

jQuery UI

Eric Sarrion

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

jQuery UI
by Eric Sarrion

Copyright © 2012 Eric Sarrion. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St. Laurent
Production Editor: Rachel Steely
Copyeditor: Jasmine Perez
Proofreader: Jasmine Perez

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-03-09 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449316990 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. jQuery UI, the image of a turnstone, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31699-0

[LSI]

1331233105

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449316990

Table of Contents

Preface . ix

1. Introduction to jQuery UI . 1
jQuery UI Installation 1
Overview of jQuery UI 1
What Is a CSS Theme? 3
Which Files Should We Include in Our HTML Pages? 4

Uncompressed Files 4
Compressed Files 7

Change the CSS Theme 8
And Now? 9

2. Tabs . 11
Basic Principles of Tabs 11
Formatting Content 13
The tabs () Method 15

The tabs (options) Method 15
The tabs (“action”, params) Method 17

The bind () Method 17
Examples of Using Tabs 18

Dynamic Creation of Tabs 18
Modifying the Contents of a Tab Using Ajax 19
Transmitting the Information to the Server via Ajax 21
Using the Tabs add Method 22
Using the tabsadd Event 24

3. Accordion Menus . 25
Basic Principles of Accordion Menus 25
Formatting Content 27
The accordion () Method 29

The accordion (options) Method 30

iii

The accordion (“action”, params) Method 31
Event Management in Accordion Menus with bind () 32
Examples of Using Accordion Menus 32

Opening Any Menu 32
Loading the Contents of a Menu with Ajax: Using options 33
Loading the contents of a menu with Ajax: Using accordionchange 35

4. Dialog Boxes . 37
Basic Principles of Dialog Boxes 37
Formatting Content 39
The dialog () Method 42

The dialog (options) Method 42
The dialog (“action”, params) Method 45

Event Handling in Dialog Boxes with bind () 45
Examples of Using Dialog Boxes 46

Opening and Closing a Dialog Box 46
Applying an Effect When Opening or Closing the Dialog Box 48
Verifying the Closure of the Dialog Box 49
Hiding the Close Button 50
Inserting Buttons in the Dialog Box 51
Inserting Content Using Ajax 52
Changing the Behavior of a Dialog Box with Effects 54

5. Buttons . 57
Basic Principles of Buttons 57
Formatting Content 58
The button () Method 60

The button (options) Method 60
The button (“action”, params) Method 61

Event Handling on Buttons with bind () 61
Radio Buttons 61

Displaying Radio Buttons 62
Improving the Display with buttonset () 63

Checkboxes 64
Displaying Checkboxes 64
Improving the Display with buttonset () 65

Examples of Using Buttons 66
Displaying Icons in Buttons 66
Creating a Calculator 69

6. Progress Bars . 77
Basic Principles of Progress Bars 77
Formatting Content 78

iv | Table of Contents

The progressbar () Method 79
The progressbar (options) Method 79
The progressbar (“action”, params) Method 80

Handling Events in Progress Bars with bind () 80
Examples of Using Progress Bars 80

Incrementing a Progress Bar 80
Performing Processing at Different Stages of Completion 81

7. Sliders . 83
Basic Principles of Sliders 83
Formatting Content 84
The slider () Method 85

The slider (options) Method 86
The slider (“action”, params) Method 87

Event Management on the Sliders with bind () 88
Examples of Using Sliders 88

Displaying the Value of One Indicator 88
Displaying the Values of Two Indicators 89
Adjusting the Opacity of an Image Using a Slider 91

8. Datepickers . 93
Basic Principles of Datepickers 93
Formatting Content 94
The datepicker () Method 96

The datepicker (options) Method 97
The datepicker (“action”, params) Method 101

Examples of Using Datepickers 101
Displaying a Calendar in Another Language 101
Displaying Multiple Months in the Calendar 103
Displaying a Static Calendar 106
Indicating Minimum and Maximum Dates 107
Preventing the Selection of Specific Dates 108
Preselecting Any Date 108
Performing an Ajax Request When Selecting a Date 112

9. Autocompletion . 115
Basic Principles of Autocompletion 115
Formatting Content 116
The autocomplete () Method 118

The autocomplete (options) Method 118
The autocomplete (“action”, params) Method 120

Event Management on the List of Suggestions with bind () 120
Examples of Using the Autocompletion Mechanism 121

Table of Contents | v

Specifying the Width of the List of Suggestions 121
Displaying a List of Suggestions at the Opening of the HTML Page 122
Displaying a List of Suggestions at the Entry of the Cursor in the Input
Field 123
Producing an Effect on the Appearance of the List of Suggestions 124
Dynamically Creating a List of Suggestions 125
Dynamically Creating a List of Suggestions Based on the Input Data 126
Inserting Images in the List of Suggestions 128

10. Drag-and-Drop . 133
The draggable () Method 133

The draggable (options) Method 133
The draggable (“action”, params) Method 137

Event Management on the Moved Elements with bind () 138
Examples of Using Drag Functionality 138

Carrying Out a Treatment When Moving 138
Imposing Limits on Displacement 139
Moving an Object by Duplicating 141

The droppable () Method 145
The droppable (options) Method 145
The droppable (“action”, params) Method 148

Event Management on the Elements of Deposit with bind () 148
Examples of Using the Drop Functionality: A Shopping Cart 148

Creating a Shopping Cart with Drag-and-Drop 148
Adding a Visual Effect to Shopping Cart Deposits 151
Removing an Item from the Cart 153

11. Selecting Items . 155
Basic Principles of Selecting Items 155
Formatting Content 156
The selectable () Method 159

The selectable (options) Method 159
The selectable (“action”, params) Method 161

Event Management in the Selection with bind () 161
Examples of Using the Selection Mechanism 161

Displaying the Order of the Events During the Selection 162
Preventing the Selection of an Element 163
Inhibiting Clicks to Select an Item 165
Managing a Shopping Cart 166

12. Permutation of Elements in the Page . 169
Basic Principles of Permutation of Elements 169
Formatting Content 170

vi | Table of Contents

The sortable () Method 171
The sortable (options) Method 172
The sortable (“action”, params) Method 177

Event Management of the Permutation with bind () 177
Examples of Using the Permutation Mechanism 178

Displaying the Order in Which Events Appear 178
Dropping any Element in the List 183

13. Resizing . 191
Basic Principles of Resizing 191
Formatting Content 192
The resizable () Method 193

The resizable (options) Method 193
The resizable (“action”, params) Method 196

Handling Events when Resizing with bind () 196
Examples of Using the Resizing Mechanism 197

Displaying Dimensions of the Element When Resizing 197
Displaying the Position of the Element When Resizing 198
Performing an Animation While Resizing 199
Creating a Resizable Text Box 201

14. Visual Effects in jQuery UI . 205
New Visual Effects 205

The effect (effectName, options, duration, callback) Method 205
The blind Effect 206
The bounce Effect 208
The shake Effect 208
The clip Effect 208
The drop Effect 210
The explode Effect 211
The fold Effect 212
The highlight Effect 213
The puff Effect 214
The pulsate Effect 215
The scale Effect 216
The size Effect 217
The slide Effect 218

The show (), hide (), and toggle () Methods 218
The animate () method Improved by jQuery UI 220

CSS Properties for Managing Colors 220
New Values for the easing Option 221

Producing Effects with CSS Classes 221
The addClass (), removeClass (), and toggleClass () Improved Methods 222

Table of Contents | vii

The switchClass () Method 223
Example of Using the toggleClass () Method 224

viii | Table of Contents

Preface

jQuery is a popular JavaScript library that is extensible using plug-ins. Some plug-ins,
specifically those for managing the user interface, have been collected together in the
jQuery UI library. These plug-ins help facilitate interaction with the user, and these
interactions are simpler to manage if you use jQuery only.

This book covers the following extensions in jQuery UI version 1.8:

• Tab management

• Accordion menus

• Dialog boxes

• Buttons

• Progress bars

• Sliders

• Date pickers

• Autocompleters

• Drag-and-drop management

• Selection, resizing, and switching of elements

• New visual effects

Who Should Read This Book
All users of jQuery should read this book! More specifically, this book will interest
people who want to improve the user interface of their websites and enrich them with
new features.

Structure of the Book
Each of the features offered by jQuery UI (tabs, accordion menus, etc.) are treated in
a separate chapter. Each chapter is independent of the others, allowing you to imple-
ment the functionality directly.

ix

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “jQuery UI by Eric Sarrion (O’Reilly).
Copyright 2012 Eric Sarrion, 978-1-449-31699-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

x | Preface

mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business. Technology profes-
sionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for re-
search, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920023159.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://shop.oreilly.com/product/0636920023159.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Thank you to the O’Reilly team that allowed me to write this book (notably, Simon,
Mike, and Amy), and to Daisaku Ikeda, who gave me the courage and perseverance to
achieve this goal.

xii | Preface

CHAPTER 1

Introduction to jQuery UI

jQuery UI is a set of plug-ins for jQuery that add new functionalities to the jQuery core
library. In this chapter, we will install the jQuery UI library and briefly examine its
content. The following chapters will detail each of the jQuery UI features.

jQuery UI Installation
You can download the library at http://jqueryui.com. Click the Stable link. This leads
directly to a ZIP file containing the sources, examples, and documentation for jQuery
UI. Once the file is downloaded, transfer the contents to a jqueryui directory.

This jqueryui directory now contains the following:

• A css subdirectory containing the CSS files associated with jQuery UI. You will see
that jQuery UI handles CSS themes to give a custom look to the interface elements
it manages. For example, the display of sliders may be different from one theme to
another, as well as other items like calendars and tabs.

• A js subdirectory containing the JavaScript files for jQuery UI. This directory con-
tains a compressed file of all jQuery UI features and the jQuery library file.

• A development-bundle subdirectory containing various subdirectories—demos
(jQuery UI sample files), docs (files containing the jQuery UI documentation),
themes (files for each of the CSS themes associated with jQuery UI), and ui (jQuery
UI JavaScript files).

• An index.html file that allows you to view some of the features of jQuery UI in a
browser.

Overview of jQuery UI
For an overview of jQuery UI, open the index.html file in a browser (Figure 1-1).

1

http://jqueryui.com

Figure 1-1. jQuery UI home page

In this file, you can see the different features that jQuery UI adds (Figure 1-2), including
the following:

• Accordion menus

• Autocompletion mechanism for input fields

• Buttons and checkboxes of the nicest aspects

• A tabs mechanism to facilitate the display in the page

• Dialog boxes that are superimposed on top of the page

• Custom icons

• Sliders

• Calendars

• Progress bars

2 | Chapter 1: Introduction to jQuery UI

Figure 1-2. jQuery UI home page: list of components

These are all possibilities that we will discuss later in the book. We will also consider
other mechanisms such as drag-and-drop, new visual effects, CSS theme files, and
more.

What Is a CSS Theme?
What are the CSS themes we talked about earlier? To find out, just download a new
customized version of jQuery UI, depending on the chosen theme. For that, go to http:
//jqueryui.com/download, which displays the page shown in Figure 1-3.

Choose the UI lightness theme from the list on the right, then retrieve the ZIP file for
jQuery UI associated with this theme by clicking the Download button. This ZIP file
contains the same directory, but the CSS files included in css directory are adapted to
the new theme. To see the look of this theme, view the new index.html file included in

What Is a CSS Theme? | 3

http://jqueryui.com/download
http://jqueryui.com/download

the queryui directory (this file will have overwritten the previous one). An example of
a theme is shown in Figure 1-4.

Each theme provides a unique combination of background colors, fonts, and other
screen elements. If we look at the css directory, we see two subdirectories containing
each of the themes that we have downloaded:

• smoothness is the default theme downloaded with jQuery UI

• ui-lightness is the theme we just downloaded from the http://jqueryui.com/down
load page.

Figure 1-3. Download of the jQuery UI with theme customization

Which Files Should We Include in Our HTML Pages?
In the previous sections, we have seen that jQuery UI is made up of different CSS and
JavaScript files. In addition, some files are compressed, while others are not. Hence the
question: which files should we include in our HTML pages to make use of jQuery UI?

Uncompressed Files
Uncompressed files are located in the development-bundle directory, under the jQuery
UI installation directory (jqueryui).

4 | Chapter 1: Introduction to jQuery UI

http://jqueryui.com/download
http://jqueryui.com/download

Figure 1-4. The ui-lightness theme

JavaScript files

The ui directory (located under development-bundle) contains the JavaScript files. The
jquery.ui.core.js file includes the basic features (mandatory), while other files will be
included only if required. The file ending in custom.js (e.g., jquery-ui-1.8.16.cus-
tom.js) brings together all the JavaScript files and eliminates the need to include each
separately. The minified directory (located under ui) contains the same files in com-
pressed format.

Which Files Should We Include in Our HTML Pages? | 5

CSS files

The themes directory (located under development-bundle) contains the CSS files. It
consists of various directories, each containing themes (e.g., the base, smoothness, and
ui-lightness directories). Each theme includes an images directory and other CSS files.

The jquery.ui.core.css file contains basic functionality (required), while other files will
be included only if they are required. The jquery.ui.theme.css file contains the definition
of the theme itself (required).

The jquery.ui.base.css file includes all of the files in the development-bundle directory
except jquery.ui.theme.css. The jquery.ui.all.css file includes all files (that is to say,
jquery.ui.base.css and jquery.ui.theme.css).

Finally, the file ending with custom.css (e.g., jquery-ui-1.8.16.custom.css) includes all
CSS files and eliminates the need to include each separately (it is identical to
jquery.ui.all.css, except that it includes other files via CSS directives, while custom.css
physically includes every line of all files).

Sample HTML page including uncompressed files

Here we want to display a simple page with two tabs. The main JavaScript file will be
jquery.ui.tabs.js and the main CSS file will be jquery.ui.tabs.css. The main page will
include the following base files:

<script src = "jquery.js"></script>
<script src = "jqueryui/development-bundle/ui/jquery.ui.core.js"></script>
<script src = "jqueryui/development-bundle/ui/jquery.ui.widget.js"></script>
<script src = "jqueryui/development-bundle/ui/jquery.ui.tabs.js"></script>

<link rel=stylesheet type=text/css
 href=jqueryui/development-bundle/themes/smoothness/jquery.ui.core.css />
<link rel=stylesheet type=text/css
 href=jqueryui/development-bundle/themes/smoothness/jquery.ui.theme.css />
<link rel=stylesheet type=text/css
 href=jqueryui/development-bundle/themes/smoothness/jquery.ui.tabs.css />

The jquery.js file is here at the same level as the jqueryui directory. This file is the
standard jQuery JavaScript file.

The core.js file is mandatory, while the tabs.js file requires the inclusion of widget.js (as
indicated in the tabs.js file).

The core.css file is mandatory, as is the theme.css file. The tabs.css file contains specific
tabs definitions.

Now that we have the basic building blocks for the page, let’s create and label two tabs
and place some text in each. The following code goes directly below the previous code
that calls the base files.

<div id=tabs>

 Tab 1

6 | Chapter 1: Introduction to jQuery UI

 Tab 2

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
</div>

<script>

$("#tabs").tabs();

</script>

The result of this script (an HTML page with two tabs) is shown in Figure 1-5.

Figure 1-5. Our first program using jQuery UI

Compressed Files
The use of compressed files reduces the load time of HTML pages.

JavaScript files

The js directory (located under the jQuery UI installation directory, here jqueryui) con-
tains the JavaScript files. Only the jquery-ui-1.8.16.custom.min.js file is needed here.
The other file in the directory is the compressed version of jQuery.

CSS files

The css directory (located under the jQuery UI installation directory, here jqueryui)
contains a subdirectory for each CSS theme installed (e.g., the smoothness and ui-light-
ness directories).

Which Files Should We Include in Our HTML Pages? | 7

Each theme includes an images directory and a CSS file to be included in the HTML
page. This is the same file ending with custom.css (e.g., jquery-ui-1.8.16.custom.css) as
in the compressed version.

Sample HTML page including compressed files

Here, we want to display a simple page with two tabs (as before):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Only two files are now required in addition to the jquery.js file:

• The jQuery UI JavaScript global file (jquery-ui-1.8.16.custom.min.js)

• The overall CSS jQuery UI file associated to the style used (smoothness/jquery-
ui-1.8.16.custom.css, associated with smoothness theme)

Now add the same HTML code that we used earlier to create, label, and populate the
tabs:

<div id=tabs>

 Tab 1
 Tab 2

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
</div>

<script>

$("#tabs").tabs();

</script>

The result is the same as before.

Change the CSS Theme
The great thing about CSS themes is that they allow you change the look of your page
easily—just change the directory name to that of the theme you want to use. For
example, let’s replace smoothness with ui-lightness.

For each base file in the uncompressed version of the page, simply replace the smooth-
ness directory with ui-lightness (shown in bold here):

<link rel=stylesheet type=text/css
 href=jqueryui/development-bundle/themes/ui-lightness/jquery.ui.core.css />
<link rel=stylesheet type=text/css
 href=jqueryui/development-bundle/themes/ui-lightness/jquery.ui.theme.css />

8 | Chapter 1: Introduction to jQuery UI

<link rel=stylesheet type=text/css
 href=jqueryui/development-bundle/themes/ui-lightness/jquery.ui.tabs.css />

For the base file in the compressed version of the page, replace the smoothness directory
with ui-lightness (shown in bold here):

<link rel=stylesheet type=text/css
 href=jqueryui/css/ui-lightness/jquery-ui-1.8.16.custom.css />

The HTML page will now use the new theme (shown in Figure 1-6).

Figure 1-6. Our HTML page using the ui-lightness theme

And Now?
After this quick tour of what jQuery UI can do for our HTML pages, we’ll look in more
detail at each of the components, beginning with tabs.

And Now? | 9

CHAPTER 2

Tabs

HTML pages with tabs have become common in current websites. Tabs allow you to
group a site’s information by topic—this allows users to find relevant information
quickly and easily by selecting the relevant tab.

Basic Principles of Tabs
Suppose we want to write the HTML code to display the tabs shown in Figure 2-1. We
have a tab bar (containing three tabs here) and different content for each tab.

Figure 2-1. Tabs in an HTML page

11

To create this type of page using jQuery UI, we need the following:

• A global <div> block enclosing the whole

• A element to form the tab bar

• A element for each tab

• A <div> element for each window inside tabs

Here is the code to create the page shown in Figure 2-1:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=tabs>

 Tab 1
 Tab 2
 Tab 3

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
 <div id=tab3>Contents of the third tab</div>
</div>

<script>

</script>

If you open this page in a browser (Figure 2-2), you’ll see that it does not appear quite
as planned. For the results we want, we have to specify that we’re using the jQuery UI
tabs () method.

Add the following line (shown in bold) in the <script> of the page to call the jQuery
UI tabs method for managing an HTML element with tabs:

<script>

$("#tabs").tabs ();

</script>

The page will appear with tabs.

The tabs () method is one of several jQuery UI methods used on a jQuery class object,
returned by the jQuery () function. The elements of the associated list (indicated by
the selector) are then transformed into tabs. When a user clicks a tab, jQuery UI will
automatically and transparently manage the switch to that tab.

12 | Chapter 2: Tabs

Figure 2-2. The tabs are not displayed in the HTML page as expected

Formatting Content
Using the tabs () method drastically changes the appearance of HTML elements inside
the page. Indeed, this method traverses (internally in jQuery UI) HTML code and adds
new CSS classes to the elements concerned (here, the tabs) to give them the appropriate
style.

Figure 2-3 shows the HTML generated by jQuery UI once the tabs () instruction has
changed the HTML DOM (Document Object Model) tree (the code was recovered
using the Firebug extension in Firefox).

It is possible to use CSS classes of elements to customize the display. For example, if
we modify the ui-state-default CSS class associated with elements, we should get
a new aspect for tabs. Similarly, if we modify the ui-tabs-panel CSS class associated
with <div> elements, the contents of the tabs will change in appearance.

Modify these elements in the HTML by adding a <style> tag (shown in bold):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 li.ui-state-default {
 font-size : 10px;
 }
 div.ui-tabs-panel {

Formatting Content | 13

 font-size : 15px;
 font-family : georgia;
 font-style : italic;
 }
</style>

<div id=tabs>

 Tab 1
 Tab 2
 Tab 3

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
 <div id=tab3>Contents of the third tab</div>
</div>

<script>

$("#tabs").tabs ();

</script>

The addition of our own styles must be done after those of jQuery UI, otherwise our
changes will be ignored.

Figure 2-3. HTML code generated with the tabs () method

14 | Chapter 2: Tabs

As shown in Figure 2-4, the appearance of tabs and their content has been changed
according to the new style.

Figure 2-4. The tabs have been customized

The tabs () Method
The tabs () method can be used in two forms:

• $(selector, context).tabs (options)

• $(selector, context).tabs ("action", params)

The tabs (options) Method
The tabs (options) method declares that an HTML element (and its contents) should
be managed as tabs. The options parameter is an object to specify the appearance and
behavior relevant to the tabs. Different types of options are available, depending on
whether they manage tabs directly or events related to tabs.

Tab appearance and behavior

Table 2-1 describes the options for modifying the appearance and behavior of tabs.

The tabs () Method | 15

Table 2-1. Options for managing tab appearance and behavior

Options Function

options.collapsible Set to true, it allows tabs to be deselected. When set to false (the default), clicking on a
selected tab does not deselect (it remains selected).

options.disabled Uses an array to indicate index tabs that are disabled (and therefore cannot be selected). For
example, use [0, 1] to disable the first two tabs.

options.selected Indicates the index of the first selected tab. The default is 0, indicating the first tab on the page.

options.event Name of the event that lets users select a new tab (the default is "click"). If, for example,
this option is set to "mouseover", passing the mouse over a tab will select it.

options.fx Indicates the effect that accompanies selection of the tab, such as a progressive display of
the tab and its contents (indicated by options.fx = {opacity: "toggle"}).

options.ajaxOptions Specifies options for Ajax (when you want to update the content of a tab with Ajax). For
example, options.ajaxOptions.data allows you to specify parameters to the server.

Managing events associated with tabs

Some options are used for tab management, such as selecting, adding, and deleting
tabs. These options (listed in Table 2-2) receive the event parameter corresponding to
the event, followed by the tab object that describes the tab on which the event occurred.
This tab object is composed of the following properties:

index
The index of the tab on which the event occurred (0 indicates the first tab).

panel
The <div> element corresponding to the contents of the tab.

Table 2-2. Options for managing tabs

Options Function

options.select The select (event, tab) method is called during the selection of a tab (either manually or by
the tabs ("select") method call).

options.show The show (event, tab) method is called when the contents of a tab become visible (manually,
when displaying the first selected tab, or by calling a method like tabs ("select")).

options.add The add (event, tab) method is called when adding a tab in the tab list (by the tabs
("add") method).

options.remove The remove (event, tab) method is called when deleting a tab in the tab list (by the tabs
("remove") method).

options.enable The enable (event, tab) method is called when activating a tab in the tab list (by the tabs
("enable") method).

options.disable The disable (event, tab) method is called when disabling a tab in the tab list (by the tabs
("disable") method).

options.load The load (event, tab) method is called when loading or viewing a tab in the list of tabs by Ajax
(by the tabs ("load") method).

16 | Chapter 2: Tabs

The tabs (“action”, params) Method
Unlike the preceding tabs (options) method, this new form of the method modifies
the behavior of tabs after their creation. The tabs ("action", params) method allows,
through a JavaScript program, an action on the tabs, such as selecting, disabling,
adding, or removing a tab. The action is specified as a string in the first argument (e.g.,
"add" to add a new tab), while the arguments that follow concern the parameters of
this action (e.g., the index of the tab).

Calling these methods sometimes causes an event having the same name as the corre-
sponding action (the add event is triggered by the "add" action). These events are pro-
cessed by the options already discussed, and are listed in Table 2-3.

Table 2-3. The tabs (“action”, params) method actions

Method Function

tabs ("add", "#id", title,
index)

Add a tab to the position indicated by index (from 0). Remaining tabs after the
added tab will have their index numbers incremented by 1.

"#id" is the id of a <div> element that is associated with the content of this tab
(the <div> is created by jQuery UI, its content should be added later).

The title parameter is the title of the tab.

If the index parameter is not specified, the tab is added at the end of the list.

tabs ("remove", index) Remove the specified tab and the associated content.

tabs ("disable", index) Disable the specified tab.

tabs ("enable", index) Make the specified tab active.

tabs ("select", index) Select the specified tab—the content of that tab becomes visible.

tabs ("url", index, url) Associate the contents of the tab with the URL specified in the url parameter. Ajax
will retrieve the contents of the tab in the call to the tabs ("load", index)
method.

tabs ("load", index) Have Ajax retrieve the contents of the tab, using the URL indicated by tabs ("url",
index, url).

tabs ("rotate", duration,
repeat)

Periodically select each tab according to a specified time duration (in milliseconds).

If repeat is true, the cycle is repeated, otherwise it is done only once (the default).

tabs ("destroy") Remove the tab management. Tabs again become simple HTML without CSS class or
event management.

tabs ("length") Return the number of tabs of the first element of the list for the selector used.

The bind () Method
In addition to event methods used in the options of the tabs (options) method, jQuery
UI allows us to manage these events using the bind () method. jQuery UI has created
different events, listed in Table 2-4.

The bind () Method | 17

Table 2-4. jQuery UI events for managing tabs

Event Function

tabsselect A tab has been selected (manually or by the tabs ("select") method).

tabsshow The contents of a tab became visible (manually, when displaying the first selected tab, or by calling a method
like tabs ("select")).

tabsadd A tab was added (by the tabs ("add") method).

tabsremove A tab has been removed (by the tabs ("remove") method).

tabsenable A tab has been activated (by the method tabs ("enable") tabs).

tabsdisable A tab has been disabled (by the tabs ("disable") method).

tabsload The contents of a tab have been loaded by Ajax (by the tabs ("load") method).

These events allow you to perform treatments using the callback method provided by
the bind (eventName, callback).

Examples of Using Tabs
In this section, we’ll put what you’ve learned about tabs to work.

Dynamic Creation of Tabs
We want to create a tab (and its contents) dynamically using JavaScript. In the code
shown here, HTML code initially creates three tabs, while the JavaScript adds the
fourth:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=tabs>

 Tab 1
 Tab 2
 Tab 3

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
 <div id=tab3>Contents of the third tab</div>
</div>

<script>

$("#tabs").tabs ({
 fx : { opacity : "toggle" },
}).tabs ("add", "#tab4", "Tab 4");

18 | Chapter 2: Tabs

$("<i>Contents of the fourth tab</i>").appendTo ("#tab4");

</script>

Notice how we have chained the first tabs () method with the second. The first tabs
() method is necessary because it transforms the HTML code we’ve written into a code
that displays tabs (with CSS classes that jQuery UI automatically adds), while the sec-
ond allows the "add" action, which adds the tab at the bottom of the list.

The tab is created by jQuery UI, as well as the <div> corresponding to its content. This
content is empty, so we add the last appendTo () statement to add content.

The result is shown in Figure 2-5.

Figure 2-5. The fourth tab is created dynamically.

Modifying the Contents of a Tab Using Ajax
We now want to initialize the contents of a tab from the HTML returned by the server.
We will use a PHP server.

We will modify the contents of the first tab, the index 0, using the "url" and "load"
actions. The addition is shown in bold:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=tabs>

Examples of Using Tabs | 19

 Tab 1
 Tab 2
 Tab 3

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
 <div id=tab3>Contents of the third tab</div>
</div>

<script>

$("#tabs").tabs ({
 fx : { opacity : "toggle" },
}).tabs ("url", 0, "action.php").tabs ("load", 0);

</script>

First we specify the URL, then we specify that Ajax will load the content (in that order).
The action.php file is as follows:

<?
 $txt = "<p> Tab content sent by the server </p>";
 $txt = utf8_encode($txt);
 echo ($txt);
?>

The result is shown in Figure 2-6.

Figure 2-6. Tab content created dynamically by Ajax

20 | Chapter 2: Tabs

Notice that, as we make an Ajax request in the HTML page, this HTML page should
be displayed using HTTP (hence the URL in the address bar), and not by a simple drag-
and-drop of the HTML file in the browser.

Next we’ll take a look at how to transmit information to the server via Ajax.

Transmitting the Information to the Server via Ajax
This example shows how to transmit information to the server via Ajax to modify the
content of the tab accordingly. In this example, we’ll send the name and surname of a
person and display it in the tab content returned by the server. The transmitted infor-
mation (name and surname) is inserted into the ajaxOptions option in the data property
(shown in bold):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=tabs>

 Tab 1
 Tab 2
 Tab 3

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
 <div id=tab3>Contents of the third tab</div>
</div>

<script>

$("#tabs").tabs ({
 fx : { opacity : "toggle" },
 ajaxOptions : { data : { name : "Sarrion", surname : "Eric" } }
}).tabs ("url", 0, "action.php").tabs ("load", 0);

</script>

The action.php file, which receives the sent parameters and displays the contents of the
tab, is as follows:

action.php file

<?
 $name = $_REQUEST["name"];
 $surname = $_REQUEST["surname"];
 $name = utf8_decode ($name);
 $surname = utf8_decode ($surname);

 $txt = "<p> Tab content sent by the server </p>";
 $txt .= "Name : " . $name . "
";

Examples of Using Tabs | 21

 $txt .= "Surname : " . $surname . "
";
 $txt = utf8_encode($txt);
 echo ($txt);
?>

The result is shown in Figure 2-7.

Figure 2-7. Tab content sent by Ajax

Using the Tabs add Method
We want to dynamically create a new tab, initialized dynamically by Ajax. The add
event (triggered when inserting a new tab), can perform treatment, such as an Ajax call
that inserts the content (shown in bold):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=tabs>

 Tab 1
 Tab 2
 Tab 3

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
 <div id=tab3>Contents of the third tab</div>

22 | Chapter 2: Tabs

</div>

<script>

$("#tabs").tabs ({
 fx : { opacity : "toggle" },
 add : function (event, tab)
 {
 $(tab.panel).load ("action.php");
 }
}).tabs ("add", "#tab4", "Tab 4");

</script>

The "add" action triggers the add event that updates the contents of the created tab:

<?
 $txt = "<p> Tab content sent by the server </p>";
 $txt = utf8_encode($txt);
 echo ($txt);
?>

The result is shown in Figure 2-8.

Figure 2-8. Using the add event

Examples of Using Tabs | 23

Using the tabsadd Event
Let’s take the same example, but treat it this time with the events managed by bind
(). In the case of adding a tab, the tabsadd event (shown in bold) is triggered by jQuery
UI:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=tabs>

 Tab 1
 Tab 2
 Tab 3

 <div id=tab1>Contents of first tab</div>
 <div id=tab2>Contents of the second tab</div>
 <div id=tab3>Contents of the third tab</div>
</div>

<script>

$("#tabs").tabs ({
 fx : { opacity : "toggle" }
}).bind ("tabsadd", function (event, tab)
{
 $(tab.panel).load ("action.php");
}).tabs ("add", "#tab4", "Tab 4");

</script>

We first create the tabs, then we intercept the tabsadd event. Finally, we insert a tab in
the list. Be careful, this order is important, otherwise nothing works!

24 | Chapter 2: Tabs

CHAPTER 3

Accordion Menus

Like tabs, accordion menus allow you to organize information on the HTML page. The
information in blocks is displayed or hidden depending on the selected menu. The
concept of accordion menus is that when a block is visible, the other blocks are hidden
with an animation that looks like an accordion movement.

Basic Principles of Accordion Menus
Suppose we want to write the HTML code to display the accordion menus shown in
Figure 3-1. We have three menu bars, each with different content.

Figure 3-1. Accordion menus

25

jQuery UI requires us to write this as follows for each of the menus, one after the other
(the title and content elements repeat one after the other):

• A global <div> block enclosing the whole.

• An element that will be the title of the menu: it can be a <h1>, <h2>, ..., <h6>,
which will contain an <a> link that will indicate the menu text (and for which the
href attribute is unnecessary, because it is not used).

• A <div> element corresponding to a content menu.

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="accordion">
 <h1><a>Menu 1</h1>
 <div>Menu Contents 1</div>
 <h1><a>Menu 2</h1>
 <div>Menu Contents 2</div>
 <h1><a>Menu 3</h1>
 <div>Menu Contents 3</div>
</div>

<script>

</script>

When we display the page in a browser, once again, the result is not expected, but is a
simple HTML page containing the titles and contents of the menus (Figure 3-2).

As we saw in Chapter 2, we must indicate in the HTML page that this display must be
made according to the conventions of jQuery UI. To do this, simply indicate that the
overall <div> is managed by the jQuery UI accordion () method. Add the following
line in the <script> tag:

<script>

$("#accordion").accordion();

</script>

Notice the <! DOCTYPE html> header in the HTML. If this statement is not present, the
management of menus is done poorly in Internet Explorer.

26 | Chapter 3: Accordion Menus

Figure 3-2. HTML preview of a simple accordion menu

Formatting Content
Using the accordion () method drastically changes the appearance of HTML elements
in the rendered page. Indeed, this method scans the HTML and adds new CSS classes
to the elements (here, the accordion menus) to give them the appropriate style.

Here, for example, the HTML code that appears after the accordion () instruction has
been changed (Figure 3-3). This code was retrieved using the Firebug extension in
Firefox.

It is also possible to use the CSS classes of elements to customize the display. For
example, if we alter the ui-accordion-header CSS class associated with <h1> elements,
we should get a new appearance for the menu titles. Similarly, if we change the ui-
accordion-content CSS class associated with <div> elements, we get a new aspect for
the content of menus.

Formatting Content | 27

Figure 3-3. HTML code generated by the accordion () method

Modify these elements in the HTML by adding a <style> tag (shown in bold):

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 h1.ui-accordion-header {
 font-size : 10px;
 }
 div.ui-accordion-content {
 font-size : 15px;
 font-family : georgia;

28 | Chapter 3: Accordion Menus

 font-style : italic;
 }
</style>

<div id="accordion">
 <h1><a>Menu 1</h1>
 <div>Menu Contents 1</div>
 <h1><a>Menu 2</h1>
 <div>Menu Contents 2</div>
 <h1><a>Menu 3</h1>
 <div>Menu Contents 3</div>
</div>

<script>

$("#accordion").accordion();

</script>

This HTML code is identical to the previous, except that we added the <style> tag after
the inclusion of jQuery UI styles. The addition of our own styles must be done after
those of jQuery UI—if not, our changes will be ignored.

The menus and their contents now appear customized to the new style (Figure 3-4).

Figure 3-4. Customized accordion menus

The accordion () Method
This accordion () method can be used in two forms:

• $(selector, context).accordion (options)

• $(selector, context).accordion ("action", params)

The accordion () Method | 29

The accordion (options) Method
The accordion (options) method specifies that an HTML element (and its contents)
should be managed as accordion menus. The options parameter is an object to specify
the appearance and behavior of the involved menus. These options concern the be-
havior of menus, the height of content, or the events related to these menus.

Options for managing accordion menus

Table 3-1 describes the options for managing the behavior of accordion menus.

Table 3-1. Options for managing the behavior of menus

Option Function

options.collapsible When set to true, it allows users to close a menu by clicking on it.

When set to false (the default), clicking an open menu does not close it.

options.active Indicates the index of the menu that is open when the page is first accessed. The default is
0 (the first menu).

To specify no open menu at startup, use false.

options.event Name of the event that lets users select a new menu (the default is "click"). If, for example,
you specify "mouseover", users can select the menu by moving the mouse over it.

options.animated Indicates a visual effect that accompanies selection of a menu. The default is "slide".

Other values can modify the easing parameter value in effect, that is to say, the way to
progress in the effect (while retaining a slide-like effect).

The possible values are: "easeInQuad", "easeInCubic", "easeInQuart", "ease
InQuint", "easeInSine", "easeInExpo", "easeInCirc", "easeInElas
tic", "easeInBack", and "easeInBounce".

Set to false to display the contents of the menu with no transition effect.

Managing the height of the menu contents

By default, menus will automatically adjust height to accommodate the height of the
contents. You can also manually set the height. Table 3-2 lists the options for managing
the height of menu contents.

Table 3-2. Options for managing the height of menus

Option Function

options.autoHeight When set to true (the default), the height of the tallest content is applied to all other menus.
When set to false, the height of each menu corresponds to the actual height of its contents
—the contents of the menus may therefore each have different heights.

options.fillSpace When set to true, all the menus and content have the height and width of the global block
parent <div>. The default is false.

30 | Chapter 3: Accordion Menus

Managing events related to menus

There are also methods for managing the selection of menu items. These methods
receive the event parameter corresponding to the event, followed by the menus object,
which describes the menus associated with the event (the one that opens and the one
that closes). This menus object (described below) consists of the following properties:

oldHeader
jQuery class object corresponding to the menu that is closing.

oldContent
jQuery class object corresponding to the content menu that is closing.

newHeader
jQuery class object corresponding to the menu that is opening.

newContent
jQuery class object corresponding to the content menu that is opening.

Table 3-3 describes the options for managing menu events.

Table 3-3. Options for managing menu events

Option Function

options.change The change (event, menus) method is called when selecting a menu (either manually
or by the accordion ("activate") method), after the animation has taken place (the
selected menu was opened and the previously open menu was closed).

options.changestart The changestart (event, menus) method is called when selecting a menu (either
manually or by the accordion ("activate") method), before the animation has taken
place (the menu that is due to open has not yet opened and the menu that should close has
not yet closed).

The accordion (“action”, params) Method
The accordion ("action", params) method allows an action on the menus, such as
selecting or deselecting a menu. The action is specified as a string in the first argument
(e.g., "activate" to select a new menu), followed by arguments that specify the pa-
rameters of the action (e.g., the index menu concerned). Table 3-4 lists the actions
associated with this method:

Table 3-4. The accordion (“action”, params) method actions

Method Function

accordion ("activate", index) Select the specified menu.

accordion ("disable") Disable all menus. No click will be taken into account.

accordion ("enable") Reactivate all menus. The clicks are again considered.

accordion ("destroy") Remove menu management. Menus revert to simple HTML elements without
CSS class or event management.

The accordion () Method | 31

Event Management in Accordion Menus with bind ()
In addition to event methods used in the options of the accordion (options) method,
jQuery UI allows us to manage these events using the bind () method. jQuery UI has
created different events, listed in Table 3-5.

Table 3-5. jQuery UI events for managing accordion menus

Event Function

accordionchange Same meaning as options.change (see Table 3-3).

accordionchangestart Same meaning as options.changestart (see Table 3-3).

These events allow you to perform treatments using the callback method provided by
the bind (eventName, callback).

Examples of Using Accordion Menus
In this section, we’ll incorporate the use of menus into a UI.

Opening Any Menu
When creating an accordion menu, the first menu (index 0) is open by default. Let’s
configure our page to open the second menu (index 1) instead. This is done using
accordion ("activate"):

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="accordion">
 <h1><a>Menu 1</h1>
 <div>Menu Contents 1</div>
 <h1><a>Menu 2</h1>
 <div>Menu Contents 2</div>
 <h1><a>Menu 3</h1>
 <div>Menu Contents 3</div>
</div>

<script>

$("#accordion").accordion ().accordion ("activate", 1);

</script>

The first accordion () method is required to create the accordion menu, while the
second method activates the menu with index 1.

32 | Chapter 3: Accordion Menus

The second menu is open at the launch of the application, as shown in Figure 3-5.

Figure 3-5. Opening the second menu using the “activate” action

Loading the Contents of a Menu with Ajax: Using options
Let’s change the menu contents via Ajax when it opens. We will use the
options.change and options.changestart methods. The options.changestart method
will display a placeholder (in this case, "Loading") and the options.change method
makes the Ajax call:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="accordion">
 <h1><a>Menu 1</h1>
 <div>Menu Contents 1</div>
 <h1><a>Menu 2</h1>
 <div>Menu Contents 2</div>
 <h1><a>Menu 3</h1>
 <div>Menu Contents 3</div>
</div>

<script>

Examples of Using Accordion Menus | 33

$("#accordion").accordion({
 changestart : function (event, menus)
 {
 menus.newContent.html ("Loading");
 },
 change : function (event, menus)
 {
 menus.newContent.load ("action.php");
 }
});

</script>

The menus.newContent object is a jQuery class object that is associated with the menu
that opens. The action.php file is as follows:

<?
 $txt = " Response sent by the server ";
 $txt = utf8_encode($txt);
 echo ($txt);

To test this program, we must use a URL starting with http:// (e.g., http://localhost),
otherwise the Ajax request generates an error.

At the opening of each menu, the "Loading" message appears, then disappears when
the Ajax call is complete. It is then replaced with the code returned by the server
(Figure 3-6).

Figure 3-6. The code returned by the server via Ajax

We can also use the accordionchange and accordionchangestart events to initialize the
contents of the menus. This is discussed in the following section.

34 | Chapter 3: Accordion Menus

http://localhost

Loading the contents of a menu with Ajax: Using accordionchange
This example is similar to the previous, but here we want to use the accordionchange
and accordionchangestart events with the bind () method. The code to do this is as
follows:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="accordion">
 <h1><a>Menu 1</h1>
 <div>Menu Contents 1</div>
 <h1><a>Menu 2</h1>
 <div>Menu Contents 2</div>
 <h1><a>Menu 3</h1>
 <div>Menu Contents 3</div>
</div>

<script>

$("#accordion").accordion().bind ("accordionchangestart", function (event, menus)
{
 menus.newContent.html ("Loading");
}).bind ("accordionchange", function (event, menus)
{
 menus.newContent.load ("action.php");
});

</script>

The action.php file is as follows (this is identical to the contents of the file when we
used options.change and options.changestart):

<?
 $txt = " Response sent by the server ";
 $txt = utf8_encode($txt);
 echo ($txt);

Examples of Using Accordion Menus | 35

CHAPTER 4

Dialog Boxes

Dialog boxes are interesting solutions for presenting information on an HTML page.
You can use dialog boxes, for example, to pose a question to the user. HTML dialog
boxes have the traditional behavior of other application dialog boxes—you can move,
resize, and of course, close them.

Basic Principles of Dialog Boxes
Suppose we want to write the HTML code to display the dialog box shown in Figure 4-1.

Figure 4-1. An HTML dialog box

37

This dialog box includes text content and a title bar that contains a close button. Users
can move the box on the page and resize it. jQuery UI requires us to use the following
conventions:

• A global <div> block surrounds the whole with a title attribute that specifies the
window title.

• The <div> content includes the content of the window.

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog" title="Window title">
 <p> Content of the dialog box </p>
</div>

<script>

$("#dialog").dialog();

</script>

The dialog () method transforms the HTML code written on the page into HTML
code to display a dialog box.

Notice the <! DOCTYPE html> header in HTML. If this statement is not present, window
management is done poorly in Internet Explorer.

To display multiple dialog boxes simultaneously, as shown in Figure 4-2, we include
the following (shown in bold):

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog1" title="Window title 1">
 <p> Content of the dialog box 1</p>
</div>

<div id="dialog2" title="Window title 2">
 <p> Content of the dialog box 2</p>
</div>

<script>

$("#dialog1, #dialog2").dialog();

</script>

38 | Chapter 4: Dialog Boxes

Figure 4-2. Dialog boxes displayed simultaneously

The dialog () method uses each element of the list corresponding to the selector (in
this case, the two <div> elements) and displays the corresponding dialog boxes. They
are stacked at first, and users can move and position them simply by clicking or dragging
them.

Formatting Content
Using the dialog () method drastically changes the appearance of HTML elements on
the rendered page. Indeed, this method scans the HTML and adds new CSS classes to
the elements concerned (here, the dialog boxes) to give them the appropriate style.

Here, for example, the HTML code that appears after the dialog () instruction has
been changed (Figure 4-3). This code was retrieved using the Firebug extension in
Firefox.

These CSS classes can customize the display of elements. For example, if we change
the ui-dialog-titlebar CSS class associated with <div> elements, we get a new aspect
for the window title. Similarly, if we change the ui-dialog-content CSS class associated
with <div> elements, we get a new appearance for the content of the windows.

Formatting Content | 39

Modify these elements (shown in bold) in the HTML by adding a <style> tag to obtain
the layout shown in Figure 4-4:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 div.ui-dialog-titlebar {
 font-size : 10px;
 }

Figure 4-3. HTML code generated with the dialog () method

40 | Chapter 4: Dialog Boxes

 div.ui-dialog-content {
 font-size : 15px;
 font-family : georgia;
 font-style : italic;
 }
</style>

<div id="dialog" title="Window title">
 <p> Content of the dialog box</p>
</div>

<script>

$("#dialog").dialog();

</script>

Figure 4-4. A customized dialog box

This HTML code is identical to the previous, except that we added the <style> tag after
the inclusion of the jQuery UI styles. The addition of our own styles must be done after
those of jQuery UI, otherwise our changes will be ignored.

Formatting Content | 41

The dialog () Method
The dialog () method can be used in two forms:

• $(selector, context).dialog (options)

• $(selector, context).dialog ("action", params)

The dialog (options) Method
The dialog (options) method declares that an HTML element (and its contents)
should be administered in the form of a dialog box. The options parameter is an object
that specifies the appearance and behavior of that window. The available options man-
age the appearance, position, and size of the window, as well as the behavior of visual
effects.

Table 4-1 describes the option for managing the appearance of the dialog box.

Table 4-1. Options for managing dialog box appearance

Options Function

options.title Give a title to the window.

options.buttons Add buttons in the dialog box. These are listed as objects, and each property is the text on
the button. The value is a callback function called when the user clicks the button.

Table 4-2 describes the options for managing the position of the dialog box.

Table 4-2. Options for managing dialog box position in the page

Options Function

options.position The position of the window is specified as coordinates [left, top] or a string such as:

• "left top", "top right", "bottom left", or "right bottom" (for each
of the four corners of the page)

• "top" or "bottom" (top or bottom, centered in width)

• "left" or "right" (left or right, centered in height)

• "center" (centered in width and height)

By default, the window is centered in the width and height ("center").

Table 4-3 describes the options for managing the size of the dialog box.

42 | Chapter 4: Dialog Boxes

Table 4-3. Options for managing dialog box size

Options Function

options.height The initial height (in pixels) of the dialog box. The default value is "auto" (the size adjusts
automatically to display all content).

options.width The initial width (in pixels) of the dialog box. The default is 300.

options.maxHeight Maximum height (in pixels) to which the dialog box can be resized.

options.maxWidth Maximum width (in pixels) to which the dialog box can be resized.

options.minHeight Minimum height (in pixels) to which the dialog box can be resized. The default value is 150.

options.minWidth Minimum height (in pixels) to which the dialog box can be resized. The default value is 150.

Managing the visual effects on the dialog box

It is also possible, thanks to jQuery UI, to specify an effect for the appearance and
disappearance of the dialog box with the options.show and options.hide options (de-
scribed in Table 4-4).

Table 4-4. Options for managing visual effects

Options Function

options.show Visual effect to occur at the appearance of the dialog box (the effects are listed in Table 4-5). When set
to false (the default), there is no visual effect associated with the appearance of the dialog box.

options.hide Visual effect to occur at the disappearance of the dialog box (listed in the table below). When set to
false (the default), there is no visual effect associated with the disappearance of the dialog box.

Table 4-5. Effects provided by jQuery UI

Effect name Function

"blind" The element appears or disappears from the top.

"bounce" The element appears or disappears fitfully, in a vertical movement.

"clip" The element appears or disappears vertically from the center.

"drop" The element appears or disappears from the left, with a change of opacity.

"fold" The element appears or disappears from the top left corner.

"highlight" The element appears or disappears with variations of opacity and background color.

"puff" The element is scaled from its center. It appears by “shrinking” and disappears by “growing.”

"pulsate" The element appears or disappears by flashing.

"scale" The element is scaled from its center. It disappears by shrinking and appears by growing.

"slide" The element appears or disappears from its right side.

The dialog () Method | 43

Managing the behavior of the dialog box

Table 4-6 describes the options for managing the behavior of the dialog box when it is
opened, moved, stacked, and resized.

Table 4-6. Options for managing dialog box behavior

Options Function

options.autoOpen If true (the default), the dialog box opens with the call to the dialog (options) method.

If false, the dialog box is created, but will only be visible by calling the dialog
("open") method.

options.draggable If true (the default), the dialog box can be moved on the page.

options.resizable If true (the default), the dialog box can be resized on the page.

options.modal If true, the dialog box is modal (other elements on the page outside the dialog box are
inaccessible).

The default value is false (the dialog box is not modal).

options.stack If true (the default), the dialog box can be stacked (clicking on a window or dialog box
brings it to the foreground).

If false, dialog boxes are open, one on top of another, but users cannot change the order
of the stack.

Managing events in the dialog box

Dialog box event methods (described in Table 4-7) allow you to perform treatments at
different stages of the dialog box. They correspond to callback functions called at these
different stages. The value in the callback function is the <div> element associated with
the contents of the dialog box.

Table 4-7. Options for managing dialog box events

Options Function

options.focus The focus (event) method is called whenever the dialog box is activated (in its first
appearance and each click on it).

options.open The open (event) method is called whenever the window is displayed (in its first
appearance or following calls to the dialog ("open") method).

options.beforeclose The beforeclose (event) method is called whenever the dialog box will be closed
(when clicking on the close button or making a call to the dialog ("close") method).
If the function returns false, the dialog box will not be closed. A closed dialog box can be
reopened by dialog ("open").

options.close The close (event) method is called whenever the dialog box is closed (when clicking
on the close button or call to the dialog ("close") method). A closed dialog box can
be reopened by dialog ("open").

options.drag The drag (event) method is called for every mouse movement when the dialog box is
moved on the page.

44 | Chapter 4: Dialog Boxes

Options Function

options.dragStart The dragStart (event) method is called at the beginning of the movement of the
dialog box on the page.

options.dragStop The dragStop (event) method is called at the end of movement of the dialog box on
the page (when the mouse button is released).

options.resize The resize (event) method called for every mouse movement when the dialog box is
resized on the page.

options.resizeStart The resizeStart (event) method is called at the beginning of resizing the dialog box
on the page.

options.resizeStop The resizeStop (event) method is called at the end of resizing the dialog box on the
page (when the mouse button is released).

The dialog (“action”, params) Method
The dialog ("action", params) method can perform an action on the dialog box, such
as opening or closing it. The action is specified as a string in the first "action" argument
(e.g., "open" to open a window).

Table 4-8 describes the actions you can perform using this method.

Table 4-8. The dialog (“action”, params) method actions

Method Function

dialog ("open") Open the dialog box.

dialog ("close") Close the dialog box. It is then hidden and may be reopened by dialog ("open").

dialog ("destroy") Remove dialog box management. Dialog boxes are reverted to simple HTML without
CSS class or event management, and are hidden in the page.

dialog ("disable") Make the dialog box appear disabled, without actually disabling it. The dialog box
elements (title bar, content, borders) remain available.

dialog ("enable") Restore the normal appearance to the elements of the dialog box.

dialog ("isOpen") Returns true if one of the dialog boxes in the list is open, otherwise returns false.

dialog ("moveToTop") Position the corresponding dialog boxes to the foreground (on top of the others).

dialog ("option", param) Get the value of the specified param option. This option corresponds to one of those
used in the dialog (options) method.

dialog ("option", param,
value)

Changes the value of the param option. This option corresponds to one of those used
in the dialog (options) method.

Event Handling in Dialog Boxes with bind ()
In addition to event methods in the options of the dialog (options) method, it is pos-
sible to manage these events using the bind () method.

Event Handling in Dialog Boxes with bind () | 45

These events allow you to perform treatments using the callback method provided by
the bind (eventName, callback). Table 4-9 describes the options for managing dialog
boxes with bind ().

Table 4-9. jQuery UI events for managing dialog boxes with bind()

Event Function

dialogfocus Same meaning as options.focus.

dialogopen Same meaning as options.open.

dialogbeforeclose Same meaning as options.beforeClose.

dialogclose Same meaning as options.close.

dialogdrag Same meaning as options.drag.

dialogdragstart Same meaning as options.dragStart.

dialogdragstop Same meaning as options.dragStop.

dialogresize Same meaning as options.resize.

dialogresizestart Same meaning as options.resizeStart.

dialogresizestop Same meaning as options.resizeStop.

Examples of Using Dialog Boxes
Let’s put some dialog boxes in our script and manage them using the information in
this chapter.

Opening and Closing a Dialog Box
Here, we’ll use the dialog ("open") and dialog ("close") methods (shown in bold) to
add two Open and Close buttons to the page for opening and closing the dialog box:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog" title="Window title">
 <p> Content of the dialog box</p>
</div>

<input id=open type=button value=Open>
<input id=close type=button value=Close>

<script>

$("div#dialog").dialog ({
 autoOpen : false
});

46 | Chapter 4: Dialog Boxes

$("#open").click (function (event) // Open button Treatment
{
 if ($("#dialog").dialog ("isOpen")) alert ("Already open !");
 else $("#dialog").dialog ("open");
});

$("#close").click (function (event) // Close button Treatment
{
 if (!$("#dialog").dialog ("isOpen")) alert ("Already closed !");
 else $("#dialog").dialog ("close");
});

</script>

Initially, the dialog box is created but is not open (options.autoOpen set to false). Before
opening the dialog box, we test whether it is already open with dialog ("isOpen"). We
do the same for closing it.

Figure 4-5 shows the window after it is opened.

Figure 4-5. Buttons to open and close the dialog box

If you try to open the dialog box a second time, you will receive an alert message that
says, “Already open!” (Figure 4-6).

Examples of Using Dialog Boxes | 47

Figure 4-6. An alert message appears when you try to open a dialog box that is already open

Applying an Effect When Opening or Closing the Dialog Box
By default, no effect is used when opening or closing a dialog box. We can apply an
effect using the show and hide options (shown in bold). In this example, the dialog box
will appear by sliding from the left side of the page (slide effect) and will disappear by
enlarging and reducing its opacity (puff effect):

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog" title="Window title">
 <p> Content of the dialog box</p>
</div>

<script>

$("div#dialog").dialog ({
 show : "slide",
 hide : "puff"
});

</script>

48 | Chapter 4: Dialog Boxes

Verifying the Closure of the Dialog Box
It is possible to verify the closure of a dialog box with the options.beforeclose option.
This option corresponds to a method that is activated when the dialog box closes. If
the method returns false, the dialog box does not close.

In this example, a confirmation message appears when the user tries to close the dialog
box (Figure 4-7). The dialog box will be closed when the user clicks the OK button:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog" title="Window title">
 <p> Content of the dialog box</p>
</div>

<script>

$("div#dialog").dialog ({
 beforeclose : function (event)
 {
 if (!confirm ("Close dialog ?")) return false;
 }
});

</script>

Figure 4-7. The confirmation dialog box verifies closure of the main dialog box

Examples of Using Dialog Boxes | 49

Another way to prevent the closure of the dialog box is to remove the close button.
This case is treated in the next section.

Hiding the Close Button
We can prevent the closure of the dialog box by removing (hiding) the close button.

The close button is associated with an <a> link with the ui-dialog-titlebar-close CSS
class. This link can be easily identified in the HTML generated by the call for dialog
(options) (e.g., with Firebug). It is located in the sibling element before the contents
of the dialog box (shown in bold):

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog" title="Window title">
 <p> Content of the dialog box</p>
</div>

<script>

$("div#dialog").dialog ().prev ().find (".ui-dialog-titlebar-close").hide ();

</script>

This statement includes the following:

1. We call dialog () to convert the HTML dialog box.

2. We get the previous sibling of content with prev ().

3. In this relationship, we look for the element with the ui-dialog-titlebar-close
CSS class.

4. We hide this element using hide ().

This must be done in the listed order. If, for example, we do not call dialog () first,
the prev () instruction will not find the link in the previous element, because the HTML
has not been turned into a dialog box!

As shown in Figure 4-8, the close button is not visible.

50 | Chapter 4: Dialog Boxes

Figure 4-8. Dialog box without a close button

Inserting Buttons in the Dialog Box
We now want to insert buttons in the dialog box, such as Yes and No buttons in a
window asking, “Would you like to close the window?” (see Figure 4-9). We can use
options.buttons (shown in bold) for this.

Users can close the window only by clicking the Yes button—the standard close button
has been removed:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog" title="Window title">
 <p> Would you like to close the dialog box?</p>
</div>

<script>

$("div#dialog").dialog ({
 buttons : {
 "Yes" : function ()
 {

Examples of Using Dialog Boxes | 51

 $("div#dialog").dialog ("close");
 },
 "No" : function ()
 {
 }
 }
}).prev().find(".ui-dialog-titlebar-close").hide ();

</script>

Figure 4-9. The Yes and No buttons now appear in the dialog box

Inserting Content Using Ajax
Now let’s insert content retrieved dynamically from the server into the dialog box before
opening. This is done using the options.open option (shown in bold). This method is
called before the dialog box is displayed:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog" title="Window title">
 <p> Content of the dialog box</p>
</div>

52 | Chapter 4: Dialog Boxes

<script>

$("div#dialog").dialog ({
 open : function (event)
 {
 $(this).load ("action.php");
 }
});

</script>

Recall that in the event methods (defined here by options.open), the this value repre-
sents the HTML element corresponding to the contents of the dialog box. $(this) is a
jQuery class object associated with this element of the DOM. The action.php file is as
follows:

<?
 $txt = " Response sent by the server ";
 $txt = utf8_encode($txt);
 echo ($txt);
?>

The URL of the page displayed in the browser must begin with http://, otherwise the
Ajax call cannot be performed.

The content of the dialog box is retrieved by Ajax and the window is displayed with its
new content (Figure 4-10).

Figure 4-10. Dialog box initialized dynamically

Examples of Using Dialog Boxes | 53

Changing the Behavior of a Dialog Box with Effects
We have seen that the options used when creating the dialog box can be modified by
the dialog ("option", param, value) method. The param parameter is the name of the
option, while the value corresponds to its new value.

To illustrate this, let’s change the effect for the opening and closing of the window.
We’ll display two lists for which we can select the desired effect ("puff", "slide", etc.).
When creating the dialog box, no effect is associated with it:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id="dialog" title="Window title">
 <p> Content of the dialog box</p>
</div>

Open effect
<select id=effectopen>
 <option>No effect</option>
 <option>blind</option>
 <option>bounce</option>
 <option>clip</option>
 <option>drop</option>
 <option>fold</option>
 <option>highlight</option>
 <option>puff</option>
 <option>pulsate</option>
 <option>scale</option>
 <option>slide</option>
</select>

Close effect
<select id=effectclose>
 <option>No effect</option>
 <option>blind</option>
 <option>bounce</option>
 <option>clip</option>
 <option>drop</option>
 <option>fold</option>
 <option>highlight</option>
 <option>puff</option>
 <option>pulsate</option>
 <option>scale</option>
 <option>slide</option>
</select>

54 | Chapter 4: Dialog Boxes

<input id=open type=button value=Open>

<script>

$("div#dialog").dialog ({
 autoOpen : false
});

$("#effectopen").change (function (event)
{
 var effect = $(this).val ();
 if (effect == "No effect") effect = false;
 $("div#dialog").dialog ("option", "show", effect);
});

$("#effectclose").change (function (event)
{
 var effect = $(this).val ();
 if (effect == "No effect") effect = false;
 $("div#dialog").dialog ("option", "hide", effect);
});

$("#open").click (function (event)
{
 $("#dialog").dialog ("open");
});

</script>

Figure 4-11 shows the result with the fold and highlight effects selected.

Figure 4-11. Application of an effect at the opening and closing of the dialog box

Examples of Using Dialog Boxes | 55

CHAPTER 5

Buttons

jQuery UI allows us to give a different appearance to interface elements of the HTML
page, such as buttons, radio buttons, and checkboxes.

Basic Principles of Buttons
Suppose we want to write the HTML code to display the buttons shown in Figure 5-1.

There are two buttons with a different aspect than the usual buttons. To view them,
you must write a containing the button text. You can replace the element
with another HTML element, such as <div> or <button>, but the button layout will be
different (e.g., one above the other for a <div>):

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

 Button 1
 Button 2

<script>

$("#button1, #button2").button ();

</script>

The button () method transforms the HTML elements into buttons, with automatic
management of mouse movements on them, all managed transparently by jQuery UI.

The <!DOCTYPE html> directive is mandatory for improving the display in Internet
Explorer.

57

Figure 5-1. Buttons in the HTML page

Formatting Content
Here, the HTML code that appears after the button () instruction has been changed
(Figure 5-2). This code was retrieved using the Firebug extension in Firefox.

Figure 5-2. HTML generated by the button () method

Again, as with other functions of jQuery UI, it is possible to use the CSS classes to
customize the display of elements. For example, if we change the ui-button CSS class
associated with elements, we get a new appearance for the buttons (as shown
in Figure 5-3).

58 | Chapter 5: Buttons

Figure 5-3. Customized buttons

Modify these elements (shown in bold) in the HTML by adding a <style> tag:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 span.ui-button {
 font-size : 10px;
 }

</style>

 Button 1
 Button 2

<script>

$("#button1, #button2").button ();

</script>

This HTML code is identical, except that we added the <style> tag after the inclusion
of jQuery UI styles. The addition of our own styles must be done after those of jQuery
UI, otherwise our changes will be ignored.

Formatting Content | 59

The button () Method
The button () method can be used in two forms:

• $(selector, context).button (options);

• $(selector, context).button (“action”, params);

The button (options) Method
The button (options) method declares that an HTML element should be managed as
a button. The options parameter is an object that specifies the appearance and behavior
of the button.

A button can be represented by text, but can also be associated with icons that are
predefined in a jQuery UI CSS file associated with each theme (here, the
jquery.ui.theme.css file). This file contains a set of CSS classes to access the icons located
in a file in the jqueryui/development-bundle/themes/smoothness/images directory (for the
smoothness theme). In this CSS file, you will see the CSS class definitions, such as the
following:

CSS class definition associated with an icon in the images file
.ui-icon-calendar { background-position: −32px −112px; }

This allows us to use the ui-calendar-icon class in a button, for example, to use a
calendar icon for the button.

The icons available in jQuery UI are shown in Figure 5-4.

Figure 5-4. Available icons in jQuery UI

Table 5-1 describes the options for managing buttons.

60 | Chapter 5: Buttons

Table 5-1. Options for managing buttons

Option Function

options.disabled When set to true, the button will appear inactive. Mouseovers will have no effect, but clicks
on the button will continue to be taken into account.

options.label Corresponds to the text displayed in the button. If not specified, the contents of the HTML
element are used as button text.

options.icons Associates icons with the button. There may be one before the button text (primary icon)
and after (secondary icon). The values of the primary and secondary properties are the
names of the CSS class defined in the CSS file (e.g., "ui-icon-calendar").

options.text Indicates whether the button text should be displayed. When set to false, the text will not
be displayed. In this case, at least one icon should be present.

The button (“action”, params) Method
The button ("action", params) method allows an action on buttons, such as disabling
or changing the button text. The action is specified as a string in the first argument
(e.g., "disable" to disable a button). Table 5-2 describes the actions for this method.

Table 5-2. The button (“action”, params) method actions

Action Function

button ("disable") Disable the button.

button ("enable") Enable the button.

button ("refresh") Refresh the display of the button. This is useful when the buttons are handled by the program
and the display does not necessarily correspond to the internal state.

button ("option",
param)

Retrieve the value of the option specified in param. This option is one of those used in button
(options).

button ("option",
param, value)

Change the value of the param option. This option is one of those used in button (options).

button ("destroy") Remove the management of the buttons. The buttons revert to simple HTML without CSS
class or event management.

Event Handling on Buttons with bind ()
jQuery UI has not added new events associated with buttons. Indeed, the management
of the mouse actions corresponds to existing events (click, mouseover, etc.) used as
usual by jQuery with the bind () method.

Radio Buttons
jQuery UI can manage radio buttons so that they have the appearance of the buttons
above.

Radio Buttons | 61

Displaying Radio Buttons
The HTML code you write for this is somewhat less flexible than the code used so far.
We must only use an <input> element to represent a radio button, in which the text
associated with the radio button will take the form of a <label> tag.

For example, to display two radio buttons to choose the sex of a person, as shown in
Figures 5-5 and 5-6, we write the HTML code as follows:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Sex : <input type=radio name=sex id=m><label for=m>Male</label></input>
 <input type=radio name=sex id=f><label for=f>Female</label></input>

<script>

$("input").button ();

</script>

Notice the use of the for attribute in the <label> tag to associate the text with the radio
button. If you forget to add this part, the selection and deselection of the buttons no
longer takes place.

Figure 5-5. Radio buttons, where neither is selected

62 | Chapter 5: Buttons

Figure 5-6. Radio buttons, where Male is selected

Improving the Display with buttonset ()
The radio buttons shown in Figures 5-5 and 5-6, are certainly more visually pleasing
than the traditional radio buttons, but it would be better to organize them to show that
they form a block. We can do this by slightly modifying the HTML code with the
changes shown in bold:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div>
 Sex : <input type=radio name=sex id=m><label for=m>Male</label></input>
 <input type=radio name=sex id=f><label for=f>Female</label></input>
</div>

<script>

$("input").button ();
$("div").buttonset ();

</script>

The difference from the previous code is that we have wrapped <input> elements into
a <div>, to which we applied the jQuery UI buttonset () method to make the buttons
look like a single block. The display of the buttons is different, but the behavior remains
the same.

The result of this script is shown in Figure 5-7.

Radio Buttons | 63

Figure 5-7. Radio buttons now form a single block

Checkboxes
The appearance of the checkboxes is the same as radio buttons, but it is possible to
select and deselect each checkbox independently (see Figure 5-8).

Figure 5-8. Checkboxes with two buttons selected

Displaying Checkboxes
To display the checkboxes, change the type attribute of <input> elements, replacing
radio with checkbox:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>
<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

64 | Chapter 5: Buttons

<p>Select the colors that you like:</p>
<input type=checkbox name=red id=idred><label for=idred>Red</label></input>
<input type=checkbox name=green id=idgreen><label for=idgreen>Green</label></input>
<input type=checkbox name=blue id=idblue><label for=idblue>Blue</label></input>
<input type=checkbox name=yellow id=idyellow><label for=idyellow>Yellow</label></
input>
<script>
$("input").button ();
</script>

Improving the Display with buttonset ()
We can also improve the display by combining checkboxes into a block:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>
<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />
<p>Select the colors that you like:</p>
<div>
 <input type=checkbox name=red id=idred><label for=idred>Red</label></input>
 <input type=checkbox name=green id=idgreen><label for=idgreen>Green</label></input>
 <input type=checkbox name=blue id=idblue><label for=idblue>Blue</label></input>
 <input type=checkbox name=yellow id=idyellow><label for=idyellow>Yellow</label></
input>
</div>
<script>
$("input").button ();
$("div").buttonset ();
</script>

We observe here the same principle as the radio buttons. This is jQuery UI, which
manages the buttons differently due to type attributes of <input> elements. The display
is different, but the behavior is the same (Figure 5-9).

Figure 5-9. Checkboxes in a block

Checkboxes | 65

Examples of Using Buttons
Here are some examples that apply the principles discussed in this chapter.

Displaying Icons in Buttons
The options.icons option defines an icon for the button. For example, to define a
volume button, including the volume icon, as shown in Figure 5-10, write the following
basic code (shown in bold):

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Volume

<script>

$("#volume").button ({
 icons : { secondary : "ui-icon-volume-off" }
});

</script>

The icon is inserted after the text (secondary property). About the "ui-icon-volume-
off" value is that used in the CSS styles of jQuery UI for the volume icon (Figure 5-10).

Figure 5-10. Icon inserted after the text on a button

You can change the appearance of the button when clicked to visually convey that a
button has been turned on or off. For example, in Figure 5-11, we see an icon showing
that the volume is turned on:

66 | Chapter 5: Buttons

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Volume

<script>

$("#volume").button ({
 icons : { secondary : "ui-icon-volume-off" }
}).click (function (event)
{
 // current volume
 var volume = $(this).button ("option", "icons").secondary ==
 "ui-icon-volume-off" ? false : true;

 // we reverse the volume (On / Off)
 if (volume) $(this).button ("option", "icons",
 { secondary : "ui-icon-volume-off" });
 else $(this).button ("option", "icons", { secondary : "ui-icon-volume-on" });
});

</script>

Figure 5-11. Icon indicating that the volume is turned on

Let’s also change the button text to display the text Volume On or Volume Off in
addition to changing the icon:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Examples of Using Buttons | 67

Volume Off

<script>

$("#volume").button ({
 icons : { secondary : "ui-icon-volume-off" }
}).click (function (event)
{
 // current volume
 var volume = $(this).button ("option", "icons").secondary ==
 "ui-icon-volume-off" ? false : true;

 // we reverse the volume (On / Off)
 if (volume)
 {
 // text
 $(this).button ("option", "label", "Volume Off");
 // icon
 $(this).button ("option", "icons", { secondary : "ui-icon-volume-off" });
 }
 else
 {
 // text
 $(this).button ("option", "label", "Volume On");
 // icon
 $(this).button ("option", "icons", { secondary : "ui-icon-volume-on" });
 }
});

</script>

At launch, the volume is off (Figure 5-12), and it is enabled (on) when users click the
button (Figure 5-13).

Figure 5-12. Button text displayed when the program starts (volume is off)

68 | Chapter 5: Buttons

Figure 5-13. Button text after clicking (volume is turned on)

Creating a Calculator
We can use buttons to create a calculator like the one shown in Figure 5-14. It can
perform the four basic operations, and users can reset the display by clicking the button
associated with the display of the result (at the top of the window).

Figure 5-14. A calculator

Examples of Using Buttons | 69

Basic program

Use the following script to create a basic calculator:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 span.ui-button-text-only { /* any key */
 width : 60px;
 }
 div.ui-button-text-only { /* field result */
 width : 230px;
 text-align : right;
 }
 div.ui-button-text-only.ie { /* field of IE specific result */
 width : 230px;
 }
</style>

<div id=result>0</div>

<div class=touches>
 789/
</div>
<div class=touches>
 456*
</div>
<div class=touches>
 123-
</div>
<div class=touches>
 0.=+
</div>

<script>

var result = 0; // calculation result
var previous_touche; // previously pressed key
var last_operation; // last operation

$("span").button ().click (function (event)
{
 var touche = $(this).text (); // button currently pressed
 var display = $("#result").text (); // current display (string)
 if (touche == "+" || touche == "−" ||
 touche == "*" || touche == "/" ||
 touche == "=")
 {
 if (previous_touche != "+" && previous_touche != "−" &&
 previous_touche != "*" && previous_touche != "/")
 {

70 | Chapter 5: Buttons

 // we pressed +, −, *, / or = :
 // if a previous operation was in progress, it performs
 if (last_operation == "+")
 {
 result += parseFloat (display);
 $("#result span").text (format_display (result));
 }
 else if (last_operation == "−")
 {
 result −= parseFloat (display);
 $("#result span").text (format_display (result));
 }
 else if (last_operation == "*")
 {
 result *= parseFloat (display);
 $("#result span").text (format_display (result));
 }
 else if (last_operation == "/")
 {
 result /= parseFloat (display);
 $("#result span").text (format_display (result));
 }
 result = parseFloat ($("#result").text ());
 }
 if (touche == "=") last_operation = undefined;
 else last_operation = touche;
 }
 else
 {
 // we pressed a number or point
 // we combine this key with the current display,
 // unless the previous button was a sign operation
 if (display == "0" ||
 previous_touche == "+" ||
 previous_touche == "−" ||
 previous_touche == "*" ||
 previous_touche == "/" ||
 previous_touche == "=") display = "";
 if (display.length < 16) display += touche;
 $("#result span").text (display);
 }
 previous_touche = touche;
});

$("div.touches").buttonset ();

$("div#result").button ().click (function (event)
{
 // click on the result field: it sets the display to 0
 var display = $("#result").text ();
 if (display == "0") result = 0;
 $("#result span").text ("0");
});

// consider a special style for Internet Explorer

Examples of Using Buttons | 71

if ($.browser.msie) $("div#result").addClass ("ie");

// ensure that the displayed result is not more than 16 characters
function format_display (display)
{
 display += "";
 if (display.length < 16) return display;
 if (display.match (/\./)) return display.substring (0, 15);
 else return ("Out of Memory");
}

</script>

This program includes the management of keys (e.g., retaining information about
which button was clicked and whether to perform a calculation or not).

To account for differences in display between Internet Explorer and other browsers,
the display field of the result has an ie CSS class that is used automatically if jQuery
detects this browser.

This calculator currently runs in the browser window. With a few additions, we can
turn the calculator into an application that runs separately from the main browser
window. For this, we can create a jQuery plug-in.

Improving the program

Rather than creating a standalone calculator application, let’s create a calculator plug-
in. The calculator will be presented as a dialog box that opens on top of the page
elements when displayed (Figure 5-15). This will simplify the code of our program by
outsourcing all of the calculator code to a third-party file that can be reused for other
applications.

Here we have a main program with a Display calculator button, which calls the corre-
sponding plug-in when clicked. The calculator is displayed on top of the page elements
in a centered position. Users can close it by clicking the close button in the top right
corner of the dialog box.

The program below displays the button using the calculator:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>
<script src = jquery.calculator.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />
<link rel=stylesheet type=text/css href=jquery.calculator.css />

<button onclick=$.calculator()>Display calculator </button>

72 | Chapter 5: Buttons

Figure 5-15. Calculator opening as a dialog box

This simple code displays a button where the treatment of the onclick event calls the
calculator () plug-in. The functionality of plug-in matches a JavaScript jquery.calcu-
lator.js file and a jquery.calculator.css CSS file, both included in the HTML page:

span.ui-button-text-only { /* any key */
 width : 60px;
}
div.ui-button-text-only { /* field result */
 width : 230px;
 text-align : right;
}
div.ui-button-text-only.ie { /* field of IE specific result */
 width : 230px;
}

We just put the CSS styles in an external file, which will be included in the main HTML
file.

The plug-in file is jquery.calculator.js, containing the following lines:

 (function ($)
{
 $.calculator = function ()

Examples of Using Buttons | 73

 {
 var result = 0; // calculation result
 var previous_touche; // previously pressed key
 var last_operation; // last operation

 if ($("#calculator").length)
 {
 // calculator has been already created, simply display
 $("#calculator").dialog ("open");
 return;
 }

 // creation of the calculator, only on the first call of the function
 var html = "<div id=calculator> \
 <div id=result>0</div> \
 <div class=touches> \
 789/ \
 </div> \
 <div class=touches> \
 456* \
 </div> \
 <div class=touches> \
 123- \
 </div> \
 <div class=touches> \
 0.=+ \
 </div> \
 </div>"

 $(html).appendTo ("body");

 $("#calculator div.touches span").button ().click (function (event)
 {
 var touche = $(this).text (); // button currently pressed
 var display = $("#result").text (); // current view (string)
 if (touche == "+" || touche == "−" ||
 touche == "*" || touche == "/" ||
 touche == "=")
 {
 if (previous_touche != "+" && previous_touche != "−" &&
 previous_touche != "*" && previous_touche != "/")
 {
 // we pressed +, −, *, / or = :
 // if a previous operation was in progress, it performs
 if (last_operation == "+")
 {
 result += parseFloat (display);
 $("#result span").text (format_display (result));
 }
 else if (last_operation == "−")
 {
 result −= parseFloat (display);
 $("#result span").text (format_display (result));
 }
 else if (last_operation == "*")

74 | Chapter 5: Buttons

 {
 result *= parseFloat (display);
 $("#result span").text (format_display (result));
 }
 else if (last_operation == "/")
 {
 result /= parseFloat (display);
 $("#result span").text (format_display (result));
 }
 result = parseFloat ($("#result").text ());
 }
 if (touche == "=") last_operation = undefined;
 else last_operation = touche;
 }
 else
 {
 // we pressed a number or point
 // we combine this key with the current display,
 // unless the previous button was a sign operation
 if (display == "0" ||
 previous_touche == "+" ||
 previous_touche == "−" ||
 previous_touche == "*" ||
 previous_touche == "/" ||
 previous_touche == "=") display = "";
 if (display.length < 16) display += touche;
 $("#result span").text (display);
 }
 previous_touche = touche;
 });

 $("#calculator div.touches").buttonset ();

 $("#calculator div#result").button ().click (function (event)
 {
 // click on the result field: it sets the display to 0
 var display = $("#calculator #result").text ();
 if (display == "0") result = 0;
 $("#calculator #result span").text ("0");
 });

 // consider a special style for Internet Explorer
 if ($.browser.msie) $("#calculator div#result").addClass ("ie");

 // creation of the window with the calculator
 $("#calculator").dialog ({
 title : "Calculator",
 resizable : false,
 width : $.browser.msie ? 275 : 270
 });

 // ensure that the displayed result is not more than 16 characters
 function format_display (display)
 {
 display += "";

Examples of Using Buttons | 75

 if (display.length < 16) return display;
 if (display.match (/\./)) return display.substring (0, 15);
 else return ("Out of Memory");
 }
 }
}) (jQuery);

This program is almost identical to the previous, except that the HTML code of the
calculator is created in the JavaScript plug-in. In addition, we added the dialog box
containing the calculator.

76 | Chapter 5: Buttons

CHAPTER 6

Progress Bars

Progress bars allow you to view the progress of a task, such as transferring a file. jQuery
UI can handle them easily.

Basic Principles of Progress Bars
Suppose we want to write the HTML code to display the progress bar shown in Fig-
ure 6-1. This is a container that will gradually fill in to indicate the progress of a task
(for the moment, it is almost empty and will start to fill in from the left side).

Figure 6-1. Progress bar

As required by jQuery UI, we represent the progress bar with a <div> element (shown
in bold):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

77

Progress : <div id=progressbar></div>

<script>

$("div#progressbar").progressbar ();

</script>

This indicates that each <div> element corresponding to the progress bar is managed
by the jQuery UI progressbar () method.

Formatting Content
Figure 6-2 shows an example of the HTML generated by jQuery UI once modified by
the progressbar () instruction (this code was recovered using the Firebug extension in
Firefox).

Figure 6-2. HTML code generated by the progressbar () method

Again, it is possible to use CSS classes of elements to customize the display. For ex-
ample, if we change the ui-progressbar CSS class associated with <div> elements, we
get a new appearance for progress bars, such as that shown in Figure 6-3, with a height
of 10 pixels:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 div#progressbar.ui-progressbar {
 height : 10px;
 }
</style>

78 | Chapter 6: Progress Bars

Progress : <div id=progressbar></div>

<script>

$("div#progressbar").progressbar ();

</script>

Figure 6-3. Customized progress bar

The progressbar () Method
The progressbar () method can be used in two forms:

• $(selector, context).progressbar (options)

• $(selector, context).progressbar ("action", params)

The progressbar (options) Method
The progressbar (options) method declares that an HTML element should be man-
aged in the form of a progress bar. The options parameter is an object that specifies the
appearance and behavior of the progress bar. The available options (described in Ta-
ble 6-1) allow you to manage the progress bars or events taking place in the progress bar.

Table 6-1. Options for managing progress bars and events

Option Function

options.value Percentage of the progress bar to fill (from 0 to 100).

options.change The change (event) method is called whenever the fill percentage of the progress bar changes (by
changing the options.value option).

The progressbar () Method | 79

The progressbar (“action”, params) Method
The progressbar ("action", params) method can perform an action on the progress
bar, such as changing the percentage filled. The action is specified as a string in the first
argument (e.g., "value" to change the percentage filled). The options for this method
are described in Table 6-2.

Table 6-2. The progressbar (“action”, params) method actions

Action Function

progressbar ("value") Retrieve the current value of options.value, that is, the percentage of fill
in the progress bar.

progressbar ("value", value) Specify a new value to the percentage filled in the progress bar.

progressbar ("option", param) Retrieve the value of the param option specified. This option corresponds to
one of those used in progressbar (options).

progressbar ("option", param,
value)

Change the value of the param option. This option corresponds to one of
those used in progressbar (options).

progressbar ("destroy") Remove the management of progress bars. Progress bars revert to simple HTML
without CSS class or event management.

Handling Events in Progress Bars with bind ()
In addition to event methods used through the options offered by the progressbar
(options) method, jQuery UI allows us to manage these events using the bind ()
method.

To do this, jQuery UI includes the progressbarchange event, which has the same mean-
ing as the options.change option.

Examples of Using Progress Bars
This section includes examples of different ways to use progress bars.

Incrementing a Progress Bar
Here is a typical use of progress bars. We use a counter (timer) to steadily increment
the percentage of fill in the progress bar:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Progress : <div id=progressbar></div>

80 | Chapter 6: Progress Bars

<script>

$("div#progressbar").progressbar ();

var value = 0;
var timer = setInterval (function ()
{
 $("div#progressbar").progressbar ("value", value);
 value++;
 if (value > 100) clearInterval (timer);
}, 10);

</script>

The callback function specified in setInterval (delay, callback) is called at the end
of each specified time period (here, every 10 milliseconds). clearInterval (timer) pre-
vents this callback function from being called once the percentage reaches its maximum
value of 100 (Figure 6-4).

Figure 6-4. The progress bar is completely filled

Performing Processing at Different Stages of Completion
In addition to incrementing the progress bar, it is possible to perform processing at
particular stages of completion. Let’s use this functionality to update a numerical dis-
play of percent complete every time there is a change in the percent filled (shown in
Figure 6-5). This is done using options.change, which notifies of any change in the value
of the progress bar fill.

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Progress : <div id=progressbar></div>

Examples of Using Progress Bars | 81

<div id=percent style=text-align:center>0</div>

<script>

$("div#progressbar").progressbar ({
 change : function (event)
 {
 var value = $("div#progressbar").progressbar ("value");
 $("#percent").html (value + " %");
 }
});

var value = 0;
var timer = setInterval (function ()
{
 $("div#progressbar").progressbar ("value", value);
 value++;
 if (value > 100) clearInterval (timer);
}, 10);

</script>

Figure 6-5. The percentage complete is displayed numerically

82 | Chapter 6: Progress Bars

CHAPTER 7

Sliders

Sliders are widgets that allow users to change the numerical value of data by moving a
cursor on a graduated axis. For example, a graduated slider from 18 to 100 can allow
users to select age graphically rather than entering it manually in an input field.

Basic Principles of Sliders
To display a slider like the one shown in Figure 7-1, we write the following HTML
code, followed once again by a call to the jQuery UI method, which manages this type
of graphical component:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Slider</h3>
<div id=slider></div>

<script>

$("div#slider").slider ();

</script>

The slider (axis and cursor) is represented by a <div> element (with slider ID).

A <script> tag is added to indicate that each <div> corresponding to a slider is managed
by the slider () method.

The operation of a slider is simple: you can move the cursor on its axis either by dragging
it with the mouse (drag-and-drop mechanism) or by clicking on a point on the axis. In
both cases, the cursor moves to the indicated location.

83

Figure 7-1. A slider in the HTML page

Formatting Content
The use of the slider () method changes the appearance of HTML elements in the
page, adding new CSS classes that give them the appropriate style.

Figure 7-2 shows the HTML generated by jQuery UI, once the slider () instruction
modifies the HTML (the code was recovered using the Firebug extension in Firefox).

Figure 7-2. HTML generated by the slider () method

CSS classes of elements customize the display. For example, if we change the ui-
slider class associated with <div> elements using a <style> tag, as in the following
HTML code, we can change the slider’s width and background color:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

84 | Chapter 7: Sliders

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 div#slider.ui-slider {
 width : 100px;
 background : black;
 }
</style>

<h3>Slider</h3>
<div id=slider></div>

<script>

$("div#slider").slider ();

</script>

This HTML code is identical, except that we added the <style> tag after the inclusion
of jQuery UI styles. The addition of our own styles must be done after those of jQuery
UI, or our changes will be ignored. Figure 7-3 shows the new style.

Figure 7-3. Customized slider

The slider now has a width of 100 pixels and a black background.

The slider () Method
The slider () method can be used in two forms:

• $(selector, context).slider (options)

• $(selector, context).slider ("action", params)

The slider () Method | 85

The slider (options) Method
The slider (options) method declares that an HTML element should be managed as
a slider. The options parameter is an object that specifies the appearance and behavior
of the slider.

Some options allow you to position multiple cursors on the axis and specify whether
the cursors can pass each other on the axis.

Managing the appearance and behavior of sliders

Table 7-1 describes the options for managing the appearance and behavior of sliders.

Table 7-1. Options for managing slider appearance and behavior

Option Function

options.disabled If true, disables the slider. No cursor movement or click on the axis will be considered until
the slider is returned to the enabled state (by slider ("enable")).

options.animate If true, creates an animated effect when users click directly on the axis. By default, it is set
to false, in which case clicking on the axis places the cursor directly where the user clicked,
with no animated effect.

options.orientation Indicates the horizontal or vertical orientation of the slider. The default value is "horizon
tal". To position the slider vertically, use "vertical".

Managing the values of cursors

Table 7-2 describes the options available for managing the values that appear on the
slider.

Table 7-2. Options for managing slider values

Option Function

options.min Indicates the value of the cursor when positioned at the beginning of the axis (first graduation). The
default is 0.

options.max Indicates the value of the cursor when positioned at the end of the axis (last graduation). The default
is 100.

options.value Indicates the value of the cursor in the [options.min, options.max] interval.

options.values When using multiple cursors, indicates the value of these in an array. The number of values is the number
of cursors used.

options.range When set to true, indicates that two cursors should be used (options.values should have a length
of 2, with each value indicating the initial value for a cursor).

If "min" or "max", a single cursor must be used (if not, this option does not work). In all cases, the
space between the two cursors on the axis is styled (if true), or the space between the cursor and the
beginning of the axis (if "min") or the space between the cursor and the end of the axis (if "max").

options.step Indicates the increment of displacement of a cursor on the axis. The default is 1.

86 | Chapter 7: Sliders

Managing events on the slider

The events listed in Table 7-3 are generated by either clicks on the cursor, clicks on the
axis, or calls to the slider ("value", value) or slider ("values", index, value)
methods.

Table 7-3. Options for managing events on a slider

Option Function

options.start The start (event) method is called when the movement of a cursor starts.

options.stop The stop (event) method is called when the movement of a cursor finishes.

options.change The change (event) method is called when the movement of a cursor finishes (same as
options.stop).

options.slide The slide (event) method is called when the cursor is moved using drag-and-drop. This method
is not called when users click directly on the axis.

The slider (“action”, params) Method
The slider ("action", params) method (detailed in Table 7-4) allows an action on the
slider, such as moving the cursor to a new location. The action is specified as a string
in the first argument (e.g., "value" to indicate a new value of the cursor).

Table 7-4. The slider (“action”, params) method actions

Action Function

slider ("disable") Disable the functioning of the slider. Clicks will not be taken into account.

slider ("enable") Reactivate the functioning of the slider. The clicks are again considered.

slider ("value") Retrieve the current value of options.value (the indicator). Use only if the in-
dicator is unique (if not, use slider ("values")).

slider ("value", value) Change the value of the indicator. Use only if the indicator is unique (otherwise use
slider ("values", values)).

slider ("values") Retrieve the current value of options.values (the value of the indicators in an
array).

slider ("values", values) Assign new values to the indicators in an array.

slider ("option", param) Retrieve the value of the specified param option. This option corresponds to one of
those used with slider (options).

slider ("option", param,
value)

Change the value of the param option. This option corresponds to one of those used
with slider (options).

slider ("destroy") Remove the management of the sliders. Sliders revert to simple HTML without CSS
class or event management.

The slider () Method | 87

Event Management on the Sliders with bind ()
In addition to event methods in the options of the slider (options) method, jQuery
UI allows us to manage these events using the bind () method (described in Table 7-5).

Table 7-5. Types of events created by jQuery UI

Event Function

slidestart Same meaning as options.start.

slidestop Same meaning as options.stop.

slidechange Same meaning as options.change.

slide Same meaning as options.slide.

Examples of Using Sliders
Let’s put our knowledge of sliders to use with some basic examples. In this section,
we’ll write script that creates and manages one or multiple sliders.

Displaying the Value of One Indicator
Let’s start with a single indicator that displays the value when start, stop, slide, and
change events occur.

We first get the value of the indicator at each event, then we display it in the field for
the event. This allows us to see when each event is triggered by jQuery UI:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3> Slider </h3>
<div id=slider></div>

Start :

Stop :

Change :

Slide :

<script>

$("div#slider").slider ({
 animate : true,
 start : function (event)
 {
 var value = $("div#slider").slider ("value");
 $("#valuestart").html (value);
 },

88 | Chapter 7: Sliders

 stop : function (event)
 {
 var value = $("div#slider").slider ("value");
 $("#valuestop").html (value);
 },
 change : function (event)
 {
 var value = $("div#slider").slider ("value");
 $("#valuechange").html (value);
 },
 slide : function (event)
 {
 var value = $("div#slider").slider ("value");
 $("#valueslide").html (value);
 }
});

</script>

The result of this script is shown in Figure 7-4.

Figure 7-4. Displaying the value of an indicator on the slider

This example takes into account the display of a single slider, but jQuery UI can use
several simultaneously, as discussed in the following section.

Displaying the Values of Two Indicators
Let’s use two cursors that display values for each event. The program is almost identical
to the previous, except that options.range is set to true and the values of the indicators
are retrieved by the slider ("values") method.

Examples of Using Sliders | 89

Positioning options.range to true allows us to modify the appearance of the space
between the two indicators on the axis (the default is a gray background):

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3> Slider </h3>
<div id=slider></div>

Start :

Stop :

Change :

Slide :

<script>

$("div#slider").slider ({
 animate : true,
 range : true,
 values : [0, 0], // initial values of cursors
 start : function (event)
 {
 var values = $("div#slider").slider ("values");
 $("#valuestart").html (values[0] + ", " + values[1]);
 },
 stop : function (event)
 {
 var values = $("div#slider").slider ("values");
 $("#valuestop").html (values[0] + ", " + values[1]);
 },
 change : function (event)
 {
 var values = $("div#slider").slider ("values");
 $("#valuechange").html (values[0] + ", " + values[1]);
 },
 slide : function (event)
 {
 var values = $("div#slider").slider ("values");
 $("#valueslide").html (values[0] + ", " + values[1]);
 }
});

</script>

The result of this script is shown in Figure 7-5.

90 | Chapter 7: Sliders

Figure 7-5. Displaying the values of two indicators on the slider

Adjusting the Opacity of an Image Using a Slider
Here is a concrete example of using a slider to change the opacity of an image (Fig-
ure 7-6). The opacity can vary from 0 to 1. On startup, it is 1, so the cursor should be
at its maximum level.

The value of the cursor is normally between 0 and 100. Here, we divide this value by
100 to obtain an opacity value between 0 and 1:

<!DOCTYPE html>
<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=slider></div>

<script>

$("div#slider").slider ({
 animate : true,
 slide : function (event)
 {
 var value = $("div#slider").slider ("value");
 var opacity = value / 100;
 $("img").css ({ opacity : opacity });
 }

Examples of Using Sliders | 91

}).slider ("value", 100);

</script>

Figure 7-6. The opacity of the image is set at the indicated level

92 | Chapter 7: Sliders

CHAPTER 8

Datepickers

Datepickers allow users to enter dates easily and visually, taking into account the var-
ious linguistic constraints in different countries (names of days and months, date for-
mat).

Basic Principles of Datepickers
Suppose we want to write the HTML code to display the calendar shown in Fig-
ure 8-1. This calendar appears when users click in the input field for entering a date.
Months can scroll with the arrows in the top right and left of the calendar, and if you
select one day it fits in the input field.

Here’s how to write the HTML code according to the conventions of jQuery UI, in-
cluding the datepicker () method called in the <script> tag.

We use an <input> element with the date identifier, which is the entry field of the date.
In this case, the calendar will automatically be positioned below the input field when
a user clicks it. The calendar will be hidden when users click outside or choose a date
(the date will then be displayed in the input field):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />

<script>

$("input#date").datepicker ();

</script>

93

If we use a <div> or instead of an <input> element, the calendar is displayed
statically without users having to click in the input field to access it.

Formatting Content
The datepicker () method changes the appearance of HTML elements on a page by
adding new CSS classes.

Figure 8-2 shows an example of HTML generated by jQuery UI once the datepicker
() instruction modifies the HTML (the code was recovered using the Firebug extension
in Firefox).

The input field is slightly modified by adding the hasDatepicker CSS class, but a
<div> element (having the ui-datepicker-div CSS class) corresponding to the calendar
is also inserted into the HTML. This <div> element will be displayed or hidden de-
pending on whether the user wants to see the calendar or not.

Figure 8-1. A calendar in the HTML page

94 | Chapter 8: Datepickers

The structure of the HTML is simple: in addition to the corresponding global <div>
calendar, it has a first <div> containing the first line of the calendar (the title for the
month and year, with two buttons for arrows for the month), then a table with the
names of the day (<thead> tag) and the corresponding days (<tbody> tag).

It is possible to use CSS classes for HTML elements to customize the display. For
example, if we change the ui-datepicker-header CSS class associated with <div> ele-
ments and the ui-datepicker-calendar class associated with <table> elements, we get
a new appearance for the calendar (see Figure 8-3). These classes are changed in the
HTML by adding a <style> tag:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 div.ui-datepicker-header {
 font-size : 12px;
 font-family : georgia;
 }

 table.ui-datepicker-calendar {

Figure 8-2. HTML code generated by the datepicker () method

Formatting Content | 95

 font-size : 10px;
 font-family : georgia;
 font-style : italic;
 }
</style>

<h3>Click to select a date :</h3>
<input id=date />

<script>

$("input#date").datepicker ();

</script>

Figure 8-3. Customized calendar

The datepicker () Method
The datepicker () method can be used in two forms:

• $(selector, context).datepicker (options)

• $(selector, context).datepicker ("action", params)

96 | Chapter 8: Datepickers

The datepicker (options) Method
The datepicker (options) method declares that an <input> element (or <div> or
, depending on how you choose to display the calendar) should be managed as
a datepicker. The options parameter is an object that specifies the appearance and
behavior of the calendar. It can also specify the format for displaying dates in different
countries.

Managing the appearance and visual effects associated with the calendar

The options listed in Table 8-1 allow us to set the appearance of the calendar.

Table 8-1. Options for managing the appearance of the calendar

Option Function

options.firstDay Integer that indicates which day begins a week on the calendar. The value 0 corresponds to
Sunday (default).

options.numberOf
Months

Number of months displayed at the same time in the calendar. For example, a value of 3
indicates the calendar will display three consecutive months.

If it is indicated as an array, it is the number of rows and columns of months displayed. For
example, [3, 2] for displaying six months, three on each line. The default is 1 (a single month).

options.showOther
Months

If the first of the month does not fall on the day indicated in options.firstDay, unused
cells at the beginning and end of the month can display days from the previous or following
months.

The default value is false (days from the preceding and following months are not shown
in the unused cells of the current month).

options.selectOther
Months

When set to true, indicates that the cells of the previous or next month indicated in the
calendar of the current month can be selected. This option is used with options.showO
therMonths set to true.

options.changeMonth When set to true, displays a list of months for quick selection. This list appears at the top
of the calendar, instead of months and the year shown. The default value is false.

options.changeYear When set to true, displays a list of years for quick selection. This list appears at the top of
the calendar, instead of months and the year shown. The default value is false.

jQuery UI can also apply appearance and disappearance effects for the calendar win-
dow, with the options.showAnim option. Table 8-2 describes the options, and Ta-
ble 8-3 lists specific effects.

Table 8-2. Options for managing effects

Option Function

options.showAnim Name of the visual effect that will be produced during an appearance or disappearance of the calendar.
By default, it is a "fadeIn" effect. Specify false to produce no effect.

options.duration Duration of the appearance or disappearance effect, in milliseconds.

The datepicker () Method | 97

Table 8-3. Effects provided by jQuery and jQuery UI

Effect Function

"fadeIn" Make the element appear or disappear by changing its opacity.

"blind" Make the element appear or disappear from the top.

"bounce" Make the element appear or disappear by bouncing vertically.

"clip" Make the element appear or disappear vertically from its center.

"drop" Make the element appear or disappear on the left, by changing its opacity.

"fold" Make the element appear or disappear from its upper left corner.

"highlight" Make the element appear or disappear by changing its opacity and background color.

"puff" Make the element appear or disappear by resizing it from its center. It appears by shrinking and disappears
by growing.

"pulsate" Make the element appear or disappear by blinking.

"scale" Make the element appear or disappear by resizing it from its center. It disappears by shrinking and appears
by growing.

"slide" Make the element appear or disappear from the right side.

Internationalization options

By default, the calendar is displayed in English. jQuery UI can display it in most major
languages (German, French, Spanish, etc.). Simply include the JavaScript file for the
language. These files are located in the jqueryui/development-bundle/ui/i18n directory.

Once the file of the language is inserted in the HTML, some options are included by
default (name of month and day, date format, etc.), but you can change them using the
options listed in Table 8-4. The date format is a string specified in options.dateFor
mat, and you can configure it with the codes listed in Table 8-5.

Table 8-4. Internationalization options

Option Function

options.dateFormat Specifies the date format that will be retrieved from the calendar. For a date in English,
the default is mm/dd/yy (according to the conventions listed in Table 8-5).

options.dayNames Indicates an array of day names in long format (Sunday, Monday, Tuesday, etc.). The
array must start on Sunday.

options.dayNamesShort Indicates an array of day names in short format (Sun, Mon, Tue, etc.). The array must
start on Sun (Sunday).

options.dayNamesMin Indicates an array of day names in minimum size (Su, Mo, Tu, etc.). This is the name
specified in the calendar for each column. The array must start on Su (Sunday).

options.monthNames Indicates an array of month names in long format (January, February, etc.). The array
should begin in January.

options.monthNamesShort Indicates an array of month names in short format (Jan, Feb, etc.). The array must begin
in Jan (January).

98 | Chapter 8: Datepickers

Table 8-5. Date formatting codes

Code Function

d Day of the month, from 1 to 31.

dd Day of the month, from 01 to 31.

o Day of the year, from 1 to 366.

oo Day of the year, from 001 to 366.

D Day’s name, in short form (Mon, Tue, etc.).

DD Day’s name, in long form (Monday, Tuesday, etc.).

m Month from 1 to 12.

mm Month from 01 to 12.

M Month’s name, in short form (Jan, Feb, etc.).

MM The name of the month in long form (January, February, etc.).

y Year as two digits (12 for 2012).

yy Year as four digits (2012).

@ Number of milliseconds since the 01/01/1970.

You can combine these codes to form complete dates according to your preferred order
(e.g., the day before or after the month). You can insert additional characters, such as
slash (/) or the hyphen (-), to separate fields.

Managing date selection

By default, all calendar dates can be selected, including the month following or pre-
ceding the current month. It is possible to limit this choice by specifying a minimum
or maximum date. Table 8-6 lists options for date selection.

Table 8-6. Options for managing date selection

Option Function

options.minDate Minimum selectable date in the calendar.

options.maxDate Maximum selectable date in the calendar.

options.defaultDate Preset default date when no date has been previously selected. This date will be displayed in
the first display of the calendar. By default, this is the current date.

The values of these options are dates that can be expressed either as a Date object
(created by new Date ()), the number of days before (e.g., −2) or after (e.g., 2) the current
date, or by a string taking one of the forms presented in Table 8-7.

The datepicker () Method | 99

Table 8-7. Forms of the string representing the date to select

Format Function Example

X X days after the current date (where X ranges from 1 to n). 1, 2, 3

-X X days before the current date (where X ranges from 1 to n) −1, −2, −3

Xm X months after the current date (where X ranges from 1 to n) 1m, 2m, 3m

-Xm X months before the current date (where X ranges from 1 to n) −1m, −2m, −3m

Xw X weeks after the current date (where X ranges from 1 to n) 1w, 2w, 3w

-Xw X weeks before the current date (where X ranges from 1 to n) −1w, −2w, −3w

Any combination of days, weeks, and months can produce a day in relation to the
current date. For example, 1m+3,-1m-1w.

Managing events on the calendar

Table 8-8 lists options you can use to manage the events on the calendar

Table 8-8. Options for managing events on the calendar

Option Function

options.beforeShow The beforeShow () method is called before the calendar is displayed.

options.beforeShowDay The beforeShowDay (date) method is called for each day (corresponding to the date
parameter, which is an object of Date class) displayed in the calendar. The method must
return an array to indicate the following for each date:

• Whether it is selectable (true in [0])

• CSS classes used in this calendar’s cell (in [1], “” by default)

• A string displayed as a tooltip on the cell (in [2], “” by default).

options.onChangeMonth
Year

The onChangeMonthYear (year, month) method is called when the month or year
displayed in the calendar changes. This occurs when the user clicks the buttons at the top of
the calendar or when options.changeMonth or options.changeYear is set to
true while the user selects another month or another year from the list.

options.onClose The onClose (dateText) method is called when the calendar is closed (by selecting a
date, clicking outside the calendar, or pressing Esc). The dateText parameter is the date
as text (in the format corresponding to options.dateFormat) to be written into the
input field.

options.onSelect The onSelect (dateText) method is called when a date was selected in the calendar.
The dateText parameter is the date as text (in the format corresponding to
options.dateFormat) to be written into the input field.

jQuery UI allows the use of only the event methods defined by the previous options
(options.beforeShow, etc.). The use of the bind () method to manage calendars is not
allowed for now.

100 | Chapter 8: Datepickers

The datepicker (“action”, params) Method
The datepicker ("action", params) method can perform an action on the calendar,
such as selecting a new date. The action is specified as a string in the first argument
(e.g., "show" to display the calendar). The available actions are listed in Table 8-9.

Table 8-9. The datepicker (“action”, params) method actions

Action Function

datepicker ("show") Show calendar.

datepicker ("hide") Hide calendar.

datepicker ("get
Date")

Return a Date object corresponding to the selected date.

If the date format is not specified (options.dateFormat), the date is presented in the
form mm/dd/yy, even if the JavaScript file for the country is included. Make sure to always
specify options.dateFormat if you use datepicker ("getDate") with a format
other than English.

datepicker ("set
Date", date)

Initialize a preset date in the calendar. The date parameter is expressed as noted above
(Date object, number of days before or after the current date, or string).

If the date format is not specified (options.dateFormat), the date is presented in the
form mm/dd/yy, even if the JavaScript file for the country is included. Make sure to always
specify options.dateFormat if you use datepicker ("setDate") with a format
other than English.

datepicker ("option",
param)

Retrieve the value of the param option specified. This option corresponds to one of those
used with datepicker (options).

datepicker ("option",
param, value)

Change the value of the param option. This option corresponds to one of those used with
datepicker (options).

datepicker
("destroy")

Remove the management of calendars. Calendars revert to simple HTML without CSS class
or event management.

Examples of Using Datepickers
This section includes some practical examples of using datepickers.

Displaying a Calendar in Another Language
To display a calendar in another language (as shown in Figure 8-4), simply include the
JavaScript file associated with that language. This file is located in the jqueryui/devel-
opment-bundle/ui/i18n directory, such as the jqueryui/development-bundle/ui/i18n/
jquery.ui.datepicker-fr.js file for the French language:

Examples of Using Datepickers | 101

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>
<script src=jqueryui/development-bundle/ui/i18n/jquery.ui.datepicker-fr.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />

<script>

$("input#date").datepicker ();

</script>

Figure 8-4. Calendar in French

102 | Chapter 8: Datepickers

Displaying Multiple Months in the Calendar
Several months can be displayed in the calendar (Figure 8-5). For this, we use
options.numberOfMonths, which indicates the desired number of months or an array
[x, y] that contains the number of rows (x) and columns (y) that represent these months.

Use the following (in bold) to display a calendar of four months (two rows of two,
shown in Figure 8-5):

<script src=jquery.js></script>
<script src=jqueryui/development-bundle/ui/jquery-ui-1.8.4.custom.js></script>
<script src=jqueryui/development-bundle/ui/i18n/jquery.ui.datepicker-fr.js>
</script>

<link rel=stylesheet type=text/css
 href="jqueryui/development-bundle/themes/smoothness/jquery.ui.all.css" />

<body>
<input id=date />
</body>

<script>

$("input#date").datepicker ({
 numberOfMonths : [2, 2]
});

</script>

In this example, we see that the cells preceding the first day of the month and those
after the last day of the month are empty. We can ensure that the days of the previous
month and those of the next month are inserted in these cells to make the calendar
more harmonious, as shown in Figure 8-6. This is done using the options.showOther
Months option set to true:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />

<script>

$("input#date").datepicker ({
 numberOfMonths : [2, 2],
 showOtherMonths : true
});

</script>

Examples of Using Datepickers | 103

Figure 8-5. Displaying several months

104 | Chapter 8: Datepickers

Figure 8-6. Joining days in calendars

Examples of Using Datepickers | 105

Displaying a Static Calendar
It is possible to display a calendar that is directly in the HTML page instead of being
displayed only when users click in the input field associated with it (Figure 8-7). For
this, we replace the input field with a or <div> element:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div> Before the calendar </div>
<div id=date></div>
<div> After the calendar </div>

<script>

$("div#date").datepicker ();

</script>

Figure 8-7. Static calendar

106 | Chapter 8: Datepickers

Indicating Minimum and Maximum Dates
The options.minDate and options.maxDate options can indicate a minimum and max-
imum date (Figure 8-8). For example, to prevent the selection of a date earlier than
three days before the current date or later than a week after the current date, we write
the following:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />

<script>

$("input#date").datepicker ({
 minDate : −3, // at least three days before the current date
 maxDate : "1w" // maximum one week after the current date
});

</script>

Figure 8-8. Minimum and maximum dates

Examples of Using Datepickers | 107

Suppose the current date is October 6, 2011. Around it, the selectable days are shown
on a gray background with a darker color, while the days that cannot be selected are
displayed in a lighter gray and do not respond to mouse events.

Preventing the Selection of Specific Dates
The options.minDate and options.maxDate options can indicate a range of selectable
dates, but do not allow us to define multiple non-concurrent dates. For example, for a
firm open Monday to Friday, it is not possible with these options to prevent selection
of any Saturdays and Sundays (Figure 8-9).

The options.beforeShowDay option is a method called for each day displayed on the
calendar. For each day, it is shown in the returned array as selected or not.

The beforeShowDay (date) method must return an array whose first element (index 0)
contains true (the date is selected) or false (not selected):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />

<script>

$("input#date").datepicker ({
 beforeShowDay : function (date)
 {
 var dayOfWeek = date.getDay (); // 0 : Sunday, 1 : Monday, ...
 if (dayOfWeek == 0 || dayOfWeek == 6) return [false];
 else return [true];
 }
});

</script>

Preselecting Any Date
The preset default date is the current date. To preselect a different date, use the
options.defaultDate option or datepicker ("setDate", date) method.

Using options.defaultDate

While the current date corresponds to October 6, we want to preselect the date corre-
sponding to October 28 (Figure 8-10).

108 | Chapter 8: Datepickers

Figure 8-9. Saturdays and Sundays are no longer available for selection

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />

<script>

$("input#date").datepicker ({
 defaultDate : "3w+1"
});

</script>

Examples of Using Datepickers | 109

Figure 8-10. Preselection of a date other than the current date

Using datepicker (“setDate”, date)

The preselection of a date can also be done using the datepicker ("setDate", date)
method. As before, preselect a date three weeks and a day later than the current date:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />

<script>

$("input#date").datepicker ().datepicker ("setDate", "3w+1");

</script>

110 | Chapter 8: Datepickers

With this second method, the difference from the previous is that the date input field
is initialized with the specified date (Figure 8-11).

Figure 8-11. The preselected date appears in the input field

Special case of dates in foreign formats

If you use a calendar in a foreign language, it must also indicate the date format in the
country selected by the options.dateFormat option. The default format is "mm/dd/yy"
corresponding to the calendar in English. To preset a date in a calendar in French, for
example, we write the following:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>
<script src=jqueryui/development-bundle/ui/i18n/jquery.ui.datepicker-fr.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />

Examples of Using Datepickers | 111

<script>

$("input#date").datepicker ({
 dateFormat : "dd/mm/yy" // required to use setDate
}).datepicker ("setDate", "3w+1");

</script>

The result is shown in Figure 8-12.

Figure 8-12. A preselected date in a French calendar

Performing an Ajax Request When Selecting a Date
It is common to perform an Ajax request for date selection. In this example, we choose
a date from the calendar and transmit it to the server, which returns the date back to
us. This validates the full path of information transmission:

112 | Chapter 8: Datepickers

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Click to select a date :</h3>
<input id=date />
<div id=datereturn></div>

<script>

$("input#date").datepicker ({
 onSelect : function (dateText)
 {
 var data = { date : dateText };
 $.ajax ({
 url : "action.php",
 data : data,
 complete : function (xhr, result)
 {
 if (result != "success") return;
 var response = xhr.responseText;
 $("#datereturn").html (response);
 }
 });
 }
});

</script>

The text returned by the server will be inserted into the <div> element with the
datereturn identifier. The code on the server is shown in the action.php file below:

<?
 $date = $_REQUEST["date"];

 $txt = "Selected date: <i> $date </i>";
 $txt = utf8_encode($txt);
 echo ($txt);
?>

Notice that the URL http://localhost/test is an HTTP URL. If it is not, the Ajax call will
not work.

After being selected, the date appears below the input field (Figure 8-13).

Examples of Using Datepickers | 113

http://localhost/test

Figure 8-13. The selected date is transmitted to the server

114 | Chapter 8: Datepickers

CHAPTER 9

Autocompletion

Autocompletion is a mechanism frequently used in modern websites to provide the
user with a list of suggestions for the beginning of the word he has typed in a text box.
He can then select an item from the list, which will be displayed in the input field. This
feature prevents the user from having to enter an entire word or a set of words.

Basic Principles of Autocompletion
Suppose we want to write the HTML code to display the list of suggestions shown in
Figure 9-1, which appears when users type the letter “p.” This displays a list in which
each element contains at least one letter “p.”

The input field is represented by an <input> whose ID is book:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

// array of items to be proposed in the list of suggestions
var books = ["Web development with J2EE", "Practical CSS & JavaScript",
 "Practical Ruby on Rails", "Introduction to HTML & CSS",
 "jQuery UI"];

$("input#book").autocomplete ({
 source : books
});

</script>

115

In the <script> tag of the HTML page, we need to indicate both the list of suggestions
(var books) and that the input field must be observed in order to display the list of
suggestions. To do this, simply indicate that the <input> field is managed by the jQuery
UI autocomplete () method. The {source: books} specifies options needed to display
the list of suggestions.

Formatting Content
The autocomplete () method creates a list of suggestions below the input field and adds
new CSS classes to the elements concerned to give them the appropriate style.

In Figure 9-2, for example, the HTML generated by jQuery UI is modified by the
autocomplete () instruction (the code was recovered using the Firebug extension in
Firefox).

The <input> element is slightly modified, while the HTML now contains a corre-
sponding to the list that appears below the input field. Each element of the list is a
 with a ui-menu-item CSS class.

We can customize the display by editing the CSS classes with the addition of a
<style> tag. For example, if we modify the ui-menu-item class associated with
elements, we can change the font used for the list of suggestions, as shown in Figure 9-3:

Figure 9-1. List of suggestions

116 | Chapter 9: Autocompletion

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 li.ui-menu-item {
 font-size : 12px;
 font-family : georgia;
 }
</style>

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

// array of items to be proposed in the list of suggestions
var books = ["Web development with J2EE", "Practical CSS & JavaScript",
 "Practical Ruby on Rails", "Introduction to HTML & CSS",
 "jQuery UI"];

$("input#book").autocomplete ({
 source : books
});

</script>

Figure 9-2. HTML code generated by the autocomplete () method

Formatting Content | 117

Figure 9-3. Customized list of suggestions

The autocomplete () Method
The autocomplete () method can be used in two forms:

• $(selector, context).autocomplete (options)

• $(selector, context).autocomplete ("action", params)

The autocomplete (options) Method
The autocomplete (options) method declares that an <input> HTML element must be
managed as an input field that will be displayed above a list of suggestions. The
options parameter specifies the behavior of the list of suggestions when the user is
typing in the input field.

The operation of autocompletion is as follows: from the characters introduced in the
input field, a match is made in the specified source (in options.source). Matching can
be done with any character from the source, not just the beginning of it. Thus, if one
looks for the letter “a,” it does not have to be located at the beginning of words, but
can be located in the middle.

Managing autocompletion

Table 9-1 details the options that are available for managing autocompletion.

118 | Chapter 9: Autocompletion

Table 9-1. Options for managing autocompletion

Option Function

options.disabled When set to true, disables the autocompletion mechanism. Users can enter characters into
the text field, but no list appears. Use autocomplete ("enable") to enable the au-
tocompletion mechanism.

options.source Indicates the data source to use for the list of suggestions. Data can be local (already known
in the program) or remote (retrieved from the server).

options.minLength Minimum number of characters to enter in the field to start the display of the list of suggestions.
By default, this number is 1.

options.delay Timeout (in milliseconds) before the entered characters are taken into account. By default,
this delay is 300 ms.

Managing events in the list of suggestions

The events described in Table 9-2 are generated either by typing in the input field, by
selecting an item in the list, or by calling one of the methods for the autocompletion
management. In each of these methods, the containing the list is accessible via
autocomplete ("widget"). This is useful when you want to manipulate the list in its
entirety, then eventually to access to each list item.

Table 9-2. Options for managing autocompletion events

Option Function

options.open The open (event) method is called when the list of suggestions will be displayed.

options.close The close (event) method is called when the list of suggestions will be closed.

options.search The search (event) method is called when a search should be done to display the corresponding
list of suggestions. If the method returns false, the list is not displayed.

options.focus The focus (event, ui) method is called when a list item has the focus, either from a mouseover
or by selection with the arrow keys.

The ui.item value is a {label, value} object corresponding to the label text displayed in the list
of suggestions, while value is the value that will be inserted into the input field if the list item is
selected (label and value often have the same value, but this distinction allows more flexibility).

options.select The select (event, ui) method is called when a list item is selected.

The ui.item value is a {label, value} object corresponding to the label text displayed in the list
of suggestions, while value is the value that will be inserted into the input field if the list item is
selected (label and value often have the same value, but this distinction allows more flexibility).

If the method returns false, the contents of the input field are not changed.

options.change The change (event) method is called when the input field loses focus (when the user clicks outside
of it), while the field content has changed. This can occur if the user selects a new item in the list then
enters new text in the field and leaves it.

The autocomplete () Method | 119

The autocomplete (“action”, params) Method
The autocomplete ("action", params) method can perform an action on the list of
suggestions, such as show or hide. The action is specified as a string in the first argument
(e.g., "close" to hide the list). These actions are listed in Table 9-3.

Table 9-3. The autocomplete (“action”, params) method actions

Action Function

autocomplete ("disable") Disable the autocompletion mechanism. The list of suggestions no longer appears.

autocomplete ("enable") Reactivate the autocompletion mechanism. The list of suggestions will again be dis-
played.

autocomplete ("search",
value)

Search for correspondence between the string value and the data source (specified in
options.source). The minimum number of characters (indicated in
options.minLength) must be reached in value, otherwise the search is not
performed.

Once a list of suggestions is found, it appears under the corresponding item.

autocomplete ("close") Hide the list of suggestions.

autocomplete ("widget") Retrieve the DOM element corresponding to the list of suggestions. This is an
object of jQuery class that allows easy access to the list without using jQuery selectors.

autocomplete ("option",
param)

Retrieve the value of the specified param option. This option corresponds to one of
those used with autocomplete (options).

autocomplete ("option",
param, value)

Change the value of the param option. This option corresponds to one of those used
with autocomplete (options).

autocomplete ("destroy") Remove autocompletion management. Lists of suggestions are deleted.

Event Management on the List of Suggestions with bind ()
In addition to the event methods provided in the options of the autocomplete
(options) method, jQuery UI allows us to manage these events using the bind ()
method (detailed in Table 9-4).

Table 9-4. Events created by jQuery UI

Event Function

autocompleteopen Same meaning as options.open.

autocompleteclose Same meaning as options.close.

autocompletesearch Same meaning as options.search.

autocompletefocus Same meaning as options.focus.

autocompleteselect Same meaning as options.select.

autocompletechange Same meaning as options.change.

120 | Chapter 9: Autocompletion

Examples of Using the Autocompletion Mechanism
Now that you understand how to use and manage suggestion lists, let’s create some
scripts that implement the autocompletion mechanism.

Specifying the Width of the List of Suggestions
jQuery UI itself calculates the width of the list of suggestions based on its content.
However, it may be useful to specify the width of the list manually. In this example,
we set the list of suggestions to 400 pixels wide (see Figure 9-4):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

// array of items to be proposed in the list of suggestions
var books = ["Web development with J2EE", "Practical CSS & JavaScript",
 "Practical Ruby on Rails", "Introduction to HTML & CSS",
 "jQuery UI"];

$("input#book").autocomplete ({
 source : books,
 open : function (event)
 {
 var $ul = $(this).autocomplete ("widget");
 $ul.css ("width", "400px");
 }
});

</script>

The list corresponds to the (created automatically by jQuery UI when using the
autocomplete (options) method). It was explained earlier that it was easier to retrieve
it using the autocomplete ("widget") instruction.

Once this element is recovered (through its jQuery class object), simply resize it
using the css () instruction. This can be done only when the list will be displayed,
hence the use of the options.open option.

Examples of Using the Autocompletion Mechanism | 121

Figure 9-4. Manual width setting for a list of suggestions

Displaying a List of Suggestions at the Opening of the HTML Page
The list of suggestions will appear as soon as the required number of characters is
entered in the input field (this number is indicated in options.minLength). This means
having to type at least one character (a value of 0 in options.minLength is not enough
to cause the immediate display of the list of suggestions).

Let’s create an example that shows a list of suggestions as soon as the script runs (users
are not required to enter any characters in the input field). To do this, use the
autocomplete ("search", "") method at the start of the script. The required number
of characters here is 0 (specified by the empty string, ""). The list will be displayed with
all possible values and won’t permit entries in the text field (Figure 9-5):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

// array of items to be proposed in the list of suggestions
var books = ["Web development with J2EE", "Practical CSS & JavaScript",
 "Practical Ruby on Rails", "Introduction to HTML & CSS",
 "jQuery UI"];

122 | Chapter 9: Autocompletion

$("input#book").autocomplete ({
 source : books,
 minLength : 0
}).autocomplete ("search", "");

</script>

Figure 9-5. List of suggestions displayed at page load

Rather than showing a list of suggestions when the page is opened, we can show the
list when the user clicks in the input field, as explained in the following example.

Displaying a List of Suggestions at the Entry of the Cursor in the Input Field
This is a variant of previous script. When the user clicks in the input field, the list is
displayed immediately. The search for list items to display is this time related to the
focus event on the input field:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

Examples of Using the Autocompletion Mechanism | 123

// array of items to be proposed in the list of suggestions
var books = ["Web development with J2EE", "Practical CSS & JavaScript",
 "Practical Ruby on Rails", "Introduction to HTML & CSS",
 "jQuery UI"];

$("input#book").autocomplete ({
 source : books,
 minLength : 0
}).focus (function (event)
{
 $(this).autocomplete ("search", "");
});

</script>

Producing an Effect on the Appearance of the List of Suggestions
By default, the list is displayed as soon as it is returned by jQuery UI. It is possible to
produce an effect before it is displayed, such as a slideDown effect:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

// array of items to be proposed in the list of suggestions
var books = ["Web development with J2EE", "Practical CSS & JavaScript",
 "Practical Ruby on Rails", "Introduction to HTML & CSS",
 "jQuery UI"];

$("input#book").autocomplete ({
 source : books,
 open : function (event)
 {
 var $ul = $(this).autocomplete ("widget");
 $ul.hide ().slideDown (600);
 }
});

</script>

Here, we use the open option, which corresponds to an event called just before the
display of the list. Before this, we hide this list with hide () so it can be displayed by
the slideDown effect.

124 | Chapter 9: Autocompletion

If you use a hide effect, these effects are more complex to implement, due to the up-
dating of the input field. Although the effect occurs, it inhibits updating in the input
field with the value of the selected list item.

Dynamically Creating a List of Suggestions
The above examples all use a fixed list of suggestions, known at the start of the script.
jQuery UI allows us to specify in options.source a source of data as a callback function
that will be used to build the list of suggestions:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

$("input#book").autocomplete ({
 source : function (request, callback)
 {
 // array of items to be proposed in the list of suggestions
 var books = ["Web development with J2EE", "Practical CSS & JavaScript",
 "Practical Ruby on Rails", "Introduction to HTML & CSS",
 "jQuery UI"];

 callback (books);
 }
a});

</script>

In options.source, we indicate a function used to build the list of suggestions. This
function takes two parameters:

• request is an object having the term property indicating the text entered in the input
field (property not used here).

• callback is a function that must be called at the end of treatment, indicating as a
parameter the list of suggestions (books here), in array form.

In this example, the text typed by the user is not used, so the returned list is always the
same, regardless of the value entered by the user (Figure 9-6). We will see in the fol-
lowing section how to consider the characters entered in the input field.

Examples of Using the Autocompletion Mechanism | 125

Figure 9-6. List of suggestions created dynamically

Dynamically Creating a List of Suggestions Based on the Input Data
We can improve the previous program by taking the input and making an Ajax call to
the server, to retrieve a list of suggestions to display.

The books are stored in a MySQL database (here the test database containing the books
table). Its description and its contents are as follows:

CREATE DATABASE IF NOT EXISTS test;
USE test;
DROP TABLE IF EXISTS books;
CREATE TABLE books (
 id int(10) unsigned NOT NULL auto_increment,
 title varchar(100) NOT NULL,
 PRIMARY KEY (id)
);

INSERT INTO books (id, title) VALUES
 (1,"Web development with J2EE"),
 (2,"Practical CSS & JavaScript"),
 (3,"Practical Ruby on Rails"),
 (4,"Introduction to HTML & CSS"),
 (5,"jQuery UI");

Perform an ajax call that returns the list of suggestions to display

126 | Chapter 9: Autocompletion

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

$("input#book").autocomplete ({
 source : function (request, callback)
 {
 var data = { term : request.term };
 $.ajax ({
 url : "action.php",
 data : data,
 complete : function (xhr, result)
 {
 if (result != "success") return;
 var response = xhr.responseText;
 var books = [];

 $(response).filter ("li").each (function ()
 {
 books.push ($(this).text ());
 });
 callback (books);
 }
 });
 }
});

</script>

Text entered by the user is retrieved in request.term. An Ajax call is then made. At its
completion, the server response is analyzed: it retrieves the contents of each ele-
ment, which we put in a books array, and it is then returned by callback (books) to be
displayed.

The server program processing the Ajax request is shown in the following action.php
file:

<?
 $term = $_REQUEST["term"];
 $term = utf8_decode ($term);

 $bd = mysql_connect ("localhost", "root", "pwd");
 $ret = mysql_select_db ("test", $bd);
 $query = sprintf (
 "SELECT * FROM books WHERE title LIKE '%%%s%%'",
 mysql_real_escape_string($term));

 // Query execution

Examples of Using the Autocompletion Mechanism | 127

 $result = mysql_query($query);
 if ($result)
 {
 // Use the result (sent to the browser)
 while ($row = mysql_fetch_assoc($result))
 {
 echo ("" . utf8_encode ($row["title"]) . "");
 }
 mysql_free_result($result);
 }

 mysql_close ($bd);
?>

This example displays the list of suggestions as text. It is also possible to insert images
in list items, such as images associated with each book. This is discussed in the following
section.

Inserting Images in the List of Suggestions
Autocompletion functionality provided by jQuery UI does not, as standard, insert
anything other than text. You can insert other HTML elements in the list, with some
manipulation of the DOM tree.

To explain this, let’s take the book example. We now want to add a picture in front of
each book title. If no image is available for a book, a default image is displayed instead
(Figure 9-7).

Figure 9-7. Images in the list of suggestions

128 | Chapter 9: Autocompletion

To do this, you can start again with the written programs above. The database is modi-
fied to take account of the picture field containing the image filename associated with
each book. This field will be set to NULL in the database if you have to display the
default image:

CREATE DATABASE IF NOT EXISTS test;
USE test;
DROP TABLE IF EXISTS books;
CREATE TABLE books (
 id int(10) unsigned NOT NULL auto_increment,
 title varchar(100) NOT NULL,
 picture varchar(100),
 PRIMARY KEY (id)
);

INSERT INTO books (id, title, picture) VALUES
 (1,"Web development with J2EE", "j2ee.jpg"),
 (2,"Practical CSS & JavaScript", "javascript.jpg"),
 (3,"Practical Ruby on Rails", "rails.jpg"),
 (4,"Introduction to HTML & CSS", "html.jpg"),
 (5,"jQuery UI", NULL);

The jQuery UI book does not have an associated image, so it uses the insertion of a null
value for the picture field. Each image file (j2ee.jpg, javascript.jpg, etc.) will be inserted
into an images directory on the server.

The program on the server becomes the following action.php file:

<?
 $term = $_REQUEST["term"];
 $term = utf8_decode ($term);

 $bd = mysql_connect ("localhost", "root",
"pwd");
 $ret = mysql_select_db ("test", $bd);
 $query = sprintf (
 "SELECT * FROM books WHERE title LIKE '%%%s%%'",
 mysql_real_escape_string($term));

 // Query execution
 $result = mysql_query($query);
 if ($result)
 {
 // Use the result (sent to the browser)
 header ("content-type:text/xml"); // sending XML!
 echo ("<books>");
 while ($row = mysql_fetch_assoc($result))
 {
 echo ("");
 echo ("<title>"
 .
utf8_encode (str_replace ("&", "&", $row["title"]))
 .
"</title>");
 echo ("<picture>" . utf8_encode

Examples of Using the Autocompletion Mechanism | 129

($row["picture"]) . "</picture>");
 echo ("");
 }
 echo ("</books>");
 mysql_free_result($result);
 }

 mysql_close ($bd);
?>

Compared with the previous program, the change is in the format of data returned.
Indeed, we must now return the book title and name of the image file. For this, we use
<title> and <picture> tags grouped in a tag. Since we use non-HTML tag names
(as <picture>), it is necessary to indicate that the server returns XML, hence the header
("content-type:text/xml") statement.

In addition, the titles of the books may contain special XML characters such as &. This
character must be converted to & so that the JavaScript program can correctly in-
terpret the result given by the server.

The program of the HTML page is as follows:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<h3>Enter the name of the book:</h3>
<input id=book />

<script>

$("input#book").autocomplete ({
 source : function (request, callback)
 {
 var data = { term : request.term };
 $.ajax ({
 url : "action.php",
 data : data,
 complete : function (xhr, result)
 {
 if (result != "success") return;
 var response = xhr.responseXML;
 var books = [];

 // recovery of titles
 $(response).find ("li title").each (function ()
 {
 books.push ($(this).text ());
 });

 // insertion of titles
 callback (books);

130 | Chapter 9: Autocompletion

 // insertion of images
 var $ul = $("input#book").autocomplete ("widget");
 $(response).find ("li picture").each (function (index)
 {
 var src = $(this).text () || "default.jpg";
 $ul.find ("li:eq(" + index +") a")
 .wrapInner ("<span style=position:relative;" +
 "top:-7px;left:10px>")
 .prepend ("");
 });
 }
 });
 },
 open : function (event)
 {
 var $ul = $(this).autocomplete ("widget");
 $ul.css ("width", "400px");
 }
});

</script>

The principle is as follows: first we build the list with the titles (thanks to the callback
(books) instruction), then we modify the DOM tree by inserting a picture in front of
each label title.

For this, the book titles are retrieved by $(response).find ("li title"), while the URL
of the image files are collected by $(response).find ("li picture"). For each image (if
an image does not exist, it is replaced by default.jpg), we get the <a> link previously
built by the callback (books) instruction. It is sufficient for that link to surround the
link text by a element (using wrapInner ()) then insert the image at the beginning
of the link (prepend () instruction).

Examples of Using the Autocompletion Mechanism | 131

CHAPTER 10

Drag-and-Drop

Drag-and-drop is a common operation in web pages for moving an item (using the
mouse to drop the item on another page element). For example, if the page displays
images of articles to be purchased, users can drag an item into a cart that symbolizes
all the goods to be purchased.

jQuery UI can manage these operations, distinguishing the operation of “drag” (the
movement of an object) and the operation of “drop” (the depositing of the item being
moved). For this, jQuery UI offers both the draggable () and droppable () methods.

The draggable () Method
The draggable () method manages elements of the HTML page you want to move.
This method can be used in two forms:

• $(selector, context).draggable (options)

• $(selector, context).draggable ("action", params)

The draggable (options) Method
The draggable (options) method declares that an HTML element can be moved in the
HTML page. The options parameter is an object that specifies the behavior of the
elements involved.

Specifying the movable elements

Use the options in Table 10-1 to indicate which elements can be moved. By default,
these are all elements of the list on which the draggable (options) method applies.
These options can inhibit the displacement for all items or only some, or even for
moving a new item created on the fly.

133

Table 10-1. Options for managing movable elements

Option Function

options.disabled When set to true, disables the ability to move items. Items cannot be moved until this function is
enabled (using the draggable ("enable") instruction).

options.cancel Indicates a selector representing elements for which the move is prohibited. This allows you to restrict
the starting list (those on which the draggable (options) method applies).

options.helper Creates and moves a copy of the selected item.

The "clone" value indicates that the item is duplicated and that it is the new element that moves,
while the original remains in its original position.

With "original" (the default), the initial element is moved.

If you specify a callback function, it creates and returns a new element that will be moved. In any
case, if a new item is created (by "clone" or the callback function), it is removed at the end of the
move.

options.appendTo Specifies the element in which the new element created with options.helper will be inserted
during the time of the move. Possible values are a selector (only the first element in the list will be
considered), a DOM element, or the string "parent" (parent element). The default is "parent".

Managing element movement

Table 10-2 describes the options for managing the actual movement of elements.

Table 10-2. Options for managing element movement

Option Function

options.addClasses When set to true (default), indicates that the ui-draggable and ui-dragga
ble-dragging CSS classes should be added to the movable elements and the
element being moved, respectively.

options.cursor Specifies the cursor CSS property when the element moves. It represents the shape
of the mouse pointer. The possible values are:

• "auto" (default)

• "crosshair" (across)

• "default" (an arrow)

• "pointer" (hand)

• "move" (two arrows cross)

• "e-resize" (expand to the right)

• "ne-resize" (expand up right)

• "nw-resize" (expand up left)

• "n-resize" (expand up)

• "se-resize" (expand down right)

• "sw-resize" (expand down left)

• "s-resize" (expand down)

• "w-resize" (expand left)

134 | Chapter 10: Drag-and-Drop

Option Function
• "text" (pointer to write text)

• "wait" (hourglass)

• "help" (help pointer)

options.delay Delay, in milliseconds, after which the first movement of the mouse is taken into
account. The displacement may begin after that time. The default is 0.

options.distance Number of pixels that the mouse must be moved before the displacement is taken
into account. The default is 1 (i.e., a single pixel is enough to indicate that we want
to move the item).

options.opacity Opacity of the element moved when moving. The default is 1.

options.scope String to restrict the drop of movable elements only on items that have the same
options.scope (defined in droppable (options).

options.connectToSortable Specifies a list whose elements are interchangeable. At the end of placement, the
element is part of the list.

Managing the effect at the end of displacement

Once the element moved, it remains in its final position (default behavior). The options
listed in Table 10-3 allow you to specify a new behavior of the element at the end of
displacement (e.g., to return to its original position).

Table 10-3. Options for managing effects at the end of displacement

Option Function

options.revert Indicates whether the element is moved back to its original position at the end of the move.

When set to true, the element returns to its original position. When set to false (the
default), the element stays where it was dropped. When set to "valid", the element
returns if it has been dropped on an element that accepts it, and when set to "inva
lid", the element returns if it has been dropped on an element that does not accept it.

options.revertDuration Duration of displacement (in milliseconds) after which the element returns to its original
position (see options.revert). By default, this period is 500 ms.

Managing displacement constraints

By default, elements can be moved anywhere on the page according to the movements
of the mouse. We can change this default behavior using the options listed in Ta-
ble 10-4.

Table 10-4. Options for managing displacement constraints

Option Function

options.grid Array [x, y] indicating the number of pixels that the element moves horizontally and vertically
during displacement.

options.axis Indicates an axis of movement (“x” horizontal, “y” vertical). The default is false (there is
no specified axis, so displacement is possible in all directions).

The draggable () Method | 135

Option Function

options.containment Indicates an element within which the displacement takes place. The element will be
represented by a selector (only the first item in the list will be considered), a DOM element,
or the string "parent" (parent element) or "window" (HTML page).

It may also indicate an array [x1, y1, x2, y2] representing a rectangle formed by the points
(x1, y1) and (x2, y2).

options.snap Adjusts the display of the item being moved on other elements (which are flown). If you
want to move an element to another, the displacement (in pixels) does not perfectly position
the two elements one above the other.

The value of this option is a selector indicating the elements for which the adjustment will
be managed by jQuery UI (it adjusts the position of the displaced element to the position
of the flown element if it is part of the selector). true indicates the ".ui-dragga
ble" selector—the moved element adjusts to all those that can be displaced. The default
value is false (no adjustment).

options.snapMode Specifies how the adjustment should be made between the moved element and those
indicated in options.snap. "inner" specifies that the adjustment is made with the
interior elements, "outer" indicates outside elements, and "both" specifies interior
and exterior elements. The default value is "both".

options.snapTolerance Maximum number of pixels in the difference in position necessary to establish the adjust-
ment. By default, this number is 20, meaning that as soon as 20 pixels separate the moved
element from those in options.snap, the adjustment is made to the display, according
to options.snapMode.

Managing window scroll

It is possible to move an element to locations on the page that are not in the visible part
of the display. To do this, you can configure the page to scroll during item movement.
Table 10-5 lists the options for managing scrolling.

Table 10-5. Options for managing window scrolling

Option Function

options.scroll When set to true (the default), the display will scroll if the item is moved outside
the viewable area of the window.

options.scrollSensitivity Indicates how many pixels the mouse must exit the window to cause scrolling of the
display. The default is 20 pixels. This option is used only when options.scroll
is set to true.

options.scrollSpeed Indicates the scrolling speed of the display once scrolling begins. The default is 20.

Managing movable element events

Events associated with movable elements manage the beginning and end of the dis-
placement and the displacement itself. Each of the methods associated with these events
has two parameters: event is the mouse event and ui is a {helper, position, offset}

136 | Chapter 10: Drag-and-Drop

object, the properties of which are described in Table 10-6. The options are listed in
Table 10-7.

Table 10-6. Properties of the ui {helper, position, offset} object

Property Function

ui.helper jQuery class object associated with the element that moves (the element that was clicked or specified in
options.helper).

ui.position If the moved element is indicated in options.helper, this indicates the {top, left} position of the
element relative to the edges of the page. Otherwise (if you move the element that was clicked), it indicates
the displacement from the initial position of the element, considered to be (0, 0).

ui.offset Indicates in all cases the {top, left} position of the moved element relative to the edges of the page.

Table 10-7. Managing events for movable elements

Option Function

options.start The start (event, ui) method is called when the displacement begins (the element has been
clicked and the mouse was moved slightly).

options.drag The drag (event, ui) method is called when the displacement continues after the first move.

options.stop The stop (event, ui) method is called when the move is complete (the mouse button was released).

The draggable (“action”, params) Method
The draggable ("action", params) method can perform an action on the movable
elements, such as to prevent displacement. The action is specified as a string in the first
argument (e.g., "disable" to prevent the displacement). The actions for this method
are listed in Table 10-8.

Table 10-8. The draggable (“action”, params) actions

Action Function

draggable ("disable") Disable drag management. Elements cannot be moved until the next call to the draggable
("enable") method.

draggable ("enable") Reactivate drag management. The elements can be moved again.

draggable ("option",
param)

Retrieve the value of the indicated param option. This option corresponds to one of those
used with draggable (options).

draggable ("option",
param, value)

Changes the value of the param option. This option corresponds to one of those used with
draggable (options).

draggable ("destroy") Remove drag management. The elements are no longer movable.

The draggable () Method | 137

Event Management on the Moved Elements with bind ()
In addition to event methods offered in the options of the draggable (options) method,
jQuery UI allows us to manage these events using the bind () method (detailed in
Table 10-9).

Table 10-9. Events created by jQuery UI

Event Function

dragstart Same meaning as options.start.

drag Same meaning as options.drag.

dragstop Same meaning as options.stop.

Examples of Using Drag Functionality
In this section, we’ll try out some of the drag functionality discussed in this chapter.

Carrying Out a Treatment When Moving
Let’s display the coordinates of an element as it is being moved (Figure 10-1):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=div1 style="border:solid 1px;background-color:gainsboro;">
 Item 1 to move

 Item 2 to move

 Item 3 to move
</div>

<p>Start : </p>
<p>Drag : </p>
<p>Stop : </p>

<script>

$("#div1 span").draggable ({
 start : function (event, ui)
 {
 $("#start").text (ui.offset.top + ", " + ui.offset.left);
 },
 drag : function (event, ui)
 {
 $("#drag").text (ui.offset.top + ", " + ui.offset.left);
 },
 stop : function (event, ui)
 {

138 | Chapter 10: Drag-and-Drop

 $("#stop").text (ui.offset.top + ", " + ui.offset.left);
 }
});

</script>

The first displacement causes the start, while the movements that follow are managed
by the drag event. When the mouse is released, the stop event is triggered.

Figure 10-1. Coordinates of the drag

Imposing Limits on Displacement
You can limit the movement of elements on the screen. Here, we’ll look at the various
possible constraints.

Constraining the displacement to a given space

Here, we’ll add onto the previous example by preventing elements to be moved
outside the parent <div>. Currently, no constraints are specified, which allows us to
move any element using the draggable (options) method anywhere on the page:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Examples of Using Drag Functionality | 139

<div id=div1 style="border:solid 1px;background-color:gainsboro;">
 Item 1 to move

 Item 2 to move

 Item 3 to move
</div>

<script>

$("#div1 span").draggable ({
 containment : "#div1"
});

</script>

The containment option specifies the constraint of displacement. Here, elements
are prevented from going outside a <div> whose ID is div1 (Figure 10-2).

Figure 10-2. Constrained movement within a <div>

As this <div> is also the parent of movable elements, this constraint can also be written
as follows:

containment : "parent"

It is also possible to impose constraints on horizontal or vertical movement, as we see
in the following section.

Constraining the displacement horizontally or vertically

We can impose constraints on vertical or horizontal motion using options.axis worth
"x" or "y". For example, to require that elements can only move horizontally,
we write the following code (shown in bold):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

140 | Chapter 10: Drag-and-Drop

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=div1 style="border:solid 1px;background-color:gainsboro;">
 Item 1 to move

 Item 2 to move

 Item 3 to move
</div>

<script>

$("#div1 span").draggable ({
 axis : "x"
});

</script>

To prevent movement of these items outside of the <div> parent, we need to add
options.containment:

<script>

$("#div1 span").draggable ({
 axis : "x",
 containment : "parent"
});

</script>

Moving an Object by Duplicating
Here, we want to move an item that is the clone of the selected element (Figure 10-3).
This is done using the options.helper option, value "clone":

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=div1 style="border:solid 1px;background-color:gainsboro;">
 Item 1 to move

 Item 2 to move

 Item 3 to move
</div>

<script>

$("#div1 span").draggable ({
 helper : "clone"
});

</script>

Examples of Using Drag Functionality | 141

In Figure 10-3, the first element is being dragged—only the cloned element is moved,
while the original item remains in its original position. If you release the mouse, the
cloned element disappears and the original item is still in its original position (Fig-
ure 10-4). The duplicate item is effectively moved and is removed from the DOM tree
at the end of the move.

Figure 10-4. The original item remains in its original position.

We now want to keep the dragged item on the page. For this, we must create a new
element that it is the same as the moved element and that keeps its position on the page
at the end of the movement (Figure 10-5):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

Figure 10-3. Moving a cloned item

142 | Chapter 10: Drag-and-Drop

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=div1 style="border:solid 1px;background-color:gainsboro;">
 Item 1 to move

 Item 2 to move

 Item 3 to move
</div>

<script>

$("#div1 span").draggable ({
 helper : "clone",
 stop : function (event, ui)
 {
 ui.helper.clone ().appendTo ($(this).parent ());
 }
});

</script>

At the end of the displacement (the stop () method), we duplicate the moved element
(with ui.helper.clone ()) and insert it into the page at the same level as the moved
 (with appendTo ()).

Figure 10-5. Moving a cloned item, keeping it on the page

Every time we move one of the elements, we create a copy of the item, which
explains the presence of several identical elements on the page.

Next, we can improve this script by preventing duplicates of the same element by
removing the original. At the end of the displacement, the original item disappears (it
is replaced by the one that was moved):

Examples of Using Drag Functionality | 143

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=div1 style="border:solid 1px;background-color:gainsboro;">
 Item 1 to move

 Item 2 to move

 Item 3 to move
</div>

<script>

$("#div1 span").draggable ({
 helper : "clone",
 stop : function (event, ui)
 {
 ui.helper.clone ().appendTo ($(this).parent ());
 $(this).remove ();
 }
});

</script>

The $(this).remove () statement deletes the original item at the end of the
displacement.

The result of this script is shown in Figure 10-6.

Figure 10-6. The original elements have been removed

However, each moved item is no longer draggable! Indeed, we have inserted a new
(cloned) element on the page, but it does not have the characteristics of a draggable
element. To allow movement of this element, we can call the draggable () method.

144 | Chapter 10: Drag-and-Drop

Consequently, moved items will be cloned, but may continue to be displaced by being
cloned again:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=div1 style="border:solid 1px;background-color:gainsboro;">
 Item 1 to move

 Item 2 to move

 Item 3 to move
</div>

<script>

$("#div1 span").draggable ({
 helper : "clone"
}).bind ("dragstop", f = function (event, ui)
{
 ui.helper.clone ()
 .appendTo ($(this).parent ())
 .draggable ({ helper : "clone" })
 .bind ("dragstop", f);
 $(this).remove ();
});

</script>

Here, we use the dragstop event instead of the stop () method used previously. Indeed,
it is necessary for the cloned item to use this event handler, so the easiest way to pass
it is to use the bind ("dragstop", f) method, where the f function is the callback
function used previously.

The droppable () Method
The droppable () method manages elements of the HTML page on which you want to
drop a moved item. This method can be used in two forms:

• $(selector, context).droppable (options)

• $(selector, context).droppable ("action", params)

The droppable (options) Method
The droppable (options) method declares that an HTML element can be used as an
element in which to deposit other elements. The options parameter is an object for
specifying the behavior of the involved elements.

The elements of deposit are those from the list associated with the selector for which
the droppable (options) method is called. These options primarily define which

The droppable () Method | 145

elements can be dropped on these elements of deposit, and the behavior of elements
when a drop is made.

Managing the behavior of the elements of deposit

Table 10-10 describes the options for the droppable (options) method.

Table 10-10. Options for managing deposit elements

Option Function

options.disabled When set to true, disables movement of item over the specified elements and the drop into
those elements. If items pass over an unauthorized element, the drop will not be considered
until these elements are enabled (by using droppable ("enable")).

options.tolerance Indicates how the draggable element should cover the element of deposit for the drop being
accepted. The possible values are "fit" (the draggable element covers the element of
deposit in full), "intersect" (half), "touch" (touching), and "point" (the mouse has
entered the element of deposit). The default is "intersect".

options.addClasses When set to true (the default), the ui-droppable CSS class must be added to the list
elements.

Indicating which elements can be dropped

By default, all draggable elements can be deposited on an element of deposit. It is
possible to state exactly which draggable elements are accepted, using the options listed
in Table 10-11.

Table 10-11. Options for specifying elements that can be deposited

Option Function

options.accept Indicates elements accepted for the deposit. It is a selector or a callback function called for each of the
draggable elements in the page (of the form accept (element), in which element corresponds
to a draggable element). The function should return true if the deposited element is accepted. The
default selector is "*", meaning that every item is accepted for deposit.

options.scope String used to restrict the deposit of draggable elements only to items that have the same
options.scope (defined in draggable (options)). The items for which the deposit will be
accepted are those defined in options.accept that also satisfy options.scope.

Managing the appearance of elements of deposit

You can add CSS classes to the elements of deposit to change the style of the elements
depending on conditions that you specify. These options are listed in Table 10-12.

146 | Chapter 10: Drag-and-Drop

Table 10-12. Options for managing the appearance of the elements of deposit

Option Function

options.hoverClass String representing one or more CSS classes to be added to the element of deposit when
an accepted element (an element indicated in options.accept) moves into it.

options.activeClass String representing one or more CSS classes to be added to the element of deposit when
an accepted element (one of those indicated in options.accept) is being dragged
(not necessarily into the element of deposit).

Managing events on the elements of deposit

Events associated with elements of deposit are used to manage the beginning and end
of the movement of an accepted element and the deposit of the element itself. Each of
the methods associated with these events has two parameters: event corresponds to the
mouse event (listed in Table 10-13), and ui is a {draggable, helper, offset} object
(described in Table 10-14).

Table 10-13. Options for managing events

Option Function

options.activate The activate (event, ui) method is called when the movement of an accepted
element starts (the element was clicked and the mouse was moved slightly).

options.deactivate The deactivate (event, ui) method is called when movement of an accepted
element ends (the mouse was released).

options.over The over (event, ui) method is called when an accepted element is on top of the
element of deposit (as defined in options.tolerance).

options.out The out (event, ui) method is called when an accepted element leaves the element
of deposit (as defined in options.tolerance).

options.drop The drop (event, ui) method is called when an accepted element is dropped on
the element of deposit (the mouse was released).

Table 10-14. Properties of the ui {draggable, helper, offset} object

Property Function

ui.draggable jQuery class object associated with the item that was clicked to move it (but not necessarily the element
that moves, if we use options.helper in the draggable (options) method).

ui.helper jQuery class object associated with the element that moves (but not necessarily the element that was
clicked, if options.helper is used in draggable (options)).

ui.offset In all cases, indicates the {top, left} position of the element moved relative to the edges of the page.

The droppable () Method | 147

The droppable (“action”, params) Method
The droppable ("action", params) method can perform an action on elements of
deposit such as inhibiting the deposit. The action is specified as a string in the first
argument (e.g., "disable" to prevent the deposit). These actions are listed in Ta-
ble 10-15.

Table 10-15. The droppable (“action”, params) method actions

Action Function

droppable ("disable") Disable the deposit operation. The elements are no longer elements of deposit.

droppable ("enable") Reactivate the deposit operation. The elements can again receive a deposit.

droppable ("option",
param)

Retrieve the value of the indicated param option. This option corresponds to one of those
used with droppable (options).

droppable ("option",
param, value)

Set the value of the indicated param option. This option corresponds to one of those used
with droppable (options).

droppable ("destroy") Remove the management of the deposit. The elements are no longer elements of deposit.

Event Management on the Elements of Deposit with bind ()
In addition to event methods offered in the options of the droppable (options) method,
jQuery UI allows us to manage these events using the bind () method. The events of
this method are described in Table 10-16.

Table 10-16. Events created by jQuery UI

Event Function

dropactivate Same meaning as options.activate.

dropdeactivate Same meaning as options.deactivate.

dropover Same meaning as options.over.

dropout Same meaning as options.out.

drop Same meaning as options.drop.

Examples of Using the Drop Functionality: A Shopping Cart
With the help of a shopping cart, let’s examine the various possibilities of the drop
functionality.

Creating a Shopping Cart with Drag-and-Drop
Let’s use drop functionality to manage a shopping cart of books. Books are displayed
as images, which users can drag into a cart for purchase (Figure 10-7). Each book can

148 | Chapter 10: Drag-and-Drop

be moved, and the cart is a place for depositing books. Once the book is placed in the
cart, it is positioned to the right of the cart (Figure 10-8):

Figure 10-7. The shopping cart is empty

<script src=jquery.js></script>
<script src=jqueryui/development-bundle/ui/jquery-ui-1.8.4.custom.js></script>

<link rel=stylesheet type=text/css
 href="jqueryui/development-bundle/themes/smoothness/jquery.ui.all.css" />

<h2> Drag your books in the cart! </h2>
<div id=books>

</div>

<hr />

<h2> Cart: </h2>

Examples of Using the Drop Functionality: A Shopping Cart | 149

<div id=shopping>

</div>

<script>

$("div#books img").draggable ({
 revert : "invalid"
});

$("div#shopping img.basket").droppable ({
 drop : function (event, ui)
 {
 $("div#shopping").append (ui.draggable);
 $(ui.draggable).css ({ position:"relative", top:"0px", left:"0px" })
 .draggable ("disable")
 .css ({ opacity : 1 });
 }
});

</script>

Figure 10-8. The shopping cart contains two books

150 | Chapter 10: Drag-and-Drop

$(""div#books img"").draggable ()makes each picture draggable, while the cart is
defined as an element of deposit with $("div#shopping img.basket").droppable ().
The revert option "invalid" resets the dragged item to its original position if it is not
placed in the cart.

The drop () method allows treatment when depositing a book in the cart. The moved
image (ui.draggable) is inserted at the end of the cart (by append ()). The css ()
instruction removes the book picture from its original position and gives it a new po-
sition to the right of the basket. The draggable ("disable") instruction prevents users
from moving this image again and gives it an opacity of 1 (because the draggable
("disable") instruction automatically decreases the opacity of the element).

Adding a Visual Effect to Shopping Cart Deposits
When a book picture is dragged onto the shopping cart, there is no visual indication
that anything will happen if the picture is dropped there.

Let’s modify the code so that the cart appears responsive when books are deposited in
it, for example, by displaying a red border (Figure 10-9):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 .basket {
 border : transparent solid 2px;
 }
 .hover {
 border-color : red;
 }
</style>

<h2> Drag your books in the cart! </h2>
<div id=books>

</div>

<hr />

<h2> Cart: </h2>
<div id=shopping>

</div>

<script>

Examples of Using the Drop Functionality: A Shopping Cart | 151

$("div#books img").draggable ({
 revert : "invalid"
});

$("div#shopping img.basket").droppable ({
 hoverClass : "hover",
 drop : function (event, ui)
 {
 $("div#shopping").append (ui.draggable);
 $(ui.draggable).css ({ position:"relative", top:"0px", left:"0px" })
 .draggable ("disable")
 .css ({ opacity : 1 });
 }
});

</script>

Figure 10-9. A visual effect when depositing elements in the shopping cart

We have added the hoverClass option to the script in the droppable (options) method.
This allows you to specify one or more CSS classes that will be added to the element
of deposit when an authorized element moves over it. This class includes the

152 | Chapter 10: Drag-and-Drop

border-color:red CSS instruction. For this to work, we have included CSS instructions
in the basket class (used by the element of deposit, that is to say the shopping cart) for
a transparent border, which avoids having a displacement of the shopping cart when
moving an item onto it (which would add a border).

Removing an Item from the Cart
The books in the shopping cart may not, at present, be removed from it. Here, we’ll
change the code to allow users to remove books from the cart. When books are removed
from the cart, they re-enter the list of books to buy. To do this, we manage the depositing
of a purchased book on the <div> containing the list of books to buy (div#books):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 .basket {
 border : transparent solid 2px;
 }
 .hover {
 border-color : red;
 }
</style>

<h2> Drag your books in the cart! </h2>
<div id=books>

</div>

<hr />

<h2> Cart: </h2>
<div id=shopping>

</div>

<script>

$("div#books img").draggable ({
 revert : "invalid"
});

$("div#shopping img.basket").droppable ({
 hoverClass : "hover",
 drop : function (event, ui)
 {
 $("div#shopping").append (ui.draggable);

Examples of Using the Drop Functionality: A Shopping Cart | 153

 $(ui.draggable).css ({ position:"relative", top:"0px", left:"0px" })
 .addClass ("bought");
 }
});

$("div#books").droppable ({
 accept : ".bought",
 drop : function (event, ui)
 {
 $("div#books").append (ui.draggable);
 $(ui.draggable).css ({ position:"relative", top:"0px", left:"0px" })
 .removeClass ("bought");
 }
});

</script>

Each book placed in the cart is now assigned the "bought" CSS class. The div#books
will only accept books that have this class (thanks to accept sets to ".bought"). The
drop () method used in the list of books is similar to that used on the cart, except that
it removes the "bought" CSS class, because the book is no longer in the shopping cart.

154 | Chapter 10: Drag-and-Drop

CHAPTER 11

Selecting Items

jQuery UI makes it easy to select items on the page. Select means that the page elements
can be grouped in the same block to be processed simultaneously (e.g., selecting several
files to put them in the trash). Rather than putting them one by one into the trash (using
the drag-and-drop functionality that we examined in Chapter 10), items are selected
using the mouse and then dragged together to the trash.

jQuery UI has implemented this functionality in a similar way to that found in graphical
operating systems such as Windows, Mac OS, or Linux. You can use the mouse to
select multiple items and also select or deselect an individual item in the group by
pressing the Ctrl key while you click.

Basic Principles of Selecting Items
Suppose we want to write the HTML code to display the selection shown in Fig-
ure 11-1. Here, we have five paragraphs and we selected the first three with the mouse.
A dotted rectangle is added during mouse movement, showing the selection area.

The selectable items should be grouped together in a <div> (or any other parent). All
elements in the descendants of that parent can be selected.

In the <script> tag, the encompassing <div> element is managed by the jQuery UI
selectable () method:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>
 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>

155

</div>

<script>

$("#div1").selectable ();

</script>

Figure 11-1. Selecting items in an HTML page

Formatting Content
The selectable () method displays a dotted rectangle symbolizing the selection. In
addition, it adds new CSS classes to HTML elements that are selectable as well as those
selected.

In Figure 11-2, for example, the HTML generated by jQuery UI after the selectable
() method changed the HTML (the code was recovered using the Firebug extension in
Firefox).

The encompassing <div> element was assigned the ui-selectable CSS class, whereas
selectable items it contains have the ui-selectee class. The first three paragraphs being
selected have the ui-selecting class. Once the mouse button is released, the selected
paragraphs will then have the ui-selected class (instead of ui-selecting).

Notice that a <div> was created by jQuery UI (ui-selectable-helper class), which is
the dotted rectangle representing the selection. This <div> will be removed from the
page when the mouse button is released.

156 | Chapter 11: Selecting Items

You can use CSS classes of elements to customize the display. For example, if we change
the CSS classes ui-selecting and ui-selected associated with <p> elements, we should
get a new look for items being selected and deselected.

Modify these elements in the HTML by adding a <style> tag so that the rectangle and
the selected paragraphs are displayed with a solid red line (Figure 11-3). When the
mouse is released, the selected paragraphs will be displayed on light gray background
(Figure 11-4):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 p.ui-selecting {
 color : red;
 }
 p.ui-selected {
 background-color : gainsboro;
 }
 div.ui-selectable-helper {
 border-color : red;
 border-style : solid;
 }
</style>

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>
 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>
</div>

<script>

Figure 11-2. HTML generated by the selectable () method

Formatting Content | 157

$("#div1").selectable ();

</script>

Figure 11-3. Customized display of the selection in progress

Figure 11-4. Customized selected items

158 | Chapter 11: Selecting Items

Users can select or deselect any of paragraphs by pressing the Ctrl key while clicking
an item with the mouse. For example, users can select the fifth paragraph and deselect
the second and fourth, as shown in Figure 11-5.

Figure 11-5. A change in the original selection

The selectable () Method
The selectable () method can be used in two forms:

• $(selector, context).selectable (options)

• $(selector, context).selectable ("action", params)

The selectable (options) Method
The selectable (options) method declares that an HTML element contains selectable
items. The options parameter specifies behavior when selecting.

Managing selected items

All items that are in the descendants of the elements on which the selectable
(options) method applies are selectable and inherit the ui-selectee CSS class (whether
selected or not). The options listed in Table 11-1 allow you to filter the elements of the
descendants to indicate those that will actually be selectable.

The selectable () Method | 159

Table 11-1. Options for specifying the selectable elements

Option Function

options.disabled When set to true, disables the selection mechanism. Users cannot select the elements until the
mechanism is restored using the selectable ("enable") instruction.

options.filter Selector indicating which elements can be part of the selection. These will inherit the ui-
selectee class and will be selectable. By default, the selector is "*" (all the elements of the
descendants can be selected).

options.cancel Selector indicating the elements on which it is forbidden to start the selection (but may be part of
the selection).

options.distance Distance (in pixels) the mouse must move to consider the selection in progress. This is useful, for
example, to prevent simple clicks from being interpreted as a group selection.

The default value is 0, thus allowing a simple click on an item to select or deselect it.

Managing events on selected items

The options listed in Table 11-2 let you manage events that occur on selected items,
such as the selection or deselection of an item. The first usage example below shows
the order in which these events appear on the page.

Table 11-2. Options for managing events on selected items

Option Function

options.start The start (event) method is called whenever the mouse is clicked in the element that
uses the selectable (options) method. It then starts a selection sequence (for which
selected or deselected items are added to the previous selection).

options.stop The stop (event) method is called when the mouse has been released. The selection
sequence is complete.

options.selecting The selecting (event, ui) method is called when a new item has been selected
and the mouse has not yet been released (the stop () method has not yet been called
for this selection sequence). The DOM element being selected is recorded in ui.select
ing.

options.unselecting The unselecting (event, ui) method is called when a new item has been dese-
lected and the mouse has not yet been released (the stop () method has not yet been
called for this selection sequence). The DOM element being deselected is recorded in
ui.unselecting.

options.selected The selected (event, ui) method is called for each of the items selected in the
selection sequence when the mouse is released. Any previously selected items do not cause
the call to this method (although they remain selected). The selected DOM element is in
ui.selected.

options.unselected The unselected (event) method is called for each element deselected in this selection
sequence when the mouse is released. Any previously deselected items do not cause the
call to this method (although they remain deselected). The deselected DOM element is
recorded in ui.unselected.

160 | Chapter 11: Selecting Items

We define the term selection sequence as all the methods called from options.start to
options.stop included. In each method, the this value refers to the element item that
calls the selectable (options) method (that is to say, the one with the ui-selectable
CSS class).

The selectable (“action”, params) Method
The selectable ("action", params) method can perform an action on selectable items,
such as authorizing the selection. The action is specified as a string in the first argument
(e.g., "disable" to inhibit the operation). These actions are listed in Table 11-3).

Table 11-3. The selectable (“action”, params) method actions

Action Function

selectable ("disable") Deactivate the selection operation.

selectable ("enable") Reactivate the selection operation.

selectable ("option",
param)

Retrieve the value of the param option. This option corresponds to one of those used
with selectable (options).

selectable ("option",
param, value)

Change the value of the param option. This option corresponds to one of those used
with selectable (options).

electable ("destroy") Remove the management of the selection.

Event Management in the Selection with bind ()
In addition to event methods proposed in the options of the selectable (options)
method, jQuery UI allows us to manage these events using the bind () method. These
events are listed in Table 11-4.

Table 11-4. Events created by jQuery UI

Event Function

selectablestart Same meaning as options.start.

selectablestop Same meaning as options.stop.

selectableselecting Same meaning as options.selecting.

selectableunselecting Same meaning as options.unselecting.

selectableselected Same meaning as options.selected.

selectableunselected Same meaning as options.unselected.

Examples of Using the Selection Mechanism
Let’s apply the information presented in this chapter. Here, we’ll create examples that
incorporate the selection mechanism.

Examples of Using the Selection Mechanism | 161

Displaying the Order of the Events During the Selection
The goal in this example is to display the order of the events described above (shown
in Figure 11-6). For this, we display five selectable paragraphs and a element
containing the name of events. The start event is shown in bold to indicate the begin-
ning of a new sequence:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 p.ui-selecting {
 color : red;
 }
 p.ui-selected {
 background-color : gainsboro;
 }
</style>

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>
 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>
</div>

<hr />

<script>

$("#div1").selectable ({
 start : function (event)
 {
 $("span#result").html ($("span#result").html () + " start");
 },
 stop : function (event)
 {
 $("span#result").html ($("span#result").html () + ", stop");
 },
 selecting : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", selecting");
 },
 unselecting : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", unselecting");
 },
 selected : function (event, ui)
 {

162 | Chapter 11: Selecting Items

 $("span#result").html ($("span#result").html () + ", selected");
 },
 unselected : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", unselected");
 }
});

</script>

At each event, the previous contents of are recovered and the name of the called
method is added.

Figure 11-6. Display after several selection sequences

Preventing the Selection of an Element
By default, all elements of the descendants can be selected. The filter option is a
selector to indicate precisely those we would like users to be able to select. For example,
to select only the first paragraph, write the following:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

Examples of Using the Selection Mechanism | 163

<style type=text/css>
 p.ui-selecting {
 color : red;
 }
 p.ui-selected {
 background-color : gainsboro;
 }
</style>

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>
 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>
</div>

<script>

$("#div1").selectable ({
 filter : "p:first-child"
});

</script>

We can see the display when trying to select all the paragraphs in Figure 11-7. Only
the first paragraph can actually be selected, even if the attempted selection includes five
paragraphs.

Figure 11-7. Preventing the selection of all items except Paragraph 1

164 | Chapter 11: Selecting Items

Conversely, to prevent the selection of the first paragraph (shown in Figure 11-8) use
the following:

<script>

$("#div1").selectable ({
 filter : "p:not(:first-child)"
});

</script>

Inhibiting Clicks to Select an Item
By default, a click on a selectable item is sufficient to select or deselect it. We can inhibit
the ability to select an item by clicking on it, thereby requiring users to draw selection
rectangles around the items they want to select. This is done using the distance option
with a value greater than 0:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 p.ui-selecting {
 color : red;
 }
 p.ui-selected {
 background-color : gainsboro;
 }
</style>

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>
 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>
</div>

<script>

$("#div1").selectable ({
 distance : 1
});

</script>

Paragraphs can now be selected by dragging the mouse in the encompassing <div> (and
moving at least one pixel), so there is no possibility of using a single click to select an
item. To restore this functionality, set options.distance to 0.

Examples of Using the Selection Mechanism | 165

Figure 11-8. Preventing the selection of an element

Managing a Shopping Cart
Here, we’ll build on the shopping cart example from Chapter 10 to allow users to select
one or more books and drag them into the shopping cart. This will provide the oppor-
tunity to select several books for purchase with one mouse move (Figure 11-9).

This program takes into account some differences between Internet Explorer and other
browsers. In particular, a problem arises in Internet Explorer when moving books to
the cart—the move can be interpreted as a new selection sequence. To resolve this
issue, we add the isSelected property (true if the book is selected) to each selected
book. Other browsers use the ui-selected CSS class automatically added by jQuery UI
when selecting an item. With this trick, our program is compatible:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 .basket {
 border : transparent solid 2px;
 }
 .hover {
 border-color : red;
 }
 img.border {
 border : transparent solid 2px;

166 | Chapter 11: Selecting Items

 }
 img.ui-selected {
 border-color : red;
 }
</style>

<h2>Drag your books in the cart! </h2>
<div id=books>

</div>

<hr />

<h2> Cart: </h2>
<div id=shopping>

</div>

<script>

$("div#shopping img.basket").droppable ({
 hoverClass : "hover",
 deactivate : function (event, ui)
 {
 var selector = $.browser.msie ?
 "div#books img[isSelected=true]" :
 "div#books img.ui-selected";
 $(selector).each (function (index)
 {
 $(this).css ({ position:"relative", top:"0px", left:"0px" });
 });
 },
 drop : function (event, ui)
 {
 var selector = $.browser.msie ?
 "div#books img[isSelected=true]" :
 "div#books img.ui-selected";
 $(selector).each (function (index)
 {
 $("div#shopping").append (this);
 $(this).css ({ position:"relative", top:"0px", left:"0px" })
 .removeClass ("ui-selected");
 });
 }
});

$("div#books").selectable ({
 selected : function (event, ui)
 {
 ui.selected.isSelected = true;
 $(ui.selected).draggable ({
 start : function (event)

Examples of Using the Selection Mechanism | 167

 {
 $("div#books").selectable ("disable");
 },
 drag : function (event, ui)
 {
 var selector = $.browser.msie ?
 "div#books img[isSelected=true]" :
 "div#books img.ui-selected";
 $(selector).each (function (index)
 {
 $(this).css ({ position : "relative",
 top : ui.helper.css ("top"),
 left : ui.helper.css ("left") });
 });
 },
 stop : function (event)
 {
 $("div#books").selectable ("enable");
 }
 });
 },
 unselected : function (event, ui)
 {
 ui.unselected.isSelected = false;
 $(ui.unselected).draggable ("destroy");
 }
});

</script>

Figure 11-9. Three books are placed in the cart simultaneously

168 | Chapter 11: Selecting Items

CHAPTER 12

Permutation of Elements in the Page

Moving items to insert them elsewhere in the page has become indispensable in current
web applications. Users move elements visually by dragging with the mouse, and the
system automatically inserts the moved items. Here, everything is handled internally
by jQuery UI, which provides us the mechanism that implements this functionality.

Here we call this operation a permutation, because the moved element leaves its place,
while the destination (the location where the element is deposited) expands to allow
the insertion of the new element.

Basic Principles of Permutation of Elements
Suppose we want to write the HTML code to display a paragraph being moved, as
shown in Figure 12-1. Here, we have five paragraphs. The first is selected using the
mouse and is moved from the list and inserted into a new location.

With jQuery UI, swappable elements must be inserted into a parent element (<div> or
other). All elements in the descendants of this parent are permutable with each other.

To specify that these elements are permutable with the mouse in the HTML page, the
jQuery UI sortable () method manages the encompassing <div> in the <script>:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>
 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>
</div>

<script>

169

$("#div1").sortable ();

</script>

Figure 12-1. Paragraph 1 is being moved

Formatting Content
The sortable () method allows users to move the item selected by the mouse, and adds
new CSS classes to the item being moved.

In Figure 12-2, for example, the sortable () instruction changes the HTML and we
start moving the first paragraph (this code was recovered by Firebug).

The encompassing <div> element is assigned the ui-sortable CSS class, while the para-
graph being moved is assigned the ui-sortable-helper class. Notice that jQuery UI
created a <div> (ui-sortable-placeholder class) corresponding to the place left vacant
when the paragraph was moved. This <div> moves progressively and will be removed
from the page when the mouse button is released.

We can use CSS classes to customize the display. For example, if we change the ui-
sortable-helper CSS class associated with the element that moves, we get a new look
for the item being moved.

Modify these elements in the HTML by adding a <style> tag so that the paragraph
being moved is displayed in red, becoming black at the end of displacement (see Fig-
ure 12-3):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

170 | Chapter 12: Permutation of Elements in the Page

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 p.ui-sortable-helper {
 color : red;
 }
</style>

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>
 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>
</div>

<script>

$("#div1").sortable ();

</script>

The sortable () Method
The sortable () method can be used in two forms:

• $(selector, context).sortable (options)

• $(selector, context).sortable ("action", params)

Figure 12-2. HTML generated by the sortable () method

The sortable () Method | 171

The sortable (options) Method
The sortable (options) method declares that an HTML element contains interchange-
able elements. The options parameter is an object that specifies behavior in the per-
mutation. Among the options available, many are similar to those we studied in the
draggable (options) method (Chapter 10).

Specifying and managing the movable elements

The options listed in Table 12-1 allow you to indicate which items can be moved for
switching. By default, all items that are in the descendants of the elements on which
the sortable (options) method applies are movable. Use these options to inhibit the
movement for all items or only some, or even move a new item created on the fly.
Table 12-2 describes the options for managing the specified movable elements.

Table 12-1. Options for specifying the movable elements

Option Function

options.disabled When set to true, disables the movement of elements. No displacement or deposit of elements will
be considered until these elements are returned enabled (using the sortable ("enable")
instruction).

options.cancel A selector representing the elements for which the displacement is prohibited. Users cannot start
swapping by clicking on any of these items. This allows you to restrict the start list items (those on
which the sortable (options) method applies).

options.helper Indicates that we would like to move an element other than the one the mouse is pointing to.

Figure 12-3. Customized elements

172 | Chapter 12: Permutation of Elements in the Page

Option Function
The "clone" value indicates that the item is duplicated and that it is the new element that moves,
while the original remains in its original position.

With "original" (default) is the initial element that is moved (default operation).

If you specify a callback function, it creates and returns a new element that will be moved. In any
case, if a new item is created (by "clone" or the callback function), it is removed at the end of the
move.

options.appendTo Specifies the element in which the new element created with options.helper will be inserted
during the time of the move. Possible values are a selector (only the first element in the list will be
considered), a DOM element, or the string "parent" (parent element). The default is "parent".

Table 12-2. Options for managing movable elements

Option Function

options.cursor Specifies the cursor CSS property when the element moves. It represents the shape of
the mouse pointer. The possible values are as follows:

• "auto" (default)

• "crosshair" (a cross)

• "default" (an arrow)

• "pointer" (hand)

• "move" (two crossed arrows)

• "e-resize" (expand to the right)

• "ne-resize" (expand up and right)

• "nw-resize" (expand up and left)

• "n-resize" (expand up)

• "se-resize" (expand down and right)

• "sw-resize" (expand down and left)

• "s-resize" (expand down)

• "w-resize" (expand left)

• "text" (pointer to write text)

• "wait" (hourglass)

• "help" (help pointer)

options.delay Delay, in milliseconds, after which the first movement of the mouse is taken into account.
The displacement may begin after that time. The default is 0.

options.distance Number of pixels the mouse must be moved before the displacement is taken into account.
The default is 1 (i.e., a single pixel is enough to indicate that the user wants to move the
item).

options.opacity Opacity of the element moved when moving. The default is 1.

The sortable () Method | 173

Specifying and managing swappable elements

The options listed in Table 12-3 allow you to specify which elements can be swapped.
By default, all elements that are direct children of the element that calls the sortable
(options) method are permutable with each other and therefore cannot be swapped
with elements of another list. The option in Table 12-4 allows you to change this
behavior.

Table 12-3. Options for specifying the swappable elements

Option Function

options.items Selector representing the swappable elements. By default, this is "> *", which repre-
sents all direct children of the element that uses the sortable (options) method.

options.connectWith Selector representing the elements in which we can insert our elements. The current
swappable elements can be deposited to these other elements, but the reverse is not
true (unless the other elements also use options.connectWith allowing the deposit
to these elements). The default value is false (no deposit possible outside the current
element).

options.dropOnEmpty If true, allows depositing items into an empty list. This option can be used only with
options.connectWith representing the other possibly empty list.

Table 12-4. Options for managing swappable elements

Option Function

options.tolerance Indicates how the draggable element should cover the element of deposit for the drop
being accepted. The possible values are "intersect" (the draggable element covers
half of the element of deposit in full) and "pointer" (the mouse has entered the
element of deposit). The default is "intersect".

Managing empty spaces

When you move an item, it leaves an empty space in the list (the size of the item being
moved). jQuery UI places an element of the ui-sortable-placeholder class (a place-
holder) in that location. This element is invisible by default (CSS visibility set to
hidden), but it is possible to customize it using the options in Table 12-5.

Table 12-5. Options for customizing the placeholder

Option Function

options.forcePlaceholderSize When set to true, takes into account the size of the placeholder when an item
is moved. This option is only useful if options.placeholder is initialized.
The default value is false.

options.placeholder CSS class associated with the placeholder, taken into account only if
options.forcePlaceholderSize is true.

174 | Chapter 12: Permutation of Elements in the Page

Managing effects at the end of displacement

Once the item is moved, it moves directly to its final position without delay (default
operation). We can also produce a visual effect when the element is inserted in the new
position (from the location where the mouse was released). This option appears in
Table 12-6.

Table 12-6. Options for managing visual effects

Option Function

options.revert When set to true, produces a displacement effect on insertion of the element to its new position. It
may also indicate of the duration (in milliseconds) for the displacement time. The default value is
false (no displacement effect).

Managing displacement constraints

The options listed in Table 12-7 allow you to specify constraints that apply to the item
being moved. By default, elements can be moved anywhere on the page, following the
movements of the mouse.

Table 12-7. Options for managing displacement constraints

Option Function

options.grid Array [x, y] indicating the number of pixels that the element moves horizontally and
vertically during displacement of the mouse.

options.axis Indicates an axis of movement ("x" is horizontal, "y" is vertical). The default value is
false (no axis is specified, so displacement is possible in all directions).

options.containment Indicates an element within which the displacement takes place. The element will be
represented by a selector (only the first item in the list will be considered), a DOM element,
or the string "parent" (parent element) or "window" (HTML page).

It may also indicate an array [x1, y1, x2, y2] representing a rectangle formed by the points
(x1, y1) and (x2, y2).

Managing window scrolling

You can move an item to locations that are not within the visible portion of the page.
For this, we can scroll the page in the browser window. The options for this are listed
in Table 12-8.

Table 12-8. Options for managing window scrolling

Option Function

options.scroll When set to true (the default), the window will scroll if the item is moved outside
the visible part of the display.

options.scrollSensitivity Indicates how many pixels the mouse must exit the visible area to cause scrolling.
The default is 20 pixels. This option is used only with options.scroll set to true.

options.scrollSpeed Indicates the scrolling speed of the display once the scrolling begins. The default is 20.

The sortable () Method | 175

Managing events on swappable elements

Events associated with the movable elements can manage the beginning and end of the
displacement and the displacement itself. Each of the methods associated with these
events has two parameters: event corresponds to the mouse event and ui is a {item,
helper, placeholder, sender, offset} object whose properties are described in the
following table. The methods are listed in Table 12-9, and the object properties are
listed in Table 12-10.

Table 12-9. Options for managing events on swappable elements

Option Function

options.start The start (event, ui) method is called when the movement starts (the user clicked
on the item and moved the mouse).

options.stop The stop (event, ui) method is called when the move is complete (the mouse button
was released and the moved item is in its final position).

options.beforeStop The beforeStop (event, ui) method is called before options.stop, while the
placeholder is still in the list.

options.sort The sort (event, ui) method is called when the movement continues after the first
move.

options.change The change (event, ui) method is called when an item has swapped its place with
the dragged item. Other permutations can follow.

options.update The update (event, ui) method is called at the end of the displacement (after
options.beforeStop), where the dragged item has swapped its position with another.

Table 12-10. Properties of the ui {item, helper, placeholder, sender, offset} object

Property Function

item jQuery class object associated with the item that was clicked (not necessarily the one that moves.
See options.helper in Table 12-1).

helper jQuery class object associated with the element that actually moves (the element that was clicked
or the one specified in options.helper).

placeholder jQuery class object associated with the element that acts as a placeholder (invisible element that
reserves the place to drop the item by moving gradually).

sender jQuery class object associated with the list in which the item originated. This may be null in some
methods (e.g., it may be null in options.start and later defined in options.activate).

offset In all cases, indicates the {top, left} position of the moved element relative to the edges of the
page.

Other events are triggered when swapping items between different lists. To switch
between different lists, use the connectWith option, which is a selector representing the
elements in which we can insert our elements. This will help us determine that an
element of an external list was introduced into our list, and also that an element from

176 | Chapter 12: Permutation of Elements in the Page

our list was placed in an external list. Table 12-11 lists the options for managing events
that move between lists.

Table 12-11. Options for managing events on the swappable elements of several lists

Option Function

options.receive The receive (event, ui) method is called when an external element is introduced
in the list (it was added to our list).

options.remove The remove (event, ui) method is called when the item is placed in an external
list (it has been removed from our list).

options.activate The activate (event, ui) method is called when movement starts for an element
(from our list or an external list). This option is especially useful to warning you that an
external list has been manipulated.

options.deactivate The deactivate (event, ui) method is called when an element (from our list or
external) has finished moving. This option is especially useful for notification that an
external list has been manipulated.

The sortable (“action”, params) Method
The sortable ("action", params) method can perform an action on the swappable
elements, such as authorizing their displacement. The action is specified as a string in
the first argument (e.g., "disable" to inhibit the operation). These actions are listed in
Table 12-12.

Table 12-12. The sortable (“action”, params) method actions

Action Function

sortable ("disable") Disable swapping of items.

sortable ("enable") Reactivate the permutation of elements.

sortable ("refresh") Refresh the list of items if necessary.

sortable ("serialize") Return a serialized string corresponding to the entire list. This can be used in a URL for an
Ajax request.

sortable ("toArray") Return an array of values for items in the list.

sortable ("option",
param)

Retrieve the value of the param option indicated. This option corresponds to one of those
used with sortable (options).

sortable ("option",
param, value)

Change the value of the param option. This option corresponds to one of those used with
sortable (options).

sortable ("destroy") Remove the management of permutation of elements.

Event Management of the Permutation with bind ()
jQuery UI allows us to handle events using the bind () method, detailed in Table 12-13.

Event Management of the Permutation with bind () | 177

Table 12-13. Events created by jQuery UI

Event Function

sortstart Same meaning as options.start.

sortstop Same meaning as options.stop.

sortbeforestop Same meaning as options.beforeStop.

sort Same meaning as options.sort.

sortchange Same meaning as options.change.

sortupdate Same meaning as options.update.

sortreceive Same meaning as options.receive.

sortremove Same meaning as options.remove.

sortactivate Same meaning as options.activate.

sortdeactivate Same meaning as options.deactivate.

Examples of Using the Permutation Mechanism
Here are some examples of using the permutation mechanism.

Displaying the Order in Which Events Appear
Items can be moved between two lists or within a single list. First, we’ll create a script
that allows users to move items within a list, then we’ll create a script that allows
movement between lists.

When swapping in one list

The goal in this example is to display the order of the events described above, for a
single list of items. For this, we display five swappable paragraphs and a element
containing the name of events. A line break is added after each stop event:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 p.ui-sortable-helper {
 color : red;
 }
</style>

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>

178 | Chapter 12: Permutation of Elements in the Page

 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>
</div>

<hr />

<script>

$("#div1").sortable ({
 revert : 1000,
 start : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + "start");
 },
 stop : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", stop
");
 },
 sort : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", sort");
 },
 change : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", change");
 },
 beforeStop : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", beforeStop");
 },
 update : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", update");
 },
 remove : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", remove");
 },
 receive : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", receive");
 },
 activate : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", activate");
 },
 deactivate : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", deactivate");
 }
});

</script>

Examples of Using the Permutation Mechanism | 179

After two displacements are made for the first paragraph, you will get a display similar
to the one shown in Figure 12-4. The first displacement has not resulted in a permu-
tation, unlike the second (update event). The change events in this second displacement
show that two elements have successively switched places with the first paragraph,
leading to the final position of the element.

In addition, we see that most of the displayed events are sort events, which correspond
to mouse movements.

Figure 12-4. Events triggered when switching

If we remove the display of the sort event, the window display is easier to interpret
(Figure 12-5):

// sort : function (event, ui)
// {
// $("span#result").html ($("span#result").html () + ", sort");
// },

180 | Chapter 12: Permutation of Elements in the Page

Paragraphs moved in this example are in a single list. Let’s see how to allow movement
between two lists.

When switching between two lists

We take the same example as above, but this time, we’ll use two lists. We allow swap-
ping items between two lists, but also in the same list. For simplicity, we only observe
the events from the first list:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 p.ui-sortable-helper {
 color : red;
 }
</style>

<div id=div1>
 <p> Paragraph 1 </p>
 <p> Paragraph 2 </p>
 <p> Paragraph 3 </p>
 <p> Paragraph 4 </p>
 <p> Paragraph 5 </p>

Figure 12-5. The sort events no longer appear in the list

Examples of Using the Permutation Mechanism | 181

</div>

<hr />

<div id=div2>
 <p> Paragraph 11 </p>
 <p> Paragraph 12 </p>
 <p> Paragraph 13 </p>
 <p> Paragraph 14 </p>
 <p> Paragraph 15 </p>
</div>

<hr />

<script>

$("#div1").sortable ({
 revert : 1000,
 connectWith : "#div2",
 start : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + "start");
 },
 stop : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", stop
");
 },
// sort : function (event, ui)
// {
// $("span#result").html ($("span#result").html () + ", sort");
// },
 change : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", change");
 },
 beforeStop : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", beforeStop");
 },
 update : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", update");
 },
 remove : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", remove");
 },
 receive : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", receive");
 },
 activate : function (event, ui)
 {

182 | Chapter 12: Permutation of Elements in the Page

 $("span#result").html ($("span#result").html () + ", activate");
 },
 deactivate : function (event, ui)
 {
 $("span#result").html ($("span#result").html () + ", deactivate");
 }
});

$("#div2").sortable ({
 revert : 1000,
 connectWith : "#div1"
});

</script>

The two lists are connected to each other by means of the connectWith option. We do
not display sort events because there are too many!

Figure 12-6 shows the sequence of events shown when we move the first paragraph in
the second list. The change events were held in the permutations in both the first and
second lists. Notice the remove event after update, showing that the item was removed
from that list. If the second list also observed the events, it would have received the
receive event.

In Figure 12-7, we are moving in the opposite direction. This time, we take the last
element of the second list and move it to the beginning of the first list.

The start and stop events are not received by the first list, but it receives activate and
deactivate. In addition, a single change event is received, followed by receive and
update.

Dropping any Element in the List
In this section, we’ll work with examples that allow you to create and manage the ability
to drop elements in a list.

Inserting images into a list of titles

So far, we have studied only the case where items were swapped between lists. Let’s
look at what happens if you want to insert an item that is not from another list.

Here, we’ll display the titles of some books in a list. This list will contain swappable
elements. Then, in another part of the page, we’ll display the covers of these books (see
Figure 12-8). The goal is to move the covers into the list containing the titles of the
books.

You have to move each image to a book title. Figure 12-9 shows two of the covers
matched with their titles.

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

Examples of Using the Permutation Mechanism | 183

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 h4 {
 font-family : arial;
 font-size : 12px;
 }
 .placeholder {
 height : 80px;
 }
</style>

<div id=titles>
 <h4> Practical CSS & JavaScript </h4>

Figure 12-6. Events triggered when switching between two lists

184 | Chapter 12: Permutation of Elements in the Page

 <h4> Web development with J2EE </h4>
 <h4> Introduction to HTML & CSS </h4>
 <h4> Practical Ruby on Rails </h4>
</div>

<hr />

<h3> Match each cover with a book title! </h3>
<div id=covers>

</div>

Figure 12-7. Events triggered in the permutation of an element of the second list to the first

Examples of Using the Permutation Mechanism | 185

<script>

$("div#covers img").draggable ({
 revert : "invalid",
 connectToSortable : "div#titles"
});

$("div#titles").sortable ({
 placeholder : "placeholder",
 forcePlaceholderSize : true,
 sort : function (event, ui)
 {
 ui.placeholder[0].height = ui.helper[0].height;
 ui.placeholder[0].src = ui.helper[0].src;
 },
 receive : function (event, ui)
 {
 ui.item.draggable ("destroy");
 }
});

</script>

We specify first that each image can be moved (with the draggable () method). We
link each image to the list with the connectToSortable option.

Then the list is identified as switchable (with the sortable () method). We assign a
CSS class to options.placeholder so when an image is moved, the vacated location

Figure 12-8. Associating a book cover with each title in the list

186 | Chapter 12: Permutation of Elements in the Page

retains the height of the image (80 pixels in this case). If you omit this option, you will
have an unsightly operation of the script from of a visual point of view.

The sort () method is called for every mouse movement. It initializes the contents of
the placeholder with the image of the moved book. If you omit it, the image of the book
is not displayed correctly when moving.

The receive () method is used here to inhibit the operation of the draggable () method
on the element that was moved into the list. Indeed, this element is now part of the list,
so the ability to move it is taken into account by the sortable () method.

Adding a visual treatment

When a book is moved to a title, there is no indication to let users know that the chosen
title is correct. Let’s add a treatment to see errors in title and cover matching.

Figure 12-9. The book covers are inserted into the list of titles

Examples of Using the Permutation Mechanism | 187

We will update the script so that when users match the image of a book to a title, the
title appear red only if the match is correct. If the match is incorrect, the title will appear
in black (Figure 12-10). We will use the update event, which allows for treatment when
an item is placed in the list:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 h4 {
 font-family : arial;
 font-size : 12px;
 }
 .placeholder {
 height : 80px;
 }
</style>

<div id=titles>
 <h4 class=javascript> Practical CSS & JavaScript </h4>
 <h4 class=j2ee> Web development with J2EE </h4>
 <h4 class=html> Introduction to HTML & CSS </h4>
 <h4 class=rails> Practical Ruby on Rails </h4>
</div>

<hr />

<h3> Match each cover with a book title! </h3>
<div id=covers>

</div>

<script>

$("div#covers img").draggable ({
 revert : "invalid",
 connectToSortable : "div#titles"
});

$("div#titles").sortable ({
 placeholder : "placeholder",
 forcePlaceholderSize : true,
 sort : function (event, ui)
 {
 ui.placeholder[0].height = ui.helper[0].height;
 ui.placeholder[0].src = ui.helper[0].src;
 },
 receive : function (event, ui)
 {

188 | Chapter 12: Permutation of Elements in the Page

 ui.item.draggable ("destroy");
 },
 update : function (event, ui)
 {
 $("div#titles h4").each (function (index)
 {
 var titleClass = this.className;
 var isSameClass = $(this).next().hasClass (titleClass);
 var isOneImg = $(this).next().next ().length == 0 ||
 !$(this).next().next ()[0].tagName.match (/img/i);
 if (isSameClass && isOneImg) $(this).css ({ "color" : "red" });
 else $(this).css ({ "color" : "black" });
 });
 }
});

</script>

Figure 12-10. Adding a visual treatment to indicate correct matches

Examples of Using the Permutation Mechanism | 189

We check in the update (event, ui) method whether each title is followed by the image
that corresponds to it. For this, we have assigned a CSS class ("html", "javascript",
etc.) to each title that is the same for the corresponding image. It is the role of the
isSameClass variable to check whether the class of the <h4> element corresponding to
the title is the same as the element that follows.

An additional check verifies that not more than one image is associated with a title.
Indeed, two images can be moved onto a title. The verification must indicate an error
if this occurs (the title appears black, not red).

190 | Chapter 12: Permutation of Elements in the Page

CHAPTER 13

Resizing

To provide a full range of possibilities for manipulating objects on the page, jQuery UI
allows us to resize each element of the page.

Basic Principles of Resizing
Suppose we want to write the HTML code to resize the text display on the screen, as
shown in Figure 13-1.

Figure 13-1. Resized text

Here, we have a <p> element containing text (with a border), which can be resized using
the mouse (by dragging the right side or the bottom, or by using the resize icon in the
bottom right corner).

To allow resizing, we create a <p> element for the item we want to resize. All items
displayed are resizable. In addition, we must state the original height or width of the
element (required by Internet Explorer, except when one of them is already known, in
the case of an image, for example).

191

And let’s not forget, of course, to indicate that the <p> element is managed by the jQuery
UI resizable () method so that the resize icon appears at the bottom right corner of
the item:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<p style="border:solid 1px;width:150px">
 A paragraph containing text that resizes!
</p>

<script>

$("p").resizable ();

</script>

Formatting Content
The resizable () method displays an icon in the bottom right of the item to resize. In
addition, it adds new CSS classes to resizable HTML elements.

In Figure 13-2, for example, the jQuery UI changes the HTML following the resizable
() instruction (this code was recovered using the Firebug extension in Firefox).

The <p> element was assigned the ui-resizable CSS class, while three new <div> ele-
ments became part of it, as follows (they all have the ui-resizable-handle CSS class):

• The right side of the element uses the ui-resizable-e CSS class (e indicates East).

• The bottom of the element uses the ui-resizable-s CSS class (s indicates South).

• The icon at the bottom right corner of the resizable element uses the ui-resizable-
se CSS class (se indicates Southeast).

You can use CSS classes of elements to customize the display. For example, if we change
the ui-resizable-e and ui-resizable-s CSS classes, we can prevent scaling on the sides
and force the user to resize using only the icon in the lower right corner. To customize
the display, simply specify a different value for width and height properties of these
elements (width changes the width of the ui-resizable-e element, while height changes
the height of the ui-resizable-s element).

Modify these elements in the HTML by adding a <style> tag:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

192 | Chapter 13: Resizing

<style type=text/css>
 .ui-resizable-e {
 width : 0px;
 }
 .ui-resizable-s {
 height : 0px;
 }
</style>

<p style="border:solid 1px;width:150px">
 A paragraph containing text that resizes!
</p>

<script>

$("p").resizable ();

</script>

This makes it impossible to resize the element other than by using the icon. We will
see in the next section that options allow you to indicate which sides can be resized.

The resizable () Method
The resizable () method can be used under the following two forms:

• $(selector, context).resizable (options)

• $(selector, context).resizable ("action", params)

The resizable (options) Method
The resizable (options) method declares that an HTML element is resizable. The
options parameter is an object that specifies behavior when resizing.

Figure 13-2. HTML generated by the resizable () method

The resizable () Method | 193

Managing resizable elements

We begin with the options to manage the process of resizing (Table 13-1), to indicate
which items to resize (Table 13-2), how to resize (Table 13-3), and specify constraints
(Table 13-4).

Table 13-1. Options for managing resizable elements

Option Function

options.disabled When set to true, disables the resizing mechanism. The mouse no longer resizes elements, until
the mechanism is enabled (using the resizable ("enable") instruction).

options.autoHide Hides the magnification icon, except when the mouse is over the item.

options.delay Delay (in milliseconds) before which the first movement of the mouse is taken into account. The
displacement will begin thereafter. The default is 0.

options.distance Distance (in pixels) the mouse must move for resizing to begin. The default is 1 pixel.

options.grid Array [x, y] indicating the number of pixels that the element expands horizontally and vertically
during movement of the mouse.

Table 13-2. Options for indicating which elements to resize

Option Function

options.alsoResize Selector, jQuery class object, or DOM element representing elements that also resize when resizing
the original object. The corresponding elements can be anywhere on the page. The default value
is false (no other element resizes).

options.cancel Selector indicating non-resizable elements.

Table 13-3. Options for indicating how to resize

Option Function

options.aspectRatio Indicates whether to keep the height and width ratio for the item.

When set to true, the item retains the original ratio of height to width. Otherwise, it
indicates a value corresponding to the ratio of the width to the height. For example, 0.5
(one half) indicates that the item must constantly keep a proportion of 1 in width and 2
in height, so that it is always twice as high as it is wide.

The default value is false (no proportion kept).

options.handles Character string indicating which sides or angles of the element can be resized. The
possible values are: n, e, s, and w for the four sides, and ne, se, nw, and sw for the four
corners. The letters n, s, e, and w represent the four cardinal points (North, South, East,
and West).

The default is "e, s, se", making it possible to resize the right and bottom, as well
as the bottom right corner.

194 | Chapter 13: Resizing

Table 13-4. Options for specifying resizing constraints

Option Function

options.containement Indicates an element within which the resizing will occur. The item will be represented
by a selector (only the first item in the list will be taken into account) or a DOM element,
or the string "parent" (parent element). The default value is false (no constraints).

options.maxHeight Maximum height of the element when resizing. The default is null (no constraints).

options.maxWidth Maximum width of the element when resizing. The default is null (no constraints).

options.minHeight Minimum height of the element when resizing. The default is null (no constraints).

options.minWidth Minimum width of the element when resizing. The default is null (no constraints).

Managing resizing effects

The options listed in Table 13-5 allow you to manage visual effects during resizing,
either by producing an effect or duplicating the resized element.

Table 13-5. Options for managing resizing effects

Option Function

options.animate When set to true, enables a visual effect during resizing when the mouse button is
released. The default value is false (no effect).

options.animateDuration Duration (in milliseconds) of the resizing effect. Only used if options.animate is
true.

options.ghost When set to true, does not show resizing of the element itself during the resizing
operation, but of a less visible ghost element (with a lower opacity). This ghost item will
be deleted when the mouse is released.

The default value is false (the element itself is resized).

options.helper CSS class to style the element to be resized. In this case, a new <div> element is created,
which is the one that is scaled (ui-resizable-helper class), then disappears when
the mouse button is released.

The default value is false (no new <div> element is created).

Managing events on resized elements

Events associated with resizable elements are used to manage the beginning and end
of the resizing as well as the resizing in progress. Each of the methods associated with
these events (listed in Table 13-6) has two parameters: event corresponds to the mouse
event, and ui is a {helper, originalPosition, originalSize, position, size} object
whose properties are described in the Table 13-7.

The resizable () Method | 195

Table 13-6. Options for managing events

Option Function

options.start The start (event, ui) method is called when the mouse starts resizing.

options.stop The stop (event, ui) method is called when the mouse is released. This is the end of the resizing.

options.resize The resize (event, ui) method is called for every mouse movement during resizing.

Table 13-7. Properties of the ui {helper, originalPosition, originalSize, position, size} object

Property Function

helper jQuery class object associated with the element that actually resizes (the element that is clicked,
or one created by jQuery UI if you specify a value in options.helper).

originalPosition A {top, left} object representing the original position of the element.

originalSize A {width, height} object representing the original dimensions of the element.

position A {top, left} object representing the current position of the element.

size A {width, height} object representing the current dimensions of the element.

The resizable (“action”, params) Method
The resizable ("action", params) method can perform an action on the resizable
elements, such as allowing or preventing resizing. The action is specified as a string in
the first argument (e.g., "disable" to inhibit the operation). These actions are listed in
Table 13-8.

Table 13-8. The resizable (action”, params) method actions

Action Function

resizable ("disable") Disable the resizing operation.

resizable ("enable") Reactivate the resizing operation.

resizable ("option",
param)

Retrieve the value of the specified param option. This option corresponds to one of those
used with resizable (options).

resizable ("option",
param, value)

Change the value of the param option. This option corresponds to one of those used
with resizable (options).

resizable ("destroy") Remove the management of resizing.

Handling Events when Resizing with bind ()
In addition to event methods in the options of the resizable (options) method, jQuery
UI allows us to manage these events using the bind () method (listed in Table 13-9).

196 | Chapter 13: Resizing

Table 13-9. Events created by jQuery UI

Event Function

resizestart Same meaning as options.start.

resizestop Same meaning as options.stop.

resize Same meaning as options.resize.

Examples of Using the Resizing Mechanism
Now that you understand how to use the resizing mechanism, let’s look at some resizing
examples.

Displaying Dimensions of the Element When Resizing
We can use the resize event to determine the effect of every mouse movement during
a resizing operation (see Figure 13-3):

Figure 13-3. Displaying element dimensions when resizing

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<p style="background-color:gainsboro;width:150px;">
 Resize me!
</p>

Examples of Using the Resizing Mechanism | 197

<hr />

<script>

$("p").resizable ({
 resize : function (event, ui)
 {
 $("#result").text ("width = " + ui.size.width +
 ", height = " + ui.size.height);
 }
});

</script>

Displaying the Position of the Element When Resizing
The position of the element is normally fixed on the page. However, this position may
change if the element is scaled by its top or left sides. This implies that its top and
left coordinates are then modified, therefore, its position on the page changes. Use
the following to display position coordinates during resizing:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<p style="background-color:gainsboro; width:150px;
 position:absolute;top:100px;left:100px">
 Resize me!
</p>

<hr />

<script>

$("p").resizable ({
 handles : "n, e, s, w, ne, se, nw, sw",
 resize : function (event, ui)
 {
 $("#result").text ("top = " + ui.position.top +
 ", left = " + ui.position.left +
 ", width = " + ui.size.width +
 ", height = " + ui.size.height);
 }
});

</script>

198 | Chapter 13: Resizing

By default, the element is positioned at 100, 100. As we enlarge it by the top and left
sides (in addition to the bottom and right), its position will change (Figure 13-4).

Figure 13-4. Position of the element during resizing

Performing an Animation While Resizing
To produce an animation while resizing, set options.animate to true:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<p style="background-color:gainsboro; width:150px;">
 Resize me!
</p>

<script>

$("p").resizable ({
 animate : true
});

</script>

The element is not immediately resized. The animation occurs only when the mouse
button is released. To view the element in the process of resizing, you can also use the
helper option. It indicates a CSS class that will have the new <div> element that will be
resized and will be removed when the mouse button is released:

Examples of Using the Resizing Mechanism | 199

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 .helper {
 border : dotted 1px red;
 }
</style>

<p style="background-color:gainsboro; width:150px;">
 Resize me!
</p>

<script>

$("p").resizable ({
 animate : true,
 helper : "helper"
});

</script>

The red dotted line (shown in Figure 13-5) is the options.helper class element created
by jQuery UI. It will disappear when the mouse button is released.

Figure 13-5. Aspect of the element being resized

At the end of resizing operation, the red line disappears and the item appears in its new
size (see Figure 13-6).

200 | Chapter 13: Resizing

Figure 13-6. Resized element

Creating a Resizable Text Box
The resizable text box can be on one line or several lines. Here, we’ll create examples
that implement these two possibilities.

Input on a single line

In a form, rather than having input fields of fixed size, why not allow users to resize
themselves if they wish? An example is shown in Figures 13-7 and 13-8. The principle
is (almost) the same as for any other element.

The input field must be inserted into another element that will be the one scaled (here,
a <div> element):

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<p> Resize the input field!</p>

<div style="width:150px;height:20px">
 <input style="background-color:gainsboro; width:100%;"
 value="Resize me!" />
</div>

<script>

$("div").resizable ({
 handles : "e"
});

</script>

Examples of Using the Resizing Mechanism | 201

We indicate the width and height of the <div> element. Only the height property is
mandatory here (if this property is not present, resizing is not enabled in Internet
Explorer). The width property set to 150px prevents the input field from spreading over
the entire width of the page.

The <input> element has a width property of 100%. This keeps the input field at the
same width as the parent element (the <div> element that is resized).

We use the handles option value "e" only, so that expansion can take place only on the
right side, otherwise the item could also be expanded in height.

Figure 13-7. Input field before resizing

Figure 13-8. Input field after resizing

202 | Chapter 13: Resizing

Multi-line input

Rather than resizing a single input field for a single line, let’s enable resizing of a multi-
line input field (a <textarea>). Figure 13-9 shows an example.

The principle is the same as before. We insert the <textarea> into a <div>, which will
be the resized element:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<p> Resize the multiline input field!</p>

<div style="width:150px;height:40px">
 <textarea style="background-color:gainsboro;
 width:99%;height:99%">Resize me!
 </textarea>
</div>

<script>

$("div").resizable ();

</script>

We indicate a height and width of 99% rather than 100% so that the resize icon in the
lower right is not superimposed on the scroll bars.

Figure 13-9. Resizing a multi-line input field

Examples of Using the Resizing Mechanism | 203

CHAPTER 14

Visual Effects in jQuery UI

jQuery supports the use of basic visual effects, including management of the opacity
and height of the elements, as well as the management of new effects using the animate
() method.

jQuery UI also provides the following:

• New visual effects

• Improvement of the animate () method

• The ability to use CSS classes to produce effects

New Visual Effects
In addition to the slideUp, slideDown, slideToggle, fadeIn, fadeOut, fadeTo, show,
hide, and toggle effects available in standard jQuery, jQuery UI offers a range of new
visual effects. All these effects can be used by calling the new effect (effectName,
options, duration, callback) method, which works on jQuery class objects returned
by jQuery ().

The effect (effectName, options, duration, callback) Method
The effect (effectName, options, duration, callback) method is used in the fol-
lowing form:

$(selector, context).effect (effectName, options, duration, callback)

This method allows us to produce the basic visual effects of jQuery UI. The parameters
of the method are listed in Table 14-1 (only the first parameter is mandatory).

205

Table 14-1. The effect () method parameters

Parameter Function

effectName String corresponding to the effect name to use ("blind",
"bounce", etc.).

optionscallback () method called for each element
when the effect is complete for this element. The this
value in the function represents the DOM element for
which the effect is complete.callback () method called
for each element when the effect is complete for this
element. The this value in the function represents the
DOM element for which the effect is complete.

callback () method called for each element when the
effect is complete for this element. The this value in the
function represents the DOM element for which the ef-
fect is complete.callback () method called for each ele-
ment when the effect is complete for this element. The
this value in the function represents the DOM element
for which the effect is complete.

Optional object to specify the behavior of the effect (e.g., "hide" or
"show" in options.mode).

duration Duration of the effect in milliseconds. Values "slow" and
"fast" correspond to periods of 600 and 200 ms. The default du-
ration is 400 ms.

callback Callback function called for each item in the list (items corresponding
to the selector), when the effect is complete for that element. This is
an optional parameter.

The blind Effect
The blind effect can hide or display an item, making it disappear or appear in the
indicated direction. Options for this effect are listed in Table 14-2.

Table 14-2. Options for managing the blind effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "hide".

options.direction The direction ("horizontal" or "vertical") that the element moves to or from when
disappearing or appearing. The default value is "vertical".

In the following example, the first image disappears horizontally, while the second
appears vertically. Figure 14-1 shows the effect in progress, and Figure 14-2 shows the
end result:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

206 | Chapter 14: Visual Effects in jQuery UI

<script>

$("#img1").effect ("blind", { mode : "hide", direction : "horizontal" }, 10000);
$("#img2").effect ("blind", { mode : "show", direction : "vertical" }, 10000);

</script>

Figure 14-1. The blind effect in progress: the first image disappears horizontally and the second
appears vertically

Figure 14-2. The blind effect at completion: the second image has replaced the first, which has
completely disappeared

New Visual Effects | 207

The bounce Effect
The bounce effect makes the element appear to bounce vertically or horizontally as it
appears or disappears. Options for this effect are listed in Table 14-3.

Table 14-3. Options for managing the bounce effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "effect", which means
that only the rebound effect is made, without the appearance or disappearance of the element.

options.direction Direction of the rebound: "up" (the default), "down", "left", or "right".

options.distance Distance (in pixels) covered during each bounce. The default is 20 pixels.

options.times Number of bounces to perform. The default is 5.

The shake Effect
The shake effect makes elements appear to shake vertically or horizontally as they
appear or disappear. Options for this effect are listed in Table 14-4.

Table 14-4. Options for managing the shake effect

Option Function

options.direction Direction of oscillations: "up", "down", "left" (default) or "right".

options.distance Distance (in pixels) covered during each oscillation. The default is 20 pixels.

options.times Number of oscillations during the effect. The default is 3.

The clip Effect
The clip effect shows or hides the element by scrolling horizontally or vertically. Op-
tions for this effect are listed in Table 14-5.

Table 14-5. Options for managing the clip effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "hide".

options.direction Horizontal direction ("horizontal") or vertical direction ("vertical") of the element’s
appearance or disappearance. The default value is "vertical".

In the following example, only the second book is visible, while the first is not (Fig-
ure 14-3). The effect is to remove the second book, while the first appears (Fig-
ure 14-4). At the end of the effect, the first book is the only one displayed (Figure 14-5):

208 | Chapter 14: Visual Effects in jQuery UI

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<script>

$("#img1").effect ("clip", { mode : "show" }, 10000);
$("#img2").effect ("clip", { mode : "hide" }, 10000);

</script>

Figure 14-3. Before the clip effect: only the second book is displayed

Figure 14-4. During the clip effect: the second book is disappearing, while the first appears

New Visual Effects | 209

Figure 14-5. End of effect: only the first book is displayed

The drop Effect
The drop effect shows or hides the item by dragging and lowering its opacity. Options
for this effect are listed in Table 14-6.

Table 14-6. Options for managing the drop effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "hide".

options.direction Direction indicates the direction of movement "up", "down", "left" (default), or "right".

options.distance Distance (in pixels) covered by the element.

Here is an example of using the drop effect. In this example, the first book appears and
the second book disappears. The result is shown in Figure 14-6:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<script>

$("#img1").effect ("drop", { mode : "show" }, 1000);
$("#img2").effect ("drop", { mode : "hide" }, 1000);

</script>

210 | Chapter 14: Visual Effects in jQuery UI

Figure 14-6. The drop effect

The explode Effect
The explode effect makes the element appear or disappear in a burst, as if it is exploding
(see Figure 14-7). The options for this effect are listed in Table 14-7.

Table 14-7. Options for managing the explode effect

Option Function

options.mode Specifies whether you want to display ("show") or hide ("hide") the element. The default value is
"hide".

options.pieces The number of pieces of the burst element. The default is 9.

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<script>

New Visual Effects | 211

$("#img1").effect ("explode", { mode : "show" }, 1000);
$("#img2").effect ("explode", { mode : "hide" }, 1000);

</script>

Figure 14-7. The explode effect

The fold Effect
The fold effect can show or hide the item by progressing horizontally, then vertically
(or vice versa—the order is specified by options.horizFirst). The options for this effect
are listed in Table 14-8

Table 14-8. Options for managing the fold effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "hide".

options.horizFirst When set to true, to the effect starts with horizontal progression, followed by vertical (the
reverse occurs when this option is set to false). The default value is false.

options.size Indicates the number of pixels of the first progression (horizontal or vertical). The default
value is 15 pixels.

212 | Chapter 14: Visual Effects in jQuery UI

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<script>

$("#img1").effect ("fold", { mode : "show", horizFirst : true,
 size : 75 }, 1000);
$("#img2").effect ("fold", { mode : "hide", size : 75 }, 1000);

</script>

The highlight Effect
The highlight effect can show or hide an element by changing its background color,
as shown in Figures 14-8 and 14-9. The options for this effect are listed in Table 14-9.

Table 14-9. Options for managing the highlight effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "show".

options.color Initial background color of the element, which will progress to get to the original background color.

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<p id=p1> Paragraph 1 </p>
<p id=p2> Paragraph 2 </p>

<script>

$("#p1").effect ("highlight", { mode : "hide", color : "black" }, 10000);
$("#p2").effect ("highlight", { mode : "show", color : "black" }, 10000);

</script>

New Visual Effects | 213

Figure 14-8. The highlight effect: the first paragraph disappears, while the second appears

In Figure 14-9, the second paragraph is completely visible and has a white background.

Figure 14-9. End of the highlight effect: paragraph 1 has disappeared to make room for paragraph 2

The puff Effect
The puff effect shows or hides the element by enlarging or shrinking it and changing
its opacity. The options for this effect are listed in Table 14-10.

Table 14-10. Options for managing the puff effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "hide".

options.percent Percentage magnification of the element (if options.mode is "hide"), or narrowing (finally
arriving at its original size, if options.mode is "show"). The default is 150%.

In this example, the first book appears by returning to its normal size, while the second
gets bigger as it disappears. The result is shown in Figure 14-10:

214 | Chapter 14: Visual Effects in jQuery UI

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<script>

$("#img1").effect ("puff", { mode : "show" }, 1000);
$("#img2").effect ("puff", { mode : "hide" }, 1000);

</script>

Figure 14-10. The puff effect

The pulsate Effect
The pulsate effect causes the element to flash. The number of flashes (default 5) is
specified using the options.times option. Each blink corresponds to the duration of
the effect:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

New Visual Effects | 215

<script>

$("#img1").effect ("pulsate", { times : 2 }, 1000);
$("#img2").effect ("pulsate", { times : 5 }, 1000);

</script>

The scale Effect
The scale effect enlarges or shrinks the element. It can also make the element appear
or disappear, depending on the option indicated in options.mode. The options for this
effect are listed in Table 14-11.

Table 14-11. Options for managing the scale effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "effect", (only the
scaling effect is performed, without the appearance or disappearance of the element).

options.direction Indicates the direction of resizing: "horizontal", "vertical", or "both". The default
is "both".

options.from A {width, height} object indicating the original dimensions of the element. By default,
the current size of the element is taken as the original dimensions.

options.percent Percentage to magnify (if greater than 100) or shrink (if less than 100). The default is 0 if
options.mode is "hide", or 100 if options.mode is "show".

options.fade When set to true, changes the opacity of the element when resizing. The default value is
false.

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<script>

$("#img1").effect ("scale", { mode : "show" }, 10000);
$("#img2").effect ("scale", { mode : "hide" }, 10000);

</script>

216 | Chapter 14: Visual Effects in jQuery UI

The size Effect
Rather than expanding in the same proportions as height and width as allowed by the
scale effect, the size effect applies a new height and width to the element. This is done
using options.to with a {width, height} object. If either the width or height property
is not indicated in options.to, the element is not expanded in that direction (width or
height). Options for this effect are listed in Table 14-12.

Table 14-12. Options for managing the size effect

Option Function

options.from A {width, height} object indicating the original dimensions of the element. By default, the current
size of the element is taken as the original dimensions.

options.to A {width, height} object indicating the final dimensions of the element. By default, the current size
of the element is taken as the final dimensions.

For example, to expand our image to 300 pixels in width, keeping a height of 100 pixels
(see Figure 14-11), we write the following code:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<script>

$("#img1").effect ("size", { to : { width : 300 } }, 1000);

</script>

Figure 14-11. The size effect

New Visual Effects | 217

The slide Effect
The slide effect shows or hides the item by sliding it across the screen. Options for this
effect are listed in Table 14-13.

Table 14-13. Options for managing the slide effect

Option Function

options.mode Displays ("show") or hides ("hide") the element. The default value is "hide".

options.direction Indicates the direction of movement: "up", "down", "left", (default) or "right".

options.distance Distance (in pixels) covered by the element. The default is the height of the element (if
options.direction is "up" or "down") or the width of the element (if options.direc
tion is "left" or "right").

For example, to display the first book while making disappear the second, we write the
following code:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<script>

$("#img1").effect ("slide", { mode : "show" }, 10000);
$("#img2").effect ("slide", { mode : "hide" }, 10000);

</script>

The show (), hide (), and toggle () Methods
The above effects use the mode option to hide ("hide") or display ("show") the element.

Rather than specifying this option in the options parameter, jQuery UI allows us to
specify it using the show () or hide () methods. As for the toggle () method, it toggles
the show () or hide () methods depending on whether the element is hidden or not.

Use the following to display an item using the indicated effect:

$(selector, context).show (effectName, options, duration, callback);

Use the following to hide an item using the indicated effect:

$(selector, context).hide (effectName, options, duration, callback);

Use the following to change between showing and hiding the indicated effect:

$(selector, context).toggle (effectName, options, duration, callback);

218 | Chapter 14: Visual Effects in jQuery UI

For example, let’s use these methods with the slide effect instead of the effect ()
method that we used before. We create a Toggle button, which, when clicked, shows
or hides the element by using the slide effect (see Figure 14-12).

Figure 14-12. Using the toggle () method

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<button onclick=toggle()>Toggle </button>

<script>

function toggle ()
{
 $("#img1").toggle ("slide", 10000);
 $("#img2").toggle ("slide", 10000);
}

</script>

The show (), hide (), and toggle () Methods | 219

The animate () method Improved by jQuery UI
The jQuery animate () method, which allows visual effects by changing CSS properties,
has a number of limitations on CSS properties associated with the color and easing
options (setting progression in the effect). Thanks to jQuery UI, it is possible to im-
plement improved effects.

CSS Properties for Managing Colors
Unlike the jQuery animate () method, jQuery UI allows the use of color CSS properties
such as color, background-color, border-color, etc.

In the following example, we want to create an effect to gradually change the back-
ground and character colors of two paragraphs: initially in black letters on a white
background (Figure 14-13), the elements gradually change into white characters
(color: "white") on a black background ("background-color": "black"). Fig-
ure 14-14 shows this effect in progress, and the final result is shown in Figure 14-15:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<p> Paragraph 1 </p>
<p> Paragraph 2 </p>

<script>

$("p").animate ({
 "background-color" : "black",
 color : "white"
}, 10000);

</script>

Figure 14-13. The two paragraphs before applying the effect

220 | Chapter 14: Visual Effects in jQuery UI

Figure 14-14. Changing colors with the animate () method: intermediate step

Figure 14-15. Changing colors with the animate () method: final result

New Values for the easing Option
The jQuery animate () method supports the linear and swing values for the easing
option. Remember that this option specifies how to progress into the effect: faster at
first, faster at the end, and so on.

The new values of the easing option are shown in Figures 14-16 and 14-17 provided
on the jQuery UI official site (http://jqueryui.com/docs/effect/easing). The curve allows
you to view how to progress in the effect.

Producing Effects with CSS Classes
jQuery methods for managing CSS classes have been improved in jQuery UI to manage
the visual effects.

Producing Effects with CSS Classes | 221

http://jqueryui.com/docs/effect/easing

Figure 14-16. Values for the easing option (1)

The addClass (), removeClass (), and toggleClass () Improved Methods
jQuery UI has also improved the addClass (), removeClass (), and toggleClass ()
methods provided by jQuery. The options for these classes are listed in Table 14-14.

The new form of the addClass () method is:

$(selector, context).addClass (className, duration, easing, callback);

The new form of the removeClass () method is:

$(selector, context).removeClass (className, duration, easing, callback);

The new form of the toggleClass () method is:

$(selector, context).toggleClass (className, addOrRemove, duration,
 easing, callback);

222 | Chapter 14: Visual Effects in jQuery UI

Figure 14-17. Values for the easing option (2)

Table 14-14. The toggleClass () method parameters

Parameter Function

className String containing one or more CSS classes (separated by spaces).

duration Indicates the number of milliseconds of the effect. A value of 0 takes the element directly in the new style,
without progressivity.

easing Indicates the way to progress in the effect.

callback callback () method called for each element when the effect is complete for this element. This value in
the function represents the DOM element for which the effect is complete.

addOrRemove Optional Boolean indicating whether to add the CSS class (if true) or delete it (if false). If not specified,
the CSS is removed if present.

The switchClass () Method
In addition to the improvement of the addClass (), removeClass (), and toggleClass
() methods, jQuery UI includes a new switchClass () method to move from one CSS
class to another.

Producing Effects with CSS Classes | 223

The switchClass () method has the following form:

$(selector, context). switchClass (classNameRemoved,classNameAdded, duration,
 easing, callback);

Example of Using the toggleClass () Method
Here is an example of using toggleClass () method. The Toggle button allows you to
add or remove a CSS class (here, class1) on each paragraph by producing an effect.
Once the new style is applied (after the first click), click the button again to restore the
original style (Figures 14-18 and 14-19).

The CSS border-style property is not scalable, and it is not integrated into the CSS class:

<script src = jquery.js></script>
<script src = jqueryui/js/jquery-ui-1.8.16.custom.min.js></script>

<link rel=stylesheet type=text/css
 href=jqueryui/css/smoothness/jquery-ui-1.8.16.custom.css />

<style type=text/css>
 .class1 {
 border-width : 10px;
 border-color : red;
 background-color : black;
 color : white;
 }
</style>

<button onclick=toggle()> Toggle </button>

<p style=border-style:solid> Paragraph 1 </p>
<p style=border-style:solid> Paragraph 2 </p>

<script>

function toggle ()
{
 $("p").toggleClass ("class1", 1000);
}

</script>

224 | Chapter 14: Visual Effects in jQuery UI

Figure 14-18. Using the toggleClass () method: before clicking the Toggle button

Figure 14-19. Using the toggleClass () method: after clicking the Toggle button

Producing Effects with CSS Classes | 225

About the Author
Eric Sarrion has written about Rails, HTML and CSS, J2EE, and JavaScript for O’Reilly
France. He manages a small training and development company.

	Table of Contents
	Preface
	Who Should Read This Book
	Structure of the Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to jQuery UI
	jQuery UI Installation
	Overview of jQuery UI
	What Is a CSS Theme?
	Which Files Should We Include in Our HTML Pages?
	Uncompressed Files
	JavaScript files
	CSS files
	Sample HTML page including uncompressed files

	Compressed Files
	JavaScript files
	CSS files
	Sample HTML page including compressed files

	Change the CSS Theme
	And Now?

	Chapter 2. Tabs
	Basic Principles of Tabs
	Formatting Content
	The tabs () Method
	The tabs (options) Method
	Tab appearance and behavior
	Managing events associated with tabs

	The tabs (“action”, params) Method

	The bind () Method
	Examples of Using Tabs
	Dynamic Creation of Tabs
	Modifying the Contents of a Tab Using Ajax
	Transmitting the Information to the Server via Ajax
	Using the Tabs add Method
	Using the tabsadd Event

	Chapter 3. Accordion Menus
	Basic Principles of Accordion Menus
	Formatting Content
	The accordion () Method
	The accordion (options) Method
	Options for managing accordion menus
	Managing the height of the menu contents
	Managing events related to menus

	The accordion (“action”, params) Method

	Event Management in Accordion Menus with bind ()
	Examples of Using Accordion Menus
	Opening Any Menu
	Loading the Contents of a Menu with Ajax: Using options
	Loading the contents of a menu with Ajax: Using accordionchange

	Chapter 4. Dialog Boxes
	Basic Principles of Dialog Boxes
	Formatting Content
	The dialog () Method
	The dialog (options) Method
	Managing the visual effects on the dialog box
	Managing the behavior of the dialog box
	Managing events in the dialog box

	The dialog (“action”, params) Method

	Event Handling in Dialog Boxes with bind ()
	Examples of Using Dialog Boxes
	Opening and Closing a Dialog Box
	Applying an Effect When Opening or Closing the Dialog Box
	Verifying the Closure of the Dialog Box
	Hiding the Close Button
	Inserting Buttons in the Dialog Box
	Inserting Content Using Ajax
	Changing the Behavior of a Dialog Box with Effects

	Chapter 5. Buttons
	Basic Principles of Buttons
	Formatting Content
	The button () Method
	The button (options) Method
	The button (“action”, params) Method

	Event Handling on Buttons with bind ()
	Radio Buttons
	Displaying Radio Buttons
	Improving the Display with buttonset ()

	Checkboxes
	Displaying Checkboxes
	Improving the Display with buttonset ()

	Examples of Using Buttons
	Displaying Icons in Buttons
	Creating a Calculator
	Basic program
	Improving the program

	Chapter 6. Progress Bars
	Basic Principles of Progress Bars
	Formatting Content
	The progressbar () Method
	The progressbar (options) Method
	The progressbar (“action”, params) Method

	Handling Events in Progress Bars with bind ()
	Examples of Using Progress Bars
	Incrementing a Progress Bar
	Performing Processing at Different Stages of Completion

	Chapter 7. Sliders
	Basic Principles of Sliders
	Formatting Content
	The slider () Method
	The slider (options) Method
	Managing the appearance and behavior of sliders
	Managing the values of cursors
	Managing events on the slider

	The slider (“action”, params) Method

	Event Management on the Sliders with bind ()
	Examples of Using Sliders
	Displaying the Value of One Indicator
	Displaying the Values of Two Indicators
	Adjusting the Opacity of an Image Using a Slider

	Chapter 8. Datepickers
	Basic Principles of Datepickers
	Formatting Content
	The datepicker () Method
	The datepicker (options) Method
	Managing the appearance and visual effects associated with the calendar
	Internationalization options
	Managing date selection
	Managing events on the calendar

	The datepicker (“action”, params) Method

	Examples of Using Datepickers
	Displaying a Calendar in Another Language
	Displaying Multiple Months in the Calendar
	Displaying a Static Calendar
	Indicating Minimum and Maximum Dates
	Preventing the Selection of Specific Dates
	Preselecting Any Date
	Using options.defaultDate
	Using datepicker (“setDate”, date)
	Special case of dates in foreign formats

	Performing an Ajax Request When Selecting a Date

	Chapter 9. Autocompletion
	Basic Principles of Autocompletion
	Formatting Content
	The autocomplete () Method
	The autocomplete (options) Method
	Managing autocompletion
	Managing events in the list of suggestions

	The autocomplete (“action”, params) Method

	Event Management on the List of Suggestions with bind ()
	Examples of Using the Autocompletion Mechanism
	Specifying the Width of the List of Suggestions
	Displaying a List of Suggestions at the Opening of the HTML Page
	Displaying a List of Suggestions at the Entry of the Cursor in the Input Field
	Producing an Effect on the Appearance of the List of Suggestions
	Dynamically Creating a List of Suggestions
	Dynamically Creating a List of Suggestions Based on the Input Data
	Inserting Images in the List of Suggestions

	Chapter 10. Drag-and-Drop
	The draggable () Method
	The draggable (options) Method
	Specifying the movable elements
	Managing element movement
	Managing the effect at the end of displacement
	Managing displacement constraints
	Managing window scroll
	Managing movable element events

	The draggable (“action”, params) Method

	Event Management on the Moved Elements with bind ()
	Examples of Using Drag Functionality
	Carrying Out a Treatment When Moving
	Imposing Limits on Displacement
	Constraining the displacement to a given space
	Constraining the displacement horizontally or vertically

	Moving an Object by Duplicating

	The droppable () Method
	The droppable (options) Method
	Managing the behavior of the elements of deposit
	Indicating which elements can be dropped
	Managing the appearance of elements of deposit
	Managing events on the elements of deposit

	The droppable (“action”, params) Method

	Event Management on the Elements of Deposit with bind ()
	Examples of Using the Drop Functionality: A Shopping Cart
	Creating a Shopping Cart with Drag-and-Drop
	Adding a Visual Effect to Shopping Cart Deposits
	Removing an Item from the Cart

	Chapter 11. Selecting Items
	Basic Principles of Selecting Items
	Formatting Content
	The selectable () Method
	The selectable (options) Method
	Managing selected items
	Managing events on selected items

	The selectable (“action”, params) Method

	Event Management in the Selection with bind ()
	Examples of Using the Selection Mechanism
	Displaying the Order of the Events During the Selection
	Preventing the Selection of an Element
	Inhibiting Clicks to Select an Item
	Managing a Shopping Cart

	Chapter 12. Permutation of Elements in the Page
	Basic Principles of Permutation of Elements
	Formatting Content
	The sortable () Method
	The sortable (options) Method
	Specifying and managing the movable elements
	Specifying and managing swappable elements
	Managing empty spaces
	Managing effects at the end of displacement
	Managing displacement constraints
	Managing window scrolling
	Managing events on swappable elements

	The sortable (“action”, params) Method

	Event Management of the Permutation with bind ()
	Examples of Using the Permutation Mechanism
	Displaying the Order in Which Events Appear
	When swapping in one list
	When switching between two lists

	Dropping any Element in the List
	Inserting images into a list of titles
	Adding a visual treatment

	Chapter 13. Resizing
	Basic Principles of Resizing
	Formatting Content
	The resizable () Method
	The resizable (options) Method
	Managing resizable elements
	Managing resizing effects
	Managing events on resized elements

	The resizable (“action”, params) Method

	Handling Events when Resizing with bind ()
	Examples of Using the Resizing Mechanism
	Displaying Dimensions of the Element When Resizing
	Displaying the Position of the Element When Resizing
	Performing an Animation While Resizing
	Creating a Resizable Text Box
	Input on a single line
	Multi-line input

	Chapter 14. Visual Effects in jQuery UI
	New Visual Effects
	The effect (effectName, options, duration, callback) Method
	The blind Effect
	The bounce Effect
	The shake Effect
	The clip Effect
	The drop Effect
	The explode Effect
	The fold Effect
	The highlight Effect
	The puff Effect
	The pulsate Effect
	The scale Effect
	The size Effect
	The slide Effect

	The show (), hide (), and toggle () Methods
	The animate () method Improved by jQuery UI
	CSS Properties for Managing Colors
	New Values for the easing Option

	Producing Effects with CSS Classes
	The addClass (), removeClass (), and toggleClass () Improved Methods
	The switchClass () Method
	Example of Using the toggleClass () Method

