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Abstract 

This paper presents a novel adaptive finite-time control for robotic manipulators using terminal 

sliding mode control (TSMC) and radial basis function neural networks (RBFNNs). Firstly, the 

controller is developed based on terminal sliding mode which requires the prior knowledge of 

the robot dynamic model. Secondly, RBFNNs are adopted to directly approximate all parts of 

the system parameters through Ge-Lee (GL) matrix and its product operators. Moreover, an 

error estimator is added to suppress the approximation errors of neural networks (NNs) and 

external disturbances. And then, an adaptive finite-time control law with a proper update law is 

designed to guarantee the occurrence of the sliding motion in finite time without relying on a 

priori knowledge of uncertainties and external disturbances. The stability and finite-time 

convergence of the closed loop system are established by using the Lyapunov theory. Finally, 

the simulation results of a two-link robot manipulator are presented to illustrate the 

effectiveness of the proposed control method. 
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1 Introduction 

In recent decades, robot manipulators play an important role in the field of flexible 

automation. They have been extensively used in various applications, in which many 

tasks require high-speed and high-precision trajectory tracking. However, robotic 

manipulators generally faced many uncertainties and external disturbances in their 

dynamics, such as payload variations, frictions, external disturbances, and sensor 

noises, etc. It is difficult to set up exact mathematical models of robotic manipulators 

for the design of model-based control systems. To deal with parameter uncertainties, 

many control approaches that attenuate the impact of robotic uncertainties have been 

proposed such as proportional-integral-derivative (PID) control [1], robust control [2-

3], adaptive control [4-5], sliding mode control [6-17], and neural network control 

[18-26].   

So far, sliding mode control (SMC) is one of the influential nonlinear control 

methods that have been widely applied to control for both certain and uncertain 

systems [6-8]. In order to design sliding mode control systems, the establishment of 

suitable sliding surfaces to ensure the desired dynamics is considered first, and then a 

sliding mode controller is designed to drive the states of the system on the sliding 

surfaces. Moreover, the main characteristic of SMC is to use discontinuous control 

effort to guarantee the occurrence of the sliding surface ( 0s  ) which is not affected 

by any modeling uncertainties and external disturbances. However, the traditional 

SMC can only guarantee the asymptotic stability because a linear surface is used [9]. 

Although the parameters of the linear sliding mode can be adjusted to make faster the 

convergence time, the system states cannot converge to zero in finite time. Recently, 

terminal sliding mode control (TSMC) methods have been proposed and developed in 

[10-15] to achieve finite time convergence, high precision and strong robustness with 

respect to uncertainties. By introducing a nonlinear sliding surface instead of linear 

hyper-planes and suitably designing the controller based on that surface, the tracking 

errors and the discontinuous control gains of TSMC can be significantly reduced in 

comparison with those of the traditional SMC. However, for dealing large structured 

and unstructured uncertainties along with external disturbances, a large gain of the 

switching controls still must be used; this leads to low control accuracy, high wear of 

moving mechanical parts and much damages in the robot joints. To solve this 

problem, the most common approach is boundary layer method.  This method defines 

a boundary layer around the sliding surface and then approximates the discontinuous 

control (sign function) to get states stayed inside this boundary layer [16]. However, 

there is a trade-off between chattering elimination and tracking performance, a thicker 

boundary layer can eliminate the chattering phenomenon but the tracking error will be 

increased. In addition, for choosing the value of switching control gain, most of the 

aforementioned works require the prior knowledge of the upper bounds of the 

uncertainty and external disturbance; it is, however, very hard requirement to achieve. 

 

 

 



Artificial neural networks [20-23] (ANNs) are one of the most powerful tools for 

controlling many complex dynamic systems because of the ability to learn and 

approximate any arbitrary nonlinear function. Radial basis function neural network 

(RBFNN), known as a candidate of neural networks, has several important advantages 

such as simplicity of its structure, fast learning and better approximation capabilities. 

It has universal approximation properties and can avoid the local minima problem; it 

can not only reduce the number of the tuning parameters of neural network but also 

can make the initialization much easier. Due to these advantages of the RBFNNs 

some terminal sliding mode control combined with the RBFNNs for robot 

manipulators have been published recently [24-26]. In general, the neural network 

control techniques can be designed in two steps. First, neural networks are used to 

approximate the unknown dynamic model of a system or used to replace the 

discontinuous control in conventional TSMC. Then, when a sufficiently accurate 

approximation is achieved, a proper control strategy using this approximation can be 

established. Although, this method could work well for many systems, it does not 

have any built-in capability to handle changes in the system. In some recent works 

[27-30], neural networks have been successfully used to approximate individual 

element of ˆ ( )M q , ˆ ( , )C q q , and ˆ ( )G q   of the complex and unknown nonlinear dynamic 

functions of robot manipulators. As a result, the controllers can improve their 

robustness to parameter uncertainties and model changes.  

In this paper, inspired by Ge’s work [27], an adaptive terminal sliding mode 

control based on local approximation method is proposed for trajectory tracking of 

uncertain robotic manipulators. The main advantages of the control scheme are listed 

as follows: 

(1) The proposed controller can effectively control the unknown nonlinear 

dynamic system with robustness to parameter uncertainties and model changes,   

(2) RBFNNs with parameter adaptive laws are used to approximate individual 

elements of the inertia matrix, centripetal matrix and gravitation vector, 

respectively. Moreover, an error estimator is used to compensate the 

approximation error for improving the control performance and dealing with 

large structured and unstructured  uncertainties and external disturbances,   

(3) An adaptive finite-time control law with an appropriate update law is designed 

to drive the system states to reach the sliding surface and to converge to zero in 

finite time, 

(4) The control scheme does not need the prior knowledge of the upper bound of 

system uncertainties, 

(5) Finite time convergence and stability of the closed loop system can be 

guaranteed by Lyapunov theory, 

(6) GL matrix and its product operators are used to make the stability analysis a lot 

easier, 

The remainder of this paper is arranged as follows. The radial basis function neural 

network, the definitions for GL matrix and its product operators, and the dynamic 

model of the robotic manipulator are described in Section 2. In Section 3, the 

 

 

 



structure of terminal sliding mode neural networks controller is presented and a 

stability analysis is performed. In Section 4, simulation results for a two-link robot 

manipulator are provided to verify the effectiveness of the proposed controller. 

Finally, some concluding remarks are given in Section 5. 

2 System Dynamics and Preliminaries 

2.1 RBFNN model 

In the field of control engineering, neural network is usually used to approximate a 

given nonlinear function ( )f t  up to threshold error tolerance  . Gaussian RBF neural 

network, known as a candidate of neural networks, have been quite successful in 

representing the complex nonlinear function. It has been proven that any continuous 

functions, not necessary infinitely smooth, can be uniformly approximated by a linear 

combination of Gaussians [35]. In addition, in comparison with multilayer perceptron 

neural network, the RBFNN has a simple structure and fast learning, good 

approximation capability for arbitrary smooth nonlinear functions. As shown in Fig. 

1, RBFNN consists of three layers (input, output and hidden layer). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Structure of the RBF neural network 

The input layer:  The input layer is simply a fan-out layer and the input vector of 

the neural network is denoted by: 

 1 2[ , ,..., ]TNx x x x  (1) 

The hidden layer: The activation functions in the hidden layer are chosen as 

Gaussian function. 
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where x  is an N-dimensional input vector, ic  is the center vector with the same 

dimension as x , ib  is the variance of the basic function, L  is the number of hidden 

units in the hidden layer. 

The output layer: The output of the RBFNN can be computed by the weighted sum 

method and given by: 
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where iw  is the weight connecting hidden layer and output layer,  is the threshold 

offset of output neuron. 

2.2 GL matrix and operators 

In this subsection, the GL matrix and its product operators [27, 28] are briefly 

presented here for the analysis of neural network. To avoid any possible confusion, 

.    is used to denote the ordinary vector or matrix, while .  denote the GL vectors 

and matrices, and denote the GL product operators by " " . 

Let 0I  is the set of integers, , kjn

kj kj  R , where 0kjn I  ( 1,2,... ;  1,2,...k n j m  ). 

The GL row vector  k  and its transpose  
T

k  are defined in the following form: 
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The GL matrix    and its transpose  
T

  are defined as  
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It can be seen that the transpose of its elementary matrix is obtained to be the 

transpose of its elementary vector locally. 

For a given GL matrix    
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The GL product of  
T

  and    is a n m  matrix of element-wise product 

defined as 
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The GL product of a square matrix and a GL row vector is defined as follows 

       1 1 2 2k k k k k k k k kn knr r r              (9) 
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Note that the GL product should be computed first in a mixed matrix product. For 

instance, in    A B C , the matrix    A B    should be computed first, and then 

followed by the multiplication of    A B    with matrix C . 

2.3 RBF neural network modeling of robot manipulators 

The dynamics of a serial n-links robot manipulator can be written as [31] 

 ( ) ( , ) ( ) dM q q C q q q G q       (10) 

where ( ), ( ), ( ) nq t q t q t R   are the vector of joint positions, velocities and accelerations, 

respectively. ( ) n nM q R  is the inertial matrix, ( , ) n nC q q R  expresses the 

centripetal and Coriolis matrix, ( ) nG q R  represents the gravity torques vector, 

n R  is the control torque, and n
d R  is the bounded external disturbance vector. 

For convenience, the above dynamic equation has the following useful structural 

properties; 

Property 1: ( )M q  is a symmetric positive definite matrix.  
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where  21,mm  are known positive scalar constants, nxR  is a vector, denotes the 

Euclidean vector norm. 

Property 2: ( ) 2 ( , )M q C q q  is a skew symmetric matrix. 

 [ ( ) 2 ( , )] 0Tx M q C q q x   (12) 

for  any vector nxR . 

It is observed that both ( )M q  and ( )G q  are functions of q  only, and RBF neural 

network are sufficient to model them [27]. The neural network approximations for the 

elements ( )ijM q  of ( )M q  and ( )iG q  of ( )G q  can be written as follows 

 ( ) ( ) ( )T
ij Mij Mij MijM q W q q    (13) 

 ( ) ( ) ( )T
i Gi Gi GiG q W q q    (14) 

where MijW , GiW  are the vectors of neural network weights, ( )Mij q , ( )Gi q  are the 

vectors of activation functions with input vector q , ( ), ( )Mij Giq q  R  are the 

modeling errors of ( )ijM q  and ( )iG q , respectively, which are assumed to be bounded. 

On the other hand, ( , )C q q  is a matrix of q  and q , RBF neural network of q  and q  

is needed to model it. Assume that ( , )ijC q q  can be modeled as 

 ( , ) ( , ) ( , )T
ij Cij Cij CijC q q W q q q q    (15) 

where CijW  is the vector of neural network weights, ( , )Cij q q  is the vector of 

activation function with input vector q  and q , ( , )Cij q q R  is the modeling error of 

( , )ijC q q , which are also assumed to be bounded. 

Thus, ( )M q , ( , )C q q , and ( )G q  can be expressed as follows 
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where  ( ) ,  ( , ) n n
M CE q E q q R  are the neural network modeling errors matrices with 

their elements being the ( )Mij q  and ( , )Cij q q , respectively. ( ) n
GE q R  is the 

modeling error vector with their elements being ( )Gi q . 

Using the GL matrix and its product operators introduced in Section 2.2, the RBF 

neural network approximations for ( )M q , ( , )C q q , and ( )G q  can be further written as 

follows, 

     ( ) ( ) ( )
T

M M MM q W q E q   
  

 (19) 

    ( , ) ( , ) ( , )
T

C C CC q q W q q E q q   
  

 (20) 

    ( ) ( ) ( )
T

G G GG q W q E q   
  

 (21) 

where   n n
MW R ,   n n

CW R ,   n
GW R  are the GL matrices and vector with 

their elements being the neural network weights MijW , CijW  and GiW , respectively. 

  n n
M

R ,   n n
C

R ,   n
G R  are the GL matrices and vector with their 

elements being the neural network activation functions Mij , Cij  and Gi , 

respectively. 

Using (19)-(21), the dynamic equation given in (10) can be written as 

            ( ) ( , ) ( )
T TT

M M C C G G dW q q W q q q W q E               
          

 (22) 

where ( ) ( , ) ( )M s C s GE E q q E q q q E q    

Assumption 1: The term dE   is bounded by 

 0dE d   (23) 

where 0d  are unknown positive constants. 

Assumption 2: The desired trajectory ( )d
nq t R  is a twice continuously 

differentiable function in terms of t . 

Lemma 1 (see [33]). Assume that a continuous positive definite function ( )V t  

satisfies the differential inequality 

 0 0( ) ,  ,  ( ) 0V t V t t V t     (24) 

 

 

 



where 0,  0 1     are constants. Then for any given 0t , ( )V t  satisfies the 

inequality  

 1 1
0 0 0 1( ) ( ) (1 )( ),  V t V t t t t t t           (25) 

And 1( ) 0,  V t t t   , with 1t given by 
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Lemma 2 (see [34]). Jensen’s inequality 
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With 0,  1ia i m   . 

The control objective of this paper is to design a stable control law to ensure that 

the tracking error between joint position vector q  and desired joint position vector 

dq  converge to zero in finite time. 

3 Controller Design 

In this section, an adaptive finite-time controller is proposed for the nonlinear robot 

dynamic system (10). First, the controller structure is developed based on terminal 

sliding mode control. In the control scheme, RBFNNs are employed to approximate 

for the elements ( )ijM q , ( , )ijC q q , and ( )ijG q  of ( )M q , ( , )C q q , and ( )G q , 

respectively. Meanwhile, an adaptive finite-time control law with appropriate update 

law is designed to drive the system states to reach the sliding surface and to converge 

to zero in finite time. Then, the stability and finite time convergence of the closed-

loop system are strictly proven.    

3.1 Controller structure 

In order to apply the terminal sliding mode control, it is necessary to define the 

terminal sliding surface ( )s t  for n-link robot manipulator as  

 ( )s e sig e    (28) 

where     1 2( , ,..., )ndiag ,   1 2, ,... n  are positive constants,  0 1 , 

 1 1 2 2( ) ( ), ( ),..., ( )n nsig e e sign e e sign e e sign e
   , 1 2, ,..., ns s s s    , ( ) ( ) ( )de t q t q t  , 

( ) ( ) ( )de t q t q t  . 

 

 

 



According to the sliding mode design procedure, the control input u  consists of the 

components 

 ( )eq SWu K sign s    (29) 

where 1 2( , ,..., )SW SW SW SWnK diag k k k , 1 2, ,...SW SW SWnk k k  are positive constants. The 

main feature of the SMC is that it uses a high speed switching control term to drive 

the system states toward the sliding surface from any initial state condition. As soon 

as the system state hit the sliding surface, the equivalent control is applied to keeps 

the trajectory of the system state evolving on the sliding surface. The equivalent 

control can be interpreted as the continuous control law that is obtained by equation 

0s   for nominal system in the absence of the uncertainties and external disturbances. 
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From (10), the e  is given by 
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Multiplying both sides of equation (30) by ( )M q  and substituting (31) into it yields 
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  . 

From (32), we have 

  ( ) ( , ) ( ) ( , ) ( )d s sM q s C q q s M q q C q q q G q         (33) 

If the nonlinear robot dynamic functions ( )M q , ( , )C q q , ( )G q  are clearly known, 

then the equivalent control can be defined as 

 ( ) ( , ) ( )eq s su M q q C q q q G q Ks     (34) 

where  1 2( , ,..., )nK diag k k k , 1 2, ,... nk k k  are positive constants. 

The stability of the close loop system (29) can be easily proved by Lyapunov 

theory if the gains of the switching controller are bigger than the upper bounds of 

uncertainties. Unfortunately, robot manipulators are complex nonlinear systems 

which involve many uncertainties such as friction, external disturbances, changing 

payload, sensor noise etc. These model uncertainties may decrease significantly the 

performance of this control method. Therefore, it is clear that we will adopt RBF 

neural network to approximate nonlinear dynamic model of the robot.  

Substituting  Eqs. (19), (20) and (21) into Eq. (33) yields 
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Let ˆ ( )M q , ˆ ( , )C q q , and ˆ ( )G q  be the estimates of ( )M q , ( , )C q q , and ( )G q , 

respectively, obtained by replacing the unknown constant neural network weights 

 MW ,  CW , and  GW  in (19)-(21) by their estimates  ˆ
MW ,  ˆ

CW , and  ˆ
GW . 

For the system (35), the proposed controller is expressed by the following equation 
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 (36) 

where  1 2( , ,..., )P P P PnK diag k k k ,  1 2( , ,..., )I I I InK diag k k k  with , 0Pi Iik k . 

           0
ˆ ˆ ˆ( ) ( , ) ( )

T T T

M M s C C s G GW q q W q q q W q   
     

          
     

 is the model-

estimated control law. Since the output of the neural network is not able to 

approximate 0  accurately, the error estimator est If K sdt   is used to attenuate the 

approximation errors. The auxiliary control 0
ˆ ( )pK s d sign s  is used to guarantee the 

occurrence of the sliding motion in finite time without the prior knowledge of the 

upper boundary of the uncertainties and extended disturbances ( 0d̂  is the estimation 

of the unknown upper bound 0d ). 
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Fig. 2. Block diagram of the proposed controller 

3.2 Stability analysis 

Theorem 1: Consider the n–link robot manipulator (10), if the terminal sliding mode 

is chosen as (28), the controller is (36), and the neural network weight vectors are 

designed as in (37)-(39), the update law of robust term is designed as (40), all the 

signals of the closed loop system are bounded and the tracking errors converge to zero 

in finite time. 

     ˆ . ( )Mk Mk Mk s kW q q s   (37) 

     ˆ . ( , )Ck Ck Ck s kW q q q s   (38) 

     ˆ . ( )Gk Gk Gk kW q s   (39) 

    0 0d̂ s  (40) 

where 1,2,...,k n . Mk , Ck , and Gk  are constant symmetric positive definite 

matrices. ˆ
MkW , ˆ

CkW , and ˆ
GkW  are column vectors with their elements being  ˆ

MkjW , 

ˆ
CkjW , ˆ

GkjW , respectively. 

Proof: Consider a Lyapunov function candidate as follows 
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where ˆ
Mk Mk MkW W W  , ˆ

Ck Ck CkW W W  , ˆ
Gk Gk GkW W W  . 

Differentiating (41) with respect to time yields 
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Substituting Eq. (35) into Eq. (42), then applying the skew-symmetric property of 

( ) 2 ( , )M q C q q  yields 

    

       

   
0

1 1 1
0 0 0

01 1 1

( ) ( , )

( )

1 ˆ ˆˆ ˆ ˆ        - ( )

TT
d M M s C C s

T t
T

G G I

n n n
T T T
Mk Mk Mk Ck Ck Ck Gk Gk Gk

k k k

W q q W q q q

V s

W q E K sd

W W W W W W d d d

   

 



  

  

                
 

   
       
        

  

      



  

 (43) 

Substituting the proposed controller (36) into (43) we have 
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Noting that 
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In a similar way, we have 
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Thus, Eq. (44) becomes 
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 (48) 

Substituting adaptive law (37)-(40) into (48) we obtain 
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Therefore, according to Lyapunov theorem, inequality (49) obtains that  

,  ,  ,  Mk Ck Gks W W W , and 0d̂  are bounded. Meanwhile, considering (28), it can be 

achieved that both e  and e  are bounded. In addition, since dq is bounded as 

specified, q  is bounded as well. As a result, all signals of the closed loop system (35) 

are bounded.  

The estimation values 0d̂  is bounded, that is, there exist positive constants 0d  such 

that 0 0d̂ d  for 0t  . Now it will be proven that the system states in (28) reach the 

nonsingular terminal sliding surface 0s   within a finite time. 

The following Lyapunov function candidate is considered 
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where 0  are positive constants. Differentiating (50) with respect to time and using 

the same procedure that was used to get (44), we can obtain 
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The Gaussian function is bounded on the interval [0,1] ; therefore  ( )M q , 

 ( )C q ,  ( )G q  are bounded.  

According to the above proof,  MW ,  CW ,  GW  are bounded; therefore 
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obtained that             ( ) ( , ) ( )
T T T

M M s C C s G GW q q W q q q W q  
      

          
      

 is 

bounded. Hence, we can always find positive definite matrix 

 1 2( , ,..., ),  0E E E En EiK diag k k k k  satisfying  
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Consequently, we can obtain the following: 
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The control gains pK  are selected to satisfy the following condition 

     p EK K  (54) 

Then, we have 
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Substituting Eq. (23) into (55), one has 
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Noting that 0 0d̂ d , inequality (56) can be rewritten as 
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We define 
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We always choose 0d  and 0  such that 0 0d d   and 0 0  , which yields 0s   

and 0d  . Therefore, we obtain 
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 (59) 

Applying Lemma 2 and denoting 
2

min( , 2 )s
d

M


   results in the following 
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 (60) 

By using Lemma 1, it is concluded that the system state in (10) will converge to 

the terminal sliding mode surface 0s   in a finite time 
1/2

12 (0)V
T


 . This completes 

the proof.  

4 Simulation Results 

In order to verify the validity and effectiveness of the proposed method, the 

performance of the proposed controller is tested via simulation for a two-link planar 

robotic manipulator as shown in Fig. 3. The simulations are performed in the 

MATLAB-Simulink environment using ODE 4 solver with a fixed-step size of 
-410  s

.  

The dynamic equation of the two-link robot is described as follows 
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 (61) 

where the inertia matrix ( )ijM q  is given by 
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the Coriolis and centrifugal matrix ( , )ijC q q  is given by 
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and the gravity torques vector
 

( )iG q  is given by 
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Fig. 3. Two-link robot manipulator model. 

The parameters values employed for this simulation are given as of 1 1l  m, 

2 0.8l  m, and we suppose that we have an uncertainty on masses of the order  10%  

(see Fig. 4). The external disturbances are selected as 
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Fig. 4. Variation of mass; m1 and m2 respectively correspond to joints 1 and 2. 

     1

2

1

2

2sin(2 )

1.5cos(2 ) 0.7

d

d

d

t q

t q






   
    

    

 (62) 

To this end, the Matlab/Simulink is used to perform all simulations, and the 

sampling time was set to 
-410  s . For each element of ( )M q  and ( )G q , 21-node 

RBFNN is used, whereas, for each element of ( , )C q q , a 41-node neural network is 

chosen. The value of ic  are chosen in the interval 2 2ic   , and 2
ib  are fixed at 3.  

The parameter of the sliding surface (24) are then selected as (12,12)diag  , 

0.8  , and 0
ˆ 0.01d  . 

The simulations are carried out with respect to 2 cases when the end-effector of the 

robot was driven to check a Hermite polynomial and periodic sinusoid. In order to 

verify that the proposed controller can effectively control the unknown nonlinear 

dynamic system with robustness to parameter uncertainties and model changes; two 

controllers (non-adaptive neural network control and adaptive neural network control) 

are performed and compared.   

4.1 Trajectory Planning 

Hermite polynomial trajectory:  The design trajectory of the third degree Hermite 

polynomial [27] is given as  

       
 
     
 
 

3 2

0 03 2
(t,t ) 2 3d d f

d d

t t
q q q q

t t
 (63) 

where td  is the time at which the robot end-effector reaches the desired final position. 

0q  and fq represent the initial and final robot positions end-effector, respectively. 

The parameters in the simulation are chosen as t 1d s,    0 0,0
T

q  rad, 

   (t ) 1,2
T

d dq  rad. 

The control parameters are selected as: (4,1.5)PK diag . 

Periodic sinusoid trajectory: the second desired trajectory chosen as follows 

     








1

2

0.5sin( )

cos( )
d

d

q t

q t
 (64) 

The initial states are chosen as  

         1 2 1 2(0) 0.4, (0) 0.5, (0) 0, (0) 0q q q q  (65) 

The control parameters are selected as: (13,3)PK diag , (5,2)IK diag . 

 

 

 



 

4.2 Non-Adaptive Neural Network Control 

 
Fig. 5. Position tracking (Hermite polynomial): (a) at joint 1, (b) at joint 2. 
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Fig. 6. Velocity tracking (Hermite polynomial): (a) at joint 1, (b) at joint 2. 

 
Fig. 7. Position tracking (periodic sinusoid): (a) at joint 1, (b) at joint 2. 
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Fig. 8. Velocity tracking (periodic sinusoid): (a) at joint 1, (b) at joint 2. 

First, in case 1, we show the control performance when the weight adaptation laws 

(37)-(39) of the RBF neural networks were not activated. The position and velocity 

tracking performances of the robot are shown in Figs. 5-6 (when the desired trajectory 

is a Hermite polynomial) and in Figs. 7-8 (when the desired trajectory is a periodic 

sinusoid). It can be observed from these figures that the non-adaptive neural network 

control can’t track the desired trajectory well, and can’t deal with changes in the 

system, such as model approximation errors, load disturbances and external 

disturbances.  

4.3 Adaptive Neural Network Control 

In the case of adaptive neural network control, the adaptive gains in (37)-(40)  are 

activated as follow, (0.05,0.05)M diag  , (0.1,0.1)C diag  , (10,10)G diag  , 

0 0.1  . In Fig. 9, the estimation of the parameter 0d̂  is plotted. It can be seen that 

the convergence of the online tuning algorithms can be achieved fast enough. The 

position and velocity tracking performance of the 2 D.O.F robot manipulators are 

shown in Figs. 10 -13 in both cases of a Hermite polynomial trajectory and a periodic 

sinusoidal trajectory.  It can clearly be observed that the proposed control method can 

guarantee to make the robot end-effector track the desired trajectory very well; the 

tracking errors are much smaller than those from the non-adaptive case. Therefore, 

the simulation results demonstrate that the proposed controller can effectively control 

the unknown nonlinear dynamic system with robustness to parameter uncertainties 
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and model changes. The norms of ( )M q  and ˆ ( )M q , ( , )C q q and ˆ ( , )C q q , ( )G q and 

ˆ ( )G q , are shown in Fig. 14. As can be seen, they are all bounded, which are attractive 

properties of the proposed controller. In summary, the simulation results demonstrate 

that the proposed controller can effectively control the unknown nonlinear dynamic 

system, achieve small tracking errors, and does not need to know the upper bound of 

any uncertainties and external disturbances.   

 
Fig. 9. Time responses of the estimated parameter. 

 
Fig. 10. Position tracking (Hermite polynomial): (a) at joint 1, (b) at joint 2.  
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Fig. 11. Velocity tracking (Hermite polynomial): (a) at joint 1, (b) at joint 2. 

    
Fig. 12. Position tracking (periodic sinusoid): (a) at joint 1, (b) at joint 2. 
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Fig. 13. Velocity tracking (periodic sinusoid): (a) at joint 1, (b) at joint 2. 
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Fig. 14. Norm estimation of ( )M q , ( )G q , and ( , )C q q   : (a) comparison of ( )M q and 

ˆ ( )M q , (b) comparison of ( )G q and ˆ ( )G q , (c) comparison of ( , )C q q and ˆ ( , )C q q . 

 

5 Conclusion 

In this paper, a novel adaptive terminal sliding mode control based on local 

approximation method is proposed for trajectory tracking of uncertain robotic 

manipulators. By combining the techniques of neural network parameterization, 

adaptive control, and terminal sliding mode control, the results show the advantages 

of these methods, such as fast response time, finite time convergence and small 

tracking errors. The proposed controller can effectively control the unknown 
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nonlinear dynamic system with robustness to parameter uncertainties and model 

changes. Moreover, it does not need to know the upper bound of any uncertainties and 

external disturbances. Adaptive learning algorithms have been derived to adjust on-

line the output weights in the RBFNNs without any offline training phase. The strict 

proof of finite time convergence and stability of the closed-loop system have been 

accomplished. The simulation results of the two-link robotic manipulator system have 

demonstrated the effectiveness of the proposed method. 
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