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Preface
Rapid advances in the areas of sensor design, information technologies, and wireless net-
works have paved the way for the proliferation of wireless sensor networks. These networks
have the potential to interface the physical world with the virtual (computing) world on
an unprecedented scale and provide practical usefulness in developing a large number of
applications, including the protection of civil infrastructures, habitat monitoring, precision
agriculture, toxic gas detection, supply chain management, and health care. However, the
design of wireless sensor networks introduces formidable challenges, since the required
body of knowledge encompasses a whole range of topics in the field of electrical and com-
puter engineering, as well as computer science.

Wireless sensor networks are currently being offered as a subject at advanced undergrad-
uate and graduate levels at many universities around the world. Moreover, they are the focus
of countless graduate theses and student projects. Therefore, this book is primarily written as
a textbook aimed at students of engineering and computer science. It provides an introduc-
tion into the fundamental concepts and building blocks of wireless sensor network design.
An attempt has been made to maintain a balance between theory and practice, as well as
established practices and the latest developments. At the end of each chapter, a number of
practical questions and exercises are given to help the students to assess their understanding
of the main concepts and arguments presented in the chapter. Furthermore, the chapters and
parts of the book are sufficiently modular to provide flexibility in course design.

The book will also be useful to the professional interested in this field. It is suitable for self-
study and can serve as an essential reference. For such a reader, the material can be viewed
as a tutorial in the basic concepts and surveys of recent research results and technological
developments.

Structure of the Book

This book provides an introduction to the fundamental concepts and principles of wireless
sensor networks (WSNs) and a survey of protocols, algorithms, and technologies at different
layers of a sensor system, including the network protocol stack, middleware, and application
level.

The text is broken into three parts. In Part One, Introduction, Chapter 1 provides an
overview of WSN applications, sensor nodes, and basic system structure. Chapter 2 con-
tinues the introduction into the WSN domain by providing an overview of representative
sensor network applications. Chapter 3 presents different node architectures and discusses
in detail the sensing and processing subsystems as well as communication interfaces. More-
over, it provides several examples of representative prototype implementations. Chapter 4
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describes functional and nonfunctional aspects of operating systems and provides a survey
of state-of-the-art examples.

Part Two, Basic Architectural Framework, provides a detailed discussion of proto-
cols and algorithms used at different network protocol layers in sensor systems. The design
choices at these layers significantly impact the operation and resource efficiency of sensor
nodes and networks. Chapter 5 begins this discussion with an introduction into physical
layer architectures and concepts. Since the wireless medium is shared between many sen-
sor nodes, MAC-layer protocols are required to arbitrate access to the wireless channels.
MAC-layer solutions are discussed in Chapter 6. Chapter 7 discusses multi-hop communi-
cations in WSNs and the associated challenges. It also surveys existing and proposed routing
protocols.

Part Three, Node and Network Management, discusses several additional techniques
and presents solutions for a variety of challenges. Chapter 8 begins the discussion with
an overview of power management techniques for wireless sensor networks. When multi-
ple sensor nodes observe the same event in the physical world, it is important to correctly
correlate these observations from the different sensors. This requires the clocks of the sen-
sor nodes to be synchronized with each other. Synchronized clocks are also required by a
variety of protocols and algorithms, e.g., many MAC protocols rely on accurate timing to
ensure that no two nodes transmit packets at the same time. Therefore, Chapter 9 introduces
the concept of time synchronization and provides an overview of several synchronization
strategies. For many sensor network applications, it is essential that sensor nodes estimate
their own position, either using absolute coordinates (e.g., using GPS) or relative to other
nodes or landmarks in the environment. Chapter 10 presents a variety of localization strate-
gies and compares their tradeoffs. Wireless sensor networks pose several security challenges
due to the nature of many sensor applications (military, emergency response) and the unique
characteristics of sensor networks (e.g., scale and unattended operation). Therefore, secu-
rity challenges and defenses against attacks on sensor networks are discussed in Chapter 11.
Finally, Chapter 12 concludes the book with a description of development environments
and programming techniques for sensor networks, including an overview of frequently used
sensor network simulators.
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Introduction





1
Motivation for a Network of
Wireless Sensor Nodes
Sensors link the physical with the digital world by capturing and revealing real-world phe-
nomena and converting these into a form that can be processed, stored, and acted upon. Inte-
grated into numerous devices, machines, and environments, sensors provide a tremendous
societal benefit. They can help to avoid catastrophic infrastructure failures, conserve pre-
cious natural resources, increase productivity, enhance security, and enable new applications
such as context-aware systems and smart home technologies. The phenomenal advances
in technologies such as very large scale integration (VLSI), microelectromechanical sys-
tems (MEMS), and wireless communications further contribute to the widespread use of
distributed sensor systems. For example, the impressive developments in semiconductor
technologies continue to produce microprocessors with increasing processing capacities,
while at the same time shrinking in size. The miniaturization of computing and sensing
technologies enables the development of tiny, low-power, and inexpensive sensors, actu-
ators, and controllers. Further, embedded computing systems (i.e., systems that typically
interact closely with the physical world and are designed to perform only a limited number
of dedicated functions) continue to find application in an increasing number of areas. While
defense and aerospace systems still dominate the market, there is an increasing focus on sys-
tems to monitor and protect civil infrastructure (such as bridges and tunnels), the national
power grid, and pipeline infrastructure. Networks of hundreds of sensor nodes are already
being used to monitor large geographic areas for modeling and forecasting environmental
pollution and flooding, collecting structural health information on bridges using vibration
sensors, and controlling usage of water, fertilizers, and pesticides to improve crop health
and quantity.

This book provides a thorough introduction to the fundamental aspects of wireless sensor
networks (WSNs), covering both theoretical concepts and practical aspects of network
technologies and protocols, operating systems, middleware, sensor programming, and secu-
rity. The book is targeted at researchers, students, and practitioners alike, with the goal of
helping them to gain an understanding of the challenges and promises of this exciting field.
It has been written primarily as a textbook for graduate or advanced undergraduate courses
in wireless sensor networks. Each chapter ends with a number of exercises and questions
that will allow students to practice the described concepts and techniques. As the field of
wireless sensor networks is based on numerous other domains, it is recommended that

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd



4 Fundamentals of Wireless Sensor Networks

students have taken courses such as networking and operating systems (or comparable
courses) before they take a course on sensor networks. Also, some topics covered in this
book (e.g., security) assume previous knowledge in other areas or require that an instructor
provides an introduction into the basics of these areas before teaching these topics.

1.1 Definitions and Background

1.1.1 Sensing and Sensors

Sensing is a technique used to gather information about a physical object or process,
including the occurrence of events (i.e., changes in state such as a drop in temperature or
pressure). An object performing such a sensing task is called a sensor . For example, the
human body is equipped with sensors that are able to capture optical information from the
environment (eyes), acoustic information such as sounds (ears), and smells (nose). These
are examples of remote sensors , that is, they do not need to touch the monitored object
to gather information. From a technical perspective, a sensor is a device that translates
parameters or events in the physical world into signals that can be measured and analyzed.
Another commonly used term is transducer , which is often used to describe a device that
converts energy from one form into another. A sensor, then, is a type of transducer that con-
verts energy in the physical world into electrical energy that can be passed to a computing
system or controller. An example of the steps performed in a sensing (or data acquisition)
task is shown in Figure 1.1. Phenomena in the physical world (often referred to as process ,
system, or plant) are observed by a sensor device. The resulting electrical signals are often
not ready for immediate processing, therefore they pass through a signal conditioning
stage. Here, a variety of operations can be applied to the sensor signal to prepare it for
further use. For example, signals often require amplification (or attenuation) to change the
signal magnitude to better match the range of the following analog-to-digital conversion.
Further, signal conditioning often applies filters to the signal to remove unwanted noise
within certain frequency ranges (e.g., highpass filters can be used to remove 50 or 60 Hz
noise picked up by surrounding power lines). After conditioning, the analog signal is
transformed into a digital signal using an analog-to-digital converter (ADC). The signal is
now available in a digital form and ready for further processing, storing, or visualization.

Processing

ConverterActuator Conditioning

Converter
Conditioning

Sensing

Actuation

Signal

PR
O

C
E

SS

Digital–to–Analog

Analog–to–Digital
Sensor

Figure 1.1 Data acquisition and actuation.
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Many wireless sensor networks also include actuators which allow them to directly con-
trol the physical world. For example, an actuator can be a valve controlling the flow of hot
water, a motor that opens or closes a door or window, or a pump that controls the amount of
fuel injected into an engine. Such a wireless sensor and actuator network (WSAN) takes
commands from the processing device (controller) and transforms these commands into
input signals for the actuator, which then interacts with a physical process, thereby forming
a closed control loop (also shown in Figure 1.1).

1.1.1.1 Sensor Classifications

Which sensors should be chosen for an application depends on the physical property to be
monitored, for example, such properties include temperature, pressure, light, or humidity.
Table 1.1 summarizes some common physical properties, including examples of sensing
technologies that are used to capture them. Besides physical properties, the classification of
sensors can be based on a variety of other methods, for example, whether they require an
external power supply. If the sensors require external power, they are referred to as active
sensors. That is, they must emit some kind of energy (e.g., microwaves, light, sound) to
trigger a response or to detect a change in the energy of the transmitted signal. On the other
hand, passive sensors detect energy in the environment and derive their power from this
energy input – for example, passive infrared (PIR) sensors measure infrared light radiating
from objects in the proximity.

The classification of sensors can also be based on the methods they apply and the elec-
trical phenomena they utilize to convert physical properties into electrical signals. Resistive
sensors rely on changes to a conductor’s electrical resistivity, ρ, based on physical properties
such as temperature. The resistance, R, of a conductor can be determined as:

R = l × ρ

A
(1.1)

where l is the length of the conductor and A is the area of the cross-section. For example, the
well-known Wheatstone bridge (Figure 1.2) is a simple circuit that can be used to convert
a physical property into an observable electric effect. In this bridge, R1, R2, and R3 are

Table 1.1 Classification and examples of sensors

Type Examples

Temperature Thermistors, thermocouples
Pressure Pressure gauges, barometers, ionization gauges
Optical Photodiodes, phototransistors, infrared sensors, CCD sensors
Acoustic Piezoelectric resonators, microphones
Mechanical Strain gauges, tactile sensors, capacitive diaphragms, piezoresistive cells
Motion, vibration Accelerometers, gyroscopes, photo sensors
Flow Anemometers, mass air flow sensors
Position GPS, ultrasound-based sensors, infrared-based sensors, inclinometers
Electromagnetic Hall-effect sensors, magnetometers
Chemical pH sensors, electrochemical sensors, infrared gas sensors
Humidity Capacitive and resistive sensors, hygrometers, MEMS-based humidity sensors
Radiation Ionization detectors, Geiger–Mueller counters
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VOUT

Rx

R3

R2

R1

+

–
VCC

Figure 1.2 Wheatstone bridge circuit.

resistors of known resistance (where the resistance of R2 is adjustable) and Rx is a resistor of
unknown value. If the ratio R2/R1 is identical to the ratio Rx/R3, the measured voltage VOUT

will be zero. However, if the resistance of Rx changes (e.g., due to changes in temperature),
there will be an imbalance, which will be reflected by a change in voltage VOUT. In general,
the relationship between the measured voltage VOUT, the resistors, and the supply voltage
(VCC) can be expressed as:

VOUT = VCC ×
(

Rx

R3 + Rx

− R2

R1 + R2

)
(1.2)

A similar principle can be applied to capacitive sensors, which can be used to measure
motion, proximity, acceleration, pressure, electric fields, chemical compositions, and liquid
depth. For example, in the parallel plate model, that is, a capacitor consisting of two parallel
conductive plates separated by a dielectric with a certain permittivity ε, the capacitance is
determined as:

C = ε × A

d
(1.3)

where A is the plate area and d is the distance between the two plates. Similar to the resistive
model, changes in any of these parameters will change the capacitance. For example, if pres-
sure is applied to one of the two plates, the separation d can be reduced, thereby increasing
the capacitance. Similarly, a change in the permittivity of the dielectric can be caused by an
increase in temperature or humidity, thereby resulting in a change in capacitance.

Inductive sensors are based on the electrical principle of inductance, that is, where an
electromagnetic force is induced by a fluctuating current. Inductance is determined by the
dimensions of the sensor (cross-sectional area, length of coil), the number of turns of the
coil, and the permeability of the core. Changes in any of these parameters (e.g., caused by
movements of the core within the coil) change the inductance. Inductive sensors are often
used to measure proximity, position, force, pressure, temperature, and acceleration.

Finally, piezoelectric sensors use the piezoelectric effect of some materials (e.g.,
crystals and certain ceramics) to measure pressure, force, strain, and acceleration. When
a pressure is applied to such a material, it causes a mechanical deformation and a
displacement of charges, proportional to the amount of pressure. The main advantage of
piezoelectric devices over other approaches is that the piezoelectric effect is not sensitive
to electromagnetic fields or radiation.
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1.1.2 Wireless Sensor Networks

While many sensors connect to controllers and processing stations directly (e.g., using local
area networks), an increasing number of sensors communicate the collected data wirelessly
to a centralized processing station. This is important since many network applications
require hundreds or thousands of sensor nodes, often deployed in remote and inaccessible
areas. Therefore, a wireless sensor has not only a sensing component, but also on-board
processing, communication, and storage capabilities. With these enhancements, a sensor
node is often not only responsible for data collection, but also for in-network analysis,
correlation, and fusion of its own sensor data and data from other sensor nodes. When many
sensors cooperatively monitor large physical environments, they form a wireless sensor
network (WSN). Sensor nodes communicate not only with each other but also with a base
station (BS) using their wireless radios, allowing them to disseminate their sensor data to
remote processing, visualization, analysis, and storage systems. For example, Figure 1.3
shows two sensor fields monitoring two different geographic regions and connecting to the
Internet using their base stations.

The capabilities of sensor nodes in a WSN can vary widely, that is, simple sensor
nodes may monitor a single physical phenomenon, while more complex devices may
combine many different sensing techniques (e.g., acoustic, optical, magnetic). They can
also differ in their communication capabilities, for example, using ultrasound, infrared, or
radio frequency technologies with varying data rates and latencies. While simple sensors
may only collect and communicate information about the observed environment, more
powerful devices (i.e., devices with large processing, energy, and storage capacities)
may also perform extensive processing and aggregation functions. Such devices often
assume additional responsibilities in a WSN, for example, they may form communication
backbones that can be used by other resource-constrained sensor devices to reach the

Base Station

Sensor

Processing

Sensor Field 1 Sensor Field 2

Internet

Mining

Analysis

Storage

Figure 1.3 Wireless sensor networks.
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base station. Finally, some devices may have access to additional supporting technologies,
for example, Global Positioning System (GPS) receivers, allowing them to accurately
determine their position. However, such systems often consume too much energy to be
feasible for low-cost and low-power sensor nodes.

1.1.2.1 History of Wireless Sensor Networks

As with many other technologies, the military has been a driving force behind the develop-
ment of wireless sensor networks. For example, in 1978, the Defense Advanced Research
Projects Agency (DARPA) organized the Distributed Sensor Nets Workshop (DAR 1978),
focusing on sensor network research challenges such as networking technologies, signal
processing techniques, and distributed algorithms. DARPA also operated the Distributed
Sensor Networks (DSN) program in the early 1980s, which was then followed by the Sensor
Information Technology (SensIT) program.

In collaboration with the Rockwell Science Center, the University of California at Los
Angeles proposed the concept of Wireless Integrated Network Sensors or WINS (Pottie
2001). One outcome of the WINS project was the Low Power Wireless Integrated Microsen-
sor (LWIM), produced in 1996 (Bult et al. 1996). This smart sensing system was based on
a CMOS chip, integrating multiple sensors, interface circuits, digital signal processing cir-
cuits, wireless radio, and microcontroller onto a single chip. The Smart Dust project (Kahn
et al. 1999) at the University of California at Berkeley focused on the design of extremely
small sensor nodes called motes . The goal of this project was to demonstrate that a com-
plete sensor system can be integrated into tiny devices, possibly the size of a grain of sand
or even a dust particle. The PicoRadio project (Rabaey et al. 2000) by the Berkeley Wire-
less Research Center (BWRC) focuses on the development of low-power sensor devices,
whose power consumption is so small that they can power themselves from energy sources
of the operating environment, such as solar or vibrational energy. The MIT µAMPS (micro-
Adaptive Multidomain Power-aware Sensors) project also focuses on low-power hardware
and software components for sensor nodes, including the use of microcontrollers capable of
dynamic voltage scaling and techniques to restructure data processing algorithms to reduce
power requirements at the software level (Calhoun et al. 2005).

While these previous efforts are mostly driven by academic institutions, over the last
decade a number of commercial efforts have also appeared (many based on some of the aca-
demic efforts described above), including companies such as Crossbow (www.xbow.com),
Sensoria (www.sensoria.com), Worldsens (http://worldsens.citi.insa-lyon.fr), Dust Net-
works (http://www.dustnetworks.com), and Ember Corporation (http://www.ember.com).
These companies provide the opportunity to purchase sensor devices ready for deployment
in a variety of application scenarios along with various management tools for programming,
maintenance, and sensor data visualization.

1.1.2.2 Communication in a WSN

The well-known IEEE 802.11 family of standards was introduced in 1997 and is the most
common wireless networking technology for mobile systems. It uses different frequency
bands, for example, the 2.4-GHz band is used by IEEE 802.11b and IEEE 802.11g, while the
IEEE 802.11a protocol uses the 5-GHz frequency band. IEEE 802.11 was frequently used in
early wireless sensor networks and can still be found in current networks when bandwidth
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Figure 1.4 Single-hop versus multi-hop communication in sensor networks.

demands are high (e.g., for multimedia sensors). However, the high-energy overheads of
IEEE 802.11-based networks makes this standard unsuitable for low-power sensor networks.
Typical data rate requirements in sensor networks are comparable to the bandwidths pro-
vided by dial-up modems, therefore the data rates provided by IEEE 802.11 are typically
much higher than needed. This has led to the development of a variety of protocols that bet-
ter satisfy the networks’ need for low power consumption and low data rates. For example,
the IEEE 802.15.4 protocol (Gutierrez et al. 2001) has been designed specifically for short-
range communications in low-power sensor networks and is supported by most academic
and commercial sensor nodes.

When the transmission ranges of the radios of all sensor nodes are large enough and the
sensors can transmit their data directly to the base station, they can form a star topology as
shown on the left in Figure 1.4. In this topology, each sensor node communicates directly
with the base station using a single hop. However, sensor networks often cover large geo-
graphic areas and radio transmission power should be kept at a minimum in order to conserve
energy; consequently, multi-hop communication is the more common case for sensor net-
works (shown on the right in Figure 1.4). In this mesh topology , sensor nodes must not
only capture and disseminate their own data, but also serve as relays for other sensor nodes,
that is, they must collaborate to propagate sensor data towards the base station. This rout-
ing problem, that is, the task of finding a multi-hop path from a sensor node to the base
station, is one of the most important challenges and has received immense attention from
the research community. When a node serves as a relay for multiple routes, it often has the
opportunity to analyze and pre-process sensor data in the network, which can lead to the
elimination of redundant information or aggregation of data that may be smaller than the
original data.

1.2 Challenges and Constraints

While sensor networks share many similarities with other distributed systems, they are
subject to a variety of unique challenges and constraints. These constraints impact the
design of a WSN, leading to protocols and algorithms that differ from their counterparts in
other distributed systems. This section describes the most important design constraints of
a WSN.
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1.2.1 Energy

The constraint most often associated with sensor network design is that sensor nodes oper-
ate with limited energy budgets. Typically, they are powered through batteries, which must
be either replaced or recharged (e.g., using solar power) when depleted. For some nodes,
neither option is appropriate, that is, they will simply be discarded once their energy source
is depleted. Whether the battery can be recharged or not significantly affects the strategy
applied to energy consumption. For nonrechargeable batteries, a sensor node should be able
to operate until either its mission time has passed or the battery can be replaced. The length
of the mission time depends on the type of application, for example, scientists monitoring
glacial movements may need sensors that can operate for several years while a sensor in a
battlefield scenario may only be needed for a few hours or days.

As a consequence, the first and often most important design challenge for a WSN is energy
efficiency. This requirement permeates every aspect of sensor node and network design. For
example, the choices made at the physical layer of a sensor node affect the energy con-
sumption of the entire device and the design of higher-level protocols (Shih et al. 2001).
The energy consumption of CMOS-based processors is primarily due to switching energy
and leakage energy (Sinha and Chandrakasan 2000):

ECPU = Eswitch + Eleakage = CtotalV
2

dd + VddIleak�t (1.4)

where Ctotal is the total capacitance switched by the computation, Vdd is the supply voltage,
Ileak is the leakage current, and �t is the duration of the computation. While the switching
energy still dominates the energy consumption of processors, it is expected that in future
processor designs, the leakage energy will be responsible for more than half the energy
consumption (De and Borkar 1999). Some techniques to control leakage energy include
progressive shutdown of idle components and software-based techniques such as Dynamic
Voltage Scaling (DVS).

The medium access control (MAC) layer is responsible for providing sensor nodes with
access to the wireless channel. Some MAC strategies for communication networks are
contention-based , that is, nodes may attempt to access the medium at any time, potentially
leading to collisions among multiple nodes, which must be addressed by the MAC layer to
ensure that transmissions will eventually succeed. Downsides of these approaches include
the energy overheads and delays incurred by the collisions and recovery mechanisms and
that sensor nodes may have to listen to the medium at all times to ensure that no transmissions
will be missed. Therefore, some MAC protocols for sensor networks are contention-free,
that is, access to the medium is strictly regulated, eliminating collisions and allowing sensor
nodes to shut down their radios when no communications are expected. The network layer is
responsible for finding routes from a sensor node to the base station and route characteristics
such as length (e.g., in terms of number of hops), required transmission power, and available
energy on relay nodes determine the energy overheads of multi-hop communication.

Besides network protocols, the goal of energy efficiency impacts the design of the oper-
ating system (e.g., small memory footprint, efficient switching between tasks), middleware,
security mechanisms, and even the applications themselves. For example, in-network pro-
cessing is frequently used to eliminate redundant sensor data or to aggregate multiple sensor
readings. This leads to a tradeoff between computation (processing the sensor data) and
communication (transmitting the original versus the processed data), which can often be
exploited to obtain energy savings (Pottie and Kaiser 2000; Sohrabi et al. 2000).
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1.2.2 Self-Management

It is the nature of many sensor network applications that they must operate in remote areas
and harsh environments, without infrastructure support or the possibility for maintenance
and repair. Therefore, sensor nodes must be self-managing in that they configure themselves,
operate and collaborate with other nodes, and adapt to failures, changes in the environment,
and changes in the environmental stimuli without human intervention.

1.2.2.1 Ad Hoc Deployment

Many wireless sensor network applications do not require predetermined and engineered
locations of individual sensor nodes. This is particularly important for networks being
deployed in remote or inaccessible areas. For example, sensors serving the assessment of
battlefield or disaster areas could be thrown from airplanes over the areas of interest, but
many sensor nodes may not survive such a drop and may never be able to begin their sensing
activities. However, the surviving nodes must autonomously perform a variety of setup
and configuration steps, including the establishment of communications with neighboring
sensor nodes, determining their positions, and the initiation of their sensing responsibilities.
The mode of operation of sensor nodes can differ based on such information, for example,
a node’s location and the number or identities of its neighbors may determine the amount
and type of information it will generate and forward on behalf of other nodes.

1.2.2.2 Unattended Operation

Many sensor networks, once deployed, must operate without human intervention, that is,
configuration, adaptation, maintenance, and repair must be performed in an autonomous
fashion. For example, sensor nodes are exposed to both system dynamics and environmental
dynamics, which pose a significant challenge for building reliable sensor networks (Cerpa
and Estrin 2004). A self-managing device will monitor its surroundings, adapt to changes
in the environment, and cooperate with neighboring devices to form topologies or agree
on sensing, processing, and communication strategies (Mills 2007). Self-management can
take place in a variety of forms. Self-organization is the term frequently used to describe
a network’s ability to adapt configuration parameters based on system and environmental
state. For example, a sensor device can choose its transmission power to maintain a certain
degree of connectivity (i.e., with increasing transmission power it is more likely that a node
will reach more neighbors). Self-optimization refers to a device’s ability to monitor and
optimize the use of its own system resources. Self-protection allows a device to recognize
and protect itself from intrusions and attacks. Finally, the ability to self-heal allows sensor
nodes to discover, identify, and react to network disruptions. In energy-constrained sensor
networks, all these self-management features must be designed and implemented such that
they do not incur excessive energy overheads.

1.2.3 Wireless Networking

The reliance on wireless networks and communications poses a number of challenges to a
sensor network designer. For example, attenuation limits the range of radio signals, that is,
a radio frequency (RF) signal fades (i.e., decreases in power) while it propagates through a
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medium and while it passes through obstacles. The relationship between the received power
and transmitted power of an RF signal can be expressed using the inverse-square law :

Pr ∝ Pt

d2
(1.5)

which states that the received power Pr is proportional to the inverse of the square of the
distance d from the source of the signal. That is, if P x

r is the power at distance x, doubling
the distance to y = 2x decreases the power at the new distance to P

y
r = P x

r /4.
As a consequence, an increasing distance between a sensor node and a base station rapidly

increases the required transmission power. Therefore, it is more energy-efficient to split a
large distance into several shorter distances, leading to the challenge of supporting multi-hop
communications and routing. Multi-hop communication requires that nodes in a network
cooperate with each other to identify efficient routes and to serve as relays. This challenge
is further exacerbated in networks that employ duty cycles to preserve energy. That is, many
sensor nodes use a power conservation policy where radios are switched off when they are
not in use. As a consequence, during these down-times, the sensor node cannot receive
messages from its neighbors nor can it serve as a relay for other sensors. Therefore, some
networks rely on wakeup on demand strategies (Shih et al. 2002) to ensure that nodes can
be woken up whenever needed. Usually this involves devices with two radios, a low-power
radio used to receive wakeup calls and a high-power radio that is activated in response to a
wakeup call. Another strategy is adaptive duty cycling (Ye et al. 2004), when not all nodes
are allowed to sleep at the same time. Instead, a subset of the nodes in a network remain
active to form a network backbone.

1.2.4 Decentralized Management

The large scale and the energy constraints of many wireless sensor networks make it infea-
sible to rely on centralized algorithms (e.g., executed at the base station) to implement
network management solutions such as topology management or routing. Instead, sensor
nodes must collaborate with their neighbors to make localized decisions, that is, without
global knowledge. As a consequence, the results of these decentralized (or distributed )
algorithms will not be optimal, but they may be more energy-efficient than centralized solu-
tions. Consider routing as an example for centralized and decentralized solutions. A base
station can collect information from all sensor nodes, establish routes that are optimal (e.g.,
in terms of energy), and inform each node of its route. However, the overhead can be sig-
nificant, particularly if the topology changes frequently. Instead, a decentralized approach
allows each node to make routing decisions based on limited local information (e.g., a list
of the node’s neighbors, including their distances to the base station). While this decentral-
ized approach may lead to nonoptimal routes, the management overheads can be reduced
significantly.

1.2.5 Design Constraints

While the capabilities of traditional computing systems continue to increase rapidly, the pri-
mary goal of wireless sensor design is to create smaller, cheaper, and more efficient devices.
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Driven by the need to execute dedicated applications with little energy consumption, typ-
ical sensor nodes have the processing speeds and storage capacities of computer systems
from several decades ago. The need for small form factor and low energy consumption
also prohibits the integration of many desirable components, such as GPS receivers. These
constraints and requirements also impact the software design at various levels, for example,
operating systems must have small memory footprints and must be efficient in their resource
management tasks. However, the lack of advanced hardware features (e.g., support for par-
allel executions) facilitates the design of small and efficient operating systems. A sensor’s
hardware constraints also affect the design of many protocols and algorithms executed in
a WSN. For example, routing tables that contain entries for each potential destination in
a network may be too large to fit into a sensor’s memory. Instead, only a small amount
of data (such as a list of neighbors) can be stored in a sensor node’s memory. Further,
while in-network processing can be employed to eliminate redundant information, some sen-
sor fusion and aggregation algorithms may require more computational power and storage
capacities than can be provided by low-cost sensor nodes. Therefore, many software archi-
tectures and solutions (operating system, middleware, network protocols) must be designed
to operate efficiently on very resource-constrained hardware.

1.2.6 Security

Many wireless sensor networks collect sensitive information. The remote and unattended
operation of sensor nodes increases their exposure to malicious intrusions and attacks. Fur-
ther, wireless communications make it easy for an adversary to eavesdrop on sensor trans-
missions. For example, one of the most challenging security threats is a denial-of-service
attack, whose goal is to disrupt the correct operation of a sensor network. This can be
achieved using a variety of attacks, including a jamming attack , where high-powered wire-
less signals are used to prevent successful sensor communications. The consequences can
be severe and depend on the type of sensor network application. While there are numerous
techniques and solutions for distributed systems that prevent attacks or contain the extent
and damage of such attacks, many of these incur significant computational, communication,
and storage requirements, which often cannot be satisfied by resource-constrained sensor
nodes. As a consequence, sensor networks require new solutions for key establishment and
distribution, node authentication, and secrecy.

1.2.7 Other Challenges

From the discussion so far, it becomes clear that many design choices in a WSN differ from
the design choices of other systems and networks. Table 1.2 summarizes some of the key
differences between traditional networks and wireless sensor networks. A variety of addi-
tional challenges can affect the design of sensor nodes and wireless sensor networks. For
example, some sensors may be mounted onto moving objects, such as vehicles or robots,
leading to continuously changing network topologies that require frequent adaptations at
multiple layers of a system, including routing (e.g., changing neighbor lists), medium access
control (e.g., changing density), and data aggregation (e.g., changing overlapping sens-
ing regions). A heterogeneous sensor network consists of devices with varying hardware
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Table 1.2 Comparison of traditional networks and wireless sensor networks

Traditional networks Wireless sensor networks

General-purpose design; serving many
applications

Single-purpose design; serving one specific
application

Typical primary design concerns are network
performance and latencies; energy is not a
primary concern

Energy is the main constraint in the design of all
node and network components

Networks are designed and engineered
according to plans

Deployment, network structure, and resource
use are often ad hoc (without planning)

Devices and networks operate in controlled
and mild environments

Sensor networks often operate in environments
with harsh conditions

Maintenance and repair are common and
networks are typically easy to access

Physical access to sensor nodes is often difficult
or even impossible

Component failure is addressed through
maintenance and repair

Component failure is expected and addressed in
the design of the network

Obtaining global network knowledge is
typically feasible and centralized
management is possible

Most decisions are made localized without the
support of a central manager

capabilities, for example, sensor nodes may have more hardware resources if their sensing
tasks require more computation and storage or if they are responsible for collecting and
processing data from other sensors within the network. Also, some sensor applications may
have specific performance and quality requirements, for example, low latencies for critical
sensor events or high throughput for data collected by video sensors. Both heterogeneity and
performance requirements affect the design of wireless sensors and their protocols. Finally,
while traditional computer networks are based on established standards, many protocols and
mechanisms in wireless sensor networks are proprietary solutions, while standards-based
solutions emerge only slowly. Standards are important for interoperability and facilitate the
design and deployment of WSN applications; therefore, a key challenge in WSN design
remains the standardization of promising solutions and the harmonization of competing
standards.

Exercises

1.1 What is the difference between passive sensors and active sensors and can you name a
few examples for each category (e.g., using Table 1.1)?

1.2 Consider a Wheatstone bridge circuit using a resistive temperature sensor Rx as shown
in Figure 1.2. Further assume that R1 = 10 � and R3 = 20 �. Assume that the current
temperature is 80 ◦F and Rx(80) = 10 �. You wish to calibrate the sensor such that the
output voltage VOUT is zero whenever the temperature is 80 ◦F.

(a) What is the desired value of R2?
(b) What is the output voltage (as a function of the supply voltage) at a temperature of

90 ◦F, when this increase in temperature leads to an increase in resistance of 20%
for Rx?
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1.3 As described in this chapter, using multiple communication hops instead of a single hop
affects the overall energy consumption. Describe other advantages or disadvantages of
multi-hop communications, for example, in terms of performance (latency, throughput),
reliability, and security.

1.4 The relationship between the transmitted and the received power of an RF signal fol-
lows the inverse-square law shown in Equation (1.5), that is, power density and distance
have a quadratic relationship. This can be used to justify multi-hop communication
(instead of single-hop), that is, energy can be preserved by transmitting packets over
multiple hops at lower transmission power. Assume that a packet p must be sent from
a sender A to a receiver B. The energy necessary to directly transmit the packet can
be expressed as the simplified formula EAB = d(A, B)2 + c, where d(x, y) (or sim-
ply d in the remainder of this question) is the distance between two nodes x and y

and c is a constant energy cost. Assume that you can turn this single-hop scenario
into a multi-hop scenario by placing any number of equidistant relay nodes between
A and B.

(a) Derive a formula to compute the required energy as a function of d and n, where n

is the number of relay nodes (that is, n = 0 for the single-hop case).
(b) What is the optimal number of relay nodes to send p with the minimum amount

of energy required and how much energy is consumed in this optimal case for a
distance d(A, B) = 10 and (i) c = 10 and (ii) c = 5?

1.5 Name at least four techniques to reduce power consumption in wireless sensor networks.
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2
Applications
Wireless sensor networks have inspired many applications. Some of them are futuristic
while a large number of them are practically useful. The diversity of applications in the
latter category is remarkable – environment monitoring, target tracking, pipeline (water,
oil, gas) monitoring, structural health monitoring, precision agriculture, health care, supply
chain management, active volcano monitoring, transportation, human activity monitoring,
and underground mining, to name a few. In this chapter some of these applications and the
prototype implementations for these applications will be discussed in some detail.

2.1 Structural Health Monitoring

On 2 August 2007, a highway bridge unexpectedly collapsed in Minnesota into the fast-
flowing Mississippi river. Nine people were killed in the event. The National Transportation
Safety Board investigators were unable to determine the cause of the accident, but they
short-listed three potential causes, namely, wear and tear, weather, and the weight of a nearby
construction project which was taking place at the time. The construction project was closing
half of the bridge’s eight lanes when the accident happened. Two weeks later – on 14 August
2007 – another bridge collapsed at a popular Chinese tourist spot in Fenghuang county in
Hunan province, killing 86 people on the spot. In fact, the BBC reported (14 August 2007)
that China had identified more than 6000 bridges that were damaged or considered to be
dangerous.

During and following these accidents, several news outlets, including The Associated
Press (3 August 2007) and Time magazine (10 August 2007), featured articles that advocated
wireless sensor networks for monitoring bridges and similar structures.

Traditionally, bridges are inspected in different phases and at different levels (Koh and
Dyke 2007):

1. visual inspection carried out by road maintenance crews during routine road inspections,
normally every day;

2. basic inspections carried out usually at least once a year by local bridge inspectors;
3. detailed inspection, carried out at least every five years on selected bridges by regional

bridge inspectors; and
4. special inspections carried out by highly qualified experts and researchers according to

technical needs, normally as a consequence of questionable results from basic or detailed
inspections.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd
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The first phase is a labor-intensive, tedious, inconsistent, and subjective inspection
technique (Koh and Dyke 2007), whereas the rest require sophisticated tools, which
are usually expensive, bulky, and power consuming. Subsequently, developing auto-
mated, efficient, and affordable structural health monitoring techniques is an active
research area.

Broadly speaking, tool-based inspection techniques can be classified into local and
global inspections (Chintalapudi et al. 2006). Local techniques focus on detecting highly
localized, imperceptible fractures in a structure. These techniques employ ultrasonic,
thermal, X-ray, magnetic or optical imaging techniques, but this type of inspection
requires a significant amount of time and the disruption of the normal operation of the
structure.

Global inspection techniques, on the other hand, aim to detect a damage or defect
that is large enough to affect the entire structure. Often this is carried out by detecting
conspicuous changes in the movements of abutments, balustrades and barriers, bridge
bearings, decks, towers, expansion joints, railings, etc., to forced or ambient excitations.
Global inspection techniques can be considered as an inverse problem, that is, the status
of the structure is determined on the basis of its response to an external excitation. The
excitation can be ambient (such as an earthquake or a strong wind) or forced (such as
a deliberate force produced by a shaker or an impact hammer). In either case, modal
parameters, such as natural frequencies, damping ratios, and mode shapes are investigated
to identify damage in the form of expansion, de-lamination, corrosion, debonding,
cracking, etc.

Modal parameters are determined by several factors including: the magnitude and dura-
tion of the excitation; the material from which the structure is made; the size of the structure;
the technical restrictions in the construction; the age of the structure; and other surrounding
constraints.

More recently, researchers have been developing and testing wireless sensor networks as
part of a global inspection mechanism. There are three aspects that make them suitable for
the task:

1. The sensor nodes can be placed in areas that are inaccessible to wired and bulky
devices.

2. By deploying a large number of nodes, it is possible to establish correlation between
different measurements. This facilitates localizing damage.

3. Ideally, the deployment as well as the management (maintenance) of the sensor network
does not require disruption of the normal operation of the structure.

2.1.1 Sensing Seismic Events

Seismic responses in large structures are transient by nature and comprise frequencies below
a few tens of hertz. The response can be captured by employing acceleration sensors, tilt
sensors, and piezoelectric sensors. However, the sensors should be oversampled at high
frequency to compensate for noise and imperfect placement.

Some of the challenges pertaining to the analysis of data are: (a) restrictions regarding
the characteristics of the excitations; (b) the presence of unreachable degree-of-freedom
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elements; (c) measurement noise; (d) modeling errors; and (e) environmental constraints.
The effectiveness of a technique is measured by its capability to extract a sufficiently large
amount of damage-sensitive parameters (stiffness, damping, etc.), given limited and incom-
plete modal data measured from a real structure.

A damage detection technique can identify a single damage or multiple damages, depend-
ing on the model of the structure. Single-damage detection usually employs natural frequen-
cies while the multiple damage detection technique employs mode shapes.

2.1.2 Single Damage Detection Using Natural Frequencies

This technique computes the correlation between the measured and predicted (hypothesis)
modal frequencies to determine the damage. The parameter vectors used for evaluating
correlation coefficients consist of the ratio of the first n modal frequency changes due to
a damage in the structure, that is, �ω = (ωh − ωd), where ωh and ωd denote the natural
frequency vectors of the healthy and damaged elements of the structure, respectively. The
hypothesis vector, predicted from an analytic model, is used to infer the location and extent
of damage. It is denoted by δω.

Given a pair of parameter vectors, one can estimate the level of correlation in several
ways. The simplest way of estimating correlation is to calculate the angle between ωh and
ωd . A damage localization technique using the pair comparison attempts to find linear cor-
relation of modal frequency variation vectors. One way is to apply Equation (2.1) (Koh and
Dyke 2007):

Cj = �ωT δωj

|�ω||δωj | (2.1)

where the subscript j = (1, 2, ..., r) indicates the hypothesized location of the damage.
Another possibility is to apply the damage localization assurance criterion, or in short,

DLAC, which is expressed as:

DLACj =
∣∣�ωT δωj

∣∣2
(�ωT �ωj )(δω

T
j δωj )

(2.2)

Equation (2.2), similar to Equation (2.1), compares two frequency change vectors
(namely, one based on the measurement obtained from the test structure and the other based
on the j th hypothesis of an analytical model of the structure) in order to evaluate the level
of correlation between the two parameter vectors.

2.1.3 Multiple Damage Detection Using Natural Frequencies

Damage inference based on a unique pattern in modal frequency changes yields erroneous
results when applied to a structure with a multiple or unknown number of defects. Incor-
porating a sensitivity matrix derived from the analytic model of the structure into Equation
(2.1) enables multiple damages to be estimated. The sensitivity matrix consists of the first-
order derivatives of the modal frequencies with respect to each foreseeable damage variable,
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for the ratio of stiffness reduction in each structural element. This is given as (Koh and Dyke
2007):

S =




∂ω1

∂z1

∂ω1

∂z2
· · · ∂ω1
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· · · ∂ω2

∂zn
...

... · · · ...

∂ωm

∂z1

∂ωm

∂z2
· · · ∂ωm

∂zn




(2.3)

where Zi, i = 1, 2, ..., n is a damage variable.
Consequently, given δω = Sδz, the multiple damage location assurance criterion

(MDLAC) is given as:

MDLACj =
∣∣�ωT

[
Sδzj

]∣∣2(
�ωT .�ωj

)
.
([

Sδzj

]T
.
[
Sδzj

]) (2.4)

2.1.4 Multiple Damage Detection Using Mode Shapes

The problem with Equation (2.4) lies in evaluating all possible combinations of damage vari-
ables that maximize the MDLAC. Efficient search algorithms, such as genetic algorithms,
can be applied to determine the correct set of damage variables, but this can only be made
at the cost of computational complexity.

Multiple damage detection techniques, which use mode shapes instead of natural fre-
quency changes, can avoid the sensitivity matrix thereby bypassing the need to apply search
algorithms. There are two types of approach as far as evaluating mode shapes are concerned:

1. The modal assurance criteria (MAC) is determined between paired modes, namely,
healthy and damaged. Thus, the number of available MAC values equals the number of
measured modes.

2. Instead of individually evaluating the modal assurance criterion value for each mode
shape, a single vector of stacked mode shapes can be used for evaluating linear
correlation.

In both cases, unlike natural frequencies, mode shapes retain spatial information for a
given degree of freedom, that is, correlation between stacked mode shapes can directly indi-
cate a damaged location. On the other hand, mode-based correlation techniques can only
weakly capture the extent of the damage.

The relative change in each mode shape between healthy and damaged states can be used
to calculate the correlation coefficients. The change of mode shapes �(m × r) due to dam-
age is transformed into a single vector, vec [��](mr × 1) by stacking r columns of damages
of the matrix ��. Hence, the stack mode shape correlation (SMSC) is:

SMSCj = vec [��]T vec
[
δ�j

]
∣∣vec [��]T vec

[
δ�j

]∣∣ (2.5)

where vec [��] and vec [δ�] represent stacked vectors for the variation of the identified
and predicted mode shapes, respectively.
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2.1.5 Coherence

Another approach to damage detection and localization is by the use of the coherence func-
tion. The coherence, Cxy(ω), between two time discrete signals, x[n] and y[n], 0 ≤ n ≤ ∞,
is the normalized function of the frequency derived from the cross-spectrum of the two
signals:

Cxy(ω) = Sxy

SxxSyy

(2.6)

The coherence function measures the extent to which the two signals are linearly related
with each other at each frequency. A unity value indicates that the signals are highly cor-
related at a given frequency and zero indicates that the signals are uncorrelated at that
frequency. Coherence is a complex quantity, but it is often approximated by the magnitude
squared coherence (MSC):

∣∣γxy(w)
∣∣2 =

∣∣Sxy(w)
∣∣2

Sxx(w) · Syy(w)
(2.7)

If the two signals are identical, then the coherence gives a unity result for all frequencies.
Similarly, if two signals describe completely uncorrelated random processes, the coher-
ence will be zero for all frequencies. For example, a repeated measurement of the seismic
response of a healthy structure would exhibit a high coherence (near 1) for most frequencies,
whereas the coherence of a seismic response of a damaged structure and a healthy structure
would have low coherence (near 0).

Equation (2.7) would always result in a unity magnitude for all frequencies (though
the imaginary component may not be 1) if a single window were used to estimate the
spectral density. A commonly used multiple windowing method is called weighted
overlapped segment averaging (WOSA) and involves splitting two signals, X and Y,
into equal lengths of windowed segments. The Fast Fourier Transform (FFT) of these
segments is taken and their results are averaged together to estimate the spectral density.
The segments can be overlapped to reduce the variance of the spectral estimate (an
overlap of 50% is common). However, overlapping is computationally expensive. In
general, more windows provide smoother coherences with less variability but require more
computation.

Measuring the degree of coherence of two signals at each potential frequency requires
that the signals are well represented at each frequency, that is, the power of the signals at
each frequency should be appreciably large enough and the two signals should be well syn-
chronized. This requires precise sensors, narrow-band filters to isolate the desired frequency
components from higher harmonics, and sampling the signals at high rate. Therefore, instead
of evaluating coherence at each frequency, one can integrate the area under the coherence
curve for a given frequency range. Domain knowledge of the structural response can be
taken into account to limit the range. For large bridges, for example, the range lies below
10 Hz. Subsequently, a normalized integration over the range 0 to 10 Hz to get a 0 to 1
measure of the coherence can be achieved:

Pxy = 1

10

∫ 10

0
Cxy(ω)dω (2.8)
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2.1.6 Piezoelectric Effect

So far the inputs of damage detection techniques are implicitly assumed to be obtained
from acceleration sensors or tilt sensors. It is relatively simple to capture seismic response
by employing acceleration sensors. It is also possible to employ piezoelectric materials to
capture a seismic response. When a mechanical stress is applied to a piezoelectric mate-
rial, it generates an electric charge; and when an electric field is applied to a piezoelectric
material, its dimensions change proportionally to the applied field. This property makes a
piezoelectric material suitable for seismic sensing or actuation, or both.

The relation between the mechanical and electrical variables associated with a piezoelec-
tric material can be described as follows (Park et al . 2000):

Si = SE
ij Tj + dmiEm (2.9)

Dm = dmiTi + εT
mk (2.10)

This can be reformulated as: [
S

D

]
=
[

sE dt

d εT

] [
T

E

]
(2.11)

In Equations (2.9)–(2.11), the parameters are defined as follows:

• S is the mechanical strain;
• T is the mechanical stress;
• E is the electric field;
• D is the charge density;
• s is the mechanical compliance;
• d is the piezoelectric strain constant;
• ε is the permittivity; and
• the subscripts i, j, m, and k indicate the direction of stress, strain, or electric field.

C

Y = Re{Y} + j Im{Y}

I = i sin(wt + f)

MPZT

R

V = v sin(wt)

Figure 2.1 A piezoelectric material for capturing mechanical impedance. The PZT is normally
bonded directly to the surface of the structure by a high strength adhesive to ensure better mechanical
interaction - this is indicated by the gray box, M. The broken line indicates the coupled electrome-
chanical admittance Y (Park et al 2000).
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Equation (2.9) describes the change in the dimension of a piezoelectric material as a
result of an applied electric field, whereas Equation (2.10) describes the electric field that is
induced by piezoelectric material in response to an applied mechanical stress.

Equation (2.10) is important for structural health monitoring, because it quantitatively
describes the variation in the mechanical impedance due to the presence of structural dam-
age. More precisely, it means that by employing a piezoelectric material, it is possible
to couple the mechanical and electrical impedance thereby extracting structural informa-
tion from electrical impedance measurements. Mathematically, the relationship between the
mechanical impedance and the electrical impedance is described as:

Y (ω) = jω
wala

ha

(
εT

33(1 − jδ) − Zs(ω)

Zs(ω)Za(ω)
d2

3xY
E
xx

)
(2.12)

where

• Y is the electrical admittance;
• Za is the mechanical impedance of the piezoelectric material;
• Zs is the mechanical impedance of the structure;
• Yxx is Young’s modulus of piezoelectric material at zero electric field (inverse of

compliance);
• d3x is the piezoelectric strain constant at zero stress;
• εT

33 is the permittivity at zero stress;
• d is the dielectric loss tangent to the piezoelectric material; and
• wa is the width, la is the length, and ha is the thickness of the piezoelectric material,

respectively.

The electrical admittance is the inverse of impedance, Z, in electrical engineering. The
impedance, Z, can have a resistive, an inductive, or a capacitive component, or a combina-
tion of these. If the material is a simple resistor, the impedance is equal to the resistance of
the material, R, which can be simplified as:

R = v(t)

i(t)
(2.13)

where v(t) is a timely varying potential difference measured at the two ends of the resistor
and i(t) is a timely varying current flowing through the resistor. R is real, which means
that the current is in phase with the voltage. If the material is a pure coil, with no resistive
component, the impedance, Z, is expressed as:

Z(ω) = v(t)

i(t)
= jωL (2.14)

where L is the inductance of the material and ω = 2πf is the angular velocity, signifying
the rate of change of the potential difference, v(t). j implies that the voltage and the
current are out of phase by 90◦ as a result of the inductive effect. A positive j indicates
that the current is leading the voltage. The inductance, L, of the material depends on
the length of the conductor, the number of coils, and the conductivity of the conductor.
In reality no coil is purely inductive, it will have some resistive component, R. Hence,
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for a real coil with a resistive component, the impedance, Z, of Equation (2.14) is
modified to:

Z(ω) = v(t)

i(t)
= R + jωL (2.15)

If the material is capacitive (if two conductors are separated by a dielectric material and
there is a potential difference between the two conductors), the impedance of the material
is given as:

Z(ω) = v(t)

i(t)
= 1

jωC
(2.16)

where C is the capacitance of the material; and j indicates that the voltage and the current
are out of phase by 90◦, the voltage leading the current.

The capacitance of a material, C, depends on the cross-sectional area of the two conduc-
tors, the distance of separation, and the dielectric material that separates them. In general, the
impedance through which an electric charge is flowing as a result of the potential difference
v between the two ends of the material is given as:

Z(ω) = v(t)

i(t)
= R + jωL

jωC
(2.17)

With this in mind, if the impedance of the piezoelectric material and the magnitude and
frequency of the electric field induced inside the piezoelectric material are known, it is pos-
sible to determine the mechanical stress in Equation (2.12). Figure 2.1 demonstrates the
transformation of mechanical admittance to an electrical admittance through the employ-
ment of a piezoelectric material.

Accordingly:

Zs(ω) = Za(ω)




εT
33(1 − jδ) − Y (ω)ha

jωwala

(d3x)
2YE

xx − εT
33(1 − jδ) + Y (ω)ha

jωwala


 (2.18)

Equation (2.18) illustrates that the mechanical impedance of a structure can be deter-
mined from the electrical admittance of the piezoelectric bonding. In other words, struc-
tural integrity can be evaluated by measuring the electrical impedance of the piezoelectric
sensor.

2.1.7 Prototypes

Wisden is the first prototype to employ wireless sensor networks for monitoring structural
health. It is developed at the University of Southern California and deployed (a) on a seismic
test structure and (b) in an abandoned, four-story office building in Los Angeles (a victim of
the 1994 Northridge earthquake). The seismic test structure used as a platform for conduct-
ing seismic experiments is an imitation of a full-scale 28 × 28 ft2 hospital ceiling. It supports
10,000 lb of weight and can be subjected to a uniaxial motion of a peak-to-peak stroke of
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10 in. with a 55,000-lb hydraulic actuator with a ±5-in. stroke. The hydraulic pump delivers
up to 40 gallons per minute at 3000 lb/in2. The overall weight of the moving portion of the
test structure is approximately 12,000 lb.

The Wisden sensor network (Xu et al. 2004; Chintalapudi et al. 2006) consists of 25
nodes and a 16-bit vibration card, which is specifically designed for high-quality, low-
power vibration sensing. A high-sensitive triaxial accelerometer is attached to the vibration
card.

The nodes organize themselves to establish a tree topology WSN. The topology of the net-
work is dynamically adjusted to accommodate incoming nodes and the departure of existing
ones (due, for example, to the failure or exhaustion of batteries). The task of the network is
to reliably send time-synchronized vibration data to a remote sink over a multi-hop route.
To ensure reliable transmission, Wisden implements a negative acknowledgment (NACK),
hybrid hop-by-hop/end-to-end transmission scheme. The hop-by-hop scheme enables inter-
mediate nodes to identify and retransmit lost messages by observing gaps between received
sequence numbers. For this reason, every node stores transmitted messages in a message
cache. Wisden ensures reliable transmission of sensed data in the presence of up to 30%
loss rate.

Another prototype was developed at the University of California, Berkeley, and deployed
at the Golden Gate Bridge in San Francisco (Kim et al. 2007). The bridge has a center
span that sustains a maximum transverse deflection (due to wind or earthquake) of
27.7 ft and maximum upward and downward deflections of 5.8 ft and 10.8 ft, respectively.
The towers are 500 ft high above the roadway and 746 ft high above the water. The
tops of the towers can have transverse deflections of up to 12.5 in. and toward the shore
longitudinal deflections of 22 in. Sixty-four wireless sensor nodes were deployed on this

(b)

(a)

30 nodes

10 nodes

10 nodes

Figure 2.2 The deployment scenario of on the Golden Gate Bridge. (a) The nodes are deployed on
both side of the span. (b) A two-dimensional view of the placement of nodes on the bridge.



26 Fundamentals of Wireless Sensor Networks

bridge to establish a structural health monitoring network. The nodes were distributed
over the main span and the tower, collecting ambient vibrations synchronously, at a rate
of 1 kHz, with less than 10 µs jitter and with an accuracy of 30 µG. Data is collected
reliably over a 46-hop network. Figure 2.2 illustrates the deployment at the Golden
Gate Bridge.

The goal of the deployment was to determine the response of the structure to both
ambient and extreme conditions and to compare actual performance with design predic-
tions. The network measured ambient structural accelerations from wind load at closely
spaced locations. It also measured strong shaking from a potential earthquake. The
installation as well as the monitoring, was conducted without disrupting the operation of the
bridge.

2.2 Traffic Control

Ground transportation is a vital and complex socioeconomic infrastructure. Operationally, it
is linked with and provides support for a variety of systems, such as supply-chain, emergency
response, and public health. In urban areas, this results in potential congestion. The 2009
Urban Mobility Report, issued by the Texas Transportation Institute, reveals that in 2007,
congestion caused urban Americans to travel 4.2 billion hours more and to purchase an extra
2.8 billion gallons of fuel. The total congestion cost is estimated to be $87.2 billion – an
increase of more than 50% over the previous decade.

Unfortunately, building new roads is not a feasible solution for many cities of the world
owing to the lack of free space and the high cost of demolition of old roads (streets). Many
consider better regulation of transportation systems as the only sustainable solution to road
congestion.

One approach to dealing with congestions is to put in place distributed sensing systems
that reduce congestion. These systems gather information about the density, sizes, and speed
of vehicles on roads; infer congestions; and suggest to drivers some alternative routes and
emergency exits.

2.2.1 The Sensing Task

A large number of devices are used in traffic control systems. These include video, sonar,
radar, inductive loops, magnetometers, microloop probes, pneumatic road tubes, piezoelec-
tric cables, PVDF wire, and pneumatic treadle. Video and sonar-based sensing systems need
to be installed on poles, while inductive loops, magnetometers, and pneumatic treadles can
be embedded into the transportation infrastructure. Camera-based systems involve human
operators to process images, identify incidents, and assign speed rankings. Apparently, this
technique is costly and can only be employed in selected streets, such as those that are
frequently traveled.

Another way is to fully automate congestion recognition. There are several approaches
to do this. For example, automated camera-based systems use machine vision to count and
classify vehicles. Alternatively, they target the license numbers of passing vehicles and asso-
ciate driving history as a means of estimating congestion causes. These approaches are well
suited as long as the data from the cameras is reliable. In the presence of fog, smog, dust,
snow, or rain, however, roadside cameras are unreliable.
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2.2.1.1 Inductive Loops

More recently, in-road sensing devices have been developed as complementary systems.
These devices are interesting because they are unaffected by weather and provide direct
information with very little ambiguity. One of the most common in-road traffic sensors is
the inductive loop (Knaian 2000). This is a coil of wire several meters in diameter and can be
buried under the road and connected to a roadside control box that passes an electric current
through the coil. By establishing relationship between the current, the magnetic field strength
that is induced as a result of the current, and the speed and size of the passing vehicles, it is
possible to infer traffic flow. The exact relationship between the current and a vehicle can
be defined by using Faraday’s induction law.

According to Faraday’s law, when an electric current passes through a conductor, it pro-
duces a magnetic field around the conductor. The direction of the field is normal to the
direction of the current flow. The strength and density of the magnetic field depends on the
length and cross-sectional area of the conductor as well as the material from which the con-
ductor is made, that is, the permeability of the conductor, µ. The ratio of the magnetic flux,
�, to the current is called inductance, L, which is defined as:

L = �

i
(2.19)

If, instead of a straight conductor, the current passes through a solenoid (a long, thin
coil, with a length much greater than the diameter of the loop) of N turns and length l, the
magnetic flux density, B, induced in it is expressed as:

B = µ0
Ni

l
(2.20)

where µ0 is the permeability of free space; N is the number of turns; i is the current; and l

is the length of the coil. The magnetic flux through the coil is obtained by multiplying the
flux density B by the cross-sectional area, A and the number of turns, N :

� = µ0N
2i

A

l
(2.21)

Reformulating Equation (2.21) will yield:

L = µ0N
2 A

l
(2.22)

The inductance of a solenoid changes when vehicles drive on the road, disturbing the
induced magnetic flux. The magnitude of the change depends on the vehicle’s speed and
size. To determine the speed of the vehicle, two loops separated by a distance, d , of known
length are sufficient.

Measuring the change in voltage or current is easier than measuring the change in mag-
netic field strength or magnetic flux. The induced electromotive force in a closed loop is
directly proportional to the rate of change of magnetic flux through the loop. This can be
better explained by moving a conductor through a magnetic field, which induces a voltage
in that conductor. The induced voltage is proportional to the speed of movement, the length
and cross-sectional area of the conductor, and the strength of the magnetic field. If the con-
ductor forms a solenoid, the number of turns of the conductor influences the induced voltage.
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The magnetic field, the direction of movement, and the voltage are all orthogonal to each
other. To determine their exact direction, Fleming’s right-hand rule can be applied. Alter-
natively, it is also possible to keep the conductor stationary and vary the magnitude and
direction of the magnetic field to induce a voltage in a conductor. Mathematically, this is
expressed as:

ε = −N
d�B

dt
(2.23)

where ε is the electromotive force (emf) in volts; N is the number of turns of wire; �B is
the magnetic flux in Weber that passes through a single loop. The negative sign in Equation
(2.23) indicates that the direction of the electromotive force is opposite to the direction of the
magnetic flux. The magnetic flux is a function of the cross-sectional area of the conductor
and the magnetic field strength, which is normal to the conductor. Lenz’s law can be applied
to determine the direction of the induced electromotive force (emf) and current resulting
from electromagnetic induction.

d�

dt
= A dB

dt
(2.24)

More generally, the relation between the rate of change of the magnetic flux through a
surface S enclosed by a contour C and the electric field along the contour is expressed as:∮

C

E · dl = − d

dt

∫
S

B · dA (2.25)

where E is the electric field; dl is an infinitesimal element of the contour C; and B is the
magnetic field strength. The directions of the contour C and dA are assumed to be related
by the right-hand rule.

Equivalently, the differential form of Faraday’s law can be employed:

∇ × E = −∂B
∂t

(2.26)

The only limitation of inductive loops is their physical size. First, deployment requires
the complete dismantlement of an entire cross-section of a road. Second, it is difficult to
distinguish vehicles in bumper-to-bumper traffic, since two vehicles may cross the loop at
the same time.

2.2.1.2 Magnetic Sensors

The presence, direction, and speed of a vehicle can be determined by employing magnetic
sensors. The technique requires a magnetic field of known strength and direction. A moving
vehicle can disturb the distribution of the magnetic field either by producing its own mag-
netic field or simply by cutting across it. As the magnitude and direction of the disturbance
depends on the speed, size, density, and permeability of the vehicle, it is possible to use
magnetic sensors to quantify the disturbance.

Magnetic sensors can be classified into low-field, medium-field, and high-field sensors,
according to the range of the strength of the magnetic field they measure (Caruso and
Withanawasam 1999). Low-field sensors measure magnetic field strength below 1 µG
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(micro Gauss); medium-field sensors measure between 1 µG and 10 G; high-field sensors
can measure above 10 G. The Earth’s magnetic field is found in the medium field.

Magnetic fields are set up by the motion of electrical charges. For instance, the mag-
netic field of a bar magnet is created by the motion of negatively charged electrons within
iron atoms. The cause of the Earth’s magnetic field is not completely understood, but it is
believed to be associated with electrical currents produced by the coupling of convective
effects and rotations in the spinning liquid metallic outer core of iron and nickel. It has a
uniform distribution over a wide area (several kilometers). It was first measured by Carl
Friedrich Gauss in 1835 and has been repeatedly measured since then, showing a relative
decay of about 5% over the last 150 years.

Sensors that can measure the Earth’s magnetic field comprise an alloy of nickel and iron.
Typical examples are anisotropic magnetoresistive (AMR) sensors whose resistive property
changes according to the Earth’s magnetic field strength. AMR sensors can measure both
linear and angular positions and displacement in the Earth’s magnetic field.

Almost all road vehicles, including those with polymer body panels, contain a large mass
of steel. Since the magnetic permeability of steel is much higher than the surrounding air, it
has the capacity to concentrate the flux lines of the Earth’s magnetic field. The concentration
of magnetic flux (disturbance) at a particular location varies as the vehicle moves and can
be detected from a distance of up to 15 m (Weaver 2003). Figure 2.3 demonstrates how an
AMR sensor can be used to measure the disturbance in the Earth’s magnetic field caused by
a moving vehicle.

It is possible to distinguish between different types of vehicles (car, bus, minibus, truck,
etc.) by modeling a vehicle as a composition of many dipole magnets (Caruso and With-
anawasam 1999). These dipoles have north–south orientations that cause distortions in
the Earth’s magnetic field. The extent of the distortions of the dipoles depends on, among
other things, the permeability of the dipoles. For example, the engine and wheel areas exert
stronger distortions than the other parts of a vehicle, and for each vehicle class of interest,
it is possible to produce a unique model. When a vehicle passes close to a magnetic sensor,
or drives over it, the sensor can detect the different dipole moments of the various parts of
the vehicle. The field variation reveals a detailed magnetic signature.

Figure 2.3 Detection of a moving vehicle with an AMR magnetic sensor (Caruso and With-
anawasam 1999).
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2.2.2 Prototypes

Knaian (2000) proposes the use of wireless sensor networks for traffic monitoring in urban
areas. A prototype was deployed in Vassar Street, Cambridge, Massachusetts. The wireless
sensor node consists of two AMR magnetic sensors for detecting vehicular activities and a
temperature sensor for monitoring road condition (snow, ice, or water). The movement and
speed of a vehicle is captured by observing the disturbance it creates in the Earth’s magnetic
field. This takes the form of an excursion first below and then above a predefined baseline,
since the vehicle pulls field lines away from the sensor when it approaches it and then toward
the sensor when it drives away from it.

To measure the speed of a vehicle, the node waits until it detects an excursion from the
baseline and then starts sampling at a frequency of 2 kHz. An AMR magnetic sensor is
placed at the front of the node and another at the back. The waveforms at the outputs of the
sensors are identical, except that they are shifted in time and may be affected by noise. When
the signal from the rear sensor crosses the baseline, the node begins to count the number of
samples until the signal from the forward sensor crosses the baseline. From this count, it
computes the speed of the passing vehicle.

In order to detect a vehicle during bumper-to-bumper drive, a minimum of three samples
at a frequency of 100 Hz are required for the following vehicle description: average drive
speed is 40 mph (or 20 meters per second) and the size of the engine block is 60 cm. In other
words, the sampling frequency fs should be:

fs = 20 m/s × 3 × 100

60 cm
= 100 Hz (2.27)

Sampling at this rate enables the node to detect vehicles that travel at a higher speed (as
fast as 200 mph), with a minimum separation distance of 3 m. Figure 2.4 displays the block
diagram of the sensor node developed at MIT.

Arora et al. (2004) deployed 90 Mica2 sensor nodes at MacDill Air Force Base in Tampa,
Florida, to detect the movement of vehicles, soldiers, and people. Seventy-eight of the nodes
were magnetic sensor nodes that were deployed in a 60 × 25 square foot area. Additionally,
12 radar sensor nodes were overlaid on the network. The magnetic sensor nodes were dis-
tributed uniformly. These nodes form a self-organizing network which connects itself to a
remote computer via a base station and a long-haul radio repeater.

The Mica2 nodes were based on a 4 MHz Atmel processor with 4 kbytes random access
memory, 128 kbytes of flash program, and 512 kbytes of EEPROM memory (used for data
logging). The TinyOS operating system runs on the nodes. Magnetic fields were sensed by
using an in-built magnetometer while the TWR-ISM-002 radar motion sensor was used to
detect movement of objects.

2.3 Health Care

A wide range of health care applications have been proposed for wireless sensor networks,
including monitoring patients with Parkinson’s Disease, epilepsy, heart patients, patients
rehabilitating from stroke or heart attack, and elderly people. Unlike other types of appli-
cations discussed so far, health care applications do not function as stand-alone systems.
Rather, they are integral parts of a comprehensive and complex health and rescue system.
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Figure 2.4 Block diagram of the MIT node for traffic monitoring (Knaian 2000).

According to the US Centers for Medicare and Medicaid Services (CMS), the national
health spending of the country in 2008 was estimated to be $2.4 trillion. The cost of heart
disease and stroke takes around $394 billion. The same report projects a rise in health spend-
ing in the US as well as in many western countries. Apparently, this is a concern for policy
makers, health care providers, hospitals, insurance companies, and patients.

Interestingly, higher spending does not necessarily correlate with a high quality service
or prolonged lifetime (Kulkarni and Öztürk 2007). For example, in 2000, the US spent more
on health care than any other country in the world – an average of $4500 per person – but
ranked 27th in average life expectancy. Many countries achieved higher life expectancy
rates at a lower cost.

While preventive health care has been advocated by many as a means to reduce health
spending and mortality rate, studies show that some patients find that certain practices
are inconvenient, complicated, and interfere with their daily life (Morris 2007). For
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example, many miss checkup visits or therapy sessions because of a clash of schedules
with established living and working habits, fear of overexertion, or transportation cost.

To deal with these problems, research attempts to provide a comprehensible solution that
involves the following tasks:

• building pervasive systems that provide patients with rich information about diseases and
their prevention mechanisms;

• seamless integration of health infrastructures with emergency and rescue operations as
well as transportation systems;

• developing reliable and unobtrusive health-monitoring systems that can be worn by
patients to reduce the responsibilities and presence of medical personnel;

• alerting nurses and doctors when medical intervention is necessary; and
• reducing inconvenient and costly checkup visits by creating reliable links between

autonomous health-monitoring systems and health institutions.

2.3.1 Available Sensors

The research community has been very active in developing a plethora of wearable and wire-
less systems that seamlessly monitor heart rate, oxygen level, blood flow, respiratory rate,
muscle activities, movement patterns, body inclination, and oxygen uptake (VO2). Given
below is a concise summary of some of the commercially available wireless sensor nodes
for health monitoring:

• pulse oxygen saturation sensors: they measure the percentage of hemoglobin (Hb) satu-
rated with oxygen (SpO2) and heart rate (HR);

• blood pressure sensors;
• electrocardiogram (ECG);
• electromyogram (EMG) for measuring muscle activities;
• temperature sensors – both for core body temperature and skin temperature;
• respiration sensors;
• blood flow sensors;
• blood oxygen level sensor (oximeter) for measuring cardiovascular exertion (distress).

2.3.2 Prototypes

2.3.2.1 Artificial Retina

Schwiebert et al. (2001) developed a microsensor array that can be implanted in the eye
as an artificial retina to assist people with visual impairments. The system consists of an
integrated circuit and an array of sensors. The integrated circuit is a multiplexer with on-chip
switches and pads to support a 10 × 10 grid of connections; it operates at 40 kHz. Moreover,
it has an embedded transceiver for wired and wireless communications. Each connection
in the chip interfaces a sensor through an aluminum probe surface. Before the bonding is
done, the entire integrated circuit, except the probe areas, is coated with a biologically inert
substance.
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Figure 2.5 The processing components of the artificial retina (Schwiebert et al . 2001).

Each sensor is a microbump. It starts with a rectangular shape, but near the end tapers
to a point and rests gently on the retina tissue. The sensors are sufficiently small and light
to be held in place with relatively little force. The distance between adjacent microbumps
is approximately 70 µm. The sensors produce electrical signals proportional to the light
reflected from an object being perceived. The ganglia and additional tissues transform the
electrical energy into chemical energy, which in turn is transformed into optical signals and
communicated to the brain through the optic nerves. The magnitude and wave shape of the
transformed energy corresponds to the response of a normal retina to light stimulation.

The system is a full duplex system, allowing communication in a reverse direction. In
addition to the transformation of electrical signals into optical signals, neurological signals
from the ganglia can be picked up by the microsensors and transmitted out of the sensing
system to an external signal processor. In this way, the sensor array is used as a reception
and transmission system in a feedback loop.

Two types of wireless communications are foreseen. First, the eventual mapping of an
input electrical signal to brain patterns cannot be realized internally with the sensing system
alone since signal processing is a computationally intensive process. Second, diagnostic and
maintenance operations require the extraction of data from the sensing system. For these
reasons, interconnecting the sensing system with an external system is essential. In addition
to these requirements, communication is required to transfer data from a charge-coupled
device (CCD) camera (embedded in a pair of spectacles) to the sensor array.

Figure 2.5 illustrates the signal processing steps of the artificial retina. A camera embed-
ded in a pair of spectacles directs its output to a real-time digital signal processor (DSP) for
data reduction and processing. The camera can be combined with a laser pointer for auto-
matic focusing. The output of the DSP is compressed and transmitted through a wireless
link to the implanted sensor array, which decodes the image and produces a corresponding
electrical signal.

2.3.2.2 Parkinson’s Disease

Lorincz et al. (2009) and Weaver (2003) propose the use of WSNs to monitor patients with
Parkinson’s Disease (PD). The aim is to augment or entirely replace a human observer and
to help the physician to fine-tune the medication dosage.
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Parkinson’s Disease is a degenerative disorder of the central nervous system. It results
from degeneration of neurons in a region of the brain that control movements (substantial
nigra), creating a deficiency in neurotransmitter dopamine. Deficiency in dopamine causes
severe impairment of motor skills and speech, manifesting itself in tremor of the hands,
arms, legs, and jaw; unsteady walk and slowness of movements; and lack of balance and
coordination.

According to the Parkinson’s Disease Foundation (Foundation P.D. 2009), as many as
one million Americans live with PD. Approximately 60,000 are diagnosed with the disease
each year without considering the thousands of additional cases that go undetected. The
foundation estimates that 4 million people worldwide are living with PD. The combined
direct and indirect cost of PD, including treatment, social security payments, and lost income
from inability to work, is estimated to be nearly $25 billion per year in the United States
alone.

Persons under treatment (this is usually an external stimulation given to remnant cells in
the substantia nigra to produce more dopamine) can be found in one of the following three
phases (Weaver 2003):

1. The exhibition of typical symptoms in the form of tremor and slow movement when the
stimulation has worn off. This is known as the off state.

2. Normal movements free of tremor when the medication is balanced. This is known as
the on state.

3. Exaggerated involuntary movements when the medication is at highest concentration.
This is known as dyskinesia .

The treatment of PD is case-specific, that is, doctors typically monitor patients on an
individual basis and provide suitable medication to prolong the duration of the on state. This
requires a close follow-up of the medication cycle and frequent adjustments. Apparently, the
follow-up is costly. According to the Parkinson’s Disease Foundation, the medication costs
for an individual person are estimated to be $2,500 a year and therapeutic surgery can cost
up to $100,000 per patient (Foundation P.D. 2009).

Weaver (2003) developed a wearable system that can reduce personnel cost and help a
physician to fine-tune the medication dosage. It consists of a lightweight sensor node with
3D accelerometer sensors, a processor core, and a storage system for logging data for later
retrieval. The system could record 17 hours of accelerometer data. The accelerometer sen-
sors can be sampled at a rate of 40 Hz.

The system was deployed on PD patients at the Memorial Hospital’s Parkinson Day Cen-
ter, Cambridge, MA, and a large amount of data was collected while they performed common
daily tasks (walking, reading quietly while sitting, sitting in animated conversation, etc.).
The patients wore the nodes on their ankles and wrists. The report reveals that the system
was able to identify the occurrence of dyskinesia at the rate of 80%.

More recently, Lorincz et al. (2009) at Harvard University employed a more sophis-
ticated wireless sensor node – the Shimmer wireless sensor platform (Sensor platform
TSW 2009) – for monitoring patients with PD and epilepsy. The node consists of a TI
MSP430 processor, CC2420 IEEE 802.15.4 radio, triaxial accelerometer, and rechargeable
Li-polymer battery. It also integrates a MicroSD slot that supports a Flash memory for
storing accelerometer data. This way, the node is capable of storing data from the 3D
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accelerometer sensor continuously for more than 80 days at a sampling frequency of
50 Hz. In addition to the 3D accelerometer sensor, the node platform provides interfaces
for gyroscope, ECG, EMG, tilt and vibration sensor, and a passive infrared (PIR) motion
sensor.

These nodes were deployed on seven patients for one week. Nine nodes were deployed
on the body of each patient, two on each arm and leg, and one at the back. Data from 3D
accelerometer sensors and gyroscopes were sampled at a frequency of 100Hz. An initial
clinical evaluation was made in various settings, including tuning of deep brain stimulation
(DBS) parameters.

2.4 Pipeline Monitoring

Another area of application for wireless sensor networks is the monitoring of gas, water,
and oil pipelines. The management of pipelines presents a formidable challenge. Their long
length, high value, high risk, and often difficult access conditions require continuous and
unobtrusive monitoring. Leakages can occur due to excessive deformations caused by earth-
quakes, landslides, or collisions with an external force; corrosion, wear, material flaws or
even intentional damage to the structure.

To detect leakages, it is vital to understand the characteristics of the substance the
pipelines transport. For example, fluid pipelines generate a hot-spot at the location of
the leak, whereas gas pipelines generate a cold-spot due to the gas pressure relaxation.
Likewise, fluid travels at a higher propagation velocity in metal pipelines than in polyvinyl
chloride (PVC). There are a large number of commercially available sensors (fiber optics,
temperature sensors, and acoustic sensors) to detect and localize thermal anomalies.

2.4.1 Prototype

The PipeNet prototype was developed as a collaboration project between Imperial College,
London, Intel Research, and MIT to monitor water pipelines in urban areas. Its main task
is to monitor (1) hydraulic and water quality by measuring pressure and pH, and (2) the
water level in combined sewer systems (sewer collectors and combined sewer outflows).
Sewerage systems convey domestic sewage, rainwater runoff, and industrial wastewater to
sewerage treatment plants. Historically, these systems are designed to discharge their content
to nearby streams and rivers in the event of overflow, such as during periods of heavy rainfall.
Subsequently, the combined sewer overflows are among the major sources of water quality
impairment. Nearly 770 large cities in the US, mainly older communities, have combined
sewer systems (Stoianov et al. 2007).

PipeNet is deployed in three different settings. In the first setting, pressure and pH sensors
are installed on a 12 in. cast-iron pipe which supplies drinking water. Pressure data is col-
lected every 5 min for a period of 5 s at a rate of 100 Hz. The wireless sensor node can locally
compute minimum, maximum, average, and standard deviation values and communicate the
results to a remote gateway. Likewise, pH data is collected every 5 min for a period of 10 s at
a rate of 100 Hz. The sensor nodes use a Bluetooth transceiver for wireless communication.

The pressure sensor is a modified version of the OEM piezoresistive silicon sensor. It has
an error compensation mechanism to deal with the effects of nonlinearity and hysteresis.
The sensor has a startup time of less than 20 ms and a fast dynamic response. It consumes
less than 10 mW. The pH sensor is a glass electrode with an Ag/AgCl reference cell.
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In the second setting, a pressure sensor is employed to measure the pressure in 8 in. cast
iron pipe. The data is collected every 5 min for a period of 5 s at a sampling rate of 300 Hz.
For this setting, local processing was not supported; instead, the raw data was transmitted
to a remote gateway.

Finally, in the third setting, the water level of a combined sewer outflow collector is
monitored. Two pressure transducers were placed at the bottom of the collector and an
ultrasonic sensor on the top. The pressure sensors are low-power devices and consume
less than 10 mW. The ultrasonic sensor is a high-power device and consumes 550 mW. For
efficient power consumption, the pressure sensors are employed for periodic monitoring
while the ultrasonic sensor is required only to verify the readings from the pressure sensors
when their difference exceeded a set threshold or when the water level exceeded the weir
height. In this setting, data collection was carried out at a rate of 100Hz at 5 min intervals
for a period of 10 s. Moreover, local data aggregation was performed to reduce the net-
work traffic. The network supported remote configuration to increase the sampling rate up
to 600 Hz.

2.5 Precision Agriculture

Another interesting area where wireless sensor networks motivated a large number of
researchers is precision agriculture. Traditionally, a large farm is taken as a homogeneous
field in terms of resource distribution and its response to climate change, weeds, and pests.
Accordingly, farmers administer fertilizers, pesticides, herbicides, and water resources.
In reality, a large field exhibits wide spatial diversity in soil types, nutrient content, and
other important factors. Therefore, treating it as a uniform field can cause inefficient use of
resources and loss of productivity.

Precision agriculture is a method of farm management that enables farmers to produce
more efficiently through a frugal use of resources. This encompasses different aspects, such
as micro-monitoring soil, crop, and climate change in a field, and providing a decision sup-
port system (DSS). Precision agriculture uses Geographic Information System management
tools; GPS, radar, aerial images, etc., to accurately diagnose a field and apply vital farming
resources.

A large number of technologies have been developed over the last several years to facil-
itate and automate precision agriculture. Some of these are:

• Yield monitors: These are devices that use, among other things, mass flow sensors, mois-
ture sensors, and a GPS receiver to monitor instantaneous yield based on time and dis-
tance. The sensors enable measurement of the mass or the volume of grain flow (grain
flow sensors), separator speed, ground speed, grain moisture, and header height.

• Yield mapping: Couples GPS receivers with yield monitors to provide spatial coordinates
for the yield monitor data.

• Variable rate fertilizer: Manages the application of liquid and gaseous fertilizer materials.
• Weed mapping: Enables a farmer to map weeds while combining, seeding, spraying, or

field scouting.
• Variable spraying: By knowing weed locations from weed mapping, spot control can

be implemented. This enables booms to be turned on and off electronically and alter the
amount (and blend) of herbicide applied.
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• Topography and boundaries: Enable the production of very accurate topographic maps
that can be used to interpret yield maps and weed maps as well as planning for grassed
waterways and field divisions. Field boundaries, roads, yards, tree stands, and wetlands
can all be accurately mapped to aid farm planning.

• Salinity mapping: This is used to map fields that are affected by salinity. Salinity mapping
is valuable in interpreting yield maps and weed maps as well as tracking the change in
salinity over time.

• Guidance systems: These are devices that can accurately position a moving vehicle within
a 12 in. radius (or less). They are useful for spraying and seeding as well as field scouting.

The main challenge in applying precision agriculture technologies is the need to collect
amount of data over several days that is large enough to characterize the entire field. In this
regard, wireless sensor networks can be excellent tools as large-scale sensing technologies.

2.5.1 Prototypes

Several prototype deployments have already been carried out in Spain (López Riquelme
et al. 2009), the US (Pierce and Elliott 2008), Canada (Beckwith et al. 2004), The Nether-
lands (Baggio 2005), India (Panchard et al. 2007), and Italy (Matese et al. 2009), to mention
just a few. In the following subsections, a brief summary of some of the prototypes is given.

2.5.1.1 Wine Vineyard

Beckwith et al. (2004) deployed a wireless sensor network in Okanagan Valley, British
Columbia, to monitor and characterize significant variation in temperature – heat summa-
tion and periods of freezing temperatures – over one management block of a wine vineyard.
In the vineyard, temperature is the predominant parameter that affects the quality as well
as the quantity of harvest. For example, wine grapes see no real growth until the temper-
ature goes above 10 ◦ C. Moreover, different wine grapes have different requirements for
heat units (in other words, different sites will be able to support different grapes). Subse-
quently, the deployment aims to measure the temperature over a 10 ◦ C baseline that a site
accumulates over the growing season.

The network consisted of 65 nodes distributed in a grid-like pattern 10 to 20 meters apart,
covering about 2 acres. The experience shows that due to the self-configuring nature of the
network and the inherent structured layout of vineyard fields, the planning and execution of
the deployment process was easy – it took the researchers approximately 24 man-hours to
deploy the network.

The network topology was determined by two essential constraints: placement of nodes
in an area of viticulture interest and the support for multi-hop communication. The net-
work was reliably established and functional for the period from the onset of grape maturity
through the second major Arctic outflow (i.e., cold front) in the region. The data was used
to investigate several aspects:

• the existence of covariance between the temperature data collected by the network with
known agriculturally significant data;
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• growing degree day differences; and
• potential frost damage.

The mean data enabled the observation of the relative differences in the accumulation
of heat units during that period. According to the authors’ report, the mean ranged from
7.95 to 11.94 ◦ C. Moreover, the cooler areas accumulated two-thirds of the heat units of the
warmest areas. By overlaying the temperature data onto a topological map, it was possible to
observe that while the temperature covaried to some degree with elevation and aspect, these
did not predict temperature value very well. An interesting conclusion was the extent of
variation in this vineyard – there was a measured difference of over 35% of heat summation
units (HSUs) in as little as 100 meters.

2.5.1.2 Lofar Agro

Baggio (2005) reports the deployment of a wireless sensor network at Lofar Agro,
The Netherlands. The network was tasked to monitor phytophthora, a fungal disease,
in a potato field. Whereas many factors contribute to phytophthora, climatological
conditions are supposed to be the main causes. Thus, by observing the humidity and
temperature conditions in the field as well as the wetness of the potato leaves, the
researchers attempted to determine the potential risk of the disease and the requirements for
fungicide.

With this goal in mind, a potato field was instrumented with a wireless sensor network.
The network consisted of 150 wireless sensor nodes, each of which integrates temperature
and humidity sensors. Because the radio range of these nodes dramatically reduced when
the potato crop was flowering, an additional 30 nodes were deployed as relaying nodes to
ensure the network’s connectivity. These relaying nodes were installed at a height of 75 cm
to enhance communication, while the sensing nodes were installed at a height of 20, 40, and
60 cm.

Furthermore, the field was equipped with a weather station to measure luminosity, air
pressure, precipitation, and wind strength and direction. Since the humidity of the soil was
considered to be the major factor in the development of the micro climate, a large number
of soil humidity sensors were used.

The nodes sampled surrounding temperature and humidity at a rate of 1 sample per minute
and stored the results temporarily. Afterwards, the data was communicated to a remote base
station every 10 min. To efficiently utilize energy, delta encoding (in which 10 samples were
encoded in a single packet) and periodic sleeping (with a 7% duty cycle) techniques were
used.

The sampled data were logged to a server through a gateway and a backbone network.
The server logged the data, filtered out erroneous readings, and handed the accumulated data
to the phytophthora decision support system (DSS) server. Finally, the DSS combined the
field data with a detailed weather forecast to determine the treatment policy.

2.6 Active Volcano

Monitoring active volcanoes is another application domain for wireless sensor networks
(WSNs).
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Volcanoes occur when broken slabs of the Earth’s outermost shell, known as lithosphere,
float on the hotter and softer layer in the Earth’s mantle. This phenomenon causes occa-
sional collision between the lithosphere plates and is attributed to be the cause of most
volcanoes.

In most cases, the Earth’s volcanoes are hidden from view, occurring on the ocean floor
along spreading ridges. Scientists attempt to capture and study the nature of active volcanoes
by employing seismic and acoustic sensors and by collecting seismic and infrasonic signals.
At present, typical active volcanoes are monitored by expensive devices that are difficult
to move or require an external supply voltage. The deployment and maintenance of these
devices require vehicle or helicopter assistance. Data storage is also a concern since, in
typical scenarios, stations should log data to a Compact Flash card or a hard drive, which
must be retrieved on a periodic basis.

WSNs can be very useful for active volcano monitoring. First, a large number of small,
cheap, and self-organizing nodes can be deployed to cover a vast field. In contrast to the
expensive and bulky equipments presently used, the deployment of WSNs is fast and eco-
nomical. Second, through a high density and wide coverage, it is possible to achieve high
spatial diversity. Third, the networks can operate without requiring stringent maintenance
routines.

2.6.1 Prototypes

Werner-Allen et al. (2006) at Harvard University proposed (the use of WSNs) and deployed
two prototype networks on two sites – namely, on Volcán Tungurahua in central Ecuador and
Volcán Reventador in northern Ecuador. The first deployment (2004) in central Ecuador con-
sisted of three wireless sensor nodes that integrated microphones. The second deployment
(2005) consisted of a larger network, with 16 sensor nodes that integrated seismoacoustic
sensors. The network had a linear topology and extended over a length of 3 km.

An important task in active volcano monitoring is to capture discrete events, such as
eruptions, earthquakes, or tremor activities. Typically, these events are transient, lasting less
than 60 s and occurring several times a day. Consequently, the nodes were tasked to gather
data pertaining to these events and to collaborate with each other to support a multi-hop
communication link.

The researchers employed the raw data to investigate volcanic activities. As a result, they
were able to capture 230 volcanic events just over a period of three weeks. Interestingly, the
prototype deployment was also used to investigate the performance of large-scale sensor
networks for collecting high-resolution volcanic data. The researchers observed that the
study of active volcanoes necessitates high data rates and data fidelity; and sparse arrays
with high spatial separation between nodes.

It was reported that a single missed or corrupted sample could invalidate an entire record
and small differences in sampling rates between two nodes could frustrate analysis. This
implies that samples must be accurately time stamped to allow comparisons between corre-
lated measurements.

The sensor architecture of the nodes deployed consisted of an 8-dBi 2.4-GHz external
omnidirectional antenna, a seismometer, a microphone, and a custom hardware interface
board. Fourteen of the 16 nodes were fitted with Geospace Industrial GS-11 geophones
and single-axis seismometers with a corner frequency of 4.5 Hz, oriented vertically. The
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remaining two nodes integrated 3D Geospace Industries GS-1 seismometers with corner
frequencies of 1 Hz, each axis producing a separate set of data.

The node’s hardware consisted of a Texas Instruments MSP430 microcontroller, 48 kbytes
of program memory, 10 kbytes of static RAM, 1 Mbyte of external flash memory, and a
2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. TinyOS was used as an operating environ-
ment. The flash memory was used for buffering raw data. The seismoacoustic sensors were
interfaced with the node through an external board that provided up to four Texas Instru-
ments AD7710 analog-to-digital converters (ADCs) to achieve a high resolution (24 bits
per channel) data. Even though the microcontroller provided 16 bits on-board ADCs, they
were considered to be inadequate for two main reasons. First, a resolution of at least 20 bits
was required, whereas the on-board ADCs provided only 16 bits of resolution. Second, the
seismoacoustic signals required a filter whose center frequency should be 50 Hz. This type
of filter could not be realized with analog elements, but could be approximated digitally. The
process, however, required oversampling. Thus, the AD7710 sampled at more than 30 kHz
and provided a programmable output word rate of 100 Hz. Consequently, the high sample
rate and computation that digital filtering required were delegated to a specialized device.

The deployment enables the researchers to clearly distinguish the tasks that can be carried
out by WSNs from those that can be carried out by conventional techniques. For instance,
due to good spatial distribution, WSNs enable large inter-node separations to obtain widely
separated views of seismic and infrasonic signals as they propagate. Moreover, they are suit-
able for capturing triggered events. On the other hand, WSNs are inadequate for capturing
complete waveforms for long duration.

2.7 Underground Mining

Finally, another application domain for which wireless sensor networks have been proposed
is underground mining.

Underground mining is one of the most dangerous working environments in the world.
Perhaps the incident of 3 August 2007 at the Crandall Canyon mine, Utah, USA, is a good
example of the danger associated with underground mining. It also highlights some of the
contributions of wireless sensor networks to facilitate safe working conditions and rescue
operations.

In this fateful incident, six miners were trapped inside the coal mine. Though their precise
location was not known, experts estimated that the men were trapped 457 m below ground,
5.5 km away from the mine entrance. There were different opinions about the exact cause
of the accident. The owners of the mine claimed that a natural earthquake was the cause.
Seismologists at the University of Utah observed that seismic waves of 3.9 magnitude were
recorded on the same day in the area of the mine, leading scientists to suspect that mine
operations were the cause of the seismic spikes.1

Following the accident, a costly and irksome rescue attempt was undertaken. This
included the drilling of 6.4 cm and 26 cm holes into the mine cavity through which
an omnidirectional microphone and a video camera were lowered, and an air sample
was taken. The air sample indicated the presence of sufficient oxygen (20%), a small

1 It has been claimed that workers were using a risky technique known as “retreat mining”, with which the last standing
pillars of coal were deliberately pulled down and the roof was allowed to fall in after an area was exhaustively mined.
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concentration of carbon dioxide, and no trace of methane. The microphone detected no
sound and the video camera revealed some equipment, but not the six missing miners.

This evidence caused a mixed anticipation. If the miners were alive, the amount of oxygen
was sufficient to sustain life for some additional days. Moreover, the absence of methane
gave hope that there would be no immediate danger of explosion as a result of the drilling
of holes. However, the absence of carbon dioxide and the evidence from the camera and the
microphone undermined the expectation of finding the missing persons alive. More than six
labor-intensive days were required to collect the above evidence.

Unfortunately, despite the efforts, the rescue mission had to be suspended because an
additional seismic shift in the mountain collapsed another part of the mine, resulting in a
horizontal coal explosion onto the rescuers. The downward motion of the seismic waves
indicated a further settling and collapse within the coal mine. This fact strengthened the
seismologists’ proposition that man-made causes produced the first incident. Three rescuers
were killed and several were injured.

2.7.1 Sources of Accidents

Seismic shifts are not the only danger in underground mining. Explosions sparked by
methane gas and coal-dust can cause significant damage. The following are some of the
sources responsible for methane production:

1. A large portion of methane is created during a coalification process. [This is a process
by which plant biomass is converted by biological and geological forces into coal. The
methane is then stored in coal seams and the surrounding strata, most likely to be released
during coal mining.]

2. Inadequate ventilation.
3. Methane from a fallen coal.
4. Methane from the mining faces.
5. Methane from the walls and ceilings of coal and rock roadways.
6. Methane from the gob of a coal mine.

Besides being the cause of mining explosions, methane emission from underground min-
ing is a serious ecological threat. For example, the EPA2 expects methane emissions from
US coal mines to reach 28.0 MMTCE (4.9 Tg) by 2010, excluding possible Climate Change
Action Plan (CCAP) reductions. This is because underground coal production – mined at
increasingly greater depths – is projected to grow faster than surface production. At present,
methane emission from underground (coal) mines accounts for around 10% of the total US
anthropogenic methane emissions.

Coal dust is produced at every step of the mining process and accumulates through the
movement of air and the transportation of coal: on the floors, walls, and ceilings of the
mine, all the way from the mine entrance to the deepest shafts. Methane gas explosions
create carbon monoxide when the density of the gas is high, but if there is not much
gas, it is dispersed in the air. When a coal-dust explosion occurs, the coal dust does not
burn completely, since the dust is a solid substance. The explosion forms a high-density

2 Source: http://www.epa.gov/methane/sources.html
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coal-dust cloud which prevents adequate air circulation. This contributes to the production
of carbon monoxide. Even if a coal-dust explosion does not spread throughout the length
and breadth of the mine, the resulting carbon monoxide gas does. In this way, all the
workers can be exposed to poisonous gas.

2.7.2 The Sensing Task

Several sensing tasks can be defined for wireless sensor networks. First, they can be
deployed to locate individuals under normal or abnormal (such as during an entrapment)
situations. Second, they can be used to locate collapse holes. Third, they can be used to
measure and forecast seismic shifts due to internal (mining operations) as well as external
(earthquake) causes. Fourth, they can measure the concentration of gases, including
methane, oxygen, and carbon dioxide.

As of November 2008, the US Mine Safety and Health Administration (MSHA) esti-
mates the methane emissions from ventilation systems on a quarterly basis. Based on these
measurements, MSHA estimates the average daily methane emissions for each underground
mine. With MSHA’s admission, there is an apparent measurement and reporting error asso-
ciated with this method, as the average of the four quarterly measurements cannot be rep-
resentative of the true average at a given mine. The average emissions at a particular mine
may be over- or underestimated.3

Having said this, there are formidable challenges to network deployment in underground
mining, namely, the extreme hostile environment for radio communication. First, because of
the turns and twists of underground tunnels, it is impossible to maintain a line-of-sight com-
munication link, and signals arrive at their destination after being highly reflected, refracted,
and scattered. Second, because of the high percentage of relative humidity, signal absorption
and attenuation are extremely high.

Consequently, even though there are some reports of prototype deployments (see, for
example, Li and Liu 2009 and Chehri et al. 2009), the formidable communication challenges
undermine the results.

Exercises

2.1 Most applications in wireless sensor networks extract time and frequency domain fea-
tures to detect interesting events. Define the following features:

(a) Autocorrelation function
(b) Correlation coefficients
(c) Cross-correlation function
(d) Autoregression function
(e) Coherence

2.2 Explain the difference between time domain and frequency domain features.

2.3 A 2D accelerometer sensor measures the movement of a structure to an ambient exci-
tation. The normalized raw data that is collected for 1 second from the x- and y-axes

3 Source: http://www.msha.gov/. Last visited November 20, 2009
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are given below. In each case, the measurement is one-dimensional and should be read
from left to right and top to bottom.

x =




0.13 0.13 0.13 0.11 0.09 0.08 0.06 0.05 0.04 0.02
−0.01 −0.02 −0.01 −0.02 −0.04 −0.06 −0.11 −0.12 −0.13 −0, 10

0.12 0.00 −0.06 −0.03 0.00 0.02 0.02 0.03 0.03 0.03
0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.02 0.02
0.03 0.02 0.02 0.03 0.03 0.02 0.01 0.05 0.05 0.03
0.08 −0.04 0.02 −0.03 −0.07 0.06 0.18 0.14 0.08 0.04
0.03 0.03 0.02 0.00 −0.03 −0.07 −0.13 −0.21 −0.31 −0.31

−0.42 −0.37 −0.28 0.31 −0.01 −0.28 0.12 −0.12 0.04 −0.01
0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.02
0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.12




y =




−0.01 −0.02 −0.02 −0.02 −0.04 −0.04 −0.03 −0.02 −0.02 −0.02
−0.03 −0.03 0.01 0.02 0.02 0.03 0.02 0.03 0.05 0.13
−0.01 0.04 −0.02 −0.06 0.02 −0.01 0.01 0.00 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 −0.02 −0.07
0.03 −0.09 −0.05 −0.06 −0.14 −0.18 −0.03 0.05 0.01 −0.05

−0.04 −0.02 −0.02 −0.03 −0.04 −0.05 −0.07 −0.04 0.00 0.01
0.02 0.11 0.00 −0.07 0.40 −0.06 −0.09 0.17 −0.03 0.04
0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.01
0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.00 −0.02




(a) Calculate the autocorrelation for both sequences.
(b) Calculate the correlation coefficients of the sequences.
(c) Calculate the Fast Fourier Transform (FFT) of both sequences.

2.4 To improve the expressiveness of frequency domain features, it is preferred to compute
the Short Time Fourier Transform (STFT) of a time series sequence instead of the FFT
of the entire frame.

(a) Divide the 1 s frame into 10 subframes such that there is an overlap of 50%
between each subframe, except the first and last.

(b) Calculate the STFT for each window.
(c) Now reduce the overlap to 25%, compute the STFT, and compare the results with

the results obtained from the 50% overlap subframes.

2.5 How can oversampling of sensor data overcome the effect of noise?

2.6 One of the time domain features used to recognize interesting events is the zero-
crossing rate, which can be expressed as:

ZCR(s) = 1

T

T −1∑
i=0

F(s(i) · s(i − 1) < 0)

where s is a discrete, time-series sequence; and s(i) and s(i − 1) are two consecutive
samples. F = 1 if the evaluation is true, F = 0 otherwise.
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(a) Compute the zero-crossing rates for the two time series measurements given
above.

(b) What conclusion can be drawn from the zero-crossing rate?

2.7 Another interesting feature is the spectral centroid, a frequency domain feature which
represents the balancing point of the spectral power distribution:

Ct =
∑N

n=1 Mt [n] · n∑N
n=1 Mt [n]

where Mt [n] is the magnitude value of the spectrum at position (frequency) n.
Calculate the spectral centroid for the two time series sequences given above.

2.8 In structural health monitoring, inspection techniques are classified into global and
local. Explain the difference between these techniques. For which of these techniques
are wireless sensor networks suitable?

2.9 Explain how the property of a pipeline changes at a location where gas and oil leakages
occur.

2.10 Explain how an acoustic sensor can be used to monitor the content of a pipeline.

2.11 Explain the principle of a piezoelectric sensor to measure movement?

2.12 How can a magnetic sensor be employed to measure the movement of vehicles?

2.13 What is an electromyograph and for what application can it be used?

2.14 Describe the three phases of Parkinson’s Disease.

2.15 What is a heat unit?
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3
Node Architecture
The wireless sensor nodes are the central element in a wireless sensor network (WSN).
It is through a node that sensing, processing, and communication take place. It stores and
executes the communication protocols and the data-processing algorithms. The quality, size,
and frequency of the sensed data that can be extracted from the network are influenced by
the physical resources available to the node. Therefore, the design and implementation of a
wireless sensor node is a critical step.

The node consists of sensing, processing, communication, and power subsystems. The
designer has a plethora of options in deciding how to build and put together these sub-
systems into a unified, programmable node. The processor subsystem is the central ele-
ment of the node and the choice of a processor determines the tradeoff between flexibility
and efficiency – in terms of both energy and performance. There are several processors as
options: microcontrollers, digital signal processors, application-specific integrated circuits,
and field programmable gate arrays.

There are a number of ways to connect the sensing subsystem with the processer. Connect-
ing two or more analog sensors with a multichannel ADC system that integrates multiple
high-speed ADCs into a single IC design is one way. However, these types of ADCs are
known to produce crosstalk and to increase uncorrelated noise, reducing the signal-to-noise
ratio (SNR) on individual channels. Moreover, the coupled signals can create spurs that
are similar to harmonic terms, reducing spurious free dynamic range (SFDR) and total har-
monic distortion (THD). For low-frequency signals, however, the effect is not significant.
Some sensors have their own built-in ADC which can be directly connected with the pro-
cessor through a standard chip-to-chip protocol. Most microcontrollers have one or more
internal ADCs to interface analog devices.

Likewise, the communication subsystem can be interfaced with the processor subsystem
in different ways. One way is to use the SPI serial bus. Some transceivers have their own pro-
cessor board to perform low-level signal processing pertaining to the physical and the data
link layer, thereby relieving the main processor from these concerns. The communication
subsystem is the most energy intensive subsystem and its power consumption should be reg-
ulated. Almost all commercially available transceivers provide a controlling functionality
to switch the transceiver between various active operation levels; idle and sleep state.

The power subsystem provides DC power to all the other subsystems to bias their active
components such as crystal oscillators, amplifiers, registers, and counters. Moreover, it
provides DC–DC converters so that each subsystem can obtain the right amount of bias
voltage.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd



48 Fundamentals of Wireless Sensor Networks
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Figure 3.1 Architecture of a wireless sensor node.

Figure 3.1 shows the different subsystems of a wireless sensor node and the different
integration techniques. The power subsystem and its relationship with the other subsystems
are not shown here.

3.1 The Sensing Subsystem

The sensing subsystem integrates one or more physical sensors and provides one or more
analog-to-digital converters as well as the multiplexing mechanism to share them. The sen-
sors interface the virtual world with the physical world. Sensing physical phenomena is
not something new. The Chinese astronomer, Zhang Heng, invented the Houfeng Didong
Yi – a seismoscope – in the year 132 AD to measure the magnitude of seasonal winds and the
movement of the Earth. Likewise, magnetometers have been in use for more than 2000 years.

But the advent of microelectromechanical systems (MEMS) has made sensing a ubiqui-
tous process. Nowadays, there are a plethora of sensors that measure and quantify physical
attributes at a cheap price. A physical sensor contains a transducer, a device that converts
one form of energy into another form of energy, typically into an electrical energy (volt-
age). The output of this transducer is an analog signal having a continuous magnitude as a
function of time. Therefore, an analog-to-digital converter is required to interface a sensing
subsystem with a digital processor.

Table 3.1 provides a detailed summary of the types of sensors that have been employed
in WSNs. It also provides a concise summary of the events they capture and the aspects of
these events. The list is by no means exhaustive, but it highlights the scope and usefulness
of WSNs, and the wealth of sensors that can be employed.

3.1.1 Analog-to-Digital Converter

The analog-to-digital converter (ADC) converts the output of a sensor – which is a contin-
uous, analog signal – into a digital signal. This process requires two steps:

1. The analog signal has to be quantized (i.e., converted from a continuous valued signal
into a discrete valued signal; discrete both in time and magnitude). The most important
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decision at this stage is to determine the number of allowable discrete values. This deci-
sion in turn is influenced by two factors: (a) the frequency and magnitude of the signal;
and (b) the available processing and storage resources.

2. The sampling frequency. In communication engineering and digital signal processing,
this frequency is decided by the Nyquist rate.1 In wireless sensor networks, however, the
Nyquist rate does not suffice. Oversampling is required because of noise.
The prevailing consequence of the first step is the quantization error while the second is
aliasing.

An ADC is specified, among other things, in terms of its resolution, which is an expression
of the number of bits that can be used to encode the digital output. For example, an ADC
with a resolution of 24 bits can represent 16,777,216 distinct discrete values. The resolution
of an ADC can also be expressed in volts – since the output of most MEMS sensors is analog
voltage. The voltage resolution of an ADC is equal to its overall voltage measurement range
divided by the number of discrete intervals. In other words:

Q = Epp

2M
(3.1)

where Q is the resolution in volts per step (volts per output code); Epp is the peak-to-peak
analog voltage; and M is the ADC’s resolution in bits.

Here Q suggests that the interval between the discrete steps (values) is uniform. But in
reality this is not so. In most ADCs, the least significant bit changes as a function of 0.5
times Q and the most significant bit changes as a function 1.5 times Q. Those bits in the
middle have a resolution of Q voltage.

In selecting an ADC, knowledge of the process or activity being monitored is important.
Consider an industrial process whose thermal property ranges from −20 to +80◦ C. The
choice of the physical sensor as well as the ADC depends on the type of thermal change that
is of interest. If, for example, a change of 0.5 ◦C is required, an ADC with a resolution of
8 bits is sufficient. If, on the other hand, a change of 0.0625 ◦C is required, then the ADC
should have a resolution of 11 bits.

3.2 The Processor Subsystem

The processor subsystem brings together all the other subsystems and some additional
peripherals. Its main purpose is to process (execute) instructions pertaining to sensing,
communication, and self-organization. It consists of a processor chip, a nonvolatile memory
(usually an internal flash memory) for storing program instructions, an active memory for
temporarily storing the sensed data, and an internal clock, among other things.

Whereas a wide range of off-the-shelf processors are available for building a wireless
sensor node, one has to make a careful choice, as it affects the cost, flexibility, performance,
and energy consumption of the node. If the sensing task is well defined from the outset and
does not change over time, a designer may choose either a field programmable gate array
or a digital signal processor. These processors are very efficient in terms of their energy
consumption; and for most simple sensing tasks, they are quite adequate. However, as these

1 For a band-limited signal, the Nyquist rate sets a lower bound on the sampling frequency. Hence, the minimum
sampling rate should be twice the bandwidth of the signal.
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are not general-purpose processors, the design and implementation process can be complex
and costly.

In many practical cases, however, the sensing goal changes or a modification may be
required. Moreover, the software that runs on the wireless sensor node may require occa-
sional updates or remote debugging. Such tasks require a considerable amount of com-
putation and processing space at runtime. In which case, special-purpose, energy-efficient
processors are not suitable.

Most existing sensor nodes at present use microcontrollers. There are some justifications
besides those just mentioned. WSNs are emerging technologies; and the research community
is still active with research for developing energy-efficient communication protocols and
signal-processing algorithms. As this requires dynamic code installation and update, the
microcontroller is the best option.

3.2.1 Architectural Overview

A major concern in resource-constrained processors is the efficient execution of algorithms,
since this requires the transferring of information from and to memory. This includes pro-
gram instructions and the data to be processed or manipulated. For example, in WSNs, the
data stem from the physical sensors and the program instructions relate to communication,
self-organization, data compression, and aggregation algorithms.

The processor subsystem can be designed by employing one of the three basic computer
architectures: Von Neumann, Harvard, and Super-Harvard (SHARC). The Von Neumann
architecture provides a single memory space that is used by program instructions and data.
It provides a single bus to transfer data between the processor and the memory. This archi-
tecture has a relatively slow processing speed because each data transfer requires a separate
clock. Figure 3.2 illustrates a simplified view of the Von Neumann architecture.

The Harvard architecture modifies the Von Neumann architecture by providing separate
memory spaces for storing program instructions and data. Each memory space is interfaced
with the processor with a separate data bus. In this way, program instructions and data can
be accessed at the same time. Additional to this feature, the architecture supports a special
single instruction, multiple data (SIMD) operation, a special arithmetic operation and a bit
reverse addressing. It can easily support multitasking operating systems, but it has no virtual
memory or memory protection. Figure 3.3 displays the Harvard architecture.

Processor Memory

Address Bus

Data Bus

Figure 3.2 The Von Neumann architecture.
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Data
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Program
Memory

Figure 3.3 A simplified view of the Harvard architecture.

The next generation of processor architecture is the Super-Harvard architecture, best
known as SHARC. It is an extension of the Harvard system; it adds two essential compo-
nents to its predecessor and provides alternatives for accessing I/O devices from within the
processor subsystem. One of the components is an internal instruction cache that enhances
the performance of the processor unit. It can be used to temporarily store frequently used
instructions, thereby reducing the need for repeatedly fetching them from the program mem-
ory. Moreover, the architecture enables an underutilized program memory to be used as a
temporary relocation place for data.

In SHARC, external I/O devices can directly be connected with the memory unit through
an I/O controller. The configuration enables a direct data streaming from an external hard-
ware into the data memory, without the need to involve the microcontroller. This is known
as Direct Memory Access (DMA).

DMA is desirable for two reasons: (1) the costly CPU cycles can be invested in a different
task; and (2) it makes program memory bus and data memory bus accessible from outside
the chip, providing an additional interface to off-chip memory and peripherals. Figure 3.4
illustrates an overview of the SHARC architecture.

Program
Memory

Processor

Instruction Cache

Data
Memory

I/O
Controller

Address Bus

Data Bus

Figure 3.4 An overview of the Super-Harvard architecture.
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3.2.2 Microcontroller

A microcontroller is a computer on a single integrated circuit, consisting of a compara-
tively simple central processing unit and additional components such as high-speed buses,
a memory unit, a watchdog timer, and an external clock. Microcontrollers are integrated
in many products and embedded devices. Today such simple systems as elevators, venti-
lators, office machines, household appliances, power tools, and toys ubiquitously employ
microcontrollers.

3.2.2.1 Structure of a Microcontroller

Typically, a microcontroller integrates the following components:

• a CPU core that ranges from small and simple 4-bit to complex 32- or 64-bit processors;
• a volatile memory (RAM) for data storage;
• a ROM, EPROM, EEPROM, or flash memory for storing relatively simple instruction

program code;
• parallel I/O interfaces;
• discrete input and output bits, allowing control or detection of the logic state of an indi-

vidual package pin;
• a clock generator – which is often an oscillator with a quartz timing crystal;
• one or more internal analog-to-digital converters; and
• serial communications interfaces such as Serial Peripheral Interface and Controller Area

Network for interconnecting system peripherals such as event counters, a timer, and a
watchdog.

3.2.2.2 Advantages and Disadvantages

A microcontroller can be chosen over other types of small-scale processors because of the
programming flexibility it offers. Its compact construction, small size, low power consump-
tion, and low cost make it suitable for building computationally less intensive, standalone
applications. Most of the commercially available microcontrollers can be programmed with
assembly language and the C programming language.

The use of higher-level programming languages increases the programming speed and
eases debugging. There are development environments that offer an abstraction of all the
functionalities of a microcontroller. This enables application developers to program micro-
controllers without the need to have a low-level knowledge of the hardware.

However, microcontrollers are not as powerful and as efficient as some custom-made
processors such as digital signal processors (DSPs) and field programmable gate arrays
(FPGAs). Moreover, for applications which demand simple sensing tasks but large-scale
deployments (such as in precision agriculture and active volcano monitoring), one may pre-
fer to use architecturally simple but energy- and cost-efficient processors such as application-
specific integrated circuits.

3.2.3 Digital Signal Processor

A comprehensive understanding of DSPs requires a knowledge of digital signal process-
ing. Broadly speaking, digital signal processing deals with processing discrete signals with
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digital filters. These filters minimize the effect of noise on a signal or selectively enhance or
modify the spectral characteristics of a signal.

While analog signal processing requires complex hardware components, digital signal
processing, on the contrary, requires mainly simple adders, multipliers, and delay compo-
nents. A DSP is a specialized microprocessor designed to carry out complex mathematical
operations at an extremely high efficiency, processing hundreds of millions of samples
every second and providing real-time performance. Most commercially available DSPs are
designed with the Harvard architecture.

3.2.3.1 Advantages and Disadvantages

Powerful and complex digital filters can be realized with commonplace DSPs. These filters
perform remarkably well in signal detection and estimation, both of which require significant
numerical computations. This is particularly interesting for multimedia WSN applications
in which in-network audio and video signal processing may be required to compress or
aggregate large size data. DSPs are also useful for applications that require the deployment
of nodes in harsh physical settings where signal transmission may suffer corruption due to
noise and interference.

Having said this, a WSN carries out other tasks (tasks pertaining to network management,
self-organization, multi-hop communication, topology control, etc.) in addition to numeri-
cal computations. These tasks require protocols which are not necessarily characterized as
numerical operations. Furthermore, the protocols may require periodical upgrade or modi-
fications, which means flexibility in network reprogramming is vital.

3.2.4 Application-Specific Integrated Circuit

An application-specific integrated circuit (ASIC) is an integrated circuit (IC) that can be
customized for a specific application. There are two types of design approaches: fully cus-
tomized and half-customized. To understand the difference between these two, it is useful
to understand the basic building blocks of an ASIC.

The ASIC architecture consists of cells and metal interconnects. A cell is an abstraction
of a logical functionality that is physically implemented by active components (transistors).
When several of these cells are interconnected by the metal interconnects, they make up
an application-specific integrated circuit. The manufacturing of cells has reached such a
maturity that there is a standard library of cells consisting of a collection of low-level logic
functions, including basic gates (AND, OR, and INVERT), multiplexers, adders, and flip-
flops. As the standard cells have identical size, they can be arranged in rows to ease the
process of automated digital layout. Using predefined cells from a cell library makes the
ASIC design process much easier.

In a fully customized IC, some (possibly all) logic cells, circuits, or layouts are custom
made. The aim is to optimize cell performance (for example, execution speed) and to include
features that are not defined or supported by the standard cell library. Fully customized
ASICs are expensive and their design time is lengthy. On the other hand, a half-customized
ASIC is built with logic cells that are available in the standard library.

In both cases, the final logic structure is configured by the end user. This reduces time
to market and financial risks by eliminating the need to cycle through an integrated circuit
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production. An ASIC is a cost-efficient solution, since the interconnections as well as the
logic structure can be specified according to the user’s needs. This also offers great flexibility
and reusability.

3.2.4.1 Advantages and Disadvantages of ASICs

Unlike a microcontroller, an ASIC can easily be designed and optimized to meet a specific
customer demand. Even with a half-customized design, it is possible to design multiple
microprocessor cores and embedded software in a single cell. Moreover, even though
a fully customized ASIC is costly, with a hybrid approach (full custom and standard
cell design), developers can achieve control over size and execution speed. Thus, it is
possible to design with optimum performance and cost. Typical disadvantages include
difficulties in designing, the lack of reconfigurability, and the usually high development
costs.

3.2.4.2 Application of ASIC

Perhaps the most suitable role of ASICs in WSNs is not to replace microcontrollers or
DSPs but to complement them. As briefly mentioned in the introduction section of this
chapter, some of the subsystems may integrate customized processors to handle rudimentary
and low-level tasks and to decouple these tasks from the main processing subsystem. For
example, some communication subsystems are shipped with an embedded processor core
to enhance the quality of received signals, cancel noise, and perform cyclic redundancy
checks. These types of special-purpose processors can be efficiently realized by making use
of ASICs.

3.2.5 Field Programmable Gate Array

The distinction between ASICs and FPGAs is not always clear. In fact, it is not unusual
for companies that manufacture programmable ASICs to call their products FPGAs. While
the basic anatomy of both architectures is essentially the same, FPGAs are more complex
in design and more flexible to program. As the emphasis is on the (re)programming and
reconfigurability aspect, typical features of a FPGA are summarized as follows:

• in a FPGA, none of the mask layers is customized;
• a FPGA includes some programmable logic components, or logic blocks – these are: a

4-input lookup table (LUT), a flip-flop, and an output block;
• there is a well-defined and formal method for programming the basic logic cells and the

interconnect;
• there is a matrix of programmable interconnects surrounding the basic logic cells produc-

ing a configuration instance; and
• there are programmable I/O cells that surround the core.

FPGAs are programmed electrically, by modifying a packaged part. This process may
take from a few milliseconds to a few minutes, depending on the programming technology
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and the size of the part. The programming is done with the support of circuit diagrams and
hardware description languages, such as VHDL and Verilog.

3.2.5.1 Advantages and Disadvantages

FPGAs have a higher bandwidth compared to DSPs; they are more flexible in their applica-
tion and can support parallel processing. While DSPs and microcontrollers can incorporate
an internal ADC, a FPGA does not. Similar to a DSP, a FPGA has the capability to work with
floating point representation. Additionally, a FPGA exposes its processing speed to appli-
cation developers, thereby giving them a greater flexibility of control. On the other hand,
FPGAs are complex; and the design and realization process is costly.

3.2.6 Comparison

Working with a microcontroller is preferred if the design goal is to achieve flexibility. Work-
ing with all the others is preferred if power consumption and computational efficiency is
desired. Whereas microcontrollers have limited memory, steady progress is being made to
increase memory size. Recently, more and more microcontrollers are becoming available on
the market with attractive features; for example, the TI MSP430F2618 and MSP430F5437
offer an active memory (RAM) of 8 kilobytes (KB) and 16 KB, as well as 116 KB and
256 KB flash memory respectively. Both consume less power and perform better than ear-
lier models. The Atmel ATMega1281 and its next version ATMega2561 also have good
architecture and better memory and performance. Both of them have 8 KB active mem-
ory and 128 KB and 256 KB flash memory, respectively. The Jennic architecture – JN5121
and JN5139 – integrates a microprocessor and a radio subsystem into a single package to
enhance processing speed. It has 96 KB and 192 KB RAM, respectively; and 128 KB flash
memory.

In comparison, DSPs are expensive, large in size, and less flexible. For example the PIC
16F873 and Sx28AC microcontrollers have 5 million instructions per second (MIPs) and
75 MIPS processing power; 24 and 20 general purpose I/O; 4 KB and 2 KB RAM, respec-
tively; and 28-pin each. The devices cost around $5.81 and $4.05, respectively. Compared to
that, the DSP56364 has 100 MIPS processing power, 16 general-purpose I/O, 1 KB RAM,
100 or 112-pin and costs $11.00. Moreover, DSPs are best for signal processing, with specific
algorithms.

FPGAs are faster than both microcontrollers and digital signal processors and support
parallel computing. In wireless sensor networks, since sensing, processing, and communi-
cation should take place at the same time, FPGSs can be useful. However, their production
cost and the difficulty with programming make them less desirable.

ASICs have higher bandwidths; they are the smallest in size, perform much better, and
consume less power than any of the other processing types. Their main disadvantage is the
high cost of production owing to the complex design process, usually with lower produc-
tion quantity and a reduced reusability. Performance can be improved with the application
of multicore systems where several applications could run in parallel. This enables the inte-
gration of ASICs into the other subsystems, so that when the main processor subsystem is
idle and therefore should be turned off, elementary and rudimentary tasks can be carried out
by the more efficient ASICs.
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3.3 Communication Interfaces

As the selection of the right type of processor is vital to the performance as well as the energy
consumption of a wireless sensor node, the way the subcomponents are interconnected with
the processor subsystem is also vital.

Fast and energy-efficient data transfer between the subsystems of a wireless sensor node
is critical to the overall efficiency of the network it sets up. However, the practical size of
the node puts a restriction on system buses. Whereas communication via a parallel bus is
faster than a serial bus, a parallel bus needs more space. Moreover, it requires a dedicated
line for every bit that should be transmitted simultaneously while the serial bus requires a
single data line only. Owing to the size of the node, parallel buses are never supported in
node design.

The choice, therefore, is often between serial interfaces such as the serial peripheral inter-
face (SPI), the general purpose input/output (GPIO), the secure data input/output (SDIO),
the inter-integrated circuit (I2C), and the Universal Serial Bus (USB). Among these, the
most commonly used buses are the SPI and the I2C.

3.3.1 Serial Peripheral Interface

The Serial Peripheral Interface (SPI – pronounced as “spy”) is a high-speed, full-duplex
synchronous serial bus. It was developed at Motorola in the mid-1980s. It does not have an
official standard as such, but manufacturers building devices that use the SPI should conform
to the implementation specification of other manufacturers in order to support correct com-
munication (for example, devices should agree on whether to transmit the most significant
bit (MSB) or the least significant bit (LSB) first).

The SPI bus defines four pins: (Master-Out/Slave-In) MOSI, (Master-In/Slave-Out)
MISO, (Serial Clock) SCLK, and (Chip Select) CS. Some manufacturers refer to MOSI as
SIMO and to MISO as SOMI, but the semantics is the same. Likewise, CS is sometimes
referred to as (Slave Select) SS. As the name suggests, MOSI is used to transmit data
from the master to the slave when a device is configured as a master. In case it is
configured as a slave, this port is used to receive data from the corresponding master.
The semantics are reversed for the MISO port. SCLK is used by the master to send the
clock signal that is needed to synchronize transmission; and by the slave to read this
signal. Every communication is initiated by the master. A master device signals a slave
with which it wants to communicate via the CS port. Since SPI is a single master bus, the
microcontroller is by default the master in a wireless sensor node. Thus, components cannot
communicate directly with each other but only via the microcontroller – for example, with
this configuration, an ADC cannot send a sampled data directly to a RAM. Figure 3.5
illustrates two types of configurations. In (a), a single master communicates with a single
slave device, while in (b), a master is connected with multiple slave devices.

Both master and slave devices hold shift registers. In most cases these are 8-bit registers,
but heterogeneous sizes are also allowed. Both registers are connected in a ring-forming
16-bit shift register. This is the common mode of connection. Assuming that the MSB is
transferred first, during a transmission cycle, the MSB that is sent by the master is inserted
to the slave’s LSB register while, in the same cycle, the slave’s MSB is shifted to the master’s
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Figure 3.5 Connecting devices with the SPI bus. (a) A single master connecting with a single slave.
(b) A single master connecting with multiple slaves.

LSB. After all bytes have been sent, the slave’s register contains the master’s word, while
the master holds the slave’s word.

Since master and slave form a commonly used shift register, every device in every trans-
mission must read and send data. For devices that do not provide feedback (for example,
LC displays do not offer status or bug messages) or do not require input data (some devices
may not accept any commands at all), this means adding pseudo bytes into the shift register.

SPI supports a synchronous communication protocol. Consequently, the master and the
slave must agree on the timing. To do so, the master sets the clock according to the slave’s
maximum clock speed – the baud generator of the master reads the slave’s clock and cal-
culates the master’s clock by dividing the read speed with an internally defined value.
Furthermore, master and slave should agree on two additional parameters, namely, clock
polarity (CPOL) and clock phase (CPHA). CPOL defines whether a clock is used in high-
or low-active mode. CPHA determines the times when the data in the registers are allowed to
change and when the written data can be read. There are four different combinations (shown
in Table 3.2) which are all incompatible with each other.

3.3.2 Inter-Integrated Circuit

The inter-integrated circuit (I2C) is a multi-master half-duplex synchronous serial bus (see
Figure 3.6). It was developed by Philips Semiconductors, which is also the owner of the
official standard. I2C uses only two bidirectional lines (unlike SPI, which uses four). The
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Table 3.2 Common SPI modes

SPI mode CPOL CPHA Description

0 0 0 SCLK is low-active.
Sampling is allowed on odd clock edges.
Data changes on even clock edges.

1 0 1 SCLK is low-active.
Sampling is allowed on even clock edges.
Data changes on odd clock edges.

2 1 0 SCLK is high-active.
Sampling is allowed on odd clock edges.
Data changes on even clock edges.

3 1 1 SCLK is high-active.
Sampling is allowed on even clock edges.
Data changes on odd clock edges.

Master

Slave Slave Slave

SCL

SDA

Figure 3.6 Connecting devices with the I2C serial bus.

aim of I2C is to minimize costs for connecting devices within a system by accommodating
lower transmission speeds. I2C defines two speed modes: a Fast-mode, with a bit rate of up
to 400 kbps and a High-speed-mode (referred to as Hs-mode) that supports a transmission
rate of up to 3.4 Mbps. The 100 kbps rate (Standard-mode) was defined in earlier versions.
Nevertheless, Fast-mode and Hs-mode components are downwards compatible to ensure
communication with older components.

As the standard does not specify a CS or SS port, every device type that uses I2C must
have a unique address that will be used to communicate with a device. In earlier versions, a
7-bit address was used, allowing 112 devices to be uniquely addressed (4 bits are reserved).
This address space turned out to be insufficient due to an increasing number of devices.
Currently I2C uses 10-bit addressing.

In the old protocol, a master device flags the start condition(s) and transmits the slave’s
7-bit address. Then the master expresses read or write interest. At this time, the slave sends
an acknowledgment (ACK). Afterwards, the data transmitter sends a 1-byte (8-bits) data,
which is then acknowledged by the receiver. If there is still data to be sent, the transmitter
keeps on sending and the receiver keeps on acknowledging in return. Finally, the master
raises the stop flag (stop condition) to signify the end of a communication.

In the new protocol, after the start condition (S), a leading 11110 introduces the 10-bit
addressing scheme. The last two address bits of the first byte concatenated with the eight
bits of the second byte form the whole 10-bit address. Devices that only use 7-bit addressing
simply ignore messages with the leading 11110.
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Figure 3.7 Communication protocols in the I2C serial bus.

Figure 3.7 shows the old and the new I2C protocol. In (a) the old protocol is displayed.
In (b) the new protocol is displayed with the first two bytes of a transfer and the 10-bit
address.

As already mentioned, I2C provides two lines; these are Serial Clock (SCL) and Serial
Data Analyzer (SDA). Hs-mode devices have additional ports called SDAH and SCLH.
Since each master generates its own clock signal, communicating devices must synchronize
their clock speeds. In case they do not, a slower slave device could wrongly detect its address
on the SDA line while a faster master device is sending data to a third device. Besides clock
synchronization, I2C requires arbitration between master devices wanting to send or receive
data at the same time. I2C does not explicitly define any fair arbitration algorithm. Rather
the master that holds the SDA line low for the longest time wins the medium. Additionally,
I2C enables a device to read data at a byte level for fast communication. This, however,
may raise the need for more time to store the received bytes, in which case the device can
hold the SCL low until it completes reading or sending the next byte. This type of clock
synchronization is called handshaking.

Table 3.3 gives a comparison between SPI and I2C.

3.3.3 Summary

Buses are essential highways to transfer data between the processor subsystem and the other
subsystems. Due to the concern for size, only serial buses can be used by a wireless sen-
sor node. These buses demand high clock speeds to gain the same throughput that can be
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Table 3.3 Comparison of SPI and I2C

SPI I2C

• Four lines enable full-duplex transmission.

• No addressing is required due to CS. This
reduces overhead and increases throughput.
However, one needs additional hardware
configurations to connect more than one slave.

• Allowing only one master avoids conflicts.

• Hardware requirement support increases with
an increasing number of connected devices
and therefore raises costs.

• The master’s clock is configured according to
the slave’s speed. This frees the slaves from
requiring clocking a device. However, speed
adaptation slows down the master.

• Speed depends on the maximum speed of the
slowest device.

• Heterogeneous register size allows flexibility
in the devices that are supported.

• Combined registers imply every transmission
should be read.

• The absence of an official standard leads to
application specific implementations.

• Two lines reduce space and simplify circuit
layout. Lowers costs.

• Addressing enables multimaster mode, which
in turn enables more than one device to
initiate communication.

• Multimaster mode is prone to conflicts when
two or more master devices communicate
simultaneously. Arbitration is required.

• Hardware requirement is independent of the
number of devices using the bus.

• Slower devices may stretch the clock thereby
increasing latency and keeping other devices
waiting for accessing the bus.

• Speed is limited to 3.4 MHz and all devices
need to support the highest speed that is used
in the system, otherwise a slower device may
wrongly detect its device address.

• Homogeneous register size reduces overhead,
since no additional control bits are required to
be transmitted.

• Devices that do not read or provide data are
not forced to provide potentially useless bytes.

• Official standard eases integration of devices
since developers can rely on a certain
implementation.

achieved with parallel buses. However, they can also be bottlenecks; this is particularly the
case with the Von Neumann architecture, since the same bus is used for data as well as
instructions. They also do not scale well with processor speed. For example I2C in its lat-
est version is limited to 3.4 MHz while the clock speed of one of the most commonly used
microcontroller family, the TI MSP430x1xx series, has a clock frequency of 8 MHz.

Delays due to contention for bus access become critical if some of the devices act unfairly
and keep the bus occupied. For example, I2C allows slave devices to stretch clock signals
if it is deemed appropriate to “packet” communication and give priority to components that
need to exchange time-critical data.

3.4 Prototypes

In this section, some example prototype node architectures are presented. The architectures
are not chosen because of their commercial success or energy efficiency, but because they
demonstrate the different node realization possibilities discussed in the preceding section.
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3.4.1 The IMote Node Architecture

The IMote sensor node architecture (Figure 3.8) is a multipurpose architecture that con-
sists of a power management subsystem, a processor subsystem, a sensing subsystem, a
communication subsystem, and an interfacing subsystem.

The sensing subsystem (Figure 3.9) provides an extensible platform to connect multiple
sensor boards. One realization of the sensor board contains a 12-bit, 4-channel ADC; a high-
resolution temperature/humidity sensor; a low-resolution digital temperature sensor; and a
light sensor. These devices are interfaced to the processing subsystem through the SPI and
I2C buses. As can be seen in the figure, the I2C bus is chosen to connect low data rate sources
whereas the SPI bus is used to interface high data rate sources.

The processing subsystem provides a main processor (microprocessor) and a digital signal
processor (DSP). The main processor has the ability to operate at a low-voltage (0.85 V)
and a low-frequency (13 MHz) mode, thus enabling low power operation. Likewise, the
frequency can be scaled to 104 MHz at the lowest voltage level and can be increased up to
416 MHz with Dynamic Voltage Scaling (DVS). Moreover, it has many low power modes,
including sleep and deep sleep modes.The coprocessor is intended to accelerate multimedia
operations, which are computation intensive.
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Figure 3.8 The architecture of an IMote sensor node.
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Figure 3.9 The sensing subsystem of the IMote architecture.

Similar to the sensor subsystem, the communication subsystem provides an extensible
interface to accommodate different types of radios. One realization is based on the Chip-
con (CC2420) transceiver, which implements the IEEE 802.15.4 radio specification. The
transceiver provides a transmission rate of 250 kbps over 16 channels in the 2.4-GHz band.

3.4.2 The XYZ Node Architecture

The XYZ architecture consists of four subsystems. Figure 3.10 shows the schematic dia-
gram of the node architecture. The processor subsystem is based on the ARM7TDMI core
microcontroller, which is capable of operating at a maximum frequency of 58 MHz. The
microcontroller can operate at two different modes, depending on the application require-
ment: at 32 bits and 16 bits. The processing subsystem provides an on-chip memory of 4 KB
boot ROM and a 32 KB RAM, which can be extended by up to 512 KB of flash memory.

The peripheral components that interface the processing subsystem with the remaining
subsystem include an embedded DMA controller, four 10-bit ADC inputs, serial ports
(RS232, SPI, I2C, SIO), and 42 multiplexed general-purpose I/O pins. Most of the
multiplexed GPIO pins are available on two 30-pin headers together with the DC voltage
provided by the power subsystem or directly by an on-board voltage regulator.

The communication subsystem is based on the Chipcon CC2420 radio, which is con-
nected to the processing subsystem through a SPI interface. The CC2420 is a 2.4 GHz IEEE
802.15.4 compliant single-chip RF transceiver. The processor subsystem controls the com-
munication subsystem by either turning it off or putting it in sleep mode. The communication
through the SPI interface enables the radio to wake up a sleeping processor when an RF
message has been successfully received.
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Figure 3.10 The XYZ node architecture (Lymberopoulos and Savvides 2005).

While in the architecture the mobility subsystem appears to be a separate subsystem, it
should be considered as a part of the sensor subsystem.

3.4.3 The Hogthrob Node Architecture

The Hogthrob node architecture (Bonnet et al. 2006) is designed for a specific application,
namely, to monitor the activities of sows in a large-scale pig production. The basic assump-
tion behind the main sensing task is that there is a direct correlation between the movement
of a sow and the onset of estrus. Therefore, a network that is established by nodes worn by
sows monitors movements to capture this vital state, so that appropriate care can be given
for pregnant sows. For example, in Denmark a law is already in place that requires pregnant
sows to move freely in a large pen. Apart from this, other vital conditions, such as illness
(by detecting cough or limping), are also monitored by the sensor network.

The node architecture consists of the usual subsystems. Unlike many existing architec-
tures, the Hogthrob node’s processing subsystems consists of two processors, a microcon-
troller, and a field programmable gate array (FPGA). The microcontroller performs less
complex, less energy-intensive tasks, such as controlling the communication subsystem and
other peripherals. It also initializes the FPGA and functions as an external timer and an
ADC converter to it. The FPGA executes the sow monitoring application and coordinates
the functions of the sensor node.

Figure 3.11 displays a partial view of the node architecture and the various interfacing
buses. There are a number of interfaces supported by the processing subsystem, including the
I2C interface for the sensing subsystem, the SPI for the communication subsystem, the JTAG



66 Fundamentals of Wireless Sensor Networks

Processor
subsystem

UART

UART Program
Flash

AVR
Processor

Core

ADC
SRAM

JTAG

CLK
48MHz

Sensing
subsystem

I2C

ATMega 128L CLK
8MHz PB LED 3V

1.2V
MAX192R

2.5V MAX
192R

CLK
4MHz

Communication
subsystemBus

Exchange
Switch

U
A
R
T

U
A
R
T

U
A
R
T

FPGA Core

J
T
A
G

S
P
I

S
P
I

S
P
I

Figure 3.11 A partial view of the Hogthrob node architecture (Bonnet et al . 2006).

interface for in-system programmability and debugging, and the serial (RS-232) interface
for interaction with a PC.

Exercises

3.1 A vibration sensor outputs an analog signal with a peak-to-peak voltage of 5 V at a
frequency of 100 Hz.

(a) What should be the minimum sampling frequency, so that no information is lost
during the digitization process?

(b) Suppose a resolution of 0.025 V is required to detect an interesting event. What
should be the resolution of the ADC in terms of bits to convert the analog signal
to a digital signal?

3.2 What is the drawback of using a multichannel ADC?

3.3 What is aliasing?

3.4 Define each of the following terms as applied to discrete time signal processing sys-
tems:

(a) Linearity
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(b) Time-invariance

(c) Causality

(d) Stability

3.5 While they are not the most energy-efficient solutions, microcontrollers are the pre-
dominant processors in wireless sensor networks. Explain some of the reasons.

3.6 Explain the reason why using the Von Neumann architecture is not efficient for a wire-
less sensor node.

3.7 Why are parallel buses not desirable in a wireless sensor node?

3.8 What is the side effect of using a serial bus that supports full-duplex communication?

3.9 Explain the following terms in the context of the serial bus, SPI:

(a) Serial Data Out

(b) Serial Data In

(c) Serial Clock

3.10 State how a master component can communicate with multiple slaves in:

(a) I2C

(b) SPI

3.11 Explain, with the help of diagrams, how the data transfer protocol of the I2C bus func-
tions.

3.12 Explain the basic similarities and differences between a FPGA and an ASIC.

3.13 Explain some of the distinct features of the Super-Harvard architecture.

3.14 A large number of commercially available wireless sensor nodes integrate three types
of memory architectures: EEPROM (flash memory), RAM, and ROM. Explain the
purpose of each of them.

3.15 The communication subsystem of a wireless sensor node is usually interfaced with the
processor subsystem through a SPI bus instead of an I2C bus. Why is this?

3.16 While memory management is very useful, it cannot be supported in wireless sensor
networks. Why?

3.17 What is a virtual memory?

3.18 In most communication systems, the last stage in the reception process requires digital-
to-analog converters (DAC). But in this book, the DAC is not discussed. What do you
think is the reason?

3.19 Explain two different ways of interfacing an analog temperature sensor with a proces-
sor subsystem.

3.20 How can two hardware components with different speeds communicate with each
other through a serial bus?
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4
Operating Systems
An operating system (OS) in a WSN is a thin software layer that logically resides between
the node’s hardware and the application and provides basic programming abstractions to
application developers. Its main task is to enable applications to interact with hardware
resources, to schedule and prioritize tasks, and to arbitrate between contending applications
and services that try to seize resources. Additional features include:

• memory management;
• power management;
• file management;
• networking;
• a set of programming environments and tools – commands, command interpreters, com-

mand editors, compiler, debuggers, etc. – to enable users to develop, debug, and execute
their own programs; and

• legal entry points into the operating system for accessing sensitive resources such as
writing to input components.

Traditionally, operating systems are classified as single-task/multitasking and single-
user/multi-user operating systems. A single-task operating system processes one task at
a time while a multitasking operating system can execute multiple tasks simultaneously.
Multitasking operating systems require a large amount of memory to manage the states
of multiple tasks but they enable tasks with different complexity to execute in parallel.
For example, in a wireless sensor node, the processor subsystem may interact with the
communication subsystem while aggregating data that arrive from the sensing subsystem.
A multitasking OS is the best candidate for this type of environment. However, due to
the limited resources, the overhead of concurrent processing may not be affordable. In
a single-task OS one task is executed at a time, therefore, as a rule tasks should have a
short duration. In a single-user OS, one user (the owner of the resources) is active at a
time, whereas a multi-user operating system allows multiple users to share the resources
of a single system at the same time.

The choice of a particular operating system depends on several factors. In the following
sections, typical functional and nonfunctional aspects will be discussed.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd
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4.1 Functional Aspects

4.1.1 Data Types

In wireless sensor networks (WSNs), communication between the different subsystems
is vital. These subsystems communicate with each other for various reasons such as to
exchange data, delegate functionalities, and signaling. Interactions take place through
well-formulated protocols and data types that are supported by the OS. Complex data
structures have strong expression power but consume resources, while simple data types
are resource efficient but have limited expression capability. Almost all of the exist-
ing operating systems or runtime environments in WSNs support the native data types
of the C programming language and some of the complex data types such as struct
and enum .

4.1.2 Scheduling

Task scheduling is one of the basic functions of an OS. How efficiently tasks can be
organized, prioritized, and executed determines the efficiency of the OS.

Broadly speaking, there are two scheduling mechanisms: queuing-based and round-
robin scheduling. In a queuing-based scheduling, tasks originating from the various
subsystems are temporarily stored in a queue and executed serially according to a prede-
fined rule. Some operating systems enable tasks to specify priority levels so that they can
be given precedence.

Queuing-based scheduling can be further classified into first-in-first-out (FIFO) and
sorted queue. In a FIFO scheme, tasks are processed according to their arrival time: a task
that arrives first will be executed first as soon as the processor is free. A nonpreemptive
OS will execute the task to the end before another task is admitted for execution. In a
preemptive OS, however, a task of higher priority may interrupt a task of low priority. In
a sorted queue scheme, tasks in a queue are sorted according to some criteria. One way
is to sort tasks according to their estimated execution duration. This approach prevents
long-duration tasks from blocking short-duration tasks. The approach is also known as
the shortest job first (SJF) rule.

The FIFO scheme is the simplest and the most economical as it incurs minimum system
overheads. However, the FIFO scheme may not treat tasks fairly, since tasks of long
duration may block short-duration tasks for a long time. In the SJF scheme, sorting incurs
system overhead, since each task in the queue must be evaluated to estimate execution
duration and to sort tasks accordingly.

Round-robin scheduling is a time-sharing scheduling technique in which several tasks
can be processed concurrently. The scheduler defines a time frame by dividing time into
slots and tasks will be given slots in a multiplexed manner. This way, all the tasks advance
toward their completion.

Regardless of how tasks are executed, a scheduler can be either a nonpreemptive or pre-
emptive scheduler. In strictly nonpreemptive scheduling, a task is executed to the end and
will not be interrupted by another task. On the contrary, in strictly preemptive scheduling,
the scheduler decides how time is shared between tasks and allows a task of higher prior-
ity to interrupt a task of lower priority. There is also the so-called “politely-preemptive”
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scheduling in which, even if tasks are interruptible, the scheduler will not interrupt a
process if it is in a critical section.

4.1.3 Stacks

A stack is a data structure that is used to temporarily store data objects in memory by
piling one upon another. The objects are accessed on a last-in first-out (LIFO) basis.
The processor core uses stacks to store system state information when it begins exe-
cuting subroutines. This way it “remembers” where to return after the subroutine is
completed. Subroutines can also call other subroutines by storing the state of the current
subroutine on top of the previous state information in the stack. When the subroutine is
completed, the processor pulls the first address it finds on the top of the stack and jumps to
that location.

In a multithreaded OS, each thread requires its own stack to manage state information.
This is one of the reasons why multithreaded operating systems are expensive in WSNs.

4.1.4 System Calls

The OS provides a number of basic functions which enable the separation of concern,
namely, the need to decouple the concern of accessing hardware resources and addi-
tional low-level services from the implementation details of the access mechanisms.
Users invoke these operations whenever they wish to access a hardware resource such as a
sensor, watchdog timer, or the radio without the need to concern themselves how the hard-
ware is accessed. In a UNIX environment, these basic functions are commonly known as
system calls.

4.1.5 Handling Interrupts

An interrupt is an asynchronous signal generated by a hardware device (a sensor, a
watchdog timer, a radio) and causes the processor to interrupt executing the present
instruction and to call for an appropriate interrupt handler. The processor stores the state
of the interrupted process in a stack and gives control to the interrupt handler. For example,
an interrupt signal may be raised by the communication subsystem when it receives a
packet that should be processed immediately. The processor subsystem must then suspend
the execution of the present instruction and calls for the appropriate module in the OS that
should handle radio packets. Additional to the hardware devices, the OS can define several
system events that can flag interrupt signals. In some cases, the OS itself can generate
periodic interrupts to allow the processor to monitor the state of hardware resources and
inform corresponding event handlers in case there is an interest in a specific hardware state.

In the same way that tasks can have different priority levels, interrupt signals can
also have different priority levels. A high-priority interrupt can interrupt a low-priority
interrupt. In such systems, programs can choose whether or not they wish to be interrupted
by setting an interrupt mask. The mask enables them to “evade” low-level interrupts that
they have nothing to do with. Masking interrupts can be dangerous and can corrupt data.
Some operating systems have nonmaskable interrupts for the most crucial operations.
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4.1.6 Multithreading

A thread is the path taken by a processor or a program during its execution. In a single-task,
nonpreemptive operating systems, tasks are monolithic and there is only a single thread
of execution. In a multithreaded environment, a task can be divided into several logical
pieces which can be scheduled independently from each other and executed concurrently.
Likewise, multiple tasks originating from different sources can be executed concurrently
in multiple threads. Threads of the same task share a common data and address space
and can communicate with each other if necessary. There are two main advantages of a
multithreaded OS:

1. tasks do not block other tasks; this is particularly important to deal with tasks pertaining
to I/O systems;

2. short-duration tasks can be executed along with long-duration tasks.

While threads are resource conservative by nature, they cannot be created endlessly.
The creation of threads slows down the processor and there may not be sufficient resources
to divide among a large number of threads. Therefore, some operating systems support
only a limited number of threads and keep them in a “pool”. Each thread in a pool awaits
a task assignment. Once a request is received, it is assigned to an available thread in
the pool. Upon completion of the task, the thread returns to the pool and awaits the
next assignment. If all the threads in the pool are used, the system holds in a queue an
upcoming request until the next thread returns to the pool. In this way the OS can keep
the number of threads to a manageable size.

4.1.7 Thread-Based vs Event-Based Programming

In wireless sensor networks, it is vital to support concurrent tasks, particularly tasks
related to I/O systems, and the choice is between thread-based and event-based execution
paradigms.

The decision whether threads or events should be supported in an OS must take several
factors into account, including the need for separate stacks and the need to estimate
their maximum size for saving context information. Thread-based programs use multiple
threads of control within a single program and a single address space. This way, a thread
blocked by an I/O device can be suspended while other tasks are executed in different
threads. However, the programmer must carefully protect shared data structures with
locks and use condition variables to coordinate the execution of threads. To deal with
all these problems, the OS needs to synchronize program execution. In general, program
code written for multithreading environments is complex, bug-prone, and may lead to
deadlocks and race conditions.

In event-based programming, there are events and event handlers. Event-handlers reg-
ister at the OS scheduler to be notified when a named event occurs. The kernel typically
implements a loop function that polls for events and calls the appropriate event-handlers
when events occur. An event is processed to completion unless its handler reaches a
blocking operation, in which case it registers a new callback and returns control to
the scheduler.
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4.1.8 Memory Allocation

The memory unit is a precious resource. That is where the OS resides. Additionally, data
and the application’s program code are temporarily stored there. How, and for how long,
memory is allocated for a piece of program determines the speed of task execution.

Memory can be allocated to a program either statically or dynamically. A static memory
allocation is a frugal way of using the memory, but it can only be used if the program’s
memory requirement is known in advance. The memory allocation takes place when
the program starts – as part of the execution operation – and is never freed. Since the
program’s memory requirement is precisely known at the time of compilation, memory
is used efficiently. On the other hand, static memory allocation does not allow runtime
adaptation.

Dynamic memory allocation is used when the size and duration of the required memory
are not known at the time of the program’s compilation. This includes programs that
use dynamic data structures whose memory requirement cannot be determined when the
program starts. Such programs often use memory on a transient basis. They allocate
some memory, use it for a while, but then reach a point where they no longer need that
particular piece. Because memory is not inexhaustible, memory that is no longer used
can be released or assigned to a different owner. Dynamic memory allocation enables
flexibility in programming but produces a considerable management overhead.

As a strategy to increase the memory capacity of a node, most architectures use EEP-
ROM or flash memory to store program code. Consequently, it is possible to deploy
relatively complex applications and communication protocols. However, reading and writ-
ing to flash memory is costly with respect to energy consumption.

4.2 Nonfunctional Aspects

4.2.1 Separation of Concern

Operating systems designed to support resource constrained devices and the networks
which are established by these devices are different from general-purpose operating sys-
tems, mainly due to the extremely tight resource budget. In general-purpose operating
systems, there is a clear separation between the operating system and the applications
that run on top of it. These two interact with each other through well-defined interfaces
and system calls. The operating system itself has several distinct services that can be
upgraded, debugged, or altogether removed independently. Such a distinction is difficult
to support in wireless sensor networks.

In most cases, the operating system consists of a number of lightweight modules which
can be “wired” together in order to create a monolithic program code that is responsible
for the sensing, processing, and communication tasks. The wiring takes place at com-
pilation time, producing a single system image that can be installed on the individual
nodes. Some operating systems provide an indivisible system kernel along with a set of
library components for building an application. There are also other operating systems
that provide a kernel and a set of reconfigurable (reprogrammable) low-level services that
abstract the hardware components of a node. The services can be “wired” together to make
up an application and since the kernel functions independently of these services – even
though its role is limited – there is a separation of concern to some extent. Separation of
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concern enables flexible and efficient reprogramming and reconfiguration. An update or
an upgrade can be made as a whole or in part as required. The latter enables the efficient
use of communication bandwidth as well as memory space during a software update.

4.2.2 System Overhead

An operating system executes program code and, therefore, requires its own share of
resources. How much resource it consumes depends on its size and the type of services
it provides to the higher-level services and applications. The resources consumed by the
operating system are the system’s overhead.

Presently available wireless sensor nodes have resources that are measured in terms of
kilobytes and a few megahertz. These resources have to be shared by programs carrying
out sensing, data aggregation, self-organization, network management, and communica-
tion. The operating system’s overhead should be understood in view of these tasks.

4.2.3 Portability

In Chapter 3, it has been shown that different hardware architectures can be applied
to develop a wireless sensor node. Ideally, nodes of heterogeneous architectures and
operating systems should be able to coexist and collaborate with each other. At present,
however, the existing operating systems do not provide this type of support.

A related issue is the portability of an operating system to deal with the rapid evo-
lution of the hardware architecture. Wireless sensor networks (WSNs) are still emerging
technologies. In the past decade, architectural design has undergone a remarkable evo-
lution and as more and more application domains are studied, this evolution is expected
to continue in order to accommodate unforeseen requirements. Hence, operating systems
should be portable and extensible.

4.2.4 Dynamic Reprogramming

Once a WSN is deployed, it may be necessary to reprogram some part of the application
or the operating system for the following reasons:

• complete knowledge of the deployment setting may not be known at the time of deploy-
ment and, as a result, the network may not perform optimally;

• both the application requirements and the properties of the physical environment in
which the networks operate can change over time; and

• it may be necessary to detect and fix bugs while the network is still operating.

Manual replacement of a piece of software may not be feasible because of the large
number of nodes in question. The alternative is to develop an operating system that pro-
vides dynamic reprogramming support. Apparently, if there is no clear separation between
the application and the operating system, dynamic reprogramming cannot be supported.
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If, on the other hand, there is a separation between the two, dynamic programming can
be supported in principle, but its practical implementation depends on several factors.

First, the operating system should be able to receive the software update piece by piece
and assemble and store it temporarily in the active memory. Second, the OS should make
sure that this is indeed an updated version. Third, it should be able to remove the piece
of software that should be updated and install and configure the new version. All these
consume resources and may cause their own bugs.

Software reprogramming (update) requires robust code dissemination protocols which
are responsible for splitting and compressing the code; ensuring code consistency and
version controlling; and providing a robust dissemination strategy to deliver the code
over a wireless link.

Current developments in programming tools and environments will be discussed in
Chapter 12.

4.3 Prototypes

4.3.1 TinyOS

TinyOS (Gay et al. 2007; 2.x Working Group 2005) is the most widely used, richly
documented, and tool-assisted runtime environment in WSNs. Moreover, it has undergone
a long design and evolution process, which makes its operating principle understandable.

TinyOS’s compact architecture makes it suitable for supporting many applications.
Conceptually, the architecture consists of a scheduler and a set of components which can
be connected with each other through well-defined interfaces. Components are classified
into configuration components and modules. A configuration component specifies how
two or more modules are connected with each other (this is called “wiring”), whereas
modules are the basic building blocks of a TinyOS program. The composition of multiple
configurations into a single executable code produces a TinyOS application. TinyOS does
not provide a clear separation of concern between the operating system and the application.

A component is made up of a frame, command handlers, event handlers, and a set of
nonpreemptive tasks. A component is similar to an object in object-based programming
languages in that it encapsulates a state and interacts through well-defined interfaces. An
interface can define commands, event handlers, and tasks. Each of them executes in the
context of the frame and operates on its state. Therefore, a component has to formally
declare the commands it uses and the events it signals. In this way it is possible to
determine at the time of compilation the resources required by an application.

Components are structured hierarchically and communicate with each other through
commands and events: higher-level components issue commands to lower-level com-
ponents and lower-level components signal events to higher-level components. Conse-
quently, higher-level components implement event handlers and lower-level components
command processors (or function subroutines). The physical hardware is found at the
base of the component hierarchy. Figure 4.1 illustrates the logical boundary between an
application and the operating system.

As can be seen in Figure 4.1, there are two components at the highest level, namely,
the routing component and the sensor application. The routing component is responsible
for establishing and maintaining the network while the sensor application is responsi-
ble for sensing and processing. The two components communicate with each other and
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Figure 4.1 Logical distinction between the low-level and high-level components (Hill et al . 2000).

Interface C
Command D1
event D2

Provides interface C

Component A

Command C.D1
signals C.D2

Figure 4.2 A TinyOS component providing an interface.

with the lower-level components asynchronously, through active messages. Additionally,
a higher-level component can communicate with a low-level component by issuing non-
blocking commands and by expressing an interest in named events.

Figures 4.2 to 4.4 demonstrate the logical structure of components and component
configurations. In Figure 4.2, component A declares its service by providing interface C,
which in turn provides command D1 and signals event D2. In Figure 4.3, component B
expresses interest in interface C by declaring a call to command D1 and by providing an
event handler to process event D2.

In Figure 4.4, a binding between Component A and Component B is established through
configuration E.
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Figure 4.3 A TinyOS component that uses an interface.
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Figure 4.4 A TinyOS configuration that wires an interface provider and an interface user.

4.3.1.1 Tasks, Commands, and Events

TinyOS defines tasks, commands, and events as fundamental building blocks of a TinyOS
runtime environment. These are responsible for enabling effective communication between
the components of a single frame. Tasks are monolithic processes that should be executed
to completion. In other words, they cannot be preempted by other tasks, though they can
be interrupted by events. This is how TinyOS supports concurrency and ensures that tasks
do not interfere with each other or corrupt each other’s data.

Because tasks should execute to completion, it is possible to allocate a single stack
to store context information. Tasks can call lower-level commands; signal higher-level
events; and post (schedule) other tasks, including themselves. For example, a task respon-
sible for reading packets from a communication subsystem can schedule itself repeatedly
until it has completed reading all the packets. In TinyOS, scheduled tasks are based on the
FIFO principle, and TinyOS architecture is effective for tasks that are of short duration.

Commands are nonblocking requests made by higher-level components to lower-level
components. To deal with potential long-running operations, TinyOS introduces the con-
cept of split-phase operation. In a split-phase system, a function call returns immediately,
and the called function notifies the caller when the task is completed. It is called split-
phase because it splits invocation and completion into two separate phases of execution.
A typical example is a packet transmission task. A packet transmission can be a blocking
task, since a receiver should wait for a timeout, ttimeout, before retransmitting a packet.
However, if an ACK packet is received before ttimeout expires, then the receiver gives up
control. In TinyOS, this task is decomposed into two events: a timeout event and a packet
received event.

Every component interested in a named event should provide an event handler to
process it. Event handlers will be called when hardware events occur. The lowest level
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components have handlers that are directly connected to hardware interrupts, such as
external interrupts, timer events, or counter events. An event handler may react to the
occurrence of an event in different ways. For example, it can deposit information into its
frame, post tasks, signal higher-level events, or call lower-level commands.

Resource allocation in TinyOS is optimized by adopting a static memory allocation.
Since the memory requirement of an application is known at the time of its composition, it
avoids the extra overhead associated with dynamic allocation. The lack of true separation
of concern limits the adaptability of TinyOS. Moreover, without additional support outside
of TinyOS, there is no mechanism to dynamically load and remove components.

As an event-based system, TinyOS does not directly support execution contexts. Hence,
a complex program typically requires a state machine. State machines can be less expres-
sive and may be perceived by many programmers as difficult to manage. A typical example
mentioned in the literature is dealing with cryptographic operations. These operations
require several seconds to complete, monopolizing the processor’s precious cycles and
making the system unable to respond to external events. A thread-based operating sys-
tem handles this type of situation by preempting the task on behalf of time critical or
short-duration tasks.

4.3.2 SOS

SOS (Han et al. 2005) attempts to establish a balance between flexibility and resource
efficiency. Unlike TinyOS, it supports runtime reconfiguration and reprogramming of
program code. The OS consists of a kernel and a set of modules that can be loaded and
unloaded. In functionality, a module is similar to a TinyOS component – it implements
a specific task or function. Moreover, in the same way that TinyOS components can be
“wired” to build an application, a SOS application is composed of one or more interacting
modules. Unlike a TinyOS component, which has a static place in memory, a module in
SOS is a position-independent binary. This typical feature enables SOS to dynamically
link modules with each other.

The SOS kernel provides interfaces to the underlying hardware. Additionally, it provides
a priority-based scheduling mechanism and supports dynamic memory allocation.

4.3.2.1 Interaction

Interaction with a module takes place through messages (asynchronous communication)
and direct calls to registered functions (synchronous communication). A message that
originates from module A to module B should first go through the scheduler which places
it in a priority queue. Then the kernel calls the appropriate message handler in module B
and passes the message to it.

Modules implement message handlers that are specific to their purpose of existence.
A module can also interact with another module by directly calling one of its registered
functions. Interaction through a function call is faster than the message-based communi-
cation. This approach requires modules to explicitly register their public functions at the
kernel. All modules that are interested in these functions have to subscribe to them. A
function registration takes place by calling a system function called ker_register_fn at
the time of module initialization. The call enables the module to inform the kernel where
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Figure 4.5 Interaction between modules in SOS system (Han et al . 2005).

in its binary image the function is implemented. The kernel completes the registration by
creating a function control block (FCB), which stores key information about the function.
This information is used to handle function subscription and to support dynamic mem-
ory management and runtime module update (replacement). Figure 4.5 illustrates the two
basic types of interactions between modules.

Modules subscribe to a named function by calling the ker_get_handle system function.
In doing so, they provide the kernel with the module’s and function’s IDs, which will be
used to locate the FCB of interest. If the lookup is successful, the kernel returns a pointer
to the function pointer of the subscribed function. The subscriber accesses the subscribed
function by dereferencing the pointer. This enables the kernel to replace the function with
a newer version by changing the function pointer in the FCB. The process is transparent
to the subscribers.

4.3.2.2 Dynamic Reprogramming

Five basic features enable SOS to support dynamic reprogramming. First, modules
are position-independent binaries – they use relative addresses rather than absolute
addresses, hence, they are relocatable. Second, every SOS module implements two types
of handlers – the init and final message handlers. The init message handler will be called
by the kernel when first a module is loaded. Its purpose is to set the module’s initial
state, including initial periodic timers, function registration, and function subscription.
The kernel calls the final message handler before a module is unloaded. The aim is to
release all resources the module owns, including timers, memory and registered functions
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and to enable the module to gracefully exit the system. After the final message, the
kernel performs garbage collection.

Third, during compilation, SOS uses a linker script to place the init handler of a module
at a known offset in the binary. The script will enable easy linking during module insertion.
Fourth, SOS keeps the state of a module outside of it. This enables the newly inserted
module to inherit the state information of the module it replaces. Fifth, whenever a module
is inserted, SOS generates and keeps metadata that contains information pertaining to the
ID of the module, the absolute address of the init handler, and a pointer to the dynamic
memory holding the module state.

In SOS, dynamic module replacement (update) takes place in three steps.

1. When a new module is available, a code distribution protocol advertises it in the
network. The advertisement contains the module’s ID, version number, and the required
size of memory. When the local distribution protocol receives the advertisement, it
evaluates the packet to decide whether the module is an updated version of a module
which already exists locally or a new module in which the node is interested. In
both cases, it also makes sure that there is sufficient space in the program memory to
download the module.

2. Once a decision to download the module is made, the protocol proceeds with down-
loading the module and examines the metadata that is contained in the first packet it
receives. The metadata contains, among other things, the size of the memory required
to store the local state of the module. Module insertion is immediately aborted if the
SOS kernel determines that it does not have sufficient RAM for the local state of the
module.

3. If, on the other hand, everything is all right, module insertion takes place. During
module insertion, the kernel creates metadata to store the absolute address of the
handler, a pointer to the dynamic memory holding the module state and the identity
of the module. Then the SOS kernel invokes the handler of the module by scheduling
an init message for the module.

4.3.3 Contiki

Contiki (Dunkels et al. 2004) is a hybrid operating system. By default, its kernel functions
as an event-driven kernel but multithreading support is implemented as an application
library. There is a dynamic linking strategy to couple the multithreading library with
applications that explicitly require it.

Like SOS, Contiki realizes the separation of the basic system support (by the kernel)
from the rest of dynamically loadable and reprogrammable services, which are called
processes. The services communicate with each other through the kernel by posting events.
The kernel itself does not provide any hardware abstraction; instead it allows device
drivers and applications to communicate directly with the hardware. This limited scope
of the kernel makes it easy to reprogram and replace services.

Each Contiki service manages its own state in a private memory and the kernel keeps
a pointer to the process state. However, a service shares with other services the same
address space. It also implements an event handler and an optional poll handler. Figure 4.6
illustrates Contiki’s memory assignment in ROM and RAM.
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Figure 4.6 The Contiki operating system: the system programs are partitioned into core services
and loaded programs (Dunkels et al . 2004).

As can be seen in Figure 4.6, Contiki has two main parts: the services inside the broken
lines consist of the core services; those outside of the broken lines are the dynamically
loadable services. The partition is made at compilation time. The core is made up of the
kernel, the program loader, a communication stack with device drivers for the commu-
nication hardware, and additional frequently used services. These services are compiled
into a monolithic binary image and deployed on a wireless sensor node. This part of the
operating system cannot be modified dynamically unless a special boot loader is used to
overwrite or patch it.

The program loader is responsible for loading runtime programs into the active memory.
It can obtain the binaries either from a remote source through the communication service
or directly from a local storage (EEPROM). Normally, program binaries are stored in
EEPROM.

The kernel is the central element of the OS. Its basic assignment is to dispatch events
and to periodically call polling handlers. Subsequently, a program execution in Contiki
is triggered by either events that are dispatched by the kernel or through the polling
mechanism. Event handlers process an event to completion, unless they are preempted
by interrupts or other mechanisms – such as a thread preempting another thread when
Contiki operates in a multithreaded environment.

The kernel supports synchronous and asynchronous events. Synchronous events are
dispatched to the target process as soon as possible and control is returned to the posting
process once the event is processed to the end. Asynchronous events, on the other hand,
are dispatched at a convenient time. In addition to these events, the kernel provides a
polling mechanism, in which the status of hardware components is sampled periodically.
During this time, polling handlers that express interest in a named hardware device are
notified in accordance with their priority.

4.3.3.1 Service Structure

One of the interesting features of the Contiki OS is its support of dynamic loading
and reconfiguration of services. This is achieved by defining services, service inter-
faces, service stubs, and a service layer. Services are to Contiki what modules are to
TinyOS.
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A Contiki service consists of a service interface and its implementation, which is
also called a process. The service interface consists of a version number and the list
of functions with pointers to the functions that implement the interface. A service stub
enables an application program to dynamically communicate with a service through its
service interface. A service layer is similar to a lookup service or a registry service.
Active services register by providing the description of their service interface and ID and
version number. This way, the service layer keeps track of all active services. Figure 4.7
illustrates how application programs interact with Contiki services.

Because programs call services through their service interface stubs, there is no need
for them to know about the implementation details or the location in memory of the
services. When a service is called, the service interface stub queries the service layer
and obtains a pointer to the service interface. Upon obtaining a service whose interface
description as well as version number matches with the service stub, the interface stub
calls the implementation of the requested function. The loose coupling of a service with
the program that uses the service enables the OS to update the service without the need
to modify the application’s program.

4.3.3.2 Protothreads

Contiki introduces the concept of protothreading by combining some of the features
of events and threads. Protothreads can be viewed as lightweight (stackless) threads, but
they can also be viewed as interruptible tasks in event-based programming (Dunkels et al.
2006). A protothread provides a conditional blocking wait statement, PT_WAIT_UNTIL(),
which takes a conditional statement and blocks the protothread until the statement is
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evaluated as true. If the conditional statement is true by the time the protothread reaches
the PT_WAIT_UNTIL() statement, then it continues executing without an interruption. The
PT_WAIT_UNTIL() condition can be any conditional statement, including complex Boolean
expressions.

Because a protothread is stackless, only an explicit PT_WAIT_UNTIL() statement can
block. From the scheduler’s point of view, all protothreads in the system run on the
same stack and context switching is achieved by stack rewinding. The beginning and end
of a protothread are explicitly declared by using the statements PT_BEGIN and PT_END,
respectively. A protothread can exit prematurely with the statement PT_EXIT.

The protothread concept does not specify when or how a protothread should be invoked
or scheduled. In the Contiki implementation, processes are implemented as protothreads
that run on top of the event-driven kernel and, therefore, a protothread is invoked whenever
the process receives an event – for example, when the process receives a message from
another process or a timer event. Likewise, the protothread concept does not predefine
how memory is appropriated to manage the states of protothreads. As with scheduling, this
is also implementation-specific. If, for example, the operating system is based on a fixed
set of protothreads, memory for state management can be statically allocated in advance.
But memory can also be allocated in a dynamic fashion if the number of protothreads
is not known in advance. In the Contiki implementation, static memory allocation is the
typical setting and the state of a protothread is held in the process control block.

Protothreads simplify the design of state machines in event-driven programming since
they reduce the number of explicit state machines and state transitions. Their cost is in
terms of a memory overhead and a few processor cycles. To illustrate the usefulness of
protothreads, consider a MAC protocol that turns off the radio subsystem on a periodic
basis, but enables the radio subsystem to complete communication before it enters into a
sleep state. This behavior is summarized as follows:

1. Initially (at t = t0) the radio is turned on.
2. The radio remains on for a period of tawake seconds.
3. Once tawake is over, the radio has to be switched off, but it has to complete an ongoing

communication.
4. If the communication is not completed, the MAC protocol has to wait for a period,

twait_max before switching off the radio.
5. If the communication is completed or the maximum wait period is over, then the radio

should be off and remain in the off state for a period tsleep.
6. The same process is repeated.

Figures 4.8 and 4.9 display the implementations of the sleeping schedule with event-
based programming and protothreads, respectively. The state machine implementation
requires an explicit state variable that can take on the value ON, WAITING, or OFF. A
conditional IF statement is used to perform different actions depending on the value of
the state variable. The code can be placed in an event handler function that can be called
whenever an event occurs. Possible events in this case are an expiration of a timer and
the completion of communication. As can be seen in Figure 4.8, the code that controls the
state machine constitutes more than one-third of the total lines of code. Also, the six-step
structure of the mechanism is not immediately evident from the code.
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if (not communication_complete())

state: {ON, WAITING, OFF}

radio_wake_eventhandler:

radio_off()

radio_off()
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else

elseif (state = WAITING)

if (state = ON)
if (expired(timer))

timer  tsleep

timer  tawake

state  OFF
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state  OFF
expired(wait_timer))

wait_timer  twait_max

state WAITING

elseif (state = OFF)

if (communication_complete() or

if (expired(timer))

Figure 4.8 A sleep schedule for the communication subsystem implemented with events (pseu-
docode) (Dunkels et al . 2006).

radio_wake_protothread:

expired(wait_timer))
radio_off()

radio_on()

PT_BEGIN

PT_WAIT_UNTIL(expired(timer))

PT_WAIT_UNTIL(expired(timer))
PT_END

PT_WAIT_UNTIL(communication_complete() or

if (not communication_complete())

while (true)

timer  tsleep

timer  tawake

wait_timer  twait_max

Figure 4.9 A sleep schedule for the communication subsystem implemented with protothreads
(pseudocode) (Dunkels et al . 2006).
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The sleeping schedule implemented with the protothreads is evidently shorter and more
intuitive.

4.3.4 LiteOS

LiteOS (Cao et al. 2008; Cao and Abdelzaher 2006) is a thread-based operating system
and supports multiple applications. It is based on the principle of a clean separation
between the OS and the applications that run on top of it. Unlike all the other operating
systems, LiteOS does not provide components or modules that should be “wired” together
in order to build an application. As far as LiteOS is concerned, developing building blocks
and determining the way they interact with each other is entirely the task of application
developers.

Instead, LiteOS provides several system calls: a shell that isolates the system calls from
a user; a hierarchical file management system; and a dynamic reprogramming technique.

In LiteOS, the entire network is modeled as a distributed file system. A user at the side of
the base station can identify, interact with, and reprogram a named node using a shell that
is installed on a resource-rich computer. Each node in the network runs a multithreaded
kernel which has three main components: a scheduler, a set of system calls, and a binary
installer. The kernel’s system calls enable a remote user to access and manage local
files and directories. The local files are classified into sensor data, device drivers, and
application binaries. Within the system hierarchy, a node is a stateless component. The
user’s interaction history is maintained by the shell at the remote computer. Figure 4.10
illustrates the LiteOS operating system architecture.
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Figure 4.10 The LiteOS operating system architecture (Cao et al . 2008).
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4.3.4.1 Shell and System Calls

The shell inherits several features from the Linux operating environment. It provides a
mounting mechanism to a wireless node which is one-hop away from it; so that the entire
network can be considered as a distributed and hierarchical file system. A user can access
the resources of a named node as if they were locally available. The shell supports a large
number of Linux commands that can be executed on the distributed file system. This way,
LiteOS provides a familiar interface to Linux users.

The commands are classified into five categories: file commands, process commands,
debugging commands, environment commands, and device commands. File commands
are useful to navigate through the hierarchical file system and to move, copy, and delete
files and directories. Below is given an example operation using file commands (Cao et al.
2008):

$ pwd

Current directory is /sn01/node101/apps

$ cp /c/Blink.lhex Blink.lhex

Copy complete

$ exec Blink.lhex

File Blink.lhex successfully started

$ ps

Name State

Blink Sleep

In this example, the pwd command prints the working directory in a node identified as
sn01. This is node101/apps. Next, using the cp command, the file Blink.lhex is copied
from the root directory of the resource-rich computer to the specified directory in node
sn01. Then, using the exec command, the file is executed. The command ps reports the
process status, which, in this case, indicates a sleeping thread.

The process commands are useful to manage threads, that is, creating, suspending, and
killing threads. Up to eight threads can run simultaneously in LiteOS. The debugging
commands enable a debugging environment to be set up to debug a program code. The
environment commands provide support for managing the operating system’s environment
(at the side of the user) – displaying interaction history and providing command reference
(manual). Finally, the device commands provide direct access to hardware devices such
as sensors and the radio subsystem.

4.3.4.2 LiteFS

The LiteFS is a distributed file system and an essential feature of LiteOS. Through it,
a user has access to the entire sensor network and can program and manage individual
nodes. Similar to files in a Linux environment, files in LiteOS represent data, application
binaries, and device drivers. Locally, the file system is organized as follows: the RAM
contains the list of active (opened) files as well as information pertaining to the memory
allocation in EEPROM and the flash memory. The file system structure is stored in the
EEPROM memory, and the actual files are stored in a flash memory. This is displayed in
Figure 4.11.
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Figure 4.11 The file system structure of LiteFS (Cao et al . 2008).

In RAM, up to eight files can be simultaneously opened. LiteFS uses two-bit vectors to
keep track of EEPROM and flash memory allocation. Eight bytes are used for the former
and 32 bytes are used for the latter. This amounts to a total of 104 bytes of RAM. In
EEPROM, each file is represented by a 32-byte control block. The space available for
the control blocks is partitioned into 65 blocks. The first block is the root block, which
is initialized every time the file system is formatted. The remaining blocks are either
directory blocks (specified as D in the figure) or file blocks (specified as F in the figure).
A file control block addresses at most 10 logical flash pages, each page holding 2 kbytes
of data (or 8 physical flash pages). When a file occupies more than 20 kbytes, LiteFS
allocates another control block for this file and stores the address of the new block in the
previous block.

4.3.4.3 Dynamic Reprogramming

LiteOS supports the dynamic replacement and reprogramming of user applications. This
can be done with or without the availability of the original source code. If the original
source code is available to the OS, it will be recompiled with a new memory setting and
all references and pointers to the old version will be redirected accordingly. If the original
source code is not available to the OS, LiteOS uses a differential patching mechanism to
replace an older version binary. The approach is to directly encode relocation information
into application binaries by inserting differential patches and distributing them along with
the binary images.

A mathematical model that has three parameters has been proposed for the differential
patching. The model’s parameters are the start address of the binary executable in the
flash memory (S), the start address of allocated memory in RAM (M), and the stack
top (T). The difference between T and M is the actual memory space allocated for the
program code. Once these parameters are known, it is possible to insert the updated
piece into the old binary image. The model parameters are obtained empirically and
require knowledge of the node architecture. This limits the usefulness of the patching
scheme.
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4.4 Evaluation

Ranking the strength of an operating system, like all ranking assignments, is a difficult
assignment. One has to rank in context to provide an appropriate perspective. In wireless
sensor networks, there are several contexts pertaining to development, deployment, run-
time performance, and code evolution. If one is concerned with design issues, perhaps the
prevailing aspects are the following. How rich are the interfaces provided by the OS to
access hardware devices? How flexible and expressive is the programming environment
that can be supported by the OS? Is there a rich choice of modules, components, and
library files that can be supported by the OS and that are useful to build an application?
How portable is the OS? How manageable can the application’s program code be?

If one is concerned with deployment issues, the most prevailing aspects are dynamic
code installation and dynamic code propagation. The code has to be installed and tested
on a large number of nodes and doing so manually is an onerous task. Likewise, if one
is concerned with code evolution, dynamic code propagation and reprogramming are the
most important factors. If one is concerned with runtime behavior, the most prevailing
concern is the efficiency of the OS, particularly in terms of its compactness and power
consumption.

In view of these aspects, TinyOS is compact in size and efficient in its use of resources,
since the cost of managing separate entities (operation system and application) is lumped

Table 4.1 Comparison of functional aspects of existing operating systems

Programming Building Memory System
OS paradigm blocks Scheduling allocation calls

TinyOS Event-based
(split-phase
operation, active
messages)

Components,
interfaces, and
tasks

FIFO Static Not available

SOS Event-based
(active
messages)

Modules and
messages

FIFO Dynamic Not available

Contiki Predominantly
event-based, but
it provides
optional
multithreading
support

Services, service
interface stubs,
and service
layer

FIFO, poll
handlers with
priority
scheduling

Dynamic Runtime libraries

LiteOS Thread-based
(based on thread
pool)

Applications are
independent
entities

Priority-based
scheduling
with optional
round-robin
support

Dynamic A host of system
calls available
to the user (file,
process,
environment,
debugging, and
device
commands)
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into a single assignment of managing a monolithic binary. But replacement or repro-
gramming cost is high. SOS, Contiki, and LiteOS provide flexible support for dynamic
reprogramming and hence are well suited to applications which potentially undergo inten-
sive updating and upgrading processes. However, the cost of image propagation should
not be underestimated. LiteOS’s approach of viewing the network as a distributed file
system is interesting, since it provides the user an intuitive way of navigating the net-
work. However, since nodes are stateless and all update history should be stored at the
user’s side, it results in extra traffic in the network to disseminate commands and state
information.

Generally, the field of wireless sensor networks is relatively young. The operation
environments as well as the application requirements are likely to evolve and to be
made more compact and refined. Subsequently, the tradeoff is between dynamic repro-
gramming and code replacement on the one hand, and code execution efficiency on
the other.

Tables 4.1 and 4.2 provide summaries of the functional and nonfunctional aspects of
the four operating systems presented in this chapter.

Table 4.2 Comparison of nonfunctional aspects of existing operating systems

Minimum system Separation of Dynamic
OS overhead concern reprogramming Portability

TinyOS 332 bytes There is no clean distinction
between the OS and the
application. At
compilation time a
particular configuration
produces a monolithic,
executable code.

Requires external
software support

High

SOS ca. 1163 bytes Replaceable modules are
compiled to produce an
executable code. There is
no clean distinction
between the OS and the
application.

Supported Medium to low

Contiki ca. 810 bytes Modules are compiled to
produce a
reprogrammable and
executable code, but there
is no separation of
concern between the
application and the OS.

Supported Medium

LiteOS Not available Applications are separate
entities; they are
developed independent of
the OS.

Supported Low
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Exercises

4.1 What is a process in the context of operating systems?

4.2 What is intra-process communication and how does it differ from inter-process
communication?

4.3 Explain the difference between a system program and an application program?

4.4 What are system calls?

4.5 Explain the following terms and what are some of the mechanisms to avoid them?

(a) race condition
(b) deadlock
(c) starvation

4.6 Compare the following scheduling mechanisms:

(a) FIFO scheduling
(b) sorted queue
(c) round-robin

4.7 What are interrupts and interrupt handlers?

4.8 Why do most operating systems in WSNs define a kernel?

4.9 What is a preemptive process? Provide an example.

4.10 How is concurrency supported in TinyOS?

4.11 What is split-phase programming and how is it useful in WSNs?

4.12 Explain the difference between configuration components and modules in TinyOS.

4.13 Why do threads require their own separate stacks and what is the problem with this
approach in WSNs?

4.14 Give three reasons for supporting dynamic reprogramming in WSNs.

4.15 Explain the difference between event-based and thread-based operating systems.
Discuss some of the advantages and disadvantages of the two approaches in the
context of WSNs.

4.16 Explain the difference between static and dynamic memory allocation.

4.17 State how the separation of concern is supported in the following operating systems:

(a) Contiki
(b) SOS
(c) LiteOS

4.18 Explain the following concepts in TinyOS:

(a) commands
(b) tasks
(c) events
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4.19 What is the difference between a TinyOS command and a SOS message?

4.20 Why is the state of a module stored in a separate memory space (outside of the
module) in SOS?

4.21 Explain how SOS supports dynamic reprogramming.

4.22 How is multithreading supported in a Contiki environment?

4.23 What is the function of a program loader in Contiki and why is it important?

4.24 How is module replacement supported in Contiki?

4.25 What is the advantage of considering a WSN as distributed file system in LiteOS?

4.26 What is differential patching in LiteOS?

4.27 Explain the functions of the following message handlers in SOS:

(a) init-handler
(b) final-handler

4.28 State the type of scheduling strategy that the following operating systems employ:

(a) TinyOS
(b) SOS
(c) Contiki
(d) LiteOS

4.29 How does TinyOS deal with dynamic reprogramming?

4.30 Why is separation of concern in TinyOS not a priority?
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5
Physical Layer
One of the desirable aspects of wireless sensor nodes is their ability to communicate over a
wireless link. Because of it, mobile applications can be supported; flexible deployment of
nodes is possible; and the nodes can be placed in areas that are otherwise inaccessible to
wired nodes. Once the deployment is carried out, it is possible to rearrange node placement
in order to attain optimal coverage and connectivity; and the rearrangement can be made
without disrupting the normal operation of the structure or process the nodes monitor.

However, wireless communication poses some formidable challenges. Some of these
challenges are limited bandwidth, limited transmission range, and poor packet delivery per-
formance because of interference, attenuation, and multipath scattering. In order to tackle
these challenges, it is vital to understand their properties and some of the mitigation strate-
gies that are already in place.

This chapter provides a fundamental introduction to point-to-point wireless digital com-
munication.

5.1 Basic Components

The basic components of a digital communication system are the transmitter, the channel,
and the receiver. Since wireless sensor nodes are placed close to each other in a wireless
sensor network, here short range communication is of interest. For a more comprehensive
treatment of wireless and digital communications, the reader is referred to Proakis (2000)
and Wilson (1995).

Figure 5.1 provides a block diagram of a digital communication system. The commu-
nication source in the context of this book represents one or more sensors and produces
a message signal, an analog signal. The signal is a baseband signal having dominant fre-
quency components near zero. The message signal has to be converted to a discrete signal
(discrete both in time and amplitude) in order to be processed by the processor subsystem.
The conversion requires sampling the signal at least at Nyquist rate,1 so that no information
will be lost. After sampling, the discrete signal is converted to a binary stream. This process
is called source encoding . It is essential to implement an efficient source-coding technique
so that the channel’s bandwidth and signal power requirements are satisfied. One way to

1 For a band-limited signal, the Nyquist rate sets a lower bound on the sampling frequency. Hence, the minimum
sampling rate should be twice the bandwidth of the signal.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd



96 Fundamentals of Wireless Sensor Networks

Sensors
ADC/
Source

Encoder

Channel
Encoder Modulator

RF Front End
Voltage Amplifier/Filter/Mixer

Demodulator
Channel
Decoder

Source
Decoder

Information
Sink

Power
Amplifier

Figure 5.1 Components of a digital communication system.

achieve this is by defining a probability model of the information source, so that the length
of each information symbol depends on its probability of occurrence.

The next step is channel encoding and its aim is to make the transmitted signal robust
to noise and interference. Moreover, in case of signal corruption, it enables an error to be
recognized and the original data to be recovered. There are two essential approaches: to
transmit symbols from a predetermined codebook, and to transmit redundant symbols.

After channel encoding, modulation takes place. This is a process by which the baseband
signal is transformed into a bandpass signal. Modulation is useful for various reasons, but
the main reason is to transmit and receive signals with short antennas. In general, the shorter
the wavelength of the transmitted signal, the shorter is the length of the antenna. Finally, the
modulated signal has to be amplified and the electrical energy is converted into electro-
magnetic energy (electromagnetic radiation) by the transmitter’s antenna, and the signal is
propagated over a wireless link to the desired destination.

The components of the receiver block carry out the reverse process to retrieve the mes-
sage signal from the electromagnetic waves. The receiver antenna induces a voltage that
is, ideally, similar in shape, frequency, and phase with the modulated signal. Due to vari-
ous types of losses and interferences, the magnitude and shape of the signal is changed and
has to pass through a series of amplification and filtering processes. It is then transformed
back to a baseband signal through the process of demodulation and detection. Finally, the
baseband signal undergoes a pulse-shaping process and two additional stages of decoding
(channel and source) in order to extract the sequence of symbols that represent the original
analog signal, which is the message.

5.2 Source Encoding

A source encoder transforms an analog signal into a digital sequence. The process consists
of sampling, quantizing, and encoding.
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To explain these stages, suppose a sensor produces an analog signal that can be expressed
as s(t). During the sampling process, s(t) will be sampled and quantized by the analog-to-
digital converter (ADC) that has a resolution of Q distinct values. As a result, a sequence of
samples, S = (s[1], s[2], ..., s[n]) are produced. The difference between the sampled s[j ]
and its corresponding analog value at time tj is the quantization error. As the signal varies
over time, the quantization error also varies and can be modeled as a random variable with
a probability density function, Ps(t).

The aim of the source encoder is to map each quantized element, s[j ] into a corresponding
binary symbol of length r from a codebook, C. If all the binary symbols in the codebook are
of equal length, the codebook is called a Block Code. Often, however, the symbol length as
well as the sampling rate is not uniform. It is customary, therefore, to assign short-sized sym-
bols and high sampling rates to the most probable sample values and long-sized symbols and
low sampling rates to less probable sample values. Figure 5.2 illustrates the input–output
relationship of a source encoder.

A codebook, C, can be uniquely decoded, if each sequence of symbols, (C(1), C(2), ...)

can be mapped back to a corresponding value in S = (s[1], s[2], ..., s[n]). A binary code-
book has to satisfy Equation (5.1) to be uniquely decoded.

u∑
i=1

(
1

r

)li

≤ 1 (5.1)

where u is the size of the codebook and li is the size of the codeword C(i).
A codebook can be instantaneously decoded if each symbol sequence can be extracted

(decoded) from a stream of symbols without taking into consideration previously decoded
symbols. This will be possible if and only if there does not exist a symbol in the codebook,
such that the symbol a = (a1, a2, ..., am) is not a prefix of the symbol b = (b1, b2, ..., bn),
where m < n and ai = bi, ∀i = 1, 2, ...,m within the same codebook. Table 5.1 lists differ-
ent types of codebooks.

Source Encoder
a ∈A : A = q − ray c ∈C : C = M − ray

Figure 5.2 Input – output relationship of a source encoder.

Table 5.1 Source-encoding techniques

C1 C2 C3 C4 C5 C6

s1 0 00 0 0 0 0
s2 10 01 100 10 01 10
s3 00 10 110 110 011 110
s4 01 11 11 1110 111 111

Block code No Yes No No No No
Uniquely decoded No Yes No Yes Yes Yes∑n

i=1

( 1
2

)li 1 1
4 1 1 15

16 < 1 1 1
Instantly decoded No Yes (block code) No Yes (comma code) No Yes
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5.2.1 The Efficiency of a Source Encoder

The efficiency of a source encoder is a quantity that expresses the average length,
L(C) = E[li(C)] of symbols used to represent the sampled analog signal.

Suppose the probability of a q-ary source – that is, it has q distinct symbols – producing
the symbol si is Pi and the symbol Ci in a codebook is used to encode si . The expected
length of the codebook is given by:

L(C) =
q∑

i=1

Pi · li (C) (5.2)

Sometimes, it is necessary to express efficiency in terms of the information entropy or
Shannon’s entropy. In information theory, Shannon’s entropy is defined as the minimum
message length necessary to communicate information. It is related to the uncertainty asso-
ciated with the information. If the symbol si can be expressed by a binary symbol of n bits,
the information content of si is:

I (si) = − log2 Pi = log2
1

Pi

(5.3)

The entropy (in bits) of a q-ary memoryless source encoder is expressed as:

Hr(A) = E [Ir(si)] =
q∑

i=1

P(si) · Ir(si) =
q∑

i=1

P(si) · log2
1

P(si)
(5.4)

The efficiency of a source encoder in terms of entropy reveals the unnecessary redundancy
in the encoding process. This can be expressed by:

η(C) = H(S)

L(C)
(5.5)

The redundancy of the encoder is:

L − H(S)

L
= 1 − η (5.6)

5.2.1.1 Example

Suppose the analog signal in Figure 5.3 is quantized into four distinct values, 0, 1, 2, 3.
As can be seen in the figure, some values (2) occur more frequently than others (0 and
3). If the probability of occurrence of these values can be expressed as P(0) = 0.05,

P (1) = 0.2, P (2) = 0.7, P (3) = 0.05, then, it is possible to compute the efficiency of two
of the codebooks given in Table 5.1, namely C2 and C3.

For P1 = 0.05, log2

(
1

0.05

)
= 4.3. Because li has to be a whole number and there should

be no loss of information, l1 must be 5. Likewise, l2 = 3; l3 = 1; and l4 = 5. Hence:

E[L(C2)] =
∑

j

lj · Pj = (5 × 0.05) + (3 × 0.2) + (1 × 0.7) + (5 × 0.05) = 1.8 (5.7)
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Figure 5.3 An analog signal with four possible values.

Using Equation (5.4), the entropy of C2 is calculated as:

H(C2) =0.05 log2

(
1

0.05

)
+ 0.2 log2

(
1

0.2

)

+ 0.7 log2

(
1

0.7

)
+ 0.05 log2

(
1

0.05

)
= 1.3 (5.8)

Therefore, the encoding efficiency of the codebook, C2 (see Table 5.2) is:

η(C2) = 1.3

1.8
= 0.7 (5.9)

The redundancy in C2 is:

rddC2 = 1 − η = 1 − 0.67 = 0.3 (5.10)

In terms of energy efficiency, this implies that 30% of the transmitted bits are unneces-
sarily redundant, because C2 is not compact enough.

In the same way lj is computed for C2, the expected symbol length (in bits) for C3 (see
Table 5.3) is given as:

E[L(C3)] =
∑

j

lj · Pj

= (3 × 0.05) + (2 × 0.2) + (1 × 0.7) + (3 × 0.05)

= 1.4 (5.11)

Table 5.2 Description of the compactness of C2

j aj Pj lj

1 00 0.05 5
2 01 0.2 3
3 10 0.7 1
4 11 0.05 5
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Table 5.3 Description of the compactness of C3

j aj Pj lj

1 100 0.05 3
2 11 0.2 2
3 0 0.7 1
4 110 0.05 3

Because the probabilities of the symbols are unchanged, entropy also remains unchanged.
The encoding efficiency of C3 is therefore:

η(C3) = 1.3

1.4
= 0.9 (5.12)

The redundancy, rdd, in C3 is:

rddC3 = 1 − η = 1 − 0.9 = 0.1 (5.13)

5.2.2 Pulse Code Modulation and Delta Modulation

Pulse code modulation (PCM) and delta modulation (DM) are the two predominantly
employed source encoding techniques. In digital pulse code modulation, the signal is first
quantized and then each sample is represented by a binary word from a finite set of words.
The size of the individual words as well as the number of words in the set determines the
resolution of a PCM technique and the source encoder bit rate.

In PCM information is conveyed in the presence or absence of pulses and not in the
amplitude or the location of the edges of the pulses. Because of this property, PCM greatly
enhances (almost noise free) the transmission and regeneration of binary words. The asso-
ciated cost with this form of source encoding is the quantization error and the energy and
bandwidth required to transmit multiple bits for each sampled output. Figure 5.4 illustrates
a PCM technique that uses two bits to encode a single sample. Four distinct levels are per-
missible during sampling.

Delta modulation is a digital pulse modulation technique which has found widespread
acceptance in low bit rate digital systems. It is a differential encoder and transmits bits of
information which describes the difference between successive signal values, as opposed
to the actual values of a time-series sequence. The difference signal, Vd(t), is produced by
first estimating the signal’s magnitude based on previous samples (Vi(t0)) and comparing
this value with the actual input signal, Vin(t0). The polarity of the difference value indicates
the polarity of the pulse transmitted. The difference signal is a measure of the slope of the
signal, which can be achieved by first sampling the analog signal and then by varying the
amplitude, width, or the position of the digital signal in accordance with the amplitude of
the sampled signal. Figure 5.5 illustrates delta modulation.
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Figure 5.4 A PCM based source encoding.
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Figure 5.5 Delta encoding.

5.3 Channel Encoding

The main purpose of a channel encoder is to produce a sequence of data that is robust to
noise and to provide error detection and forward error correction mechanisms. In simple
and cheap transceivers, forward error correction is costly and, therefore, the task of channel
encoding is limited to the detection of errors in packet transmission.

The physical channel sets limits to the magnitude and the rate of signal transmission.
Figure 5.6 illustrates these restrictions. According to the Shannon–Hartley theorem, the



102 Fundamentals of Wireless Sensor Networks

Amplitude

Spectrum

AMax

RMax R < RMAX

A < AMAX

Figure 5.6 Stochastic model of a channel.

capacity of a channel to transmit a message without an error is given as:

C = B · log2

(
1 + S

N

)
(5.14)

where C is the channel capacity in bits per second; B is the bandwidth of the channel in
hertz; S is the average signal power over the entire bandwidth, measured in watts; and N is
the average noise power over the entire bandwidth, measured in watts.

Equation (5.14) states that for data to be transmitted free of errors, its transmission rate
should be below the channel’s capacity. It also indicates how the signal-to-noise (SNR)
ratio, can improve the channel’s capacity. The equation reveals two independent reasons
why errors can be introduced during transmission:

1. Information will be lost if the message is transmitted at a rate higher than the channel’s
capacity. This type of error is called equivocation in information theory. It is character-
ized as a subtractive error.

2. Information will be lost because of noise, which adds irrelevant information into the
signal.

A stochastic model of the channel helps to quantify the impact of these two sources of
errors.

Suppose an input sequence of data xl that can have j distinct values, xl ∈
X = (x1, x2, ..., xj ), is transmitted through a physical channel. Let P(xl) denote
P(X = xl). The channel’s output can be decoded with a k-valued alphabet to produce
ym ∈ Y = (y1, y2, ..., yk). Let P(ym) denote P(Y = ym). At time ti , the channel generates
an output symbol yi for an input symbol xi .

Assuming that the channel distorts the transmitted data, it is possible to model distortion
(or transmission probability) as a stochastic process:

P(ym|xl) = P(Y = ym|X = xm) (5.15)

where, l = 1, 2, ..., j and m = 1, 2, ..., k.
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In the subsequent analysis of the stochastic characteristic of the channel, the following
assumptions hold:

• The channel is discrete, namely, X and Y have finite sets of symbols.
• The channel is stationary, namely, P(ym|xl) are independent of the time instance, i.
• The channel is memoryless, namely, P(ym|xl) are independent of previous inputs and

outputs.

One way of describing transmission distortion is by using a channel matrix, PC .

PC =




P(y1|x1) ... P (yk|x1)
...

...

P (y1|xj ) ... P (yk|xj )


 (5.16)

where

k∑
m=1

p(ym|xj ) = 1 ∀j (5.17)

Moreover:

P(ym) =
j∑

l = 1P(ym|xl).P (xl) (5.18)

or, more generally:

(
→
Py) = (

→
Px) · [PC] (5.19)

where both (
→
Py) and

→
Px are row matrices.

5.3.1 Types of Channels

5.3.1.1 Binary Symmetric Channel

A binary symmetric channel (BSC) is a channel model through which bits of information
(0 and 1) can be transmitted. The channel transmits a bit of information correctly (regardless
of whether 0 or 1 is transmitted) with a probability p and incorrectly (by flipping 1 to 0 and
0 to 1) with a probability 1 − p. Such a model is displayed in Figure 5.7.

The conditional probabilities for correct and incorrect transmissions are given as:

P(y0|x0) = P(y1|x1) = 1 − p (5.20)

P(y1|x0) = P(y0|x1) = p (5.21)

The channel matrix of a binary symmetric channel is, therefore given as:

PBSC =
[

(1 − p) p

p (1 − p)

]
(5.22)
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Figure 5.7 A binary symmetric channel model.
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Figure 5.8 A stochastic model of a binary erasure channel.

5.3.1.2 Binary Erasure Channel

In a binary erasure channel (BEC), there is no guarantee that the transmitted bit of informa-
tion can be received at all (correctly or otherwise). Therefore the channel is characterized as
a binary input and a ternary output channel. The probability of erasure is p and the probabil-
ity that the information is correctly received is 1 − p. In an erasure channel the probability
of error is zero. Figure 5.8 illustrates a binary erasure channel.

The channel matrix for a binary erasure channel is given as:

PBEC =
[

(1 − p) p 0
0 p (1 − p)

]
(5.23)

Equation (5.23) states that a bit of information is either transmitted successfully with
P(1|1) = P(0|0) = 1 − p or is erased altogether by the channel with a probability of p.
The probability that 0 is received by transmitting 1 or vice versa is 0.

5.3.2 Information Transmission over a Channel

Given the input message, X : (X,
Px→,H(X)), the channel matrix, [PC] and the output mes-

sage, Y : (Y,
Py→, H(Y )), it is possible to describe the impact of irrelevance and equivocation

as well as the percentage of information that can be transmitted over the channel without an
error, which is also called transinformation or mutual information.

5.3.2.1 Irrelevance

The content of information that can be introduced into the channel due to noise is
described as the conditional information content, I (y|x). It is the information content
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of y that can be observed provided that x is known. The conditional entropy is
given as:

H(y|x) = Ey[I (y|x)] =
∑
y∈Y

P (y|x) · log2

(
1

P(y|x)

)
(5.24)

P(y|x) can be known from the channel matrix [PC]. The average conditional entropy
over all input message symbols, x ∈ X, is given by:

H(Y |X) = Ex[H(Y |x)] =
∑
x∈X

P (x) ·
∑
y∈Y

P (y|x) · log2

(
1

P(y|x)

)
(5.25)

which is also equal to:

H(Y |X) = Ex[H(Y |x)] =
∑
x∈X

∑
y∈Y

P (y|x) · P(x) · log2

(
1

P(y|x)

)
(5.26)

From Baye’s law, it is clear that:

p(x, y) = P(y|x) · P(x) (5.27)

According to Equation (5.26), a good channel encoder is one that reduces the irrelevance
entropy.

5.3.2.2 Equivocation

The content of information that can be lost because of the channel’s inherent constraints can
be quantified by observing the input x given that the output y is known:

H(X|Y ) =
∑
x∈X

∑
y∈Y

P (x|y) · P(y) · log2

(
1

P(x|y)

)
(5.28)

Once again, applying Baye’s conditional probability:

P(x|y) = P(y|x) · P(x)

P (y)
= P(y|x) · p(x)∑

x∈X P (y|x) · P(x)
(5.29)

The conditional probability of Equation (5.29) is also known as the probability of infer-
ence or posterior probability. Therefore, equivocation is sometimes called inference entropy.
A good channel encoding scheme is one that has a high inference probability. This can be
achieved by introducing redundancy during channel encoding.

5.3.2.3 Transinformation

The information content I (X; Y ) that overcomes the channel’s constraints to reach the
destination (the receiver) is called transinformation. Given the input entropy, H(X), and
equivocation, H(X|Y ), the transinformation is computed as:

I (X; Y ) = H(X) − H(X|Y ) (5.30)



106 Fundamentals of Wireless Sensor Networks

I(E) I(D)

E I(E, D) N

Figure 5.9 Irrelevance, equivocation, and transinformation.

Expanding Equation (5.30) yields:∑
x∈X

P (x) · log2

(
1

P(x)

)
−
∑
x∈X

∑
y∈Y

P (x, y) · log2

(
1

P(x|y)

)
(5.31)

Rearranging the terms in Equation (5.31) also yields:

H(Y ) − H(Y |X) = I (Y ;X) (5.32)

Irrelevance, equivocation, and transinformation, are summarized in Figure 5.9.

5.3.3 Error Recognition and Correction

Apart from improving the transinformation of a channel, it is also essential to recognize
and correct errors during transmission. Error recognition can be achieved by permitting
the transmitter to transmit only specific types of words. If a channel decoder recognizes
unknown words, it attempts to correct the error or requests for retransmission (known as
automatic repeat request, ARQ). In principle, a decoder can correct only m number of errors,
where m depends on the size of the word. Error correction, or more precisely, forward error
correction, can be achieved by sending n bits of information together with r control bits.
The problem with forward error correction is that it slows down transmission.

5.4 Modulation

Modulation is a process by which the characteristics (amplitude, frequency, and phase) of
a carrier signal are modified according to the message (a baseband) signal. Modulation has
several advantages:

• the message signal will become resilient to noise;
• the channel’s spectrum can be used efficiently; and
• signal detection will be simple.

5.4.1 Modulation Types

The message signal is a baseband signal. That means, its dominant frequency components
are in the vicinity of zero. If this signal were to be transmitted over a wireless link with-
out any form of modulation, one would need a receiver antenna whose size should be
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approximately equal to one-fourth of the size of the signal’s wavelength. This is very long
and it is impractical to deploy such an antenna on wireless devices.

The alternative is to superimpose the message signal on a bandpass carrier signal whose
wavelength is very much smaller than the baseband signal. Due to several practical reasons,
sinusoidal carrier signals are used for modulation. The properties of a sinusoidal carrier
signal can be described by Equation (5.33).

sc(t) = SC sin(2πf t + φ(t)) (5.33)

where SC is the peak amplitude of the signal; f is the frequency; and φ(t) is the phase
(relative position of the signal with respect to a reference signal). A radio frequency signal
can also be described in terms of its wavelength, which is a function of the propagation speed
and the frequency. Figure 5.10 shows two sinusoidal signals that have the same frequency
and amplitude, but are also out of phase by φ degrees.

It is also customary to use polar presentation to describe the relationship between two
sinusoidal signals that have the same frequency. Figure 5.11 illustrates the relationship
between the two sinusoidal signals shown in Figure 5.10.

A message signal, sm(t), can change either the amplitude, the phase, or frequency of
sc(t). If sm(t) changes the amplitude of sc(t), the modulation is known as amplitude modu-
lation (AM). If sm(t) changes the frequency of sc(t), the modulation is known as frequency
modulation (FM). If sm(t) changes the phase of sc(t), the modulation is known as phase mod-
ulation. Likewise, sm(t) can be a digital (binary) signal, in which case, the corresponding
modulation types are called, amplitude shift keying (ASK), frequency shift keying (FSK),
and phase shift keying (PSK).

A modulation process can further be classified into coherent or noncoherent; binary or q-
ary; and power-efficient or spectrum-efficient. In a coherent modulation technique a carrier
signal of the same frequency (and ideally, of the same phase) is required to demodulate
(detect) the received signal. In a noncoherent modulation technique, no additional carrier
signal is required to demodulate the received signal. In a binary modulation, the modulating
(message) signal is binary, whereas in a q-ary modulation, the modulating signal can have m

discrete values. In a power-efficient modulation technique, the aim is to optimize the power
of the modulated signal, whereas in a spectrum-efficient modulation technique, the aim is
to optimize the bandwidth of the modulated signal.

A

t

j

Figure 5.10 Two signals having a phase difference of φ.
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Figure 5.11 Representation of a relationship between signals with a polar diagram.

5.4.1.1 Amplitude Modulation

Considering that both the carrier and the modulating signals are analog sinusoidal signals,
an amplitude modulation can mathematically be described as follows:

smod(t) = [SC × SM cos (2πfmt + φm)] cos (2πfct + φc) (5.34)

In other words, the amplitude of sc(t) is varied according to the modulating signal, sm(t).
To simplify the analysis, assume that the two signals are in phase (φm = φc = 0) and thus,
Equation (5.34) reduces to:

smod(t) = [SC × SM cos (2πfmt)] cos (2πfct) (5.35)

Applying Euler’s formula (ejωt = cos(ωt) + j sin(ωt)), Equation (5.35) reduces to:

smod(t) = SC × SM

2
[cos (2π (fc + fm) t) + cos (2π (fc − fm) t)] (5.36)

In reality, the message signal is not a mere sinusoidal signal. Instead, it is a baseband
signal that has a bandwidth of B in which the amplitude and frequency change as functions
of time. The Fourier transformation of such a baseband signal resembles that displayed in
Figure 5.12. The Fourier transformation of the carrier signal is displayed in Figure 5.13.
Hence, the spectrum of the amplitude modulated signal based on Figure 5.12 and Figure 5.13
looks like the one displayed in Figure 5.14.
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Figure 5.12 The spectrum of a baseband signal having a bandwidth of B.
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Figure 5.13 The Fourier transformation of a carrier signal having a frequency of fc.
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Figure 5.14 The Fourier transformation of an amplitude modulated signal.

Figure 5.15 illustrates the technical aspect of an amplitude modulation. The baseband
signal and the carrier signal are mixed (multiplied) by using a mixer, which is, typically, an
amplifier having a bandwidth greater than the bandwidth of the baseband signal. Afterwards
(not shown here) the signal passes through a number of amplification and filtering processes
so that the channel’s amplitude and spectrum requirements are fulfilled.

The demodulation process – the extraction of the message signal from the modulated
signal – is similar to the modulation process, but involves at least one additional process,
that is, lowpass filtering. First, the received modulated signal is mixed (multiplied) with a
carrier signal that has the same frequency and, ideally, the same phase as the original carrier
signal, SC(t). Mathematically, this is expressed as:

sdemo(t) = SC cos (2πfct) × smod(t) (5.37)
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Smcos(2pfmt)

Sccos(2pfct)

Smod(t)

X

Figure 5.15 Amplitude modulation.

Expanding Equation (5.37) yields:

sdemo(t) = SC cos (2πfct) × KSC × SM

2
[cos (2π (fc + fm) t) + cos (2π (fc − fm) t)]

(5.38)

where K	1, which signifies that the modulated signal is attenuated. Applying properties
of trigonometry, Equation (5.38) can be simplified into:

sdemo(t) = KS2
CSM

4
[cos (2π (2fc − fm) t) + cos (2π (2fc + fm) t) + 2 cos (2πfmt)]

(5.39)

As can be seen, Equation (5.39) contains the message signal and a carrier signal whose
frequency is much higher than the message signal. The two components can very easily
be separated by using a simple envelope detector consisting of a half-wave rectifier and
a lowpass filter. Figure 5.16 shows how a modulated signal is mixed with a carrier signal
generated by the local oscillator of the receiver. The result passes through a bandpass filter
(not shown here) to remove the fc component. Afterwards, a simple half-wave rectifier and
a lowpass filter are used to retrieve the message (baseband) signal.

Sccos(2pfc t)

Smcos(2pfmt)

Smod(t)

X Rectifier Low-pass
filter

Figure 5.16 Demodulating an AM carrier signal.
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5.4.1.2 Frequency and Phase Modulation

In frequency modulation, the amplitude of the carrier signal, sc(t), remains intact, but its
frequency changes according to the message signal, sm(t). Here, it is essential to restrict the
amplitude of the modulating signal such that |sm(t)| ≤ 1. Hence, the modulated signal is
described as follows:

sFM(t) = SC cos

(
2π

∫ t

0
f (τ) dτ

)
(5.40)

where
∫ t

0 f (τ)dτ is the instantaneous variation of the local oscillator’s frequency. Express-
ing this frequency variation as a function of the modulating signal yields:

sFM(t) = SC cos

(
2π

∫ t

0
[fc + fδsm(τ)] dτ

)
(5.41)

where fδ is the maximum frequency deviation of the carrier frequency, fc. Rearranging the
terms in Equation (5.41) yields:

sFM(t) = SC cos

(
2πfct + 2πfδ

∫ t

0
sm(τ)dτ

)
(5.42)

In phase modulation, the phase of the carrier changes in accordance with the message
signal.

5.4.1.3 Amplitude Shift Keying

So far, the modulated signal was considered to be analog. In digital communication, the
modulated signal is a binary stream.

Amplitude shift keying is a digital modulation technique in which the amplitude of an
analog carrier signal is varied in accordance with a binary stream. The frequency and phase
of the carrier signal remain unchanged.

There are several possibilities to realize amplitude shift keying. The simplest is to use an
on–off modulation system, as shown in Figure 5.17. Accordingly to Figure 5.17, the mixer
(multiplier) produces an output that is the multiplication of the two input signals – one of
which is the message stream and the other is the output of the local oscillator, namely, the
sinusoidal carrier signal having a frequency of fc.

Direct mixing a square wave (the bit stream) requires a mixer with an excessive band-
width, which is expensive to afford. Alternatively, an amplitude shift keying can take place
by using a pulse-shaping filter (PSF). The PSF removes high-frequency components from

X

 cos(2pfct)

Figure 5.17 Amplitude shift-keying technique using an on-off switch.
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cos(2pfct)

X

Figure 5.18 An amplitude shift-keying process using a pulse-shaping filter.

the square wave signal and approximates it with a low-frequency signal, which will then
modulate the carrier signal. This is displayed in Figure 5.18.

The demodulation process employs a mixer, a local oscillator, a PSF, and a compara-
tor. The mixer and the PSF are used to remove the high-frequency component from the
modulated signal. The comparator changes the analog wave form into a stream of bits.

5.4.1.4 Frequency Shift Keying

In frequency shift keying, the frequency of a carrier signal changes in accordance with
the message bit stream. Since the message bit stream will have either 0 or 1, the carrier
frequency also changes between two values. Figure 5.19 demonstrates how a simple switch-
ing amplifier and two local oscillators with carrier frequencies f1 and f2 can be used in
frequency shift-keying modulation. The switching amplifier is controlled by the message
bit stream.

The demodulation process requires two local oscillators (with frequency f1 and f2), two
PSFs, and a comparator, as illustrated in Figure 5.20.

5.4.1.5 Phase Shift Keying

In phase shift keying the phase of a carrier signal is changed according to the message bit
stream. The simplest form of phase shift keying is to make a phase shift of 180◦ when
the bit stream changes from 1 to 0 or vice versa. Figure 5.21 shows a phase shift-keying

f1

f2

cos(2pfct)

Figure 5.19 A frequency shift-keying modulation.
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cos(2pf2t)

f1
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X

X

Figure 5.20 Demodulation in a frequency shift-keying process.

cos(2pfct)

Figure 5.21 A phase shift-keying modulation process.

process in which a transition from 1 to 0 results in a phase shift of 180◦. The modulation
process requires a local oscillator, an inverter, a switching amplifier, and a PSF. The inverter
is responsible for inverting the carrier signal by 180◦.

Alternatively, a PSF, a mixer, and a local oscillator can be used as shown in Figure 5.22.
The demodulation process uses a local oscillator, a mixer, a PSF, and a comparator, as shown
in Figure 5.23.

X

cos(2pfct)

Figure 5.22 A phase shift-keying modulation with a PSF.
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cos (2pfct)

X

Figure 5.23 A demodulation scheme for a phase shift keying.

5.4.2 Quadratic Amplitude Modulation

So far a single message source is used to modulate a single carrier signal. This, however,
is not efficient enough. One can employ orthogonal signals to effectively exploit the chan-
nel’s bandwidth. In the QAM process (Figure 5.24), two amplitude-modulated, orthogonal
carriers are combined as a composite signal, thereby achieving double bandwidth efficiency
compared to the normal amplitude modulation. QAM is used with pulse amplitude mod-
ulation (PAM) in digital systems, especially in wireless applications. The modulated bit
stream is divided into two parallel substreams each of which independently modulates the
two orthogonal carrier signals.

The carrier signals have the same frequency, fc, but they are out of phase by 90◦. Since
the signals are orthogonal, they do not interfere with each other. One of the carriers is called
the I carrier (in-phase signal) and the other is called the Q signal (quadrature signal).

Recall that:

sQ(t) = SC cos(2πf t + 90◦) = SC sin(2πf t) (5.43)

At the receiver side, the composite modulated signal bearing the magnitude and phase
information of the Q and I signals will be mixed with two demodulating signals which are

Q
X

X
I

+

90°
sin(2pfct)

cos(2pfct)

Figure 5.24 A quadratic amplitude modulation process.
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identical in frequency but out of phase with each other by 90◦. Then the usual detection
procedure carries on to extract and aggregate (mix) the message.

Figure 5.25 shows the demodulation process of a QAM signal. The composite signal with
magnitude and phase (or I and Q) information arrives at the receiver. The input signal is
mixed with the carrier signal from the local oscillator in two forms. One has a reference
zero phase while the other has a 90◦ phase shift. The composite input signal (in terms of
magnitude and phase) is thus split into an in-phase, I , and a quadrature, Q, component.
These two components of the signal are independent and orthogonal. One can be changed
without affecting the other.

Digital modulation is easy to accomplish with I/Q modulators, which map the data to a
number of discrete points on the I/Q plane. These are known as constellation points. As
the modulated signal moves from one point to another, simultaneous amplitude and phase
modulation take place. To accomplish this with an amplitude modulator and a phase mod-
ulator is difficult and complex. Simultaneous amplitude and phase modulation can easily
be achieved with an I/Q modulator. The I and Q control signals are bounded, but infinite
phase wrap is possible by properly phasing the I and Q signals.

5.4.2.1 Modulation Efficiency

Depending on the modulation type for each substream, the relative amplitude, phase, or
frequency of the modulated signal carries part of the message bit stream. The modulation
efficiency refers to the number of bits of information that can be conveyed in a single sym-
bol. In a QAM, the composite carrier signal contains two orthogonal signals. The amplitude
and phase of these signals are modified according to the message bit stream. Inasmuch
as a receiver is sensitive enough to detect the relative differences in magnitude and phase
between these two signals, much information can be conveyed with a single state of the com-
posite carrier signal. However, there is a tradeoff between the compactness of the modulated
technique and the receiver’s complexity.

To evaluate the efficiency of a modulation technique, it is important to distinguish between
symbol rate and bit rate. Bit rate refers to the frequency of a system’s bit stream. A symbol
rate, also referred to as a baud rate, refers to the bit rate divided by the number of bits that can

Q

sin(2pfct)

cos(2pfct)

90°

I

X

X

Figure 5.25 Demodulating a QAM signal.
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01 00

10 11

Figure 5.26 Binary phase shift keying: 2 bits per symbol.

be transmitted with each symbol. For example, a 10-bit ADC that samples an accelerometer
sensor at a rate of 1 kHz has a bit stream of 10 bits multiplied by 1 kHz samples per second,
or 10 kbps.

Now consider a quadrature phase shift keying (QPSK) digital modulation, in which a
phase difference of 90◦ between the I and Q carrier signals indicates a message of 1 or 0.
As can be seen in Figure 5.26, four distinct states of the composite carrier signal can be
discriminated by the demodulator. Since the message signal is in binary form, the four states
can be represented by two bits: 00, 01, 10, 11. Subsequently, the symbol rate is half of the
bit rate. For the ADC example, the symbol rate is 5 kbps.

In an eight-state phase shift keying modulation, the phase of the composite carrier signal
can have eight distinct states which can be mapped into eight distinct symbols by the demod-
ulator. Since the eight symbols can be represented by 3 bits, the symbol rate is one-third of
the bit rate. In other words, the spectrum required by an eight-state phase shift keying is
one-third of the spectrum required by a binary phase shift keying modulator. However, the
efficiency in spectrum is achieved at the cost of complex system design. Unlike the QPSK
modulator, the 8PSK modulator (Figure 5.27) should be able to discriminate eight different
transitions in phase of the composite carrier signal.

010 001

000

111

110101

100

011

Figure 5.27 8PSK modulation with 3 bits per symbol.
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5.4.3 Summary

The choice of a modulation technique depends on the design goals of the communication
subsystem. There is a tradeoff between power consumption, spectrum efficiency, and cost. A
power efficient modulator enables a communication system to reliably transmit information
at the lowest practical power cost. A spectrally efficient modulator enables a communication
subsystem to send as many bits of information as possible within a limited bandwidth. Power
and spectrum efficiency cannot be achieved at the same time.

For terrestrial links, such as microwave radios, the concern is bandwidth efficiency with
low bit-error-rate. Since sufficient power is available, power efficiency is not a concern.
Moreover, for such types of links, the receiver’s cost or complexity are not usually prior
concerns. In wireless sensor networks, power efficiency is a major concern while bandwidth
is not, as the nodes produce small-volume data. The cost of the transceivers is also of prime
concern in large-scale deployments. Subsequently, the communication subsystems sacrifice
bandwidth efficiency to achieve power and cost efficiency.

5.5 Signal Propagation

Wireless sensor networks operate in the license-free ISM spectrum (see Table 5.4) and there-
fore, they must share the spectrum with and accept interference from devices that operate in
the same spectrum – such as cordless phones, WLAN, Bluetooth, Microwave ovens, etc.

A simple channel model (Figure 5.28) ignores the effect of interference and considers the
surrounding noise as the predominant factor that affects the transmitted signal. Furthermore,
the noise can be modeled as an additive white Gaussian noise (AWGN) that has a constant
spectral density over the entire operating spectrum and a normal amplitude distribution. In
this model, the noise distorts the amplitude of the transmitted signal.

There are two approaches to deal with noise. First, one can increase the received power so
that the signal-to-noise ratio is significantly high and the channel becomes agnostic to noise.

Table 5.4 The Industry, Scientific and Medical (ISM) spectrum as defined by the ITU-R

Spectrum Center frequency Availability

6.765–6.795 MHz 6.780 MHz Subject to local regulations
13.553–13.567 MHz 13.560 MHz
26.957–27.283 MHz 27.120 MHz
40.66–40.70 MHz 40.68 MHz
433.05–434.79 MHz 433.92 MHz Europe, Africa, the Middle East west of the Persian

Gulf including Iraq, the former Soviet Union and
Mongolia

902–928 MHz 915 MHz The Americas, Greenland and some of the eastern
Pacific Islands

2.400–2.500 GHz 2.450 GHz
5.725–5.875 GHz 5.800 GHz
24–24.25 GHz 24.125 GHz
61–61.5 GHz 61.25 GHz Subject to local regulations
122–123 GHz 122.5 GHz Subject to local regulations
244–246 GHz 245 GHz Subject to local regulations



118 Fundamentals of Wireless Sensor Networks

Additive white Gaussian noise
(AWGN)

Received
signal

Transmitted
signal

+

Figure 5.28 An additive white Gaussian noise channel.

Second, one can use a spread spectrum technique to distribute the energy of the transmitted
signal so that a wider effective bandwidth can be achieved.

The received power can be improved by adjusting a number of parameters at the side of
the transmitter as well as the receiver. The relationship between the received power and the
transmitted power can be expressed using Figure 5.29.

Suppose the power amplifier – the final stage in the transmitter before the electric sig-
nal is converted into electromagnetic waves – outputs a constant transmission power, Pt , to
transmit the signal over a distance of ρ. The relationship between the transmitter’s antenna
gain, gt , and the antenna’s effective area, At , is expressed as:

At = gt

λ2

4π
(5.44)

where λ is the wavelength of the carrier signal.
At the receiver’s side, the transmitted signal will be received and the received power is a

function of the distance, the path loss index, and the receiver’s antenna gain and effective
area. For a line-of-sight (LOS) communication link, the path loss index is 2; for a non-LOS
communication link, it lies between 2 and 4. Consequently, the relationship between the
received power and the transmitted power for a LOS link is expressed as:

Modulation
Frequency
translation

Power
amplifier

Local
oscillator

Receiver
Pt

Pr

r

Figure 5.29 Relationship between the transmitted power and the received power.
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Pr = Pt

4πρ2
gt × Ar (5.45)

where ρ is the distance that separates the transmitter and the receiver. Since the receiver’s
antenna gain, gr , and the effective area, Ar , are related, Equation (5.45) can be reformulated:

Pr = Pt

4πργ
gt × gr

λ2

4π
(5.46)

The ratio of the transmitted power to the received power, P t/P r is the propagation loss
and it is customary to quantify this ratio in decibels (dBs).

a(t) = Pt

Pr

=
(

4πρ

λ

)
× 1

grgt

(5.47)

Hence, the propagation loss expressed in dBs is:

a(t)/dB = 20 log

(
4πρ

λ

)
− 10 log (grgt ) (5.48)

The term 20 log (4πρ/λ) is called the basic transmission loss and is independent of the
transmitter and receiver antennas.

Exercises

5.1 How can a single ADC be employed by multiple sensors to convert their analog output
into corresponding discrete sequences?

5.2 Suppose a discrete memoryless channel (DMS) source emits symbols from the ternary
alphabet A = {−1, 0, 1} with a probability, P(−1) = 0.5, P (0) = P(1) = 0.25. If the
source can also be configured such that instead of emitting one symbol at a time, it can
emit two symbols (A2) with a probability that is the multiplication of the probabilities
of the individual symbols, show that the entropy of the second configuration is two
times greater than the entropy of the first configuration.

5.3 The following codes are given:

C1 = {1, 10, 01}
C2 = {0, 00001}
C3 = {0, 10, 11}
C4 = {01, 11}
C5 = {0, 00, 000}
(a) Which of the given codes are uniquely decodable?
(b) Which of the given codes are instantaneously decodable?
(c) Which of the given codes can be an optimal prefix-free code for some probability

assignment?
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5.4 Suppose an information source emits symbols from an alphabet X = {x1, ..., x8} with
corresponding probabilities {0.2, 0.35, 0.15, 0.1, 0.09, 0.06, 0.04, 0.01}.
(a) Calculate an upper bound on the average codeword length achievable with a binary

Shannon or Huffman code if single symbols are encoded at a time.
(b) Construct a binary Huffman code for the given source.
(c) Calculate the average codeword length achieved by the Huffman code and com-

pare it with the calculated bounds.

5.5 Refer to the analog signal shown in Figure 5.30.

(a) How can the signal be encoded with a 3-bit PCM?
(b) How can the signal be encoded with a delta encoder?
(c) Illustrate how a PCM encoder with a codebook of different symbol length can be

used to efficiently encode the signal.
(d) Manchester coding is a line encoding technique that is useful for minimizing the

effect of DC voltage during data transmission and for dynamic clock recovery.
Illustrate how the PCM stream can be encoded with a Manchester coding.

(e) Now instead of Manchester coding, encode the PCM stream with a differential
Manchester coding.

T 2T 3T 4T (n−2)T nT t

Figure 5.30 Source coding an analog signal.

(f) Discuss the difference between the bit streams generated by the Manchester and
differential Manchester encoding techniques.

5.6 The feedback loop shown in Figure 5.31 is a very useful concept in linear systems. It
is the basic principle for designing stable amplifiers and oscillators. Moreover, most
receivers employ the feedback loop to set up an automatic gain control (AGC) to
ensure that the power of the received message signal remains constant despite changes
in the channel’s properties. The feedback loop is characterized by the overall loop gain,
which is the ratio of the output voltage to the input voltage, Gloop = Vout/Vin. Calculate
the overall loop gain, Gloop.

Vin

Vf

VoutG+

B

Figure 5.31 A feedback loop.
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5.7 The half-wave rectifier shown in Figure 5.32 is one of the two components of an enve-
lope detector which is responsible for extracting the baseband message signal from the
carrier. Sketch the output of the rectifier for the corresponding sinusoidal input signal.

Vin

Vin

Vout

Vout

+

_

i

tt

Figure 5.32 A half-wave rectifier.

5.8 Now instead of the half-wave rectifier, the full-wave bridge rectifier shown in
Figure 5.33 is used. How does the output wave form look?

Vin

Vin

Vout

Vout

+

−

t

i

t

Figure 5.33 A full-wave bridge rectifier.

5.9 A lowpass filter is required to separate the baseband signal from the carrier in an ampli-
tude modulated signal. Explain how the lowpass filter shown in Figure 5.34 can be used
for this purpose.

+

−

Vin Vout

R

C

i

Figure 5.34 An RC lowpass filter.
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Based on Figure 5.34, derive an expression for:

(a) The voltage drops across the resistor and the capacitor.
(b) The current that circulates in the filter.
(c) The transfer function, HC(s) = Vout(s)/Vin(s), where s = jω is the Laplace oper-

ator.

5.10 A modulating signal, m(t) = 5 cos(2π 1 kHz t), is used to amplitude modulate a car-
rier signal, c(t) = 10 cos(2π 100 MHz t).

(a) Compute the time domain expression of the modulated signal.
(b) Compute the frequency domain expression of the modulated signal.
(c) Suppose the message signal is sampled at a period T using the Dirac delta function

as shown in Figure 5.35. What does the spectrum of the sampled signal look like?

m (t) m (nt)X

s(t) = Σ d(t − nT )
∞

−∞

Figure 5.35 Sampling a modulating signal with Dirac’s delta function.

(d) What precondition should be satisfied in order to reconstruct the continuous mod-
ulating signal from the sampled sequences?

5.11 The path loss index, γ , describes how an electromagnetic wave is attenuated as it prop-
agates through a space. In free space, where there is no obstacle between the transmitter
and the receiver, γ = 2. That means that the power of a propagating electromagnetic
wave falls as the function of the square of a distance – Pr ≈ Pt/4πρ2, where ρ is the
distance in meters. If, however, there is an obstacle between the transmitter and the
receiver, this figure is greater than 2. Figure 5.36 displays a simple model in which
the electromagnetic wave reaches the receiver after being reflected once. Derive an
expression of the path loss index for the model. Assume that the reflector is an ideal
reflector and that there is a line-of-sight link between the transmitter and the reflector
and the receiver and the reflector. Assume also that ρ�h.

5.12 Figure 5.37 displays the block diagram of a part of a receiver. It consists of an omnidi-
rectional antenna, a RF amplifier, a local oscillator, an intermediate-frequency ampli-
fier, and a detector (an envelope detector). While it is possible to detect the modulating
signal after mixing the received, modulated signal with the local carrier signal, it is
useful to have the intermediate state.

(a) Why is the intermediate frequency amplifier desirable?
(b) Suppose the receiver is used for receiving an amplitude modulated signal. How

can the intermediate frequency be obtained?
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Figure 5.36 Single reflection model for an electromagnetic propagation.
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Figure 5.37 Block diagram of a receiver.

5.13 What type of roles do the transmitter’s and the receiver’s antennas play to enhance
signal propagation and reception?

5.14 Why is a considerable amount of power wasted at the power amplifier of a transmitter?

5.15 Explain the tradeoff between modulation efficiency and design complexity in quadra-
ture amplitude modulation.
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6
Medium Access Control
In most networks, multiple nodes share a communication medium for transmitting their data
packets. The medium access control (MAC) protocol (often referred to as a sublayer of the
data link layer of the OSI reference model) is primarily responsible for regulating access to
the common medium. Most sensor networks and sensing applications rely on radio transmis-
sions in the unlicensed ISM (Industrial, Scientific, and Medical) band, which may result in
communications significantly affected by noise and interferences. The choice of MAC pro-
tocol has a direct bearing on the reliability and efficiency of network transmissions due to
these errors and interferences in wireless communications and to other challenges such as the
hidden-terminal and exposed-terminal problems. Other Further concerns include signal fad-
ing, simultaneous medium access by multiple nodes, and asymmetric (unidirectional) links.
Since energy efficiency is a primary concern in a wireless sensor network, it also affects the
design of the MAC protocol. Energy is not only consumed for transmitting and receiving
data, but also for sensing the medium for activity (idle listening). Other reasons for energy
consumption include data retransmissions (e.g., due to collisions), packet overheads, con-
trol packet transmissions, and transmit power levels that are higher than necessary to reach a
receiver. It is common for a MAC protocol in WSNs to trade energy efficiency for increased
latency or a reduction in throughput or fairness. This chapter reviews the responsibilities
of the MAC layer in general, discusses the characteristics of MAC protocols for WSNs,
describes the main classes of MAC protocols for wireless communication, and provides
descriptions of a selection of MAC protocols for WSNs.

6.1 Overview

The wireless medium must be shared by multiple network devices, therefore a mechanism
is required to control access to the medium. This responsibility is carried out by the second
layer of the OSI reference model (Figure 6.1), called the data link layer. According to the
IEEE 802 reference model (also shown in Figure 6.1), this layer is further divided into the
logical link control layer and the medium access control layer. The MAC layer operates
directly on top of the physical layer, thereby assuming full control over the medium. The
main function of the MAC layer is to decide when a node accesses a shared medium and to
resolve any potential conflicts between competing nodes. It is also responsible for correcting
communication errors occurring at the physical layer and performing other activities such
as framing, addressing, and flow control.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd
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Figure 6.1 The MAC layer in the IEEE 802 reference model.

Existing MAC protocols can be categorized by the way they control access to the medium.
Figure 6.2 shows an example of such a categorization. Most MAC protocols fall either into
the categories of contention-free or contention-based protocols. In the first category, MAC
protocols provide a medium sharing approach that ensures that only one device accesses
the wireless medium at any given time. This category can further be divided into fixed
and dynamic assignment classes, indicating whether the slot reservations are fixed or on-
demand. In contrast to contention-free techniques, contention-based protocols allow nodes
to access the medium simultaneously, but provide mechanisms to reduce the number of
collisions and to recover from such collisions. Finally, some MAC protocols do not eas-
ily fit into this classification since they share characteristics of both contention-free and
contention-based techniques. These hybrid approaches often aim to inherit the advantages
of these main categories, while minimizing their weaknesses.
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Figure 6.2 Categories and examples of medium access protocols.
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6.1.1 Contention-Free Medium Access

Collisions can be avoided by allocating resources to nodes such that each node can use its
resources exclusively. For example, the frequency division multiple access (FDMA) pro-
tocol is one of the oldest methods of sharing a communication medium. In FDMA, the
frequency band is divided into several smaller frequency bands, which can be used for data
transfer between a pair of nodes, while all other nodes that could potentially interfere with
this transfer use a different frequency band. Similarly, the time division multiple access
(TDMA) protocol allows multiple devices to use the same frequency band, but it uses peri-
odic time windows (called frames), consisting of a fixed number of transmission slots, to
separate the medium accesses of different devices. A time schedule indicates which node
may transmit data during a certain slot, that is, each slot is assigned to at most one node.
The main advantage of TDMA is that nodes do not have to contend to access the medium,
thereby avoiding collisions. A downside of TDMA is that changes in the network topology
necessitate changes to the slot allocations. Further, TDMA protocols can be inefficient in
their bandwidth utilization when slots are of fixed size (and packet sizes can differ) and
when slots allocated to a node are not used in every frame iteration. A third class of MAC
protocols is based on the concept of code division multiple access (CDMA), where simul-
taneous accesses of the wireless medium are supported using different codes . If these codes
are orthogonal, it is possible for multiple communications to share the same frequency band,
where forward error correction (FEC) at the receiver is used to recover from interferences
among these simultaneous communications.

Fixed assignment strategies can be inefficient in that it is typically not possible to re-
allocate slots belonging to one device to other devices if not needed in every frame. Also,
generating schedules for an entire network (especially in large-scale wireless sensor net-
works) can be a taunting task and these schedules may require modifications every time
the network topology or traffic characteristics in the network change. Therefore, dynamic
assignment strategies avoid such rigid allocations by allowing nodes to access the medium
on demand. For example, in polling-based protocols, a controller device (e.g., a base station
in the case of an infrastructure-based wireless network), issues small polling frames in a
round-robin fashion, asking each station if it has data to send. If a station has no data to
be sent, the controller polls the next station. A variant of this approach is token passing ,
where stations pass a polling request to each other (again in a round-robin fashion) using
a special frame called a token. A station is allowed to transmit data only when it holds the
token. Finally, reservation-based protocols use static time slots to allow nodes to reserve
future access to the medium based on demand. For example, a node can indicate its desire
to transmit data by toggling a reservation bit in a fixed location. These often very complex
protocols then ensure that other potentially conflicting nodes take note of such a reservation
to avoid collisions.

6.1.2 Contention-Based Medium Access

In contrast to contention-free techniques, contention-based protocols allow nodes to con-
tend to access the medium simultaneously, but provide mechanisms to reduce the number
of collisions and to recover from such collisions. For example, the ALOHA (Kuo 1995)
protocol uses acknowledgments to confirm the success of a broadcast data transmission.
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Figure 6.3 Hidden and exposed terminal problem.

ALOHA allows nodes to access the medium immediately, but addresses collisions with
approaches such as exponential backoff to increase the likelihood of successful transmis-
sions. The slotted-ALOHA protocol tries to reduce the probability of collisions by requiring
that a station may commence transmission only at predefined points in time (the beginning
of a time slot). While the slotted-ALOHA increases the efficiency of ALOHA, it also intro-
duces the need for synchronization among nodes.

A popular contention-based MAC scheme is the Carrier Sense Multiple Access (CSMA)
approach, including its variations Collision Detection (CSMA/CD) and Collision Avoid-
ance (CSMA/CA). In CSMA/CD-based schemes, the sender first senses the medium to
determine whether it is idle or busy. If it is found busy, the sender refrains from trans-
mitting packets. If the medium is idle, the sender can initiate data transmission. In wired
systems, the sender continues to listen to the medium to detect collisions of its own data
with other transmissions. However, in wireless systems, collisions occur at the receiver, and
the sender will therefore be unaware of a collision. The hidden-terminal problem occurs
when two sender devices A and C are able to reach a receiver device B, but cannot over-
hear each other’s signals (see Figure 6.3, where circles indicate transmission and interfer-
ence ranges of nodes). Therefore it is possible for A and C to transmit data to B at the
same time, causing a collision at B, without being able to directly detect this collision.
A related problem is the exposed-terminal problem, where C wants to transmit data to a
fourth node D, but decides to wait because it overhears an ongoing transmission from B
to A. However, B’s transmission will not interfere with data reception at D since D is out-
side the transmission range of B. As a consequence, node C’s decision to wait delays its
transmission unnecessarily. Many MAC protocols for WSNs attempt to address these two
challenges.

6.2 Wireless MAC Protocols

A variety of wireless MAC protocols and standards are available today and this section
provides an overview of the most common approaches. While these protocols may not
be the best choices for wireless sensor networks, they introduce basic concepts, many
of which can be found in protocols targeted specifically at sensor networks and their
constraints.
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6.2.1 Carrier Sense Multiple Access

Many contention-based protocols for wireless sensor networks rely on the concept of
CSMA. The main difference between CSMA and ALOHA is that, in CSMA, nodes first
sense the medium before they begin a transmission. This reduces the number of collisions.
In non-persistent CSMA, a wireless node is allowed to immediately transmit data once it
finds the medium idle. If the medium is busy, the node performs a backoff operation, that
is, it waits for a certain amount of time before attempting to transmit again. In contrast,
in 1-persistent CSMA, a node wishing to transmit data continuously senses the medium
for activity. Once the medium is found idle, the node transmits its data immediately. If a
collision occurs, the node waits for a random period of time before attempting to transmit
again. In p-persistent CSMA, the node also continuously senses the medium, but transmits
data with a probability p once the medium becomes idle and delays transmission with
a probability 1 − p. Random backoff values are either continuous values in the case of
unslotted CSMA or multiples of a fixed slot size in slotted CSMA.

CSMA/CA (CSMA with Collision Avoidance) is a variation of CSMA that aims to
improve the performance by avoiding collisions. In CSMA/CA, nodes sense the medium,
but do not immediately access the channel when it is found idle. Instead, a node waits for a
time period called DCF interframe space (DIFS) plus the random backoff value, which is a
multiple of a slot size (see Figure 6.4). In case there are multiple nodes attempting to access
the medium, the one with the shorter backoff period will win. For example, in Figure 6.4,
node A waits for DIFS + 4 × s (where s represents the slot size), while node B’s backoff is
DIFS + 7 × s. Once node A begins with its transmission, node B freezes its own backoff
timer and resumes the timer after node A completes its transmission plus another period of
DIFS. Finally, once node B’s backoff timer expires, it can also begin its transmission.

6.2.2 Multiple Access with Collision Avoidance (MACA) and MACAW

Other collision avoidance schemes rely on a dynamic reservation mechanism such as ready-
to-send (RTS) and clear-to-send (CTS) control packets as in MACA (Karn 1990). With RTS,
a sender device indicates its desire to transmit a data packet to an intended receiver. If the
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RTS arrives without collision and the receiver is ready to receive the packet, it responds with
a CTS control message. If a sender does not receive a CTS in response to its RTS, it will
retry at a later time. However, if the CTS message has been received, the channel reservation
has concluded successfully. Other nodes that overhear either the RTS or CTS message know
that a data transfer will occur, and they wait before they attempt to reserve the channel. In
MACA, this wait time can be based upon the size of the data transmission, which can be
indicated as part of the RTS and CTS messages. Using this handshake, MACA addresses
the hidden terminal problem and reduces the number of collisions by reserving the medium
for data transmissions.

In MACAW (Bharghavan et al. 1994) (MACA for Wireless LANs), the receiver responds
with an acknowledgment (ACK) control message once the packet has been received cor-
rectly, allowing other nodes to learn that the channel is available again and to increase the
reliability of transmissions. The consequence is that nodes overhearing an RTS message
must remain silent to ensure that the sender of the RTS is able to receive the ACK. Nodes
that overheard RTS, but did not acknowledge CTS, do not know whether they did not hear
the CTS signal because they are out of reach of the destination or because the CTS message
was never sent. In either case, they will also not hear the ACK from the destination, that is,
they must stay silent until the expected completion time of the transmission, based on the
information carried in the RTS message. However, if no CTS was sent, they remain silent
and delay their own transmission, even though no interfering transmissions are occurring.
Therefore, the MACAW protocol introduces another control packet, called the data sending
(DS) message. The DS message is sent by the node issuing the RTS message after receiv-
ing the corresponding CTS message to confirm that a transmission will actually take place.
A node overhearing an RTS message, but not the corresponding DS message, may assume
that the medium reservation has failed and can attempt to reserve the medium for its own
communication.

6.2.3 MACA By Invitation

Another improvement is provided in the MACA By Invitation (MACA-BI) Protocol
(Talucci et al. 1997), where a destination device initiates data transfers by sending a Ready
To Receive (RTR) packet to the source. The source then responds with the data message.
Compared to MACA, MACA-BI reduces the overhead (thereby increasing the theoretical
maximum throughput), but it depends on the destination knowing when to receive data.
Source nodes can use an optional field within the data message to indicate the number
of queued messages, thereby providing the destination with an indication that more RTS
packets will be required.

6.2.4 IEEE 802.11

In 1999, the Institute of Electrical and Electronics Engineers (IEEE) published the 802.11
wireless LAN standard, specifying the physical and data link layers of the OSI model
for wireless connections. This section briefly introduces some characteristics of this set
of protocols, due to its pervasiveness and popularity. IEEE 802.11 is also often referred
to as “Wireless Fidelity” (Wi-Fi), a certification given by the Wi-Fi Alliance, a group
which ensures compatibility between hardware devices that use the 802.11 standard. Wi-Fi
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combines concepts found in CSMA/CA and MACAW, but also offers features to preserve
energy.

IEEE 802.11 can be used in the point coordination function (PCF) or the distributed
coordination function (DCF) mode. In the PCF mode, communication among devices goes
through a central entity called an access point (AP) or a base station (often referred to as the
managed mode). In the DCF mode, devices communicate directly with each other (referred
to as the ad hoc mode). IEEE 802.11 is based on CSMA/CA, that is, before a node trans-
mits, it first senses the medium for activity. If the medium is idle for at least a time period
called the DCF interframe space (DIFS), the node is allowed to transmit (see Figure 6.5).
Otherwise the device executes a backoff algorithm to defer transmission to a later time. This
algorithm randomly selects a number of time slots to wait and stores this value in a backoff
counter. For every time slot that passes without activity on the network, the counter is decre-
mented and the device can attempt transmission when this counter reaches zero. If activity
is detected before the counter reaches zero, the device waits until the channel has been idle
for a period of DIFS before it continues to decrement the counter value.

After a successful transmission, a receiver device responds with an acknowledgment after
waiting for a time period called the short interframe space (SIFS). The value of SIFS is
smaller than the value of DIFS to ensure that no other device accesses the channel before
the receiver can transmit its acknowledgment.

Once a node A makes a reservation using RTS and CTS control messages, another neigh-
boring node B, overhearing the RTS message, must refrain from accessing the medium until
node A’s transmission has been completed and acknowledged. However, this could mean
that node B had to continuously sense the medium to detect when it becomes idle again.
Instead, A’s RTS message carries the size of the data it will transmit, allowing node B to esti-
mate how long the transmission will take and to decide whether to enter a low-power sleep
mode. Some neighboring nodes may only overhear the CTS message the intended receiver
sends to node A, but not node A’s RTS message. Therefore, the data size information is also
carried in the corresponding CTS response. Using the data size information, neighboring
nodes set a network allocation vector (NAV) that indicates how long the medium will be
unavailable (Figure 6.5). The use of NAV reduces the need for continuously sensing the
medium, allowing a node to save power.

In the PCF mode, the access point coordinates channel access to ensure collision-free
communication. The AP periodically broadcasts a beacon to its client devices, which
includes a list of all devices that have packets pending at the AP. During the contention-free
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period, the AP then transmits these packets to its client devices. Optionally, it can also poll
client devices to allow them to initiate data transfer to the AP. In the contention-free period,
the AP uses a wait period called the PCF interframe space (PIFS), which is shorter than
DIFS, but longer than SIFS. This ensures that PCF traffic has priority over traffic generated
by devices operating in the DCF mode, without interfering with control messages in the
DCF mode such as CTS and ACK.

The focus of IEEE 802.11 is on providing fair access to the medium with support for high
throughput, and mobility. However, since devices spend a large amount of time listening to
the medium and collisions occur frequently, this standard incurs large overheads, including
significant energy costs. To address the energy consumption problem, IEEE 802.11 offers
a power saving mode (PSM) for devices in the PCF mode. Devices can inform the AP that
they wish to enter a low-power sleep mode using special control messages. These devices
still wake up periodically to receive beacon messages from the AP to determine if they must
stay awake to receive incoming messages. While the PS mode improves the problem of
energy waste, it only works for the infrastructure mode and it is not specified when or how
long devices should sleep (Ye et al. 2004).

6.2.5 IEEE 802.15.4 and ZigBee

The IEEE 802.15.4 standard (Gutierrez et al. 2001) was created for low-power devices that
operate in the 868 MHz, 915 MHz, and 2.45 GHz frequency bands. The data rates supported
by this standard are 20, 40, and 250 kbps; rather modest compared to other protocols such
as IEEE 802.11 (e.g., IEEE 802.11a offers data rates of up to 54 Mbps). Before this stan-
dard was developed, the ZigBee Alliance worked on a low-cost communication technology
for low data rates and low power consumption. The IEEE and the ZigBee Alliance ulti-
mately joined forces and ZigBee has become the commercial name for the IEEE 802.15.4
technology.

The standard further offers two topology modes: star and peer-to-peer. In the star
topology, similar to Bluetooth, all communication occurs through the Personal Area
Network (PAN) coordinator. In the peer-to-peer approach, devices are free to communicate
directly with each other. However, they still must associate with the PAN coordinator before
they can participate in peer-to-peer communication. In the star topology, there are two types
of modes: the synchronized (or beacon-enabled) mode and the unsynchronized mode. In
the synchronized mode, the PAN coordinator periodically broadcasts beacon messages for
synchronization and management purposes. The synchronization is used to perform slotted
channel access, so that a device performs a random backoff before the channel is sensed. If
there is no channel activity, the device waits until the next slot and senses the channel again
until no activity has been detected for two consecutive slots (after the initial backoff time).
If activity has been detected, the backoff procedure is repeated, otherwise the channel
can be accessed. The only difference in the unsynchronized mode is that the device can
access the channel immediately when no activity has been detected during the first initial
backoff time.

Data transfer between the device and its PAN coordinator is always initiated by the device,
allowing a device to determine when data is transferred and to maximize its energy savings.
When a device wants to send data to the PAN coordinator, it may do so at any time using
the channel access method described above. The PAN coordinator transmits data intended
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for a device only after the device explicitly requested such a transmission. In both cases,
optional acknowledgments can be used to let the PAN coordinator or device know that the
transmission was successful.

While IEEE 802.15.4 has found widespread use in WSNs, there are a number of problems
with this standard. For example, while the message exchange and operation are well defined
for the star topology, the standard does not clearly define the operation of the peer-to-peer
approach. In large WSNs, it is unlikely that all devices will be able to use the same PAN
coordinator. Even though the standard does allow communication among PAN coordinators,
this again is not well defined.

6.3 Characteristics of MAC Protocols in Sensor Networks

Most MAC protocols are built for fairness, that is, everybody should get an equal amount
of resources (access to the wireless medium) and no one should receive special treatment.
In a WSN, all nodes cooperate to achieve a common purpose, therefore fairness is less of a
concern. Instead, wireless nodes are mostly concerned with energy consumption and sensing
applications may value low latency or high reliability over fairness. This section discusses
the main characteristics and design goals for MAC protocols of WSNs.

6.3.1 Energy Efficiency

Sensor nodes must operate using finite energy sources (batteries), therefore MAC proto-
cols must be energy-efficient. Since MAC protocols have full control over the wireless
radio, their design can contribute significantly to the overall energy requirements of a sensor
node. A common technique to preserve energy is described as dynamic power management
(DPM), where a resource can be moved between different operational modes such as active,
idle, and asleep. For resources such as the network, the active mode can group together
multiple different mode of activity, for example, transmitting and receiving. Without power
management, most transceivers switch between transmit, receive, and idle modes, although
the receive and idle modes are typically similar in their power consumption. However, dra-
matic energy savings can be obtained by putting the device into the low-power sleep mode.
Periodic traffic models are very common for sensor networks (e.g., environmental moni-
toring) and many networks can benefit from MAC schemes that do not require nodes to be
active at all times. Instead they allow nodes to obtain periodic access to the medium for
transmission of data and to put their radios into low-power sleep modes between periodic
transmissions. The fraction of time a sensor node spends in active mode is called the duty
cycle, which is often very small due to the infrequent and brief data transmissions occurring
in most sensor networks.

Table 6.1 compares the energy requirements of wireless radios in several widely deployed
sensor nodes. The table shows the maximum data rate of each radio and the current con-
sumption for the transmit, receive, idle, and standby operations. The Mica and Mica2 motes
employ the Atmel ATmega 128L microcontroller (8-bit RISC processor, 128 KB flash mem-
ory, 4 KB SRAM) and use an RFM TR1000/TR3000 transceiver module (Mica) or a Chip-
con CC1000 (see CC1000 2004) transceiver module (Mica2). The values shown for the
CC1000 radio are for the 868 MHz mode. In addition to the standby mode, the Freescale
MC13202 (see MC13202 2008) transceiver module also supports “hibernate” and “sleep”
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Table 6.1 Characteristics of typical radios used by state-of-the-art sensor nodes

RFM TR1000 RFM TR3000 MC13202 CC1000 CC2420

Data rate (kbps) 115.2 115.2 250 76.8 250
Transmit current 12 mA 7.5 mA 35 mA 16.5 mA 17.4 mA
Receive current 3.8 mA 3.8 mA 42 mA 9.6 mA 18.8 mA
Idle current 3.8 mA 3.8 mA 800 µA 9.6 mA 18.8 mA
Standby current 0.7 µA 0.7 µA 102 µA 96 µA 426 µA

modes with 6 and 1 µA respectively. Finally, the CC2420 (see CC2420 2004) transceiver
module is used by the XYZ sensor node and Intel’s Imote.

In addition to “idle listening” (i.e., a device staying in idle mode unnecessarily), over-
heads are also caused by inefficient protocol designs (e.g., large packet headers), reliability
features (e.g., collisions requiring retransmissions or other error control mechanisms), and
control messages to address the hidden-terminal problem. The choice of modulation scheme
and transmission rate further affects the resource and energy requirements of a sensor node.
Finally, most modern radios can adjust their transmit power, thereby adapting not only the
range of communications, but also the energy consumption. “Overemitting”, that is, using
larger transmit powers than necessary, is another contributor to excessive energy consump-
tion on a sensor node.

6.3.2 Scalability

Many wireless MAC protocols have been designed for use in infrastructure-based
networks, where access points or controller nodes arbitrate access to the channel or perform
some other centralized coordination and management functions. Most wireless sensor
networks (WSNs) rely on multi-hop and peer-to-peer communications without centralized
coordinators and they can consist of hundreds or thousands of nodes. As a consequence,
MAC protocols must be able to allow for efficient use of resources without incurring
unacceptable overheads, particularly in very large networks. For example, centralized
protocols would incur significant overheads for the distribution of medium access schedules
and are therefore unsuitable for many WSNs. MAC protocols based on CDMA may have
to cache a large number of codes, which may be impractical for resource-constrained
sensor devices. In general, wireless sensor nodes are not only constrained in their energy
resources, but also in their processing and memory capacities. Therefore, protocols must
not impose excessive computational burden or require too much memory to save state
information.

6.3.3 Adaptability

A key characteristic of a WSN is its ability to self-manage, that is, it can adapt to changes in
the network, including changes in topology, network size, density, and traffic characteristics.
A MAC protocol for a WSN should be able to gracefully adapt to such changes without
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significant overheads. This requirement generally favors protocols that are dynamic in
nature, that is, protocols that make medium access decisions based on current demand and
network state. Protocols with fixed assignments (e.g., TDMA with fixed-size frames and
slots) may incur large overheads due to adaptations of such assignments that may affect
many or all nodes in the network.

6.3.4 Low Latency and Predictability

Many WSN applications have timeliness requirements, that is, sensor data must be
collected, aggregated, and delivered within certain latency constraints or deadlines. For
example, in a network that monitors the spreading of a wildfire, sensor data must be deliv-
ered to monitoring stations in a timely fashion to ensure accurate information and timely
responses. Numerous network activities, protocols, and mechanisms contribute to the delays
experienced by such data, including the MAC protocol. For example, a large frame size
and a small number of slots allocated to a node in a TDMA-based protocol lead to potential
delays before critical data can be transmitted over the wireless medium. In a contention-
based protocol, nodes may be able to access the wireless medium sooner, but collisions and
the resulting retransmissions incur delays. The choice of MAC protocol can also affect how
predictable the experienced delay is, for example, expressed as upper latency bounds. Even
if the average latency is large in contention-free protocols with fixed slot assignments it may
be easy to determine the maximum latency that a transmission can experience. On the other
hand, while average latencies in contention-based protocols could be smaller, it may be more
difficult to determine an exact upper latency bound. Some contention-based MAC protocols
may even allow the theoretical possibility of starvation, that is, a critical data transmission
may continuously be delayed or interfered with by the transmissions of other nodes.

6.3.5 Reliability

Finally, reliability is a common requirement for most communication networks. The design
of the MAC protocol can contribute to increased reliability by detecting and recovering from
transmission errors and collisions (e.g., using acknowledgments and retransmissions). Par-
ticularly in wireless sensor networks, where node failures and channel errors are common,
reliability is a key concern for many link-layer protocols.

6.4 Contention-Free MAC Protocols

The idea behind contention-free or schedule-based MAC protocols is to allow only one sen-
sor node to access the channel at any given time, thereby avoiding collisions and message
retransmissions. Note, however, that this assumes a perfect medium and environment, where
no other competing networks or misbehaving devices exist that could otherwise cause col-
lisions or even jam a channel. This section discusses some of the common characteristics of
contention-free MAC protocols for wireless sensor networks and provides an overview of
several representative examples.
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6.4.1 Characteristics

Contention-free protocols allocate resources to individual nodes to ensure exclusive
resource use (e.g., access to the wireless medium) by only one node. This approach
eliminates collisions among sensor nodes, exposing a number of desirable characteristics.
First, a fixed allocation of slots allows nodes to determine precisely when they have to
activate their radio for transmission or reception of data. During all other slots, the radio
(or even the entire sensor node) can be switched into a low-power sleep mode. Therefore,
typical contention-free protocols are advantageous in terms of energy efficiency. With
respect to predictability, fixed slot allocations also impose upper bounds on the delay that
data may experience on a node, thereby facilitating the provision of delay-bounded data
delivery.

While these advantages make contention-free protocols desirable choices for energy-
conscious networks, they also have some disadvantages. Even though scalability of a
sensor network depends on a variety of factors, the design of the MAC protocol affects
how well resources are utilized in large-scale networks. Contention-free protocols with
fixed slot assignments can pose significant design challenges, that is, it may be difficult to
design schedules for all nodes that effectively utilize the available bandwidth when frame
and slot sizes are the same for all nodes. This becomes even more pronounced when the
network experiences changes in topology, density, size, or traffic characteristics, which
may require the reallocation of slots or even the resizing of frames and slots. In networks
with frequent changes, these disadvantages proscribe the use of protocols with fixed
schedules.

6.4.2 Traffic-Adaptive Medium Access

The Traffic-Adaptive Medium Access (TRAMA) protocol (Rajendran et al. 2003) is
a contention-free MAC protocol that aims to increase the network throughput and
energy-efficiency, compared to traditional TDMA and contention-based solutions. It uses a
distributed election scheme based on information about the traffic at each node to determine
when nodes are allowed to transmit. This helps to avoid assigning slots to nodes with no
traffic to send (leading to increased throughput) and allows nodes to determine when they
can become idle and do not have to listen to the channel (increased energy efficiency).

TRAMA assumes a time-slotted channel, where time is divided into periodic random-
access intervals (signaling slots) and scheduled-access intervals (transmission slots). During
random-access intervals, the Neighbor Protocol (NP) is used to propagate one-hop neighbor
information among neighboring nodes, allowing them to obtain consistent two-hop topology
information. During the random-access interval, nodes join a network by transmitting during
a randomly selected slot. The packets transmitted during these slots are used to gather neigh-
borhood information by carrying a set of added and deleted neighbors. In case no changes
have occurred, these packets serve as “keep-alive” beacons. By collecting such updates, a
node knows the one-hop neighbors of its own one-hop neighbors, thereby obtaining infor-
mation about its two-hop neighborhood.

A second protocol, called the Schedule Exchange Protocol (SEP), is used to establish
and broadcast actual schedules, that is, allocations of slots to a node. Each node computes
a duration SCHEDULE_INTERVAL, which represents the number of slots for which the node
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can announce its schedule to its neighbors. This duration depends on the rate at which the
node’s applications can produce packets. At time t , the node then computes the number
of slots within [t, t+ SCHEDULE_INTERVAL] for which it has the highest priority among its
two-hop neighbors. The node announces the selected slots and the intended receivers using
a schedule packet . The last slot in this schedule is used to announce the next schedule for
the next interval. For example, if a node’s SCHEDULE_INTERVAL is 100 slots and the current
time (slot number) is 1000, a possible slot selection for interval [1000, 1100] for this node
could be 1011, 1021, 1049, 1050, and 1093. During slot 1093, the node broadcasts its new
schedule for interval [1093, 1193].

The list of intended receivers in the schedule packet is implemented as a bitmap, whose
length is equal to the number of one-hop neighbors. Each bit in the bitmap corresponds to
one particular receiver ordered by its identity. Since every node knows the topology within
its two-hop neighborhood, it can determine the receiver address based on the bitmap and its
list of neighbors.

Slot selection is based on the node’s priority at time t using a pseudo-random hash of the
concatenation of the node’s identity i and t :

prio(i, t) = hash(i ⊕ t) (6.1)

If the node does not require all its slots, it can indicate which of the slots it gives up (using
the bitmap in the schedule packet), allowing other nodes to claim these unused slots. Based
on a node’s two-hop neighborhood information and the announced schedules, a node can
determine its state for any given time slot t . A node i is in the transmit (TX) state if i has
the highest priority and if it has data to send. Node i is in the receive (RX) state when it is
the intended receiver of the transmitter during slot t . Otherwise, the node can be switched
into the sleep (SL) state.

In summary, TRAMA reduces the probability of collisions and increases the sleep
time (and energy savings) compared to CSMA-based protocols. Unlike standard TDMA
approaches, TRAMA divides time into random-access and scheduled-access intervals.
During the random-access intervals, nodes are awake to either transmit or receive
topology information, that is, the length of the random-access interval (relative to the
scheduled-access interval) affects the overall duty cycle and achievable energy savings of
a node.

6.4.3 Y-MAC

Another protocol that uses TDMA-based medium access, however for multiple channels, is
Y-MAC (Kim et al. 2008). Similar to TDMA, Y-MAC divides time into frames and slots,
where each frame contains a broadcast period and a unicast period. Every node must wake
up at the beginning of a broadcast period and nodes contend to access the medium during this
period. If there are no incoming broadcast messages, each node turns off its radio awaiting
its first assigned slot in the unicast period. Each slot in the unicast period is assigned to
only one node for receiving data. This receiver-driven model can be more energy-efficient
under light traffic conditions, because each node samples the medium only in its own receive
time slots. This is particularly important for radio transceivers where the energy costs for
receiving are greater than for transmitting (e.g., due to sophisticated despreading and error
correction techniques).
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Medium access in Y-MAC is based on synchronous low power listening. Contention
between multiple senders is resolved in the contention window, which is at the beginning
of each slot. A node wishing to send data sets a random wait time (backoff value) within
the contention window. After this wait time, the node wakes up and senses the medium for
activity for a specific amount of time. If the medium is free, the node sends a preamble
until the end of the contention window to suppress competing transmissions. The receiver
wakes up at the end of the contention window to wait for packets in its assigned slot. If it
receives no signal from any of its neighboring nodes, it turns off the radio and returns to the
sleep mode.

During the unicast period, messages are initially exchanged on the base channel. At the
beginning of its receive slot, a receiver switches its frequency to the base channel. The node
that won the medium also uses the base channel to transmit its packet. The receiver acknowl-
edges this packet if the acknowledgment request flag was set in the packet. Similarly, in the
broadcast period, every node tunes to the base channel and potential senders take part in the
contention process described above.

Every node polls the medium only during broadcast time slots and its own unicast receive
time slots, making this approach energy-efficient. However, under heavy traffic conditions,
many unicast messages may have to wait in the message queue or are dropped due to the lim-
ited bandwidth reserved for the receiving node. As a consequence, Y-MAC uses a channel-
hopping mechanism to reduce packet delivery latency. Figure 6.6 shows an example with
four channels. After receiving a packet during its time slot on the base channel, the receiving
node hops to the next channel and sends a notification that it can continue to receive pack-
ets on the second channel. Contention for the medium in the second channel is resolved as
before. At the end of this slot, the receiving node can decide to hop again to another channel
until reaching the last channel or until no more data is being received. The actual hopping
sequence among the available channels is determined by the hopping sequence generation
algorithm, which should guarantee that there is only one receiver among one-hop neighbors
on any particular channel.

Notification
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Figure 6.6 Example of channel hopping in Y-MAC (using four channels).
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In summary, Y-MAC uses slot assignments such as TDMA, but communication is
receiver-driven to ensure low-energy consumption (i.e., a receiver briefly samples the
medium during its slot and returns to the sleep mode if no packets arrive). It further uses
multiple channels to increase the achievable throughput and reduce delivery latency. The
main drawbacks of the Y-MAC approach are that it has the same flexibility and scalability
issues as TDMA (i.e., fixed slot allocations) and that it requires sensor nodes with multiple
radio channels.

6.4.4 DESYNC-TDMA

DESYNC (Degesys et al. 2007) is a self-organizing desynchronization algorithm used to
implement a collision-free MAC protocol (called DESYNC-TDMA) based on TDMA.
This MAC protocol focuses on two shortcomings of traditional TDMA: it does not
require a global clock and it automatically adjusts to the number of participating nodes
to ensure that the available bandwidth is always fully utilized. Desynchronization is
a useful primitive for periodic resource sharing in a variety of sensor applications.
For example, sensors sampling a common geographic region can desynchronize their
sampling schedule such that the requirements of the monitoring task are equally distributed
among the sensors. In DESYNC, desynchronization is used to implement TDMA-style
medium access.

Consider a network of n nodes that communicate with each other and each node performs
a periodic task with a period T . Each node i can be modeled as an oscillator with a frequency
ω = 1/T and a phase φi(t) ∈ [0, 1]. For example, a phase of 0.75 indicates that the node is
75% through its cycle. Once a node reaches phase 1, it “fires” and resets its phase to 0. One
can imagine the nodes as beads moving along a ring with period T , as shown in Figure 6.7,
where a node fires once it reaches the top. The only information nodes can observe about
the current state of the ring is the firing of events and they can use this to jump forward or
backward in phase. The goal is then to have nodes adjust their phase independently such that
eventually the network is desynchronized (i.e., nodes are equally spaced around the ring).
Specifically, a node i keeps track of the firings of its immediate neighbors, that is, nodes
i + 1(mod n) and i − 1(mod n). Assume that �i represents the distance between oscillators
on the ring, that is, �i(t) = φi(t) − φi−1(t). Then, node i records its neighbors’ firing times
as �̄i+1 and �̄i , respectively. Node i can then approximate the phases of its neighbors as
φi+1(t) = φi(t) + �̄i+1(mod 1) and φi−1 = φi − �̄i(mod 1). The midpoint between these
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Figure 6.7 Concept of the DESYNC algorithm.
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neighbors can then be determined as:

φmid(t) = 1

2
[φi+1(t) + φi−1(t)](mod 1) (6.2)

= φi(t) + 1

2
(�̄i+1 − �̄i)(mod 1) (6.3)

Once the midpoint has been determined, node i can jump to it. This concept is illustrated in
Figure 6.7, where the first ring shows the global view of 5 nodes that are not desynchronized.
The second and third rings show B’s local view. When A fires, the node that fired immedi-
ately before it (node B), knows the positions of both of its neighbors; that is, it overheard the
firings of both A and C. Node B can now compute its ideal position for a desynchronized
network and jumps to this position. However, C may have changed its own position in the
meantime, unknown to B. If each node can fire closer to the midpoint of its neighbors, this
process will eventually bring the system to a state where all nodes are exactly at the midpoint
of their neighbors. The last ring in Figure 6.7 shows the global view for the desynchronized
state where the distances between any two neighboring nodes are identical. Since the nodes
are equally distributed, the system is stable and no more position changes are necessary.

In a wireless sensor network, the firing corresponds to a node broadcasting a “firing mes-
sage”. Node i keeps track of the times of the firings occurring immediately before and
after its own firing. The senders of these firing messages are then phase neighbors of node
i. Applied to TDMA, node i’s TDMA slot begins at the previously computed midpoint
between node i and its previous phase neighbor and ends at the previously computed mid-
point between itself and its next phase neighbor. This way, a node will never fire outside its
own slot. This algorithm defines a set of non-overlapping slots over the period T and nodes
can transmit data without collisions, even during desynchronization. Once desynchroniza-
tion has completed, the slots have converged to be of equal size.

DESYNC-TDMA ensures that the bandwidth is always fully used. When a node leaves
the network, the desynchronization process ensures that slot boundaries are adjusted over
time such that their sizes are equalized again. When a node joins the network, it first sends
a series of short interrupt messages before sending its initial firing message. These interrupt
messages notify the owner of the current slot that a new node wants to join and that the slot
owner should temporarily pause its transmissions to avoid message collisions.

In summary, DESYNC-TDMA is an adaptive TDMA-based protocol that does not require
explicit scheduling or time synchronization. It provides collision-free communication even
during desynchronization. It further can provide high throughput, while guaranteeing pre-
dictable message latencies and fairness. DESYNC-TDMA adjusts the schedule autonomi-
cally to accommodate new nodes or to recapture slots given up by leaving nodes. However,
fairness is often not a key concern in wireless sensor networks, and ensuring equal slot sizes
can lead to inefficient bandwidth usage, that is, unused slot portions are therefore wasted.
Similarly, if a node has more data to transmit than fits into its slot, the queuing latencies can
be high.

6.4.5 Low-Energy Adaptive Clustering Hierarchy

The Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol (Heinzelman et al.
2002) combines TDMA-style contention-free communication with a clustering algorithm
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Figure 6.8 Operation and communication structure of LEACH.

for wireless sensor networks. A cluster consists of a single cluster head and any number of
cluster members, which only communicate with their cluster head. Clustering is a popular
approach for sensor networks since it facilitates data aggregation and in-network processing
at the cluster head to reduce the amount of data that needs to be transmitted to the base sta-
tion. LEACH operates in rounds consisting of two phases: a setup phase and a steady-state
phase (Figure 6.8), both of which are described below.

6.4.5.1 Setup Phase

During the setup phase, cluster heads are determined and communication schedules within
each cluster are established. Since the cluster head is responsible for coordinating cluster
activity and forwarding data to the base station, its energy requirements will be significantly
large compared to other sensor nodes. Therefore, LEACH rotates the cluster head responsi-
bility among sensor nodes to evenly distribute the energy load. Specifically, at the beginning
of a round, every sensor i elects itself to be a cluster head with a certain probability Pi(t).
In a network with N nodes and a desired number of cluster heads of k, the probabilities can
be chosen to satisfy:

N∑
i=1

Pi(t) = k (6.4)

There are various approaches to choose Pi(t), for example:

Pi(t) =



k

N − k ∗ (r mod N/k)
, Ci(t) = 1;

0, Ci(t) = 0
(6.5)

This approach uses an indicator function Ci(t) to determine whether node i has been a clus-
ter head in the rmod(N/k) previous rounds. Only nodes that have not been cluster heads
recently are candidates for the cluster head role. This approach to selecting cluster heads
aims to evenly distribute the cluster head responsibility, and, therefore, the energy over-
head, among all sensor nodes. However, this does not consider the actual amount of energy
available to each node. Therefore, an alternative approach to determining the probability of
becoming a cluster head can be used:

Pi(t) = min

{
Ei(t)

Etotal(t)
k, 1

}
(6.6)
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where Ei(t) is node i’s actual current energy and Etotal(t) is the sum of the energy levels
of all nodes. One disadvantage of this approach is that every node must know (or estimate)
Etotal(t).

Once a sensor node has determined that it will serve as cluster head for the next round, it
informs other sensor nodes of its new role by broadcasting an advertisement message (ADV)
using a non-persistent CSMA protocol. Every sensor node joins a cluster by selecting the
cluster head that can be reached with the smallest amount of transmit energy (based on
received signal strength of the ADV messages from the cluster heads) and by transmitting
a join-request (Join-REQ) message to the chosen cluster head (again, using CSMA). The
cluster head establishes a transmission schedule for its cluster and transmits this schedule
to each node in its cluster.

6.4.5.2 Steady-State Phase

A sensor node communicates only with the cluster head and is allowed to transmit data
only during its allocated slots indicated by the schedule received from the cluster head. It
is then the responsibility of the cluster head to forward sensor data originating at one of its
sensor nodes to the base station. To preserve energy, each cluster member uses the minimum
required transmit power to reach the cluster head and turns off the wireless radio between
its designated slots. On the other hand, the cluster head must be awake at all times to receive
sensor data from its cluster members and to communicate with the base station.

While intra-cluster communication is contention-free using TDMA-style frames and
slots, communication occurring in one cluster can still interfere with communication
in another cluster. Therefore, sensor nodes use the direct sequence spread spectrum
(DSSS) technique to limit the interference among clusters, that is, each cluster uses a
spreading sequence that is different from the spreading sequence used in neighboring
clusters. Another reserved sequence is used for communication between cluster heads
and the base station. Communication between cluster heads and the base station is
based on this fixed spreading code and CSMA. Before a cluster head transmits data,
it first senses the channel to see if there is an ongoing transmission using the same
spreading code.

A variation of this protocol, called LEACH-C, relies on the base station to determine
the cluster heads. This occurs during the setup phase, where each sensor node transmits its
location and energy levels to the base station. Based on this information, the base station
determines the cluster heads and informs the cluster heads of their new role. Other sen-
sor nodes can then join clusters using join messages as described in the original LEACH
protocol.

In summary, LEACH utilizes a variety of techniques to reduce energy consumption (min-
imum transmit energy, avoiding idle listening of cluster members) and to obtain contention-
free communication (schedule-based communication, DSSS). While intra-cluster commu-
nication is contention-free and interferences among clusters are avoided, communication
between the cluster heads and the base station is still based on CSMA. Furthermore, LEACH
assumes that all nodes are able to reach the base station, which affects the scalability of
this protocol. However, this can be addressed by either adding multi-hop routing support
between the base station and all cluster heads or by implementing a hierarchical clustering
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approach, where some cluster heads have the responsibility of collecting data from other
cluster heads.

6.4.6 Lightweight Medium Access Control

The Lightweight Medium Access Control (LMAC) protocol (Van Hoesel and Havinga 2004)
is based on TDMA, that is, time is again divided into frames and slots, where each slot is
owned by exactly one node. However, instead of relying on a central manager to assign slots
to nodes, nodes execute a distributed algorithm to allocate slots.

Each node uses its slot to transmit a message consisting of two parts: a control message
and a data unit. The fixed-size control message carries information such as the identity of
the time slot controller, the distance (in hops) of the node to the gateway (base station),
the address of the intended receiver, and the length of the data unit (Table 6.2 summa-
rizes the contents of the LMAC control message). Upon receiving a control message, a
node determines if it is the intended receiver and decides whether to stay awake or to
turn off the radio until the next slot. The Occupied Slots field of the control message is
a bitmask of slots, where an unoccupied slot is represented by 0 and an occupied slot is
represented by 1. By combining control messages from all neighbors, a node is able to deter-
mine unoccupied slots. The process of claiming slots starts at the gateway device, which
determines its own slots. After one frame, all direct neighbors of the gateway know the
gateway’s slots and choose their own slots. This process continues throughout the network
and during each frame, a new set of nodes with a higher hop distance from the gateway
determine their slots. Each node must select slots that are not in use within a two-hop neigh-
borhood. Slots are selected randomly, therefore, it is possible for multiple nodes to select
the same slot. This will result in a collision of control messages during a slot, which can
be observed by the competing nodes, which, in turn, results in a restart of the selection
process.

6.4.6.1 Mobile LMAC

The slot allocations in LMAC are computed only once, therefore, this protocol is not suitable
for mobile sensor networks, in which nodes frequently join and leave other nodes’ radio

Table 6.2 Content of control message in LMAC

Description Size (bytes)

Identification of time slot controller 2
Current slot number 1
Occupied slots 4
Distance to gateway in hops 1
Collision in slot 1
Destination address 2
Data size (bytes) 1

Total 12
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ranges. The Mobile LMAC (MLMAC) (Mank et al. 2007) protocol uses a distributed slot
allocation mechanism, but it is able to adapt to changes in the network topology. When a
node X leaves the radio range of node Y, both nodes will realize that they no longer receive
control messages from each other and will remove each other from their neighbor lists.
Now assume that node X moves into the radio range of node Z and that another node in Z’s
range, node W, uses the same slot as X. In this case, the control messages from X and W
will collide at Z. Node Z will no longer receive any correct control messages during this
slot and will therefore mark this slot as unused. Nodes X and W will receive Z’s control
message, indicating that their slot is unused, meaning that there must have been a collision.
As a consequence, they give up their current slot and restart the slot selection mechanism.

Both LMAC and MLMAC have the same advantages as TDMA (collision-free communi-
cation, energy efficiency), but additionally they are able to establish transmission schedules
in a distributed fashion. However, in both protocols, the slot size is fixed and slot allocations
are also fixed (except when a node has to restart the slot selection mechanism), which can
lead to bandwidth inefficiency.

6.5 Contention-Based MAC Protocols

Contention-based MAC protocols do not rely on transmission schedules, but instead on other
mechanisms to resolve contention when it occurs. The main advantage of contention-based
techniques is their simplicity compared to most schedule-based techniques. For example,
where schedule-based MAC protocols must save and maintain schedules or tables indicating
the transmission order, most contention-based protocols do not require to save, maintain,
or share state information. This also allows contention-based protocols to adapt quickly to
changes in network topologies or traffic characteristics. However, contention-based MAC
protocols typically result in higher collision rates and energy costs due to idle listening and
overhearing. Contention-based techniques may also suffer from fairness issues, that is, some
nodes may be able to obtain more frequent channel accesses than others.

6.5.1 Power Aware Multi-Access with Signaling

The focus of the Power Aware Multi-Access with Signaling (PAMAS) protocol (Singh and
Raghavendra 1998) is to avoid unnecessary energy expenditure caused by overhearing. For
example, in Figure 6.9, node B’s transmission to node A is overheard by node C since it
is an immediate neighbor of node B. Therefore, node C consumes energy for receiving a
frame intended for another node. Further, since C is in B’s interference range, C cannot
receive a frame from another node during B’s transmission. Therefore, to conserve energy,
C can turn its radio into a low-power sleep mode for the duration of B’s transmission. This
is particularly useful in dense networks where a node can be in the interference ranges of
many other nodes.

PAMAS uses two separate channels, one for data frames and one for control frames, to
prevent collisions among data transmissions. The control messages exchanged in PAMAS
are ready-to-send (RTS) and clear-to-send (CTS) messages, similar to the MACA protocol.
This separate signaling channel allows nodes to determine when and how long to power
down their wireless transceivers. In addition to RTS/CTS, devices transmit busy tones on
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the control channel to ensure that devices that did not overhear either RTS or CTS will not
access the data channel for transmissions.

To initiate a data transfer, a PAMAS device sends an RTS message over the control chan-
nel to the receiver. If the receiver does not detect activity on the data channel and has not
overheard other recent RTS or CTS messages, it will respond with a CTS message. If the
source does not receive a CTS within a specific timeout interval, it will attempt to transmit
again after a backoff time (determined by an exponential backoff algorithm). Otherwise, it
begins data transmission and the receiver node issues a busy tone over the control channel
(whose length is greater than twice the length of a CTS). The receiver device also issues a
busy tone over the control channel whenever it receives an RTS message or detects noise
on the control channel while it receives a frame. This is done to corrupt possible CTS mes-
sage replies to the detected RTS, thereby blocking any data transmission of the receiver’s
neighbors.

Every node in a PAMAS network independently decides when to power off its transceiver.
Specifically, a node decides to turn off its transceiver whenever one of two conditions holds:

• a neighbor begins a transmission and the node has no frames to transmit; and
• a neighbor transmits a frame to another neighbor, even if the node has frames to transmit.

A node can easily detect either condition by overhearing its neighbor’s transmissions (con-
dition 1) or its neighbor’s busy tone (condition 2). Embedding the size or expected transmis-
sion duration into messages allows a node to identify how long to power down its transceiver.
However, when a transmission begins while a node is still asleep, the node does not know
how long this transmission will last and how long the node should continue to sleep. As
a consequence, the node issues a probe frame over the control channel to all transmitting
nodes in its neighborhood. The probe frame contains a time interval and all transmitters that
will complete during this interval respond with their predicted completion time. If such a
response is received by the awakening node without collision, the node can return to the
sleep mode until the completion time indicated by the transmitting node. If multiple trans-
mitters respond and their responses collide, the node reissues the probe frame with a shorter
time interval. Similarly, if the node did not receive a response, it can reissue the probe with a
different time interval. In effect, the node chooses time intervals to perform a binary search
to identify when the last ongoing transmission will end.

In summary, PAMAS attempts to reduce the significant amounts of energy waste by those
nodes which remain active during time periods when they can neither transmit nor receive
data. However, PAMAS relies on the presence of two radios, which in itself can greatly
increase the energy consumption and implementation cost.
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6.5.2 Sensor MAC

The goal of the sensor MAC (S-MAC) protocol (Ye et al. 2002) is to reduce unnecessary
energy consumption, while providing good scalability and collision avoidance. S-MAC
adopts a duty-cycle approach, that is, nodes periodically transition between a listen state
and a sleep state. Each node chooses its own schedule, though it is preferred when nodes
synchronize their schedules such that they listen or sleep at the same time. In this case, nodes
using the same schedule are considered to belong to the same virtual cluster , but no real clus-
tering takes place and all nodes are free to communicate with nodes outside their clusters.
Nodes periodically exchange their schedules with their neighbors using SYNC messages,
that is, every node knows when any of its neighbors will be awake. If node A wants to com-
municate with a neighbor B that uses a different schedule, A waits until B is listening and
then initiates the data transfer. Contention for the medium is resolved using the RTS/CTS
scheme.

In order to choose a schedule, a node initially listens to the medium for a certain amount
of time. If this node receives a schedule from a neighbor, it chooses this schedule as its own
and this node becomes a follower . The node broadcasts its new schedule after a random
delay td (to minimize the possibility for collisions from multiple new followers). Nodes can
adopt multiple schedules, that is, if a node receives a different schedule after it has broadcast
its own schedule, it adopts both schedules. Further, if a node does not hear a schedule from
another node, it determines its own schedule and broadcasts it to any potential neighbors.
This node becomes a synchronizer in that other nodes will begin to synchronize themselves
with it.

S-MAC divides a node’s listen interval further into a part for receiving SYNC packets and
a part for receiving RTS messages (top graph in Figure 6.10). Each part is further divided
into small slots to facilitate carrier sensing. A node trying to send a SYNC or RTS message
randomly selects a time slot (within the SYNC or RTS part of the interval, respectively) and
senses the carrier for activity from when the receiver begins listening to the selected slot.
If no activity has been detected, it wins the medium and begins transmission. Figure 6.10
shows the timing relationship between a receiver and different senders: one sending a SYNC
(middle graph) and another one sending data (bottom graph).

S-MAC adopts a contention-based approach, where contention for the medium is
addressed using collision avoidance based on RTS/CTS handshakes. When a node hears an
RTS or CTS and concludes that it cannot transmit or receive at the same time, it can go to
sleep to avoid energy waste through overhearing (a node may only overhear brief control
messages, but not the typically longer data messages).

In summary, S-MAC is a contention-based protocol that utilizes the sleep mode of wire-
less radios to trade energy for throughput and latency. Collision avoidance is based on
RTS/CTS, which is not used by broadcast packets, thereby increasing the collision prob-
ability. Finally, duty cycle parameters (sleep and listen periods) are decided beforehand and
may be inefficient for the actual traffic characteristics in the network.

6.5.3 Timeout MAC

The listening period of S-MAC is of fixed duration, that is, if there is only little traffic,
this can actually waste energy. On the other hand, if traffic is heavy, the fixed duration
may not be large enough. Therefore, the Timeout MAC (T-MAC) protocol (Van Dam and
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Langendoen 2003) is a variation of S-MAC that uses an active period that adapts to traffic
density. Nodes wake up during the beginning of a slot to listen very briefly for activity and
return to the sleep mode when no communication has been observed. When a node trans-
mits, receives, or overhears a message, it remains awake for a brief period of time after
completion of the message transfer to see if more traffic can be observed. This brief timeout
interval allows a node to return to the sleep mode as quickly as possible. The end effect is
that a node’s awake times will increase with the heavier traffic and will be very brief if traffic
is light.

Figure 6.11 shows the basic operation and data exchange of T-MAC. To reduce potential
collisions, each node waits for a random period of time within a fixed contention interval
before the medium is accessed. For example, in Figure 6.11(a), nodes A and C are trying
to send data to node B, but node A wins the medium and transmits its data to node B. The
minimum time a node remains active to listen for activity is expressed as TA and it must be
long enough to hear a potential CTS from one of its neighbors. Once a node hears a CTS, it
knows that another node won the medium. This node then stays awake until the end of the
transmission, which can be observed by overhearing the acknowledgment (ACK) sent by
node B. This event initiates the beginning of the next contention interval and node C will
have an opportunity to transmit its data if it wins the medium.

Figure 6.11(a) also shows a potential problem occurring in T-MAC. Assume that mes-
sages flow from top to bottom, that is, node A sends only to node B, node B sends to node C,
etc. Every time node C wants to send a message to node D, it must contend for the medium
and may lose to either node B (which may transmit an RTS before C does) or to node A
(node C overhears a CTS transmitted by node B). While node C stays awake after overhear-
ing node B’s CTS message, its intended receiver (node D) is not aware of C’s intention to
transmit data and therefore returns to the sleep mode after TA has expired. This problem is
referred to as the early sleeping problem, and one possible solution to this problem is shown
in Figure 6.11(b). In the future-request-to-send technique, a node with pending data can
inform its intended receiver by transmitting a future-request-to-send (FRTS) packet imme-
diately after overhearing a CTS message. Node D, upon receiving the FRTS message, knows
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Figure 6.11 Data exchange in T-MAC, showing the early sleeping problem in (a) and the future-
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that node C will attempt to send data to it and will therefore remain active. However, sending
the FRTS message immediately after CTS could interfere with node B’s reception of node
A’s data, therefore, node A first sends a dummy message called Data-Send (DS) to delay the
transmission of the actual data. DS has the same size as FRTS and can collide with FRTS at
node B, which is of no consequence since it does not contain any useful information.

In summary, T-MAC’s adaptive approach allows it to adjust a node’s sleep and awake
intervals based on the traffic load. In T-MAC, nodes send messages as bursts of variable
length and sleep between such bursts to conserve energy. Both S-MAC and T-MAC con-
centrate message exchanges to small periods of time, which results in inefficiencies under
high traffic loads. Finally, intended receivers are kept awake using messages that indicate
future transmissions, which can significantly increase the idle listening times (and therefore
energy consumption) of nodes.

6.5.4 Pattern MAC

The Pattern MAC (PMAC) protocol (Zheng et al. 2005) is another example of a TDMA-
style protocol that uses frames and slots, but it adapts its sleep schedules on the basis of
its own traffic and the traffic patterns of its neighbors. Compared to S-MAC and T-MAC,
PMAC further reduces energy costs of idle listening by allowing devices to turn off their
radios for long durations during periods of inactivity. Nodes use patterns to describe their
tentative sleep and awake times, where a pattern is a string of bits, each bit representing a
time slot and indicating whether a node plans to sleep (bit is 0) or be awake (bit is 1). While
patterns are only tentative, schedules represent the actual sequence of sleep and awake
times. The format of a pattern is always 0m1, where m = 0, 1, . . . , N − 1 and N time slots
are considered to be a period. For example, a pattern of 001 and N = 6 indicate a node’s
plan to be awake during the third and sixth slot of the period (i.e., the pattern is repeated
whenever its length is less than N ). The value of m (i.e., the number of leading zeros) is an
indicator of traffic load around the node – that is, a small value indicates heavy traffic and a
large value indicates light traffic.

At network activation, every node’s pattern during the first period is 1, that is, m = 0,
and every node assumes a heavy traffic load and that it should be awake at all times. If a
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node does not have any data to send during the first slot, then it uses this as an indicator
that the traffic around it is potentially light and it updates its own pattern to 01. The node
continues to double the sleep interval (doubling the number of zeros) every time it has no
data to send, allowing it to sleep longer. This process (which mimics the slow-start behavior
of TCP) is continued until a predefined threshold is reached, after which the number of zeros
is increased linearly. That is, if there is no data for node i to send, the following sequence of
patterns will be generated: 1, 01, 021, 041, . . . , 0δ1, 0δ01, 0δ021, 0δ031, . . . , 0N−11. When-
ever a node has data to send, the pattern is immediately reset to 1, allowing the node to wake
up quickly to handle the traffic load.

While a pattern is only a tentative sleep plan, patterns are used to derive actual sleep
schedules. A node broadcasts its own pattern at the end of a period, during a time interval
called the Pattern Exchange Time Frame (PETF). The PETF is divided into a sequence of
brief slots, where the number of slots is set to the maximum number of neighbors a node
could have. These slots are accessed using CSMA and collisions can occur. If a node does not
receive a pattern update from one of its neighbors (most likely due to a collision), the node
simply assumes that the neighbor’s pattern remains unchanged. Once a node has received
the patterns from its neighbors, it determines its own schedule, where each slot can be used
for one of three possible operations. A node wakes up and transmits a message to a neighbor
if the neighbor has advertised a 1 for that slot. If a node has advertised a 1, but has no data
to send, the slot is used to listen. If none of these two conditions holds, the node sleeps.

In summary, PMAC provides a simple mechanism to build schedules that adapt to the
amount of traffic in a neighborhood. When traffic loads are light, a node is able to spend
considerable amounts of time in the sleep mode, thereby preserving energy. However, colli-
sions during the PETF may prevent nodes from receiving pattern updates from all neighbors,
while other nodes may have received these updates. This leads to inconsistent schedules
among nodes in a neighborhood, which can cause further collisions, wasted transmissions,
and unnecessary idle listening.

6.5.5 Routing-Enhanced MAC

The Routing-Enhanced MAC (RMAC) protocol (Du et al. 2007) is another example of a
protocol that exploits duty cycles to preserve energy. Compared to S-MAC, it attempts to
improve upon end-to-end latency and contention avoidance. The key idea behind RMAC is
to align the sleep/wake periods of nodes along the path of sensor data such that a packet can
be forwarded to the destination within a single operational cycle. It achieves this by sending
a control frame along the route to inform nodes of the upcoming packet, allowing them to
learn when to be awake to receive and forward this packet.

RMAC partitions an operational cycle into three components: the SYNC period, the
DATA period, and the SLEEP period (Figure 6.12). During the SYNC phase, nodes syn-
chronize their clocks to ensure that they maintain sufficient precision. The DATA period is
used to announce and initiate the packet transmission process along the packet’s route to
the destination. The DATA period is contention-based and the sender waits for a randomly
chosen period of time plus an additional DIFS period, during which it senses the medium.
If no activity is detected, the sender transmits a Pioneer Control Frame (PION), containing
the addresses of the sender, destination, and next hop; the duration of the transmission, and
the number of hops the PION has travelled so far (which is set to zero at the sender). The
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Figure 6.12 Duty cycle and communication pattern in RMAC.

next hop along the route (node A in Figure 6.12) looks up the next hop for this route (from
the network layer) and forwards the PION to the next hop after waiting for a SIFS period.
This process continues until the PION reaches the destination.

Actual data transmission takes place during the SLEEP period of the protocol. In
Figure 6.12, node A stays awake to receive the data packet from the sender and after
successful transmission, A returns an acknowledgment (ACK). Similar to the PION
schedule during the DATA period, all data and ACK packets are separated by a SIFS
period. After receiving the ACK from node A, the sender has completed its part and can
return its radio into the sleep mode. Node A relays the received packet to the next hop,
node B, and also returns its radio to sleep mode once B has acknowledged the data packet.
This process continues until the data packet has been received and acknowledged by the
destination.

In this example, the sender and node A stay awake after the DATA period to immediately
begin the transmission of the data packet over the first hop. All other nodes along the route
can turn off their radios after the DATA period has completed to further preserve energy.
Each node wakes up at the right time to receive the data packet from the upstream node.
This time to wake up can be computed by node i as:

Twakeup(i) = (i − 1) × (size(DATA) + size(ACK) + 2 × SIFS) (6.7)

where size(DATA) and size(ACK) are the times required to send a single data and ACK
frame, respectively.

In summary, RMAC addresses the large latencies often experienced in MAC protocols
that use duty cycles. It is able to perform end-to-end packet delivery within a single opera-
tional cycle. It also alleviates contention by separating medium contention and data transfer
into two separate periods. However, collisions can still occur, even on data packets dur-
ing the SLEEP period. A source always commences transmission at the beginning of the
SLEEP period. Therefore, it is possible that data packets coming from two different sources
(which succeeded in the PION scheduling process during the DATA period, but cannot see
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each other) may still collide. This problem has been addressed by a similar protocol called
Demand Wakeup (DW-MAC) (Sun et al. 2008a). In DW-MAC, the schedule is a one-to-one
mapping between a DATA period and the following SLEEP period:

T S
i = T D

i × Tsleep

Tdata
(6.8)

where T S
i is the start time of the scheduling frame (SCH) (the equivalent of the pioneer

frame in RMAC) measured from the start of the DATA period and T D
i is the start time of the

data transmission in the SLEEP period (measured from the start of the SLEEP period). Tsleep

and Tdata are the durations of the SLEEP and DATA periods, respectively. This means that
data packet transmissions do not necessarily coincide with the start of the SLEEP period,
but instead depend on the contention window during the DATA period (the delay in data
transmission corresponds to the delay in the transmission of the SCH frame). This approach,
compared to RMAC, reduces the risk of collisions during the SLEEP period.

6.5.6 Data-Gathering MAC

The Data-Gathering MAC (DMAC) (Lu et al. 2004) protocol exploits the fact that many
wireless sensor networks rely on convergecast as communication pattern, that is, data from
sensor nodes are collected at a central node (the “sink”) in a data-gathering tree. The goal
of DMAC is to deliver data along the data gathering tree with low latency and high energy
efficiency.

In DMAC, the duty cycles of nodes along the multi-hop path to the sink are “staggered”;
nodes wake up sequentially like a chain reaction. Figure 6.13 illustrates this concept, show-
ing an example of a data-gathering tree and the staggered wakeup scheme. Nodes switch
between sending, receiving, and sleep states. During the sending state, a node sends a packet
to the next hop node on the route and awaits an acknowledgment (ACK). At the same time,
the next hop node is in the receiving state, immediately followed by a sending state (unless
the node is the destination of the packet) to forward the packet to the next hop. Between
these intervals of receiving and sending of packets, a node enters the sleep state, where it
can power down its radio to preserve energy.

The sending and receiving intervals are large enough for exactly one packet. Since there
are no queuing delays, a node at depth d in the tree can then deliver a packet to the sink within
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Figure 6.13 Data-gathering tree and convergecast communication in DMAC.
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d intervals. While limiting a node’s activity to brief intervals for sending and receiving
reduces the contention, collisions still do occur. Particularly, nodes with the same depth
in the tree will have synchronized schedules. In DMAC, if a sender does not receive an
ACK, it queues the packet until the next sending interval. After three failed retransmissions,
the packet will be dropped. To reduce collisions, nodes do not transmit immediately at the
beginning of the sending slot, but instead have a backoff period (BP) plus a random time
within a contention window.

When a node has multiple packets to send during a sending slot, it can increase its own
duty cycle and request other nodes along the route to the sink to do the same. This is imple-
mented through a slot-by-slot renewal mechanism using a more data flag in the MAC header.
A receiver checks for this flag and, if set, it returns an acknowledgment that has also the more
data flag set. It then stays awake to receive and forward one additional packet.

In summary, DMAC’s staggering technique achieves very low latency and nodes only
stay awake for brief receive and send intervals. Since many nodes in the data-gathering tree
share the same schedule, collisions will occur and DMAC only employs limited collision
avoidance methods. DMAC works best for networks in which transmission paths and rates
are well known and do not change over time.

6.5.7 Preamble Sampling and WiseMAC

WiseMAC (El-Hoiydi and Decotignie 2004) is a MAC protocol that is concerned with the
energy consumption of downlink communication in infrastructure-based sensor networks,
that is, communication from a base station to the sensor nodes. To avoid energy consump-
tion due to idle listening, WiseMAC relies on the preamble sampling technique (El-Hoiydi
2002). In this technique, the base station transmits a preamble preceding the actual data
transmission to alert the receiving node (see left graph in Figure 6.14). All sensor nodes
sample the medium (listen to the channel) with a fixed period Tw, but with independent and
constant relative sampling schedule offsets. If the medium is busy, a sensor node continues
to listen until the medium becomes idle or a data frame is received. The preamble’s size is
equal to the sampling period, which ensures that the receiver will be awake to receive the
data portion of the packet. This approach allows the energy-constrained sensor nodes to turn
off the radio when the channel is idle, without the risk of missing a packet. A disadvantage
of this approach is that the size of the preamble affects the achievable throughput and that a
device must stay awake when a preamble is detected, even if it is not the intended receiver.
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Figure 6.14 Preamble sampling.
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WiseMAC improves upon this by adding a technique that lets a base station learn the
sampling schedules of the destination, thereby allowing it to start the transmission of
the preamble immediately before the receiver wakes up. This allows the base station
to reduce the size of the preamble as shown in the right graph of Figure 6.14. Further,
since the data portion of the packet will start shortly after the receiver’s radio has
turned on, the awake time of the receiver is also shortened. A node’s schedule offset
is embedded into the acknowledgment (ACK) message, allowing the base station to
learn the sampling schedules. The duration of the preamble (Tp) is then determined
as the minimum of the destination’s sampling period (Tw) and a multiple of the clock
drift between the clock at the base station and on the receiver, which grows over time.
Therefore, the preamble length depends on the traffic load: the preamble is shorter when
traffic is high (brief intervals between two consecutive communications) and larger under
low load.

In summary, WiseMAC implements energy-efficient wake/sleep schedules for sensor
nodes, while ensuring that all data transmissions from a base station to the sensors will be
received (the receiver will be awake). However, the approach is inefficient for broadcast
messages since the preamble is likely to be very large, that is, it must span over the
sampling points of all receiver devices. Finally, WiseMAC is also affected by the hidden
terminal problem, that is, a sender’s preamble can interfere with ongoing transmissions
when the sender is not aware of this other transmission.

6.5.8 Receiver-Initiated MAC

Another contention-based solution is the Receiver-Initiated MAC (RI-MAC) protocol (Sun
et al. 2008b), where a transmission is always initiated by the receiver of the data. Each node
wakes up periodically to check whether there is an incoming data packet. That is, immedi-
ately after turning on its radio, a node checks if the medium is idle and, if so, broadcasts a
beacon message, announcing that it is awake and ready to receive data. A node with pend-
ing data to transmit stays awake and listens for a beacon from its intended receiver. Once
this beacon has been received, the sender immediately transmits the data, which will be
acknowledged by the receiver with another beacon (see left graph in Figure 6.15). That is,
the beacon serves two purposes: it invites new data transmissions and it acknowledges pre-
vious transmissions. If there is no incoming data packet for a certain amount of time after
the beacon broadcast, the node goes back to sleep after waiting a certain time.

If there are multiple contending senders, a receiver uses its beacon frames to coordinate
transmissions. A field in the beacon, called the backoff window size (BW), specifies the
window over which to select a backoff value. If the beacon does not contain a BW (the first
beacon sent out after waking up does not contain a BW), senders immediately commence
transmission. Otherwise, each sender randomly selects a backoff value within BW and the
receiver increases the BW value in the next beacon when it detects a collision. The right
graph in Figure 6.15 shows an example with two senders immediately transmitting data
packets after receiving the receiver’s beacon. The receiver notices the collision and sends
another beacon, this time containing a BW. Should the transmission collide multiple times
and the receiver was not able to receive a packet for several beacon intervals, it simply goes
to sleep without further attempts.
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In RI-MAC, the receiver is in control of when to receive data and it is responsible for
detecting collisions and recovering lost data. Since transmissions are triggered by beacons,
the receiver will have very little overhead due to overhearing. On the other hand, senders
must wait for the receiver’s beacon before they can transmit, potentially leading to large
overhearing costs. Finally, when packets collide, the senders will retry until the receiver
gives up, potentially leading to more collisions in the network and to increased data delivery
latencies.

6.6 Hybrid MAC Protocols

Some MAC protocols do not easily fit into schedule-based or contention-based categories,
but instead display characteristics of both categories, for example, they may attempt to
reduce the number of collisions by relying on features present in periodic contention-free
medium access protocols, while taking advantage of the flexibility and low complexity
of contention-based protocols. This section describes representative examples of hybrid
protocols.

6.6.1 Zebra MAC

The Zebra MAC (Z-MAC) protocol (Rhee et al. 2005) uses frames and slots, similar to
TDMA-based protocols, to provide contention-free access to the wireless medium. How-
ever, Z-MAC also allows nodes to utilize slots they do not own using CSMA with prioritized
backoff times. As a consequence, Z-MAC emulates a CSMA-based approach in low-traffic
scenarios and a TDMA-based approach when traffic loads are high.

When a node starts up, it enters a setup phase to allow it to discover its neighbors and
to obtain its slot in the TDMA frame. Every node periodically broadcasts a message con-
taining a list of its neighbors. Through this process, a node learns about its 1-hop and 2-hop
neighbors. This information is used as input to a distributed slot assignment protocol (Rhee
et al. 2006), which provides each node with time slots, ensuring a schedule where no two
nodes within a 2-hop neighborhood will be assigned the same slot. Further, Z-MAC allows
nodes to select the periodicity of their assigned slots, where different nodes can have dif-
ferent periods, which are called time frames (TF). The advantage of this approach is that
it is not necessary to propagate a maximum slot number (MSN) to the entire network and
that the protocol can adapt slot allocations locally. Specifically, if node i is assigned slot si
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and Fi represents the MSN within the node’s 2-hop neighborhood, then i’s TF is set to be
2a , where a is a positive integer that satisfies 2a−1 ≤ Fi < 2a − 1. Node i then uses the si th
slot in every 2a time frame.

Figure 6.16 shows an example with eight nodes, where the number indicates the assigned
slot for each node and the number in parenthesis is Fi . The bottom part of the figure shows
the corresponding schedule for all nodes, where light-shaded slots are the ones used for
transmissions and dark-shaded slots are the empty slots that are not used by any 1-hop
or 2-hop neighbors. If a global time frame is used, the chosen time frame size will be
6 and nodes A and B will be allowed to use their slots only once every 6 slots (even
though their frame sizes are 2 each). However, in Z-MAC, they can use frame size 4,
which increases the concurrency in the channel usage and reduces message delays. The
resulting schedule shows that some slots (specifically slots 6 and 7) are not assigned to
any node. In a global time frame, a frame size could have been chosen that reduces the
number of empty slots. However, Z-MAC allows nodes to compete for these “extra” slots
using CSMA.

After the schedule has been determined, every node forwards its frame size and slot num-
ber to its 1-hop and 2-hop neighbors. Even though slots are owned by nodes, Z-MAC uses
CSMA to determine who may transmit. However, slot owners are given preference by using
a random backoff value chosen from the range [0, To], whereas other nodes choose their
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backoff values from the range [To, Tno]. Z-MAC also uses explicit contention notification
(ECN), where, based on its local estimate of the contention level (e.g., determined using the
packet loss rate or channel noise level), each node decides whether to send an ECN message
to a neighbor for which it has a message. This neighbor then broadcasts the ECN to its own
neighbors, which then enter a high contention level (HCL) mode. A node in the HCL mode
only transmits data in its own slots or slots belonging to its 1-hop neighbors, reducing the
contention between 2-hop neighbors. Nodes in HCL mode return to a low contention level
(LCL) mode if they have not received any ECN messages for a certain amount of time.

In summary, Z-MAC adopts characteristics found in both TDMA and CSMA protocols,
allowing it to quickly adapt to changing traffic conditions. Under light traffic loads, Z-MAC
behaves more like CSMA, while under heavy traffic loads, contention for slots is reduced.
Z-MAC requires an explicit setup phase, which consumes both time and energy. While ECN
messages can be used to reduce the contention locally, these messages add more traffic to
an already busy network and take time to propagate, causing delays in the adaptation to a
more TDMA-like behavior.

6.6.2 Mobility Adaptive Hybrid MAC

In many sensor networks, some or all nodes can be mobile, which can bear significant chal-
lenges for the design of a MAC protocol. The Mobility Adaptive Hybrid MAC (MH-MAC)
protocol (Raja and Su 2008) proposes a hybrid solution, where a schedule-based approach
is used for static nodes and a contention-based approach is used for mobile nodes. While
it is straightforward to determine a TDMA-style schedule for static nodes, this is not the
case for mobile nodes. Therefore, MH-MAC allows mobile nodes entering a neighborhood
to use a contention-based approach to avoid the delays often needed to be inserted into the
schedule.

In MH-MAC, the slots of a frame belong to one of two categories: static slots or mobile
slots. Each node uses a mobility estimation algorithm to determine its mobility and which
type of slots the node should use. The mobility estimation is based on periodic hello mes-
sages and received signal strength. The hello messages are always transmitted with the same
transmit power and the receiving nodes compare consecutive message signal strengths to
estimate the relative position displacement between itself and each of its neighbors. A mobil-
ity beacon interval is provided at the beginning of a frame to distribute mobility information
to neighbors.

Static slots use an approach similar to the LMAC approach described in Section 6.4.6, that
is, a static slot has two portions: a control section and a data section. The control section is
used to indicate the slot assignment information in a neighborhood and all static nodes must
listen to this part of the static slot. However, during the data section, only the transmitter
and receiver stay awake and all other nodes can turn their radios off.

For mobile slots, nodes contend for the medium in a two-phase contention period. First, a
wakeup tone is sent during the first phase, and then the data is sent during the second phase.
In order to reduce the effective contention, LMAC uses a priority ordering among mobile
nodes based on node addresses.

Since the ratio between static and mobile nodes in a network can vary, MH-MAC provides
a mechanism to dynamically adjust the ratio between static and mobile slots based on the
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observed mobility. Each node estimates its own mobility and broadcasts this information in
the previously mentioned beacon time slot at the beginning of a frame. Using this mobility
information, each node calculates a mobility parameter for the network, which determines
the ratio of static and mobile slots.

In summary, MH-MAC combines characteristics of the LMAC protocol for static nodes
and features of contention-based protocols for mobile nodes. Therefore, mobile nodes can
quickly join a network without long setup or adaptation delays. Compared to LMAC, MH-
MAC allows nodes to own more than one slot in a frame, which increases bandwidth uti-
lization and decreasing latencies.

6.7 Summary

The choice of a medium access protocol has a substantial impact on the performance and
energy-efficiency of a WSN. MAC protocols should also be designed to accommodate
changes in network topology and traffic characteristics. Further, latency, throughput, and
fairness among competing nodes are also determined or affected by the characteristics of the
MAC layer. This chapter discussed the major categories of medium access control protocols
and illustrated each category with several examples. A major distinction can be made
between protocols that are based on transmission schedules (e.g., TDMA-style protocols)
and protocols that do not use such schedules, but instead let nodes compete for the medium.
The main advantage of schedule-based protocols is that communication can occur collision-
free. However, such protocols can be resource-inefficient, may require well-synchronized
nodes throughout the network, and are often difficult to adapt to changing topologies. On
the other hand, contention-based solutions are more flexible in that they easily accommo-
date changing network topologies. They typically also require less overhead. However,
such protocols are not collision-free, so they must possess features that allow them to
recover from collisions, and the network utilization may suffer when collisions occur
frequently.

Exercises

6.1 What is the main purpose of the MAC layer and why is this challenging in networks
with shared media?

6.2 What are the advantages and disadvantages of contention-free and contention-based
medium access strategies? Can you think of scenarios where one would be preferable
over the other?

6.3 The key idea behind CSMA/CD is that the sender detects collisions, allowing it to
react correspondingly. Why is this approach not practical in wireless networks?

6.4 What are “hidden terminals” and how do they affect the performance of wireless sensor
networks?

6.5 Consider the network topology in Figure 6.17, where circles indicate the communi-
cation and interference range of each node, that is, each node can hear the immediate
neighbors to the left and right. Assume that RTS/CTS is not being used.
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Figure 6.17 Hidden-terminal problem (Exercise 6.5).

(a) Node B currently sends to node A and node C wants to send to node D. Is node C
allowed to do so (i.e., can it do so without causing a collision) and will it decide
to do so?

(b) Node C sends to node B and node E wants to send to node D. Is E allowed to do
so and will it do so?

(c) Node A sends to node B and node D sends to node C. Which other nodes are
allowed to send at the same time?

(d) Node A sends to node B and node E sends to node F. Which other nodes are
allowed to send at the same time?

6.6 Describe the problems in using CSMA as a medium access control mechanism in a
WSN.

6.7 In a CSMA/CA network, nodes use a random delay before accessing the medium. Why
is this being done?

6.8 Assume that the RTS and CTS frames were as long as the DATA and ACK frames.
Would there be any advantage to using the RTS/CTS approach? Explain why or why
not.

6.9 How does MACAW extend MACA and what is the purpose of the additional control
messages?

6.10 What are the specific features of the IEEE 802.11 PSM (Power Saving Mode) and
what are the main difficulties of using it in wireless sensor networks?

6.11 Does the NAV field in IEEE 802.11 networks prevent the hidden terminal problem?

6.12 Explain why the IEEE 802.11 standard uses three different “interframe spaces”.

6.13 Consider the network topology in Figure 6.18, where the lines indicate which nodes
can communicate and interfere with each other. Assume a TDMA protocol with a
frame size of 5 slots and that each node can only be sender or receiver during any time
slot.

(a) Generate a schedule such that every node has an opportunity to communicate to
all if its neighbors.

(b) For your schedule, how many slots in a frame could each node sleep to preserve
energy? What is your insight with respect to node density and energy preservation?
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(c) Assume that node A sends a message to node E; how long (in number of time
slots) does it take for E to receive the message using your schedule? (Explain your
answer.)

BA
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E

Figure 6.18 TDMA protocol (Exercise 6.13).

6.14 Why is the IEEE 802.15.4 standard preferable over the IEEE 802.11 standard for most
wireless sensor networks?

6.15 Describe how the design of the MAC protocol affects the energy efficiency of a sensor
node.

6.16 This chapter described five requirements of MAC protocols for wireless sensor net-
works: energy efficiency, scalability, adaptability, low latency, and reliability. Can you
describe a concrete WSN application for each of these five requirements, where the
requirement would be more important than the others?

6.17 The TRAMA protocol is an example of a contention-free MAC scheme. Answer the
following questions about TRAMA.

(a) What are the advantages and disadvantages of the TRAMA protocol (compared
to contention-based protocols)?

(b) What is the difference between transmission slots and signaling slots?
(c) What is the purpose of the NP component?

6.18 What is the advantage of a receiver-initiated MAC scheme such as Y-MAC? What is
the main disadvantage of Y-MAC that makes it unsuitable for most low-power and
low-cost sensor nodes?

6.19 Demonstrate the concept of DESYNC using the example ring shown in Figure 6.19.
The ring has 16 positions [0 . . . 15], with node A currently in position 0 (the firing
position), B in position 14, etc. Every unit of time, each node moves one position
clockwise along the ring. The table indicates the positions of the four nodes, including
the new distance information that is learned at each firing. Assume that node A has
received D’s last firing, indicating a distance of 10 between nodes A and D. In this
table, at time 0, node A fires, allowing node B to learn its distance to A (i.e., 2). At
time 1, no node is in the firing position. At time 2, node B fires, allowing node C to
learn its distance to node B (i.e., 2). At the same time, node A now knows its distance
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to node B and its distance to node D. According to the description of the DESYNC
algorithm in this chapter, node A can now find the midpoint between nodes B and D
and jump to this new location (i.e., 6), which is indicated in the table at time 2. At time
3, again each node moves ahead one position. Continue this table using the DESYNC
algorithm until time 19. Compare the average distance between neighboring nodes at
time 19 with that of time 0.

DBC = 2

DAB = 2
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Figure 6.19 DESYNC ring (Exercise 6.19).

6.20 Discuss the cluster head election policy in the LEACH protocol and explain how
LEACH can consider the available energy on each node in this election process. What
is the problem with this energy-aware election policy? Further, LEACH uses TDMA
within a cluster; explain the advantages and disadvantages of this approach.

6.21 Why does LEACH use the direct sequence spread spectrum technique?

6.22 How does the Mobile LMAC protocol handle changes in network topology?

6.23 Discuss why overhearing is a problem in a wireless sensor network and explain how
PAMAS addresses this problem.

6.24 Explain how the busy-tone scheme of PAMAS helps to avoid the hidden-terminal
problem.

6.25 How does the S-MAC protocol reduce the duty cycles of sensor nodes? How does the
S-MAC protocol attempt to reduce collisions? How does it address the hidden-terminal
problem? Name at least three disadvantages of the S-MAC protocol.

6.26 Which shortcoming of S-MAC does T-MAC address? Explain briefly T-MAC’s ability
to adapt to traffic density.

6.27 What is the “early sleeping problem” and how does T-MAC address this problem?

6.28 Describe the concept behind PMAC’s approach to adapting a node’s sleep durations
to observed traffic.

6.29 The use of duty cycles allows nodes to alternate periods of activity and low-power
sleep intervals. However, this often introduces large communication latencies.
In Figure 6.20, node A wishes to send a packet to node F using the route
A–B–C–D–E–F. Assume that the interval between two dashed vertical lines is
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one unit of time and that each transmission requires exactly one unit of time of
overlapping periods of activity of two neighboring nodes. The first transmission
between A and its neighbor is already shown in the figure. Complete this graph to
determine the end-to-end latency experienced by the packet. Further, explain how
RMAC reduces these end-to-end latencies and what would this latency be in an
RMAC network? Finally, explain how the RMAC protocol reduces collisions.

Node F

Node A

Node B

Node C

Node D

Node E

Figure 6.20 RMAC duty cycle pattern (Exercise 6.29).

6.30 For what type of WSN applications would you use the DMAC protocol?

6.31 Explain the problem of “idle listing” and describe how preamble sampling addresses
this problem. How does WiseMAC improve upon “standard” preamble sampling?

6.32 What is the advantage of having the receiver (instead of the sender) in control over
the timing of transmissions (e.g., as in the RI-MAC protocol)? How does the RI-MAC
protocol handle multiple contending senders?

6.33 Explain how the Z-MAC protocol allows nodes to determine their own local time
frames instead of using a single global time frame. What are the disadvantages of
Z-MAC?
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7
Network Layer
Data collected by sensor nodes in a WSN is typically propagated toward a base station
(gateway) that links the WSN with other networks where the data can be visualized, ana-
lyzed, and acted upon. In small sensor networks where sensor nodes and a gateway are in
close proximity, direct (single-hop) communication between all sensor nodes and the gate-
way may be feasible. However, most WSN applications require large numbers of sensor
nodes that cover large areas, necessitating an indirect (multi-hop) communication approach.
That is, sensor nodes must not only generate and disseminate their own information, but also
serve as relays or forwarding nodes for other sensor nodes. The process of establishing paths
from a source to a sink (e.g., a gateway device) across one or more relays is called routing
and is a key responsibility of the network layer of the communication protocol stack. When
the nodes of a WSN are deployed in a deterministic manner (i.e., they are placed at certain
predetermined locations), communication between them and the gateway can occur using
predetermined routes. However, when the nodes are deployed in a randomized fashion (i.e.,
they are scattered into an environment randomly), the resulting topologies are nonuniform
and unpredictable. In this case, it is essential for these nodes to self-organize, that is, they
must cooperate to determine their positions, identify their neighbors, and discover paths to
the gateway device. This chapter introduces the main categories of routing protocols and
data dissemination strategies and discusses state-of-the-art solutions for each category.

7.1 Overview

The key responsibility of the network layer is to find paths from data sources to sink devices
(e.g., gateways). In the single-hop routing model (left graph in Figure 7.1), all sensor nodes
are able to communicate directly with the sink device. This direct communication model is
the simplest approach, where all data travels a single hop to reach the destination. However,
in practical settings, this single-hop approach is unrealistic and a multi-hop communica-
tion model (right graph in Figure 7.1) must be used. In this case, the critical task of the
network layer of all sensor nodes is to identify a path from the sensor to the sink across mul-
tiple other sensor nodes acting as relays. This design of a routing protocol is challenging
due to the unique characteristics of WSNs, including resource scarcity or the unreliabil-
ity of the wireless medium. For example, the limited processing, storage, bandwidth, and
energy capacities require routing solutions that are lightweight, while the frequent dynamic
changes in a WSN (e.g., topology changes due to node failures) require routing solutions
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Figure 7.1 Single-hop routing model (left) versus multi-hop routing model (right).

that are adaptive and flexible. Further, unlike traditional routing protocols for wired net-
works, protocols for sensor networks may not be able to rely on global addressing schemes
(e.g., IP addresses on the Internet).

There are various ways to classify routing protocols. Figure 7.2 presents three different
classifications based on the network structure or organization, the route discovery process,
and the protocol operation (Al-Karaki and Kamal 2004). With respect to network orga-
nization, most routing protocols fit into one of three classes. Flat-based routing protocols
consider all nodes of equal functionality or role. In contrast, in hierarchical-based routing
protocols, different nodes may assume different roles in the routing process, that is, some
nodes may forward data on behalf of others, while other nodes only generate and propagate
their own sensor data. Location-based routing protocols rely on the location information
from nodes to make routing decisions. Routing protocols are responsible for identifying or
discovering routes from a source or sender to the intended receiver. This route discovery
process can also be used to distinguish between different types of routing protocols. Reac-
tive protocols discover routes on-demand , that is, whenever a source wants to send data
to a receiver and does not already have a route established. While reactive route discovery
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Figure 7.2 Categories of routing protocols.
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incurs delays before actual data transmission can occur, proactive routing protocols estab-
lish routes before they are actually needed. This category of protocols is also often described
as table-driven, because local forwarding decisions are based on the contents of a routing
table that contains a list of destinations, combined with one or more next-hop neighbors
that lead toward these destinations and costs associated with each next hop option. While
table-driven protocols eliminate the route discovery delays, they may be overly aggressive
in that routes are established that may never be needed. Further, the time interval between
route discovery and actual use of the route can be very large, potentially leading to out-
dated routes (e.g., a link along the route may have broken in the meantime). Finally, the
cost of establishing a routing table can be significant, for example, in some protocols it
involves propagating a node’s local information (such as its list of neighbors) to all other
nodes in the network. Some protocols exhibit characteristics of both reactive and proactive
protocols and belong to the category of hybrid routing protocols. Finally, routing proto-
cols also differ in their operation, for example, negotiation-based protocols aim to reduce
redundant data transmissions by relying on the exchange of negotiation messages between
neighboring sensor nodes before actual data transfers occur. The SPIN family of protocols
(Section 7.5) belongs to this category. Multipath-based protocols use multiple routes simul-
taneously to achieve higher performance or fault tolerance. Query-based routing protocols
are receiver-initiated, that is, sensor nodes send data in response to queries issued by the
destination node. The goal of QoS-based routing protocols is to satisfy a certain Quality-
of-Service (QoS) metric (or a combination of multiple metrics), such as low latency, low
energy consumption, or low packet loss. Finally, routing protocols also differ in the way
they support in-network data processing. Coherent-based protocols perform only a mini-
mum amount of processing (e.g., eliminating duplicates, time-stamping) before sensor data
is sent to receivers and data aggregators. However, in noncoherent-based protocols, nodes
may perform significant local processing of the raw data before it is sent to other nodes for
further processing.

Further, when sensor data is explicitly sent to one or more receivers, routing is considered
node-centric. Most routing protocols focus on unicast routing, that is, forwarding of sensor
data to exactly one receiver. Multicast and broadcast routing approaches, on the other hand,
disseminate data to multiple or all nodes, respectively. Data-centric routing is used when
nodes are not explicitly addressed, but instead receivers are implicitly described by cer-
tain attributes. For example, a query issued by the gateway device may request temperature
readings and only sensors that can collect such information respond to the query.

7.2 Routing Metrics

Wireless sensor networks and their applications vary widely in their constraints and
characteristics, which must be taken into consideration in the design of a routing protocol.
For example, most WSNs will be constrained in terms of their available energy, processing
power, and storage capacities. Sensor networks can vary widely in scale, the geographic
areas they cover, and their position-awareness. Global addressing schemes (such as IP
addresses used on the Internet) may be unavailable and even nonfeasible, particularly in
networks with heterogeneous nodes and node mobility. Finally, from the application’s
perspective, sensor data may be collected in various different approaches. In time-driven
schemes (e.g., environmental monitoring), nodes propagate their collected sensor data
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periodically to a sink or gateway device. In event-driven schemes (e.g., wildfire detection),
nodes only report their collected information when events of interest occur. Finally, in
query-driven schemes, it is the responsibility of the sink to request data from sensors when
needed. Regardless of the scheme used in the network, the design of a routing protocol is
driven by the resources available in the network and the needs of the applications. Toward
this end, routing metrics are used to express a variety of objectives of a routing protocol with
respect to the consumption of these resources or the performance an application perceives.
This section provides a brief overview of commonly used routing metrics in WSNs.

7.2.1 Commonly Used Metrics

7.2.1.1 Minimum Hop

The most common metric used in routing protocols is minimum hop (or shortest hop), that
is, the routing protocol attempts to find the path from the sender to the destination that
requires the smallest number of relay nodes (hops). In this simple technique, every link has
the same cost and a minimum-hop routing protocol selects the path that minimizes the total
cost of data propagation from source to destination. The basic idea behind this metric is that
using the shortest path will result in low end-to-end delays and low resource consumptions,
because the smallest possible number of forwarding nodes will be involved. However, since
the minimum-hop approach does not consider the actual resource availability on each node,
the resulting route is probably nonoptimal in terms of delay, energy, and congestion avoid-
ance. Nevertheless, the minimum-hop metric is being used in many routing protocols due
to its simplicity and its isotonicity, that is, its ability to ensure that the order of weights of
two paths is preserved even when they are appended or prefixed by a common third path.

7.2.1.2 Energy

Undoubtedly the most crucial aspect of routing in WSNs is energy efficiency. However,
there is not one unique energy metric that can be applied to the routing problem; instead,
there are various different interpretations of energy efficiency, including (Singh et al. 1998):

1. Minimum energy consumed per packet: This is the most natural concept of energy effi-
ciency, that is, the goal is to minimize the total amount of energy expended for the
propagation of a single packet from the source to the destination. The total energy is then
the sum of the energy consumed by each node along a route for receiving and transmit-
ting the packet. Figure 7.3 shows an example of a small sensor network, where a source
node wishes to transmit a packet to a destination node using a route that minimizes the
packet’s energy overheads. The number on each link indicates the cost of propagating
the packet over this link. As a consequence, the packet will travel via nodes A–D–G
(with a total cost of 5). Note that this is different from the minimum-hop route (B–G).

2. Maximum time to network partition: A network partitions into several smaller sub-
networks when the last node that links two parts of the network expires or fails. As a
consequence, a subnetwork may not be reachable, rendering the sensor nodes within the
subnetwork useless. Therefore, the challenge is to reduce the energy consumption on
nodes that are crucial to maintaining a network where every sensor node can be reached
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Figure 7.3 Comparison of routing choices using different energy metrics.

via at least one route. For example, a minimal set of nodes, whose removal will cause a
network to partition, can be found using the max-flow–min-cut theorem. Once a routing
protocol has identified these critical nodes, it can attempt to balance the traffic load such
that premature expiration of these nodes is prevented. In Figure 7.3, node D is such a
node, for example, if node D’s battery becomes depleted, nodes F, I, and J would not be
reachable from any other node in the network.

3. Minimum variance in node power levels: In this scenario, all nodes within the network
are considered equally important and the challenge is to distribute the energy consump-
tion across all nodes in the network as equally as possible. The goal of such an approach
could be to maximize the lifetime of the entire network, for example, instead of some
nodes expiring sooner than others and thereby continuously decreasing the network size,
one could aim at keeping as many nodes alive as long as possible. In the ideal (but prac-
tically impossible) case, all nodes would expire at exactly the same time.

4. Maximum (average) energy capacity: In this approach, the focus is less on the energy
cost of packet propagation, but instead on the energy capacity (i.e., the current battery
charge level) of the nodes. A routing protocol that uses this metric would then favor routes
that have the largest total energy capacity from source to destination. In Figure 7.3, the
numbers in parentheses below the nodes indicate the nodes’ remaining energy capacity.
In this example, a routing protocol could select path C–E–G, which has the largest total
capacity (i.e., 8). A routing protocol that uses this metric must be carefully designed to
avoid the pitfall of choosing unnecessarily long routes in order to maximize the total
energy capacity. A variation of this metric is to maximize the average energy capacity,
which can avoid this problem.

5. Maximum minimum energy capacity: Finally, instead of maximizing the energy capaci-
ties of the entire path, the primary routing goal could be to select the path with the largest
minimum energy capacity. This technique also favors routes with larger energy reserves,
but also protects low-capacity nodes from premature expiration. In Figure 7.3, a protocol
using this metric would choose B–G, since the minimum capacity along this route is 2,
which is larger than the minimum capacities of all other possible routes.

These different formulations of energy awareness lead to very different protocol imple-
mentations that differ in their results (i.e., the selected routes) and their overheads. For
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example, to determine the minimum energy consumed per packet, the cost for receiving
and transmitting a packet may be based on a cost function with the packet size as input. On
the other hand, energy capacities change over time and therefore a routing protocol using a
capacity-based metric must obtain these capacities from other nodes from time to time.

7.2.1.3 Quality-of-Service

The term Quality-of-Service (QoS) refers to defined measures of performance in networks,
including end-to-end latency (or delay) and throughput, but also jitter (variation in latency)
and packet loss (or error rate). The choice of a QoS metric depends on the type of
application. Sensor networks performing target detection and tracking will require low
end-to-end transmission delays for their time-sensitive sensor data, while data-intensive
networks (e.g., multimedia sensor networks) may require high throughput. The Expected
Transmission Time (ETT) is a common metric to express latency and is defined as
(Draves et al. 2004):

ETT = ETT × S

B
(7.1)

where S is the average size of a packet and B is a link’s bandwidth. It expresses the expected
time necessary to successfully transmit a packet at the MAC layer. To capture packet loss as
a routing metric, the Expected Transmission Count (ETX) can be used, which is defined as
the number of transmissions necessary to successfully deliver a packet over a wireless link
(Couto et al. 2003). Very often multiple QoS metrics (e.g., end-to-end latency and packet
loss rate) are combined, for example, the bandwidth-delay product refers to the product of
a link’s bandwidth and its end-to-end delay. Which metrics are chosen affects the design
of the network at different levels, including the network (routing) and MAC layers. Most
WSNs must strike a balance between satisfying the application-specific QoS requirements
and the goal of energy efficiency in the network as whole.

7.2.1.4 Robustness

Many sensor applications may wish to use routes that stay stable and reliable for long periods
of time. Toward this end, a node can measure or estimate the link quality to each of its
neighbors and then select a next hop neighbor that increases the probability of a successful
transmission. However, this metric is rarely used alone. A routing protocol could identify
several minimum-hop paths and then select the one with the highest total or average link
quality along these paths. In networks with mobile nodes, a routing protocol could also use
the link stability metric, which measures how likely it is that a link will be available in
the future. These metrics can be used to bias route selection toward more robust paths and
stationary nodes.

7.3 Flooding and Gossiping

An old and simple strategy to disseminate information into a network or to reach a node
at an unknown location is to flood the entire network. A sender node broadcasts packets
to its immediate neighbors, which will repeat this process by rebroadcasting the packets to
their own neighbors until all nodes have received the packets or the packets have traveled
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for a maximum number of hops. With flooding, if there exists a path to the destination (and
assuming lossless communication), the destination is guaranteed to receive the data. The
main advantage of flooding is its simplicity, while its main disadvantage is that it causes
heavy traffic. Therefore, measures must be taken to ensure that packets do not travel through
the network indefinitely. For example, maximum-hop counts are used to limit the number
of times a packet is forwarded. It should be set large enough so that every intended receiver
can be reached, but also small enough to ensure that packets do not travel too long in the
network. Further, sequence numbers in packets (combined with the address of the source)
can be used to uniquely identify a packet. When a node receives a packet that it has already
forwarded (i.e., with the same destination–source pair and the same sequence number),
it simply discards this duplicate. However, even with these mechanisms, flooding faces a
number of additional challenges (Heinzelman et al. 1999):

1. Implosion: A node receiving a packet relays this packet to all its neighbors using broad-
casting, regardless of whether these neighbors have already received this packet from
other neighbors. This leads to resource waste due to unnecessary transmit-and-receive
operations. The left graph in Figure 7.4 illustrates this problem. Node A broadcasts packet
P1 to both of its neighbors, B and C. B forwards this packet to its own neighbor D and,
finally, C also forwards this packet to node D. Even if D discards the duplicate packet,
energy has been wasted on the transmission of the packet from C to D.

2. Overlap: Sensors are often used to monitor overlapping geographic areas, as illustrated
in the right graph in Figure 7.4. Here, sensors A and B share the region marked as Y.
Therefore, these sensors gather overlapping data and both forward their collected infor-
mation to their neighbor C. Similar to the implosion problem, this also leads to resource
waste since the same information is sent twice to the same receiver. Unlike the implo-
sion problem, the overlap problem is more difficult to address, because a solution to this
problem must not only consider the topology of the sensor network, but also the mapping
of the collected sensor information to sensor nodes.

3. Resource Blindness: The simplicity of the protocol also means that flooding is incog-
nizant of the resource constraints of individual nodes. As a consequence, flooding is not
able to adapt its behavior based on the amount of energy available to a specific node.

A variation of flooding is gossiping (Hedetniemi et al. 1988), where a node does not nec-
essarily broadcast data. Instead, it uses a probabilistic approach, where it decides to forward
the data to its own neighbors with a probability p and to discard the data with a probability
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Figure 7.4 The implosion problem (left) and the overlap problem (right).
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1 − p. It therefore can reduce the amount of traffic and achieve energy conservation by
randomization. However, this only addresses the implosion problem of flooding, not the
overlapping and resource blindness problems. With gossiping, it is also possible that deliv-
ery of sensor data fails when, for example, a node’s only neighbor decides not to forward the
data to this node. If a high probability for forwarding is chosen, the consequence is that the
message volume will be high (a probability of 1 corresponds to classic flooding), thereby
limiting the benefits of gossiping. On the other hand, if the probability is low, the overhead
can be significantly smaller, but the probability of unsuccessful data delivery will increase.

7.4 Data-Centric Routing

In most sensor networks, the sensor nodes themselves are less important than the information
they generate. Therefore, in data-centric routing techniques, the focus is on the retrieval
and dissemination of information of a particular type or described by certain attributes, as
opposed to the data collection from particular sensors. This section provides an overview
of data-centric routing and dissemination protocols in flat-based networks, where all nodes
play the same role concerning routing and all nodes collaborate to perform the routing task
(i.e., no topology management is necessary).

7.4.1 Sensor Protocols for Information via Negotiation

Sensor Protocols for Information via Negotiation (SPIN) (Kulik et al. 2002) is a family of
negotiation-based, data-centric, and time-driven flooding protocols. However, compared to
classic flooding, SPIN nodes rely on two key techniques to overcome the deficiencies of
flooding. To address the problems of implosion and overlap, SPIN nodes negotiate with
their neighbors before they transmit data, allowing them to avoid unnecessary communi-
cations. To address the problem of resource blindness, each SPIN node uses a resource
manager to keep track of actual resource consumption, allowing them to adapt routing and
communication behavior based on resource availability.

SPIN uses meta-data to succinctly and completely describe the data collected by sensor
nodes. To ensure that the meta-data is useful for SPIN, a key requirement is that if x describes
the meta-data for some sensor data X, the size of x (in bytes) must be less than the size of X.
Further, two identical pieces of sensor data should have the same meta-data representation.
Similarly, if two pieces of sensor data differ, their meta-data representations should differ
too. The actual translation of sensor data to meta-data is application-specific and SPIN relies
on each application to interpret and synthesize its own meta-data. For example, a camera
sensor may use (x, y, φ) as meta-data, where (x, y) is a geographic coordinate and φ is an
orientation.

7.4.1.1 SPIN-PP

The first member of the SPIN family, SPIN-PP, is optimized for networks using point-to-
point transmission media, where two nodes can communicate exclusively with each other
without interference from other nodes. In SPIN-PP, data is flooded in three steps via a 3-way
handshake protocol (Figure 7.5). First, when new data arrives, a node advertises this event
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Figure 7.5 The SPIN-PP protocol: (a) advertisement phase, (b) request phase, and (c) data trans-
mission.

using an advertisement message (ADV) to its neighbors via the data’s meta-data. Upon
receiving an advertisement, a node checks whether it has already received the described
sensor data. If not, the node responds with a request for data (REQ) message, indicating its
desire to receive the advertised data. Finally, the sender node responds to the REQ message
with a DATA message, containing the advertised data.

As shown in Figure 7.5(b), only nodes that do not yet possess a copy of the advertised
data respond to an ADV message. Further, upon receiving the DATA message from A, nodes
B and D can aggregate this data with their own data and advertise the aggregate to their
neighbors. A key strength of this protocol is its simplicity and nodes only need to know
their single-hop neighbors to run this protocol. While this protocol has been designed for
lossless environments with symmetric communication links, nodes could compensate for
lost ADV messages by periodically readvertising their data and for lost REQ and DATA
messages by rerequesting data of interest if such data does not arrive within certain timeout
intervals. As an alternative, the protocol could be modified to use explicit acknowledgments.
For example, REQ messages could contain explicit lists of data that a node wants or does
not want to receive. Based on the list, a node can identify if previous advertisements were
successfully received by the neighbor.

7.4.1.2 SPIN-EC

A variation of this protocol, called SPIN-EC, adds a simple heuristic to add energy conser-
vation to the SPIN-PP protocol. As long as all nodes have sufficient energy, they participate
in the three-way handshake of the SPIN-PP protocol. However, once the energy of a node
approaches a specific low-energy threshold , it becomes more selective in its participation in
the protocol. That is, a node should only participate in the three-way handshake if it believes
that it can complete all stages of the protocol without falling below the energy threshold.
Therefore, a node replies to an advertisement only if it has sufficient energy to transmit the
request and receive the requested data. Similarly, a node initiates the three-way handshake
with its neighbors only if it believes that it can complete the protocol even if all neighbors
request a copy of the data.

7.4.1.3 SPIN-BC

While the SPIN-PP and SPIN-EC protocols assume point-to-point communication
networks, the SPIN-BC protocol improves upon these protocols by exploiting the
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characteristics of broadcast transmission. In broadcast transmission, every message sent
by a sender will be received by all nodes within the sender’s radio range. SPIN-BC uses
cheap, one-to-many communications and nodes can coordinate their resource-conserving
efforts more effectively because they are able to overhear all transactions within their
radio ranges.

The SPIN-BC uses a three-way handshake consisting of ADV, REQ, and DATA messages,
but with three central differences compared to the approaches taken by SPIN-PP:

1. All messages are directed to the broadcast message, that is, all nodes within a sender’s
transmission range will receive a copy of the message.

2. Upon receiving an ADV message, a node checks whether it wishes to receive a copy of
the advertised data, and if so, sets a random timer, uniformly chosen from a predeter-
mined interval. Only after the timer expires, the node issues the REQ message, again to
the broadcast address (specifying the identity of the sender of the ADV message in the
message header). When a node overhears the REQ message before its own timer expires,
the node cancels its timer and does not send its own REQ message.

3. The advertiser transmits the advertised data to the broadcast address only once, that is, it
will ignore duplicate REQ messages for the same data.

The random timer is necessary to avoid collisions of REQ messages from different neighbors
and to allow nodes to avoid REQ transmissions when another node has already transmitted
an REQ. The consequence of this approach is that the number of transmissions can be sig-
nificantly reduced, for example, for each transmission, a node needs only to transmit a single
ADV message and a single copy of the DATA message.

7.4.1.4 SPIN-RL

The final variant of the SPIN protocol is SPIN-RL, a reliable version of SPIN-BC, addressing
packet loss and asymmetric communications. First, each node keeps track of overheard REQ
messages and if it does not receive a corresponding DATA message within a certain timeout
interval, it assumes that either the REQ message or the DATA message did not arrive. In this
case, the node rerequests the data by broadcasting an REQ message, specifying the identity
of a randomly selected node among the nodes that previously advertised this data in the
message header. In addition, SPIN-RL limits the frequency with which DATA messages are
sent out. That is, once a node sends a DATA message, it will wait a predetermined time
before responding to any other requests for the same data.

7.4.2 Directed Diffusion

Directed diffusion (Intanagonwiwat et al. 2000) is another data-centric data dissemination
protocol that is also application-aware in that data generated by sensor nodes is named
by attribute-value pairs. The main idea of directed diffusion is that nodes request data by
sending interests for named data. This interest dissemination sets up gradients within the
network that are used to direct sensor data toward the recipient, and intermediate nodes
along the data paths can combine data from different sources to eliminate redundancy and
reduce the number of transmissions.
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Directed diffusion does not rely on globally valid node identifiers, but instead uses
attribute-value pairs to describe a sensing task and to steer the routing process. For example,
a description for a simple vehicle-tracking application could be:

type = vehicle // detect vehicle location

interval = 20 ms // send data every 20 ms

duration = 10 s // perform task for 10 s

rect = [-100,-100,200,200] // from sensors within rectangle

That is, a task description expresses a node’s desire (or interest) to receive data matching
the provided attributes. The data sent in response to such interests is also named in the same
manner, that is, using attribute-value pairs.

Once an application has been described using this naming approach, the interest must be
diffused through the sensor network. This process is shown in Figure 7.6. A sink node peri-
odically broadcasts an interest message to its neighbors, which continue to broadcast the
message throughout the network (Figure 7.6(a)). Each node establishes a gradient toward
the sink node, where a gradient is a reply link toward the neighbor from which the interest
was received. As a consequence, using interests and gradients, paths between event sources
and sinks can be established (Figure 7.6(b)). Once a source begins to transmit data, it can
use multiple paths for transmission toward the sink. The sink can then reinforce one partic-
ular neighbor based on some data-driven local rule. For example, a sink could reinforce a
neighbor from which the sink has received a previously unseen event. Toward this end, the
sink resends the original interest message to the neighbor, which in turn reinforces one or
more of its neighbors based on its own local rule (Figure 7.6(c)).

Directed diffusion differs from SPIN in that queries (interests) are issued on demand by
the sinks and not advertised by the sources as in SPIN. Based on the process of establish-
ing gradients, all communication is neighbor-to-neighbor, removing the need for address-
ing schemes and allowing each node to perform aggregation and caching of sensor data,
both of which can contribute to reduced energy consumption. Finally, directed diffusion
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Figure 7.6 Directed diffusion: (a) interest propagation, (b) initial gradients set up, and (c) data
delivery.
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is a query-based protocol, which may not be a good choice for certain sensor network
applications, particularly where continuous data transfers are required (e.g., environmental
monitoring applications).

7.4.3 Rumor Routing

While the classic flooding approach can be described as event flooding (i.e., a source prop-
agates its sensor data via an event throughout the network), query flooding describes the
process used to propagate queries to all nodes in the network when no localization informa-
tion is available to steer the query toward the appropriate sensors. Rumor routing (Braginsky
and Estrin 2002) is a variation of directed diffusion that attempts to combine the character-
istics of both techniques.

In rumor routing, each node maintains a list of its neighbors and an event table that con-
tains forwarding information to all known events. Once a node witnesses an event (i.e., a
phenomenon in the physical world), the event is added to this table (including a distance of
zero) and an agent is generated with a certain probability (i.e., not all events may result in
an agent generation). This agent is a long-lived packet that travels the network to propagate
information about this event and other events encountered along its route to remote nodes.
Once an agent arrives at a node, the node can use the agent’s content to update its own table.
For example, in Figure 7.7(a), the table for node A pointing toward events E1 and E2 is
shown, before the arrival of an agent originating at node E. When the agent arrives at node
A (via node G), A sees that E1 can be reached via neighbor G using a shorter route than cur-
rently stored in its table. It therefore updates its table with the newly obtained information
from E’s agent (Figure 7.7(b)).

When a node wants to issue a query targeted at a specific event, it first checks whether it
has a route toward the target event. If so, it forwards the query to the neighbor indicated by
the event’s table entry. If there is no route, a random neighbor is selected and the query is
passed to this neighbor. This process is continued on each node, where the query message
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Figure 7.7 Rumor routing: (a) before the arrival of the agent notifying B of a shorter path to E1, (b)
after the arrival of the agent.
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collects a list of recently seen nodes to avoid revisiting them. Both agent and query messages
use a time-to-live (TTL) counter value that is decremented at each hop and a message is only
forwarded if this counter value is greater than zero. Note that even though a node may not
know the direction of the target event, by forwarding it to a random neighbor, the query
may be able to come to a node that has an entry for the desired event. Since it is possible
that the query may not reach the target event, the querying node can use another technique,
for example, flooding the query, when no response is received after a certain timeout value
(which depends on the TTL value).

In summary, rumor routing attempts to strike a compromise between query and event
flooding. Query flooding can be expensive when the query to event ratio is very high, while
event flooding is more beneficial when the number of total events generated in the network
is low. Neither protocol works well for moderate query to event ratios. While rumor routing
uses a query-based approach, it attempts to route queries to only the nodes that have observed
a particular event rather than flooding the entire network. Rumor routing is not concerned
with latency, instead a nonoptimal route is satisfactory. Further, a node’s table size grows
with the number of events it is aware of, therefore, in networks with many events, the cost
of storing and maintaining such tables may pose a problem.

7.4.4 Gradient-Based Routing

Another variant of the concept of directed diffusion is Gradient-Based Routing (GBR)
(Schurgers and Srivastava 2001), where a gradient is determined on the basis of the number
of hops to the sink. Similar to directed diffusion, GBR uses interests to capture a sink’s
desire to receive certain types of information and during the flooding of these interests,
gradients are established on each node. Each interest announcement message records the
number of hops it has traveled since leaving the sink. This allows nodes in the network to
determine their distance (in terms of number of hops) to the sink, which is called a node’s
height in GBR. Then, the difference between a node’s height and the height of its neighbor
is considered to be the gradient on the link between these two nodes. A data packet is then
forwarded on the link with the largest gradient.

When multiple routes pass through a node, their data may be combined. In GBR, nodes
can establish a Data Combining Entity (DCE), which is responsible for data compaction to
increase the resource efficiency of the network. Further, GBR uses traffic spreading tech-
niques to more uniformly balance the traffic over the network. In the stochastic spreading
scheme, each node selects the next hop randomly when there are two or more next hops with
the same gradient. In the energy-based scheme, a node increases its height when it detects
that its energy level has dropped below a certain threshold. This discourages other nodes
from sending traffic via this node. Changing a node’s height can also affect the heights
of the node’s neighbors since a node calculates its height to be one more than that of its
lowest-height neighbor. Finally, in the stream-based scheme, new streams are diverted away
from nodes that already serve other streams. To achieve this, a node that receives packets
informs all its neighbors (except the one from where the packets originate) that its height has
increased. As a consequence, the original stream remains unaffected, but new streams may
choose a different route since the height of the nodes of the original stream’s route appears
to have increased.
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7.5 Proactive Routing

Proactive (or table-driven) routing protocols establish paths before they are actually needed.
The main advantage of this approach is that routes are available whenever they are needed
and no delays are incurred to search for routes such as in on-demand routing protocols. The
main disadvantages are the overheads involved in building and maintaining potentially very
large routing tables and that stale information in these tables may lead to routing errors.

7.5.1 Destination-Sequenced Distance Vector

The Destination-Sequenced Distance Vector (DSDV) routing protocol (Perkins and
Bhagwat 1994) is a modified version of the classic Distributed Bellman-Ford algorithm.
In distance-vector algorithms, every node i maintains a list of distances {dx

ij } for each
destination x via each neighbor j . Then, node i selects node k as the next hop for packet
forwarding if dx

ik = min{dx
ij }. This information is stored in a routing table, along with a

sequence number for each entry, where this number is assigned by the destination node.
The purpose of the sequence numbers is to allow nodes to distinguish stale routes from
new ones in order to prevent routing loops. Each node broadcasts updates to the routing
table periodically, but also immediately whenever significant new information becomes
available. DSDV uses two types of packets to share its routing table content. A full dump
contains all available routing information, whereas an incremental packet contains only
information that has changed since the last full dump. Incremental packets are typically
much smaller than full dumps, therefore reducing the control overhead of DSDV. When a
node receives an incremental packet, the received information is compared with the node’s
current knowledge and a route indicated in the packet replaces the corresponding route in
the node’s table if the packet’s route has a more recent sequence number. A packet’s route
also replaces the node’s route in its table if the sequence numbers are identical, but the
packet’s route has a shorter distance.

Figure 7.8 shows a possible network topology, indicating node locations and connectivity,
including node D’s routing table (first table). Suppose that node C moves from its current
location to a new location in the vicinity of nodes H and G, which become node C’s new
neighbors. Update packets from D’s neighbors will ultimately inform D that the route to C
via B is invalid and that a new route to C via node E exists. Therefore, node D will replace
C’s information in its routing table to show E as the next hop neighbor and to reflect the new
distance of three (second table in Figure 7.8).
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7.5.2 Optimized Link State Routing

Another example of a proactive protocol is the Optimized Link State Routing (OLSR) proto-
col (Clausen et al. 2001), which is based on the link state algorithm. In this approach, nodes
periodically broadcast topological information updates to all other nodes in the network,
allowing them to obtain a complete topological map of the network and to immediately
determine paths to any destination in the network.

Every node in OLSR uses neighbor sensing to identify its neighbors and to detect changes
to the node’s neighborhood. Toward this end, a node periodically broadcasts a HELLO
message, which contains the node’s identity (address) and a list of all known neighbors
of this node. For each neighbor, this list also indicates whether the link between the node
and the neighbor is symmetric (both can receive each other’s messages) or asymmetric. By
collecting the neighbors’ HELLO messages, a node can determine information about its
two-hop neighborhood. To obtain network-wide information, topological information must
be flooded throughout the network. Compared to the classic flooding approach, OLSR relies
on multipoint relays (MPRs) to provide a more efficient way of disseminating such control
information. That is, a node selects a set of symmetric neighbor nodes as MPRs, called the
MPR selector set. Only MPRs forward messages to other nodes, which may significantly
reduce duplicate transmissions. This concept is shown in Figure 7.9, compared to the classic
flooding approach.

All nodes select their MPRs independently, possibly using different algorithms and
heuristics. For example, a node can determine its two-hop neighbors via the received
HELLO messages and can then calculate the minimum set of one-hop neighbors necessary
to reach all two-hop neighbors. These one-hop neighbors are then selected as MPRs and
informed of their new role using the HELLO messages.

OLSR does not inform all other nodes of all its neighbors; instead, its control messages
(which will be relayed by its MPRs) contain the addresses of its MPRs. Effectively, a
node announces reachability to all its MPRs and since all nodes have selected an MPR

(a) (b)

MPR

Figure 7.9 Comparison of (a) classic flooding and (b) MPR-based OLSR.
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set, reachability to all nodes will be announced through the network. Therefore, each node
will obtain a partial topographical map of the network, which can be used to determine
optimal routes (e.g., using a shortest path algorithm) to any reachable destination in the
network.

7.6 On-Demand Routing

Compared to proactive routing protocols, reactive protocols do not discover and maintain
routes until they are explicitly requested and used. A source node, knowing the identity or
address of the destination node, initiates a route discovery process within the network, which
completes when at least one route is found or when all possible routes have been examined.
A route is then maintained until it either breaks or is no longer needed by the source.

7.6.1 Ad Hoc On-Demand Distance Vector

An example of an on-demand or reactive protocol is the Ad Hoc On-Demand Distance
Vector (AODV) protocol (Perkins and Royer 1999). Unlike OLSR, nodes neither maintain
any routing information nor participate in periodic routing table exchanges. AODV relies on
a broadcast route discovery mechanism, which is used to dynamically establish route table
entries at intermediate nodes.

The path discovery process of AODV is initiated whenever a source node needs to trans-
mit data to another node, but for which the source node does not have routing information
in its table. Toward this end, the source node broadcasts a route request (RREQ) packet to
its neighbors, which contains the addresses of the source and the destination, a hop count
value, a broadcast ID, and two sequence numbers. The broadcast ID is incremented when-
ever the source issues a new RREQ packet and is combined with the source’s address to
uniquely identify an RREQ. Upon receiving an RREQ packet, a node that possesses a cur-
rent route to the specified destination responds by sending a unicast route reply (RREP)
message directly back to the neighbor from which the RREQ was received. Otherwise the
RREQ is rebroadcast to the intermediate node’s neighbors. A duplicate RREQ (identified
by its source address and broadcast ID) is discarded.

Each node in the network maintains its own sequence number. A source issuing an RREQ
packet also includes its own sequence number and the most recent sequence number it has
for the destination. Therefore, intermediate nodes reply to an RREQ only if the sequence
number of their route to the destination is greater than or equal to the destination sequence
number specified in the RREQ packet. When an RREQ is rebroadcast, the intermediate node
records the address of the neighbor from which the RREQ was received, thereby establish-
ing a reverse path from the destination to the source. As the RREP travels back to the source,
each intermediate node sets up a forward pointer to the node from which the RREP came and
records the latest destination sequence number for the requested destination. RREP packets
contain the addresses of the source and the destination nodes, the destination sequence num-
ber, and a hop count. An intermediate node receiving an RREP propagates this packet toward
the source only if (1) this is the first copy of this RREP, (2) the RREP contains a greater des-
tination sequence number than the previous RREP, or (3) the destination sequence number is
the same as in the previous RREP, but the hop count is smaller. This decreases the number of
RREPs traveling toward the source and ensures that the routing information for the shortest
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Figure 7.10 Path discovery process of AODV.

route (in terms of number of hops) reaches the source. An example of this path discovery
process is shown in Figure 7.10.

A timer for each entry in each node’s routing table limits the lifetime of unused routes.
Neighboring nodes also exchange periodic HELLO messages to monitor the state of their
links. When a link along the route breaks (e.g., due to a moving node), the intermediate node
closer to the source noticing the broken link issues a route error (RERR) packet upstream
toward the source. Upon receiving an RERR packet, a source node can reinitiate the path
discovery process.

Using AODV, routes are only established when needed, avoiding costly route table
updates and exchanges for routes that may never be used. However, AODV does require
periodic exchanges of HELLO messages among neighbors. Further, since a source node
may not have a valid route in its table when it wishes to transmit data, there can be an initial
delay (for completion of the path discovery process) before the route can be used. Finally,
since the route established from the source to the destination is the reverse path of RREP
packets that traveled from the destination to the source, AODV assumes that all links are
symmetric.

7.6.2 Dynamic Source Routing

The Dynamic Source Routing (DSR) protocol (Johnson 1994) employs route discovery and
route maintenance procedures similar to AODV. In DSR, each node maintains a route cache
with entries that are continuously updated as a node learns new routes. Similar to AODV, a
node wishing to send a packet will first inspect its route cache to see whether it already has
a route to the destination. If there is no valid route in the cache, the sender initiates a route
discovery procedure by broadcasting a route request packet, which contains the address of
the destination, the address of the source, and a unique request ID. As this request propagates
through the network, each node inserts its own address into the request packet before re-
broadcasting it. As a consequence, a request packet records a route consisting of all nodes it
has visited. When a node receives a request packet and finds its own address recorded in the
packet, it discards this packet and does not rebroadcast it further. A node keeps a cache of
recently forwarded request packets, recording their sender addresses and request IDs, and
discards any duplicate request packets.

Once a request packet arrives at the destination, it will have recorded the entire path from
the source to the destination. In symmetric networks, the destination node can unicast a
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response packet, containing the collected route information, back to the source using the
exact same path as taken by the request packet. In networks with asymmetric links, the
destination can itself initiate a route discovery procedure to the source, where the request
packet also contains the path from the source to the destination. Once the response packet
(or the destination’s request packet) arrives at the source, the source can add the new route
into its cache and begin transmitting packets to the destination. Similar to AODV, DSR
also employs a route maintenance procedure based on error messages, which are generated
whenever the link layer detects a transmission failure due to a broken link.

Compared to proactive routing protocols, DSR shares similar advantages and disadvan-
tages as AODV. Unlike AODV, each packet in DSR carries route information, which allows
intermediate nodes to add new routes proactively to their own caches. Also, DSR’s support
of asymmetric links is another advantage compared to AODV.

7.7 Hierarchical Routing

Hierarchical routing protocols are based on the grouping of nodes into clusters to address
some weaknesses of flat routing protocols, most notably scalability and efficiency. The main
idea behind hierarchical routing is that sensor nodes communicate only directly with a leader
node in their own cluster, typically referred to as cluster head . These cluster heads, which
may be more powerful and less energy-constrained devices than “regular” sensor nodes, are
then responsible for propagating the sensor data to the sink. This approach can significantly
reduce the communication and energy burdens on sensor nodes, while cluster heads will
experience significantly more traffic than regular sensor nodes.

Challenges in the design and operation of hierarchical routing protocols include the selec-
tion of cluster heads, the formation of clusters, and adaptations to network dynamics such as
mobility or cluster head failures. Compared to flat routing approaches, hierarchical solutions
may reduce collisions in the wireless medium and facilitate the duty cycling of sensor nodes
for increased energy efficiency. Clustering may also facilitate the routing process, but may
lead to longer routes than many flat routing protocols. Clustering also facilitates in-network
aggregation of sensor data, because data coming from colocated sensors (which may monitor
overlapping regions of the environment) are likely to pass through the same cluster head.
Figure 7.11 illustrates two variations of the clustering approach. When all cluster heads
communicate directly with the sink node (left graph), the routing challenge is reduced to the
cluster formation problem. When cluster heads do not directly communicate with the sink
(right graph), a cluster-based routing protocol must also establish multi-hop routes from all
cluster heads to the sink.

In the landmark routing technique (Tsuchiya 1988), nodes self-organize into hierarchies,
where a landmark is a node to which its neighbors within a certain number of hops know
a route to that node. For example, in the left graph of Figure 7.12, assume that nodes 2–6
have routing information for node 1. On the other hand, nodes 7–11 do not have routes
to node 1, therefore node 1 is a landmark “visible” to all nodes within a 2-hop distance.
Node 1 is then a landmark of radius 2. In general terms, a node i for which all other nodes
within n hops have routing information toward i is a landmark of radius n. Using this def-
inition, a hierarchy of landmarks can be constructed, where a packet can be forwarded
toward a destination by choosing an appropriate sequence of landmarks. The right graph
in Figure 7.12 shows an example of such a hierarchy, where the dotted lines and the circles
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Figure 7.11 Clustering with single-hop connections to the sink (left) and clustering with multi-hop
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Figure 7.12 Definition of a landmark (left) and routing using a hierarchy of landmarks (right).

indicate the radius of each landmark. Global landmarks are those whose radii are larger than
the diameter of the network, that is, routes to these nodes are known by all other nodes in
the network. In landmark routing, the address of a node consists of a sequence of identifiers
of the nearest landmarks, for example, the landmark address of node LM0 in Figure 7.12 is
LM2.LM1.LM0. In this concrete example, the source node will inspect its routing table and
it will find an entry for LM2, but not for LM1 or LM0. Therefore, the source will choose a
path toward LM2. Each node along the path will make the same decision until the packet
reaches a node within the range of LM1. This node will find entries for both LM2 and LM1,
but since LM1 has the finer resolution, a path toward LM1 will be chosen. Finally, once the
packet reaches a node within the range of LM0, a direct path to the destination LM0 will
be chosen.

The LANMAR protocol (Gerla et al. 2000) extends the concept of landmark routing by
combining it with Fisheye State Routing (Pei et al. 2000). It uses landmarks to establish
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a two-tiered logical hierarchy, where each landmark is a cluster head of a logical subnet.
Fisheye State Routing is a link state routing protocol, where the frequency of route updates
depends on the distance, that is, routes within a fisheye scope (a certain predefined distance)
are more accurate than routes to more distant nodes. In LANMAR, routing updates are only
exchanged with nodes in the immediate neighborhood and with landmark nodes; the update
frequency of all other nodes is zero. When a node needs to relay a packet, the packet will
be forwarded directly to the destination if the destination node is within the node’s fisheye
scope. Otherwise, the packet will be forwarded toward the landmark corresponding to the
destination’s logical subnet. Again, once a packet enters the scope of the destination, it is
routed directly to it.

Another hierarchical clustering algorithm is the Low-Energy Adaptive Clustering Hierar-
chy (LEACH) protocol (see Section 6.4.5 for protocol details), which combines a clustering
approach with MAC-layer techniques. LEACH assumes that every cluster head can directly
communicate with the base station. With LEACH, cluster heads are responsible for all com-
munication between their cluster members and a base station and the aggregation of data
coming from its cluster members in order to eliminate redundancies. LEACH can achieve
significant energy savings (depending on how much redundancy can be removed) and sensor
nodes (apart from the cluster heads) are not responsible for forwarding other nodes’ data.

The main idea of the Power-Efficient Gathering in Sensor Information Systems (PEGA-
SIS) protocol (Lindsey and Raghavendra 2002) is for each node to exchange packets with
close neighbors and take turns in being responsible for relaying packets to the base station.
Toward this end, nodes organize into a chain, for example, using a greedy algorithm initi-
ated by a specific node or computed by the base station, which then broadcasts the chain
information to all other nodes. While data travels along a chain, it can be aggregated with
other data until relayed to the base station. PEGASIS achieves high-energy efficiency since
each node only communicates with its closest neighbors (thereby also allowing a node to
reduce its transmission power to the lowest required to reach its neighbors in the chain)
and occasionally serves as relay toward the base station. Similar to LEACH, the protocol
assumes that all nodes can communicate with the base station. A disadvantage in PEGASIS
is that packets may experience significant delays, particularly if they originate from dis-
tant nodes in the chain. Finally, the node serving as relay to the base station can become
a bottleneck.

The Safari architecture (Du et al. 2008) also provides a self-organizing network hierar-
chy and a routing protocol with similarity to the landmark approaches. Such landmarks,
called drums in Safari, use a self-election algorithm (a distributed algorithm with no cen-
tralized coordination) to form subnets, called cells and supercells . At the lowest level of the
cell hierarchy (level 0), each individual node forms its own cell. At level 1, Safari defines
fundamental cells , that is, cells that contain multiple individual nodes, but no other cells.
Higher-level cells are then composed of multiple smaller cells at lower levels. Each drum
periodically broadcasts beacon messages within well-defined limited scopes in the network.
These beacons aid the hierarchy formation, give nodes an indication of their position in
the network topology, and provide routing information toward the drum’s cell. Safari uses
a hybrid approach for routing, that is, routing within cells is based on the reactive DSR
protocols, while a proactive routing approach is used to compute routes to more distant
nodes. The inter-cell communication relies on a destination node’s hierarchical address and
on the beacon records stored on each node. Basically, inter-cell communication follows the
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reverse path of the beacons issued by the cells’ drums. The main advantage of Safari over
other approaches is its scalability, due to the hybrid routing approach and the hierarchical
addressing scheme.

7.8 Location-Based Routing

Location-based or geographic routing can be used in networks where sensor nodes are able to
determine their position using a variety of localization systems and algorithms (see Chapter
10 for examples of localization techniques). Instead of topological connectivity information,
sensors use geographic information to make forwarding decisions. In unicast location-based
routing, packets are sent directly to a single destination, which is identified by its location.
That is, a sender must be aware not only of its own location, but also the location of the des-
tination. This location can be obtained either via querying (e.g., flooding a query to request
a response from the destination containing its location) or a location broker , that is, a ser-
vice that maps node identities to locations. In broadcast or multicast location-based routing
approaches, the same packet must be disseminated to multiple destinations. Multicast pro-
tocols take advantage of the known destination locations to minimize resource consumption
by reducing redundant links.

The identity of a sensor node is typically less important than its location, that is, data
may be disseminated to all nodes that lie within a certain geographic region. This approach
is called geocasting and can, for example, be used to diffuse queries to specific regions of
interest instead of flooding the entire network, significantly reducing both bandwidth and
energy requirements. Once a packet reaches the desired region, it must be either dissemi-
nated (multicast) to all nodes within this region or transmitted to at least one node within
this region (anycast ).

Typically, location-based routing protocols require that every node in the network knows
its own geographic location and the identities and locations of its one-hop neighbors (e.g.,
obtained via periodic beacon messages). The destination is expressed either as the location
of a node (instead of a unique address) or a geographic region. Compared to other routing
solutions, an advantage of location-based routing is that only geographic information is
needed for forwarding decisions and it is not necessary to maintain routing tables or to
establish end-to-end paths between sources and destinations, eliminating the need for control
packets (apart from the beacon messages among neighbors).

7.8.1 Unicast Location-Based Routing

In unicast location-based routing, the goal is to propagate a packet to a specific node located
at a position known to the sender. The routing protocol’s responsibility on each node is to
make a local forwarding decision to ensure that a packet moves closer to the destination
with each hop. An example of this simple procedure is shown in Figure 7.13, where broken
circles indicate the transmission ranges of the forwarding nodes and the arrows indicate the
resulting path taken by the packet. In this greedy forwarding approach, it is only required
that each node knows its own location and the location of its neighbors, and the source
must know the location of the destination. However, this approach carries certain risks.
Most importantly, a packet may arrive at a node that does not have any neighbors that could
serve as next hops to bring the packet closer to the destination. To identify and circumvent
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Source Destination

Figure 7.13 Unicast location-based routing.

such voids or holes is a main challenge being addressed by most location-based routing
protocols. Solutions to this problem are discussed in the remainder of this section with the
help of several representative protocols for unicast location-based routing.

7.8.1.1 Greedy Perimeter Stateless Routing

An example of a routing protocol that makes forwarding decisions based on the positions
of nodes and a packet’s destination is Greedy Perimeter Stateless Routing (GPSR) (Karp
and Kung 2000). GPRS nodes only require information about their immediate neighbors to
decide where to relay a packet. The source of a packet marks the packet with the location of
the destination node. If a node knows all its neighbors’ positions (e.g., obtained via periodic
HELLO or beacon messages), an intermediate node can make a locally optimal forwarding
decision by selecting the neighbor that is geographically closest to the destination. Continu-
ing this process node by node, the packet will move closer and closer to the destination with
every hop, until the destination is reached.

Since every intermediate node makes a forwarding decision based only on its knowledge
of its neighbors’ locations, it can happen that a packet must move temporarily farther in geo-
metric distance from the destination to ultimately continue its path toward the destination.
Figure 7.14 shows an example of such a situation. Node x is closer to the destination than
both its neighbors y and w. Here, the dashed arc around the destination has a radius equal
to the distance between the destination and x. Based on the greedy forwarding protocol, x

would not select any of the two paths that would lead to the destination.
In this example, the intersection of x’s radio range and the circle centered at the destina-

tion with a radius equal to the distance between the destination and x is called a void since
x does not have any neighbors in this region. Therefore, GPRS provides a mechanism that
allows it to route around this void, allowing the packet to continue on its route toward the
destination. Toward this end, GPRS relies on the well-known right-hand rule for travers-
ing a graph (depicted in Figure 7.14). The rule states that when a packet arrives at node x
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Figure 7.14 GPRS: (a) node x’s void with respect to the destination and (b) the right-hand rule.

from node y, the next edge traversed is the next one sequentially counterclockwise about
x from edge (x, y). The right-hand rule traverses the interior of a polygon (in this case a
triangle) in clockwise edge order and the exterior region (i.e., the region outside the triangle)
in counterclockwise edge order.

GPRS exploits this rule to route packets around voids, for example, in Figure 7.14(a),
traversing the cycle (x, w, v, destination, z, y, x) using the right-hand rule amounts to nav-
igating around the void to nodes closer to the destination than x. This sequence of edges
traversed according to this rule is called a perimeter . Unfortunately, the right-hand rule does
not always result in a traversal of the perimeter of a closed polygon. In nonplanar graphs,
that is, graphs with crossing edges, it is possible that the right-hand rule may take a degen-
erate tour of edges that does not trace the boundary of a closed polygon. In GPRS, multiple
techniques can be applied to obtain planar graphs (i.e., all crossing edges will be removed),
for example, by reducing a graph to a Relative Neighborhood Graph (RNG) or a Gabriel
Graph (GG), as long as the removal of edges does not partition the network. For example,
to obtain a RNG, we consider the intersection of the radio ranges of two nodes u and v. This
region, called the lune between u and v, must be empty of any witness node w such that the
edge (u, v) can be included in the RNG. That is, if this region is nonempty, the link (u, v)
will be removed.

To summarize, GPRS operates in two different modes. Upon receiving a packet, a node
searches its neighbor table for the neighbor geographically closest to the destination. If this
neighbor is closer to the destination, the packet is relayed to this neighbor. Otherwise, the
node enters the perimeter routing mode and records in the packet the location where greedy
forwarding failed. Upon receiving a packet in perimeter mode, this location is compared to
the forwarding node’s location and the packet is returned to the greedy mode if the distance
from the forwarding node to the destination is less than that from the recorded location to
the destination.

7.8.1.2 Forwarding Strategies

The goal of greedy forwarding is to move a packet closer to the destination with each
hop. Each node makes such a forwarding decision based on local information only. How-
ever, a variety of forwarding strategies have been explored that all meet this requirement,
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but potentially lead to different resource requirements and paths. Common strategies for
forwarding in unicast location-based protocols include:

1. Greedy: This common technique chooses a neighbor that minimizes the distance to the
destination in each hop. In Figure 7.15, this would be node E. The goal of the greedy
approach is to minimize the number of hops required to reach the destination.

2. Nearest with Forwarding Progress (NFP): This strategy chooses the nearest neighbor
of all neighbors that make a positive progress (in terms of geographic distance to the
destination) toward the destination (Hou and Li 1986). Sensor nodes that can adapt their
transmission powers can choose the smallest transmission power necessary to reach this
neighbor (e.g., node A in Figure 7.15), thereby contributing to reduced packet collisions
in their neighborhood.

3. Most Forwarding Progress within Radius (MFR): The MFR strategy (Takagi and Klein-
rock 1984) selects the neighbor that makes the greatest positive progress towards the
destination, where progress is defined as the distance between the source and its neigh-
bor node projected onto a line drawn from the source to the destination (e.g., node B
in Figure 7.15). This technique attempts to minimize the number of hops a packet must
travel.

4. Compass Routing: This strategy chooses the neighbor with the smallest angle between
a line drawn from the source to the neighbor and the line connecting the source and
the destination (Kranakis et al. 1999). This approach (which would select node C in
Figure 7.15) attempts to minimize the spatial distance that a packet has to travel.

In addition to these strategies that only rely on geometry to determine the next-hop neigh-
bor, forwarding strategies can also combine geometry with additional criteria. For example,
the transmission power needed to reach a neighbor can be used to reduce a node’s energy
overhead for the packet forwarding process, the residual energy of the neighbors can be
considered to prolong the lifetime of the network, or the link quality (e.g., signal-to-noise
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Figure 7.15 Forwarding strategies in location-based routing.
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ratio) can be used to maximize the number of successful packet deliveries and to minimize
the number of required retransmissions.

7.8.1.3 Geographic Adaptive Fidelity

The Geographic Adaptive Fidelity (GAF) protocol (Xu et al. 2001) is another example of an
energy-aware unicast location-based routing protocol, but is primarily designed for networks
with mobile nodes. The network region is divided into a virtual grid, where only a single
device in each grid cell serves as the forwarding node at any given time. This node is then
responsible for relaying data to the base station, while all other nodes can go to sleep. Further,
GAF assumes that for two adjacent cells A and B, all nodes in A can communicate with
all nodes in B and vice versa (Figure 7.16). The grid and cell sizes can be predetermined,
allowing each node (assuming that it knows its own location) to determine the cell to which it
belongs. That means that most nodes in the network will have neighbors in all four directions
(except nodes in border cells).

Nodes in GAF transit between three different states. Initially, each node enters the dis-
covery state, where it listens for messages from other nodes within its cell. It also sets a
timer for a certain timeout duration and once the timer fires, the node broadcasts a dis-
covery message and enters the active state. The node uses another timer to reenter the
discovery state once that second timer fires. While in the active state, the node periodi-
cally rebroadcasts its discovery message. Further, while in either discovery or active state,
a node can enter the sleep state whenever it determines that some other node will handle
the forwarding of packets. This is achieved using an application-dependent negotiation pro-
cedure, for example, based on the expected lifetime of a node. Nodes in the active state
win the negotiation process over nodes in the discovery mode. In the case of ties, node
IDs can be used to decide which node will serve as forwarder. In general, the goal of this
approach is to quickly reach a state where a cell has only one active node. Nodes entering
the sleep state periodically reenter the discovery state to repeat the process of negotiating the
forwarding roles.

Base Station

Figure 7.16 Virtual grid approach of GAF.
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7.8.2 Multicast Location-Based Routing

Multicast is used to deliver the same packet to multiple receivers. A simple approach could
deliver the packet to each receiver separately via unicast routing. However, this approach is
resource-inefficient in that it does not exploit the fact that routes to different receivers may
share paths. Another technique is to simply flood the entire network, which ensures that all
receivers will obtain a copy of the packet, but is also very resource costly. Multicast routing
is concerned with the efficient delivery of the same packet to all receivers by minimizing
the number of links the packet has to travel to reach all destinations. A common technique is
to establish a multicast tree rooted at the packet source with the destinations as leaf nodes.
This section describes representative protocols for multicasts in sensor networks that take
advantage of geographic information.

The Scalable Position-Based Multicast (SPBM) protocol (Transier et al. 2007) relies on
a group management scheme to maintain a list of all destinations for a particular packet.
However, instead of putting all destinations into the packet header, SPBM uses hierarchi-
cal group membership management to ensure that the approach is efficient even when the
number of destinations is large. Toward this end, the network is represented as quad-tree
with a pre-defined number of levels L, for example, the left graph in Figure 7.17 illustrates
an example with L = 4 (levels 0 . . . L−1). Squares are identified by concatenating their
level numbers, for example, square 442 is a level-0 square, located in the level-3 square that
encompasses the entire network, the level-2 square 4, and the level-1 square 44. All nodes
in a level-0 square are in radio range of each other.

Based on this hierarchical addressing scheme, each node maintains two tables: a global
member table containing entries for the three neighboring squares for each level and a local
member table containing all members of the node’s level-0 neighbors. Each entry in the
global member table contains the square’s identifier and a list of nodes located in the square.
Each entry in the local member table contains a node ID and the membership information
of that node. This membership information indicates the multicast groups to which a node
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Figure 7.17 Quad-tree network representation in SPBM (left) and routing using the quad-tree
(right).
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belongs and is encoded as vector where each bit represents a multicast group. For example,
an entry of 10100010 for square 41 in the global membership table would indicate that there
exist nodes in square 41 that belong to multicast groups 2, 6, and 8. An entry of 00000001
for node 14 in the local membership table indicates that node 14 is a member of multicast
group 1 only. The contents of a node’s local membership table are periodically broadcast
within the node’s level-0 square. A randomly chosen node in each level-0 square periodically
disseminates its global membership table to all nodes in its level-1 square, and this process
is repeated for higher-level squares.

Using these tables, a source can now disseminate a packet to all nodes subscribed to a
multicast group. For example, in the right graph of Figure 7.17, the source wishes to transmit
a packet to its multicast group members located in squares 441, 444, and 43 (indicated by the
black circles). Using its global membership table, it knows that there are multicast members
in level-2 square 4 and therefore forwards the packet toward that direction. Similar to GPSR,
SPBM uses a greedy forwarding approach by choosing next-hop neighbors that make the
largest progress toward a destination. Once the packet arrives at a node in square 42, that
node knows that there are multicast members in level-1 squares 43 and 44 and therefore
forwards the packets toward each square. The rule for splitting a multicast packet is based on
a heuristic that provides a tradeoff between the total number of nodes forwarding the packet
and the optimality of the individual routes toward the destinations. Once a forwarding node
finds a multicast member in its local membership table, it forwards the packet directly to that
member node. Similar to GPSR, whenever greedy forwarding fails, the protocol switches
into perimeter routing mode.

Other location-based multicast protocols are the Geographic Multicast Routing (GMR)
protocol (Sanchez et al. 2006) and the Receiver Based Multicast (RBMulticast) protocol
(Feng and Heinzelman 2009). GMR uses a heuristic neighbor selection scheme that requires
low computational overheads, resulting in efficient routes based on a cost over progress met-
ric. This metric is a ratio of the number of selected forwarding nodes over the progress made
toward all destinations (i.e., the total remaining distance from the neighbors to the destina-
tions minus the total distance from the forwarding node to all destinations). RBMulticast is
a receiver-based multicast approach, that is, a sender can transmit packets without specify-
ing the next-hop node. Similar to SPBM, RBMulticast divides the network into multicast
regions , splitting packets depending on the locations of the destinations. However, RBMul-
ticast is a completely stateless protocol, eliminating the need for membership tables. This
is achieved by representing each multicast region with a virtual node and each forwarding
node replicates a packet for each region that contains at least one multicast member. The
destination of a packet is then the virtual node for a particular multicast region. In RBMul-
ticast, it is up to the MAC layer to ensure that the neighbor closest to the location of the
virtual node takes responsibility for forwarding the packet. That is, RBMulticast assumes
an underlying MAC protocol where receivers contend for channel access and nodes that
make the most forward progress to the destination will contend earlier and have a better
chance to become the next-hop node.

7.8.3 Geocasting

In many wireless sensor networks, it is preferred to propagate information to all or some
nodes within a specific geographic region. This is a very natural model for many sensor
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network applications, specifically when the exact location of individual sensors is unknown.
For example, in query-based networks, the same query can be propagated to multiple sen-
sors monitoring a specific geographic area, instead of sending the same query repeatedly to
different individual sensors. The routing problem then consists of two separate challenges:
(1) propagating a packet near the target region and (2) distributing a packet within the target
region. The first challenge can be addressed using approaches similar to unicast location-
based routing as previously described, although no exact location of a sensor node near or
within the target region may be known. If it is sufficient for a packet to reach only a sin-
gle node within the target region, the protocol has succeeded once the packet arrives on
at least one node within the region. However, if all nodes within the region must obtain a
copy of the packet, the second challenge can be addressed using approaches similar to the
broadcast techniques described previously. Therefore, geocasting to multiple receivers is a
combination of both unicast and broadcast geographic routing.

7.8.3.1 Geographic and Energy Aware Routing

The Geographic and Energy Aware Routing (GEAR) protocol (Yu et al. 2001) is an example
of a geocasting protocol, where packets are forwarded to all nodes within a specific target
region. GEAR consists of the two phases described above: (1) packets are forwarded toward
the target region using a geographical and energy-aware neighbor selection algorithm and
(2) packets are disseminated to nodes within the target region using a recursive geographic
forwarding algorithm.

Each node in the network maintains two types of costs of reaching a destination via
its neighbors. The estimated cost c(Ni, R) for each neighbor Ni and a target region R is
defined as:

c(Ni, R) = αd(Ni, R) + (1 − α)e(Ni) (7.2)

where α is a tunable weight, d(Ni, R) is the distance from neighbor Ni to the centroid
D of region R normalized by the largest such distance among all neighbors, and e(Ni) is
the consumed energy at node Ni , normalized by the largest consumed energy among all
neighbors. That is, the estimated cost is a combination of both residual energy and distance
to the target region. The learned cost h(N, R) of a node N is then a refinement of the
estimated cost that allows nodes to circumvent voids or holes in the network (if there are no
holes, the learned cost and the estimated cost are identical). Similar to GPSR, GEAR makes
locally greedy forwarding decisions, that is, whenever a node receives a packet, it will pick
the next hop among the neighbors that are closer to the destination.

When a node N receives a packet, and if there are no neighbors that are closer to the
destination, N knows that it is in a hole. In this case, the learned cost function is used to
select one of N’s neighbors as the next hop, that is, the packet is forwarded to the node with
the minimum learned cost (ties are broken using some predefined ordering). After a node
picks the next-hop neighbor Nmin, it sets its own learned cost h(N,R) to h(Nmin, R) +
C(N, Nmin), where C(x, y) is the cost of transmitting a packet from node x to node y.
Therefore, the learned cost will increase, which allows upstream nodes to avoid forwarding
packets toward the node in the hole. Figure 7.18(a) shows an example of this procedure,
where T represents the centroid of the target region. Node S wishes to forward a packet
toward the destination and it has three neighbors that are closer to the destination: B, A, and
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Figure 7.18 GEAR: (a) learning routes around holes and (b) recursive geographic forwarding.

I. B’s and I’s learned and estimated costs are
√

5 and A’s learned and estimated costs are both
2. S will forward the packet to the lowest cost neighbor, which is A. Node A will find itself
in a hole and it will forward the packet to the neighbor with the minimum learned cost, for
example, node B. Additionally, it will update its own cost h(A, T ) = h(B, T ) + C(A, B),
that is, assuming a cost (A, B) = 1, the new learned cost of A will be

√
5 + 1. The next

time a packet for T arrives at node S, S will forward the packet directly to B instead of A to
circumvent the hole.

Once a packet reaches the target region R, a simple flooding with duplicate suppression
scheme could be used to disseminate the packet to all nodes within R. However, due to
the cost of flooding, GEAR relies on a process called Recursive Geographic Forwarding ,
shown in Figure 7.18(b). Assume that the target region R is the large rectangle and node
S received a packet for R and finds itself within R. Then, S creates four new copies of the
packet bound to four smaller subregions (shown as the smaller rectangles) of region R. For
each subregion, GEAR repeats the forwarding and splitting process until a packet reaches a
node that is the only one within the current subregion.

7.8.3.2 Geographic-Forwarding-Perimeter-Geocast

Another protocol that combines geographic routing with region flooding is the Geographic-
Forwarding-Perimeter-Geocast (GFPG) protocol (Seada and Helmy 2004). Similar to
GPRS, it uses greedy forwarding to propagate a packet toward its geocast region, where
the destination is the center of the geocast region. When greedy forwarding fails, perimeter
routing is used to circumvent voids. Once the packet enters the geocast region, simple
flooding could be used to deliver it to all nodes with the region. However, this assumes that
there are no obstacles and gaps, that is, all nodes within the region must be able to reach
each other without going out of the region. If this assumption does not hold, delivery cannot
be guaranteed. Therefore, GFPG uses a combination of geocast and perimeter routing to
guarantee delivery to all nodes. For example, the gray geocast region in Figure 7.19 has
two clusters of nodes that cannot directly reach each other within the geocast region (i.e.,
there is a gap between two nodes in the lower left and the upper right corners).
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Source Source

Figure 7.19 An example of a geocast region with a gap (left) and region flooding and perimeter
routing used by GFPG to reach all nodes in the geocast region (right).

Once a packet reaches a geocast region, it is flooded to all nodes, but in addition, region
border nodes , that is, nodes that have at least one neighbor outside the region, also send the
packet to their neighbors outside the region in the planar graph. Nodes outside the region
forward the packet using the right-hand rule to neighbors in the planar graph and, as a conse-
quence, the packet travels around the face until it enters the region again (Figure 7.19). The
first node inside the region to receive the perimeter packet floods this packet to its neighbors
if it has not seen this packet before. Perimeter routing is therefore able to link disconnected
clusters of a geocast region together.

7.9 QoS-Based Routing Protocols

Although most routing and data dissemination protocols aim for some kind of Quality-of-
Service (QoS), for example, minimum hop routing protocols try to achieve low latencies
by using “short” paths, some protocols proposed for sensor networks explicitly address
one or more QoS routing metrics. The goal of these protocols is to find feasible paths
between sender and destination, while satisfying one or more QoS metrics (latency, energy,
bandwidth, reliability), but also optimizing the use of the scarce network resources. Wire-
less sensor networks pose numerous challenges to providing satisfactory QoS, including
dynamic topologies, resource scarcity (including power limitations), varying quality of the
radio channels, the lack of centralized control, and the heterogeneity of network devices.
This section introduces several representative QoS-based routing protocols for ad hoc and
sensor networks.

7.9.1 Sequential Assignment Routing

One of the first routing protocols to explicitly consider Quality-of-Service is the Sequential
Assignment Routing (SAR) protocol (Sohrabi et al. 2000), which is also an example of a
multipath routing approach. SAR creates multiple trees, each rooted at a 1-hop neighbor of
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the sink, to establish multiple paths from each node to the sink. These trees grow outward
from the sink, while avoiding nodes with low QoS (e.g., high delay). The QoS associated
with a path is expressed as an additive QoS metric where higher values imply lower QoS.
After the tree-building procedure has completed, it is likely that a node is part of multiple
trees, that is, it can choose from multiple routes toward the sink. SAR selects a route for a
packet based on the QoS metric, energy (in terms of number of packets that can be trans-
mitted without energy depletion, assuming exclusive use of the path), and the priority level
of the packet. The goal of SAR is to minimize the average weighted QoS metric over the
lifetime of the network. The availability of multiple routes ensures fault-tolerance and quick
recovery from broken paths. However, establishing and maintaining the trees (i.e., routing
tables) are expensive tasks, particularly in large sensor networks.

7.9.2 SPEED

Numerous wireless sensor applications require sensor data collection within certain time
constraints to ensure that the collected information is useful and can be acted upon in a
timely fashion. For example, events of interest such as the detection of moving objects in
surveillance systems or the impending failure of a bridge require rapid responses.

For applications with soft real-time requirements, SPEED (He et al. 2003) is an
example of a protocol that provides real-time communication services, including real-time
unicast, real-time area-multicast, and real-time area-anycast. SPEED is also an example of a
location-based routing protocol, that is, a node relies on position information from its neigh-
bors instead of routing tables. Position information is obtained through periodic HELLO (or
beacon) messages that contain a node’s ID, position, and an average receive delay. Each node
also maintains a neighbor table containing the node ID and position for each of its neighbors,
but also an expiration time (ExpireTime) and two delays called ReceiveFromDelay and
SendToDelay. The SendToDelay is the delay received from the beacon message coming
from the neighbor, while the ReceiveFromDelay is estimated by measuring the delay expe-
rienced by a packet in the MAC layer of the sender plus a propagation delay. The Receive-
FromDelay values of all neighbors are averaged periodically to obtain a single receive delay.

The routing component of the SPEED protocol is called Stateless Nondeterministic Geo-
graphic Forwarding (SGNF). The neighbor set of a node i is defined as the set of neighbors
of i (i.e., all nodes within i’s radio range) that are at least a distance of K away from i. The
forwarding candidate set (FSDest

i ) of a node i for destination Dest consists of all nodes from
the node’s neighbor set that are at least a distance of K closer to the destination. That is,
if L is the distance of node i from the destination and Lnext is the distance from i’s neigh-
bor j to the destination, L − Lnext has to be greater than or equal to K in order to add j to
i’s forwarding candidate set. Packets are only forwarded to nodes belonging to FSDest

i and
if this set is empty, packets are dropped. SPEED further divides the forwarding candidate
set into two subsets: one contains nodes that have a SendToDelay less than a certain single
hop delay D, and the other contains the remaining nodes. The forwarding candidate is then
selected from the first group where nodes with higher relay speed have a greater chance of
being chosen. The relay speed considers both distance and delays and is calculated as:

RelaySpeed = |L − Lnext|
SendToDelay

(7.3)



194 Fundamentals of Wireless Sensor Networks

where a discrete exponential distribution can be used to trade off between load balancing and
optimal path length. If there are no nodes in the first subset of forwarding candidates, a relay
ratio is calculated, based on another component of the SPEED protocol, the neighborhood
feedback loop. This component is responsible for determining the relay ratio by looking
at the miss ratios of the neighbors of a node (i.e., the nodes which could not provide the
required RelaySpeed). If this relay ratio is less than a randomly generated number between
0 and 1, the packet is dropped. The goal of the neighborhood feedback loop is to keep the
system performance at a desired value, that is, it attempts to maintain a single hop delay
below a certain value D.

The final component of SPEED is the back-pressure rerouting protocol, which is respon-
sible for (i) preventing voids that occur when a node fails to find a next hop node and (ii)
reducing congestion using a feedback approach. Figure 7.20 depicts two examples show-
ing the operation of this technique. In both examples, the shaded regions are areas where
traffic is high, causing congestion. In the first case, node 3 will be notified of the delays
experienced by nodes 6 and 7 through the beacon exchange process. The SGNF compo-
nent of SPEED reduces the probability of nodes 6 and 7 being selected as forwarding
nodes, therefore reducing the congestion around these nodes. In the second case, all for-
warding nodes of 3 are congested and, in this case, both the neighborhood feedback loop
and SGNF work together to address the congestion. For example, node 3 may drop a cer-
tain number of packets, where these dropped packets count as packet with delay D in terms
of computing the delay at this node. The average delay of 3 will increase, which will be
detected by 3’s upstream nodes (i.e., node 2). Should node 2 be in the same situation as
node 3, further back-pressure will be imposed on node 1, that is, back-pressure rerouting
may continue to proceed upstream until it reaches the source, which can then suppress
further packets.

7.9.3 Multipath Multi-SPEED

The goal of the Multipath Multi-SPEED (MMSPEED) protocol (Felemban et al. 2006) is
to provide QoS differentiation in terms of timeliness and reliability , while at the same time
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Figure 7.20 Two examples of back-pressure rerouting in SPEED.
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Figure 7.21 Service differentiation in the latency domain (left) and the reliability domain (right).

minimizing the protocol’s overhead by making localized routing decisions without a pri-
ori route discovery or global network state updates. Similar to SPEED, the protocol relies
on geographic locations of nodes to make forwarding decisions, where these locations are
exchanged among neighboring nodes using periodic beacon messages.

With respect to timeliness, MMSPEED offers packets multiple delivery speed options
that are guaranteed throughout the network. Conceptually, this protocol can be understood
as a virtual overlay of multiple SPEED layers on top of a single physical layer (left graph
in Figure 7.21). Each layer l is associated with a SetSpeedl, which is a prespecified lower-
bound speed. That is, when a node computes the relay speed for each of its neighbors (see
Section 7.9.2), it then chooses a forwarding neighbor whose relay speed is at least the desired
SetSpeed value. For example, assume that the minimum required speed level ReqSpeed(x)
for packet x can be calculated as

ReqSpeed(x) = dists,d(x)

deadline(x)
(7.4)

where dists,d is the distance from the source s to the destination d for packet x with a given
(end-to-end) deadline(x). Then, the speed layer l for the packet is selected such that

SetSpeedl = minL
j=1{SetSpeedj |SetSpeedj ≥ ReqSpeed(x)} (7.5)

where L is the number of available speed options. In this case, the node chooses a neigh-
bor i whose progress speed estimation RelaySpeed = |dists,d − disti,d |/delays,i is at least
SetSpeedl . It is possible that a packet’s delays over a route differ from the delay estimations.
Therefore, the layer selected at one node can differ from the layer selected at another node,
for example, a slow packet can be boosted by using a higher layer at a subsequent node.
Toward this end, it is necessary to determine a packet’s remaining time to its deadline, which
requires synchronized clocks in the network. Instead, MMSPEED measures the elapsed time
at each node and piggybacks this information onto a packet such that subsequent nodes can
determine the remaining time to the deadline.

Similarly, MMSPEED offers packets multiple levels of reliability. Toward this end, it
exploits the fact that there exist multiple redundant paths from a source to a destination,
even though these paths will differ in length and QoS (right graph in Figure 7.21). Each
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node i maintains the recent average of packet loss percentage ei,j to each neighbor j . Such
losses include both intentional packet drops for congestion control and errors in the wireless
channel. Based on these averages, a node computes an estimate of packet loss probability
between itself and a packet’s destination as

RPd
i,j = (1 − ei,j )(1 − ei,j )

�distj,d/disti,j � (7.6)

where �distj,d/disti,j� is the hop count estimation from node j to the destination d . This
estimation is based on the assumption that subsequent nodes have a similar packet loss rate
to node i and that the progress to the destination for each following hop will be similar
to the current progress. Based on this computation, a node can determine the number of
forwarding paths that satisfy the end-to-end reachability requirement of a packet. The total
reaching probability (TRP) is originally set to zero and updated for each forwarding path
that is being used, that is, the TRP is computed as

TRP = 1 − (1 − TRP)(1 − RPd
i,j ) (7.7)

Here, (1 − TRP) is the probability that none of the current paths can successfully deliver
the packet to the destination and (1 − RPd

i,j ) is the probability that the additional path will
fail to deliver the packet. Therefore, the newly computed TRP is the probability that at least
one path will successfully deliver the packet to the destination. A node adds paths to this
TRP estimation until TRP becomes larger than the required end-to-end reachability P req.

Both latency and reliability considerations can also be combined in MMSPEED. In this
case, the protocol identifies the required speed level for a given packet and then it finds
multiple forwarding nodes among those with sufficient progress speed such that the total
reaching probability is at least as high as the required reaching probability.

7.10 Summary

While routing in general is a crucial component of any multi-hop network, routing is par-
ticularly challenging in wireless ad hoc and sensor networks due to their characteristics
such as stringent resource constraints and unreliability of links and nodes. Specifically,
routing protocols must operate efficiently to avoid premature exhaustion of the limited
resources in a sensor network (most notably energy) and they must be able to adjust to chang-
ing and unpredictable network characteristics, including changes in the network topology
and density. In this section, several classes of routing strategies (data-centric, hierarchi-
cal, location-based) and numerous examples of concrete routing protocols have been dis-
cussed. Table 7.1 summarizes some key characteristics of the protocols discussed in this
chapter.

Although numerous routing solutions for sensor networks exist, the unique challenges
and the many varieties of network deployment scenarios indicate that there still remain
a variety of challenges, for example, with respect to resource efficiency and provision of
QoS. For example, in the recent past, there has been an increased focus on wireless sensor
networks that can support application-specific QoS requirements involving multiple perfor-
mance metrics. Other areas of investigation of routing protocols for future sensor networks
include the need for energy-efficient solutions that make localized decisions, protocols that
effectively exploit redundancy for efficiency and reliability, protocols for newly emerging
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Table 7.1 Network protocols summary

Protocol Characteristics

SPIN Flat topology, data-centric, query-based, negotiation-based
Directed diffusion Flat topology, data-centric, query-based, negotiation-based
Rumor routing Flat topology, data-centric, query-based
GBR Flat topology, data-centric, query-based
DSDV Flat topology with proactive route discovery
OLSR Flat topology with proactive route discovery
AODV Flat topology with reactive route discovery
DSR Flat topology with reactive route discovery
LANMAR Hierarchical with proactive route discovery
LEACH Hierarchical, support of MAC layer
PEGASIS Hierarchical
Safari Hierarchical, hybrid route discovery (reactive near, proactive remote)
GPSR Location-based, unicast
GAF Location-based, unicast
SPBM Location-based, multicast
GEAR Location-based, geocast
GFPG Location-based, geocast
SAR Flat topology with QoS (real-time, reliability), multipath
SPEED Location-based with QoS (real-time)
MMSPEED Location-based with QoS (real-time, reliability)

topologies (e.g., architectures with multiple tiers), security-aware routing protocols, and
integrated solutions to routing and in-network processing of sensor data.

Exercises

7.1 The previous chapter presented several MAC protocols, while this chapter introduced
routing protocols. Can you think of examples how the choice of MAC protocol affects
the design, performance, and efficiency of the routing protocol?

7.2 What is the difference between a proactive routing protocol and a reactive routing
protocol? Name at least two examples for each category. Consider the following WSN
scenarios and explain why you would choose either a proactive or a reactive routing
solution:

(a) A WSN is used to monitor air pollution in a city where every sensor reports its
sensor data once every minute to a single remote base station. Most sensors are
mounted on lamp posts, but some are also mounted on city buses.

(b) A WSN is used to measure humidity in a field, where low-power sensors report
measurements only when certain thresholds are exceeded.

(c) A WSN is used to detect the presence of vehicles, where each sensor locally
records the times of vehicle detection. These records are delivered to the base
station only when the sensor is explicitly queried.
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7.3 What is data-centric routing? Why is data-centric routing feasible (or even necessary)
compared to routing based on identities (addresses)?

7.4 Describe a WSN application for each of the following categories: time-driven, event-
driven, and query-driven.

7.5 For the network topology shown in Figure 7.22, identify the optimal routes for source
A to sink M according to the following criteria (describe how you compute the cost
for the optimal route). The numbers X/Y along each link indicate the latency (X) and
energy cost (Y) for transmitting a single packet over the link. The number Z under
each node indicates the node’s remaining energy capacity.

(a) Minimum number of hops
(b) Minimum energy consumed per packet
(c) Maximum average energy capacity (eliminate hops that would result in a higher

average but unnecessarily add to the route length!)
(d) Maximum minimum energy capacity
(e) Shortest latency
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Figure 7.22 Topology for Exercise 7.5.

7.6 A WSN is modeled as a 5 × 5 grid as shown in Figure 7.23, with the base station
placed at the center of the network (left topology) or at the bottom left corner (right
topology). Assume that each node can communicate with only its immediate neighbors
on the grid and that packet transmission or forwarding over a link costs exactly one
unit of energy (packet reception and processing costs are neglected).

(a) For both topologies, find an energy optimal graph of routes, that is, the energy cost
for each packet traveling through the network is a minimum.

(b) Consider the graphs shown in Figure 7.24. What is the average and total load in
the network, when the per-node load is defined as the number of routes a node has
to service (including its own)? Do not include the base station in your calculations.

(c) What is the lifetime of the network topologies in Figure 7.24 when during every
second, each node generates and transmits its own packet and forwards all packets
received during the previous second? Assume that each node has an initial energy
budget of 100. Each transmission costs 1 unit of energy (there is no cost for recep-
tion, etc.). Consider the lifetime of a network to have expired once the first node
depletes its energy budget. Compare the results and derive design principles for the
network topology to optimize the lifetime of the network with respect to placement
of the base station and the construction of routing trees.
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(d) Assume that the first topology in Figure 7.24 is used and each sensor transmits
exactly one packet to the base station. Then the topology is switched to the second
one and each sensor transmits one packet to the base station in the bottom left cor-
ner. Then the topology is switched back to the first one and the process is repeated.
Explain why the network lifetime changes and what other design principle can be
derived from this insight. (To facilitate the comparison, focus on the case where
each node has already reached its maximum load.)

Base Station

Sensor Node

Figure 7.23 Topologies for Exercise 7.6.

Base Station

Sensor Node

Figure 7.24 Topologies and routes for Exercise 7.6.

7.7 Flooding is a simple strategy for distributing data to one specific node or all sensor
nodes in a network. Answer the following questions:

(a) Explain the three challenges of flooding described in this chapter.
(b) Which of these can be addressed by gossiping and how can they be addressed?
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(c) For the topologies shown in Figure 7.22 and Figure 7.23, what are good choices
for the maximum hop count? Explain your answer.

(d) How do sequence numbers contribute to reducing unnecessary transmissions? Are
sequence numbers alone sufficient and, if not, what other information is needed to
use them correctly?

7.8 Using the topology in Figure 7.22, explain the problems of implosion, overlap, and
resource blindness.

7.9 How does the SPIN family of protocols address the three challenges faced by flooding?
What are the disadvantages of a negotiation-based protocol such as SPIN?

7.10 Explain the concept of directed diffusion. Can you imagine at least three strategies or
goals for reinforcement?

7.11 Consider the network topology in Figure 7.22 and node G’s routing table shown in
Table 7.2.

(a) Describe how node G would send queries toward events E1, E2, and E3 using
rumor routing (note that node G has no routing table entries for event E3).

(b) Assume that (i) I informs G that I can reach event E2 via 2 hops, (ii) F informs G
that F can reach event E3 via 4 hops, (iii) E informs G that E can reach event E1
via 1 hop, (iv) D informs G that D can reach event E1 via 2 hops, (v) H informs G
that H can reach event E2 via 2 hops, and (vi) D informs G that D can reach event
E3 via 1 hop. What is the final table of node G? Can you identify the locations of
all three events by the identity of the closest sensor?

Table 7.2 G’s routing table (Exercise 7.11)

Event Distance Direction

E1 3 F
E2 4 I

7.12 What are the concepts behind distance vector routing and link state routing and how do
they compare to each other with respect to overheads for maintaining routing tables?

7.13 Compare a proactive routing protocol such as DSDV with a reactive protocol such as
DSR with respect to overheads and route optimality.

7.14 Does DSR incur larger or smaller overheads for route discovery compared to the
AODV protocol? Justify your answer.

7.15 In AODV, is it possible that route discovery packets travel in the network forever?
Why or why not?

7.16 Asymmetric (or unidirectional) links occur when node A can hear node B, but B cannot
hear node A. Explain whether this is a problem for the AODV protocol and if so, how
this can be addressed.
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7.17 What is the concept behind hierarchical routing and what advantages does it have over
other techniques?

7.18 Table 7.3 summarizes the routing information of all nodes in a WSN, that is, each
row indicates the routing knowledge of that particular node. For example, the first row
shows that node A knows that it can reach nodes B and C via 1 hop and nodes D and
E via 2 hops. Given this information, draw the network topology and determine the
landmark radius for each node.

Table 7.3 Routing information for Exercise 7.18

A B C D E F G H

A 0 1 1 2 2 – – –
B 1 0 1 1 1 2 – –
C 1 1 0 2 1 – 2 –
D – 1 2 0 1 1 2 2
E 2 1 1 1 0 – 1 –
F – 2 – 1 2 0 1 1
G – 2 2 2 1 1 0 1
H – – 3 2 – 1 1 0

7.19 What is the advantage of using Fisheye State Routing in the LANMAR protocol com-
pared to the basic landmark routing technique?

7.20 Figure 7.25 shows a number of nodes as small dots. Each node has a radio range of 2
units. How would the gray node positioned at (0, 0) route a packet to the gray node at
position (9, 9) using GPSR? Indicate the visited nodes.

(0,0)

Figure 7.25 GPSR routing example (Exercise 7.20).

7.21 When does GPSR enter the perimeter routing mode and how does it use the right-hand
rule in this mode?
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7.22 Prove that it is false or show an example that the perimeter mode can cause a packet
to traverse a network’s entire outer boundary.

7.23 Consider the topology in Figure 7.26. Node A wishes to forward a packet toward desti-
nation L via one of its neighbors (its communication range is indicated with the circle).
Which neighbor will A choose with each of the following forwarding strategies:

(a) greedy forwarding
(b) nearest with forwarding progress
(c) most forwarding progress within radius
(d) compass routing

D
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E

L
F

I

J

K

H

G

Figure 7.26 Forwarding strategies in GPSR (Exercise 7.23).

7.24 The cell size of the GAF virtual grid can be predetermined and each node knows to
which cell it belongs. Discuss the consequences of choosing very large versus very
small cell sizes.

7.25 How does the SPBM protocol ensure efficient multicast for large numbers of receivers?

7.26 What is the concept of RBMulticast and how does it address the shortcomings of the
SPBM protocol?

7.27 The GEAR protocol uses two types of costs: learned and estimated. Explain how
learned costs are used to route packets around holes (use a concrete example). What
is the purpose of the estimated costs and what is the intuition behind calculating them
as described in this chapter?

7.28 Figure 7.27 shows a sensor network topology, where each node’s transmission range
is two units. The node at position (0,0) wants to disseminate a packet to all nodes
within the rectangle. Show how GFPG routes the packet toward the region and how it
distributes it to all receivers within the rectangle. Clearly indicate which nodes (inside
and outside the geocast region) will receive the packet.

7.29 Answer the following questions with respect to QoS-aware routing protocols:

(a) What advantages and disadvantages does multipath routing have?
(b) How does the SGNF component of SPEED work?
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(0,0)

Figure 7.27 Geocast region with hole (Exercise 7.28).

(c) How does the back-pressure rerouting component of SPEED work?
(d) Why does MMSPEED change the speed of packets as they travel along a route?
(e) How can latency and reliability considerations be combined in MMSPEED?
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8
Power Management
The power consumption of a wireless sensor network (WSN) is of crucial concern because
of the scarcity of energy. Whereas energy is a scarce resource in every wireless device, the
problem in WSNs is amplified for the following reasons:

1. Compared to the complexity of the task they carry out – namely, sensing, processing,
self-managing, and communication – the nodes are very small in size to accommodate
high-capacity power supplies.

2. Ideally, a WSN consists of a large number of nodes. This makes manually changing,
replacing or recharging batteries almost impossible.

3. While the research community is investigating the contribution of renewable energy and
self-recharging mechanisms, the size of nodes is still a constraining factor.

4. The failure of a few nodes may cause the entire network to fragment prematurely.

The problem of power consumption can be approached from two angles. One is to develop
energy-efficient communication protocols (self-organization, medium access, and routing
protocols) that take the peculiarities of WSNs into account. The other is to identify activities
in the networks that are both wasteful and unnecessary and mitigate their impact.

Wasteful and unnecessary activities can be described as local (limited to a node) or global
(having a scope network-wide). In either case, these activities can be further considered
as accidental side-effects or results of nonoptimal software and hardware implementations
(configurations). For example, observations based on field deployment reveal that some
nodes exhausted their batteries prematurely because of unexpected overhearing of traffic that
caused the communication subsystem to become operational for a longer time than originally
intended (Jiang et al. 2007). Similarly, some nodes exhausted their batteries prematurely
because they aimlessly attempted to establish links with a network that had become no longer
accessible to them.

Most inefficient activities are, however, results of nonoptimal configurations in hardware
and software components. For example, a considerable amount of energy is wasted by an
idle processing or a communication subsystem. A radio that aimlessly senses the media or
overhears while neighboring nodes communicate with each other consumes a significant
amount of power.

A dynamic power management (DPM) strategy ensures that power is consumed econom-
ically. The strategy can have a local or global scope, or both. A local DPM strategy aims to
minimize the power consumption of individual nodes by providing each subsystem with the
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amount of power that is sufficient to carry out a task at hand. When there is no task to be pro-
cessed, the DPM strategy forces some of the subsystems to operate at the most economical
power mode or puts them into a sleeping mode. A global DPM strategy attempts to minimize
the power consumption of the overall network by defining a network-wide sleeping state.

There are different ways to achieve this goal. One way is to let individual nodes define
their own sleeping schedules and share these schedules with their neighbors to enable a
coordinated sensing and an efficient internode communication. This is called synchronous
sleeping. The problem with this approach is that neighbors need to synchronize time as well
as schedules and the process is energy intensive. Another way is to let individual nodes
keep their sleeping schedules to themselves; and a node that initiates a communication
should send a preamble until it receives an acknowledgment from its receiving partner. This
approach is known as asynchronous sleeping schedule and avoids the needs to synchronize
schedules. But it can have a latency side-effect on data transmission. In both approaches,
individual nodes wake up periodically to determine whether there is a node that wishes to
communicate with them and to process tasks waiting in a queue.

The main focus of this chapter is on local dynamic power management strategies in
WSNs.

8.1 Local Power Management Aspects

The first step toward developing a local power management strategy is the understanding of
how power is consumed by the different subsystems of a wireless sensor node. This knowl-
edge enables wasteful activities to be avoided and to frugally budget power. Furthermore, it
enables one to estimate the overall power dissipation rate in a node and how this rate affects
the lifetime of the entire network.

In the following subsections, a more detailed observation into the different subsystems of
a node is made.

8.1.1 Processor Subsystem

Most existing processing subsystems employ microcontrollers, notably Intel’s StrongARM
and Atmel’s AVR. These microcontrollers can be configured to operate at various power
modes. For example, the ATmega128L microcontroller has six different power modes: idle,
ADC noise reduction, power save, power down, standby, and extended standby. The idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt
system to continue functioning. The power down mode saves the registers’ content while
freezing the oscillator and disabling all other chip functions until the next interrupt or Hard-
ware Reset. In the power save mode, the asynchronous timer continues to run, allowing
the user to maintain a timer base while the remaining components of the device enter into
a sleep mode. The ADC noise reduction mode stops the CPU and all I/O modules, except
the asynchronous timer and the ADC. The aim is to minimize switching noise during ADC
conversions. In standby mode, a crystal/resonator oscillator runs while the remaining hard-
ware components enter into a sleep mode. This allows very fast start-up combined with
low power consumption. In extended standby mode, both the main oscillator and the asyn-
chronous timer continue to operate. Additional to the above configurations, the processing
subsystem can operate with different supply voltages and clock frequencies.
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While operating the processor subsystem at various power modes is energy-efficient, tran-
siting from one power mode to another also has its own power and latency cost. This cost
has to be considered before a decision for a particular operation of power mode is made.

8.1.2 Communication Subsystem

The power consumption of the communication subsystem can be influenced by several
aspects, including the modulation type and index, the transmitter’s power amplifier and
antenna efficiency, the transmission range and rate, and the sensitivity of the receiver. Some
of these aspects can be dynamically reconfigured. Moreover, the communication subsystem
itself can activate or turn off the transmitter and the receiver, or both. Because of the pres-
ence of a large number of active components in the communication subsystem (amplifiers
and oscillators), a significant amount of quiescent current flows even if the device is idle.

Determining the most efficient active state operational mode is not a simple decision. For
example, the power consumption of a transmitter may not necessarily be reduced by simply
reducing the transmission rate or the transmission power. The reason is that there is a tradeoff
between the useful power required for data transmission and the power dissipated in the form
of heat at the power amplifier. Usually, the dissipation power (heat energy) increases as
the transmission power decreases. In fact most commercially available transmitters operate
efficiently at one or two transmission power levels. Below a certain level, the efficiency of
the power amplifier falls drastically. In some cheap transceivers, even when at the maximum
transmission power mode, more than 60% of the supply DC power is dissipated in the form
of useless heat.

For example, the Chipcon CC2420 transceiver has eight programmable output power lev-
els ranging from −24 dBm to 0 dBm. This is described in Table 8.1. The columns of the
table express the output power, the current consumption, and the power consumption at
1.8 V DC supply voltage. Figure 8.1 illustrates the normalized current consumption (taking
the minimum current consumption as a reference) and the relationship between the transmis-
sion power levels and the current consumption. As can be seen in the figure, increasing the
transmission power level by almost 55 dB scales the current consumption by double only.

Table 8.1 Chipcon CC2420: Output power settings and typical current consumption at 2.45 GHz

PA Output power Current consumption Power consumption∗
level dBm mW mA mW

31 0 1 17.4 31.32
27 −1 0.794328235 16.5 29.7
23 −3 0.501187234 15.2 27.36
19 −5 0.316227766 13.9 25.02
15 −7 0.199526231 12.5 22.5
11 −10 0.1 11.2 20.16
7 −15 0.031622777 9.9 17.82
3 −25 0.003162278 8.5 15.3

∗Vdd = 1.8 V
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Figure 8.1 Relation between transmit power and current consumption in Chipcon CC2420
transceiver.

Figure 8.2 demonstrates the power amplifier’s efficiency. The amplifier efficiency is defined
as the ratio of the transmission power to the DC input power consumed by the amplifier.

An additional challenge to the power issue is the time needed by the communication
subsystem to transit from an idle, or standby mode into an active mode. The transmission
introduces latency and consumes power. For example, the Chipcon’s transceiver frequency
synthesizer’s phase locked loop (PLL) requires 192 µs to lock up.

8.1.3 Bus Frequency and RAM Timing

The processor subsystem consumes power when it interacts with the other subsystems via
the internal high-speed buses. The specific amount depends on the frequency and bandwidth
of the communication. These two parameters can be optimally configured depending on the
interaction type, but bus protocol timings are usually optimized for particular bus frequen-
cies. Moreover, bus controller drivers require to be notified when bus frequencies change to
ensure optimal performance.

8.1.4 Active Memory

The active memory is made up of electrical cells which are arranged in rows and columns,
each row being a single memory bank. The cells have to be recharged periodically in order
to store data. The refresh rate or refresh interval is a measure of the number of rows that
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Figure 8.2 Amplifier efficiency in the Chipcon CC2420 transceiver.

must be refreshed. A low refresh interval corresponds to a low clock frequency that must
elapse before a refreshing operation takes place. On the contrary, a higher refresh interval
corresponds to a high clock frequency that must elapse before a refresh operation takes
place. Consider two typical values: 2K and 4K. The lower refresh interval refreshes more
cells at a low interval and completes the process faster, thus it consumes more power than
the 4K refresh rate. The 4K refresh rate refreshes less cells at a slower pace, but it consumes
less power.

A memory unit can be configured to operate in one of the following power modes:
temperature-compensated self-refresh mode, partial array self-refresh mode, or power
down mode. The standard refresh rate of a memory unit can be adjusted according to
its ambient temperature. For this reason, some commercially available dynamic RAMs
(DRAMs) already integrate temperature sensors. Apart from this, the self-refresh rate can
be increased if the entire memory array is not needed to store data. The refresh operation can
be limited to the portion of the memory array in which data will be stored. This approach
is known as the partial array self-refresh mode. If no actual data storage is required, the
supply voltage of most or the entire on-board memory array can be switched off.

The RAM timing is another parameter that affects the power consumption of the memory
unit. It refers to the latency associated with accessing the memory unit. Before a processor
subsystem accesses a particular cell in a memory, it should first determine the particular row
or bank and then activate it with a row access strobe (RAS) signal. Once a row is activated, it
can be accessed until the data is exhausted. The time required to activate a row in a memory
is tRAS, which is relatively small but could impact the system’s stability if set incorrectly.
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Table 8.2 Parameters of RAM timing

Parameter Description

RAS Row Address Strobe or Row Address Select
CAS Column Address Strobe or Column Address Select
tRAS A time delay between the precharge and activation of a row
tRCD The time required between RAS and CAS access
tCL CAS latency
tRP The time required to switch from one row to the next row
tCLK The duration of a clock cycle
Command rate The delay between Chip Select (CS)
Latency The total time required before data can be written to or read from memory

A memory cell is activated through a column access strobe (CAS). The delays between the
activation of a row as well as a cell and the writing of data into or reading of data from the
cell is given as tRCD. This time can be short or long, depending on how the memory cell is
accessed. If it is accessed sequentially, it is insignificant. If, on the other hand, the memory
is accessed in a random fashion, the current active row must first be deactivated before a
new row is activated, in which case, tRCD can cause significant latency.

The delay between the CAS signal and the availability of valid data on the data pins is
called CAS latency . Low CAS latency means high performance but also high power con-
sumption. The time required to terminate one row access and begin the next row access is
tRP. In conjunction with tRCD, the time (or clock cycles) required to switch banks (rows)
and select the next cell for reading, writing, or refreshing is expressed as tRP + tRCD. The
duration of time required between the active and precharge commands is called tRAS. It is
a measure of how long the processor must wait before the next memory access can begin.
Table 8.2 summarizes the quantities that express RAM timing.

When a RAM is accessed by clocked logic, the times are generally rounded up to the
nearest clock cycle. For example, when accessed by a 100-MHz processor (with 10 ns clock
duration), a 50-ns SDRAM can perform the first read in 5 clock cycles and additional reads
within the same page every 2 clock cycles. This is generally described as “5 – 2 – 2 – 2”
timing.

8.1.5 Power Subsystem

The power subsystem supplies power to all the other subsystems. It consists of the battery
and the DC–DC converter. In some cases, it may consist of additional components such as
a voltage regulator. The DC–DC converter is responsible for providing the right amount
of supply voltage to each individual hardware component by transforming the main DC
supply voltage into a suitable level. The transformation can be a step-down (buck), a step-up
(boost), or an inversion (flyback) process, depending on the requirements of the individual
subsystem. Unfortunately, a transformation process has its own power consumption and
may be inefficient. In the following subsections, some of causes of power consumption and
inefficiency will be discussed.
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8.1.5.1 Battery

A wireless sensor node is powered by exhaustible batteries. Several factors affect the qual-
ity of these batteries, but the main factor is cost. In a large-scale deployment, the cost of
hundreds and thousands of batteries is a serious deployment constraint.

Batteries are specified by a rated current capacity, C, expressed in ampere-hour. This
quantity describes the rate at which a battery discharges without significantly affecting
the prescribed supply voltage (or potential difference). Practically, as the discharge rate
increases, the rated capacity decreases.

Most portable batteries are rated at 1C. This means a 1000 mAh battery provides 1000 mA
for 1 hour, if it is discharged at a rate of 1C. Ideally, the same battery can discharge at a rate
of 0.5C, providing 500 mA for 2 hours; and at 2C, 2000 mA for 30 minutes and so on. 1C

is often referred to as a 1-hour discharge. Likewise, a 0.5C would be a 2-hour and a 0.1C a
10-hour discharge.

In reality, batteries perform at less than the prescribed rate. Often, the Peukert Equation
is applied to quantifying the capacity offset (i.e., how long a battery lasts in reality):

t = C

In
(8.1)

where C is the theoretical capacity of the battery expressed in ampere-hours; I is the current
drawn in Ampere (A); T is the time of discharge in seconds, and n is the Peukert number, a
constant that directly relates to the internal resistance of the battery. The value of the Peukert
number indicates how well a battery performs under continuous heavy current. A value close
to 1 indicates that the battery performs well; the higher the number, the more capacity is lost
when the battery is discharged at high current. The Peukert number of a battery is determined
empirically. For example, for lead acid batteries, the number is typically between 1.3 and 1.4.

Drawing current at a rate greater than the discharge rate results in a current consumption
rate higher than the rate of diffusion of the active elements in the electrolyte. If this process
continues for a long time, the electrodes run out of active material even though the electrolyte
has not yet exhausted its active materials. This situation can be overcome by intermittently
drawing current from the battery.
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Figure 8.3 The Peukert curve displaying the relationship between the discharging rate and the effec-
tive voltage. The x-axis is a time axis.
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Figure 8.3 shows how the effective battery capacity can be reduced at high and continuous
discharge rates. By intermittently using the battery, it is possible during quiescent periods to
increase the diffusion and transport rates of active ingredients and to match up the depletion
created by excessive discharge. Because of this potential for recovery, the capacity reduction
can be undermined and the operating efficiency can be enhanced. This is illustrated in the
figure by the middle, dash-dotted line.

8.1.5.2 DC–DC Converter

The DC–DC converter transforms one voltage level into another. It is the equivalent of
a transformer which performs AC–AC voltage transformation. The main problem with a
DC–DC converter is its conversion efficiency. A typical DC–DC converter consists of a
power supply, a switching circuit, a filter circuit, and a load resistor. Figure 8.4 illustrates
the basic circuit structure of a DC–DC converter.

As can be seen in the figure, the circuit consists of a single-pole, double-throw (SPDT)
switch that is connected to a DC supply voltage, Vg . Considering the inductor, L, as a short
circuit and the capacitor, C, as an open circuit for the DC supply voltage, the switch’s output
voltage, Vs(t) equals to Vg when the switch is in position 1 and 0 when it is in position 2.
Varying the position of the switch at a frequency fs yields a periodically varying square
wave, vs(t), that has a period Ts = 1/fs .

vs(t) can be expressed by a duty cycle D, which describes the fraction of time that the
switch is in position 1, such that 0 ≤ D ≤ 1. The output voltage of the switching circuit is
displayed in Figure 8.5.

A DC–DC converter is realized by employing active switching components, such as
diodes and power MOSFETs. Typically, the switching frequencies range from 1 kHz to
1 MHz, depending on the speed of the semiconductor devices.

Using the inverse Fourier transformation, the DC component of vs(t) (Vs) is described as:

Vs = 1

Ts

∫ Ts

0
vs(t)dt = DVg (8.2)

which is the average value of vs(t).

Vg
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Figure 8.4 A DC–DC converter consisting of a supply voltage, a switching circuit, a filter circuit,
and a load resistance.
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Figure 8.5 The output voltage of a switching circuit of a DC–DC converter.

In other words, the integral value represents the area under the waveform of Figure 8.5
for a single period, or the height of Vg multiplied by the time Ts . It can be seen that the
switching circuit reduces the DC component of the supply voltage by a factor that equals to
the duty cycle, D. Since 0 ≤ D ≤ 1 holds, Vs ≤ Vg holds as well.

Ideally the switching circuit does not consume power. In practice, however, due to the
existence of a resistive component in the switching circuit, there is power dissipation. As a
result, the efficiency of a typical switching circuit is between 70 and 90%.

In addition to the desired DC voltage, vs(t) also contains undesired harmonics of the
switching frequency, fs . These harmonics must be removed so that the converter’s output
voltage v(t) is essentially equal to the DC component V = Vs . For this purpose, a DC–DC
converter employs a lowpass filter. In Figure 8.4, a first-order LC lowpass filter is connected
to the switching circuit. The filter’s cutoff frequency is given by:

fc = 1

2π
√

LC
(8.3)

Vg = 0;
D = 0

D = 1

Vg

Figure 8.6 A linear relationship between a DC supply voltage and the duty cycle of a switching
circuit.
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The cutoff frequency, fc, should be sufficiently less than the switching frequency, fs ,
so that the lowpass filter allows only the DC component of vs(t) to pass while effectively
attenuating all the harmonic components. Once again, in an ideal filter, there is no power
dissipation because the passive components (inductors and capacitors) are energy storage
components. Subsequently, the DC–DC converter produces a DC output voltage whose
magnitude is controlled by the duty cycle, D, using circuit elements that (ideally) do not
dissipate power.

The conversion ratio, M(D), is defined as the ratio of the DC output voltage, V , to the
DC input voltage, Vg , under a steady-state condition:

M(D) = V

Vg

(8.4)

For the buck converter shown in Figure 8.4, M(D) = D. Figure 8.6 illustrates the linear
relationship between the input DC voltage, Vg and the switching circuit’s duty cycle, D.

8.2 Dynamic Power Management

Wireless sensor nodes can be developed by taking the aspects discussed so far into account
at design time. Once the design time parameters are fixed, a dynamic power management
(DPM) strategy attempts to minimize the power consumption of the system by dynamically
defining the most economical operation conditions. This condition takes the requirements
of the application, the topology of the network, and the task arrival rate of the different
subsystems into account. Whereas there are different approaches to a DPM strategy, they
can be categorized in one of the following three approaches:

1. Dynamic operation modes.
2. Dynamic scaling.
3. Energy harvesting.

8.2.1 Dynamic Operation Modes

The subsystems of a wireless sensor node can be configured to operate in different power
modes, depending on their present and anticipated activity. This has already been explained
in the previous subsections. In general, a subcomponent can have n different power modes.
If there are x hardware components that can have n distinct power consumption levels, a
DPM strategy can define x × n different power mode configurations, Pn. Obviously, not
all these configurations are plausible because of various constraints and system stability
preconditions. Hence, the task of the DPM strategy is to select the optimal configuration
that matches the activity of a wireless sensor node.

There are, however, two associated challenges in selecting a specific power configuration.

1. Transition between the different power configurations costs extra power.
2. A transition has an associated delay and the potential of missing the occurrence of an

interesting event.

Table 8.3 demonstrates an example DPM strategy with six different power modes:
{P0, P1, P2, P3, P4, P5}. Figure 8.7 shows corresponding potential transitions between five
arbitrary power modes.
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Table 8.3 Power saving configurations

Configuration Processor Memory Sensing subsystem Communication subsystem

P0 Active Active On Transmitting/receiving
P1 Active On On On (transmitting)
P2 Idle On On Receiving
P3 Sleep On On Receiving
P4 Sleep Off On Off
P5 Sleep Off Off Off

Po
w

er

Time

P0

P1

P2

P3

P4

Figure 8.7 Transition between different power modes and the associated transition costs.

The decision for a particular power mode depends on the present as well as the anticipated
task in the queues of the different hardware components. A realistic estimation of future tasks
enables a node to determine the time it needs to put the required components in the right
power mode, so that they can process the tasks with minimum latency. By the same token,
failure to realistically estimate future tasks can cause a node to miss interesting events or to
delay in response.

In a WSN, the events outside of the network (for example, a leak in a pipeline; a fracture
in a structure; a pestilence in a farm; etc.) cannot be modeled as deterministic phenomena.
Otherwise there is no need for setting up a monitoring system. Therefore, estimation of the
arrival of events should be probabilistic. Knowledge of the sensing task can be useful to
establish a realistic probabilistic model for estimating the arrival rate as well as the duration
of events. An accurate event arrival model enables a DPM strategy to decide for the right
configuration that has a long duration and minimal power consumption.

8.2.1.1 Transition Costs

Suppose each subsystem of a wireless sensor node operates in just two different power
modes only, namely, it can be either on or off . Moreover, assume that the transition from
on to off does not have an associated power cost, but the reverse transition (from off to on)



218 Fundamentals of Wireless Sensor Networks

has a cost in terms of both power and a time delay. These costs are justified if the power
it saves in the off state is large enough. In other words, the amount of the off state power
is considerably large and the duration of the off state is long. It is useful to quantify these
costs and to set up a transition threshold.

Suppose the minimum time that a subsystem stays in an off state is toff; the power con-
sumed during this time is Poff; the transition time is toff,on; the power consumed during the
transition is poff,on; and the power consumed in an on state is Pon. Hence:

Poff · toff + Poff,on · toff,on ≥ Pon · (toff + toff,on
)

(8.5)

Therefore, toff is justified if (Chiasserini and Rao 2003):

toff ≥ max

(
0,

(
Pon − Poff,on

) · toff,on

Pon − Poff

)
(8.6)

Equations (8.5) and (8.6) can easily be generalized to describe a subsystem with n distinct
operational power modes, in which case a transition from any state i into j is described as
ti,j . Hence, the transition is justified if Equation (8.7) is satisfied.

tj ≥ max

(
0,

(
Pi − Pj,k

) · ti,j
Pi − Pj

)
(8.7)

where tj is the duration of the subsystem in state j .
The equations above assume that the transition cost from a higher power mode (on) to a

lower power mode (off) is negligible. If this is not the case, the energy that can be saved
through a power transition (from state i to state j , Esaved,j ) is expressed as:

Esaved,j = Pi · (tj + ti,j + tj,i
)− (

Pi,j · ti,j + pj,i · tj,i + pj · tj
)

(8.8)

If the transition from state i to state j costs the same amount of power and time delay
as the transition from state j to state i (a symmetric transition cost), Equation (8.8) can be
expressed as:

Esaved,j = Pi · (tj + ti,j + tj,i
)−

(
Pi + Pj

2

) (
ti,j + tj,i

)− (
Pi − Pj

) · tj (8.9)

Obviously, the transition is justified if Esaved,j > 0. This can be achieved in three different
ways, namely, by:

1. increasing the gap between Pi and Pj ;
2. increasing the duration of state j , (tj ); and
3. decreasing the transition times, particularly, tj,i .
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8.2.2 Dynamic Scaling

Dynamic voltage scaling (DVS) and dynamic frequency scaling (DFS) are complementary
to the approach discussed in Section 8.2.1. These two approaches aim to adapt the perfor-
mance of the processor core (as well as the memory unit and the communication buses)
when it is in the active state. In most cases, the tasks scheduled to be carried out by the
processor core do not require its peak performance. Rather, some tasks are completed ahead
of their deadline and the processor enters into a low-leakage idle mode for the remaining
time. Figure 8.8 shows a subsystem processing at peak performance. Even though the two
tasks are completed ahead of their schedule, the processor still runs at peak frequency and
supply voltage, which is wasteful.

Figure 8.9 displays the application of dynamic frequency and voltage scaling in which the
performance of the processing subsystem is adapted (reduced) according to the criticality
of the tasks it processes. As can be seen, each task is stretched to its planned schedule while
the supply voltage and the frequency of operation are reduced.

The basic building blocks of the processor subsystem are transistors. Depending on their
operation regions (namely, cut-off, linear, and saturation), transistors are classified into
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Figure 8.8 A processor subsystem operating at its peak performance.
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Figure 8.9 Application of dynamic voltage and frequency scaling.

analog and digital (switching) transistors. An analog transistor (amplifier) operates in the
linear amplification region and there is a linear relationship between the input and output of
the transistor. This is expressed as:

vout = A

1 − AB
vin (8.10)

where A is the open loop gain of the amplifier and B is a term that determines the portion
of the output that should be fed back to the input in order to stabilize the amplifier.

A switching transistor, on the contrary, operates in either the cutoff or the saturation
region, making the relationship between the input and the output voltage nonlinear. That
is how the zeros and ones of a digital system are generated, represented or processed. The
transition duration from the cutoff to the saturation region determines how good a transistor
is as a switching element. In an ideal switching transistor, the transition takes place in no
time. In practical transistors, however, the duration is greater than zero. The quality of the
processor depends on, among other things, the switching time.

The switching in turn depends on many factors, one of them being the cumulative capac-
itance effect created in turn between the three joints of the transistors. Figure 8.10 displays
a typical NAND gate made up of CMOS transistors.

Recall that a capacitor is created by two conductors that are separated by a dielectric
material and there is a potential difference between the two conductors. The capacitance
of a capacitor is proportional to the cross-sectional area of the conductors and inversely
proportional to the separating distance.



Power Management 221

−VDD

VB

VA

VA

VB

Vout

+VDD

Figure 8.10 A schematic diagram of a NAND gate based on CMOS technology.

In a switching transistor, at a very high operating frequency, a capacitance is created at the
contact points of the source, gate, and drain, affecting the transistor’s switching response.
The switching time can be approximated by the following equation:

tdelay = Cs · Vdd

Idsat

(8.11)

where Cs is the source capacitance, Vdd is the biasing voltage of the drain, and Idsat is the
saturation drain current.

Switching costs energy and the magnitude of the energy depends on many factors, among
which are the operating frequency and the biasing voltage. Sinha and Chandrakasan (2001)
provide a first-order approximation that can be expressed as:

E(r) = CV02Tsfrefr

[
Vt

V0
+ r

2
+
√

r
Vt

V0
+
( r

2

)2
]

(8.12)

where, C is the average switching capacitance per cycle; Ts is the sampling period; fref is
the operating frequency at Vref; r is the normalized processing rate (r = f/fref); and V0 =
(Vref − Vt)

2/Vref with Vt being the threshold voltage.
From Equation (8.12), it can be deduced that reducing the operating frequency linearly

reduces the energy cost, whereas reducing the biasing voltage reduces the energy cost
quadratically. However, these two quantities cannot be reduced beyond a certain limit. For
example, the minimum operating voltage for a CMOS logic to function properly was first
derived by Swanson and Meindl (1972) and is expressed as:

Vdd,limit = 2 · kT

q
·
[

1 + Cf s

Cox + Cd

]
· ln

(
1 + Cd

Cox

)
(8.13)

where Cf s is the surface state capacitance per unit area; Cox is the gate-oxide capacitance
per unit area; and Cd is the channel depletion region capacitance per unit area. For a
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Figure 8.11 Application of dynamic voltage scaling based on workload estimation (Sinha and Chan-
drakasan 2001).

CMOS logic such as shown in Figure 8.10, Equation (8.13) yields, Vdd,limit = 48 mV at
300K. Finding the optimal voltage limit requires a tradeoff between the switching energy
cost and the associated delay.

8.2.3 Task Scheduling

In a dynamic voltage and frequency scaling, the DPM strategy aims to autonomously deter-
mine the magnitude of the biasing voltage (Vdd) and the clock frequency of the processing
subsystem. The decision for a particular voltage or frequency is based on several factors,
including the application latency requirement and the task arrival rate. Ideally, these two
parameters are adjusted so that a task is completed “just in time”. This way, the processor
does not remain idle and consume power unnecessarily. Practically, however, since the pro-
cessor’s workload cannot be known a priori, the estimation contains error and, as a result,
idle cycles cannot be completely avoided. Comparison between an ideal and real dynamic
voltage scaling strategies is shown in Figure 8.11.

8.3 Conceptual Architecture

A conceptual architecture for enabling a DPM strategy in a wireless sensor node should
address three essential concerns:

1. In attempting to optimize power consumption, how much is the extra workload that
should be produced by the DPM itself?



Power Management 223

2. Should the DPM be a centralized or a distributed strategy?
3. If it is a centralized approach, which of the subcomponents should be responsible for the

task?

A typical DPM strategy monitors the activities of each subsystem and makes decisions
concerning the most suitable power configuration that optimizes the overall power con-
sumption. This decision should reflect the application requirements, nevertheless. Since this
process consumes a certain amount of power, it can be justified if the power that is saved as
a result is significantly large. An accurate DPM strategy requires bench marking to estimate
the task arrival and processing rate.

The decision whether a DPM strategy should be central or distributed depends on several
factors. One advantage of a centralized approach is that it is easier to achieve a global view of
the power consumption of a node and to implement a comprehensible adaptation strategy.
On the other hand, a global strategy can add a computational overhead on the subsystem
that does the management. A distributed approach scales well by authorizing individual
subsystems to carry out local power management strategies. The problem with this approach
is that local strategies may contradict with global goals. Given the relative simplicity of a
wireless sensor node and the quantifiable tasks that should be processed, most existing power
management strategies advocate a centralized solution.

In case of a centralized approach, the main question is which of the subsystems is respon-
sible for handling the task – the processor subsystem or the power subsystem. Intuitively,
the power subsystem should handle the management task, since it has complete information
about the energy reserve of the node and the power budget of each subsystem. However,
it requires vital information, such as the task arrival rate and priority of individual tasks,
from the processing subsystems. Moreover, it needs to have some computational capability.
Presently available power subsystems do not have these characteristics.

Most existing architectures for a wireless sensor node place the processor subsystem at
the center and all the other subsystems communicate with each other through it. Moreover,
the operating system (runtime environment) runs on the processing subsystem, managing,
prioritizing, and scheduling tasks. Subsequently, the processing subsystem can have a more
comprehensive knowledge about the activities of all the other subsystems, and these char-
acteristics make the processing subsystem the appropriate place for executing a DPM.

8.3.1 Architectural Overview

Though the aim of a DPM strategy is to optimize the power consumption of a node, it
should not affect the system’s stability. Furthermore, the application requirements in terms
of the quality of sensed data and latency should be satisfied. Fortunately, in most realistic
situations, a WSN is deployed for a specific task. That task does not change, or changes only
gradually. Therefore, the designer of a DPM has at his or her disposal the architecture of the
wireless sensor node, the application requirements, and the network topology to devise a
suitable strategy. The design space is illustrated in Figure 8.12.

The system’s hardware architecture is the basis for defining multiple operational power
modes and the possible transitions between them. A local power management strategy then
defines rules to describe the behavior of the power mode transition according to a change in
the activity of the node or based on a request from a global (network-wide) power manage-
ment scheme, or from the application. This (see Figure 8.13) can be described as a circular
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Figure 8.13 An abstract architecture for a dynamic power management strategy.

process consisting of three basic operations – energy monitoring, power mode estimation,
and task scheduling.

Figure 8.13 illustrates how dynamic power management can be thought of as a machine
that moves through different states in response to different types of events – tasks are sched-
uled in a task queue, and the execution time and energy consumption of the system are
monitored. Depending on how fast the tasks are completed, a new power budget is esti-
mated and transitions in power modes take place. In case of a deviation in the estimated
power budget from the power mode that can be supported by the system, the DPM strategy
decides the higher level of operating power mode.
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Figure 8.14 A conceptual architecture of a dynamic voltage scaling. (This architecture is the mod-
ified version of the one proposed by Sinha and Chandrakasan in (Sinha and Chandrakasan 2001)).

Figure 8.14 shows an implementation of the abstract architecture of Figure 8.13 to support
dynamic voltage scaling. The processing subsystem receives tasks from the application, the
communication subsystem, and the sensing subsystem. Additionally, it handles internal tasks
pertaining to network management, such as managing a routing table and sleeping schedules.
Each of these sources produces a task at a rate of λi . The overall task arrival rate, λ, is the
summation of the individual tasks arrival rates, λ = ∑

λi . The workload monitor observes
λ for a duration of τ seconds and predicts the task arrival rate for the next β seconds. The
estimated task arrival rate is represented by r in the figure. Based on the newly computed
task arrival rate r , the processing subsystem estimates the supply voltage and the clock
frequency it requires to process upcoming tasks.

Exercises

8.1 Give three reasons why dynamic power management is a crucial concern in wireless
sensor networks.

8.2 What is the difference between local and global power management strategies? Give
an example how a global power management can be realized at the link layer.

8.3 Give two examples for accidental causes of power consumption in wireless sensor
networks.

8.4 How can a local power management strategy achieve an efficient power consumption
in a wireless sensor node?

8.5 What is the main drawback of dynamic power management strategies that are based
on a synchronous sleeping?

8.6 Explain the idea behind power management strategies that are based on an asyn-
chronous sleeping.
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8.7 Explain the six different operational modes of the ATmega128L microcontroller.

8.8 What is a refresh rate of an active memory?

8.9 Explain the following terms in the context of RAM timing:

(a) RAS
(b) CAS
(c) tRCD

(d) tCL

8.10 The RAM timing of a certain processor is configured as 2–3–2–6. Explain what it
means.

8.11 Explain briefly how the following DC–DC converters function:

(a) flyback
(b) boost
(c) buck

8.12 What is a rated current capacity?

8.13 Why do real batteries operate at a rate below the rated current capacity?

8.14 What is the side-effect of drawing current at a rate greater than the discharge rate?

8.15 Describe the components of a typical DC–DC converter.

8.16 Suppose the circuit shown in Figure 8.15 is used by a DC–DC converter. At what
frequency is the voltage drop across the load resistor RL maximum?

Vin

RF

CF
RL

i

Vout

+

−

Figure 8.15 A conceptual architecture of a dynamic voltage scaling (Exercise 8.16).

8.17 Why does a transition from low power mode to high power mode cost some power in
the following subsystems:

(a) processor subsystem
(b) communication subsystem

8.18 What conditions justify the power transition costs?
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8.19 Why does the performance of a switching transistor deteriorate at high operation
frequencies?

8.20 How does the cumulative capacitance affect the switching time of a CMOS transistor?
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9
Time Synchronization
In distributed systems, each node has its own clock and its own notion of time. However,
a common time scale among sensor nodes is important to identify causal relationships
between events in the physical world, to support the elimination of redundant sensor data,
and to generally facilitate sensor network operation. Since each node in a sensor net-
work operates independently and relies on its own clock, the clock readings of dif-
ferent sensor nodes will also differ. In addition to these random differences (phase
shifts), the gap between clocks of different sensors will further increase due to the vary-
ing drift rates of oscillators. Therefore, time (or clock) synchronization is required to
ensure that sensing times can be compared in a meaningful way. While time synchro-
nization techniques for wired networks have received a significant amount of attention,
these techniques are unsuitable for wireless sensors because of the unique challenges
posed by wireless sensing environments. These challenges include the potentially large
scale of wireless sensor networks, the necessity for self-configuration and robustness,
the potential for sensor mobility, and the need for energy conservation (Sundararaman
et al. 2005). This chapter introduces techniques for time synchronization that take these
constraints and challenges into consideration.

9.1 Clocks and the Synchronization Problem

Computer clocks based on hardware oscillators are essential components of all computing
devices. A typical clock consists of a quartz-stabilized oscillator and a counter that is
decremented with every oscillation of the quartz crystal. Whenever the counter value
reaches 0, it is reset to its original value and an interrupt is generated. Each interrupt, or
clock tick , increments a software clock (another counter), which can be read and used
by applications using a suitable application programming interface (API). Therefore, a
software clock provides a local time for a sensor node, where C(t) indicates the clock
reading at some real time t . The time resolution is the distance between two increments
(ticks) of the software clock.

Comparing the local times of two nodes, the clock offset indicates the difference
between the times. Synchronization is required to adjust the time of one or both of these
clocks such that their readings match. The clock rate indicates the frequency at which a
clock progresses and the clock skew is the difference in the frequencies of two clocks.
Perfect clocks have a clock rate dC/dt = 1 at all times, but various parameters affect

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
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the actual clock rate, for example, the temperature and humidity of the environment, the
supply voltage, and the age of the quartz. This deviation results in a drift rate, which
expresses the rate by which two clocks can drift apart, that is, dC/dt − 1. The maximum
drift rate of a clock is expressed as ρ with typical values for quartz-based clocks being
1 ppm to 100 ppm (1 ppm = 10−6). This number is given by the manufacturer of the
oscillator and guarantees that

1 − ρ ≤ dC

dt
≤ 1 + ρ (9.1)

Figure 9.1 shows how the drift rate affects the clock reading with respect to real time,
resulting in either a perfect, fast, or slow clock. This drift rate is responsible for incon-
sistencies in sensors’ clock readings even after clocks have been synchronized, making it
necessary to repeat the synchronization process periodically. Assuming identical clocks,
any two clocks that are synchronized can drift from each other at a rate of at most 2ρmax.
To limit the relative offset to δ seconds, the resynchronization interval τsync must meet
the requirement:

τsync ≤ δ

2ρmax
(9.2)

C(t) must be piecewise continuous, that is, a strictly monotone function of time. Therefore,
clock adjustments must be applied gradually, for example, using a linear compensation
function that changes the slope of the local time. The consequences of simply having the
clock jump forward or backward can be significant, for example, when a timer is set to
trigger an interrupt at a certain time that may never occur on a clock that skips ticks due
to the synchronization process.

We distinguish two types of synchronization: external and internal . External synchro-
nization means that the clocks of all nodes are synchronized with an external source of
time (or reference clock ). The external reference clock is an accurate real-time standard
such as Coordinated Universal Time (UTC). Internal synchronization means that the
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Figure 9.1 Relationship between local time C(t) and real time t .
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clocks of all nodes are synchronized with each other, without the support of an external
reference clock. The goal of internal synchronization is to obtain a consistent view of
time across all nodes in the network, even though this time may be different from any
external reference times. External synchronization ensures both synchronization with an
external source and consistency among all clocks within the network. When nodes are
synchronized to an external reference clock, the accuracy of a clock describes the max-
imum offset of a clock with respect to the reference clock. When nodes in a network
are internally synchronized, the precision indicates the maximum offset between any two
clocks in the network (Kopetz 1997). Note that if two nodes are externally synchronized
with an accuracy of �, they are also internally synchronized with a precision of 2�.

9.2 Time Synchronization in Wireless Sensor Networks

Time synchronization is a required service for many applications and services in
distributed systems in general. Numerous protocols for time synchronization have
been proposed for both wired and wireless systems, for example, the Network Time
Protocol (NTP) (Mills 1991) is a widely deployed, scalable, robust, and self-configurable
synchronization approach. Particularly in combination with the Global Positioning
System (GPS), it has been shown to achieve accuracy in the order of a few microseconds.
However, approaches such as NTP are not suitable for WSNs due to these networks’
unique characteristics and constraints. This section describes a number of reasons time
synchronization in WSNs is necessary and discusses challenges and constraints that must
be met to achieve efficient and robust synchronization of clocks.

9.2.1 Reasons for Time Synchronization

Sensors in a WSN monitor objects in the physical world and report activities and events to
interested observers. For example, proximity detecting sensors, such as magnetic, capac-
itive, or acoustic sensors, trigger an event when a moving object (e.g., a car) passes (see
Figure 9.2). In dense sensor networks, multiple sensors will observe the same activity
and trigger such events. Accurate temporal correlation of these events is crucial to answer
questions such as How many moving objects have been detected?, What is the direction of
the moving object?, and What is the speed of the moving object? As a consequence, it is
important that an observer can establish the correct logical order of events; for example,
when, in Figure 9.2, the real times have the ordering t1 < t2 < t3, the sensor time stamps
must reflect this order, that is, C1(t1) < C2(t2) < C3(t3). Further, to accurately determine
the velocity of the moving object, the time difference between sensor time stamps should
correspond to the time difference of the real times, that is, � = C2(t2) − C1(t1) = t2 − t1.
This is an important requirement for data fusion in WSNs, which is concerned with
the agglomeration of data coming from multiple sensors observing the same or related
events. Further goals of data fusion include the suppression of duplicate sensor infor-
mation, shorter response times to critical events, and reduction of resource requirements
(e.g., energy consumption).

Time synchronization is also necessary for a variety of applications and algorithms
in distributed systems in general, including communication protocols (e.g., at-most-once
message delivery), security (e.g., to limit use of particular keys and to help to detect
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Figure 9.2 Detection of speed and direction of moving objects using multiple sensors.

replayed messages in Kerberos-based authentication systems), data consistency (cache
consistency and consistency of replicated data), and concurrency control (atomicity and
mutual exclusion) (Liskov 1993).

Medium-access layer protocols such as time-division multiplexing (TDMA) allow mul-
tiple devices to share access to a common communication medium. Time is divided into
slots that are allocated to wireless devices and each slot belongs to only one wireless
device. The advantages of TDMA-based approaches are the predictability of medium
access (every node is allowed to transmit data during one or more periodically recur-
ring time slot) and the energy-efficiency enabled by this algorithm (a node can enter a
power-saving sleep mode whenever it is not the sender or receiver of data during a slot).
However, to implement TDMA, nodes must share a common view of time, that is, they
need to be aware of the exact beginning and end of each slot.

With respect to energy, many WSNs rely on sleep/wake protocols that allow a network
to selectively switch off sensor nodes or let them enter low-power sleep modes. Here,
temporal coordination among sensors is essential for nodes to know when they can enter
a sleep mode and when to reawake in order to ensure that neighboring nodes overlap in
their wake periods to enable communication among them.

Finally, localization in WSNs is necessary to correctly position sensors or the objects
they monitor. Many localization techniques (described in the next chapter) rely on ranging
technologies to estimate distances between nodes and synchronization is required for
time-of-flight measurements of radio or acoustic signals.

9.2.2 Challenges for Time Synchronization

Traditional time synchronization protocols have been designed for use in wired net-
works and do not consider the challenges inherit to low-cost low-power sensor nodes
and the wireless medium. Similar to wired environments, time synchronization in WSNs
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is exposed to challenges such as clock glitches and varying clock drifts due to changes
in temperature and humidity. However, time synchronization protocols for sensor net-
works must consider an array of additional challenges and constraints, some of which are
discussed in this section.

9.2.2.1 Environmental Effects

Drift rates of clocks may differ with fluctuations in environmental temperature, pressure,
and humidity. While typical wired computers are operated in rather stable environments
(e.g., A/C-controlled cluster rooms or offices), wireless sensors are frequently placed
outdoors and in harsh environments where these fluctuations in ambient properties are
common. In controlled environments, oscillator frequency variations of up to 3 ppm (a
deviation of 1 ppm amounts to an error of approximately 1 second every 12 days) due to
room temperature changes have been reported (Mills 1998). For low-cost sensor nodes
operating outdoors, these variations are likely to be much worse.

9.2.2.2 Energy Constraints

Wireless sensor nodes are typically driven by finite power sources, that is, either dis-
posable or rechargeable (e.g., via solar panels) batteries. Battery replacement can add
significantly to the cost of a WSN, particularly in large-scale networks and when the nodes
are in difficult-to-service locations. Therefore, time synchronization protocols should not
contribute significantly to the energy consumption of wireless nodes to ensure long battery
life times. Since communication among sensor nodes is typically the basis for time syn-
chronization, an energy-efficient synchronization protocol should aim for the minimum
amount of the smallest possible messages necessary to obtain synchronized nodes.

9.2.2.3 Wireless Medium and Mobility

The wireless communication medium is known to be unpredictable and subject to fluctua-
tions in performance due to changes in environmental properties caused by rain, fog, wind,
and temperature (Otero et al. 2001). These fluctuations exacerbate the network throughput
constraints, error rates, and wireless radio interferences experienced by wireless sensor
nodes. Message exchanges between nodes can further be problematic when wireless links
are asymmetric, that is, node A can receive node B’s messages, while node A’s messages
are too weak to be correctly interpreted at node B. In general, the communication path
from sensor node A to node B may differ significantly from the characteristics (delay) of
the path from B to A, thereby resulting in asymmetric communication latencies. Further,
communication interferences in wireless networks depend on the density of the network,
the communication and interference ranges of wireless devices, and the level of activity
of these devices. Numerous wireless sensors are mobile (e.g., mounted onto vehicles or
carried by people), thereby causing significant and rapid changes in topology and connec-
tion quality. Finally, sensor nodes may fail or deplete their batteries, necessitating time
synchronization that continues to remain functional even when network topology or den-
sity changes. In general, the consequence of these challenges is that time synchronization
protocols must be designed for robustness and reconfigurability.



234 Fundamentals of Wireless Sensor Networks

9.2.2.4 Additional Constraints

Besides energy limitations, low-power and low-cost sensor nodes are often constrained in
their processor speeds and memory, further requiring that time synchronization protocols
are lightweight. The small size and cost of sensor devices proscribe the use of large and
expensive hardware to achieve synchronization (e.g., GPS receivers). Therefore, time syn-
chronization protocols should be designed to operate in resource-constrained environments
with little or no addition to the overall cost of a sensor device. Wireless sensor network
deployments are often very large in scale and a synchronization protocol should scale
well with increasing numbers of nodes or network density. Finally, different sensor appli-
cations will have differing requirements on clock accuracy or precision. For example, for
applications such as object tracking, simple event and message ordering (without the help
of external reference clocks) may suffice. However, the required precision may be in the
range of a few microseconds. On the other hand, sensor networks that monitor foot traffic
in public spaces during specific times of the day will require external synchronization,
where a time accuracy in the range of seconds may be sufficient.

9.3 Basics of Time Synchronization

Synchronization is typically based on some sort of message exchange among sensor nodes.
If the medium supports broadcast (as is the case in wireless systems), multiple devices can
be synchronized simultaneously with a low number of messages. This section discusses
the fundamental concepts behind most synchronization techniques.

9.3.1 Synchronization Messages

Most existing time synchronization protocols are based on pairwise synchronization ,
where two nodes synchronize their clocks using at least one synchronization message.
Network-wide synchronization can be achieved by repeating this process among multiple
node pairs until every node in a network has been able to adjust its clock.

9.3.1.1 One-Way Message Exchange

The simplest approach of pairwise synchronization occurs when only a single message
is used to synchronize two nodes, that is, one node sends a time stamp to another node,
illustrated in the left graph of Figure 9.3. Here, node i sends a synchronization message
to node j at time t1, embedding t1 as time stamp into the message. Upon reception of
this message, node j obtains a time stamp t2 from its own local clock. The difference
between the two time stamps is an indicator of the clock offset (between the clocks of
nodes i and j ) δ. More accurately, the difference between the two times is expressed as:

(t2 − t1) = D + δ (9.3)

where D is the unknown propagation time. Propagation times in the wireless medium
are very small (a few microseconds) and are often ignored or assumed to be a certain
constant value. Note that using this approach, node j is able to calculate an offset and
adjust its clock to match the clock of node i.
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Figure 9.3 Concept of pairwise synchronization.

9.3.1.2 Two-Way Message Exchange

A somewhat more accurate approach is to use two synchronization messages as shown
in the right graph of Figure 9.3. Here, node j responds with a message issued at time t3,
containing time stamps t1, t2, and t3. Upon reception of this second message at time t4,
both nodes are able to determine the clock offset, again assuming a fixed value for the
propagation delay. However, node i is now able to more accurately determine both the
propagation delay and the offset as

D = (t2 − t1) + (t4 − t3)

2
(9.4)

offset = (t2 − t1) − (t4 − t3)

2
(9.5)

Note that this assumes that the propagation delay is identical in both directions and the
clock drift does not change between measurements (which is feasible because of the brief
time span). While only node i has sufficient information to determine the offset, node i

can share the offset value with node j in a third message.

9.3.1.3 Receiver–Receiver Synchronization

A different approach is taken by protocols that apply the receiver–receiver synchronization
principle, where synchronization is based on the time at which the same message arrives
at each receiver. This is in contrast to the more traditional sender–receiver approach
of most synchronization schemes. In broadcast environments, these receivers obtain the
message at about the same time and then exchange their arrival times to compute an
offset (i.e., the difference in reception times indicates the offset of their clocks). Figure 9.4
shows an example of this scheme. If there are two receivers, three messages are needed
to synchronize both receivers. An example of such an approach is the RBS protocol
discussed in Section 9.4.5. Note that the broadcast message does not carry a time stamp,
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Figure 9.4 Receiver–receiver synchronization scheme.

instead the arrival times of the broadcast message at the different receivers is used to
synchronize the receivers to each other.

9.3.2 Nondeterminism of Communication Latency

The nondeterminism of the communication latency significantly contributes to the pre-
cision that can be achieved. In general, this latency experienced by synchronization
messages is the sum of several components (Kopetz and Ochsenreiter 1987), as illustrated
in Figure 9.5:

1. Send delay: This is the time spent by the sender to generate the synchronization
message and pass the message to the network interface. This includes delays caused
by operating system behavior (system call interface, context switches), the network
protocol stack, and the network device driver.

2. Access delay: This is the time spent by the sender to access the physical channel and is
mostly determined by the medium access control (MAC) protocol in use. Contention-
based protocols such as IEEE 802.11’s CSMA/CA must wait for an idle channel before
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Figure 9.5 End-to-end delay experienced by a synchronization message.
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access is allowed. When multiple devices access the channel at the same time, colli-
sions occur that cause further delays (e.g., through the exponential backoff mechanism
used in many MAC protocols). More predictable delays are experienced by protocols
based on time-division (TDMA), where a device must wait for its periodic slot before
transmission can occur.

3. Propagation delay: The actual time needed for the message to travel from the sender
to the receiver is called propagation delay. When the nodes share the same physical
medium, propagation delays are very small and are often negligible in critical path
analysis.

4. Receive delay: This is the time spent by the receiver device to receive the message
from the medium, to process the message, and to notify the host of its arrival. Host
notification typically occurs via interrupts, at which the local time (i.e., the message
arrival time) can be read. As a consequence, the receive time tends to be much smaller
than the send time.

Many synchronization schemes for WSNs apply low-level techniques aimed at reducing
the amount or variation of some of these components. For example, MAC-layer time
stamping can reduce the send and receive delays on the sender and receiver, respectively.

9.4 Time Synchronization Protocols

Numerous time synchronization protocols for WSNs have been developed, where most
of them are based on some variations of the message exchange concepts described in the
previous section. This section provides an overview of some representative schemes and
protocols.

9.4.1 Reference Broadcasts Using Global Sources of Time

The Global Positioning System (GPS) continuously broadcasts time measured from an
epoch started at 0h 6 January, 1980 UTC. However, unlike UTC, GPS is not perturbed by
leap seconds and is therefore ahead of UTC by an integer number of seconds (15 seconds
as of 2009). Even inexpensive GPS receivers can receive GPS time with a precision of
200 ns (Dana 1997; Mannermaa et al. 1999). Time signals are also being transmitted by
terrestrial radio stations, for example, the National Institute of Standards and Technol-
ogy uses radio stations WWV/WWVH and WWVB (Lichtenecker 1997) to continuously
broadcast time based on atomic clocks. However, such approaches exhibit a number of
challenges that prohibit their use for many WSNs. For example, GPS is not ubiquitously
available (underwater, indoors, under dense foliage, during Mars exploration), requires a
relatively high-power receiver which may not be feasible for tiny low-cost sensor nodes,
and may be too large and costly to be added to small sensor nodes. However, many sensor
networks are hierarchical systems consisting of low-power sensor devices, but also more
powerful devices that often serve as gateways or cluster heads. These devices may be able
to support GPS or radio receivers, turning these nodes into master clocks that can be used
to synchronize the rest of the network with any of the other sender–receiver approaches
described in this section.
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Figure 9.6 Pairwise synchronization with LTS.

9.4.2 Lightweight Tree-Based Synchronization

The primary goal of the Lightweight Tree-Based Synchronization (LTS) protocol (Van
Greunen and Rabaey 2003) is to provide a specified precision (instead of a maximum
precision) with as little overhead as possible. LTS can be used with different algorithms for
both centralized and decentralized multi-hop synchronization. To understand the approach
taken by LTS, let us first consider the message exchange for the synchronization of a pair
of nodes. Figure 9.6 shows a graphical depiction of this scheme. First, node j transmits
a synchronization message time-stamped with the transmission time t1 to node k. Upon
arrival of this message at node k at time t2, node k responds with a message carrying a
time stamp t3 and the previously recorded times t1 and t2. This message is received by
node j at time t4. Note that times t1 and t4 are based on node j ’s clock, whereas times t2
and t3 are recorded using the clock of node k. Assuming a transmission delay D (which is
further assumed to be the same in both directions) and an unknown clock offset between
the clocks of nodes j and k, time t2 of node k is equal to t1 + D + offset. Similarly, t4
is then equal to t3 + D − offset. The offset can then be calculated as:

offset = t2 − t4 − t1 + t3

2
(9.6)

The centralized multi-hop version of LTS is based on a single reference node that is the
root of a spanning tree comprising all nodes of the network. In order to maximize
the synchronization accuracy, the depth of the tree should be minimized. This is due
to the fact that the errors resulting from the pairwise synchronizations are additive and
therefore increase along the branches of the tree as a function of the number of hops. In
LTS, a tree construction algorithm such as breadth first search is executed each time the
synchronization algorithm is executed. Once the tree has been established, the reference
node initiates the synchronization by performing the pairwise synchronization with each
of its children. Once synchronized, each child repeats this step with its own children
until all nodes of the tree have been synchronized. Pairwise synchronization has a fixed
overhead of 3 messages, therefore if a tree has n edges, the total message overhead is
3n − 3.

The distributed multi-hop version of LTS does not require the construction of a spanning
tree and the synchronization responsibility is moved from the reference node to the sensor
nodes themselves. This version assumes the presence of one or more reference nodes,
which are contacted by a sensor node whenever the sensor node requires synchronization.
The decentralized approach allows nodes to determine their own desired resynchronization
period. That is, nodes determine their resynchronization period based on their desired clock
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accuracy, the distance (in number of hops) from the nearest reference node, their clock drift
ρ, and the time of their last synchronization. Finally, to eliminate potential inefficiencies,
the distributed version of LTS strives to eliminate duplicate requests of neighboring nodes.
Toward this end, a node can query its neighbors for pending synchronization requests
and, if there are any, the node synchronizes with the one-hop neighbor instead of the
reference node.

9.4.3 Timing-sync Protocol for Sensor Networks

The Timing-sync Protocol for Sensor Networks (TPSN) (Ganeriwal et al. 2003) is another
traditional sender–receiver synchronization approach that uses a tree to organize a net-
work. TPSN uses two phases for synchronization: the level discovery phase (executed
during network deployment) and the synchronization phase.

9.4.3.1 Level Discovery Phase

The goal of this phase is to create a hierarchical topology of the network, where each node
is assigned a level, with the root node (e.g., a GPS-equipped gateway to the external world)
residing on level 0. The root node initiates this phase by broadcasting a level_discovery

message that contains the level and the unique identity of the sender. Every immediate
neighbor of the root node uses this message to identify its own level (i.e., level 1) and
rebroadcasts the level_discovery message with its own identity and level. This process
is repeated until every node in the network has identified its level. When a node receives
multiple broadcasts from its neighbors, it simply discards them once it has established
its level in the hierarchical structure. Situations may occur where nodes do not have an
assigned level, for example, when MAC-layer collisions prevent a node from receiving
a level_discovery message or when a node joins a network that has already concluded
its level discovery phase. In this case, a node can issue a level_request message to its
neighbors who reply with their assigned levels. Then, the node assigns itself a level that
is one greater than the smallest level received from its neighbors. Node failures can be
handled in the same way, that is, when a node at level i realizes that it does not have any
neighbors at level i − 1 (through the communication steps in the synchronization phase
described next), it also issues a level_request message to reinsert itself into the structure.
Finally, if the root node dies, instead of issuing level_request messages, nodes in level 1
execute a leader election algorithm, which then restarts TPSN by beginning a new level
discovery phase.

9.4.3.2 Synchronization Phase

During the synchronization phase, TPSN employs pairwise synchronization along the
edges of the hierarchical structure established in the previous phase, that is, each i level
node synchronizes its clock with nodes on level i − 1. The pairwise synchronization of
TPSN shows similarity to the approach taken by LTS. A node j issues a synchronization
pulse at time t1, containing the node’s level and a time stamp. This message is received
by node k at time t2 and node k responds with an acknowledgment at time t3 (containing
time stamps t1, t2, t3, and node k’s level). Finally, this packet is received by node j at
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time t4. As with LTS, TPSN assumes that the propagation delay D and the clock offset
do not change during the brief span of time. Since t1 and t4 are measured using node j ’s
clock and t2 and t3 are measured using node k’s clock, these times have the following
relationships: t2 = t1 + D + offset and t4 = t3 + D − offset. Based on these parameters,
node j can calculate both the drift and propagation delay as:

D = (t2 − t1) + (t4 − t3)

2
(9.7)

offset = (t2 − t1) − (t4 − t3)

2
(9.8)

The synchronization phase is initiated by the root node issuing a time_sync packet.
After waiting for some random time (to reduce contention during medium access), nodes
in level 1 initiate the two-way message exchange with the root node. Once a node in
level 1 receives an acknowledgment from the root, it computes its offset and adjusts its
clock. Nodes on level 2 will overhear the synchronization pulses issued by their level 1
neighbors and after a certain backoff time they initiate their pairwise synchronization
with nodes in level 1. The backoff time is necessary to give level 1 nodes time to receive
and process the acknowledgment of their own synchronization pulses. This process is
continued throughout the hierarchical structure until all nodes have synchronized to the
root node.

Similar to LTS, the synchronization error of TPSN depends on the depth of the hierar-
chical structure and the end-to-end latencies experienced by messages during the pairwise
synchronization. To minimize these latencies and to reduce the error, TPSN relies on
time-stamping of packets at the MAC layer.

9.4.4 Flooding Time Synchronization Protocol

The goals of the Flooding Time Synchronization Protocol (FTSP) (Maróti et al. 2004) are
to achieve network-wide synchronization with errors in the microsecond range, scalability
up to hundreds of nodes, and robustness to changes in network topology including link
and node failures. FTSP differs from other solutions in that it uses a single broadcast
to establish synchronization points between sender and receivers while eliminating most
sources of synchronization error. Toward this end, FTSP expands on the delay analysis
described in Section 9.3 and decomposes the end-to-end delay into the components shown
in Figure 9.7. In this analysis, the wireless radio of the sensor node informs the CPU
using an interrupt at time t1 that it is ready to receive the next piece of the message to
be transmitted. After the interrupt handling time d1, the CPU generates a time stamp at
time t2. The time needed by the radio to encode and transform the piece of the message
into electromagnetic waves is described as encoding time d2 (between t1 and t3). The
propagation delay (between t3 on node j ’s clock and t4 on node k’s clock) is followed by
the decoding time d4 (between t4 and t5). This is the time the radio requires to decode the
message from electromagnetic waves back into binary data. The byte alignment time d5 is
a delay caused by the different byte alignments (bit offsets) of nodes j and k, that is, the
receiving radio has to determine the offset from a known synchronization byte and then
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Figure 9.7 End-to-end delay of synchronization message.

shift the incoming message accordingly. Finally, the radio on node k issues an interrupt
at time t6, which allows the CPU to obtain a final time stamp at time t7.

The impact of these delays on the overall end-to-end delay varies significantly, for
example, the propagation delay (d3) is typically small (< 1 µs) and deterministic. Simi-
larly, the encoding and decoding times (d2 and d4) are also deterministic and in the low
hundreds of microseconds. The byte alignment delay (d5) depends on the bit offset and
also reaches several hundreds of microseconds. Finally, the interrupt handling time (d1

and d6) is nondeterministic and is typically a few microseconds.

9.4.4.1 Time-Stamping in FTSP

In FTSP, a sender synchronizes one or more receivers with a single radio broadcast, where
the broadcast message contains the sender’s time stamp (which is the estimated global
time at the transmission of a given byte of the message). Upon arrival, a receiver extracts
the time stamp from the message and time stamps the arrival using its own local clock.
The global–local time pair provides a synchronization point . The sender’s time stamp
must be embedded into the currently transmitted message, therefore the time stamping
must occur before the bytes containing the time stamp are transmitted over the medium. In
FTSP, the synchronization message begins with a number of preamble bytes followed by
several SYNC bytes, a data field, and a cyclic redundancy check (CRC) for error detection
(Figure 9.8). The preamble bytes are used to synchronize the receiver radio to the carrier
frequency and the SYNC bytes are used to calculate the bit offset, which is needed to
correctly reassemble the message. FTSP uses multiple time stamps at both the sender
and the receiver to reduce the jitter of interrupt handling and encoding/decoding times.
These time stamps are recorded at each byte boundary after the SYNC bytes as they are
transmitted or received. The time stamps are normalized by subtracting an appropriate
integer multiple of the nominal byte transmission time (e.g., approximately 417 µs on
Mica2 platforms). The jitter caused by the interrupt handling time can be removed by
taking the minimum of these normalized time stamps. Further, the jitter caused by the
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Figure 9.8 Synchronization message format and bit offset between sender and receiver.

encoding and decoding steps can be reduced by averaging these corrected normalized
time stamps. Only the final (error-corrected) time stamp is added into the data part of
the message. At the receiver side, the time stamp must be further corrected by the byte
alignment time (which can be determined from the transmission speed and the bit offset).

9.4.4.2 Multi-Hop Synchronization

Similar to TPSN, FTSP relies on an elected synchronization root to synchronize the
network, where root election is based on unique node IDs (i.e., the node with the lowest
ID is elected as the root node). The root node maintains the global time and all other nodes
in the network synchronize their clocks to that of the root. Synchronization is triggered
through a broadcast message by the root node containing its time stamp. All nodes within
the communication range of the root can establish synchronization points directly from
the broadcast message. Other nodes collect synchronization points from broadcasts of
synchronized nodes that are closer to the root.

Similar to TPSN, FTSP relies on a root election algorithm to ensure that there is exactly
one synchronization root in the network. Every broadcast message contains the unique ID
of the root (rootID) and a sequence number (besides the already discussed time stamp).
Whenever a node does not receive a synchronization message for a certain amount of
time, it declares itself to be the new root. Whenever a node receives a synchronization
message with a rootID lower than its own ID, it gives up its root status. A new node
joining a network with a lower ID than the rootID will not immediately declare itself as
root, but instead wait for a certain period of time to collect synchronization messages and
adjust its own clock to the current global time. These techniques ensure that TPSN can
handle network topology changes, including mobile nodes.

9.4.5 Reference-Broadcast Synchronization

The Reference-Broadcast Synchronization (RBS) protocol (Elson et al. 2002) relies on
broadcast messages among a set of receivers to synchronize them with each other. In the
wireless medium, broadcast messages will arrive at multiple receivers at approximately
the same time. The variability in message delay will be dominated by the propagation
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delays and the time needed by the receivers to receive and process the incoming broadcast
message. The strength of RBS lies in the removal of nondeterministic synchronization
errors caused by the sender. Since all synchronization methods are based on some form of
message exchange, the nondeterministic delays experienced by these messages limit the
granularity of time synchronization that can be obtained. Figure 9.9 compares the critical
paths of traditional synchronization protocols with RBS (Elson et al. 2002). Exploiting
the broadcast nature of the wireless medium, the send delay and access delay of broadcast
messages are identical for both receivers, that is, their actual message arrival times will
differ only due to variations of the propagation and receive delays. As a consequence,
the RBS critical path is much shorter than the critical path of traditional synchronization
techniques.

For example, in a scenario with two receivers, each receiver will record when a beacon
was received (using their local clocks). Next, the two receivers exchange their recorded
information, allowing them to calculate an offset (i.e., the difference of the local bea-
con arrival times). With more than two receivers, the maximum phase error between
all receiver pairs is expressed as group dispersion . Increasing the number of receivers
increases the likelihood that at least one receiver will be poorly synchronized, leading to
larger group dispersion. On the other hand, increasing the number of reference broadcasts
can decrease the group dispersion. The reason for this is that a receiving node may expe-
rience variations in the receive time of messages and using multiple reference broadcasts
can increase the synchronization precision. That is, a receiver j can compute its offset to
any other receiver i as the average of phase offsets for all m packets received by receivers
i and j :

offset[i, j ] = 1

m

m∑
k=1

(Tj,k − Ti,k) (9.9)

RBS Critical Path
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time

time
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Figure 9.9 Critical path analysis for synchronization message exchanges.
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RBS can be extended to multi-hop scenarios by establishing multiple reference beacons,
each with its own broadcast domain. These domains can overlap and nodes within over-
lapping regions serve as bridges to allow synchronization across domains. For example,
if nodes A and B are in range of reference node C and nodes C and D are in range of
reference E, C is the bridge node between the two broadcast domains.

The extensive amount of message exchanges needed to synchronize sensor nodes
appears to make RBS a costly synchronization technique. However, RBS is a candi-
date protocol for a synchronization scheme called post-facto synchronization (Elson and
Estrin 2001). Here, nodes do not synchronize with each other until an event of interest
happens. If synchronization occurs quickly after such an event occurs, sensor nodes can
reconcile their clocks only when required, thereby preventing them from wasting energy
on unnecessary synchronization messages.

9.4.6 Time-Diffusion Synchronization Protocol

The Time-Diffusion Synchronization (TDP) protocol (Su and Akyildiz 2005) allows a
sensor network to reach an equilibrium time, that is, nodes agree on a network-wide time
and maintain their clocks within a small bounded deviation from this equilibrium. Nodes
in the network dynamically structure themselves in a tree-like configuration using two
types of elected roles: master nodes and diffused leader nodes . TDP’s Time Diffusion Pro-
cedure (TP) is responsible for diffusing timing information messages from master nodes
to their neighboring nodes, some of which become diffused leader nodes responsible for
further propagating the master nodes’ messages. TDP distinguishes between two phases
of operation: during the active phase, master nodes are elected every τ seconds (based
on an Election/Reelection Procedure or ERP) such that the workload in the network is
balanced and the network is able to agree on an equilibrium time. Every active phase is
followed by an inactive phase where no time synchronization takes place. Every inter-
val of τ seconds is further divided into intervals of δ seconds, each beginning with the
election of diffused leader nodes. The ERP eliminates leaf nodes and nodes whose clocks
deviate from their neighboring clocks by more than a certain threshold value. This is
achieved through message exchanges of neighboring nodes, allowing them to compare
their clock readings. Further, the ERP ensures that master node and diffused leader node
election considers the energy status of the sensor nodes.

Figure 9.10 illustrates the concept of synchronization with TDP. First, an elected master
node broadcasts a timing information message to its neighbors. All diffused leader nodes
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H
Master Node

Diffused Leader Node

Figure 9.10 Concept of synchronization with TDP (with n = 2 for both masters).
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receiving this message (in the figure, nodes C and D are diffused leader nodes for node A)
respond with an ACK message, allowing the master node to determine a round-trip delay
�j for each neighbor j , an estimated one-way delay for all neighbors (�/2 where � is
the average of all round-trip delays), and the standard deviation of the round-trip delays.
The standard deviation is sent in another time-stamped message from the master node to
each neighboring diffused leader node. A diffused leader node adjusts its clock using the
time stamp, the one-way delay estimation, and the standard deviation, and then repeats
this diffusion process with its neighbors. The process is continued for n times, where n is
the distance from the master node in terms of hops (e.g., in Figure 9.10, n = 2). Nodes
that receive timing information messages from multiple master nodes use the standard
deviations as weighted ratio of their time contribution to the adjusted time.

9.4.7 Mini-Sync and Tiny-Sync

Two closely related protocols, called Mini-sync and Tiny-sync, provide pairwise syn-
chronization (that can be used as basic building blocks to synchronize an entire sensor
network) with low bandwidth, storage, and processing requirements (Yoon et al. 2007).
The relationship of the clocks of two nodes in a sensor network can be expressed as:

C1(t) = a12C2(t) + b12 (9.10)

where a12 expresses the relative drift and b12 the relative offset between the clocks of
nodes 1 and 2. In order to determine this relationship, nodes can use the two-way messag-
ing scheme described in Section 9.3.1, for example, node 1 sends a time-stamped probe
message at time t0 to node 2 and node 2 responds immediately with a time-stamped
reply message at time t1. Node 1 records the arrival time of the second message (t2) to
obtain a 3-tuple of time stamps (t0, t1, t2), which is called a data point . Since t0 happened
before t1 and t1 happened before t2, the following inequalities should hold:

t0 < a12t1 + b12 (9.11)

t2 >a12t1 + b12 (9.12)

This procedure is repeated multiple times, resulting in a series of data points and new
constraints on the admissible values of a12 and b12 (thereby increasing the precision of
the algorithms).

The two versions of the protocol are based on the observation that not all data points
are useful. Every data point results in two constraints for the relative drift and offset. The
Tiny-sync algorithm maintains only four of these constraints, that is, whenever a new data
point has been obtained, the current four and the two new constraints are compared and
only the four constraints that result in the best estimates of offset and drift are kept. A
downside of this approach is that constraints may be eliminated that may provide better
estimates if combined with other data points that have yet to occur. Therefore, the Mini-
sync protocol only discards a data point if it is certain that this data point will be useless.
This results in larger computational and storage costs compared to Tiny-sync, but the
advantage is an increased precision.
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Exercises

9.1 Why is time synchronization needed in a WSN? Name at least three concrete
examples.

9.2 Explain the difference between external and internal time synchronization and name
at least one concrete example for each type of synchronization.

9.3 Consider two nodes, where the current time at node A is 1100 and the current time
at node B is 1000. Node A’s clock progresses by 1.01 time units once every 1 s and
node B’s clock progresses by 0.99 time units once every 1 s. Explain the terms clock
offset, clock rate, and clock skew using this concrete example. Are these clocks fast
or slow, and why?

9.4 Assume that two nodes have a maximum drift rate from the real time of 100 ppm
each. Your goal is to synchronize their clocks such that their relative offset does not
exceed 1 s. What is the necessary resynchronization interval?

9.5 You need to design a wireless sensor node and you have three choices for clocks
with maximum drift rates of ρ1 = 1 ppm, ρ2 = 10 ppm, and ρ3 = 100 ppm. Clock
1 costs significantly more than clock 2, which in turn costs significantly more than
clock 3. Explain why one would choose clock 1 instead of clock 2 or clock 3 and
vice versa.

9.6 A network of five nodes is synchronized to an external reference time with maximum
errors of 1, 3, 4, 1, and 2 time units, respectively. What is the precision that can be
obtained in this network?

9.7 Node A sends a synchronization request to node B at 3150 (on node A’s clock). At
3250, node A receives the reply from node B with a time stamp of 3120.

(a) What is node A’s clock offset with respect to the time at node B (you can ignore
any processing delays at either node)?

(b) Is node A’s clock going too slow or too fast?
(c) How should node A adjust the clock?

9.8 Node A issues a synchronization request simultaneously to nodes B, C, and D
(Figure 9.11). Assume that nodes B, C, and D are all perfectly synchronized to each
other. Explain why the offsets between node A and the three other nodes may still
differ.

9.9 Describe the reasons for nondeterminism of communication latencies and why this
nondeterminism affects time synchronization.

9.10 Explain why the depth of the synchronization tree in centralized LTS should be
small.

9.11 Discuss the differences and similarities in the design of the TPSN and the LTS
synchronization protocols.

9.12 Explain the six different types of time stamps that characterize the communication
in FTSP. How does FTSP remove the jitter of the interrupt handling and the encod-
ing/decoding times?
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Figure 9.11 Pair-wise synchronization with multiple neighboring nodes (Exercise 9.8).

9.13 Explain the concept behind the RBS protocol. How can RBS be extended to work
in multi-hop scenarios?

9.14 Describe the term “post-facto synchronization”.

9.15 Compare the TPSN and RBS time synchronization protocols.

9.16 Compare the broadcast approach used by RBS with the pair-wise synchronization
approach by TPSN and other protocols for the following scenarios:

(a) synchronization messages experience send and access delays with high variance
and all other delays are negligible;

(b) synchronization messages are sent using acoustic signals and the distances
between nodes are unknown;

(c) synchronization messages experience send and access delays without variance
and all other delays are negligible;

(d) synchronization messages experience significant receive delays that may differ
from node to node.

9.17 Two nodes A and B use RBS to receive periodic acoustic synchronization signals
from a reference node. Node A’s clock shows 10 s when it receives the last syn-
chronization beacon, while node B’s clock shows 15 s. Node A detects an event at
time 15 s, while node B detects the same event at time 19.5 s. Assume that node A
is 100 m away from the synchronization source and node B is 400 m away from the
synchronization source. Which node detected the event sooner and by how much?
Assume a signal speed of 300 m/s.
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10
Localization
Sensors monitor phenomena in the physical world and the spatial relationships between them
and the objects and events of the physical world are an essential component of the sensor
information. Without knowing the position of a sensor node, its information will only tell
part of the story. For example, sensors deployed in a forest to raise alarms whenever wildfires
occur gain significantly in value if they are able to report the spatial relationship between
them and the monitored event. Further, accurate location information is needed for various
tasks such as routing based on geographic information, object tracking, and location-aware
services. Localization is the task of determining the physical coordinates of a sensor node
(or a group of sensor nodes) or the spatial relationships among objects. It comprises a set
of techniques and mechanisms that allow a sensor to estimate its own location based on
information gathered from the sensor’s environment. While the Global Positioning System
(GPS) is undoubtedly the most well-known location-sensing system, it is not accessible in
all environments (e.g., indoors or under dense foliage) and may incur resource costs unac-
ceptable for resource-constrained wireless sensor networks (WSNs). Therefore, this chapter
discusses various techniques and case studies for localization and location services targeted
at WSNs.

10.1 Overview

Wireless sensor networks are often deployed in an ad hoc fashion, that is, their location is
not known a priori. Localization is necessary to provide a physical context to sensor read-
ings, for example, in many applications such as environmental monitoring, sensor readings
without knowledge of the location where the readings were obtained are meaningless. Loca-
tion information is further necessary for services such as intrusion detection, inventory and
supply chain management, and surveillance. Finally, localization is fundamental for sen-
sor network services that rely on the knowledge of sensor positions, including geographic
routing (Stojmenovic 2002) and coverage area management (Siqueira et al. 2007).

The location of a sensor node can be expressed as a global or relative metric. A global
metric is used to position nodes within a general global reference frame, for example, as pro-
vided by the GPS (longitudes and latitudes) and the Universal Transverse Mercator (UTM)
coordinate systems (zones and latitude bands). In contrast, relative metrics are based on arbi-
trary coordinate systems and reference frames, for example, a sensor’s location expressed
as distances to other sensors without any relationship to global coordinates. Two impor-
tant qualities of localization information are the accuracy and precision of a position. For

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd
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example, for a GPS sensor indicating a position that is true within 10 m for 90% of all
measurements, the accuracy of the GPS reading is 10 m (how close is the reading to the
ground truth?) and the precision is 90% (how consistent are the readings?). Apart from
these physical positions discussed so far, many applications (e.g., indoor tracking systems)
may only require symbolic locations (Hightower and Borriello 2001) such as “office 354”,
“mile marker 17 on Highway 23”, or “bathroom”.

While it may be infeasible for all sensor nodes in a WSN to have knowledge of their
global coordinates, many sensor networks rely on a subset of nodes that know their global
positions. These anchor nodes are then used by all other nodes to perform localization. Tech-
niques that rely on such anchors are called anchor-based localization (as opposed to anchor-
free localization). A large number of localization techniques (including many anchor-based
approaches) are based on range measurements, that is, estimations of distances between
several sensor nodes. These techniques, called range-based localization techniques, require
sensors to monitor measurable characteristics such as received signal strengths of wireless
communications or time difference of arrival of ultrasound pulses. The following sections
discuss the basics of different localization techniques based on these concepts.

10.2 Ranging Techniques

The foundation of numerous localization techniques is the estimation of the physical dis-
tance between two sensor nodes. Estimates are obtained through measurements of certain
characteristics of the signals exchanged between the sensors, including signal propagation
times, signal strengths, or angle of arrival.

10.2.1 Time of Arrival

The concept behind the time of arrival (ToA) method (also called time of flight method)
is that the distance between the sender and receiver of a signal can be determined using
the measured signal propagation time and the known signal velocity. For example, sound
waves travel 343 m/s (in 20 ◦C), that is, a sound signal takes approximately 30 ms to travel
a distance of 10 m. In contrast, a radio signal travels at the speed of light (about 300 km/s),
that is, the signal requires only about 30 ns to travel 10 m. The consequence is that radio-
based distance measurements require clocks with high resolution, adding to the cost and
complexity of a sensor network. The one-way time of arrival method measures the one-way
propagation time, that is, the difference between the sending time and the signal arrival time
(Figure 10.1(a)), and requires highly accurate synchronization of the clocks of the sender and
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Figure 10.1 Comparison of different ranging schemes (one-way ToA, two-way ToA, and TDoA).
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receiver. Therefore, the two-way time of arrival method is preferred, where the round-trip
time of a signal is measured at the sender device (Figure 10.1(b)). In summary, for one-way
measurements, the distance between two nodes i and j can be determined as:

distij = (t2 − t1) × v (10.1)

where t1 and t2 are the sending and receive times of the signal (measured at the sender and
receiver, respectively) and v is the signal velocity. Similarly, for the two-way approach, the
distance is calculated as:

distij = (t4 − t1) − (t3 − t2)

2
× v (10.2)

where t3 and t4 are the sending and receive times of the response signal. Note that with one-
way localization, the receiver node calculates its location, whereas in the two-way approach,
the sender node calculates the receiver’s location. Therefore a third message will be neces-
sary in the two-way approach to inform the receiver of its location.

10.2.2 Time Difference of Arrival

The time difference of arrival (TDoA) approach uses two signals that travel with different
velocities (Figure 10.1(c)). The receiver is then able to determine its location similar to
the ToA approach. For example, the first signal could be a radio signal (issued at t1 and
received at t2), followed by an acoustic signal (either immediately or after a fixed time
interval twait = t3 − t1). Therefore, the receiver can determine the distance as:

dist = (v1 − v2) × (t4 − t2 − twait) (10.3)

TDoA-based approaches do not require the clocks of the sender and receiver to be synchro-
nized and can obtain very accurate measurements. The disadvantage of the TDoA approach
is the need for additional hardware, for example, a microphone and speaker for the above
example.

Another variant of this approach uses TDoA measurements of a single signal to estimate
the location of the sender using multiple receivers with known locations. The propagation
delay di for the signal to receiver i depends on the distance between sender and receiver i.
Correlation analysis can then provide a time delay δ = di − dj which corresponds to the
difference in path length to receivers i and j (Gustafsson and Gunnarsson 2003). The main
disadvantage of this approach is that the clocks of the receivers must be tightly synchronized.

10.2.3 Angle of Arrival

Another technique used for localization is to determine the direction of signal propagation,
typically using an array of antennas or microphones. The angle of arrival (AoA) is then the
angle between the propagation direction and some reference direction known as orientation
(Peng and Sichitiu 2006). For example, for acoustic measurements, several spatially sep-
arated microphones are used to receive a single signal and the differences in arrival time,
amplitude, or phase are used to determine an estimate of the arrival angle, which in turn
can be used to determine the position of a node. While the appropriate hardware can obtain
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accuracies within a few degrees, AoA measurement hardware can add significantly to the
size and cost of sensor nodes.

10.2.4 Received Signal Strength

The concept behind the received signal strength (RSS) method is that a signal decays with the
distance traveled. A commonly found feature in wireless devices is a received signal strength
indicator (RSSI), which can be used to measure the amplitude of the incoming radio signal.
Many wireless network card drivers readily export RSSI values, but their meaning may
differ from vendor to vendor and there is no specified relationship between RSSI values and
the signal’s power levels. Typically, RSSI values are in the range of 0 . . . RSSI_Max, where
common values for RSSI_Max are 100, 128, and 256. In free space, the RSS degrades with
the square of the distance from the sender. More specifically, the Friis transmission equation
expresses the ratio of the received power Pr to the transmission power Pt as:

Pr

Pt

= GtGr

λ2

(4π)2R2
(10.4)

where Gt is the antenna gain of the transmitting antenna and Gr is the antenna gain
of the receiving antenna. In practice, the actual attenuation depends on multipath
propagation effects, reflections, noise, etc., therefore a more realistic model replaces R2 in
Equation (10.4) with Rn with n typically in the range of 3 and 5.

10.3 Range-Based Localization

10.3.1 Triangulation

Triangulation uses the geometric properties of triangles to estimate sensor locations. Specif-
ically, triangulation relies on the gathering of angle (or bearing) measurements as described
in the previous section. A minimum of two bearing lines (and the locations of the anchor
nodes or the distance between them) are needed to determine the location of a sensor node
in two-dimensional space. Figure 10.2(a) illustrates the concept of triangulation using three

(a) (b)

x1, y1

x2, y2

x3, y3

x1, y1

x2, y2

x3, y3

a2

a3

a1

Figure 10.2 Triangulation (a) and trilateration (b).
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anchor nodes with known locations (xi, yi) and measured angles αi (expressed relative to a
fixed baseline in the coordinate system, for example, the vertical line in the figure). If more
than two bearings are measured, the presence of noise in the measurements may prevent
them from intersecting in a single point. Therefore statistical algorithms or fixing methods
have been developed to obtain a single location (Stansfield 1947).

Assume that the unknown receiver location is xr = [xr, yr ]T , the bearing measurements
from N anchor points are expressed as β = [β1, ..., βN ]T , and the known anchor locations
are xi = [xi, yi]T . The measured bearings do not perfectly reflect the actual bearings θ(x) =
[θ1(x), ..., θN(x)]T due to some noise, that is, the relationship between measured and actual
bearings is:

β = θ(xr) + δθ (10.5)

where δθ = [δθ1, ..., δθN ]T is the Gaussian noise with zero-mean and N × N covariance
matrix S = diag(σ 2

1 , ..., σ 2
N) (Gavish and Weiss 1992). In two-dimensional space, the rela-

tionship between the bearings of N anchors and their locations can be expressed as (Mao
et al. 2007; Tekdas and Isler 2007):

tan θi(x) = yi − yr

xi − xr

(10.6)

Various statistical methods have been applied to estimating a sensor’s location. For example,
the maximum likelihood (ML) estimator of the receiver location is:

x̂r = arg min
1

2
[θ(x̂r) − β]T S−1[θ(x̂r) − β] (10.7)

= arg min
1

2

N∑
i=1

(θi(x̂r) − βi)
2

σ 2
i

(10.8)

This nonlinear least squares minimization can be performed using Newton–Gauss itera-
tions:

x̂r,i+1 = x̂r,i + (θx(x̂r,i)
T S−1θx(x̂r,i))

−1θx(x̂r,i)
T S−1[β − θx(x̂r,i)] (10.9)

where θx(x̂r,i) is the partial derivative of θ with respect to x evaluated at x̂r,i. Equation (10.9)
requires an initial estimate (e.g., obtained from prior information) that is close enough to the
true minimum of the cost function.

10.3.2 Trilateration

Trilateration refers to the process of calculating a node’s position based on measured dis-
tances between itself and a number of anchor points with known locations. Given the loca-
tion of an anchor and a sensor’s distance to the anchor (e.g., estimated through RSS measure-
ments), it is known that the sensor must be positioned somewhere along the circumference of
a circle centered at the anchor’s position with a radius equal to the sensor–anchor distance.
In two-dimensional space, distance measurements from at least three noncollinear anchors
are required to obtain a unique location (i.e., the intersection of three circles). Figure 10.2(b)
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illustrates an example for the two-dimensional case. In three dimensions, distance measure-
ments to at least four noncoplanar anchors are required.

Assume that the locations of n anchor nodes are given as xi = (xi , yi) (i = 1...n) and that
the distances between an unknown sensor location x = (x, y) and these anchor nodes are
also known (ri, i = 1...n). This information leads to a matrix expressing the relationships
among anchor/sensor positions and distances:


(x1 − x)2 + (y1 − y)2

(x2 − x)2 + (y2 − y)2

...

(xn − x)2 + (yn − y)2


 =




r2
1

r2
2
...

r2
n


 (10.10)

While the example shown here is for two dimensions, the same process can be used for
localization in more than two dimensions by increasing matrix dimensions. After some rear-
rangements and subtracting the last matrix equation from all previous ones (to remove the
square of the unknown sensor location (x, y)), we obtain:

Ax = b (10.11)

with the coefficient matrix

A =




2(xn − x1) 2(yn − y1)

2(xn − x2) 2(yn − y2)
...

...

2(xn − xn−1) 2(yn − yn−1)


 (10.12)

and the right side vector

b =




r2
1 − r2

n − x2
1 − y2

1 + x2
n + y2

n

r2
2 − r2

n − x2
2 − y2

2 + x2
n + y2

n
...

r2
n−1 − r2

n − x2
n−1 − y2

n−1 + x2
n + y2

n


 (10.13)

This least squares system can now be used to obtain an estimation of the position (x, y)

using:

x = (AT A)−1AT b (10.14)

Anchor positions and distance measurements are rarely perfect, therefore, if the positions
and distances are based on Gaussian distributions, each equation i can have a weight:

wi = 1/

√
σ 2

distancei
+ σ 2

positioni
(10.15)

where σ 2
distancei

is the variance of the distance measurement between x and anchor i and
σ 2

positioni
= σ 2

xi
+ σ 2

yi
. The least squares system is then Ax = b with
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A =




2(xn − x1) × w1 2(yn − y1) × w1

2(xn − x2) × w2 2(yn − y2) × w2
...

...

2(xn − xn−1) × wn−1 2(yn − yn−1) × wn−1


 (10.16)

and

b =




(r2
1 − r2

n − x2
1 − y2

1 + x2
n + y2

n) × w1

(r2
2 − r2

n − x2
2 − y2

2 + x2
n + y2

n) × w2
...

(r2
n−1 − r2

n − x2
n−1 − y2

n−1 + x2
n + y2

n) × wn−1


 (10.17)

The covariance matrix of x is then given by Covx = (AT A)−1.

10.3.3 Iterative and Collaborative Multilateration

While the lateration technique relies on the presence of at least three anchor nodes to posi-
tion a fourth unknown node, this technique can be extended to determine locations of nodes
without three neighboring anchor nodes. Once a node has identified its position using the
beacon messages from the anchor nodes, it becomes an anchor and broadcasts beacon mes-
sages containing its estimated position to other nearby nodes. This iterative multilateration
process (Savvides et al. 2001) repeats until all nodes in a network have been localized.
Figure 10.3(a) visualizes this process: in the first iteration, the gray node estimates its loca-
tion with the help of the three black anchor nodes and in the second iteration, the white nodes
estimate their respective locations with the help of two original anchor nodes and the gray
node. The drawback of iterative multilateration is that the localization error accumulates
with each iteration.

In ad hoc deployments of sensor and anchor nodes, it is possible that a node will not have
three neighboring anchor nodes, therefore preventing it from determining its own location.
In this case, a node can use a process called collaborative multilateration to estimate its
position using location information obtained over multiple hops. Figure 10.3(b) shows a
simple example with six nodes: four anchor nodes Ai (black) and two nodes with unknown
locations Si (white). The goal of collaborative multilateration is to construct a graph of

(b)(a)

A1

A2

A3

A3A1

A2 A4

S1 S2

Figure 10.3 (a) Iterative multilateration and (b) collaborative multilateration.
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participating nodes, that is, nodes that are anchors or have at least three participating neigh-
bors (e.g., all nodes in Figure 10.3(b) are participants). A node can then try to estimate
its position by solving the corresponding system of overconstrained quadratic equations
relating the distances among the node and its neighbors.

10.3.4 GPS-Based Localization

The Global Positioning System (GPS) (Hofmann-Wellenhof et al. 2008) is the most widely
publicized location-sensing system, providing an excellent lateration framework for deter-
mining geographic positions (Hightower and Borriello 2001). GPS (formally known as
NAVSTAR – Navigation Satellite Timing and Ranging) is the only fully operational global
navigation satellite system (GNSS) and it consists of at least 24 satellites orbiting the earth
at altitudes of approximately 11,000 miles. It began as a test program in 1973 and became
fully operational in 1995. In the meantime, GPS has established itself as a widely used aid
to civilian navigation, surveying, tracking and surveillance, and scientific applications. GPS
provides two levels of service (Dana 1997):

1. The Standard Positioning Service (SPS) is a positioning service available to all GPS
users on a continuous worldwide basis without restrictions or direct charge. High-quality
GPS receivers based on SPS are able to attain accuracies of 3 m and better horizontally.

2. The Precise Positioning Service (PPS) is used by US and Allied military users and is
a more robust GPS service that includes encryption and jam resistance. For example, it
uses two signals to reduce radio transmission errors, while SPS only uses one signal.

GPS satellites are uniformly distributed in a total of six orbits (i.e., there are four satel-
lites per orbit) and they circle the earth twice a day at approximately 7000 miles per hour.
The number of satellites and their spatial distribution ensure that at least eight satellites
can be seen simultaneously from almost anywhere on the planet. Each satellite constantly
broadcasts coded radio waves (known as pseudorandom code) that contain information on
the identity of the particular satellite, the location of the satellite, the satellite’s status (i.e.,
whether it is working properly), and the date and time a signal has been sent. In addition to
the satellites, GPS further relies on infrastructure on the ground to monitor satellite health,
signal integrity, and orbital configuration. At least six monitor stations located around the
world constantly receive the data sent by the satellites and forward the information to a
master control station (MCS). The MCS (located near Colorado Springs, Colorado) uses
the data from the monitor stations to compute corrections to the satellites’ orbital and clock
information, which are then sent back to the appropriate satellites via ground antennas .

A GPS receiver (e.g., embedded into a mobile device) receives the information trans-
mitted by the satellites that are currently in view by the receiver. The basic principle of
GPS positioning is illustrated in Figure 10.4. Satellites and receivers use very accurate and
synchronized clocks so that they generate the same code at exactly the same time. The GPS
receiver compares its generated code with the code received from the satellite, thereby deter-
mining the actual generation time (e.g., t0 in Figure 10.4) of the code at the satellite and the
time difference � between the code generation time and the current time. Therefore, �

then expresses the travel time of the code from the satellite to the receiver. Note that the
received satellite data is attenuated due to the satellite–earth path even if no obstructions
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Figure 10.4 GPS positioning principle.

occur. Radio waves travel at the speed of light (about 186 000 miles per second), so if �

is known, the distance from the satellite to the receiver (distance = speed × time) can be
determined. Once the distance has been determined, the receiver knows that it is located
somewhere on a sphere centered on the satellite with a radius equal to the computed dis-
tance. Repeating this process with two more satellites, the position of the receiver can be
narrowed down to the two points where the three spheres intersect. Typically, one of the two
points can be eliminated very easily, for example, because it would position the receiver far
out in space or the receiver would travel at a virtually impossible velocity.

While three satellites appear to be sufficient for localization, a fourth satellite is needed
to obtain an accurate position. Positioning via GPS relies on correct timing to make accu-
rate measurements, that is, the clocks of the satellites and the receivers must be synchronized
precisely. Satellites are equipped with four atomic clocks (synchronized to each other within
a few nanoseconds), providing highly accurate time readings. However, the clocks used for
GPS receivers are not nearly as accurate as the atomic clocks onboard the satellites, intro-
ducing measurement errors that can have a significant impact on the quality of localization.
Because radio waves travel at very high speeds (and therefore require very little time to
travel), small errors in the timing can result in large deviations in position measurements.
For example, a clock error of 1 ms would result in a position error of about 300 km. There-
fore, a fourth measurement is required, where the fourth sphere should ideally intersect the
other three spheres at the exact location of the receiver. Because of timing errors, the fourth
sphere may not intersect with all other spheres, even though we know that they are supposed
to align. If the spheres are too large, we can reduce their sizes by adjusting the clock (by
moving it forward) until the spheres are small enough to intersect in one point. Similarly, if
the spheres are too small, we adjust the clock by moving it backwards. That is, because
the timing error is the same for all measurements, a receiver can calculate the required
clock adjustment to obtain a single intersection point among all four spheres. In addition to
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providing a means for clock synchronization, a fourth measurement also allows a receiver
to obtain a three-dimensional position, that is, latitude, longitude, and elevation.

While most GPS receivers available today are able to provide position measurements
with accuracies of 10 m or less, advanced techniques to further increase the accuracy are
available. For example, Differential GPS (DGPS) (Monteiro et al. 2005) relies on land-
based receivers with exactly known locations to receive GPS signals, compute correction
factors, and broadcast them to GPS receivers that are then able to correct their own GPS
measurements. While it is possible to build wireless sensor networks where each sensor
has its own GPS receiver, constraints such as high power consumption, cost, and the need
for line-of-sight make a fully GPS-based solution impractical for most sensor networks.
However, GPS receivers deployed on a few nodes in a WSN may be sufficient to provide
location services based on reference points as described in the following section.

10.4 Range-Free Localization

The localization approaches discussed in the previous sections are based on distance esti-
mations using ranging techniques (RSS, ToA, TDoA, and AoA) and belong therefore to the
class of range-based localization algorithms. In contrast, range-free techniques estimate
node locations based on connectivity information instead of distance or angle measurements.
Range-free localization techniques do not require additional hardware and are therefore a
cost-effective alternative to range-based techniques. This section describes various different
approaches to localization without reliance on ranging techniques.

10.4.1 Ad Hoc Positioning System (APS)

APS (Niculescu and Nath 2001) is an example of a distributed connectivity-based localiza-
tion algorithm that estimates node locations with the support of at least three anchor nodes,
where localization errors can be reduced by increasing the number of anchors. Each anchor
node propagates its location to all other nodes in the network using the concept of distance
vector (DV) exchange (Lu et al. 2003), where nodes in a network periodically exchange
their routing tables with their one-hop neighbors. In the most basic scheme of APS, called
DV-hop, each node maintains a table {Xi, Yi, hi}, where {Xi, Yi} is the location of node i

and hi is the distance in hops between this node and node i. When an anchor obtains dis-
tances to other anchors, it then determines an average size for one hop (called the correction
factor), which too is then propagated throughout the network. The correction factor ci of
anchor i is determined as:

ci =
∑√

(Xi − Xj)2 + (Yi − Yj )2∑
hi

(10.18)

for all landmarks j (i �= j ). Given the locations of the anchors and the correction factor, a
node is then able to perform trilateration to estimate its own location. Figure 10.5 presents
an example with three anchor nodes A1, A2, and A3. Anchor A1, knowing its Euclidean dis-
tances (50 m and 110 m) and hop distances (two hops and six hops) to the other two anchor
nodes, computes a correction of (50 + 110)/(2 + 6) = 20, which represents the estimated
distance of a hop in meters. In a similar fashion, A2 computes a correction factor of 18.6 and
A3 computes a correction factor of 17.3. Corrections are propagated via controlled flooding
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Figure 10.5 Example of DV-hop localization.

(i.e., once a node receives a correction, it ignores subsequent ones) to ensure that each node
will only use one correction factor, typically from the closest anchor. For example, sensor
node S in Figure 10.5 uses the correction factor obtained from A2, that is, 18.6, to estimate its
distances to the three anchors by multiplying the correction factor with the hop counts (lead-
ing to distances 3 × 18.6 to A1, 2 × 18.6 to A2, and 3 × 18.6 to A3). Given these distances,
triangulation (as described in 10.3.1) can be used to determine the position of S.

In a variation of this approach, called the DV-distance method, distances between neigh-
boring nodes are determined using radio signal strength measurements and distributed to
other nodes in meters instead of hops. While this approach provides finer granularity (not
all hops are estimated to be the same size), it is also more sensitive to measurement errors.
Finally, in the Euclidean method, true Euclidean distances to anchors are used. A node must
have at least two neighbors that have distance measurements to an anchor, where the dis-
tance between the two neighbors is known. Based on this information, simple trigonometric
relationships can be used to determine the distance of a node to an anchor.

10.4.2 Approximate Point in Triangulation

The Approximate Point In Triangulation (APIT) approach is an area-based range-free local-
ization scheme (He et al. 2003). Similar to APS, APIT relies on the presence of several
anchor nodes that know their own location (e.g., via GPS). Any combination of three anchors
forms a triangular region and a node’s presence inside or outside such a region allows a node
to narrow down its possible locations. The key step in APIT localization is the Point In Tri-
angulation (PIT) test that allows a node to determine the set of triangles within which the
node resides. After a node M has received location messages from a set of anchors, it eval-
uates all possible triangles formed by the anchors. A node is outside a given triangle ABC
formed by anchors A, B, and C, if there exists a direction such that a point adjacent to M is
either further or closer to all points A, B, and C simultaneously. Otherwise, M is inside the
triangle and triangle ABC can be added to the set of triangles in which M resides. This con-
cept is illustrated in Figure 10.6. Unfortunately, this perfect PIT test is infeasible in practice
since it would require that nodes can be moved in any direction. However, an APIT test can
be used in networks with sufficient node density. The idea is to emulate the node movement
in the perfect PIT test using neighbor information that is exchanged via beacon messages.
For example, signal strengths between nodes and an anchor can be used to estimate which
node is closer to the anchor. Then, if no neighbor of node M is further from or closer to
the three anchors A, B, and C simultaneously, M assumes that it is inside the triangle ABC;
otherwise M assumes that it is outside the triangle. Figure 10.7 illustrates this concept. In the
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Figure 10.6 Location estimation based on the intersection of anchor triangles.

left graph, node M has four neighbors, none of which is simultaneously closer to or further
away from any of the three anchor nodes. M therefore correctly concludes that it is inside
the ABC triangle. The situation is different in the right graph. For example, neighbor 4 is
closer to all three anchor nodes than node M, while node 2 is further away from the anchor
nodes than node M. Therefore, node M concludes that it must be outside the ABC triangle.
In this scheme, a node can make incorrect decisions because only a finite number of direc-
tions (the number of neighbors) can be evaluated. For example, in the left graph, if node
4’s RSS measurements indicate that it is further from node B than node M (e.g., because
there is an obstacle between anchor B and node 4), node M would conclude that it must be
outside the triangle. Once the APIT test completes, a position estimate can be computed as
the center of gravity of the intersection of all triangles in which M resides.

10.4.3 Localization Based on Multidimensional Scaling

Multidimensional scaling (MDS) has its roots in psychometrics and psychophysics and is
a set of data analysis techniques that display the structure of distance-like data as a geo-
metrical picture. Applied to localization (Shang et al. 2004), MDS can be used in central-
ized localization techniques, where a powerful central device (e.g., base station) collects
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Figure 10.7 Examples of APIT test scenarios.
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information from the network, determines the nodes’ locations, and propagates this infor-
mation back into the network. The network is represented as an undirected graph of n nodes
(m < n of which are anchors and know their locations) and edges representing the connec-
tivity information. Given the distances between all pairs of nodes, the goal of MDS is to
preserve the distance information such that the network can be recreated in the multidimen-
sional space. The result of MDS will be an arbitrarily rotated and flipped version of the
original network layout.

While there are many variations of MDS, the simplest version (called classical MDS) has
a closed form solution allowing for efficient implementations. Assume a matrix of squared
distances between nodes written as:

D2 = c1′ + 1c′ − 2SS′ (10.19)

where 1 is an n × 1 vector of ones, S is the similarity matrix for n points, where each row
represents the coordinates of point i along m coordinates, SS′ is called the scalar product
matrix, and c is a vector consisting of the diagonal elements of the scalar product matrix.
Multiplying both sides of Equation (10.19) by the centering matrix T = I − 11′/n, where
I is the identity matrix and 1 is again a vector of ones, leads to:

T D2T = T (c1′ + 1c′ − 2SS′)T = T c1′T + T 1c′T − T (2B)T (10.20)

where B = SS′. Centering a vector of ones yields a vector of zeros, therefore:

T D2T = −T (2B)T (10.21)

Further multiplying both sides with −1/2 results in:

B = −1

2
T D2T (10.22)

B is a symmetric matrix and can therefore be decomposed into:

B = Q�Q′ = (
Q′�1/2) (Q�1/2)′ = SS′ (10.23)

Once B has been obtained, the coordinates S can be computed by eigendecomposition:

S = Q�1/2 (10.24)

Based on this concept, a localization method for sensor networks called MDS–MAP
(Shang et al. 2004) can be applied. First, a distance matrix D is constructed using an
all pairs shortest path algorithm (e.g., Dijkstra’s), with dij being the distance (i.e., the
minimum number of hops) between nodes i and j . Next, classical MDS as described above
is applied to this matrix and an approximate value of the relative coordinate of each node is
obtained. Finally, these relative coordinates are then transformed to absolute coordinates by
aligning the estimated relative coordinates of anchors with their absolute coordinates.
These location estimates can further be refined using least-squares minimization.

An extension to this approach divides the entire sensor network into overlapping regions,
where localization is performed in individual regions using the approach described above.
These local maps are then patched together to form a global map by using common nodes
shared between adjacent regions. This results in better performance in irregularly-shaped
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networks by avoiding the use of distance information between far away nodes. While the
approach described here is a centralized solution relying on global information, a distributed
implementation is also possible (Shang and Ruml 2004).

10.5 Event-Driven Localization

10.5.1 The Lighthouse Approach

A third category of localization schemes is based on events that can be utilized to determine
distances, angles, and positions. Such events can be the arrival of radio waves, beams of
light, or acoustic signals at a sensor node. In the lighthouse location system (Römer 2003),
sensor nodes can estimate their location with high accuracy without the need for additional
infrastructure components besides a base station equipped with a light emitter. Figure 10.8
illustrates the concept using an idealistic light source, which has the property that the emitted
beam of light is parallel, that is, the width b remains constant. The light source rotates and
when the parallel beam passes by a sensor, it will see the flash of light for a certain period of
time tbeam. The main idea behind this concept is that tbeam varies with the distance between
the sensor and the light source (since the beam is parallel). The distance d between the sensor
and the light source can be expressed as:

d = b

2 sin(α/2)
(10.25)

where α expresses the angle under which the sensor sees the beam of light as follows:

α = 2π
tbeam

tturn
(10.26)

Here, tturn is the time the light source takes to perform a complete rotation. While b is given
and constant, a sensor can calculate tbeam = t2 − t1 and tturn = t3 − t1, where t1 is the time
the sensor sees the light for the first time, t2 is the time the sensor no longer sees the light,
and t3 is the time when the sensor sees the light again.

A key assumption so far has been that the width b of the beam stays constant for all
distances from the light source. However, perfectly parallel light beams are difficult to real-
ize in practice and even small beam spreads can result in significant localization errors, for
example, a beam with b = 10 cm and a beam spread of 1◦ would result in a beam width
of 18.7 cm at a distance of 5 m. An additional requirement is that the beam width should
be as large as possible to keep inaccuracies small. To achieve this, two laser beams can be

d1 d2

a1 a2 b

Figure 10.8 The lighthouse localization approach (top view).
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used to create the outline of a “virtual” parallel beam (the sensor nodes are only interested
in detecting the edges of the virtual beam which are represented by the two laser beams).

10.5.2 Multi-Sequence Positioning

The Multi-Sequence Positioning (MSP) approach (Zhong and He 2007) works by extract-
ing relative location information from multiple simple one-dimensional orderings of sen-
sor nodes. For example, Figure 10.9 shows a small sensor network with five nodes with
unknown locations and two anchor nodes. Events are generated by event generators at differ-
ent locations one at a time (e.g., ultrasound propagations or laser scans with diverse angles).
The nodes in the sensor field observe these events at different times, depending on their
distances to the event generators. For each event, we can establish a node sequence, that is,
a node ordering (including both the sensor and the anchor nodes) based on the sequential
detection of the event. Then, a multisequence processing algorithm narrows the potential
locations for each node to a small area and, finally, a distribution-based estimation method
estimates the exact locations.

The basic concept of the MSP algorithm is to split a sensor network area into small pieces
by processing node sequences. For example, in Figure 10.9, performing a straight-line scan
from top to bottom results in a node sequence 2, B, 1, 3, A, 4, 5. The basic MSP algorithm
uses two straight lines to scan an area from different directions, treating each scan as an
event. In Figure 10.9, a left-to-right scan results in a node sequence 1, A, 2, 3, 5, B, 4. Since
the anchor locations are known, the two anchors split the area into nine parts. This process
can be extended to cut the area into smaller pieces by increasing the number of anchors and
scans (from different angles). The basic MSP algorithm processes each node sequence to
determine the boundaries of a node (by searching for the predecessor and successor anchor
nodes for the node) and shrinks the location area of this node according to the newly obtained
boundary information. Finally, a centroid estimation algorithm sets the center of gravity of
the resulting polygon as the estimated location of the target node.

Event 1

Event 2 Event 4

Anchor

A

2

B

3

Event 3

Node Sequence for Event 2
1 – 2 – B – A – 3 – 5 – 4

Node Sequence for Event 3
4 – 5 – B – 3 – A – 2 – 1

Node Sequence for Event 4
B – 2 – 3 – 1 – 4 – A – 5

Node Sequence for Event 1
A – 1 – 5 – 3– 4 – 2 – B

5

Anchor

4

1

Figure 10.9 Basic concept of MSP.
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Exercises

10.1 Why is localization needed in wireless sensor networks? Name at least two concrete
scenarios or applications where localization is required.

10.2 A node’s position in two-dimensional space is (x, y) = (10, 20) with a maximum
error of 2 in the x direction for 95% of all measurements and a maximum error of 3
in the y direction for 90% of all measurements. What is the accuracy and the precision
of this location information?

10.3 Explain the difference between physical and symbolic positions and name at least
two examples for each type.

10.4 Define the terms anchor-based localization and range-based localization.

10.5 Time of Arrival (ToA) is one example of a ranging technique. Answer the following
questions (assume a propagation time of 300 m/s):

(a) What is the advantage of two-way ToA over one-way ToA?
(b) In a synchronized network with unknown synchronization error, an anchor node

periodically broadcasts an acoustic signal to sensor nodes in its range. At time
1000 ms on the anchor node’s clock, the anchor node issues a beacon, which is
received by node A at time 2000 ms (on node A’s clock). What is the distance
that A can now compute?

(c) Instead of computing the distance itself, node A also responds with an acous-
tic signal issued at time 2500 ms, which is received by the anchor node at time
3300 ms. What is the distance computed by the anchor node? What can you say
about the synchronization of anchor node and node A?

10.6 What is the main disadvantage for both TDoA and AoA ranging techniques?

10.7 RSS-based localization techniques are often combined with a process called RF pro-
filing, that is, the mapping of the effects of objects in the environment on signal
propagation. Why is this necessary and can you think of examples of such objects?

10.8 Two nodes A and B are known to be positioned at locations (0, 0) (node A) and (1, 1)

(node B) in two-dimensional space. A third node C wishes to determine its posi-
tion using trilateration. Based on ranging techniques, node C knows its distances to
node A (d(A,C) = √

0.75) and node B (d(B,C) = √
0.75). What are the two possible

positions of C?

10.9 Three nodes A, B, and C are known to be positioned at locations (0, 0), (10, 0), and
(4, 15), respectively. Node D is estimated to be a distance of 7 from A, a distance
of 7 from B, and a distance of 10.15 from C. Determine the location of D using
trilateration.

10.10 Consider the two-dimensional topology in Figure 10.10. The sensor node in the center
can select three of the six anchor nodes as basis for trilateration. Which nodes should
the sensor node select? Justify your answer, that is, what guideline for anchor selec-
tion should be considered? What would this guideline be in three-dimensional space?
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B3

B4

B5

Figure 10.10 Exercise 10.10.

10.11 Two nodes A and B do not know their own positions, but they can hear beacons in
their proximities. Node A can hear beacons located at (4, 2) and (2, 5). Node B can
hear beacons located at (2, 5) and (3, 7). All nodes have a radio range of 2 units.

(a) Are either (3, 3.5) or (3, 4.5) possible locations for node A?
(b) Are either (2, 6) or (4, 5) possible locations for node B?

10.12 What are the differences between iterative and collaborative multilateration?

10.13 Explain the concept of GPS localization and answer the following questions:

(a) Why are three satellites enough to obtain a position on the globe?
(b) Why is it preferred to have at least four satellites available for localization?
(c) What is the purpose of the monitor stations and the master control station?
(d) Why is it typically not feasible to have all wireless sensor nodes equipped with

a GPS receiver?

10.14 Explain the difference between range-based and range-free localization.

10.15 Figure 10.11 shows a network topology with three anchor nodes. The distances
between anchors A1 and A2, anchors A1 and A3, and anchors A2 and A3 are 40 m,
110 m, and 35 m, respectively. Use the Ad Hoc Positioning System to estimate the
location of the gray sensor node (show each step of your process).

A2

A1

A3

Figure 10.11 Exercise 10.15.
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10.16 For the APIT test, can you show a concrete scenario where a node M would come
to the wrong conclusion that it must be inside a triangle? Use a scenario where node
M has at least three neighbors. Can you also show an example where node M would
come to the wrong conclusion that it must be outside a triangle?

10.17 A sensor node in a WSN using the lighthouse approach for localization detects the
first beam of light at time 0 s and the second beam of light at time 0.25 s. The next
time the first beam of light is detected is 7 s. The distance of the two light sources
(beam width) is 10 cm. What is the distance of the sensor to the light emitter?
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Security
Security and privacy are enormous challenges in all types of wired and wireless networks.
These challenges are of even greater importance in wireless sensor networks, where the
unique characteristics of these networks and the application purposes they serve make them
attractive targets for intrusions and other attacks. In applications such as battlefield surveil-
lance and assessment, target tracking, monitoring civil infrastructure such as bridges and
tunnels, and assessment of disaster zones to guide emergency response activities, any breach
of security, compromise of information, or disruption of correct application behavior can
have very serious consequences. Sensor networks are frequently used in remote areas, left to
operate unattended and therefore providing an easy target for physical attacks, unauthorized
access, and tampering. Sensor nodes are typically very resource-constrained and operate in
harsh environments, which further facilitates compromises and makes it often difficult to dis-
tinguish security breaches from node failures, varying link qualities, and other commonly
found challenges in sensor networks. Finally, these resource constraints require security
mechanisms that are customized for WSN applications, such that the limited resources are
used efficiently. This chapter provides an overview of the security concerns of WSNs and
illustrates possible solutions to providing security and privacy protection. Note that the terms
attacker , intruder , and adversary are used interchangeably to describe an entity (person or
device) that performs an attack on a network or system.

11.1 Fundamentals of Network Security

Computer and network security is the collection of all policies, mechanisms, and services
that afford a computer system or network the required protection from unauthorized access
or unintended uses. Most security mechanisms are built to address three well-known ser-
vices in the CIA security model: Confidentiality, Integrity , and Availability . The following
describes these services in more detail:

1. Confidentiality: Security mechanisms must ensure that only the intended receiver can
correctly interpret a message and that unauthorized access and usage is prevented. For
example, confidentiality ensures that sensitive information such as a person’s social secu-
rity number or credit card information are not obtained by an unauthorized individual.

2. Integrity: Security mechanisms must ensure that a message cannot be modified as it
propagates from the sender to the receiver, that is, unauthorized individuals should not
be able to destroy or alter the contents of sensitive information.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd
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3. Availability: Security mechanisms must ensure that a system or network and its applica-
tions are able to perform their tasks at any time without interruption. Availability is often
measured in terms of percentages of up or down time.

Figure 11.1 illustrates examples of attacks on a transmission between a sender and its
intended receiver. Eavesdropping refers to the reception of a message by an unauthorized
individual, which can be prevented using confidentiality measures. A man-in-the-middle
attack refers to a situation where an unauthorized individual or system positions itself
between the sender and receiver such that the sender’s messages are intercepted, modified,
and retransmitted to the receiver (where the receiver believes the received message came
directly from the original sender). This illustrates the need for integrity mechanisms.
Finally, a denial-of-service attack refers to an adversary’s attempt to disrupt the transmis-
sion or service provided by the sender. For example, the adversary can overload the sender
with requests and tasks such that the sender is not able to transmit its message (in a timely
fashion) to the receiver. This type of attack necessitates security mechanisms that ensure
availability.

In addition to the three components of the CIA triad, authentication refers to the process
of establishing or confirming the identify of a user or a device, ensuring that a message came
from who it claims to have come from. Also, nonrepudiation refers to the process of proving
that a person or device has performed a transaction or transmission. Digital signatures are
often used to support both authentication and nonrepudiation, but are also used to provide
confidence that a message has not been altered (i.e., integrity).

In all types of communication networks, there are several fundamental security mecha-
nisms that can be used to provide confidentiality, integrity, and availability. Cryptography
is the process of hiding and protecting information using encoding and decoding mecha-
nisms. In symmetric key cryptography , a single key between two communicating parties is
used for the encryption and decryption of a message. For example, a simplistic encoding
strategy could be to replace each plaintext letter with another letter that is a certain number
of positions down the alphabet. For example, using a shift of 2 would replace the letter A

Man-in-the-Middle
(Integrity)

Sender
Intended
Receiver

Eavesdropping
(Confidentiality)

Denial-of-Service
(Availability)

Figure 11.1 Examples of attacks and the CIA model.
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with the letter C. In this shift cipher , the fixed shift value is then the symmetric key. A major
challenge in the use of symmetric cryptographic techniques is the secure distribution of the
shared key between the two communicating parties. Popular examples of symmetric key
cryptographic mechanisms include DES, AES, and IDEA (Menezes et al. 1996).

In contrast to this approach, public key cryptography , such as the well-known RSA algo-
rithm (Rivest et al. 1983) or the Diffie–Hellman key agreement protocol (Menezes et al.
1996), rely on a pair of keys. A node generates both a secret key and a public key , where the
secret key will never be communicated with any other node. The public key, on the other
hand, can be shared freely with anyone in the network. Any message encrypted with the
secret key can only be deciphered using the corresponding public key (e.g., this can be used
to authenticate the identity of the sender). Any message encrypted with the public key can
only be deciphered using the corresponding secret key (e.g., this can be used to provide
confidentiality).

11.2 Challenges of Security in Wireless Sensor Networks

Security has been a challenge in computing systems and networks for several decades,
during which the types of attacks and the security measures and mechanisms to counter
them have advanced and developed significantly, particularly because of the rapid growth
of the Internet. Compared to the traditional attacks and security mechanisms developed for
the Internet, WSNs exhibit a variety of unique challenges that must be considered when
addressing the security concerns that may arise in sensor network applications:

1. Resource constraints: Traditional security mechanisms that have high overheads are not
suitable for resource-constrained WSNs. Many security mechanisms are computation-
ally expensive or require communication with other nodes or “remote” devices (e.g.,
for authorization purposes), thereby leading to energy overheads. Small sensor devices
are also constrained in their available memory and storage capacities. Common sensor
devices have very limited amounts of memory, for example, TelosB devices only have
10 kbytes RAM and 48 kbytes flash memory available. Traditional security algorithms
that require a significant amount of memory and storage space are therefore infeasible
for such sensors.

2. Lack of central control: It is often infeasible to have a central point of control in sensor
networks, for example, because of their large scale, resource constraints, and network
dynamics (topology changes, network partitioning). Therefore, security solutions should
be decentralized and nodes must collaborate to achieve security.

3. Remote location: The first line of defense against security attacks is to provide only
controlled physical access to a sensor node. Many WSNs are left unattended, because
they are operated in remote and hard-to-reach locations, deployed in environments open
to public access, or so large that it would be infeasible to continuously monitor and protect
sensor nodes from attacks. These challenges make it difficult to prevent unauthorized
physical access and to detect tampering with the sensor devices, particularly since the low
cost of many sensor nodes may prohibit advanced (and expensive) protective measures.

4. Error-prone communication: Packets in WSNs may be lost or corrupted due to a variety
of reasons, including channel errors, routing failures, and collisions. This may interfere
with some security mechanisms or their ability to obtain critical event reports. Further-
more, this may make it difficult to distinguish “benign” erroneous communications or
node and link failures from malicious attacks.
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Certain characteristics of sensor networks, on the other hand, facilitate the provision of
security. For example, the self-managing and self-repairing nature of a WSN may allow it
to continue to operate even if a sensor or entire regions of the sensor network have been
compromised. Redundancy in a sensor network allows it to gather information about events
in the environment even when some sensors are unavailable due to an attack. Furthermore,
this redundancy can be used to detect, isolate, and mask potentially compromised nodes.

Data collected by sensors may contain sensitive information and should not be leaked to
unauthorized devices. Further, encryption keys and information about sensors themselves
(e.g., identity, location, etc.) must be protected to prevent eavesdropping and attacks based
on traffic analysis. These challenges require measures that provide data confidentiality for
sensor networks. Integrity is required to prevent adversaries from modifying sensor data, for
example, with the purpose of injecting false readings and therefore affecting the response
to the sensor readings. Authentication is necessary to ensure that any data disseminated in
a sensor network originates from the correct source, particularly when a single node con-
trols the entire network (e.g., a base station establishing routes or distributing multicast
tree information). Further, many security attacks in sensor networks have the goal to dis-
rupt the correct functioning of the network altogether, necessitating measures that ensure
network availability. An additional requirement in sensor networks is the need for data
freshness , which ensures that sensor data are recent and no old recordings of such data are
being replayed. This is particularly important for key distribution schemes, for example, an
attacker could record shared keys that are being exchanged in a network and replay these key
distribution messages at a later time. Finally, many node and network management respon-
sibilities found in WSNs provide adversaries with opportunities for attacks. For example,
sensor node localization is important for correctly interpreting sensor data, for geographic
routing protocols, and for redundancy elimination. However, many localization techniques
require the exchange of information among sensors (e.g., beacons carrying positions, time
stamps, and identity information) that may necessitate encryption. Similarly, time synchro-
nization in sensor networks is based on message exchange among sensor nodes, where an
adversary could inject false time stamps to increase synchronization errors among sensors.

11.3 Security Attacks in Sensor Networks

Sensor networks are vulnerable to a variety of attacks that attempt to compromise the net-
work’s operation and the data the sensor nodes generate. Specifically when sensor networks
serve application purposes such as battlefield assessments and monitoring of civil infrastruc-
ture, they require protection from unauthorized access and tampering. This section describes
a variety of security attacks that could occur in a WSN.

11.3.1 Denial-of-Service

A Denial-of-Service (DoS) attack can be characterized as an attempt of an adversary to stop
a network from functioning or to disrupt the services a network provides. In wireless sensor
networks, DoS attacks can occur at various layers of the protocol stack, where some may
affect multiple layers simultaneously or attempt to exploit interactions between them (Wood
and Stankovic 2002).
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11.3.1.1 Physical Layer DoS

The wireless medium used in a WSN facilitates a variety of attacks. A jamming attack occurs
when an adversary interferes with the radio frequencies of a WSN. If well positioned, a
few attacking nodes can disable an entire network, even if the number of attacking nodes
is much smaller than the number of nodes in the network. Even a single attacking node
could disable an entire network if it is positioned close to a “critical” node (e.g., a gateway,
therefore preventing any sensor data from leaving the sensor network) or its transmission
power is large such that all nodes in a network may be prevented from correctly receiv-
ing any meaningful data. A common technique against jamming is to use spread-spectrum
communication, as found in well-known standards such as IEEE 802.11 and Bluetooth.
For example, in frequency-hopping spread spectrum (FHSS), communicating devices fre-
quently hop between frequencies according to a certain hopping sequence. A jammer either
must know this sequence to be able to jam the correct frequency for continuous disruption,
or must jam a large frequency band. In addition, sensor networks should be able to detect and
respond to jamming attacks in the network, for example, by switching nodes into low-power
sleep modes (in order to preserve energy), while awakening them periodically to check if
the jamming attack is still active. Nodes may also want to alert a gateway or base station
to report the attack. Toward this end, nodes detecting a jamming attack could issue brief
alerts to their neighbors and if at least one of these neighbors is outside the region of the
attack (i.e., it is able to receive the alert message without interference), the message can be
propagated to other nodes including the base station.

A tampering attack in a sensor network occurs when an adversary obtains physical access
to a sensor node, allowing the attacker to destroy or modify the device, gain access to sen-
sitive information (e.g., cryptographic keys), or use the device as an entry point for further
attacks into the network. Possible strategies to protect a device from tampering and the
consequences thereof include using tamper-proof materials and enclosures and to disable a
device or delete its information when an attack is detected. For example, a technique often
used in systems handling sensitive information (e.g., credit card payment terminals) is to
erase all such data whenever a light sensor activates (e.g., due to the terminal’s enclosure
being opened).

11.3.1.2 Link Layer DoS

A collision attack at the link layer (Wood and Stankovic 2002) attempts to interfere with
packet transmissions, thereby causing costly exponential backoff procedures and retrans-
missions in some MAC protocols. While error-correcting codes can be used to recover from
corrupted bits in a packet, they may not be able to recover from all types of interferences
(e.g., if too many bits have been corrupted) and they incur additional resource and energy
overheads. An attacker could also attempt to cause collisions near the end of a frame, caus-
ing a node to repeatedly retransmit the entire packet. The goal of an attacker could be to
cause the premature depletion of the node’s energy resources (exhaustion attack). Similarly,
a malicious node could exploit certain handshake techniques often found in MAC protocols.
For example, an attacker could continuously issue an RTS message (IEEE 802.11 protocol)
to prompt a CTS response from another node, eventually exhausting the energy resources
of both nodes.
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11.3.2 Attacks on Routing

One example of an attack on routing protocols of sensor networks is the blackhole attack
(Karlof and Wagner 2003). With this type of attack, an adversary attempts to be a forwarder
of data for one or more routes across the network. A malicious node can then simply drop
all traffic that should pass through this node, therefore, such traffic never reaches the desti-
nation. A similar attack is called the selective forwarding attack (Karlof and Wagner 2003),
where only packets that match certain criteria are dropped instead of dropping all packets
indiscriminately. Selective forwarding attacks are more difficult to detect or react upon than
blackhole attacks since they are harder to distinguish from packet losses due to mobility or
channel errors.

A rushing attack (Hu et al. 2003) on a sensor network exploits the nature of the route dis-
covery procedure of on-demand routing protocols, for example, as found in protocols such
as AODV and DSR. In this type of attack, a malicious node immediately forwards incoming
route request messages to its neighbors, therefore “rushing” these messages without consid-
eration of any protocol rules (e.g., that specify certain timeout or queuing procedures before
forwarding). As a consequence, the node has an increased probability of being part of the
chosen route between source and destination.

A sinkhole attack (Karlof and Wagner 2003) is another variant of the blackhole attack.
However, to attract as much traffic as possible, the malicious node attempts to position itself
on the path of as many network flows as possible. Traffic is therefore drawn toward this
sinkhole, providing an attacker with an opportunity to disrupt or tamper with as much traffic
as possible.

A Sybil attack occurs when an attacker claims to have several identities in the network.
Similarly, in location-based routing protocols, an attacker claims to be at several locations
simultaneously. If many nodes believe that this malicious node is their neighbor, there is a
good chance that they will choose this node as forwarding node for their network traffic.

Another attack on the routing procedure of a sensor network is the wormhole attack . This
attack is performed by nodes that have more resources available than typical sensor nodes
in the network. For example, two collaborating attackers may attempt to deceive the rest
of the network by possessing an out-of-band (and often bandwidth-rich) communication
channel between themselves. To the rest of the network, this appears to be a fast, high-
bandwidth link, which is desirable for many routing techniques. With this approach, the
attacker nodes can fake an efficient and short path to the gateway of a network, therefore
attracting a significant amount of traffic and enabling a variety of other attacks, such as the
blackhole or sinkhole attacks.

11.3.3 Attacks on Transport Layer

The transport layer of the network protocol stack is responsible for managing end-to-end
connections, for example, two well-known transport layer protocols are Transmission
Control Protocol (TCP) for reliable stream-based communication and User Datagram
Protocol (UDP) for unreliable packet-based communication. The flooding attack (Wood
and Stankovic 2002) exploits the fact that many transport protocols (such as TCP) maintain
state information and are therefore vulnerable to memory exhaustion. For example, an
attacker may repeatedly make new connection requests, each adding more state information
at the affected node and potentially leading to the node refusing further connections due
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to resource exhaustion. This in turn prevents connection requests from legitimate nodes
from succeeding.

In the desynchronization attack, an adversary attempts to disrupt the communication
between two legitimate nodes by repeatedly forging messages to these nodes. For example,
reliable transport-layer protocols may use sequence numbers to keep track of successfully
received packets, identify packet loss, and detect duplicates. Fake packets issued by an
adversary can use these sequence numbers to make a node believe that its packets have
not arrived at the destination, thereby eliciting resource-costly retransmissions.

11.3.4 Attacks on Data Aggregation

Data aggregation and data fusion are often used to combine multiple sensor data and to elim-
inate redundant information. Aggregation can often have beneficial effects on the resource
requirements of sensor flows, for example, by reducing the frequency of transmissions or
the packet sizes. Even simple aggregation functions can easily be influenced by an attacker
such that a network’s behavior can be altered (Wagner 2004). For example, the average
function f (x1, . . . , xn) = (x1 + · · · + xn)/n is insecure even in the presence of a single
malicious node. By replacing one real measurement x1 with a fake reading x∗

1 , the average is
changed from y = f (x1, ..., xn) to y∗ = f (x∗

1 , x2, ..., xn) = y + (x∗
1 − x1)/n. An attacker

can freely choose the value of x∗
1 and, therefore, can control the outcome of the aggregation.

Similarly, the sum , minimum , and maximum functions are also insecure. The sum
f (x1, ..., xn) = x1 + · · · + xn can be modified at will by maliciously replacing a real mea-
surement x1 with a fake reading x∗

1 . The minimum function f (x1, ..., xn) = min(x1, ..., xn)

is also insecure, even though replacing a real measurement with a fake value does not
always affect the function’s outcome. That is, replacing x1 with x∗

1 only raises the minimum
if x1 is the unique smallest sensor reading among all xi . However, an attacker can modify
the computed minimum by choosing x∗

1 to be very small compared to all correct readings.
By symmetry, the maximum function is also insecure, since an attacker can raise the
maximum value by hijacking a single sensor reading.

In contrast, the effect of hijacking a single sensor reading may be comparably small for the
count operation if the number of correct readings is sufficiently large. The count function
is similar to the sum function, except that each sensor reading only contributes 0 or 1 to
the result of the operation. That is, an attacker with control over k compromised nodes can
change the outcome of the function by at most k, which may be negligible if k is small
compared to the total number of sensor inputs.

11.3.5 Privacy Attacks

While the security threats described so far are mainly targeted at disrupting a network from
correct operation, the vast amount of information collected in a WSN itself is also at risk
of potential abuse. That is, an adversary may attempt to obtain sensitive information by
accessing information stored on a sensor node or by eavesdropping on the network (Gruteser
et al. 2003). The broadcast nature of wireless networks makes it easy to monitor and capture
the transmissions between nodes, particularly when no cryptographic mechanisms are used
to protect the sensor data. Eavesdropping can also be combined with traffic analysis (Deng
et al. 2005a), which can be used by an adversary to identify sensor nodes of interest in a
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network. For example, increases in communications between certain nodes can indicate an
increased level of activity (and therefore the presence of data that could be compromised) in
those parts of the network. Similarly, traffic analysis can be used to identify nodes that may
be more important to network operation than others, such as base stations and gateways.

11.4 Protocols and Mechanisms for Security

In order to defend against the many possible attacks in a WSN, a variety of security protocols
and other defense mechanisms can be used. This section presents and discusses a variety
of such protocols and mechanisms with a particular focus on their applicability in sensor
networks.

11.4.1 Symmetric and Public Key Cryptography

While public key cryptography can be used to provide confidentiality, integrity, and authen-
tication, public key algorithms are computationally very expensive, which may limit their
use in resource-constrained sensor networks (Gaubatz et al. 2004). Symmetric key cryptog-
raphy approaches can be significantly more resource-efficient, which makes them the more
common choice in WSNs, even though implementations of RSA (Rivest et al. 1983) and
ECC (elliptic curve cryptography) (Menezes et al. 1996) for resource-constrained sensors
do exist. A major disadvantage of symmetric key approaches is the problem of key distri-
bution, that is, the shared symmetric key must first be known to both communicating nodes
before they can exchange data securely.

11.4.2 Key Management

Symmetric cryptographic schemes are the common choice for sensor networks when
resource constraints prohibit the use of the more complex public key schemes. However, a
major shortcoming of symmetric cryptography is the need for key management, that is, the
reliable and secure establishment of shared cryptographic keys among neighboring nodes
in a WSN. For example, the Peer Intermediaries for Key Establishment (PIKE) approach
(Chan and Perrig 2005) is a technique that uses sensor nodes as trusted intermediaries for
the distribution of keys. In this approach, every sensor shares a different pairwise key with
each of O(

√
n) other nodes, where n is the number of nodes in the network. Furthermore,

the keys are deployed such that for any pair of nodes A and B, there exists at least one node,
C, that shares a pairwise key with both A and B. Each sensor in PIKE has an ID of the form
(x, y), where x, y ∈ {0, 1, 2, ...,

√
n − 1}. That is, the sensor network is represented as a

matrix with
√

n rows and columns, where a node’s position in the matrix is the node’s ID.
Then, each node (x, y) shares a pairwise key with each node in the two following sets:

(i, y) ∀i ∈ {0, 1, 2, ...,
√

n − 1} (11.1)

(x, j) ∀j ∈ {0, 1, 2, ...,
√

n − 1} (11.2)

For example, node (x, y) will share a key K(x,y),(1,y) with node (1, y) and another key
K(x,y),(2,y) with node (2, y). Altogether, a node will maintain 2(

√
n − 1) keys. Figure 11.2
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shows a sample virtual ID space for 100 nodes, where each number represents the ID of a
node (note that this representation does not reflect the actual physical positions of the sensor
nodes). The dark shaded boxes identify all nodes that share a key with node 91, while the
light shaded boxes indicate all nodes that share a key with node 14. Due to this approach,
any two nodes in the network will be able to find two node IDs which will share pairwise
keys with both of them. Specifically, if node A has ID (xA, yA) and node B has ID (xB, yB),
then the nodes with IDs (xA, yB) and (xB, yA) will share pairwise keys with both A and B. If
node A (e.g., node 14 in Figure 11.2) wants to perform key establishment with another node
(e.g., node 91), A can identify the identities of potential intermediaries by looking for the
intersections of the shaded boxes. For example, node 94 is in the same row as 91 and in the
same column as 14, therefore it shares keys with both of them and can serve as intermediary.
Node 14 then encrypts the new key to be shared with node 91 using the existing key shared
with node 94 and then sends the encrypted key to node 94. Node 94 decrypts the message,
encrypts it again with the key shared with node 91 and sends the new message to node 91.
Node 91 decrypts the message, obtains the new key, and confirms the receipt of the new key
by replying to node 14.

11.4.3 Defenses Against DoS Attacks

Denial-of-service (DoS) attacks in sensor networks are common and require effective mea-
sures to avoid them or prevent them from spreading throughout the network. For example,
when a jamming attack is detected or suspected, a sensor network can attempt to isolate
the affected region by routing traffic around the disabled parts of the network. Another
technique to limit the damage from jamming attacks is to use spread-spectrum techniques
as described in Section 11.3.1. At the link layer, collision and exhaustion attacks can be
addressed using error-correcting codes (which add processing and communication over-
heads) and rate-limiting schemes that allow a device to ignore requests that could lead to
premature energy depletion. Spoofing and alteration can be addressed at the network layer
by using message authentication code or MAC (not to be confused with medium access
control ), which can be viewed as the cryptographically secure checksum of a message.
These checksums allow a receiver to verify whether a message has been spoofed or altered
(Sen 2009).
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Figure 11.2 Virtual ID space in PIKE.



276 Fundamentals of Wireless Sensor Networks

The path-based denial-of-service attack (PDoS) is an attack in which the attacker over-
whelms the nodes in a remote sensor network by flooding a multi-hop end-to-end communi-
cation path with either replayed packets or randomly injected packets (Deng et al. 2005b).
One-way hash chains are sequences of numbers where it is trivial to compute y = F(x),
but computationally infeasible to compute x = F−1(y). Each node in the network utilizes
the hash chain to validate a received packet, that is, a node systematically cycles through
the chain to determine whether the packet is from a trusted source. If a packet cannot be
validated, it is dropped.

11.4.4 Defenses Against Aggregation Attacks

As previously discussed, many simple aggregation functions such as sum, minimum, and
maximum are inherently insecure. However, several techniques for improving the resilience
of aggregation functions can be used, for example, two such techniques are delayed aggre-
gation and delayed authentication (Hu and Evans 2003).

In these techniques, it is assumed that the base station generates a one-way key chain
using a public one-way function F , where Ki = F(Ki+1). Each device stores key K0 before
deployment where K0 = Fn(K) (i.e., F applied to a secret key n times). Then, the first
base station transmissions will be encrypted using key K1 = Fn−1(K). Once all messages
transmitted using K1 have been received, the base station reveals K1. As a consequence, all
nodes can compute F(K1) = F(Fn−1(K)) and verify that it matches K0 = Fn(K). Further,
sensor nodes can then decrypt the messages that were previously transmitted encrypted with
K0. In a similar manner, successive keys can be revealed until Kn = K is reached (if more
keys are needed, the base station can then start a new sequence).

Assume that four sensor nodes A–D are sending messages to the base station in a
network structured as a tree as shown in Figure 11.3. Each node’s message contains the

IDG|Aggr(RA, RB, RC, RD)|MIC(KGi, Aggr(RA, RB, RC, RD)
| ... (same from right side)
|MIC(KHi, Aggr(RA, RB, RC, RD... readings from right side))

IDB|RB|MIC(KBi, RB)IDA|RA|MIC(KAi, RA)

IDC|RC|MIC(KCi, RC)
|IDD|RD|MIC(KDi, RD)
|MIC(KFi, Aggr(RC, RD))

IDA|RA|MIC(KAi, RA)
|IDB|RB|MIC(KBi, RB)
|MIC(KEi, Aggr(RA, RB))

IDE|Aggr(RA, RB)|MIC(KEi, Aggr(RA, RB)
|IDF|Aggr(RC, RD)|MIC(KFi, Aggr(RC, RD)
|MIC(KGi, Aggr(RA, RB, RC, RD))

similar tree on
right side (not shown)

A D

E

G

H

Base Station S

B C
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Figure 11.3 Secure aggregation example.
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sender’s ID, the sensor data, and a MAC calculated over the data using a temporary key.
The parent node of the sensor node is not yet able to verify the MAC since the child’s
key has not been revealed to the parent. The parent node (e.g., node E in Figure 11.3)
stores this message and retransmits it to its own parent after a certain timeout value.
E’s message to its parent G contains the messages received from its children (e.g., nodes
A and B) and a MAC computed over the aggregate of A’s and B’s data using E’s key.
This process continues, that is, every intermediate node combines the data coming from its
children and adds its own MAC over the aggregate of all data using its own key. Once the
base station receives messages from its children, it can compute the final aggregate value.

The base station has a shared temporary key with each sensor node, therefore it can verify
whether a received message was transmitted by H by calculating the MAC of the aggregation
using KHi and comparing it to the MAC in the message. While this validates that H sent the
final message, it does not validate that the message correctly reflects the readings from the
other nodes. To validate data, the base station reveals temporary node keys to the network
by sending each key (along with a MAC) to all sensor nodes using its own current key Ki .
After sending out all the node keys, the base station sends out its current key Ki such that
nodes are able to check the transmitted MAC values and to advance to the next key in the
chain for future messages.

In summary, the described process delays both aggregation and authentication, for
example, aggregation does not take place at the first hop that would be able to perform this
aggregation, but at the second hop. While this may increase resource expenditures, it may
also enable integrity guarantees where consecutive nodes have not been compromised.

11.4.5 Defenses Against Routing Attacks

Most attacks from the “outside” of a network can be prevented using simple link-layer
encryption and authentication using a globally shared key (Karlof and Wagner 2003).
Because the adversary is prevented from joining the network, attacks such as selective
forwarding or sinkholes are not possible. However, when networks are attacked from the
“inside”, for example, using a compromised node, this approach is ineffective and more
sophisticated solutions are needed.

Sybil attacks can be addressed by verifying the identities of sensor nodes. For example,
each sensor node could share a unique symmetric key with a trusted base station, which can
be used to verify each other’s identity. A base station can also limit the number of neighbors a
node is allowed to have, that is, even when a node is compromised, it can only communicate
with its verified neighbors.

Sinkholes are difficult to defend against in protocols where routes are established on the
basis of information that is hard to verify, for example, reliability or energy measurements.
Routes based on minimum hop counts are easier to verify, but the hop count can be mis-
represented through a wormhole (Karlof and Wagner 2003). One category of protocols that
is resistant to these attacks is geographic routing, because networks using location-based
routing techniques establish a topology on demand based on localized interactions and
information, without the initiation from a base station. Since traffic is “naturally” routed
toward the physical location of the base station, it is difficult to redirect traffic elsewhere to
create a sinkhole.
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In a rushing attack, a node’s goal is to exploit the route discovery process in on-demand
routing protocols to position itself on as many routes as possible. However, to prevent such
attacks, a combination of several protective measures can be used. For example, some attack-
ers may forward route requests beyond the normal radio transmission range (e.g., using high
transmission power), thereby suppressing subsequent request messages from this route dis-
covery. A secure neighbor detection approach (Hu et al. 2003) can be used to allow both the
sender and the receiver of a route request to verify that the other party is in fact within the
normal transmission range. For example, a three-round mutual authentication protocol with
tight delay timing can be deployed. In the first round, a node sends a neighbor solicitation
packet (either via broadcast or via unicast to a specific node). In the second round, a node
receiving the solicitation packet responds with a neighbor reply message and in the third
round, the initiator of this handshake communication sends a neighbor verification message,
which includes broadcast authentication of a timestamp and the link from the source to the
destination.

11.4.6 Security Protocols for Sensor Networks

The Security Protocols for Sensor Networks (SPINS) project makes two main contributions
to defending against attacks: the Secure Network Encryption Protocol (SNEP) and a “micro”
version of the Timed, Efficient, Streaming, Loss-tolerant Authentication (µTESLA) proto-
col (Perrig et al. 2002). The main goal of the SNEP protocol is to provide confidentiality,
two-party data authentication, and data freshness, while µTESLA provides authentication
for data broadcast. Each node is assumed to have a secret key shared with the base station.

11.4.6.1 Secure Network Encryption Protocol

SNEP takes the resource limitations of typical sensor nodes into consideration by relying
on simple algorithms for encryption, authentication, and random number generation. The
key properties of SNEP are its symmetric security, replay protection, and low communi-
cation overhead. Symmetric security refers to the fact that the same message is encrypted
differently each time. To achieve two-party authentication and integrity, SNEP uses a MAC,
where the larger the MAC the more difficult it is for an adversary to guess the appropriate
code for a message. On the other hand, large codes also mean larger packet sizes.

Two communicating nodes A and B share a secret master key , which is used to derive four
independent keys using a pseudorandom function. Two of these keys are used for encryption
of messages in each direction (KAB and KBA) and two keys are used as message integrity
codes, again one for each direction (K ′

AB and K ′
BA). A complete encrypted message has then

the following format:

A → B : {D}〈KAB,CA〉, MAC(K ′
ABCA||{D}〈KAB,CA〉) (11.3)

where D is the data encrypted with the encryption key K and the counter is C. The MAC is
computed in the form M = MAC(K ′, C||E). SNEP provides data authentication (using the
MAC), replay protection (using the counter value in the MAC), freshness (the counter val-
ues enforce a message ordering), semantic security (since the counter is encrypted with each
message, the same message will be encrypted differently each time), and low communica-
tion overhead (assuming that the counter state is kept at each end point and is not sent in the
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message). Data freshness under SNEP is considered to be weak only since SNEP enforces
a sending order within a node B, but no absolute assurance to node A that a message was
created by B in response to an event in A. In order to achieve strong freshness, a nonce (i.e.,
a random number so long that an exhaustive search for all possible nonces is infeasible) can
be included in the protocol. Node A randomly generates nonce NA and sends it along with
a request message to node B. Node B then returns the nonce with the response message in
an authenticated protocol that operates as follows:

A → B : NA, RA (11.4)

B → A : {RB}〈KBA,CB〉, MAC(K ′
BA, NA||CB||{RB}〈KBA,CB〉) (11.5)

If the MAC verifies correctly, A knows that node B generated its response after A’s request.
The µTESLA protocol focuses on the need for authenticated broadcast in wireless sensor

networks. It relies on the symmetric mechanisms provided by SNEP to authenticate the first
packet in a broadcast message. It is an extension of TESLA (Perrig et al. 2000), which was
not designed for use in environments with limited computing resources. TESLA uses digital
signatures to authenticate the initial packet and has an overhead of 24 bytes per packet, which
can be significant for sensor networks, where messages are typically very small. Authenti-
cated broadcast requires an asymmetric mechanism (otherwise any compromised receiver
could forge messages from the sender), but asymmetric cryptographic mechanisms are often
high in resource requirements. Instead, µTESLA emulates asymmetry through a delayed
disclosure of symmetric keys. µTESLA assumes that the base station and the sensor nodes
are loosely time synchronized and each node knows an upper bound on the maximum syn-
chronization error. When the base station sends a message, it authenticates it by computing a
MAC on the packet with a key that is secret at this point. When a node receives the packet and
the key is unknown, the node knows that the MAC key is known only to the base station. The
node stores the packet until the base station, at the time of key disclosure, broadcasts the ver-
ification key to all receivers. The node can now use the key to authenticate the stored packet.

11.4.7 TinySec

The TinySec architecture is a lightweight and generic link-layer security package that devel-
opers can easily integrate into sensor network applications (Karlof et al. 2004). It supports
two different security options: (1) authenticated encryption (TinySec-AE), where data pay-
load is encrypted and a MAC is used to authenticate a packet, and (2) authentication only
(TinySec-Auth), where an entire packet is authenticated with a MAC (but the payload is
left unencrypted). TinySec relies on cipher block chaining (CBC) and a specially formatted
8-byte initialization vector (IV) for encryption. For authentication, TinySec relies on effi-
cient and fast cipher block chaining construction (CBC-MAC) for computing and verifying
MACs. An advantage of CBC-MAC is that since it relies on a block cipher, it minimizes
the number of cryptographic primitives that must be implemented, which is beneficial for
sensor nodes with limited storage capacities. The length of the MAC is chosen to be only
4 bytes, that is, an adversary can repeatedly attempt blind forgeries, which would lead to
success after at most 232 attempts. While this number appears small, it must be noted that
an adversary must assess the validity of a code by sending it to an authorized receiver. That
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further means that up to 232 messages must be transmitted, which provides a sufficient level
of security for sensor networks (Boyle and Newe 2008).

11.4.8 Localized Encryption and Authentication Protocol

The Localized Encryption and Authentication Protocol (LEAP) (Zhu et al. 2003) is a key
management protocol for sensor networks, designed to support in-network processing. A
key motivation for this protocol is the observation that different types of messages (e.g., con-
trol packets versus data packets) in a sensor network have different security requirements.
A single keying mechanism may not suitable for meeting these different requirements, for
example, while authentication may be needed for all types of packets, confidentiality may
only be required for certain types of messages (e.g., aggregated sensor readings).

LEAP provides four keying mechanisms: individual keys , group keys , cluster keys , and
pairwise shared keys . In the individual key mechanism, every node has its own unique key
shared with the base station. This key is used for confidential communication or for com-
puting message authentication codes if a node wants the base station to verify its sensed
readings. A group key is a globally shared key that is used by the base station for the trans-
mission of encrypted messages to the entire sensor network. Common examples of such
messages include queries or interests. A cluster key is a key shared between a sensor node
and its neighbors and is used for securing local broadcast messages (e.g., routing control
messages). Finally, a pairwise shared key is a key shared by a sensor node and one of its
immediate neighbors. LEAP uses these keys for secure communications among a pair of
nodes, for example, allowing a node to securely distribute its cluster key to its neighbors or
to securely transmit its sensor readings to an aggregation node.

LEAP also provides a technique for local broadcast authentication. Toward this end, every
node generates a one-way key chain of certain length and transmits the first key in the chain
to each neighbor, encrypted with the pairwise shared key. Whenever a node sends a message,
it takes the next key from the chain (each key is called an AUTH key) and attaches it to the
message. These keys are disclosed in the reverse order of their generation and a receiver can
verify the message based on the first received key or a recently disclosed AUTH key.

11.5 IEEE 802.15.4 and ZigBee Security

The IEEE 802.15.4 standard and the ZigBee specification are popular protocol choices for
WSNs. Therefore, this chapter concludes with a discussion of the security measures avail-
able in these protocols.

The IEEE 802.15.4 standard provides four basic security models: access control, mes-
sage integrity, message confidentiality , and replay protection (Sastry and Wagner 2004).
Security in IEEE 802.15.4 is handled by the MAC layer and an application can choose spe-
cific security requirements by setting appropriate parameters in the radio stack (by default,
security is not enabled). The standard distinguishes between eight security suites (outlined
in Table 11.1), each with different levels of protection for the transmitted data. The first
suite offers no security, the second suite offers encryption only (AES – CTR), followed by
a group of suites with authentication only (AES – CBC – MAC), and a group of suites with
both authentication and encryption (AES – CCM). Suites that offer authentication differ in
the sizes of the MAC, which varies from 32 to 128 bits. For every suite that offers encryption,
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Table 11.1 Security suites supported in IEEE 802.15.4
(Sastry and Wagner 2004)

Name Description

Null No security
AES – CTR Encryption only, CTR mode
AES – CBC – MAC – 128 128-bit MAC
AES – CBC – MAC – 64 64-bit MAC
AES – CBC – MAC – 32 32-bit MAC
AES – CCM – 128 Encryption and 128-bit MAC
AES – CCM – 64 Encryption and 64-bit MAC
AES – CCM – 32 Encryption and 32-bit MAC

IEEE 802.15.4 also offers optional replay protection consisting of monotonically increasing
sequence numbers for messages to allow a recipient to detect replay attacks.

The first suite Null does not provide any security. All other security suites use the
Advanced Encryption Standard (AES) block cipher, which is also known as Rijndael. The
National Institute of Standards and Technology defines five modes of operation, including
the counter (CTR) and cipher block chaining (CBC) modes (Sastry and Wagner 2004).
When authentication is needed, one of the three AES – CBC – MAC variants can be used,
which compute a message integrity code using a block cipher in CBC mode. The three
AES – CCM suites combine encryption and authentication by using the counter mode and
the CBC mode (CCM is short for Counter with CBC – MAC).

In addition to the security features of IEEE 802.15.4, the ZigBee specification also intro-
duces the concept of a trust center , a responsibility typically assumed by the ZigBee coordi-
nator. The trust center is responsible for authentication of devices wishing to join a network
(trust manager), maintaining and distributing keys (network manager), and enabling end-
to-end security between devices (configuration manager).

ZigBee also differentiates between a residential and a commercial mode (Boyle and
Newe 2008). In the residential mode, the trust center allows nodes to join the network, but it
does not establish keys with the network devices. In the commercial mode, it generates and
maintains keys and freshness counters with every device in the network. The disadvantage
of the commercial mode is its memory cost, which grows with the size of the network.

The ZigBee specification uses the CCM* mode for its security services, which is also a
combination of CTR mode and CBC – MAC mode. Compared to the CCM mode, CCM*
offers encryption-only and integrity-only capabilities. Similar to the specifications in the
IEEE 802.15.4 standard, ZigBee has several levels of security, including no security, encryp-
tion only, authenticated only, and both encryption and authentication. Levels that provide
authentication use a MAC that can vary from 4 to 16 bytes.

11.6 Summary

Like every other computer network, wireless sensor networks are exposed to a variety
of threats and attacks and like most other networks, sensor networks require support
for confidentiality, integrity, and authentication to protect sensor nodes and sensor data.
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However, several unique characteristics of WSNs, such as remote deployment (which
facilitates an adversary’s physical access to sensor nodes) and resource constraints, make it
easier to compromise sensors and sensor data. Further, many sensor networks are attractive
targets for attackers due to the nature of many WSN applications and the sensitive data
they generate (e.g., military applications, emergency response, health care). This chapter
provided a brief overview of several types of attacks commonly found in sensor networks
and techniques and protocols to defend a network or to detect an intrusion or compromised
node. As WSNs continue to become more commonplace, it is to expect that security
challenges will increase, the types and number of threats will evolve, and new solutions to
protect sensor networks and sensor data will be required.

Exercises

11.1 Describe the CIA security model. Which service(s) described in this model do you
think are essential for the following scenarios? Justify your answers.

(a) A WSN that allows emergency response teams to avoid risky and dangerous areas
and activities.

(b) A WSN that collects biometric information collected at an airport.
(c) A WSN that measures air pollution in a city for a research study.
(d) A WSN that alerts a city of an impending earthquake.

11.2 What is a man-in-the-middle attack? Can you imagine a concrete WSN scenario
where such an attack could be catastrophic?

11.3 Explain the concepts of symmetric and asymmetric keys. This chapter mentioned
a shift cipher as a simple example of a cryptographic technique. Is this cipher a
symmetric or an asymmetric key cryptography technique? What are the problems
with such a simple cipher?

11.4 Why do you think authentication can be a particularly significant problem in a WSN?

11.5 Explain some of the characteristics of a WSN that make routing security difficult to
implement.

11.6 While “typical” computers are in homes, offices, labs, etc., wireless sensor nodes are
often placed in places that are publicly open and accessible. What kind of attacks
could an adversary initiate by accessing a single sensor node in a large-scale WSN?

11.7 What is “data freshness” and why is it important in sensor networks?

11.8 What is a denial-of-service attack? Explain the following attacks:

(a) Jamming attack
(b) Exhaustion attack
(c) Tampering attack

11.9 Consider routing attacks such as selective forwarding, sinkhole, blackhole, Sybil,
rushing, and wormhole attacks. Describe briefly each type of attack and discuss how
these attacks could take place in the following types of networks:
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(a) A network using a table-based routing protocol such as OLSR.
(b) A network using an on-demand routing protocol such as DSR.
(c) A network using a location-based routing protocol such as GEAR.

11.10 In this chapter, data aggregation functions such as average, sum , and minimum were
called “insecure”. What does this mean and which technique can be used to increase
the resilience of aggregation functions?

11.11 Consider the virtual ID space for the PIKE scheme in Figure 11.2. In this example,
how many options does node 3 have to establish a key with node 15? Describe each
option.

11.12 What is a “nonce”? How does SPINS use them and what services are provided by
the SNEP protocol?

11.13 What are the security models provided by IEEE 802.15.4? What is the purpose of the
trust center in ZigBee?
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12
Sensor Network Programming
Application development for sensor networks differs in many ways from programming
“traditional” distributed computing systems. Examples of such differences include the con-
tinuous interaction of sensor nodes with their physical environment, the stringent resource
constraints of sensor nodes, the ad hoc deployment of many sensor networks, and the fre-
quent changes in network topology due to failures or mobility. This chapter discusses aspects
of programming large sensor networks that consider these challenges. From the network
developer’s perspective, the goal is to design and program a reliable and efficient wireless
sensor network that can cope with the dynamics and uncertainties present in sensing sys-
tems. From the user’s perspective, the network is often viewed as a database and the users
interact with sensor nodes via queries, which must be responded to in a reliable and efficient
fashion. Many simulation tools and techniques are closely tied to the operating system used
on sensor nodes. The reader is referred to Chapter 4 for a discussion of operating systems
for wireless sensor nodes.

Sensor network programming approaches can be classified as either node-centric
or application-centric. Node-centric languages and programming tools focus on the
development of sensor software on a per-node level. In contrast, programming using an
application-centric approach considers parts or all of the network as one single entity
(Sugihara and Gupta 2008). This chapter presents representative examples for both
categories.

12.1 Challenges in Sensor Network Programming

A sensor network differs from traditional computing environments in various aspects,
thereby necessitating programming frameworks and tools that consider a sensor network’s
unique characteristics. Specifically, the following characteristics significantly affect the
design of sensor network programming tools:

1. Reliability: Wireless sensor networks are inherently more unreliable than other
distributed systems. Therefore, sensor networks are built to adapt to changing dynamics
and node and link errors such that the network continues to serve its intended purpose
even when parts of the network have failed. While many faults in a network will never
be noticed by an application (e.g., a routing protocol autonomously reroutes traffic
around a failed node), resilience to failures and topology changes should be supported
by a programming environment.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd
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2. Resource constraints: Wireless sensor networks are typically very resource-constrained,
which affects the programming approach, maximum code size, and other aspects of appli-
cation development. Most notably, energy efficiency is particularly critical in WSNs and
penetrates every aspect of sensor network design, from duty cycles to routing protocols
to in-network data processing. Therefore, programming tools and models should allow a
developer to effectively exploit energy-saving techniques and approaches, while details
should be hidden from the programmer.

3. Scalability: Sensor networks can scale up to hundreds and thousands of sensor nodes,
therefore programming models should support developers in designing applications and
software for large-scale (and possibly heterogeneous) networks. Manual configuration,
maintenance, and repair of individual sensor nodes will be infeasible due to the
large number of devices, therefore necessitating support for self-management and
self-configuration. The scale of a network can also be addressed by using programming
models that consider the entire network as one whole entity instead of focusing on each
individual device.

4. Data-centric networks: In many wireless sensor networks, not only are the individual
sensor nodes of interest, but also the data they generate and disseminate. Sensor network
applications are therefore concerned about obtaining useful information in a timely
fashion, where it is irrelevant which sensor node(s) generated this information. Many
applications are only concerned with the collection of data at a central point, for example,
a server that stores, analyzes, or visualizes the sensor data. Other applications require
immediate processing and analysis of data within the network, for example, to eliminate
redundant information, to aggregate data from multiple sensors, and to quickly identify
if sensor data should be propagated further or acted upon. Each category will require
different programming models, where the latter category will also require support
for collaboration, that is, programming a network results in generating distributed
algorithms that must work across many or all nodes in a resource-efficient manner.

12.2 Node-Centric Programming

Under the node-centric model, programming abstractions, languages, and tools focus on
the development of sensor software on a per-node level. The overall network-wide sensing
application is then described as a collection of pairwise interactions of individual sensor
nodes. This section describes examples of programming models that focus on software
development for individual nodes.

12.2.1 nesC Language

The combination of the TinyOS operating system and the nesC (Gay et al. 2003) program-
ming language has become the de facto standard for node-centric programming in WSNs.
The programming language nesC is an extension to the popular C programming language
and provides a set of language constructs to implement code for distributed embedded sys-
tems such as motes. TinyOS is a component-based OS written in nesC and is described
in Section 4.3.1. Unlike traditional programming languages, nesC must address the unique
challenges of WSNs. For example, activities in a sensor network (e.g., sensor acquisition,
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message transmission and arrival) are initiated by events such as the detection of a change
in the physical environment. These events may occur while a node is processing data, that
is, sensor nodes must be able to concurrently perform their processing tasks while respond-
ing to events. In addition, as discussed many times throughout this book, sensor nodes are
typically very resource-constrained and prone to hardware failures; therefore, programming
languages for sensor nodes should take these characteristics into consideration.

Applications based on nesC consist of a collection of components , where each component
provides and uses interfaces. A “provides” interface in nesC is a set of method calls that
are exposed to higher layers, while a “uses” interface is a set of method calls that hide
details of lower-layer components. An interface describes the use of some kind of service
(e.g., sending a message). The following code shows a concrete example from the TinyOS
timer service. This example provides the StdControl and Timer interfaces and uses a Clock
interface (Gay et al. 2003).

module TimerModule {

provides {

interface StdControl;

interface Timer;

}

uses interface Clock as Clk;

}

interface StdControl {

command result_t init ();

}

interface Timer {

command result_t start (char type, uint32_t interval);

command result_t stop ();

event result_t fired ();

}

interface Clock {

command result_t setRate (char interval, char scale);

event result_t fire ();

}

interface Send {

command result_t send (TOS_Msg *msg, uint16_t length);

event result_t sendDone (TOS_Msg *msg, result_t success);

}

interface ADC {

command result_t getData ();

event result_t dataReady (uint16_t data);

}

This example also shows the definitions for the Timer, StdControl, Clock, Send (commu-
nication), and sensor (ADC) interfaces. The Timer interface defines two types of commands
(which are essentially functions): start and stop. The Timer interface further defines an event ,
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which is also a function. While commands are implemented by the providers of an interface,
events are implemented by the users. Similarly, all other interfaces in this example define
both commands and events.

Besides the interface specification, components in nesC also have an implementation.
Modules are components implemented by application code, while configurations are com-
ponents that are implemented by connecting interfaces of existing components. Every nesC
application has a top-level configuration that describes how components are wired together.
Functions (i.e., commands and events) in nesC are described as f.i, where f is a function in
an interface i. Functions are invoked using the call operation (for commands) and the signal
operation (for events). The following code shows a brief excerpt of an implementation of
an application that periodically obtains sensor readings (Gay et al. 2003).

module PeriodicSampling {

provides interface StdControl;

uses interface ADC;

uses interface Timer;

uses interface Send;

}

implementation {

uint16_t sensorReading;

command result_t StdControl.init () {

return call Timer.start (TIMER_REPEAT, 1000);

}

event result_t Timer.fired () {

call ADC.getData ();

return SUCCESS;

}

event result_t ADC.dataReady (uint16_t data) {

sensorReading = data;

...

return SUCCESS;

}

....

}

In this example, StdControl.init is called at boot time, where it creates a repeat timer that
expires every 1000 ms. Upon timer expiration, a new sensor sample is obtained by calling
ADC.getData, which triggers the actual sensor data acquisition (ADC.dataReady).

Returning to the TinyOS timer example, the following code sequence shows how the
timer service in TinyOS (TimerC) is built by wiring two subcomponents, TimerModule and
HWClock (which provides access to the on-chip clock).

configuration TimerC {

provides {

interface StdControl;
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interface Timer;

}

}

implementation {

components TimerModule, HWClock;

StdControl = TimerModule.StdControl;

Timer = TimerModule.Timer;

TimerModule.Clk -> HWClock.Clock;

}

In TinyOS, code executes either asynchronously (in response to an interrupt) or
synchronously (as a scheduled task). Race conditions can occur when concurrent updates
to shared state are performed. In nesC, code that is reachable from at least one interrupt
handler is called asynchronous code (AC) and code that is only reachable from tasks is
called synchronous code (SC). Synchronous code is always atomic to other synchronous
codes, because tasks are always executed sequentially and without preemption. However,
race conditions are possible when shared state is modified from AC or when shared state is
modified from SC that is also modified from AC. Therefore, nesC provides programmers
with two options to ensure atomicity. The first option is to convert all of the sharing code
to tasks (i.e., SC only). The second option is to use atomic sections to modify shared state,
that is, brief code sequences that nesC will always run atomically. Atomic sections are
indicated with the atomic keyword, which indicates that a block of statements should be
executed atomically, that is, without preemption, as shown in the following code excerpt.

...

event result_t Timer.fired () {

bool localBusy;

atomic {

localBusy = busy;

busy = TRUE;

}

...

}

...

Nonpreemption can be obtained by disabling interrupts for the duration of an atomic
section. However, to ensure that interrupts are not disabled for too long, no call commands
or signal events are allowed within atomic sections.

12.2.2 TinyGALS

TinyGALS (Cheong et al. 2003) is a globally asynchronous and locally synchronous
(GALS) approach for programming event-driven embedded systems. A TinyGALS
program consists of modules, which are composed of components (the most basic
elements). A component C has a set of internal variables VC, a set of external variables XC,
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and a set of methods IC that operate on these variables. Methods are further divided into
calls in the ACCEPTSC set (which can be called by other components) and calls in the USESC

set (which are those needed by C and may belong to other components).
Similar to nesC and TinyOS, TinyGALS defines components using an interface defini-

tion and an implementation. For example, a possible interface description of a component
DownSample is shown below, where the interface has two methods in the ACCEPTS set and
one method in the USES set.

COMPONENT DownSample

ACCEPTS {

void init (void);

void fire (int in);

};

USES {

void fireOut (int out);

};

The following code sequence shows the corresponding implementation for the Down-
Sample component, where _active is an internal boolean variable that ensures that for every
other fire() method called, the component will call the fireOut() method with the same
integer argument.

void init () {

_active = true;

}

void fire (int in) {

if (_active) {

CALL_COMMAND (fireOut) (in);

_active = false;

} else {

_active = true;

}

}

TinyGALS modules consist of one or more components. A module M is a 6-tuple
M = (COMPONENTSM, INITM, INPORTSM, OUTPORTSM, PARAMETERSM, LINKSM), where COMPONENTSM
is the set of components of M, INITM is a list of methods of M’s components, INPORTSM and
OUTPORTSM specify the inputs and outputs of the module, PARAMETERSM is a set of variables
external to the components, and LINKSM specifies the relationships between the method call
interfaces and the inputs and outputs of the module. Modules are further connected to each
other to form a complete TinyGALS system, where a system is a 5-tuple S = (MODULESS,
GLOBALSS, VAR_MAPSS, CONNECTIONSS, STARTS). The set of modules is described in MODULESS,
global variables are described in GLOBALS, a set of mappings (each of which maps a global
variable to a parameter of a module in MODULESS) is contained in VAR_MAPSS, CONNECTIONSS
is a list of the connections between module output ports and input ports, and STARTS is
the name of an input port of exactly one module, which is used as a starting point for the
execution of the system.

The highly structured architecture of TinyGALS can be exploited to automate the gen-
eration of scheduling and event handling code, freeing software developers from writing
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error-prone concurrency control code. Code generation tools can automatically produce all
of the necessary code for component links and module connections, system initialization,
start of execution, intermodule communication, and global variables reads and writes. Fur-
ther, through the use of message passing, modules in TinyGALS become decoupled from
each other, therefore facilitating their independent development. Each message passed will
trigger the scheduler and activate a receiving module. However, this may become quickly
inefficient if there is global state that must be updated frequently. Therefore, TinyGALS pro-
vides another mechanism, called TinyGUYS (Guarded Yet Synchronous) variables, where
modules may read global variables synchronously (without delay), but writes to the vari-
ables are asynchronous in the sense that all writes are buffered. The buffer is of size 1, that
is, the last module that writes to a variable wins. TinyGUYS variables are updated by the
schedule only when it is safe to do so, for example, after one module finishes and before the
scheduler triggers the next module.

12.2.3 Sensor Network Application Construction Kit

The Sensor Network Application Construction Kit (SNACK) is a configuration language,
component and service library, and compiler for the development of sensor network appli-
cations (Greenstein et al. 2004). SNACK’s goal is to provide smart libraries that can be
combined to form sensor network applications, while, on one hand, simplifying the develop-
ment process and, on the other, not losing control over efficiency. For example, to program a
sensor node to periodically take temperature and light measurements and forward the sensor
data to some sink, it should be possible to write a simple code sequence such as:

SenseTemp -> [collect] RoutingTree;

SenseLight -> [collect] RoutingTree;

The following examples shows the syntax of SNACK code:

service Service {

src :: MsgSrc;

src [send:MsgRcv] -> filter :: MsgFilter -> [send] Network;

in [send:MsgRcv] -> filter;

}

Here, n :: T declares an instance named n of a component type T , that is, an instance
is effectively an object of the given type. Further, n[i : τ ] indicates an output interface on
component n with name i and interface type τ (similarly, [i : τ ]n refers to an input interface).
A component provides its input interfaces and uses its output interfaces.

The SNACK library of components and services contains a variety of components for
sensing, aggregation, transmission, routing, and data processing. For example, the messag-
ing architecture of SNACK supports several core components, including Network (which
receives messages from and sends messages to the TinyOS radio stack), MsgSink (which
ends inbound call chains and destroys buffers it receives), and MsgSrc (which periodically
generates empty SNACK messages and passes them on via an outbound interface). The
SNACK Timing system has two core components: TimeSrc, which generates a timestamp
signal, emitted over its signal interface at a specified minimum rate, and TimeSink, which
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consumes that signal. Storage in SNACK is implemented by components such as Node-
Store64M, which implements an associative array of eight-byte values keyed by node ID.
Finally, the SNACK Service library contains a variety of services, that is, combinations of
primitive components. For example, the RoutingTree service implements a tree designed
to send data up to some root.

12.2.4 Thread-Based Model

The thread-based paradigm is popular in many computing systems and it has recently also
found its way into sensor networks. In traditional event-based systems, event handlers are
executed in response to events, and these handlers (tasks) run to completion without inter-
ruption from other tasks. The main advantage of the thread-based approach is that multiple
tasks can make progress in their execution without the concern that a task may block other
tasks (or be blocked by other tasks) indefinitely. For example, a task scheduler can execute
a task for a certain amount of time, then preempt this task in order to execute another task.
This time-slicing approach simplifies the programming of sensor systems, but also comes
at the cost of increased operating system complexity.

An example of a thread-based operating system for sensor networks is the MANTIS
(MultimodAl system for NeTworks of In-situ wireless Sensors) OS, which occupies less
than 500 bytes of RAM and about 14 kbytes of flash memory (Bhatti et al. 2005). For
example, the ATMega128 sensor nodes have 4 kbytes of RAM and 128 kbytes of flash
storage, that is, MANTIS OS leaves sufficient space for multiple sensor application threads.
Besides memory efficiency, MANTIS OS also aims for energy efficiency by switching the
microcontroller to a low-power sleep state after all active threads have called the operating
system’s sleep() function.

The goal of the TinyThread (McCartney and Sridhar 2006) library is to add support for
multithreaded programming to sensor networks based on TinyOS and nesC. TinyThread
enables procedural programming of sensor nodes and includes a suite of interfaces that
provide several blocking I/O operations and synchronization primitives that make multi-
threaded programming safe and easy.

Protothreads (Dunkels et al. 2005) are a very lightweight stackless type of threads. Instead
of using a stack for each protothread, all protothreads run on the same stack and con-
text switching is done by stack rewinding. A limitation of protothreads is that contents
of variables must be explicitly saved before calling a blocking wait, since variables with
function-local scope that are automatically allocated on the stack are not saved across such
wait calls.

Finally, Y-Threads (Nitta et al. 2006) is another lightweight threading model that pro-
vides preemptive multithreading. Application developers identify the preemptable and non-
preemptable parts of a program. All threads share a common stack for their nonblocking
computations, while each thread has its own stack for blocking calls. The key concept behind
this approach is that the blocking portions of a program require only small amounts of stack,
therefore achieving better memory utilization compared to other preemptive multithreading
approaches.
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12.3 Macroprogramming

Macroprogramming refers to a development approach where the focus is not on individual
sensor nodes, but on the programming of groups of sensor nodes, including approaches that
treat an entire network as a single entity. This section illustrates different approaches to
macroprogramming.

12.3.1 Abstract Regions

In-network processing is often performed to address the bandwidth and energy limitations
of WSNs. However, decomposing data collection tasks into parallel programs with local
communication among sensor nodes can be a challenging problem. Therefore, the goal
of abstract regions (Welsh and Mainland 2004) is to provide higher-level programming
interfaces that hide complex details from the developer, while still being flexible enough to
support the implementation of efficient algorithms.

Many sensor applications are often characterized by group-level cooperation, that is, a
group of nodes work together to sample, process, and communicate sensor data. Therefore,
abstract regions are a communication abstraction intended to simplify the development pro-
cess by providing a region-based collective communication interface. An abstract region
defines the neighborhood relationship between a node and other nodes in the network, for
example, as expressed by “the set of nodes within distance d”. Specifically, the type of
definition of an abstract region will depend on the type of application. Examples of imple-
mentations of abstract regions include N-radio hop (nodes within N radio hops), k-nearest
neighbor (k nearest nodes within N radio hops), and spanning tree (a spanning tree rooted
at a single node, used for aggregating data over the entire network). For example, for regions
defined using hop distances, discovery of region members can be achieved using peri-
odic broadcasts (advertisements). Data among region members can be shared using either a
“push” (broadcasting updates to neighboring nodes) or “pull” (issue a fetch message to the
corresponding node) approach. Reduction is another programming abstraction, which takes
a shared variable key and an associative operator (e.g., sum, max, or min) and reduces the
shared variable across nodes in the region. In abstract regions based on hop distances, reduc-
tion involves collecting shared variable values locally, combining them with the reduction
operator, and storing the result in a new shared variable.

12.3.2 EnviroTrack

The EnviroTrack (Abdelzaher et al. 2004) object-based middleware library is a program-
ming abstraction geared toward target-tracking sensor applications. Its goal is to free the
developer from the details of interobject communication, object mobility, and the mainte-
nance of tracking objects and their state. Similar to abstract regions, EnviroTrack uses the
concept of groups. However, instead of concrete descriptions of the shape or size of a group,
groups in EnviroTrack are formed by sensors which detect certain user-defined entities in the
physical environment, with one group formed around each entity. Groups are identified by
context labels , which can be thought of as logical addresses that follow the external tracked
entity around in the physical environment. Further, objects can be attached to context labels
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to perform context-specific operations. These tracking objects are executed on the sensor
group of the context label.

The type of context label depends on the entity being tracked (e.g., a context label of
car is created wherever a car is tracked). A programmer must provide several pieces
of information to declare a context label of some type e. First, a function sensee()

describes the sensory signature identifying the tracked environmental target, for example,
for a car-tracking application, sensee() might be a function of magnetometer and motion
sensor readings. Whenever the EnviroTrack middleware detects a target, it creates a sensor
group around the target. This function is also used to maintain group membership, that is,
all nodes that sense the given target (i.e., sensee() is true) are group members. Next, a
programmer declares an environmental state shared by all objects attached to a context
label by defining an aggregation function statee() that acts on the readings of all sensors
for which sensee() is true. Aggregation is performed locally by a sensor node that acts
as group leader. The EnviroTrack library contains a variety of distributed aggregation
functions such as addition, averaging, and median computation. Finally, the programmer
specifies which objects are to be attached to a context label.

12.3.3 Database Approaches

Another commonly used abstraction for sensor network programming is to treat a WSN as
a distributed database that can be queried (e.g., using SQL-like queries) to obtain sensor
data. A representative example of a distributed query processor for sensor nodes is TinyDB
(Madden et al. 2005). Here, the network is represented logically as a table (called sensors)
that has one row per node per instant in time. Each column in this table corresponds to a
type of sensor reading such as light, temperature, pressure, etc. A new record in this virtual
table (i.e., a new row) is added only when a sensor is queried and this new information
is usually stored for a short period of time only. Queries in TinyDB are very much like
any other SQL-based database, that is, they use clauses such as SELECT, FROM, WHERE, and
GROUP BY to build queries. For example, the following query specifies that each device should
report its own identifier (nodeid), light reading, and temperature reading once per second for
10 seconds:

SELECT nodeid, light, temp

FROM sensors

SAMPLE PERIOD 1s FOR 10s

As a result of this query, nodes initiate data collection at the beginning of each epoch (as
specified in the SAMPLE PERIOD clause) and the results of such a query are streamed to the root
of the network.

TinyDB also supports grouped aggregation queries, that is, as data from an aggregation
query flows up the tree, it is aggregated in-network according to an aggregation function and
value-based partitioning specified in the query. For example, imagine a user who wishes to
use microphone-equipped sensor nodes to monitor the occupancy of a room on a particular
floor of a building. Assuming that rooms have multiple sensors, the goal is to look for rooms
where the average volume is over a certain threshold. A query for this sensing request could
be expressed as:

SELECT AVG(volume), room FROM sensors

WHERE floor = 6
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GROUP BY room

HAVING AVG(volume) > threshold

SAMPLE PERIOD 30s

Every 30 s, this query reports all rooms where the volume is above the specified threshold.
Each sensor periodically obtains new sensor readings, applies the criteria from the SELECT

criteria, and if the criteria are satisfied, the sensor data is forwarded to the sensor’s parent
node of the tree leading to the root. The parent node listens to the records coming from its
children, aggregates its own sensor reading with the records obtained from its children, and
forwards the newly obtained aggregate onward to its own parent. This process is continued
until the query result has reached the root of the tree.

The main data-processing functions supported by TinyDB are selection and aggregation.
A similar approach is taken by Cougar (Bonnet et al. 2000), which also represents sensor
data as a relational table. Both TinyDB and Cougar focus on resource-efficiency through the
use of in-network aggregation. A more sophisticated database approach is taken by SINA
(Srisathapornphat et al. 2000), which models a sensor network as a collection of distributed
objects. SINA supports more complex sensor node collaborations by embedding more pow-
erful SQTL (Sensor Querying and Tasking Language) scripts in an SQL query. The focus
of the MiLAN (Heinzelman et al. 2004) approach is on Quality-of-Service (QoS), that is,
sensor network applications can specify their QoS needs, which the network attempts to
meet while maximizing the network lifetime.

A disadvantage of database models for sensor networks is that all nodes are assumed to be
homogeneous, for example, the sensors table in TinyDB is structured the same for all sensor
nodes. The focus of database systems is on relatively simple data collection applications,
targeting resource-constrained environments such as motes.

12.4 Dynamic Reprogramming

It has further become increasingly necessary to support the programming and reprogram-
ming of sensor networks after deployment. It is therefore necessary to provide mechanisms
to disseminate code to potentially hundreds or thousands of resource-constrained sensor
nodes. One possible approach to address this challenge is to use virtual machines . For
example, Maté (Levis and Culler 2002) is a small virtual machine implemented on top
of TinyOS. A sequence of 24 instructions (each of which is a single byte long) is called
a capsule, which fits into a single TinyOS packet. Every code capsule also includes type
and version information. Maté distinguishes four types of capsules: message send capsules,
message receive capsules, timer capsules, and subroutine capsules. Programs execute in
response to an event, that is, a timer firing, a packet being received, or a packet being sent.
Each of these events has a capsule and an execution context. Maté jumps to the first instruc-
tion of the capsule and executes until it reaches the halt instruction. When a subroutine is
called, the return address is pushed onto a return address stack and control jumps to the first
instruction of the subroutine. Upon return from the subroutine, an address is taken from the
top of the stack and Maté continues at the appropriate instruction.

Trickle (Levis et al. 2004) is a controlled flooding protocol for disseminating small pieces
of code to all nodes in a sensor network. It uses metadata to describe code, allowing a node
to determine if it needs a code update by comparing two different pieces of metadata. A
node uses broadcasts to exchange metadata with its neighbors, that is, time is broken into
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intervals and at a random time during an interval, it broadcasts its metadata if it has not
already heard the same metadata from several other nodes. Whenever a node hears another
node broadcasting outdated metadata, it broadcasts its own code, thereby giving the outdated
node a chance to update its code. Similarly, if a node overhears another node broadcasting
newer metadata than its own, it broadcasts its own metadata, thereby triggering its neighbor
with the newer code to broadcast it.

Melete (Yu et al. 2006) is an extension to Maté in that it supports multiple concurrent
applications. It is also an extension to Trickle in that it supports selective dissemination
by limiting the dissemination range. That is, code is forwarded only within a forwarding
region , which covers the desired destination of the code update.

Deluge (Hui and Culler 2004) is another tool to reprogram wireless sensor nodes remotely.
Similar to Trickle, Deluge occasionally advertises the most recent code version using broad-
cast messages. If a node receives an update from a node with an older code version, it
responds with its own code version, giving the outdated node an opportunity to detect that
its version is old and to request the newer code. To reduce contention, Deluge eliminates
redundant advertisements and request messages. It also provides robustness by (i) using
a three-phase handshake protocol to ensure that only bidirectional links are used for code
updates and (ii) allowing a node to search for a new neighbor to request code if it has not
completely received the code after k requests. Finally, Deluge dynamically adjusts the rate
of advertisements to allow quick propagation when needed while consuming few resources
in the steady state.

The goal of Pump Slowly, Fetch Quickly (PSFQ) (Wan and Campbell 2005) is to dis-
tribute data (e.g., pieces of code) from a single source to a number of destinations. The
basic concept behind PSFQ is to slowly pace the propagation of packets (pump slowly) and
to aggressively fetch lost packets (fetch quickly), where lost packets are detected through out
of order packet receptions. Nodes will not relay received packets out of order, that is, a node
that detects a lost packet will refrain from forwarding packets received out of order until the
lost packet has been recovered. This approach prevents loss events from propagating down-
stream and allows nodes to recover lost packets from immediate neighbors (because at least
one neighbor must have a copy of the missing packets). This localized recovery process
reduces recovery costs by limiting recovery to single-hop transmissions and by avoiding
that a single lost packet causes multiple retransmission requests in the network.

The Push Aggressively with Lazy Error Recovery (PALER) protocol (Miller and
Poellabauer 2008) is based on the observation that pushing data downstream and
recovering lost packets simultaneously leads to excessive contention and collisions. As
a consequence, PALER eliminates the in-order reception requirement and instead pushes
all data aggressively to the destinations without delaying data propagations due to lost
packets. All nodes in the network keep a list of missing packets and only after the broadcast
phase has completed do nodes with missing packets issue retransmission requests to their
neighbors. Similar to PSFQ, these retransmission requests do not have to travel multiple
hops since a retransmission request will again be handled by an immediate neighbor. If
the immediate neighbor cannot retransmit the packet, it must also mean that this neighbor
did not receive a copy of the packet and will therefore have issued its own retransmission
request to its neighbors. Once this neighbor receives a copy of the missing packet, it can
respond to its received retransmission requests. This lazy error recovery approach can



Sensor Network Programming 297

significantly reduce collisions, thereby improving both the latency and energy overheads
of code distributions in sensor networks.

12.5 Sensor Network Simulators

Many sensor networks consist of hundreds or thousands of nodes distributed over large
geographic areas. Further, even with inexpensive hardware components, building large net-
works of sensors may be prohibitively expensive. Therefore, it is often impractical to imple-
ment novel algorithms and protocols on actual networks. As a consequence, simulation tools
are particularly important for development and research on new sensor network applications,
functionality, and protocols. However, the right choice of simulator is a critical task, since
network characteristics can vary widely between different types of sensor networks. Further,
the many complex and dynamic relationships and parameters of a WSN make it difficult
to obtain realistic models. In general, every simulator typically incorporates the following
components: models describing the characteristics of the sensor nodes, a selection of differ-
ent communication models, models for the physical environment, and tools for collecting
and analyzing statistics and for visualization of the collected data and sensor node behavior.
This section provides an overview of a few commonly used and representative simulation
tools and environments for sensor networks.

12.5.1 Network Simulator Tools and Environments

12.5.1.1 Sensor Network Extensions for ns-2

The network simulator (typically called ns-2 , where the number indicates the current ver-
sion) is a widely used discrete event simulator targeted at networking research in general.
It was written in a combination of C++ and an object-oriented dialect of Tcl, called OTcl.
One reason for the popularity of ns-2 is its extensibility. Over time, many enhancements
and extensions were developed, for example, to provide support for wireless networks and
mobile ad hoc networks. Similarly, a variety of extensions for sensor networks have been
created. For example, one such extension adds the notion of a phenomenon to a sensor net-
work simulation. A phenomenon describes a physical event such as a chemical cloud or
moving vehicle that could be monitored by nearby sensor nodes (Downard 2004). That is,
a phenomenon then serves as a trigger for sensor network applications and network activ-
ity. The model uses broadcast packets transmitted through a designated channel to represent
a phenomenon, that is, the range of phenomena is the set of nodes that can receive these
broadcasts. Broadcast packets are generated using the PHENOM routing protocol , which
emits packets with a certain configurable pulse rate and whose arrival at a sensor node trig-
gers a receive event that is passed to that node’s sensor application. Other extensions that
have been developed over time include routing protocol implementations, extensions that
simulate the type of packets used by sensor applications, and models of multihomed nodes.

12.5.1.2 GloMoSim and QualNet

GloMoSim (Zeng et al. 1998) is a simulation tool based on the PARSEC simulation envi-
ronment (Bagrodia et al. 1998). PARallel Simulation Environment for Complex (PARSEC)
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systems is a C-based simulation language, which is used to represent a set of objects in the
physical system as logical processes and interactions among these objects as time-stamped
message exchanges. GloMoSim supports a variety of models at different protocol layers,
for example, CSMA and MACAW (MAC layer), flooding and DSR (network layer), and
TCP and UDP (transport layer). In addition, it supports different node mobility models,
for example, the random waypoint model (i.e., a node chooses a random destination within
the simulated area and moves toward this destination with a specified speed) and the ran-
dom drunken model (i.e., a node periodically moves to a position chosen randomly from
its immediate neighboring positions). While GloMoSim is intended for academic use only,
a commercialized version of GloMoSim, called QualNet, is produced by Scalable Network
Technologies, Inc.

12.5.1.3 JiST/SWANS

A discrete event simulation tool based on Java is JiST (Barr et al. 2004), which stands
for Java in Simulation Time. The key motivation behind JiST is to create discrete event
simulations that can execute efficiently and transparently. Efficiency refers to the ability to
execute a given simulation program in parallel, while dynamically optimizing the configu-
ration of the simulation across the available computational resources. Transparency refers
to the ability to transform simulation programs automatically to run with simulation time
semantics, that is, simulations are instrumented such that no programmer intervention or
calls to specialized libraries are needed to support various concurrency, consistency, and
reconfiguration protocols.

One of the primary motivations for JiST was to support simulations of ad hoc networks
and Scalable Wireless Ad hoc Network Simulator (SWANS) is a simulator built on top of
the JiST engine. SWANS is a collection of independent software components that can be
aggregated to form complete wireless simulations. The capabilities of JiST/SWANS are
comparable to ns-2 and GloMoSim, but it is able to simulate much larger networks (Barr
et al. 2004).

12.5.1.4 OMNeT++

The Objective Modular Network Testbed (OMNeT++) discrete event simulation environ-
ment (Varga and Hornig 2008) is a tool used for the simulations of communication networks,
multiprocessors, and various distributed systems. It is an open-source simulator based on
C++ that was designed for the simulation of large systems and networks. A model in
OMNeT++ consists of modules that communicate with each other using message pass-
ing. Simple modules can be grouped together to form more complex compound modules . A
user defines the structure of a module (i.e., the modules and their interconnection) using
OMNeT++’s topology description language NED. Further, the OMNeT++ framework
includes a graphical editor that can be used to edit network topologies either graphically
or in NED source view. Because of its clean design, simulation development is straightfor-
ward. However, compared to other tools, its biggest shortcoming is the lack of available
protocol models.
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12.5.1.5 TOSSIM

A simulator for TinyOS-based wireless sensor networks is TOSSIM (Levis et al. 2003). It
generates discrete event simulations directly from TinyOS components, therefore running
the same code that runs on sensor nodes. TOSSIM replaces low-level components such
that hardware interrupts are translated into events in the simulation and the simulator event
queue delivers the interrupts that drive the execution of a TinyOS application. Apart from
this, TinyOS code runs in the simulator unmodified. TOSSIM works at the bit level, that is,
an event is generated for each transmitted or received bit (instead of an entire packet). This
allows for experimentations with low-level protocols in addition to higher-level protocols
or applications. Similar to most other tools, TOSSIM comes with a visualization tool, which
is called TinyViz. TOSSIM scales to thousands of sensor nodes and its advantages include
its scalability and extensibility. However, it does not include energy profiling and its use is
limited to systems based on TinyOS.

12.5.1.6 EmStar

EmStar (Girod et al. 2004) is targeted at high capability nodes called microservers , that is,
those nodes in a hierarchical sensor network structure that run more complex software than
ordinary sensing devices (e.g., motes). EmStar consists of a Linux microkernel extension,
libraries, services, and several tools. EmSim operates many virtual nodes in parallel in a
simulation that models radio and sensor channels. EmCee runs the EmSim core and is an
interface to real low-power radios instead of using a modeled channel. Finally, EmView is
a graphical visualizer for EmStar systems.

12.5.1.7 Avrora

Avrora (Titzer and Palsberg 2005) is a flexible simulator framework implemented in Java.
Each node is implemented as its own thread and code is executed in an instruction-by-
instruction fashion. A key component of Avrora is its implementation of an event queue.
Many energy-conscious nodes tend to sleep for large periods of time, for example, using
low-power sleep modes where no instructions are executed and the energy consumption is
dramatically reduced. The event queue in Avrora takes advantage of this approach to boost
the performance of the simulator. That is, when a node sleeps, only a time-triggered event
that causes an interrupt can wake up the node. Such an event is inserted into the event queue
of the node to be woken up at a certain time in the future. Only such an event, when at the
head of the event queue, can affect the simulation when a node sleeps. That is, the simulator
can process events in the queue in order until one of them triggers a hardware interrupt,
which re-awakes the node. In summary, Avrora is a fast and highly scalable simulator that
can simulate program executions down to the level of individual clock cycles.

Exercises

12.1 Describe the difference between node-centric and application-centric programming.

12.2 Explain the difference between provides and uses interfaces in nesC.
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12.3 What options does nesC provide to developers to prevent race conditions?

12.4 A common strategy to ensure atomicity is to disable interrupts in an operating system
as long as critical operations are being executed. What is the danger of disabling
interrupts?

12.5 What are the main advantages and disadvantages of thread-based programming
models?

12.6 This chapter introduced several macroprogramming models. Contrast how these dif-
ferent models are able to address multiple (or all) sensor nodes simultaneously.

12.7 Why is it necessary to provide the opportunity to dynamically reprogram a sensor
network? What is challenging in distributing a new program to all sensor nodes in
the network?
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Maté, 295
Max-flow-min-cut theorem, 167
Maximum hop count, 169
Maximum likelihood estimator, 253
Mechanical strain, 22
Mechanical stress, 22
Medium access control (MAC), 10, 125

contention-based, 10, 126–27, 144
contention-free, 10, 126–27, 135

dynamic assignment, 126–7
fixed assignment, 126, 127
hybrid, 126
polling-based, 127
receiver-driven, 137
reservation-based, 127
token passing, 127

Melete, 296
Memory allocation, 73, 88

dynamic, 73, 88
static, 73, 88

Memory management, 69
Memory timing

refresh rate, 211
Mesh topology, 9
Message authentication code, 275
Methane, 41
Mica2, 241
Micro climate, 38
Microcontroller, 57
Microelectromechanical system (MEMS),

3, 48, 51
Microloop probe, 26
Microphone, 39–40
Microwave oven, 117
MiLAN, 295
Mine Safety and Health Administration

(MSHA), 42
Mission time, 10
MIT, 30, 35
Mobile lightweight medium access control

(MLMAC), 143
Mobility, 13
Mobility adaptive hybrid MAC

(MH-MAC), 156
Modulation, 96, 106, 116

amplitude modulation, 107–8
modulation efficiency, 115
QAM, 114

Most forwarding progress within radius,
186

Motes, 8
Multi-hop communication see

Routing
Multipath scattering, 95
Multithreading, 72, 80



308 Index

Multi-hop communication (continued )
Multi-hop communication, 9
Multicast, 165, 188
Multilateration, 255
Multiple access with collision avoidance

(MACA), 129
Multiple access with collision avoidance

for wireless LANs (MACAW), 130,
298

Nearest with forwarding progress,
186

Negative acknowledge, 25
nesC, 286
Network time protocol (NTP), 231
Node, 35, 37–9, 47, 223

Hogthrob, 65
IMote, 63
Shimmer, 34
XYZ node, 64

Noise, 95, 100, 104, 106, 117
noise power, 102

Noncoherent detection, 107
Nonrepudiation, 268
Nonce, 279
Northern Ecuador, 39
Nyquist, 51, 95

OMNeT++, 298
Operating system (OS), 30, 69, 73–75, 78,

80, 81, 85, 88
Contiki, 80
LiteOS, 85
multitasking, 69
multi-user, 69
nonpreemptive, 70
single task, 69
single user, 69
SOS, 78
TinyOS, 30, 75

Orientation, 251
Oscillator, 54
OSI reference model, 125
Overlap, 169
Oversampling, 40
Oxygen, 41

Packet loss, 172
Parallel Simulation Environment for

Complex (PARSEC), 298
Parkinson’s Disease, 30, 33, 49
Passive component, 215

capacitor, 214, 220
Passive infrared (PIR), 5, 35
Passive sensor, 5
Path loss, 119
Pattern-MAC (PMAC), 148
PCF interframe space (PIFS), 132
Periodic sleeping, 38
Permitivity, 22
Personal area network, 132
Peukert number, 213
Phase modulation, 111
Phase shift keying, 112
Philips Semiconductors, 59
Phytophtora, 38
PIC, 57
Piezoelectric, 22
Piezoelectric sensor, 6
pneumatic tubes, 26
Point-to-point communication, 95
Polar presentation, 107
Portability, 74, 89
Power amplifier, 118
Power aware multi-access with signaling

(PAMAS), 144
Power consumption, 207
Power management, 69
Power subsystem, 47, 212
Power supply, 213
Preamble, 138, 152, 241
Precipitation, 38
Preemptive multithreading, 292
Privacy, 267, 273
Processor subsystem, 47, 51, 208, 223

ASIC, 47
DSP, 47, 54, 57, 63
FPGA, 47
microcontroller, 47, 54, 57, 63

Programming, 285
application-centric, 285
database approach, 294
node-centric, 285–86



Index 309

reduction, 293
thread-based, 292

Propagation delay, 240, 243
Propagation loss, 119
Protothread, 82
Prototype, 63

active volcano monitoring, 39
health care, 32

artificial retina, 32
Parkinson’s Disease, 33

node, 63–65
operating system, 75

Contiki, 80
LiteOS, 85
SOS, 78
TinyOS, 75

pipeline monitoring, 35
PipeNet, 35
precision agriculture, 37

vineyard monitoring, 37
SHM, 24

Wisden, 25
traffic control, 30

Pulse code modulation, 100
Pulse shaping filter, 111

Quadratic amplitude modulation (QAM),
114

I -component, 115
Q-component, 115

Quadrature phase shift keying, 116
8PSK, 116

Quality-of-Service (QoS), 168, 295
real-time, 193–94
reliability, 194

QualNet, 298
Quantization, 96
Query flooding, 174
Query-driven sensor network, 166

Radar, 26
Radio signal strength, 259
RAM, 30, 40, 57–8, 64, 80, 87, 210
RAM timing, 210–11
Random drunken model, 298
Random waypoint model, 298

Ranging, 250
Ready-to-send, 129, 145
Received signal strength (RSS), 142,

252–3
Receiver, 114
Receiver-initiated MAC (RI-MAC), 153
Reference clock, 230
Register, 58
Relative neighborhood graph, 185
Reliability, 285
Replay protection, 280
Reprogramming, 295
Resistive sensor, 5
Resolution, 229
Resource blindness, 169
Retreat mining, 40
Reventador, 39
Right-hand rule, 184
Robustness, 168
ROM, 54, 64
Route discovery, 178
Routing, 9, 163

data-centric, 170, 172, 174–5
energy-aware, 166
flat-based, 164
hierarchical, 180
hierarchical-based, 164
location-based, 164, 183, 188, 193,

194
metrics, 165
minimum hop, 166
multipath, 192
negotiation-based, 165
on-demand, 164, 178, 272
proactive, 164, 176
QoS-based, 165
query-based, 165
reactive, 164
route discovery, 164, 272
security, 272
table-driven, 164

Routing attack, 277
Routing-enhanced MAC (RMAC),

149
Row access strob (RAS), 211–12
Rushing attack, 272, 277



310 Index

SS see (SPI), Chip Select
Sampling, 96

rate, 38, 97
Scheduler, 75
Scheduling, 70, 78, 80, 88

queuing-based , 70
FIFO, 70, 88
sorted queue, 70, 88

round-robin, 70, 88
Security, 267
Seismic shift, 41
Seismic spikes, 40
Seismic waves, 40, 41
Seismometer, 39
Seismoscope, 48
Selective forwarding attack, 272
Self-management, 11, 134, 270, 286
Self-organization, 180, 182
Sensing, 4
Sensing subsystem, 48
Sensor, 48, 71

seismoacoustic, 39
accelerometer, 25, 34, 49
acoustic emission sensor, 49
acoustic sensor, 49
barometer sensor, 50
blood flow sensors, 32, 50
blood pressure sensors, 32
ECG, 32, 35, 49
EEG, 49
EMG, 32, 35, 49
gyroscope, 35, 49
humidity sensor, 38, 50
inductive loop, 27
magnetic sensor, 28, 50
magnetometers, 26
oximeter, 32, 50
oxygen sensor, 50
passive infrared sensor, 35, 50
pH sensor, 35, 50
photo acoustic spectroscopy, 50
piezoelectric, 24
piezoelectric cables, 26
piezoelectric cylinder, 50
pressure sensor, 35
respiration sensors, 32
seismic sensor, 50

soil moisture sensor, 50
temperature sensor, 32, 38, 50
tilt sensor, 35

Sensor-MAC (S-MAC), 146
Separation of concern, 73, 89
Sequence number, 169, 178, 273
Sequential assignment routing (SAR),

192
Serial peripheral interface (SPI), 47, 54,

58, 60, 62–3
chip Select, 58
clock phase, 59
clock priority, 59
CS port, 58
master-in/slave-out, 58
master-out/slave-in, 58

Shannon’s entropy, 98
SHARC see Architecture,

Super-Harvard
Shift register, 58
SHM, 17
Short interframe space (SIFS), 131
Signal, 96

magnitude, 114
phase, 114, 115
phase difference, 107
seismoacoustic, 40

Signal absorption, 42
Signal conditioning, 4
Signal propagation, 117
Signal-to-noise ratio (SNR), 47, 102
Simulation, 297

ns-2, 297
SINA, 295
Sinkhole attack, 272, 277
Slotted-ALOHA, 127
Solar power, 10
Sonar, 26
SOS, 78, 88, 89

kernel, 78
module, 78, 80

Source encoding, 95, 96
Spain, 37
Spatial diversity, 39
Spectrum, 109, 116
Spread-spectrum, 271

frequency-hopping, 271



Index 311

SQL, 294
SQTL, 295
Stack, 71

Last-in first-out (LIFO), 71
Star topology, 9
State machine, 83
Substantia nigra, 34
Switching, 221
Switching circuit, 213
Switching energy, 10
Sybil attack, 272, 277
Synchronous code, 289
System calls, 71
System overhead, 74, 89

Tampering attack, 271
Task, 70, 71
Task scheduling, 222
The Netherland, 37–8
Thread, 72
Thread-based programming, 72, 88
Throughput, 168
Time division multiple access (TDMA),

127
Time synchronization, 229

accuracy and precision, 231
challenges, 232
reference-broadcast, 242
time-stamping, 241

Time-division multiplexing, 232
Time-driven sensor network, 165
Time-to-live (TTL), 175
Timeout MAC (T-MAC), 146
TinyDB, 294
TinyOS, 75, 88–9, 286, 289

command, 77
component, 75
configuration component, 75
event, 77
module, 75
task, 77

TinyThread, 292
TOSSIM, 299
Traffic analysis, 273
Traffic-adaptive medium access

(TRAMA), 136
Transducer, 4, 48
Transinformation, 104, 105

Transistor, 219, 221
CMOS, 220–1
MOSFET, 214

Transition cost, 217
Transportation, 50
Triangulation, 252
Trickle, 296
Trilateration, 253

Unattended operation, 11
Underground mining, 40, 42
University of Utah, 40
USA, 37, 40

Vehicle, 26
license number, 26

Video, 26
Video camera, 40
Virtual machine, 295
Volcán Tungurahua, 39
Volcano, 39

tremor activities, 39
volcanic events, 39

Wakeup on demand, 12
Watchdog timer, 54, 71
Wavelength, 96, 107, 118
Wheatstone bridge, 5
Wi-Fi, 130
Wind direction, 38
Wind strength, 38
Wireless communication, 95
Wireless digital communication,

95
Wireless sensor networks, 24, 30, 33,

35–6, 38–9, 47, 51, 56, 117
Wireless sensor node see Node
WiseMAC, 152
WLAN, 117
Wormhole attack, 272, 277

Y-MAC, 137
Y-Threads, 292

Zebra MAC (Z-MAC), 154
Zhang Heng, 48
ZigBee, 132, 280


	FUNDAMENTALS OF WIRELESS SENSOR NETWORKS
	Contents
	About the Series Editors
	Preface
	Part One: INTRODUCTION
	1 Motivation for a Network of Wireless Sensor Nodes
	1.1 Definitions and Background
	1.1.1 Sensing and Sensors
	1.1.2 Wireless Sensor Networks

	1.2 Challenges and Constraints
	1.2.1 Energy
	1.2.2 Self-Management
	1.2.3 Wireless Networking
	1.2.4 Decentralized Management
	1.2.5 Design Constraints
	1.2.6 Security
	1.2.7 Other Challenges

	Exercises
	References


	2 Applications
	2.1 Structural Health Monitoring
	2.1.1 Sensing Seismic Events
	2.1.2 Single Damage Detection Using Natural Frequencies
	2.1.3 Multiple Damage Detection Using Natural Frequencies
	2.1.4 Multiple Damage Detection Using Mode Shapes
	2.1.5 Coherence
	2.1.6 Piezoelectric Effect
	2.1.7 Prototypes

	2.2 Traffic Control
	2.2.1 The Sensing Task
	2.2.2 Prototypes

	2.3 Health Care
	2.3.1 Available Sensors
	2.3.2 Prototypes

	2.4 Pipeline Monitoring
	2.4.1 Prototype

	2.5 Precision Agriculture
	2.5.1 Prototypes

	2.6 Active Volcano
	2.6.1 Prototypes

	2.7 Underground Mining
	2.7.1 Sources of Accidents
	2.7.2 The Sensing Task

	Exercises
	References

	3 Node Architecture
	3.1 The Sensing Subsystem
	3.1.1 Analog-to-Digital Converter

	3.2 The Processor Subsystem
	3.2.1 Architectural Overview
	3.2.2 Microcontroller
	3.2.3 Digital Signal Processor
	3.2.4 Application-Specific Integrated Circuit
	3.2.5 Field Programmable Gate Array
	3.2.6 Comparison

	3.3 Communication Interfaces
	3.3.1 Serial Peripheral Interface
	3.3.2 Inter-Integrated Circuit
	3.3.3 Summary

	3.4 Prototypes
	3.4.1 The IMote Node Architecture
	3.4.2 The XYZ Node Architecture
	3.4.3 The Hogthrob Node Architecture

	Exercises
	References

	4 Operating Systems
	4.1 Functional Aspects
	4.1.1 Data Types
	4.1.2 Scheduling
	4.1.3 Stacks
	4.1.4 System Calls
	4.1.5 Handling Interrupts
	4.1.6 Multithreading
	4.1.7 Thread-Based vs Event-Based Programming
	4.1.8 Memory Allocation

	4.2 Nonfunctional Aspects
	4.2.1 Separation of Concern
	4.2.2 System Overhead
	4.2.3 Portability
	4.2.4 Dynamic Reprogramming

	4.3 Prototypes
	4.3.1 TinyOS
	4.3.2 SOS
	4.3.3 Contiki
	4.3.4 LiteOS

	4.4 Evaluation
	Exercises
	References

	Part Two: BASIC ARCHITECTURAL FRAMEWORK
	5 Physical Layer
	5.1 Basic Components
	5.2 Source Encoding
	5.2.1 The Efficiency of a Source Encoder
	5.2.2 Pulse Code Modulation and Delta Modulation

	5.3 Channel Encoding
	5.3.1 Types of Channels
	5.3.2 Information Transmission over a Channel
	5.3.3 Error Recognition and Correction

	5.4 Modulation
	5.4.1 Modulation Types
	5.4.2 Quadratic Amplitude Modulation
	5.4.3 Summary Signal Propagation

	5.5 Signal Propagation
	Exercises
	References


	6 Medium Access Control
	6.1 Overview
	6.1.1 Contention-Free Medium Access
	6.1.2 Contention-Based Medium Access

	6.2 Wireless MAC Protocols
	6.2.1 Carrier Sense Multiple Access
	6.2.2 Multiple Access with Collision Avoidance (MACA) and MACAW
	6.2.3 MACA By Invitation
	6.2.4 IEEE 802.11
	6.2.5 IEEE 802.15.4 and ZigBee

	6.3 Characteristics of MAC Protocols in Sensor Networks
	6.3.1 Energy Efficiency
	6.3.2 Scalability
	6.3.3 Adaptability
	6.3.4 Low Latency and Predictability
	6.3.5 Reliability

	6.4 Contention-Free MAC Protocols
	6.4.1 Characteristics
	6.4.2 Traffic-Adaptive Medium Access
	6.4.3 Y-MAC
	6.4.4 DESYNC-TDMA
	6.4.5 Low-Energy Adaptive Clustering Hierarchy
	6.4.6 Lightweight Medium Access Control

	6.5 Contention-Based MAC Protocols
	6.5.1 Power Aware Multi-Access with Signaling
	6.5.2 Sensor MAC
	6.5.3 Timeout MAC
	6.5.4 Pattern MAC
	6.5.5 Routing-Enhanced MAC
	6.5.6 Data-Gathering MAC
	6.5.7 Preamble Sampling and WiseMAC
	6.5.8 Receiver-Initiated MAC

	6.6 Hybrid MAC Protocols
	6.6.1 Zebra MAC
	6.6.2 Mobility Adaptive Hybrid MAC

	6.7 Summary
	Exercises
	References

	7 Network Layer
	7.1 Overview
	7.2 Routing Metrics
	7.2.1 Commonly Used Metrics

	7.3 Flooding and Gossiping
	7.4 Data-Centric Routing
	7.4.1 Sensor Protocols for Information via Negotiation
	7.4.2 Directed Diffusion
	7.4.3 Rumor Routing
	7.4.4 Gradient-Based Routing

	7.5 Proactive Routing
	7.5.1 Destination-Sequenced Distance Vector
	7.5.2 Optimized Link State Routing

	7.6 On-Demand Routing
	7.6.1 Ad Hoc On-Demand Distance Vector
	7.6.2 Dynamic Source Routing

	7.7 Hierarchical Routing
	7.8 Location-Based Routing
	7.8.1 Unicast Location-Based Routing
	7.8.2 Multicast Location-Based Routing
	7.8.3 Geocasting

	7.9 QoS-Based Routing Protocols
	7.9.1 Sequential Assignment Routing
	7.9.2 SPEED
	7.9.3 Multipath Multi-SPEED

	7.10 Summary
	Exercises
	References

	Part Three: NODE AND NETWORK MANAGEMENT
	8 Power Management
	8.1 Local Power Management Aspects
	8.1.1 Processor Subsystem
	8.1.2 Communication Subsystem
	8.1.3 Bus Frequency and RAM Timing
	8.1.4 Active Memory
	8.1.5 Power Subsystem

	8.2 Dynamic Power Management
	8.2.1 Dynamic Operation Modes
	8.2.2 Dynamic Scaling
	8.2.3 Task Scheduling

	8.3 Conceptual Architecture
	8.3.1 Architectural Overview

	Exercises
	References


	9 Time Synchronization
	9.1 Clocks and the Synchronization Problem
	9.2 Time Synchronization in Wireless Sensor Networks
	9.2.1 Reasons for Time Synchronization
	9.2.2 Challenges for Time Synchronization

	9.3 Basics of Time Synchronization
	9.3.1 Synchronization Messages
	9.3.2 Nondeterminism of Communication Latency

	9.4 Time Synchronization Protocols
	9.4.1 Reference Broadcasts Using Global Sources of Time
	9.4.2 Lightweight Tree-Based Synchronization
	9.4.3 Timing-sync Protocol for Sensor Networks
	9.4.4 Flooding Time Synchronization Protocol
	9.4.5 Reference-Broadcast Synchronization
	9.4.6 Time-Diffusion Synchronization Protocol
	9.4.7 Mini-Sync and Tiny-Sync

	Exercises
	References

	10 Localization
	10.1 Overview
	10.2 Ranging Techniques
	10.2.1 Time of Arrival
	10.2.2 Time Difference of Arrival
	10.2.3 Angle of Arrival
	10.2.4 Received Signal Strength

	10.3 Range-Based Localization
	10.3.1 Triangulation
	10.3.2 Trilateration
	10.3.3 Iterative and Collaborative Multilateration
	10.3.4 GPS-Based Localization

	10.4 Range-Free Localization
	10.4.1 Ad Hoc Positioning System (APS)
	10.4.2 Approximate Point in Triangulation
	10.4.3 Localization Based on Multidimensional Scaling

	10.5 Event-Driven Localization
	10.5.1 The Lighthouse Approach
	10.5.2 Multi-Sequence Positioning

	Exercises
	References

	11 Security
	11.1 Fundamentals of Network Security
	11.2 Challenges of Security in Wireless Sensor Networks
	11.3 Security Attacks in Sensor Networks
	11.3.1 Denial-of-Service
	11.3.2 Attacks on Routing
	11.3.3 Attacks on Transport Layer
	11.3.4 Attacks on Data Aggregation
	11.3.5 Privacy Attacks

	11.4 Protocols and Mechanisms for Security
	11.4.1 Symmetric and Public Key Cryptography
	11.4.2 Key Management
	11.4.3 Defenses Against DoS Attacks
	11.4.4 Defenses Against Aggregation Attacks
	11.4.5 Defenses Against Routing Attacks
	11.4.6 Security Protocols for Sensor Networks
	11.4.7 TinySec
	11.4.8 Localized Encryption and Authentication Protocol

	11.5 IEEE 802.15.4 and ZigBee Security
	11.6 Summary
	Exercises
	References

	12 Sensor Network Programming
	12.1 Challenges in Sensor Network Programming
	12.2 Node-Centric Programming
	12.2.1 nesC Language
	12.2.2 TinyGALS
	12.2.3 Sensor Network Application Construction Kit
	12.2.4 Thread-Based Model

	12.3 Macroprogramming
	12.3.1 Abstract Regions
	12.3.2 EnviroTrack
	12.3.3 Database Approaches

	12.4 Dynamic Reprogramming
	12.5 Sensor Network Simulators
	12.5.1 Network Simulator Tools and Environments

	Exercises
	References

	Index




