

www.wiley.com

Network Layer 185

(b)

VOID

x

y

z

1.

2.

3.

(a)

w

v z

y

x

Destination

Figure 7.14 GPRS: (a) node x’s void with respect to the destination and (b) the right-hand rule.

from node y, the next edge traversed is the next one sequentially counterclockwise about
x from edge (x, y). The right-hand rule traverses the interior of a polygon (in this case a
triangle) in clockwise edge order and the exterior region (i.e., the region outside the triangle)
in counterclockwise edge order.

GPRS exploits this rule to route packets around voids, for example, in Figure 7.14(a),
traversing the cycle (x, w, v, destination, z, y, x) using the right-hand rule amounts to nav-
igating around the void to nodes closer to the destination than x. This sequence of edges
traversed according to this rule is called a perimeter . Unfortunately, the right-hand rule does
not always result in a traversal of the perimeter of a closed polygon. In nonplanar graphs,
that is, graphs with crossing edges, it is possible that the right-hand rule may take a degen-
erate tour of edges that does not trace the boundary of a closed polygon. In GPRS, multiple
techniques can be applied to obtain planar graphs (i.e., all crossing edges will be removed),
for example, by reducing a graph to a Relative Neighborhood Graph (RNG) or a Gabriel
Graph (GG), as long as the removal of edges does not partition the network. For example,
to obtain a RNG, we consider the intersection of the radio ranges of two nodes u and v. This
region, called the lune between u and v, must be empty of any witness node w such that the
edge (u, v) can be included in the RNG. That is, if this region is nonempty, the link (u, v)
will be removed.

To summarize, GPRS operates in two different modes. Upon receiving a packet, a node
searches its neighbor table for the neighbor geographically closest to the destination. If this
neighbor is closer to the destination, the packet is relayed to this neighbor. Otherwise, the
node enters the perimeter routing mode and records in the packet the location where greedy
forwarding failed. Upon receiving a packet in perimeter mode, this location is compared to
the forwarding node’s location and the packet is returned to the greedy mode if the distance
from the forwarding node to the destination is less than that from the recorded location to
the destination.

7.8.1.2 Forwarding Strategies

The goal of greedy forwarding is to move a packet closer to the destination with each
hop. Each node makes such a forwarding decision based on local information only. How-
ever, a variety of forwarding strategies have been explored that all meet this requirement,

186 Fundamentals of Wireless Sensor Networks

but potentially lead to different resource requirements and paths. Common strategies for
forwarding in unicast location-based protocols include:

1. Greedy: This common technique chooses a neighbor that minimizes the distance to the
destination in each hop. In Figure 7.15, this would be node E. The goal of the greedy
approach is to minimize the number of hops required to reach the destination.

2. Nearest with Forwarding Progress (NFP): This strategy chooses the nearest neighbor
of all neighbors that make a positive progress (in terms of geographic distance to the
destination) toward the destination (Hou and Li 1986). Sensor nodes that can adapt their
transmission powers can choose the smallest transmission power necessary to reach this
neighbor (e.g., node A in Figure 7.15), thereby contributing to reduced packet collisions
in their neighborhood.

3. Most Forwarding Progress within Radius (MFR): The MFR strategy (Takagi and Klein-
rock 1984) selects the neighbor that makes the greatest positive progress towards the
destination, where progress is defined as the distance between the source and its neigh-
bor node projected onto a line drawn from the source to the destination (e.g., node B
in Figure 7.15). This technique attempts to minimize the number of hops a packet must
travel.

4. Compass Routing: This strategy chooses the neighbor with the smallest angle between
a line drawn from the source to the neighbor and the line connecting the source and
the destination (Kranakis et al. 1999). This approach (which would select node C in
Figure 7.15) attempts to minimize the spatial distance that a packet has to travel.

In addition to these strategies that only rely on geometry to determine the next-hop neigh-
bor, forwarding strategies can also combine geometry with additional criteria. For example,
the transmission power needed to reach a neighbor can be used to reduce a node’s energy
overhead for the packet forwarding process, the residual energy of the neighbors can be
considered to prolong the lifetime of the network, or the link quality (e.g., signal-to-noise

S

A

B

D

E

C

Figure 7.15 Forwarding strategies in location-based routing.

Network Layer 187

ratio) can be used to maximize the number of successful packet deliveries and to minimize
the number of required retransmissions.

7.8.1.3 Geographic Adaptive Fidelity

The Geographic Adaptive Fidelity (GAF) protocol (Xu et al. 2001) is another example of an
energy-aware unicast location-based routing protocol, but is primarily designed for networks
with mobile nodes. The network region is divided into a virtual grid, where only a single
device in each grid cell serves as the forwarding node at any given time. This node is then
responsible for relaying data to the base station, while all other nodes can go to sleep. Further,
GAF assumes that for two adjacent cells A and B, all nodes in A can communicate with
all nodes in B and vice versa (Figure 7.16). The grid and cell sizes can be predetermined,
allowing each node (assuming that it knows its own location) to determine the cell to which it
belongs. That means that most nodes in the network will have neighbors in all four directions
(except nodes in border cells).

Nodes in GAF transit between three different states. Initially, each node enters the dis-
covery state, where it listens for messages from other nodes within its cell. It also sets a
timer for a certain timeout duration and once the timer fires, the node broadcasts a dis-
covery message and enters the active state. The node uses another timer to reenter the
discovery state once that second timer fires. While in the active state, the node periodi-
cally rebroadcasts its discovery message. Further, while in either discovery or active state,
a node can enter the sleep state whenever it determines that some other node will handle
the forwarding of packets. This is achieved using an application-dependent negotiation pro-
cedure, for example, based on the expected lifetime of a node. Nodes in the active state
win the negotiation process over nodes in the discovery mode. In the case of ties, node
IDs can be used to decide which node will serve as forwarder. In general, the goal of this
approach is to quickly reach a state where a cell has only one active node. Nodes entering
the sleep state periodically reenter the discovery state to repeat the process of negotiating the
forwarding roles.

Base Station

Figure 7.16 Virtual grid approach of GAF.

188 Fundamentals of Wireless Sensor Networks

7.8.2 Multicast Location-Based Routing

Multicast is used to deliver the same packet to multiple receivers. A simple approach could
deliver the packet to each receiver separately via unicast routing. However, this approach is
resource-inefficient in that it does not exploit the fact that routes to different receivers may
share paths. Another technique is to simply flood the entire network, which ensures that all
receivers will obtain a copy of the packet, but is also very resource costly. Multicast routing
is concerned with the efficient delivery of the same packet to all receivers by minimizing
the number of links the packet has to travel to reach all destinations. A common technique is
to establish a multicast tree rooted at the packet source with the destinations as leaf nodes.
This section describes representative protocols for multicasts in sensor networks that take
advantage of geographic information.

The Scalable Position-Based Multicast (SPBM) protocol (Transier et al. 2007) relies on
a group management scheme to maintain a list of all destinations for a particular packet.
However, instead of putting all destinations into the packet header, SPBM uses hierarchi-
cal group membership management to ensure that the approach is efficient even when the
number of destinations is large. Toward this end, the network is represented as quad-tree
with a pre-defined number of levels L, for example, the left graph in Figure 7.17 illustrates
an example with L = 4 (levels 0 . . . L−1). Squares are identified by concatenating their
level numbers, for example, square 442 is a level-0 square, located in the level-3 square that
encompasses the entire network, the level-2 square 4, and the level-1 square 44. All nodes
in a level-0 square are in radio range of each other.

Based on this hierarchical addressing scheme, each node maintains two tables: a global
member table containing entries for the three neighboring squares for each level and a local
member table containing all members of the node’s level-0 neighbors. Each entry in the
global member table contains the square’s identifier and a list of nodes located in the square.
Each entry in the local member table contains a node ID and the membership information
of that node. This membership information indicates the multicast groups to which a node

442

Level 3

1

2

41

42 43

443

441
444

1

2 3 3

41

42 43

Level 0

Level 1

Level 2

443

444

Source

441

442

Figure 7.17 Quad-tree network representation in SPBM (left) and routing using the quad-tree
(right).

Network Layer 189

belongs and is encoded as vector where each bit represents a multicast group. For example,
an entry of 10100010 for square 41 in the global membership table would indicate that there
exist nodes in square 41 that belong to multicast groups 2, 6, and 8. An entry of 00000001
for node 14 in the local membership table indicates that node 14 is a member of multicast
group 1 only. The contents of a node’s local membership table are periodically broadcast
within the node’s level-0 square. A randomly chosen node in each level-0 square periodically
disseminates its global membership table to all nodes in its level-1 square, and this process
is repeated for higher-level squares.

Using these tables, a source can now disseminate a packet to all nodes subscribed to a
multicast group. For example, in the right graph of Figure 7.17, the source wishes to transmit
a packet to its multicast group members located in squares 441, 444, and 43 (indicated by the
black circles). Using its global membership table, it knows that there are multicast members
in level-2 square 4 and therefore forwards the packet toward that direction. Similar to GPSR,
SPBM uses a greedy forwarding approach by choosing next-hop neighbors that make the
largest progress toward a destination. Once the packet arrives at a node in square 42, that
node knows that there are multicast members in level-1 squares 43 and 44 and therefore
forwards the packets toward each square. The rule for splitting a multicast packet is based on
a heuristic that provides a tradeoff between the total number of nodes forwarding the packet
and the optimality of the individual routes toward the destinations. Once a forwarding node
finds a multicast member in its local membership table, it forwards the packet directly to that
member node. Similar to GPSR, whenever greedy forwarding fails, the protocol switches
into perimeter routing mode.

Other location-based multicast protocols are the Geographic Multicast Routing (GMR)
protocol (Sanchez et al. 2006) and the Receiver Based Multicast (RBMulticast) protocol
(Feng and Heinzelman 2009). GMR uses a heuristic neighbor selection scheme that requires
low computational overheads, resulting in efficient routes based on a cost over progress met-
ric. This metric is a ratio of the number of selected forwarding nodes over the progress made
toward all destinations (i.e., the total remaining distance from the neighbors to the destina-
tions minus the total distance from the forwarding node to all destinations). RBMulticast is
a receiver-based multicast approach, that is, a sender can transmit packets without specify-
ing the next-hop node. Similar to SPBM, RBMulticast divides the network into multicast
regions , splitting packets depending on the locations of the destinations. However, RBMul-
ticast is a completely stateless protocol, eliminating the need for membership tables. This
is achieved by representing each multicast region with a virtual node and each forwarding
node replicates a packet for each region that contains at least one multicast member. The
destination of a packet is then the virtual node for a particular multicast region. In RBMul-
ticast, it is up to the MAC layer to ensure that the neighbor closest to the location of the
virtual node takes responsibility for forwarding the packet. That is, RBMulticast assumes
an underlying MAC protocol where receivers contend for channel access and nodes that
make the most forward progress to the destination will contend earlier and have a better
chance to become the next-hop node.

7.8.3 Geocasting

In many wireless sensor networks, it is preferred to propagate information to all or some
nodes within a specific geographic region. This is a very natural model for many sensor

190 Fundamentals of Wireless Sensor Networks

network applications, specifically when the exact location of individual sensors is unknown.
For example, in query-based networks, the same query can be propagated to multiple sen-
sors monitoring a specific geographic area, instead of sending the same query repeatedly to
different individual sensors. The routing problem then consists of two separate challenges:
(1) propagating a packet near the target region and (2) distributing a packet within the target
region. The first challenge can be addressed using approaches similar to unicast location-
based routing as previously described, although no exact location of a sensor node near or
within the target region may be known. If it is sufficient for a packet to reach only a sin-
gle node within the target region, the protocol has succeeded once the packet arrives on
at least one node within the region. However, if all nodes within the region must obtain a
copy of the packet, the second challenge can be addressed using approaches similar to the
broadcast techniques described previously. Therefore, geocasting to multiple receivers is a
combination of both unicast and broadcast geographic routing.

7.8.3.1 Geographic and Energy Aware Routing

The Geographic and Energy Aware Routing (GEAR) protocol (Yu et al. 2001) is an example
of a geocasting protocol, where packets are forwarded to all nodes within a specific target
region. GEAR consists of the two phases described above: (1) packets are forwarded toward
the target region using a geographical and energy-aware neighbor selection algorithm and
(2) packets are disseminated to nodes within the target region using a recursive geographic
forwarding algorithm.

Each node in the network maintains two types of costs of reaching a destination via
its neighbors. The estimated cost c(Ni, R) for each neighbor Ni and a target region R is
defined as:

c(Ni, R) = αd(Ni, R) + (1 − α)e(Ni) (7.2)

where α is a tunable weight, d(Ni, R) is the distance from neighbor Ni to the centroid
D of region R normalized by the largest such distance among all neighbors, and e(Ni) is
the consumed energy at node Ni , normalized by the largest consumed energy among all
neighbors. That is, the estimated cost is a combination of both residual energy and distance
to the target region. The learned cost h(N, R) of a node N is then a refinement of the
estimated cost that allows nodes to circumvent voids or holes in the network (if there are no
holes, the learned cost and the estimated cost are identical). Similar to GPSR, GEAR makes
locally greedy forwarding decisions, that is, whenever a node receives a packet, it will pick
the next hop among the neighbors that are closer to the destination.

When a node N receives a packet, and if there are no neighbors that are closer to the
destination, N knows that it is in a hole. In this case, the learned cost function is used to
select one of N’s neighbors as the next hop, that is, the packet is forwarded to the node with
the minimum learned cost (ties are broken using some predefined ordering). After a node
picks the next-hop neighbor Nmin, it sets its own learned cost h(N,R) to h(Nmin, R) +
C(N, Nmin), where C(x, y) is the cost of transmitting a packet from node x to node y.
Therefore, the learned cost will increase, which allows upstream nodes to avoid forwarding
packets toward the node in the hole. Figure 7.18(a) shows an example of this procedure,
where T represents the centroid of the target region. Node S wishes to forward a packet
toward the destination and it has three neighbors that are closer to the destination: B, A, and

Network Layer 191

S

F

ABC

D

E

G

HI

T

(b)

S

(a)

Figure 7.18 GEAR: (a) learning routes around holes and (b) recursive geographic forwarding.

I. B’s and I’s learned and estimated costs are
√

5 and A’s learned and estimated costs are both
2. S will forward the packet to the lowest cost neighbor, which is A. Node A will find itself
in a hole and it will forward the packet to the neighbor with the minimum learned cost, for
example, node B. Additionally, it will update its own cost h(A, T) = h(B, T) + C(A, B),
that is, assuming a cost (A, B) = 1, the new learned cost of A will be

√
5 + 1. The next

time a packet for T arrives at node S, S will forward the packet directly to B instead of A to
circumvent the hole.

Once a packet reaches the target region R, a simple flooding with duplicate suppression
scheme could be used to disseminate the packet to all nodes within R. However, due to
the cost of flooding, GEAR relies on a process called Recursive Geographic Forwarding ,
shown in Figure 7.18(b). Assume that the target region R is the large rectangle and node
S received a packet for R and finds itself within R. Then, S creates four new copies of the
packet bound to four smaller subregions (shown as the smaller rectangles) of region R. For
each subregion, GEAR repeats the forwarding and splitting process until a packet reaches a
node that is the only one within the current subregion.

7.8.3.2 Geographic-Forwarding-Perimeter-Geocast

Another protocol that combines geographic routing with region flooding is the Geographic-
Forwarding-Perimeter-Geocast (GFPG) protocol (Seada and Helmy 2004). Similar to
GPRS, it uses greedy forwarding to propagate a packet toward its geocast region, where
the destination is the center of the geocast region. When greedy forwarding fails, perimeter
routing is used to circumvent voids. Once the packet enters the geocast region, simple
flooding could be used to deliver it to all nodes with the region. However, this assumes that
there are no obstacles and gaps, that is, all nodes within the region must be able to reach
each other without going out of the region. If this assumption does not hold, delivery cannot
be guaranteed. Therefore, GFPG uses a combination of geocast and perimeter routing to
guarantee delivery to all nodes. For example, the gray geocast region in Figure 7.19 has
two clusters of nodes that cannot directly reach each other within the geocast region (i.e.,
there is a gap between two nodes in the lower left and the upper right corners).

192 Fundamentals of Wireless Sensor Networks

Source Source

Figure 7.19 An example of a geocast region with a gap (left) and region flooding and perimeter
routing used by GFPG to reach all nodes in the geocast region (right).

Once a packet reaches a geocast region, it is flooded to all nodes, but in addition, region
border nodes , that is, nodes that have at least one neighbor outside the region, also send the
packet to their neighbors outside the region in the planar graph. Nodes outside the region
forward the packet using the right-hand rule to neighbors in the planar graph and, as a conse-
quence, the packet travels around the face until it enters the region again (Figure 7.19). The
first node inside the region to receive the perimeter packet floods this packet to its neighbors
if it has not seen this packet before. Perimeter routing is therefore able to link disconnected
clusters of a geocast region together.

7.9 QoS-Based Routing Protocols

Although most routing and data dissemination protocols aim for some kind of Quality-of-
Service (QoS), for example, minimum hop routing protocols try to achieve low latencies
by using “short” paths, some protocols proposed for sensor networks explicitly address
one or more QoS routing metrics. The goal of these protocols is to find feasible paths
between sender and destination, while satisfying one or more QoS metrics (latency, energy,
bandwidth, reliability), but also optimizing the use of the scarce network resources. Wire-
less sensor networks pose numerous challenges to providing satisfactory QoS, including
dynamic topologies, resource scarcity (including power limitations), varying quality of the
radio channels, the lack of centralized control, and the heterogeneity of network devices.
This section introduces several representative QoS-based routing protocols for ad hoc and
sensor networks.

7.9.1 Sequential Assignment Routing

One of the first routing protocols to explicitly consider Quality-of-Service is the Sequential
Assignment Routing (SAR) protocol (Sohrabi et al. 2000), which is also an example of a
multipath routing approach. SAR creates multiple trees, each rooted at a 1-hop neighbor of

Network Layer 193

the sink, to establish multiple paths from each node to the sink. These trees grow outward
from the sink, while avoiding nodes with low QoS (e.g., high delay). The QoS associated
with a path is expressed as an additive QoS metric where higher values imply lower QoS.
After the tree-building procedure has completed, it is likely that a node is part of multiple
trees, that is, it can choose from multiple routes toward the sink. SAR selects a route for a
packet based on the QoS metric, energy (in terms of number of packets that can be trans-
mitted without energy depletion, assuming exclusive use of the path), and the priority level
of the packet. The goal of SAR is to minimize the average weighted QoS metric over the
lifetime of the network. The availability of multiple routes ensures fault-tolerance and quick
recovery from broken paths. However, establishing and maintaining the trees (i.e., routing
tables) are expensive tasks, particularly in large sensor networks.

7.9.2 SPEED

Numerous wireless sensor applications require sensor data collection within certain time
constraints to ensure that the collected information is useful and can be acted upon in a
timely fashion. For example, events of interest such as the detection of moving objects in
surveillance systems or the impending failure of a bridge require rapid responses.

For applications with soft real-time requirements, SPEED (He et al. 2003) is an
example of a protocol that provides real-time communication services, including real-time
unicast, real-time area-multicast, and real-time area-anycast. SPEED is also an example of a
location-based routing protocol, that is, a node relies on position information from its neigh-
bors instead of routing tables. Position information is obtained through periodic HELLO (or
beacon) messages that contain a node’s ID, position, and an average receive delay. Each node
also maintains a neighbor table containing the node ID and position for each of its neighbors,
but also an expiration time (ExpireTime) and two delays called ReceiveFromDelay and
SendToDelay. The SendToDelay is the delay received from the beacon message coming
from the neighbor, while the ReceiveFromDelay is estimated by measuring the delay expe-
rienced by a packet in the MAC layer of the sender plus a propagation delay. The Receive-
FromDelay values of all neighbors are averaged periodically to obtain a single receive delay.

The routing component of the SPEED protocol is called Stateless Nondeterministic Geo-
graphic Forwarding (SGNF). The neighbor set of a node i is defined as the set of neighbors
of i (i.e., all nodes within i’s radio range) that are at least a distance of K away from i. The
forwarding candidate set (FSDest

i) of a node i for destination Dest consists of all nodes from
the node’s neighbor set that are at least a distance of K closer to the destination. That is,
if L is the distance of node i from the destination and Lnext is the distance from i’s neigh-
bor j to the destination, L − Lnext has to be greater than or equal to K in order to add j to
i’s forwarding candidate set. Packets are only forwarded to nodes belonging to FSDest

i and
if this set is empty, packets are dropped. SPEED further divides the forwarding candidate
set into two subsets: one contains nodes that have a SendToDelay less than a certain single
hop delay D, and the other contains the remaining nodes. The forwarding candidate is then
selected from the first group where nodes with higher relay speed have a greater chance of
being chosen. The relay speed considers both distance and delays and is calculated as:

RelaySpeed = |L − Lnext|
SendToDelay

(7.3)

194 Fundamentals of Wireless Sensor Networks

where a discrete exponential distribution can be used to trade off between load balancing and
optimal path length. If there are no nodes in the first subset of forwarding candidates, a relay
ratio is calculated, based on another component of the SPEED protocol, the neighborhood
feedback loop. This component is responsible for determining the relay ratio by looking
at the miss ratios of the neighbors of a node (i.e., the nodes which could not provide the
required RelaySpeed). If this relay ratio is less than a randomly generated number between
0 and 1, the packet is dropped. The goal of the neighborhood feedback loop is to keep the
system performance at a desired value, that is, it attempts to maintain a single hop delay
below a certain value D.

The final component of SPEED is the back-pressure rerouting protocol, which is respon-
sible for (i) preventing voids that occur when a node fails to find a next hop node and (ii)
reducing congestion using a feedback approach. Figure 7.20 depicts two examples show-
ing the operation of this technique. In both examples, the shaded regions are areas where
traffic is high, causing congestion. In the first case, node 3 will be notified of the delays
experienced by nodes 6 and 7 through the beacon exchange process. The SGNF compo-
nent of SPEED reduces the probability of nodes 6 and 7 being selected as forwarding
nodes, therefore reducing the congestion around these nodes. In the second case, all for-
warding nodes of 3 are congested and, in this case, both the neighborhood feedback loop
and SGNF work together to address the congestion. For example, node 3 may drop a cer-
tain number of packets, where these dropped packets count as packet with delay D in terms
of computing the delay at this node. The average delay of 3 will increase, which will be
detected by 3’s upstream nodes (i.e., node 2). Should node 2 be in the same situation as
node 3, further back-pressure will be imposed on node 1, that is, back-pressure rerouting
may continue to proceed upstream until it reaches the source, which can then suppress
further packets.

7.9.3 Multipath Multi-SPEED

The goal of the Multipath Multi-SPEED (MMSPEED) protocol (Felemban et al. 2006) is
to provide QoS differentiation in terms of timeliness and reliability , while at the same time

Case 1 Case 2

3
1
8

2’s Neighbor Table

DROP: Delay

6

2

3

7

8

9

4

1

Delay

Congestion

Node Delay

0.0 −> 0.5 > D
0.1 −> 0.1 < D
0.1 −> 0.1 < D

Node

6
4
7
2

3’s Neighbor Table

1

3

4

6

7 Delay

Congestion

Delay

0.0 −> 0.5 > D
0.1 −> 0.1 < D
0.0 −> 0.4 > D
0.1 −> 0.1 < D

2

5

Figure 7.20 Two examples of back-pressure rerouting in SPEED.

Network Layer 195

loss

physical

network

logical

low-speed

network

logical

high-speed

network

high

reliability

low

reliability

loss

source destination source destination

Figure 7.21 Service differentiation in the latency domain (left) and the reliability domain (right).

minimizing the protocol’s overhead by making localized routing decisions without a pri-
ori route discovery or global network state updates. Similar to SPEED, the protocol relies
on geographic locations of nodes to make forwarding decisions, where these locations are
exchanged among neighboring nodes using periodic beacon messages.

With respect to timeliness, MMSPEED offers packets multiple delivery speed options
that are guaranteed throughout the network. Conceptually, this protocol can be understood
as a virtual overlay of multiple SPEED layers on top of a single physical layer (left graph
in Figure 7.21). Each layer l is associated with a SetSpeedl, which is a prespecified lower-
bound speed. That is, when a node computes the relay speed for each of its neighbors (see
Section 7.9.2), it then chooses a forwarding neighbor whose relay speed is at least the desired
SetSpeed value. For example, assume that the minimum required speed level ReqSpeed(x)
for packet x can be calculated as

ReqSpeed(x) = dists,d(x)

deadline(x)
(7.4)

where dists,d is the distance from the source s to the destination d for packet x with a given
(end-to-end) deadline(x). Then, the speed layer l for the packet is selected such that

SetSpeedl = minL
j=1{SetSpeedj |SetSpeedj ≥ ReqSpeed(x)} (7.5)

where L is the number of available speed options. In this case, the node chooses a neigh-
bor i whose progress speed estimation RelaySpeed = |dists,d − disti,d |/delays,i is at least
SetSpeedl . It is possible that a packet’s delays over a route differ from the delay estimations.
Therefore, the layer selected at one node can differ from the layer selected at another node,
for example, a slow packet can be boosted by using a higher layer at a subsequent node.
Toward this end, it is necessary to determine a packet’s remaining time to its deadline, which
requires synchronized clocks in the network. Instead, MMSPEED measures the elapsed time
at each node and piggybacks this information onto a packet such that subsequent nodes can
determine the remaining time to the deadline.

Similarly, MMSPEED offers packets multiple levels of reliability. Toward this end, it
exploits the fact that there exist multiple redundant paths from a source to a destination,
even though these paths will differ in length and QoS (right graph in Figure 7.21). Each

196 Fundamentals of Wireless Sensor Networks

node i maintains the recent average of packet loss percentage ei,j to each neighbor j . Such
losses include both intentional packet drops for congestion control and errors in the wireless
channel. Based on these averages, a node computes an estimate of packet loss probability
between itself and a packet’s destination as

RPd
i,j = (1 − ei,j)(1 − ei,j)

�distj,d/disti,j � (7.6)

where �distj,d/disti,j� is the hop count estimation from node j to the destination d . This
estimation is based on the assumption that subsequent nodes have a similar packet loss rate
to node i and that the progress to the destination for each following hop will be similar
to the current progress. Based on this computation, a node can determine the number of
forwarding paths that satisfy the end-to-end reachability requirement of a packet. The total
reaching probability (TRP) is originally set to zero and updated for each forwarding path
that is being used, that is, the TRP is computed as

TRP = 1 − (1 − TRP)(1 − RPd
i,j) (7.7)

Here, (1 − TRP) is the probability that none of the current paths can successfully deliver
the packet to the destination and (1 − RPd

i,j) is the probability that the additional path will
fail to deliver the packet. Therefore, the newly computed TRP is the probability that at least
one path will successfully deliver the packet to the destination. A node adds paths to this
TRP estimation until TRP becomes larger than the required end-to-end reachability P req.

Both latency and reliability considerations can also be combined in MMSPEED. In this
case, the protocol identifies the required speed level for a given packet and then it finds
multiple forwarding nodes among those with sufficient progress speed such that the total
reaching probability is at least as high as the required reaching probability.

7.10 Summary

While routing in general is a crucial component of any multi-hop network, routing is par-
ticularly challenging in wireless ad hoc and sensor networks due to their characteristics
such as stringent resource constraints and unreliability of links and nodes. Specifically,
routing protocols must operate efficiently to avoid premature exhaustion of the limited
resources in a sensor network (most notably energy) and they must be able to adjust to chang-
ing and unpredictable network characteristics, including changes in the network topology
and density. In this section, several classes of routing strategies (data-centric, hierarchi-
cal, location-based) and numerous examples of concrete routing protocols have been dis-
cussed. Table 7.1 summarizes some key characteristics of the protocols discussed in this
chapter.

Although numerous routing solutions for sensor networks exist, the unique challenges
and the many varieties of network deployment scenarios indicate that there still remain
a variety of challenges, for example, with respect to resource efficiency and provision of
QoS. For example, in the recent past, there has been an increased focus on wireless sensor
networks that can support application-specific QoS requirements involving multiple perfor-
mance metrics. Other areas of investigation of routing protocols for future sensor networks
include the need for energy-efficient solutions that make localized decisions, protocols that
effectively exploit redundancy for efficiency and reliability, protocols for newly emerging

Network Layer 197

Table 7.1 Network protocols summary

Protocol Characteristics

SPIN Flat topology, data-centric, query-based, negotiation-based
Directed diffusion Flat topology, data-centric, query-based, negotiation-based
Rumor routing Flat topology, data-centric, query-based
GBR Flat topology, data-centric, query-based
DSDV Flat topology with proactive route discovery
OLSR Flat topology with proactive route discovery
AODV Flat topology with reactive route discovery
DSR Flat topology with reactive route discovery
LANMAR Hierarchical with proactive route discovery
LEACH Hierarchical, support of MAC layer
PEGASIS Hierarchical
Safari Hierarchical, hybrid route discovery (reactive near, proactive remote)
GPSR Location-based, unicast
GAF Location-based, unicast
SPBM Location-based, multicast
GEAR Location-based, geocast
GFPG Location-based, geocast
SAR Flat topology with QoS (real-time, reliability), multipath
SPEED Location-based with QoS (real-time)
MMSPEED Location-based with QoS (real-time, reliability)

topologies (e.g., architectures with multiple tiers), security-aware routing protocols, and
integrated solutions to routing and in-network processing of sensor data.

Exercises

7.1 The previous chapter presented several MAC protocols, while this chapter introduced
routing protocols. Can you think of examples how the choice of MAC protocol affects
the design, performance, and efficiency of the routing protocol?

7.2 What is the difference between a proactive routing protocol and a reactive routing
protocol? Name at least two examples for each category. Consider the following WSN
scenarios and explain why you would choose either a proactive or a reactive routing
solution:

(a) A WSN is used to monitor air pollution in a city where every sensor reports its
sensor data once every minute to a single remote base station. Most sensors are
mounted on lamp posts, but some are also mounted on city buses.

(b) A WSN is used to measure humidity in a field, where low-power sensors report
measurements only when certain thresholds are exceeded.

(c) A WSN is used to detect the presence of vehicles, where each sensor locally
records the times of vehicle detection. These records are delivered to the base
station only when the sensor is explicitly queried.

198 Fundamentals of Wireless Sensor Networks

7.3 What is data-centric routing? Why is data-centric routing feasible (or even necessary)
compared to routing based on identities (addresses)?

7.4 Describe a WSN application for each of the following categories: time-driven, event-
driven, and query-driven.

7.5 For the network topology shown in Figure 7.22, identify the optimal routes for source
A to sink M according to the following criteria (describe how you compute the cost
for the optimal route). The numbers X/Y along each link indicate the latency (X) and
energy cost (Y) for transmitting a single packet over the link. The number Z under
each node indicates the node’s remaining energy capacity.

(a) Minimum number of hops
(b) Minimum energy consumed per packet
(c) Maximum average energy capacity (eliminate hops that would result in a higher

average but unnecessarily add to the route length!)
(d) Maximum minimum energy capacity
(e) Shortest latency

1/1

3/3

3/5

3/1 1/11/1 3/1

1/3

1/2

1/22/2

4/1

C

D

E

F

G

I

H

L

J

2/1 2/2 2/1

2/2

8

7

8

3

A

2

6

4

14
1/2

5/5

B K

M

4 5

Figure 7.22 Topology for Exercise 7.5.

7.6 A WSN is modeled as a 5 × 5 grid as shown in Figure 7.23, with the base station
placed at the center of the network (left topology) or at the bottom left corner (right
topology). Assume that each node can communicate with only its immediate neighbors
on the grid and that packet transmission or forwarding over a link costs exactly one
unit of energy (packet reception and processing costs are neglected).

(a) For both topologies, find an energy optimal graph of routes, that is, the energy cost
for each packet traveling through the network is a minimum.

(b) Consider the graphs shown in Figure 7.24. What is the average and total load in
the network, when the per-node load is defined as the number of routes a node has
to service (including its own)? Do not include the base station in your calculations.

(c) What is the lifetime of the network topologies in Figure 7.24 when during every
second, each node generates and transmits its own packet and forwards all packets
received during the previous second? Assume that each node has an initial energy
budget of 100. Each transmission costs 1 unit of energy (there is no cost for recep-
tion, etc.). Consider the lifetime of a network to have expired once the first node
depletes its energy budget. Compare the results and derive design principles for the
network topology to optimize the lifetime of the network with respect to placement
of the base station and the construction of routing trees.

Network Layer 199

(d) Assume that the first topology in Figure 7.24 is used and each sensor transmits
exactly one packet to the base station. Then the topology is switched to the second
one and each sensor transmits one packet to the base station in the bottom left cor-
ner. Then the topology is switched back to the first one and the process is repeated.
Explain why the network lifetime changes and what other design principle can be
derived from this insight. (To facilitate the comparison, focus on the case where
each node has already reached its maximum load.)

Base Station

Sensor Node

Figure 7.23 Topologies for Exercise 7.6.

Base Station

Sensor Node

Figure 7.24 Topologies and routes for Exercise 7.6.

7.7 Flooding is a simple strategy for distributing data to one specific node or all sensor
nodes in a network. Answer the following questions:

(a) Explain the three challenges of flooding described in this chapter.
(b) Which of these can be addressed by gossiping and how can they be addressed?

200 Fundamentals of Wireless Sensor Networks

(c) For the topologies shown in Figure 7.22 and Figure 7.23, what are good choices
for the maximum hop count? Explain your answer.

(d) How do sequence numbers contribute to reducing unnecessary transmissions? Are
sequence numbers alone sufficient and, if not, what other information is needed to
use them correctly?

7.8 Using the topology in Figure 7.22, explain the problems of implosion, overlap, and
resource blindness.

7.9 How does the SPIN family of protocols address the three challenges faced by flooding?
What are the disadvantages of a negotiation-based protocol such as SPIN?

7.10 Explain the concept of directed diffusion. Can you imagine at least three strategies or
goals for reinforcement?

7.11 Consider the network topology in Figure 7.22 and node G’s routing table shown in
Table 7.2.

(a) Describe how node G would send queries toward events E1, E2, and E3 using
rumor routing (note that node G has no routing table entries for event E3).

(b) Assume that (i) I informs G that I can reach event E2 via 2 hops, (ii) F informs G
that F can reach event E3 via 4 hops, (iii) E informs G that E can reach event E1
via 1 hop, (iv) D informs G that D can reach event E1 via 2 hops, (v) H informs G
that H can reach event E2 via 2 hops, and (vi) D informs G that D can reach event
E3 via 1 hop. What is the final table of node G? Can you identify the locations of
all three events by the identity of the closest sensor?

Table 7.2 G’s routing table (Exercise 7.11)

Event Distance Direction

E1 3 F
E2 4 I

7.12 What are the concepts behind distance vector routing and link state routing and how do
they compare to each other with respect to overheads for maintaining routing tables?

7.13 Compare a proactive routing protocol such as DSDV with a reactive protocol such as
DSR with respect to overheads and route optimality.

7.14 Does DSR incur larger or smaller overheads for route discovery compared to the
AODV protocol? Justify your answer.

7.15 In AODV, is it possible that route discovery packets travel in the network forever?
Why or why not?

7.16 Asymmetric (or unidirectional) links occur when node A can hear node B, but B cannot
hear node A. Explain whether this is a problem for the AODV protocol and if so, how
this can be addressed.

Network Layer 201

7.17 What is the concept behind hierarchical routing and what advantages does it have over
other techniques?

7.18 Table 7.3 summarizes the routing information of all nodes in a WSN, that is, each
row indicates the routing knowledge of that particular node. For example, the first row
shows that node A knows that it can reach nodes B and C via 1 hop and nodes D and
E via 2 hops. Given this information, draw the network topology and determine the
landmark radius for each node.

Table 7.3 Routing information for Exercise 7.18

A B C D E F G H

A 0 1 1 2 2 – – –
B 1 0 1 1 1 2 – –
C 1 1 0 2 1 – 2 –
D – 1 2 0 1 1 2 2
E 2 1 1 1 0 – 1 –
F – 2 – 1 2 0 1 1
G – 2 2 2 1 1 0 1
H – – 3 2 – 1 1 0

7.19 What is the advantage of using Fisheye State Routing in the LANMAR protocol com-
pared to the basic landmark routing technique?

7.20 Figure 7.25 shows a number of nodes as small dots. Each node has a radio range of 2
units. How would the gray node positioned at (0, 0) route a packet to the gray node at
position (9, 9) using GPSR? Indicate the visited nodes.

(0,0)

Figure 7.25 GPSR routing example (Exercise 7.20).

7.21 When does GPSR enter the perimeter routing mode and how does it use the right-hand
rule in this mode?

202 Fundamentals of Wireless Sensor Networks

7.22 Prove that it is false or show an example that the perimeter mode can cause a packet
to traverse a network’s entire outer boundary.

7.23 Consider the topology in Figure 7.26. Node A wishes to forward a packet toward desti-
nation L via one of its neighbors (its communication range is indicated with the circle).
Which neighbor will A choose with each of the following forwarding strategies:

(a) greedy forwarding
(b) nearest with forwarding progress
(c) most forwarding progress within radius
(d) compass routing

D

A

B

C

E

L
F

I

J

K

H

G

Figure 7.26 Forwarding strategies in GPSR (Exercise 7.23).

7.24 The cell size of the GAF virtual grid can be predetermined and each node knows to
which cell it belongs. Discuss the consequences of choosing very large versus very
small cell sizes.

7.25 How does the SPBM protocol ensure efficient multicast for large numbers of receivers?

7.26 What is the concept of RBMulticast and how does it address the shortcomings of the
SPBM protocol?

7.27 The GEAR protocol uses two types of costs: learned and estimated. Explain how
learned costs are used to route packets around holes (use a concrete example). What
is the purpose of the estimated costs and what is the intuition behind calculating them
as described in this chapter?

7.28 Figure 7.27 shows a sensor network topology, where each node’s transmission range
is two units. The node at position (0,0) wants to disseminate a packet to all nodes
within the rectangle. Show how GFPG routes the packet toward the region and how it
distributes it to all receivers within the rectangle. Clearly indicate which nodes (inside
and outside the geocast region) will receive the packet.

7.29 Answer the following questions with respect to QoS-aware routing protocols:

(a) What advantages and disadvantages does multipath routing have?
(b) How does the SGNF component of SPEED work?

Network Layer 203

(0,0)

Figure 7.27 Geocast region with hole (Exercise 7.28).

(c) How does the back-pressure rerouting component of SPEED work?
(d) Why does MMSPEED change the speed of packets as they travel along a route?
(e) How can latency and reliability considerations be combined in MMSPEED?

References
Al-Karaki, J.N., and Kamal, A.E. (2004) Routing techniques in wireless sensor networks: A survey. IEEE Wireless

Communications 11 (6), 6–28.
Braginsky, D., and Estrin, D. (2002) Rumor routing algorithm for sensor networks. Proc. of the 1st ACM Inter-

national Workshop on Wireless Sensor Networks and Applications .
Clausen, T., Hansen, G., Christensen, L., and Behrmann, G. (2001) The optimized link state routing protocol,

evaluation through experiments and simulation. Proc. of the IEEE Symposium on Wireless Personal Mobile
Communications .

Couto, D.D., Aguayo, D., Bicket, J., and Morris, R. (2003) High throughput path metric for multi-hop wireless
routing. Proc. of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom).

Draves, R., Padhye, J., and Zill, B. (2004) Routing in multi-radio, multi-hop wireless mesh networks. Proc. of the
10th Annual International Conference on Mobile Computing and Networking (MobiCom).

Du, S., Khan, A., Pal-Chaudhuri, S., Post, A., Saha, A.K., Druschel, P., Johnson, D.B., and Riedi, R. (2008) Safari:
A self-organizing, hierarchical architecture for scalable ad hoc networking. Ad Hoc Networks 6 (4), 485–507.

Felemban, E., Lee, C.G., and Ekici, E. (2006) MMSPEED: Multipath multi-SPEED protocol for QoS guarantee
of reliability and timeliness in wireless sensor networks. IEEE Transactions on Mobile Computing 5 (6),
738–754.

Feng, C.H., and Heinzelman, W.B. (2009) RB Multicast: Receiver based multicast for wireless sensor networks.
Proc. of the IEEE Wireless Communications and Networking Conference (WCNC).

Gerla, M., Hong, X., and Pei, G. (2000) Landmark routing for large ad hoc wireless networks. Proc. of the IEEE
Global Communications Conference (GLOBECOM).

He, T., Stankovic, J.A., Lu, C., and Abdelzaher, T. (2003) SPEED: A real-time routing protocol for sensor net-
works. Proc. of the International Conference on Distributed Computing Systems.

Hedetniemi, S.H., Hedetniemi, S.T., and Liestman, A.L. (1988) A survey of gossiping and broadcasting in com-
munication networks. Networks 18 (4), 319–349.

Heinzelman, W., Kulik, J., and Balakrishnan, H. (1999) Adaptive protocols for information dissemination in
wireless sensor networks. Proc. of the 5th ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom).

Hou, T., and Li, V. (1986) Transmission range control in multi-hop packet radio networks. IEEE Transactions on
Communications 34 (1), 38–44.

204 Fundamentals of Wireless Sensor Networks

Intanagonwiwat, C., Govindan, R., and Estrin, D. (2000) Directed diffusion: A scalable and robust communication
paradigm for sensor networks. Proc. of the 6th Annual International Conference on Mobile Computing and
Networking (MobiCom).

Johnson, D.B. (1994) Routing in ad hoc networks of mobile hosts. Proc. of the IEEE Workshop on Mobile Com-
puting Systems and Applications .

Karp, B., and Kung, H.T. (2000) GPSR: Greedy perimeter stateless routing for wireless networks. Proc. of the 6th
Annual International Conference on Mobile Computing and Networking (MobiCom).

Kranakis, E., Singh, H., and Urrutia, J. (1999) Compass routing on geometric networks. Proc. of the 11th Canadian
Conference on Computational Geometry .

Kulik, J., Heinzelman, W., and Balakrishnan, H. (2002) Negotiation-based protocols for disseminating information
in wireless sensor networks. Wireless Networks 8 (2/3), 169–185.

Lindsey, S., and Raghavendra, C.S. (2002) PEGASIS: Power-efficient gathering in sensor information systems.
Proc. of the IEEE Aerospace Conference.

Pei, G., Gerla, M., and Chen, T.W. (2000) Fisheye state routing in mobile ad hoc networks. Proc. of the ICDCS
Workshop on Wireless Networks and Mobile Computing .

Perkins, C.E., and Bhagwat, P. (1994) Highly dynamic destination-sequenced distance-vector routing (DSDV) for
mobile computers. ACM SIGCOMM Computer Communication Review 23 (4), 234–244.

Perkins, C.E., and Royer, E.M. (1999) Ad hoc on-demand distance vector routing. Proc. of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications .

Sanchez, J.A., Ruiz, P.M., and Stojmenovic, I. (2006) GMR: Geographic multicast routing for wireless sensor
networks. Proc. of the 3rd Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks .

Schurgers, C., and Srivastava, M.B. (2001) Energy efficient routing in wireless sensor networks. Proc. of the IEEE
Military Communications Conference (MILCOM).

Seada, K., and Helmy, A. (2004) Efficient geocasting with perfect delivery in wireless networks. Proc. of the
IEEE Wireless Communications and Networking Conference (WCNC).

Singh, S., Woo, M., and Raghavendra, C.S. (1998) Power-aware routing in mobile ad hoc networks. Proc. of the
4th Annual International Conference on Mobile Computing and Networking (MobiCom).

Sohrabi, K., Gao, J., Ailawadhi, V., and Pottie, G. (2000) Protocols for self-organization of a wireless sensor
network. IEEE Personal Communications 7 (5), 16–27.

Takagi, H., and Kleinrock, L. (1984) Optimal transmission ranges for randomly distributed packet radio terminals.
IEEE Transactions on Communications 32 (3), 246–257.

Transier, M., Füssler, H., Widmer, J., Mauve, M., and Effelsberg, W. (2007) A hierarchical approach to position-
based multicast for mobile ad hoc networks. Wireless Networks 13 (4), 447–460.

Tsuchiya, P.F. (1988) The landmark hierarchy: A new hierarchy for routing in very large networks. Proc. of the
ACM Symposium on Communications Architectures and Protocols .

Xu, Y., Heidemann, J., and Estrin, D. (2001) Geography-informed energy conservation for ad hoc routing. Proc.
of the 7th Annual International Conference on Mobile Computing and Networking (MobiCom).

Yu, Y., Govindan, R., and Estrin, D. (2001) Geographical and energy aware routing: A recursive data dissem-
ination protocol for wireless sensor networks . Technical Report. UCLA/CSDTR 010023, UCLA Computer
Science Department.

Part Three
Node and Network
Management

8
Power Management
The power consumption of a wireless sensor network (WSN) is of crucial concern because
of the scarcity of energy. Whereas energy is a scarce resource in every wireless device, the
problem in WSNs is amplified for the following reasons:

1. Compared to the complexity of the task they carry out – namely, sensing, processing,
self-managing, and communication – the nodes are very small in size to accommodate
high-capacity power supplies.

2. Ideally, a WSN consists of a large number of nodes. This makes manually changing,
replacing or recharging batteries almost impossible.

3. While the research community is investigating the contribution of renewable energy and
self-recharging mechanisms, the size of nodes is still a constraining factor.

4. The failure of a few nodes may cause the entire network to fragment prematurely.

The problem of power consumption can be approached from two angles. One is to develop
energy-efficient communication protocols (self-organization, medium access, and routing
protocols) that take the peculiarities of WSNs into account. The other is to identify activities
in the networks that are both wasteful and unnecessary and mitigate their impact.

Wasteful and unnecessary activities can be described as local (limited to a node) or global
(having a scope network-wide). In either case, these activities can be further considered
as accidental side-effects or results of nonoptimal software and hardware implementations
(configurations). For example, observations based on field deployment reveal that some
nodes exhausted their batteries prematurely because of unexpected overhearing of traffic that
caused the communication subsystem to become operational for a longer time than originally
intended (Jiang et al. 2007). Similarly, some nodes exhausted their batteries prematurely
because they aimlessly attempted to establish links with a network that had become no longer
accessible to them.

Most inefficient activities are, however, results of nonoptimal configurations in hardware
and software components. For example, a considerable amount of energy is wasted by an
idle processing or a communication subsystem. A radio that aimlessly senses the media or
overhears while neighboring nodes communicate with each other consumes a significant
amount of power.

A dynamic power management (DPM) strategy ensures that power is consumed econom-
ically. The strategy can have a local or global scope, or both. A local DPM strategy aims to
minimize the power consumption of individual nodes by providing each subsystem with the

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd

208 Fundamentals of Wireless Sensor Networks

amount of power that is sufficient to carry out a task at hand. When there is no task to be pro-
cessed, the DPM strategy forces some of the subsystems to operate at the most economical
power mode or puts them into a sleeping mode. A global DPM strategy attempts to minimize
the power consumption of the overall network by defining a network-wide sleeping state.

There are different ways to achieve this goal. One way is to let individual nodes define
their own sleeping schedules and share these schedules with their neighbors to enable a
coordinated sensing and an efficient internode communication. This is called synchronous
sleeping. The problem with this approach is that neighbors need to synchronize time as well
as schedules and the process is energy intensive. Another way is to let individual nodes
keep their sleeping schedules to themselves; and a node that initiates a communication
should send a preamble until it receives an acknowledgment from its receiving partner. This
approach is known as asynchronous sleeping schedule and avoids the needs to synchronize
schedules. But it can have a latency side-effect on data transmission. In both approaches,
individual nodes wake up periodically to determine whether there is a node that wishes to
communicate with them and to process tasks waiting in a queue.

The main focus of this chapter is on local dynamic power management strategies in
WSNs.

8.1 Local Power Management Aspects

The first step toward developing a local power management strategy is the understanding of
how power is consumed by the different subsystems of a wireless sensor node. This knowl-
edge enables wasteful activities to be avoided and to frugally budget power. Furthermore, it
enables one to estimate the overall power dissipation rate in a node and how this rate affects
the lifetime of the entire network.

In the following subsections, a more detailed observation into the different subsystems of
a node is made.

8.1.1 Processor Subsystem

Most existing processing subsystems employ microcontrollers, notably Intel’s StrongARM
and Atmel’s AVR. These microcontrollers can be configured to operate at various power
modes. For example, the ATmega128L microcontroller has six different power modes: idle,
ADC noise reduction, power save, power down, standby, and extended standby. The idle
mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt
system to continue functioning. The power down mode saves the registers’ content while
freezing the oscillator and disabling all other chip functions until the next interrupt or Hard-
ware Reset. In the power save mode, the asynchronous timer continues to run, allowing
the user to maintain a timer base while the remaining components of the device enter into
a sleep mode. The ADC noise reduction mode stops the CPU and all I/O modules, except
the asynchronous timer and the ADC. The aim is to minimize switching noise during ADC
conversions. In standby mode, a crystal/resonator oscillator runs while the remaining hard-
ware components enter into a sleep mode. This allows very fast start-up combined with
low power consumption. In extended standby mode, both the main oscillator and the asyn-
chronous timer continue to operate. Additional to the above configurations, the processing
subsystem can operate with different supply voltages and clock frequencies.

Power Management 209

While operating the processor subsystem at various power modes is energy-efficient, tran-
siting from one power mode to another also has its own power and latency cost. This cost
has to be considered before a decision for a particular operation of power mode is made.

8.1.2 Communication Subsystem

The power consumption of the communication subsystem can be influenced by several
aspects, including the modulation type and index, the transmitter’s power amplifier and
antenna efficiency, the transmission range and rate, and the sensitivity of the receiver. Some
of these aspects can be dynamically reconfigured. Moreover, the communication subsystem
itself can activate or turn off the transmitter and the receiver, or both. Because of the pres-
ence of a large number of active components in the communication subsystem (amplifiers
and oscillators), a significant amount of quiescent current flows even if the device is idle.

Determining the most efficient active state operational mode is not a simple decision. For
example, the power consumption of a transmitter may not necessarily be reduced by simply
reducing the transmission rate or the transmission power. The reason is that there is a tradeoff
between the useful power required for data transmission and the power dissipated in the form
of heat at the power amplifier. Usually, the dissipation power (heat energy) increases as
the transmission power decreases. In fact most commercially available transmitters operate
efficiently at one or two transmission power levels. Below a certain level, the efficiency of
the power amplifier falls drastically. In some cheap transceivers, even when at the maximum
transmission power mode, more than 60% of the supply DC power is dissipated in the form
of useless heat.

For example, the Chipcon CC2420 transceiver has eight programmable output power lev-
els ranging from −24 dBm to 0 dBm. This is described in Table 8.1. The columns of the
table express the output power, the current consumption, and the power consumption at
1.8 V DC supply voltage. Figure 8.1 illustrates the normalized current consumption (taking
the minimum current consumption as a reference) and the relationship between the transmis-
sion power levels and the current consumption. As can be seen in the figure, increasing the
transmission power level by almost 55 dB scales the current consumption by double only.

Table 8.1 Chipcon CC2420: Output power settings and typical current consumption at 2.45 GHz

PA Output power Current consumption Power consumption∗
level dBm mW mA mW

31 0 1 17.4 31.32
27 −1 0.794328235 16.5 29.7
23 −3 0.501187234 15.2 27.36
19 −5 0.316227766 13.9 25.02
15 −7 0.199526231 12.5 22.5
11 −10 0.1 11.2 20.16
7 −15 0.031622777 9.9 17.82
3 −25 0.003162278 8.5 15.3

∗Vdd = 1.8 V

210 Fundamentals of Wireless Sensor Networks

0 10 20 30 40 50 60
1

1.25

1.5

1.75

2

2.25

2.5
Current Consumption vs Transmit Power

Normalized transmit power in dB

N
or

m
al

iz
ed

 C
ur

re
nt

 C
on

su
m

pt
io

n
Receive Current Consumption
Transmit Current Consumption

Figure 8.1 Relation between transmit power and current consumption in Chipcon CC2420
transceiver.

Figure 8.2 demonstrates the power amplifier’s efficiency. The amplifier efficiency is defined
as the ratio of the transmission power to the DC input power consumed by the amplifier.

An additional challenge to the power issue is the time needed by the communication
subsystem to transit from an idle, or standby mode into an active mode. The transmission
introduces latency and consumes power. For example, the Chipcon’s transceiver frequency
synthesizer’s phase locked loop (PLL) requires 192 µs to lock up.

8.1.3 Bus Frequency and RAM Timing

The processor subsystem consumes power when it interacts with the other subsystems via
the internal high-speed buses. The specific amount depends on the frequency and bandwidth
of the communication. These two parameters can be optimally configured depending on the
interaction type, but bus protocol timings are usually optimized for particular bus frequen-
cies. Moreover, bus controller drivers require to be notified when bus frequencies change to
ensure optimal performance.

8.1.4 Active Memory

The active memory is made up of electrical cells which are arranged in rows and columns,
each row being a single memory bank. The cells have to be recharged periodically in order
to store data. The refresh rate or refresh interval is a measure of the number of rows that

Power Management 211

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Drain Efficiency vs Transmit Power

Normalized transmit power in dB

D
ra

in
 E

ff
ic

ie
nc

y

Figure 8.2 Amplifier efficiency in the Chipcon CC2420 transceiver.

must be refreshed. A low refresh interval corresponds to a low clock frequency that must
elapse before a refreshing operation takes place. On the contrary, a higher refresh interval
corresponds to a high clock frequency that must elapse before a refresh operation takes
place. Consider two typical values: 2K and 4K. The lower refresh interval refreshes more
cells at a low interval and completes the process faster, thus it consumes more power than
the 4K refresh rate. The 4K refresh rate refreshes less cells at a slower pace, but it consumes
less power.

A memory unit can be configured to operate in one of the following power modes:
temperature-compensated self-refresh mode, partial array self-refresh mode, or power
down mode. The standard refresh rate of a memory unit can be adjusted according to
its ambient temperature. For this reason, some commercially available dynamic RAMs
(DRAMs) already integrate temperature sensors. Apart from this, the self-refresh rate can
be increased if the entire memory array is not needed to store data. The refresh operation can
be limited to the portion of the memory array in which data will be stored. This approach
is known as the partial array self-refresh mode. If no actual data storage is required, the
supply voltage of most or the entire on-board memory array can be switched off.

The RAM timing is another parameter that affects the power consumption of the memory
unit. It refers to the latency associated with accessing the memory unit. Before a processor
subsystem accesses a particular cell in a memory, it should first determine the particular row
or bank and then activate it with a row access strobe (RAS) signal. Once a row is activated, it
can be accessed until the data is exhausted. The time required to activate a row in a memory
is tRAS, which is relatively small but could impact the system’s stability if set incorrectly.

212 Fundamentals of Wireless Sensor Networks

Table 8.2 Parameters of RAM timing

Parameter Description

RAS Row Address Strobe or Row Address Select
CAS Column Address Strobe or Column Address Select
tRAS A time delay between the precharge and activation of a row
tRCD The time required between RAS and CAS access
tCL CAS latency
tRP The time required to switch from one row to the next row
tCLK The duration of a clock cycle
Command rate The delay between Chip Select (CS)
Latency The total time required before data can be written to or read from memory

A memory cell is activated through a column access strobe (CAS). The delays between the
activation of a row as well as a cell and the writing of data into or reading of data from the
cell is given as tRCD. This time can be short or long, depending on how the memory cell is
accessed. If it is accessed sequentially, it is insignificant. If, on the other hand, the memory
is accessed in a random fashion, the current active row must first be deactivated before a
new row is activated, in which case, tRCD can cause significant latency.

The delay between the CAS signal and the availability of valid data on the data pins is
called CAS latency . Low CAS latency means high performance but also high power con-
sumption. The time required to terminate one row access and begin the next row access is
tRP. In conjunction with tRCD, the time (or clock cycles) required to switch banks (rows)
and select the next cell for reading, writing, or refreshing is expressed as tRP + tRCD. The
duration of time required between the active and precharge commands is called tRAS. It is
a measure of how long the processor must wait before the next memory access can begin.
Table 8.2 summarizes the quantities that express RAM timing.

When a RAM is accessed by clocked logic, the times are generally rounded up to the
nearest clock cycle. For example, when accessed by a 100-MHz processor (with 10 ns clock
duration), a 50-ns SDRAM can perform the first read in 5 clock cycles and additional reads
within the same page every 2 clock cycles. This is generally described as “5 – 2 – 2 – 2”
timing.

8.1.5 Power Subsystem

The power subsystem supplies power to all the other subsystems. It consists of the battery
and the DC–DC converter. In some cases, it may consist of additional components such as
a voltage regulator. The DC–DC converter is responsible for providing the right amount
of supply voltage to each individual hardware component by transforming the main DC
supply voltage into a suitable level. The transformation can be a step-down (buck), a step-up
(boost), or an inversion (flyback) process, depending on the requirements of the individual
subsystem. Unfortunately, a transformation process has its own power consumption and
may be inefficient. In the following subsections, some of causes of power consumption and
inefficiency will be discussed.

Power Management 213

8.1.5.1 Battery

A wireless sensor node is powered by exhaustible batteries. Several factors affect the qual-
ity of these batteries, but the main factor is cost. In a large-scale deployment, the cost of
hundreds and thousands of batteries is a serious deployment constraint.

Batteries are specified by a rated current capacity, C, expressed in ampere-hour. This
quantity describes the rate at which a battery discharges without significantly affecting
the prescribed supply voltage (or potential difference). Practically, as the discharge rate
increases, the rated capacity decreases.

Most portable batteries are rated at 1C. This means a 1000 mAh battery provides 1000 mA
for 1 hour, if it is discharged at a rate of 1C. Ideally, the same battery can discharge at a rate
of 0.5C, providing 500 mA for 2 hours; and at 2C, 2000 mA for 30 minutes and so on. 1C

is often referred to as a 1-hour discharge. Likewise, a 0.5C would be a 2-hour and a 0.1C a
10-hour discharge.

In reality, batteries perform at less than the prescribed rate. Often, the Peukert Equation
is applied to quantifying the capacity offset (i.e., how long a battery lasts in reality):

t = C

In
(8.1)

where C is the theoretical capacity of the battery expressed in ampere-hours; I is the current
drawn in Ampere (A); T is the time of discharge in seconds, and n is the Peukert number, a
constant that directly relates to the internal resistance of the battery. The value of the Peukert
number indicates how well a battery performs under continuous heavy current. A value close
to 1 indicates that the battery performs well; the higher the number, the more capacity is lost
when the battery is discharged at high current. The Peukert number of a battery is determined
empirically. For example, for lead acid batteries, the number is typically between 1.3 and 1.4.

Drawing current at a rate greater than the discharge rate results in a current consumption
rate higher than the rate of diffusion of the active elements in the electrolyte. If this process
continues for a long time, the electrodes run out of active material even though the electrolyte
has not yet exhausted its active materials. This situation can be overcome by intermittently
drawing current from the battery.

Discharge rate
Intermittent use
Continuous use

Discharge time

E
ff

ec
tiv

e
ce

ll
ca

pa
ci

ty

D
is

ch
ar

ge
 C

ur
re

nt

Figure 8.3 The Peukert curve displaying the relationship between the discharging rate and the effec-
tive voltage. The x-axis is a time axis.

214 Fundamentals of Wireless Sensor Networks

Figure 8.3 shows how the effective battery capacity can be reduced at high and continuous
discharge rates. By intermittently using the battery, it is possible during quiescent periods to
increase the diffusion and transport rates of active ingredients and to match up the depletion
created by excessive discharge. Because of this potential for recovery, the capacity reduction
can be undermined and the operating efficiency can be enhanced. This is illustrated in the
figure by the middle, dash-dotted line.

8.1.5.2 DC–DC Converter

The DC–DC converter transforms one voltage level into another. It is the equivalent of
a transformer which performs AC–AC voltage transformation. The main problem with a
DC–DC converter is its conversion efficiency. A typical DC–DC converter consists of a
power supply, a switching circuit, a filter circuit, and a load resistor. Figure 8.4 illustrates
the basic circuit structure of a DC–DC converter.

As can be seen in the figure, the circuit consists of a single-pole, double-throw (SPDT)
switch that is connected to a DC supply voltage, Vg . Considering the inductor, L, as a short
circuit and the capacitor, C, as an open circuit for the DC supply voltage, the switch’s output
voltage, Vs(t) equals to Vg when the switch is in position 1 and 0 when it is in position 2.
Varying the position of the switch at a frequency fs yields a periodically varying square
wave, vs(t), that has a period Ts = 1/fs .

vs(t) can be expressed by a duty cycle D, which describes the fraction of time that the
switch is in position 1, such that 0 ≤ D ≤ 1. The output voltage of the switching circuit is
displayed in Figure 8.5.

A DC–DC converter is realized by employing active switching components, such as
diodes and power MOSFETs. Typically, the switching frequencies range from 1 kHz to
1 MHz, depending on the speed of the semiconductor devices.

Using the inverse Fourier transformation, the DC component of vs(t) (Vs) is described as:

Vs = 1

Ts

∫ Ts

0
vs(t)dt = DVg (8.2)

which is the average value of vs(t).

Vg

Dc
input Switch network Low pass filter

Load
Dc output

VRC

L

vs(t)
2

1

+
−

+

−

+

−

Figure 8.4 A DC–DC converter consisting of a supply voltage, a switching circuit, a filter circuit,
and a load resistance.

Power Management 215

Switch
position:

DTs

1

(1 − D)Ts

2 1

t

Vs = DVg

0

Vg
vs(t)

Figure 8.5 The output voltage of a switching circuit of a DC–DC converter.

In other words, the integral value represents the area under the waveform of Figure 8.5
for a single period, or the height of Vg multiplied by the time Ts . It can be seen that the
switching circuit reduces the DC component of the supply voltage by a factor that equals to
the duty cycle, D. Since 0 ≤ D ≤ 1 holds, Vs ≤ Vg holds as well.

Ideally the switching circuit does not consume power. In practice, however, due to the
existence of a resistive component in the switching circuit, there is power dissipation. As a
result, the efficiency of a typical switching circuit is between 70 and 90%.

In addition to the desired DC voltage, vs(t) also contains undesired harmonics of the
switching frequency, fs . These harmonics must be removed so that the converter’s output
voltage v(t) is essentially equal to the DC component V = Vs . For this purpose, a DC–DC
converter employs a lowpass filter. In Figure 8.4, a first-order LC lowpass filter is connected
to the switching circuit. The filter’s cutoff frequency is given by:

fc = 1

2π
√

LC
(8.3)

Vg = 0;
D = 0

D = 1

Vg

Figure 8.6 A linear relationship between a DC supply voltage and the duty cycle of a switching
circuit.

216 Fundamentals of Wireless Sensor Networks

The cutoff frequency, fc, should be sufficiently less than the switching frequency, fs ,
so that the lowpass filter allows only the DC component of vs(t) to pass while effectively
attenuating all the harmonic components. Once again, in an ideal filter, there is no power
dissipation because the passive components (inductors and capacitors) are energy storage
components. Subsequently, the DC–DC converter produces a DC output voltage whose
magnitude is controlled by the duty cycle, D, using circuit elements that (ideally) do not
dissipate power.

The conversion ratio, M(D), is defined as the ratio of the DC output voltage, V , to the
DC input voltage, Vg , under a steady-state condition:

M(D) = V

Vg

(8.4)

For the buck converter shown in Figure 8.4, M(D) = D. Figure 8.6 illustrates the linear
relationship between the input DC voltage, Vg and the switching circuit’s duty cycle, D.

8.2 Dynamic Power Management

Wireless sensor nodes can be developed by taking the aspects discussed so far into account
at design time. Once the design time parameters are fixed, a dynamic power management
(DPM) strategy attempts to minimize the power consumption of the system by dynamically
defining the most economical operation conditions. This condition takes the requirements
of the application, the topology of the network, and the task arrival rate of the different
subsystems into account. Whereas there are different approaches to a DPM strategy, they
can be categorized in one of the following three approaches:

1. Dynamic operation modes.
2. Dynamic scaling.
3. Energy harvesting.

8.2.1 Dynamic Operation Modes

The subsystems of a wireless sensor node can be configured to operate in different power
modes, depending on their present and anticipated activity. This has already been explained
in the previous subsections. In general, a subcomponent can have n different power modes.
If there are x hardware components that can have n distinct power consumption levels, a
DPM strategy can define x × n different power mode configurations, Pn. Obviously, not
all these configurations are plausible because of various constraints and system stability
preconditions. Hence, the task of the DPM strategy is to select the optimal configuration
that matches the activity of a wireless sensor node.

There are, however, two associated challenges in selecting a specific power configuration.

1. Transition between the different power configurations costs extra power.
2. A transition has an associated delay and the potential of missing the occurrence of an

interesting event.

Table 8.3 demonstrates an example DPM strategy with six different power modes:
{P0, P1, P2, P3, P4, P5}. Figure 8.7 shows corresponding potential transitions between five
arbitrary power modes.

Power Management 217

Table 8.3 Power saving configurations

Configuration Processor Memory Sensing subsystem Communication subsystem

P0 Active Active On Transmitting/receiving
P1 Active On On On (transmitting)
P2 Idle On On Receiving
P3 Sleep On On Receiving
P4 Sleep Off On Off
P5 Sleep Off Off Off

Po
w

er

Time

P0

P1

P2

P3

P4

Figure 8.7 Transition between different power modes and the associated transition costs.

The decision for a particular power mode depends on the present as well as the anticipated
task in the queues of the different hardware components. A realistic estimation of future tasks
enables a node to determine the time it needs to put the required components in the right
power mode, so that they can process the tasks with minimum latency. By the same token,
failure to realistically estimate future tasks can cause a node to miss interesting events or to
delay in response.

In a WSN, the events outside of the network (for example, a leak in a pipeline; a fracture
in a structure; a pestilence in a farm; etc.) cannot be modeled as deterministic phenomena.
Otherwise there is no need for setting up a monitoring system. Therefore, estimation of the
arrival of events should be probabilistic. Knowledge of the sensing task can be useful to
establish a realistic probabilistic model for estimating the arrival rate as well as the duration
of events. An accurate event arrival model enables a DPM strategy to decide for the right
configuration that has a long duration and minimal power consumption.

8.2.1.1 Transition Costs

Suppose each subsystem of a wireless sensor node operates in just two different power
modes only, namely, it can be either on or off . Moreover, assume that the transition from
on to off does not have an associated power cost, but the reverse transition (from off to on)

218 Fundamentals of Wireless Sensor Networks

has a cost in terms of both power and a time delay. These costs are justified if the power
it saves in the off state is large enough. In other words, the amount of the off state power
is considerably large and the duration of the off state is long. It is useful to quantify these
costs and to set up a transition threshold.

Suppose the minimum time that a subsystem stays in an off state is toff; the power con-
sumed during this time is Poff; the transition time is toff,on; the power consumed during the
transition is poff,on; and the power consumed in an on state is Pon. Hence:

Poff · toff + Poff,on · toff,on ≥ Pon · (toff + toff,on
)

(8.5)

Therefore, toff is justified if (Chiasserini and Rao 2003):

toff ≥ max

(
0,

(
Pon − Poff,on

) · toff,on

Pon − Poff

)
(8.6)

Equations (8.5) and (8.6) can easily be generalized to describe a subsystem with n distinct
operational power modes, in which case a transition from any state i into j is described as
ti,j . Hence, the transition is justified if Equation (8.7) is satisfied.

tj ≥ max

(
0,

(
Pi − Pj,k

) · ti,j
Pi − Pj

)
(8.7)

where tj is the duration of the subsystem in state j .
The equations above assume that the transition cost from a higher power mode (on) to a

lower power mode (off) is negligible. If this is not the case, the energy that can be saved
through a power transition (from state i to state j , Esaved,j) is expressed as:

Esaved,j = Pi · (tj + ti,j + tj,i
)− (

Pi,j · ti,j + pj,i · tj,i + pj · tj
)

(8.8)

If the transition from state i to state j costs the same amount of power and time delay
as the transition from state j to state i (a symmetric transition cost), Equation (8.8) can be
expressed as:

Esaved,j = Pi · (tj + ti,j + tj,i
)−

(
Pi + Pj

2

) (
ti,j + tj,i

)− (
Pi − Pj

) · tj (8.9)

Obviously, the transition is justified if Esaved,j > 0. This can be achieved in three different
ways, namely, by:

1. increasing the gap between Pi and Pj ;
2. increasing the duration of state j , (tj); and
3. decreasing the transition times, particularly, tj,i .

Power Management 219

8.2.2 Dynamic Scaling

Dynamic voltage scaling (DVS) and dynamic frequency scaling (DFS) are complementary
to the approach discussed in Section 8.2.1. These two approaches aim to adapt the perfor-
mance of the processor core (as well as the memory unit and the communication buses)
when it is in the active state. In most cases, the tasks scheduled to be carried out by the
processor core do not require its peak performance. Rather, some tasks are completed ahead
of their deadline and the processor enters into a low-leakage idle mode for the remaining
time. Figure 8.8 shows a subsystem processing at peak performance. Even though the two
tasks are completed ahead of their schedule, the processor still runs at peak frequency and
supply voltage, which is wasteful.

Figure 8.9 displays the application of dynamic frequency and voltage scaling in which the
performance of the processing subsystem is adapted (reduced) according to the criticality
of the tasks it processes. As can be seen, each task is stretched to its planned schedule while
the supply voltage and the frequency of operation are reduced.

The basic building blocks of the processor subsystem are transistors. Depending on their
operation regions (namely, cut-off, linear, and saturation), transistors are classified into

fnormal

Duration of
task 1

Duration of
task 1

Duration
of task 2

Reserved
for task 1

Reserved
for task 2

Duration
of task 2

Reserved
for task 1

Reserved
for task 2

Vdd (normal)

Figure 8.8 A processor subsystem operating at its peak performance.

220 Fundamentals of Wireless Sensor Networks

fnormal

f2

f1

task 1 task 2

task 1 task 2

Vdd (min)

Vdd

Figure 8.9 Application of dynamic voltage and frequency scaling.

analog and digital (switching) transistors. An analog transistor (amplifier) operates in the
linear amplification region and there is a linear relationship between the input and output of
the transistor. This is expressed as:

vout = A

1 − AB
vin (8.10)

where A is the open loop gain of the amplifier and B is a term that determines the portion
of the output that should be fed back to the input in order to stabilize the amplifier.

A switching transistor, on the contrary, operates in either the cutoff or the saturation
region, making the relationship between the input and the output voltage nonlinear. That
is how the zeros and ones of a digital system are generated, represented or processed. The
transition duration from the cutoff to the saturation region determines how good a transistor
is as a switching element. In an ideal switching transistor, the transition takes place in no
time. In practical transistors, however, the duration is greater than zero. The quality of the
processor depends on, among other things, the switching time.

The switching in turn depends on many factors, one of them being the cumulative capac-
itance effect created in turn between the three joints of the transistors. Figure 8.10 displays
a typical NAND gate made up of CMOS transistors.

Recall that a capacitor is created by two conductors that are separated by a dielectric
material and there is a potential difference between the two conductors. The capacitance
of a capacitor is proportional to the cross-sectional area of the conductors and inversely
proportional to the separating distance.

Power Management 221

−VDD

VB

VA

VA

VB

Vout

+VDD

Figure 8.10 A schematic diagram of a NAND gate based on CMOS technology.

In a switching transistor, at a very high operating frequency, a capacitance is created at the
contact points of the source, gate, and drain, affecting the transistor’s switching response.
The switching time can be approximated by the following equation:

tdelay = Cs · Vdd

Idsat

(8.11)

where Cs is the source capacitance, Vdd is the biasing voltage of the drain, and Idsat is the
saturation drain current.

Switching costs energy and the magnitude of the energy depends on many factors, among
which are the operating frequency and the biasing voltage. Sinha and Chandrakasan (2001)
provide a first-order approximation that can be expressed as:

E(r) = CV02Tsfrefr

[
Vt

V0
+ r

2
+
√

r
Vt

V0
+
(r

2

)2
]

(8.12)

where, C is the average switching capacitance per cycle; Ts is the sampling period; fref is
the operating frequency at Vref; r is the normalized processing rate (r = f/fref); and V0 =
(Vref − Vt)

2/Vref with Vt being the threshold voltage.
From Equation (8.12), it can be deduced that reducing the operating frequency linearly

reduces the energy cost, whereas reducing the biasing voltage reduces the energy cost
quadratically. However, these two quantities cannot be reduced beyond a certain limit. For
example, the minimum operating voltage for a CMOS logic to function properly was first
derived by Swanson and Meindl (1972) and is expressed as:

Vdd,limit = 2 · kT

q
·
[

1 + Cf s

Cox + Cd

]
· ln

(
1 + Cd

Cox

)
(8.13)

where Cf s is the surface state capacitance per unit area; Cox is the gate-oxide capacitance
per unit area; and Cd is the channel depletion region capacitance per unit area. For a

222 Fundamentals of Wireless Sensor Networks

Normalized workload
0 1.0

DPM with
ideal voltage

scaling

Efficient DVS

DPM without voltage scaling1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Figure 8.11 Application of dynamic voltage scaling based on workload estimation (Sinha and Chan-
drakasan 2001).

CMOS logic such as shown in Figure 8.10, Equation (8.13) yields, Vdd,limit = 48 mV at
300K. Finding the optimal voltage limit requires a tradeoff between the switching energy
cost and the associated delay.

8.2.3 Task Scheduling

In a dynamic voltage and frequency scaling, the DPM strategy aims to autonomously deter-
mine the magnitude of the biasing voltage (Vdd) and the clock frequency of the processing
subsystem. The decision for a particular voltage or frequency is based on several factors,
including the application latency requirement and the task arrival rate. Ideally, these two
parameters are adjusted so that a task is completed “just in time”. This way, the processor
does not remain idle and consume power unnecessarily. Practically, however, since the pro-
cessor’s workload cannot be known a priori, the estimation contains error and, as a result,
idle cycles cannot be completely avoided. Comparison between an ideal and real dynamic
voltage scaling strategies is shown in Figure 8.11.

8.3 Conceptual Architecture

A conceptual architecture for enabling a DPM strategy in a wireless sensor node should
address three essential concerns:

1. In attempting to optimize power consumption, how much is the extra workload that
should be produced by the DPM itself?

Power Management 223

2. Should the DPM be a centralized or a distributed strategy?
3. If it is a centralized approach, which of the subcomponents should be responsible for the

task?

A typical DPM strategy monitors the activities of each subsystem and makes decisions
concerning the most suitable power configuration that optimizes the overall power con-
sumption. This decision should reflect the application requirements, nevertheless. Since this
process consumes a certain amount of power, it can be justified if the power that is saved as
a result is significantly large. An accurate DPM strategy requires bench marking to estimate
the task arrival and processing rate.

The decision whether a DPM strategy should be central or distributed depends on several
factors. One advantage of a centralized approach is that it is easier to achieve a global view of
the power consumption of a node and to implement a comprehensible adaptation strategy.
On the other hand, a global strategy can add a computational overhead on the subsystem
that does the management. A distributed approach scales well by authorizing individual
subsystems to carry out local power management strategies. The problem with this approach
is that local strategies may contradict with global goals. Given the relative simplicity of a
wireless sensor node and the quantifiable tasks that should be processed, most existing power
management strategies advocate a centralized solution.

In case of a centralized approach, the main question is which of the subsystems is respon-
sible for handling the task – the processor subsystem or the power subsystem. Intuitively,
the power subsystem should handle the management task, since it has complete information
about the energy reserve of the node and the power budget of each subsystem. However,
it requires vital information, such as the task arrival rate and priority of individual tasks,
from the processing subsystems. Moreover, it needs to have some computational capability.
Presently available power subsystems do not have these characteristics.

Most existing architectures for a wireless sensor node place the processor subsystem at
the center and all the other subsystems communicate with each other through it. Moreover,
the operating system (runtime environment) runs on the processing subsystem, managing,
prioritizing, and scheduling tasks. Subsequently, the processing subsystem can have a more
comprehensive knowledge about the activities of all the other subsystems, and these char-
acteristics make the processing subsystem the appropriate place for executing a DPM.

8.3.1 Architectural Overview

Though the aim of a DPM strategy is to optimize the power consumption of a node, it
should not affect the system’s stability. Furthermore, the application requirements in terms
of the quality of sensed data and latency should be satisfied. Fortunately, in most realistic
situations, a WSN is deployed for a specific task. That task does not change, or changes only
gradually. Therefore, the designer of a DPM has at his or her disposal the architecture of the
wireless sensor node, the application requirements, and the network topology to devise a
suitable strategy. The design space is illustrated in Figure 8.12.

The system’s hardware architecture is the basis for defining multiple operational power
modes and the possible transitions between them. A local power management strategy then
defines rules to describe the behavior of the power mode transition according to a change in
the activity of the node or based on a request from a global (network-wide) power manage-
ment scheme, or from the application. This (see Figure 8.13) can be described as a circular

224 Fundamentals of Wireless Sensor Networks

Application and network
environments

(task arrival rates, priority
of tasks, task deadlines)

Hardware
architecture

(operating points)

Dynamic
power

management
Energy
reserve

Figure 8.12 Factors affecting a dynamic power management strategy.

Energy
monitoring

Task1

Task
scheduling

Power
mode

estimation

Figure 8.13 An abstract architecture for a dynamic power management strategy.

process consisting of three basic operations – energy monitoring, power mode estimation,
and task scheduling.

Figure 8.13 illustrates how dynamic power management can be thought of as a machine
that moves through different states in response to different types of events – tasks are sched-
uled in a task queue, and the execution time and energy consumption of the system are
monitored. Depending on how fast the tasks are completed, a new power budget is esti-
mated and transitions in power modes take place. In case of a deviation in the estimated
power budget from the power mode that can be supported by the system, the DPM strategy
decides the higher level of operating power mode.

Power Management 225

Application

Communication
subsystem

Sensing
subsystem/ADC

Routine network
related tasks

(MAC, routing, etc.)

Processing subsystem

Workload
monitor

Power
subsystem

r

Vdd(r) w flA

lC

lS l

lN

Figure 8.14 A conceptual architecture of a dynamic voltage scaling. (This architecture is the mod-
ified version of the one proposed by Sinha and Chandrakasan in (Sinha and Chandrakasan 2001)).

Figure 8.14 shows an implementation of the abstract architecture of Figure 8.13 to support
dynamic voltage scaling. The processing subsystem receives tasks from the application, the
communication subsystem, and the sensing subsystem. Additionally, it handles internal tasks
pertaining to network management, such as managing a routing table and sleeping schedules.
Each of these sources produces a task at a rate of λi . The overall task arrival rate, λ, is the
summation of the individual tasks arrival rates, λ = ∑

λi . The workload monitor observes
λ for a duration of τ seconds and predicts the task arrival rate for the next β seconds. The
estimated task arrival rate is represented by r in the figure. Based on the newly computed
task arrival rate r , the processing subsystem estimates the supply voltage and the clock
frequency it requires to process upcoming tasks.

Exercises

8.1 Give three reasons why dynamic power management is a crucial concern in wireless
sensor networks.

8.2 What is the difference between local and global power management strategies? Give
an example how a global power management can be realized at the link layer.

8.3 Give two examples for accidental causes of power consumption in wireless sensor
networks.

8.4 How can a local power management strategy achieve an efficient power consumption
in a wireless sensor node?

8.5 What is the main drawback of dynamic power management strategies that are based
on a synchronous sleeping?

8.6 Explain the idea behind power management strategies that are based on an asyn-
chronous sleeping.

226 Fundamentals of Wireless Sensor Networks

8.7 Explain the six different operational modes of the ATmega128L microcontroller.

8.8 What is a refresh rate of an active memory?

8.9 Explain the following terms in the context of RAM timing:

(a) RAS
(b) CAS
(c) tRCD

(d) tCL

8.10 The RAM timing of a certain processor is configured as 2–3–2–6. Explain what it
means.

8.11 Explain briefly how the following DC–DC converters function:

(a) flyback
(b) boost
(c) buck

8.12 What is a rated current capacity?

8.13 Why do real batteries operate at a rate below the rated current capacity?

8.14 What is the side-effect of drawing current at a rate greater than the discharge rate?

8.15 Describe the components of a typical DC–DC converter.

8.16 Suppose the circuit shown in Figure 8.15 is used by a DC–DC converter. At what
frequency is the voltage drop across the load resistor RL maximum?

Vin

RF

CF
RL

i

Vout

+

−

Figure 8.15 A conceptual architecture of a dynamic voltage scaling (Exercise 8.16).

8.17 Why does a transition from low power mode to high power mode cost some power in
the following subsystems:

(a) processor subsystem
(b) communication subsystem

8.18 What conditions justify the power transition costs?

Power Management 227

8.19 Why does the performance of a switching transistor deteriorate at high operation
frequencies?

8.20 How does the cumulative capacitance affect the switching time of a CMOS transistor?

References
Chiasserini, C., and Rao, R. (2003) Improving energy saving in wireless systems by using dynamic power man-

agement. IEEE Transactions on Wireless Communications 2 (5), 1090–1100.
Jiang, X., Taneja, J., Ortiz, J., Tavakoli, A., Dutta, P., Jeong, J., Culler, D., Levis, P., and Shenker, S. (2007) An

architecture for energy management in wireless sensor networks. SIGBED Rev. 4 (3), 31–36.
Sinha, A., and Chandrakasan, A. (2001) Dynamic power management in wireless sensor networks. IEEE Des.

Test 18 (2), 62–74.
Swanson, R., and Meindl, J. (1972) Ion-implanted complementary MoS transistors in low-voltage circuits. IEEE

Journal of Solid State Circuits 7 (2), 146–153.

9
Time Synchronization
In distributed systems, each node has its own clock and its own notion of time. However,
a common time scale among sensor nodes is important to identify causal relationships
between events in the physical world, to support the elimination of redundant sensor data,
and to generally facilitate sensor network operation. Since each node in a sensor net-
work operates independently and relies on its own clock, the clock readings of dif-
ferent sensor nodes will also differ. In addition to these random differences (phase
shifts), the gap between clocks of different sensors will further increase due to the vary-
ing drift rates of oscillators. Therefore, time (or clock) synchronization is required to
ensure that sensing times can be compared in a meaningful way. While time synchro-
nization techniques for wired networks have received a significant amount of attention,
these techniques are unsuitable for wireless sensors because of the unique challenges
posed by wireless sensing environments. These challenges include the potentially large
scale of wireless sensor networks, the necessity for self-configuration and robustness,
the potential for sensor mobility, and the need for energy conservation (Sundararaman
et al. 2005). This chapter introduces techniques for time synchronization that take these
constraints and challenges into consideration.

9.1 Clocks and the Synchronization Problem

Computer clocks based on hardware oscillators are essential components of all computing
devices. A typical clock consists of a quartz-stabilized oscillator and a counter that is
decremented with every oscillation of the quartz crystal. Whenever the counter value
reaches 0, it is reset to its original value and an interrupt is generated. Each interrupt, or
clock tick , increments a software clock (another counter), which can be read and used
by applications using a suitable application programming interface (API). Therefore, a
software clock provides a local time for a sensor node, where C(t) indicates the clock
reading at some real time t . The time resolution is the distance between two increments
(ticks) of the software clock.

Comparing the local times of two nodes, the clock offset indicates the difference
between the times. Synchronization is required to adjust the time of one or both of these
clocks such that their readings match. The clock rate indicates the frequency at which a
clock progresses and the clock skew is the difference in the frequencies of two clocks.
Perfect clocks have a clock rate dC/dt = 1 at all times, but various parameters affect

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd

230 Fundamentals of Wireless Sensor Networks

the actual clock rate, for example, the temperature and humidity of the environment, the
supply voltage, and the age of the quartz. This deviation results in a drift rate, which
expresses the rate by which two clocks can drift apart, that is, dC/dt − 1. The maximum
drift rate of a clock is expressed as ρ with typical values for quartz-based clocks being
1 ppm to 100 ppm (1 ppm = 10−6). This number is given by the manufacturer of the
oscillator and guarantees that

1 − ρ ≤ dC

dt
≤ 1 + ρ (9.1)

Figure 9.1 shows how the drift rate affects the clock reading with respect to real time,
resulting in either a perfect, fast, or slow clock. This drift rate is responsible for incon-
sistencies in sensors’ clock readings even after clocks have been synchronized, making it
necessary to repeat the synchronization process periodically. Assuming identical clocks,
any two clocks that are synchronized can drift from each other at a rate of at most 2ρmax.
To limit the relative offset to δ seconds, the resynchronization interval τsync must meet
the requirement:

τsync ≤ δ

2ρmax
(9.2)

C(t) must be piecewise continuous, that is, a strictly monotone function of time. Therefore,
clock adjustments must be applied gradually, for example, using a linear compensation
function that changes the slope of the local time. The consequences of simply having the
clock jump forward or backward can be significant, for example, when a timer is set to
trigger an interrupt at a certain time that may never occur on a clock that skips ticks due
to the synchronization process.

We distinguish two types of synchronization: external and internal . External synchro-
nization means that the clocks of all nodes are synchronized with an external source of
time (or reference clock). The external reference clock is an accurate real-time standard
such as Coordinated Universal Time (UTC). Internal synchronization means that the

Real Time t

C
lo

ck
 T

im
e

C
(t

)

dC/dt = 1
Perfect clock

dC/dt > 1
Fast clock

dC/dt < 1
Slow clock

Offset

Figure 9.1 Relationship between local time C(t) and real time t .

Time Synchronization 231

clocks of all nodes are synchronized with each other, without the support of an external
reference clock. The goal of internal synchronization is to obtain a consistent view of
time across all nodes in the network, even though this time may be different from any
external reference times. External synchronization ensures both synchronization with an
external source and consistency among all clocks within the network. When nodes are
synchronized to an external reference clock, the accuracy of a clock describes the max-
imum offset of a clock with respect to the reference clock. When nodes in a network
are internally synchronized, the precision indicates the maximum offset between any two
clocks in the network (Kopetz 1997). Note that if two nodes are externally synchronized
with an accuracy of �, they are also internally synchronized with a precision of 2�.

9.2 Time Synchronization in Wireless Sensor Networks

Time synchronization is a required service for many applications and services in
distributed systems in general. Numerous protocols for time synchronization have
been proposed for both wired and wireless systems, for example, the Network Time
Protocol (NTP) (Mills 1991) is a widely deployed, scalable, robust, and self-configurable
synchronization approach. Particularly in combination with the Global Positioning
System (GPS), it has been shown to achieve accuracy in the order of a few microseconds.
However, approaches such as NTP are not suitable for WSNs due to these networks’
unique characteristics and constraints. This section describes a number of reasons time
synchronization in WSNs is necessary and discusses challenges and constraints that must
be met to achieve efficient and robust synchronization of clocks.

9.2.1 Reasons for Time Synchronization

Sensors in a WSN monitor objects in the physical world and report activities and events to
interested observers. For example, proximity detecting sensors, such as magnetic, capac-
itive, or acoustic sensors, trigger an event when a moving object (e.g., a car) passes (see
Figure 9.2). In dense sensor networks, multiple sensors will observe the same activity
and trigger such events. Accurate temporal correlation of these events is crucial to answer
questions such as How many moving objects have been detected?, What is the direction of
the moving object?, and What is the speed of the moving object? As a consequence, it is
important that an observer can establish the correct logical order of events; for example,
when, in Figure 9.2, the real times have the ordering t1 < t2 < t3, the sensor time stamps
must reflect this order, that is, C1(t1) < C2(t2) < C3(t3). Further, to accurately determine
the velocity of the moving object, the time difference between sensor time stamps should
correspond to the time difference of the real times, that is, � = C2(t2) − C1(t1) = t2 − t1.
This is an important requirement for data fusion in WSNs, which is concerned with
the agglomeration of data coming from multiple sensors observing the same or related
events. Further goals of data fusion include the suppression of duplicate sensor infor-
mation, shorter response times to critical events, and reduction of resource requirements
(e.g., energy consumption).

Time synchronization is also necessary for a variety of applications and algorithms
in distributed systems in general, including communication protocols (e.g., at-most-once
message delivery), security (e.g., to limit use of particular keys and to help to detect

232 Fundamentals of Wireless Sensor Networks

t1 < t2 < t3 =>

Real Time t1 Real Time t3Real Time t2

E(C1(t1))

C1(t1) < C2(t2) < C3(t3) ?

E(C2(t2)) E(C3(t3))

Sensor 1 Sensor 2 Sensor 3

Central Observer

Figure 9.2 Detection of speed and direction of moving objects using multiple sensors.

replayed messages in Kerberos-based authentication systems), data consistency (cache
consistency and consistency of replicated data), and concurrency control (atomicity and
mutual exclusion) (Liskov 1993).

Medium-access layer protocols such as time-division multiplexing (TDMA) allow mul-
tiple devices to share access to a common communication medium. Time is divided into
slots that are allocated to wireless devices and each slot belongs to only one wireless
device. The advantages of TDMA-based approaches are the predictability of medium
access (every node is allowed to transmit data during one or more periodically recur-
ring time slot) and the energy-efficiency enabled by this algorithm (a node can enter a
power-saving sleep mode whenever it is not the sender or receiver of data during a slot).
However, to implement TDMA, nodes must share a common view of time, that is, they
need to be aware of the exact beginning and end of each slot.

With respect to energy, many WSNs rely on sleep/wake protocols that allow a network
to selectively switch off sensor nodes or let them enter low-power sleep modes. Here,
temporal coordination among sensors is essential for nodes to know when they can enter
a sleep mode and when to reawake in order to ensure that neighboring nodes overlap in
their wake periods to enable communication among them.

Finally, localization in WSNs is necessary to correctly position sensors or the objects
they monitor. Many localization techniques (described in the next chapter) rely on ranging
technologies to estimate distances between nodes and synchronization is required for
time-of-flight measurements of radio or acoustic signals.

9.2.2 Challenges for Time Synchronization

Traditional time synchronization protocols have been designed for use in wired net-
works and do not consider the challenges inherit to low-cost low-power sensor nodes
and the wireless medium. Similar to wired environments, time synchronization in WSNs

Time Synchronization 233

is exposed to challenges such as clock glitches and varying clock drifts due to changes
in temperature and humidity. However, time synchronization protocols for sensor net-
works must consider an array of additional challenges and constraints, some of which are
discussed in this section.

9.2.2.1 Environmental Effects

Drift rates of clocks may differ with fluctuations in environmental temperature, pressure,
and humidity. While typical wired computers are operated in rather stable environments
(e.g., A/C-controlled cluster rooms or offices), wireless sensors are frequently placed
outdoors and in harsh environments where these fluctuations in ambient properties are
common. In controlled environments, oscillator frequency variations of up to 3 ppm (a
deviation of 1 ppm amounts to an error of approximately 1 second every 12 days) due to
room temperature changes have been reported (Mills 1998). For low-cost sensor nodes
operating outdoors, these variations are likely to be much worse.

9.2.2.2 Energy Constraints

Wireless sensor nodes are typically driven by finite power sources, that is, either dis-
posable or rechargeable (e.g., via solar panels) batteries. Battery replacement can add
significantly to the cost of a WSN, particularly in large-scale networks and when the nodes
are in difficult-to-service locations. Therefore, time synchronization protocols should not
contribute significantly to the energy consumption of wireless nodes to ensure long battery
life times. Since communication among sensor nodes is typically the basis for time syn-
chronization, an energy-efficient synchronization protocol should aim for the minimum
amount of the smallest possible messages necessary to obtain synchronized nodes.

9.2.2.3 Wireless Medium and Mobility

The wireless communication medium is known to be unpredictable and subject to fluctua-
tions in performance due to changes in environmental properties caused by rain, fog, wind,
and temperature (Otero et al. 2001). These fluctuations exacerbate the network throughput
constraints, error rates, and wireless radio interferences experienced by wireless sensor
nodes. Message exchanges between nodes can further be problematic when wireless links
are asymmetric, that is, node A can receive node B’s messages, while node A’s messages
are too weak to be correctly interpreted at node B. In general, the communication path
from sensor node A to node B may differ significantly from the characteristics (delay) of
the path from B to A, thereby resulting in asymmetric communication latencies. Further,
communication interferences in wireless networks depend on the density of the network,
the communication and interference ranges of wireless devices, and the level of activity
of these devices. Numerous wireless sensors are mobile (e.g., mounted onto vehicles or
carried by people), thereby causing significant and rapid changes in topology and connec-
tion quality. Finally, sensor nodes may fail or deplete their batteries, necessitating time
synchronization that continues to remain functional even when network topology or den-
sity changes. In general, the consequence of these challenges is that time synchronization
protocols must be designed for robustness and reconfigurability.

234 Fundamentals of Wireless Sensor Networks

9.2.2.4 Additional Constraints

Besides energy limitations, low-power and low-cost sensor nodes are often constrained in
their processor speeds and memory, further requiring that time synchronization protocols
are lightweight. The small size and cost of sensor devices proscribe the use of large and
expensive hardware to achieve synchronization (e.g., GPS receivers). Therefore, time syn-
chronization protocols should be designed to operate in resource-constrained environments
with little or no addition to the overall cost of a sensor device. Wireless sensor network
deployments are often very large in scale and a synchronization protocol should scale
well with increasing numbers of nodes or network density. Finally, different sensor appli-
cations will have differing requirements on clock accuracy or precision. For example, for
applications such as object tracking, simple event and message ordering (without the help
of external reference clocks) may suffice. However, the required precision may be in the
range of a few microseconds. On the other hand, sensor networks that monitor foot traffic
in public spaces during specific times of the day will require external synchronization,
where a time accuracy in the range of seconds may be sufficient.

9.3 Basics of Time Synchronization

Synchronization is typically based on some sort of message exchange among sensor nodes.
If the medium supports broadcast (as is the case in wireless systems), multiple devices can
be synchronized simultaneously with a low number of messages. This section discusses
the fundamental concepts behind most synchronization techniques.

9.3.1 Synchronization Messages

Most existing time synchronization protocols are based on pairwise synchronization ,
where two nodes synchronize their clocks using at least one synchronization message.
Network-wide synchronization can be achieved by repeating this process among multiple
node pairs until every node in a network has been able to adjust its clock.

9.3.1.1 One-Way Message Exchange

The simplest approach of pairwise synchronization occurs when only a single message
is used to synchronize two nodes, that is, one node sends a time stamp to another node,
illustrated in the left graph of Figure 9.3. Here, node i sends a synchronization message
to node j at time t1, embedding t1 as time stamp into the message. Upon reception of
this message, node j obtains a time stamp t2 from its own local clock. The difference
between the two time stamps is an indicator of the clock offset (between the clocks of
nodes i and j) δ. More accurately, the difference between the two times is expressed as:

(t2 − t1) = D + δ (9.3)

where D is the unknown propagation time. Propagation times in the wireless medium
are very small (a few microseconds) and are often ignored or assumed to be a certain
constant value. Note that using this approach, node j is able to calculate an offset and
adjust its clock to match the clock of node i.

Time Synchronization 235

Node i

Node j

time

time

time

time

t1 t1

t2 t2 t3

t2 = t1 + D + δ t2 = t1 + D + δ
t4 = t3 + D + δ

[t1] [t1] [t1,t2,t3]

D DD

t4

Figure 9.3 Concept of pairwise synchronization.

9.3.1.2 Two-Way Message Exchange

A somewhat more accurate approach is to use two synchronization messages as shown
in the right graph of Figure 9.3. Here, node j responds with a message issued at time t3,
containing time stamps t1, t2, and t3. Upon reception of this second message at time t4,
both nodes are able to determine the clock offset, again assuming a fixed value for the
propagation delay. However, node i is now able to more accurately determine both the
propagation delay and the offset as

D = (t2 − t1) + (t4 − t3)

2
(9.4)

offset = (t2 − t1) − (t4 − t3)

2
(9.5)

Note that this assumes that the propagation delay is identical in both directions and the
clock drift does not change between measurements (which is feasible because of the brief
time span). While only node i has sufficient information to determine the offset, node i

can share the offset value with node j in a third message.

9.3.1.3 Receiver–Receiver Synchronization

A different approach is taken by protocols that apply the receiver–receiver synchronization
principle, where synchronization is based on the time at which the same message arrives
at each receiver. This is in contrast to the more traditional sender–receiver approach
of most synchronization schemes. In broadcast environments, these receivers obtain the
message at about the same time and then exchange their arrival times to compute an
offset (i.e., the difference in reception times indicates the offset of their clocks). Figure 9.4
shows an example of this scheme. If there are two receivers, three messages are needed
to synchronize both receivers. An example of such an approach is the RBS protocol
discussed in Section 9.4.5. Note that the broadcast message does not carry a time stamp,

236 Fundamentals of Wireless Sensor Networks

time
Node i

Node j

time

time

t1

t2
j

t3
j

[t2
j] [t2

k]

t3
k t4

k

t4
j

Node k
t2

k

Figure 9.4 Receiver–receiver synchronization scheme.

instead the arrival times of the broadcast message at the different receivers is used to
synchronize the receivers to each other.

9.3.2 Nondeterminism of Communication Latency

The nondeterminism of the communication latency significantly contributes to the pre-
cision that can be achieved. In general, this latency experienced by synchronization
messages is the sum of several components (Kopetz and Ochsenreiter 1987), as illustrated
in Figure 9.5:

1. Send delay: This is the time spent by the sender to generate the synchronization
message and pass the message to the network interface. This includes delays caused
by operating system behavior (system call interface, context switches), the network
protocol stack, and the network device driver.

2. Access delay: This is the time spent by the sender to access the physical channel and is
mostly determined by the medium access control (MAC) protocol in use. Contention-
based protocols such as IEEE 802.11’s CSMA/CA must wait for an idle channel before

Sender

Receiver

time

time

Access

Receive

Initiate synchronization
message

Propagation

Send

Receive and process
synchronization message

Synchronization Message Delay

Figure 9.5 End-to-end delay experienced by a synchronization message.

Time Synchronization 237

access is allowed. When multiple devices access the channel at the same time, colli-
sions occur that cause further delays (e.g., through the exponential backoff mechanism
used in many MAC protocols). More predictable delays are experienced by protocols
based on time-division (TDMA), where a device must wait for its periodic slot before
transmission can occur.

3. Propagation delay: The actual time needed for the message to travel from the sender
to the receiver is called propagation delay. When the nodes share the same physical
medium, propagation delays are very small and are often negligible in critical path
analysis.

4. Receive delay: This is the time spent by the receiver device to receive the message
from the medium, to process the message, and to notify the host of its arrival. Host
notification typically occurs via interrupts, at which the local time (i.e., the message
arrival time) can be read. As a consequence, the receive time tends to be much smaller
than the send time.

Many synchronization schemes for WSNs apply low-level techniques aimed at reducing
the amount or variation of some of these components. For example, MAC-layer time
stamping can reduce the send and receive delays on the sender and receiver, respectively.

9.4 Time Synchronization Protocols

Numerous time synchronization protocols for WSNs have been developed, where most
of them are based on some variations of the message exchange concepts described in the
previous section. This section provides an overview of some representative schemes and
protocols.

9.4.1 Reference Broadcasts Using Global Sources of Time

The Global Positioning System (GPS) continuously broadcasts time measured from an
epoch started at 0h 6 January, 1980 UTC. However, unlike UTC, GPS is not perturbed by
leap seconds and is therefore ahead of UTC by an integer number of seconds (15 seconds
as of 2009). Even inexpensive GPS receivers can receive GPS time with a precision of
200 ns (Dana 1997; Mannermaa et al. 1999). Time signals are also being transmitted by
terrestrial radio stations, for example, the National Institute of Standards and Technol-
ogy uses radio stations WWV/WWVH and WWVB (Lichtenecker 1997) to continuously
broadcast time based on atomic clocks. However, such approaches exhibit a number of
challenges that prohibit their use for many WSNs. For example, GPS is not ubiquitously
available (underwater, indoors, under dense foliage, during Mars exploration), requires a
relatively high-power receiver which may not be feasible for tiny low-cost sensor nodes,
and may be too large and costly to be added to small sensor nodes. However, many sensor
networks are hierarchical systems consisting of low-power sensor devices, but also more
powerful devices that often serve as gateways or cluster heads. These devices may be able
to support GPS or radio receivers, turning these nodes into master clocks that can be used
to synchronize the rest of the network with any of the other sender–receiver approaches
described in this section.

238 Fundamentals of Wireless Sensor Networks

time
Node j

time
Node k

[t1]

t1

t2 t3

t4

[t1, t2, t3]

Figure 9.6 Pairwise synchronization with LTS.

9.4.2 Lightweight Tree-Based Synchronization

The primary goal of the Lightweight Tree-Based Synchronization (LTS) protocol (Van
Greunen and Rabaey 2003) is to provide a specified precision (instead of a maximum
precision) with as little overhead as possible. LTS can be used with different algorithms for
both centralized and decentralized multi-hop synchronization. To understand the approach
taken by LTS, let us first consider the message exchange for the synchronization of a pair
of nodes. Figure 9.6 shows a graphical depiction of this scheme. First, node j transmits
a synchronization message time-stamped with the transmission time t1 to node k. Upon
arrival of this message at node k at time t2, node k responds with a message carrying a
time stamp t3 and the previously recorded times t1 and t2. This message is received by
node j at time t4. Note that times t1 and t4 are based on node j ’s clock, whereas times t2
and t3 are recorded using the clock of node k. Assuming a transmission delay D (which is
further assumed to be the same in both directions) and an unknown clock offset between
the clocks of nodes j and k, time t2 of node k is equal to t1 + D + offset. Similarly, t4
is then equal to t3 + D − offset. The offset can then be calculated as:

offset = t2 − t4 − t1 + t3

2
(9.6)

The centralized multi-hop version of LTS is based on a single reference node that is the
root of a spanning tree comprising all nodes of the network. In order to maximize
the synchronization accuracy, the depth of the tree should be minimized. This is due
to the fact that the errors resulting from the pairwise synchronizations are additive and
therefore increase along the branches of the tree as a function of the number of hops. In
LTS, a tree construction algorithm such as breadth first search is executed each time the
synchronization algorithm is executed. Once the tree has been established, the reference
node initiates the synchronization by performing the pairwise synchronization with each
of its children. Once synchronized, each child repeats this step with its own children
until all nodes of the tree have been synchronized. Pairwise synchronization has a fixed
overhead of 3 messages, therefore if a tree has n edges, the total message overhead is
3n − 3.

The distributed multi-hop version of LTS does not require the construction of a spanning
tree and the synchronization responsibility is moved from the reference node to the sensor
nodes themselves. This version assumes the presence of one or more reference nodes,
which are contacted by a sensor node whenever the sensor node requires synchronization.
The decentralized approach allows nodes to determine their own desired resynchronization
period. That is, nodes determine their resynchronization period based on their desired clock

Time Synchronization 239

accuracy, the distance (in number of hops) from the nearest reference node, their clock drift
ρ, and the time of their last synchronization. Finally, to eliminate potential inefficiencies,
the distributed version of LTS strives to eliminate duplicate requests of neighboring nodes.
Toward this end, a node can query its neighbors for pending synchronization requests
and, if there are any, the node synchronizes with the one-hop neighbor instead of the
reference node.

9.4.3 Timing-sync Protocol for Sensor Networks

The Timing-sync Protocol for Sensor Networks (TPSN) (Ganeriwal et al. 2003) is another
traditional sender–receiver synchronization approach that uses a tree to organize a net-
work. TPSN uses two phases for synchronization: the level discovery phase (executed
during network deployment) and the synchronization phase.

9.4.3.1 Level Discovery Phase

The goal of this phase is to create a hierarchical topology of the network, where each node
is assigned a level, with the root node (e.g., a GPS-equipped gateway to the external world)
residing on level 0. The root node initiates this phase by broadcasting a level_discovery

message that contains the level and the unique identity of the sender. Every immediate
neighbor of the root node uses this message to identify its own level (i.e., level 1) and
rebroadcasts the level_discovery message with its own identity and level. This process
is repeated until every node in the network has identified its level. When a node receives
multiple broadcasts from its neighbors, it simply discards them once it has established
its level in the hierarchical structure. Situations may occur where nodes do not have an
assigned level, for example, when MAC-layer collisions prevent a node from receiving
a level_discovery message or when a node joins a network that has already concluded
its level discovery phase. In this case, a node can issue a level_request message to its
neighbors who reply with their assigned levels. Then, the node assigns itself a level that
is one greater than the smallest level received from its neighbors. Node failures can be
handled in the same way, that is, when a node at level i realizes that it does not have any
neighbors at level i − 1 (through the communication steps in the synchronization phase
described next), it also issues a level_request message to reinsert itself into the structure.
Finally, if the root node dies, instead of issuing level_request messages, nodes in level 1
execute a leader election algorithm, which then restarts TPSN by beginning a new level
discovery phase.

9.4.3.2 Synchronization Phase

During the synchronization phase, TPSN employs pairwise synchronization along the
edges of the hierarchical structure established in the previous phase, that is, each i level
node synchronizes its clock with nodes on level i − 1. The pairwise synchronization of
TPSN shows similarity to the approach taken by LTS. A node j issues a synchronization
pulse at time t1, containing the node’s level and a time stamp. This message is received
by node k at time t2 and node k responds with an acknowledgment at time t3 (containing
time stamps t1, t2, t3, and node k’s level). Finally, this packet is received by node j at

240 Fundamentals of Wireless Sensor Networks

time t4. As with LTS, TPSN assumes that the propagation delay D and the clock offset
do not change during the brief span of time. Since t1 and t4 are measured using node j ’s
clock and t2 and t3 are measured using node k’s clock, these times have the following
relationships: t2 = t1 + D + offset and t4 = t3 + D − offset. Based on these parameters,
node j can calculate both the drift and propagation delay as:

D = (t2 − t1) + (t4 − t3)

2
(9.7)

offset = (t2 − t1) − (t4 − t3)

2
(9.8)

The synchronization phase is initiated by the root node issuing a time_sync packet.
After waiting for some random time (to reduce contention during medium access), nodes
in level 1 initiate the two-way message exchange with the root node. Once a node in
level 1 receives an acknowledgment from the root, it computes its offset and adjusts its
clock. Nodes on level 2 will overhear the synchronization pulses issued by their level 1
neighbors and after a certain backoff time they initiate their pairwise synchronization
with nodes in level 1. The backoff time is necessary to give level 1 nodes time to receive
and process the acknowledgment of their own synchronization pulses. This process is
continued throughout the hierarchical structure until all nodes have synchronized to the
root node.

Similar to LTS, the synchronization error of TPSN depends on the depth of the hierar-
chical structure and the end-to-end latencies experienced by messages during the pairwise
synchronization. To minimize these latencies and to reduce the error, TPSN relies on
time-stamping of packets at the MAC layer.

9.4.4 Flooding Time Synchronization Protocol

The goals of the Flooding Time Synchronization Protocol (FTSP) (Maróti et al. 2004) are
to achieve network-wide synchronization with errors in the microsecond range, scalability
up to hundreds of nodes, and robustness to changes in network topology including link
and node failures. FTSP differs from other solutions in that it uses a single broadcast
to establish synchronization points between sender and receivers while eliminating most
sources of synchronization error. Toward this end, FTSP expands on the delay analysis
described in Section 9.3 and decomposes the end-to-end delay into the components shown
in Figure 9.7. In this analysis, the wireless radio of the sensor node informs the CPU
using an interrupt at time t1 that it is ready to receive the next piece of the message to
be transmitted. After the interrupt handling time d1, the CPU generates a time stamp at
time t2. The time needed by the radio to encode and transform the piece of the message
into electromagnetic waves is described as encoding time d2 (between t1 and t3). The
propagation delay (between t3 on node j ’s clock and t4 on node k’s clock) is followed by
the decoding time d4 (between t4 and t5). This is the time the radio requires to decode the
message from electromagnetic waves back into binary data. The byte alignment time d5 is
a delay caused by the different byte alignments (bit offsets) of nodes j and k, that is, the
receiving radio has to determine the offset from a known synchronization byte and then

Time Synchronization 241

d6: interrupt handling
t1 t3

t7

t6t5t4

t2

Node i

Node j

time

time

d1

d2

d3

d4 d5 d6

d1: interrupt handling
d2: encoding
d3: propagation
d4: decoding
d5: byte alignment

Figure 9.7 End-to-end delay of synchronization message.

shift the incoming message accordingly. Finally, the radio on node k issues an interrupt
at time t6, which allows the CPU to obtain a final time stamp at time t7.

The impact of these delays on the overall end-to-end delay varies significantly, for
example, the propagation delay (d3) is typically small (< 1 µs) and deterministic. Simi-
larly, the encoding and decoding times (d2 and d4) are also deterministic and in the low
hundreds of microseconds. The byte alignment delay (d5) depends on the bit offset and
also reaches several hundreds of microseconds. Finally, the interrupt handling time (d1

and d6) is nondeterministic and is typically a few microseconds.

9.4.4.1 Time-Stamping in FTSP

In FTSP, a sender synchronizes one or more receivers with a single radio broadcast, where
the broadcast message contains the sender’s time stamp (which is the estimated global
time at the transmission of a given byte of the message). Upon arrival, a receiver extracts
the time stamp from the message and time stamps the arrival using its own local clock.
The global–local time pair provides a synchronization point . The sender’s time stamp
must be embedded into the currently transmitted message, therefore the time stamping
must occur before the bytes containing the time stamp are transmitted over the medium. In
FTSP, the synchronization message begins with a number of preamble bytes followed by
several SYNC bytes, a data field, and a cyclic redundancy check (CRC) for error detection
(Figure 9.8). The preamble bytes are used to synchronize the receiver radio to the carrier
frequency and the SYNC bytes are used to calculate the bit offset, which is needed to
correctly reassemble the message. FTSP uses multiple time stamps at both the sender
and the receiver to reduce the jitter of interrupt handling and encoding/decoding times.
These time stamps are recorded at each byte boundary after the SYNC bytes as they are
transmitted or received. The time stamps are normalized by subtracting an appropriate
integer multiple of the nominal byte transmission time (e.g., approximately 417 µs on
Mica2 platforms). The jitter caused by the interrupt handling time can be removed by
taking the minimum of these normalized time stamps. Further, the jitter caused by the

242 Fundamentals of Wireless Sensor Networks

Receiver

. . .0 1 2 3 4 5 6 7

. . .0 1 2 3 4 5 6 7

Data CRCSYNCPreamble

bit offset

byte

Sender

Figure 9.8 Synchronization message format and bit offset between sender and receiver.

encoding and decoding steps can be reduced by averaging these corrected normalized
time stamps. Only the final (error-corrected) time stamp is added into the data part of
the message. At the receiver side, the time stamp must be further corrected by the byte
alignment time (which can be determined from the transmission speed and the bit offset).

9.4.4.2 Multi-Hop Synchronization

Similar to TPSN, FTSP relies on an elected synchronization root to synchronize the
network, where root election is based on unique node IDs (i.e., the node with the lowest
ID is elected as the root node). The root node maintains the global time and all other nodes
in the network synchronize their clocks to that of the root. Synchronization is triggered
through a broadcast message by the root node containing its time stamp. All nodes within
the communication range of the root can establish synchronization points directly from
the broadcast message. Other nodes collect synchronization points from broadcasts of
synchronized nodes that are closer to the root.

Similar to TPSN, FTSP relies on a root election algorithm to ensure that there is exactly
one synchronization root in the network. Every broadcast message contains the unique ID
of the root (rootID) and a sequence number (besides the already discussed time stamp).
Whenever a node does not receive a synchronization message for a certain amount of
time, it declares itself to be the new root. Whenever a node receives a synchronization
message with a rootID lower than its own ID, it gives up its root status. A new node
joining a network with a lower ID than the rootID will not immediately declare itself as
root, but instead wait for a certain period of time to collect synchronization messages and
adjust its own clock to the current global time. These techniques ensure that TPSN can
handle network topology changes, including mobile nodes.

9.4.5 Reference-Broadcast Synchronization

The Reference-Broadcast Synchronization (RBS) protocol (Elson et al. 2002) relies on
broadcast messages among a set of receivers to synchronize them with each other. In the
wireless medium, broadcast messages will arrive at multiple receivers at approximately
the same time. The variability in message delay will be dominated by the propagation

Time Synchronization 243

delays and the time needed by the receivers to receive and process the incoming broadcast
message. The strength of RBS lies in the removal of nondeterministic synchronization
errors caused by the sender. Since all synchronization methods are based on some form of
message exchange, the nondeterministic delays experienced by these messages limit the
granularity of time synchronization that can be obtained. Figure 9.9 compares the critical
paths of traditional synchronization protocols with RBS (Elson et al. 2002). Exploiting
the broadcast nature of the wireless medium, the send delay and access delay of broadcast
messages are identical for both receivers, that is, their actual message arrival times will
differ only due to variations of the propagation and receive delays. As a consequence,
the RBS critical path is much shorter than the critical path of traditional synchronization
techniques.

For example, in a scenario with two receivers, each receiver will record when a beacon
was received (using their local clocks). Next, the two receivers exchange their recorded
information, allowing them to calculate an offset (i.e., the difference of the local bea-
con arrival times). With more than two receivers, the maximum phase error between
all receiver pairs is expressed as group dispersion . Increasing the number of receivers
increases the likelihood that at least one receiver will be poorly synchronized, leading to
larger group dispersion. On the other hand, increasing the number of reference broadcasts
can decrease the group dispersion. The reason for this is that a receiving node may expe-
rience variations in the receive time of messages and using multiple reference broadcasts
can increase the synchronization precision. That is, a receiver j can compute its offset to
any other receiver i as the average of phase offsets for all m packets received by receivers
i and j :

offset[i, j] = 1

m

m∑
k=1

(Tj,k − Ti,k) (9.9)

RBS Critical Path

Sender

Receiver B

Receiver A

time

time

time

Send Delay Access Delay

Propagation
Delay

Receive Delay

Critical Path

Figure 9.9 Critical path analysis for synchronization message exchanges.

244 Fundamentals of Wireless Sensor Networks

RBS can be extended to multi-hop scenarios by establishing multiple reference beacons,
each with its own broadcast domain. These domains can overlap and nodes within over-
lapping regions serve as bridges to allow synchronization across domains. For example,
if nodes A and B are in range of reference node C and nodes C and D are in range of
reference E, C is the bridge node between the two broadcast domains.

The extensive amount of message exchanges needed to synchronize sensor nodes
appears to make RBS a costly synchronization technique. However, RBS is a candi-
date protocol for a synchronization scheme called post-facto synchronization (Elson and
Estrin 2001). Here, nodes do not synchronize with each other until an event of interest
happens. If synchronization occurs quickly after such an event occurs, sensor nodes can
reconcile their clocks only when required, thereby preventing them from wasting energy
on unnecessary synchronization messages.

9.4.6 Time-Diffusion Synchronization Protocol

The Time-Diffusion Synchronization (TDP) protocol (Su and Akyildiz 2005) allows a
sensor network to reach an equilibrium time, that is, nodes agree on a network-wide time
and maintain their clocks within a small bounded deviation from this equilibrium. Nodes
in the network dynamically structure themselves in a tree-like configuration using two
types of elected roles: master nodes and diffused leader nodes . TDP’s Time Diffusion Pro-
cedure (TP) is responsible for diffusing timing information messages from master nodes
to their neighboring nodes, some of which become diffused leader nodes responsible for
further propagating the master nodes’ messages. TDP distinguishes between two phases
of operation: during the active phase, master nodes are elected every τ seconds (based
on an Election/Reelection Procedure or ERP) such that the workload in the network is
balanced and the network is able to agree on an equilibrium time. Every active phase is
followed by an inactive phase where no time synchronization takes place. Every inter-
val of τ seconds is further divided into intervals of δ seconds, each beginning with the
election of diffused leader nodes. The ERP eliminates leaf nodes and nodes whose clocks
deviate from their neighboring clocks by more than a certain threshold value. This is
achieved through message exchanges of neighboring nodes, allowing them to compare
their clock readings. Further, the ERP ensures that master node and diffused leader node
election considers the energy status of the sensor nodes.

Figure 9.10 illustrates the concept of synchronization with TDP. First, an elected master
node broadcasts a timing information message to its neighbors. All diffused leader nodes

J

I

A

B

C

D

E

F

G

H
Master Node

Diffused Leader Node

Figure 9.10 Concept of synchronization with TDP (with n = 2 for both masters).

Time Synchronization 245

receiving this message (in the figure, nodes C and D are diffused leader nodes for node A)
respond with an ACK message, allowing the master node to determine a round-trip delay
�j for each neighbor j , an estimated one-way delay for all neighbors (�/2 where � is
the average of all round-trip delays), and the standard deviation of the round-trip delays.
The standard deviation is sent in another time-stamped message from the master node to
each neighboring diffused leader node. A diffused leader node adjusts its clock using the
time stamp, the one-way delay estimation, and the standard deviation, and then repeats
this diffusion process with its neighbors. The process is continued for n times, where n is
the distance from the master node in terms of hops (e.g., in Figure 9.10, n = 2). Nodes
that receive timing information messages from multiple master nodes use the standard
deviations as weighted ratio of their time contribution to the adjusted time.

9.4.7 Mini-Sync and Tiny-Sync

Two closely related protocols, called Mini-sync and Tiny-sync, provide pairwise syn-
chronization (that can be used as basic building blocks to synchronize an entire sensor
network) with low bandwidth, storage, and processing requirements (Yoon et al. 2007).
The relationship of the clocks of two nodes in a sensor network can be expressed as:

C1(t) = a12C2(t) + b12 (9.10)

where a12 expresses the relative drift and b12 the relative offset between the clocks of
nodes 1 and 2. In order to determine this relationship, nodes can use the two-way messag-
ing scheme described in Section 9.3.1, for example, node 1 sends a time-stamped probe
message at time t0 to node 2 and node 2 responds immediately with a time-stamped
reply message at time t1. Node 1 records the arrival time of the second message (t2) to
obtain a 3-tuple of time stamps (t0, t1, t2), which is called a data point . Since t0 happened
before t1 and t1 happened before t2, the following inequalities should hold:

t0 < a12t1 + b12 (9.11)

t2 >a12t1 + b12 (9.12)

This procedure is repeated multiple times, resulting in a series of data points and new
constraints on the admissible values of a12 and b12 (thereby increasing the precision of
the algorithms).

The two versions of the protocol are based on the observation that not all data points
are useful. Every data point results in two constraints for the relative drift and offset. The
Tiny-sync algorithm maintains only four of these constraints, that is, whenever a new data
point has been obtained, the current four and the two new constraints are compared and
only the four constraints that result in the best estimates of offset and drift are kept. A
downside of this approach is that constraints may be eliminated that may provide better
estimates if combined with other data points that have yet to occur. Therefore, the Mini-
sync protocol only discards a data point if it is certain that this data point will be useless.
This results in larger computational and storage costs compared to Tiny-sync, but the
advantage is an increased precision.

246 Fundamentals of Wireless Sensor Networks

Exercises

9.1 Why is time synchronization needed in a WSN? Name at least three concrete
examples.

9.2 Explain the difference between external and internal time synchronization and name
at least one concrete example for each type of synchronization.

9.3 Consider two nodes, where the current time at node A is 1100 and the current time
at node B is 1000. Node A’s clock progresses by 1.01 time units once every 1 s and
node B’s clock progresses by 0.99 time units once every 1 s. Explain the terms clock
offset, clock rate, and clock skew using this concrete example. Are these clocks fast
or slow, and why?

9.4 Assume that two nodes have a maximum drift rate from the real time of 100 ppm
each. Your goal is to synchronize their clocks such that their relative offset does not
exceed 1 s. What is the necessary resynchronization interval?

9.5 You need to design a wireless sensor node and you have three choices for clocks
with maximum drift rates of ρ1 = 1 ppm, ρ2 = 10 ppm, and ρ3 = 100 ppm. Clock
1 costs significantly more than clock 2, which in turn costs significantly more than
clock 3. Explain why one would choose clock 1 instead of clock 2 or clock 3 and
vice versa.

9.6 A network of five nodes is synchronized to an external reference time with maximum
errors of 1, 3, 4, 1, and 2 time units, respectively. What is the precision that can be
obtained in this network?

9.7 Node A sends a synchronization request to node B at 3150 (on node A’s clock). At
3250, node A receives the reply from node B with a time stamp of 3120.

(a) What is node A’s clock offset with respect to the time at node B (you can ignore
any processing delays at either node)?

(b) Is node A’s clock going too slow or too fast?
(c) How should node A adjust the clock?

9.8 Node A issues a synchronization request simultaneously to nodes B, C, and D
(Figure 9.11). Assume that nodes B, C, and D are all perfectly synchronized to each
other. Explain why the offsets between node A and the three other nodes may still
differ.

9.9 Describe the reasons for nondeterminism of communication latencies and why this
nondeterminism affects time synchronization.

9.10 Explain why the depth of the synchronization tree in centralized LTS should be
small.

9.11 Discuss the differences and similarities in the design of the TPSN and the LTS
synchronization protocols.

9.12 Explain the six different types of time stamps that characterize the communication
in FTSP. How does FTSP remove the jitter of the interrupt handling and the encod-
ing/decoding times?

Time Synchronization 247

Node B

t1 t4(D)t4(C)t4(B)

t3(B)t2(B)

t3(C)t2(C)

t3(D)t2(D)

Node A

Node C

Node D

Figure 9.11 Pair-wise synchronization with multiple neighboring nodes (Exercise 9.8).

9.13 Explain the concept behind the RBS protocol. How can RBS be extended to work
in multi-hop scenarios?

9.14 Describe the term “post-facto synchronization”.

9.15 Compare the TPSN and RBS time synchronization protocols.

9.16 Compare the broadcast approach used by RBS with the pair-wise synchronization
approach by TPSN and other protocols for the following scenarios:

(a) synchronization messages experience send and access delays with high variance
and all other delays are negligible;

(b) synchronization messages are sent using acoustic signals and the distances
between nodes are unknown;

(c) synchronization messages experience send and access delays without variance
and all other delays are negligible;

(d) synchronization messages experience significant receive delays that may differ
from node to node.

9.17 Two nodes A and B use RBS to receive periodic acoustic synchronization signals
from a reference node. Node A’s clock shows 10 s when it receives the last syn-
chronization beacon, while node B’s clock shows 15 s. Node A detects an event at
time 15 s, while node B detects the same event at time 19.5 s. Assume that node A
is 100 m away from the synchronization source and node B is 400 m away from the
synchronization source. Which node detected the event sooner and by how much?
Assume a signal speed of 300 m/s.

References
Dana, P.H. (1997) Global Positioning System (GPS) time dissemination for real-time applications. Real-Time

Systems 12 (1), 9–40.

Elson, J., and Estrin, D. (2001) Time synchronization for wireless sensor networks. Proc. of the 15th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS).

Elson, J., Girod, L., and Estrin, D. (2002) Fine-grained network time synchronization using reference broadcasts.
Proc. of the 5th Symposium on Operating Systems, Design, and Implementation .

248 Fundamentals of Wireless Sensor Networks

Ganeriwal, S., Kumar, R., and Srivastava, M. B. (2003) Timing-sync protocol for sensor networks. Proc. of the
1st International Conference on Embedded Networked Sensor Systems .

Kopetz, H. (1997) Real-Time Systems: Design Principles for Distributed Embedded Applications . The Interna-
tional Series in Engineering and Computer Science: Springer.

Kopetz, J., and Ochsenreiter, W. (1987) Clock synchronization in distributed real-time systems. IEEE Trans-
actions on Computers 36 (8), 933–939.

Lichtenecker, R. (1997) Terrestrial time signal dissemination. Real-Time Systems 12 (1), 41–61.
Liskov, B. (1993) Practical uses of synchronized clocks in distributed systems. Distributed Computing 6 (4),

211–219.
Mannermaa, J., Kalliomäki, K., Mansten, T., and Turunen, S. (1999) Timing performance of various GPS

receivers. Proc. of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE Inter-
national Frequency Control Symposium .

Maróti, M., Kusy, B., Simon, G., and Lédeczi, A. (2004) The flooding time synchronization protocol. Proc. of
the 2nd International Conference on Embedded Networked Sensor Systems .

Mills, D.L. (1991) Internet time synchronization: The network time protocol. IEEE Transactions on Communi-
cations 39 (10), 1482–1493.

Mills, D.L. (1998) Adaptive hybrid clock discipline algorithm for the network time protocol. IEEE/ACM
Transactions on Networking (TON) 6 (5), 505–514.

Otero, J., Yalamanchili, P., and Braun, H.W. (2001) High performance wireless networking and weather . White
Paper, University of California at San Diego. Available online (6 pages).

Su, W., and Akyildiz, I.F. (2005) Time-diffusion synchronization protocol for wireless sensor networks.
IEEE/ACM Transactions on Networking (TON) 13 (2), 384–397.

Sundararaman, B., Buy, U., and Kshemkalyani, A.D. (2005) Clock synchronization for wireless sensor networks:
A survey. Ad Hoc Networks 3 (3), 281–323.

Van Greunen, J., and Rabaey, J. (2003) Lightweight time synchronization for sensor networks. Proc. of the
International Workshop on Wireless Sensor Networks and Applications .

Yoon, S., Veerarittiphan, C., and Sichitiu, M.L. (2007) Tiny-sync: Tight time synchronization for wireless sensor
networks. ACM Transactions on Sensor Networks (TOSN).

10
Localization
Sensors monitor phenomena in the physical world and the spatial relationships between them
and the objects and events of the physical world are an essential component of the sensor
information. Without knowing the position of a sensor node, its information will only tell
part of the story. For example, sensors deployed in a forest to raise alarms whenever wildfires
occur gain significantly in value if they are able to report the spatial relationship between
them and the monitored event. Further, accurate location information is needed for various
tasks such as routing based on geographic information, object tracking, and location-aware
services. Localization is the task of determining the physical coordinates of a sensor node
(or a group of sensor nodes) or the spatial relationships among objects. It comprises a set
of techniques and mechanisms that allow a sensor to estimate its own location based on
information gathered from the sensor’s environment. While the Global Positioning System
(GPS) is undoubtedly the most well-known location-sensing system, it is not accessible in
all environments (e.g., indoors or under dense foliage) and may incur resource costs unac-
ceptable for resource-constrained wireless sensor networks (WSNs). Therefore, this chapter
discusses various techniques and case studies for localization and location services targeted
at WSNs.

10.1 Overview

Wireless sensor networks are often deployed in an ad hoc fashion, that is, their location is
not known a priori. Localization is necessary to provide a physical context to sensor read-
ings, for example, in many applications such as environmental monitoring, sensor readings
without knowledge of the location where the readings were obtained are meaningless. Loca-
tion information is further necessary for services such as intrusion detection, inventory and
supply chain management, and surveillance. Finally, localization is fundamental for sen-
sor network services that rely on the knowledge of sensor positions, including geographic
routing (Stojmenovic 2002) and coverage area management (Siqueira et al. 2007).

The location of a sensor node can be expressed as a global or relative metric. A global
metric is used to position nodes within a general global reference frame, for example, as pro-
vided by the GPS (longitudes and latitudes) and the Universal Transverse Mercator (UTM)
coordinate systems (zones and latitude bands). In contrast, relative metrics are based on arbi-
trary coordinate systems and reference frames, for example, a sensor’s location expressed
as distances to other sensors without any relationship to global coordinates. Two impor-
tant qualities of localization information are the accuracy and precision of a position. For

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd

250 Fundamentals of Wireless Sensor Networks

example, for a GPS sensor indicating a position that is true within 10 m for 90% of all
measurements, the accuracy of the GPS reading is 10 m (how close is the reading to the
ground truth?) and the precision is 90% (how consistent are the readings?). Apart from
these physical positions discussed so far, many applications (e.g., indoor tracking systems)
may only require symbolic locations (Hightower and Borriello 2001) such as “office 354”,
“mile marker 17 on Highway 23”, or “bathroom”.

While it may be infeasible for all sensor nodes in a WSN to have knowledge of their
global coordinates, many sensor networks rely on a subset of nodes that know their global
positions. These anchor nodes are then used by all other nodes to perform localization. Tech-
niques that rely on such anchors are called anchor-based localization (as opposed to anchor-
free localization). A large number of localization techniques (including many anchor-based
approaches) are based on range measurements, that is, estimations of distances between
several sensor nodes. These techniques, called range-based localization techniques, require
sensors to monitor measurable characteristics such as received signal strengths of wireless
communications or time difference of arrival of ultrasound pulses. The following sections
discuss the basics of different localization techniques based on these concepts.

10.2 Ranging Techniques

The foundation of numerous localization techniques is the estimation of the physical dis-
tance between two sensor nodes. Estimates are obtained through measurements of certain
characteristics of the signals exchanged between the sensors, including signal propagation
times, signal strengths, or angle of arrival.

10.2.1 Time of Arrival

The concept behind the time of arrival (ToA) method (also called time of flight method)
is that the distance between the sender and receiver of a signal can be determined using
the measured signal propagation time and the known signal velocity. For example, sound
waves travel 343 m/s (in 20 ◦C), that is, a sound signal takes approximately 30 ms to travel
a distance of 10 m. In contrast, a radio signal travels at the speed of light (about 300 km/s),
that is, the signal requires only about 30 ns to travel 10 m. The consequence is that radio-
based distance measurements require clocks with high resolution, adding to the cost and
complexity of a sensor network. The one-way time of arrival method measures the one-way
propagation time, that is, the difference between the sending time and the signal arrival time
(Figure 10.1(a)), and requires highly accurate synchronization of the clocks of the sender and

(c)

t1

t2 t3

t4t1

t2t2

t1

t2

t3

t4

v1 v2

Node i

Node j

(a) (b)

Figure 10.1 Comparison of different ranging schemes (one-way ToA, two-way ToA, and TDoA).

Localization 251

receiver. Therefore, the two-way time of arrival method is preferred, where the round-trip
time of a signal is measured at the sender device (Figure 10.1(b)). In summary, for one-way
measurements, the distance between two nodes i and j can be determined as:

distij = (t2 − t1) × v (10.1)

where t1 and t2 are the sending and receive times of the signal (measured at the sender and
receiver, respectively) and v is the signal velocity. Similarly, for the two-way approach, the
distance is calculated as:

distij = (t4 − t1) − (t3 − t2)

2
× v (10.2)

where t3 and t4 are the sending and receive times of the response signal. Note that with one-
way localization, the receiver node calculates its location, whereas in the two-way approach,
the sender node calculates the receiver’s location. Therefore a third message will be neces-
sary in the two-way approach to inform the receiver of its location.

10.2.2 Time Difference of Arrival

The time difference of arrival (TDoA) approach uses two signals that travel with different
velocities (Figure 10.1(c)). The receiver is then able to determine its location similar to
the ToA approach. For example, the first signal could be a radio signal (issued at t1 and
received at t2), followed by an acoustic signal (either immediately or after a fixed time
interval twait = t3 − t1). Therefore, the receiver can determine the distance as:

dist = (v1 − v2) × (t4 − t2 − twait) (10.3)

TDoA-based approaches do not require the clocks of the sender and receiver to be synchro-
nized and can obtain very accurate measurements. The disadvantage of the TDoA approach
is the need for additional hardware, for example, a microphone and speaker for the above
example.

Another variant of this approach uses TDoA measurements of a single signal to estimate
the location of the sender using multiple receivers with known locations. The propagation
delay di for the signal to receiver i depends on the distance between sender and receiver i.
Correlation analysis can then provide a time delay δ = di − dj which corresponds to the
difference in path length to receivers i and j (Gustafsson and Gunnarsson 2003). The main
disadvantage of this approach is that the clocks of the receivers must be tightly synchronized.

10.2.3 Angle of Arrival

Another technique used for localization is to determine the direction of signal propagation,
typically using an array of antennas or microphones. The angle of arrival (AoA) is then the
angle between the propagation direction and some reference direction known as orientation
(Peng and Sichitiu 2006). For example, for acoustic measurements, several spatially sep-
arated microphones are used to receive a single signal and the differences in arrival time,
amplitude, or phase are used to determine an estimate of the arrival angle, which in turn
can be used to determine the position of a node. While the appropriate hardware can obtain

252 Fundamentals of Wireless Sensor Networks

accuracies within a few degrees, AoA measurement hardware can add significantly to the
size and cost of sensor nodes.

10.2.4 Received Signal Strength

The concept behind the received signal strength (RSS) method is that a signal decays with the
distance traveled. A commonly found feature in wireless devices is a received signal strength
indicator (RSSI), which can be used to measure the amplitude of the incoming radio signal.
Many wireless network card drivers readily export RSSI values, but their meaning may
differ from vendor to vendor and there is no specified relationship between RSSI values and
the signal’s power levels. Typically, RSSI values are in the range of 0 . . . RSSI_Max, where
common values for RSSI_Max are 100, 128, and 256. In free space, the RSS degrades with
the square of the distance from the sender. More specifically, the Friis transmission equation
expresses the ratio of the received power Pr to the transmission power Pt as:

Pr

Pt

= GtGr

λ2

(4π)2R2
(10.4)

where Gt is the antenna gain of the transmitting antenna and Gr is the antenna gain
of the receiving antenna. In practice, the actual attenuation depends on multipath
propagation effects, reflections, noise, etc., therefore a more realistic model replaces R2 in
Equation (10.4) with Rn with n typically in the range of 3 and 5.

10.3 Range-Based Localization

10.3.1 Triangulation

Triangulation uses the geometric properties of triangles to estimate sensor locations. Specif-
ically, triangulation relies on the gathering of angle (or bearing) measurements as described
in the previous section. A minimum of two bearing lines (and the locations of the anchor
nodes or the distance between them) are needed to determine the location of a sensor node
in two-dimensional space. Figure 10.2(a) illustrates the concept of triangulation using three

(a) (b)

x1, y1

x2, y2

x3, y3

x1, y1

x2, y2

x3, y3

a2

a3

a1

Figure 10.2 Triangulation (a) and trilateration (b).

Localization 253

anchor nodes with known locations (xi, yi) and measured angles αi (expressed relative to a
fixed baseline in the coordinate system, for example, the vertical line in the figure). If more
than two bearings are measured, the presence of noise in the measurements may prevent
them from intersecting in a single point. Therefore statistical algorithms or fixing methods
have been developed to obtain a single location (Stansfield 1947).

Assume that the unknown receiver location is xr = [xr, yr]T , the bearing measurements
from N anchor points are expressed as β = [β1, ..., βN]T , and the known anchor locations
are xi = [xi, yi]T . The measured bearings do not perfectly reflect the actual bearings θ(x) =
[θ1(x), ..., θN(x)]T due to some noise, that is, the relationship between measured and actual
bearings is:

β = θ(xr) + δθ (10.5)

where δθ = [δθ1, ..., δθN]T is the Gaussian noise with zero-mean and N × N covariance
matrix S = diag(σ 2

1 , ..., σ 2
N) (Gavish and Weiss 1992). In two-dimensional space, the rela-

tionship between the bearings of N anchors and their locations can be expressed as (Mao
et al. 2007; Tekdas and Isler 2007):

tan θi(x) = yi − yr

xi − xr

(10.6)

Various statistical methods have been applied to estimating a sensor’s location. For example,
the maximum likelihood (ML) estimator of the receiver location is:

x̂r = arg min
1

2
[θ(x̂r) − β]T S−1[θ(x̂r) − β] (10.7)

= arg min
1

2

N∑
i=1

(θi(x̂r) − βi)
2

σ 2
i

(10.8)

This nonlinear least squares minimization can be performed using Newton–Gauss itera-
tions:

x̂r,i+1 = x̂r,i + (θx(x̂r,i)
T S−1θx(x̂r,i))

−1θx(x̂r,i)
T S−1[β − θx(x̂r,i)] (10.9)

where θx(x̂r,i) is the partial derivative of θ with respect to x evaluated at x̂r,i. Equation (10.9)
requires an initial estimate (e.g., obtained from prior information) that is close enough to the
true minimum of the cost function.

10.3.2 Trilateration

Trilateration refers to the process of calculating a node’s position based on measured dis-
tances between itself and a number of anchor points with known locations. Given the loca-
tion of an anchor and a sensor’s distance to the anchor (e.g., estimated through RSS measure-
ments), it is known that the sensor must be positioned somewhere along the circumference of
a circle centered at the anchor’s position with a radius equal to the sensor–anchor distance.
In two-dimensional space, distance measurements from at least three noncollinear anchors
are required to obtain a unique location (i.e., the intersection of three circles). Figure 10.2(b)

254 Fundamentals of Wireless Sensor Networks

illustrates an example for the two-dimensional case. In three dimensions, distance measure-
ments to at least four noncoplanar anchors are required.

Assume that the locations of n anchor nodes are given as xi = (xi , yi) (i = 1...n) and that
the distances between an unknown sensor location x = (x, y) and these anchor nodes are
also known (ri, i = 1...n). This information leads to a matrix expressing the relationships
among anchor/sensor positions and distances:

(x1 − x)2 + (y1 − y)2

(x2 − x)2 + (y2 − y)2

...

(xn − x)2 + (yn − y)2

 =

r2
1

r2
2
...

r2
n

 (10.10)

While the example shown here is for two dimensions, the same process can be used for
localization in more than two dimensions by increasing matrix dimensions. After some rear-
rangements and subtracting the last matrix equation from all previous ones (to remove the
square of the unknown sensor location (x, y)), we obtain:

Ax = b (10.11)

with the coefficient matrix

A =

2(xn − x1) 2(yn − y1)

2(xn − x2) 2(yn − y2)
...

...

2(xn − xn−1) 2(yn − yn−1)

 (10.12)

and the right side vector

b =

r2
1 − r2

n − x2
1 − y2

1 + x2
n + y2

n

r2
2 − r2

n − x2
2 − y2

2 + x2
n + y2

n
...

r2
n−1 − r2

n − x2
n−1 − y2

n−1 + x2
n + y2

n

 (10.13)

This least squares system can now be used to obtain an estimation of the position (x, y)

using:

x = (AT A)−1AT b (10.14)

Anchor positions and distance measurements are rarely perfect, therefore, if the positions
and distances are based on Gaussian distributions, each equation i can have a weight:

wi = 1/

√
σ 2

distancei
+ σ 2

positioni
(10.15)

where σ 2
distancei

is the variance of the distance measurement between x and anchor i and
σ 2

positioni
= σ 2

xi
+ σ 2

yi
. The least squares system is then Ax = b with

Localization 255

A =

2(xn − x1) × w1 2(yn − y1) × w1

2(xn − x2) × w2 2(yn − y2) × w2
...

...

2(xn − xn−1) × wn−1 2(yn − yn−1) × wn−1

 (10.16)

and

b =

(r2
1 − r2

n − x2
1 − y2

1 + x2
n + y2

n) × w1

(r2
2 − r2

n − x2
2 − y2

2 + x2
n + y2

n) × w2
...

(r2
n−1 − r2

n − x2
n−1 − y2

n−1 + x2
n + y2

n) × wn−1

 (10.17)

The covariance matrix of x is then given by Covx = (AT A)−1.

10.3.3 Iterative and Collaborative Multilateration

While the lateration technique relies on the presence of at least three anchor nodes to posi-
tion a fourth unknown node, this technique can be extended to determine locations of nodes
without three neighboring anchor nodes. Once a node has identified its position using the
beacon messages from the anchor nodes, it becomes an anchor and broadcasts beacon mes-
sages containing its estimated position to other nearby nodes. This iterative multilateration
process (Savvides et al. 2001) repeats until all nodes in a network have been localized.
Figure 10.3(a) visualizes this process: in the first iteration, the gray node estimates its loca-
tion with the help of the three black anchor nodes and in the second iteration, the white nodes
estimate their respective locations with the help of two original anchor nodes and the gray
node. The drawback of iterative multilateration is that the localization error accumulates
with each iteration.

In ad hoc deployments of sensor and anchor nodes, it is possible that a node will not have
three neighboring anchor nodes, therefore preventing it from determining its own location.
In this case, a node can use a process called collaborative multilateration to estimate its
position using location information obtained over multiple hops. Figure 10.3(b) shows a
simple example with six nodes: four anchor nodes Ai (black) and two nodes with unknown
locations Si (white). The goal of collaborative multilateration is to construct a graph of

(b)(a)

A1

A2

A3

A3A1

A2 A4

S1 S2

Figure 10.3 (a) Iterative multilateration and (b) collaborative multilateration.

256 Fundamentals of Wireless Sensor Networks

participating nodes, that is, nodes that are anchors or have at least three participating neigh-
bors (e.g., all nodes in Figure 10.3(b) are participants). A node can then try to estimate
its position by solving the corresponding system of overconstrained quadratic equations
relating the distances among the node and its neighbors.

10.3.4 GPS-Based Localization

The Global Positioning System (GPS) (Hofmann-Wellenhof et al. 2008) is the most widely
publicized location-sensing system, providing an excellent lateration framework for deter-
mining geographic positions (Hightower and Borriello 2001). GPS (formally known as
NAVSTAR – Navigation Satellite Timing and Ranging) is the only fully operational global
navigation satellite system (GNSS) and it consists of at least 24 satellites orbiting the earth
at altitudes of approximately 11,000 miles. It began as a test program in 1973 and became
fully operational in 1995. In the meantime, GPS has established itself as a widely used aid
to civilian navigation, surveying, tracking and surveillance, and scientific applications. GPS
provides two levels of service (Dana 1997):

1. The Standard Positioning Service (SPS) is a positioning service available to all GPS
users on a continuous worldwide basis without restrictions or direct charge. High-quality
GPS receivers based on SPS are able to attain accuracies of 3 m and better horizontally.

2. The Precise Positioning Service (PPS) is used by US and Allied military users and is
a more robust GPS service that includes encryption and jam resistance. For example, it
uses two signals to reduce radio transmission errors, while SPS only uses one signal.

GPS satellites are uniformly distributed in a total of six orbits (i.e., there are four satel-
lites per orbit) and they circle the earth twice a day at approximately 7000 miles per hour.
The number of satellites and their spatial distribution ensure that at least eight satellites
can be seen simultaneously from almost anywhere on the planet. Each satellite constantly
broadcasts coded radio waves (known as pseudorandom code) that contain information on
the identity of the particular satellite, the location of the satellite, the satellite’s status (i.e.,
whether it is working properly), and the date and time a signal has been sent. In addition to
the satellites, GPS further relies on infrastructure on the ground to monitor satellite health,
signal integrity, and orbital configuration. At least six monitor stations located around the
world constantly receive the data sent by the satellites and forward the information to a
master control station (MCS). The MCS (located near Colorado Springs, Colorado) uses
the data from the monitor stations to compute corrections to the satellites’ orbital and clock
information, which are then sent back to the appropriate satellites via ground antennas .

A GPS receiver (e.g., embedded into a mobile device) receives the information trans-
mitted by the satellites that are currently in view by the receiver. The basic principle of
GPS positioning is illustrated in Figure 10.4. Satellites and receivers use very accurate and
synchronized clocks so that they generate the same code at exactly the same time. The GPS
receiver compares its generated code with the code received from the satellite, thereby deter-
mining the actual generation time (e.g., t0 in Figure 10.4) of the code at the satellite and the
time difference � between the code generation time and the current time. Therefore, �

then expresses the travel time of the code from the satellite to the receiver. Note that the
received satellite data is attenuated due to the satellite–earth path even if no obstructions

Localization 257

∆3t0

t0

t0 t0 + ∆1 t0 + ∆2 t0 + ∆3

t0

time

time

time

∆ = Signal Travel Time

∆1

∆2

Figure 10.4 GPS positioning principle.

occur. Radio waves travel at the speed of light (about 186 000 miles per second), so if �

is known, the distance from the satellite to the receiver (distance = speed × time) can be
determined. Once the distance has been determined, the receiver knows that it is located
somewhere on a sphere centered on the satellite with a radius equal to the computed dis-
tance. Repeating this process with two more satellites, the position of the receiver can be
narrowed down to the two points where the three spheres intersect. Typically, one of the two
points can be eliminated very easily, for example, because it would position the receiver far
out in space or the receiver would travel at a virtually impossible velocity.

While three satellites appear to be sufficient for localization, a fourth satellite is needed
to obtain an accurate position. Positioning via GPS relies on correct timing to make accu-
rate measurements, that is, the clocks of the satellites and the receivers must be synchronized
precisely. Satellites are equipped with four atomic clocks (synchronized to each other within
a few nanoseconds), providing highly accurate time readings. However, the clocks used for
GPS receivers are not nearly as accurate as the atomic clocks onboard the satellites, intro-
ducing measurement errors that can have a significant impact on the quality of localization.
Because radio waves travel at very high speeds (and therefore require very little time to
travel), small errors in the timing can result in large deviations in position measurements.
For example, a clock error of 1 ms would result in a position error of about 300 km. There-
fore, a fourth measurement is required, where the fourth sphere should ideally intersect the
other three spheres at the exact location of the receiver. Because of timing errors, the fourth
sphere may not intersect with all other spheres, even though we know that they are supposed
to align. If the spheres are too large, we can reduce their sizes by adjusting the clock (by
moving it forward) until the spheres are small enough to intersect in one point. Similarly, if
the spheres are too small, we adjust the clock by moving it backwards. That is, because
the timing error is the same for all measurements, a receiver can calculate the required
clock adjustment to obtain a single intersection point among all four spheres. In addition to

258 Fundamentals of Wireless Sensor Networks

providing a means for clock synchronization, a fourth measurement also allows a receiver
to obtain a three-dimensional position, that is, latitude, longitude, and elevation.

While most GPS receivers available today are able to provide position measurements
with accuracies of 10 m or less, advanced techniques to further increase the accuracy are
available. For example, Differential GPS (DGPS) (Monteiro et al. 2005) relies on land-
based receivers with exactly known locations to receive GPS signals, compute correction
factors, and broadcast them to GPS receivers that are then able to correct their own GPS
measurements. While it is possible to build wireless sensor networks where each sensor
has its own GPS receiver, constraints such as high power consumption, cost, and the need
for line-of-sight make a fully GPS-based solution impractical for most sensor networks.
However, GPS receivers deployed on a few nodes in a WSN may be sufficient to provide
location services based on reference points as described in the following section.

10.4 Range-Free Localization

The localization approaches discussed in the previous sections are based on distance esti-
mations using ranging techniques (RSS, ToA, TDoA, and AoA) and belong therefore to the
class of range-based localization algorithms. In contrast, range-free techniques estimate
node locations based on connectivity information instead of distance or angle measurements.
Range-free localization techniques do not require additional hardware and are therefore a
cost-effective alternative to range-based techniques. This section describes various different
approaches to localization without reliance on ranging techniques.

10.4.1 Ad Hoc Positioning System (APS)

APS (Niculescu and Nath 2001) is an example of a distributed connectivity-based localiza-
tion algorithm that estimates node locations with the support of at least three anchor nodes,
where localization errors can be reduced by increasing the number of anchors. Each anchor
node propagates its location to all other nodes in the network using the concept of distance
vector (DV) exchange (Lu et al. 2003), where nodes in a network periodically exchange
their routing tables with their one-hop neighbors. In the most basic scheme of APS, called
DV-hop, each node maintains a table {Xi, Yi, hi}, where {Xi, Yi} is the location of node i

and hi is the distance in hops between this node and node i. When an anchor obtains dis-
tances to other anchors, it then determines an average size for one hop (called the correction
factor), which too is then propagated throughout the network. The correction factor ci of
anchor i is determined as:

ci =
∑√

(Xi − Xj)2 + (Yi − Yj)2∑
hi

(10.18)

for all landmarks j (i �= j). Given the locations of the anchors and the correction factor, a
node is then able to perform trilateration to estimate its own location. Figure 10.5 presents
an example with three anchor nodes A1, A2, and A3. Anchor A1, knowing its Euclidean dis-
tances (50 m and 110 m) and hop distances (two hops and six hops) to the other two anchor
nodes, computes a correction of (50 + 110)/(2 + 6) = 20, which represents the estimated
distance of a hop in meters. In a similar fashion, A2 computes a correction factor of 18.6 and
A3 computes a correction factor of 17.3. Corrections are propagated via controlled flooding

Localization 259

A1

A2

A3

Anchor Node
d(A1, A2) = 50m
d(A2, A3) = 80m
d(A1, A3) = 110m

S

Figure 10.5 Example of DV-hop localization.

(i.e., once a node receives a correction, it ignores subsequent ones) to ensure that each node
will only use one correction factor, typically from the closest anchor. For example, sensor
node S in Figure 10.5 uses the correction factor obtained from A2, that is, 18.6, to estimate its
distances to the three anchors by multiplying the correction factor with the hop counts (lead-
ing to distances 3 × 18.6 to A1, 2 × 18.6 to A2, and 3 × 18.6 to A3). Given these distances,
triangulation (as described in 10.3.1) can be used to determine the position of S.

In a variation of this approach, called the DV-distance method, distances between neigh-
boring nodes are determined using radio signal strength measurements and distributed to
other nodes in meters instead of hops. While this approach provides finer granularity (not
all hops are estimated to be the same size), it is also more sensitive to measurement errors.
Finally, in the Euclidean method, true Euclidean distances to anchors are used. A node must
have at least two neighbors that have distance measurements to an anchor, where the dis-
tance between the two neighbors is known. Based on this information, simple trigonometric
relationships can be used to determine the distance of a node to an anchor.

10.4.2 Approximate Point in Triangulation

The Approximate Point In Triangulation (APIT) approach is an area-based range-free local-
ization scheme (He et al. 2003). Similar to APS, APIT relies on the presence of several
anchor nodes that know their own location (e.g., via GPS). Any combination of three anchors
forms a triangular region and a node’s presence inside or outside such a region allows a node
to narrow down its possible locations. The key step in APIT localization is the Point In Tri-
angulation (PIT) test that allows a node to determine the set of triangles within which the
node resides. After a node M has received location messages from a set of anchors, it eval-
uates all possible triangles formed by the anchors. A node is outside a given triangle ABC
formed by anchors A, B, and C, if there exists a direction such that a point adjacent to M is
either further or closer to all points A, B, and C simultaneously. Otherwise, M is inside the
triangle and triangle ABC can be added to the set of triangles in which M resides. This con-
cept is illustrated in Figure 10.6. Unfortunately, this perfect PIT test is infeasible in practice
since it would require that nodes can be moved in any direction. However, an APIT test can
be used in networks with sufficient node density. The idea is to emulate the node movement
in the perfect PIT test using neighbor information that is exchanged via beacon messages.
For example, signal strengths between nodes and an anchor can be used to estimate which
node is closer to the anchor. Then, if no neighbor of node M is further from or closer to
the three anchors A, B, and C simultaneously, M assumes that it is inside the triangle ABC;
otherwise M assumes that it is outside the triangle. Figure 10.7 illustrates this concept. In the

260 Fundamentals of Wireless Sensor Networks

Figure 10.6 Location estimation based on the intersection of anchor triangles.

left graph, node M has four neighbors, none of which is simultaneously closer to or further
away from any of the three anchor nodes. M therefore correctly concludes that it is inside
the ABC triangle. The situation is different in the right graph. For example, neighbor 4 is
closer to all three anchor nodes than node M, while node 2 is further away from the anchor
nodes than node M. Therefore, node M concludes that it must be outside the ABC triangle.
In this scheme, a node can make incorrect decisions because only a finite number of direc-
tions (the number of neighbors) can be evaluated. For example, in the left graph, if node
4’s RSS measurements indicate that it is further from node B than node M (e.g., because
there is an obstacle between anchor B and node 4), node M would conclude that it must be
outside the triangle. Once the APIT test completes, a position estimate can be computed as
the center of gravity of the intersection of all triangles in which M resides.

10.4.3 Localization Based on Multidimensional Scaling

Multidimensional scaling (MDS) has its roots in psychometrics and psychophysics and is
a set of data analysis techniques that display the structure of distance-like data as a geo-
metrical picture. Applied to localization (Shang et al. 2004), MDS can be used in central-
ized localization techniques, where a powerful central device (e.g., base station) collects

B

A

B

CC

A

1

2

3

4

Inside Case

4

Outside Case

3

2

1

M

M

Figure 10.7 Examples of APIT test scenarios.

Localization 261

information from the network, determines the nodes’ locations, and propagates this infor-
mation back into the network. The network is represented as an undirected graph of n nodes
(m < n of which are anchors and know their locations) and edges representing the connec-
tivity information. Given the distances between all pairs of nodes, the goal of MDS is to
preserve the distance information such that the network can be recreated in the multidimen-
sional space. The result of MDS will be an arbitrarily rotated and flipped version of the
original network layout.

While there are many variations of MDS, the simplest version (called classical MDS) has
a closed form solution allowing for efficient implementations. Assume a matrix of squared
distances between nodes written as:

D2 = c1′ + 1c′ − 2SS′ (10.19)

where 1 is an n × 1 vector of ones, S is the similarity matrix for n points, where each row
represents the coordinates of point i along m coordinates, SS′ is called the scalar product
matrix, and c is a vector consisting of the diagonal elements of the scalar product matrix.
Multiplying both sides of Equation (10.19) by the centering matrix T = I − 11′/n, where
I is the identity matrix and 1 is again a vector of ones, leads to:

T D2T = T (c1′ + 1c′ − 2SS′)T = T c1′T + T 1c′T − T (2B)T (10.20)

where B = SS′. Centering a vector of ones yields a vector of zeros, therefore:

T D2T = −T (2B)T (10.21)

Further multiplying both sides with −1/2 results in:

B = −1

2
T D2T (10.22)

B is a symmetric matrix and can therefore be decomposed into:

B = Q�Q′ = (
Q′�1/2) (Q�1/2)′ = SS′ (10.23)

Once B has been obtained, the coordinates S can be computed by eigendecomposition:

S = Q�1/2 (10.24)

Based on this concept, a localization method for sensor networks called MDS–MAP
(Shang et al. 2004) can be applied. First, a distance matrix D is constructed using an
all pairs shortest path algorithm (e.g., Dijkstra’s), with dij being the distance (i.e., the
minimum number of hops) between nodes i and j . Next, classical MDS as described above
is applied to this matrix and an approximate value of the relative coordinate of each node is
obtained. Finally, these relative coordinates are then transformed to absolute coordinates by
aligning the estimated relative coordinates of anchors with their absolute coordinates.
These location estimates can further be refined using least-squares minimization.

An extension to this approach divides the entire sensor network into overlapping regions,
where localization is performed in individual regions using the approach described above.
These local maps are then patched together to form a global map by using common nodes
shared between adjacent regions. This results in better performance in irregularly-shaped

262 Fundamentals of Wireless Sensor Networks

networks by avoiding the use of distance information between far away nodes. While the
approach described here is a centralized solution relying on global information, a distributed
implementation is also possible (Shang and Ruml 2004).

10.5 Event-Driven Localization

10.5.1 The Lighthouse Approach

A third category of localization schemes is based on events that can be utilized to determine
distances, angles, and positions. Such events can be the arrival of radio waves, beams of
light, or acoustic signals at a sensor node. In the lighthouse location system (Römer 2003),
sensor nodes can estimate their location with high accuracy without the need for additional
infrastructure components besides a base station equipped with a light emitter. Figure 10.8
illustrates the concept using an idealistic light source, which has the property that the emitted
beam of light is parallel, that is, the width b remains constant. The light source rotates and
when the parallel beam passes by a sensor, it will see the flash of light for a certain period of
time tbeam. The main idea behind this concept is that tbeam varies with the distance between
the sensor and the light source (since the beam is parallel). The distance d between the sensor
and the light source can be expressed as:

d = b

2 sin(α/2)
(10.25)

where α expresses the angle under which the sensor sees the beam of light as follows:

α = 2π
tbeam

tturn
(10.26)

Here, tturn is the time the light source takes to perform a complete rotation. While b is given
and constant, a sensor can calculate tbeam = t2 − t1 and tturn = t3 − t1, where t1 is the time
the sensor sees the light for the first time, t2 is the time the sensor no longer sees the light,
and t3 is the time when the sensor sees the light again.

A key assumption so far has been that the width b of the beam stays constant for all
distances from the light source. However, perfectly parallel light beams are difficult to real-
ize in practice and even small beam spreads can result in significant localization errors, for
example, a beam with b = 10 cm and a beam spread of 1◦ would result in a beam width
of 18.7 cm at a distance of 5 m. An additional requirement is that the beam width should
be as large as possible to keep inaccuracies small. To achieve this, two laser beams can be

d1 d2

a1 a2 b

Figure 10.8 The lighthouse localization approach (top view).

Localization 263

used to create the outline of a “virtual” parallel beam (the sensor nodes are only interested
in detecting the edges of the virtual beam which are represented by the two laser beams).

10.5.2 Multi-Sequence Positioning

The Multi-Sequence Positioning (MSP) approach (Zhong and He 2007) works by extract-
ing relative location information from multiple simple one-dimensional orderings of sen-
sor nodes. For example, Figure 10.9 shows a small sensor network with five nodes with
unknown locations and two anchor nodes. Events are generated by event generators at differ-
ent locations one at a time (e.g., ultrasound propagations or laser scans with diverse angles).
The nodes in the sensor field observe these events at different times, depending on their
distances to the event generators. For each event, we can establish a node sequence, that is,
a node ordering (including both the sensor and the anchor nodes) based on the sequential
detection of the event. Then, a multisequence processing algorithm narrows the potential
locations for each node to a small area and, finally, a distribution-based estimation method
estimates the exact locations.

The basic concept of the MSP algorithm is to split a sensor network area into small pieces
by processing node sequences. For example, in Figure 10.9, performing a straight-line scan
from top to bottom results in a node sequence 2, B, 1, 3, A, 4, 5. The basic MSP algorithm
uses two straight lines to scan an area from different directions, treating each scan as an
event. In Figure 10.9, a left-to-right scan results in a node sequence 1, A, 2, 3, 5, B, 4. Since
the anchor locations are known, the two anchors split the area into nine parts. This process
can be extended to cut the area into smaller pieces by increasing the number of anchors and
scans (from different angles). The basic MSP algorithm processes each node sequence to
determine the boundaries of a node (by searching for the predecessor and successor anchor
nodes for the node) and shrinks the location area of this node according to the newly obtained
boundary information. Finally, a centroid estimation algorithm sets the center of gravity of
the resulting polygon as the estimated location of the target node.

Event 1

Event 2 Event 4

Anchor

A

2

B

3

Event 3

Node Sequence for Event 2
1 – 2 – B – A – 3 – 5 – 4

Node Sequence for Event 3
4 – 5 – B – 3 – A – 2 – 1

Node Sequence for Event 4
B – 2 – 3 – 1 – 4 – A – 5

Node Sequence for Event 1
A – 1 – 5 – 3– 4 – 2 – B

5

Anchor

4

1

Figure 10.9 Basic concept of MSP.

264 Fundamentals of Wireless Sensor Networks

Exercises

10.1 Why is localization needed in wireless sensor networks? Name at least two concrete
scenarios or applications where localization is required.

10.2 A node’s position in two-dimensional space is (x, y) = (10, 20) with a maximum
error of 2 in the x direction for 95% of all measurements and a maximum error of 3
in the y direction for 90% of all measurements. What is the accuracy and the precision
of this location information?

10.3 Explain the difference between physical and symbolic positions and name at least
two examples for each type.

10.4 Define the terms anchor-based localization and range-based localization.

10.5 Time of Arrival (ToA) is one example of a ranging technique. Answer the following
questions (assume a propagation time of 300 m/s):

(a) What is the advantage of two-way ToA over one-way ToA?
(b) In a synchronized network with unknown synchronization error, an anchor node

periodically broadcasts an acoustic signal to sensor nodes in its range. At time
1000 ms on the anchor node’s clock, the anchor node issues a beacon, which is
received by node A at time 2000 ms (on node A’s clock). What is the distance
that A can now compute?

(c) Instead of computing the distance itself, node A also responds with an acous-
tic signal issued at time 2500 ms, which is received by the anchor node at time
3300 ms. What is the distance computed by the anchor node? What can you say
about the synchronization of anchor node and node A?

10.6 What is the main disadvantage for both TDoA and AoA ranging techniques?

10.7 RSS-based localization techniques are often combined with a process called RF pro-
filing, that is, the mapping of the effects of objects in the environment on signal
propagation. Why is this necessary and can you think of examples of such objects?

10.8 Two nodes A and B are known to be positioned at locations (0, 0) (node A) and (1, 1)

(node B) in two-dimensional space. A third node C wishes to determine its posi-
tion using trilateration. Based on ranging techniques, node C knows its distances to
node A (d(A,C) = √

0.75) and node B (d(B,C) = √
0.75). What are the two possible

positions of C?

10.9 Three nodes A, B, and C are known to be positioned at locations (0, 0), (10, 0), and
(4, 15), respectively. Node D is estimated to be a distance of 7 from A, a distance
of 7 from B, and a distance of 10.15 from C. Determine the location of D using
trilateration.

10.10 Consider the two-dimensional topology in Figure 10.10. The sensor node in the center
can select three of the six anchor nodes as basis for trilateration. Which nodes should
the sensor node select? Justify your answer, that is, what guideline for anchor selec-
tion should be considered? What would this guideline be in three-dimensional space?

Localization 265

B6

Beacon

Sensor

B1

B2

B3

B4

B5

Figure 10.10 Exercise 10.10.

10.11 Two nodes A and B do not know their own positions, but they can hear beacons in
their proximities. Node A can hear beacons located at (4, 2) and (2, 5). Node B can
hear beacons located at (2, 5) and (3, 7). All nodes have a radio range of 2 units.

(a) Are either (3, 3.5) or (3, 4.5) possible locations for node A?
(b) Are either (2, 6) or (4, 5) possible locations for node B?

10.12 What are the differences between iterative and collaborative multilateration?

10.13 Explain the concept of GPS localization and answer the following questions:

(a) Why are three satellites enough to obtain a position on the globe?
(b) Why is it preferred to have at least four satellites available for localization?
(c) What is the purpose of the monitor stations and the master control station?
(d) Why is it typically not feasible to have all wireless sensor nodes equipped with

a GPS receiver?

10.14 Explain the difference between range-based and range-free localization.

10.15 Figure 10.11 shows a network topology with three anchor nodes. The distances
between anchors A1 and A2, anchors A1 and A3, and anchors A2 and A3 are 40 m,
110 m, and 35 m, respectively. Use the Ad Hoc Positioning System to estimate the
location of the gray sensor node (show each step of your process).

A2

A1

A3

Figure 10.11 Exercise 10.15.

266 Fundamentals of Wireless Sensor Networks

10.16 For the APIT test, can you show a concrete scenario where a node M would come
to the wrong conclusion that it must be inside a triangle? Use a scenario where node
M has at least three neighbors. Can you also show an example where node M would
come to the wrong conclusion that it must be outside a triangle?

10.17 A sensor node in a WSN using the lighthouse approach for localization detects the
first beam of light at time 0 s and the second beam of light at time 0.25 s. The next
time the first beam of light is detected is 7 s. The distance of the two light sources
(beam width) is 10 cm. What is the distance of the sensor to the light emitter?

References
Dana, P.H. (1997) Global Positioning System (GPS): Time-dissemination for real-time applications. Real-Time,

Systems 12 (1), 9–40.
Gavish, M., and Weiss, A.J. (1992) Performance analysis of bearing-only target location algorithms. IEEE Trans-

actions on Aerospace and Electronic Systems 28 (3), 817–828.
Gustafsson, F., and Gunnarsson, F. (2003) Positioning using time-difference of arrival measurements. Proc. of the

IEEE International Conference on Acoustics, Speech, and Signal Processing .
He, T., Huang, C., Blum, B.M., Stankovic, J.A., and Abdelzaher, T. (2003) Range-free localization schemes for

large scale sensor networks. Proc. of the 9th Annual International Conference on Mobile Computing and
Networking (MobiCom).

Hightower, J., and Borriello, G. (2001) Location systems for ubiquitous computing. Computer 34 (8), 57–66.
Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J. (2008) Global Positioning System: Theory and Practice

(5th edn). Springer.
Lu, Y., Wang, W., Zhong, Y., and Bhargava, B. (2003) Study of distance vector routing protocols for mobile ad

hoc networks. Proc. of the 1st IEEE International Conference on Pervasive Computing and Communications
(PerCom).

Mao, G., Fidan, B., and Anderson, B.D.O. (2007) Wireless sensor network localization techniques. Computer
Networks: The International Journal of Computer and Telecommunications Networking 51 (10), 1389–1286.

Monteiro, L.S., Moore, T., and Hill, C. (2005) What is the accuracy of DGPS? The Journal of Navigation 58 (2),
207–225.

Niculescu, D., and Nath, B. (2001) Ad hoc positioning system (APS). Proc. of the IEEE Global Telecommunica-
tions Conference (GLOBECOM).

Peng, R., and Sichitiu, M.L. (2006) Angle of arrival localization for wireless sensor networks. Proc. of the 3rd
Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks .

Römer, K. (2003) The lighthouse location system for smart dust. Proc. of the 1st International Conference on
Mobile Systems, Applications and Services (pp. 15–30).

Savvides, A., Han, C.C., and Strivastava, M.B. (2001) Dynamic fine-grained localization in ad hoc networks of
sensors. Proc. of the 7th Annual International Conference on Mobile Computing and Networking .

Shang, Y., and Ruml, W. (2004) Improved MDS-based localization. Proc. of the 23rd Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM).

Shang, Y., Ruml, W., Zhang, Y., and Fromherz, M. (2004) Localization from connectivity in sensor networks.
IEEE Transactions on Parallel and Distributed Systems 15 (11), 961–974.

Siqueira, I.G., Ruiz, L.B., Loureiro, A.A.F., and Nogueira, J.M. (2007) Coverage area management for wireless
sensor networks. International Journal of Network Management 17 (1), 17–31.

Stansfield, R.G. (1947) Statistical theory of DF fixing. Journal of IEE 14, Pt. III A (15), 762–770.
Stojmenovic, I. (2002) Position based routing in ad hoc networks. IEEE Communications Magazine 40 (7),

128–134.
Tekdas, O., and Isler, V. (2007) Sensor placement algorithms for triangulation based localization. Proc. of the

IEEE International Conference on Robotics and Automation (pp. 4448–4453).
Zhong, Z., and He, T. (2007) MSP: Multi-sequence positioning of wireless sensor nodes. Proc. of the 5th Inter-

national Conference on Embedded Networked Sensor Systems (pp. 15–28).

11
Security
Security and privacy are enormous challenges in all types of wired and wireless networks.
These challenges are of even greater importance in wireless sensor networks, where the
unique characteristics of these networks and the application purposes they serve make them
attractive targets for intrusions and other attacks. In applications such as battlefield surveil-
lance and assessment, target tracking, monitoring civil infrastructure such as bridges and
tunnels, and assessment of disaster zones to guide emergency response activities, any breach
of security, compromise of information, or disruption of correct application behavior can
have very serious consequences. Sensor networks are frequently used in remote areas, left to
operate unattended and therefore providing an easy target for physical attacks, unauthorized
access, and tampering. Sensor nodes are typically very resource-constrained and operate in
harsh environments, which further facilitates compromises and makes it often difficult to dis-
tinguish security breaches from node failures, varying link qualities, and other commonly
found challenges in sensor networks. Finally, these resource constraints require security
mechanisms that are customized for WSN applications, such that the limited resources are
used efficiently. This chapter provides an overview of the security concerns of WSNs and
illustrates possible solutions to providing security and privacy protection. Note that the terms
attacker , intruder , and adversary are used interchangeably to describe an entity (person or
device) that performs an attack on a network or system.

11.1 Fundamentals of Network Security

Computer and network security is the collection of all policies, mechanisms, and services
that afford a computer system or network the required protection from unauthorized access
or unintended uses. Most security mechanisms are built to address three well-known ser-
vices in the CIA security model: Confidentiality, Integrity , and Availability . The following
describes these services in more detail:

1. Confidentiality: Security mechanisms must ensure that only the intended receiver can
correctly interpret a message and that unauthorized access and usage is prevented. For
example, confidentiality ensures that sensitive information such as a person’s social secu-
rity number or credit card information are not obtained by an unauthorized individual.

2. Integrity: Security mechanisms must ensure that a message cannot be modified as it
propagates from the sender to the receiver, that is, unauthorized individuals should not
be able to destroy or alter the contents of sensitive information.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd

268 Fundamentals of Wireless Sensor Networks

3. Availability: Security mechanisms must ensure that a system or network and its applica-
tions are able to perform their tasks at any time without interruption. Availability is often
measured in terms of percentages of up or down time.

Figure 11.1 illustrates examples of attacks on a transmission between a sender and its
intended receiver. Eavesdropping refers to the reception of a message by an unauthorized
individual, which can be prevented using confidentiality measures. A man-in-the-middle
attack refers to a situation where an unauthorized individual or system positions itself
between the sender and receiver such that the sender’s messages are intercepted, modified,
and retransmitted to the receiver (where the receiver believes the received message came
directly from the original sender). This illustrates the need for integrity mechanisms.
Finally, a denial-of-service attack refers to an adversary’s attempt to disrupt the transmis-
sion or service provided by the sender. For example, the adversary can overload the sender
with requests and tasks such that the sender is not able to transmit its message (in a timely
fashion) to the receiver. This type of attack necessitates security mechanisms that ensure
availability.

In addition to the three components of the CIA triad, authentication refers to the process
of establishing or confirming the identify of a user or a device, ensuring that a message came
from who it claims to have come from. Also, nonrepudiation refers to the process of proving
that a person or device has performed a transaction or transmission. Digital signatures are
often used to support both authentication and nonrepudiation, but are also used to provide
confidence that a message has not been altered (i.e., integrity).

In all types of communication networks, there are several fundamental security mecha-
nisms that can be used to provide confidentiality, integrity, and availability. Cryptography
is the process of hiding and protecting information using encoding and decoding mecha-
nisms. In symmetric key cryptography , a single key between two communicating parties is
used for the encryption and decryption of a message. For example, a simplistic encoding
strategy could be to replace each plaintext letter with another letter that is a certain number
of positions down the alphabet. For example, using a shift of 2 would replace the letter A

Man-in-the-Middle
(Integrity)

Sender
Intended
Receiver

Eavesdropping
(Confidentiality)

Denial-of-Service
(Availability)

Figure 11.1 Examples of attacks and the CIA model.

Security 269

with the letter C. In this shift cipher , the fixed shift value is then the symmetric key. A major
challenge in the use of symmetric cryptographic techniques is the secure distribution of the
shared key between the two communicating parties. Popular examples of symmetric key
cryptographic mechanisms include DES, AES, and IDEA (Menezes et al. 1996).

In contrast to this approach, public key cryptography , such as the well-known RSA algo-
rithm (Rivest et al. 1983) or the Diffie–Hellman key agreement protocol (Menezes et al.
1996), rely on a pair of keys. A node generates both a secret key and a public key , where the
secret key will never be communicated with any other node. The public key, on the other
hand, can be shared freely with anyone in the network. Any message encrypted with the
secret key can only be deciphered using the corresponding public key (e.g., this can be used
to authenticate the identity of the sender). Any message encrypted with the public key can
only be deciphered using the corresponding secret key (e.g., this can be used to provide
confidentiality).

11.2 Challenges of Security in Wireless Sensor Networks

Security has been a challenge in computing systems and networks for several decades,
during which the types of attacks and the security measures and mechanisms to counter
them have advanced and developed significantly, particularly because of the rapid growth
of the Internet. Compared to the traditional attacks and security mechanisms developed for
the Internet, WSNs exhibit a variety of unique challenges that must be considered when
addressing the security concerns that may arise in sensor network applications:

1. Resource constraints: Traditional security mechanisms that have high overheads are not
suitable for resource-constrained WSNs. Many security mechanisms are computation-
ally expensive or require communication with other nodes or “remote” devices (e.g.,
for authorization purposes), thereby leading to energy overheads. Small sensor devices
are also constrained in their available memory and storage capacities. Common sensor
devices have very limited amounts of memory, for example, TelosB devices only have
10 kbytes RAM and 48 kbytes flash memory available. Traditional security algorithms
that require a significant amount of memory and storage space are therefore infeasible
for such sensors.

2. Lack of central control: It is often infeasible to have a central point of control in sensor
networks, for example, because of their large scale, resource constraints, and network
dynamics (topology changes, network partitioning). Therefore, security solutions should
be decentralized and nodes must collaborate to achieve security.

3. Remote location: The first line of defense against security attacks is to provide only
controlled physical access to a sensor node. Many WSNs are left unattended, because
they are operated in remote and hard-to-reach locations, deployed in environments open
to public access, or so large that it would be infeasible to continuously monitor and protect
sensor nodes from attacks. These challenges make it difficult to prevent unauthorized
physical access and to detect tampering with the sensor devices, particularly since the low
cost of many sensor nodes may prohibit advanced (and expensive) protective measures.

4. Error-prone communication: Packets in WSNs may be lost or corrupted due to a variety
of reasons, including channel errors, routing failures, and collisions. This may interfere
with some security mechanisms or their ability to obtain critical event reports. Further-
more, this may make it difficult to distinguish “benign” erroneous communications or
node and link failures from malicious attacks.

270 Fundamentals of Wireless Sensor Networks

Certain characteristics of sensor networks, on the other hand, facilitate the provision of
security. For example, the self-managing and self-repairing nature of a WSN may allow it
to continue to operate even if a sensor or entire regions of the sensor network have been
compromised. Redundancy in a sensor network allows it to gather information about events
in the environment even when some sensors are unavailable due to an attack. Furthermore,
this redundancy can be used to detect, isolate, and mask potentially compromised nodes.

Data collected by sensors may contain sensitive information and should not be leaked to
unauthorized devices. Further, encryption keys and information about sensors themselves
(e.g., identity, location, etc.) must be protected to prevent eavesdropping and attacks based
on traffic analysis. These challenges require measures that provide data confidentiality for
sensor networks. Integrity is required to prevent adversaries from modifying sensor data, for
example, with the purpose of injecting false readings and therefore affecting the response
to the sensor readings. Authentication is necessary to ensure that any data disseminated in
a sensor network originates from the correct source, particularly when a single node con-
trols the entire network (e.g., a base station establishing routes or distributing multicast
tree information). Further, many security attacks in sensor networks have the goal to dis-
rupt the correct functioning of the network altogether, necessitating measures that ensure
network availability. An additional requirement in sensor networks is the need for data
freshness , which ensures that sensor data are recent and no old recordings of such data are
being replayed. This is particularly important for key distribution schemes, for example, an
attacker could record shared keys that are being exchanged in a network and replay these key
distribution messages at a later time. Finally, many node and network management respon-
sibilities found in WSNs provide adversaries with opportunities for attacks. For example,
sensor node localization is important for correctly interpreting sensor data, for geographic
routing protocols, and for redundancy elimination. However, many localization techniques
require the exchange of information among sensors (e.g., beacons carrying positions, time
stamps, and identity information) that may necessitate encryption. Similarly, time synchro-
nization in sensor networks is based on message exchange among sensor nodes, where an
adversary could inject false time stamps to increase synchronization errors among sensors.

11.3 Security Attacks in Sensor Networks

Sensor networks are vulnerable to a variety of attacks that attempt to compromise the net-
work’s operation and the data the sensor nodes generate. Specifically when sensor networks
serve application purposes such as battlefield assessments and monitoring of civil infrastruc-
ture, they require protection from unauthorized access and tampering. This section describes
a variety of security attacks that could occur in a WSN.

11.3.1 Denial-of-Service

A Denial-of-Service (DoS) attack can be characterized as an attempt of an adversary to stop
a network from functioning or to disrupt the services a network provides. In wireless sensor
networks, DoS attacks can occur at various layers of the protocol stack, where some may
affect multiple layers simultaneously or attempt to exploit interactions between them (Wood
and Stankovic 2002).

Security 271

11.3.1.1 Physical Layer DoS

The wireless medium used in a WSN facilitates a variety of attacks. A jamming attack occurs
when an adversary interferes with the radio frequencies of a WSN. If well positioned, a
few attacking nodes can disable an entire network, even if the number of attacking nodes
is much smaller than the number of nodes in the network. Even a single attacking node
could disable an entire network if it is positioned close to a “critical” node (e.g., a gateway,
therefore preventing any sensor data from leaving the sensor network) or its transmission
power is large such that all nodes in a network may be prevented from correctly receiv-
ing any meaningful data. A common technique against jamming is to use spread-spectrum
communication, as found in well-known standards such as IEEE 802.11 and Bluetooth.
For example, in frequency-hopping spread spectrum (FHSS), communicating devices fre-
quently hop between frequencies according to a certain hopping sequence. A jammer either
must know this sequence to be able to jam the correct frequency for continuous disruption,
or must jam a large frequency band. In addition, sensor networks should be able to detect and
respond to jamming attacks in the network, for example, by switching nodes into low-power
sleep modes (in order to preserve energy), while awakening them periodically to check if
the jamming attack is still active. Nodes may also want to alert a gateway or base station
to report the attack. Toward this end, nodes detecting a jamming attack could issue brief
alerts to their neighbors and if at least one of these neighbors is outside the region of the
attack (i.e., it is able to receive the alert message without interference), the message can be
propagated to other nodes including the base station.

A tampering attack in a sensor network occurs when an adversary obtains physical access
to a sensor node, allowing the attacker to destroy or modify the device, gain access to sen-
sitive information (e.g., cryptographic keys), or use the device as an entry point for further
attacks into the network. Possible strategies to protect a device from tampering and the
consequences thereof include using tamper-proof materials and enclosures and to disable a
device or delete its information when an attack is detected. For example, a technique often
used in systems handling sensitive information (e.g., credit card payment terminals) is to
erase all such data whenever a light sensor activates (e.g., due to the terminal’s enclosure
being opened).

11.3.1.2 Link Layer DoS

A collision attack at the link layer (Wood and Stankovic 2002) attempts to interfere with
packet transmissions, thereby causing costly exponential backoff procedures and retrans-
missions in some MAC protocols. While error-correcting codes can be used to recover from
corrupted bits in a packet, they may not be able to recover from all types of interferences
(e.g., if too many bits have been corrupted) and they incur additional resource and energy
overheads. An attacker could also attempt to cause collisions near the end of a frame, caus-
ing a node to repeatedly retransmit the entire packet. The goal of an attacker could be to
cause the premature depletion of the node’s energy resources (exhaustion attack). Similarly,
a malicious node could exploit certain handshake techniques often found in MAC protocols.
For example, an attacker could continuously issue an RTS message (IEEE 802.11 protocol)
to prompt a CTS response from another node, eventually exhausting the energy resources
of both nodes.

272 Fundamentals of Wireless Sensor Networks

11.3.2 Attacks on Routing

One example of an attack on routing protocols of sensor networks is the blackhole attack
(Karlof and Wagner 2003). With this type of attack, an adversary attempts to be a forwarder
of data for one or more routes across the network. A malicious node can then simply drop
all traffic that should pass through this node, therefore, such traffic never reaches the desti-
nation. A similar attack is called the selective forwarding attack (Karlof and Wagner 2003),
where only packets that match certain criteria are dropped instead of dropping all packets
indiscriminately. Selective forwarding attacks are more difficult to detect or react upon than
blackhole attacks since they are harder to distinguish from packet losses due to mobility or
channel errors.

A rushing attack (Hu et al. 2003) on a sensor network exploits the nature of the route dis-
covery procedure of on-demand routing protocols, for example, as found in protocols such
as AODV and DSR. In this type of attack, a malicious node immediately forwards incoming
route request messages to its neighbors, therefore “rushing” these messages without consid-
eration of any protocol rules (e.g., that specify certain timeout or queuing procedures before
forwarding). As a consequence, the node has an increased probability of being part of the
chosen route between source and destination.

A sinkhole attack (Karlof and Wagner 2003) is another variant of the blackhole attack.
However, to attract as much traffic as possible, the malicious node attempts to position itself
on the path of as many network flows as possible. Traffic is therefore drawn toward this
sinkhole, providing an attacker with an opportunity to disrupt or tamper with as much traffic
as possible.

A Sybil attack occurs when an attacker claims to have several identities in the network.
Similarly, in location-based routing protocols, an attacker claims to be at several locations
simultaneously. If many nodes believe that this malicious node is their neighbor, there is a
good chance that they will choose this node as forwarding node for their network traffic.

Another attack on the routing procedure of a sensor network is the wormhole attack . This
attack is performed by nodes that have more resources available than typical sensor nodes
in the network. For example, two collaborating attackers may attempt to deceive the rest
of the network by possessing an out-of-band (and often bandwidth-rich) communication
channel between themselves. To the rest of the network, this appears to be a fast, high-
bandwidth link, which is desirable for many routing techniques. With this approach, the
attacker nodes can fake an efficient and short path to the gateway of a network, therefore
attracting a significant amount of traffic and enabling a variety of other attacks, such as the
blackhole or sinkhole attacks.

11.3.3 Attacks on Transport Layer

The transport layer of the network protocol stack is responsible for managing end-to-end
connections, for example, two well-known transport layer protocols are Transmission
Control Protocol (TCP) for reliable stream-based communication and User Datagram
Protocol (UDP) for unreliable packet-based communication. The flooding attack (Wood
and Stankovic 2002) exploits the fact that many transport protocols (such as TCP) maintain
state information and are therefore vulnerable to memory exhaustion. For example, an
attacker may repeatedly make new connection requests, each adding more state information
at the affected node and potentially leading to the node refusing further connections due

Security 273

to resource exhaustion. This in turn prevents connection requests from legitimate nodes
from succeeding.

In the desynchronization attack, an adversary attempts to disrupt the communication
between two legitimate nodes by repeatedly forging messages to these nodes. For example,
reliable transport-layer protocols may use sequence numbers to keep track of successfully
received packets, identify packet loss, and detect duplicates. Fake packets issued by an
adversary can use these sequence numbers to make a node believe that its packets have
not arrived at the destination, thereby eliciting resource-costly retransmissions.

11.3.4 Attacks on Data Aggregation

Data aggregation and data fusion are often used to combine multiple sensor data and to elim-
inate redundant information. Aggregation can often have beneficial effects on the resource
requirements of sensor flows, for example, by reducing the frequency of transmissions or
the packet sizes. Even simple aggregation functions can easily be influenced by an attacker
such that a network’s behavior can be altered (Wagner 2004). For example, the average
function f (x1, . . . , xn) = (x1 + · · · + xn)/n is insecure even in the presence of a single
malicious node. By replacing one real measurement x1 with a fake reading x∗

1 , the average is
changed from y = f (x1, ..., xn) to y∗ = f (x∗

1 , x2, ..., xn) = y + (x∗
1 − x1)/n. An attacker

can freely choose the value of x∗
1 and, therefore, can control the outcome of the aggregation.

Similarly, the sum , minimum , and maximum functions are also insecure. The sum
f (x1, ..., xn) = x1 + · · · + xn can be modified at will by maliciously replacing a real mea-
surement x1 with a fake reading x∗

1 . The minimum function f (x1, ..., xn) = min(x1, ..., xn)

is also insecure, even though replacing a real measurement with a fake value does not
always affect the function’s outcome. That is, replacing x1 with x∗

1 only raises the minimum
if x1 is the unique smallest sensor reading among all xi . However, an attacker can modify
the computed minimum by choosing x∗

1 to be very small compared to all correct readings.
By symmetry, the maximum function is also insecure, since an attacker can raise the
maximum value by hijacking a single sensor reading.

In contrast, the effect of hijacking a single sensor reading may be comparably small for the
count operation if the number of correct readings is sufficiently large. The count function
is similar to the sum function, except that each sensor reading only contributes 0 or 1 to
the result of the operation. That is, an attacker with control over k compromised nodes can
change the outcome of the function by at most k, which may be negligible if k is small
compared to the total number of sensor inputs.

11.3.5 Privacy Attacks

While the security threats described so far are mainly targeted at disrupting a network from
correct operation, the vast amount of information collected in a WSN itself is also at risk
of potential abuse. That is, an adversary may attempt to obtain sensitive information by
accessing information stored on a sensor node or by eavesdropping on the network (Gruteser
et al. 2003). The broadcast nature of wireless networks makes it easy to monitor and capture
the transmissions between nodes, particularly when no cryptographic mechanisms are used
to protect the sensor data. Eavesdropping can also be combined with traffic analysis (Deng
et al. 2005a), which can be used by an adversary to identify sensor nodes of interest in a

274 Fundamentals of Wireless Sensor Networks

network. For example, increases in communications between certain nodes can indicate an
increased level of activity (and therefore the presence of data that could be compromised) in
those parts of the network. Similarly, traffic analysis can be used to identify nodes that may
be more important to network operation than others, such as base stations and gateways.

11.4 Protocols and Mechanisms for Security

In order to defend against the many possible attacks in a WSN, a variety of security protocols
and other defense mechanisms can be used. This section presents and discusses a variety
of such protocols and mechanisms with a particular focus on their applicability in sensor
networks.

11.4.1 Symmetric and Public Key Cryptography

While public key cryptography can be used to provide confidentiality, integrity, and authen-
tication, public key algorithms are computationally very expensive, which may limit their
use in resource-constrained sensor networks (Gaubatz et al. 2004). Symmetric key cryptog-
raphy approaches can be significantly more resource-efficient, which makes them the more
common choice in WSNs, even though implementations of RSA (Rivest et al. 1983) and
ECC (elliptic curve cryptography) (Menezes et al. 1996) for resource-constrained sensors
do exist. A major disadvantage of symmetric key approaches is the problem of key distri-
bution, that is, the shared symmetric key must first be known to both communicating nodes
before they can exchange data securely.

11.4.2 Key Management

Symmetric cryptographic schemes are the common choice for sensor networks when
resource constraints prohibit the use of the more complex public key schemes. However, a
major shortcoming of symmetric cryptography is the need for key management, that is, the
reliable and secure establishment of shared cryptographic keys among neighboring nodes
in a WSN. For example, the Peer Intermediaries for Key Establishment (PIKE) approach
(Chan and Perrig 2005) is a technique that uses sensor nodes as trusted intermediaries for
the distribution of keys. In this approach, every sensor shares a different pairwise key with
each of O(

√
n) other nodes, where n is the number of nodes in the network. Furthermore,

the keys are deployed such that for any pair of nodes A and B, there exists at least one node,
C, that shares a pairwise key with both A and B. Each sensor in PIKE has an ID of the form
(x, y), where x, y ∈ {0, 1, 2, ...,

√
n − 1}. That is, the sensor network is represented as a

matrix with
√

n rows and columns, where a node’s position in the matrix is the node’s ID.
Then, each node (x, y) shares a pairwise key with each node in the two following sets:

(i, y) ∀i ∈ {0, 1, 2, ...,
√

n − 1} (11.1)

(x, j) ∀j ∈ {0, 1, 2, ...,
√

n − 1} (11.2)

For example, node (x, y) will share a key K(x,y),(1,y) with node (1, y) and another key
K(x,y),(2,y) with node (2, y). Altogether, a node will maintain 2(

√
n − 1) keys. Figure 11.2

Security 275

shows a sample virtual ID space for 100 nodes, where each number represents the ID of a
node (note that this representation does not reflect the actual physical positions of the sensor
nodes). The dark shaded boxes identify all nodes that share a key with node 91, while the
light shaded boxes indicate all nodes that share a key with node 14. Due to this approach,
any two nodes in the network will be able to find two node IDs which will share pairwise
keys with both of them. Specifically, if node A has ID (xA, yA) and node B has ID (xB, yB),
then the nodes with IDs (xA, yB) and (xB, yA) will share pairwise keys with both A and B. If
node A (e.g., node 14 in Figure 11.2) wants to perform key establishment with another node
(e.g., node 91), A can identify the identities of potential intermediaries by looking for the
intersections of the shaded boxes. For example, node 94 is in the same row as 91 and in the
same column as 14, therefore it shares keys with both of them and can serve as intermediary.
Node 14 then encrypts the new key to be shared with node 91 using the existing key shared
with node 94 and then sends the encrypted key to node 94. Node 94 decrypts the message,
encrypts it again with the key shared with node 91 and sends the new message to node 91.
Node 91 decrypts the message, obtains the new key, and confirms the receipt of the new key
by replying to node 14.

11.4.3 Defenses Against DoS Attacks

Denial-of-service (DoS) attacks in sensor networks are common and require effective mea-
sures to avoid them or prevent them from spreading throughout the network. For example,
when a jamming attack is detected or suspected, a sensor network can attempt to isolate
the affected region by routing traffic around the disabled parts of the network. Another
technique to limit the damage from jamming attacks is to use spread-spectrum techniques
as described in Section 11.3.1. At the link layer, collision and exhaustion attacks can be
addressed using error-correcting codes (which add processing and communication over-
heads) and rate-limiting schemes that allow a device to ignore requests that could lead to
premature energy depletion. Spoofing and alteration can be addressed at the network layer
by using message authentication code or MAC (not to be confused with medium access
control), which can be viewed as the cryptographically secure checksum of a message.
These checksums allow a receiver to verify whether a message has been spoofed or altered
(Sen 2009).

20 21 22 23 24 25 ... 29

30 31 31 33 34 35 ... 39

90 91 92 93 94 95 ... 99

00 01 02 03 04 05 ... 09

10 11 12 13 14 15 ... 19

Figure 11.2 Virtual ID space in PIKE.

276 Fundamentals of Wireless Sensor Networks

The path-based denial-of-service attack (PDoS) is an attack in which the attacker over-
whelms the nodes in a remote sensor network by flooding a multi-hop end-to-end communi-
cation path with either replayed packets or randomly injected packets (Deng et al. 2005b).
One-way hash chains are sequences of numbers where it is trivial to compute y = F(x),
but computationally infeasible to compute x = F−1(y). Each node in the network utilizes
the hash chain to validate a received packet, that is, a node systematically cycles through
the chain to determine whether the packet is from a trusted source. If a packet cannot be
validated, it is dropped.

11.4.4 Defenses Against Aggregation Attacks

As previously discussed, many simple aggregation functions such as sum, minimum, and
maximum are inherently insecure. However, several techniques for improving the resilience
of aggregation functions can be used, for example, two such techniques are delayed aggre-
gation and delayed authentication (Hu and Evans 2003).

In these techniques, it is assumed that the base station generates a one-way key chain
using a public one-way function F , where Ki = F(Ki+1). Each device stores key K0 before
deployment where K0 = Fn(K) (i.e., F applied to a secret key n times). Then, the first
base station transmissions will be encrypted using key K1 = Fn−1(K). Once all messages
transmitted using K1 have been received, the base station reveals K1. As a consequence, all
nodes can compute F(K1) = F(Fn−1(K)) and verify that it matches K0 = Fn(K). Further,
sensor nodes can then decrypt the messages that were previously transmitted encrypted with
K0. In a similar manner, successive keys can be revealed until Kn = K is reached (if more
keys are needed, the base station can then start a new sequence).

Assume that four sensor nodes A–D are sending messages to the base station in a
network structured as a tree as shown in Figure 11.3. Each node’s message contains the

IDG|Aggr(RA, RB, RC, RD)|MIC(KGi, Aggr(RA, RB, RC, RD)
| ... (same from right side)
|MIC(KHi, Aggr(RA, RB, RC, RD... readings from right side))

IDB|RB|MIC(KBi, RB)IDA|RA|MIC(KAi, RA)

IDC|RC|MIC(KCi, RC)
|IDD|RD|MIC(KDi, RD)
|MIC(KFi, Aggr(RC, RD))

IDA|RA|MIC(KAi, RA)
|IDB|RB|MIC(KBi, RB)
|MIC(KEi, Aggr(RA, RB))

IDE|Aggr(RA, RB)|MIC(KEi, Aggr(RA, RB)
|IDF|Aggr(RC, RD)|MIC(KFi, Aggr(RC, RD)
|MIC(KGi, Aggr(RA, RB, RC, RD))

similar tree on
right side (not shown)

A D

E

G

H

Base Station S

B C

F

Figure 11.3 Secure aggregation example.

Security 277

sender’s ID, the sensor data, and a MAC calculated over the data using a temporary key.
The parent node of the sensor node is not yet able to verify the MAC since the child’s
key has not been revealed to the parent. The parent node (e.g., node E in Figure 11.3)
stores this message and retransmits it to its own parent after a certain timeout value.
E’s message to its parent G contains the messages received from its children (e.g., nodes
A and B) and a MAC computed over the aggregate of A’s and B’s data using E’s key.
This process continues, that is, every intermediate node combines the data coming from its
children and adds its own MAC over the aggregate of all data using its own key. Once the
base station receives messages from its children, it can compute the final aggregate value.

The base station has a shared temporary key with each sensor node, therefore it can verify
whether a received message was transmitted by H by calculating the MAC of the aggregation
using KHi and comparing it to the MAC in the message. While this validates that H sent the
final message, it does not validate that the message correctly reflects the readings from the
other nodes. To validate data, the base station reveals temporary node keys to the network
by sending each key (along with a MAC) to all sensor nodes using its own current key Ki .
After sending out all the node keys, the base station sends out its current key Ki such that
nodes are able to check the transmitted MAC values and to advance to the next key in the
chain for future messages.

In summary, the described process delays both aggregation and authentication, for
example, aggregation does not take place at the first hop that would be able to perform this
aggregation, but at the second hop. While this may increase resource expenditures, it may
also enable integrity guarantees where consecutive nodes have not been compromised.

11.4.5 Defenses Against Routing Attacks

Most attacks from the “outside” of a network can be prevented using simple link-layer
encryption and authentication using a globally shared key (Karlof and Wagner 2003).
Because the adversary is prevented from joining the network, attacks such as selective
forwarding or sinkholes are not possible. However, when networks are attacked from the
“inside”, for example, using a compromised node, this approach is ineffective and more
sophisticated solutions are needed.

Sybil attacks can be addressed by verifying the identities of sensor nodes. For example,
each sensor node could share a unique symmetric key with a trusted base station, which can
be used to verify each other’s identity. A base station can also limit the number of neighbors a
node is allowed to have, that is, even when a node is compromised, it can only communicate
with its verified neighbors.

Sinkholes are difficult to defend against in protocols where routes are established on the
basis of information that is hard to verify, for example, reliability or energy measurements.
Routes based on minimum hop counts are easier to verify, but the hop count can be mis-
represented through a wormhole (Karlof and Wagner 2003). One category of protocols that
is resistant to these attacks is geographic routing, because networks using location-based
routing techniques establish a topology on demand based on localized interactions and
information, without the initiation from a base station. Since traffic is “naturally” routed
toward the physical location of the base station, it is difficult to redirect traffic elsewhere to
create a sinkhole.

278 Fundamentals of Wireless Sensor Networks

In a rushing attack, a node’s goal is to exploit the route discovery process in on-demand
routing protocols to position itself on as many routes as possible. However, to prevent such
attacks, a combination of several protective measures can be used. For example, some attack-
ers may forward route requests beyond the normal radio transmission range (e.g., using high
transmission power), thereby suppressing subsequent request messages from this route dis-
covery. A secure neighbor detection approach (Hu et al. 2003) can be used to allow both the
sender and the receiver of a route request to verify that the other party is in fact within the
normal transmission range. For example, a three-round mutual authentication protocol with
tight delay timing can be deployed. In the first round, a node sends a neighbor solicitation
packet (either via broadcast or via unicast to a specific node). In the second round, a node
receiving the solicitation packet responds with a neighbor reply message and in the third
round, the initiator of this handshake communication sends a neighbor verification message,
which includes broadcast authentication of a timestamp and the link from the source to the
destination.

11.4.6 Security Protocols for Sensor Networks

The Security Protocols for Sensor Networks (SPINS) project makes two main contributions
to defending against attacks: the Secure Network Encryption Protocol (SNEP) and a “micro”
version of the Timed, Efficient, Streaming, Loss-tolerant Authentication (µTESLA) proto-
col (Perrig et al. 2002). The main goal of the SNEP protocol is to provide confidentiality,
two-party data authentication, and data freshness, while µTESLA provides authentication
for data broadcast. Each node is assumed to have a secret key shared with the base station.

11.4.6.1 Secure Network Encryption Protocol

SNEP takes the resource limitations of typical sensor nodes into consideration by relying
on simple algorithms for encryption, authentication, and random number generation. The
key properties of SNEP are its symmetric security, replay protection, and low communi-
cation overhead. Symmetric security refers to the fact that the same message is encrypted
differently each time. To achieve two-party authentication and integrity, SNEP uses a MAC,
where the larger the MAC the more difficult it is for an adversary to guess the appropriate
code for a message. On the other hand, large codes also mean larger packet sizes.

Two communicating nodes A and B share a secret master key , which is used to derive four
independent keys using a pseudorandom function. Two of these keys are used for encryption
of messages in each direction (KAB and KBA) and two keys are used as message integrity
codes, again one for each direction (K ′

AB and K ′
BA). A complete encrypted message has then

the following format:

A → B : {D}〈KAB,CA〉, MAC(K ′
ABCA||{D}〈KAB,CA〉) (11.3)

where D is the data encrypted with the encryption key K and the counter is C. The MAC is
computed in the form M = MAC(K ′, C||E). SNEP provides data authentication (using the
MAC), replay protection (using the counter value in the MAC), freshness (the counter val-
ues enforce a message ordering), semantic security (since the counter is encrypted with each
message, the same message will be encrypted differently each time), and low communica-
tion overhead (assuming that the counter state is kept at each end point and is not sent in the

Security 279

message). Data freshness under SNEP is considered to be weak only since SNEP enforces
a sending order within a node B, but no absolute assurance to node A that a message was
created by B in response to an event in A. In order to achieve strong freshness, a nonce (i.e.,
a random number so long that an exhaustive search for all possible nonces is infeasible) can
be included in the protocol. Node A randomly generates nonce NA and sends it along with
a request message to node B. Node B then returns the nonce with the response message in
an authenticated protocol that operates as follows:

A → B : NA, RA (11.4)

B → A : {RB}〈KBA,CB〉, MAC(K ′
BA, NA||CB||{RB}〈KBA,CB〉) (11.5)

If the MAC verifies correctly, A knows that node B generated its response after A’s request.
The µTESLA protocol focuses on the need for authenticated broadcast in wireless sensor

networks. It relies on the symmetric mechanisms provided by SNEP to authenticate the first
packet in a broadcast message. It is an extension of TESLA (Perrig et al. 2000), which was
not designed for use in environments with limited computing resources. TESLA uses digital
signatures to authenticate the initial packet and has an overhead of 24 bytes per packet, which
can be significant for sensor networks, where messages are typically very small. Authenti-
cated broadcast requires an asymmetric mechanism (otherwise any compromised receiver
could forge messages from the sender), but asymmetric cryptographic mechanisms are often
high in resource requirements. Instead, µTESLA emulates asymmetry through a delayed
disclosure of symmetric keys. µTESLA assumes that the base station and the sensor nodes
are loosely time synchronized and each node knows an upper bound on the maximum syn-
chronization error. When the base station sends a message, it authenticates it by computing a
MAC on the packet with a key that is secret at this point. When a node receives the packet and
the key is unknown, the node knows that the MAC key is known only to the base station. The
node stores the packet until the base station, at the time of key disclosure, broadcasts the ver-
ification key to all receivers. The node can now use the key to authenticate the stored packet.

11.4.7 TinySec

The TinySec architecture is a lightweight and generic link-layer security package that devel-
opers can easily integrate into sensor network applications (Karlof et al. 2004). It supports
two different security options: (1) authenticated encryption (TinySec-AE), where data pay-
load is encrypted and a MAC is used to authenticate a packet, and (2) authentication only
(TinySec-Auth), where an entire packet is authenticated with a MAC (but the payload is
left unencrypted). TinySec relies on cipher block chaining (CBC) and a specially formatted
8-byte initialization vector (IV) for encryption. For authentication, TinySec relies on effi-
cient and fast cipher block chaining construction (CBC-MAC) for computing and verifying
MACs. An advantage of CBC-MAC is that since it relies on a block cipher, it minimizes
the number of cryptographic primitives that must be implemented, which is beneficial for
sensor nodes with limited storage capacities. The length of the MAC is chosen to be only
4 bytes, that is, an adversary can repeatedly attempt blind forgeries, which would lead to
success after at most 232 attempts. While this number appears small, it must be noted that
an adversary must assess the validity of a code by sending it to an authorized receiver. That

280 Fundamentals of Wireless Sensor Networks

further means that up to 232 messages must be transmitted, which provides a sufficient level
of security for sensor networks (Boyle and Newe 2008).

11.4.8 Localized Encryption and Authentication Protocol

The Localized Encryption and Authentication Protocol (LEAP) (Zhu et al. 2003) is a key
management protocol for sensor networks, designed to support in-network processing. A
key motivation for this protocol is the observation that different types of messages (e.g., con-
trol packets versus data packets) in a sensor network have different security requirements.
A single keying mechanism may not suitable for meeting these different requirements, for
example, while authentication may be needed for all types of packets, confidentiality may
only be required for certain types of messages (e.g., aggregated sensor readings).

LEAP provides four keying mechanisms: individual keys , group keys , cluster keys , and
pairwise shared keys . In the individual key mechanism, every node has its own unique key
shared with the base station. This key is used for confidential communication or for com-
puting message authentication codes if a node wants the base station to verify its sensed
readings. A group key is a globally shared key that is used by the base station for the trans-
mission of encrypted messages to the entire sensor network. Common examples of such
messages include queries or interests. A cluster key is a key shared between a sensor node
and its neighbors and is used for securing local broadcast messages (e.g., routing control
messages). Finally, a pairwise shared key is a key shared by a sensor node and one of its
immediate neighbors. LEAP uses these keys for secure communications among a pair of
nodes, for example, allowing a node to securely distribute its cluster key to its neighbors or
to securely transmit its sensor readings to an aggregation node.

LEAP also provides a technique for local broadcast authentication. Toward this end, every
node generates a one-way key chain of certain length and transmits the first key in the chain
to each neighbor, encrypted with the pairwise shared key. Whenever a node sends a message,
it takes the next key from the chain (each key is called an AUTH key) and attaches it to the
message. These keys are disclosed in the reverse order of their generation and a receiver can
verify the message based on the first received key or a recently disclosed AUTH key.

11.5 IEEE 802.15.4 and ZigBee Security

The IEEE 802.15.4 standard and the ZigBee specification are popular protocol choices for
WSNs. Therefore, this chapter concludes with a discussion of the security measures avail-
able in these protocols.

The IEEE 802.15.4 standard provides four basic security models: access control, mes-
sage integrity, message confidentiality , and replay protection (Sastry and Wagner 2004).
Security in IEEE 802.15.4 is handled by the MAC layer and an application can choose spe-
cific security requirements by setting appropriate parameters in the radio stack (by default,
security is not enabled). The standard distinguishes between eight security suites (outlined
in Table 11.1), each with different levels of protection for the transmitted data. The first
suite offers no security, the second suite offers encryption only (AES – CTR), followed by
a group of suites with authentication only (AES – CBC – MAC), and a group of suites with
both authentication and encryption (AES – CCM). Suites that offer authentication differ in
the sizes of the MAC, which varies from 32 to 128 bits. For every suite that offers encryption,

Security 281

Table 11.1 Security suites supported in IEEE 802.15.4
(Sastry and Wagner 2004)

Name Description

Null No security
AES – CTR Encryption only, CTR mode
AES – CBC – MAC – 128 128-bit MAC
AES – CBC – MAC – 64 64-bit MAC
AES – CBC – MAC – 32 32-bit MAC
AES – CCM – 128 Encryption and 128-bit MAC
AES – CCM – 64 Encryption and 64-bit MAC
AES – CCM – 32 Encryption and 32-bit MAC

IEEE 802.15.4 also offers optional replay protection consisting of monotonically increasing
sequence numbers for messages to allow a recipient to detect replay attacks.

The first suite Null does not provide any security. All other security suites use the
Advanced Encryption Standard (AES) block cipher, which is also known as Rijndael. The
National Institute of Standards and Technology defines five modes of operation, including
the counter (CTR) and cipher block chaining (CBC) modes (Sastry and Wagner 2004).
When authentication is needed, one of the three AES – CBC – MAC variants can be used,
which compute a message integrity code using a block cipher in CBC mode. The three
AES – CCM suites combine encryption and authentication by using the counter mode and
the CBC mode (CCM is short for Counter with CBC – MAC).

In addition to the security features of IEEE 802.15.4, the ZigBee specification also intro-
duces the concept of a trust center , a responsibility typically assumed by the ZigBee coordi-
nator. The trust center is responsible for authentication of devices wishing to join a network
(trust manager), maintaining and distributing keys (network manager), and enabling end-
to-end security between devices (configuration manager).

ZigBee also differentiates between a residential and a commercial mode (Boyle and
Newe 2008). In the residential mode, the trust center allows nodes to join the network, but it
does not establish keys with the network devices. In the commercial mode, it generates and
maintains keys and freshness counters with every device in the network. The disadvantage
of the commercial mode is its memory cost, which grows with the size of the network.

The ZigBee specification uses the CCM* mode for its security services, which is also a
combination of CTR mode and CBC – MAC mode. Compared to the CCM mode, CCM*
offers encryption-only and integrity-only capabilities. Similar to the specifications in the
IEEE 802.15.4 standard, ZigBee has several levels of security, including no security, encryp-
tion only, authenticated only, and both encryption and authentication. Levels that provide
authentication use a MAC that can vary from 4 to 16 bytes.

11.6 Summary

Like every other computer network, wireless sensor networks are exposed to a variety
of threats and attacks and like most other networks, sensor networks require support
for confidentiality, integrity, and authentication to protect sensor nodes and sensor data.

282 Fundamentals of Wireless Sensor Networks

However, several unique characteristics of WSNs, such as remote deployment (which
facilitates an adversary’s physical access to sensor nodes) and resource constraints, make it
easier to compromise sensors and sensor data. Further, many sensor networks are attractive
targets for attackers due to the nature of many WSN applications and the sensitive data
they generate (e.g., military applications, emergency response, health care). This chapter
provided a brief overview of several types of attacks commonly found in sensor networks
and techniques and protocols to defend a network or to detect an intrusion or compromised
node. As WSNs continue to become more commonplace, it is to expect that security
challenges will increase, the types and number of threats will evolve, and new solutions to
protect sensor networks and sensor data will be required.

Exercises

11.1 Describe the CIA security model. Which service(s) described in this model do you
think are essential for the following scenarios? Justify your answers.

(a) A WSN that allows emergency response teams to avoid risky and dangerous areas
and activities.

(b) A WSN that collects biometric information collected at an airport.
(c) A WSN that measures air pollution in a city for a research study.
(d) A WSN that alerts a city of an impending earthquake.

11.2 What is a man-in-the-middle attack? Can you imagine a concrete WSN scenario
where such an attack could be catastrophic?

11.3 Explain the concepts of symmetric and asymmetric keys. This chapter mentioned
a shift cipher as a simple example of a cryptographic technique. Is this cipher a
symmetric or an asymmetric key cryptography technique? What are the problems
with such a simple cipher?

11.4 Why do you think authentication can be a particularly significant problem in a WSN?

11.5 Explain some of the characteristics of a WSN that make routing security difficult to
implement.

11.6 While “typical” computers are in homes, offices, labs, etc., wireless sensor nodes are
often placed in places that are publicly open and accessible. What kind of attacks
could an adversary initiate by accessing a single sensor node in a large-scale WSN?

11.7 What is “data freshness” and why is it important in sensor networks?

11.8 What is a denial-of-service attack? Explain the following attacks:

(a) Jamming attack
(b) Exhaustion attack
(c) Tampering attack

11.9 Consider routing attacks such as selective forwarding, sinkhole, blackhole, Sybil,
rushing, and wormhole attacks. Describe briefly each type of attack and discuss how
these attacks could take place in the following types of networks:

Security 283

(a) A network using a table-based routing protocol such as OLSR.
(b) A network using an on-demand routing protocol such as DSR.
(c) A network using a location-based routing protocol such as GEAR.

11.10 In this chapter, data aggregation functions such as average, sum , and minimum were
called “insecure”. What does this mean and which technique can be used to increase
the resilience of aggregation functions?

11.11 Consider the virtual ID space for the PIKE scheme in Figure 11.2. In this example,
how many options does node 3 have to establish a key with node 15? Describe each
option.

11.12 What is a “nonce”? How does SPINS use them and what services are provided by
the SNEP protocol?

11.13 What are the security models provided by IEEE 802.15.4? What is the purpose of the
trust center in ZigBee?

References
Boyle, D., and Newe, T. (2008) Securing wireless sensor networks: Security architectures. Journal of Networks 3

(1), 65–77.
Chan, H., and Perrig, A. (2005) PIKE: Peer intermediaries for key establishment in sensor networks. Proc. of the

24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), Miami,
FL.

Deng, J., Han, R., and Mishra, S. (2005a) Countermeasures against traffic analysis attacks in wireless sensor
networks. Proc. of the IEEE Conference on Security and Privacy for Emerging Areas in Communication
Networks (SecureComm), Athens, Greece.

Deng, J., Han, R., and Mishra, S. (2005b) Defending against path-based DoS attacks in wireless sensor networks.
Proc. of the 3rd ACM Workshop on Security of Ad Hoc and Sensor Networks (SANS), Alexandria, VA.

Gaubatz, G., Kaps, J.P., and Sunar, B. (2004) Public key cryptography in sensor networks revisited. Proc. of the
1st European Workshop on Security in Ad Hoc and Sensor Networks, Heidelberg, Germany .

Gruteser, M., Schelle, G., Jain, A., Han, R., and Grunwald, D. (2003) Privacy aware location sensor networks.
Proc. of the 9th USENIX Workshop on Hot Topics in Operating Systems (HotOS IX), Lihue, HI .

Hu, L., and Evans, D. (2003) Secure aggregation for wireless networks. Proc. of the Workshop on Security and
Assurance in Ad Hoc Networks, Orlando, FL.

Hu, Y.C., Perrig, A., and Johnson, D. B. (2003) Rushing attacks and defense in wireless ad hoc network routing
protocols. Proc. of the 2nd ACM Workshop on Wireless Security, San Diego, CA.

Karlof, C., and Wagner, D. (2003) Secure routing in wireless sensor networks: Attacks and countermeasures. Ad
Hoc Networks 1 (23), 293–315.

Karlof, C., Sastry, N., and Wagner, D. (2004) TinySec: A link layer security architecture for wireless sensor
networks. Proc. of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore,
MD .

Menezes, A.J., Vanstone, S.A., and Oorschot, P.C.V. (1996) Handbook of Applied Cryptography . CRC Press,
Boca Raton, FL.

Perrig, A., Canetti, R., Tygar, J., and Song, D. (2000) Efficient authentication and signing of multicast streams
over lossy channels. Proc. of the IEEE Symposium on Security and Privacy, Berkeley, CA.

Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., and Culler, D.E. (2002) SPINS: Security protocols for sensor
networks. Wireless Networks 8, 521–534.

Rivest, R.L., Shamir, A., and Adleman, L. (1983) A method for obtaining digital signatures and public key cryp-
tosystems. Communications of the ACM 26 (1), 96–99.

284 Fundamentals of Wireless Sensor Networks

Sastry, N., and Wagner, D. (2004) Security considerations for IEEE 802.15.4 networks. Proc. of the 3rd ACM
Workshop on Wireless Security, Philadelphia, PA.

Sen, J. (2009) A survey on wireless sensor network security. International Journal on Communications Networks
and Information Security (IJCNIS) 1 (2), 59–82.

Wagner, D. (2004) Resilient aggregation in sensor networks. Proc. of the 2nd ACM Workshop on Security of Ad
Hoc and Sensor Networks, Washington, DC .

Wood, A.D., and Stankovic, J.A. (2002) Denial of service in sensor networks. Computer 35 (10), 54–62.
Zhu, S., Setia, S., and Jajodia, S. (2003) LEAP: Efficient security mechanism for large-scale distributed sensor

networks. Proc. of the 10th ACM Conference on Computer and Communications Security, Washington, DC .

12
Sensor Network Programming
Application development for sensor networks differs in many ways from programming
“traditional” distributed computing systems. Examples of such differences include the con-
tinuous interaction of sensor nodes with their physical environment, the stringent resource
constraints of sensor nodes, the ad hoc deployment of many sensor networks, and the fre-
quent changes in network topology due to failures or mobility. This chapter discusses aspects
of programming large sensor networks that consider these challenges. From the network
developer’s perspective, the goal is to design and program a reliable and efficient wireless
sensor network that can cope with the dynamics and uncertainties present in sensing sys-
tems. From the user’s perspective, the network is often viewed as a database and the users
interact with sensor nodes via queries, which must be responded to in a reliable and efficient
fashion. Many simulation tools and techniques are closely tied to the operating system used
on sensor nodes. The reader is referred to Chapter 4 for a discussion of operating systems
for wireless sensor nodes.

Sensor network programming approaches can be classified as either node-centric
or application-centric. Node-centric languages and programming tools focus on the
development of sensor software on a per-node level. In contrast, programming using an
application-centric approach considers parts or all of the network as one single entity
(Sugihara and Gupta 2008). This chapter presents representative examples for both
categories.

12.1 Challenges in Sensor Network Programming

A sensor network differs from traditional computing environments in various aspects,
thereby necessitating programming frameworks and tools that consider a sensor network’s
unique characteristics. Specifically, the following characteristics significantly affect the
design of sensor network programming tools:

1. Reliability: Wireless sensor networks are inherently more unreliable than other
distributed systems. Therefore, sensor networks are built to adapt to changing dynamics
and node and link errors such that the network continues to serve its intended purpose
even when parts of the network have failed. While many faults in a network will never
be noticed by an application (e.g., a routing protocol autonomously reroutes traffic
around a failed node), resilience to failures and topology changes should be supported
by a programming environment.

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd

286 Fundamentals of Wireless Sensor Networks

2. Resource constraints: Wireless sensor networks are typically very resource-constrained,
which affects the programming approach, maximum code size, and other aspects of appli-
cation development. Most notably, energy efficiency is particularly critical in WSNs and
penetrates every aspect of sensor network design, from duty cycles to routing protocols
to in-network data processing. Therefore, programming tools and models should allow a
developer to effectively exploit energy-saving techniques and approaches, while details
should be hidden from the programmer.

3. Scalability: Sensor networks can scale up to hundreds and thousands of sensor nodes,
therefore programming models should support developers in designing applications and
software for large-scale (and possibly heterogeneous) networks. Manual configuration,
maintenance, and repair of individual sensor nodes will be infeasible due to the
large number of devices, therefore necessitating support for self-management and
self-configuration. The scale of a network can also be addressed by using programming
models that consider the entire network as one whole entity instead of focusing on each
individual device.

4. Data-centric networks: In many wireless sensor networks, not only are the individual
sensor nodes of interest, but also the data they generate and disseminate. Sensor network
applications are therefore concerned about obtaining useful information in a timely
fashion, where it is irrelevant which sensor node(s) generated this information. Many
applications are only concerned with the collection of data at a central point, for example,
a server that stores, analyzes, or visualizes the sensor data. Other applications require
immediate processing and analysis of data within the network, for example, to eliminate
redundant information, to aggregate data from multiple sensors, and to quickly identify
if sensor data should be propagated further or acted upon. Each category will require
different programming models, where the latter category will also require support
for collaboration, that is, programming a network results in generating distributed
algorithms that must work across many or all nodes in a resource-efficient manner.

12.2 Node-Centric Programming

Under the node-centric model, programming abstractions, languages, and tools focus on
the development of sensor software on a per-node level. The overall network-wide sensing
application is then described as a collection of pairwise interactions of individual sensor
nodes. This section describes examples of programming models that focus on software
development for individual nodes.

12.2.1 nesC Language

The combination of the TinyOS operating system and the nesC (Gay et al. 2003) program-
ming language has become the de facto standard for node-centric programming in WSNs.
The programming language nesC is an extension to the popular C programming language
and provides a set of language constructs to implement code for distributed embedded sys-
tems such as motes. TinyOS is a component-based OS written in nesC and is described
in Section 4.3.1. Unlike traditional programming languages, nesC must address the unique
challenges of WSNs. For example, activities in a sensor network (e.g., sensor acquisition,

Sensor Network Programming 287

message transmission and arrival) are initiated by events such as the detection of a change
in the physical environment. These events may occur while a node is processing data, that
is, sensor nodes must be able to concurrently perform their processing tasks while respond-
ing to events. In addition, as discussed many times throughout this book, sensor nodes are
typically very resource-constrained and prone to hardware failures; therefore, programming
languages for sensor nodes should take these characteristics into consideration.

Applications based on nesC consist of a collection of components , where each component
provides and uses interfaces. A “provides” interface in nesC is a set of method calls that
are exposed to higher layers, while a “uses” interface is a set of method calls that hide
details of lower-layer components. An interface describes the use of some kind of service
(e.g., sending a message). The following code shows a concrete example from the TinyOS
timer service. This example provides the StdControl and Timer interfaces and uses a Clock
interface (Gay et al. 2003).

module TimerModule {

provides {

interface StdControl;

interface Timer;

}

uses interface Clock as Clk;

}

interface StdControl {

command result_t init ();

}

interface Timer {

command result_t start (char type, uint32_t interval);

command result_t stop ();

event result_t fired ();

}

interface Clock {

command result_t setRate (char interval, char scale);

event result_t fire ();

}

interface Send {

command result_t send (TOS_Msg *msg, uint16_t length);

event result_t sendDone (TOS_Msg *msg, result_t success);

}

interface ADC {

command result_t getData ();

event result_t dataReady (uint16_t data);

}

This example also shows the definitions for the Timer, StdControl, Clock, Send (commu-
nication), and sensor (ADC) interfaces. The Timer interface defines two types of commands
(which are essentially functions): start and stop. The Timer interface further defines an event ,

288 Fundamentals of Wireless Sensor Networks

which is also a function. While commands are implemented by the providers of an interface,
events are implemented by the users. Similarly, all other interfaces in this example define
both commands and events.

Besides the interface specification, components in nesC also have an implementation.
Modules are components implemented by application code, while configurations are com-
ponents that are implemented by connecting interfaces of existing components. Every nesC
application has a top-level configuration that describes how components are wired together.
Functions (i.e., commands and events) in nesC are described as f.i, where f is a function in
an interface i. Functions are invoked using the call operation (for commands) and the signal
operation (for events). The following code shows a brief excerpt of an implementation of
an application that periodically obtains sensor readings (Gay et al. 2003).

module PeriodicSampling {

provides interface StdControl;

uses interface ADC;

uses interface Timer;

uses interface Send;

}

implementation {

uint16_t sensorReading;

command result_t StdControl.init () {

return call Timer.start (TIMER_REPEAT, 1000);

}

event result_t Timer.fired () {

call ADC.getData ();

return SUCCESS;

}

event result_t ADC.dataReady (uint16_t data) {

sensorReading = data;

...

return SUCCESS;

}

....

}

In this example, StdControl.init is called at boot time, where it creates a repeat timer that
expires every 1000 ms. Upon timer expiration, a new sensor sample is obtained by calling
ADC.getData, which triggers the actual sensor data acquisition (ADC.dataReady).

Returning to the TinyOS timer example, the following code sequence shows how the
timer service in TinyOS (TimerC) is built by wiring two subcomponents, TimerModule and
HWClock (which provides access to the on-chip clock).

configuration TimerC {

provides {

interface StdControl;

Sensor Network Programming 289

interface Timer;

}

}

implementation {

components TimerModule, HWClock;

StdControl = TimerModule.StdControl;

Timer = TimerModule.Timer;

TimerModule.Clk -> HWClock.Clock;

}

In TinyOS, code executes either asynchronously (in response to an interrupt) or
synchronously (as a scheduled task). Race conditions can occur when concurrent updates
to shared state are performed. In nesC, code that is reachable from at least one interrupt
handler is called asynchronous code (AC) and code that is only reachable from tasks is
called synchronous code (SC). Synchronous code is always atomic to other synchronous
codes, because tasks are always executed sequentially and without preemption. However,
race conditions are possible when shared state is modified from AC or when shared state is
modified from SC that is also modified from AC. Therefore, nesC provides programmers
with two options to ensure atomicity. The first option is to convert all of the sharing code
to tasks (i.e., SC only). The second option is to use atomic sections to modify shared state,
that is, brief code sequences that nesC will always run atomically. Atomic sections are
indicated with the atomic keyword, which indicates that a block of statements should be
executed atomically, that is, without preemption, as shown in the following code excerpt.

...

event result_t Timer.fired () {

bool localBusy;

atomic {

localBusy = busy;

busy = TRUE;

}

...

}

...

Nonpreemption can be obtained by disabling interrupts for the duration of an atomic
section. However, to ensure that interrupts are not disabled for too long, no call commands
or signal events are allowed within atomic sections.

12.2.2 TinyGALS

TinyGALS (Cheong et al. 2003) is a globally asynchronous and locally synchronous
(GALS) approach for programming event-driven embedded systems. A TinyGALS
program consists of modules, which are composed of components (the most basic
elements). A component C has a set of internal variables VC, a set of external variables XC,

290 Fundamentals of Wireless Sensor Networks

and a set of methods IC that operate on these variables. Methods are further divided into
calls in the ACCEPTSC set (which can be called by other components) and calls in the USESC

set (which are those needed by C and may belong to other components).
Similar to nesC and TinyOS, TinyGALS defines components using an interface defini-

tion and an implementation. For example, a possible interface description of a component
DownSample is shown below, where the interface has two methods in the ACCEPTS set and
one method in the USES set.

COMPONENT DownSample

ACCEPTS {

void init (void);

void fire (int in);

};

USES {

void fireOut (int out);

};

The following code sequence shows the corresponding implementation for the Down-
Sample component, where _active is an internal boolean variable that ensures that for every
other fire() method called, the component will call the fireOut() method with the same
integer argument.

void init () {

_active = true;

}

void fire (int in) {

if (_active) {

CALL_COMMAND (fireOut) (in);

_active = false;

} else {

_active = true;

}

}

TinyGALS modules consist of one or more components. A module M is a 6-tuple
M = (COMPONENTSM, INITM, INPORTSM, OUTPORTSM, PARAMETERSM, LINKSM), where COMPONENTSM
is the set of components of M, INITM is a list of methods of M’s components, INPORTSM and
OUTPORTSM specify the inputs and outputs of the module, PARAMETERSM is a set of variables
external to the components, and LINKSM specifies the relationships between the method call
interfaces and the inputs and outputs of the module. Modules are further connected to each
other to form a complete TinyGALS system, where a system is a 5-tuple S = (MODULESS,
GLOBALSS, VAR_MAPSS, CONNECTIONSS, STARTS). The set of modules is described in MODULESS,
global variables are described in GLOBALS, a set of mappings (each of which maps a global
variable to a parameter of a module in MODULESS) is contained in VAR_MAPSS, CONNECTIONSS
is a list of the connections between module output ports and input ports, and STARTS is
the name of an input port of exactly one module, which is used as a starting point for the
execution of the system.

The highly structured architecture of TinyGALS can be exploited to automate the gen-
eration of scheduling and event handling code, freeing software developers from writing

Sensor Network Programming 291

error-prone concurrency control code. Code generation tools can automatically produce all
of the necessary code for component links and module connections, system initialization,
start of execution, intermodule communication, and global variables reads and writes. Fur-
ther, through the use of message passing, modules in TinyGALS become decoupled from
each other, therefore facilitating their independent development. Each message passed will
trigger the scheduler and activate a receiving module. However, this may become quickly
inefficient if there is global state that must be updated frequently. Therefore, TinyGALS pro-
vides another mechanism, called TinyGUYS (Guarded Yet Synchronous) variables, where
modules may read global variables synchronously (without delay), but writes to the vari-
ables are asynchronous in the sense that all writes are buffered. The buffer is of size 1, that
is, the last module that writes to a variable wins. TinyGUYS variables are updated by the
schedule only when it is safe to do so, for example, after one module finishes and before the
scheduler triggers the next module.

12.2.3 Sensor Network Application Construction Kit

The Sensor Network Application Construction Kit (SNACK) is a configuration language,
component and service library, and compiler for the development of sensor network appli-
cations (Greenstein et al. 2004). SNACK’s goal is to provide smart libraries that can be
combined to form sensor network applications, while, on one hand, simplifying the develop-
ment process and, on the other, not losing control over efficiency. For example, to program a
sensor node to periodically take temperature and light measurements and forward the sensor
data to some sink, it should be possible to write a simple code sequence such as:

SenseTemp -> [collect] RoutingTree;

SenseLight -> [collect] RoutingTree;

The following examples shows the syntax of SNACK code:

service Service {

src :: MsgSrc;

src [send:MsgRcv] -> filter :: MsgFilter -> [send] Network;

in [send:MsgRcv] -> filter;

}

Here, n :: T declares an instance named n of a component type T , that is, an instance
is effectively an object of the given type. Further, n[i : τ] indicates an output interface on
component n with name i and interface type τ (similarly, [i : τ]n refers to an input interface).
A component provides its input interfaces and uses its output interfaces.

The SNACK library of components and services contains a variety of components for
sensing, aggregation, transmission, routing, and data processing. For example, the messag-
ing architecture of SNACK supports several core components, including Network (which
receives messages from and sends messages to the TinyOS radio stack), MsgSink (which
ends inbound call chains and destroys buffers it receives), and MsgSrc (which periodically
generates empty SNACK messages and passes them on via an outbound interface). The
SNACK Timing system has two core components: TimeSrc, which generates a timestamp
signal, emitted over its signal interface at a specified minimum rate, and TimeSink, which

292 Fundamentals of Wireless Sensor Networks

consumes that signal. Storage in SNACK is implemented by components such as Node-
Store64M, which implements an associative array of eight-byte values keyed by node ID.
Finally, the SNACK Service library contains a variety of services, that is, combinations of
primitive components. For example, the RoutingTree service implements a tree designed
to send data up to some root.

12.2.4 Thread-Based Model

The thread-based paradigm is popular in many computing systems and it has recently also
found its way into sensor networks. In traditional event-based systems, event handlers are
executed in response to events, and these handlers (tasks) run to completion without inter-
ruption from other tasks. The main advantage of the thread-based approach is that multiple
tasks can make progress in their execution without the concern that a task may block other
tasks (or be blocked by other tasks) indefinitely. For example, a task scheduler can execute
a task for a certain amount of time, then preempt this task in order to execute another task.
This time-slicing approach simplifies the programming of sensor systems, but also comes
at the cost of increased operating system complexity.

An example of a thread-based operating system for sensor networks is the MANTIS
(MultimodAl system for NeTworks of In-situ wireless Sensors) OS, which occupies less
than 500 bytes of RAM and about 14 kbytes of flash memory (Bhatti et al. 2005). For
example, the ATMega128 sensor nodes have 4 kbytes of RAM and 128 kbytes of flash
storage, that is, MANTIS OS leaves sufficient space for multiple sensor application threads.
Besides memory efficiency, MANTIS OS also aims for energy efficiency by switching the
microcontroller to a low-power sleep state after all active threads have called the operating
system’s sleep() function.

The goal of the TinyThread (McCartney and Sridhar 2006) library is to add support for
multithreaded programming to sensor networks based on TinyOS and nesC. TinyThread
enables procedural programming of sensor nodes and includes a suite of interfaces that
provide several blocking I/O operations and synchronization primitives that make multi-
threaded programming safe and easy.

Protothreads (Dunkels et al. 2005) are a very lightweight stackless type of threads. Instead
of using a stack for each protothread, all protothreads run on the same stack and con-
text switching is done by stack rewinding. A limitation of protothreads is that contents
of variables must be explicitly saved before calling a blocking wait, since variables with
function-local scope that are automatically allocated on the stack are not saved across such
wait calls.

Finally, Y-Threads (Nitta et al. 2006) is another lightweight threading model that pro-
vides preemptive multithreading. Application developers identify the preemptable and non-
preemptable parts of a program. All threads share a common stack for their nonblocking
computations, while each thread has its own stack for blocking calls. The key concept behind
this approach is that the blocking portions of a program require only small amounts of stack,
therefore achieving better memory utilization compared to other preemptive multithreading
approaches.

Sensor Network Programming 293

12.3 Macroprogramming

Macroprogramming refers to a development approach where the focus is not on individual
sensor nodes, but on the programming of groups of sensor nodes, including approaches that
treat an entire network as a single entity. This section illustrates different approaches to
macroprogramming.

12.3.1 Abstract Regions

In-network processing is often performed to address the bandwidth and energy limitations
of WSNs. However, decomposing data collection tasks into parallel programs with local
communication among sensor nodes can be a challenging problem. Therefore, the goal
of abstract regions (Welsh and Mainland 2004) is to provide higher-level programming
interfaces that hide complex details from the developer, while still being flexible enough to
support the implementation of efficient algorithms.

Many sensor applications are often characterized by group-level cooperation, that is, a
group of nodes work together to sample, process, and communicate sensor data. Therefore,
abstract regions are a communication abstraction intended to simplify the development pro-
cess by providing a region-based collective communication interface. An abstract region
defines the neighborhood relationship between a node and other nodes in the network, for
example, as expressed by “the set of nodes within distance d”. Specifically, the type of
definition of an abstract region will depend on the type of application. Examples of imple-
mentations of abstract regions include N-radio hop (nodes within N radio hops), k-nearest
neighbor (k nearest nodes within N radio hops), and spanning tree (a spanning tree rooted
at a single node, used for aggregating data over the entire network). For example, for regions
defined using hop distances, discovery of region members can be achieved using peri-
odic broadcasts (advertisements). Data among region members can be shared using either a
“push” (broadcasting updates to neighboring nodes) or “pull” (issue a fetch message to the
corresponding node) approach. Reduction is another programming abstraction, which takes
a shared variable key and an associative operator (e.g., sum, max, or min) and reduces the
shared variable across nodes in the region. In abstract regions based on hop distances, reduc-
tion involves collecting shared variable values locally, combining them with the reduction
operator, and storing the result in a new shared variable.

12.3.2 EnviroTrack

The EnviroTrack (Abdelzaher et al. 2004) object-based middleware library is a program-
ming abstraction geared toward target-tracking sensor applications. Its goal is to free the
developer from the details of interobject communication, object mobility, and the mainte-
nance of tracking objects and their state. Similar to abstract regions, EnviroTrack uses the
concept of groups. However, instead of concrete descriptions of the shape or size of a group,
groups in EnviroTrack are formed by sensors which detect certain user-defined entities in the
physical environment, with one group formed around each entity. Groups are identified by
context labels , which can be thought of as logical addresses that follow the external tracked
entity around in the physical environment. Further, objects can be attached to context labels

294 Fundamentals of Wireless Sensor Networks

to perform context-specific operations. These tracking objects are executed on the sensor
group of the context label.

The type of context label depends on the entity being tracked (e.g., a context label of
car is created wherever a car is tracked). A programmer must provide several pieces
of information to declare a context label of some type e. First, a function sensee()

describes the sensory signature identifying the tracked environmental target, for example,
for a car-tracking application, sensee() might be a function of magnetometer and motion
sensor readings. Whenever the EnviroTrack middleware detects a target, it creates a sensor
group around the target. This function is also used to maintain group membership, that is,
all nodes that sense the given target (i.e., sensee() is true) are group members. Next, a
programmer declares an environmental state shared by all objects attached to a context
label by defining an aggregation function statee() that acts on the readings of all sensors
for which sensee() is true. Aggregation is performed locally by a sensor node that acts
as group leader. The EnviroTrack library contains a variety of distributed aggregation
functions such as addition, averaging, and median computation. Finally, the programmer
specifies which objects are to be attached to a context label.

12.3.3 Database Approaches

Another commonly used abstraction for sensor network programming is to treat a WSN as
a distributed database that can be queried (e.g., using SQL-like queries) to obtain sensor
data. A representative example of a distributed query processor for sensor nodes is TinyDB
(Madden et al. 2005). Here, the network is represented logically as a table (called sensors)
that has one row per node per instant in time. Each column in this table corresponds to a
type of sensor reading such as light, temperature, pressure, etc. A new record in this virtual
table (i.e., a new row) is added only when a sensor is queried and this new information
is usually stored for a short period of time only. Queries in TinyDB are very much like
any other SQL-based database, that is, they use clauses such as SELECT, FROM, WHERE, and
GROUP BY to build queries. For example, the following query specifies that each device should
report its own identifier (nodeid), light reading, and temperature reading once per second for
10 seconds:

SELECT nodeid, light, temp

FROM sensors

SAMPLE PERIOD 1s FOR 10s

As a result of this query, nodes initiate data collection at the beginning of each epoch (as
specified in the SAMPLE PERIOD clause) and the results of such a query are streamed to the root
of the network.

TinyDB also supports grouped aggregation queries, that is, as data from an aggregation
query flows up the tree, it is aggregated in-network according to an aggregation function and
value-based partitioning specified in the query. For example, imagine a user who wishes to
use microphone-equipped sensor nodes to monitor the occupancy of a room on a particular
floor of a building. Assuming that rooms have multiple sensors, the goal is to look for rooms
where the average volume is over a certain threshold. A query for this sensing request could
be expressed as:

SELECT AVG(volume), room FROM sensors

WHERE floor = 6

Sensor Network Programming 295

GROUP BY room

HAVING AVG(volume) > threshold

SAMPLE PERIOD 30s

Every 30 s, this query reports all rooms where the volume is above the specified threshold.
Each sensor periodically obtains new sensor readings, applies the criteria from the SELECT

criteria, and if the criteria are satisfied, the sensor data is forwarded to the sensor’s parent
node of the tree leading to the root. The parent node listens to the records coming from its
children, aggregates its own sensor reading with the records obtained from its children, and
forwards the newly obtained aggregate onward to its own parent. This process is continued
until the query result has reached the root of the tree.

The main data-processing functions supported by TinyDB are selection and aggregation.
A similar approach is taken by Cougar (Bonnet et al. 2000), which also represents sensor
data as a relational table. Both TinyDB and Cougar focus on resource-efficiency through the
use of in-network aggregation. A more sophisticated database approach is taken by SINA
(Srisathapornphat et al. 2000), which models a sensor network as a collection of distributed
objects. SINA supports more complex sensor node collaborations by embedding more pow-
erful SQTL (Sensor Querying and Tasking Language) scripts in an SQL query. The focus
of the MiLAN (Heinzelman et al. 2004) approach is on Quality-of-Service (QoS), that is,
sensor network applications can specify their QoS needs, which the network attempts to
meet while maximizing the network lifetime.

A disadvantage of database models for sensor networks is that all nodes are assumed to be
homogeneous, for example, the sensors table in TinyDB is structured the same for all sensor
nodes. The focus of database systems is on relatively simple data collection applications,
targeting resource-constrained environments such as motes.

12.4 Dynamic Reprogramming

It has further become increasingly necessary to support the programming and reprogram-
ming of sensor networks after deployment. It is therefore necessary to provide mechanisms
to disseminate code to potentially hundreds or thousands of resource-constrained sensor
nodes. One possible approach to address this challenge is to use virtual machines . For
example, Maté (Levis and Culler 2002) is a small virtual machine implemented on top
of TinyOS. A sequence of 24 instructions (each of which is a single byte long) is called
a capsule, which fits into a single TinyOS packet. Every code capsule also includes type
and version information. Maté distinguishes four types of capsules: message send capsules,
message receive capsules, timer capsules, and subroutine capsules. Programs execute in
response to an event, that is, a timer firing, a packet being received, or a packet being sent.
Each of these events has a capsule and an execution context. Maté jumps to the first instruc-
tion of the capsule and executes until it reaches the halt instruction. When a subroutine is
called, the return address is pushed onto a return address stack and control jumps to the first
instruction of the subroutine. Upon return from the subroutine, an address is taken from the
top of the stack and Maté continues at the appropriate instruction.

Trickle (Levis et al. 2004) is a controlled flooding protocol for disseminating small pieces
of code to all nodes in a sensor network. It uses metadata to describe code, allowing a node
to determine if it needs a code update by comparing two different pieces of metadata. A
node uses broadcasts to exchange metadata with its neighbors, that is, time is broken into

296 Fundamentals of Wireless Sensor Networks

intervals and at a random time during an interval, it broadcasts its metadata if it has not
already heard the same metadata from several other nodes. Whenever a node hears another
node broadcasting outdated metadata, it broadcasts its own code, thereby giving the outdated
node a chance to update its code. Similarly, if a node overhears another node broadcasting
newer metadata than its own, it broadcasts its own metadata, thereby triggering its neighbor
with the newer code to broadcast it.

Melete (Yu et al. 2006) is an extension to Maté in that it supports multiple concurrent
applications. It is also an extension to Trickle in that it supports selective dissemination
by limiting the dissemination range. That is, code is forwarded only within a forwarding
region , which covers the desired destination of the code update.

Deluge (Hui and Culler 2004) is another tool to reprogram wireless sensor nodes remotely.
Similar to Trickle, Deluge occasionally advertises the most recent code version using broad-
cast messages. If a node receives an update from a node with an older code version, it
responds with its own code version, giving the outdated node an opportunity to detect that
its version is old and to request the newer code. To reduce contention, Deluge eliminates
redundant advertisements and request messages. It also provides robustness by (i) using
a three-phase handshake protocol to ensure that only bidirectional links are used for code
updates and (ii) allowing a node to search for a new neighbor to request code if it has not
completely received the code after k requests. Finally, Deluge dynamically adjusts the rate
of advertisements to allow quick propagation when needed while consuming few resources
in the steady state.

The goal of Pump Slowly, Fetch Quickly (PSFQ) (Wan and Campbell 2005) is to dis-
tribute data (e.g., pieces of code) from a single source to a number of destinations. The
basic concept behind PSFQ is to slowly pace the propagation of packets (pump slowly) and
to aggressively fetch lost packets (fetch quickly), where lost packets are detected through out
of order packet receptions. Nodes will not relay received packets out of order, that is, a node
that detects a lost packet will refrain from forwarding packets received out of order until the
lost packet has been recovered. This approach prevents loss events from propagating down-
stream and allows nodes to recover lost packets from immediate neighbors (because at least
one neighbor must have a copy of the missing packets). This localized recovery process
reduces recovery costs by limiting recovery to single-hop transmissions and by avoiding
that a single lost packet causes multiple retransmission requests in the network.

The Push Aggressively with Lazy Error Recovery (PALER) protocol (Miller and
Poellabauer 2008) is based on the observation that pushing data downstream and
recovering lost packets simultaneously leads to excessive contention and collisions. As
a consequence, PALER eliminates the in-order reception requirement and instead pushes
all data aggressively to the destinations without delaying data propagations due to lost
packets. All nodes in the network keep a list of missing packets and only after the broadcast
phase has completed do nodes with missing packets issue retransmission requests to their
neighbors. Similar to PSFQ, these retransmission requests do not have to travel multiple
hops since a retransmission request will again be handled by an immediate neighbor. If
the immediate neighbor cannot retransmit the packet, it must also mean that this neighbor
did not receive a copy of the packet and will therefore have issued its own retransmission
request to its neighbors. Once this neighbor receives a copy of the missing packet, it can
respond to its received retransmission requests. This lazy error recovery approach can

Sensor Network Programming 297

significantly reduce collisions, thereby improving both the latency and energy overheads
of code distributions in sensor networks.

12.5 Sensor Network Simulators

Many sensor networks consist of hundreds or thousands of nodes distributed over large
geographic areas. Further, even with inexpensive hardware components, building large net-
works of sensors may be prohibitively expensive. Therefore, it is often impractical to imple-
ment novel algorithms and protocols on actual networks. As a consequence, simulation tools
are particularly important for development and research on new sensor network applications,
functionality, and protocols. However, the right choice of simulator is a critical task, since
network characteristics can vary widely between different types of sensor networks. Further,
the many complex and dynamic relationships and parameters of a WSN make it difficult
to obtain realistic models. In general, every simulator typically incorporates the following
components: models describing the characteristics of the sensor nodes, a selection of differ-
ent communication models, models for the physical environment, and tools for collecting
and analyzing statistics and for visualization of the collected data and sensor node behavior.
This section provides an overview of a few commonly used and representative simulation
tools and environments for sensor networks.

12.5.1 Network Simulator Tools and Environments

12.5.1.1 Sensor Network Extensions for ns-2

The network simulator (typically called ns-2 , where the number indicates the current ver-
sion) is a widely used discrete event simulator targeted at networking research in general.
It was written in a combination of C++ and an object-oriented dialect of Tcl, called OTcl.
One reason for the popularity of ns-2 is its extensibility. Over time, many enhancements
and extensions were developed, for example, to provide support for wireless networks and
mobile ad hoc networks. Similarly, a variety of extensions for sensor networks have been
created. For example, one such extension adds the notion of a phenomenon to a sensor net-
work simulation. A phenomenon describes a physical event such as a chemical cloud or
moving vehicle that could be monitored by nearby sensor nodes (Downard 2004). That is,
a phenomenon then serves as a trigger for sensor network applications and network activ-
ity. The model uses broadcast packets transmitted through a designated channel to represent
a phenomenon, that is, the range of phenomena is the set of nodes that can receive these
broadcasts. Broadcast packets are generated using the PHENOM routing protocol , which
emits packets with a certain configurable pulse rate and whose arrival at a sensor node trig-
gers a receive event that is passed to that node’s sensor application. Other extensions that
have been developed over time include routing protocol implementations, extensions that
simulate the type of packets used by sensor applications, and models of multihomed nodes.

12.5.1.2 GloMoSim and QualNet

GloMoSim (Zeng et al. 1998) is a simulation tool based on the PARSEC simulation envi-
ronment (Bagrodia et al. 1998). PARallel Simulation Environment for Complex (PARSEC)

298 Fundamentals of Wireless Sensor Networks

systems is a C-based simulation language, which is used to represent a set of objects in the
physical system as logical processes and interactions among these objects as time-stamped
message exchanges. GloMoSim supports a variety of models at different protocol layers,
for example, CSMA and MACAW (MAC layer), flooding and DSR (network layer), and
TCP and UDP (transport layer). In addition, it supports different node mobility models,
for example, the random waypoint model (i.e., a node chooses a random destination within
the simulated area and moves toward this destination with a specified speed) and the ran-
dom drunken model (i.e., a node periodically moves to a position chosen randomly from
its immediate neighboring positions). While GloMoSim is intended for academic use only,
a commercialized version of GloMoSim, called QualNet, is produced by Scalable Network
Technologies, Inc.

12.5.1.3 JiST/SWANS

A discrete event simulation tool based on Java is JiST (Barr et al. 2004), which stands
for Java in Simulation Time. The key motivation behind JiST is to create discrete event
simulations that can execute efficiently and transparently. Efficiency refers to the ability to
execute a given simulation program in parallel, while dynamically optimizing the configu-
ration of the simulation across the available computational resources. Transparency refers
to the ability to transform simulation programs automatically to run with simulation time
semantics, that is, simulations are instrumented such that no programmer intervention or
calls to specialized libraries are needed to support various concurrency, consistency, and
reconfiguration protocols.

One of the primary motivations for JiST was to support simulations of ad hoc networks
and Scalable Wireless Ad hoc Network Simulator (SWANS) is a simulator built on top of
the JiST engine. SWANS is a collection of independent software components that can be
aggregated to form complete wireless simulations. The capabilities of JiST/SWANS are
comparable to ns-2 and GloMoSim, but it is able to simulate much larger networks (Barr
et al. 2004).

12.5.1.4 OMNeT++

The Objective Modular Network Testbed (OMNeT++) discrete event simulation environ-
ment (Varga and Hornig 2008) is a tool used for the simulations of communication networks,
multiprocessors, and various distributed systems. It is an open-source simulator based on
C++ that was designed for the simulation of large systems and networks. A model in
OMNeT++ consists of modules that communicate with each other using message pass-
ing. Simple modules can be grouped together to form more complex compound modules . A
user defines the structure of a module (i.e., the modules and their interconnection) using
OMNeT++’s topology description language NED. Further, the OMNeT++ framework
includes a graphical editor that can be used to edit network topologies either graphically
or in NED source view. Because of its clean design, simulation development is straightfor-
ward. However, compared to other tools, its biggest shortcoming is the lack of available
protocol models.

Sensor Network Programming 299

12.5.1.5 TOSSIM

A simulator for TinyOS-based wireless sensor networks is TOSSIM (Levis et al. 2003). It
generates discrete event simulations directly from TinyOS components, therefore running
the same code that runs on sensor nodes. TOSSIM replaces low-level components such
that hardware interrupts are translated into events in the simulation and the simulator event
queue delivers the interrupts that drive the execution of a TinyOS application. Apart from
this, TinyOS code runs in the simulator unmodified. TOSSIM works at the bit level, that is,
an event is generated for each transmitted or received bit (instead of an entire packet). This
allows for experimentations with low-level protocols in addition to higher-level protocols
or applications. Similar to most other tools, TOSSIM comes with a visualization tool, which
is called TinyViz. TOSSIM scales to thousands of sensor nodes and its advantages include
its scalability and extensibility. However, it does not include energy profiling and its use is
limited to systems based on TinyOS.

12.5.1.6 EmStar

EmStar (Girod et al. 2004) is targeted at high capability nodes called microservers , that is,
those nodes in a hierarchical sensor network structure that run more complex software than
ordinary sensing devices (e.g., motes). EmStar consists of a Linux microkernel extension,
libraries, services, and several tools. EmSim operates many virtual nodes in parallel in a
simulation that models radio and sensor channels. EmCee runs the EmSim core and is an
interface to real low-power radios instead of using a modeled channel. Finally, EmView is
a graphical visualizer for EmStar systems.

12.5.1.7 Avrora

Avrora (Titzer and Palsberg 2005) is a flexible simulator framework implemented in Java.
Each node is implemented as its own thread and code is executed in an instruction-by-
instruction fashion. A key component of Avrora is its implementation of an event queue.
Many energy-conscious nodes tend to sleep for large periods of time, for example, using
low-power sleep modes where no instructions are executed and the energy consumption is
dramatically reduced. The event queue in Avrora takes advantage of this approach to boost
the performance of the simulator. That is, when a node sleeps, only a time-triggered event
that causes an interrupt can wake up the node. Such an event is inserted into the event queue
of the node to be woken up at a certain time in the future. Only such an event, when at the
head of the event queue, can affect the simulation when a node sleeps. That is, the simulator
can process events in the queue in order until one of them triggers a hardware interrupt,
which re-awakes the node. In summary, Avrora is a fast and highly scalable simulator that
can simulate program executions down to the level of individual clock cycles.

Exercises

12.1 Describe the difference between node-centric and application-centric programming.

12.2 Explain the difference between provides and uses interfaces in nesC.

300 Fundamentals of Wireless Sensor Networks

12.3 What options does nesC provide to developers to prevent race conditions?

12.4 A common strategy to ensure atomicity is to disable interrupts in an operating system
as long as critical operations are being executed. What is the danger of disabling
interrupts?

12.5 What are the main advantages and disadvantages of thread-based programming
models?

12.6 This chapter introduced several macroprogramming models. Contrast how these dif-
ferent models are able to address multiple (or all) sensor nodes simultaneously.

12.7 Why is it necessary to provide the opportunity to dynamically reprogram a sensor
network? What is challenging in distributing a new program to all sensor nodes in
the network?

References
Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans D, George, J., George, S., Gu, L., He, T., Krishnamurthy,

S., Luo, L., Son, S., Stankovic, J., Stoleru, R., and Wood, A. (2004) EnviroTrack: Towards an environmental
computing paradigm for distributed sensor networks. Proc. of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS), Hachioji, Tokyo, Japan .

Bagrodia, R., Meyer, R., Takai, M., Chen, Y., Zeng, X., Martin, J., and Song, H.Y. (1998) PARSEC: A parallel
simulation environment for complex systems. IEEE Computer 31 (10), 77–85.

Barr, R., Haas, Z.J., and van Renesse, R. (2004) JiST: Embedding simulation time into a virtual machine. Proc.
of the 5th EuroSim Congress on Modelling and Simulation, Marne-la-Vallée, France.

Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruenwald, C., Torgerson, A., and Han,
R. (2005) MANTIS OS: An embedded multi-threaded operating system for wireless micro sensor platforms.
ACM/Kluwer Mobile Networks and Applications (MONET), Special Issue on Wireless Sensor Networks 10
(4), 563–579.

Bonnet, P., Gehrke, J., and Seshadri, P. (2000) Querying the physical world. IEEE Personal Communications
7 (5), 10–15.

Cheong, E., Liebman, J., Liu, J., and Zhao, F. (2003) TinyGALS: A programming model for event-driven embed-
ded systems. Proc. of the 18th Annual ACM Symposium on Applied Computing, Melbourne, FL.

Downard, I. (2004) Simulating sensor networks in NS2 . Technical Report, NRL/FR/(5522)(0410)073, Naval
Research Laboratory, Washington, DC.

Dunkels, A., Schmidt, O., and Voigt, T. (2005) Using protothreads for sensor node programming. Proc. of the
REALWSN Workshop on Real-World Wireless Sensor Networks, Stockholm, Sweden .

Gay, D., Levis, P., Behren, R., Welsh, M., Brewer, E., and Culler, D. (2003) The nesC language: A holistic approach
to networked embedded systems. Proc. of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), San Diego, CA.

Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N., and Estrin, D. (2004) EmStar: A software
environment for developing and deploying wireless sensor networks. Proc. of the USENIX Annual Technical
Conference, Boston, MA.

Greenstein, B., Kohler, E., and Estrin, D. (2004) A sensor network application construction kit (SNACK). Proc.
of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys), Baltimore, MD .

Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., and Perillo, M.A. (2004) Middleware to support sensor network
applications. IEEE Network 18 (1), 6–14.

Hui, J.W., and Culler, D. (2004) The dynamic behavior of a data dissemination protocol for network programming
at scale. Proc. of the 2nd ACM Conference on Embedded Networked Sensor Systems (SenSys), Baltimore, MD .

Levis, P., and Culler, D. (2002) Maté: A tiny virtual machine for sensor networks. Proc. of the 10th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), San
Jose, CA.

Sensor Network Programming 301

Levis, P., Lee, N., Welsh, M., and Culler, D. (2003) TOSSIM: Accurate and scalable simulation of entire TinyOS
applications. Proc. of the 1st ACM Conference on Embedded Networked Sensor Systems (SenSys), Los
Angeles, CA.

Levis, P., Patel, N., Culler, D., and Shenker, S. (2004) Trickle: A self-regulating algorithm for code propagation
and maintenance in wireless sensor networks. Proc. of the 1st Symposium on Networked Systems Design and
Implementation, San Francisco, CA.

Madden, S.R., Franklin, M.J., Hellerstein, J.M., and Hong, W. (2005) TinyDB: An acquisitional query processing
system for sensor networks. ACM Transactions on Database Systems 30 (1), 122–173.

McCartney, W.P., and Sridhar, N. (2006) Abstractions for safe concurrent programming in networked embed-
ded systems. Proc. of the 4th International Conference on Embedded Networked Sensor Systems (SenSys),
Boulder, CO .

Miller, C., and Poellabauer, C. (2008) PALER: A reliable transport protocol for code distribution in large sen-
sor networks. Proc. of the 5th IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), San Francisco, CA.

Nitta, C., Pandey, R., and Ramin, Y. (2006) Y-Threads: Supporting concurrency in wireless sensor networks. Proc.
of the 2nd International Conference on Distributed Computing in Sensor Systems, San Francisco, CA.

Srisathapornphat, C., Jaikaeo, C., and Shen, C.C. (2000) Sensor information networking architecture. Proc. of the
3rd International Workshop on Parallel Processing, Toronto, Canada .

Sugihara, R. and Gupta, R.K. (2008) Programming models for sensor networks: A survey. ACM Transactions on
Sensor Networks 4 (2), 1–29.

Titzer, B.L., and Palsberg, J. (2005) Nonintrusive precision instrumentation of microcontroller software. Proc.
of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems,
Chicago, IL.

Varga, A., and Hornig, R. (2008) An overview of the OMNeT++ simulation environment. Proc. of the 1st
International Conference on Simulation Tools and Techniques for Communications, Networks and Systems,
Marseilles, France.

Wan, A.K.L., and Campbell, C.Y. (2005) Pump Slowly, Fetch Quickly (PSFQ): A reliable transport protocol for
sensor networks. IEEE Journal on Selected Areas in Communications 23 (4), 862–872.

Welsh, M., and Mainland, G. (2004) Programming sensor networks using abstract regions. Proc. of the 1st Sym-
posium on Networked Systems Design and Implementation, San Francisco, CA.

Yu, Y., Rittle, L.J., Bhandari, V., and LeBrun, J.B. (2006) Supporting concurrent applications in wireless sen-
sor networks. Proc. of the 4th International Conference on Embedded Networked Sensor Systems (SenSys),
Boulder, CO .

Zeng, X., Bagrodia, R., and Gerla, M. (1998) GloMoSim: A library for parallel simulation of large-scale wireless
networks. Proc. of the 12th Workshop on Parallel and Distributed Simulation, Banff, Alberta, Canada .

Index
Abstract regions, 293
Access control, 280
Active sensor, 5
Active volcano monitoring, 39
Actuator, 5
Additive white Gaussian noise (AWGN),

118
Ad-hoc deployment, 11
Admittance, 22
Aggregation, 273
Aggregation attack, 276
Air pressure, 38
ALOHA, 127
AM see Modulation

amplitude modulation
Ampere-Hour, 213
Amplification, 4, 109
Amplitude shift keying, 111

direct mixing, 111
Analog signal, 48
Analog-to-digital converter (ADC), 4, 40,

47–8, 54, 57, 63–5, 97
Anchor node, 252, 258
Anisotropic Magnetoresistive (AMR),

29–30
Antenna, 96

effective area, 118
gain, 118, 252
omnidirectional, 39
receiver, 96
transmitter, 96, 118

Application, 17
active volcano monitoring, 38, 49
health care, 30, 49

Fundamentals of Wireless Sensor Networks: Theory and Practice Waltenegus Dargie and Christian Poellabauer
 2010 John Wiley & Sons, Ltd

pipeline monitoring, 35, 49
precision agriculture, 50
SHM, 17, 49
supply chain management, 49
traffic control, 25
transportation, 49
under ground mining, 40

Application-specific integrated circuit
(ASIC), 55–6

full custom design, 56
half-customized, 55
standard cell design, 56

Architecture, 52
Harvard, 52
Super-Harvard, 52
Von Neumann, 52, 62

Asymmetry, 172
Asynchronous code, 289
Atomic clock, 237
Atomicity, 289
Attenuation, 4, 11, 42, 95, 252
Authentication, 268, 270,

277–8
Automatic repeat request, 106
Availability, 268
Avrora, 299

Bandpass filter, 110
Bandpass signal, 107
Bandwidth, 102, 109
Base station, 38
Baseband signal, 109
Basic transmission loss, 119
Battery, 213

304 Index

Baye’s Law, 105
Binary erasure channel (BEC), 104
Binary symmetric channel (BSC), 103
Bit reverse addressing, 52
Blackhole attack, 272
Block code, 97
Bluetooth, 35, 117, 132, 271
Broadcast, 165
Bus, 210
Bus frequency, 210

Canada, 37
Capacitance, 23
Capacitive sensor, 6
Capacitor, 220
Carbon dioxide, 41
Carrier sense multiple access, 128–9

1-persistent, 129
non-persistent, 129, 142
p-persistent, 129

Carrier sense multiple access with
collision avoidance, 128

Carrier sense multiple access with
collision detection, 128

Carrier signal, 106, 114, 118
CAS (column access strob), 212
CAS latency, 212
CC2420, 34, 40, 64, 209
Central Ecuador, 39
Channel, 104
Channel capacity, 102
Channel encoding, 96, 101
Channel hopping, 138
Channel matrix, 103–4
Charge density, 22
Checksum, 275
CIA model, 267
Cipher block chaining, 280
Clear-to-send, 129, 145
Clock generator, 54
Clock offset, 229, 234
Clock rate, 229
Clock skew, 229
Clock synchronization see Time

synchronization
Clustering, 141, 180

Coal, 41
Code division multiple access (CDMA),

127
Code generation, 291
Codebook, 96–7

efficiency, 97
Coherence, 21
Coherent detection, 107
Coil, 27
Collision attack, 271
Command editor, 69
Command interpreter, 69
Commands, 69
Communication interface, 58
Communication latency, 236
Communication subsystem, 47, 209
Compass routing, 186
Compiler, 69
Conditional probability, 105
Confidentiality, 267–8, 270, 278, 280
Congestion, 26
Connectivity, 38
Contiki, 80–1, 88–9

core, 81
kernel, 80
protothread, 82

Controller Area Network, 54
Convergecast, 151
Conversion ratio, 215
Coordinated universal time (UTC), 230,

237
Cougar, 295
CPU, 53–4
Cryptography, 268, 274
CSMA, 298
Current capacity, 213

Damage detection, 19, 21–2
multiple damage detection, 19–20
single damage detection, 19

Data acquisition, 4
Data aggregation, 141
Data fidelity, 39
Data freshness, 270, 278
Data fusion, 231, 273
Data gathering MAC (DMAC), 151

Index 305

Data link layer, 125
Data types, 70
DC – DC converter, 47, 213

boost, 212
buck, 212
flyback, 212

DCF (distributed coordination function),
131

DCF interframe space (DIFS), 129, 131
149

Debugger, 69
Delta encoding, 38
Delta modulation, 100
Deluge, 296
Demand wakeup (DW-MAC), 151
Demodulation, 96, 109, 112, 115
Denial-of-service, 13, 268, 270, 275
DESYNC – TDMA, 139
Desynchronization algorithm, 139
Desynchronization attack, 273
Detection, 96, 101, 115
Diffie – Hellman algorithm, 269
Digital communication system, 95
Digital filters, 55
Digital signal processor (DSP), 54, 57
Digital signature, 268, 279
Dijkstra’s algorithm, 261
Direct memory access (DMA), 53
Direct sequence spread spectrum,

142
Discharge rate, 213
Distance vector, 258
Distributed Bellman-Ford, 176
Drift rate, 229
DSR, 298
Duty cycle, 38
Duty cycling, 12, 133, 146, 149, 151, 180,

286
Dynamic operation mode, 216
Dynamic power management (DPM), 133,

207–8, 215–16, 222, 224
Dynamic reprogramming, 74, 79, 87, 89
Dynamic scaling, 219

dynamic frequency scaling, 219
Dynamic Voltage Scaling (DVS), 10,

219, 225

Early sleeping problem, 147
Earth’s mantle, 39
Earthquakes, 39
Eavesdropping, 268, 270, 273
EEPROM, 30, 54, 73
Electric field, 22
Electroencephalography see Sensor

EEG
Electromyography see Sensor

EMG
Embedded computing system, 3
Embedded system, 290
EmStar, 299
Encoding, 96
Encryption, 277
Entropy, 98
Envelope detector, 110
EnviroTrack, 293
EPA, 41
Epilepsy, 30, 34
EPROM, 54
Equivocation, 105
Error correction, 106
Error recognition, 106
Eruptions, 39
Euclidean method, 259
Event, 72
Event handler, 72, 81
Event-based programming, 72, 88
Event-driven sensor network, 166
Exhaustion attack, 271
Expected transmission count, 168
Expected transmission time, 168
Explicit contention notification, 156
Exponential backoff, 128, 131, 138, 145,

153, 271
Exposed-terminal problem, 128

Faraday’s law, 27
Field programmable gate arrays (FPGA),

54, 56
File management, 69
Filter, 4, 40
Filter circuit, 213
Filtering, 109
Fisheye state routing, 181

306 Index

Flash memory, 40, 51, 54, 57, 64, 73
Flip-flop, 56
Flooding, 168
Flooding attack, 272
Forward error correction, 127
Fourier transformation, 108
Frequency division multiple access

(FDMA), 127
Frequency modulation, 111
Frequency shift keying, 112
Friis transmission equation, 252

Gabriel graph, 185
Geocasting, 183, 189–90
Geographic adaptive fidelity, 187
Geographic and energy aware routing

(GEAR), 190
Geophones, 39
Global inspection, 18
Global positioning system (GPS), 231,

237, 249, 256
differential GPS, 258
master control station, 256
monitor station, 256

Global time, 229
GloMoSim, 298
Golden Gate Bridge, 25
Gossiping, 168
Greedy forwarding, 183, 186, 189–91
Group dispersion, 243

Harvard University, 34, 39
Hash chain, 275
Health care, 49
Heat summation units, 38
Hello message, 156, 177, 184, 193, 194
Hidden-terminal problem, 128, 134
Houfeng Didong Yi, 48
Humidity, 42

I 2C, 59, 62, 63, 65
CS, 60
fast-mode, 60
hs-mode, 60
SCLH, 61
SDAH, 61

serial clock, 61
serial data, 61
SS, 60
start condition, 60
stop condition, 60

I/O device, 53, 56, 57, 72
I/Q-modulator, 115
IEEE 802 reference model, 125
IEEE 802.11, 8, 130, 271

ad-hoc mode, 131
distributed coordination function, 131
managed mode, 131
point coordination function, 131
power saving mode (PSM), 132

IEEE 802.15.4, 9, 132, 280
Impedance, 23
Implosion, 169
In-network processing, 10, 141, 280, 286,

293, 295
India, 37
Inductive loops, 26
Inductive sensor, 6
Information content, 105
Infrasonic signal, 39
Integrity, 267–8, 280
Interference, 95, 117
Interrupt, 71
Inverse-square law, 12
Irrelevance, 104
ISM (Industry, Scientific and Medical)

band, 117, 125
Italy, 37

Jamming attack, 271, 275
Jennic architecture, 57
JiST/SWANS, 298
Jitter, 168

Key management, 274, 280

LANMAR protocol, 181
Latency, 168
Leakage energy, 10
Lenz’s law, 28
Lightweight medium access control

(LMAC), 143

Index 307

Line-of-sight (LOS), 119
Linear topology, 39
Link, 95
LiteOS, 85, 88–9

LiteFS, 86
Lithosphere, 39
Local inspection, 18
Local oscillator, 110, 113
Local time, 229
Localization, 249–50

accuracy and precision, 250, 257
ad-hoc positioning system, 258
anchor-based, 250
anchor-free, 250
angle of arrival, 251
approximate point in triangulation, 259
area-based, 259
event-driven, 262
lighthouse approach, 262
multi-sequence positioning, 263
multidimensional scaling, 260
range-based, 250, 252
range-free, 258–9
time difference of arrival, 251
time of arrival, 250

Lofar Agro, 38
Logical link control layer, 125
Low-energy adaptive clustering hierarchy

(LEACH), 140
Lowpass filter, 109, 215
Luminosity, 38

MACA by invitation, 130
Macroprogramming, 293
Magnetic fields, 29
Man-in-the-middle attack, 268
MANTIS OS, 292
Maté, 295
Max-flow-min-cut theorem, 167
Maximum hop count, 169
Maximum likelihood estimator, 253
Mechanical strain, 22
Mechanical stress, 22
Medium access control (MAC), 10, 125

contention-based, 10, 126–27, 144
contention-free, 10, 126–27, 135

dynamic assignment, 126–7
fixed assignment, 126, 127
hybrid, 126
polling-based, 127
receiver-driven, 137
reservation-based, 127
token passing, 127

Melete, 296
Memory allocation, 73, 88

dynamic, 73, 88
static, 73, 88

Memory management, 69
Memory timing

refresh rate, 211
Mesh topology, 9
Message authentication code, 275
Methane, 41
Mica2, 241
Micro climate, 38
Microcontroller, 57
Microelectromechanical system (MEMS),

3, 48, 51
Microloop probe, 26
Microphone, 39–40
Microwave oven, 117
MiLAN, 295
Mine Safety and Health Administration

(MSHA), 42
Mission time, 10
MIT, 30, 35
Mobile lightweight medium access control

(MLMAC), 143
Mobility, 13
Mobility adaptive hybrid MAC

(MH-MAC), 156
Modulation, 96, 106, 116

amplitude modulation, 107–8
modulation efficiency, 115
QAM, 114

Most forwarding progress within radius,
186

Motes, 8
Multi-hop communication see

Routing
Multipath scattering, 95
Multithreading, 72, 80

308 Index

Multi-hop communication (continued)
Multi-hop communication, 9
Multicast, 165, 188
Multilateration, 255
Multiple access with collision avoidance

(MACA), 129
Multiple access with collision avoidance

for wireless LANs (MACAW), 130,
298

Nearest with forwarding progress,
186

Negative acknowledge, 25
nesC, 286
Network time protocol (NTP), 231
Node, 35, 37–9, 47, 223

Hogthrob, 65
IMote, 63
Shimmer, 34
XYZ node, 64

Noise, 95, 100, 104, 106, 117
noise power, 102

Noncoherent detection, 107
Nonrepudiation, 268
Nonce, 279
Northern Ecuador, 39
Nyquist, 51, 95

OMNeT++, 298
Operating system (OS), 30, 69, 73–75, 78,

80, 81, 85, 88
Contiki, 80
LiteOS, 85
multitasking, 69
multi-user, 69
nonpreemptive, 70
single task, 69
single user, 69
SOS, 78
TinyOS, 30, 75

Orientation, 251
Oscillator, 54
OSI reference model, 125
Overlap, 169
Oversampling, 40
Oxygen, 41

Packet loss, 172
Parallel Simulation Environment for

Complex (PARSEC), 298
Parkinson’s Disease, 30, 33, 49
Passive component, 215

capacitor, 214, 220
Passive infrared (PIR), 5, 35
Passive sensor, 5
Path loss, 119
Pattern-MAC (PMAC), 148
PCF interframe space (PIFS), 132
Periodic sleeping, 38
Permitivity, 22
Personal area network, 132
Peukert number, 213
Phase modulation, 111
Phase shift keying, 112
Philips Semiconductors, 59
Phytophtora, 38
PIC, 57
Piezoelectric, 22
Piezoelectric sensor, 6
pneumatic tubes, 26
Point-to-point communication, 95
Polar presentation, 107
Portability, 74, 89
Power amplifier, 118
Power aware multi-access with signaling

(PAMAS), 144
Power consumption, 207
Power management, 69
Power subsystem, 47, 212
Power supply, 213
Preamble, 138, 152, 241
Precipitation, 38
Preemptive multithreading, 292
Privacy, 267, 273
Processor subsystem, 47, 51, 208, 223

ASIC, 47
DSP, 47, 54, 57, 63
FPGA, 47
microcontroller, 47, 54, 57, 63

Programming, 285
application-centric, 285
database approach, 294
node-centric, 285–86

Index 309

reduction, 293
thread-based, 292

Propagation delay, 240, 243
Propagation loss, 119
Protothread, 82
Prototype, 63

active volcano monitoring, 39
health care, 32

artificial retina, 32
Parkinson’s Disease, 33

node, 63–65
operating system, 75

Contiki, 80
LiteOS, 85
SOS, 78
TinyOS, 75

pipeline monitoring, 35
PipeNet, 35
precision agriculture, 37

vineyard monitoring, 37
SHM, 24

Wisden, 25
traffic control, 30

Pulse code modulation, 100
Pulse shaping filter, 111

Quadratic amplitude modulation (QAM),
114

I -component, 115
Q-component, 115

Quadrature phase shift keying, 116
8PSK, 116

Quality-of-Service (QoS), 168, 295
real-time, 193–94
reliability, 194

QualNet, 298
Quantization, 96
Query flooding, 174
Query-driven sensor network, 166

Radar, 26
Radio signal strength, 259
RAM, 30, 40, 57–8, 64, 80, 87, 210
RAM timing, 210–11
Random drunken model, 298
Random waypoint model, 298

Ranging, 250
Ready-to-send, 129, 145
Received signal strength (RSS), 142,

252–3
Receiver, 114
Receiver-initiated MAC (RI-MAC), 153
Reference clock, 230
Register, 58
Relative neighborhood graph, 185
Reliability, 285
Replay protection, 280
Reprogramming, 295
Resistive sensor, 5
Resolution, 229
Resource blindness, 169
Retreat mining, 40
Reventador, 39
Right-hand rule, 184
Robustness, 168
ROM, 54, 64
Route discovery, 178
Routing, 9, 163

data-centric, 170, 172, 174–5
energy-aware, 166
flat-based, 164
hierarchical, 180
hierarchical-based, 164
location-based, 164, 183, 188, 193,

194
metrics, 165
minimum hop, 166
multipath, 192
negotiation-based, 165
on-demand, 164, 178, 272
proactive, 164, 176
QoS-based, 165
query-based, 165
reactive, 164
route discovery, 164, 272
security, 272
table-driven, 164

Routing attack, 277
Routing-enhanced MAC (RMAC),

149
Row access strob (RAS), 211–12
Rushing attack, 272, 277

310 Index

SS see (SPI), Chip Select
Sampling, 96

rate, 38, 97
Scheduler, 75
Scheduling, 70, 78, 80, 88

queuing-based , 70
FIFO, 70, 88
sorted queue, 70, 88

round-robin, 70, 88
Security, 267
Seismic shift, 41
Seismic spikes, 40
Seismic waves, 40, 41
Seismometer, 39
Seismoscope, 48
Selective forwarding attack, 272
Self-management, 11, 134, 270, 286
Self-organization, 180, 182
Sensing, 4
Sensing subsystem, 48
Sensor, 48, 71

seismoacoustic, 39
accelerometer, 25, 34, 49
acoustic emission sensor, 49
acoustic sensor, 49
barometer sensor, 50
blood flow sensors, 32, 50
blood pressure sensors, 32
ECG, 32, 35, 49
EEG, 49
EMG, 32, 35, 49
gyroscope, 35, 49
humidity sensor, 38, 50
inductive loop, 27
magnetic sensor, 28, 50
magnetometers, 26
oximeter, 32, 50
oxygen sensor, 50
passive infrared sensor, 35, 50
pH sensor, 35, 50
photo acoustic spectroscopy, 50
piezoelectric, 24
piezoelectric cables, 26
piezoelectric cylinder, 50
pressure sensor, 35
respiration sensors, 32
seismic sensor, 50

soil moisture sensor, 50
temperature sensor, 32, 38, 50
tilt sensor, 35

Sensor-MAC (S-MAC), 146
Separation of concern, 73, 89
Sequence number, 169, 178, 273
Sequential assignment routing (SAR),

192
Serial peripheral interface (SPI), 47, 54,

58, 60, 62–3
chip Select, 58
clock phase, 59
clock priority, 59
CS port, 58
master-in/slave-out, 58
master-out/slave-in, 58

Shannon’s entropy, 98
SHARC see Architecture,

Super-Harvard
Shift register, 58
SHM, 17
Short interframe space (SIFS), 131
Signal, 96

magnitude, 114
phase, 114, 115
phase difference, 107
seismoacoustic, 40

Signal absorption, 42
Signal conditioning, 4
Signal propagation, 117
Signal-to-noise ratio (SNR), 47, 102
Simulation, 297

ns-2, 297
SINA, 295
Sinkhole attack, 272, 277
Slotted-ALOHA, 127
Solar power, 10
Sonar, 26
SOS, 78, 88, 89

kernel, 78
module, 78, 80

Source encoding, 95, 96
Spain, 37
Spatial diversity, 39
Spectrum, 109, 116
Spread-spectrum, 271

frequency-hopping, 271

Index 311

SQL, 294
SQTL, 295
Stack, 71

Last-in first-out (LIFO), 71
Star topology, 9
State machine, 83
Substantia nigra, 34
Switching, 221
Switching circuit, 213
Switching energy, 10
Sybil attack, 272, 277
Synchronous code, 289
System calls, 71
System overhead, 74, 89

Tampering attack, 271
Task, 70, 71
Task scheduling, 222
The Netherland, 37–8
Thread, 72
Thread-based programming, 72, 88
Throughput, 168
Time division multiple access (TDMA),

127
Time synchronization, 229

accuracy and precision, 231
challenges, 232
reference-broadcast, 242
time-stamping, 241

Time-division multiplexing, 232
Time-driven sensor network, 165
Time-to-live (TTL), 175
Timeout MAC (T-MAC), 146
TinyDB, 294
TinyOS, 75, 88–9, 286, 289

command, 77
component, 75
configuration component, 75
event, 77
module, 75
task, 77

TinyThread, 292
TOSSIM, 299
Traffic analysis, 273
Traffic-adaptive medium access

(TRAMA), 136
Transducer, 4, 48
Transinformation, 104, 105

Transistor, 219, 221
CMOS, 220–1
MOSFET, 214

Transition cost, 217
Transportation, 50
Triangulation, 252
Trickle, 296
Trilateration, 253

Unattended operation, 11
Underground mining, 40, 42
University of Utah, 40
USA, 37, 40

Vehicle, 26
license number, 26

Video, 26
Video camera, 40
Virtual machine, 295
Volcán Tungurahua, 39
Volcano, 39

tremor activities, 39
volcanic events, 39

Wakeup on demand, 12
Watchdog timer, 54, 71
Wavelength, 96, 107, 118
Wheatstone bridge, 5
Wi-Fi, 130
Wind direction, 38
Wind strength, 38
Wireless communication, 95
Wireless digital communication,

95
Wireless sensor networks, 24, 30, 33,

35–6, 38–9, 47, 51, 56, 117
Wireless sensor node see Node
WiseMAC, 152
WLAN, 117
Wormhole attack, 272, 277

Y-MAC, 137
Y-Threads, 292

Zebra MAC (Z-MAC), 154
Zhang Heng, 48
ZigBee, 132, 280

	FUNDAMENTALS OF WIRELESS SENSOR NETWORKS
	Contents
	About the Series Editors
	Preface
	Part One: INTRODUCTION
	1 Motivation for a Network of Wireless Sensor Nodes
	1.1 Definitions and Background
	1.1.1 Sensing and Sensors
	1.1.2 Wireless Sensor Networks

	1.2 Challenges and Constraints
	1.2.1 Energy
	1.2.2 Self-Management
	1.2.3 Wireless Networking
	1.2.4 Decentralized Management
	1.2.5 Design Constraints
	1.2.6 Security
	1.2.7 Other Challenges

	Exercises
	References

	2 Applications
	2.1 Structural Health Monitoring
	2.1.1 Sensing Seismic Events
	2.1.2 Single Damage Detection Using Natural Frequencies
	2.1.3 Multiple Damage Detection Using Natural Frequencies
	2.1.4 Multiple Damage Detection Using Mode Shapes
	2.1.5 Coherence
	2.1.6 Piezoelectric Effect
	2.1.7 Prototypes

	2.2 Traffic Control
	2.2.1 The Sensing Task
	2.2.2 Prototypes

	2.3 Health Care
	2.3.1 Available Sensors
	2.3.2 Prototypes

	2.4 Pipeline Monitoring
	2.4.1 Prototype

	2.5 Precision Agriculture
	2.5.1 Prototypes

	2.6 Active Volcano
	2.6.1 Prototypes

	2.7 Underground Mining
	2.7.1 Sources of Accidents
	2.7.2 The Sensing Task

	Exercises
	References

	3 Node Architecture
	3.1 The Sensing Subsystem
	3.1.1 Analog-to-Digital Converter

	3.2 The Processor Subsystem
	3.2.1 Architectural Overview
	3.2.2 Microcontroller
	3.2.3 Digital Signal Processor
	3.2.4 Application-Specific Integrated Circuit
	3.2.5 Field Programmable Gate Array
	3.2.6 Comparison

	3.3 Communication Interfaces
	3.3.1 Serial Peripheral Interface
	3.3.2 Inter-Integrated Circuit
	3.3.3 Summary

	3.4 Prototypes
	3.4.1 The IMote Node Architecture
	3.4.2 The XYZ Node Architecture
	3.4.3 The Hogthrob Node Architecture

	Exercises
	References

	4 Operating Systems
	4.1 Functional Aspects
	4.1.1 Data Types
	4.1.2 Scheduling
	4.1.3 Stacks
	4.1.4 System Calls
	4.1.5 Handling Interrupts
	4.1.6 Multithreading
	4.1.7 Thread-Based vs Event-Based Programming
	4.1.8 Memory Allocation

	4.2 Nonfunctional Aspects
	4.2.1 Separation of Concern
	4.2.2 System Overhead
	4.2.3 Portability
	4.2.4 Dynamic Reprogramming

	4.3 Prototypes
	4.3.1 TinyOS
	4.3.2 SOS
	4.3.3 Contiki
	4.3.4 LiteOS

	4.4 Evaluation
	Exercises
	References

	Part Two: BASIC ARCHITECTURAL FRAMEWORK
	5 Physical Layer
	5.1 Basic Components
	5.2 Source Encoding
	5.2.1 The Efficiency of a Source Encoder
	5.2.2 Pulse Code Modulation and Delta Modulation

	5.3 Channel Encoding
	5.3.1 Types of Channels
	5.3.2 Information Transmission over a Channel
	5.3.3 Error Recognition and Correction

	5.4 Modulation
	5.4.1 Modulation Types
	5.4.2 Quadratic Amplitude Modulation
	5.4.3 Summary Signal Propagation

	5.5 Signal Propagation
	Exercises
	References

	6 Medium Access Control
	6.1 Overview
	6.1.1 Contention-Free Medium Access
	6.1.2 Contention-Based Medium Access

	6.2 Wireless MAC Protocols
	6.2.1 Carrier Sense Multiple Access
	6.2.2 Multiple Access with Collision Avoidance (MACA) and MACAW
	6.2.3 MACA By Invitation
	6.2.4 IEEE 802.11
	6.2.5 IEEE 802.15.4 and ZigBee

	6.3 Characteristics of MAC Protocols in Sensor Networks
	6.3.1 Energy Efficiency
	6.3.2 Scalability
	6.3.3 Adaptability
	6.3.4 Low Latency and Predictability
	6.3.5 Reliability

	6.4 Contention-Free MAC Protocols
	6.4.1 Characteristics
	6.4.2 Traffic-Adaptive Medium Access
	6.4.3 Y-MAC
	6.4.4 DESYNC-TDMA
	6.4.5 Low-Energy Adaptive Clustering Hierarchy
	6.4.6 Lightweight Medium Access Control

	6.5 Contention-Based MAC Protocols
	6.5.1 Power Aware Multi-Access with Signaling
	6.5.2 Sensor MAC
	6.5.3 Timeout MAC
	6.5.4 Pattern MAC
	6.5.5 Routing-Enhanced MAC
	6.5.6 Data-Gathering MAC
	6.5.7 Preamble Sampling and WiseMAC
	6.5.8 Receiver-Initiated MAC

	6.6 Hybrid MAC Protocols
	6.6.1 Zebra MAC
	6.6.2 Mobility Adaptive Hybrid MAC

	6.7 Summary
	Exercises
	References

	7 Network Layer
	7.1 Overview
	7.2 Routing Metrics
	7.2.1 Commonly Used Metrics

	7.3 Flooding and Gossiping
	7.4 Data-Centric Routing
	7.4.1 Sensor Protocols for Information via Negotiation
	7.4.2 Directed Diffusion
	7.4.3 Rumor Routing
	7.4.4 Gradient-Based Routing

	7.5 Proactive Routing
	7.5.1 Destination-Sequenced Distance Vector
	7.5.2 Optimized Link State Routing

	7.6 On-Demand Routing
	7.6.1 Ad Hoc On-Demand Distance Vector
	7.6.2 Dynamic Source Routing

	7.7 Hierarchical Routing
	7.8 Location-Based Routing
	7.8.1 Unicast Location-Based Routing
	7.8.2 Multicast Location-Based Routing
	7.8.3 Geocasting

	7.9 QoS-Based Routing Protocols
	7.9.1 Sequential Assignment Routing
	7.9.2 SPEED
	7.9.3 Multipath Multi-SPEED

	7.10 Summary
	Exercises
	References

	Part Three: NODE AND NETWORK MANAGEMENT
	8 Power Management
	8.1 Local Power Management Aspects
	8.1.1 Processor Subsystem
	8.1.2 Communication Subsystem
	8.1.3 Bus Frequency and RAM Timing
	8.1.4 Active Memory
	8.1.5 Power Subsystem

	8.2 Dynamic Power Management
	8.2.1 Dynamic Operation Modes
	8.2.2 Dynamic Scaling
	8.2.3 Task Scheduling

	8.3 Conceptual Architecture
	8.3.1 Architectural Overview

	Exercises
	References

	9 Time Synchronization
	9.1 Clocks and the Synchronization Problem
	9.2 Time Synchronization in Wireless Sensor Networks
	9.2.1 Reasons for Time Synchronization
	9.2.2 Challenges for Time Synchronization

	9.3 Basics of Time Synchronization
	9.3.1 Synchronization Messages
	9.3.2 Nondeterminism of Communication Latency

	9.4 Time Synchronization Protocols
	9.4.1 Reference Broadcasts Using Global Sources of Time
	9.4.2 Lightweight Tree-Based Synchronization
	9.4.3 Timing-sync Protocol for Sensor Networks
	9.4.4 Flooding Time Synchronization Protocol
	9.4.5 Reference-Broadcast Synchronization
	9.4.6 Time-Diffusion Synchronization Protocol
	9.4.7 Mini-Sync and Tiny-Sync

	Exercises
	References

	10 Localization
	10.1 Overview
	10.2 Ranging Techniques
	10.2.1 Time of Arrival
	10.2.2 Time Difference of Arrival
	10.2.3 Angle of Arrival
	10.2.4 Received Signal Strength

	10.3 Range-Based Localization
	10.3.1 Triangulation
	10.3.2 Trilateration
	10.3.3 Iterative and Collaborative Multilateration
	10.3.4 GPS-Based Localization

	10.4 Range-Free Localization
	10.4.1 Ad Hoc Positioning System (APS)
	10.4.2 Approximate Point in Triangulation
	10.4.3 Localization Based on Multidimensional Scaling

	10.5 Event-Driven Localization
	10.5.1 The Lighthouse Approach
	10.5.2 Multi-Sequence Positioning

	Exercises
	References

	11 Security
	11.1 Fundamentals of Network Security
	11.2 Challenges of Security in Wireless Sensor Networks
	11.3 Security Attacks in Sensor Networks
	11.3.1 Denial-of-Service
	11.3.2 Attacks on Routing
	11.3.3 Attacks on Transport Layer
	11.3.4 Attacks on Data Aggregation
	11.3.5 Privacy Attacks

	11.4 Protocols and Mechanisms for Security
	11.4.1 Symmetric and Public Key Cryptography
	11.4.2 Key Management
	11.4.3 Defenses Against DoS Attacks
	11.4.4 Defenses Against Aggregation Attacks
	11.4.5 Defenses Against Routing Attacks
	11.4.6 Security Protocols for Sensor Networks
	11.4.7 TinySec
	11.4.8 Localized Encryption and Authentication Protocol

	11.5 IEEE 802.15.4 and ZigBee Security
	11.6 Summary
	Exercises
	References

	12 Sensor Network Programming
	12.1 Challenges in Sensor Network Programming
	12.2 Node-Centric Programming
	12.2.1 nesC Language
	12.2.2 TinyGALS
	12.2.3 Sensor Network Application Construction Kit
	12.2.4 Thread-Based Model

	12.3 Macroprogramming
	12.3.1 Abstract Regions
	12.3.2 EnviroTrack
	12.3.3 Database Approaches

	12.4 Dynamic Reprogramming
	12.5 Sensor Network Simulators
	12.5.1 Network Simulator Tools and Environments

	Exercises
	References

	Index

