array antenna is a set of antenna elements referred to as radiating elements, or 
just radiators arranged some way in space. An example is presented in Figure 1.1, 
where the radiators are shown in the form of rectangular apertures arranged in a 
Cartesian rectangular system of coordinates {x, y, z} with appropriate unit vectors 
ex, ey, and ez. Description of the array radiation characteristics is accepted to carry 
out in a system of spherical coordinates {r, q, j} shown in Figure 1.1 as well. The 
spherical coordinates relate to the Cartesian ones in such a way that the unit vector 
er directed to the observation point is determined by formula

 r x y zu v w= + +e e e e  (1.1)

where u = sinq cosj, v = sinq sinj, and w = cosq are direction cosines, while q and j 
are the angles measured from axes z and x, respectively.

One of the fundamental concepts in the array antenna theory is the array ele-
ment pattern [1, 2]. This parameter, which has actively been used since 1960s, 
corresponds to the case when, in the transmitting mode, the signal of excitation is 
supplied to the input of only one array element while all the other inputs are as-
sumed to be terminated with matching loads. Since the electromagnetic interaction 
always exists between the array elements, the radiation corresponding to excitation 
of one input is, strictly speaking, formed by all the elements. For this reason, the 
array element pattern is also referred to as a partial array pattern.

The amplitude element pattern in general case is a complex vector function 
describing the angular distribution of the electric or magnetic field strength at some 
distance Rn from the origin of a local coordinate system related to the nth excited 
element. Usually, of primary interest is the element pattern in far zone where the  

Figure 1.1  Generalized array geometry and coordinate systems.
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dependence of the field strength on the distance is described by the function 
exp(ikRn)/Rn, where k = 2p/l is the free space wavenumber, l is the operating 
wavelength, and the omitted time dependence is assumed here and later to be taken 
in the form e–iw t.

The great importance of the element pattern not only involves accounting  
for interaction of any chosen element with all the other elements, but it is also 
the basis for determining a number of other important array characteristics. One 
of them is the radiation pattern of the array as a whole in its far zone (i.e., at 
distances λ³ 22 /r L , where L is the largest transverse array dimension). In this 
case, the directions from each element to the observation point are considered 
to be parallel and, therefore, their angular arguments are identical. Let rn be a 
vector specifying the position of the nth array element (Figure 1.1), Cn be a com-
plex amplitude of the signal supplied to the input of the indicated element, and  
Fn(q, j) be the element pattern corresponding to the unit amplitude of the excita-
tion. Then, according to the principle of superposition, the vector complex array 
pattern is determined as

 
A( , ) ( , ) n rik

n n
n

C eθ ϕ θ ϕ - ×= å r eF F
 

(1.2)

where the summation is performed over all the array elements and the exponential 
factor accounts for the element position in the common coordinate system shown 
in Figure 1.1, in which the dependence of the array far field on the distance is deter-
mined by the common factor exp(ikr)/r.

1.1.2  Array Factor

Although each specific array antenna is usually composed of identical radiating 
elements, the radiation patterns of the latter differ from each other even in those 
cases when the elements have identical orientation in space and are arranged on 
a straight line or a plane in the nodes of a regular Cartesian lattice. This fact is 
explained by the effect of mutual coupling in combination with different positions 
of the elements with respect to the array edge. However, the mutual coupling in 
many cases is significant only between elements situated at a close distance from 
each other. For this reason, the overwhelming majority of the elements in large 
multi-element array antennas with regular Cartesian lattices are situated in almost 
equal conditions. This allows one to neglect the edge effect and believe that all the 
elements have identical radiation patterns. In this case, the array pattern (1.2) may 
be rewritten as the product

 A AF( , ) ( , ) ( , )Fθ ϕ θ ϕ θ ϕ=F F  (1.3)

where F(q, j) is the common element pattern replacing the patterns Fn(q, j), and

 
AF( , ) n rik

n
n

F C eθ ϕ - ×= å r e

 
(1.4)

is a complex scalar function called array factor.
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The array can provide maximum radiation in a specified direction if it is phased 
appropriately. Let the angles q0 and j0 determine the desired direction, and the 
signals of excitation come to the array inputs with complex amplitudes determined 
by formula

 
0n rik

n nC c e ×= r e
 (1.5)

where cn is a complex amplitude with argument independent of n,

 0 0 0 0r x y zu v w= + +e e e e  (1.6)

is the unit vector corresponding to the direction of phasing, and u0 = sin q0 cos j0,  
v0 = sin q0 sin j0, and w0 = cosq0 are its direction cosines. With accounting for (1.5), 
the array factor (1.4) takes the form

 

0( )
AF( , ) n r rik

n
n

F c eθ ϕ × -= å r e e

 
(1.7)

from which we see that the exponent is equal to zero in the direction of phasing, 
meaning that the fields from the radiating elements add in phase resulting in form-
ing the array beam. The phases of signals (1.5) can be changed by phase shifters or 
other control devices for scanning the beam in the space.

The nodes of the regular lattice mentioned earlier are arranged equidistantly 
in the rows and columns which, in general case, may not be perpendicular to 
each other. Such a skew lattice is shown in Figure 1.2(a) together with a Carte-
sian rectangular coordinate system whose origin is placed in one of the nodes. 
The lattice is specified by element spacing dx in a row, spacing dy between the 
rows, and displacement ds between adjacent rows in the row direction. The lat-
tices usually used in practice are rectangular with ds = 0 and triangular with  
ds= dx/2. An important special case of the triangular lattice is a hexagonal one 
where = 3/2y xd d .

If the columns and rows are numbered by two indices m and n, as shown in 
Figure 1.2(a), the position of each element in the array with the lattice arranged in 
the plane z = 0 can be specified by the radius-vector

 mn mn x n yx yρ = +e e  

 = +mn x sx md nd  (1.8)

 =n yy nd  

Accounting for (1.8) allows rewriting the array factor (1.7) as

 

- + -= åθ ϕ 0 0[ ( ) ( )]
AF

,

( , ) mn nik x u u y v v
mn

m n

F c e
 

(1.9)

where cmn is the amplitude of the mnth element.
Analysis of (1.9) shows that the array factor has maxima called grating lobes, 

whose positions in the space of direction cosines u and v are determined by  
formulas
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= = +

æ ö= = + -ç ÷
è ø

α λ

β λ

0

0

p

x

pq s

x y

u u p
k d

d
v v q p

k d d  

(1.10)

with p, q = 0, ± 1, ± 2, . . . . So, the array factor grating lobes in case of array with 
a regular lattice are also arranged in a regular lattice in the direction cosines space 
as, for instance, shown in Figure 1.2(b). Note, that displacement of the rows in the 
array lattice at distance ds in the horizontal direction results in displacement of the 
columns in the grating lobe lattice at the distance lds/(dxdy) in the vertical direction. 
The maximum corresponding to indices p = 0 and q = 0 is usually called principal 
lobe, while all the other maxima are called secondary grating lobes and the word 
“secondary” is usually omitted. Since the space of real angles (visible space) cor-
responds to the direction cosines satisfying the condition u2 + v2 £ 1, only a finite 
number of the grating lobes can be present in the visible space, as demonstrated in 

Figure 1.2  (a) Skew Cartesian array lattice, and (b) diagram of array factor grating lobes.
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Figure 1.2(b), where the unit circle represents the visible space boundary and the 
main lobe position is shown by a nonfilled small circle. In practice, the presence 
of the main lobe only in the visible space is desirable. At sufficiently small element 
spacings and appropriate phasing, there exist cases when neither main nor second-
ary grating lobes are present in the visible space. However, such cases are not of 
practical value because they correspond to complete reflection of the input power 
from the radiating array aperture. The shadowed rectangle shown in Figure 1.2(b) 
represents a periodic cell of the grating lobe lattice. The issues associated with it will 
be discussed later in Section 1.3.2.

Apart from the grating lobes, the array factor and the array pattern as a whole 
have also so-called sidelobes filling in the space between the grating lobes. The level 
and arrangement of the sidelobes depend on the shape of the array aperture and on 
the distribution of the input signal amplitudes. These factors also influence on the 
width of the main and secondary lobes.

1.1.3  Directivity, Gain, and Efficiency

The capability of an array antenna, like any other antenna, to concentrate its 
radiation in some direction is characterized by a special parameter introduced in 
the antenna theory by A. A. Pistolkors in 1929 under the name literally translated 
from Russian as coefficient of directive action. The modern English-language an-
tenna literature utilizes the term directivity for it. This parameter is defined as the 
ratio of the flux density of the power radiated by an antenna in a definite direction 
at distance r in the antenna far zone to the average radiated power flux density on 
a spherical surface of the same radius r surrounding the antenna. The distribution 
of the power flux density in far zone of an antenna fed with supplied power Pin

A is 
described by function PA(q, j)/r2, where PA(q, j) is the power antenna radiation 
pattern proportional to |FA(q, j)|2. Using the indicated pattern in the definition  
given earlier, we can write the array directivity D in the direction of phasing  
(q0, j0) as

 

2
A 0 0 A 0 0

0 0 2
( , ) / 4 ( , )

( , )
/(4 )

P r P
D

PP r ΣΣ

θ ϕ π θ ϕθ ϕ
π

= =
 

(1.11)

where

 

2

A
0 0

( , )sinP P d d
π π

Σ θ ϕ θ θ ϕ= ò ò
 

(1.12)

is the total radiated power.
Although the directivity is an important energy array parameter, it does not 

account for inevitable losses associated with absorption of a part of the supplied 
power in the elements and feeding lines as well with reflection of a part of the power 
from the aperture back to the feeding system. The indicated features are accounted 
for by another parameter called the array gain. The array gain in the direction of 
phasing, G(q0, j0), is determined by (1.11) for the directivity, where the total radi-
ated power (1.12) is replaced by the input power  Pin

A ; that is,
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= π θ ϕθ ϕ A 0 0

0 0 in
A

4 ( , )
( , )

P
G

P  
(1.13)

Analysis of (1.13) and (1.11) shows that the array gain and directivity relate to 
each other as

 =θ ϕ η θ ϕ0 0 0 0( , ) ( , )G D  (1.14)

where

 
in
A/P PΣη =  (1.15)

is the coefficient taking into account the losses for absorption and reflection and 
thereby characterizing the array radiation efficiency.

Note that (1.11) and (1.13) do not account for polarization losses, which as a 
rule also take place in real antennas. To account for them, one should replace the 
total power pattern standing in the numerators of (1.11) and (1.13) by the power 
pattern corresponding only to the specified operating polarization.

1.2  Infinite Array Model

As we already noted, the edge effect on the element performance in large multi-
element linear and planar arrays with regular lattices may be weak, and then the 
majority of the array elements may be considered a part of an infinite periodic 
structure. Such a model is of great interest, since the analysis of the fields in it can be 
reduced to their consideration within only one array cell. This significantly simpli-
fies the problem and at the same time reveals some important effects that may take 
place in large regular arrays.

1.2.1  Quasi-Periodic Excitation

Let the inputs of an infinite planar array with the lattice shown in Figure 1.2(a) be 
fed by signals with identical amplitudes and progressively varying phases so that 
the phase difference between adjacent columns is equal to Yx and the phase dif-
ference between adjacent rows is equal to Yy. Let je(r) and jm(r) be distributions of 
the electric and magnetic current densities formed in a finite region V = V00 of the 
central cell with indices m = n = 0 [Figure 1.2(a)] as a result of such an excitation, 
which we will call quasi-periodic. Then, due to periodicity of the structure, the cur-
rent distributions in other cells will repeat the amplitude and phase relations of the 
input signals; that is, the current densities in the region Vmn situated in the mnth 
array cell will obey the relation

 
Y Yρ += -, ,( ) ( ) x yim ine m e m

mn mn ej r j r  (1.16)

where rmn is determined according to (1.8).
The vector potentials corresponding to the current distributions (1.16) are de-

termined by
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is the Green’s function for doubly periodic structures with quasi-periodic excita-
tion, and ρ= - -¢| |mn mnR r r . Since (see, for instance, [3])
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(1.18)

where

 = - - = + -γ α β α β2 2 2 1/ 2 2 2 2 1/ 2( ) ( )k i k  

and xmn and yn are determined by (1.8), we can apply the Poisson’s summation 
formula [4] to (1.17) and rewrite the superposition of spherical waves there in the 
form of a superposition of plane waves
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e Γψ ρ ψ ρ

Γ
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(1.19)

where x yx yρ = +e e  and x yx yρ = +¢ ¢ ¢e e  are projections of the vectors r and r ¢ on 
the horizontal plane,

 

1
( ) p pqi x i y

pq
x y

e
d d

α βψ ρ +=
 

(1.20)

 
2 2 1/ 2 2 2 1/ 2( ) ( )pq pq pqk w i w kΓ = - = - , = +α β2 2 1/ 2( )pq p pqw  (1.21)

and the asterisk * denotes complex conjugation.
The coefficients ap and bpq, having the meaning of the transverse propagation 

constants of the plane waves in (1.19) and (1.20), are determined from (1.10), 
where the direction cosines u0 and v0 relate to the phases Yx and Yy as
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Using the expressions for the electric and magnetic field strengths via the vector 
potentials [5]
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where e0 and m0 are the electric and magnetic constants for free space, we can repre-
sent the fields above the structure (for ³ ¢maxz z , where ¢maxz  is the upper limit of the 
source distribution in the longitudinal direction) in the form of expansions in terms 
of the vector wave functions called Floquet modes
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where η µ ε= 1/2
0 0 0( / )  is the free space wave resistance, and
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are vector functions of the transversal electric (TE) and transversal magnetic (TM) 
modes, respectively. The scalar function (1.20) as well as vector functions (1.26) and 
(1.27) are orthonormalized [6] so that
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The amplitudes of the Floquet modes in (1.24) and (1.25) are determined by 
formulas
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containing integrals over the sources
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Note that since ap and bpq determine the grating lobe coordinates in the direc-
tion cosine space [Figure 1.2(b)] and simultaneously are the transverse propagation 
constants of the Floquet modes (1.24) and (1.25), each Floquet mode corresponds 
to one grating lobe of the array factor. At that, the propagating modes correspond 
to the lobe arranged in the visible space while the evanescent ones correspond to the 
lobes situated outside the latter.

1.2.2  Aperiodic Excitation

As indicated previously, the array element pattern corresponds to the case of supply-
ing the excitation signal to only one array input while all the other inputs are termi-
nated with matching loads. Let such an excited input be corresponding to the central 
cell with m = n = 0 [Figure 1.2(a)] and let a distribution of the electric and magnetic 
currents of density - -= -, ,

,,0; ,0 0, ;0,( ) ( )e m e m
m nm n m n ρJ r J r  be formed in the mnth cell as a 

result of the indicated excitation. The relation written earlier reflects the fact that the 
coefficients of mutual coupling between two elements in an infinite periodic array 
depend only on the differences of the indices prescribed to the elements.

Using the principle of superposition and coupling coefficients introduced earlier, 
we can express the relation of the latter to the current distributions (1.16) corre-
sponding to the quasi-periodic excitation. In particular, the current densities in the 
central cell can be represented as
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The expression (1.33) represents a double Fourier series whose coefficients are 
determined by
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The pair of expressions (1.33) and (1.34) determines the relation between the cur-
rents induced in an infinite periodic array at its quasi-periodic excitation and the cur-
rents corresponding to its aperiodic excitation. Using (1.8) and (1.22), we can rewrite 
(1.33) in the form
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which will be applied later.
The far zone electric and magnetic field strength components corresponding to 

the excitation of the central cell input can be determined by general formulas [5]
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where ,e m
¥A  are the vector potentials in the far zone. They correspond to the currents 

in all the cells and therefore are determined as
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where the last line is written after replacement of the integration variables ® +¢ ¢ mnx x x
® +¢ ¢ mnx x x , ® +¢ ¢ ny y y , and change for integration over the central cell only.

Using (1.35), let us rewrite (1.37) in the form
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where parameters u0 and v0 in (1.20) have been replaced by u and v, respectively.
The vector potential components in the spherical coordinates are determined 

via their Cartesian components as
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If we replace u0 and v0 in (1.10) by u and v, respectively, and account for (1.21), 
we can rewrite (1.39) as
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Determining the Cartesian components from (1.38) and substituting them in 
(1.40), we obtain
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where expressions (1.31) and (1.32) have also been taken into account. Finally, sub-
stituting (1.41) in (1.36), as well as accounting for (1.29) and (1.30), we obtain the 
following expressions
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where
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are components of the array element pattern.
Expressions (1.43) and (1.44) determine an important relation revealed earlier 

in another way [6] between the array radiation characteristics at the quasi-periodic  
and aperiodic excitations: the array element pattern components are proportional to 
the amplitudes of the TE and TM Floquet modes of zero order, multiplied by cosine 
of the angle between the array broadside and direction to the observation point.

Let now M ´ N elements in an infinite array be excited with identical ampli-
tudes and progressive phases corresponding to scan the main beam to angles q0 and 
j0. Then the flux density of the power radiated in the beam direction, where contribu-
tions from all the excited elements add in phase, will be equal to
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where er0 is the unit vector of the beam direction (1.6), and F(q0, j0) is the vec-
tor element pattern with components (1.43) and (1.44) corresponding to input 
power Pin supplied to each excited element. Then dividing (1.45) by the flux density 
MNPin/4pr2 corresponding to a uniform distribution of the total input power over 
a sphere of radius r, we obtain the following formula for the gain of the array frag-
ment in question:

 =θ ϕ θ ϕ0 0 0 0( , ) ( , )G MNg  (1.46)

where
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is the factor representing the array element gain.
The expressions (1.46) and (1.47) demonstrate that the dependence of the array 

gain on the scan angles exactly repeats the dependence of the array element pattern 
on the angles of observation. This property once more underlines the importance of 
the array element pattern concept in the array antenna theory.

1.3  Ideal Element Pattern

1.3.1  The Highest Level

In practice, it is always desirable to radiate the power supplied to the array inputs 
without any losses in the direction of the main array beam scanning in a specified 
region. In this case, the array gain achieves its maximum level, and the element pat-
tern corresponding to such a situation is considered the ideal element pattern [1, 
6, 7]. To determine the level and angular dependence of the ideal element pattern 
in an infinite array, let us consider a quasi-periodic excitation at which each array 
element is fed with power Pin and the radiated field is determined by superpositions 
of the Floquet modes (1.24) and (1.25). The power that the array radiates in the 
perpendicular direction through a plane surface parallel to the array aperture plane 
per one array cell is determined by integration of the flux density ´ ×*Re[ ] /2zE H e  
over a rectangle of dimensions ´x yd d . Since the input power is to be radiated 
without losses (i.e., completely), the result of integration must be equal to Pin. 
Moreover, since all the radiated power is to be going in the main lobe correspond-
ing to the Floquet modes of the zero order in (1.24) and (1.25), then, substituting 
(1.24) and (1.25) in the expression for the flux density and integrating it with ac-
count for orthogonality relations (1.28) and the fact that 00( sin ) coskb kΓ θ θ= , we 
obtain
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Using now (1.48), (1.44), and (1.45), we finally obtain the following expression 
for the ideal power array element pattern:
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Thus, the level of the ideal power element pattern is determined by the prod-
uct of the power supplied to the element input, the array cell area in squared 
wavelengths, and the cosine of the observation angle measured from the  
broadside.

The ideal vector (amplitude) element pattern is determined from (1.49) as
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where p(q, j) is a factor characterizing the polarization of the radiated field—for 
instance,

 θ ϕθ ϕ ϕ ϕ= +( , ) sin cosp e e  (1.51)

for vertical polarization,

 = -θ ϕθ ϕ ϕ ϕ( , ) cos sinp e e  (1.52)

for horizontal polarization, and
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for circular polarization of that or another rotation, while eq and ej are unit vectors 
of the corresponding spherical coordinates.

Note that the highest possible level of the power and amplitude element pat-
terns determined by (1.49) and (1.50) corresponds to the far field components writ-
ten in the form (1.42). Therefore, appearance of any factors in the expression for 
the far field should be appropriately accounted for in the expressions for the ideal 
element patterns.

Substitution of (1.50) in (1.47) yields the well-known expression for the ideal 
array element gain [7]
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The expression (1.54) allows for a simple interpretation [7] resulting from the 
expression 4pA/l2 for the gain of a planar uniformly excited aperture of large area 
A. Since the array gain equals to the product of the element gain by the number of 
the elements (1.46), the element gain is derived from the gain of the array aperture 
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with replacement of area A by the area of the cell allotted to one array input, and 
the multiplication by cosq corresponds to projecting of the cell area onto the plane 
perpendicular to the observation point direction. This simple reasoning was put 
in the basis of the work [7], while (1.54) here is the result of a rigorous derivation 
published initially in [8, 9].

1.3.2  Contours of the Ideal Element Pattern

At sufficiently small interelement spacings (e.g., at λ= < /2x yd d  in a square lattice 
or at λ< / 3xd  in a hexagonal lattice), the secondary grating lobes of the array 
factor (1.9) cannot appear in the visible space at any position of the main lobe in 
that space. Therefore, the expressions for the ideal power and amplitude element 
patterns (1.49) and (1.50) corresponding to radiation of the whole input power in 
the main lobe are valid for any angles in the visible space. If, on the contrary, the 
element spacings are sufficiently large (e.g., λ= > / 2x yd d  in the square lattice or 

λ> 2 /3xd  in the hexagonal lattice), at least one secondary grating lobe can enter the 
visible space when steering the main lobe to some positions. Such a situation con-
sidered in [10, 11] in the context of the ideal element pattern is typical for practice 
since the beam scanning in planar arrays is required as a rule only in some part of 
the visible space rather than in the whole space, and the array designers try to meet 
that requirement at maximum admissible element spacings. In this case, the radia-
tion of the whole input power in the main lobe can be provided if the array element 
pattern suppresses the grating lobes appearing in the visible space when scanning 
the main lobe. In other words, the ideal element pattern must be equal to zero in the 
region of the grating lobe movement and have the highest level (1.49) or (1.50) in 
the region of the main lobe scanning. At the same time, the scan region of the main 
lobe must be as wide as possible.

Thus, together with the highest level (1.49) or (1.50), the definition of the ideal 
array element pattern includes the concept of the maximum single-beam scan re-
gion, which we denote as W. The area of the region W under the condition that it is 
completely arranged inside the unit circle in the direction cosine space is evidently 
equal to λW = 2 /( )x yS d d  because just that area is allotted to each grating lobe, as 
shown in Figure 1.2(b). Therefore, the simplest maximum scan region W and corre-
spondingly ideal contour element pattern is the gray rectangle in Figure 1.2(b). Each 
position of the beam in this rectangle is determined by a single pair of control phase 
values lying in an interval of 2p. However, the contour shape satisfying the require-
ments of the area and one-to-one correspondence between the control phases and 
beam position may vary. Some examples of possible ideal element pattern contours 
for rectangular lattices are given in Figure 1.3. The scan region shown in Figure 
1.3(a) consists of two adjacent parallelograms with base l /dx and height l /(2dy). 
The contour shown in Figure 1.3(b) is formed by two shifted 120° arcs of radius 
λ 3 /(2 )yd  and two straight horizontal segments of length l /dx. Apart from the 
singly connected contours like those just considered, the ideal scan region can be a 
multiply connected one and the ideal contour element patterns can correspondingly 
be multibeam pattern. For instance, the contour presented in Figure 1.3(c) consists 
of two rectangles of width l /(2dx) and height l /dy arranged with a gap of l /dx. In 
this case, the beam scanning in one subregion corresponds to negative phase differ-
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ence between the adjacent array columns, while the scanning in another subregion is 
performed with positive phase difference. The scan region in Figure 1.3(d) consists 
of four isosceles triangles with bases equal to l /dx for the upper and lower triangles 
and l /dy for the left-hand and right-hand ones. All their lateral sides are identical 
and equal to λ - -+2 2 / 2x yd d . Note that the areas of subregions in a multiply con-
nected scan region may, in principle, be nonidentical. For instance, instead of the 
identical rectangles in Figure 1.3(c), one may have width D, 0 < D < l /dx, while the 
width of the other will then be l /dx - D, and the left side of the left-hand rectangle 
must be at the distance 2l /dx from the right side of the right-hand rectangle.

Some examples of the ideal contours for a hexagonal lattice are presented in 
Figure 1.4. They can be an ordinary equilateral hexagon of side 2l /(3dx) [Figure 
1.4(a)] and a parallelogram of width l /dx and lateral side length l /dy [Figure 1.4(b)]. 
The angle a in the parallelogram must obey only the condition that the parallelo-
gram is completely situated within the unit circle corresponding to the visible space. 
Two starlike multiply connected ideal contours are presented in Figure 1.4(c, d).  
One consists of six identical equilateral triangles with side length 2l /(3dx), while the 
other comprises six isosceles triangles with base length λ2 3 / xd  and lateral side 
length 2l /(3dx).

Although exotic, some of the contours considered here may be of practical in-
terest. For instance, using two hexagonal arrays with the element patterns shown in 
Figures 1.4(c, d), one can cover a biconical (annular in the direction cosine space) 
scan region as demonstrated in Figure 1.5(a) that is required in some modern appli-
cations of satellite communications and telecasting [12, 13]. The same region may 
also be covered by three arrays with the element patterns shown in Figure 1.3(b) 

Figure 1.3  (a–d) Contours of the ideal element pattern of array with rectangular lattice.
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by arranging these arrays in one plane at an angle of 120° to each other, as shown 
in Figure 1.5(b).

1.3.3  Element Gain on Ideal Contour

One of the properties of the ideal element pattern contour is that if the main lobe 
gets to the contour, at least one grating lobe must appear in another place on the 
contour. Such a situation can be seen in Figures 1.3 and 1.4. In these cases, the ra-
diated power is distributed among the main and secondary grating lobes, and the 
expression (1.54) for the element gain should be corrected. This can be done by 
multiplying (1.54) by correction factor ξ S= 0/P P  equal to the power concentrated in 
the main lobe divided by the total radiated power.

Let us first consider the simplest cases. Assume that one of the lobes arranged 
on the contour depicted in Figure 1.3(c) is the main one. Then we have x = 1/2 for 

Figure 1.4  (a–d) Contours of the ideal element pattern of array with hexagonal lattice.

Figure 1.5  (a, b) Application of the element patterns shown in Figure �.�(c, d), as well as in Figure 
�.�(a) for covering annular scan region.
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the symmetry. If the main lobe falls upon the ideal scan region boundary, as shown 
in Figure 1.4(c, d), then x = 1/6 also for the symmetry. If the main lobe scans from 
the center of the scan region in Figure 1.4(a) to the right-hand corner, then two 
grating lobes will occupy the left-hand upper and lower corners of the equilateral 
hexagon. A symmetric configuration of the three lobes will be formed in this case, 
and, therefore, x = 1/3.

In general case, as shown in Appendix 1A, the correction factor is determined 
by

 
= αξ

π2  
(1.55)

where a is the angle at which the scan region (or its part) is seen from the point 
of the main lobe position. Let us consider the contour shown in Figure 1.4(b). If 
the main lobe is arranged in the upper corner of the contour, the correction factor 
is determined by (1.55). If the main lobe is placed on the left side or in the right 
lower corner, then x = 1/2 or  x = (1 - a /p)/2, respectively. The value x = 1/2 is 
valid for beam arrangement not only on straight sections, but also on any smooth 
curvilinear sections of an ideal contour, such as, for instance, the contour shown 
in Figure 1.3(b). For the contour shown in Figure 1.3(a), ξ π= arctan( /2 ) /x yd d  
when the beam is placed in the left corner, and ξ π= -1 arctan( /2 ) /x yd d  when it 
is placed in the right corner point (in the coordinate system origin). If the beam 
is arranged in the upper or lower corners of the contour shown in Figure 1.3(d), 
then ξ π= arctan( / ) /y xd d , while the beam arrangement in the right or left corners 
gives ξ π= arctan( / ) /x yd d .

Note that the sum of the angles at which an ideal scan region is seen from the 
points of all the lobes situated on scan region contour is constant and equal to 2p. 
The factor (1.55) can be used not only when the main lobe is situated on the ideal 
contour but also when it is arranged inside the scan region since a = 2p in this case 
and hence x = 1.

1.3.4  Ideal Element Efficiency and Mutual Coupling

To reveal some other properties of the array element having the ideal radiation 
pattern (1.49), let us consider the array element efficiency he. This parameter was 
introduced in [7] and additionally studied in [14]. The ideal element efficiency 
can be calculated by formula (1.15) where power Pin

A should be replaced by power 
Pin supplied to the input of one element only. Furthermore, one should substitute 
the ideal element pattern (1.49) in the total radiated power (1.12) instead of 
PA(q,j) and perform the integration only over the ideal single-beam scan region 
W outside of which the pattern element pattern is equal to zero. Taking into ac-
count that the angular variables in the integral can be replaced by the direction 
cosines as
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as well as that θ = - -2 2cos 1 u v , we obtain
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(1.57)

Thus, the ideal element efficiency is determined by the ratio of maximum scan 
region area and the area of a periodic cell in the grating lobe lattice on the direction 
cosine plane.

In case of sufficiently large element spacings when the periodic cell is totally 
situated inside the unit circle representing the visible space, this cell itself is the 
maximum scan region W of area l2/(dxdy), and the ideal element efficiency (1.57) 
is equal to unity or 100%. As already noted, such a situation takes place at  

/ 2x yd d λ= ³  for a square lattice and at dx ³ 2l /3 for a hexagonal one.
In the opposite case (i.e., when the element spacings are small enough), the 

maximum single-beam scan region occupies the whole visible space. Its area equals 
the area of the unit circle SW = p, and the ideal element efficiency (1.57) takes the 
form [7, 14]
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(1.58)

valid at dx £ l /2 for a square lattice and at λ£ / 3xd  for a hexagonal lattice.
In the intermediate case, the periodic cell covers a part of the visible space and 

partially goes out of the boundary of the latter. The maximum scan region therefore 
represents a figure formed by interception of the cell with the unit circle as shown 
in grey in the insets of Figure 1.6. One of the examples here is the square lattice 
with square unit cell. Calculating the area of interception of the square with the unit 
circle SW and substituting it in (1.57), we obtain

Figure 1.6  Ideal array element efficiency versus element spacing in square and hexagonal lattices.
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for element spacing λ λ£ £/ 2 / 2xd .
Similar calculations for a hexagonal array with element spacing λ λ£ £/ 3 2 /3xd  

and when the periodic cell in the direction cosines space is taken in the form of 
equilateral hexagon give
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Variations of the ideal element efficiency with element spacing for the cases of 
the square and hexagonal arrays considered earlier are shown in Figure 1.6 by a 
solid curve and a curve with large dashes, respectively. As we see, the initial section 
of the curve corresponding to formula (1.58) for the hexagonal array goes below 
the curve for the square array. This takes place because of a denser arrangement of 
the elements in the hexagonal array compared to the square one at identical element 
spacing dx in the rows.

Note the ideal array element efficiency can depend not only on the type of 
the lattice as demonstrated and shown earlier in [14] but also on the shape of 
the scan region ideal for the specified lattice. For example, instead of the equilat-
eral hexagon, we take a rhomb of the same area and with smaller angle of 60°, 
as shown in Figure 1.6, and the 100% element efficiency is realized at dx ³ l  
(i.e., at the greater minimum value of spacing), while formula (1.58) is valid only 
for dx £ l /2 (i.e., for the smaller maximum value for spacing). The element ef-
ficiency for the intermediate values of the element spacing is determined in this  
case as
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and the curve calculated according to (1.61) is shown in Figure 1.6 with small 
dashes.

The concept of the element efficiency is closely associated with important 
phenomena, such as interaction or coupling between array elements. This inter-
action has a few components [7]. In particular, it can act as coupling between 
the array inputs (coupling in the backward direction) and as coupling between 
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the array inputs and the radiators in the array aperture (coupling in the forward 
direction). The 100% element efficiency corresponds to the complete absence of 
coupling between the inputs (i.e., the backward coupling coefficients are equal to 
zero). From this fact and formula (1.33), we can conclude that the amplitudes of 
reflected waves at the quasi-periodical excitation of an array with such ideal ele-
ments are also equal to zero, and this takes place at any values of control phases. 
The array in this case is called ideally matched [7] or unconditionally matched  
[6, 15].

As already noted, for sufficiently small element spacing, the periodic cell on the 
direction cosine plane completely or partially covers the unit circle corresponding to 
the visible space (the examples for the latter case are given in Figure 1.6). At quasi-
periodic excitation of an array with such ideal elements, the power supplied to the 
inputs is completely radiated in the main lobe while it is situated in the ideal scan 
region. Theoretical possibility of such an ideal match has been proven in [16]. How-
ever, there exist some values of the control phases at which the main lobe is steered 
in the sections of the periodic cell situated beyond the unit cell and, at the same 
time, the grating lobes are situated outside the ideal scan region. Since the main lobe 
is not present in the visible space and those grating lobes that have entered there are 
suppressed by the ideal element pattern, there is no power radiated in the visible 
space. That means that the power supplied to the array is totally reflected back to 
the feeding system. So, the reflections in the array of ideal elements are not absent 
for all values of the control phases, and for this reason such an array has been called 
conditionally matched in [6, 15]. Since the amplitudes of the reflected modes at the 
quasi-periodic excitation are not equal to zero in some range of the control phase 
values, the backward mutual coupling coefficients determined by formula similar 
to (1.34) are already not equal to zero, and as a result, the ideal element efficiency 
is below 100%.

1.3.5  On Realizability of the Ideal Contour Element Pattern

It is well known (e.g., [5]) that field distribution over an aperture and its radiation 
pattern relate to each other via Fourier transform. As described earlier, the ideal 
element pattern corresponding to the 100% element efficiency is a contour one 
(i.e., is a function of observation angles having a jump from nonzero values in the 
scan region W down to zero outside W). Nonzero values of the Fourier transform 
of such a function determining the amplitude of excitation are distributed over the 
whole infinite aperture. That means that each array input must be coupled with all 
the radiators in the aperture, and therefore the forward mutual coupling must be 
realized in the array in the absence of backward coupling. Excitation of all the array 
inputs results in forming of overlapped aperture distributions, and for this reason 
the array may be considered an antenna consisting of controlled elements in the 
form of overlapped subarrays.

The amplitude distribution over the subarray aperture corresponding to the 
ideal contour element pattern may vary considerably even within one array cell. 
For instance, the distribution π πsin( / )/( / )x d x d  corresponding to a sector pattern 
of width λ2arcsin(0.5 / )d , where d is the array cell dimension, changes the sign in 
the limits of each lateral cell. One of the possible approaches to forming similar 
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aperture distributions consists of making use of radiators of sufficiently small trans-
verse dimensions densely arranged in the array aperture. However, as described in 
the previous section, the radiators arranged in a dense lattice have low radiation 
efficiency because of the backward mutual coupling. For this reason, the question 
about the fundamental possibility of forming the ideal contour element pattern cor-
responding to the 100% element efficiency by means of a subarray of closely spaced 
low efficient radiators requires a special analysis. Such analysis reported earlier in 
[17, 18] is reproduced next.

Let us consider an infinite array whose inputs are arranged in the nodes of the 
skew lattice shown in Figure 1.2(a). Each array cell of dimensions dx ´ dy is filled in 
by radiators forming a dense lattice with spacing a = dx /M in the horizontal rows 
and distance b = dy /N between adjacent rows shifted at D = ds /M in the horizontal 
direction, where M and N are some positive integer numbers. The radiators are as-
sumed to be ideal (i.e., conditionally matched). The aperture geometry of such an 
array is shown in Figure 1.7(a).

Let the central array input be fed by a signal of power Pin, and this power is fur-
ther distributed without losses and reflections through a hypothetical beam-forming 
network over the subarray radiators as shown in Figure 1.7(b). All the other array 

Figure 1.7  Dense array geometry (a) in the aperture plane and (b) in the 0xz plane.
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inputs are assumed to be terminated with matching loads. We represent the power 
coming to the pqth radiator as a product P|Apq|2, where Apq is a dimensionless 
amplitude coefficient and P is a common factor having dimension of power and 
determined from the condition
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resulting from the energy conservation law. Then, noting that the radiators filling 
in the aperture with spacings a and b are ideal as assumed earlier, we can write the 
subarray radiation pattern in the form
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where the product of the first two factors represents the ideal radiator pattern (1.50) 
where all the mutual couplings are taken into account and
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is the subarray factor where = + D¢ /pqx pa q M and =¢qy qb are coordinates of the 
pqth radiator and (u, v) are direction cosines of the observation point.

The cosine behavior of the subarray pattern has already been accounted for in 
the first factor of (1.63). So, it is appropriate to determine the amplitude distribu-
tion over the subarray aperture as the Fourier transform of the function equal to 
unity inside the ideal scan region W and zero outside it (i.e., of the window function 
corresponding to the ideal contour element pattern). Choosing the samples of that 
transform in the points corresponding to the radiator coordinates, we write the 
amplitudes of the radiator excitation as

 W

¢ ¢ ¢ ¢+ ¢ ¢= òò ( )pq qik x u y v
pqA e du dv

 
(1.65)

Substituting (1.65) in (1.64) and taking into account the well-known properties 
of the delta function, in particular,
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we obtain
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(1.68)
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for (u, v) inside W and FAF(u,v) = 0 for (u, v) outside W. Note that being a pe-
riodic function, the subarray factor (1.64) has other regions in the (u, v) space 
where it is not equal to zero either. However, those regions for sufficiently small 
spacings a and b are situated beyond the visible space and therefore they give no  
contribution.

Let us now consider the condition (1.62). Taking the distribution (1.65) into 
account, we can write

 W W
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Using the properties (1.68) and (1.69) again, we will see that the integration 
over u and v gives the value (1.68) in the scan region W, and the integration over u¢ 
and u¢ gives just the ideal scan region area l2/(dxdy). Therefore,
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and we determine from (1.62) that
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Finally, substituting (1.68) and (1.70) in (1.63) and comparing the result to 
(1.50) we will see that θ ϕ θ ϕº id( , ) ( , )F F .

Thus, the ideal contour array element pattern corresponding to the 100% ele-
ment efficiency and absence of the backward mutual coupling can in principle be 
formed by an infinite subarray of closely spaced ideal radiators despite that each 
such radiator excited in the subarray individually has low efficiency corresponding 
to the presence of backward mutual coupling. The appropriate amplitude distribu-
tion over the subarray aperture is determined by Fourier transform (1.65) of the 
ideal contour element pattern divided by θcos  (i.e., of the corresponding window 
function). The reflected modes in this case are completely compensated for just as 
it takes place at a quasi-periodic array excitation, while the main lobe remains in 
the visible space.

1.3.6  Properties of Orthogonality

General formulas (1.42) determine the far field corresponding to excitation of the 
central array element by a signal of power Pin. If this power is supplied to the input of 
the mnth element forming the ideal radiation pattern, the far field can be written as

 

θ ϕ θ ϕ

θ ϕ θ ϕ
η

- +=

= ´

( )
id

0

( , , ) ( , )

1
( , , ) [ ( , , )]

mn n
ikr

mn ik x u y v

mn mn
r

e
r e

r

r r

E F

H e E
 

(1.71)



�� General Concepts and Relations

where the exponential factor accounts for the mnth element position, whose coor-
dinates xmn and yn are determined in (1.8). The product of the second and third fac-
tors in the upper line of (1.71) represents the ideal mnth element pattern id ( , )mn θ ϕF  
in the general coordinate system shown in Figures 1.2(a) or 1.7(a).

Let us consider the product of the far fields of the mnth and m¢n¢th elements in 
the form
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where the lower line obtained from the upper one using (1.71) is a scalar product 
of the ideal mnth and m¢n¢th element patterns ¢ ¢

id id,mn m nF F . The asterisk in (1.72) 
denotes complex conjugation. Replacing the angular coordinates in (1.72) by the 
direction cosines according to (1.56) and assuming that ideal element pattern is the 
contour one, we can rewrite (1.72) as
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The integral similar to that standing in (1.73) has been considered in [6, 
Chapter 7, Appendix 2] to prove the orthogonality of the transverse wave func-
tions (1.20), (1.26) and (1.27) of the Floquet modes. At m¢ = m and n¢ = n, this 
integral is just equal to the area SW = l2/(dxdy) that the ideal contour element 
pattern occupies on the direction cosines plane. If the inputs are different, the in-
tegral in (1.73) is equal to zero. This fact is easy to prove using the periodicity of 
the integrand along the rows and columns. If the ideal region W is not rectangular, 
the indicated periodicity allows us to transform it into a rectangle of dimensions 
(l /(dx) ́  (l /(dy) , and the equality of the integral to zero can be inspected directly. 
Thus,
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and therefore the ideal contour patterns of different array elements are or-
thogonal. At m¢ = m and n¢ = n, the expression (1.72) determines the total 
power that is radiated by the element and that, according to (1.74), is equal 
to the input power so that the element efficiency is equal to 100%, as noted in  
Section 1.3.4.

Let us now consider the aperture distributions corresponding to the ideal con-
tour element patterns. The array aperture is assumed to be densely filled in with 
radiators, as shown in Figure 1.7(a). Let fpq(x,y) be a distribution of the transverse 
vector field in the aperture Spq of the pqth radiator or in the cross section of the 
corresponding closed feed line if the radiators are not the aperture-type ones. The 
function fpq(x,y) is also assumed to be corresponding to the undisturbed incident 
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operating mode of unit amplitude and to be equal to zero outside Spq. Then the 
incident field distribution over the radiator apertures (or over the cross sections of 
the feeding lines) can be written as

 W
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where the integral over W determines the amplitude for the pqth radiator corre-
sponding to excitation of the mnth input. The indicated amplitude coincides with 
(1.65) at m = n = 0.

The scalar product of the distributions corresponding to excitation of the mnth 
and m¢n¢th inputs is
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Substitution of the appropriate expressions resulting from (1.75) in (1.76) yields
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is the value identical for all the radiators. Taking into account that = + D¢ /pqx pa q M 
and =¢qy qb as well as using the properties (1.66) and (1.67), we reduce (1.77) to
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where we see the same integral as that standing in (1.73), proving the orthogonality 
of the ideal contour element patterns.

Thus, the aperture distributions corresponding to the window functions 
of the ideal contour element patterns are also orthogonal. The orthogonality of 
the element patterns and appropriate aperture distributions is one more prop-
erty characterizing the absence of the mutual coupling between the array input  
ports.

A similar situation takes place in multibeam antennas, where the orthogonality 
of the beams corresponds to the absence of coupling between the input ports and 
therefore the absence of losses in beam-forming circuits [19–23]. Moreover, the rela-
tions between the ideal contour element patterns as well as between the appropriate 
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amplitude distributions over the array aperture allow us to develop a technique for 
determining dimensions and shape of a planar aperture providing formation of or-
thogonal beams arranged in a specified regular lattice. That technique was first pre-
sented in [24]. Its description in more detail is given in [25, 26] and Appendix 1B.

1.4  Element Pattern with Nonideal Contour

As described in Section 1.3.2, the ideal element pattern contour corresponding to 
the scan region occupying only an internal part of the visible space consists of a 
few pairs of shifted straight or curved lines and always has angular points. As a 
rule, these features are absent in the scan region contours specified in practice. The 
simplest example of that is a conical scan region having a circular contour. Such a 
scan region has been considered in [5] and [24] in connection with determining the 
minimum number of controlled elements necessary for providing beam scanning 
with a specified gain in a specified region. The element power pattern level in this 
case varies as cosq within the cone where only the main lobe is present. The pattern 
level outside the cone is zero providing complete suppression of the grating lobes. 
Let qm be the semiflare angle of the cone corresponding to the maximum scan angle. 
Such a circular scan region is shown in gray in Figure 1.8.

The array element directivity determined according to (1.11) and (1.12) is in 
this case [5]:
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Figure 1.8  Circular scan region and arrangement of grating lobes for a hexagonal array with maxi-
mum element spacing.
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If such a circular scan region is realized by an array with hexagonal lattice, the 
maximum element spacing in a horizon row at which the secondary grating lobes 
do not enter the circle is determined by
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Taking into account that the maximum spacing between adjacent rows in the 
hexagon lattice is =, max , max 3 /2y xd d , and using (1.54), we obtain the maximum 
element gain
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Since the element gain is equal to the element directivity multiplied by the ele-
ment efficiency he , then dividing (1.82) by (1.80), we obtain
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that amounts about 90.69%. Note, that the element efficiency (1.83) is exactly 
equal to the area of the circular scan region divided by the area of the maximum 
(ideal) scan region. The latter is also shown in Figure 1.8 in the form of an equilat-
eral hexagon surrounding the circular region.

If the conical element pattern is formed by an array with square lattice, the 
maximum element spacings providing the single-beam scanning in the region cov-
ered by the element pattern are λ θ= =,max ,max /(2sin )x y md d . The ideal scan region 
area in this case is equal to λ θ=2 2

,max( / ) 2sinx md . Dividing the circular region area 
π θ2sin m by the ideal scan region area, we obtain
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or about 78.54% (i.e., the efficiency of shaping the conical element pattern in the 
array with square lattice is still lower than that in the hexagonal array).

It is interesting to note that the highest achievable element efficiency (1.83) for 
array with hexagonal lattice and (1.84) for array with square lattice coincide with 
the maximum efficiency determined in [27] for a multibeam antenna with circular 
aperture and arrangement of the beams in the nodes of hexagonal and square lat-
tices, respectively.

The element efficiency reduction caused by nonideality of the element pattern 
contour in the array with maximum element gain can be explained as follows. Since 
the element gain is maximal, the nonideal contour must situate inside the ideal one. 
In this case, there exist some values of the control phases at which the main lobe falls 
into the gap between the two contours. An example of such a situation is presented 
in Figure 1.8, where the main lobe displacement from the central position to the 
gap between the nonideal circular contour and ideal hexagonal contour is shown 
by an arrow. Since both the main lobe and the secondary grating lobes are arranged 
in the region where the element pattern has zero level completely suppressing them, 
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the power supplied to the array is completely reflected from the array aperture 
back to the feeding system. This situation in some sense is similar to the regime of 
conditional match introduced in [6, 15] and mentioned in Section 1.3.4. The only 
difference is that the main and grating lobes there are arranged outside the visible 
space, while here they all are situated outside the region covered by the contour 
element pattern. In both cases, there exist some regions of the control phase values 
where the array reflection coefficient is not equal to zero when scanning. And since 
the coefficients of coupling between the array inputs are Fourier coefficients of the 
reflection coefficient [6, 7], similar to (1.34), the coupling coefficients are already 
not equal to zero, unlike those corresponding to the element pattern (1.50) having 
an ideal contour.

Thus, if the contour element pattern has the ultimate level (1.50) but its contour 
differs from an ideal one for a specified lattice, then such element patterns do not 
possess the property of orthogonality any more, and the element efficiency cannot 
in principle achieve the 100% level because of the presence of mutual coupling 
between the input ports.

However, note that if a contour radiation pattern is formed in an infinite 
array not as the element pattern corresponding to excitation of only one input 
port, the conclusion concerning the efficiency of such a shaping drawn earlier 
is not valid. If, for instance, the contour pattern is formed by an infinite ar-
ray of closely spaced radiators at independent excitation of all the inputs of the 
latter, then, as shown in [17, 28, 29] and in Appendix 1C, the array efficiency 
can achieve the theoretical maximum of 100% at any specified shape of the  
contour.

1.5  Minimum Number of Controlled Elements

As noted in the Introduction, array antennas having large aperture for providing 
high gain in a specified scan region may comprise thousands and even tens of thou-
sands of controlled elements. Since the control devices are the most complex and 
expensive components in an array antenna, minimization of their number has al-
ways been a problem of great importance. The first fundamental results of its solu-
tion were obtained in [1], where the minimum number of controlled elements in a 
linear array was determined by the scan sector width divided by the beam width. In 
the subsequent paper [30], the minimum number of controlled array elements was 
determined in the form

 W
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(1.85)

where W is a specified scan region, θ θ ϕW = sind d d , and D(q,j) is a specified func-
tion of directivity. The result similar to (1.85) was later reported in [31] (see also 
formula (8.80) in [21]). Some other expressions for the minimum number of con-
trolled elements can be found in [21, 32–34]. The reasoning used for derivation of 
the expression for the minimum number of controls is presented next.
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1.5.1  Formulation

Since the edge effect on the characteristics of a multi-element array antenna is weak, 
we can assume that the array element characteristics are identical. In this case, we 
can consider a large finite array as a fragment in an infinite array, as has been done 
in the end of Section 1.2.2. According to (1.46), the gain of such an array equals the 
element gain multiplied by the number of the array elements. If the array gain has 
been specified, it is clear that the minimum number of its elements is achieved at the 
highest achievable element gain [i.e., at the ideal element gain that is determined by 
formula (1.54)]. Taking into account the angular dependence of the ideal element 
gain (1.54), we can write the array gain as

 =θ ϕ θ0( , ) cosG G  (1.86)

where G0 is the array gain in the broadside direction, which is assumed to be speci-
fied. Since this gain is related with the aperture area A according to the well-known 
formula π λ= 2

0 4 /G A , then
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As described in Section 1.3.2, the area SW of the scan region W corresponding to 
the ideal element pattern and completely lying inside the visible space is related to 
the element spacings dx and dy by formula SW = l2/(dxdy). Assuming that the scan 
region area is specified, we can express the cell area allotted to one array element 
as

 W
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(1.88)

Dividing now the array aperture area (1.87) by the cell area (1.88), we obtain 
the minimum number of the elements
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expressed via the specified array gain in broadside and the specified area of the ideal 
scan region in the plane of direction cosines.

Note that formula (1.89) can be obtained directly from (1.85) if one substitutes 
the gain (1.86) in (1.85) instead of the directivity because the gain and directivity 
for the array with ideal contour element pattern are identical and therefore the in-
dicated substitution is valid. Note also that if formula (1.89) gives a number having 
a fractional part, one should throw off the latter and add unity.

Another approach to determining the minimum number of controlled elements 
is based on the concept of orthogonal beams filling the specified scan region [21]. If 
each array input port corresponds to one such a beam, as, for instance, takes place 
in an array utilizing a Butler matrix [5, 23, 35], then the scanning in the specified 
region by switching N beams requires N - 1 switches [21]. The minimum number 
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of the beams and therefore the number of the input ports in this case will be deter-
mined by formula

 
min

beam
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(1.90)

where Sbeam = DuDv is the area allotted to one node in the lattice of the ortho-
gonal beam arrangement in the direction cosine plane, with Du and Dv being the 
lattice periods shown in Figure 1B.1 in Appendix 1B. Using (1B.1), we obtain 

λ= D D = 2
beam /u vS A. Substituting this expression in (1.90) and taking into account 

(1.87), we again come to (1.89).
Thus, both approaches considered here give the same expression for the mini-

mum number of controlled elements. However, unlike the former one, the latter 
approach uses no suggestions on the contour shape bounding the specified scan 
region. If the scan region has a nonideal shape, like, for instance, a circle consid-
ered in Section 1.4, the minimum number in the first approach is determined by 
the area of an ideal scan region covering the specified nonideal scan region rather 
than the area of the specified region itself. This situation is illustrated in Figure 
1.8, where the circle represents the nonideal region while the hexagon embracing 
it corresponds to the ideal one. Since the area of the nonideal region is smaller 
than that of the ideal one, the second approach provides a smaller minimum 
number of controls compared to the minimum number obtained when using the 
first approach.

1.5.2  Element Use Factor

Antenna elements and matrices designed for forming orthogonal beams cannot be 
ideal in practical array antennas, and therefore the number of controlled elements 
in them always exceeds the theoretical minimum. One of the parameters charac-
terizing the indicated exceeding is the element use efficiency introduced in [36,  
p. 159] (see also [34, pp. 77–78]). It has been determined as the ratio of the min-
imum number of controlled elements and their actual number N (i.e., Nmin/N). 
There also exists the inverse parameter

 
=ζ

min

N
N  

(1.91)

which was introduced in [37] (see also [21], p. 447) and called the element use factor.
The exceeding of the element number above the theoretical minimum (1.89) 

when satisfying specifications on the array gain and scan region may be caused by 
the necessity of decreasing the element spacings or increasing the aperture area or 
both. The former case can be illustrated by the arrays where the element spacings 
are determined from the condition that the grating lobes do not appear in the vis-
ible space as the main lobe scans over a specified region. If the latter is a circle of  
radius sinqm considered in Section 1.4, the maximum spacing between adjacent 
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elements arranged in hexagonal lattice is determined by the well-known formula 
λ θ= +2 /[ 3(1 sin )]x md . Dividing the aperture area (1.87) by the cell area of  

2 3 /2xd , we obtain the number of elements θ π= + 03(1 sin ) /(8 )mN G . Substituting 
this number and minimum number (1.89) in (1.91) and taking into account that 

π θW = 2sin mS , we obtain [5, 38]

 

+= θ
π θ

2

2
min

3(1 sin )

2 sin
m

m

N
N  

(1.92)

The plot of the element use factor (1.92) versus maximum scan angle qm is 
presented in Figure 1.9. As we can see, the superfluity of the controlled elements in 
the arrays based on keeping the grating lobes outside of the visible space are very 
high for narrow scan regions, and the use of the elements shaping contour radiation 
patterns in such cases may be preferable.

The necessity of using the number of controlled elements exceeding the theo-
retical minimum (1.89) due to increasing the array aperture area may be illustrated 
by the example of the phased arrays consisting of uniformly excited nonoverlapped 
subarrays [5, 38]. Let the period of arrangement of such subarrays in a hexagonal 
lattice be maximum determined according (1.81) for a specified maximum scan 
angle qm. Let also the subarray aperture be an equilateral hexagon uniformly filled 
with closely spaced radiators. Then, the radiation pattern of such a subarray in the 
region of its main lobe and a few nearest sidelobes will be close to the radiation 
pattern of an appropriate continuous hexagonal aperture. The level of the indicated 
pattern in the main planes of the aperture is determined by formulas (1B.8) and 
(1B.9). Substitution of the hexagon side λ θ= =,max/ 3 /(3sin )x ma d  in (1B.7) gives 
the level in the horizontal plane θ π= 2(sin ) 6 /H

mF . The level of the pattern at the 

Figure 1.9  Element use factor versus maximum scan angle for a hexagonal array scanning without 
grating lobes in visible space.
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scan region edge in the vertical plane is practically the same. Assuming that the co-
sine behavior of the subarray gain is accounted for by the radiator pattern, we find 
that the array gain at the scan region edge turns out to be π »4/36 2.7 times lower 
than the ideal level. To compensate this reduction, one should increase the array 
aperture area by the same factor 2.7, and this corresponds to the same increase of 
the number of controlled elements compared to the theoretical minimum.

Note that the factor (1.92) as well as the array gain reduction when using the 
uniformly excited nonoverlapping subarrays presented earlier corresponds to the ideal 
match of the elements to free space. If there are mismatch losses, the exceeding of the el-
ement number will be even higher. The number of elements may be increased compared 
to the theoretical minimum for some other reasons as well (e.g., because of the tapered 
amplitude distributions required for reduction of the level of sidelobe radiation).

1.6   Two-Dimensional Problems for One-Dimensional Periodic 
Structures

1.6.1  Fields at Quasi-Periodic Excitation

As noted in Section 1.2, a doubly periodic structure is a convenient model for analy-
sis of real large multi-element planar phased arrays, since it allows one to reduce 
the problem to consideration of the electromagnetic fields within only one period. 
However, in spite of such simplification, the problem is still three dimensional and 
vector, and therefore its solution still requires large computational costs. One may 
consider such costs defensible for analysis of the arrays for which the principles of 
construction and basic design have already been determined. However, it is often 
useful to study novel approaches to array construction including novel methods of 
shaping sector and contour array element patterns by making use of an even simpler 
model. Such a model is a one-dimensional (1D) periodic structure, the geometry 
and excitation of which do not depend on one of the coordinates. The geometry 
of such a two-dimensional (2D) problem is sketched in Figure 1.10. The array is 
periodic with period (element spacing) b. Its geometry and functions representing 
excitation of the array inputs are assumed to be independent of y. Therefore, all 
the fields in the structure depend only on two Cartesian coordinates x and z or two 
cylindrical coordinates r and q related to the Cartesian ones by formulas x = rsinq 
and z = rcosq.

 

Figure 1.10  Geometry of two-dimensional problem for one-dimensional periodic structure.
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Analysis of this 1D periodic structure can be performed similarly to that de-
scribed in Section 1.2 for a 2D periodic structure. Consider first the quasi-periodic 
excitation at which the signal coming to the inputs have identical amplitudes and 
linearly progressing phases with increment Y. Let such an excitation result in form-
ing a distribution of electric and magnetic currents of density ( , )e x zj  and ( , )m x zj ,  
respectively, over finite region S = S0 corresponding to the central array cell with 
index n = 0, as shown in Figure 1.10. Then the current distributions in other cells 
will repeat the amplitude and phase relations of the excitation signals, and therefore 
we can write the following relation for the currents formed in region Sn

 
Y= -, ,( , ) ( , )e m e m in

n x z x nb z ej j  
(1.93)

where Î( , ) nx y S . Note that the currents , ( , )e m x zj  depend also on the controlling 
phase Y.

Vector potentials corresponding to the currents (1.93) are determined by formula

 
ρ ρ ρ ρ¢ ¢= ò (2), ,

P( ) ( ) ( , )e m e m

S

G dSA j
 

(1.94)

where x zx zρ = +e e , x zx zρ = +¢ ¢ ¢e e ,
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(1.95)

is the quasi-periodic Green’s function for the 1D periodic structure under consid-
eration, and (1)

0 (...)H  is the Hankel function of the first kind and zero order arising 
after integration of the corresponding three-dimensional scalar Green’s function 
(1.18) over y’ using formula 8.421.11 from [39]
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Using the spectral representation for the Hankel function (see, for instance, [3]),
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(1.97)

where γ α α= - = -2 2 2 2k i k , as well as the Poisson’s summation formula [4], 
we can rewrite the superposition of cylindrical waves (1.95) in the form of a super-
position of plane waves (Floquet modes)
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( ) | |
(2)
P ( , )

2

q qi x x i z z

qq

i e
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(1.98)

with transverse and longitudinal propagation constants
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It is well known that if the fields and sources do not depend on one of the Car-
tesian coordinates, the system of Maxwell’s equations contains two independent 
subsystems. In our case, when there is no dependence of y, one of the subsystems 
comprises field components Ey, Hx, Hz and current components je

y , j
m
x, jmz, while 

the components Hy, Ex, Ez of the fields and components jmy , j
e
x, jez, of the currents 

compose the other subsystem. Using expressions of the fields via vector potentials 
(1.23) and taking into account formulas (1.94) and (1.98), the fields over the 
structure (at z ³ z¢max) corresponding to the first subsystem may be expressed as 
follows:
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where
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(1.102)

The fields with components (1.100) and (1.101) represent TE modes of amplitudes 
(1.102) determined by the currents distributed in the array. Since the magnetic field 
strength components (1.101) are determined via the only electric field strength com-
ponent, the presented solution corresponds to the so-called case of E-polarization. The 
solution of the second subsystem corresponding to the case of H-polarization represents 
the TM mode fields
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above the structure, and
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(1.105)

are their amplitudes.
Note that the terms S-polarization an P-polarization are often used in the ap-

propriate literature instead of the terms E-polarization and H-polarization, respec-
tively, used in this book.

1.6.2  Excitation of One Array Input

Let ,
,0 ( , )e m

n x zJ  be distributions of the electric and magnetic current density formed 
in the nth cell (i.e., for Î( , ) nx z S ) as a result of excitation of the central cell input 
with the inputs of all the other cells being terminated with matching loads. Since 
the mutual coupling coefficients depend only on the difference of the indices pre-
scribed to the cells, we may write -= -, ,

,0 0,( , ) ( , )e m e m
n nx z x nb zJ J . The indicated distri-

butions may be used for representation of the current density distributions (1.93) 
corresponding to the quasi-periodic excitation. In particular, for the currents in 
the central cell, there will be valid the expression
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Using the asymptotic expression for the Hankel function as ρ = + ® ¥2 2k k x z
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we may represent the far zone vector potentials corresponding to excitation of the 
central array input as
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(1.108)

Replacing the variable ® +¢ ¢x x nb, changing for integration over the central 
region S, and accounting for (1.106), we rewrite (1.108) as
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Substituting (1.109) into (1.23) and keeping only the terms containing r-1/2, we 
represent the electric and magnetic field strengths in far zone in the form
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where
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is the nonnormalized array element pattern having the same dimension (volts) as 
that in (1.42) and (1.43). Comparing (1.111) to (1.102), we have
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that is, just as for the doubly periodic structures considered in Section 1.2, the ele-
ment pattern in a one-dimensional periodic structure is proportional to the ampli-
tude of the Floquet mode of zero order multiplied by cosine of the observation angle 
measured from the array broadside.

Excitation of one array input by an H-polarized signal can be considered in 
a similar way. As a result, the electric and magnetic field strengths in far zone are 
represented as follows:
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where
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(1.114)

is the nonnormalized array element pattern (also in volts) determined by the ampli-
tude of the zero-order Floquet mode resulting from (1.105).

1.6.3  Ideal Array Element Characteristics

Similarly to those in a doubly periodic array, the ideal element characteristics 
(pattern, gain, and efficiency) in one-dimensional periodic array correspond to 
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the case when the total power supplied to the array inputs at quasi-periodic ex-
citation is radiated only in the main lobe corresponding to one propagating Flo-
quet mode of zero order in expressions (1.100) and (1.103). Let inP  be power 
supplied to each array input per unit length along the y-axis. The power that 
the array radiates through a planar surface arranged parallel to the aperture 
per one period and unit length along y is determined by the corresponding in-
tegral of the flux density *Re[ ] /2´ × zE H e . Since the input power is completely 
radiated, the indicated integral must be equal to inP . Furthermore, since the 
power is radiated in the zero-order Floquet mode only, then, substituting (1.100) 
and (1.101) for the E-polarization as well as (1.103) and (1.104) for the H-
polarization in the expression for the flux density indicated earlier, we obtain  
relations
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Substituting the magnitudes of the Floquet mode complex amplitudes resulted 
from (1.115) and (1.116) in (1.112) and (1.114), respectively, and replacing Y by 
kb sinq, we obtain the expression for the ideal amplitude element pattern
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(1.117)

valid both for E- and for H-polarization.
If the array period b exceeds half the wavelength, the secondary grating lobes 

may appear in the visible space when scanning of the main beam. The highest 
possible element pattern level (1.117) in this case is achieved if the element pat-
tern is zero in the region of the grating lobes. Therefore, the ideal element pattern  
must have a sector shape, and its width in the sinq space is equal to l /b (i.e., to the 
distance between the adjacent grating lobes). An example of a symmetrical ideal 
sector element pattern normalized to the maximum of (1.117) is given in Figure 
1.11(a), where the gating lobe positions in the visible space are shown by vertical 
arrows. The ideal sector element pattern of width l /b may also be nonsymmetri-
cal with respect to the array broadside as shown in Figure 1.11(b). Just as for 
doubly periodic arrays, the ideal region (sector) of scan W of a one-dimensional 
periodic array may be multiply connected one. If, for instance, the scan sector is 
symmetrical and doubly connected, the corresponding ideal dual-sector element 
pattern is shown in Figure 1.12(a), where the width of each sector is equal to 
half the total ideal width of the scan region. Figure 1.12(b) gives an example of 
a nonsymmetrical dual-sector element pattern with sectors of different widths. If 
in this case the width of the left-hand sector is λ< D <0 /b, then the width of the 
right-hand sector will be λ - D/b . The outer boundaries of these sectors must be 
spaced at 2l /b apart.
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If the main lobe is arranged at one edge of the ideal scan region (or its part in 
case of a multiply connected region), then a grating lobe of the array factor will ap-
pear at another edge. The radiated power in this case is divided in two parts, and 
therefore the element pattern level (1.117) for the edge angles must be multiplied 
by 1/ 2.

At last, the ideal one-sector and multisector element patterns with level (1.117) 
and total width l /b at b ³ l /2 corresponding to excitation of different array inputs 
are orthogonal to each other. The way of proving this property is similar to that 
described in Section 1.3.6.

The reasoning concerning the determination of the amplitude distributions cor-
responding to the ideal element patterns is presented in Sections 1.3.5 and 1.3.6. 
Similarly to (1.65), the continuous amplitude distribution corresponding to the 
ideal sector pattern of the nth element in a one-dimensionally periodic array is 
determined by

 

-

W
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0( )n ik x nb uA x A e du

 
(1.118)

Figure 1.11  (a) Symmetrical and (b) nonsymmetrical normalized ideal sector element patterns.
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where u = sinq and A0 is some normalizing coefficient. For the pattern shown in 
Figure 11(b), the expression (1.118) is reduced to
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where u1 = sinq1 specifies the position of the sector pattern left-hand edge, while  
u2 = u1 + l /b. The normalized distributions (1.119) for the symmetrical sector pat-
tern, when u1 = - l /(2b), as shown Figure 1.11(a), corresponding to excitation of 
the central (n = 0) and adjacent inputs are shown in Figure 1.13. The distribution 
resulting from (1.118) for the symmetrical dual-sector element pattern presented in 
Figure 1.12(a) is determined by formula
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(1.120)

The normalized distributions (1.120) for the central and adjacent elements are 
depicted in Figure 1.14. As we see, these distributions are more complex than those 

Figure  1.12  (a) Symmetrical and (b) nonsymmetrical normalized ideal dual-sector element  
patterns.
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corresponding to the one-sector pattern and require four or more radiators in each 
array cell for their realization.

The orthogonality of the distributions (1.119) is well known. The orthogonality 
of (1.118) in a general case can be proven in the same way as in Section 1.3.6 for 
the case of dual-periodic arrays.

The array element gain in the two-dimensional case is determined by expression
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where the average flux density standing in the denominator is taken over a cylindri-
cal surface instead of a spherical one in the three-dimensional case. Substitution of 
the fields (1.110) or (1.113) in (1.121) gives
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that is, the element gain is determined by the element pattern. If (1.117) for the ideal 
element pattern is substituted in (1.122) instead of F1,2, we will obtain the ideal ar-
ray element gain in the two-dimensional case
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and if the ideal element pattern is a sector one, the ideal element gain is zero outside 
the sector of scanning.

Figure 1.13  Normalized amplitude distributions corresponding to shaping symmetrical single- 
sector patterns of the central and adjacent elements.

Figure 1.14  Normalized amplitude distributions corresponding to shaping symmetrical dual-sector 
patterns of the central and adjacent elements.
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The power radiated by the array element per unit length along y is determined 
by integrating the flux density
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Substitution of (1.110) or (1.113) in (1.124) and use of the ideal element pat-
tern (1.117) reduce (1.124) to
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If b > l /2, then the total width of the single beam scanning region W in the sinq 
units is equal to l /b so that (1.125) gives S = inP P . The width of W for b < l /2 is 
equal to 2, and then λS = in2 /P P b . These results and definition (1.15) allow us to 
calculate the ideal array element efficiency in the two-dimensional case by formula
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derived first in [14] (see also [40]).
The element efficiency lower than 100% at small element spacing corresponds 

to the presence of mutual coupling between the elements. Reduction of the element 
efficiency can also take place at large element spacing when the sector element pat-
tern width is smaller than the ideal width l /b in the units of sinq. The reasons of 
such reduction are discussed in Section 1.4.
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Appendix 1A  Array Element Gain on the Ideal Contour

To derive the expression (1.55) for the correcting factor to the element gain on the 
ideal contour (or to the array gain when the array beam is placed on the boundary 
of the ideal scan region), let us consider an infinite array with rectangular lattice and 
ideal contour element pattern occupying region W on the plane of direction cosines 
u and v. Assume that M ´ N elements forming a rectangular fragment of this array 
are excited with identical amplitudes and progressing phases corresponding to the 
beam position characterized by direction cosines (u0, v0). Then, the total radiated 
power per one element may be determined by formula
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is the power fragment pattern where the first factor is the ideal element pattern 
(1.49) normalized to its maximum, and the two other ones represent the finite array 
factor with = - 0( )/2xU kd u u  and = - 0( )/2yV kd v v .

Let us consider the limit of (1A.2) as M ® ¥ and N ® ¥. Taking into account 
that
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in (1A.1) and (1A.2), we obtain the following expression:
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and λ= +0 ( ) /n xu u p n d , λ= +0 ( ) /n yv v q n d  are direction cosines of the nth grating 
lobe (it may be the main lobe as well), with n being an ordinal number prescribed 
by the lobe characterized by pair of indices p, q = 0, ±1, …. Note that (1A.4) will 
also be valid for a triangular lattice if the grating lobe direction cosines un and vn 
account for the grating lobe arrangement in the corresponding triangular lattice.

To determine the value of integral (1A.4) when the main lobe and at least one 
secondary grating lobe are placed on the contour of the ideal element pattern, let us 
consider Figure 1A.1 as an example where the ideal scan region is depicted in the 
form of a parallelogram with angles a1 and α π α= -2 1 at the base. The positions 
of the three lobes are shown by the dots.

The contribution of the lobe arranged in the left-hand bottom corner to the 
radiated power (1A.3) is determined by integral I1 for which u1 = v1 = 0 in (1A.4). 
Using the spectral representation for the delta function
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and changing for polar coordinates (r,j) and (w,y) related to the Cartesian coordi-
nates by formulas x = r cos j, y = r sin j, u = w cosy, and v = wsiny, we may rewrite 
(1A.4) for n = 1 as
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where ψ= ( )w w  is the equation of contour fragment ABC in Figure 1A.1. Representing 
the exponential function by a Fourier series of argument ϕ ψ-  (see, for instance, [3,  
p. 45]) and calculating the integral over j, we reduce (1A.5) to the expression
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Figure 1A.1  Positions of the main and grating lobes on the contour of the ideal element pattern.
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where J0(x) is the Bessel function of the zero order. Since [42] =0 1( ) [ ( )]xJ x dx d xJ x , 
where J1(x) is the Bessel function of the first order, the integral over w in (1A.6) is 
equal to ρ ρ1( ) /wJ w . Since = -1 0( ) ( )J x dx dJ x , the subsequent integral over r is equal 
to J0(0) = 1. Performing further integration over y, we finally obtain α π=1 1/(2 )I . 
The contributions of the other lobes in the radiated power calculated in a similar 
way are equal to α π= /(2 )n nI  where n = 2 or 3. As already noted in Section 1.3.3, 
the sum of angles an is always equal to 2p, and therefore the relative contribution 
of each lobe arranged on the ideal contour in the radiated power is determined by 
formula (1.55).

Appendix 1B   On the Forming of Orthogonal Beams  
by a Planar Aperture

The concept of orthogonal beams is of importance in antenna theory. First of all, it is 
associated with designing multiple beam antennas for applications in communication 
and radar systems. Such antennas can also serve as a basis for designing the limited-scan 
phased arrays (see, for instance, Chapter 8 in [21]) mentioned in the Introduction, as 
well as antennas with contour zones of service [43, 44]. It is well known [19, 20, 22] 
that providing 100% efficiency of channels in a multiple beam antenna implies that its 
beams formed via a feedthrough network by the common antenna aperture must be 
orthogonal. Furthermore, the orthogonal beams are a convenient tool for synthesis of 
the antenna radiation pattern in the Woodward-Lawson method [45].

The issues of forming the orthogonal beams by linear antennas have been de-
scribed in detail in the literature, in particular, in [21, 23]. As for the planar ap-
ertures, the situation is not so clear except for the simplest case of the orthogonal 
beams arranged in a rectangular lattice in the direction cosine space [21]. A pos-
sibility of generalizing the two-dimensional sampling theorem to a skew lattice has 
been mentioned in [46]; however, no references to the realization of that possibility 
have been made there.

The technique described next allows the determination of the dimensions and 
shape of a planar aperture capable of forming orthogonal beams arranged in a 
general skew Cartesian periodic lattice with arbitrary angle between its rows and 
columns in the plane of direction cosines.

Let the antenna aperture be arranged in the plane z = 0 of a rectangular Carte-
sian coordinate system 0xyz, and let the beam directions be determined by coordi-
nates of nodes in skew Cartesian periodic lattice specified as shown in Figure 1B.1 
in the plane of direction cosines u = wcosj and v = wsinj, where w = sinq. The 
nodes are arranged in horizontal rows with spacing Du, while the rows are arranged 
with spacing Dv. The adjacent rows may be shifted with respect to each other along 
the axis u at a specified distance D. In particular, D = 0 corresponds to a rectangular 
lattice, while D = D /2u  corresponds to a triangular lattice, including an important 
special case of hexagonal lattice with D = D 3/2v u .

The first step of the technique is construction, in the plane z = 0, of a lattice re-
ciprocal with respect to the beam lattice. The reciprocal lattice geometry is shown in 
Figure 1B.2. The columns of the lattice nodes are arranged with spacing λ= D/x ud , 
where l is the operating wavelength. The spacing of nodes in a column is λ= D/y vd .  
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The adjacent columns are shifted with respect to each other along the y-axis at 
λ= D D D/( )s u vd  so that the angle between the columns and rows remains the same 

as that in the beam lattice. The properties of the original and reciprocal lattices are 
such that if some radiators were arranged in the reciprocal lattice and excited with 
identical amplitudes and phases, then the grating lobes of the array factor would 
just be arranged in the nodes of the original lattice in the direction cosine space.

The next step is determination of the aperture dimensions and shape. The aper-
ture area is determined as the area of the reciprocal lattice cell (Figure 1B.2) allotted 
to one node; that is,
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D D
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(1B.1)

Figure 1B.1  Skew periodic lattice of arrangement of beams.

Figure 1B.2  Reciprocal lattice in the aperture plane and example of periodic cells.
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The aperture shape may be rather arbitrary, and the aperture may even be a 
multiply connected region. However, the following condition must be met. The 
apertures of the chosen shape, when arranging them in the reciprocal lattice nodes, 
must cover the plane z = 0 with neither gaps nor overlapping. This requirement is 
illustrated by Figure 1B.2, where the chosen aperture of area A is shown in gray. 
Similarly to the ideal area of single-beam scanning considered in Section 1.3.2, 
the contour of such an aperture should consist of a few pairs of shifted straight or 
curved lines and should always have angular points.

Let us now prove that the beams formed by a uniformly excited and appropri-
ately phased aperture constructed according to the technique described earlier are 
orthogonal. The nonnormalized radiation pattern phased in the node with coordi-
nates = D + Dmn uu m n  and = Dn vv n  corresponding to the mnth beam is determined 
by formula
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where the square root of the cosine accounting for the gain reduction when deflect-
ing the beam from the broadside may be considered as a normalized ideal radiation 
pattern of an aperture element resulting from (1.50). Consider the integral
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determining the coefficient of coupling between the mnth and pqth beams. The 
asterisk in (1B.3) means complex conjugation while the radiation pattern Fpq(u,v) 
for the pqth beam is determined by (1B.2) by replacing the indices mn by pq and by 
using other variables of integration (e.g., x¢ and y ¢ instead of x and y). Replacing 
the angles q and j by direction cosines u and v, as well as accounting for (1.56), we 
may rewrite (1B.3) as
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For large apertures forming narrow beams and for the cases when such beams 
are arranged sufficiently far from the grazing direction, the finite limits of integra-
tion in (1B.4) may be replaced by the infinite ones. Then substitution of the expres-
sions for radiation patterns (1B.2) in (1B.4) and integration over u and v give the 
product of delta functions λ δ δ- -¢ ¢2 ( ) ( )x x y y . The subsequent integration over x¢ 
and y ¢ reduces (1B.4) to the expression

 

- + -= òòλ [ ( ) ( )]2
,

mn pq n qik x u u y v v
mn pq

A

C e dxdy
 

(1B.5)



�0 General Concepts and Relations

representing the coefficient of coupling between the amplitude-phase distributions 
corresponding to formation of the mnth and pqth beams. The integral in (1B.5) is 
similar to that in (1.73) for the scalar product of the ideal array element patterns. 
In the case under consideration, it is equal to the aperture area at m = p and n = q, 
and to zero otherwise; that is,
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This result proves the exact orthogonality of the amplitude distributions corre-
sponding to different beams. As for the beams themselves, they are orthogonal only 
asymptotically when the aperture dimensions tend to infinity.

Consider some illustrative examples. A square aperture can provide equal-width 
orthogonal beams arranged in a square lattice. The crossover level of two adjacent 
beams in the principal planes is, as is well known, equal to –3.92 dB with respect 
to the beam peak, while the crossover point of four adjacent beams (equally distant 
from their peaks) is placed at the level of –7.84 dB. To enhance the crossover level, 
one should arrange the beams in a hexagonal lattice. In this case, the crossover level 
of three adjacent beams in the point of their symmetry is approximately equal to 
–5.43 dB. However, as has been noted in [21], such beams from the square are not 
orthogonal any more. Therefore, when forming them, a part of the supplied power 
will inevitably be lost in the beam-forming network.

To form the orthogonal beams arranged in a hexagonal lattice, one may take 
a rectangular aperture with ratio of its sides =/ 3/2x yd d  obtained according to 
the technique presented earlier. The beams in this case have different widths in the 
principal planes and a conventional level of –13.46 dB for the first sidelobes. Be-
cause of the beam nonsymmetry, the beam crossover level is lower than that for the 
symmetrical beams. If it is required to form more symmetric beams, one can choose 

Figure 1B.3  Contour map of the radiation pattern formed by an equilateral hexagonal aperture.



Appendix �B  On the Forming of Orthogonal Beams by a Planar Aperture ��

an aperture in the form of an equilateral hexagon. The possibility of obtaining or-
thogonal beams arranged in a hexagonal lattice from a hexagonal aperture has been 
noted in [27; private communication with D. B. Rutledge]. The contour map of the 
radiation pattern (1B.2) phased in the broadside, normalized to its maximum, and 
divided by θcos , for such a hexagon aperture with its side length
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is presented in Figure 1B.3, where the contours of the zero level are specially shown. 
The central part of the beam is truncated at the level 0.2 for better visualization 
of the sidelobe structure. The plots of the radiation pattern magnitude (divided by 

θcos ) in decibels in the horizontal (u = w, v = 0) and vertical (u = 0, v = w) planes 
are calculated using the expressions
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where = 3/2V U  and π= = D/2 2 /(3 )uU kaw w  are shown in Figure 1B.4 by solid 
and dashed lines, respectively. As we see, the hexagonal aperture forms an almost 
symmetrical beam, and the first sidelobe level, unlike that of –13.46 dB for a rect-
angular aperture, is equal –16.64 dB in the horizontal plane and –19.02 dB in 
the vertical plane. The crossover level of a pair of adjacent beams obtained from 
(1B.8) at = D /2uw  is equal to π26/  or –4.32 dB, which is slightly lower than that 

Figure 1B.4  Radiation pattern in the principal planes of a hexagonal aperture.
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for a rectangular aperture. The crossover level in the center of symmetry of three 
adjacent beams, determined from (1B.9) at = D / 3uw , is –5.96 dB.

Finally, note that the circular aperture does not meet the requirements listed 
earlier for the periodic cell shape, and therefore it is impossible in principle to form 
orthogonal beams by such an aperture. This explains the results obtained earlier in 
[27, 47, 48] when calculating the Stein efficiency of the beams formed by a circular 
aperture and arranged in the square and hexagonal lattices.

Appendix 1C   On the Efficiency of a Dense Array Shaping a Contour 
Radiation Pattern

The problem of shaping contour radiation patterns is of great interest in the an-
tenna theory and technology fields, and not only from the viewpoint of creation of 
the limited-scan array antennas [21, 49], as mentioned in the Introduction. Anten-
nas with the contour beams are also used in communication systems [44, 50] and 
power-transmitting systems [51, 52]. Great attention to this problem has in recent 
years been paid in connection with research and development of large arrays for 
radiotelescopes of new generation [53]. One of the possible modifications of the ar-
ray element is a short-focus multibeam reflector antenna. This antenna is required 
to provide high aperture efficiency even for the beams steered at large angles from 
the broadside in a wide frequency band. The possibility of keeping high aperture 
efficiency of a reflector antenna when deflecting the beams at large angles from the 
broadside has been proved theoretically in [54] and confirmed by measured results 
in [55]. This possibility is based on making use of an array of radiators arranged 
in the focal zone (in particular, in the focal plane) of the reflector. The amplitude 
distribution over the focal plane array aperture is chosen so as to remove the aber-
rations and to shape a contour radiation pattern for minimization of the loss for 
spillover. The operation of the focal array in a wide frequency band can be provided 
by application of Vivaldi antennas [56] as radiating elements.

Extensive numerical and experimental studies of the focal plane arrays shaping 
the flat-topped radiation patterns have been described in [57–62]. According to 
the indicated papers, the feature of such arrays is that the array element spacings 
at lower operating frequencies become considerably smaller than half the wave-
length. The element efficiency in such dense arrays is very low, even for ideally matched 
elements, for which it is determined by formulas (1.58) and (1.126) in case of doubly 
periodic arrays and singly periodic arrays, respectively. The low radiation efficiency of 
the element in the dense arrays is explained by the presence of strong backward mutual 
coupling. The authors of [57–62] believe that the combination of the strong mutual 
coupling and strong nonuniformity of the amplitude distribution corresponding to 
shaping of the necessary contour radiation pattern results in fundamental limita-
tions in the radiation efficiency of the dense array as a whole.

To draw a general conclusion on the highest achievable level of the radiation 
efficiency of dense arrays shaping the contour radiation patterns, let us consider a 
model in the form of an infinite two-dimensionally periodic array. This model is 
convenient for two reasons. First, a contour pattern is formed at an amplitude dis-
tribution tapered to the array aperture edges. The edge effect in this case is weaker 
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than that in the case of a uniform distribution, and therefore the infinite array 
model will be more accurate. Second, as will be shown next, such a model allows 
us to obtain results in the explicit form that makes them more attractive for the 
subsequent analysis.

Let the radiators arranged in the infinite two-dimensionally periodic array with 
small spacings a and b along the axes x and y, respectively (Figure 1.7), be excited 
by the signals having nonidentical amplitudes Amn. Assuming that the radiators are 
fed through single-mode lines, we can determine the amplitude of the wave reflected 
from the pqth radiator input as
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is the coefficient of coupling between the pqth and mnth radiators determined by 
the reflection coefficient R(U,V) depending on controlling phases U and V in the 
array excited with uniform amplitude distribution [6, 7]. Let the amplitudes Amn of 
the array excitation be determined by formula (1.65), where the shape of the region 
W arranged inside the visible space is assumed to be arbitrary and the array lattice 
is assumed to be rectangular for simplicity. Then, substituting (1.65) and (1C.2) in 
(1C.1), using the properties (1.66) and (1.67), and integrating over U and V, we 
obtain
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Since + <2 2 1u v  for ÎW( , )u v , the controlling phase values U = kau and V = kbv 
correspond to the presence of the main lobe in the visible space. If the radiators in 
this case are ideally matched at the uniform amplitude distribution [6, 7, 16] (i.e., 
R(U, V) = 0), the expression (1C.3) gives zero amplitudes of the reflected waves that 
already corresponds to the 100% array efficiency.

In general case, if the radiators are not matched ideally at the uniform ampli-
tude distribution, the array efficiency at the nonuniform excitation can be calcu-
lated by [7, 63]:
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Evaluation of the sum standing in the denominator in (1C.4) has already been 
considered in Section 1.3.5 when deriving (1.70). Evaluation of the numerator of 
fraction in (1C.4) is carried our similarly. As a result, (1C.4) is reduced to
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It is well known that the mismatch efficiency of an infinite array with uniform 
amplitude and linear phase distributions is determined by the expression standing 
in square brackets in (1C.5). Therefore, the expression (1C.5) shows that the effi-
ciency of the same array but with the nonuniform excitation corresponding to shap-
ing the contour radiation pattern with an arbitrary contour shape is determined by 
averaging the mismatch efficiency of the uniformly excited scanning array over the 
scan region bounded by the pattern contour.

The results presented here allow us to conclude that if a dense array is well 
matched and therefore has high mismatch efficiency at the uniform amplitude and 
linear phase distribution corresponding to scanning in the region coinciding with 
the region covered by a sector or contour radiation pattern, then the array radia-
tion efficiency will remain high also at the nonuniform excitation corresponding to 
shaping the indicated sector or contour patterns. So, the strong mutual coupling in 
a dense array shaping a contour pattern brings nothing exclusive compared to the 
case of scanning array with uniform excitation.

The expressions (1C.3) and (1C.5) also allow us to draw a conclusion about 
the highest possible level of the array efficiency. As proved in [16], an infinite dense 
phased array antenna with uniform excitation can theoretically be ideally matched 
for all scan angles (i.e., the reflection coefficient will be equal to zero when scanning 
in the whole visible space). That means that a contour radiation pattern in such an 
array of ideally matched radiators can be shaped with 100% efficiency, and there-
fore the presence of the mutual coupling itself is not an obstacle for that.

Similar results for dense one-dimensionally periodic arrays shaping sector ra-
diation patterns have been obtained in [28, 29].
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c h a p t e r  2

Arrays with Beam-Forming Networks

2.1  Overview of Technical Solutions

The most general approach to forming overlapped subarrays with sector radiation 
patterns has been formulated in [1]. This approach applies passive multiport beam-
forming networks arranged between control devices (e.g., phase shifters) and radi-
ating elements as schematically shown in Figure 2.1. The controlled array inputs in 
this variant are arranged with spacing close to its maximum value corresponding 
to a specified scan sector and connected to the radiators via a network to form 
overlapped subarrays. Each array cell corresponding to one controlled input in this 
case can contain either a few single-mode radiators, as shown in Figure 2.1, or one 
multimode radiator, while the network itself forms amplitude distributions over the 
subarrays corresponding to the sector radiation patterns.

At present, there exist a lot of various technical solutions proposed in the frame-
work of the beam-forming network approach. The most demonstrative versions of 
them are briefly described next, and some other are mentioned in the references.

2.1.1  Arrays Based on Butler Matrices

An example of the network forming completely overlapped subarrays with aper-
ture dimension equal to that of the whole array aperture is the Shelton’s network 
[2] consisting of two cascaded Butler matrices, as shown in Figure 2.2. The lower 
matrix with controlled inputs has dimension M ́  M, where M is the number of con-
trols coinciding with the number of subarrays. All the M output ports of this matrix 
are connected to the M inputs of the upper matrix of dimension N ´ N, where N is 
the number of radiating elements exceeding M. All the other N - M inputs of the 
upper matrix are not used.

When the signal comes to one of the array inputs (solid arrow in Figure 2.2), it 
is distributed over outputs of the lower matrix with uniform amplitude and linear 

Figure 2.1  General block-diagram of array with a beam-forming network. 
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phase distributions. The arrival of the signal to one input of the upper matrix re-
sults in the formation of an array beam definitely arranged in the space with respect 
to the array broadside. The excitation of the M inputs in the upper matrix results  
in the formation of a fan of the beams filling in the specified sector, thereby shaping 
the required sector subarray radiation pattern. The amplitude distribution over the 
subarray aperture of sinx/x type is shown in Figure 2.2 by a solid line. Excitation 
of an adjacent array input (dashed arrow in Figure 2.2) results in the formation of 
a similar amplitude distribution over the aperture but shifted at one period, with 
which the subarrays are formed, as shown in Figure 2.2 by a dashed line.

Since each Butler matrix accomplishes the discrete Fourier transform of the in-
put signals, such networks are called dual-transform ones. The multi-element Butler 
matrices and similar matrices are very bulky, even for linear array antennas. For this 
reason, an alternative approach to the realization of the networks providing dual 
transformation of the input signals is the replacement of the upper matrix by a lens or 
a reflector illuminated via the free space by radiators connected to the output ports of 
the lower matrix. Design of such a hybrid antenna has been considered in [3]. Refer-
ences to other works where such an approach are applied can be found in [4].

2.1.2  Network of J. T. Nemit

One of the first simple approaches to reduction of the number of phase shifters in the 
arrays designed for scanning in a small sector is development and application of the 
network providing interpolation of the phase distributions over the array aperture  
[4–6]. As a demonstrative example, let us consider the network proposed by J. T. Ne-
mit in [6]. A linear array utilizing Nemit’s network is shown in Figure 2.3. The array 
comprises main radiators controlled directly by their phase shifters and intermediate 
radiators excited by the sum signals coming from the neighbor phase shifters via power 
dividers and hybrid devices. Each subarray with such a network overlaps one array 
period and a half. The network provides exact linear interpolation of the phase of the 
signal in the intermediate radiators. As shown in [7] for linear arrays and in [8] for 
planar arrays, an appropriate choice of the power divider parameters in the network  
allows suppression of the array factor grating lobes to a sufficiently low level when 

Figure 2.2  Network on the basis of two Butler matrices for forming totally overlapped subarrays.
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scanning the main lobe in the specified sector. This provides almost constant array 
directivity in the scan sector. However, the amplitudes of the signals in the intermedi-
ate radiators decrease with deflection of the main lobe from the broadside because a 
part of the power coming to the hybrid devices is dissipated in the loads connected 
to the difference ports of the hybrids. The loss of the power in the hybrids results in 
rapid reduction of the array gain with deflecting the main lobe from the broadside, 
and therefore the subarray radiation pattern does not have the sector shape.

A modification of Nemit’s network has been proposed in [9], where the signals 
from the different ports of the hybrids pass through p-manipulators introduced in 
the network and come to additional radiators. This solution improves the array 
performance at the expense of using additional controlled devices, though they are 
the simplest ones.

One more technical solution providing similar subarray overlap and therefore 
similar radiation characteristics has been proposed in [10] and considered in some 
detail in [11].

2.1.3  Network of R. J. Mailloux and P. R. Franchi

One of the successful technical solutions obtained in the area of arrays with beam-
forming networks is the array network proposed in [12]. This network, whose ca-
pabilities have been studied in [13, 14], is shown in Figure 2.4. The array consists of 
horn elements with dual-mode sections excited through power dividers and direc-
tional couplers. The subarray corresponding to one controlled array input consists 
here of three horns. Excitation of the subarray input results in excitation of the even 

Figure 2.3  Network of J. T. Nemit.

Figure 2.4  Network of R. J. Mailloux and P. R. Franchi: (1) horn radiators, (2) dual-mode sections, 
(3) directional couplers, and (4) power dividers.
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dominant mode in the central subarray horn, as well as of both even and odd modes 
in the two lateral subarray horns. The optimum amplitude relation of the even and 
odd modes is determined by the directional coupler parameters, while the optimum 
phase difference with which the two modes come to the horn aperture is provided 
by the appropriate horn length.

This relatively simple network provides suppression of grating lobes down to 
–15 dB when scanning the main lobe in the sector of width equal approximately 
to 0.8 of the width corresponding to the appropriate ideal sector element pattern. 
Since the subarray includes only three array cells, its capabilities of shaping the 
sector patterns of higher quality are limited. For this reason, additional means for 
stronger suppression of the grating lobes have been proposed in [15] in the form of 
spatial filters studied in [16, 17]. The spatial filters make the array more bulky. Ap-
plication of the network is also limited by the radiator type since the network has 
been developed only for waveguide-horn elements.

2.1.4  Network of R. F. Frazita, A. R. Lopez, and R. J. Giannini

One of the modifications of the technical solution proposed by R. F. Frazita, A. R.  
Lopez, and R. J. Giannini in [18] is shown Figure 2.5(a). The advantage of the 

Figure 2.5  (a) Network of R. F. Frazita, A. R. Lopez, and R. J. Giannini, and (b) its subarray 
factor magnitude for b = 2.25l.
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network is the simplicity with which the overlapped subarrays are realized with the 
apertures equal to the aperture of the array as a whole. In other words, the network 
allows forming completely overlapped subarrays. Due to that feature, very steep 
slopes of the sector subarray pattern can be provided. This, as the authors under-
line, is especially important for the aerodrome landing systems, where the radar 
beam must be driven very close to the Earth’s surface without any influence of the 
latter. However, the network has some limitations. It can be shown that its subarray 
factor is determined by formula
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where U = kbsinq, b is the array period (subarray spacing), q is the angle measured 
from the broadside, q is the coefficient of coupling between the cross ports in the 
directional couplers, and t = exp[(-a + ig )b] is the transmission coefficient between 
the adjacent cells over the transmission line having attenuation coefficient a and 
propagation constant g. The electric length of the line between adjacent cells must 
be such that g b = 2p n + p /2, where n is a natural number.

The shape of the normalized magnitude of the subarray factor (2.1) correspond-
ing to the condition indicated earlier at a = 0 and q = 0.75 is presented in Figure 
2.5(b) by solid curve. As we see, the subarray factor (2.1) has a dip near the ideal 
scan sector edge, and this feature reduces the useful sector width by about 20% 
with respect to its theoretical maximum.

Furthermore, since the subarray radiators are excited in series (like in frequency- 
scanning array antennas), the subarray pattern shape strongly depends on frequency 
[19], and larger array periods cause stronger dependence. An example character-
izing the subarray factor shape distortion due to changing the frequency is shown in 
Figure 2.5(b) by the dashed curve obtained for b = 2.25l, g = k, and 5% frequency 
shift.

To widen the operating frequency band of the arrays utilizing the networks [18], 
Wheeler [20] and Lopez [21] have proposed their solutions, shown in Figure 2.6(a, b), 
respectively. These networks, however, are more complex and bulky. According to 
the proposed solutions, the SU Author’s Certificates [22, 23] were offered.

2.1.5  Network of E. C. DuFort

One more approach to designing the networks for forming the overlapped subar-
rays has been proposed by E. C. DuFort in [24] and considered in more detail in 
[25]. In a general case, this approach allows the construction of subarrays with an 
arbitrary degree of overlapping and therefore possesses good capability on con-
trolling the quality of the sector subarray pattern shape. However, that capability 
is provided at the expense of using a large number of directional couplers and a 
rather complicated network configuration. The simplest of the proposed networks 
where, like in [12], each subarray comprises three array cells, is shown in Figure 
2.7(a). Each module corresponding to one phase shifter in this network contains a 
three-channel power divider using two directional couplers, a crossover providing  
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connection with adjacent modules, and three directional couplers connected to 
three radiators, with the central one being provided with a fixed phase shifter. The 
realization of such a network on the basis of microstrip technology has been con-
sidered in [25]. The subarray factor corresponding to optimum parameters of the 
network determined in [26] is shown in Figure 2.7(b). One more subarray network 
also comprising three array cells, but with four radiators within one cell, has re-
cently been proposed and studied in [27, 28].

2.2  Multicascaded Chessboard Network

An array network, which to a definite degree is free of the restrictions inherent to 
the technical solutions considered earlier, has been proposed in [29]. This array, 
shown in Figure 2.8, is a periodic modular structure with period a. Each module 
(or cell) comprises two radiators arranged with spacing a/2 apart. The type of the 
radiators that are assumed to be identical can be arbitrary. The radiators are excited 

Figure 2.6  Networks of (a) H. A. Wheeler and (b) A. R. Lopez.
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through symmetrical two-channel power dividers and, in general case, N ³ 1 cas-
cades of directional couplers. Each cascade contains one row of couplers arranged 
between the modules and one more row of couplers arranged in the modules them-
selves. The arrangement of the directional couplers resembles a chessboard, and 
for this reason, the network is called chessboard one for brevity. The lengths of the 
transmitting lines situated at the same level are assumed to be identical. Excitation 
of each array input results in forming amplitude distributions (subarrays) embrac-
ing 2N + 1 cells.

2.2.1  Analysis of the Radiation Characteristics

The analysis of the array radiation characteristics is carried out next in the assump-
tion that all the power dividers and directional couplers included in the chessboard 
network are ideal. The radiation pattern of the subarray corresponding to excita-
tion of the central array input can be written in the form

Figure 2.7  (a) Simplest networks of E. C. Dufort and (b) its subarray factor where U = kbsinq.
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where f(U) is the radiation pattern of the array radiator,
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is the subarray factor written to account for the symmetry of the network and am-
plitude distribution with respect to the excited input, U = kasinq, q is the observa-
tion angle measured from the aperture broadside, An is the complex amplitude of 
the signal at the input of the nth array radiator, and q = (q1, …, q2N) is the vector 
of the coefficients of coupling between the cross ports of the directional couplers 
numbered from the power dividers to the radiators.

In the simplest case of one cascade (when N = 1), the amplitudes of the signals 
in the subarray radiators are determined by formulas
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where Ai is the amplitude of the signal at the subarray input, while q1,2 are coef-
ficients of coupling between the cross ports in the directional couplers of the first 

and second rows, and 2
1,2 1,21p q= - .

 

Figure 2.8  Multicascaded chessboard network.
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For the case of N > 1, formulas for the amplitudes An become too bulky, and, 
for this reason, we will merely present the algorithm for their calculation. Let  
An

(m–1) be the amplitude of the signal at the nth output of the (m – 1)th cascade  
(Figure 2.8), with An

(m–1) = 0 for n ³ 2m. Then the amplitudes of the signals at the 
outputs of the (2m – 1) couplers will be determined by formulas
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and the amplitudes of the signals at the outputs of the 2mth couplers and therefore 
at the outputs of the mth cascade are
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So, supposing that (1)
0 / 2iA A=  and using the recurring relations (2.5) and 

(2.6), one can easily calculate the amplitudes An = An
(N) of the signals at the radiators 

to use them subsequently for calculating the subarray factor (2.3).
To reveal some properties of the subarray factor that will be taken into ac-

count when formulating the problem of synthesis, let us derive one more repre-
sentation for it. Let us consider the quasi-periodic excitation at which the signals 
come to the array inputs with complex amplitudes Aiexp(imY), where m = 0, 
±1, … is the number of the input and Y is the phase difference for the signals 
at adjacent inputs. The array factor corresponding to the indicated excitation is 
determined by 
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where Al and Ar are complex amplitudes of the signals at the left and right radia-
tors, respectively, in the central cell of number 0, and d(x) is the delta function.

Since the subarray factor relates to the factor of the infinite periodic array in the 
same manner as the currents in the central cell at the aperiodic excitation relate by 
formula (1.33) to the currents in the same cell corresponding to the quasi-periodic 
excitation, then
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Substituting (2.7) in this formula, we obtain
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Using (2.8) and taking into account relations
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resulting from the energy conservation law as well as from the array periodicity and 
symmetry, we can obtain that
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The relation (2.9) shows that the radiated power from each point of the region 
p < |U| < 2p will change for the corresponding point of the region 0 < |U| < p and 
back with changing the parameters of the directional couplers so that the total radi-
ated power in the indicated regions will remain constant.

2.2.2  Statement and Solution of the Synthesis Problem

The properties of the subarray factor revealed earlier allow us to set the problem 
of synthesis of the sector subarray radiation patterns as a problem of searching for 
such values of the coupler parameters qn, at which the objective function
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achieves its maximum value.
Solution of the previous problem set will automatically provide minimization 

of the power radiated in the region p < |U| < 2p. Substituting (2.3) in (2.10) and ac-
complishing a simple operation, we obtain the following expression for calculation 
of the objective function
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where Xn and Yn are respectively real and imaginary parts of the complex ampli-
tudes An calculated according to the algorithm given earlier including formulas 
(2.5) and (2.6).

The results of maximization of function (2.11) for N = 1, 2, 3, and 4 obtained at 
1/ 2iA =  using the method of deformable polyhedron [30] are presented in Table 

2.1, while the plots of the subarray factor magnitude corresponding to the optimum 
values for the coupler parameters qn are shown in Figure 2.9(a). For convenience of 
their distinction, the curves are successively shifted downward with step 0.2. The 
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values of qn indicated in the table provide radiation of 92.1%, 95.0%, 96.3%, and 
97.1% of power in the ideal sector for the indicated numbers of the cascades, respec-
tively. The sidelobe level of the subarray factor does not exceed –15.4 dB, –17.1 dB, 
–18.8 dB, and –19.8 dB, respectively. As noted in [29], the sidelobe level at another 
statement of the synthesis problem can be made even lower at the expense of slight 

Table 2.1  Values of the Directional Coupler Parameters Providing Maximum of Objective  
Function (2.10) for N = 1, 2, 3, and 4

N P q1 q2 q3 q4 q5 q6 q7 q8
1 0.921 0.438 0.740 — — — — — —
2 0.950 0.455 0.971 0.714 0.631 — — — —
3 0.963 0.440 0.989 0.789 0.952 0.767 0.569 — —
4 0.971 0.428 0.994 0.802 0.982 0.872 0.942 0.783 0.531

Figure 2.9  (a) Subarray factor for optimized 1-, 2-, 3-, and 4-cascaded chessboard network and  
(b) single-cascaded subarray pattern (2.2) with f (U) = 4sin(U/4)/U for a = 4l.
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worsening of the sector beam shape. Such an option has been realized in [31] for 
N = 1 and 3, as well as in [32] for N = 2 and 4. Furthermore, the sidelobe level is 
additionally reduced because of the slope of the radiator pattern itself.

Note that the subarray factor (2.3) is a periodic function of sinq with period 2l/a. 
Therefore, the secondary sector lobes can be present in the visible space together 
with the main sector beam at sufficiently large values of the array period a. How-
ever, the secondary lobes are suppressed to some degree by the radiation pattern  
f(U) of the array radiator. An example of this is shown in Figure 2.9(b), where 
the subarray pattern (2.2) corresponding to optimum parameters qn for N = 1 and  
f(U) = 4sin(U/4)/U, which corresponds to a uniformly excited aperture of width 2l. 
Even more efficient suppression of the secondary sector lobes can be provided by 
means of repeated application of the chessboard network but with period equal to 
half the initial one. Such a doubled single-cascaded chessboard network is shown in 
Figure 2.10. The secondary sector lobes nearest to the main beam in this case are sit-
uated just in the low sidelobe region of the upper level subarray radiation pattern.

As it was mentioned in [33], the chessboard network was realized using the 
microstrip elements for scanning in a limited sector in one plane. This technology 
seems to be most convenient for realization of the network for limited scan in both 
principal planes. An example of such array architecture is shown in Figure 2.11.

The results of the chessboard network parameter optimization demonstrate 
good capabilities of the chessboard network for shaping sector subarray radia-
tion patterns. Comparing this network to the other technical solutions described 
earlier, we can note the following features. Application of N coupler cascades in 
the chessboard network allows the formation of overlapped subarrays, including 
2N + 1 array cells. The single-cascaded chessboard network resembles the network 
[12] shown in Figure 2.4. However, it possesses greater capabilities than [12] does 
because it allows using radiators of arbitrary type, not only the horns used in [12]. 
Furthermore, it is more capable than [12] of improving the quality of the sector pat-
terns, since it allows the use of a greater number of cascades for forming subarrays 
of larger aperture, thereby with steeper slopes of the sector patterns.

Unlike the network [18] [Figure 2.5(a)] with excitation of the array radiators in 
series, the subarray radiators in the chessboard network are fed in parallel, which 
makes it more wideband than the network [18]. The subarrays formed in the net-
works [20, 21] involve radiators of five modules. This is done with using eight di-
rectional couplers and one divider per one module in the former network and eight 
couplers per one module in the latter one. The subarrays involving radiators of five 

Figure 2.10  A doubled single-cascaded chessboard network.
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modules in the chessboard network are formed using two cascades of directional 
couplers. Such a dual-cascaded chessboard network has been separately proposed 
in [34]. The network uses four couplers and one divider per one module (i.e., it is 
considerably simpler than the networks shown in Figure 2.6). Moreover, all the 
subarray radiators are excited in the chessboard network, while only 6 radiators of 
10 are excited in the networks [20, 21].

All other things being equal, the chessboard network is also simpler than the 
network proposed in [24]. For instance, the simplest modification of the latter con-
tains one three-channel divider, one crossover, and three couplers per one array 
module. The single-cascaded chessboard network uses only two couplers and a 
simpler power divider per one module. In the general case of forming overlapped 
subarrays involving radiators of 2N + 1 modules, the chessboard network uses N + 1/2 
times less directional couplers than those used in the modules of network [24].

2.3  Experimental Study of the Chessboard Network

The single-cascaded chessboard network has been realized in an experimental 
breadboard of a Ka-band array of rectangular waveguides arranged in the nodes of 
a rectangular lattice, as shown in Figure 2.12(a). The array has been designed (see 
[35, 36]) for providing wide-angle scanning in the E-plane, where the waveguide 
width can be chosen to be sufficiently small, and for scanning in a limited sector of 
±17° in the H-plane using the single-cascaded chessboard network.

The directional couplers in the breadboard are performed in the form of dou-
bled slots, as shown in Figure 2.12(b). The widths of the slots and spacing between 
them have been chosen as a result of a numerical experiment to provide the neces-
sary values for the cross coupling coefficients in the directional couplers at their 
almost ideal match at a specified frequency. The slots in the waveguide walls are 
also used for matching the power dividers as well as the waveguide array aperture 
to free space. Determination of the geometrical parameters for structure elements 

Figure 2.11  Architecture of an array with single-cascaded chessboard network for limited-scan in 
both principal planes.
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has been performed with using the method of mode-matching at the boundaries of 
the partial regions [37]. Since the dividers and couplers have been assumed to be 
separately well matched, the distances between them are chosen from the condition 
of providing their negligible interaction over evanescent higher-order modes.

The design of the array shown in Figure 2.12(a) is an assemblage of H-plane 
corrugated plates made of brass by the method of milling. The geometry corre-
sponding to the chessboard network shown in Figure 2.12(b) has been realized only 
in the central plate. All the other plates serving for imitation of operating the ex-
cited elements in the array surrounding only have slots matching the array aperture 
to free space. The corrugated plates of 1-mm thickness with fins of 0.4-mm thick-
ness forming an aggregate of waveguide channels of cross-section 6.1 ´ 3.4 mm2  
are added with two outer steel plates. All the plates are tightened by six screws 
arranged at the side edges. Each outer plate is provided with four screws used for 
pressing the assemblage in the central region and thereby for providing good con-
tacts between the adjoining surfaces of the inner plates. The central plate together 
with its cover is terminated at the rear side by a flange with five waveguide inputs 
of standard cross-section 7.2 ´ 3.4 mm2.

When measuring the radiation pattern, the array was installed on a rotating 
table so that the rotation axis passed in the array aperture plane to exclude the 
parallax. The signal from a generator also installed on the table came to one of the 

Figure 2.12  (a) The waveguide array breadboard and (b) cross-section of its central plate in the 
H-plane.
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Figure 2.13  Measured array radiation patterns in the H-plane at excitation of the central input at 
(a) 32 GHz, (b) central input at 31.5 and 32.5 GHz, and (c) left and right outer inputs at 32 GHz.
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array inputs. All the other inputs and all the waveguide channels formed in the lat-
eral corrugated plates were terminated with matching loads. The radiated field was 
received by a horn antenna arranged in the far zone of the array. The signal from 
the horn came to a receiver via an attenuator and further to a plotter. The angle of 
rotation was measured by the rotating table scale, while the received signal level 
was measured by the attenuator table.

The measured array radiation pattern at the frequency 32 GHz corresponding 
to the excitation of the central input is presented in Figure 2.13(a). The sinus of its 
half-width at the levels of –1.5 dB and –10 dB is equal to 0.326 and 0.46, respec-
tively, or 0.904 and 1.3 of the half-width l /(2a) corresponding to the ideal sector 
element pattern. The appropriate data 0.9 and 1.26 resulting from Figure 2.9(a) are 
close to the measured results indicated earlier.

Figure 2.13(b) represents the radiation patterns, corresponding to the central 
input, measured at the frequencies 31.5 and 32.5 GHz (i.e., at deviation of fre-
quency by ±1.56% from the central value of 32 GHz). The results show that the 
sector shape of the pattern is kept well in the indicated frequency band.

The study of how the array edges influence the subarray pattern shape was per-
formed by measurement of the array radiation pattern at successive excitation of 
the lateral array inputs. The pattern measurements corresponding to excitation of 
the left and right inputs nearest to the central one have shown that the patterns dif-
fer from the pattern corresponding to the central input [Figure 2.13(a)] very weakly. 
This is explained by the fact that the three-cell subarrays have not been truncated by 
the array edges. Though the edges are closer for them than for the central subarray, 
their influence on the subarray pattern shape is still weak due to the tapered subar-
ray amplitude distributions. The subarrays corresponding to the edge array inputs 
become nonsymmetrical and include only two cells each. As we can see from Figure 
2.13(c), this feature results in significant distortion of the pattern shape compared 
to the cases of excitation of the inner inputs.

Together with the radiation pattern, the measurements of the voltage stand-
ing wave ratio (VSWR) corresponding to excitation of different array inputs were 
performed. The measurements have shown that the VSWR varies in the limits from 
1.07 to 1.8 in the frequency band from 31.5 to 32.5 GHz. The measured values 
have turned out to be slightly higher than the calculated data. This seems to be ex-
plained by some inaccurateness in fabrication of the breadboard.

2.4   A Linear Array with Chessboard Network as a Feed  
of a Parabolic Cylindrical Antenna

Some radio systems, such as, for instance, aerodrome and sea port radars [38], as 
well as automotive radars [39, 40] require application of antennas performing elec-
trical scanning of narrow beam in a limited sector in one plane only. The indicated 
systems can be constructed on the basis of hybrid antennas, where the beam steer-
ing is provided by a linear or arc array, while the required narrow beam is formed 
by a reflector or a lens. One of the possible reflector types used in the hybrid anten-
nas is a focuser [41] capable of transforming a plane wave into a line of finite size. 
The indicated focal line serves as a place for arranging an array of feeds. However, 
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the studies of such antennas in [42, 43] have shown that they are considerably 
inferior to the parabolic cylindrical antennas of the same aperture dimension in 
scanning performance because of arising and increasing phase errors when deflect-
ing the beam from the broadside. A way of eliminating the indicated flaw has been 
proposed in [44]. This way uses a reflector-focuser of increased dimensions where 
a region of effective illumination corresponding to a definite beam position moves 
over the reflector to scan the beam.

The suggestion of using the focusers in [42–44] has been motivated by the fact 
that they allow a reduction of the size of the array feed and the number of radiating 
elements in the latter in comparison to those in the parabolic cylindrical antennas. 
Actually, the array dimension in the parabolic cylindrical antennas (e.g., described 
in [45–47]) is close to the dimension of the reflector itself, and the array element 
spacing is chosen to prevent arising of the array factor grating lobes in the visible 
space when scanning the main lobe in the specified sector. In [47], where the design 
of a cylindrical antenna for investigation of the space radio sources is described in 
detail, the array element spacing is d = 0.7l, while the maximum angle of beam 
deflection from the broadside is qm = 21.3°. The maximum admissible spacing for 
such a scan sector is dm = 0.5l /sinqm » 1.376l , and therefore the array element use 
factor in the antenna of [47] is  dm /d » 1.97. 

The example presented earlier together with other examples given in [42–44] 
justify the motivation of the indicated works on the creation of hybrid antennas 
with a compact feed array containing a smaller number of the elements compared 
to those in the arrays usually used for illumination of the parabolic cylindrical 
reflector. However, neither indicated works nor other publications mentioning the 
parabolic cylindrical antennas consider the situation when the ordinary feed array 
is replaced by an array with minimum number of elements shaping sector radia-
tion patterns of width equal to the width of the scan sector. Such an antenna is 
considered next from the viewpoint of its achievable radiation characteristics, since 
the parabolic cylinder has a simpler shape and smaller dimensions compared to a 
reflector of double curvature in [44] (i.e., the parabolic cylindrical antenna remains 
attractive from the viewpoint of its simple design).

2.4.1  Formulation of the Problem

Let us consider a parabolic cylindrical reflector antenna shown in Figure 2.14. The 
reflector surface in the Cartesian coordinate system 0xyz is given by formulas
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where Lx is the horizontal reflector dimension, f is the focal distance, and  
y1 £ y £ y2 is the angle measured from the negative hemi-axis z. The antenna  
aperture height is determined by
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The reflector is illuminated by a linear array arranged over the focal line coin-
ciding with the x-axis. Radiators of various types may be used as the array elements. 
Thus, for example, the reflector in [38] is illuminated from the slots cut through 
in the narrow wall of a meander waveguide of rectangular cross-section. Electric 
dipoles have been used in antenna [47]. In our model, we will assume that the array 
of element spacing d is formed by the open-ended rectangular waveguides of width 
a £ d/2 (along the x-axis) and height b. The array aperture broadside is directed at 
angle y0 from the negative semi-axis z.

 

Figure 2.14  Geometry of the parabolic cylindrical antenna: (a) side view and (b) view from the 
top.
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We will assume further that the waveguides are excited through a single- 
cascaded chessboard network shown in Figure 2.15. Excitation of one controlled 
array input by a signal of unit amplitude results in forming a subarray of six ra-
diators with a symmetrical distribution of amplitudes, which, instead of (2.4) for 
convenience of the further actions, we write as 
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where the optimum values of the coupler parameters q1 = 0.438 and q2 = 0.74 are 
taken from Table 2.1.

Let the array consist of M subarrays, and their inputs be excited by signals with 
amplitudes A im and phases (m - 1)U, where 1 £ m £ M, U = kdsinq0, k = 2p/l, and 
q0 is the angle of the beam deflection from the broadside. Then the distribution of 
the amplitudes over the waveguides, the total number of which is N = 2M + 4, will 
be determined by formulas
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where the amplitudes Ai
0 and Ai

M+1 at the inputs are assumed to be zero.
The electric field strength in the far zone of the antenna can be determined by 

the well-known formula (see, for instance, [45]):

Figure 2.15  Linear array with single-cascaded chessboard network.
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is the complex radiation pattern of the antenna as a whole,
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where Jn(r¢) is the surface density of the current induced on the reflector when excit-
ing the nth waveguide by the wave of unit amplitude,

 sin cos sin sin cosr x y zθ ϕ θ ϕ θ= + +e e e e  

is the unit vector directed to the observation point characterized by angles q and j 
measured from the axes z and x, respectively, r ¢ = exx ¢ + eyy ¢ + ezz ¢ is the vector of 
the integration point on the cylinder, y ¢ = rsiny, z ¢ = -rcosy, while r is determined 
by formula (2.12).

According to the physical optics approximation, the current density in (2.18) is 
determined by formula Jn = 2[n ´ Hn], where

 ( ) sin( / 2) cos( / 2)y zψ ψ= - +¢n r e e  

is the unit vector of the normal to the cylinder surface, and Hn(r ¢) is the magnetic 
field strength from the nth waveguide in the point on the cylinder surface. To cal-
culate this field, we will assume that the waveguide is excited in the H10 mode of 
horizontal polarization yielding the following aperture distribution
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where H0 is the unit strength of the magnetic field in the aperture center, 
21 ( / 2 )bγ λ= -� , while x¢n and y¢n are the axes of the rectangular Cartesian coordi-

nate system with the origin placed in the center of the waveguide aperture (Figure 
2.14). Note, that the maximum admissible period of an array designed for scanning 
in a small sector may be rather large (dm > 1.4l for qm £ 20°). As it will be indicated 
next, the vertical dimension of the waveguide aperture will also be large enough  
(b > l). Calculation of the field radiated from the open end of such a waveguide 
may be performed by the Huygens-Kirchhoff method with using the undistorted 
field (2.19) of the incident wave and neglecting the mutual coupling between the 
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waveguides [48]. As a result, we obtain the following expressions for the current 
density components on the cylinder:
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and xn is the coordinate of the nth waveguide aperture center.
To calculate the integral (2.18), we represent it in a more convenient form
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where
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and then we apply the Ludwig’s method [49].
After calculating the radiation pattern (2.17), we calculate the antenna gain
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is the total power delivered to the waveguide apertures.



76 Arrays with Beam-Forming Networks

2.4.2  Highest Possible Antenna Gain

It is often useful to compare calculated or measured results obtained when studying 
of that of another antenna to its highest achievable characteristics. To obtain such 
characteristics for our parabolic cylindrical antenna, let us consider its model in the 
form of an infinite linear array of period d illuminating an infinite parabolic cylin-
der in the horizontal plane. The aperture dimension of the cylinder in the vertical 
plane is Ly. Since the aperture area allotted to one array cell in such antenna is Lyd, 
the highest achievable array element gain when scanning will be equal to
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where angle q is measured from the normal to the aperture (the z-axis in Figure 
2.14). Accounting for the relation between the ideal sector element pattern width 
2qm with the array period d given earlier in the introduction to the present section, 
we can rewrite (2.23) as
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with the ideal element gain being equal to zero at |q | >qm.
It is of interest to compare the gain (2.24) to the results that can be obtained from 

consideration of a vertical uniformly excited linear radiator of length Ly. This radia-
tor has an axially symmetrical radiation pattern in the horizontal plane, and its gain is 
equal to 2Ly/l at Ly >> l [45]. If we now distribute the radiated power uniformly over 
a horizontal sector of width 2qm, the gain will increase by the factor 2p/(2qm) to be 
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Comparing (2.24) and (2.25), we can conclude that Ge,m ® Ge as qm ® 0, and 
moreover
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that is, the gain of the ideal element in the infinite parabolic cylindrical hybrid 
antenna (2.24) averaged over the scan sector equals the axially symmetrical linear 
antenna gain multiplied by p/qm.

The simple relations derived in this section will be used next. They may also be 
useful when estimating the quality of base station antennas with sector radiation 
patterns.

2.4.3  Results, Comparison, and Discussion

The algorithm described in Section 2.4.1 has been realized in a FORTRAN code, 
and the operation of the latter has been tested by calculation of the parabolic cylin-
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drical antenna considered in [47]. In particular, the tests have shown that the results 
obtained using the cells of integration of l ´ l dimensions in Ludwig’s method 
[49] do not differ practically from the results corresponding to the integration cell 
dimensions 0.5l ´ 0.5l. After the testing, a numerical study of the antenna under 
consideration has been performed. The results to be discussed next have been ob-
tained for the antenna with parameters y1 = 5°, y2 = 98°, and y0 = 65°, which are 
close to the similar antenna parameters in [47]. They also correspond to the recom-
mendations given in [45]. The focal length f = 27l has been chosen to provide the 
vertical aperture dimension Ly = 57.9l equal to the dimension of the focuser [44]. 
The vertical dimension of the waveguide aperture chosen to be b = 1.1l provides 
a –10 dB level of the illumination on the lower and upper edges of the aperture. 
The choice of the array period d has been based on the analysis of the subarray fac-
tor shape [Figure 2.9(a)] for the network shown in Figure 2.15. If it is required to 
provide a secondary grating lobe level not higher than –15 dB when scanning the 
main lobe in the specified sector -qm £ q £ qm, then d should be taken x » 1.4 times 
smaller than the maximum admissible period dm = 0.5l/sinqm. For qm = 10°, like 
in [44], we take d = 2.056l and neglect the waveguide wall thickness (i.e., assume 
that a = d/2).

Let us first consider the influence of the reflector on the radiation pattern of 
one subarray by specifying M = 1 and N = 6 in (2.15) and (2.16). The normal-
ized radiation patterns of the antenna with Lx = 100l in the horizontal plane at 
different horizontal displacement xf of the subarray from the coordinate system 
origin are presented in Figure 2.16. The antenna patterns are compared to the 
subarray pattern in the absence of the cylinder taken in the plane passing over 
the x-axis, coordinate origin, and normal to the subarray aperture. Comparing 
the pure subarray pattern (curve 4) to the antenna pattern when the subarray is 

Figure 2.16  Normalized radiation pattern in the scan plane of the reflector illuminated by a subar-
ray with d = 2.056l at different horizontal subarray displacement: (1) xf = 0; (2) xf = 43.3l; (3) xf = 
39.8l; and (4) subarray pattern without the reflector.
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arranged in the central position xf = 0 (curve 1), we can note that the visible dif-
ferences take place only in the region of the sidelobes nearest to the side edges of 
the cylinder observed from the subarray center at the angle »62°. The displace-
ment of the subarray from the center by xf = 43.3l to the right corresponds to 
illumination of the right edge at the angle »10° equal to the maximum antenna 
beam deflection. The illumination level in this case is equal to –1 dB. The subarray 
pattern (in the presence of the reflector) presented by curve 2 is characterized by 
significant distortions on the right side and appearance of oscillations on the flat 
top explained by the edge wave interference. The angle of illumination of the left 
reflector edge is now greater, and this has led to reduction of the distortions in this 
region compared to the previous case. At smaller subarray displacement xf = 39.8l 
corresponding to the illumination angle »15° of the right edge and the illumina-
tion level –5 dB at that edge, the distortions mainly consist in cutting of the right 
sidelobes (curve 3). Note, that the negative values of q in Figure 2.16 correspond 
to the case when j = 180°.

The results presented in [50] also show that the displacement of the subarray in 
the indicated limits does not lead to changing the antenna radiation pattern in the 
vertical plane.

Calculation of the antenna gain (2.22) in the aperture broadside direction for 
xf = 0, xf = 43.3l, and xf = 39.8l yields the values 31.04, 31.88, and 30.92 dB, 
respectively, while the highest possible element gain (2.23) equals 31.89 dB. When 
accounting for the loss caused by the illumination nonuniformity in the vertical 
plane, which we estimate to be »0.35 dB, approximately the same loss for spillover 
[49, 51], and the anomalous edge effect for the second case, the presented results 
agree well with the highest element gain (2.23). The remaining minor differences 
may be attributed to the effect of scattering at the reflector edges that is not taken 
into account in the present analysis.

Figure 2.17  Normalized radiation pattern in the scan plane of the reflector illuminated by a subar-
ray with d = 1.044l at different horizontal subarray displacement: (1) xf = 0; (2) xf = 36.2l; (3) xf = 
28.1l; and (4) subarray pattern without the reflector.
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Figure 2.17 represents the subarray patterns in the plane of scan at d = 1.044l 
chosen according to the reasoning given earlier for the scan sector -20° £ q £ 20°. 
The values of the subarray displacements xf = 36.2l and xf = 28.1l correspond 
to the right-hand reflector edge illumination at the angles »20° and »30°, respec-
tively. The levels of the edge illumination are the same as those in the previous 
case. The results show similar influence of the reflector edges on the element 
(subarray) pattern, with the exception of the fact that the oscillation level on the 
flat top in this case is lower. The antenna element gain (2.22) in the broadside for 
xf = 0, xf = 36.2l, and xf = 28.1l equals 28.10, 28.05, and 28.09 dB, respectively, 
with the highest element gain (2.23) being equal to 28.94 dB (i.e., the losses turn 
out to be similar to those corresponding to the previous case).

Let now the scanning of a beam having a 1° width at the –3-dB level (like in 
[44]) be required in the sector -qm £ q £ qm in the horizontal plane. The dimension 
of the array with uniform amplitude distribution providing the indicated beam 
width is »50.76l. If qm = 10° and d = 2.056l, the number of controlled elements 
(subarrays) will be equal to M = 25. Let the outermost subarrays be illuminating the 
reflector edges at the angle of 15°. Then the reflector length will be Lx = 70l. The 
antenna gain in the direction of phasing calculated according to (2.22) is presented 
by curve 1 in Figure 2.18.

Similarly to the focuser [44], the antenna gain in the broadside is 45 dB and 
drops by 0.8 dB at the sector edge, while the gain reduction in [44] is 2 dB. Since 
the maximum gain of the 70l ´ 59.76l aperture is equal to 47.21 dB, the reflector 
aperture efficiency is 60%, versus smaller than 25% in [44], where the transverse 
focuser dimension is ~200l and the focal length of the focuser is ~75l. Note also 
that the number of controlled elements used in our case is 1.4 times greater than the 
theoretical minimum, while the element use factor in [44] is 1.7. If we assume that 

Figure 2.18  Gain of the antenna with d = 2.056l, M = 25, and Lx = 70l: (1) at the peak versus scan 
angle; (2) in the main lobe region versus observation angle; and (3) in the grating lobe region ver-
sus observation angle. Curves 1’, 2’, and 3’ are similar characteristics for antennas with d = 1.044l,  
M = 49, and Lx = 94l.



80 Arrays with Beam-Forming Networks

the reflector edges are illuminated at the angle of 10°, then Lx = 63l. The antenna 
gain in the broadside in this case decreases by 0.01 to 0.03 dB, while the aperture 
efficiency increases up to 67%. The gain at the sector edge is 43.95 dB (i.e., by 0.25 
dB lower than that for Lx = 70l). So, the indicated decrease of the reflector dimen-
sion yields insignificant effect. This effect will be even weaker for tapered amplitude 
distributions applied for reduction of the sidelobe level. Figure 2.18 also contains the 
antenna radiation pattern in the region of the main lobe arranged at the sector edge, 
q0 = 10° (curve 2) and in the region of the grating lobe (curve 3).

Similar curves 1¢, 2¢, and 3¢ are presented in Figure 2.18 for antenna forming 
the beam of the same width but with array period d = 1.044l corresponding to scan 
sector -20° £ q £ 20°. The number of the controlled elements (subarrays) in this case 
is M = 49, while the reflector dimension Lx = 94l has been calculated from the con-
dition of illuminating the reflector edges at the angle of 30°. The gain reduction at 
the scan sector edge is 1 dB (i.e., just 0.2 dB lower than that for the previous case). 
However, since the reflector dimension has been increased, the aperture efficiency 
got lower and became 45%.

So, the comparison with the focuser antenna shows that the parabolic cylindri-
cal antenna provides somewhat better performance in a specified small scan sector. 
Though the dimension of the array with the sector flat-topped element pattern is 
larger and the array design is more complex than those of the feed array in the 
focuser antenna, it utilizes a smaller number of the controlled elements making the 
greatest contribution to the antenna cost. Moreover, the parabolic cylindrical an-
tenna dimension in the plane of scan turns out to be significantly smaller than that 
of the focuser antenna (e.g., the cylinder dimension is about one-third of the focuser 
one for the scan sector of ±10°). 

2.5  Quasioptical Analogs of the Chessboard Network

The tracing of targets in some radio systems designed for observation of space 
objects (see, for instance, [52]) is performed by mechanical turning of the antenna 
over a wide angular sector combined with electrical beam scanning in a very nar-
row (less than 1°) sector. The narrow sector flat-topped element patterns in such 
antennas may be shaped using the network approach described earlier. However, 
since the element spacing corresponding to very narrow scan sectors can be doz-
ens of wavelengths, the total length of the transmitting lines connecting the array 
radiators to form the overlapped subarrays will be very long, and this can lead to 
considerable dissipation losses. In this connection, it is of interest to consider an 
alternative method based on using quasioptical networks for excitation of the re-
quired overlapped subarrays. This method, described first in [19], is based on the 
fact that semitransparent screens like dielectric plates or wire grids may in some 
cases be considered quasioptical analogs of directional couplers. This situation is 
illustrated in Figure 2.19. Using this fact, one can construct many quasioptical net-
works for forming the overlapped subarrays consisting of large-aperture reflector 
or lens radiators. One of the examples is a linear array of dual-reflector antenna 
elements considered in [53].
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2.5.1  Features of the Array Geometry

The array cross-section in the plane of scanning is depicted in Figure 2.20. The ar-
ray whose geometry is assumed to be independent of z is constructed as follows. 
Each array cell separated from the adjacent cells by vertical semitransparent screens, 
which we call primary screens, contains a main parabolic reflector, an elliptic sub-
reflector, a feed, and a vertical transparent screen called secondary and arranged 
in the plane of the cell symmetry. The feature of this construction is that the main 
reflector is formed by right and left parabolas with foci situated in the left and right 
adjacent cells, respectively. The elliptic subreflector, working here as a quasioptical 
power divider, also consists of two parts. They have one common focus coincid-
ing with the feed phase center. Two other subreflector foci (one of them is situated 
in point G) coincide with the foci of the right and left parabolas of the right and 
left adjacent cells, respectively. As the ray tracing in Figure 2.20 shows, the waves 
radiated by the feed are directed by the subreflector to the external parabolas of 
the adjacent cells. However, after partial reflection from the primary and secondary 
semitransparent screens working as quasioptical directional couplers, the waves 
reach all the parabolas of the three cells. As a result, a three-cell subarray is formed, 
which can be considered a quasioptical analog of the single-cascaded chessboard 
network shown in Figure 2.15.

Figure 2.19  Network of a directional coupler (on the left) and its quasioptical analog in the form 
of a semi-transparent screen.

Figure 2.20  Quasioptical network of subarray of dual-reflector antennas.
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The array geometric parameters are calculated as follows. Let the subreflector 
half-width a, cell half-width b, longitudinal dimension h, and x-coordinate xG of 
focus G be specified. Then, using the equation 
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written for parabola BC in the polar coordinates with the origin in focus G (Figure 
2.20), where f is the focal length of the parabola BC, as well as equation

 
21

( )
4

G Gy y x x f
f

- = - -
 

written for the same parabola in the Cartesian coordinates shown in Figure 2.20, 
we can obtain the following formulas for the focal length f of the parabola BC and 
for the y-coordinate of its edge C
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where xB = a + 2b, yG = (xG - a)yB/(2b), yB = -h, and xC = 3b. The position of the 
subreflector focus F is determined by the ellipse property, according to which
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Solving (2.26) with respect to yF, we obtain
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The relations written earlier for the array geometry allow calculation of the ar-
ray characteristics, in particular the subarray radiation pattern.
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2.5.2  Subarray Pattern

To determine the radiation pattern of the three-cell subarray shown in Figure 2.20, 
we apply the aperture method (see, for instance, [45]) involving integration of the 
field distribution over the subarray aperture in the plane y = 0. Making appropri-
ate change of the variable for each part of the subarray aperture, we represent the 
subarray pattern as
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where, A1(x) = R1(R2 + T2)A0(x), A2(x) = T1R2A0(x) and A3(x) = T1T2A0(x) are 
complex amplitude distributions over the three regions of the aperture; R1,2(b) and 
T1,2(b) are reflection and transmission coefficients for a locally plane wave (a beam) 
impinging the screens at angle b; A0(x) is the amplitude distribution which would 
take place on the aperture region corresponding to the parabola BC in the absence 
of the screens; x1 = 0, x2 = 2b, x3 = -2b, k = 2p/l, q is the observation angle mea-
sured from the y-axis, and
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is the normalizing coefficient involved in (2.27) for taking into account the 
aperture efficiency reduction caused by nonuniformity of the amplitude distri-
butions over each aperture region, including the blockage of the latter by the  
subreflector.

The field distribution over the subarray aperture depends on the feed radiation 
pattern F0(j). According to the laws of geometric optics applied to the case under 
consideration
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where relations between x, b, and j are determined by formulas
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and
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is the eccentricity of the elliptic subreflector.

2.5.3  Results of Calculations

The results to be presented next as an example correspond to the following array 
parameters: a = 3l, b = 25l, h = 40l, and xG = 8l. The feed radiation pattern has 
been taken in the form

 F0(j) = sin(k D cos j)cos(ks sinj) 

that corresponds to two equiphase filamentary electric currents arranged at height 
D above a conductive screen and spaced 2s apart. The screen dimension is as-
sumed to be not larger than 2a to avoid additional blockage. The primary and 
secondary screens are taken in the form of dielectric plates of thickness t1,2 and 
relative permittivity e1,2. The reflection and transmission coefficients correspond-
ing to the incidence of a plane wave of E-polarization have been calculated by  
formulas
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and j = 1 and 2 for the primary and secondary screens, respectively.
The parameters of the screens t1 = 0.07l, e1 = 14.5 and t2 = 0.13l, e2 = 4.2 have 

been chosen to provide the transmission coefficients |T1| and |T2| at mean angle 
of illumination of the screens close to the optimum values 0.438 and 0.74 given 
in Table 2.1. The values for the feed parameters D = 0.48l and s = 0.3l provide a 
minimum sidelobe level.

The amplitude distributions of the field over the subarray aperture are shown in 
Figure 2.21 by solid curves normalized to the maximum of the amplitude distribu-
tion calculated for the case of perfectly conducting screens providing illumination 
of the parabolas in the central cell only. The indicated distribution corresponding 
to (2.28) is shown in Figure 2.21 by a curve with small dashes. To compare the 
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amplitude distribution to the curve sinx/x, we have multiplied the magnitude of the 
distribution over the edge region by –1 and added p to the phase distribution. The 
phase distributions shown in Figure 2.21 by the curves with larger dashes have been 
plotted with respect to the phase value at x = a and divided by p.

The subarray pattern (2.27) is shown in Figure 2.22 by a solid line. It is com-
pared to the pattern corresponding to the thin perfectly conducting screens (the line 
with larger dashes) and to the pattern corresponding to the uniform amplitude dis-
tributions over the aperture of each parabola [i.e., similar to that shown in Figure 
2.9(b), the curve with smaller dashes].

Figure 2.21  Amplitude and phase distributions of the field in the subarray aperture.

Figure 2.22  Radiation patterns of the subarray of dual-reflector antenna elements.
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The results presented in this section show that the quasioptical network pro-
vides the sector beam shape similar to that corresponding to the single-cascaded 
chessboard network with ordinary directional couplers. The slightly increased level 
of the sidelobe radiation and corresponding reduction of the aperture efficiency are 
caused here by the subreflector blockage effect. The latter is proportional here to  
a/b. The blockage effect in dually periodic structures would be proportional to (a/b)2  
and therefore significantly weaker. This effect will be absent at all in the quasiopti-
cal networks employing lens antenna elements. One such network with bootlace 
lenses is shown in Figure 2.23; some other networks are described in [19, 54–57].
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C h a p t e r  3

Arrays of Coupled Dual-Mode 
Waveguides

As shown in the previous chapter, the overlapped amplitude distributions corre-
sponding to shaping sector element patterns can be formed either by using a few 
(at least two) radiators in each array cell or by excitation of at least two first modes 
in the aperture of one radiator occupying the whole array cell. The latter case has 
been realized in [1, 2] as well considered in [3]. The first even and odd modes in 
the array [1–3] are excited through a beam-forming network consisting of power 
dividers and directional couplers, as shown in Figure 2.4 of the previous chapter. 
This technical solution is rather effective for application to the waveguide-horn ar-
rays. However, in the particular cases when the dual-mode waveguide sections have 
common walls, the array design can be considerably simplified if the excitation of 
the necessary modes is accomplished through ordinary slots in the common walls 
instead of the beam-forming network.

Some applications of the slot-coupling elements between transmitting lines in 
phased arrays for providing wide-angle impedance matching are described in [4, 5]. 
The slots in the waveguide walls are used also for matching the experimental array 
shown in Figure 2.12. The capabilities of such an approach for shaping the sector 
element patterns have first been studied in [6] using rigorous problem formulation 
for an idealized array geometry in assumption that the waveguide walls are infi-
nitely thin and the single-mode feeding waveguide sections usually used in practice 
are absent. The improved models, more close to practice, have been considered in 
[7, 8] for an array of parallel-plate waveguides scanning in the E-plane and in [9] 
for a similar array scanning in the H-plane.

3.1  A Simplified Model

Consider a two-dimensional problem of H-polarized wave radiation from an infi-
nite array of semi-infinite parallel-plate waveguides of width a with identical slots 
cut through in the walls. The array geometry in the case of two-slot elements of 
coupling is shown in Figure 3.1. The waveguide walls are assumed to be infinitely 
thin and perfectly conducting. Let the waveguides be excited in the TEM modes 
with magnetic field

 ( , )i ikz im
yH x z e Y+=  (3.1)

for ma < x < (m + 1)a, m = 0, ± 1. . . , satisfying the Floquet condition [10] with 
parameter (phase increment) Y (the time dependence is assumed to be taken in the 
form e-iwt). It is required to determine the field radiated to free space and the field 
reflected back to the waveguides.
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To solve the problem, we introduce magnetic currents lying on metallized pla-
nar surfaces in the slot region and equivalent to the tangential components of the 
electric field in the slots. Let Jm

y (z) be magnetic current density in the slot region 
at x = +0. Then, to provide the tangential electric field continuity in the slots, the 
magnetic current density in the slots at x = -0 must be -Jm

y (z). Furthermore, since 
the total field at excitation (3.1) must satisfy the same Floquet condition, the cur-
rent density at x = a - 0 must be equal to -Jm

y (z)exp(iY). The magnetic field of such 
a system of currents in the central waveguide (0 < x < a, Figure 3.1) may be deter-
mined by formula
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where f(z) = Jm
y (z)/h0, h0 = (m0/e0)1/2 is the wave resistance for free space, L Î [z1,z2] 

is the slot region,
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are propagation constants of the waveguide modes, and dmn is the Kronecker sym-
bol. The field corresponding to the magnetic currents in other waveguides will dif-
fer from the field (3.2) only by factor exp(imY), where m is the waveguide number 
(index). If the observation point is situated outside the region z2 £ z £ z1, the expres-
sion (3.2) may be rewritten in the form
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(3.5)

Figure 3.1  Geometry of parallel-plate waveguide array with slot elements of coupling.
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The upper and lower signs in (3.4) and (3.5) correspond to z > z1 and z < z2, 
respectively. As we see, the waveguide waves (3.4) with amplitudes A+

n (3.5) come to 
the waveguide aperture together with the incident TEM waves (3.1). The problem 
of such an excitation of the thin-walled parallel-plate waveguide array allows us to 
obtain a rigorous analytical solution. Applying the method of factorization [10, 11] 
and the principle of superposition, we obtain the following expressions for the scat-
tered (radiated and reflected) field:
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where
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Amplitudes (3.8) of the Floquet modes in the free space and amplitudes A-
n + An 

of reflected waveguide modes in the waveguides are determined by still unknown 
function f(z) proportional to the equivalent magnetic current density in the slots. 
To find this function, we use the continuity condition for the total magnetic field in 
the slots. As a result, we obtain the following integral equation:
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where the kernel and right-hand part are determined by formulas
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Function f(z) determined as a result of solving (3.11) by the method of moments 
is then used for calculation of amplitudes (3.5), (3.8), and (3.10). The accuracy 
of the calculations has been controlled by means of verifying the power balance  
relation
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where summation is taken only over propagating waveguide and Floquet modes. 
The error of fulfillment of (3.14) in all the calculations has not exceeded 0.01%.

As noted earlier (see Chapter 1), the array element pattern is determined by the 
amplitude of the Floquet mode of zero order (3.8) multiplied by cosq (Figure 3.1). 
As a result, we obtain the element pattern in the form
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where Y should be replaced by ka sinq.
Two examples of the calculated element pattern for array with period a = 0.8l 

and a = 1.3l  are shown in Figures 3.2 and 3.3, respectively. In the first case, there is 
only one slot in each wall, while the second one corresponds to two slots of identi-
cal width D. The position of the slots (segment [z1, z2]) and their width D have been 
selected to provide the slowest decrease of the element pattern level in the sector  
sinq £ 0.7l /2a corresponding to the element use factor of about 1.4.

As we see in Figures 3.2 and 3.3, where the array element pattern in the absence 
of the slots is also presented for comparison, the introduction of the slots allows 
enhancing the pattern level at the sector edge by about 1 dB. However, the level 
of the obtained patterns is still considerably lower than the normalized maximum 
(ideal) level equal to cosθ . The reason is insufficiently strong excitation of the ar-
ray aperture by the odd TM1 modes because only a portion of their power comes 
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to the aperture, while the other portion just goes from the slots down and therefore 
does not contribute to the radiation. The situation may be improved by means of 
using single-mode waveguides for exciting the coupled dual-mode sections. The 
propagating TM1 modes going down from the slots in this case will come back to 
the aperture after reflection from the junction of the sections to participate in shap-
ing the element pattern. Such an improved array model is considered next.

Figure 3.2  Element pattern corresponding to single slots in array with a = 0.8l, z1 = -0.54l,  
z2 = -0.96l, and D = -0.42l.

Figure 3.3  Element pattern corresponding to double slots in array with a = 1.3l, z1 = -0.82l,  
z2 = -2.3l, and D = 0.12l.
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3.2  An Improved Model for Scanning in E-Plane

3.2.1  Array Geometry and Excitation

The longitudinal cut of the improved array in the plane of scanning is shown in Fig-
ure 3.4. The array is a periodic structure of stepped parallel-plate waveguides. The 
upper sections have width a and wall thickness b - a, where b is the array period 
(element spacing). These sections are symmetrically attached to lower semi-infinite 
waveguide sections of width a0 via intermediate sections of length ht and width at. 
The upper sections are coupled to each other through the slots of width D arranged 
at distances h1 from the intermediate sections and h2 from the aperture.

We assume that the lower sections are excited by TEM waves having unit am-
plitudes and phases progressing with increment Y from one waveguide to another. 
The incident TEM waves are scattered at the step discontinuities with excitation 
of TM waves with nonzero electric field components Ex and Ez, and magnetic field 
component Hy so that the array scans its beam in the E-plane.

Further, we will assume that the lower waveguide sections are single-mode, 
while the upper ones are dual-mode (i.e., a0 < l/2 and l/2 < a < l, where l is the 
operating wavelength). The array radiation performance depends on the amplitude 
and phase relations between the dominant TEM mode and TM modes of higher 
order coming to the aperture. The indicated relations are determined by the 
geometry of the structure, and the problem therefore is determination of the values 
for the geometric parameters at which the array gain has minimum decrease when 
scanning the beam in the sector corresponding to the array period.

3.2.2  Mathematical Model

The most preferable method that can be used for analysis of the array under consid-
eration is the method of generalized scattering matrices [10]. Let S be the scattering 
matrix of the stepped transition between the lower single-mode section and upper 

Figure 3.4  Geometry of coupled parallel-plate waveguide array for scanning in E-plane.
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dual-mode section, R(1) and T(1) be the matrices of the reflection and transmission 
coefficients, respectively, for the system of slots in the walls of the dual-mode sections, 
and R(2) and T(2) be similar matrices for the array aperture at excitation of it from the  
waveguides. We will assume that the matrices R(1), T(1), and R(2) have dimension  
N ́  N, where N is the number of the first modes taken into account in the dual-mode 
sections, the matrix T(2) has dimension Q ́  N, where Q is the number of the Floquet 
modes taken into account in the field radiated by the array, and the matrix S has 
dimension (N + 1) ´ (N + 1), with its first N ´ N elements being the coefficients of 
reflection from the intermediate section (transition) from the side of the dual-mode 
section. All the elements of the indicated matrices with the exception of those of 
the matrix S depend on the controlling phase Y. Using the matrices involved in the 
consideration, we can write the following system of linear algebraic equations
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(3.16)

for the complex amplitudes of the waves going from the transition to the slots 
(An), from the slots to the transition (Bn), from the slots to the aperture (Cn), and 
from the aperture to the slots (Dn) (Figure 3.4), where m = 1, 2, …, N (unlike the 
previous section, the numbers of the waveguide modes begin with 1 rather than 
0, and that is done for convenience of the subsequent operation), e(j)

n  = exp(ignhj),  
j = 1 or 2, h1 and h2 are the lengths of the lower and upper parts of the dual-mode 
sections (Figure 3.4), and
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are propagation constants of the waves in the dual-mode section.
The solution of the system (3.16) then allows us to calculate the array reflection 

coefficient
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amplitudes of the Floquet modes above the aperture
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and array element pattern
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normalized to the maximum value of the ideal element pattern (1.117). Note, also, 
that |F(0)|2 corresponds to the coefficient of power transmission to the main lobe.

The simple algorithm presented here allows us to perform calculations of the 
array characteristics at specified values of its geometrical parameters. The necessary 
elements of the scattering matrices for the transition section, slots, and array aper-
ture are calculated with using the well-known method of projective mode matching 
at the junctions of the sections [12, 13]. The technique and some details of the real-
ization of the indicated method for the structure under consideration are described 
in [14]. An example demonstrating the calculation of the scattering matrix elements 
for the slots and array aperture is presented in Appendix 3A.

3.2.3  Highest Characteristics at Dual-Mode Excitation

Although the field radiated by the array is formed by an infinite number of the 
waveguide modes coming to the array aperture, the first two propagating modes 
TM1 (which is the TEM mode) and TM2 reaching the dual-mode waveguide aper-
ture without attenuation give the highest contribution. In this connection, it is of 
interest to consider an auxiliary problem that determines the amplitude and phase 
relations with which the indicated two waves must come to the aperture to provide 
a maximum of the element pattern level for specified observation angle.

So, let the waves TM1 and TM2 be coming to the waveguide aperture with real 
amplitudes C1 and C2, as well as with phases Y1 and Y2, respectively. The phases 
are assumed to be measured with respect to the aperture plane, while the amplitudes 
satisfy the normalization condition on their total power
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where the propagation constants g n are determined by formula (3.17).
Let also F1(q) and F2(q)  be the element (waveguide) amplitude patterns corre-

sponding to separate excitation of the waveguide in the TM1 and TM2 modes of 
unit power, and let F1(q)  and F2(q) be the appropriate phase patterns. Then the 
complex pattern of the waveguide at its simultaneous excitation by the two modes 
may be written in the form

 1 1 2 2( ) ( )
1 1 2 2

i iF C F e C F eα βY +F Y + F= +  

where a = (g1a)1/2 and b = (g 2a/2)1/2. Accounting for this expression, we may write 
the waveguide power pattern as
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with DF = F2 - F1 and DY = Y2 - Y1.
It is clear that the maximum of function (3.22) will be achieved first of all when 

the complex patterns are added in-phase; that is, at

 2 , 0, 1,n nDY DF π= - + = ± … (3.23)

To optimize the amplitude relations, let us express C1 via C2 from (3.21), sub-
stitute the resulting expression in (3.22), and equate ¶P/¶C2 to zero. Then, taking 
(3.23) into account, we obtain the equation
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Using (3.24) together with (3.21), we find
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Using the last two expressions, we can determine the optimum ratio of the 
amplitudes C1 and C2
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providing maximum of the waveguide power pattern (3.22) at the dual-mode exci-
tation equal to F2

1 + F2
2.

Thus, the array gain in a specified direction at dual-mode excitation of the 
waveguides achieves its maximum level when the complex waveguide patterns cor-
responding to each mode add in phase and the amplitudes of the dual-mode excita-
tion obey the relation (3.26).

To illustrate the highest achievable radiation pattern of the dual-mode wave-
guide, let us assume that the waveguide wall thickness is equal to zero (i.e., a = 
b. The problem of excitation of such an array has a rigorous analytical solution 
obtained by the method of factorization [10] and presented in the previous section. 
Using (3.15) and accounting for the numbering of the waveguide modes taken in 
this section, we may obtain the following expressions for the waveguide amplitude 
patterns corresponding to each type of excitation
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where G0 = kcosq and G-1 = [k2 - (ksinq - 2p/b)2]1/2 are propagation constants of 
the Floquet modes (3.9) of zero and minus first orders, respectively. The upper 
lines in the figure brackets in (3.27) and (3.28) should be used at 0 £ sinq £ l /b - 1, 
while the lower ones are valid at l /b - 1 £ sinq £ 1. The patterns (3.27) and (3.28) 
as well as the limiting pattern +2 2

1 2F F  corresponding to the optimum dual-mode 
excitation of the waveguides in array with a = b = 0.8l are shown in Figure 3.5. The 
limiting pattern is compared to the ideal normalized element pattern cosθ , as well 
as to the single-mode waveguide amplitude pattern 2cosq/(1 + cosq), which is easy 
to obtain from (3.27) at the condition that  a = b < l /2 when g 2 is imaginary.

Figure 3.5  Radiation patterns of dual-mode waveguide in the E-plane of array with a = b = 0.8l.
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The comparison shows that the pattern at the optimum dual-mode excitation is 
only slightly lower than the ideal element pattern for large angles of observation be-
cause of the increase of the reflection from the aperture, and it practically coincides 
with the single-mode waveguide pattern. The latter feature means that the gain of 
the array of optimally excited dual-mode waveguides when scanning is practically 
the same as that of the array using a doubled number of single-mode phased wave-
guides occupying the same aperture.

3.2.4  Optimization of the Structure

Optimization of the array geometry is carried out as follows. First, for specified 
element spacing b, wall thickness b - a of the dual-mode sections, and width a0 of 
the input single-mode waveguides, we carry out numerical experimentation to de-
termine the width at and length ht of the transition section providing the best match 
between the single-mode and dual-mode sections for the dominant TM1 (TEM) 
mode at a specified frequency. Then, we specify the observation angle value q (the 
recommended value resulting from the practical calculations is q » arcsin[l /(4b)]) 
as well as the slot width D and determine the distance h1 from the transition to the 
slots providing the necessary value for |C2/C1| calculated in advance according to 
(3.26). If the necessary value for the indicated ratio is not possible to obtain for the 
specified D, we specify another value for this parameter and repeat the procedure. 
The amplitudes Dn of the waves reflected from the aperture are excluded from 
consideration at this stage of the optimization process, and therefore we solve 
only 3N equations of the system (3.16) with 3N unknowns. After determining the 
distance h1 and width D, we determine the distance h2 from the slots to the aperture 
providing maximum of the element pattern (3.20) in the specified direction. This 
corresponds to satisfaction of the phase relation (3.23). This stage requires solution 
of all the 4N equations of the system (3.16) with all the 4N unknowns.

Note that it is possible to obtain a few different values for each of the param-
eters ht , h1, and h2 in the optimization process that satisfy the conditions indicated 
earlier. In this case, it is preferable to select the smallest of them because such a 
choice provides weaker dependence of the array characteristics on frequency.

3.2.5  Numerical Results

The technique developed for analysis and optimization of the array of coupled 
dual-mode waveguides scanning in E-plane has been realized in a package of codes 
including subroutines calculating the scattering matrices of the stepped transition, 
system of slots in the waveguide walls, and array aperture. The texts of the codes 
are available in [14]. The elements of the generalized matrices of scattering are cal-
culated by accounting for 20 to 40 waves in each waveguide section and 200 to 300 
Floquet modes in the slot region and free space above the aperture. Calculations 
of the array characteristics as a whole have been performed by accounting for two 
propagating modes TM1 and TM2 as well as two evanescent modes TM3 and TM4. 
The order of the system (3.16) therefore has been equal to 16. The results obtained 
for the array with element spacings b = 0.8l, b = 0.9l, and b = l are presented in 
Figures 3.6, 3.7, and 3.8, respectively. The wall thickness in the dual-mode sections 
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and the width of the input single-mode waveguides are b - a = 0.05l and a0 = 0.4l,  
respectively, for all the three cases. The values for the other array parameters 
determined as a result of optimization are indicated in the figure captions. The 
presented characteristics are compared to the characteristics corresponding to the 
absence of the slots in the dual-mode sections of specially determined optimum 
length. Note that the optimization in the absence of the slots is also of importance, 

Figure  3.6  Element pattern (F  ) and reflection coefficient (R) of array with slots for b = 0.8l,  
a = 0.75l, a0 = 0.4l, at = 0.565l, ht = 0.207l, h1 = 0.527l, h2 = 0.6l, and D = 0.3l; (– – –) is the 
same array without slots at h1 + h2 = 0.5l.

Figure  3.7  Element pattern (F  ) and reflection coefficient (R) of array with slots for b = 0.9l,  
a = 0.85l, a0 = 0.4l, at = 0.616l, ht = 0.191l, h1 = 0.423l, h2 = 0.654l, and D = 0.3l; (– – –) is the 
same array without slots at h1 + h2 = 0.5l. 
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because the element pattern at some values of the dual-mode section length may 
even have resonant dips discussed in [15, 16].

Analysis of the results presented in Figures 3.6, 3.7, and 3.8 shows that the ele-
ment pattern half-width at levels 0.89 (–1 dB) and 0.32 (–10 dB) is approximately 
equal to 0.69 to 0.74 of w and 1.17 to 1.26 of w, respectively, where w = l/(2b) 
is the half-width of the ideal sector element pattern also shown in the indicated 
figures. For comparison, the appropriate half-width values of the theoretical element 
patterns provided by the dual-mode horns excited through the directional couplers 
[2] are 0.65w and 1.16w. The behavior of the array characteristics for b = 0.8l and 

Figure 3.8  Element pattern (F  ) and reflection coefficient (R) of array with slots for b = l, a = 0.95l, 
a0 = 0.4l, at = 0.673l, ht = 0.173l, h1 = 0.4l, h2 = 1.298l, and D = 0.3l; (– – –) is the same array 
without slots at h1 + h2 = 0.5l. 

Figure 3.9  Element pattern (F  ) and reflection coefficient (R) of array with parameters indicated in 
the caption for Figure 3.6 at frequencies f, 0.97f, and 1.03f.
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b = l in a frequency band from 0.97f to 1.03f, where frequency f corresponds to the 
wavelength l, is shown in Figures 3.9 and 3.10, respectively. We can also note that 
when the element spacing increases to one wavelength, the obtained array match 
and sector element pattern quality worsens. However the improved model allows 
us to obtain considerably better results than those presented in Figures 3.2 and 3.3 
for the simplified model.

3.3  Array Structure for Scanning in H-Plane

3.3.1  Features of Geometry and Optimum Excitation

The geometry of a parallel-plate waveguide array designed for scanning in H-plane 
is shown in Figure 3.11. The array is assumed to be excited by the dominant TE1 
modes in semi-infinite single mode waveguides of width l/2 < a0 < l, attached to 
dual-mode waveguide sections of width l < a < 1.5l via stepped transitions of 
length ht and width at. Each wall of the dual-mode section has two slots of width D 
each, arranged at distance h from each other. The upper parts of the dual-mode sec-
tions contain longitudinal baffles forming symmetrical branchings with single-mode 
sections of width c and length hb. The distances from the lower slot to the transition 
and from the upper one to the branching are equal to h1 and h2, respectively.

As we see, this structure somewhat differs from the structure designed for scan-
ning in E-plane (Figure 3.4). The latter uses single slots in the dual-mode section 
walls. At (or close to) the in-phase excitation of the array with thin walls by the 
TEM modes, the row of slots is a weak discontinuity. Hence there is no great neces-
sity to apply additional means for matching it. Unlike that, reflection of the TE1 
modes from a row of slots when scanning in the H-plane in a general case may be 

Figure 3.10  Element pattern (F ) and reflection coefficient (R) of array with parameters indicated in 
the caption for Figure 3.8 at frequencies f, 0.97f, and 1.03f.
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considerable. The improvement of the match in this case is performed using two 
rows of identical slots arranged at appropriate distance.

The second difference is the presence of branchings at the aperture of the H-
plane array. At the in-phase excitation of the E-plane array, the dominant TEM 
modes come to aperture. They have uniform field distribution across the wave-
guide, and this fact provides the aperture efficiency close to 100%. The dominant 
modes in the H-plane array are TE1 modes with cosine field distribution. Such a 
distribution over an aperture exceeding the operating wavelength yields an aperture 
efficiency of about 81% or array gain reduction by 0.91 dB. The baffles introduced 
at the dual-mode waveguide apertures allow us to avoid the indicated reduction. 
An alternative modification could be dielectric plates of thickness 0.25 / 1λ ε -  and 
relative permittivity e arranged on the waveguide walls, allowing us to obtain the  
uniform field distribution over the empty part of the waveguide cross-section [17, 18].  
The high efficiency of such an aperture is possible at only small plate thickness and 
appropriately large plate permittivity; however, increasing the permittivity results 
in decreasing the operating frequency bandwidth.

Similarly to the case of the E-plane considered in the previous section, the anal-
ysis of the H-plane array is carried out using the method of generalized scattering 
matrices. The system of equations (3.16) for the amplitudes An, Bn, Cn, and Dn 
indicated in Figure 3.11 remains valid. However, the propagation constants (3.17) 
should be replaced by the propagation constants
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(3.29)

Furthermore, the matrices R(1) and T (1) now correspond to two rows of slots, 
and the matrices R(2) and T (2) take into account the presence of the baffles in the 

Figure 3.11  Geometry of array of coupled parallel-plate waveguide for scanning in H-plane.
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dual-mode sections. The details of calculation of the scattering matrix elements for 
the transition, system of slots, and modified aperture can be found in [14]. The tech-
nique developed for calculation of the modified aperture characteristics is presented 
in Appendix 3B as an example.

Solution of the system (3.16) allows the calculation of the array characteristics. 
The reflection coefficient is determined by (3.18), while the expression (3.20) for the 
normalized element pattern should be replaced now by
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where (0) 2 2
01 ( / )k aγ π= -  is the propagation constant of the dominant TE1 mode 

in the input single-mode waveguide sections.
The optimum ratio for amplitudes C2 and C1 of the TE2 and TE1 modes in the 

dual-mode sections providing maximization of the array gain at the dual-mode 
excitation is determined in [9] in a similar way as is done in Section 3.2.3 for the 
E-plane array case. As a result, if the total power carried by the indicated modes is 
equal to unity; that is,
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the optimum amplitude ratio is determined by formula
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where F1(q) and F2(q) are values of the amplitude array element patterns (for a 
dual-mode waveguide with baffles) corresponding to excitation of the waveguide 
in the TE1 and TE2 modes of unit power, respectively. As with the E-plane case, 
the maximum level of the power element pattern equals F2

1 + F2
2 and only slightly 

differs from the ideal normalized power pattern cosq for q £ 2l/b - 1 (i.e., in the 
region of single-beam scanning in the waveguide array with spacing equal to 
b/2).

3.3.2  Computed Array Characteristics

The technique of H-plane array geometry optimization as a whole is similar to that 
described in Section 3.2.3 for the E-plane case. Appropriate selection of the transi-
tion length ht and width at provides perfect match between the single-mode and 
dual-mode waveguide sections at a specified frequency. The length of the baffles in 
the dual-mode sections at the aperture is selected to provide the best array match to 
free space at the array excitation in the dominant TE1 modes when the controlling 
phase value Y is zero or close to zero. Further, we specify the slot width D and select 
the distance between the slots h providing their perfect match at in-phase excitation 
of the dual-mode sections in the TE1 modes. Then, at specified value of sinq close to 
l/(4b), we select the distance between the transition and slots h1 providing the opti-
mum ratio for amplitudes of the second and first modes (3.32). If the required value 
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fails to be achieved at the specified slot width, we specify a new value the latter and 
repeat the procedure. After selecting the slot width, the optimization of the array 
geometry is completed by selection of the distance between the slots and baffles h2 
providing maximum of the element pattern (3.30) in the specified direction.

The source FORTRAN code realized according to the technique described 
earlier is presented in [14]. The code uses subroutines developed on the basis of 
the mode-matching method for calculation of the generalized scattering matrices 
of the transition, doubled slots, and array aperture taking the baffles into account. 
The calculations have been performed taking into account 20 to 40 waveguide 
modes in each section and 200 to 300 Floquet modes in the slot region and free 
space above the aperture. The system (3.16) is solved by accounting for the first 
four waveguide modes of the dual-mode sections. Since the optimization process 
consists of a succession of simple operations, it is easily performed in an interac-
tive mode.

The results presented next as an example have been obtained for the array 
with specified element spacing b = 1.295l, dual-mode section width a = 1.25l, and 
input single-mode waveguide width a0 = 0.795l. The values for the other array pa-
rameters found as a result of the optimization process are indicated in the caption 
for Figure 3.12, where the calculated magnitude of the array reflection coefficient 
(3.18) and element pattern (3.30) are shown together with the normalized ideal ele-
ment pattern cosθ  of width corresponding to the indicated element spacing.

The behavior of the array characteristics in the center and at the edges of a 
3% frequency band is demonstrated in Figure 3.13. The sector shape of the ele-
ment pattern is kept sufficiently well, and the array match remains satisfactory. The 
bandwidth in the case under consideration is somewhat narrower than that for the 
E-plane array because of greater element spacing in the H-plane array.

Figure 3.12  Element pattern (F ) and magnitude of reflection coefficient (R) of H-plane array with 
parameters b = 1.295l, a = 1.25l, a0 = 0.795l, at = 0.929l, ht = 0.232l, h1 = 0.689l, h2 = 0.27l,  
D = 0.425l, h = 0.313l, and hb = 0.643l.
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Figure 3.14  Experimental linear array breadboard of coupled dual-mode rectangular waveguides: 
(a) cut in the H-plane, (b) side view, and (c) general view.

Figure 3.13  Reflection coefficient (R) and element pattern (F ) of the H-plane array with parameters 
indicated in caption to Figure 3.12 at frequencies f, 0.985f, and 1.015f.
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3.4  Experimental Study of the H-Plane Array

Verification of the numerical results presented earlier and possibilities of practical 
realization of the proposed structures for operation in the Ka frequency band have 
been carried out with using an experimental linear array of rectangular waveguides 
coupled through the slots in common narrow walls [19–22]. The cut of this array in 
the H-plane, its side view, and its general view are shown in Figure 3.14. Unlike the 
theoretical model in the form of an infinite periodic structure of parallel-plate wave-
guides, the experimental array breadboard consists of seven elements the apertures 
of which radiate in a common horn section. As shown in Figure 3.14(b), the array is 
built of six blocks: single-mode waveguides, transition sections, dual-mode sections 
without slots, dual-mode sections with slots, dual-mode sections with baffles, and 
a horn section. The waveguide channels in each block have been performed using 
the electro-erosion method. The accuracy of block attachment is provided by using 

Figure 3.15  Measured radiation patterns of the central array element at frequencies (a) 34 GHz as 
well as (b) 33.49 and 34.51 GHz; (´´´) is calculated element pattern at 34 GHz.



110 Arrays of Coupled Dual-Mode Waveguides

appropriate guide pins, while the blocks are tightened together by four longitudinal 
screws. The values of the geometric parameters in the H-plane in millimeters cor-
respond to the values in wavelength indicated in the caption for Figure 3.12. The 
waveguide width in the E-plane equals the standard value 3.4 mm, while the length 
of the horn section and its aperture width equal 25 and 7 mm, respectively. 

Figure 3.16  Measured array radiation patterns at excitation of its (a) first (1’ and 1”), (b) second  
(2’ and 2”), and (c) third (3’ and 3”) lateral inputs at frequency 34 GHz.
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The measurements of the array characteristics have been performed in the fre-
quency band (34±1) GHz. The VSWR of the central element in the indicated band 
varies from 1.09 to 1.27 [19]. The results of the array radiation pattern measure-
ment corresponding to excitation of the central element at frequencies 34, 33.49, 
and 34.51 GHz and providing the other array inputs with matching loads are pre-
sented in Figure 3.15. Comparison of the measured element pattern with theoreti-
cal element pattern recalculated from Figure 3.12 to decibels presented in Figure 
3.15(a) shows good agreement between the theory and experiment.

The measured radiation patterns of the central array element at frequencies 33.49 
and 34.51 GHz shown in Figure 3.15(b) confirm the theoretical conclusion that 
shape of the sector beam in the 3% frequency band remains practically changeless.

The study of the array edge effect on the array element pattern shape has been 
carried out by means of the array pattern measurement at excitation of the array 
lateral inputs. The patterns measured at frequency 34 GHz are presented in Fig-
ure 3.16. The results show that the pattern shape in the sector beam region at 
excitation of each lateral input except for the edge one is practically identical. The 
overall change of the pattern shape consists of only a slight increase of the sidelobe 
level at the side of the nearest edge. The array pattern shape corresponding to ex-
citation of the edge inputs [3’ and 3”, Figure 3.14(a)] already considerably differs 
from the sector one. The results obtained in this study allow us to draw a conclu-
sion that the excitation of one array input results in efficient excitation of only three 
array cells just as it takes place in the array with power dividers and directional 
couplers shown in Figure 2.12.

Comparison of the calculated and measured results presented here both for 
the E-plane array and for the H-plane array with the data available in [2] shows 
that shaping of the sector element patterns in the arrays of dual-mode waveguides 
with simple slot elements of coupling is possible with quality corresponding to that 
achieved in more complex arrays based on using power dividers and directional 
couplers.
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Appendix 3A   Calculation of the Scattering Matrix Elements for the 
Slots in the Waveguide Walls

Consider the slot region in the E-plane array of dual-mode waveguides shown in Fig-
ure 3.4. The geometry of this region is separately depicted in Figure 3A.1. The wave-
guide width, element spacing, and slot width are the same as those in Figure 3.4.

Let the lower waveguide sections be excited in the TMm modes of unit ampli-
tude and phase increment Y between adjacent waveguides. The magnetic fields in 
the lower and upper sections of the central waveguide are represented by superposi-
tions of TM modes
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with unknown amplitudes Rn and Tn.
The magnetic field in the slot region is represented by a superposition of Floquet 

modes 
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where Aq and Bq are unknown amplitudes of the modes propagating or evanescent 
in the positive and negative directions, respectively. The propagation constants of 
the waveguide modes (3A.1) and (3A.2) as well as Floquet modes (3A.3) are deter-
mined by formulas (3.17) and (3.9).

Matching the fields (3A.1) and (3A.3) in the aperture of the lower section and 
projecting the functional equation on the waveguide mode transverse functions, we 
obtain algebraic equations
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Figure 3A.1  Geometry of the slot region in the waveguide array of Figure 3.4.
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where n = 1, 2, . . .; eq = exp(iGqD), and

 

/2

/2

1 ( 1) ( /2)
cos q

a
i x

nq

a

n x a
Q e dx

a a
απ

-

- += ò
 

(3A.5)

 

/2 /21

2 2 2
( 1)

( ) ( 1)

q qi a i an

q
q

e e
i a

a n

α α
α

α π

- -- -=
- -  

Similar projective matching of the fields (3A.2) and (3A.3) in the input aperture 
of the upper section of the central waveguide at z = D yields
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The transverse electric field strength component Ex in the waveguide sections 
and slot region is determined by formula (1.104) applied to expressions (3A.1), 
(3A.2), and (3A.3). This component must be continuous in the apertures of the 
lower and upper waveguide sections and zero on the flanges. These conditions re-
sult in two functional equations. Projecting them on the Floquet mode transverse 
functions exp(-iapx), where p = 0, ±1, ±2, . . . we obtain two more subsystems of 
algebraic equations
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where the asterisk means complex conjugation.
Substituting (3A.4) and (3A.6) in (3A.7) and (3A.8), we reduce the latter two 

to the system
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The infinite algebraic systems (3A.9) and (3A.10) are solved by the method 
of truncation with subsequent application of the Gauss elimination method. The 
truncation should be performed by taking into account the problem of relative 
convergence (see, for instance, the appendix to Chapter 5 in [23]). According 
to that, the finite number of the Floquet modes in (3A.3) should be no less than 
the number of the waveguide modes in (3A.1), (3A.2), or (3A.11) multiplied by 
b/a.

The amplitudes Aq and Bq determined as a result of the solution of the system 
(3A.9) and (3A.10) are used for calculating the amplitudes of the reflected and 
transmitted waveguide modes by formulas (3A.4) and (3A.6), respectively. These 
amplitudes form the mth columns in matrices R(1) and T(1), respectively, used in 
system (3.16).

Note also that if we exclude the amplitudes Bq from expression (3A.4) and 
equations (3A.9), the indicated expressions will correspond to the waveguide array 
aperture faced to free space. The amplitudes Aq found as a result of the solution 
in this case form the columns of the matrix of transmission coefficients T(2) for the 
array aperture.

Appendix 3B  Analysis of the Modified H-Plane Array Aperture

A fragment of the geometry containing the modified aperture of the array shown 
in Figure 3.11 is presented separately in Figure 3B.1. The dual-mode waveguide 
sections are assumed to be excited in TEp modes of unit amplitude coming to the 
baffles. The incident modes have progressive phases with increment Y between 
adjacent waveguides.

The total electric field in the dual-mode section of the central waveguide is de-
scribed by a sum of the TE modes
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with unknown amplitudes Rq of the reflected modes and propagation constants 
(3.29). The electric field in the left-hand section of the branching is represented in 
the form

Figure 3B.1  Geometry of the modified waveguide array aperture in the H-plane.
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where A-
n and B-

n are unknown amplitudes of the forward and backward modes and 
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are propagation constants. The electric field in the right-hand section of the branch-
ing is written in a similar form
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with unknown amplitudes A+
n and B+

n, while the electric field above the array aper-
ture is a superposition of the Floquet modes
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with unknown amplitudes Tq.
The electric field (3B.1) must be equal to the fields (3B.2) and (3B.4) in the 

input apertures of the waveguide branching at z = –hb and zero on the baffle face. 
Projecting of this boundary condition on the transverse functions of the dual-mode 
section results in expression of the reflected mode amplitude via the amplitudes of 
the modes in the branching sections
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where en = exp(igcnhb) and
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In turn, the electric field above the aperture (3B.5) must be equal to the fields 
(3B.2) and (3B.4) in the output apertures of the branching sections and zero on the 
upper baffle face and waveguide flanges. Projecting this equality on the complex-
conjugated transverse functions of the Floquet modes, we obtain
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Additional relations between the unknown amplitudes of the fields in the re-
gions of the structure necessary for solution of the problem are obtained by match-
ing the magnetic field strength transverse component Hx determined by formula 
(1.101) applied to expressions (3B.1), (3B.2), (3B.4), and (3B.5). The projective 
matching of the transverse magnetic fields in the input (at z = -hb) and output (at 
z = 0) apertures of the left-hand and right-hand branching sections by using the 
orthogonality property of the transverse wave functions for the indicated sections 
results in the algebraic equations
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Substituting (3B.6) and (3B.8) in (3B.10) through (3B.13), we reduce the latter 
to the algebraic system for unknown amplitudes A-

n, B-
n, A+

n, and B+
n
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 3 4( ) ] 0mn n mn mn cn nB Bσ σ δ γ- ++ + + =  

where m = 1, 2, . . .; and
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The system of (3B.14) through (3B.17) is solved by the method of truncation 
with subsequent application of the Gauss elimination method. If, when truncating, 
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N first waveguide modes of each direction are taken into account in each section 
of the branching resulting in the system order 4N, one should account for no less 
than Na/c modes in the dual-mode section and no less than Nb/c Floquet modes in 
free space. The amplitudes A-

n, B-
n, A+

n, and B+
n found as a result of solution of the 

system are then used for calculation of the reflected waveguide mode amplitudes 
(3B.6) and radiated Floquet mode amplitudes (3B.8). The indicated amplitudes are 
elements of the generalized matrices of reflection coefficients R(2) and transmission 
coefficients T(2).
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c h a p t e r  4

Arrays with Reactively Loaded Radiators

4.1  On Application of Reactive Loads in Array Antennas

The overlapped subarrays with sector radiation patterns in the arrays considered 
in the previous two chapters are formed by using coupling elements specially in-
troduced between constrained transmitting lines over which the microwave power 
comes to array radiators. Meanwhile, it is well known that natural mutual coupling 
over free space always exists between the radiators. In some cases, such interaction 
between the radiators can cause the undesirable blindness effects [1]. However, 
there are the cases when the mutual coupling over free space can be used effectively. 
This was done in [2, 3] for synchronization and phasing of self-excited oscillators in 
active transmitting phased array antennas. The authors of [4] proposed to arrange 
rows of passive reactively loaded waveguides between driven waveguides for elimi-
nation of the blindness effects. The paper [5] described application of reactively 
loaded elements in adaptive phased arrays for communications systems, while [6] 
demonstrates control of the scattering properties of radar targets by means of reac-
tive loads. A general approach to the design synthesis of the array antennas with 
reactive loads has been formulated in [7]. Some examples concerning a solution 
of the synthesis problem formulated for nonscanning arrays with sector, cosecant, 
and directive beams can be found in [8] (an array of impedance filaments), [9, 10] 
(waveguide arrays), and [11–13] (dipole arrays).

Application of the passive reactively loaded radiated in phased arrays designed 
for shaping sector partial radiation patterns is illustrated by the networks shown in 
Figure 4.1. Only small portion of the radiators here is excited by the signals coming 
directly from the phase shifters. All the other radiators are passive. Their excitation 
is provided due to their coupling with the driven radiators and between themselves 
over free space, while the array characteristics are determined by the reactive load 
values. The reactive loads in such an approach play the role of a beam-forming 
network (like those considered in Chapter 2), although the network itself is either 
absent completely [Figure 4.1(a)] or has the simplest configuration [Figure 4.1(b)]. 
Effective shaping of the sector partial patterns in such arrays is possible only at 
sufficiently strong interaction between the driven and passive radiators. Such an 
interaction can be provided between parallel nonstaggered dipoles in the H-plane 
[11–13] or between rectangular waveguides in the E-plane [9, 10]. The possibility 
of the grating lobe suppression by using passive radiators has been considered in 
[14, 15]. These works analyze linear arrays of controlled dipoles where only one 
passive dipole is arranged between two adjacent driven dipoles. Because of insuf-
ficiently strong coupling, the effectiveness of the grating lobe suppression there is 
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lower than in the arrays using beam-forming networks. Therefore, the radiators in 
the networks shown in Figure 4.1 must be arranged sufficiently close to each other; 
hence, the number of the passive radiators must be sufficiently large.

If one controlled radiator in the array cell [Figure 4.1(a)] is insufficient for 
excitation of the subarray including radiators of no less than three cells, then two 
controlled radiators can be used and arranged near the cell edges as shown in Figure 
4.1(b). Other approaches to forming subarrays of necessary extent are the arrange-
ment of either the driven radiator above the cell aperture or passive scatterers in 
front of the driven radiator. The latter approach has been implemented in a C-band 
waveguide array [16] whose module is shown in Figure 4.2. The module consists 
of linear arrays of rectangular waveguides excited by H-plane horns having dielec-
tric plates on the walls for providing a uniform amplitude distribution in the horn 
aperture [17, 18]. The waveguides contain feedthrough phase shifters for provid-
ing wide-angle beam scanning in a ±40° sector in the H-plane (horizontal plane in 
Figure 4.2). The space between the controlled linear arrays arranged with spacing 
3.42l is filled in with corrugated structures formed by short-circuited parallel-plate 
waveguides. The latter are effectively excited due to the scatterers installed in front 
of the linear arrays as well as in front of some passive parallel-plate waveguides. 
The positions of the short circuits determining the reactive load values as well as the 
positions of the scatterers have been selected so that each linear array forms a sector 
radiation pattern providing high gain in the sector of ±6.5° in E-plane.

Figure 4.1  Networks of phased array antennas with reactively loaded radiators excited over free 
space from (a) one and (b) two controlled radiators in a cell.
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The possibility of shaping the sector partial patterns (or controlled element pat-
terns) in arrays employing reactively loaded radiators is studied in this chapter by 
using two models. The first model is a modulated corrugated structure excited by 
specified electric and magnetic currents arranged above the structure [19]. In the 
second model, a small portion of the parallel-plate waveguides are excited by TEM 
waves of specified amplitudes, while all the other wavegudes contain short circuits 
[20, 21] whose positions determine the values of the reactive loads.

4.2   Modulated Corrugated Structure Excited by Electric  
and Magnetic Currents

The infinite corrugated structure with modulation period b arranged in rectan-
gular Cartesian coordinate system 0xyz is shown in Figure 4.3. The structure is 

Figure 4.2  Phased array antenna module of C-band for wide-angle scanning in horizontal (H) plane 
and in sector of ±6.5° in vertical (E) plane.
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assumed to be perfectly conducting, uniform along the y-axis, and consisting of sort- 
circuited parallel-plate waveguides of identical width with infinitely thin walls. Let 
M be a specified number of waveguides per period, a = b/M be the waveguide width, 
and hm be distance from the aperture to the short circuit in the mth waveguide sat-
isfying the condition of periodicity

 , 0, 1, 2, . . .m Mq mh h q+ = = ± ±  (4.1)

Of primary interest is the radiation pattern corresponding to excitation of the 
structure by local sources arranged, for instance, in region S0 above the waveguide 
apertures. To solve the problem of such a local excitation, we will use a known 
approach that first solves a problem of quasi-periodic excitation and then uses a 
relation between the fields corresponding to both types of excitation (see Chapter 1 
or [22, 23]).

4.2.1  Quasi-Periodic Excitation

Let the structure be excited by electric and magnetic currents located in a periodic 
system of regions Sq, where q = 0, ± 1, ± 2, . . . , formed by parallel transfer of the 
region S0 along the x-axis with period b in a strip 0 < zmin £ z £ zmax (Figure 4.3). We 
will assume that the current distribution is independent of y and that the currents of 
adjacent regions differ only by the factor exp(iU), where U is the phase difference 
determining the main lobe direction. So, we write the current distribution as
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where je,m(x, z) are vectors of the electric and magnetic current density in S0 with 
nonzero components ( , )e

xj x z , ( , )e
zj x z , and ( , )m
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is the characteristic function. The indicated current distribution corresponds to the 
case of H polarization defined in Chapter 1.

Figure 4.3  Modulated corrugated structure excited by electric and magnetic currents.
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The total electromagnetic field to be determined may be expressed via the trans-
verse component of the magnetic field Hy, which we represent in the form

 0( , , ) ( , , ) ( , , ) ( , , )s
yH U x z U x z U x z U x zψ ψ ψ= = +  (4.3)

where y0 is the field created by currents (4.2) in the absence of the structure, and y s 
is the field scattered by the structure.

The field y0 being of interest for further operations in the regions z < zmin and 
z > zmax can be found via vector potentials determined by currents (4.2) as
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where

 
2 2( ) ( )q x x qb z zρ = - - + -¢ ¢

and (1)
0 (. . .)H  is the Hankel function of first kind and zero order (the time depen-

dence is assumed to be taken in the form e-iw t). Applying the Poisson’s summation 
formula [24] to (4.4) as well as formulas (1.22) we obtain the following superposi-
tion of the Floquet modes
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with amplitudes
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and propagation constants
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The upper and lower signs in (4.5) and (4.6) should be taken at z > zmax and  
z < zmin, respectively.

When determining the scattered field y s, we will suggest that only the domi-
nant TEM modes are propagating in the waveguides (i.e., a < l /2), while the short  
circuits are arranged sufficiently far from the apertures so that their interaction with 
the apertures over higher order modes arising at the apertures as a result of scatter-
ing is negligible.

When the structure is illuminated by field (4.5), the TEM-modes propagating in 
both directions are formed between the waveguide apertures and short circuits. Let 
us continuously extend the field of those modes in each waveguide down to - ¥, and 
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take into account the presence of the short circuits as follows. Let Am(U) be the ampli-
tude of the TEM mode coming to the mth waveguide aperture. Then the amplitude of  
the mode going down from the aperture will be equal to Am(U)exp(-i2khm), so that 
the total transverse electric field vanishes on the short circuit. As a result, we reduce the  
initial problem of determining the scattered field y s to two classical problems. The 
first corresponds to excitation of the structure without the short circuits by the Flo-
quet mode field (4.5). The second corresponds to excitation of the same structure by 
the waveguide TEM modes coming to the apertures.

The first problem is solved similarly to the problem of a plane wave scattering 
considered, for example, in [25]. Applying the method of factorization [25] to our 
problem and using the principle of superposition, we obtain the field reflected from 
the waveguide apertures back to the free space region z > 0

 

1
( ) ( )

( , , )
( )

( )
( 1)

( )( )

q Mn q Mn

q q q qs

qq

i x i z
q Mn q q Mnn

q Mn q q Mn q Mnn

B U G
U x z

k a

G e

k

α

α
ψ

α + +

-¥
+

=-¥

+ Γ¥
+ + +

+ + +=-¥

Γ
= -

+ Γ

Γ
´ -

+ Γ Γ + Γ Γ

å

å
 

(4.8)

and the amplitudes of the TEM modes going from waveguide apertures in the re-
gion z < 0

 

( ) sin( / 2)
( ) ( )

( ) / 2
qq q q im a

m q
q qq

G a
T U B U e

G k a
αα

α

¥
+-

+=-¥

Γ
= å

 
(4.9)

where

 

1/ 2

0
1

cos( ) cos( )
( ) exp ln2

sin( )

(1 / )(1 / )
(1 / )

1 /

q
q

q Mp q Mp

pp

ka a i a
G k

ka

α αα
π

α α
α

α γ

+

¥
+ -

=

-æ ö æ ö= ç ÷ç ÷ è øè ø

+ Γ + Γ
´ + Γ

+Õ
 

(4.10)

is a function analytical and nonzero everywhere in the upper half-plane of complex 
variable a, and 
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are propagation constants of the waveguide modes. Changing the order and sum-
mation indices in (4.8), we rewrite the latter in a form more convenient for the 
further calculations:
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where
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Consider now the second problem. Let the structure without the short circuits 
be excited by the TEM modes coming to the apertures with amplitudes Am(U) sat-
isfying the condition

 ( ) ( ) iqU
m Mq mA U A U e+ =  (4.13)

resulting from (4.1) and (4.2). Taking into account (4.13), we represent the field 
exciting the structure in the form
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where u = U/M and
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where
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The expression (4.16) relates the excitation fields (4.14) and (4.17). According 
to the principle of superposition, the same relation will take place for the scat-
tered fields corresponding to the excitation fields. The solution of the problem cor-
responding to excitation of the parallel-plate waveguide array by field (4.17) is 
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known (see, for example, [22, 25]). Accounting for the notations used in (4.7), we 
write that solution as
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(4.19)

Using (4.16) and (4.18), we obtain the following expression for the field scat-
tered by the array in the region z > 0
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(4.20)

where we have accounted for aMq(U + 2p p) = ap + Mq (U).
The amplitudes Am(U) in formula (4.20) are still unknown. To determine them, 

we will use a technique similar to that described in [1]. The TEM modes going down 
from the apertures are created not only by interaction between the waveguides as 
takes place in [1], but also due to the field (4.5) exciting the waves with amplitudes 
(4.9). Accounting for (4.13), we may express that fact for waveguide with number 
0 in the following form
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where Cm is the coefficient of coupling between two waveguides with the differ-
ence of their numbers equal to m. Carrying out some elementary transformation in 
(4.21), we may rewrite it as an algebraic equation:
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where
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Considering similarly the waveguides with numbers 1, 2, . . . , M - 1, we obtain 
M - 1 more algebraic equations for A¢m(U)
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To calculate functions (4.23) determining the matrix elements of (4.22), (4.24), 
and (4.25), we take advantage of the properties of the function
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which is the reflection coefficient of the parallel-plate waveguide array excited by 
field (4.17). Rewriting (4.26) in the form
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and replacing u by u + 2p p/M, p = 0,1,2, . . . , M - 1, we obtain the following  
algebraic system
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Solving (4.27), we determine Rm(u). To calculate function (4.26) itself, we may take 
advantage of the exact formula [22]
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where
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Formula (4.28) is convenient for performing calculations at |u| £ p. If |u| > p, one 
may use its property of periodicity R(u + 2pq) = R(u), q = 0, ±1, . . .

Thus, the expression (4.20) and the subsequent algorithm yield the solution of 
the second problem. The total field scattered by the structure in the region z > 0 is 
determined by summation of the fields (4.11) and (4.20).

4.2.2  Radiation Pattern at Local Excitation

Let now the structure be excited by the current distribution j e,m(x,z), localized only 
in the region S0 (Figure 4.3). This distribution relates to the quasi-periodic distribu-
tion (4.2) by means of a linear operator of integration over phase U
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According to the principle of superposition, the same relation will be valid for 
the fields corresponding to the current distributions (4.30) and (4.2). Therefore, the 
radiation pattern of the structure excited by the currents (4.30) may be expressed 
as follows:
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where q is the angle measured from the z-axis and Fp(U,q) is the radiation pattern 
of the structure at excitation of it by currents (4.2). This pattern is determined by 
the field distribution at height h > zmax as follows
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Substituting y in (4.32) by the sum of fields (4.5), (4.11), and (4.19), we obtain
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where d(. . .) is the delta function. Substitution of (4.33) in (4.31) yields final expres-
sion for the radiation pattern of the structure at local excitation of it
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in which B 0
+ and D0 are determined from (4.6) and (4.12), respectively, A¢m(U) are 

calculated as a result of solution of equations (4.22), (4.24), and (4.25), and B0 is 
determined by formula
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resulted from (4.20) and (4.29). Note that the infinite series (4.12) converges so 
fast that accounting for only the zero order term is sufficient for calculation of D0 
at zmin > a.

4.2.3  Shaping of Sector Radiation Pattern

The expression (4.34) for the radiation pattern of the structure excited by localized 
sources as well as the algorithm developed earlier for calculating the coefficients 
used in (4.34) allow us to consider the problem of shaping the sector radiation pat-
tern. Let the structure be excited by two filamentary Huygens elements arranged 
at height z0 above the waveguide apertures and spaced at distance 2x0 from each 
other. Such a choice is made because the Huygens element is a simple and suffi-
ciently good model of an aperture feed, and selection of the distance between the 
filaments allows us to control the field of illumination. The components of the feed 
current density are specified in the form
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where the relation between the amplitudes of the electric and magnetic currents has 
been chosen to steer the feed radiation pattern toward the structure. We will also 
assume that the structure is symmetric with respect to the coordinate system origin; 
that is,

 , 0,1,2,. . .m mh h m- = =  (4.36)

and therefore the radiation pattern of the structure will be an even function of the 
observation angle q. This condition allows restricting the consideration of the pat-
tern only by q ³ 0.
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The problem of synthesis of the sector radiation pattern at the conditions in-
dicated previously may be stated as follows: it is required to find such positions of 
the short circuits hm, which provide minimum of the maximum pattern level in the 
region of the grating lobe movement t1 with respect to the minimum pattern level 
in the region of the main lobe scanning t0; that is, to find minimum of the following 
function of many variables

 01

( ) max | ( )|/min | ( )|g F F
θ τθ τ

θ θ
ÎÎ

=h
 (4.37)

where h is the vector of the short-circuit positions that contains 1 + M/2 compo-
nents for even M or (1 + M)/2 components for odd M with accounting for the ge-
ometry of the structure (Figure 4.3) and symmetry relation (4.36). The half-width 
of the scan sector t0 is specified in the form
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(4.38)

where z ³ 1 is the element use factor (see Chapter 1 or [26]), which is also assumed 
to be specified.

The solution of the synthesis problem stated earlier has been obtained using 
a developed FORTRAN code including subroutines calculating the pattern (4.34) 
and the objective function (4.37), as well as a subroutine performing a search for a 
minimum of (4.37) on the basis of the method of deformable polyhedron described 
in [27]. Some results of the sector pattern synthesis are presented in Figure 4.4. The 
geometric parameters corresponding to the patterns are given in Table 4.1.

Note that as it follows from the system of equations (4.22), (4.24), and (4.25), 
as well as from expression (4.34), the pattern will not be changed if we add an 
entire number of half-wavelengths to the found positions of the short circuits. The 
nonshaded regions in Figure 4.4 correspond to the scan sector of the main lobe  
(0 £ sinq £ sinqmax) as well as the regions of the grating lobe movement. The shaded 
regions were excluded from the consideration in the process of calculation of the 
objective function (4.37).

The presented examples show that the radiation pattern level in the grating lobe 
regions does not exceed –13 dB, which may be acceptable for some applications.

The results have shown that two spaced current filaments are preferable than 
one filament for the sector pattern synthesis at z0 > l /2. This feature can be ex-
plained as follows. The radiation pattern of the structure without the short circuits 
is determined by the first two terms in square brackets of (4.34). This pattern cor-
responding to one current filament exciting the structure is shown by the dashed 
curve 1 in Figure 4.4(c). As we see, this pattern normalized to the filament pat-
tern maximum has rather high sidelobes. The use of two filaments arranged at an 
appropriate distance from each other allows significant reduction of the sidelobe 
level, as demonstrated by the dashed curve 2 in Figure 4.4(c). This, in turn, creates 
favorable conditions for shaping the sector flat-topped pattern corresponding to the 
third term in (4.34) depending on the short-circuit positions. The selection of fila-
ment spacing is performed as follows. The analysis of the first and second terms in 
(4.34) shows that they have a common factor cos(kx0 sinq). Therefore, if we choose 
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Figure 4.4   (a–c) Radiation patterns of the structure with parameters indicated in Table 4.1 at local 
excitation by currents (4.34).
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x0 = p /(2k sinq ¢), where q ¢ is the angle corresponding to the highest sidelobe posi-
tion, the indicated factor vanishes in the direction of q ¢ and the level of the other 
sidelobes gets low.

4.3  Modulated Corrugated Structure with Active Waveguides

The second model to be considered corresponds to the arrays with reactively loaded 
radiators schematically shown in Figure 4.1. The model is an infinite periodic struc-
ture of parallel-plate waveguides presented in Figure 4.5, where b = (a + t)M is the 
period, a is the waveguide width, t is the waveguide wall thickness, M = M¢ + M¢¢ is 
the total number of the waveguides on the period with M¢ being the number of the 
active waveguides excited in the TEM modes of specified amplitude, and M¢¢ is the 
number of the passive waveguides excited due to interaction with the active guides 
and between themselves over free space. The passive guides are provided with short 
circuits, the positions of which determine the values of the reactive loads. The short-
circuit positions form a periodic function of the waveguide number; that is,

 , , 0, 1, 2, . . .m Mq mh h m M q+ = Î = ± ±¢¢  (4.39)

The waveguide walls and short circuits are assumed to be perfectly conducting.
The array element pattern here is the array pattern corresponding to excitation 

of the active waveguides located on only one period (in one array cell). The active 
guides of all the other cells are assumed to be loaded with matching resistances, as 
shown in Figure 4.5. Let the active waveguides of the central cell be excited by the 
TEM mode field that we write in the form
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where Am is a specified amplitude and Qm(x,z) is the function defined by formula 
(4.15). Further, we will suppose that the waveguides are single-mode ones, and the 

Table 4.1  Geometrical Parameters Corresponding to the Radiation Patterns Shown in Figure 4.4

Figures x0 /l z0 /l b /l M z hm /l m = 0, 1, . . ., M/2
4.4(a) 0.000 0.20 1.5 10 1.4 0.474 0.585 0.620 0.531 0.832 0.580
4.4(b) 0.258 1.00 1.5 10 1.5 0.525 0.537 0.599 0.734 0.576 0.562
4.4(c) 0.255 1.33 2.0 10 1.6 0.691 0.578 0.587 0.700 0.621 0.629

Figure 4.5  Modulated corrugated structure excited from active waveguides.
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short circuits are arranged sufficiently far from the apertures so that their interac-
tion with the apertures over evanescent higher order modes is negligible. At the 
indicated conditions, it is required to determine the array element pattern at excita-
tion (4.40).

4.3.1  Analysis and Synthesis

We determine the array element pattern via the array pattern corresponding to ex-
citation of all the active waveguides by the specified field
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satisfying the condition of quasi-periodicity

 ( , , ) ( , , )i i iU
p pU x b z U x z eψ ψ+ =  (4.42)

and related with the field (4.40) by means of the transformation
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Since the structure under consideration is periodic, the total field correspond-
ing to excitation (4.41) will also satisfy the condition (4.42). In particular, formula 
(4.13) will be valid for the amplitudes of the TEM modes coming to the apertures 
of all the waveguides. With accounting for (4.13), the array pattern corresponding 
to quasi-periodic excitation (4.41) is determined by formula
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where a¢ = b/M, q is the observation angle measured from the z-axis, f(q) is the pat-
tern of a waveguide embedded in the array without short circuits, and d (. . .) is the 
delta function. Applying the operation (4.43) to the pattern (4.44), we obtain the 
array element pattern corresponding to excitation (4.40)
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where A¢m(U) = Am(U)exp(-imu) and u = U/M.
The amplitudes of the backward waves going from the passive waveguide ap-

ertures to the short circuits are related to the forward wave amplitudes An(U) as 
An(U)exp(–i2khn), where n Î M¢¢, and determined via the coupling coefficients by 
formula
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where Cn is the coupling coefficient corresponding to a pair of waveguides, the 
difference of numbers of which is equal to n. Multiplying (4.46) by exp(-imu) and 
carrying out simple operations, we obtain the following system of linear algebraic 
equations for A¢m(U):
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where n Î M¢¢ and dmn is the Kronecker symbol. The functions Rn(U) are deter-
mined by (4.23) and calculated by means of solution of the linear algebraic system 
(4.27). The values of the reflection coefficient R(U) standing in the right-hand side 
of (4.47) and corresponding to the array without the short circuits are calculated 
either by using rigorous formula (4.28) valid for the walls of zero thickness or by 
using the mode-matching method [28, 29] or the integral equation method [1] in 
the general case. Note that the system (4.47) differs from the system of equations 
(4.22), (4.24), and (4.25) mainly by the right-hand side, determined by amplitudes 
of the waves excited from specified sources. In the case in question, the indicated 
amplitudes are specified in (4.40), while those considered in Section 4.2 are deter-
mined by electric and magnetic currents arranged above the structure.

Thus, the calculation of the array element pattern (partial array pattern) at 
specified positions of short circuits is reduced to successive solution of two linear 
algebraic systems (4.27) and (4.47). The dimension of the former equals the total 
number M of the waveguides in the cell, while that of the latter equals the number 
M² of the passive waveguides in the cell.

The technique described here is a part of the procedure designed for solving the 
problem of synthesis of the array with the sector element pattern. We state the syn-
thesis problem as follows. Provided that the array period b, positions and number 

Figure 4.6  Element pattern (––––), radiation efficiency (– – –), and geometry of array with b = 1.6l, 
M = 10, M ¢= 1, and t = 0.
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of active and passive waveguides on the period, amplitudes of incident waves in the 
active waveguides, and scan sector t0 width q £ qmax < arcsin[l /(2b)] are specified, 
it is required to find the short-circuit positions in the passive waveguides, at which 
the objective function

 0

( ) min | ( ) |g F
θ τ

θ
Î

=h
 

(4.48)

achieves its maximum value. We will also suppose that, together with the condition 
of periodicity (4.39), the structure is mirror-symmetric with respect to the middle 
of the array cell.

4.3.2  Calculated and Measured Results

Some results of the synthesis of the waveguide arrays with corrugated structures 
[21, 30–32] are presented in Figures 4.6 through 4.9. Numerical experiments have 
shown that the sector element patterns of relatively good quality in arrays with pe-
riod from one to two wavelengths may be obtained using only one active waveguide 
per period. Two active guides in each cell should be used for array periods from 
two to four wavelengths. The total number of the waveguides in each cell should be 
chosen so that the waveguide width is of the order of 0.1l to 0.2l.

To characterize the array match to free space when scanning, we use the array 
radiation efficiency determined by formula [21]
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Figure 4.7  Element pattern and geometry of array with b = 1.8l, M = 12, M ¢= 1, and t = 0.
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where
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are complex amplitudes of the TEM waves reflected back from the apertures of 
the active waveguides. The calculated radiation efficiencies (4.49) are shown in Fig-
ures 4.6 and 4.9 by dashed lines. These results show that the sector element patterns 
can be realized at relatively good match of the array to free space.

Figure 4.8  Element pattern and geometry of array with b = 3l, M = 20, M ¢= 2, and t = 0.

Figure 4.9  Calculated (––––) and measured (· · · ·) element patterns, radiation efficiency (– – –), and 
geometry of array with b = 3.42l, M = 22, M ¢ = 2, and t = 0.035l.
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The theoretical results obtained for the array with period b = 3.42l have been 
used for the development of an experimental breadboard for a C-band array shown 
in Figure 4.10. The corrugated structure comprises three array cells in the E-plane. 
It is excited through a two-channel power divider and two H-plane horns. The 
lateral slots corresponding to active waveguides of the structure are provided with 
matching loads. The measured radiation pattern of the central array element is 
shown in Figure 4.9 by a dotted line. We can see good agreement between the cal-
culated and measured results in the region of the sector beam and only small differ-
ence between the results in the sidelobe radiation region. These results characterize 
good agreement between the theoretical model and real design.
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c h a p t e r  5

Waveguide Arrays with Protruding 
Dielectric Elements

As shown in Chapter 4, the natural mutual coupling between array radiators over 
free space can be effectively used for the formation of overlapped subarrays with 
sector radiation patterns. The feeding system of the subarrays with reactively 
loaded radiators in this case is significantly simplified in comparison with the feed-
ing systems based on the multiport beam-forming circuits considered in Chapter 2. 
However, sector patterns of high quality can be formed only at sufficiently strong 
interelement interaction. Realization of such interaction between linear dipoles or 
open-ended waveguides considered in Chapter 4 requires the use of large number of 
the indicated radiators densely arranged in each array cell. There exists another class 
of radiators between which strong interaction can be realized. This class includes 
radiators of longitudinal type, in particular, dielectric rods. Such radiators, being 
sections of open transmitting lines, can support traveling waves, which provide 
the required interaction. Since the interaction occurs with wave traveling along the 
radiator, the coupling is mainly transferred in the direction of the wave movement. 
Therefore, unlike the arrays of open-ended waveguides or dipoles, the interaction 
between inputs of dielectric rods is considerably weaker, and that is their positive 
feature. Another positive feature is the possibility of using only one longitudinal ele-
ment in the array cell with transverse dimensions up to one wavelength and a half, 
and this may be simpler than a few reactively loaded waveguides or dipoles in each 
cell. Moreover, the design of such a radiating structure may be very simple because 
a dielectric radiator is just an extension of waveguide filling protruding beyond the 
aperture.

5.1  Waveguide-Dielectric Arrays and Structures

Array antennas with dielectric radiators have been known since 1950s. A labora-
tory breadboard of a scanning array consisting of four hollow dielectric bars with 
waveguide excitation designed in 1955 is described in [1]. Paper [2] of 1963 (see 
also [3]) presents results of a study demonstrating shaping a flat-topped pattern 
of ±32° width corresponding to excitation of the central element in a linear five- 
element array of polystyrene rods of 6l length arranged with 0.75l element spacing,  
where l is the operating wavelength. Application of dielectric protrusions for im-
provement of waveguide array match with free space is studied in [4] of 1967. A 
nine-element linear array of ceramic rods operating in the X-band is described in 
[5]. Reference [6] describes shaping of a sector element pattern in an infinite array 
of dielectric plates arranged on a screen and excited by specified currents. There has 
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been demonstrated a sector pattern of ±30° width shaped at plate height of 3.4l 
and element spacing of l, as well as a sector pattern of ±21° width shaped at plate 
height of 6.8l and element spacing of 1.35l. The mechanism of shaping flat-topped 
partial patterns in arrays of dielectric-rod elements is discussed in [7, 8], using an 
approximate approach to calculation of the dielectric structure eigenmodes and 
without accounting for real conditions of the rod excitation. Survey [9] contains 
cases of applications of dielectric rod radiators in a number of X-band mobile radar 
arrays for shaping flat-topped element patterns. In particular, an element pattern 
of ±42° width is formed in the principal planes of one of the hexagonal radar array 
with element spacing of 0.755l. 

One of the relatively recent developments in the area in question is a Ka-band 
array [10] consisting of large-aperture phased transmit/receive modules of reflective 
type [11]. One such module is shown in Figure 5.1(a). The module has transverse 
dimension of about 70l and comprises about 3,600 waveguide-rod radiators ar-
ranged in a hexagonal lattice with element spacing of 1.1l. The indicated spacing 
has been dictated by transverse dimensions of ferrite phase shifters [12] used in the 
array. The radiating structure of the module was designed experimentally [13] using 
a small breadboard shown in Figure 5.1(b). The diameter of the circular waveguide 
and, respectively, a protruding dielectric rod having cylindrical-conical shape was 
selected to provide the best match of the array to free space, while the protrusion 
length was determined to form a flat-topped element pattern suppressing the array 
factor grating lobes appearing in the visible space when scanning the main beam. 
As a result, there was obtained a flat-topped element pattern of width ±25° in the 
principal array planes. The module [11] has become a base for development of a 
self-dependent radar [14], where the initial module feed has been replaced by a 
monopulse one. Another recent example demonstrating application of the dielectric 
rods is an active phased array antenna designed for a stratospheric communication 
system considered in [15].

Another type of dielectric radiator for arrays of the Ka and higher frequency 
bands where the rod radiator dimensions are small has been proposed in [13, 16]. 
This radiator is an integrated element of a perforated dielectric plate 2 shown in 
Figure 5.2(a, b), which is arranged on a metallic plate 1 having waveguide chan-
nels. The lower face of the dielectric plate has protrusions 3 shown in Figure 5.2(a), 
where the plate 2 is depicted in its elevated position. The indicated protrusions 
enter the waveguide channels in plate 3 and serve as matching elements between 
the waveguides and dielectric radiators. The holes in the plate forming the dielectric 
radiators are performed in such a way that their axes are placed between the axes 
of the waveguide channels. The upper face of the dielectric plate has dimples ar-
ranged just on the waveguide axes serving for matching the plate to free space. The 
element patterns of the array with a polyethylene plate corresponding to excitation 
of the central waveguide in the TE11 mode of circular polarization measured in the 
horizontal and vertical planes are shown in Figure 5.2(c). These patterns are close 
to the patterns of the corresponding dielectric rod array element available in [14].

Note that the holes in the plate may be nonreach-through ones [13, 16]. The 
function of the dielectric radiators in this case is combined with the function of a 
dielectric radome. One of the modifications of such a structure in the form of the 
rectangular bars supporting a dielectric layer has been analyzed in [17].
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Figure 5.1  (a) Module of Ka-band waveguide-rod array of reflective type [10], and (b) a breadboard 
used for optimization of the radiating structure.
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5.2  Overview of the Methods and Results

The attractiveness of using dielectric elements protruding from waveguides as 
phased array radiators initiated and stimulated development of the methods for 
analysis of the arrays with such elements in rigorous statement of the problem over 
a few latest decades. The literature describes a few methods that can be applied to 
solution of the problem.

Figure 5.2  (a) Sketch of circular waveguide array with dielectric structure, (b) photograph of poly-
ethylene structure, and (c) measured central element power pattern in horizontal (––––) and vertical 
(– • – • –) planes.
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5.2.1  Mode-Matching Method

If the protruding dielectric elements are longitudinally uniform, the problem may 
be solved by the method of projective matching of the fields on the boundaries of 
the adjacent regions, for which it is necessary to know their eigenmodes and propa-
gation constants. The eigenmodes of rectangular and circular waveguides, as well 
as the vector Floquet modes for representation of fields near periodic structures, 
are well known (see Chapter 1 or, for instance, [18]). The eigenmode parameters 
for periodic dielectric structures are determined by numerical methods. Determi-
nation of the propagation constants with high accuracy in two-dimensional prob-
lems for arrays of dielectric plates considered in [19, 20] from relatively simple 
dispersion equations can be done without great difficulties. In three-dimensional 
cases, the problem becomes significantly more difficult. The problem for periodic 
structures of dielectric cylinders may be reduced to determination of eigenvalues 
and eigenvectors for matrices of high order. Such matrices have been obtained us-
ing the Galerkin method in [21] on the basis of the Maxwell operator and in [22] 
on the basis of transverse magnetic field strength components. Some algorithms 
of the mode-matching method for arrays of circular waveguides with protruding 
cylindrical rods are described in [23, 24]. The numerical results presented in [18, 
20, 23, 25] are obtained for arrays with relatively small element spacing from 0.5l 
to 0.68l. The studies mainly concerned the array matching to free space by means 
of selecting the protruding element parameters, as well elimination of the blindness 
effects. The problem of shaping of the flat-topped element patterns has not been 
considered.

If the protruding array elements are not longitudinally uniform (an example 
is conical rods), such arrays may be analyzed using the step-wise approximation 
of the elements with subsequent application of the mode-matching method, as it 
has been proposed in [24], where the reflection coefficient for an array of circular 
waveguides with two-step protruding cylindrical elements has been calculated as an 
example. A similar approach has been described in [25].

5.2.2  Incomplete Galerkin Method

This method allows reduction of the problem to systems of ordinary differential 
equations for coefficients of expansion of the fields in the cross-section of a dielec-
tric structure. An algorithm developed on its basis is described in [26, 27], though it 
does not present any numerical results for arrays of protruding rods. A modification 
of the algorithm for the case of uniform cylindrical rods is presented in [28, 29], 
where the problem is again reduced to determination of the propagation constants 
for the waves in the dielectric structure. The results obtained in [28] relate to the 
same arrays as those considered in [23]. The array element pattern shape in [28, 
29] has not been studied. The algorithm mentioned earlier has been applied in [30] 
to waveguide arrays with conical rods. The calculated results for the matching 
performance have been presented for a hexagonal array with element spacing of 
0.64l. The length and relative permittivity of the conical rods protruding from the 
waveguides are about 0.5l and 2.3, respectively. The diameter of the waveguides 
is 0.46l.
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An algorithm based on the cross-section method that is similar to the incom-
plete Galerkin method has been developed in [31] for analysis of parallel-plate 
waveguide arrays with dielectric inserts and protrusions of arbitrary shape. The 
presented results concern improvement of the array match by means of selecting 
the dielectric plate parameters arranged on the waveguide flanges. One example of 
shaping a quasi-sector element pattern is also given; however, the pattern width is 
almost twice as narrow as the width of the ideal sector element pattern correspond-
ing to the specified array period.

5.2.3  Projective Resonator Method

The projective resonator method has been applied in [32] for solution of a three-
dimensional problem for an array of waveguides with protrusions of arbitrary 
shape. The electric field in a volumetric periodic cell containing the protrusion is 
represented by an expansion over the eigenmodes of a rectangular resonator with 
upper perfect magnetic wall, while the magnetic field is expanded over the eigen-
modes of a rectangular resonator with upper perfect electric wall. The eigenmodes 
also satisfy the Floquet boundary conditions on the sidewalls of the resonator. 
The indicated expansions are substituted in the Maxwell equations written for 
the cell in question, and the resulting expressions are projected on the same ba-
sis functions. The process of projection accounts for conditions of matching the 
fields in the resonator to the waveguide modes in the waveguide aperture and to 
the Floquet modes in free space. As a result, the problem is reduced to a system 
of linear algebraic equations for unknown coefficients of expansion. Reference 
[32] contains all the necessary relations; however, no numerical results have been 
presented.

5.2.4  Method of Surface Integral Equations and Method of Auxiliary Sources

No publications where the former method is applied to the analysis of waveguide 
array with protruding dielectric elements themselves are known by the author. 
However, the method of surface integral equations has been applied to analysis of 
similar structures comprising dielectric-resonator elements as described in [33, 34] 
and in the papers referenced there. This method involves all the components of the 
corresponding tensor Green’s functions containing singularities, and that feature 
makes the algorithm of calculation rather cumbersome.

A simpler alternative excluding the Green’s function singularities and requiring 
no integration is the method of auxiliary sources. Reviews of the problems solved 
using that method and its modifications can be found in [35–37]. The first appli-
cation of the method to the problems associated with array antennas seems to be 
described in [38] considering an array of parallel-plate waveguides with an array 
of obstacles arranged in front of the waveguide apertures. Further modifications of 
the method have been developed in [35, 39, 40], where first solutions have been 
obtained to the two-dimensional problems for parallel-plate waveguide arrays with 
protruding dielectric elements of arbitrary shape with smooth boundary. The influ-
ence of the protrusion shape on the array performance, along with shaping of a sec-



5.2 Overview of the Methods and Results  149

tor element pattern, has been demonstrated, as shown in Figure 5.3 as an example. 
A generalization of the method for a three-dimensional case of a circular waveguide 
array with axially symmetric rods of smooth shape is described in [41] using ring 
electric and magnetic currents as auxiliary sources.

5.2.5  Method of Integral Equations for Polarization Currents

Besides the integral equations for equivalent surface electric and magnetic cur-
rents mentioned earlier, the problem may also be formulated in the form of integral 
equations for polarization currents in protruding dielectric elements combined with 
projective matching of the fields in the waveguide apertures. The first algorithms 
on this basis for solution of two-dimensional problems have been developed in  
[42, 43]. Then, such an approach has been further developed in [44, 45] for the 
case of E-polarization and in [46] for the case of H-polarization. Geometry of the 
structure considered in [44–46] is shown in Figure 5.4(a). Simplification of the algo-
rithms for calculation has been achieved there by means of involving eigenfunctions 
of appropriate rectangular resonators.

The papers [42–46] (see also Chapter 8 in [47]) contain results of shaping sec-
tor element patterns by means of selection of the protrusion parameters. One of the 
examples corresponding to the case of H-polarization is given in Figure 5.4(b). In 
addition, [45] demonstrates the influence of dissipation loss in the protrusions on 
the blindness effects that may take place in such arrays. No algorithms based on the 
method of volume integral equations have been developed for the three-dimensional  
case of the waveguide-rod arrays. However, a relational problem of plane electro-
magnetic wave scattering by absorbing periodic structures with pyramidal elements 
has been considered and solved in [48].

Figure 5.3  Element patterns for array [35] with element spacing 0.9l, protrusion relative permittiv-
ity 2, height 1.4l, width at the base 0.6l, radius of smoothing at the top 0.3l, and 0.15l.
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5.2.6  Finite Element Method and Commercial Codes

The finite element method comprising a few hybrid modifications (see, for instance, 
[49]) is one the most powerful means for electromagnetic simulation. Its application 
to analysis of waveguide-rod arrays may be found in [50], where an array of rectan-
gular waveguides filled with dielectric protruding above the apertures is modeled. 
The solution obtained first for the corresponding infinite periodic structure is used 
then for analysis of a finite array, which was earlier studied experimentally in [20]. 
A similar infinite array with an integrated one-layer radome has been considered 
in [17] by applying the hybrid finite element method. The finite element method, in 
which the domain of determining the solution is restricted by an ideally absorbing 
layer, has been implemented in the well-known commercial codes HFSS and Mi-
crowave Studio. Note that the analysis of the array with bars of rectangular cross- 
section protruding at l/2 carried out in [50] involves an algebraic system with 7,105 
unknown coefficients. The rods that allow shaping of a sector element pattern are 
usually several times longer. Therefore, application of the finite element method 
to the analysis of arrays with long dielectric elements would require significantly 
greater computer resources.

Figure 5.4  (a) Geometry and (b) characteristics of array with ai = 0.4l, at = 0.45l, ht = 0.25l,  
ei = et = 1, a = 0.57l, h¢ = 0.3l, b = 0.96l, ea = e = 2, t = 0.5l, and h = 1.2l, obtained by the method 
of integral equations for polarization currents at excitation of waveguides in TEM modes.



5.3 Hybrid Projective Method in Two-Dimensional Problems (E-Polarization)  151

5.3   Hybrid Projective Method in Two-Dimensional Problems  
(E-Polarization)

The review presented earlier shows that the existing methods that may be applied to 
the analysis of the waveguide-dielectric arrays have definite restrictions. The results 
obtained for the arrays in question do not cover some important cases, either. In 
particular, there are no results in the literature for long-sharpened protruding ele-
ments that are necessary both for shaping the sector element patterns of high qual-
ity and for providing good match of the array to free space. So, further studies in 
this area remain of interest both from the viewpoint of the methodology and from 
the viewpoint of investigating the properties of such arrays themselves.

In [51], there has been proposed a hybrid projective method applied to analy-
sis and optimization of one-dimensionally periodic arrays of stepped parallel-plate 
waveguides (or stepped horns) filled completely with dielectric protruding above 
the apertures. The method of [51] is similar to the incomplete Galerkin method 
[27], reducing the problem to systems of ordinary differential equations. However, 
unlike [27], the mentioned systems are solved by the one-dimensional finite ele-
ment method, as done in [52] in an analysis of periodic purely dielectric structures. 
As shown in [51], the best array performances are achieved when the protrusion 
width is considerably smaller than the waveguide width. This circumstance imposes 
restriction on the value of the dielectric material filling the waveguide. The use of 
dense dielectric does not allow the provision of good array match that is especially 
necessary for the case of H-polarization. In this case, one is forced to use a dielectric 
of smaller permittivity for filling the waveguide and denser dielectric for the pro-
truding element that is not the best solution from the view of the mechanical design. 
More promising is an array structure considered in [53–55], where the dielectric 
elements, emerging from the feeding waveguides and protruding to free space, only 
partially fill in the stepped waveguides, as described later.

5.3.1  Array Geometry and Excitation

The general geometry of the array to be considered in this section and detailed ge-
ometry of its waveguide-dielectric element in the plane 0xz of a rectangular Carte-
sian coordinate system 0xyz are shown in Figure 5.5(a, b), respectively. The array is 
a periodic structure of period b formed by input parallel-plate waveguides of width 
aw feeding the stepped horns. The width and height of the lower horn section are 
a0 and h0, while the same parameters of the upper (radiating) section are a and h1, 
respectively. The widths of the dielectric plate at the base and top of the lower sec-
tion are t00 and t01, and those at the base and aperture of the upper section are t10 
and t11. The protrusion of height h has width t0 at its base and width t1 at the top. 
The input waveguides are completely filled with dielectric of relative permittivity 
ew, while the relative permittivity of the plates in the lower and upper horn sections 
as well as that protruding to free space are et, ea, and e, respectively. The surfaces 
of the input waveguides and stepped horns are assumed to be perfectly conducting. 
Selecting the indicated array parameters, we may obtain various array configura-
tions, including those that have already been considered in the literature and may 
be used for validation of the algorithm developed later.
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The input waveguides are assumed to be excited in their dominant modes TE10 
of unit amplitude and with phase increment Y = kb sinq between adjacent wave-
guides. The problem then is the determination of the scattered field and, in particu-
lar, the calculation of the array reflection coefficient and element pattern, which are 
of primary interest in practice.

5.3.2  Representation of the Fields

The excitation of the input waveguides in the TE modes corresponds to the case 
of E-polarization when only the electromagnetic field components Ey, Hx, and Hz 
are not equal to zero identically. Assuming that the harmonic time dependence is 
chosen in the form e-iwt, we may write the total electric field in the central input 
waveguide as a superposition of the incident and reflected TE modes
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Figure 5.5  (a) General array geometry and (b) detailed geometry of waveguide-dielectric element.
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where z ¢¢ = -(h0 + h1), gwn = [k2ew – (np /aw)2]1/2 are propagation constants, d1n is 
the Kronecker symbol, and Rn are amplitudes of the reflected modes to be deter-
mined.

The radiated electric field above the protrusions is a superposition of Floquet 
modes
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with propagation constants (1.99) and unknown amplitudes Tq.
The electric fields in the lower and upper horn sections as well as in the free 

space region containing the protrusions are represented as expansions over com-
plete systems of transverse functions in the indicated regions
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with unknown coefficients depending on the longitudinal coordinate z, and z¢ = -h1.

5.3.3  Projective Matching of the Fields on the Boundaries

The electric field (5.3) must vanish on the flange of the input waveguide and be 
equal to field (5.1) in the input waveguide aperture at z = z ¢¢. Projecting this equal-
ity on the transverse functions used in expansion (5.3), we obtain the following 
algebraic subsystem
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with coefficients
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The transverse magnetic field component Hx in the input waveguide aperture at 
z = z ¢¢ must be equal to the field component Hx(x, z ¢¢) in the lower horn section. The 
indicated components are proportional to ¶Ey /¶z, where Ey is determined by (5.1) 
and (5.3). Projecting the equality of the indicated magnetic fields on the transverse 
functions of the input waveguide, we obtain one more algebraic subsystem
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where m = 1, 2, . . .,¥, and the prime at the unknown coefficient denotes the deriva-
tive over the argument.

The similar projective matching of the transverse electric and magnetic field 
components at z = z¢ = -h1 and z = 0 gives the following relations
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where coefficients Q(1)
qm are determined by formula (5.7) where n, p, aw, and a0 

should be replaced by q, m, a0, and a, respectively, while coefficients Qnp are deter-
mined by formula
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and the asterisk at this coefficient in (5.12) means complex conjugation.
Finally, since fields (5.2) and (5.5) are expanded over the same transverse func-

tions, matching of the transverse electric and magnetic components at z = h gives 
two more relations

 ( )q qE h T=  (5.14)

 ( )q q qE h i T= Γ¢  (5.15)

which will be used later in the process of obtaining final system of algebraic equations.
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5.3.4  Application of the Finite Element Method

The electric field (5.3) in the lower horn section at z ¢¢ £ z £ z ¢ must satisfy the Helm-
holtz equation
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where ẽ(x,z) = et in the dielectric and ẽ(x, z) = 1 in the gaps. Substituting (5.3) in 
(5.16) and projecting (5.16) on a pth transverse function of the section in question 
multiplied by 2/a0, we obtain a system of ordinary differential equations similar to 
those derived in [27, 56]
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where g–p = [k2 - (pp /a0)2]1/2, p = 1, 2, . . ., ¥,
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and t(z) = t00 - (t00 - t01)(z - z¢¢)/h0 is the width of the dielectric part in the section 
[Figure 5.5(b)].

Further, unlike [27, 56], we will solve system (5.17) applying the one- 
dimensional finite element method [49, 52]. Using the piecewise-linear approxima-
tion of the unknown functions E

–
q(z) in (5.3), we represent them as
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where E
–

sq are unknown constant coefficients, N
–
 is the number of nodes including 

the edge points at z = z ¢¢ and z = z ¢ = -h1, as well as
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are triangular functions with node coordinates zs = z ¢¢ + (s - 1)D and spacing be-
tween the nodes D = h0 /(N

–
 - 1). Substituting (5.19) in (5.17), multiplying (5.17) by 

fs¢(z), and integrating the obtained expression over z from z ¢¢ to z ¢, we reduce dif-
ferential equations (5.17) to algebraic equations
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where s ¢ = 1,2, .  .  . , N
–
; p = 1, 2, .  .  . , ¥;
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The first and last terms in (5.21) are formed as a result of integration of the 
first term in (5.17) by parts. Furthermore, the final form of the last term in (5.21) 
has been obtained with account for (5.10). The nonzero values of integrals are 
calculated using explicit expressions given in Appendix 5A. Note also that the ex-
pressions for (5.24) have been obtained using the piecewise-linear approximation 
of functions (5.18) in the form
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The electric field (5.4) in the upper horn section is considered similarly. The un-
known variable coefficients in (5.4) are represented in the form of a superposition 
of Ñ triangular functions; that is,
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with unknown constant coefficients Ẽsn. The nodes of triangular functions are lo-
cated in points ( 1)sz z s= + - D¢ , where 1/( 1)h ND = -� . Application of the finite ele-
ment method, as described earlier, results in a linear algebraic subsystem
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where 1, 2, ...,s N=¢ � ; 1, 2, ...,m = ¥; 2 2 1/ 2[ ( / ) ]n k n aγ π= -� . The coefficients (0)
s sI ¢
� , (1)

s sI ¢
� ,  

and 
mn
s sJ ¢
�  are determined by formulas (5.22) through (5.24), where the integration 

limits should be replaced by z¢ and 0. Function pqW  in (5.24) should be replaced 
by function mnW�  determined by formula (5.18), where p, q, a0, and et should be 
replaced by m, n, a, and ea, respectively, and the dielectric insertion width should 
be determined as 10 10 11 1( ) ( )( )/t z t t t z z h= - - - ¢ . The last term in (5.26) has been 
obtained with account for (5.12).

The electric field (5.5) in the free space regions containing the protruding ele-
ments at 0 z h£ £  must satisfy the Helmholtz equation (5.16). Substitution of (5.5) 
in (5.16) and projection of (5.16) on exp( )/pi x bα-  give a system of ordinary dif-
ferential equations of the following form
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where 0, 1, ...,p = ± ± ¥,

 

/2
( )

/2

( 1) sin[ ( ) / ]
( ) ( 1)

( )
q p

t
i x

pq

t

q p t b
W z e dx

b q p
α αε πε

π
-

-

- -= = -
-ò

 
(5.28)

and 0 0 1( ) ( ) /t t z t t t z h= = - -  is the protrusion width.
Applying the finite element method to solving (5.27), as has been done earlier 

for the fields in the stepped horn sections, we obtain algebraic equations
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where 1, 2, ...,s N=¢ ; 0, 1, ...,p = ± ± ¥; Esq are unknown values of the variable coef-
ficients in expansion (5.5) in N points with coordinates ( 1)sz s= - D, /( 1)h ND = - , 

( )Np pE E h= , and
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are matrix elements, in which the integrals are calculated similarly to that described 
earlier for the horn sections. The first and third terms in (5.29) are formed as a 
result of integrating expression 2 2/pd E dz  in (5.27) by parts and accounting for 
expression (5.15).

5.3.5  Algebraic System and Array Characteristics

The subsystems (5.8), (5.6), (5.21), (5.9), (5.26), (5.11), and (5.29) in the indicated 
order constitute a complete system of linear algebraic equations for unknown coef-
ficients Rm, ( )qE z¢ ¢¢ , sqE , ( )mE z¢ ¢� , snE� , (0)qE¢ , and sqE . Note that ( )pE z¢¢  in (5.6), ( )qE z¢  
and ( )mE z¢�  in (5.9), as well as (0)nE�  and (0)pE  in (5.11) are equal to 1pE , NqE , 1mE� ,  

NmE �� , and 1pE , respectively. We solve this infinite system by the method of truncation  
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with account for Mw first waveguide modes in (5.1), M–  transverse functions for 
the lower horn section in (5.3), M̃ transverse functions for the upper horn sec-
tion in (5.4), as well as M first transverse functions for the region contain-
ing the protrusions in (5.5) and for free space above the protrusions in (5.2). 
So, the order of the truncated system for the unknowns listed earlier is equal to 

( 1) ( 1) ( 1)wM N M N M N M+ + + + + +� � . Since the products of the s¢th and sth trian-
gular functions are equal to zero for | | 1s s- >¢ , the matrix of the system has a 
block-banded structure shown in Figure 5.6, where the blocks containing nonzero 
elements are shown in gray and the blocks with a diagonal lines contain nonzero 
elements arranged only on its diagonals.

After obtaining the numerical solution of the truncated algebraic system, we 
have the reflected mode amplitudes, including the array reflection coefficient R1, as 
well as the radiated Floquet mode amplitudes q NqT E= . They are used for verifica-
tion of the power balance relation [39]
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and for calculation of the array element pattern
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normalized so that F 2(0) equals the coefficient of power transmission in the main 
array beam.

5.3.6  Realization, Validation, and Numerical Results

The algorithm described earlier has been realized in a FORTRAN code. The system 
of algebraic equations is solved using the Gauss’ elimination method with selection 
of a leading element in a column. The block-banded structure of the matrix has also 
been taken into account. Due to that, the computation time has been shortened a few  
times compared to the case when the zero blocks are not excluded in the processing.

0

0

Figure 5.6  Structure of the linear algebraic system.
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Validation of the code operation has been verified by a few ways described in 
[18]. The tests involved the power balance relation (5.31), convergence of the results 
with increasing the number of triangular functions in the finite element method and 
the number of the coefficients taken into account in expansions of the fields over 
transverse functions, as well as comparison of the results obtained by the method 
in question with the data obtained by other methods and available in the literature 
for some special cases that can be modeled making appropriate selection of the 
parameters for the structure shown in Figure 5.5.

One of the examples characterizing convergence of the array reflection coef-
ficient with increasing the number of nodes N for the free space region containing 
the protruding elements is shown in Figure 5.7. The array parameters are indicated 
in the figure caption. The results have been obtained at the number of Floquet mode 
transverse functions M = 31, which is deliberately large enough for the indicated el-
ement spacing. The number of the waveguide modes Mw = 20 has been chosen here 
and later so that /w wM Ma b£ . The solid curve corresponds to N = 30. We see that 
the other curves obtained at smaller values of N quickly approach the solid curve as 
N increases. The test for convergence of the results on M has shown that the results 
at M = 11 and Mw = 7 already practically coincide with those corresponding to  
M = 31 and Mw = 20, and, for this reason, the corresponding plots are not presented 
here. Other results on study of the convergence may be found in [51, 57]. Some 
recommendations on choosing the number of the nodes in the one-dimensional 
finite element method are given in [52]. Note that the greater the angle between the 
side surfaces and the z-axis is and the greater the dielectric element permittivity is, 
the smaller the node spacing should be for providing high accuracy of calculations 
at the piecewise linear approximation chosen for functions (5.18) and those ones 
similar to them.

A few examples on comparing the results obtained using the algorithm described 
earlier to the results available in the literature for some simpler cases of the array 
geometry are given in [57]. Here, in Figure 5.8, we present the results of shaping 
the sector element pattern for the structure shown in Figure 5.4(a). This structure 

Figure 5.7  Reflection coefficient of array with b = 0.6l, aw = a0 = a = t00 = t01= t10= t11= t0= 0.4l, 
t1= 0.2l, h0 = h1 = 0.1l, h = 0.6l, and ew = et = ea = e = 2, excited in TE10 mode, calculated at N = 5 
(´´´), 10 (DDD), 20 (°°°), 30 (–––), and constant N

_
, N~ = 5, Mw = M

_
 = M~ = 20, M = 31.



160 Waveguide Arrays with Protruding Dielectric Elements

excited in the TE10 modes was first studied in [45] by the method of integral equa-
tions for polarization current in the protrusion. As the comparison shows, the hy-
brid projective method gives practically the same results. Note also that the power 
balance relation (5.31) in all calculations is satisfied with accuracy of at least six 
decimal digits. So, all the tests have shown good capabilities of the proposed algo-
rithm for numerical study of the two-dimensional models for waveguide-dielectric  
arrays. Some results of such a study are presented later.

The purpose of the study has been to reveal the array capabilities of shaping 
the sector element patterns. The numerical experiments have shown that the best 
results, as a rule, are achieved at the maximum possible width of the upper horn 
section at a specified element spacing and when the section supports two propagat-
ing modes. The use of sharpened dielectric elements provides their good match to 
free space since the modes in the dielectric structure smoothly change for ordinary 
Floquet modes in free space above the protrusions. The selection of the element 
length and its width at the base is initially made in the absence of the stepped tran-
sitions (i.e., at 0wa a a= = ) as well as at total filling of the waveguide sections with 
dielectric. At specified permittivity and some large length of the dielectric protru-
sions, the protrusion width at the base is selected to minimize the reflection coef-
ficient of the dominant mode. Then the protrusion length is selected to provide the 
sector shape of the element pattern. The next operation is the selection of the lower 
horn section parameters a0 and h0 to match the input section to the upper section 
at their specified widths. The purpose of the final operation is the selection of the 
upper section height h1, allowing either avoidance or minimization of the undesir-
able resonance effects.

The results of the application of the technique described earlier to optimization 
of the array excited in the TE10 modes are shown in Figures 5.9 through 5.11. The 
permittivity of dielectric material used in all the sections of the array with element 
spacing b = 0.8l (Figure 5.9), b = 0.91l (Figure 5.10), and b = 1.1l (Figure 5.11) is 

Figure 5.8  Reflection coefficient and element pattern of array with b = 0.91l, aw = a0 = a = t00 = t01=  
t10 = t11= 0.57l, t0 = t1= 0.5l, h0 = h1 = 0.1l, h = 1.4l, and ew = et = ea = e = 2, excited in TE10 
mode, calculated at Mw = M

_
 = M~ = 14, M = 21, N

_
, N~ = 5, and N = 41; (´´´, DDD) – present method,  

(––, - - -) – method of [45].
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equal to 2.56, 2, and 1.5, respectively. All the other array parameters are indicated in 
the figure captions. The obtained element patterns are compared to the normalized 
ideal sector element patterns (see Chapter 1) equal to cosθ  for 0 sin /(2 )bθ λ£ < ,  

0.5cosθ  for sin /(2 )bθ λ= , and 0 for /(2 ) sin 1bλ θ< £ . The comparison is also made 

Figure 5.9  Reflection coefficient (´´´) and element pattern (–––) of array with b = 0.8l, aw = 0.55l, 
a0 = t00= t01 = 0.629l, h0 = 0.5l, a = t10 = t11 = 0.78l, h1 = 0.22l, t0 = 0.16l, t1 = 0, h = 2.1l, and ew =  
et = ea = e = 2.56, excited in TE10 modes, calculated at Mw = 12, M

_
 = 14, M~ = 16, M = 19, N

_
 = 21,  N~ = 

11, and N = 49; (- - - -) is the ideal element pattern and (D D D) is the element pattern of array without 
dielectric at aw = a0 = 0.618l, and h1 = 0.914l.

Figure 5.10  The same as in Figure 5.9 at  b = 0.91l, aw = 0.6l, a0 = t00= t01 = 0.694l, h0 = 0.59l,  
a = t10= t11 = 0.89l, h1 = 0.215l, t0 = 0.21l, t1 = 0, h = 2.2l, ew = et = ea = e = 2, Mw = 14,  M

_
 = 16,  

M~  = 18, M = 19, N
_

 = 23,  N~  = 11, and N = 49; (D D D) is the element pattern of array without dielectric 
at aw = a0 = a.
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with waveguide arrays without dielectric. The results shown in Figure 5.9 corre-
spond to the array using one matching step. At b = 0.91l (Figure 5.10), the array 
aperture has good natural match, while the array with b = 1.1l (Figure 5.11) uses 
a matching transition section from the single-mode waveguide to the dual-mode 
radiation section.

Some examples of the characteristics corresponding to the array with partial 
filling of the horn sections with dielectric, as shown in Figure 5.5, may be found in 
[53–55]. If the upper (radiating) section supports only one propagating mode at the 
partial filling, the element pattern, as a rule, has resonant dips. However, in some 
cases, they may be avoided. An appropriate example of the array geometry and 
characteristics is given in Figure 5.12 for the dielectric element with relative permit-
tivity et = ea = e = 2 and 4t aε ε ε= = = . Note that the higher the element permittiv-
ity, the smaller the optimal width of the element.

5.4  Excitation of Array in TEM Modes (H-Polarization)

5.4.1  Statement of the Problem and Representation of the Fields

Here we again consider the structure shown in Figure 5.5 and described in Sec-
tion 5.3.1. Let now the input waveguides be excited in the dominant TEM modes 
of unit amplitudes and progressive phases with the same increment Y = kb sinq 
as considered earlier. The purpose of this section is to develop a hybrid projec-
tive algorithm allowing calculation of the array characteristics at the indicated 

Figure 5.11  The same as in Figure 5.9 at b = 1.1l, aw = 0.6l, a0 = t00 = t01 = 0.71l, h0 = 0.67l,  
a = t10 = t11 = 1.05l, h1 = 0.6l, t0 = 0.3l, t1 = 0, h = 4.9l, and ew = et = ea = e = 1.5, Mw = 14,  
M
_
 = 16, M~ = 20, M = 21, N

_
 = 25,  N~ = 23 and N = 71; (D D D) is the element pattern of array without 

dielectric at aw = 0.75l, a0 = 0.85l, h0 = 0.28l, and h1 = 0.6l.
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excitation corresponding to the case of H-polarization for a two-dimensional 
problem where the electromagnetic field components not equal to zero iden-
tically are Hx, Ex, and Ez. So, the magnetic field strength in the input wave-
guide section of the central element is represented as a superposition of TM  
modes
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where γ ε β= -2 2
wn w wnk  are propagation constants, ( 1) /wn wn aβ π= - , and Rn are 

unknown amplitudes of reflected modes. The transverse component of the electric 
field strength component, which will also be involved in the subsequent operations, is 
determined by using (5.33) and Maxwell’s equation like (1.104)
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where e0 is the electric constant of free space.
The transverse electric and magnetic field strength components in the lower and 

upper horn sections as well as in the free space region containing the protruding ele-
ments are represented as expansions over complete systems of transverse functions 
for the indicated regions

Figure 5.12  Reflection coefficient and element pattern of array with b = 0.98l, aw = a0 = a = 0.96l, 
ew = 1, t00 = t1 = 0, h0 = l, h1 = 0.5l, h = 7.9l, Mw = M

_
 = M~ = 10, M = 12, N

_
 = 21, N~  = 11, N = 80; (–––) 

is et = ea = e = 2, t01 = t10 = t11 = t0 = 0.28l; (–´–) is et = ea = e = 4, t01 = t10 = t11 = t0 = 0.075l; (- - -) is 
the ideal element pattern.
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where 0( 1) /q q aβ π= - , β π= -� ( 1) /n a, and α ψ π= +( 2 )/q q b are transverse propaga-
tion constants, while the unknown expansion coefficients depend on the longitu-
dinal coordinate.

The transverse electric and magnetic fields in the free space above the protru-
sions are superpositions of the Floquet modes 
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with unknown amplitudes Tq.

5.4.2  Relations Resulted from Conditions on the Boundaries

Magnetic field (5.33) must be equal to magnetic field (5.35) in the input waveguide 
aperture. Projection of this equality on the transverse functions of the input wave-
guide results in algebraic equations
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where m = 1, 2, . . . , and
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with m¢ = m - 1 and q¢ = q - 1.
Electric field (5.36) in the lower horn section must vanish on the input wave-

guide flange and be equal to electric field (5.34) in the input waveguide. Projecting 
this boundary condition on the transverse functions used in expansions (5.35) and 
(5.36) for the lower horn section, we obtain

 

1 (0)
1

0 0 1

(2 )
( ) ( )p w

p n n wn np
w n

a
E z R Q

a

δ
δ γ

ωε ε

¥

=

-
= -¢¢ å

 
(5.45)

where p = 1, 2, ....
The similar projective matching of the transverse magnetic and electric fields on 

the junction of the lower and upper horn sections at z = z¢ = -h1 gives the following 
algebraic equations
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with coefficients (1)
qmQ  determined by formula (5.44) where m, q, aw, a0, bwm, and qβ  

should be replaced by q, m, a0, a, qβ , and mβ� , respectively.
Projective matching of magnetic fields (5.37) and (5.39) in the upper section 

aperture at z = 0, as well as projective matching of electric fields (5.40) and (5.38) 
in the same aperture with accounting for the fact that (5.40) must vanish on the 
flange, give two more groups of algebraic equations
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with coefficients
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m¢ = m - 1, and the asterisk at Qmq in (5.48) denotes a complex conjugation.
Finally, matching similarly magnetic fields (5.39) and (5.41) as well as electric 

fields (5.40) and (5.42) at z = h, we obtain the relations
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p = 0, ±1, which will be used later.

5.4.3  Finite Element Method for H-Polarized Waves

Let us consider the magnetic field (5.35) in the lower horn section. Unlike (5.16) 
written for E-polarized waves, field (5.35) must satisfy the equation
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resulting from Maxwell’s equations where ( , ) tx zε ε=�  in the area occupied by the 
dialectric element and ( , ) 1x zε =�  in the gaps. Let’s multiply (5.53) by the transverse 
function 1 0 0[(2 )/ ]cos ( /2)p pa x aδ β- +  and integrate over x from -a0 /2 to a0 /2. After 
integration of the first term in (5.53) by parts, we obtain
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Following the one-dimensional finite element method applied to solve (5.54), 
we represent the variable coefficients standing in expansion (5.35) in the form of 
superposition
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of triangular functions (5.20) with unknown constant coefficients sqH . The other 
notations concerning the number of the nodes, coordinates of the nodes, and 



5.4 Excitation of Array in TEM Modes (H-Polarization)  167

node spacing remain the same as those introduced in Section 5.3 in the case of 
E-polarization. Let’s multiply (5.54) by fs¢(z) and integrate over z from z² to z¢. 
Integrating the first term in square brackets in (5.54) by parts and taking into ac-
count that
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Substituting now (5.35), (5.36), and (5.55) into (5.56) and accounting for (5.45), 
we reduce (5.56) to a subsystem of linear algebraic equations
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where s¢= 1, 2, . . . N
_
; p = 1, 2, . . . ; h0 = (m0/e0)1/2 is the wave resistance of free 

space,
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2 2 1/ 2( )p pkγ β= -  and t(z) = t00 - (t00 - t01)(z - z²)/h0 is the dielectric element 
width.

5.4.4  Total Algebraic System

The magnetic field (5.37) in the upper horn section is considered similarly. Each 
unknown variable coefficient in expansion (5.37) is represented in the form of a 
superposition of N

~
 triangular functions; that is,
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with unknown constant coefficients H
~

sn. The application of the finite element 
method results in the linear algebraic equations
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where 1, 2, ...,s N=¢ �  and m = 1, 2, .... In the process of deriving (5.62), we have 
accounted for expressions (5.38) and (5.47). Matrix elements s s

mnA ¢�  are determined 
by expression (5.58) where pq, z², z¢, g

_
p, et, X

_
pq, and W

_
pq should be replaced by 

mn, z¢, 0,  2 2 1/ 2( )m mkγ β= - �� , ea, X
~

mn, and W
~

mn, respectively, while the two latter 
functions are determined by formulas (5.59) and (5.60) with the replacement of 
a0 and b

_
p(q) by a and b

~
m(n), respectively, and taking into account that the dielectric 

element width in the section in question is determined by t(z) = t10 -(t10 - t11) 
(z - z¢)/h1.

Finally, applying the finite element method to the determination of magnetic 
field (5.39) in the region 0 £ z £ h containing the protrusions, and accounting for 
expressions (5.40), (5.49), (5.51), and (5.52), we obtain one more subsystem of 
algebraic equations
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where s = 1, 2, . . . , N; p = 0, ±1, . . .; Hsq are unknown values of the variable 
coefficients in expansions (5.39) in points zs = (s - 1)D, D = h/(N - 1), HNp =  
Hp(h),
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and t(z) = t0 -(t0 - t1)z/h is the width of the protruding part.
Subsystems (5.43), (5.57), (5.46), (5.62), (5.48), and (5.63) in the indicated suc-

cession form the total system of linear algebraic equations for unknowns Rm, sqH , 
0( )/qiE z η¢ , snH� , 0(0)/niE η� , and Hsq. Note that ( )qH z¢¢  in (5.43), ( )pH z¢  and ( )nH z¢�  in 

(5.46), as well as (0)mH�  and Hq(0) in (5.48) are equal to 1qH , NpH , 1nH� , NmH �� , and 
1qH , respectively. Note also that unlike [31], where the algorithm involves indepen-

dent expansions both for Ex and for Hy in all the nodes, we use here the values of 
Ex only on the boundaries between the sections. This approach makes the algebraic 
system order almost two times smaller.

5.4.5  Realization of the Algorithm and Discussion of the Array Characteristics

The infinite algebraic system obtained earlier is solved by the method of truncation. 
If we account for Mw waveguide modes in (5.33) and (5.34), M

_
 transverse func-

tions in (5.35) and (5.36), M~ transverse functions in (5.37) and (5.38), as well as M 
transverse functions in (5.39), (5.40), (5.41), and (5.42), the order of the system, 
like in the case of E-polarization, will be equal to ( 1) ( 1)wM N M N M NM+ + + + +� � .  
Since 0s sf f¢ º  in (5.58) and (5.64) for | | 1s s- >¢ , the matrix of the system has a 
block-banded structure. An example of such a structure is given in Figure 5.13, 
where only nonshadowed blocks have nonzero elements, while the blocks with di-
agonal lines have nonzero elements on the diagonals only. Calculation of the matrix 
elements in (5.57), (5.62), and (5.63) has been carried out using piecewise-linear 
approximation of functions (5.59), (5.60), (5.65), and similar functions mnX�  and  

mnW� , via which the elements s s
mnA ¢�  in (5.62) are calculated. After obtaining numerical 

solution of the system by the Gauss’ elimination method, we have the array reflec-
tion coefficient R1, as well the ability to calculate the normalized array element 
pattern [41]
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where T0 = HN0 is determined as a result of solution of the system.
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The algorithm presented earlier has been realized in FORTRAN code tested in 
the same ways as those used for the case of E-polarization considered in Section 5.3. 
The power balance relation [41]
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in all calculations is satisfied with accuracy of no less than six decimal digits. Some 
examples characterizing convergence of the array reflection coefficient correspond-
ing to dielectric element permittivity ew = et = ea = e = 6, are presented in Figures 
5.14 and 5.15. The other array parameters are indicated in the caption for Figure 
5.14. The results shown in Figure 5.14 have been obtained at the number of Floquet 
modes M = 31, which is deliberately large enough to obtain accurate solutions 
for indicated element spacing b = 0.6l and at the number of waveguide modes 
Mw = 15. The solid curve corresponds to the number of nodes N = 30 for the pro-
truding section. We can see that the curves obtained at smaller values of N quickly 
approach the solid curve as N increases. Similarly, the convergence of the results 
by increasing the number of transverse functions at sufficiently large number of the 
nodes N is demonstrated in Figure 5.15.

A comparison of the array element pattern calculated by the hybrid projective 
method described earlier with the results obtained in [20] by the mode matching 
method for array with parameters b = 0.535l, aw = a0 = a = t00 = t01 = t10 = t11 = t0 
= t1 = 0.432b, h0 = h1 = h = 0.5l, ew = et = ea = e = 2.56 is shown in Figure 5.16. The 
results obtained by the former method shown by crosses have been obtained using 
Mw = M

_
 = M

~
 = 10 waveguide modes, M = 21 Floquet modes, and N

_
 = N

~
 = N = 15 

nodes of the triangular functions. As we see, they practically coincide with the data 
given in [20]. The results of a similar comparison for the protrusion length two 
times larger (h = l), also validating the code operation, may be found in [51].

Consider now some examples of shaping sector element patterns in the wave-
guide-dielectric array excited in TEM modes. The array characteristics correspond-
ing to element spacing b = 0.8l and b = 0.91l for the case of uniform filling of 
the horn sections with dielectric considered in [51] are presented in Figures 5.17 

Figure  5.13  Structure of linear algebraic system corresponding to excitation of array in TEM 
modes.
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and 5.18, respectively. The results have been obtained with the application of the 
one-dimensional finite element method only for the protruding part of the array 
element. The fields in the horn sections have been represented in the form of su-
perpositions of forward and backward modes with subsequent matching of them 
on the boundaries of the sections. An optimization of the array geometry has been 
carried out in the same way as that for the case of E-polarization.

However, unlike the E-polarization, the input waveguide and lower horn sec-
tion are not filled in with dielectric (i.e., ew = et = 1), while the permittivity of filling 
in the upper section ea = 1.5 has been chosen to be smaller than that for the protru-
sion e = 2. Such a choice has allowed us to obtain a smaller width of the protru-
sion at the base, thereby avoiding the resonance effects that would take place if 
the upper section was filled in with the same dielectric as that of the protrusion. A  

Figure 5.14  Reflection coefficient of array with b = 0.6l, aw = a0 = a = t00 = t00 = t10 = t11 = 0.3l, t0 = 
0.4l, t1 = 0.2l, h0 = h1 = 0.1l, h = 0.6l, and ew = et = ea = e = 6, excited in TEM modes, calculated at 
N = 4, 7, 10, 20, and 30, and at constant M = 31, Mw = M−

 
=
 
M
~

 = 15, N−
 
= N

~ 
= 5.

Figure 5.15  The same as in Figure 5.14 at M = 7, 11, 21, and 31, and at constant N−
 
= N

~ 
= 5,  

N = 30.
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comparison of the obtained sector element patterns with the ideal sector patterns 
and element patterns corresponding to optimized waveguide arrays without di-
electric shows their relatively high quality. However, as we have already noted in 
the beginning of Section 5.3, the application of different dielectric materials for 
filling in the upper section and for the protrusion is not the best solution from the 

Figure 5.16  Array element pattern calculated by mode-matching method [20] (––––) and hybrid 
projective method (´´´).

Figure 5.17  Reflection coefficient (´´´) and element pattern (––––) of array with b = 0.8l, aw = 
0.4l, a0 = 0.57l, a = 0.78l, h0 = 0.17l, h1 = 0.35l, t0 = 0.32l, t1 = 0.21l, h = 2.3l, ew = et = 1, ea = 
1.5, e = 2, excited in TEM modes, calculated at Mw = 8, M = 21, and N = 50; (- - - -) is the ideal ele-
ment pattern, and (D D D) is the element pattern in array without dielectric at aw = 0.4l, a0 = 0.568l, 
h0 = 0.22l, and h1 = 0.4l.
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viewpoint of the practical array mechanical design. Some demonstrative results for 
a better array design with partial filling of the horn sections with dielectric (Figure 
5.5) are presented and discussed later.

The study of how the geometric parameters of the structure influence on the qual-
ity of shaping the sector element patterns has shown that the best results are achieved 
when using long sharpened protruding elements. The modeling has been carried out 
as follows. We specify the element spacing b and the upper section width a, such that 
b - a is equal to 0.01l to 0.02l, the protrusion length h of a few wavelengths, and the 
protrusion permittivity e, and assume first that the input waveguide and the lower horn 
section have the same width as that of the upper section (i.e., aw = a0 = a). The input 
waveguide is assumed to be empty (i.e., ew = 1). The dielectric element with et = ea =  
e passing through the horn sections is assumed to be sharpened at both ends (t00 = 
t1 = 0), while its other transverse dimensions are identical (t01 = t10 = t11 = t0). The 
height of the lower horn section is specified to be large enough (~2l) to provide a 
natural good array match. An example of such an intermediate array version with 
an element spacing b = 0.8l is shown in Figure 5.19. The element pattern is shown 
for three values of the dielectric element width in its middle part, while the reflec-
tion coefficient is presented only for t01 = t10 = t11 = t0 = 0.4l because its low level 
for two other values of the width almost coincides with the shown one. As we see, 
there exists an optimal dielectric element width at which the element pattern level 
in the scan region becomes closest to the ideal element pattern level also shown in 
Figure 5.19. The further optimization is carried out at the specified width and per-
mittivity of the input waveguide. The natural choice here from the viewpoint of a 
mechanical design is ew = e. The dielectric element width in the lower section is as-
sumed to be equal to the width in the upper section (i.e., t00 = t01 = t10 = t11), while 

Figure 5.18  Reflection coefficient (´´´) and element pattern (––––) of array with b = 0.96l, aw = 0.4l, 
a0 = 0.57l, a = 0.78l, h0 = 0.17l, h1 = 0.53l, t0 = 0.45l, t1 = 0, h = 3.6l, ew = et = 1, ea = 1.5, e = 2, 
Mw = 8, M = 21, and N = 73; (D D D) is the element pattern in array without dielectric at aw = 0.4l, a0 = 
0.653l, h0 = 0.7l, a = 0.94l, at h1 = 0.53l.
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the height h0 and width a0 of the lower horn section are selected to provide passage 
of the dominant TEM mode from the input waveguide to the upper horn section 
without reflection. Then, we select the height of the upper section h1 at which the 
element pattern shape becomes closest to the ideal one, and the resonance effects 
that are possible in the arrays in question are avoided or minimized. Some examples 

Figure 5.19  Characteristics of an array with b = 0.8l, aw = a0 = a = 0.78l, h0 = 1.8l, h1 = 0.5l, h = 7.9l, 
t00 = t1 = 0, ew = 1, and et = ea = e = 2, calculated at Mw = M−

 
=
 
M
~

 = 11, M = 13, N−
 
= 19, N

~ 
= 11 and 

N = 81; t01 = t10 = t11 = t0 = 0.33l (– – –), 0.4l (––––), 0.47l (- - -); (o o o o) is the ideal element 
pattern.

Figure 5.20  Characteristics of an array with b = 0.8l, aw = 0.3l, a0 = 0.5l, a = 0.78l, h0 = 0.55l, 
h1 = 0.5l, h = 7.9l, t00 = t01 = t10 = t11 = t0 = 0.4l, t1 = 0, ew = et = ea = e = 2, calculated at Mw = 5, 
M
−

 = 7, M
~

 = 11, M = 13, N
−

 = 11, N
~

 = 7, and N = 81.
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of the array characteristics obtained as a result of the optimization described earlier 
are presented in Figure 5.20 for an array with b = 0.8l and in Figure 5.21 for an 
array with b = 0.9l. The other array parameters are indicated in the captions to the 
figures.

The behavior of the array element pattern as the frequency deviates at ±3% is 
demonstrated in Figure 5.22 for an array without stepped transitions (like that in  

Figure 5.21  Characteristics of an array with b = 0.9l, aw = 0.3l, a0 = 0.58l, a = 0.88l, h0 = 0.18l,  
h1 = 0.52l, h = 8l, t00 = t01 = t10 = t11 = t0 = 0.34l, t1 = 0, ew = et = ea = e = 2, calculated at Mw = 5, 
M
−

 = 9, M
~

 = 15, M = 17, N
−

 = 5, N
~

 = 11, and N = 81.

Figure 5.22  Element pattern in an array with parameters indicated in the caption for Figure 5.19 
with t0 = 0.4l, at central frequency f0 (––––), as well as at 0.97f0 (– – –) and 1.03f0 (- - -).
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Figure 5.19) and in Figure 5.23 for an element geometry similar to that shown in 
Figure 5.20. As we see, the element pattern shape remains a sector one with a change 
in the width in accordance with a change in the element spacing in wavelengths. No 
resonance effects are observed in the array without the stepped transitions. In the 
case of the array with the stepped transitions, the resonance effects that are mini-
mized as a result of optimization at the central frequency (corresponding to l), as 
shown in Figures 5.20 and 5.21, may occur to a greater degree with a change in the 
frequency as we see in Figure 5.23.

5.5  Three-Dimensional Problem

The hybrid projective method developed earlier for the solution of two-dimensional 
problems is generalized in the present section over a three-dimensional problem for 
an array of circular waveguides with protruding dielectric rods nonuniform in the 
longitudinal direction. Such a problem is of great interest for practice.

5.5.1  Statement of the Problem and Fields in the Structure

The array geometry in a rectangular Cartesian coordinate system 0xyz is shown 
in Figure 5.24. The elements of the array, which is considered here as an infinite 
periodic structure, are arranged in horizontal rows with spacing dx, while the rows 
themselves are arranged with spacing dy. The array lattice may be both rectangular 
and triangular, where, as shown in Figure 5.24(a), the adjacent rows are shifted 
along the x-axis at distance dx/2 with respect to each other. The most important 
special case of the triangular lattice is a hexagonal one where 3/2y xd d= . The 
array element as a whole consists of an input semi-infinite circular waveguide of 

Figure 5.23  Element pattern in an array with parameters indicated in the caption for Figure 5.20 at 
the central frequency f0 (––––), as well as at 0.97f0 (– – –) and 1.03f0 (- - -).
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diameter 2ai, an intermediate section of diameter 2at and height ht, and an upper 
section of diameter 2a and height h (the notations here are the same as those in 
[58]). The indicated waveguide sections are connected to each other by flanges and 
may be filled in with dielectric of relative permittivity ei, et, and e, respectively. The 
upper sections go to an infinite common flange arranged in the plane z = 0. Each 
array element has a dielectric rod of relative permittivity ee and height he protruding 
above the waveguide aperture. The rod at its base has a cylindrical part of diameter 
2r0 and height h0 changing for a conical part of diameter 2r1 at the end. The walls 
of all the waveguide sections and flanges are assumed to be perfectly conducting, 
while the sections and protruding rod have a common axis.

We also assume that the input waveguides are excited in their dominant modes 
TE11 of circular polarization. The amplitudes of the incident modes are equal to 
unity, while their phases change linearly with increment U between adjacent ele-
ments in each horizontal row and with increment V between adjacent rows, as 
shown in Figure 5.24. The indicated phase increments are related to the main array 
beam direction characterized by specified angles q and j measured from the z and 
x axes, respectively, by formulas [see also relation (1.22)]

Figure 5.24  (a) Aperture and (b) longitudinal cut in plane 0xz of stepped circular waveguide array 
with protruding dielectric rods.
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 ,x yU kd u V kd v Uδ= = +  

where u = sinqcosj and v = sinqsinj are direction cosines, d = 0 for rectangular lat-
tice, and d = 1/2 for triangular lattice.

To determine the field radiated by the array in free space and the field reflected 
back to the waveguides as well as the array reflection coefficient and element pat-
tern, we represent the transverse components of the electric and magnetic field 
strength in the upper waveguide section in the form of expansions over eigenmodes 
of circular waveguide
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where h0 = (m0/e0)1/2 is the wave resistance for free space; Ajmn are unknown am-
plitudes of the TE (j = 1) and TM (j = 2) modes going from the beginning of the 
section toward the aperture; Bjmn are unknown amplitudes of the TE and TM  
modes going back from the aperture; exp( )jmn jmne i hγ= , 2 2 1/ 2( )jmn jmnk gγ ε= - , and 

/jmn jmng aµ=  are longitudinal and transverse propagation constants; m1mn and m2mn 
are nth roots of equations ( ) 0mJ µ =¢  and ( ) 0mJ µ = , respectively; m = 0, ±1. . . , n = 1, 
2, . . . , Jm(. . .), and J¢m(. . .) are the Bessel function of the mth order and its derivative 
over the argument;
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are orthonormalized vector wave functions for a circular waveguide, with normal-
izing coefficients

 
1/ 2 2 2 1/ 2

1 11( ) ( )mn m mnmnN m Jπ µ µ= -  (5.72)

 
1/ 2

2 2 2( )mn mn m mnN Jπ µ µ= ¢  (5.73)

ez is the unit vector directed along the z-axis; and er and ej are unit vectors of 
cylindrical coordinates r and j related to the Cartesian coordinates by formulas 
x = r cosj and y = r sinj. The double index mn at the constants g1mn and g2mn in 
(5.70) and (5.71) is omitted for brevity. For simplification of the subsequent expres-
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sions, we introduce a prevailing order numbering of the waveguide modes for each 
type and further replace the double index by a single-standing one.

The amplitudes Ajmn and Bjmn of the forward and backward modes in (5.68) 
and (5.69) relate to each other and to the incident mode amplitude in the input sec-
tion by formula
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where j ¢ = 1, 2; n ¢ = 1, 2, ... and n = 1, 2, ... are the ordinal numbers of the modes;  
l is the ordinal number of the incident mode; and ,j n jnSν ν¢

¢ ¢  is an element of the scattering 
matrix of the transition between the input section (n ¢ = 0, n = 0,) and upper section 
(n ¢ = 1, n = 1). This element is a complex amplitude of a j ¢n ¢th mode excited in the 
n ¢th section when a jnth mode of unit amplitude incidents to the transition from the 
n th section. The indicated matrix elements are calculated by the well-known mode-
matching method [59–61] for a single-standing step in a waveguide in combination 
with the method of generalized matrices of scattering (see, for instance, [62]) for 
accounting for interaction between two steps.

The transverse electric and magnetic fields above the ends of the rods (z ³ he) are 
represented by expansions over the complete system of vector Floquet modes [18] 
[see also formulas (1.24) and (1.25)]
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with unknown amplitudes Tjpq (j = 1 and 2 for TE and TM modes, respectively), 
propagation constants determined by formula (1.21), and transverse wave func-
tions determined by (1.20), (1.26), and (1.27). As with the waveguide modes, the 
double index pq used in (5.75) and (5.76) will be replaced in subsequent formulas 
by a single-standing index corresponding to an ordinal number of an appropriate 
Floquet mode.

As with the incomplete Galerkin method [26–30], we represent the transverse 
components of the fields in the free space region 0 £ z £ he containing the dielectric 
rods in the form of expansions over transverse vector functions (1.26) and (1.27)
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with unknown coefficients depending on z. Then the longitudinal field components 
will be expressed by formulas
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resulting from (5.77), (5.78), and Maxwell’s equations
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 0 0ikηÑ ´ - =E H  (5.82)

where eε ε=�  in the rods and 1ε =�  outside the rods. The constants wq in (5.79) and 
(5.80), where q is an ordinal number replacing the double index as indicated earlier, 
are determined in (1.21).

5.5.2  The Hybrid Projective Method

The electric field (5.77) at z = 0 must be equal to zero on the flange and to the 
field (5.68) in the waveguide aperture. Projecting this condition on the func-
tions complex-conjugated to functions (1.26) and (1.27), we obtain algebraic  
equations
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where p is an ordinal number and
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The calculation of integrals (5.85) using the properties of the Bessel functions 
yields
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1/ 22 [ /( )]x ys ia d dπ= , arctg( / )p p pφ β α= , 2
1 0n

pQ = , and m is a number of an azimuthal 
variation in an nth waveguide mode.

Magnetic field (5.69) in the waveguide aperture must be equal to magnetic field 
(5.78) multiplied vectorially by ez. Projecting this condition on the functions com-
plex-conjugated to functions (5.70) and (5.71) and taking into account that

 ψ ψ ψ ψ´ = - ´ =1 2 2 1,q z q q z qe e  (5.89)

we obtain the algebraic equations
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where m is an ordinal number of a waveguide mode of appropriate type.
The projective matching of electric fields (5.75) and (5.77), as well as magnetic 

fields (5.76) and (5.78) (the latter must be multiplied vectorially by ez) at z = he 
yields relations

 

1 1 1 2

2 2 2 1

( ) , ( ) ,

( ) , ( )

q e q q e q

q q
q e q q e q

E h T H h T

E h T H h T
k k

Γ Γ

= = -

= =
 

(5.92)

from which we obtain the equalities
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to be used for the derivation of subsequent formulas.
Let us consider now Maxwell’s equation (5.81), which we multiply scalarly by 1pψ *   

and integrate over the cell area x yS d d= ´ . Doing that, we use the vector identity

 ( ) ( ) ( )× Ñ ´ = × Ñ ´ + Ñ× ´F G G F G F  

which is valid for any vector functions F and G, as well as the properties of the 
transverse wave functions (1.20), (1.26), and (1.27)

 p p ziw ψÑ ´ = -1p eψ  (5.95)

 ( )z zF´ = - ×1 2 2p p pF F eψ ψ ψ  (5.96)

and as a result obtain projective relation
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Deriving (5.97), we have also taken into account that the part of the divergence 
associated with transverse coordinates gives no contribution to the integral because 
of the boundary conditions in the Floquet cell.

The second projective relation is obtained after carrying out a similar operation 
of projecting Maxwell’s equation (5.82) on the same function 1pψ *
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Projecting of Maxwell’s equations (5.81) and (5.82) on function 2pψ *  with ac-
count for properties of functions (1.26) and (1.27) 
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yields us two more relations
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Substituting expansions (5.77) through (5.80) in relations (5.97), (5.98), (5.101), 
and (5.102), we reduce them to a system of ordinary differential equations
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with coefficients (see also [29])
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where Dpq = [(ap - aq)2 + (bp - bq)2]1/2 and
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is the rod radius depending on the longitudinal coordinate in accordance with Fig-
ure 5.24(b).

Note that relation (5.106) first provides the necessary condition Ñ × H = 0 for 
the magnetic field with components (5.78) and (5.80) and second eliminates the re-
dundancy of the number of the unknown coefficients standing in expansions (5.77) 
and (5.78).

To solve the differential equations (5.103) through (5.105), we represent 
the unknown variable coefficients standing in (5.77) and (5.78) in the form of  
expansions
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over triangle functions similar to those in (5.20) with tops in N nodes arranged 
uniformly on interval 0£ z£ he including its edges. Further, we apply the finite 
element method to differential equations (5.103), (5.104), and (5.105). The pro-
cess involves the following operations. The indicated equations are multiplied 
by fm(z) and are integrated from 0 to he. Expressions (5.84) and (5.93) are sub-
stituted into the nonintegral terms arising as a result of integration by parts of 
the derivative of variable coefficient E2p in (5.103). Expression (5.94) is substi-
tuted into the nonintegral term arising after integration by parts of the deriva-
tive of variable coefficient H2p in (5.104), and (5.106) replaces coefficient H2p 
appearing under the integral sign. When using (5.93) and (5.94), we take into 
account that H1p(he) = H1Np and E1p(he) = E1Np. Finally, we substitute expan-
sions (5.111) and (5.112) into the integrals, and, as a result, obtain algebraic  
equations
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with the matrix elements
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where

 0 0

1
,

e eh h
m nmn mn

m n
df df

I k f f dz I dz
k dz dz

= =ò ò
 

(5.119)

 0 0

,
e eh h

n mmn mn
m n

df df
K f dz K f dz

dz dz
= =ò ò

 
(5.120)

 0

eh
mn
pq m pq nW k f W f dz= ò

 
(5.121)

The integrals (5.119) and (5.121) are similar to those in (5.22), (5.23), and 
(5.24), the explicit expressions for which are presented in Appendix 5A. The values 
of integrals (5.120) are written in Appendix 5B. Coefficients mn

pqZ  and mn
pqY  are cal-

culated by formula (5.121), where function (5.109) should be replaced by functions 
(5.107) and (5.108), respectively.

Equations (5.74), (5.90), (5.91), and (5.92) (equalities H1p(0) = H11p and 
E1p(0) = E11p should be taken into account in the last three ones), as well as (5.113) 
through (5.115), form a complete infinite algebraic system. We solve this system by 
the method of truncation down to the order 4M+(3N+1)P, where M is the number 
of the kept waveguide modes (for each of the sets of Ajn and Bjn, j = 1, 2) and P is 
the number of the kept transverse functions for each of the sets of H2p(0), H1nq, 
E1nq, and E2nq, n = 1, . . ., N. Since each triangular function partially overlaps only 
the adjacent functions, the integrals (5.119) through (5.121) are equal to zero for 
|m–n|>1, and, due to that fact, the matrix has a block-banded structure. Such a 
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structure corresponding to N = 5 is shown in Figure 5.25 as an example, where the 
blocks containing nonzero elements are shown in gray, while the blocks containing 
nonzero elements only on its diagonals are marked by diagonal lines.

5.5.3  Array Characteristics

The amplitudes of the modes in the upper waveguide section obtained as a result of 
the solution of the algebraic system derived earlier are used for calculation of ampli-
tudes of the modes reflected in the input waveguide section, including those of the 
copolar and cross-polar TE11 modes. The calculation is performed using the scatter-
ing matrix of the intermediate waveguide section applied in (5.74) by formula
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The amplitudes (5.122), together with the amplitudes of the Floquet modes 
above the rods standing in (5.75) and (5.76) and determined by formula (5.92), are 
used in the power balance relation
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where ( ) 2 2 1/ 2[ ( / ) ]i
i jn ijn k aγ ε µ= -  are propagation constants of the modes in the input 

section.
The array element pattern components in spherical coordinates are determined 

via the amplitudes of the Floquet modes of zero order (see formulas (1.43) and 
(1.44) or [18]) corresponding to ordinal number 1 accepted in this section) by  
formulas

Figure 5.25  Structure of algebraic system matrix.
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where the normalization corresponds to the transmission coefficient of the input 
power in the main array beam.

Using (5.124) and (5.125), we can calculate the copolar and cross-polar array 
element patterns [18]
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respectively, where Fθ
+ and Fϕ

+ are element pattern components (5.124) and (5.125) 
corresponding to the circular polarization of the incident mode with azimuthal in-
dex m = +1. The element pattern corresponding to excitation with circular polariza-
tion of the opposite rotation (m = -1) is calculated similarly. Using the appropriate 
linear combinations of the solutions obtained for the two cases of circular polariza-
tion, we can also calculate the characteristics of the array at its excitation in the 
TE11 modes of linear horizontal and vertical polarization.

5.5.4  Results and Discussion

Calculation of the multimode scattering matrix for the transition used in (5.74) and 
(5.122) has been carried out by taking into account the recommendations given in 
[60–62]. The results available in [60, 61] for the partial case of the first azimuthal 
variation have been used for testing the operation of the appropriate subroutine. 
The system of linear algebraic equations is solved by the Gauss elimination method 
with selection of the leading matrix element in a column. Minimization of the com-
putation time is achieved by excluding the blocks filled in with only zero elements 
(Figure 5.25) from the processing.

The code operation has been validated in a few ways [18], including satisfac-
tion of the necessary condition associated with the symmetry of the array geometry 
and with the power conservation law (the power balance relation is satisfied with 
accuracy of at least six decimal digits), as well as convergence of the results and 
their comparison to theoretical and measured data available in the literature for 
some special cases of the array geometry. Dependence of the reflected power (mul-
tiplied by 10) on the length of the cylindrical rods in the array considered in [23] is 
presented in Figure 5.26. The array elements are arranged in a square lattice with 
element spacing dx = dy = 0.68l. The values for the other array parameters are in-
dicated in the figure caption. The study of the convergence at the rod permittivity 
ee = 2 by increasing the number of nodes N has shown that high accuracy is already 
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achieved at node spacing D = 0.05l (i.e., at N = 21 nodes per one wavelength). We 
see in Figure 5.26 that the difference between the results obtained at P = 81 and 
49 Floquet modes as a whole is smaller than the difference between the results 
obtained at P = 49 and 25 (i.e., the results converge). Besides, the results obtained 
by the proposed method are close to the results presented in [23] and shown in Fig-
ure 5.26 by the dashed line.

The next example relates to the array described in [10–14]. The sector element 
pattern in both main planes of this multi-element waveguide-rod array with hexago-
nal lattice is shaped by means of optimization of the rod parameters in the small 
breadboard shown in Figure 5.1(b). The breadboard radiation patterns measured 
in two main planes at excitation of the central element at circular polarization are 
shown by solid lines in Figure 5.27. The array parameters corresponding to the 
operating frequency are indicated in the figure caption. The element patterns calcu-
lated at M = 16, P = 37, and N = 71 are represented by the curves with crosses. As 
a whole, we see good correspondence between the measured and calculated results. 
The differences taking place in some parts of the patterns are explained by the reso-
nance effects revealed by the theoretical model. However, such sharp resonances 
cannot be observed using the breadboard with such a small number of elements. 
A similar feature has been noted earlier in [20] as well. Moreover, the edge effect, 
which is not taken into account in the theoretical model, seems to be the reason for 
the difference between the results in the sidelobe region. This difference takes place 
for the angles at which the edge rods are seen from the central element aperture in 
the breadboard.

Characteristics of the array with element spacing dx = 0.91l in the hexagonal lat-
tice (i.e., smaller than that in the previous example) are presented in Figure 5.28. The 
waveguides of the array are excited in the TE11 modes of circular polarization with 
azimuthal index m = +1. The array parameters indicated in the caption for Figure 5.28 
have been selected to shape a sector element pattern in the main planes. This pattern 
is compared to the element pattern of the array without rods shown by the lines with 

Figure 5.26  Reflected power versus rod length in equiphase array with square lattice at dx = dy = 
0.68l, ai = at = a = r0 = r1 = 0.24l, ei = et = e = ee = 2, N = 1+20he/l, M = 16, P = 25 (D D D), 49 (´´´), 
and 81 (o o o); (– – –) is the curve from [23].
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crosses. Parameters of this array also indicated in the caption provide the absence of 
the blindness effects. As we see, the rods improve the element pattern shape. How-
ever they may cause the appearance of the dips in the region of single-beam scan-
ning at the operating polarization. The indicated dips are accompanied by resonant 
increases of the cross-polar radiation as well as of reflections both at the operat-
ing polarization and at the cross-polarization. Removal of these undesirable effects  
so far is an important problem for the arrays with protruding dielectric elements.

Figure 5.27  Element pattern in (a) horizontal and (b) vertical planes of hexagonal array with  
dx = 1.1347l, ai = at = a = r0 = 0.4085l, ei = 1, et = 1.385, ht = 0.268l, e = ee = 2.08, h = 1.1347l, 
h0 = 0.851l, he = 1.9857l, r1 = 0; (´´´) is the calculation at M = 16, P = 37, N = 71, and (–––) is the 
measurement.
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Figure 5.28  Element pattern and reflection coefficient in (a) horizontal and (b) vertical planes of 
hexagonal array at dx = 0.91l, ai = 0.24l, at = 0.371l, ht = 0.315l, a = 0.42l, h = 0.3l, r0 = 0.4l,  
h0 = 0.5l, he = 3l, r1 = 0; ei = et = e = ee = 2, M = 16, P = 37, N = 101; (–––) is the operating polariza-
tion; (- - - -) is the cross-polarization; (´´´) is the element pattern of array without rods at dx = 0.91l, 
ai = 0.28l, at = 0.3265l, ht = 0.57l, a = 0.44l, h = 0.56l, ei = et = e = 1.5.
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Appendix 5B  Values of Integrals (5.119)
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c h a p t e r  6

Arrays with Strip, Disk, and Wire 
Structures

The dielectric rods considered in Chapter 5 are one of the simplest and effective types 
of the phased array antenna elements used for shaping sector partial radiation pat-
terns of width ±(20 to 30)°. However, their use in large arrays designed for operation 
in the S and L frequency bands is not justified because it would require too much 
dielectric material, which itself may be rather expensive, and moreover the radiating 
structure would bee too heavy. A more convenient slowing-down structure—an al-
ternative to dielectric rod in the indicated frequency bands—is a metallic corrugated 
rod or a set of thin metallic disks arranged on a thin but strong dielectric rod. More-
over, the rods can be excluded from the array design if the disks of different elements 
but of the same level are arranged on thin dielectric films or on foam layers. Such 
multilayer disk structures may turn out to be a promising alternative to dielectric rod 
structures for operating in higher frequency bands.

The use of corrugated rods in the antenna engineering is well known (see, for 
instance, [1–3]). However, the possibility of shaping the sector partial patterns us-
ing such elements became a topic for study and discussion in the literature not 
so long ago [4, 5]. The studies started from purely experimental breadboarding. 
Then, a simplified theory for numerical modeling of one-dimensional waveguide 
arrays with strip slowing-down structures was developed [5–7]. Generalizations 
on the three-dimensional case, which is of primary interest for practice, was done 
in [8–10]. The effectiveness of the approach proposed for numerical analysis and 
optimization of the waveguide arrays with the disk slowing-down structures was 
confirmed by measurements of the array characteristics in the appropriate radiating 
structure breadboards [11].

Along with the strip and disk structures, array elements in the form of wire 
Yagi-Uda antennas have also been considered [12–14]. Finally, other wire structures 
have recently been proposed and considered in [15–18] for forming semitransparent 
waveguide walls allowing us to shape the sector element patterns in one-dimensional 
periodic arrays.

The methods developed for study of all the structures listed here and the array 
characteristics obtained as a result of such a study are described later.

6.1  Experimental Breadboard of Array with Multidisk Radiators

6.1.1  Breadboard Design

The purpose of the work has been creation of an S-band radiating element in an 
array designed for scanning in sector of ±(20 to 25)° in both principal planes. The 
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radiating element selected to provide the specified requirements contains a disk 
slowing-down structure excited by a pair of printed microstrip dipoles crossed at 
right angles. Similar dipoles were also applied in other subsequent projects—in 
particular, in a multibeam antenna designed for a stratospheric communication 
system. A fragment of such an antenna is shown in [19]. The work in the present 
case consists of a selection of such element parameters as the length of the struc-

Figure 6.1  (a) General view and (b) side view of an array breadboard with multidisk radiators.
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ture, number of the disks, diameters of the disks, and distance from the dipoles to 
the first disk. The indicated work was performed using a developed and fabricated 
breadboard shown in Figure 6.1.

The base of the breadboard is a bearing aluminum plate in the form of an 
equilateral hexagon. The pairs of the crossed dipoles enclosed in circular wave-
guide sections are installed on the plate in the nodes of a hexagonal lattice with 
element spacing a = 1.12l, where l is the wavelength corresponding to the central 
(reference) frequency f. The dipoles of the central element have inputs/outputs for 
connection to the measurement equipment via a technological hybrid microstrip 
divider/combiner designed for providing different types of excitation. The dipoles 
of peripheral elements are terminated with matching loads, as it is required for de-
termining the array element pattern.

The disk structures are arranged on a common board, as shown in Figure 6.1. 
The board is made of two thin textolite sheets divided by foam spacers. The spacer 
thickness has been selected to provide minimum reflection at normal illumination 
of the board by a plane wave. The board has holes performed along the axes of 
the spacers. The holes are used for installing textolite rods of small diameter. The 
rod height exceeds two wavelengths in the operating frequency band. The rods are 
designed for arrangement of thin brass disks divided from each other by foam spac-
ers. A few sets of the disks of various diameter and a few sets of spacers of various 
thickness were fabricated. The board with the disk structures is installed on the 
bearing board using six posts arranged in the hexagon corners. The indicated posts 
allow us to vary the distance from the board to the bearing plate.

6.1.2  Results of Measurement

Adjustment and testing of the assembled breadboard included two stages. At the 
first stage, carried out in laboratory conditions, the dipoles were adjusted to mini-
mize VSWR and then measurements of isolation between the dipoles in the same 
element as well as the measurements of coefficients of coupling between dipoles 
of different elements were carried out. As a result of the dipole adjustment using 
matching devices, the VSWR does not exceed 1.5 in a ±4% frequency band. The 
isolation measured between the crossed dipoles in each radiating element was no 
less than 35 dB. The results of measurement of the coupling coefficients between the 
dipoles of different elements had shown that the coupling between the dipoles of 
the central element and the dipoles of the nearest elements did not exceed –30 dB. 
These results confirm the fact that the interaction between traveling wave elements 
takes place mainly in the direction of wave propagation.

The second stage of the breadboard adjustment and test was performed in an 
anechoic chamber using the conventional method of radiation pattern measurement 
in far zone. The previous experience of working with the dielectric rod elements 
had allowed us to suggest that the second (outer) ring of the passive elements sur-
rounding the central element should not practically influence on the central element 
performance. So, to make the work easier, the adjustment of the breadboard was 
performed using only one (inner) ring of the passive elements. As a result of numer-
ous measurements, it had turned out that the best results were obtained using 7 or 
8 disks of diameter from 0.2l to 0.4l arranged with spacing of about 0.2l.
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Verification of the suggestion indicated earlier was carried out after the adjust-
ment had shown that the central element patterns measured for one and two rings 
of passive elements coincided down to the levels of –18 dB. The results presented 
next correspond to the case of using all nineteen elements with identical disk struc-
tures, as shown in Figure 6.1.

The results of the element pattern measurements in two principal planes at the 
central and two edge frequencies f, 0.965f, and 1.036f of the operating band, and 
at two linear orthogonal polarizations are shown in Figures 6.2 and 6.3. If the array 
under consideration is uniformly excited to scan the beam in the horizontal plane, 
the array grating lobes are arranged in the horizontal plane as well. The positions 
of two nearest grating lobes corresponding to steering of the main beam at 20° for 

Figure 6.2  Radiation pattern of the central array element in horizontal plane at (a) vertical and  
(b) horizontal polarizations.
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the central and two edge frequencies are shown in Figure 6.2 by vertical straight 
lines. The grating lobes in these positions come to the element pattern slope where 
their level is –14 through –12 dB and has smaller values at smaller angles of the 
beam deflection from the broadside. The element pattern in the vertical plane [Fig-
ure 6.3(a)] has somewhat higher sidelobe level compared to that in the horizontal 
plane. However, the grating lobes do not come to the vertical plane when the main 
beam scans in the specified region. The patterns in both planes have a good flat top, 
so that the array gain variation in the specified scan region does not exceed 1.3 dB. 
An example of the cross-polar element pattern in the horizontal plane at the central 
frequency is shown in Figure 6.2(a) by the lower solid curve.

Figure  6.3  Radiation pattern of the central array element in vertical plane at (a) vertical and  
(b) horizontal polarizations.
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The measured radiation patterns were used to approximate an evaluation of 
the element directivity. This was done by means of appropriate integration of the 
radiation pattern obtained by averaging the measured patterns. The result obtained 
for the central frequency is equal to 10.7 dB. The appropriate theoretical maxi-
mum of the element directivity determined by formula Dmax = 10lg(4pA/l2), where  

23 /2A a=  is the geometrical area allotted to one array element and is equal to 
11.35 dB, demonstrating a sufficiently good concentration of the radiated power in 
the specified scan region.

Note also that the element spacing selected according to the conventional ap-
proach corresponding to keeping the grating lobes outside the visible space for the 
specified scan region of the main lobe would be equal to 0.86l. Therefore, the re-
duction of the controlled element number using the array element developed in this 
work would be (1.12/0.86)2 = 1.7 times.

The result of the work described was a new multidisk radiating element de-
signed for limited-scan phased array antennas. Improvement of the array element 
performance is possible if more accurate selection of its geometric parameters can 
be obtained. To do that with maximum effectiveness, it is of interest to develop ap-
propriate algorithms for computer modeling the array type in question. The next 
sections are devoted to the development of such algorithms. We will first consider 
a simplified two-dimensional model of a waveguide array where shaping of the sec-
tor element pattern is performed with using multilayer strip structures. After that, 
the developed approach will be generalized to a more practical three-dimensional 
model.

6.2  Waveguide Arrays with Strip Structures

The purpose of the present section is the creation and investigation of a two-dimen-
sional model of the corrugated-rod array where the disk structures are replaced by 
strip structures. The latter also possess the capability of supporting slow waves at 
a definite polarization of excitation [20]. The strip structures are excited by open 
ends of parallel-plate waveguides. The choice of the waveguide excitation was made 
on the basis of experience acquired from [4], which has shown that the best sector 
shape of the array element pattern is achieved when the dipoles of the feed system 
are arranged in the waveguide sections. In spite of the simplification, the model to 
be considered later reveals some important features and capabilities of the struc-
tures in question. The results obtained in the process of such modeling may be 
used in practice if the shaping of the sector element pattern is required in only one 
plane.

6.2.1  Statement of the Problem and Method of Solution

Consider an infinite array, the cross-section of which in the 0xz plane of the rectan-
gular coordinate system 0xyz is shown in Figure 6.4. The array, assumed to be peri-
odic with period (element spacing) b along the x-axis and uniform along the y-axis, 
consists of strip structures arranged symmetrically along the axis of the semi-infinite 
parallel-plate waveguides of width a. Each of the indicated structures comprises L 
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infinitely thin strips characterized by widths sl, and distances zl from the waveguide 
aperture (l = 1, 2, …, L). The strips, waveguide flanges, and waveguide walls are 
assumed to be perfectly conducting.

The array parameter of principal interest here is the array element pattern. This 
pattern corresponds to the case when only one waveguide of the array is excited, 
while all the other waveguides are terminated with matching loads. However, as 
done in the previous sections, we first consider the case of quasi-periodic excita-
tion of the array, since the zero-order Floquet mode amplitude of the radiated field 
corresponding to such excitation can be used for determining the element pattern 
according to [21] or formulas (1.112) and (1.114).

The strip structures described earlier are able to support slow waves only at 
excitation of them by the TM waves with field components Hy, Ex, and Ez not equal 
to zero identically. Let each waveguide be excited by a superposition of TM modes 
coming to the apertures. The amplitudes of these waves in different waveguides are 
assumed to be identical, while the phases for adjacent waveguides are different by 
a value U = kbsinq determined by a specified angle q of deflection of the main array 
beam from the array broadside. Then, omitting the time dependence assumed to 
be given by factor e-iwt, we write the total magnetic field in the central waveguide  
(|x| < a/2) in the form
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where Am are amplitudes of the incident modes, which will be specified later; Rm 
are amplitudes of the reflected modes; gm are propagation constants determined by 
formula (3.17); and
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are the orthonormalized transverse functions of the waveguide modes.

Figure 6.4  Geometry of a waveguide array with strip structures.
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The total magnetic field above the waveguide apertures is represented as an 
expansion in terms of the Floquet modes
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where T0q are amplitudes of the modes going up from the waveguide apertures, Tlq 
are amplitudes going up and down from the lth strips,
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are transverse wave functions orthonormalized on the period of the structure, and 
aq and Gq are transverse and longitudinal propagation constants (4.7).

The field radiated into the region above the strips, which is of interest for the 
subsequent calculation of the array element pattern, is determined from (6.3) by the 
sum of Floquet modes
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with amplitudes
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To determine the unknown amplitudes in the expansions (6.1) and (6.3), we use 
the mode-matching method [22]. The total magnetic field must be continuous in the 
waveguide aperture. Therefore, equating (6.1) and (6.3) and using the orthogonal-
ity of functions (6.2), we obtain the following relation between the waveguide and 
Floquet modes
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where m¢ = 1, 2, …, and
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The transverse component of the total electric field determined by the magnetic 
fields (6.1) and (6.3) from the Maxwell equation
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must be continuous in the waveguide aperture and equal to zero on the waveguide 
flanges. This condition and the orthogonality of functions (6.4) lead to the second 
relation
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where q = 0, ±1, ±2, …, and the asterisk denotes complex conjugation.
Now consider the boundary conditions for the electromagnetic field in the re-

gion of the strips. The magnetic field (6.3) must be continuous in the gaps between 
the strips and must suffer jumps, equal to the current density, when going over the 
strips; that is,
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The only nonzero x-component of the current density on each strip, Jxl(x), must 
go to zero at the strip edges. So, we expand this function into the following series:
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where factor 2 is introduced for convenience of the subsequent calculations, Cln are 
unknown coefficients, and
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are functions orthonormalized on the lth strip, and equal to zero at the edges of the 
latter.

Using the orthogonality of functions (6.4), and taking into account (6.12), we 
express amplitudes Tlq from (6.11) via Cln by formula
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where
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The tangential component of the total electric field must be equal to zero on 
the strips. Therefore, equating (6.9) to zero on the l¢th strip, taking into account 
(6.14), and projecting the obtained functional equation on the n¢th function (6.13) 
for the indicated strip (i.e., applying the Galerkin method), we obtain the following 
algebraic equations
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where l¢ = 1, 2, …, L; and n¢ = 1, 2, … .
If we now substitute (6.14) into (6.7) and (6.10), the indicated equations to-

gether with (6.16) can constitute an infinite algebraic system for unknown ampli-
tudes Rm, T0q, and Cln. However, such a system, which can be solved by the method 
of truncation, would have a rather high order, mainly because of the necessity of 
taking into account a large number of the Floquet modes. So, to obtain a system 
of a smaller order, we perform the following additional operations. Let W be a set 
of numbers q of those Floquet modes for which, for instance, Im{Gq}<k, and let W¢ 
be a set of numbers for all the rest of the modes of higher order. Then, substituting 
the amplitudes T0q, expressed from (6.10) for q Î W¢, into (6.7) and (6.16), and 
taking into account (6.14) in (6.7) and (6.10), we obtain the following final form 
of the algebraic system
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 1, 2, ..., ; 1, 2, ...l L n= =¢ ¢  

where dm¢m is the Kronecker symbol, hq = 1 and zl¢lq = 0 for q ÎW, and  hq = 2 and 
zl¢lq = exp[iGq(zl¢ + zl)] for q ÎW¢.
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The infinite system of equations (6.17) through (6.19) is solved by the method 
of truncation. In this case, depending on the width of the waveguides and strips, 
high accuracy of calculations is achieved by taking into account 10 to 20 waveguide 
modes and 6 to 12 current harmonics for each strip. As follows from (6.8) and 
(6.15), the infinite series in (6.17) and (6.19) converge like q–3 as |q| ® ¥, so their 
sums can be easily calculated with high accuracy.

After solving the truncated system (6.17) to (6.19), for instance, by the Gauss 
elimination method, the array element pattern corresponding to the coefficient of 
transmission of the incident power to the main beam is calculated by formula
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where T0(U) is the Floquet mode amplitude determined from (6.6).

6.2.2  Numerical Results and Discussion

The algorithm described earlier has been implemented in FORTRAN code whose 
operation has been tested via various ways indicated in [21] and in the previous 
chapters. Then code has also been used for studying the adopted array model. The 
study has shown that the sector element patterns can be shaped by the strip struc-
tures only if the latter support the slow waves (i.e., for sl<0.5l and zl+1–zl<0.5l 
[20]). In this case, the better quality of the element pattern shape is achieved for 
the maximum waveguide width (i.e., for a = b). The quality of the pattern shape is 
also considerably influenced by the conditions of excitation of the strip structures. 
Some of the characteristic examples illustrating the indicated features are consid-
ered next.

Consider an array of dual-mode waveguides with parameters a = b = 0.8l, ex-
cited by TE1 modes (which are the TEM modes) of unit amplitudes [i.e., A1 = 1 and 
Am = 0 for m > 1 in (6.1) and (6.17) to (6.19)]. The element pattern (6.20) in the 
absence of the strips is a falling-off function shown by crosses in Figure 6.5. The use 
of the slow-wave structures, each of which consists of L = 6 strips with parameters 
sl =  0.2l and zl = [0.2 + 0.14(l - 1)]l , (l = 1, 2, …, 6), obtained as a result of opti-
mization, allows a considerable increase of the element pattern level in the region 
l /b - 1 < sinq < l /(2b), as shown in Figure 6.5 by the curve with major dashes. 
However, the fall-off of the element pattern level in the region sinq £ l /b - 1 keeps 
the same as that for the array without the strips. Such behavior is associated with 
an increase of the reflected power at the quasi-periodic excitation reaching 11.5%, 
with almost all the reflected power (10.5% of the incident power) being transferred 
by the second propagating mode TM2. This power can be used for improving the 
element pattern shape in the following way. Assume that the dual-mode waveguides 
in question are fed through single-mode waveguides and symmetric matching tran-
sitions, similar to those considered in Chapter 3. Then the TM2 modes going down 
from the apertures will be completely reflected from the transitions, returned back 
to the apertures, and used for excitation of the strip structures. To simulate such 
a situation, we specify the amplitudes of the incident modes in (6.1) and (6.17) to 
(6.19) as follows: A1 = 1, A2 = R2 exp(iy2), where y2 is the phase with which the 
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TM2 modes return back to the apertures, and Am = 0 for m > 2 (i.e., the interaction 
between the transitions and waveguide apertures over the evanescent modes is as-
sumed to be negligibly small).

The calculations have shown that the performances of the accepted model for 
various values of y2 are similar to those of the array of thick-walled waveguides 
with fences [23]. At y2 = 210°, the element pattern of the array with the strip 
structures whose parameters were indicated earlier is shown in Figure 6.5 by a 
solid curve. Comparing this pattern to the sector element patterns presented in the 
previous chapters, as well as to the ideal sector element pattern shown in Figure 6.5 
by small dashes, we can conclude that the obtained sector patterns is of relatively 
high quality.

The behavior of the element pattern shape when changing the frequency for 
the array in question is illustrated by the curves shown in Figure 6.6. The presented 
patterns have been calculated for the array with the linear dimensions multiplied 
by ratio f /f0 , where f is an operating frequency and f0 is a reference frequency to 
which all the dimensions indicated earlier in wavelengths correspond. The phase of 
the second mode in this case has been calculated by formula
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obtained in the assumption that the phase is mainly determined by the distance 
between the aperture and transition. The results show that the sector shape of the 
element pattern keeps well at least in a 10% frequency band, and the pattern width 
changes in a natural way in accordance with the change of the element spacing ex-
pressed in l with frequency.

Figure 6.5  Element pattern of array with b = a = 0.8l.
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The next example is an array of waveguides of width a = b = 1.2l, at which 
three waveguide modes (TEM, TM2, and TM3) are propagating. If the waveguides 
are only excited by the TEM modes, when A1 = 1 and Am = 0 for m > 1 in (6.1) and 
(6.17) to (6.19), the optimized structures consisting of L = 6 strips with parameters 
sl = 0.2l and zl = [0.2 + 0.39(l - 1)]l, (l = 1, 2, . . . ,L), allow us to obtain the ele-
ment pattern shown by triangles in Figure 6.7, where the crosses correspond to the 
element pattern of the array without strips. The comparison shows that the strips 
improve the element pattern shape in the region of the grating lobe movement. 
However, the fall-off of the pattern level in the sector of scan remains considerable. 
The indicated fall-off is explained by the increase of the reflected power, which 
achieves about 19% at the edge of the scan sector, with up to 3% and 15% of the in-
cident power being reflected in the TM2 and TM3 modes, respectively. If we assume 
that only reflected TM2 modes return back to the apertures [i.e., A2 = R2 exp(iy2)  
in (6.1) and (6.17) to (6.19)], we can slightly improve the element pattern shape, 
as shown in Figure 6.7 by a major-dashed curve calculated at y2 = 290°. However, 
since the second modes transfer only a small part of the reflected power, the improve-
ment achieved is not considerable. A significantly greater effect can be achieved by 
using both the second and the third modes. Assume that at some distance from the 
aperture, each triple-mode waveguide is divided by two symmetric dual-mode chan-
nels connected through symmetric matched transitions to single-mode waveguides. 
The latter, in turn, are connected to the arms of a symmetric matched two-channel 
power divider. In this case, both modes will be completely returned to the apertures, 
and, similarly to the second mode, for the third one we can write A3 = R3 exp(iy3), 
where phase y3 is determined independently from the phase y2. The element pat-
tern corresponding to the array in question with optimum value y3 = 300° is shown 
in Figure 6.7 by the solid curve, and the curve shown by small dashes represents the 

Figure 6.6  Element pattern of array with b = a = 0.8l in the presence of strip structures at frequen-
cies f0 (reference frequency), 0.95f0, and 1.05f0.
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corresponding ideal sector element pattern. So, like in the case of the dual-mode 
waveguide array, the optimized strip structures at optimum excitation allow us to 
obtain the sector element patterns of high quality.

Variations of the element pattern shape in a 10% frequency band are shown 
in Figure 6.8. The frequency dependence of the phase for the third mode has been 

Figure 6.7  Element pattern of array with b = a = 1.2l.

Figure 6.8  Element pattern of an array with b = a = 1.2l in the presence of strip structures at fre-
quencies f0 (reference frequency), 0.95f0, and 1.05f0.
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calculated by formula (6.21) with replacement of the index 2 by index 3, while 
calculation of the phase for the second mode has been performed in the same way 
as in the previous example. Although the latter is a rather rough approximation in 
this case, it exerts no considerable influence on the results because the power in the 
second mode is much smaller than in the third one.

The range of the array element spacing, for which the strip structures allow 
shaping the sector element patterns of high quality, is characterized by the examples 
presented in Figure 6.9. The element patterns shown here correspond to the arrays 
with the following parameters a = b = 0.65l, sl = 0.2l, zl = [0.2 + 0.0875(l - 1)]l, 
l = 1, 2, . . . , L, L = 9, y2 = 230°, and with a = b = 1.3l, sl = 0.2l, zl = [0.2 + 0.39 
(l - 1)]l, l = 1, 2, . . . , L, L = 6, y2 = 300°, y2 = 270°. The quality of the achieved sec-
tor element patterns worsens with the further decrease of the element spacing due to  
increasing the reflected power in the dominant TEM mode. The further increase of 
the spacing from 1.3l results in difficulties in suppressing the sidelobes. 

6.3  Planar Array of Circular Waveguides with Disk Structures

6.3.1  Geometry, Excitation, and Field Representation

The technique developed for numerical analysis of the one-dimensional periodic 
array of parallel-plate waveguides exciting the strip slow-wave structures is gen-
eralized here for the case of a planar dually periodic array of circular waveguides 
exciting disk slow-wave structures. The geometry of the array accepted as a model 
for theoretical and numerical analysis is shown in Figure 6.10, together with a rect-
angular Cartesian system of coordinates x, y, and z. The array is an infinite dually 
periodic structure where the elements are arranged in rows with spacing dx and the 
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Figure 6.9  Element pattern of an array with b = a = 0.65l and b = a = 1.3l shaped by optimized 
strip structures.
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rows are arranged with spacing dy. The array elements can form both a rectangular 
lattice and a triangular lattice, as shown in Figure 6.10, where the neighboring rows 
are shifted along the x-axis by dx/2 with respect to each other. The array element 
consists of an input semi-infinite circular waveguide of diameter 2a0, a matching 
transition of diameter 2a¢ and length h¢, and a radiation section of diameter 2a and 
length h. The indicated sections are connected by flanges, have a common axis, and 
may be filled with dielectric of relative permittivity e(0), e¢, and e, respectively. The 
radiating sections have a common infinite flange. Along the axis of each waveguide, 
there are arranged L disks of diameter 2r and zero thickness. Their positions above 
the aperture are characterized by parameters zl, where l £ l £ L. All the waveguide 
sections, flanges, and disks are assumed to be perfectly conducting.

We also assume that the input waveguides are excited by their dominant TE11 
modes of circular polarization. The incident modes have identical amplitudes, and their 
phases change linearly along the main axes corresponding to a specified direction of the 
main lobe in space in the same manner as described in Section 5.5.1. The radiated field 
calculated for such a quasi-periodic excitation will be subsequently used for calculation 
of the array element pattern, which is of primary interest in this study.

Comparing Figures 6.10 and 5.24, as well as their descriptions, we can note 
that the waveguide part of the array with dielectric elements is identical to the 
waveguide part of the array with disk structures up to notation of the parameters. 

Figure 6.10  Geometry of planar periodic array of circular waveguides with multilayer disk struc-
tures: (a) top view and (b) cross-section on 0xz plane.
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So, representing the electric and magnetic fields in the radiating section of the array 
in question, we will use formulas (5.68) and (5.69) together with the subsequent 
description of the parameters standing in them. 

The disk structures differ from the protruding dielectric elements, and therefore 
the representation of the fields above the waveguide apertures will be different. 
Namely, the strengths of the total transverse electric and magnetic fields in the re-
gion z ³ 0 are represented as the following expansions in the terms of the complete 
system of the Floquet mode vector wave functions (1.26) and (1.27):
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where ( )l
jpqT  are unknown amplitudes of the TE ( j = 1) and TM ( j = 2) modes going 

from the planes  z = zl, with z0 = 0. The transverse and longitudinal propagation 
constants involved in (6.22) and (6.23) are determined by formulas (1.21).

As with the case of the array with strip structures considered in the previous 
section, the amplitudes of the Floquet modes going from the planes of the disks are 
expressed via the surface current densities jl(r,j), 1 £ l £ L, on the disks by formulas
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resulting from the more general expressions (1.29) through (1.32). The indicated 
current densities are represented by the expansions
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in terms of a complete system of vector functions f1mn(r,j) and f2mn(r,j). Following the 
approach applied in [24] for analysis of a periodic structure with rectangular plates, we 
obtain the indicated functions from functions (5.70) and (5.71) by replacement of a by 
r, and subsequent vector multiplication of them by -ez and ez, respectively, to satisfy the 
zero condition for the radial component of the current density at the disk edge.
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6.3.2  Algebraic System and Array Characteristics

The unknown coefficients in the expansions written earlier are determined using the 
boundary conditions for the fields in the waveguide aperture, on the flange, and on 
the surfaces of the disks. The electric field (6.22) at z = 0 must vanish on the flange 
and must be equal to the electric field (5.68) in the waveguide aperture. Using the 
orthogonality of functions (1.26) and (1.27), we obtain the relations
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where coefficients j mn
jpqQ ¢  are determined by formulas (5.85) through (5.88).

Similarly, substituting (6.26), (1.26), and (1.27) into (6.24) and (6.25), we obtain
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where l = 1, 2, …, L; 1 1
1 2

mn mn
pq pqD Q= - , 2 2
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mn mn
pq pqD Q=  with replace-

ment of a by r.
Now let us proceed directly to forming the final system of algebraic equations. 

The first part is formed by the relations between the amplitude of the incident mode 
in the input waveguide and the amplitudes of the forward and backward modes in 
the radiating section similar to (5.43):
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where j¢ = 1, 2; m = 0, ±1, ±2, . . . ; n¢ = 1, 2, . . . ; j² = 1, 2; n² = 1, 2, . . . ; 1 1 1
i
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i
j m nj mnA δ δ δ-¢¢ ¢¢¢¢ ¢¢ =  are amplitudes of the incident modes; dmn is the Kronecker 

symbol; and ,
,

m
j n jnS ν ν¢
¢ ¢  is the element of the scattering matrix for the transition between 

the input (index 0) and radiating (index 1) sections. This element is the amplitude of 
the j¢mn¢th mode, excited in the n ¢ section when the jmnth mode of unit amplitude 
incidents in the nth section.

The second part of the system is obtained from the continuity condition for the 
magnetic fields (5.69) and (6.23) in the waveguide aperture. Using the orthogonal-
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ity of functions (5.70) and (5.71) here, as well as taking into account the relations 
(6.27), (6.29), and (6.30), we obtain
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where m¢ = 0, ±1, ±2, . . . and n¢ = 1, 2, . . . .
The next part of the system is obtained from (6.28) and by taking (6.30) into 

account
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where p¢, q¢ = 0, ±1, ±2 . . . .
Finally, the fourth part of the system is obtained from the zero boundary condi-

tion for the electric field (6.22) on the surface of each disk. Projecting this equal-
ity on the weighting functions 1 ( , )m n ρ ϕ*

¢ ¢f  and 2 ( , )m n ρ ϕ*
¢ ¢f , as well as taking (6.27), 

(6.29), and (6.30) into account, we obtain
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where
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l¢ = 1, 2, . . . L; j¢ = 1, 2; m¢ = 0, ±1, ±2, . . . and n¢ = 1, 2, . . . .
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After appropriate truncation (to be discussed in the next section), the system 
of equations (6.31) through (6.34) is solved numerically by the Gauss elimination 
method. The results of that solution are used for calculation of the array character-
istics of practical interest. The amplitudes of the modes reflected in the input wave-
guide, including the copolar and cross-polar reflection coefficients for the dominant 
TE11 mode, are calculated using (5.122). The components of the array element pat-
tern are determined by (5.124) and (5.125). The amplitudes of the Floquet modes 
above the disk structures used for calculation of the element pattern are determined 
by the expressions
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resulted from (6.22) at z ³ zL and taking (6.27), (6.29), and (6.30) into account. Re-
member, the second index 1 in (5.124) and (5.125) corresponds to the zero values 
of indices p and q in this section. The amplitudes of the reflected modes (5.122) and 
the amplitudes Floquet modes (6.37) and (6.38) are used for checking satisfaction 
of the power balance relation (5.123).

6.3.3  Results of Numerical Modeling

The operation of the FORTRAN code developed according to the algorithm de-
scribed earlier has been tested in different ways. In particular, the results of its 
operation obtained keeping 20 to 40 waveguide modes with -4 £ m £ 4 and 200 
to 300 Floquet modes have been in complete agreement with the calculated and 
measured data available in [21] for a number of geometrical configuration of the 
array without the disks. 

The calculations of the array with the disk structure have been performed with 
the same number of modes for each disk, as was used for the modes in the radiating 
sections. The number of the Floquet modes, Nf, has been determined from the con-
dition wpq £ wmax, where wmax is a specified radius in the space of direction cosines. 
A typical example demonstrating the influence of Nf on the reflection coefficient 
for a hexagonal array with parameters a0 = 0.36l, a = a¢ = 0.5l, h¢ = 0, h = 2l,  
e(0) = e¢ = e = 1, dx = 1.14l, r = 0.15l, L = 8, and zl = 0.3l + 0.1(l - 1)l, chosen  
afterward in the breadboard design, is presented in Table 6.1.

As we can see, stabilization of the results takes place for a significantly greater 
number of the Floquet modes than that in the absence of the disks. This is explained 
by the accuracy required for the calculation of the matrix elements (6.36) converg-
ing as w-3

pq for the disks of the same level when l = l¢. The convergence of the matrix 
elements corresponding to the interactions between the disks of different levels in 
(6.36), as well as between the disks and waveguide apertures in (6.32) to (6.35), is 
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exponential, and hence the necessary accuracy is achieved for a much smaller num-
ber of the Floquet modes.

After performing the tests indicated earlier, the developed code has been used 
for calculation and optimization of a hexagonal array designed for scanning within 
a cone with flare angles of ±20° in the horizontal and vertical planes (Figure 6.10). 
Taking into account of the experience of [4], the element spacing has been chosen 
as dx = 1.14l at a specified reference frequency f0. The numerical experiments have 
shown that the best results are achieved when the radiation section has maximum 
radius a = dx /2 providing maximum element gain of the array element in the absence 
of the disks. However, to provide the necessary strength of the breadboard design, 
the chosen radiating section radius is slightly smaller: a = 0.5l. The input waveguide 
radius a0 = 0.36l is standard at the specified frequency. No dielectric filling has been 
used. The calculations have shown that the junction between the input and radiat-
ing sections is matched almost ideally itself so that the transition is not required, 
and the transition parameters in the subsequent calculations have been specified as 
a¢ = a and h¢ = 0. The initial values for the radius and number of the disks in the 
element r = 0.15l and L = 8 have been chosen in accordance with the experience 
of the experimental work [4] and the simulations of the two-dimensional model [6, 
7]. Finally, the radiation section length h = 2l and the equidistant arrangement of 
the disks with z1 = 0.3l and zL = l have been determined as a result of the numeri-
cal experiment taking into account the mechanical design of the breadboard. The 
calculations have been performed by taking into account 250 coefficients (0)

2pqT  and 
up to Nf » 700 terms in the series (6.36).

The calculated magnitudes of the copolar and cross-polar element patterns and 
reflection coefficients in horizontal and vertical planes of the array under consider-
ation excited by the circularly polarized TE11 modes at reference frequency f0 are 
presented in Figure 6.11. The copolar element patterns of the array without the 
disks are also given for comparison. The results show that when the main beam 
scans by 20° from the broadside (sin 20° » 0.342) in the horizontal and vertical 
planes, the element gain of the array with the disks is higher than that in the ab-
sence of the disks by 1.6 and 1.5 dB, respectively. The use of the disks also results 
in a reduction of the maximum grating lobe level from –7.9 to –12 dB. The copolar 
reflection coefficient within the scan sector does not exceed 0.12 (VSWR » 1.27) 
in the horizontal plane and 0.074 (VSWR » 1.16) in the vertical plane. The total 
return loss in the indicated planes is less than –18.2 dB and –21 dB, respectively. 

Table 6.1  Convergence of Reflection Coefficient 
with Increasing Number of Floquet Modes Kept for 
Array with Disks at Broadside Beam Position

Nf wmax/k Re{R111} Im{R111}
169 7.3 –0.0196 –0.3188
235 8.3 –0.0816 –0.1683
295 9.3 –0.0858 –0.1363
361 10.3 –0.0842 –0.1363
433 11.3 –0.0738 –0.1087
511 12.3 –0.0596 –0.0926
595 13.3 –0.0521 –0.0839
703 14.3 –0.0537 –0.0854
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Figure 6.11  Element pattern and reflection coefficient at circular polarization in (a) horizontal and 
(b) vertical planes of a hexagonal array with dx = 1.14l, a0 = 0.36l, a ¢ = a0, h1 = 0, a = 0.5l, e (0) = e ¢ 
= e = 1, h = 2l, r = 0.15l, L = 8, z1 = 0.3l, and zL = l at central frequency f0.
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The modeling has also shown that the element pattern shape does not practically 
change as the parameters of the structure vary in the limits 6 £ L £ 9, 0.14l £ r £ 
0.16l, and 0.1l £ z1 £ 0.3l.

As already noted in Chapter 1, one of the parameters characterizing the qual-
ity of limited-scan arrays is the element use efficiency [25] or its inverse param-
eter, the element use factor [26, 27]. The latter can be approximately evaluated as  
z = (dx,max /dx)2, where dx,max is the maximum element spacing corresponding to 
the ideal contour element pattern. This spacing is approximately equal to 1.688l 
for the ideal element pattern of ±20° width. The indicated data as well as the value 
indicated earlier for the actual element spacing give z » 2.19. However, since the av-
erage level of the actual array element pattern shown in Figure 6.11 is about 0.92 of 
the maximum level within the scan region, the “geometrical” value of the element 
use factor obtained earlier should additionally be multiplied by 0.92–2. Then the 
element use factor will approximately equal 2.59. This value lies within the typical 
range for the arrays, where the efficient overlapping of the subarrays extends only 
to the closest neighbor array cells [27, 28].

The array element patterns calculated at frequencies 0.967f0 and 0.977f0, as 
well as at 1.017f0 and 1.033f0, are presented in Figures 6.12 and 6.13, respectively. 
The results show that the changes of the pattern shape within a 5.6% band from 
0.977f0 to 1.033f0 are insignificant, and such behavior corresponds to the results 
presented in Section 6.1 and [4]. However, in Figure 6.12 we see that the element 
patterns of the array with disks at frequency 0.967f0 have sharp dips in the broad-
side, which are absent in the element pattern of the array without the disks. There-
fore, the disk structure here is similar to a dielectric cover, the role of which in the 
surface wave excitation causing the similar dips is discussed in detail in [21].

The modeling shows that the dips also occur at the element pattern broadside 
in the array with a square lattice at dx = dy » 0.974l and the disk structure pa-
rameters indicated earlier. Because of the high degree of the hexagonal and square 
lattice symmetry, as well as the circular symmetry of the array element, the effect 
in question is independent of the incident TE11 mode polarization. However, when 
the indicated lattice symmetry is broken, the effect can occur for only one linear 
polarization (e.g., at the vertical polarization in a rectangular lattice where dx has a 
resonant value while dy differs slightly). The calculations also show that the depth 
of the resonant pattern level reduction depends on the disk structure parameters—
particularly on the height of its lower side above the waveguide apertures. This fact 
confirms the role of the higher order Floquet modes in the excitation of the surface 
waves in the structure.

The waveguide structure with hexagonal lattice period of 1.1 to 1.2l and the 
radiating section diameter of about one wavelength without dielectric filling is char-
acterized by good natural match to free space and by the absence of the resonance 
effects. The application of the disk structures allows shaping the sector element 
patterns in arrays designed for scanning within a sector of about ±20° in the prin-
cipal planes. The shaping of wider sector element patterns requires the use of ap-
propriately smaller element spacing and waveguides of smaller diameter. As shown 
in [9], this situation requires additional discussion. As an example, let us consider a 
hexagonal array with dx = 0.92l and a = 0.45l. The array element pattern at circu-
lar polarization in the absence of the dielectric filling and disk structures is shown 
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Figure 6.12  Element pattern at circular polarization in (a) horizontal and (b) vertical planes of 
hexagonal array with parameters indicated in the caption for Figure 6.11 at frequencies f = 0.967f0 
and f = 0.977f0.
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Figure 6.13  Element pattern at circular polarization in (a) horizontal and (b) vertical planes of 
hexagonal array with parameters indicated in the caption for Figure 6.11 at frequencies f = 1.017f0 
and f = 1.033f0.
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in Figure 6.14 by the curve with smaller dashes. This pattern has resonance dips in 
the single-beam scan region. These dips can be removed by application of dielectric 
plugs of definite height and permittivity [21]. The plug permittivity is chosen to 
make the mode TE21 propagate. The element pattern corresponding to parameters 
e = 1.5, h = 0.48l, a0 = a¢ = 0.34l, e(0) = e¢ = 1, and h¢ = 0 is shown in Figure 6.14 
by the curve with major dashes. Application of the disk structures with r = 0.15l, 
L = 8, and zl = 0.3l + 0.093l(l–1), l = 1, 2, …, L, obtained as a result of numerical 

Figure 6.14  Element pattern at circular polarization in (a) horizontal and (b) vertical planes of hex-
agonal array with dx = 0.92l, a0 = a’ = a = 0.45l, h¢ = 0, e (0) = e ¢ = 1, e = 1.5, h = 0.48l in the absence 
of disks and of the same array with disks at r = 0.15l, L = 8, and zl = 0.3l + 0.093l(l – 1).
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optimization, allows considerable improvement of the element pattern shape. This 
pattern, shown in Figure 6.14 by the solid curve, has a considerably higher level in 
the scan region of the main beam and a correspondingly reduced level in the regions 
of the grating lobes. Shaping of the sector element patterns of even greater width is 
also possible in principle, but already has a smaller effect [9].

6.3.4  Results of Breadboarding

The method of analysis and the results of calculations presented earlier for a hex-
agonal array with element spacing 1.14l have been used for creating two bread-
boards of the array with disk structures designed for operation in the Ka- and  
X-bands of frequencies. The photographs of the Ka-band array breadboard are 
shown in Figure 6.15. 

The antenna consists of two major parts, namely, an exciting structure and a disk 
structure. The former is a thick aluminum plate containing 19 holes of diameter 2a0 
= 7.2 mm corresponding to the input waveguide sections shown in Figure 6.10(b).  

Figure 6.15  Nineteen-element breadboard of waveguide array with disk structures: (a) in assem-
bled state and (b) separate components of design.
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The axes of the holes are arranged in the nodes of a hexagonal lattice with period 
11.4 mm. The upper radiating section is assembled using plates of different thick-
ness, as shown in Figure 6.15(b), with holes of diameter 2a = 10 mm whose axes 
coincide with the axes of the input holes in the lower plate. The set of the indicated 
plates allows us to assemble the upper waveguide sections at different heights if 
necessary. The height of the radiating section in the final variant is equal to h = 20 
mm.

The second major part of the breadboard contains the disk structures. The 
disks are arranged on eight dielectric films of thickness 0.05 mm. Formation of the 
disks on the films has been performed using the ion-beam method. The films are 
fixed on the ring frames with spacing between adjacent layers equal to 1 mm. The 
distance between the lower film and the apertures of the radiating sections is equal 
to 3 mm.

As we see in Figure 6.15(b), the central element of the array is excited through 
a coaxial-to-waveguide transition, a transition from the rectangular waveguide to a 
circular one, and a polarizer. After the polarizer, the TE11 mode of circular polariza-
tion comes to the input waveguide section with subsequent radiation through the 
disk structures. The matching loads also shown in Figure 6.15(b) are inserted in the 
input channels of all 18 peripheral elements.

The radiation patterns in the principal planes of the breadboard in the fre-
quency band 29.0 to 30.5 GHz have been measured in an anechoic chamber of 
sufficient dimensions to provide the far zone condition for the breadboard aper-
ture. The results of measurements are shown in Figure 6.16 for frequency 30 GHz 
corresponding to the central frequency f0 mentioned in the theoretical model and 
in Figure 6.17 for frequency 29 GHz corresponding to 0.967f0. The measured pat-
terns are compared to the calculated ones taken from Figures 6.11 and 6.12 and 
calculated into decibels.

The comparisons show that there is good agreement between the calculated 
and measured data regarding the width and shape of the sector beams. The differ-
ences observed in some other parts of the patterns are explained by the differences 
between the theoretical model in the form of an infinite array and the experimental 
breadboard of finite dimensions comprising only 19 elements. Moreover, the disk 
structures in the breadboard are surrounded by a dielectric cylinder formed by the 
dielectric rings supporting the films with the disks. This cylinder blocks the radia-
tion at 60° to 90° angles from the broadside, where the most considerable differ-
ences in the radiation patterns are observed. One more reason for the differences 
is the resonance effects taking place in the infinite array at frequency 0.967f0 (cor-
responding to the measurements at 29 GHz) and revealing themselves by the nar-
row dips in the calculated array element patterns (Figure 6.17). The array fragment 
with a small number of elements does not reveal the indicated effects, as discussed 
in the earlier works on phased arrays (e.g., [21, 29]). Comparison of the measured 
and calculated array element patterns at 30.5 GHz gives a picture similar to that 
presented in Figure 6.16, and, for this reason, the results are not presented here.

The X-band array breadboard is described in [11]. Its exciting part is similar to 
the exciting part of the S-band array considered in Section 6.1. The array consists 
of 19 crossed microstrip dipoles arranged on longitudinal dielectric boards. Each 
dipole pair is arranged in a metallic cylinder. The central dipoles are fed through a 
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Figure 6.16  Measured and calculated array element patterns in (a) horizontal and (b) vertical 
planes at frequency 30 GHz.
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Figure 6.17  Measured and calculated array element patterns in (a) horizontal and (b) vertical 
planes at frequency 29 GHz.
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hybrid device providing a circular polarization of radiation. The inputs of all the 
other dipoles are connected to matching loads. The disk structures forming the 
sector element patterns are performed in the same manner as in the Ka-band bread-
board (i.e., on thin dielectric films fixed on dielectric ring frames). The difference 
consists of using 10 layers instead of 8 and using disks of nonidentical diameters. 
Other details are indicated in [11]. This work also compares the measured element 
patterns of the X-band array to the similar patterns of the Ka-band array at element 
spacing 1.12l. The comparison shows that the results are very close to each other. 
Moreover, the element patterns of the array with the disk structures turn out to be 
very close to the element patterns of the array of the same element spacing with di-
electric rods. This fact indicates that the arrays with disk and rod elements possess 
similar capabilities of shaping the sector element patterns.

6.4  Arrays of Yagi-Uda Antenna Elements

The corrugated rods excited by open-ended waveguides or dipoles, as well as the di-
electric rods protruding from waveguides, are convenient radiating array elements 
for shaping sector radiation patterns in both principal planes. However, some array 
applications require scanning in a wide angular sector in one plane and in a narrow 
(limited) sector in another (orthogonal) plane (i.e., the appropriate element pattern 
must be sector-shaped only in one plane). In such cases, radiating elements in the 
form of Yagi-Uda dipole antennas are convenient. Their design allows arrangement 
of them with small element spacing in the plane of wide-angle scanning. At the 
same time, since they are capable of supporting traveling waves in the longitudinal 
direction similarly to the dielectric or corrugated rods, the interaction between such 
elements over free space in the limited scan plane can be used for shaping a sector 
element pattern in this plane. Some examples of that, though with sector patterns 
of not very high quality, are available in [30], where the Yagi elements are used for 
comparison with the elements in the form of dielectric plates, which have been the 
primary object of study there. A theoretical study of the director Yagi elements in 
planar arrays designed for wide-angle scanning in both planes has been carried out 
in [31]. A study of the possibilities of shaping the sector element patterns for pro-
viding effective beam scanning in a limited sector in one plane is carried out later.

6.4.1  Problem Formulation and Solution

The geometry of an infinite planar array chosen for study here is shown in Figure 
6.18 together with a rectangular coordinate system 0xyz. The Yagi elements can 
be arranged in the nodes of either a triangular lattice (as shown in Figure 6.18) or 
a rectangular one, with element spacing dx in the horizontal rows and with spac-
ing dy between adjacent rows. The array element consists of M straight perfectly 
conducting cylinders (wires) arranged symmetrically in a plane parallel to the 0yz 
plane. Each wire is parallel to an infinite perfectly conducting screen and charac-
terized by diameter 2a, length 2dm, and height hm above the screen, where m = 1, 
2, …, M. The first wire is considered to be a driven dipole, and all the others are 
passive directors. The dipoles are assumed to be fed in the infinitely narrow gaps in 
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Figure  6.18  Geometry of planar array of Yagi (director) antenna elements: (a) top view and  
(b) side view in 0yz plane.

their centers via transmitting lines with wave resistance Wf. The amplitudes of the 
excitation are assumed to be identical, and the phases are linearly progressing in 
the principal planes.

To calculate the array characteristics, we assume that the wire diameter 2a 
is much smaller than the operating wavelength l, element spacings, and distance 
between any two wires. This thin-wire approximation allows the surface currents 
on the wires to be replaced by the y-directed currents Im(y), m = 1, 2, …, M, on 
the wire axes. The boundary condition on the wire surfaces and the subsequent 
standard procedure (e.g., [32]) aimed at determining the indicated currents give the 
following system of integral equations of Hallen type [1]:
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where |y| £ dm, m = 1, 2, …, M; Cm and Dm are constants to be determined; V is the 
voltage in the gap of the central dipole; d1m is the Kronecker symbol;
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is the kernel; Ypq = k(xpqu + yqv) are the phases of the excitation of the dipoles, 
corresponding to the direction cosines u = sinq cosj and v = sinq sinj characteriz-
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ing the main beam position; q and j are angles measured from the z- and x-axes, 
respectively,
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and
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are the propagation constants for the Floquet modes. The parameters standing in 
(6.41) and (6.42) correspond to the triangular lattice shown in Figure 6.18. If the 
lattice is rectangular, the first one in (6.41) and the second one in (6.42) should be 
replaced by xp = pdx and bq = kv + 2pq/dy, respectively. Note also that the expres-
sion for the longitudinal propagation constants (1.20) is taken here in an alternative 
form. However, if 2 2 2 2

p pq pqw kα β+ = < , the propagation constants should be calcu-
lated by formula Gpq = -i(k2 - w 2pq)1/2. Then, after substitution of the latter in (6.40), 
we obtain complete correspondence of (6.40) to the Green’s function expressed by 
(1.19).

The kernel (6.40) has been obtained from (1.19) with the use of the generaliza-
tion [14, 33] of the approach proposed in [34] for accelerating the convergence 
of the series representing the rectangular waveguide Green’s function. As a result, 
the first (spatial) series in (6.40) converges exponentially. The second (spectral) 
difference series in (6.40) at m ¹ m converges exponentially as well. At m = m and 
satisfaction of the key condition k¢2 - k¢¢2 = k2 proposed in [34] for the components 
of the auxiliary wavenumber ka = k¢ + ik¢¢, this series converges as 2 51.5( ) pqk k Γ -¢ ¢¢ . 
This approach to accelerating calculation of the Green’s function (1.19) for doubly 
periodic structures has been called in [35] Kummer’s method of the second order. 
Modifications of Kummer’s method of the fourth and sixth orders to provide con-
vergence of the spectral difference series in as 9

pqΓ -  and 13
pqΓ - , respectively, have been 

proposed and considered in [36, 37; also private communication with M. M. Ivan-
ishin, December 24, 2007]. The main results of that consideration are presented in 
Appendix 6A. The choice of the optimum proportion between k¢ and k¢¢ has been 
discussed in [36, 37].

The voltage V in the dipole gap standing in the right-hand side of (6.39) is de-
termined by formula [38]

 12 (0)i
fV V W I= -  (6.43)

where Vi is the voltage of the incident wave in the feeding line and I1(0) is the value 
of the current in the gap. Breaking the wires of the radiating element into intervals 
by collocation points at ymn = (n - 1 - Nm)dm /Nm, n = 1, 2, …, 2Nm + 1, using the 
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triangular basis functions for representing the currents, and satisfying (6.39) in the 
indicated collocation points, we reduce the integral equation (6.39) to the system 
of algebraic equations
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where m = 1, 2, …, M; n = 1, 2, …, 2Nm + 1; Imn are is the value of the current at 
the nth collocation point on the mth wire; 
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Dm = dm /Nm, and it is taken into account that the currents at the wire ends are equal 
to zero, so that the number of unknowns turns to be exactly equal to the number 
of equations.

After solving the system (6.44), the array reflection coefficient is determined as

 

11, 1( , )
( , ) 1 f N

i

W I u v
R u v

V
+= -

 
(6.46)

and the components of the array element pattern normalized to the maximum of 
the ideal array element pattern (1.50) are calculated by formulas

 ( , ) ( , )cos sinyF Fθ θ ϕ θ ϕ θ ϕ=  (6.47)

 ( , ) ( , )cosyF Fϕ θ ϕ θ ϕ ϕ=  (6.48)
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6.4.2  Results of Calculation and Discussion

The algorithm described earlier has been realized in a FORTRAN code tested in 
different ways, one of which has been compared against the results for the array 
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parameters available in [31]. All the calculations have been accompanied by verifi-
cation of the power balance relation
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where the summation is performed only over the propagating Floquet modes for 
which 2 2 2 2

p pq pqw kα β+ = < . The amplitudes of the indicated modes are determined 
by formulas
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where
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and the reflection coefficient standing in (6.50) is determined by (6.46).
A number of calculations have been performed with optimization of the array 

element parameters to shape the sector element pattern in the E-plane (0yz plane) 
and wide-angle element pattern in the H-plane. The results to be discussed later 
correspond to the case when the directors have identical lengths different from the 
length of the dipoles, and the wires in the element are arranged with identical spac-
ing Dh = hm+1 - hm from each other. In these cases, the parameters under optimiza-
tion have been the number of directors M – 1, the director length, and the spacing 
between the wires Dh. Some results of such optimization are presented in Figures 
6.19 through 6.22. For all these results, the following values hold: Wf = 75W, 2d1 = 
0.48l, h1 = 0.25l, 2a = 0.014l, 2dm = 0.35l for 2 £ m £ M, and dx = 0.6l, where l 
corresponds to some reference frequency f0.

Figure 6.19 contains the element pattern components (6.47) and (6.48) in the 
E- and H-planes of the array with dy = 0.8l. The elements, each of which has four 
directors (total number of wires is M = 5) with spacing Dh = 0.12l, are arranged in 
a rectangular lattice. The similar element patterns for the array with dy = l and six 
directors in the element (M = 7) where Dh = 0.14l are shown in Figure 6.20. The 
geometry of the elements that keep the proportions is shown in the insets of Figures 
6.19(b) and 6.20(b). The solid curves with crosses presented for comparison cor-
respond to the element with no directors. The comparison shows that the quality of 
the obtained sector element patterns in the E-plane in Figures 6.19(a) and 6.20(a) is 
rather high, and the magnitude of the reflection coefficient (6.46) does not exceed 
0.1 in the area of the flat top. However, such quality has not been achieved if the  
E-plane spacing is greater than the wavelength. As for the H-plane, we see in Fig-
ures 6.19(b) and 6.20(b) that, as in [31], the patterns have narrow dips at the main 
lobe angles slightly smaller than those corresponding to the arising grating lobes 
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in real space. The indicated dips are associated with the resonances of the surface 
waves excited in the director structure, forming a layer of artificial dielectric. It is 
seen that the resonance effects are stronger in the arrays with longer (in the z direc-
tion) director elements. 

The results presented in Figures 6.19(a) and 6.20(a) show that the sector ele-
ment pattern shape is kept well at least in a 10% frequency band, and the change 
of the pattern width corresponds to the natural change of the element spacing in 
wavelengths. The increase of frequency also leads to an increase of the electrical 

Figure 6.19  Element patterns in (a) E- and (b) H-planes of array with rectangular lattice for dx = 
0.6l, dy = 0.8l, h1 = 0.25l, Dh = 0.12l, 2a = 0.014l, 2d1 = 0.48l, and 2dm = 0.35l, 2 £ m £M, M = 
5, at frequencies f0, 0.95f0, and 1.05f0.
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element length, and therefore to the stronger resonance effects in the H-plane, and 
even to rising new dips in the element pattern. Moreover, as the H-plane electrical 
element spacing increases, the resonance dips move toward the array broadside.

The array with the same elements and the same element and row spacings, but 
with the triangular lattice as shown in Figure 6.18, has also been studied. As shown 
in [14], the element pattern shape in the E-plane for the triangular lattice is prac-
tically identical to the shape of the element patterns presented in Figures 6.19(a) 
and 6.20(a) for the rectangular lattice. So, the element pattern in the E-plane is 

Figure 6.20  Element patterns in (a) E- and (b) H-planes of array with rectangular lattice for dx = 
0.6l, dy = l, h1 = 0.25l, Dh = 0.14l, 2a = 0.014l, 2d1 = 0.48l, and 2dm = 0.35l, 2 £ m £ M, M = 7, 
at frequencies f0, 0.95f0, and 1.05f0.
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practically independent of the lattice type with the indicated parameters. A special 
test has shown that this conclusion remains valid for the corresponding arrays of 
rectangular or circular waveguides [21] as well. Such a generality is explained by 
the small element spacing in the H-plane. If the main beam scans in the E-plane, the 
nearest grating lobe columns in the space of direction cosines are rather far from the 
real space border, and hence the difference in the grating lobe arrangement in these 
side columns for the different lattice types weakly affects the scanning performance 
in the E-plane.

On the contrary, if the main beam scans in the H-plane, the nearest grating lobes 
come closer to the real space border, and the difference in the arrangement of the 
nearest grating lobes is manifested in the array characteristics to a greater degree. This 
feature is illustrated by comparing the H-plane element patterns shown in Figures 
6.19(b) and 6.20(b) with the similar element patterns of the array with the triangular 
lattice presented in Figure 6.21 for dy = 0.8l and in Figure 6.22 for dy = l. The near-
est grating lobes for the triangular lattice are arranged at a greater distance from the 
main beam than takes place for the rectangular one, and hence the resonance effects 
occur at greater angles of the main beam direction. This confirms the known advan-
tage of the triangular lattice for providing a better scan performance.

The results obtained here for a simplified array model show the director antenna 
elements’ good potential for use in phased arrays designed for limited scanning in 
the E-plane and wide-angle scanning in the H-plane. They allow us to consider the 
arrays of Yagi’s elements promising further studies in this area. One of the direc-
tions of them can be taking into account various possibilities for the realization of 
the Yagi’s elements (e.g., printing such elements on longitudinal protruding dielec-
tric boards, as has been considered in [39, p. 205], or in [40]). Another direction for 
future studies can be removal of the resonance effects that occur when scanning in 

Figure 6.21 Element pattern in the H-plane of the array with triangular lattice for dx = 0.6l, dy = 
0.8l, h1 = 0.25l, Dh = 0.12l, 2a = 0.014l, 2d1 = 0.48l, and 2dm = 0.35l, 2 £ m £ M, M = 5, at fre-
quencies f0, 0.95f0, and 1.05f0.
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the H-plane. A possible solution for this problem is the breaking of the periodicity 
of the structure in the H-plane by means of arrangement of the array columns with 
random spacing.

6.5  Arrays of Waveguides with Semitransparent Wire-Grid Walls

One more approach to the shaping of sector array element patterns has been de-
veloped in [15–18] using single-mode waveguides with semitransparent walls. The 
latter are realized in the form of wire grids. The analysis of such arrays in [15–18], 
based on the theory of coupled waves applied first in [41], has some analogy with 
a phenomenological approach developed in [42] for analysis of arrays of traveling-
wave elements. The phenomenological approach based on the theory of coupled 
waves applied to the waveguides of nonidentical width has been realized in a bread-
board [15], where the semitransparent walls of the coupled waveguide sections 
are formed by rows of cylindrical conductors (wires). A technique for selection of 
the semitransparent wall parameters, including the diameter of the cylinders, their 
number, and the spacing between them, is described in [16]. The numerical simu-
lation of the array by the finite element method aimed at determining the ampli-
tudes of waves in the output waveguide sections without accounting for radiation 
is carried out in [15, 16]. The amplitudes determined as a result are then used for 
approximate calculation of the array element pattern according to the Kirchhoff 
method. The measured array element patterns confirming some conclusions drawn 
in [15, 16] have also been presented.

A full-wave two-dimensional mathematical model of a waveguide array con-
taining semitransparent wire-grid walls is described later.

Figure 6.22 Element pattern in the H-plane of an array with a triangular lattice for dx = 0.6l, dy = l, 
h1 = 0.25l, Dh = 0.14l, 2a = 0.014l, 2d1 = 0.48l, and 2dm = 0.35l, 2 £ m £ M, M = 7, at frequencies 
f0, 0.95f0, and 1.05f0.
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6.5.1  Statement and Solution of the Problem

The array geometry similar to that considered in [15, 16] is presented in Figure 
6.23. The array is an infinite periodic structure of parallel-plate waveguides ar-
ranged with period (element spacing) b along the x-axis of a rectangular Cartesian 
coordinates 0xyz. Each array cell contains two semi-infinite waveguides of width a1 
and a2 (a1+a2 £ b) with solid walls, as well as two waveguide sections of finite length 
(in the longitudinal direction) with semitransparent walls arranged symmetrically 
above the waveguides with solid walls. Each semitransparent wall is formed by 
L cylinders (wires) of a circular cross section of radius r arranged with spacing D 
along the z-axis. The axes of the first row of the cylinders are arranged at distance 
h1 above the waveguide apertures. The axes of the adjacent columns are arranged 
at distances a¢ and a² = b – a¢ from each other. The array geometry is assumed to 
be uniform along the y-axis, and the waveguide walls, flanges, and cylinders are 
assumed to be perfectly conducting.

The right-hand waveguides in each cell are considered passive and terminated 
with matching loads, while the left-hand ones are excited in their dominant TE 
modes with complex amplitudes exp(imU), where m = 0, ±1, ±2, … is the cell ordi-
nal number, U = kbsinq is the phase difference between the fields in adjacent cells, 
k = 2p /l is the wavenumber, l is the wavelength in free space, and q is the angle 
between the z-axis and direction of the main lobe in the space.

To determine the array characteristics at the conditions specified earlier, we 
represent the total electric fields in the driven and passive waveguides of the central 
cell in the form of superpositions of their TE eigenmodes
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Figure 6.23  Geometry of an array of waveguides coupled via semitransparent wire-grid walls.
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where

 
2 2 2 2( / ) ( / )jn j jk n a i n a kγ π π= - = -  (6.55)

are propagation constants of the modes in the driven (j = 1) and passive (j = 2) 
waveguides, Rjn are amplitudes of the reflected modes in the indicated waveguides 
to be determined, dmn is the Kronecker symbol, and x¢ = x – b/2. The harmonic time 
dependence omitted here is assumed to be taken in the form e-iwt.

The total electric field in the free space above the waveguide apertures (z ³ 0) 
is represented in the form of superposition of Floquet modes similar to those used 
for analysis of waveguide-dielectric arrays in [43] with application of the method 
of auxiliary sources
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The first sum in (6.56) represents Floquet modes with propagation constants 
(4.7) and unknown amplitudes T0q, going to the free space directly from the wave-
guide apertures. The second summand in (6.56) where
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corresponds to the field of Floquet modes excited by the cylinders. This field is 
simulated by filamentary auxiliary electric currents of unknown amplitude Iljs ar-
ranged inside the cylinders and passing through the points with coordinates

 ( 1.5) sinjs sx j a r ϕ= - +¢ ¢  (6.58)

 1 ( 1) cosls sz h l r ϕ= + - D - ¢  (6.59)

where js = 2p(s – 1)/S, S is the number of the sources allotted to one cylinder, and  
r¢ < r is the radius of the circle on which the source points are located. Thus, the 
total number of the auxiliary sources in one cell containing two columns of the 
cylinders is equal to S ´ L ´ 2. As we see from (6.57), the sources are assumed to be 
arranged above a virtual perfectly conducting screen located in the plane z = 0.

The electric field (6.56) must be equal to electric fields (6.53) and (6.54) in 
the apertures of the driven and passive waveguides, respectively, and zero on the 
flanges. Projecting this functional equation on the functions complex-conjugated to 
the transverse functions of the Floquet modes, we obtain the relation between the 
amplitudes of the Floquet modes and the amplitudes of the waveguide modes
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where

 

1

1

/ 2
1

1
1 1/ 2

1 ( /2)
sin q

a
i x

nq

a

n x a
Q e dx

a a
απ -

-

+= ò
 

(6.61)

 

2

2

/ 2/ 2
2

2
2 2/ 2

( /2)
sin

q
q

ai b
i x

nq

a

e n x a
Q e dx

a a

α
απ-

- ¢

-

+¢= ¢ò
 

(6.62)

The final expressions for coefficients (6.61) and (6.62) are similar to that in (5.13) 
and we omit them here for brevity.

The transverse component of the magnetic field strength Hx in the waveguides 
and above their apertures is determined by formula (1.101). The transverse mag-
netic field in the driven waveguide must be equal to the transverse magnetic field 
in the free space at z = 0. Projecting this equality on the transverse functions of the 
eigenmodes in the driven waveguide and accounting for (6.60), we obtain the fol-
lowing subsystem of linear algebraic equations
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where m = 1, 2, …, and the asterisk at coefficients Q1mq means complex conjugation.
The similar projective matching of the transverse magnetic fields in the aperture 

of the passive waveguide gives one more algebraic subsystem
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The third algebraic subsystem is derived from the zero boundary condition 
for the total electric field (6.56) in the collocation points on the surfaces of the 
cylinders

 

1 2
1 1 2 2

1
11

( , ) ( , )

( , ) ( , )

nq q j s l s n nq q j s l s n
n q n q

ljs ljs j s l s q q j s l s
ljs q

a a
Q x z R Q x z R

b b

a
I E x z Q x z

b

η η

η

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

æ ö æ ö
+¢ ¢ ¢ ¢ç ÷ ç ÷ç ÷ ç ÷è ø è ø

+ = -¢ ¢ ¢ ¢

å å å å

å å
 

(6.65)



6.5 Arrays of Waveguides with Semitransparent Wire-Grid Walls 237

where α Γη += ( )( , ) q qi x z
q x z e ,

 ( 1.5) sinjs sx j a r ϕ= - +¢ ¢  (6.66)

 1 ( 1) cos slsz h l r ϕ= + - D -¢  (6.67)

are coordinated of the collocation points, l¢ = 1, 2, …, L; j¢ = 1, 2; and s¢ = 1, 2, …, 
S. Note that the subsystem (6.65) has been derived by accounting for (6.60).

The solution of the system of equations (6.63), (6.64), and (6.65) gives at once 
the values of the reflected mode amplitudes in the waveguides and therefore deter-
mines the reflected field. The total radiated field above the cylinders is determined 
from (6.56) by a sum of Floquet modes
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with the amplitudes
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which are calculated by accounting for formula (6.60) for T0q and using values for 
R1n, R2n, and Iljs obtained as a result of solving the algebraic system. The amplitude 
of the zero-order Floquet mode determines the array element pattern
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which is of primary interest in the present study. The pattern (6.70) is normalized 
so that F2(0) corresponds to the coefficient of transmission of the input power to 
the main lobe of the array.

Finally, the amplitudes of the reflected and radiated modes must satisfy the 
power balance relation
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written in the assumption that the driven and passive waveguides are single-mode 
ones.

Note that the algorithm developed earlier can also be used for calculation of 
a modified (simplified) structure [44] shown in Figure 6.24. This structure differs 
from the original structure [15, 16] shown in Figure 6.23 in the respect that the 
passive waveguides are absent and the remaining driven waveguides go to a com-
mon flange. Since the aperture of the passive waveguide in which the fields have 
been matched in the original array is now absent, the subsystem (6.64) should 
be excluded from the consideration, and all the sums containing R2n should be  
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excluded from the expression (6.60), subsystems (6.63) and (6.65), as well as rela-
tion (6.71).

6.5.2  Realization and Validation of the Algorithm

The algorithm described earlier has been realized in two FORTRAN-90 codes for 
calculation of both the original structure (Figure 6.23) and the modified structure 
(Figure 6.24). The infinite system of algebraic equations (6.63), (6.64), and (6.65) 
has been truncated down to the order M1 + M2 + 2 ´ L ´ S, where M1 and M2 are 
numbers of the first waveguide modes kept in the driven and passive waveguides, 
respectively. The infinite series representing the matrix elements standing at the 
unknowns Iljs in (6.63) and (6.64) as well as at the unknowns R1n and R2n in (6.65) 
converge exponentially, while the terms in the series standing at R1n and R2n in 
(6.63) and (6.64) decay as |q|–3 so that the calculation of them does not meet any 
difficulties. The matrix elements (6.57) in (6.65) at |zl¢s¢–zls|®0 converge slowly. Ac-
celeration of their convergence can be provided by several methods, particularly by 
using Kummer’s method modification applied in [43]. As a result, the original series 
like (6.57) is represented by a spectral series converging as 5

q
-G  and a spatial series 

of Hankel functions of zero order and complex argument converging exponentially. 
So, the convergence rate becomes much higher. However, the necessity of calcula-
tion of special functions (the Hankel functions in this case) requires additional time 
in comparison with calculation of elementary functions. For this reason, another 
modification of Kummer’s method has been developed, described in Appendix 6B, 
providing a sufficiently high rate of convergence after transformation of (6.57) 
without involvement of any special functions. The truncated system of algebraic 
equations (6.63) to (6.65) is solved by the Gauss elimination method with selection 
of a leading matrix element in a column.

The correctness and accuracy of the solution of the problem has been validated 
using the power balance relation (6.71) as well as the equations (6.65) in the points 
arranged between the collocation points with coordinates (6.66) and (6.67). Fur-

Figure 6.24  Geometry of a modified array of waveguides coupled via semitransparent wire-grid 
walls.
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thermore, the results obtained using the algorithm developed earlier have been com-
pared to calculated and measured data available in [15]. To demonstrate the results 
of the indicated tests, let us consider the structure studied in [15]. This structure, 
using L = 14 cylinders in each semitransparent wall, is characterized by the follow-
ing dimensions: a1 = a2 = 0.61333l, b = 1.33333l, a¢ = 0.68267l, r = 0.06667l, 
h1 = 0.18667l, and D = 0.37333l, where l is the wavelength corresponding to 
frequency of 8 GHz. The results have been obtained at M1 = M2 = 11, r¢ = 0.025l, 
and a few values for the number S of the auxiliary sources in each cylinder. The 
FORTRAN code used for the calculations mainly uses real and complex variables 
of ordinary precision (variables of double precision are used only in a subroutine 
designed for solving algebraic systems). The plots for the residual DE of satisfaction 
of equations (6.65) at q = 0 in the points situated on the surfaces of the cylinders 
between the collocation points for S = 6, 10, and 20 are presented in the logarith-
mic scale in Figure 6.25. The residual of satisfaction of the power balance relation 
(6.71) is 0.000057, 0.000017, and 0.000006, respectively. The results correspond-
ing to other values of q are similar. The element pattern (6.70) in decibels normal-
ized to its maximum corresponding to S = 6 is presented in Figure 6.26, where it is 
compared to the corresponding calculated and measured patterns available in [15]. 
The patterns calculated with S = 10 and 20 coincide graphically with the pattern for 
S = 6. The results obtained in the tests characterized sufficient effectiveness of the 
developed mathematical model for its further use for numerical study of the array 
characteristics at various values of the array parameters.

6.5.3  Results of Analysis and Optimization

The characteristics of the original array (Figure 6.23) obtained as a result of numer-
ical analysis and optimization of the array geometry for array period b = 1.2l, 1.3l, 

Figure 6.25  Residual of satisfaction of the boundary condition on the surfaces of the cylinders for 
different numbers of the auxiliary sources.
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and 1.4l are presented in Figures 6.27 to 6.29. The geometric array parameters for 
b = 1.3l (Figure 6.28) are close to the parameters of the array considered in [15]. 
The sector element patterns for b = 1.2l (Figure 6.27) and b = 1.4l (Figure 6.29) 
are formed using respectively smaller and greater numbers of the cylinders in the 
semitransparent wall. The patterns obtained are compared to the normalized ideal 
sector element patterns. As we see, the level of the obtained patterns in the region 
of their flat top is considerably lower than the ideal pattern level. This difference 

Figure 6.26  Comparison of the element pattern calculated by the present method with calculated 
and measured element patterns in [15].

Figure 6.27  Characteristics of the array with parameters b = 1.2l, a1 = a2 = 0.55l, a’ = 0.62l, r = 
0.05l, r’ = 0.02l, h1 = 0.161l, D = 0.322l, M1 = M2 = 11, L = 12, and S = 10.
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is explained by the array mismatch. The magnitudes of the array reflection coef-
ficients in the driven |R11| and passive |R21| waveguides characterizing the indicated 
mismatch are also shown in Figures 6.27 to 6.29. We see that the mismatch level of 
the driven waveguides, especially for smaller values of the period b, is rather high. 
The level of the dominant mode reflections in the passive waveguides is not so high 
when scanning, and it vanishes at all at the antiphase excitation (when sinq = l/2b), 
since the dominant modes in this case are not excited.

Figure 6.28  Characteristics of the array with parameters b = 1.3l, a1 = a2 = 0.6l, a’ = 0.668l, r = 
0.065l, r’ = 0.025l, h1 = 0.182l, D = 0.364l, M1 = M2 = 11, L = 14, and S = 10.

Figure 6.29  Characteristics of the array with parameters b = 1.4l, a1 = a2 = 0.65l, a’ = 0.724l, r = 
0.06l, r’ = 0.025l, h1 = 0.181l, D = 0.362l, M1 = M2 = 11, L = 17, and S = 10.
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Thus, the inputs of the original array [15] are not well matched. The matching 
of the array at a specified frequency and specified angle of scanning can be provided 
using matching discontinuities arranged in the driven waveguides at some distance 
from their apertures. Assuming that the scattering matrix of the matching discon-
tinuity is unitary, and taking into account the interaction between the aperture and 
discontinuity over the dominant mode only, we can obtain the reflection coefficient 
in the driven waveguides in the form
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where R and y are magnitude and phase of the coefficient of reflection from the dis-
continuity, respectively, and h is the distance from the discontinuity to the aperture 
(the plane z = 0). If the indicated distance is selected according to the condition

 11 11 02 ( ) 2h nγ ψ θ ψ π+ + =  (6.73)

where y11(q0) is the phase of the complex reflection coefficient R11(q0) of the origi-
nal array for some scan angle q0, and n is a natural number, the expression (6.72) 
takes the form
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which shows that if the discontinuity is selected so that R = |R11(q0)|, then the 
driven waveguides will be ideally matched for the specified angle of scanning.

The arrangement of the matching discontinuities in the driven waveguides 
changes the amplitudes of the modes coming to the apertures. It can be shown that 
instead of the unit amplitudes of the incident modes in (6.53), the amplitudes of 
the incident modes at the apertures after passing over the discontinuities will be 
determined by formula
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and the element pattern and reflection coefficient in the passive waveguides will be 
determined by formulas 11( ) ( ) | ( )|iF F Aθ θ θ=¢  and R¢21(q) = R21(q)Ai

11(q), respectively.
The results of such matching for the array with geometric parameters indi-

cated in the captions for Figures 6.27 to 6.29 are presented in the same figures 
by the curves marked by symbols “´” for F¢, “+” for |R¢11|, and “D” for |R¢21|. 
The angles q0 at which the matching of the driven waveguides is provided has 
been specified so that sinq0 = 0.24, 0.22, and 0.18 for b = 1.2l, 1.3l, and 1.4l, 
respectively. As we observe, the discontinuities considerably improve the match-
ing of the driven waveguides and result in pulling up the flat-top level of the array 
element patterns to the ideal level. The reflection coefficient level in the passive 
waveguides changes weakly because the low original reflection coefficient is mul-
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tiplied by a value of about 1.02…1.04 in magnitude (i.e., not strongly different 
from unity).

Finally, Figure 6.30 compares the characteristics of the original and modified 
versions of the array with geometric parameters corresponding to the structure 
considered in [15]. The geometric parameters in wavelengths indicated in the figure 
caption correspond to frequency 7.815 GHz, mentioned in [15]. As we observe, 
the reflection coefficients in the active waveguides almost do not differ from each 
other. The sector element patterns as a whole are also close to each other. Small 
differences are observed mainly in the sidelobe region. These results show that the 
sector element patterns in the arrays of waveguides with semitransparent walls can 
be successfully obtained without using the passive waveguides with solid walls. This 
simplifies the structure to some extent. The matching of the modified array to free 
space can be carried out similarly to the original version.
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Appendix 6A   Calculation of the Green’s Function for Doubly Periodic 
Structures by the Method of M. M. Ivanishin

Consider a doubly periodic structure arranged in free space and determined by a 
planar lattice parallel to the plane z = 0 of a rectangular Cartesian coordinate sys-
tem 0xyz. Let the lattice nodes be arranged in horizontal rows parallel to the x-axis 
with spacing dx and let the adjacent rows arranged with spacing dy along the y-axis 
be shifted at distance D with respect to each other in the direction of the x-axis. 
So, the lattice is skew in a general case. In particular cases, D = 0 corresponds to a 
rectangular lattice, while D = dx/2 corresponds to a triangular lattice. Further, we 
suppose that the time dependence omitted later is chosen in the form e–iwt and the 
coordinate system origin coincides with one of the point sources. Then the Green’s 
function of such a structure phased in the direction characterized by angles q and j 
measured from the axes z and x, respectively, can be represented by a spatial series
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where r = {x, y, z}, Rmn = [(x – xmn)2 + (y – yn)2 + z2]1/2, xmn = mdx + nD and yn = ndy  
are the coordinates of the nodes where the point sources are arranged, k = 2p/l is 
the wavenumber, ymn = k(xmnu + ynv) are phases, and u = sinq cosj and v = sinq sinj  
are direction cosines. Note that at D = 0 and with appropriate choice of the phases, 
representation (6A.1) can be used as the Green’s function for rectangular waveguide 
as considered in [34]. 

The series (6A.1) converges very slowly, and therefore it is not used in practical 
computations. To obtain another representation, we first perform a transformation 
consisting of adding and subtracting some auxiliary function under the sum sign 
in (6A.1). The auxiliary function is proposed to be taken in the form of a sum of 
standing spherical waves with attenuation; that is,
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where the choice of attenuation constant a, amplitudes as, and phase constants ks 
for different S will be described later. Further, we apply the well-known Poisson 
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summation formula [45] to the difference series formed as a result of the transfor-
mation, and reduce (6A.1) to
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ap = k(u + pl /dx) and bpq = k[v + (q - pD /dx)l /dy] are transverse propa-
gation constants of the Floquet modes, while 2 2 2 1/ 2( )pq p pq kΓ α β= + -  and 

2 2 2 1/ 2[ ( ) ]spq p pq sk iΓ α β α= + - +�  are main and auxiliary longitudinal propagation 
constants.

The first (spatial) series of the auxiliary functions (6A.2) in representation 
(6A.3) converges exponentially, so that summation of this series is not a problem. 
Representation of the terms of the second series in (6A.3) as a difference constitutes 
the main point of the application of Kummer’s method for accelerating the conver-
gence of the spectral representation for the doubly periodic Green’s function. The 
spectral difference series in (6A.3) at z ¹ 0 also converges exponentially. If z = 0, 
the convergence is algebraic and its rate is determined by the degree of smoothing 
the singularity corresponding to R00 ® 0 when subtracting (6A.2) from the terms 
of series (6A.1). Note that the imaginary part of exp(ikR00)/R00 corresponding to 
the central source is a smooth infinitely differentiable function. That function and 
similar functions corresponding to all the other sources of the structure give a fi-
nite number of propagating Floquet modes formed after application of the Poisson 
formula to series (6A.1), while the infinite number of evanescent Floquet modes in 
the spectral representation correspond to the superposition of the real parts of the 
Green’s function (6A.1) including function cos(kR00)/R00 for the central source. 
Using the Taylor expansion for cosine, we can write
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Removal of the singularity and smoothing of function (6A.5) can be provided 
by compensation of a few first terms of that series by similar terms in the expansion 
of function f00 determined from (6A.2). Expanding f00 over the powers of R00 and 
equating the first 2S coefficients of that expansion at odd powers of R00 to the cor-
responding coefficients in (6A.5), we obtain the system of algebraic equations
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for amplitudes as and phase constants ks with attenuation constant a as a parameter 
and n = 1, 2, …, 2S – 1.
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Consider now some special cases of the general approach described earlier. 
At S = 1, the system (6A.6) consists of two equations. Its solution is a1 = 1 and 

2 2
1k k α= + . That solution corresponds to the technique proposed in [34] for 

rectangular waveguide. In this case, 2 1/ 2
1( 2 )spq pq ikΓ Γ α= -� , and coefficients (6A.4) 

for large Gpq and z = 0 behave as

 

2 2 2

5
3( )

~
2

p pqi x i y
pq

pq

k
F e α βα α

Γ
++

 
(6A.7)

The asymptotic (6A.7) corresponds to compensation of the first two terms of 
series (6A.5), and so the case S = 1 is naturally referred to as the second order 
Kummer’s method, as has been suggested in [35].

The use of two waves in the auxiliary function (6A.2) (i.e., when S = 2) al-
lows compensating the four first terms of the series (6A.5). This corresponds to 
Kummer’s method of the fourth order. The system (6A.6) in this case contains four 
equations 
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Equations (6A.9) to (6A.11) can be rewritten in a more convenient form
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where (6A.12) has been obtained by using (6A.8), while (6A.13) has been derived 
by using (6A.8) and (6A.12). Equations (6A.8), (6A.12), and (6A.13) have been 
used for derivation of (6A.14).

Using (6A.8) and (6A.12), we obtain
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Substituting (6A.15) in (6A.13) and (6A.14) and solving the latter [36, 37], we 
find
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1 7 2 10k k kα α α= + - +  (6A.16)
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Substituting (6A.15) to (6A.17) in (6A.4) and noting that 
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we can show that the first term in the asymptotic of (6A.4) for large Gpq and z = 0 
is determined by formula
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As shown in [36, 37], the convergence rate of the spectral series characterized 
by (6A.18) is already sufficient for the fourth-order Kummer’s method to compete 
successfully with Ewald’s method [46], which has been believed to be the most 
efficient. However, if an even higher rate is required, it can be achieved using the 
sixth-order Kummer’s method corresponding to S = 3. Omitting the intermediate 
operations including solution of a cubic equation in the process of solving system 
(6A.6) containing six equations, we give final formulas obtained for the phase con-
stants of the auxiliary waves
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and their amplitudes
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The spectral difference series in this case converges as 13
pqΓ - .
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Appendix 6B  Accelerating the Convergence of Series (6.57)

The series (6.57) represents the field of phased filaments of electric current and of 
their images with respect to the plane z = 0. Since zl¢s¢+zls > 0, the part of the se-
ries corresponding to the contribution of the images converges exponentially, and 
therefore it is not necessary to apply any additional means for improvement of its 
convergence. The part of the series corresponding to the field of the sources them-
selves can be written in the form
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where x = xj ¢s¢ - xjs, z = |zl ¢s¢ - zls|, and
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To accelerate the slow convergence of (6B.2) when z ® 0, we again apply 
Kummer’s method. Taking into account that
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for q>>1, as well as that
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for q>>1, we represent the series (6B.2) in the form
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is the series of asymptotic terms with p = exp(-2pz /b), y = 2px /b, and
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Using the tabulated sums 1.448.1 and 1.448.2 in [47], we can express the sums 
in (6B.4) as follows
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Formulas (6B.5) and (6B.6) allow us to rewrite the expressions (6B.4) in the 
closed form
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Thus, the slowly converging series (6B.2) at z ® 0 is transformed into the sums 
(6B.3) containing the closed-form expressions (6B.7) and (6B.8), as well as suffi-
ciently fast converging series with terms decaying like q–3 as q ® ¥. Some modifi-
cations of Kummer’s method providing even more fast convergences of series like 
(6B.2) are considered in [48].
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