Biomedical Engineering

Introduction

1

Definition of Biomedical Engineering

the application of engineering techniques and analyses to problem-solving in medicine and the biomedical sciences

Diversity in the terminology

- (bio)medical engineering,
- bioengineering, biotechnology
- clinical (medical) engineering
- medical technology.
- health care technology

Medical engineering (medical engineer)

- uses engineering concepts and technology for development of
 - instrumentation,
 - diagnostic and therapeutic devices,
 - artificial organs, and
 - other medical devices needed in health care and in hospitals
- role:
 - examine some portion of biology and medicine to identify areas in which advanced technology might be advantageous

Bioengineering

- It advances fundamental concepts;
 - creates knowledge from the molecular to the organ systems levels;
 - develops innovative biologics, materials, processes, implants, devices, and informatics approaches
 - for the
 - prevention,
 - diagnosis, and
 - treatment of disease,

for patient rehabilitation, and for improving health

Bioengineering (bioengineer)

- basic research-oriented activity closely related to
 - biotechnology and
 - genetic engineering
 - modification of animal or plant cells to improve plants or animals to develop new micro-organisms
- Bioengineering integrates
 - physical,
 - chemical,
 - mathematical, and
 - computational sciences and
 - engineering principles
 - to study biology, medicine, behavior, and health.

Clinical engineering (clinical engineer)

- uses engineering, management concept, and technology
 - to improve health care in hospitals
 - better patient care at minimum costs thought the application of technology
- role is to provide services directly
 - related to patient care together with other health care professionals
 - problems originated from clinical environment

Clinical engineering

- responsible for
 - equipment effectiveness and
 - electrical safety in medical instrumentation
 - systems and power supply
- constrained by regulations
 - medical, federal, state, local, governmental, hospital

Biomedical Engineering (BME)

- a growing and expanding interdisciplinary profession
- concerned with the application of
 - engineering,
 - mathematics,
 - computing, and
 - science methodologies

to the analysis of biological and physiological problems

• produce technological advances in health care

Biomedical Engineering (BME)

- Definition 1:
- "Biomedical engineering is a discipline that
 - advances knowledge in engineering, biology and medicine, and improves human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice."
- It includes:
 - The acquisition of new knowledge and understanding of living systems through the innovative and substantive application of experimental and analytical techniques based on the engineering sciences.
 - The development of new devices, algorithms, processes and systems that advance biology and medicine and improve medical practice and health care deliver

Biomedical engineers

- apply different engineering principles
 - electrical and electronics
 - instrumentation, bioamplifiers
 - mechanical,
 - artificial limbs, prostheses
 - physical
 - diagnostic imaging and therapeutic devices
 - chemical,
 - biosensors, chemical analysers
 - optical,
 - fiber optics, optical measurements
 - computer science
 - computational medicine, signal and image analysis, information systems
 - material science
 - implanted devices, artificial tissues

Biomedical Engineering (BME)

Biomedical engineers

- design and manufacture products that can
 - monitor physiologic functions or
 - display anatomic detail
- Detection, measurement, and monitoring of physiologic signals
 - biosensors
 - biomedical instrumentation
 - Medical imaging
- assist in the diagnosis and treatment of patients
 - Computer analysis of patient-related data
 - clinical decision making
 - medical informatics
 - artificial intelligence
- supervise biomedical equipment maintenance technicians,
- investigate medical equipment failure,
- advise hospitals about purchasing and installing new equipment

Important milestones in the development of medical instruments...

Thermometer

- 1603, Galileo
- 1625, body temperature measurement
- Optical lens
 - 1666, Newton
 - 1850-, ophthalmoscope, Helmholtz
- Stethoscope
 - 1819, hollow tube
 - 1851, binaural stethoscope
- Hypodermic syringe
 - 1853, Wood
- X-ray
 - 1895, Roentgen
 - 1896, in diagnosis and therapy

- Radioactivity
 - 1896, Curie
 - 1903, in therapy
- Electrocardiograph
 - 1887, Waller, capillary meter
 - 1903, Einthoven,
 - galvanometer 1928, vacuum tube
- Electroencephalograph
 - 1924, Berger
- pH electrode
 - 1906, Cremer
- Electrical surgical unit, 1928

...Important milestones in the development of medical instruments

- Cyclotron, artificial radionuclides
 - 1936, Lawrence
- Assisting ventilator
 - 1928, "iron lung"
 - 1945, positive pressure
- Ultrasonic imaging
 - pulse-echo, 1947
 - Doppler, 1950s
- Magnetic Resonance Imaging (MRI)
 - NRM, Bloch, Purcell, 1946
 - MRI, 1982

- Computed tomography
 - 1969, Cormack, Hounsfield
- Electrical heart defibrillator
 - 1956, Zoll
 - 1980, implanted
- Implanted electrical heart pacemaker
 - 1960, Greatbatch
- Heart valves, 1975
- Cardiac catheter, 1975
- Artificial kidney (dialysis), 1960
- Artificial heart, 1984

Biomechanics

- application of classical mechanics to biological or medical problems
- study of movement of biologic solids, fluids and viscoelastic materials, muscle forces
- design of artificial limbs

• Biomaterials:

- study of both living tissue and artificial synthetic biomaterials (polymers, metals, ceramics, composites) used to replace part of a living system or to function in intimate contact with living tissue (implants)
- biomaterials:
 - nontoxic,
 - non-carcinogenic
 - chemically inert
 - stable
 - mechanically strong

Biomedical sensors

 physical measurements, biopotential electrodes, electrochemical sensors, optical sensors, bioanalytic sensors

Bioelectric phenomena:

- origin in nerve and muscle cells
- generation in nerves, brain, heart, skeletal muscles
- analysis,
- modelling,
- recording and
- diagnosis

- Biomedical signal processing and analysis
 - collection and analysis of data from patients
 - bioelectric, physical, chemical signals
 - online (embedded) and off-line processing and analysis
- Medical imaging and image processing:
 - provision of graphic display of anatomic detail and physiological functions of the body
 - medical imaging methods and devices
 - physical phenomena + detectors + electronic data processing+ graphic display = image
 - x-ray, gamma photons, MRI, Ultrasound

• Medical instruments and devices:

- design of medical instruments and devices to monitor and measure biological functions
- application of electronics and measurement techniques to develop devices used in diagnosis and treatment of disease
 - biopotential amplifiers
 - patient monitors
 - electrosurgical devices
- Biotechnology
 - technology at cellular level

• Cell and tissue engineering:

- utilization of anatomy, biochemistry and mechanics of cellular and subcellular structures to understand disease processes and to be able to intervene at very specific sites.
- design, construction, modification, growth and maintenance of living tissue (bioartificial tissue and alteration of cell growth and function)
- Rehabilitation engineering:
 - application of science and technology to improve the quality of life for individuals with physical and cognitive impairments (handicaps)

• Prostheses and artificial organs

- design and development of devices for replacement of damaged body parts
 - artificial heart,
 - circulatory assist devices,
 - cardiac valve prostheses,
 - artificial lung and blood-gas exchange devices,
 - artificial kidney, pancreas

• Clinical engineering:

 medical engineering in hospitals, managementand assessment of medical technology, safety and management of medical equipment, product development

• Physiologic modelling, simulation and control

- use of computer simulation to help understand physiological relationships and organ function, to predict the behavior of a system of interests (human body, particular organs or organ systems and medical devices)
- developing of theoretical (computational, analytical, conceptual etc) models

Medical informatics:

 hospital information systems, computer-based patient records, computer networks in hospitals, artificial knowledge-based medical decision making

Bioinformatics

 The application of information technology to problem areas in healthcare systems, as well as genomics, proteomics, and mathematical modelling.

Medical devices

- Medical devices can be grouped according to the three areas of medicine:
- Diagnosis
 - diagnostic devices
- Therapy
 - therapeutic devices
 - application of energy
- Rehabilitation

- Application of Assisting orthotic-prosthetic devices

Diagnostic devices

- Types of diagnostic devices
 - recording and monitoring devices
 - measurement and analysis devices
 - imaging devices
- importance of diagnostic devices
 - enhance and extend the five human senses to improve to collect data from the patient for diagnosis
 - the perception of the physician can be improved by diagnostic instrumentation in many ways:
 - amplify human senses
 - place the observer's senses in inaccessible environments
 - provide new senses

Therapeutic devices

• Objective of therapeutic devices:

- deliver physical substances to the body to treat disease

- Physical substances:
 - Voltage, current
 - Pressure
 - Flow
 - Force
 - Ultrasound
 - Electromagnetic radiation
 - Heat
- Therapeutic device categories:
 - devices used to treat disorders
 - devices to assist or control the physiological functions

Assistive or rehabilitative devices

- Objective of rehabilitative devices
 - to assist individuals with a disability
- The disability can be connected to the troubles to
 - perform activities of daily living
 - limitations in mobility
 - communications disorders and
 - sensory disabilities
- Types of rehabilitative devices
 - Orthopedic devices
 - An orthopedic device is an appliance that aids an existing function
 - Prosthetic devices
 - A prosthesis provides a substitute

Some characteristics of BME

- methods and devices are used to solve medical problems
 - problems are difficult, diverse, and complex
 - solution alternatives are limited and specific to a certain problem
- Therefore we must know
 - what we are measuring or studying
 - what we are treating
 - which methodologies are available and applicable

Some characteristics of BME

- deals with biological tissues, organs and organ systems and their properties and functions
- bio-phenomena:
 - bioelectricity, biochemistry, biomechanics, biophysics
- requires their deep understanding and analysis
- Accessibility of data is limited,
- Interface between tissue and instrumentation is needed
- Procedures:
 - non-invasive
 - minimally invasive
 - invasive

Physiological measurements

- important application of medical devices
 physiological measurements and recordings
- important for biomedical engineer
 - to understand the technology used in these recordings but also
 - the basic principles and methods of the physiological recordings
- medical fields where physiological recordings play an important role
 - clinical physiology
 - clinical neurophysiology
 - cardiology
 - intensive care, surgery

important physiological parameters recorded

- parameters related to cardiovascular dynamics:
 - blood pressure
 - blood flow
 - blood volumes, cardiac output
- biopotentials:
 - electrocardiogram (ECG),
 - electroencephalogram (EEG),
 - electromyogram (EMG)
- respiratory parameters:
 - lung volumes and capacities,
 - air flow
- blood gases:
 - pressures of blood gases
 - oxygen saturation
 - pH and other ions

Relationship with Physics

- BME is closely related to physical sciences
- Medical Physics
 - applies physics in medicine
 - physical background of medical imaging methods used in radiology and nuclear medicine:
 - the production and safety issues of ionizing radiation,
 - interaction of the radiation with matter,
 - the physics of magnetic resonance phenomenon, ultrasonics, light etc.
 - physical background of radiotherapy
 - use of ionizing radiation to treat cancer