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Preface

Probably I ought to explain why one more book on numerical methods can
be useful. Without any doubt, there are many quite good and excellent books
on the subject. But I know definitely that I did not realize this when I was
a student. In this book, my first desire was to present those lectures that I
wished I would have heard when I was a student.

Besides, in spite of the profusion of textbooks, introductory courses, and
monographs on numerical methods, some of them are too elementary, some
are too difficult, some are far too overwhelmed with applications, and most of
them are too lengthy for those who want to see the whole picture in a short
time.

I hope that the brevity of the course left me no chance to obscure the
beauty and depth of mathematical ideas behind the theory and methods of
numerical analysis.

I am convinced that such a book should be very concise indeed. It should
be thoroughly structured, giving information in short sections which, ideally,
are a half-page in length. Equally important, the book should not give an
impression that nothing is left to work on in this field. Any time it becomes
possible to say something about modern development and recent results, I do
try to find time and place for this.

Still, I do not promise easyreading. This book is addressed, first, to those
who study mathematics. Despite this , it is written so that it can be read by
students majoring in physics and mathematics, and I believe it can be useful
for advanced readers and researchers providing them with new findings and a
new vision of the basic framework.

Somebody might remark that there is no excuse for brevity in the list
of references at the end of this book. I could only agree and beg not to be
blamed for this. I included in the list only the books that I felt influenced
me most directly. Several imposing papers are also mentioned in the footnotes.
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The book contains, in fact, a concise and closed exposition of the lectures
given by the author to the 2-3 year students of the Chair of Mathematical
Modelling of Physical Processes of the Faculty of Problems of Physics and
Energetics of the Moscow Institute of Physics and Technology.

To conclude the preface, I get to its main purpose, to express my thanks.
Above all, I am grateful to V. V. Voevodin, my first teacher who had inspired
me by his way of doing science. His advice and encouragement were always
of great importance to me.

Special thanks go to S. A. Goreinov and N. L. Zamarashkin. They were
the first readers and found many opportunities to share with me their remarks
and impressions.

It is my pleasure also to express my gratitude to G. 1. Marchuk for sug­
gesting these lectures.

December 1996 Eugene Tyrtyshnikov
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Lecture 1

1.1 Metric space

For various mathematical objects, we want to become aware how to compute
them. However, any algorithm produces no more than some other objects
which, as we hope, are "close" to the ones in question. Thus , we need to have
a rigorous definition of "closeness" for different objects .

Generally, this can be done with the help of a "metric" (or "distance").
Let M be a nonempty set and let p(x,y) be a nonnegative function defined
for all x , y E M and enjoying the following properties:

(1) p(x,y)~o Vx ,yEM;
p(x ,y) =0 ¢:> x = y;

(2) p(x,y) = p(y,x) Vx,y E M (symmetry);

(3) p(x, y) ::::; p(x, y) + p(y, z) Vx ,y, z E M (triangle inequality) .

Such a function p(x, y) is called the metric, or distance (between z and y) ,
and M is termed the metric space in this case.

A very familiar example of the metric space: M is the set of all real
numbers and p(x , y) == Ix - yl.

Another instructive example: M is an arbitrary nonempty set; p(x, y) =0
for x = y and 1 for x f; y.

1.2 Some useful definitions

A sequence Xn E M is called convergent if 3 x EM: lim p(xn, x) = O. It is
n-+oo

easy to prove that such a point x is always unique; x is called the limit for
xn . The notation: x = lim xn .

n-+oo
A sequence Xn E M is said to be Cauchy sequence if

Vc> 0 3N: n,m ~ N =} p(xn,xm ) ::::; c.

A metric space M is termed complete if any Cauchy sequence in it is
convergent.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997



2 Lecture 1

A set C c M is referred to as closed if for any convergent sequence Xn E C
its limit belongs to C.

A closed set C c M is called compact if for any sequence in it there is a
subsequence that is convergent.

A set B(ajr) :: {x EM : p(x, a) < r} is referred to as an open ball with
the center at point a and radius r, A set B(ajr):: {x EM: p(x, a) ~ r} is
called a closed ball.

A set 0 C M is called open if any point x is included therein together
with some open ball B(x, r).

A set 8 c M is said to be bounded if the whole of it belongs to some ball.
A set 8 1 is dense in a set 8 2 if for every point x E 82 there is a sequence

of points from 8 1 convergent to x.
A numeric function f(x) ,x E M, is termed continuousat a point Xo iffor

any sequence Xn :f. Xo such that Xo = lim xn, f(xo) = lim f(xn).
n-tO n-too

1.3 Nested balls

Theorem 1.3.1 Given closed balls B(an,rn) in a complete metric space M,
assume that

(1) B(aljrI) ::> B(a2jr2) ::> ...

(2) lim r n = O.
n-too

00 _

Then the intersection of all these balls P = n B(an, rn) is not empty and
n=1

contains exactly one point.

The requirement (2) is important. To show this, consider an "exotic"
metric space as follows: M = {1, 2, ...}, and

{

0,

p(m, n) = 1 + max (..1- .1.)
2m ' 2n ,

m=nj

m:f. n.

It is not difficult to verify that p is a metric indeed (the properties (1)-(3) in
Section 1.1 are fulfilled). Moreover, we have a complete metric space . At the
same time, the balls

B(1, 1+~) ::> B(2, l+b) ::> B(3, 1+~) ::> ...

have no point in common.

1.4 N ormed space
Assume that V is a real or complex vector space on which a nonnegative
function f (x) is defined so that
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(1) f(x) ~ 0 Vx E Vj f(x) = 0 ¢:} x = 0;

(2) f(ox) = lolf(x), 0 E R (or C), z E Vj

(2) f(x + y) ~ f(x) + f(y) (the triangle inequality).

Such a function f(x) is called the norm of the vector x while V is called the
normed space. The notation: IIxll == f(x).

For any normed space , the metric is introduced as follows: p(x, y) ==
IIx - yll. The convergence and other notions considered in Section 1.2 are
understood in the sense of this metric.

A complete normed space is called the Banach space.

1.5 Popular vector norms

Let V =Cn (or R n
) . IT p ~ 1 and x = [Xl, . . . , xn { , then assume that

(the p-norm of x) .

Theorem 1.5.1 IIxllp is a norm.

The properties (1) and (2) of the norm are evident. The property (3) is
given by the Minkowski inequality, which will be proven below.

Lemma 1.5.1 Assume that numbers p, q make up the Holder pair, i.e.,

p, q ~ 1;
1 1
-+-=1.
P q

Then for all a, b ~ 0,
aP bq

ab< -+-.- p q

We can prove this easily using the concavity of the logarithmic function.
The concavity means that for all u, v > 0,

o log u + f3 log v ~ log (ou + f3v),

"10, f3 ~ 0, 0 + f3 = 1.

Theorem 1.5.2 (The HOlder inequality). Assume that p, q are an arbitrary
Holder pair. Then for any vectors x = [Xl ,. . . ,xn]T, y = [YI ' . .. ,YnJT ,
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Proof. If x = 0 and Y = 0, then the inequality is trivial. Therefore, consider
nonzero vectors x, Y and set

Then IIxllp= lIyllq =1. According to Lemma 1.5.1,

Ixd IYil ~ IXil
P
+ IYil

q,
i = 1, ... , n.

p q

Adding up these inequalities we obtain

Theorem 1.5.3 (The Minkowski inequality)

IIx + yllp ~ IIxllp+ lIyllp·

Proof.

n n

IIx + yll~ =L IXi +YilP~ L IXi +YiIP-
1 (Ixil + Iyd)

i=l i= l

(next we use the HOlder inequality)

.1.

~ (t (IXi +YiIP-1)q) q (lIxllp+ lIyllp) ·

It remains to recall that (p - l)q =p. 0

The following norm is also regarded as a p-norm:

It is easy to prove that this is a norm, indeed, and that

IIxlloo = lim IIxllp.
p-+oo
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The p-norms with p = 1,2 and 00 are most widespread. Here is what the
unit spheres for these norms look like (n = 2):

-1

p= co

p=2

p=1

Some people call the l-norm octahedral and the oo-norm cubic. Can you
explain why?

1.6 Matrix norms

If we take up all matrices of the same size, we can treat them as a finite­
dimensional vector space. Consequently, a norm for matrices can be brought
in through any vector norm. By a matrix norm, however, we mean something
more than this.

Assume that any matrix A is endowed with a number IIAII. Then IIAII is
called the matrix norm if

(1) IIAII is a vector norm on any space of matrices of the same size;

(2) for any matrices A and B that can be multiplied,

IIABII ::; IIAIIIIBIl (the submultiplicative property) .

One of the most important examples of the matrix norm is the Frobenius
norm:

A E ([) m xn .

Proposition. The Frobenius norm possesses the submultiplicative property.

Proof. Let
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Then
AB = alb[ + ... + anb~.

From the triangle inequality,

Lecture 1

IIABIIF < lIalbfllF + + lIanb~IIF

= IIal1l211bdl2+ + lIanll211bnll2

< C~ lIaill~) ! (L~=l IIbilln ! = IIAIIFIIBIIF. 0

1.7 Equivalent norms

Norms II · 11. and II· II•• on the same vector space V are called equivalent if
there exist CI, C2 > 0 such that

't/xE V.

Clearly, the equivalent norms are of equal worth from the standpoint of conver­
gence. The next theorem is the fundamental fact valid for finite-dimensional
spaces.

Theorem 1.7.1 Any two norms on a finite-dimensional space are equivalent.

Proof. First of all, we need the following basic facts:

1) The compactness of the unit sphere Sn = {x E lRn
: IIxII2 = I} with

respect to the 2-norm.

2) The continuity of any norm 11 ·11. with respect to the 2-norm.

3) The Weierstrass theorem stating that any function continuous on a com­
pact set is bounded.

The compactness of the unit sphere. Consider a sequence

x(k) = [x~k), . . . , x~k)f E Sn.

The sequence of the first coordinates x~k) belongs to the interval [-1,1], and
hence it possesses a convergent subsequence: x~kd -+ Xl. Consider the sub­
sequence x(kd and the second coordinates x~kd . Let X~k2) -+ X2. Further,
consider the subsequence x(k2), the third coordinates x~k2) , and so on. In the
end we shall have a sequence of the vectors x(kn ) such that all its coordinate
sequences are convergent: x~kn) -+ Xi.

Thus, if X == [Xl, .. . , xnV, then
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=

The continuity of a norm. Assume that x(k) ~ x, i.e., Ilx(k) - xl1 2~ o.
We want to prove that Ilx(k)II. ~ IIxll•. Denote by el, ... , en the columns of
the unity matrix. Then

Illx(k)ll. -lIxll·1 < Ilx(k)-xll.
n

~ L Hk) - xillieili.
• i=l

1

< Ilx(k) - xl12(t lIeill~) 2 ~ O.

The Weierstrass theorem. Assume that M is a compact set and a numeric
function f(x) is continuous at any of its points . Assume that f(x) is not
bounded. Then there exists a subsequence x(k) such that If(x(k»)1 ~ k. Due
to the compactness property there is a subsequence that converges: xk' ~ x.
From the continuity, f (x(k'») ~ f(x) . However, this cannot be true because

for all k. Hence, the function f(x) is bounded.
Now, the function IIxli. is continuous on the compact set Sn with re­

spect to the 2-norm and thence is bounded, i.e., for some C2 > 0 IIxll* ~
C2. The function 1 / IIxll* is continuous on Sn as well; hence, for some
Cl > 0 1 / IIxll* ~ cil. Therefore, for all x E s-;

Cl ~ IIxll* ~ C2·

If x ¢ Sn, x =P 0, then x / IIxll2 E Sn' Thus,

We have proven that the norm 11 ·11. is equivalent to the norm 11 ·112. It follows
immediately that II . II. is equivalent to any other norm. 0

1.8 Operator norms

Let the norm 11 ·11. be defined on ({)m while 11·11.. on ({)n. Then for A E ({) mxn

we set
IIAxll*IIAII... =max-
II
-
II
- ·

:1:#0 x ..

Prove that the maximum exists!'

1Remember the results from the previous section .
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It is not difficult to check that IIAII••• is an operator norm on 0:: rn xn. It
is called the operator norm induced by the vector norms II . II. and II . II ••.

For an operator norm, the following compatibility property holds:

which obviously follows from the definition of IIAII.**.

By definition,
_ IIAxllp

IIAlip =max -11-11-'x#O x p

This is an operator norm. Actually, if AB '" 0 then

IIABlip = max IIllBiilp ~xjJp
x#O ,Bx#O Bx p ~

< #~~#O 1I11~il'lp . ~;t III~il~P ~ IIAllpIlBIIp- 0

Pay attention to some useful formulas (prove them!):

A E o::rnxn .

We shall see shortly that IIAII~ is the maximal eigenvalue of the matrix
A · A. That is why the operator norm IIAII2 is often referred to as the spectral
norm.

Exercises

1. Devise a metric for which the set of all real numbers is not a Banach
space.

2. Consider a sequence of nested closed balls in a Banach space. Prove
that if their radii tend to zero, then all the balls have exactly one point
in common.

3. Show that a sequence of open nested balls can have an empty intersec­
tion, even if their radii tend to zero.

4. A norm is called absolute if Ilxll = Illxlll, where Ixl is the vector made
up of the absolute values of the components of the vector x . Produce a
norm that is not absolute.

5. Prove that the operator norm is a norm.
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6. Prove the formulas for IIAlh and IIAlioo from Section 1.6.

7. Let the norm II . II be given on (Jjn. The operator norm

9

is called a dual norm for 11 ·11. Prove that for the p-norm, the dual norm
is the q-norm, where p and q are the Holder pair.

8. Suppose that a matrix A E (Jjnxn preserves the p-norm:

Prove that this holds if and only if AT preserves the q-norm:

(p and q are the Holder pair) .

9. Prove that the Frobenius norm cannot be an operator norm.

10. P. Groen built up an example of a submultiplicative matrix norm that
takes the value 1 at the unity matrix but is not an operator norm:

Prove it!

11. Produce an example of norms that are not equivalent.

12. Prove that the ball B = B(O; 1) for a norm on IRn possessesthe following
properties:

(1) B is a compact set with respect th the 2-normj

(2) if x, y E B and 0 ~ 0: ~ 1, then o:x+ (1 - o:)y E B (concavity) ;

(3) if x E B and 10:1 ~ 1, then o:x E B ;

(4) 3r>0: {y: IlyIl2<r}cB.

Prove that for an arbitrary set B C IRn enjoying the properties (1)-(4),
there exists a norm for which

B = B(O,I).

13. Prove that if A is a submatrix in B, then IIAllp < IIBllp.
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14. Can the norm of a submatrix be greater than the norm of the whole
matrix?

15. The elements of A and B are nonnegative, and au ~ bi j for all i, j. Is
it true that IIAllp ~ IIBllp ?

16. Suppose f(A) is a norm on ([)nxn not necessary enjoying the submulti­
plicative property. Prove that a number c exists such that !IAII == c/(A)
acquires the latter property.



Lecture 2

2.1 Scalar product

Assume that V is a real or complex vector space on which, for any pair of
vectors x and y, a number (x, y) is defined so that

(1) (x,x) ~ 0 Yx; (x,x) =O¢>x=Oj

(2) (x,y) = (y,x) j

(3) (o:x ,y) =o:(x,y), 0: is a number;

(4) (x + y, z) = (x, z) + (y, z).

Then (x, y) is called the scalar product of the vectors x and y.
A real space with a scalar product is called Euclidean. A complex space

with a scalar product is called unitary.
If (x, y) = 0, then the vectors are called orthogonal. Assume that V is of

dimension n, and let Xi and Yi be the coordinates of the vectors z and y in
their expansions in some basis of V. If (x, y) =Xliii +.. .+xnYn for all x and
y, then the basis is called orthonormal.

2.2 Length of a vector

Given a scalar product, we can naturally define the length of a vector x as
(x , x )1/2. Prove that the length of a vector is a vector norm. It is talked about
as the norm induced by the scalar product.

If IIxll == (x, X)1/2, then the parallelogram identity is true :

It follows immediately that there are some norms not induced by any scalar
product (for instance, IIxlh).

Theorem 2.2.1 A norm on a vector space is induced by a scalar product if
and only if it is subject to the parallelogram identity.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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Proof. For simplicity, consider a real space. Set

Lecture 2

and try to prove that this is a scalar product. Properties (1) and (2) in
Section 2.1 are evident. Property (4) is equivalent to the following identity:

IIx + Y+ zll2 - IIx + yll2 - IIzll2

= (lix + zll2 - IIxl12- IIz112) + (lly + zW -lIyll2 - IIz112) .

To derive it , we apply the parallelogram identity twice:

IIx +Y + 2z112= II (x + Y + z) + zll2 =211x + y + zll2 + 211z112- IIx + yll2 j

IIx +Y + 2z112= II (x + z) + (y + z)1I2=211x + zll2 + 211y + zll2 -lix - yW.

From these two equations we find that

IIx + Y + zl12 = ~lIx + y + 2z112-lIzll2+ ~lIx + yl12 j

IIx + zll2 + lIy + zll2 = ~lIx + y + 2z112+ ~lIx _y1l2.

We substitute the first equation in the left-hand side and the second in the
right-hand side of (*). Once more, remembering the parallelogram identity,
we see that the both sides coincide.

If Q is rational, then the property (3) follows from (4). Thanks to the
continuity with respect to Q, it holds for all real Q. 0

2.3 Isometric matrices

A matrix Q E <enxn is called norm-preserving 11·11 on <en, or isometric in the
norm II ·11 on <en, if

IIQxl1 = Ilxll Vx E <en.
What can be said about the matrices that preserve the p-norms? As a

simple example, consider matrices that can be obtained from the unity matrix
by swapping rows (or columns). Such matrices are known as permutational
matrices. Apart from p = 2, isometric matrices are not too different from
permutational matrices.

Consider as x the columns of the unity matrix ~ the p-norm of each
column of Q is equal to 1. Moreover, if p and q are the HOlder pair, then

It follows that the q-norm of each row of Q is equal to 1.
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Let p < 2. Then the 2-norm of each column is at least 1, while the 2-norm
of each row is at most 1 => the 2-norm of each column and each row is equal to
1. If a column has more than one nonzero components than they are less than
1 in modulus => the p-norm of such a column must be less than 1. To dismiss
the contradiction, we conclude that in each column of Q there is exactly one
element equal to 1 in modulus . In the corresponding row, all other elements
are equal to O. (The case p > 2 is treated similarly.)

Thus, if p i= 2, then the matrix Q preserving the p-norm is of the form

Q = P diag(d l , . . . , dn ),

where P is the permutational matrix and Idil = 1, i = 1, ... , n.

2.4 Preservation of length and unitary
matrices

For p =2, the set of isometric matrices is much richer. In this case, the preser­
vation of the 2-norm implies the preservation of the scalar product (prove this!)
=> the columns ql, ... , qn of Q comprise an orthonormal system:

q;qj =Oij {:} Q*Q =I

(0 is the Kronecker symbol: Oij = 1 if i = j and 0 if i i= j).

A matrix Q E (Jjnxn such that Q* =Q-l is called unitary.

The unitary matrices excel in being the only ones that preserve the length
(2-norm) and the scalar product.

The important property of unitary matrices : their products and inverses
remain unitary (prove this).

2.5 Schur theorem
Theorem 2.5.1 (Schur) For any matrix A E (Jjnxn with the eigenvalues
AI, . .. , An, there exists a unitary matrix Q such that

(1) the matrix Q*AQ is upper triangular,

(2) diag(Q*AQ) = diag(Al, " " An).

Proof. Assume that AVI =AlVI, IIvll12 =1 and choose V2, ... , Vn so that the
matrix VI = [VI , V2 , • .. ,vn ] is unitary. Then

Proceed by induction. 0
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2.6 Normal matrices

A matrix A is called normal if A *A =AA*.
The most important classes of normal matrices:

(1) Hermitian matrices: H* =H;

(2) unitary matrices: U* = U- 1.

In the case of real elements, a Hermitian matrix is called symmetric and a
unitary matrix is called orthogonal.

Theorem 2.6.1 A matrix A E e n xn is normal if and only if en has an
orthonormal basis of its eigenvectors.

Proof. For any A E e n x n, a unitary matrix U exists such that T = U*AU
is an upper triangular matrix (the Schur theorem). Further, A*A = AA* is
equivalent to T*T = TT*, and, as easily seen, any upper triangular matrix
with such a property is bound to be diagonal. Thus, the columns of U yield
a basis of the eigenvectors of A. 0

Theorem 2.6.2 A normal matrix A is Hermitian if and only if its eigenval­
ues are all real.

Theorem 2.6.3 A normal matrix is unitary if and only if its eigenvalues are
all equal to 1 in modulus.

Prove these theorems.
It might be useful to keep in mind that an arbitrary matrix A E e n x n can

be split (uniquely) as

A =H + i K, H* =H, K* =K, i2 = 1.

This is the so-called Hermitian decomposition of A .
It is trivial to prove that for A to be normal, it is necessary and sufficient

that H and K commute.

2.7 Positive definite matrices

Among Hermitian matrices, we distinguish those for which the scalar product
(Ax, x) = z" Ax keeps the same sign for all x .

In the case (Ax, x) ~ 0 Vx E e n x n, the matrix A is called positive
semidefinite, or nonnegative definite. The notation: A ~ o.

In the case (Ax, x) > 0 Vx E e n x n, the matrix A is called positive defi­
nite . The notation: A > O.
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Definiteness implies Hermitianness . For A ~ 0, consider its Hermitian
decomposition A = H + i K. Since

(Ax,x) = (Hx, x) + i (Kx, x) E IR "Ix E (:n,

(Kx,x) = 0 "Ix E (:n ::} all the eigenvalues of the Hermitian matrix K are
equal to 0 ::} K = O. 0

Note that if A E IRn x n and (Ax ,x) ~ 0 "Ix E IRn , then the matrix A is
not bound to be symmetric.

For A E (:nxn to be nonnegative (positive) definite, it is necessary and
sufficient that all its eigenvalues be nonnegative (positive). Prove this.

The important property: a matrix is nonnegative (positive) definite if and
only if all its leading submatrices are the same. (A submatrix is called leading
if it occupies the upper-left corner of the matrix.) To prove this, it is sufficient
to observe that

[y* 0] [~ :] [ ~ ] = y*By Vy.

Prove that A*A ~ 0 for an arbitrary A (it is simple). We are going to use
this no later than in the next section.

2.8 The singular value decomposition

Theorem 2.8.1 Suppose A E (:mxn, r = rank A. Then there exist positive
numbersa1 ~ ... ~ a; > 0 and unitary matricesU E (;nxn, V E (:mxm for
which there holds

A = VEU*,

where

E=
lU, 0 ]E (:mxn.

0 ar

(2.8.1)

(2.8.2)

Proof. A*A ~ 0 ::} there exists a unitary matrix U = [Ul ' . . . ,un] E (:n xn

such that
U* A*AU == diag (a;, ... ,a~).

Suppose ai > 0 for 1 ~ i ~ r and a, = 0 for i > r . Let U; = [Ul,' " ,ur ]

and Er = diag (al, " " arlo Then

U; A*A U; = E; ::} (E;lU;A*)(AUrE;l) = I .

Hence, the matrix Vr =AUrE;-l is such that Vr*Vr = I (Vr has orthonormal
columns) ::}
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Embedding Vr, in any way, into a unitary matrix V E (ljmxm and taking into
account the formula for Vr , we obtain

V* AU = [~ ~]. 0

Decomposition (2.8.1) is called the singular value decomposition (SVD) of
the matrix A. The numbers (T1 ~ •.. ~ a; > 0 are called the singular values
while the vectors Ui are the right and Vi the left singular vectors of A. It
is customary to say that, apart from having r nonzero singular values, the
matrix A has yet min{m, n) - r zero singular values.

Corollary 2.8.1 The singular values of a matrix are determined uniquely.

Corollary 2.8.2 If (T1 > ... > (Tr > 0, then the singular vectors U1, .•• ,Ur
and V1, ••. ,Vr are determined uniquely up to a factor equal to 1 in modulus.

Corollary 2.8.3

1 ~ i s r,
r + 1 ~ i ~ n.

(2.8.3)

Corollary 2.8.4

Corollary 2.8.5

A* {(TiUi' 1 ~ i s r,
Vi = 0, r+ 1 ~ i ~ m.

r

A = E (TiViU'i.
i=1

(2.8.4)

kerA
imA
ker A"
im A"

span {Ur+1, " " un},
span {V1 , ... , vr } ,

= span {Vr+1" . . , Vm},
= span {U1' ••• , ur }

2.9 Unitarily invariant norms

If IIAII = IIQAZII for any unitary Q, Z and any matrix A (provided that the
sizes accord), then the matrix norm involved is called unitarily invariant.

The most important unitarily invariant norms are IIAII2 and IIAIIF. Here
is the proof:

= sup IIQAZzll2 - sup II(QAZ)Z·zIl2 -
#0 IIzlb - #0 IIz·zll2 -

= sup 1I~~li;12 =sup III~ill~2 = IIAII2;
z#O z#O

IIQAZII} = tr{QAZ)*{QAZ) = trZ" (A* A) Z = trA* A = IIAII}. 0
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Due to (2.8.1), for any unitarily invariant norm we have IIAII = II~II, i.e.,
the unitarily invariant norm of a matrix is determined entirely by its singular
values. Concerning the spectral and the Frobenius norms, we find that

IIAII2 =ali

IIAIIF = (ar + ... + a;)1/2 .

2.10 A short way to the SVD

(2.9.1)

(2.9.2)

The norm IIAI12 appeared as an operator norm. From the compactness of
the unit sphere, there exist normalized vectors x and y for which Ax = ay,
a = IIAlb. Choose unitary matrices of the form U = [x Ud, V = [y Yd .
Then

V*AU = [~ ~],

IIV*AU [ : ] II~ ~ (a2+W*W)2 => IIV*AUII~ ~ a2+ w*w.

Since IIV*AUlb = IIAlb (the spectral norm is unitary invariant), w = O.
Proceed by induction.

2.11 Approximations of a lower rank

k
Theorem 2.11.1 Suppose k < rankA, Ak == L aiviui. Then

i=l

min IIA - BII2 = IIA - Akl12 = ak+l ·
rankB=k

Proof. Since rank B = k, we find that dim ker B = n - k. Suppose that

ker B =span {Xl,"" Xn-k}.

Then there is a nonzero z E span {Xl,. . . , Xn-k} n span {Ul' ... ,Uk+l}. (Why?)
Assume that IIzll2 = 1. Then

k+I

IIA - BII~ ~ II(A - B)zll~ = IIAzlI~ = Ladu;Z)2 ~ a~+l ' 0
i=l

In particular, the inferior singular value of a nonsingular matrix is the
distance (in the spectral norm) to the nearest singular one.
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2.12 Smoothness and ranks

Sometimes the entries of a matrix are regarded as the values of a function at
some points of a mesh. For sufficiently smooth functions, such matrices are
close to low-rank matrices.

Suppose that I(x,y) has an infinite number of derivatives in y EYe JR
for any x E X c JR. Consider the two suites of points

(n) (n) X (n) (n) y
Xl , •. . , X n E , Yl , ••• ,Yn E ,

and assume that

Approximate I(x,y) by a truncated Taylor series at some point z E Y :

p-l
_ " okl(x, z) kI(x,y) ~ Ip(x,y) = LJ k! (y - z) ,

k=O

and consider the following matrix:

A- - [f ((n) (n)j
n = p Xi 'Yj , O~i,j~n.

Of course An ~ An. What is more, An has a rank that is low compared
to n:

rankAn ~ p. (Prove this.)

It is remarkable that this inequality holds no matter how large n is.

To apply the above observation, we need know a bit more about the re­
lation between the ranks and the approximation accuracy. To this end, the
well-known remainder term estimates for the Taylor series may serve. For
example, prove that if I(%y)kII ~ M 'V k, then for any e > 0,

IIAn - AnliF =O(ne) while p =O(loge- l
) .

The assumption we made can be relaxed in many ways.

Exercises

1. Prove that in the case p ::J 2, p ~ 1 the norm IIxlip cannot be induced
by any scalar product.

2. Prove that for any matrix A E em x n
, the subspaces ker A and im A*

are orthogonal and the whole of en is their direct sum.

3. Prove that IIAIIF = IIAII2 if and only if rank A =1.
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4. A matrix A1997 is normal. Must A be normal?

5. Prove that for any Hermitian matrix H, the matrix

Q = {I - i H)-1 (I + i H)

19

will be unitary. Is it true that an arbitrary unitary matrix can be written
in this way?

6. Let A = I + auu· , lIull2 =1. Find all those a for which A is unitary.

7. Suppose A* =1+ f3A. Prove that if A has at least two different eigen­
values, then 1f31 = 1.

8. Prove that a matrix which is the product of a Hermitian matrix and a
positive definite (Hermitian) matrix has all its eigenvalues real.

9. Calculate the SVD for the following n x n matrix:

10. What is the distance between a singular matrix A and the nearest non­
singular one?

11. Is it valid that B =A* holds if (Ax, x) = (x,Bx) for any : (a) x E IRn

or (b) x E en?

12. Prove that for a square matrix A, Amin(A+ A*) :5 2lTmin(A), where
Amin(-) and lTmin(-) denote the minimal eigenvalue and the minimal
singular value. Would this be still true if Amin from the left-hand side
were changed onto lTmin?

13. Prove that IIABIIF :5 IIAII2I1BIIF.

14. Prove that IIAIIF :5 Jrank (A) IIAII2 .

15. A matrix A = [Aij] is composed of the blocks Aij, and a matrix B = [bii ]
is such that bii = IIAii1l2 ' 1 ~ i ~ m, 1 ~ j ~ n. Prove that

16. Suppose that L is the lower triangular part of a matrix A E enxn. Prove
that

17. Let A E enxn. Prove that tr A = 0 if and only if III + zAllF ~ ..;n for
all z E e.
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18. Assume that An x n is a Hermitian nonnegatively definite matrix. Prove
that

19. Let a subspace L E cen be fixed, and consider matrices P such that
p 2 = P and im P = L. Prove that the least value of the 2-norm over
all such matrices P is attained at a Hermitian matrix.



Lecture 3

3.1 Perturbation theory

Suppose that we are to compute f(x) at some x. We know that algorithms
sometimes do not produce very accurate answers. When thinking this over,
we should comprehend that not only might an algorithm be "bad" but it
might be a problem itself. An important question: how far can f(x) change
when x goes through small perturbations?

In the simplest case, f (x +6) ~ f (x) + t'6, and hence, the value IIl' II can
serve as an "absolute" measure of the problem's sensitivity. If f(x) f:. 0 and
x f:. 0, then

f(x + 6) - f(x) (I'(X) ) 6
Ilf(x)11 ~ IIf(x)llllxll ~.

Consequently, a relative measure of the problem's sensitivity (in other words,
its condition number) can be defined as

_ 111'(x)11
cond (f(x)) = Ilf(x)llllxll.

3.2 Condition of a matrix
Let A be a nonsingular matrix and f(A) = A-I. Then (please check it)

(A+~)-I _ A- I = _A-I~(A+~)-I ~ _A-I~A-I

II(A + ~)-I - A-III
IIA-III

The quantity

is called the condition number of A. It depends on the norm. In the case of
the p-norm, we write condj , Usually, cond, is called the spectral condition
number.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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For singular matrices, it is natural to set cond = 00 . Usually, the con­
dition number of a problem is inversely proportional to the distance between
it and the set of singular (in a proper sense) problems.' IT we consider the
inversion of matrices, then the set of singular problems is that of singular
matrices . We already know that

min IIA - 8112 =Umin (the minimal singular value)
detS=O

and, simultaneously (prove this), IIA-1 112 = 1/ Umin ' Hence,

IIAI12
cond (A) = min IIA - 8112 .

detS=O

Why does (A + A) -1 R: A-1 for small A ? This follows from standard
continuity considerations. In matrix analysis, however, there is a simple and
useful framework for such cases.

3.3 Convergent matrices and series

A series I:~o Ak' where Ak E lCn xn, is called convergent if the sequence of
its partial sums 8N == I:f=o Ak is such. This follows from the convergence of
the numeric series I:~o IIAk ll (prove this) .

A series of the form I:~o Fk is called the Neumann series. Obviously, it
converges whenever IIFII < 1 (prove this) . It is less obvious that it converges
whenever the eigenvalues of F in modulus are less than 1.

The maximal in modulus eigenvalue of a matrix (say, F) is called its
spectral radius. The notation: p(F) . If p(F) < 1, then the matrix F is
called convergent.

Lemma 3.3.1 The Neumann series for a matrix FE lCn xn converges if and
only if the matrix F is convergent.

Sufficiency. From the Schur theorem, for some unitary matrix P, the matrix
T = [tii] = p-1FP is upper triangular. We show that the Neumann series is
convergent for some matrix which is similar to F. (Would you explain why
this is equivalent to its convergence for F?)

Set D E = diag{Ls, .. . ,e n
-

1) . Then {D;1TDEh i = ei-itii for i ::; j.
The diagonal elements of this matrix in modulus are less then 1 :::} for
sufficiently small e IID;1TDElh < 1 :::} the Neumann series for the matrix
D;1TDE is convergent.
Necessity. Assume that Fx = AX, x f; 0, and P,I > 1. Then I.W ::; IIFk l12
(why?) :::} IIFk l12~ 0 :::} the Neumann series for F is convergent. 0

IFor more detail, see J . W. Demmel. On condition numbers and the distance to the
nearest ill-posed problem. Numer. Math. 51,251-289 (1987).
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3.4 The simplest iteration method

To solve a linear algebraic system Ax = b with a nonsingular coefficient ma­
trix, we rewrite it as x = Fx + 0: b, where F = I - 0: A, 0: f:. 0, and consider
the following iterative method :

Xo is an arbitrary initial vector;

Xk = FXk-1 + o:b for k =1,2, . . ..

This is the so-called simplest iteration method (sometimes it is referred to as
Richardson's method).

It is easy to deduce (with Lemma 3.3.1) that Xk -+ x for any initial vector
Xo if and only if the matrix F is convergent.

A good idea is to find a splitting A = M - N for which the matrix M-I N
would be convergent while M is easily invertible (that is, there is an efficient
way to solve systems with the coefficient matrix M). Then

Xk = M-I(Nxk_1 + b) -+ x.

3.5 Inverses and series

Lemma 3.5.1 If IIFII < 1, then the matrix A = I - F is nonsingular, and
the inverse enjoys the following properties:

(b) II (I _ F)-III < 11111
- 1-11F1I '

00

(a) (I - F)-I = L Fkj
k=O

Proof. It is easy to verify that

(I - F) (to Fk) = I - FN+l -d.

To prove (b), let us write

N N 11111
II L Fkll s IIIII L IlFllk < 1 -IIFII' 0

k=O k=O
Corollary 3.5.1 If A is a nonsingular matrix and E is a perturbation such
that IIA-IEll < 1, then

(a) the matrix A + E is nonsingular and
00

(A+E)-I=L(-A-IE)k A-I =
k=O

00

A-I L(-EA-I)k j

k=O

(b)
II (A +E)-I - A-III < IIA-IIIIIEII

IIA-III 1-IIA-IEII '
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3.6 Condition of a linear system

Consider a system Ax = t, f :j:. 0, with a nonsingular matrix A and a
perturbed system (A+DoA)x = f +Dof. Howfar can x differ from x? Assume
that IIA-1DoA II < 1. Then

x - x = (A + DoA)-I(f + Do!) - A-I f

= [(A + DoA)-1 - A-I] f + (A + DoA)-1 Dof

~ [(-A-1M)'](A-If) + l~ (-A-1M)']A-l f!. f

(3.6.1)

The value cond A = IIA-11111AII (the condition number of A) is a character­
istic of the sensitivity of the solution x to small perturbations of the right-hand
side. Matrices with "too large" and "not too large" condition numbers are
said to be ill-conditioned and well-conditioned matrices .

3.7 Consistency of matrix and right-hand side
The bound (3.6.1) cannot be improved on the whole set of matrices and per­
turbations. However, the ill condition of a matrix is not quite the same as
"the ill condit ion of a linear system" .

Using the singular value decomposition,

n

A = LO"kVkUk
k=1

n

=> A-I = L O"k1UkVk
k=1

Suppose that A is fixed and Dof =6 VI +.. '+~nVn, Dox =111 Ul +.. ·+11kUk .
Clearly,

2 2 2 2 ,2 , 2
0"1111 + ...+ 0"n11n ="1 + ... + "n'

This implies that if Dof belongs to the ball of the radius e in the coordinates
{~i} , then Dox belongs to the ellipsoid in the coordinates {11i} :

Thus we see that IlDoxli depends dramatically on the direction of perturba­
t ions.

If the right-hand side f has nonzero components along the inferior singular
vector Vr+l, ... , Vn (in this case, one says that a matrix and a right-hand side
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are consistent) and the perturbations are zero along the same directions, then
the bound (3.6.1), obviously, becomes better:

3.8 Eigenvalue perturbations

Let A(A) denote the spectrum of a matrix A.

The Bauer-Fike theorem. If J.L E A(A + F) but J.L ¢ A(A), then

1
II(A - J.LI}-1112 ::; 11F112 .

Proof. The matrix (A + F) - J.L I = (A - J.L I) + F is singular ~ the matrix
1+ (A-J.LI)-IF is also singular ~ II(A -J.LI)-IFII2 2': 1. 0

Theorem 3.8.1 Assume that A is diagonalizable:

p- l AP =diag (AI, ... , An) == A.

Then, if J.L E A(A +F), then

l~i~n IJ.L - Ail ::; IIp-11l2IIPII2 11F1I2.

(3.8.1)

(3.8.2)

Proof. The inequality is trivial if J.L E A(A). Otherwise, if J.L ¢ A(A), then
J.L ¢ A(A) and J.L E A(A + p-lFP), and it remains to apply the Bauer-Fike
theorem. 0

Thus, the sensitivity of the spectrum to small perturbations is charac­
terized by the condition of the eigenvector matrix P (the columns are the
eigenvectors of A).

Theorem 3.8.2 Let p-l AP = J be the Jordan matrix for A and J.L E A(A+
F). Then there exists AE A(A) such that

where m is the maximal order of the Jordan blocks corresponding to A.

Proof. Again use the Bauer-Fike theorem: if J.L ¢ A(A), then

1 I

II(J - J.LI}-1112 ~ IIP- FP112.

Suppose J consists of the Jordan blocks JI , . . . , Ji, Then

1 > 1
II(J - J.LI)-1112 - max II(Ji - J.LI}-1112·

l~i~k
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Write J, = ).. 1+ Ni, and assume that this Jordan block is of order m. Then
N[" = 0 and, moreover, IINil1 2 = 1 ~

II(Ji - JL I) - 1112 = 1I(()..-JL)I+Ni )- 11l2 s 1I(I+()..-JL)-lNi)-11121()..-JL)-11

~ (1 + I().. - JL)-ll + . .. + I().. - JL)-llm-l) I().. - JL)-ll. 0

Thus, if a matrix with the maximal order of its Jordan blocks equal to m
is perturbed by quantities of an e order of magnitude, then any eigenvalue of
the perturbed matrix differs from some eigenvalue of the original matrix by
the value of the lei;' order of magnitude.

Is it true that, for sufficiently small perturbations, the eigenvalues of A
and A + F can be divided into pairs of close ones? By way of answering, we
can say that it is so since the roots of a polynomial are continuous functions
of its coefficients. The latter fact itself deserves a special discussion.

3.9 Continuity of polynomial roots

Theorem 3.9.1 Consider a parametrized batch of polynomials

where al (t), .. . ,an(t) E C [a , ,8] . Then there exist functions

such that
p(Xi(t) ,t)=O for a~t~,8, i = 1, . . . ,n.

To begin the proof, note that it is sufficient to establish the existence of
any single continuous function xn(t) such that p(xn(t), t) = 0 for a ~ t ~ ,8.
Should this be done, we write

p(X,t) = (x - xn(t)) q(x, t),

where q(x, t) = xn-1 + b1(t)x n-2 + .. . + bn-1(t) . On the strength of the
familiar algorithm for dividing polynomials, b1(t), .. . ,bn - 1(t) E C [a, ,8]. So
we may prove it by induction .

Now, we shall prove the existence of one continuous root. To do this,
remember the proof of the existence of a solution to a differential equation
~ = f (t ,y) in the case of a continuous f by the Euler piecewise linear func­
tions and the Arzela-Ascoli theorem.

A sequence of functions Ym(t) is called uniformly continuous for t E [a,,8]
if 'Ie > 038 > 0 : It1-t21 ~ 8 ~ IYm(tl) -Ym(t2)1 ~ e'v'm. A sequence of
functions Ym (t) is called uniformly bounded for t E [a,,8] if 3 c > 0 : IYm (t) I ~
c'v'm, 'It E [a,,B].
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a = tOm < tIm < ... < tmm = .Bi

Theorem 3.9.2 (Arzela-Ascoli) For any sequence of uniformly continuous
and uniformly bounded functions on [a,.Bl there exists a subsequence which
converges uniformly on [a,.B].

Proof. Enumerate, in any way, all the rational points on [a,.Bl : t l , t2,' ...
From the original sequence Ym(t), we choose, first, a subsequence YI,m(t)
convergent at some point tl i from the latter, we choose a subsequence Y2 ,m(t)
convergent at some point t2, and so on. In the end, we will have the "nested"
subsequences YI,m(t), ... ,Yk,m(t ), .. . such that Yk ,m(t) converges at t =
tl, . . . , tk (and Yk+l,m(t) is a subsequence of Yk ,m(t) ). Consider the "diagonal"
sequence Ym ,m(t). Take any E > 0, and choose 8 > 0 determined by the
uniform continuity property. For an arbitrary point t E [a, .Bl, there exists ti
such that It - til ~ 8. For sufficiently large m, k, we obtain

IYmm(t) - Ykk(t)1 < IYmm(t) - Ymm(ti)1 + IYmm(ti) - Ykk(ti)1 +
+ IYkk(ti) - Ykk(t)/

< 2E + IYmm(ti) - Ykk(ti)1 ~ 3E,

which means that the Ym,m(t) is the Cauchy sequence. 0

Proof of Theorem 3.9.1. Build up on [a, .Bl a sequence of uniform grids

.B -a
ti+1 m - tim = --., m

Let Ym(t) be a piecewise linear function with breaks at tOm, t1m, . . . ,tmm.
Define the values at the nodes as follows.

Take a root Zo of the polynomial p(x,a), and, for all m, set

Yrn (tom) = ZOrn == ZOo

Further, let Zlm be any of those roots of the polynomial p (x, tl m) nearest
to ZOm, and, by induction , let Zi+l,m be any of the roots of the polynomial
p (x, ti+l,m) nearest to Zim. Set

i =1, .. . ,m.

The uniform boundedness of the piecewise linear functions Ym (t) is evident.
The uniform continuity emanates from the inequality

where R ~ 1 is the radius (not necessary minimal) of a circle encompassing
all the roots of all the polynomials p(x, t) for a ~ t ~ .B.
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Using the Arzela-Ascoli theorem we find a uniformly convergent subse­
quence. Take into account that the limit of a uniformly convergent sequence
of continuous functions on [a,,Bj must be a continuous function. The only
thing left to check is that the limit function y(t) satisfies p(y(t), t) = 0 for
a ~ t ~ ,B. That will do the proof. 0

Exercises

1. That the roots depend continuously on a polynomial coefficients no
longer means that they cannot vary dramatically after some small per­
turbations. Here is Wilkinson's example:

20

p(x; c) = (x - l)(x - 2) ... (x - 20) +eX
19 =II(x - Xi(e)),

i=l

where xi(e) are continuous functions such that Xi(O) = i. For small e,
we observe that Xl (c) ~ 1, but x20(e) goes far from 20. To explain this,
compare the values of derivatives of the functions Xl (c) and x20(e) at
the point e = O.

2. Does Idet AI = 1 mean that A is well conditioned? Does Idet AI << 1
mean that A is ill conditioned?

3. Calculate condoo(A) = IIA- l iloo IIAlloo for the bidiagonal matrix

1 2 0
1 2

A (c) =

o
1 2

1 n xn

4. Let p(A) be the spectral radius of a matrix A. Prove that any operator
norm 11,11,

p(A) = lim IIAnll~.
n -+ 00

5. Denote by AminO the minimal in modulus eigenvalueand by aminO the
minimal singular value of a matrix. Prove that for any A E cenxn,

6. Suppose A is an arbitrary nonsingular matrix. Is it always possible to
pick up some a so that the matrix I - a A would be convergent?

7. Suppose A is a Hermitian positive definite matrix. Prove that, for all a
sufficiently small, the matrix I - a A is convergent.
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8. Suppose that A = 0: 1-N, where N is a square matrix with nonnegative
elements and 0: > l>'i(N)1 for all the eigenvalues of N . Prove that the
matrix A is nonsingular and all elements of A- l are nonnegative.

9. Is it true that, for any matrix A, there is a splitting A = M - N with
the convergent matrix M:" N?

10. Let M be nonsingular, and let M* M - N* N be nonnegative-definite.
Prove that

p(M- l N) ::; 1

(p(.) is the spectral radius of a matrix).

11. Consider a polynomial p(x) = z" + alxn- l + ...+ an and the so-called
Frobenius matrices of the following form:

0 0 0 0 an
- 1 0 0 0 an-l

<Ii = 0 - 1 0 0 an- 2
0 al

0 0 0 -1 0

and
0 -1 0 0 0

[ "J
0 - 1 0 0

w=
~2.

0 0 0 0
0 - 1

an 0 0 0 0

Prove (easiest by induction) that p(x) is the characteristic polynomial
both for <Ii and W. Is it possible to transform Theorem 3.8.1 into a
theorem about the perturbation of the polynomial roots?

12. Find the eigenvalues of the perturbed Jordan block

x 1 0
>. 1

J (c: ) =
>. 1

>. n xn

13. Assume that the eigenvalues of a real symmetric matrix A are pairwise
distinct. Prove that, for all perturbations F sufficiently small in norm,
the eigenvalues of the perturbed matrix A + F are real .
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4.1 Diagonal dominance

A matrix A E qjnxn is row-wise diagonally dominant if

n

laiil > ri == L laijl, i =1, . .. ,n,
j=l
j :f' i

and column-wise diagonally dominant if

n

lajjl > Cj == L laijl , j =1, .. . ,n.

i = 1
i:f'j

(4.1.1)

(4.1.2)

Theorem 4 .1.1 (Levy-Desplanques) If a matrix is row-wise or column-wise
diagonally dominant, then it is nonsingular.

Proof. Adopt the following notation:

diag (A) == diag (all, ... , ann), off (A) == A - diag (A) .

Then the inequalities (4.1.1) imply that Il[diag (A)t 1 off (A) 1100 < 1 and ,
thence, a matrix A = diag (A) + off (A) is nonsingular. The case (4.1.2)
reduces to the case (4.1.1) by transition to AT . 0

4.2 Gerschgorin disks

Theorem 4.2.1 (Gerschgorin) For a matrix A E qjnx", consider the disks

R; == {z E qj : laii - z] s ril,
C, == {z E qj: laii -zl s e.},

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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where Ti and c, are defined by (4.1.1) and (4.1.2), respectively. Then, if
>. E >'(A), then

Proof. IT >. ~ UR; , then the matrix A - >'1 is row diagonally dominant and,
hence (by the Levy-Desplanques theorem), nonsingular => >. ~ >'(A). 0

Theorem 4.2.2 Let G be the union of m Gerschgorin discs. If G is isolated
from the other disks, then G contains exactlym eigenvalues.

Proof. Set A(t) = diag (A) + t off (A), 0 :::; t :::; 1, and denote by G(t) the
union of the Gerschgorin discs with the same centers as those in G, and by
O(t) the union of the remainder discs; 0 == 0(1) . Obviously, G(t) c G and
O(t) C O.

Since G n 0 = 0, G(t) n O(t) = 0 for all 0 :::; t :::; 1. According to
the theorem on the continuous dependence of the polynomial roots on their
coefficients , there exist continuous functions >'1 (t), . . . ,>'m(t) such that

(a) {>'1 (0), , >'m(On = G(O)j
(b) >'1 (t), ,>'m(t) E >'(A(t)).

Let ti == max{t : >'i(t) E G(tn . If t, < 1, , then, for all t > ti, we have
>'i(t) E O(t) (it follows from Theorem 4.2.1).

Thus we conclude that G(ti) n O(ti) 1= 0, which is impossible. Therefore,
ti = 1 for i = 1, ... , m. 0

Corollary 4.2.1 If the Gerschgorin discs are pairwise disjoint, then each one
captures exactly one eigenvalue.

4.3 Small perturbations of eigenvalues
and vectors

Assume that a matrix A has only simple (pairwise distinct) eigenvalues, and
a perturbed matrix is of the form

Let P be the eigenvector matrix for A j then A == p-1AP is the diagonal
matrix of the eigenvalues of A. Set

The eigenvalues of O(e) are the same as those of A(e) . By the Gerschgorin
theorems , for all e small enough, these eigenvalues are simple (prove this).
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We may write the diagonal matrix of the eigenvalues of O(e:) and the
corresponding eigenvector matrix in the following form:

A(e:) = A+ Ale: + A(e:) ,

Z(e:) =1+ Zle: + Z(c:),

A(O) = Aj

Z(O) = I.

In fact, these equations merely define A(e:) and Z(e:). Since Z(e:) is not quite
unique (it is such only up to normalizations of the columns) , we can require
that

diag Z(e:) = I, diag Zl = 0 =} diag Z(e:) =o.
Consider the key equation

First of all, rewrite (*) as follows:

and determine Al and Zl from the equation

Obviously Gust look at explicit expressions for the elements of Zd,

Now, let Al and Zl satisfy (**). Consider (*) as an equation for Aand Z.
Then

(a) A= 0 (e:2
) , (b) Z = 0 (e:2

) .

First, prove (a). To do this, note that

For small e, II (I + Zle:)-lll = 0 (1). On the strength of the Gerschgorin
theorems, the eigenvalues of the matrix A+ Ole: + 0 (e:2 ) are the diagonal
elements of Ao + Ale: within the 0 (e:2) accuracy. To show that (b) follows
from (a) , observe that Z can be regarded as a variation of the solution to the
equation (* * *) whose coefficients go through small perturbations. Thus, we
obtain the following.

Theorem 4.3.1 Assume that p-l AP = A is a diagonal matrix with pairwise
distinct eigenvalues of A . Then , for all sufficiently small e, the matrix A(e:) =
A + Ale: + 0 (e:2 ) is diagonalizable:

P-I(e:)A(e:)P(e:) = A(e:),
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and with this

where

Lecture 4

while Zl is such that

diagZl = 0,

Corollary 4.3.1 The eigenvalues Ai(C:) of A(c:) are of the form

Ai(C:) = Ai + qTA1PiC: + 0 (c:2
) ,

where qT are the rows of the matrix p-l .

4.4 Condition of a simple eigenvalue

Assume that IIAlll2 = 1. Then (allow for qTPi = 1)

The quantity

S(Ai) == IIqTII211pTII2
IqTpil

is called the eigenvalue condition number for Ai. (The vectors Pi and qi are
the left (Api = AiPi) and right (qTA = Aiq[) eigenvectors of A, respectively;
the eigenvalue condition number does not depend on how the vectors Pi are
qi normalized).

The condition number is correctly defined for a simple eigenvalue even in
the case of a nondiagonalizable matrix. It is significant that Corollary 4.3.1
is still valid for any simple eigenvalue provided that qTPi = 1. (This can be
proved by transition to a slightly perturbed but ever diagonalizable matrix
having the same vectors Pi and qi for the simple eigenvalue Ad

The condition of a simple eigenvalue of a matrix is related to the distance
from this matrix to those for which this eigenvalue becomes multiple.

Theorem 4.4.1 (Wilkinson) Suppose that A has a simple eigenvalue Ai with
the condition number S(Ai). Then there is a matrix A + E for which Ai is a
multiple eigenvalue, and, what is more,

(4.4.1)
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[
Ai ZT]

A= 0 B .

The left and right eigenvectors for Ai are of the form

Proof. Without loss of generality, we can regard A as taking on the Schur
form:

- T
Evidently, v

T B +z = AiVT => v
T (B - AJ) = zT => the matrix B == B + li:lI~

has Ai as its eigenvalue. Thus,

o

4.5 Analytic perturbations

Assume that a series A(~) = 2:::0 Ak~k converges for all I~I < ~o . In this
case, if all the eigenvalues of Ao are simple, then A(~) is diagonalizable by
means of P(~):

P-l(~)A(~)P(~) = A(~), (4.5.1)

where
00

A(~) = L Ak~k,
k=O

00

P(~) = LPk~k.
k=O

(4.5.2)

Existence and convergence of the series A(~) for all small e is a consequence
of the analytic version of the implicit function theorem.

Matrices Ak and Pk are easy to determine. Set Zk == PO-
1Pk and Ok ==

PO-
1AkPo. Then

By equating the coefficients at ~k, we find

(4.5.3)

where
k-l

~k = L (OiZk-i - Zk-iOd + Ok.
i=l

(4.5.4)

This implies that

Ak = diag~k, (4.5.5)

IT Ai and Zi are known for i :::; k - 1, we are able to get Ak and Zk from
(4.5.5) .
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Consider the operator A: Z t---t AoZ - ZAo acting on the space of the
matrices Z such that diag Z = O. Using the simplicity of the eigenvalues, we
conclude that the operator A is invertible. Then, for all small e, the operator
A + eB is also invertible, where

B : Z t---t 01(e)Z - ZA1(e),
00 00

01(e) = L OkHek, A1(e) = L AkHek.
k=O k=O

Set
00

Zl(e) =L ZkHek.

k=O
Then

[A+ eB] Zl (e) = Al(e) - 0 1(e).

Wesee from above that Zl (e) is expressed by a convergent powerseries (should
Al(e) also be expressed like this).

If Ao has multiple eigenvalues, then the eigenvalues and vectors can be
expanded into the Puiseuz series (the series in fractional powers of e).

Exercises

1. Let A = diag (AI, .. . ,An) where Ai are real, pairwise distinct values.
Assume that the matrix A(e) = A+A1e is Hermitian and diag (Ad = O.
Prove that

2. Assume that Ais a simple eigenvalueof a matrix A and that p and q are
the corresponding left and right eigenvectors such that qTp = 1. Prove
that the perturbed matrix A(e) = A + Ale, for all sufficiently small e,
has a simple eigenvalue of the form

3. If one of the condition numbers of the eigenvalues is large, then there
exists at least one more that is large. Explain why.

4. Let A have simple eigenvalues with the condition numbers 8I, ... , 8n .

Prove that if P is the eigenvector matrix, then cond 2P ~ max1~i~n 8i.

5. Let A have simple eigenvalues with the condition numbers 8I, ... , 8 n .
Prove that 81 = ...=8n = 1 if and only if the matrix A is normal.

6. Assume that A is diagonalizable by means of P:

p-1AP = diag (AI, ... ,An),
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and let A + F be a perturbed matrix. Consider the discs

Bi={z: IZ -Ail~llp-lFPlb}, i=l, . .. ,n.

37

Let M be a union of m discs Bi, and assume that M does not intersect
with the other discs. Prove that there are exactly m eigenvaluesof A + F
located in M.

7. Assume that all the elements of A are different from zero. Then any
eigenvalue A E A(A) is either an internal point of the region R1 U URn

or the common boundary point for all the Gerschgorin discs R1 , , Rn .

8. In some sense, the unity matrix is "close" to a matrix of rank 1. Prove
that, for any e > 0, there exists a lower triangular matrix L such that
IILI12 ~ e and 1+ L is a lower triangular part of some matrix of rank 1.
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5.1 Spectral distances

The statements of the corollaries of the Bauer-Fike theorem are "nonsym­
metric" with respect to A and A +F: the matrix A +F , in contrast to A, can
be nondiagonalizable or have different orders of Jordan blocks. We might be
interested in "symmetric" theorems, which estimate some distance between
the spectra of matrices.

The Hausdorff distance between A and B with the eigenvalues {Ai} and
{/Lj}, respectively, is defined as

The spectral p-distance is defined as

dp (A, B) == min IIA(A) - PA(B)llp,p

where the minimum is taken over all the permutational matrices P and

5.2 "Symmetric" theorems

Theorem 5.2.1 (Elsner).

Proof. Let /L E A(B) and A(A) = {Ai}. Suppose that the vectors Xl, - - - ,Xn
are the columns of the unitary matrix X, and BXl = /LXI - Then

n

II IAi - /LI = [det ((A - /Ll) X) I
i= l

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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(remember the Hadamar inequality: the determinant in modulus does not
exceed the product of the 2-norms of its columns ¢:> the volume of an
n-dimensional cuboid does not exceed the product of the lengths of its edges)

n n

< rr II(A - J.LI) xil12 ~ II(A - B) xdl2 rr II(A - J.LI) xdl2
i = l i=2

< IIA - BI12 (11A112 + IIBII2t-1
• 0

Theorem 5.2.2 (Ostrowski-Elsner) .

Proof. Consider the discs

where

( )
1 - ~

c:(r) == 2 max IIA + t (B - A)112 n Ilr(B - A)II;!;.
0:99

According to Theorem 5.2.1, all eigenvalues of A+r (B -A) belong to a union
of the discs Di(r). By analogy with the Gerschgorin discs, if some m discs
Di(r) are isolated from the other discs, then their union contains exactly m
eigenvalues of the matrix A+r (B-A) . :::} Ifm discs D, (1) are isolated from
the other discs, then the union of the corresponding discs D, keeps exactly m
eigenvalues J.Li . (Why?) Suppose that

J.Li E U Dk, k = 1, . .. ,m.
19~m

Then (prove this!) lJ.Li - Ail ~ (2m - 1) hd(A, B), 1 ~ i , j ~ m. 0

5.3 Hoffman-Wielandt theorem
Theorem 5.3.1 (Hoffman-Wielandt) For any normal matrices A and B ,

Proof. Since A and B are normal, by means of unitary matrices P and Q we
transform them into diagonal matrices

DA = diag (Ai) = P* AP,

Set Z == P*Q. Allowing for the unitary invariance property of the Frobenius
norm , we find that

IIA - BII~ = IIDA - ZDBZ*II~

= tr(DA - ZDBZ*) (DA - ZDBZ*)*

= IIDAII~ + IIDBII~ - 2Re tr(ZDBZ*DA)·
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Further (check it),

n n

'Y == 2 Re tr(ZDBZ· DA)=L L Sij(Xij,
i=1 j=1

41

Sij = IZij 12, (Xij = 2Re )..iJ.Lj.

For any fixed (Xii> a functional 'Y = 'Y (8) is linear on the space of matrices
8 = [Sij] . The values we are after are included in the set of values on those
matrices 8 with nonnegative elements for which any column and row sum of
elements is equal to 1. Such matrices 8 are called doubly stochastic.

The Birkhoff theorem. Any doubly stochastic matrix 8 can be written as
a convex combination of the permutational matrices Pk, k = 1, . .. ,m (how
many and which matrices themselves depend on 8):

m

8 =L Vk P k , VI + ... + Vm = 1, Vk > 0 Vk.
k=1

It is easy to verify that the set of all doubly stochastic matrices is compact.
By the Birkhoff theorem,

i.e., the maximal value of the function 'Y is attained at some permutational
matrix. Denote it by IT. Then

IIA - BII~ = IIDAII~ + IIDBII~ - 2Re tr(ZDBZ· DA)
> IIDAII~ + IIITDBIrII~ - 2Re tr(ITDBIr DA)
= IIDA - ITDBIrII~ ~ d2 (A, B) . 0

The next section is for those who want to know how the Birkhoff theorem
can be proved.

5.4 Permutational vector of a matrix

For a matrix A, a permutational vector corresponding to a permutational
matrix P means the vector made up of the diagonal elements of diag (pT A).
The locations of the elements extracted from A coincide with those of units
in P.

The Birkhoff theorem is almost evident for those who accept as evident
that any doubly stochastic matrix contains a nonzero permutational vector.
As a matter of fact, if VI is the minimal component of a nonzero permutational
vector corresponding the permutational matrix PI , then 8 - VI PI = <PI 8 1 ,
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where 0 ~ V1, <P1 ~ 1, V1 + <P1 = 1, and 81 is a doubly stochastic matrix
which houses at least one zero element more than the original matrix 8.
Proceed by induction.

Attempt to prove the existence of a nonzero permutational vector. This
is not at all simple. Prior to being able to do this we need to be armed with
the following (nontrivial) theorem.

The Hall theorem. Every permutational vector of an n x n matrix A con­
tains a zero component if and only if A has a p x q zero submatrix with
p+q > n.

Necessity. Assume that every permutational vector of A contains zero. Write

[

a ll

A= B

If the matrix A is not zero then, without loss of generality, let a1 n :I O. Then
the matrix B of order n - 1 must have zero in every permutational vector.
Assume that (the induction in n) for B, there exists a p x q nonzero submatrix
with p + q > n - 1. => There exists a zero submatrix with p + q = n.
Suppose it lies in the lower-left corner:

A = [~1 ;2]' A1 E ()q x q, A2 E ()pxP.
At least one of the matrices A1 and A2 should have a zero on every per­
mutational vector. Let it be A1 • By the inductive hypothesis, A1 contains
an r x s zero submatrix with r + s > q. Without loss of generality, as­
sume that this submatrix is located in the lower-left corner of the matrix A1 •

Then in the same corner of the matrix A, we have a (r +p) x s zero submatrix
with (r+p)+s = (r+s)+p > q+p =n, just what was required to be proved.

Sufficiency. Assume that p ~ q and a nonzero submatrix occupies the lower­
left corner of A. Then

[ A1 *]
A = Oq Xq A2 '

and the last row of A1 is zero. Thus every permutational vector is bound to
capture some element of this row (i.e., zero). 0

Corollary. Any doubly stochastic matrix contains a nonzero permutational
vector.
Proof. If not, by the Hall theorem, the doubly stochastic matrix (say, A)
has a p x q zero submatrix with p + q =n . Suppose it occupies the lower-left
corner:



5.5. "Unnormal" extension 43

The sum of all elements of R is equal to 0 (why?) ::} R = 0 ::} the matrices
Ai and A2 are both doubly stochastic. Proceed by induction. 0

5.5 "Unnormal" extension

In the late 80s, an interesting generalization of the Hoffman-Wielandt theorem
appeared on arbitrary diagonalizable matrices (not necessarily normal) .

Theorem 5.5.1 (Sun-Zhang) Assume that A and Bare diagonalizable and
P and Q are the corresponding eigenvector matrices. Then

where

Proof.

IIA - B IIF = IIPDAP- l
- QDBQ-11IF

= liP [DA(P-lQ) - (P-1Q)DBl Q-111F

> IIP-11~21IQI12I1DAZ - ZDBIIF , where Z == P-1Q .

Consider the singular value decomposition Z = V~U* . Then

where the matrices M = V*DAV and N = U*DBU are, obviously, normal.
By the Hoffman-Wielandt theorem ,

Therefore, it is sufficient to make certain that

IIM~ - ~NIIF ~ CTminllM - NIIF.

Set n = ~ - CTmin I . Then (keep in mind that M and N are normal)

IIM~ - ~NII~ = II(Mn - nN) + CTmin(M - N)II~

< liMn - nNII~ + CT~iniIM - NII~

+ CTmin tr n{(M - N)(M - N)* + (M - N)*(M - N)} . 0

For a more detailed treatment of the above and related topics, I would
recommend the nice book by Stewart and Sun.'

IG . W. Stewart and J . Sun . Matrix Perturbation Theory. Academic Press, 1990.
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5.6 Eigenvalues of Hermitian matrices

Theorem 5.6.1 (Courant-Fischer) Let A1 ~ ... ~ An be the eigenvalues of
a Hermitian matrix A of order n . Then

and

x· Ax
Ak = max min-­

dimL=k zEL x· X
x;eO

z" Ax
min max --.

dimL=n-k+1 zEL x· X
x;eO

(5.6.1)

(5.6.2)

Proof. Let U1, . • • , Un be the orthonormal eigenvectors corresponding to
A1, ... , An, respectively. As is easily seen,

k

X = L::eiUi
i=1

x· Ax
-->Ak.x·x -

It follows that the right-hand side in (5.6.1) cannot be less than Ak. (Why?)
Now consider a k-dimensional space M . There exists a nonzero vector

z E M n K, K == span {U n-H1,"" un} . For any such a vector,

z· Az z" Ax
< max -- ~ Ak'z· Z zEK x· X

x;eO

Therefore, the right-hand side in (5.6.1) cannot be greater than Ak. The proof
of (5.6.2) is similar. 0

5.7 Interlacing properties

Theorem 5.7.1 Suppose that A is a Hermitian matrix of order nand B is a
leading principal submatrix of order n-l. Then the eigenvalues A1 ~ .. . ~ An

of A and the eigenvalues J.L1 ~ . . . ~ J.Ln-1 of B satisfy the following interlacing
property:

(5.7.1)

Proof. Denote by Lo C ~n any subspace of the vectors x E ~n of the form

x = [~].

Then any m-dimensional space of the vectors x corresponds to some m­
dimensional space Lo of the vectors x. In line with (5.6.1),

x· Ax x· Ax
J.Lk = max min < max min = Ak·

dimLo=k zELo x· X dimL=k zEL x· X
x;eO x;eO
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In line with (5.6.2),

45

x* Ax x* Ax
ILk = min max -- > min max -- = Ak+! . 0

dim Lo =(n-l)-k+l zELo X* X dim L =n-k zEL X* X
x#O x#O

Theorem 5.7.2 Suppose that a Hermitian matrix A E q::nxn is perturbed so
that

B = A+epp*, eEIR, pEq::n,llpI12=1, (5.7.2)

and denote by Ai ~ ... ~ An and ILl ~ • •. ~ ILn the eigenvalues of A and B,
respectively. If e ~ 0, then ILl ~ Ai ~ IL2 ~ . .. ~ ILn ~ An, while if e :::; 0,
then Ai ~ ILl ~ A2 ~ ... ~ An ~ ILn . In either case, for all k,

tk ~ 0, and tl + ... + t« = 1. (5.7.3)

Proof. Let e :::; O. By the Courant-Fischer theorem,

x* Ax x* Bx
Ak = max min -- < max min

dimL=k zEL x* X dimL=k zEL x* x
x#O x#O

and, further, for k ~ 2,

min
x* Bx

min
x* Ax

ILk < max = max
dimL=k zEL,z.Lp x*x dimL=k zEL,z.Lp x* x

x#O :1:#0

min
x* Ax

Ak-l .< max =dimL=k-l zEL x* x
:1:#0

Thus, we may write ILk = Ak + tkc with tk ~ O. Adding these equations, we
obtain tr B = tr A+e (tl + + tn) while the starting equation (5.7.2) implies
tr B = tr A + e. Hence, tl + + t« = 1. The proof for e :::; 0 is similar . 0

5.8 What are clusters?

Sometimes the most of (though not all) eigen or singular values are massed
near some set on the complex plane (one or several points, as a rule) . Such
a set is said to be a cluster. However, we need to bring far more into the
picture.

Consider a sequence of matrices An E q::nxn with eigenvalues Ai(An) and
a subset M of complex numbers. For any e > 0, denote by 'Yn(e) the number
of those eigenvalues An that fall outside the e distance from M. Then M is
called a (general) clusterif

lim 'Yn(e) =0 \Ie> 0,
n-too n

and a proper cluster if

'Yn(e) :::; c(e) \In, \Ie> O.
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We consider chiefly the clusters consisting of one or several (a finite number
of) points (M = C is never of interest).

One might also be interested in the singular value clusters. To distin­
guish between the eigen and the singular value cases, let us write 'Yn{e; >')
and 'Yn{e; u), respectively. For brevity, we denote that M is a cluster by
>'(An) '" M or u(A n) '" M.

Of course, we tacitly assume that An are the elements of some common
process (for instance, they might arise from a digitization of some operator
equation on a sequence on grids) .

5.9 Singular value clusters

To prove that a sequence has a cluster, we can try to find a "close" sequence
for which this is already established. That "closeness" can be treated in a
rather broad sense.P

Theorem 5.9.1 Suppose that An and Bn are such that

or, alternatively,
rank (An - Bn) = o{n).

(5.9.1)

(5.9.2)

In either case, any singular value cluster for An is also a singular value cluster
for B n , and vice versa.

Proof. First, consider the case (5.9.1). Denote by ul{An) ~ . . . ~ un{An)
and ul{Bn) ~ .. . ~ un{Bn) the singular values of A and B. Then it follows
from the Hoffman-Wielandt theorem (prove this) that

n

:L)uk{An) - Uk {Bn))2 $ "An - Bn"}.
k=l

Take an arbitrary 8 > 0 and denote by an (8) the number of those k E
{I, ... , n} for which IUk{An) - un{Bn)1 ~ 8. Together with (5.9.1) the above
implies that

an(8)82 =o(n) =} an(8) =o(n).

Consider a subset M C C, and denote by 'Y:{e) and 'Y!?{e) the 'Yn{e; u) func­
tions (introduced in the previous section) for An and Bn, respectively. Choos­
ing 8 =ej2 we obtain (why?)

B) A e (c)'Yn (e s 'Yn (-2) + an 2 .

Since the right-hand side is o(n), that will do the proof.

2E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution
and clustering. Linear Algebra Appl. 323: 1-43 (1996).
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In the case of (5.9.2), we have to recollect that the singular values in
question are the square roots of the eigenvalues of the Hermitian matrices
A~An and B~Bn . Obviously, rank (A~An - B~Bn) = o(n). Thus, do not
loose generality if we assume that An and Bn are both Hermitian . If so,
we may apply the interlacing property stated in Theorem 5.7.2. Doing this
several times (as many as rank (An - Bn) is) we arrive in the end at

5.10 Eigenvalue clusters

To state that the eigenvalue clusters for An and Bn coincide, we ought to add
something to the premises of Theorem 5.9.1. For example, we can formulate
the following.

Theorem 5.10.1 Suppose that An' Bn E (Jjnxn are diagonalizable for every
n, and denote by Pn, Qn the corresponding eigenvector matrices. If

cond~Pn cond~ Qn IIAn - Bnll} = o(n),

then any eigenvalue cluster for An is also an eigenvalue cluster for Bn, and
vice versa .

Proof. Using the "unnormal" extension of the Hoffman-Wielandt theorem
discussed above, we follow the same lines as in proving Theorem 5.9.1. 0

Some stronger statements can be made if one of the sequences is a constant
matrix, for example, the zero one." (In print .)

Theorem 5.10.2 Suppose An has a singular value cluster at zero and, m
addition, is bounded so that , uniformly in all sufficiently small e > 0,

logilAn l12 =0 ( t )) .
'Yn s; a

Then An has the eigenvalue cluster at zero, too.

Proof. Let P'l(An)1~ . .. ~ IAn(An)1 and rIl(An) ~ . . . ~ rIn(An) be the
eigenvalues in modulus and the singular values of An' respectively. We use
the following Weyl inequality:

m m

IT IAk(An)! s IT rIk(An),
k=l k=l

m= 1, . .. ,n. (5.10.1)

(Prove this . Hint: it is not too hard a task for us, because we already wield
the Hoffman-Wielandt theorem and interlacing properties .)

3E. E. Tyrtyshnikov and N. L. Zarnarashkin. On eigen and singular value clusters,
Calcolo (1997) .



48 Lecture 5

m =I, ... ,n.

By contradiction, suppose the eigenvalues of An are not clustered at O.
Therefore, there exist co, eo > 0 and some subset of increasing indices N =
{n1' n2, .. . } such that 'i'n(co; A) ~ eon Vn E N. Without loss of generality,
assume that nk = k Vk , Choose any 10 > O. Using (5.10.1), we obtain

~n(oO ;A) ~n(OO;A)

crin(OO;A) S II IAk(An)1 S II (1k(An) S IIAnll~n(o;<T) c~n(oO ;A)-~n(o;<T)

k=l k=l

=} (10;) ~n (:o ;>') S ('IA;1I 2 ) ~n~ :")

By the contradictory assumption, if 10 < co, then the left-hand side is lower­
bounded by a positive constant. For sufficiently small 10, this constant can be
made arbitrary large, and in particular, larger than the upper bound of the
right-hand side. 0

Exercises

1. Suppose that A, B E <en x n are Hermitian with eigenvalues A1 ~ . •. ~
n

An and J.L1 ~ ••• ~ J.Ln· Prove that E IAi - J.Ld 2 S IIA - BII}·
i=l

2. Suppose that A, B E <en x n have the singular values A1 ~ • •• ~ An and
n

J.L1 ~ •.• ~ J.Ln· Prove that E IAi - J.Li1 2 S IIA - BII}·
i=l

3. Suppose that A E <en x n is Hermitian and B =P*AP, where P E <ekxn

has orthonormal columns. Prove that

An-kH(A) + ... + Ak(A) S tr B S A1(A) + ... + Ak(A).

4. Prove that min IIA - BIIF = /(1;-kH (A) + .. .+ (1~(A).
rankB~k V

5. Consider an upper bidiagonal n x n matrix An with 1 on the main
diagonal and 2 on the neighboring one. Prove that

(11(An),' . . , (1n-1 (An) E [1, 3] and (1n(An) E (0, 21- n).

6. For any A E <en x n , prove the Weyl inequality
m m

II IAk(An)1 S II (1k(An),
k=l k=l

7. Produce a sequence of matrices An for which the eigenvalues are clus­
tered at some point, but the singular values are not clustered at any
point .

8. Produce a sequence of matrices An for which the singular values are
clustered at 1, but the eigenvalues are not.
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6.1 Floating-Point numbers

There are only finite many numbers in a computer. These are the so-called
floating-point numbers:

Here, p, 0:, d1 , . . . ,dt are integers. The number p > 0 is said to be the base of
a computer arithmetic. The number in brackets is the mantissa, and 0: is the
exponent of a floating-point a. The numbers di E {O, 1, . . . ,p - I} are termed
digits, and t is the length of the mantissa. As a rule, d1 -:f O. After all, there
are some integers, Land U, which are the bounds of 0:: L ~ 0: ~ U. A special
floating-point number is a = O.

Thus, the set of all floating-point numbers is determined by the parameters
p, t , L, and U.

6.2 Computer arithmetic axioms

When fed into a computer and operated on as floating-point numbers, the
quantities go through a rounding-off as usual. A rounding-off is a mapping
of the real numbers into the floating-point numbers. Let fl(x) denote the
rounding-off result for x. Then the following axiom applies:

fl(x) = x(l + E), (6.2.1)

where lEI ~ 11 as long as fl(x) -:f ° .We define 11 as the lowest upper bound
for lEI . Then for the school rule of rounding Off,l we obtain (check it)

111 = _pl-t
2

(6.2.2)

lit reads: given a number to be rounded off, take a number nearest to it with a prescribed
mantissa; in the case of two candidates, take the largest one.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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By tradition, the result of a computer operation * on floating-point num­
bers a and b is signified by fl(a * b). We postulate that if fl(a * b) =P 0,
then

fl(a *b) = a *b(1 + e), (6.2.3)

This is the primary axiom we rely on when studying the roundoff errors in
numerical algorithms.

NB: The relative error e must be small only when the result of a computer
operation is not zero.

Sometimes numbers are rounded offby cutting off the "superfluous" digits.
In this case, the equality x =a *b does not necessarily entail that f l(a *b) =
fl(x) . For example, suppose that p = 2, t = 2. Let a = 0.11, b = 0.0001
and x = a - b = 0.1011. Then fl(x) = 0.10 while fl(a - b) = 0.11 (the
handling of numbers reduces to that of t-digit ones on a special device called
a "summator").

For the cutting-off rule, 11 =p1-t.

6.3 Roundoff errors for the scalar product

Exact equations for actually computed quantities include a good many dif­
ferent e1, e2, . . . . Not to overload the equations , let us designate all these
e1,e2 , . " by the same letter e. Adopt the notation

n

(1+ e)n =II (1+ ek.) ;
;=1

if such things occur several times, then all ek. in the corresponding expan­
sions are regarded as different. This causes no problem when deriving some
inequalities, because any e is subject to (6.2.3) (so long as no floating-point
zero pops up).

Now, let a be an actually computed scalar product:

Suppose the scalar product appears after the following prescriptions :

0: =OJ DO i =1, n
0: = 0: + XiYi

END DO

Then, in chime with (6.2.3), we find that

n

a =L XiYi(1 +e)nH-i.
i=l

(6.3.1)
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6.4 Forward and backward analysis

51

One can interpret (6.3.1) in different ways. In the spirit of the forward analy­
sis, we are to estimate the deviation between the exact and computed answers:

(6.4.1)

We assume above and from now on that if A = [aij] then IAI = [Iaijl].

In the spirit of the backward analysis, weare to represent a really computed
answer as the result of exact computations with perturbed data and, then, to
derive a bound on the corresponding (termed equivalent) perturbation:

a = xTy,
Ix- z] ~ ~n1]lxl + 0(1]2), Iy - yl ~ ~n1]lyl + 0(1]2) .

(6.4.2)

Clearly, the perturbations can be distributed between x and y in some other
ways.

6.5 Some philosophy

In the course of examining the roundoffs, it is typical to ignore the quantities of
order 0(T/2 ) . FollowingWilkinson (one of the prominent experts of the field),
we emphasize that the main objective is not the derivation of neat bounds
("the bound itself is usually the least important part of it") but mostly to
expose (and to fix, if possible) the potential instabilities of an algorithm at
issue. It would be not right to think that a large inaccuracy in an answer is
due to a large number of operations (and hence, roundoffs). More frequently,
there is just one operation that spoils the picture .

6.6 An example of "bad" operation

An operation with a bad reputation is that of subtracting closenumbers of the
same sign. This operation, as such, is not any worse than others, for its own
roundoff error is of order T/. Yet it can amplify dmmatically the previously
accumulated errors. In particular, let ii ~ a, b~ bj then

fl(ii - b) = (ii - b)(l + e) = (a - b)(l + e + 8),

where

8= ((ii-a)-(b-b)) (l+e).
a-b

Obviously, 8 can get very large.
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6.7 One more example

Some routine was used to compute the eigenvectors of a block triangular ma­
trix with 2 x 2 blocks, and, after its run, it was seen that exactly one eigen­
vector had a residual of three orders beyond those of the other eigenvectors.
In this case, the instability originated from the solution of a homogeneous
system with two equations and two unknowns:

alXl + a2X2 =0,
blXl + b2X2 = 0;

IxIi = 1 or IX21 = 1.

Assume that the vectors a = [al, a2V and b = [bl, b2V are nonzero and
approximately collinear; set lalb2 - a2bll =8. If we take

then the residuals are

rl = lalxl + a2x21 ~ 27]lIalloo,

r2 =IblXl + b2X21 ~ lIafJoo + 27]lIbll oo .

Alternatively, if we take

(6.7.1)

then
8

rl ~ Ilbll oo + 27]lIalloo,
(6.7.2)

r2 ~ 27]lIbll oo.

The bounds (6.7.1) and (6.7.2) differ in that one contains 8/11alloo while the
other contains 8/11bll oo• If IIbll oo exceeds Iiall oo by three orders, then the resid­
ual for the first approach may be, roughly speaking, three orders greater.
Thus , we can recommend the following recipe: if lIalioo ~ IIbll oo, then choose
(*); otherwise, (**).

6.8 Ideal and machine tests

As a rule, an algorithm undergoes some testing, when the computed answers
are compared with the known exact ones. Shortsighted programmers might
see no discrepancy between the ideal and machine tests, which leads them,
sometimes, to wrong conclusions.

For example, a routine that solves linear systems by the Gauss elimination
method was tried on a test Ax = b with the Hilbert matrix

[
1 ] nA= . .

t + J - 1 ij=l
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and the solution vector x = [1,. .. ,1]. The right-hand side was computed by
multiplying A by z . For n = 10, the computed solution x (in the "REAL*8"
regime on FORTRAN) turned out to be

Ilx - xll oo ~ 0.9 . 102
•

For all this, do not hurry to say that the algorithm produced a "bad" solution.
In actual fact, instead of the exact A and b the computer had gotten some

close but different A and b, and thus the machine test was different from
the ideal one. The Hilbert matrix is ill-conditioned; consequently, the exact
solution x for the machine test may go ( and did) far from x :

1.042595644
0.459944616
1.284169655
2.772926997
2.217756963
3.252956378

- 5.410267887
-46.120499977

93.504857996
-43.063313904

It is clear, now, that the computed solution xshould be compared with xbut
no longer with x . Should this be done, the relative errors in the components
of the solution do not exceed 10-8 .

6.9 Up or down

The most spectacular example of an unstable algorithm I ever encountered is
the following.P We are to compute the integrals

I

En =Jz" ex
-

I dx, n = 1, . .. .
o

A simple recursive formula emerges immediately after integrating by parts.
Using it , we obtain the following "down-to-up" algorithm:

E I =1/ e; En =1- n En-I, n = 2, 3, .. .

It is easy to prove that (do it)

1o < En <
n+1

2G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer Methods for Mathematical
Computations. Prentice-Hall, Englewood Cliffs, NJ, 1977.
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Yet, when running this algorithm, you shall see very large and even negative
values of En. The problem is that even a small inaccuracy in E1 is multiplied
by n! in En.

Curiously, if we start with various initial data

E1 = c; En = 1- nEn-l, n = 2, 3, .. . ,

then (prove this)

limEn={O ,
n-too 00 ,

c = 1 Ie,
otherwise.

A good idea is to begin with a sufficiently large N and run the same
but reversed recursive formula. Thus, we obtain the following "up-to-down"
algorithm:

EN=I; En = (I-En+t}/n, n=N-l, N-2, . . . ,1. (**)

Now, any inaccuracy in EN will be diminished just next to a few ini­
tial steps . For example, the algorithm (**) can be used to compute e =
2.718281828. . . to machine precision.

6.10 Solving the triangular systems

For solving a system Lx = b with a lower triangular matrix L = [lii ], we can
apply the following forward substitution method:

DO i = 1, n

(

i - I )
Xi = b, - ?: liixi [l«

)=1

END DO

If Xi is a really computed value then we obtain

Set
lij(1 + e)i-i,
liil(1 +e)2,
0,

i > j,
i =i .
i < j .

Then

Xi = (bi - ~ iiiXi) liji ,
)=1

i.e., Xi is a component of the exact solution of a system with the same right­

hand side but a perturbed coefficient matrix i. = [iii]'
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How close Land L are is easy to estimate:

(6.1O.1)
i > i,
i =i.
i < i-{

Iliil (i - j)1]+ 0{1]2),
liii - liiI::::; Iliil 21] + 0{1]2),

0,

Thus, the following holds:

Theorem 6.10.1 For the forward substitution method, a really computed so­
lution x of a system Lx = b satisfies a perturbed system is = b, where L is a
lower triangular matrix such that

IL -LI s n1]ILI + 0{1]2) . (6.1O.2)

The inequality (6.10.2) is a concise but rougher form of (6.10.1) . The re­
sult we have gotten is practically ideal for an algorithm from the viewpoint
of the backward analysis of roundoffs.

The case of the backward substitution method is treated similarly.

Exercises

1. Is it true that fl{~) E [a, b)?

2. To find eX for x = -13, somebody sums up the series

x2 x3

eX = 1 + x + 2! + 3T + ...

and gets an enormous error. Why? Would you suggest a remedy?

3. The back substitution method is know to provide always a very small
residual. Explain why. Write a routine for this method, and run it to
solve the system

1 2 Xl 1
1 2

=

1 2 1
1 Xn 1/3nx n

for n =40. How small is the residual? To what accuracy is the solution?

4. Devise an algorithm for summing up n real numbers providing the fol­
lowing properties:

where
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7.1 Direct methods for linear systems

We build up algorithms using some set of elementary operations. If a problem
is solved with a finite number of elementary operations (in exact arithmetic),
then the corresponding method is said to be direct.

Not every problem can be given a direct method. For instance , it is im­
possible to solve the equation x2 = 2 using a finite number of arithmetic
operations.

For all this, a direct method exists as soon as the square root is relegated
to an elementary operation. All the same, we are aware (due to Galois and
Abel) that, even with the roots of any degree, there can be no direct method
for finding zeroes of algebraic polynomials of degree five and larger. That is
why one should not try to invent a direct method to compute eigenvalues.
(Why?)

For solving linear systems, direct methods exist using only arithmetic op­
erations; sometimes the square root is added to them.

We shall discuss, in some detail, the classical direct methods for dense
unstructured matrices. These are the Gauss method and other elimination
methods making zeroes by the Givens (rotation) or the Householder (reflec­
tion) transformations. These methods are related to the LU and QR decom­
positions for the coefficient matrix.

7.2 Theory of the LU decomposition

A square matrix A is called strongly regular if all its leading submatrices (A
itself as well) are nonsingular.

By the LU decomposition of A, the equality A =LU is understood, where
L is a lower unitriangular matrix (i.e., triangular with units along the main
diagonal) while U is a nonsingular upper triangular matrix.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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Theorem 7.2.1 A matrix A admits the LU decomposition if and only if it
is strongly regular.

Proof. The "only if" part is evident. For the "if" part we use induction.
Write

[
a cT ]

A= b D .

Then

[ 1 0] [a cT
] [a cT

]
-~bIb D = 0 A1 '

1 T
A1 == D - - bc .

a

It is easy to see that the matrix A1 is also strongly regular . By the inductive
assumption, it admits the LU decomposition A1 =L1U1. Set

and calculate

LU = [~ L 1U1~~ bcT ] = [~ ~] = A . 0

Corollary 7.2.1 The LU decomposition is determined uniquely.

The equality L1U1 = L2U2 implies L;lL1 = U2U11 == D. The products of
lower triangular matrices and the inverse of such a matrix are lower triangular
matrices. The same holds for upper triangular matrices. Consequently, D is
simultaneously lower and upper triangular :::} it is diagonal. Since L;lL1

is a unitriangular matrix, we obtain D = I . 0

Corollary 7.2.2 All leading minors of A are positive if and only if U has
positive diagonal elements.

Corollary 7.2.3 If a strongly regular matrix A E lDn x n is symmetric (A =
AT), then it admits the LDLT decomposition A = LDLT, where L is lower
unitriangular while D is a nonsingular diagonal matrix.

Set D = diag (U). Then A = LDD-1U = AT = D-1UT(DLT). Obvi­
ously, the matrix D-1UT is lower unitriangular. By the uniqueness of the LU
decomposition, DLT = U. 0

Corollary 7.2.4 If a strongly regular matrix A E lDn x n is Hermitian (A =
A·), then it admits the LDL· decomposition A = LDL· , where L is lower
unitriangular while D is a nonsingular diagonal matrix.

Prove this.

Let C denote a lower triangular matrix with positive diagonal elements.
The decomposition A = CC· is called the Cholesky decomposition. The de­
composition A = CCT is said to be the symmetric triangular decomposition.
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Theorem 7.2.2 For a matrix A E lC n x n to have the symmetric triangular
decomposition (the Cholesky decomposition), it is necessary and sufficient that
it be symmetric (Hermitian) with positive leading minors.

Proof. Necessity is evident. To prove sufficiency, we take up the decomposi­
tion A = LDLT (or A = LDL*) and set C =Ldiag (04,...,va;:), where
D = diag (dl, ... ,dn ) . 0

7.3 Roundoff errors for
the LU decomposition

The proof of the theorem on the LU decomposition was constructive. It
contains a (recursive) algorithm that everybody knows by the name Gauss
algorithm.

Theorem 7.3.1 Assume A is a machine , real, strongly regular matrix of or­
der n . Then the actually computed by the Gauss algorithm matrices Land (;
satisfy the following inequality:

(7.3.1)

provided that the machine zero has not occurred in any elementary operation.

The theorem can be proved by induction.' This is one of the most re­
markable results of the roundoff analysis for algebraic algorithms .

7.4 Growth of matrix entries and pivoting

The bound 7.3.1 would be smart, if only without the term ILII(;I. One might
speculate that it is probably not a tight bound . Yet, the term ILII(;I points ,
by any chance, to the critical bottleneck of the Gauss algorithm , a potential
growth of entries of the triangular factors.

The growth of matrix entries could be very dangerous. Let p and t denote
the base of machine arithmetic and the length of the mantissa. Let n = 2,
and consider

[

-t
(;- P

- 0

[
a c] [p-t 1.]

A= b d = 1. 1. .

1. ]_ptL=[1. 0]pt 1. '

Then

and, therefore,

-- [0 0]LU - A = 0 1. .

IG. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press , 1989.
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An awfully large inaccuracy is accounted for by a small value of a, the pivot.
Apparently, we should look for a better pivot, or, in other words, we need

pivoting. For example, any entry of the column at work can be made a pivot by
swapping rows. A sane choice is the entry maximal in modulus. This column
pivoting ensures that all the entries of L are upper bounded (Ilij I ~ 1). At
the same time,

maxJu"1. . I)= I,) < 2n - 1
p- I I .max a·· -. . I)

I,)

(7.4.1)

If we pick up as a pivot the maximal in modulus entry with the minimal row
index, then the above estimate for the growth coefficient p is attained on the
following matrix

1
-1 1

A= -1 -1

- 1 -1

1
o 1

1

-1 1

(7.4.2)

It might be a comfort to note that one must be lucky enough to observe a
growth this large in actual practice.

7.5 Complete pivoting
Once k steps of the Gauss method are done, we can try as a pivot (by swapping
rows and columns) any nonzero entry of the "active submatrix" Ak

k
...

k{
x x x

x x x
A -t

x x x

[J
Let the pivots be maximal in modulus among the entries of each active sub­
matrix. For this complete pivoting, there was a long-standing hypothesis due
to Wilkinson that p ~ n for real matrices. In 1991 this hypothesis was found
to be untrue (N. Gould produced an example of real matrix of order 13 with
p > 13).2

2N.Gould. On growth in Gaussian elimination with complete pivoting. SIAM J. Matrix
Anal. Appl. 12 (2): 354-361 (1991).
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The most radical means for preventing the growth of entries is to make
zeroes by orthogonal transformations.

7.6 The Cholesky method

Let A be a real symmetric matrix with positive leading minors. Take n = 3
and try to satisfy the equation

[
all a21

a21 a22

a31 a32

o ] [Cll C21
C22 C22

C32 C33 0

C21 =a2t!cll, C31 =a3t!cll ;

C32 = (a32 - C31C21)/C22;

en = ..;all,
C22 = Vr-a-22----,C~--1,

C33 = Ja 33 - C~1 - C~2·

Here is how the Cholesky algorithm looks for an arbitrary n :

DO k = 1, n

DO i = k + 1, n

(

k-l )
Cik = aik - ~ CijCkj / Ckk

1=1

END DO
END DO

Suppose the expressions (*) and (**) are computed so that the relative
error e for any arithmetic operation and the square root operation have the
estimate lei ~ TJ. Then for the actually computed quantities Cij, we find that

k-l

c%k/(1+e)3 = akk-Lc%j(l+e)k-
j for (*);

j=1

k-l

cikckk/(1+e)2 = aik - LC;jckj(l+e)k-j for(**) .
j=1

From the first equality,

k

L ICkj12 < Jakk + 0 (TJ) < vakk + 0 (TJ)·
j=1
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Therefore,

k

L Cij Ckj - aik

j = l

k

< 1} (k + 1) L I~jllckjl + 0(1}2)
j=l

Lecture 7

Finally,

k

< 1}(k+1) L ICki l2 + 0(1}2)
j=l

i

< 1}(n+1) L ICkj l2 + 0(1}2)
j=l

For the Cholesky method, thus, we are free from any trouble with the
growth of entries.

7.7 Triangular decompositions
and linear systems solution

The whole of the solution process for Ax = b with a nonsingular A Carl consist
of the following three stages:

1) A =LU (computing the LU decomposition).

2) Ly = b (forward substitution).

3) Ux = y (backward substitution).

The first stage is the hardest, for the Gauss method requires in3 + 0(n2)

arithmetic operations (check this) . In the common case, we advocate column
pivoting. The second and the third stages require n2 + O(n) operations each.

On a parallel computer , the time distribution among the three stages Carl

differ. Let us imagine an abstract parallel computer with an arbitrarily large
number of processors and instantaneous exchange of data between all devices.
Then , for each of the three stages, there are algorithms that work in O(log~ n)
parallel steps . Nobody knows whether it is possible to cut back this time even
if only for triangular systems.
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7.8 How to refine the solution
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Suppose we have an approximate solution Xo computed by the Gauss method.
The following recipe shows how to refine it:

1) Compute the residual ri-I = AXi-1 - b.

2) Solve a system for the correction vector Ci-I: Ae;-I =ri-I.

3) Xi = Xi-I - Ci-I .

If the above prescriptions are performed in exact arithmetic, then the vector
Xi must be the exact solution for Ax = b. In the case of roundoffs, we obtain
a new approximation Xi to the exact solution x. Will Xi be any better than
- ?Xi-I·

Assume that the actually computed and the exact correction vectors (Ci
and Ci) are bonded by the inequality

(7.8.1)

where 0 < {) < 1/(1 + 17). Then, for the vectors Ci =A-I (AXi - b) = Xi - X,

q = {)(1 + 17).Ilcdl :'S qllci-1112 + 17l1xII2'

It follows easily that

Ilcill2 :'S qillcoll2 + (qi-I + qi-2 + . . . , +1) 17l1xII2.

Hence,

(7.8.2)

Ilcill2 < _17_ + O(qi). (783)
IIxII2 - 1- q . .

Thus, if the approximation we start from is not too bad (i.e., (7.8.1) is fulfilled)
then the above refinement method allows us to approach the solution with an
accuracy of about 17/(1 - q).

Since the initial approximation can have a fairly small residual, it is usually
recommended to

(a) compute the residual ri-I in a higher precision regime and only then
round it off to the working precision, and

(b) normalize the residual by a factor of pk, where p is the base of machine
arithmetic, prior to the correction vector computation, i.e., to solve the
system ACi-1 = ri-dllri-dl, and, finally, assign Ci-I = ci-dlri-d!-

We regard the refinement process as cheap, because, at this stage , when
solving the system for the correction vector, we know that the LU decompo­
sition of A is already computed.

Generally speaking, the refinement process allows us to achieve good accu­
racy even for ill-conditioned matrices. It makes sense if the machine coefficient
matrix and right-hand side are regarded as exact. Otherwise , the refinement
process is not a panacea to fight against the ill condition. At any rate, its
application to such problems needs specific substantiation.
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Exercises

Lecture 7

1. Let M denote a set of n x n matrices of the form A = Q I - N, where N
has nonnegative entries and all its eigenvalues in modulus are less than
Q . Prove that any A E M admits the LU decomposition, and what is
more, L E M and U EM.

2. Show that the Gauss method with column pivoting is equivalent (in
exact and machine arithmetic) to the Gauss method without pivoting
applied to the same matrix but with swapped rows.

3. Assume that a system Ax = b was solved through the three stages
according to Section 7.7, and there were no machine zeroes in the run.
Let the actually computed quantities be L, [; and x. Prove that (A +
E)x = b, where

4. Suppose that the LU decomposition is computed by the Gauss method
without pivoting for a matrix A E lRn x n which is row-wise diagonally
dominant. Prove that in this case the growth factor

~8:X IUiil
I ,Jp = ---"---,-----..,.

- ~8:X \aiil
I,J

does not exceed 2.

5. Suppose that the LU decomposition is computed by the Gauss method
without pivoting for a symmetric positive definite matrix A E lRn x n .

Prove that the growth factor is equal to 1.

6. If A is a Hermitian positive definite matrix, then the spectral condition
number of the active submatrix on each step of the Gauss method does
not exceed the spectral condition number of A. Prove this.

7. Assume that, in the Cholesky method , the expressions (*) and (**) are
computed so that the relative error e has the estimate lei S; TJ . Prove
that3

8. Devise a parallel algorithm that solves a nonsingular triangular system
through O(log~ n) parallel steps. (Hint: this problem is not too diffi­
cult!)

9. The Cholesky algorithm as we put in Section 7.6 requires O(n2 ) parallel
steps. Find a version of it that runs through O(n) parallel steps.

3V. V. Voevodin. Computational Bases of Linear Algebra. Nauka, Moscow, 1977 (in
Russian) .
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8.1 The QR decomposition of a square matrix

Given a square matrix A, a decomposition A = QR, where Q is unitary and
R is upper triangular, is said to be the QR decomposition of A. In contrast
to the LU decomposition, one does not fear a growth of entries in the case of
the QR decomposition. (Why?)

Theorem 8.1.1 The QR decomposition exists for any square matrix.

Proof. Assume A is nonsingular ee- A· A is positive definite ::} all leading
submatrices of A· A are positive definite oe- all leading minors in A· A are
positive re- there exists the Cholesky decomposition A· A = R·R (R is upper
triangular) ::} the matrix Q == A R-1 is unitary:

Q.Q = (AR-1)·(AR-1) =R-·(A·A)R-1 = (R-· R·) (RR-1) = I .

If A is singular, then, for all sufficientlylarge n , the perturbed matrix An =
A + ~ I must be nonsingular (why?). Hence, it admits the QR decomposition
An =QnRn. The set of unitary matrices is compact (why?) ::} there exists
a convergent subsequence

Qnk -t Q ::} Q~kA -t Q. A == R.

As is easily seen, the matrix Q is unitary whereas R is upper triangular. 0
Corollary. For a nonsingular A, the matrices Q and R are determined

uniquely provided that the main diagonal of R is positive.

8.2 The QR decomposition
of a rectangular matrix

Let A E ~mxn and m ~ n. Then there is a decomposition A = QR, where
R is a square upper triangular matrix of order n whereas Q has orthonormal
columns.

One can prove this by embedding A into a square matrix with zeroes in
the place of uncertain entries .

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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8.3 Householder matrices

A matrix H = H(u) = 1- 2uu*, where /Iu112 = 1, is called a Householder
matrix, or a reflection matrix. Verify that

(a) H is unitary;

(b) H is Hermitian;

(c) Hu = -u, and Hv =v V v.l u.

Lemma 8.3.1 For arbitrary vectors a, bE <en of the same length, there exist
a scalar"I and a Householder matrix H such that

Ha ="Ib, 1"11 =1.

Proof. If H = H (u), then

a-2(u*a)u="I b.

If a and b are nonzero collinear vectors, then we can set u = a//Ia/l2. Other­
wise, we take

and choose "I so that

2 (u*a) = Iia - "I bll~ ¢>

2 (a*a - "I*b*a) = /Ia - "I b/l~ = Ila/l~ + Ilbll~ - 2Re ("(*b*a).

Since IIal12 = Ilblb we obtain "I*b*a = Re ("(*b*a) ¢> the quantity "1* b*a is
real. If b"a = 0 then we can take any "I such that 1"11 = 1. Otherwise, there
are two options:

"I =b*a/lb*al, or "I = -b*a/lb*al. 0

8.4 Elimination of elements by reflections

According to Lemma 8.3.1, for any column a E <en, there is a Householder
matrix H such that

H a = "I [IIalb, 0, ... .oj", 1"11 = 1.

In this case, H is determined by the vector u =v/llvI12, where

v = [al - "I lIall2' a2,... , anf·

If al ::j:. 0, then we recommend choosing

"I = -aI/lad·
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(There will be no subtraction of equal sign numbers!)
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For any matrix A E a;nxn, there exist Householder matrices Hl, .. . ,Hn-l
such that

Hn-l . . . H1A = R

is an upper triangular matrix.

Let Hi be determined by a vector Ui with zeroes in its first i-I compo­
nents ; Hi must annihilate subdiagonal entries of the ith column of the matrix
Hi-l" . H1A .

Since the product of unitary matrices Z == Hn- l ... H, is still unitary,
A = Q R, Q = Z·, - one more (constructive) proof of the existence of the
QR decomposition.

For the QR decomposition to be done via reflections, we perform! n3 +
o (n2 ) arithmetic operations (prove this) . For comparison: in the Gauss
method for the LU decomposition, we need ~ n3 + 0 (n2 ) arithmetic operation.

8.5 Givens matrices

A matrix Gkl E IRn x n is called a rotation matrix, or Givens matrix, if it differs
from the unity matrix by only a 2 x 2 submatrix of the form

M (¢) = [ C?S ¢ - sin ¢ ]
sin e cos¢ ,

located in the rows and columns k and 1.
Check that Gkl is an orthogonal matrix.

8.6 Elimination of elements by rotations
If a vector [al' a2]T E IR2 is nonzero, then the choice

-al
COS¢=22 '

Val + a2

is to eliminate its second component :

When premultiplying A by a Givens matrix Gu, we can nullify anyone
entry of rows k or 1. Consequently, we can move from A to an upper triangular
form R through a sequence of premultiplications by Givens matrices :

Gn - l n . .. Gl n .. . G13 G12 A =R.

For the QR decomposition to be done via rotations, we perform 2n3 +
O (n2 ) arithmetic operations (prove this).
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8.7 Computer realizations of reflections
and rotations

A computer implementation of reflections or rotations provides for 0 and R
such that

IIA - 0 RII ~ CI (n) 1] IIAII + 0 (1]2),

110* Q- III ~ C2 (n) 1] + o (1]2) ,

(8.7.1)

(8.7.2)

where CI (n) and C2 (n) are functions of n (depending upon the norms in
question and the implementation details) .

The reflection and rotation algorithms are far different from the standpoint
of parallel computations. Using the so-called fan-in (pairwise) addition , we
can find the QR decomposition by reflections in 0 (n log n) parallel steps.
Alternatively, the standard rotations with no touch-up are richer in (somewhat
"hidden", from the first glance) parallel actions, for only 0 (n) parallel steps
are required. (Check it!)

8.8 Orthogonalization method

One can find the QR decomposition with no rotations or reflections. Suppose
that n = 3 and we wish to fulfill the equation A = Q R:

For convenience, we introduce nonnormalized vectors PI, P2, and P3 collinear
to qI, q2, and q3, respectively. The first columns coincide if we set PI =
aI, rn = IIpdl2' and ql =pI/rn . Then the equation for the second columns
is

Since q2 ought to be orthogonal to ql, we premultiply both sides by qi and
find

rl2 =qi a2, P2 =a2 - ql r12 ,
r22 = Ilp2112' q2 =P2/r22.

Next, equate the third columns:

Premultiply both sides by qi, q2 and find

ris =qi a3, r23 =q2a3,
P3 = a3 - ql ris - q2 r23, r33 = 11P3112' q3 =P3/r33 .

What we have above is the classical Gram-Schmidt orthogonalization algo­
rithm. It serves to obtain an orthonormal basis in a linear hull span {aI, . . . ,ak}
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spanned by linearly independent vectors ai, . . . ,ak. Here is how the Gram­
Schmidt looks in the general case:

j-l

Pj =aj - L qdqiaj), qj =pj/llpjI12, j = 1, . . . , k.
i=l

(8.8.1)

Here, rij =qi aj.
To orthogonalize n vector of size n, we perform 2n3 + CJ (n2 ) arithmetic

operations (check this) .

8.9 Loss of orthogonality

In machine arithmetic, the linear span for the vectors iit, ... ,iikactually com­
puted by formulas (8.8.1) coincides with the linear span for some perturbed
vectors al +it, ... ,ak + !k. The perturbations it , ... ,!k are guaranteed to
be small. (Prove it!)

However, the vectors iii , ... ,iik can be far away from orthogonal ones. Let
us try to realize why. It seems natural to measure the orthogonality property
for the vectors iii, ... ,iii by a quantity

o.:= [iii, . . . ,iiil, i = 1, . .. , k. (8.9.1)

Assume that the computations of the step i +1 are free from roundoffs. Then

Hence,

(8.9.2)

An evident upper bound holds

(8.9.3)

(quite sufficient for our purposes) . A little neater bound is as follows:

(8.9.4)

To sum up,
lIaHlll2 ~

8i+l ::; const 11_ II s, V 1 + s;
PHi 2

Even if 8i is small, we can not keep a rein on 8H l when IIPi+l1l2 becomes
small!
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8.10 How to prevent the loss of orthogonality

Assume that we have computed iiI, .. , ,iii which are still "sufficiently well"
orthogonal (that is, l5i is small). To maintain orthogonality in the step i + 1,
we consider the following reorthogonalization process:

p(O) = ai+l;

pU) = (1 - Qi Qi) pU- 1
) , j = 1,2, . . . .

The iteration for j = 1 pertains to the standard Gram-Schmidt algorithm.
If we quit on the jth iteration, then, finally, qi+l =pU) IlIp(i)112.

It is easy to see that f3U) == Qi pU) = (I - Qi Qi)i Qi p(O). So long as
l5i < 1, the matrix 1 - Qi Qi will be convergent ~ f3(i) -t 0 for j -t 00 .

W.Hoffman advocates continuing the reorthogonalization unless

(In his paper,lone finds very useful speculations and numerical examples to
support (*). Still, I am not sure that there is a rigorously proved bound on
the orthogonality measure for the strategy all through.)

8.11 Modified Gram-Schmidt algorithm

Consider the following two pseudoroutines based on formulas (8.8.1):

DO j = 1, k
Pi = ai
DO i = 1, j-l

Pi =Pi - qi (q; ai)
END DO
qi =pj/llpilb

END DO

DO j = 1, k
Pi = ai
DO i = 1, j-l

Pi =Pi - qi (q; Pi)
END DO
qi =Pillipill2

END DO

The second one is said to be the modified Gram-Schmidt algorithm. It comes
from the former by a change of ai onto Pi (in the innermost loop).

Both algorithms behave the same in exact arithmetic, but not on a ma­
chine. As A. Bjorck showed, the modified algorithm has the estimate

15k ~ c(n, k) U
m ax TI,

Umin

where Umax and Umin are the maximal and minimal singular values of the
n x k matrix A = [all '" ,ak], n ~ k. Thus, in contrast to the standard

lW.Hoffmann. Iterative algorithms for Gram-Schmidt orthogonalization. Computing
41: 335-348 (1989) .
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Gram-Schmidt algorithm, the modified algorithm is guaranteed to keep some
orthogonality.

Recently, it was revealed that the modified Gram-Schmidt algorithm coin­
cides literally (and so in machine arithmetic) with the Housholder algorithm
for the QR decomposition of the following zeroes-on-top rectangular matrix

In 1992, A. Bjorck and C. C. Paige" used this observation (due to C. Sheffield)
to rederive the above Bjorck estimate.

If you are still not satisfied with the orthogonality provided by the modified
algorithm, do not hesitate to touch it up by the reorthogonalization process.

8.12 Bidiagonalization

A matrix B = [bijJ is called (upper) bidiagonal if bij = 0 whenever i > j or
i + 1 < i-

Any n x n matrix A can be reduced to a bidiagonal form

B=PAQ

so that P and Q are finite products of the Householder (or, alternatively,
Givens) matrices.

Suppose we use reflections. First, we multiply A from the left by a reflec­
tion matrix that cancels all the subdiagonal entries of the first column. Then,
we multiply the result from the right by a reflection matrix that annihilates
the first row's entries from 3 to n . It is important that keep safeguard all
previously obtained zeroes in the first column!

Further, by premultiplication, we nullify the subdiagonal entries of the
second column, and then, by postmultiplication, make zeroes in the second
row's entries from 4 to n, and so on. In every step, we do not lose any
previously obtained zeroes (check it).

By the unitary bidiagonalization, many (not all!) problems for a matrix
A reduce to the same problems but for the bidiagonal matrix B. These are
the most important examples:

• The singular value decomposition of an arbitrary matrix A can be easily
constructed from the singular value decomposition of the corresponding
bidiagonal matrix B .

• The least squares problem for any A, i. e., the minimization problem for
IIAx - bll 2 in x, can be tackled by changing variables x =Qu, b = P f,
and, then, solving the minimization problem for liB u - fl12 in u with
the bidiagonal matrix B.

2A. Bjorck and C. C. Paige. Loss and recapture of orthogonality in the modified Gram­
Schmidt algorithm. SIAM J. Matrix Anal. Appl. 13 (1) : 176-190 (1992) .
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8.13 Unitary similarity reduction
to the Hessenberg form

A matrix H = [hij] is called (upper) Hessenberg if hij =0 for i > j + 1.
Any n x n matrix A can be reduced to a unitary similar Hessenberg matrix

H =p. AP

so that P is a product of a finite number of reflection (or rotations) .
Suppose we use reflections. Consider a reflection matrix PI so that

When a matrix is premultiplied by PI, nothing is done to its first row of entries.
Hence, when a matrix is postmultiplied by Pt = PI, nothing happens to its
first column of entries. In PI A PI, thus, we have zeroes in the first column
of entries from 3 to n. Step by step, we choose the reflections P2 , • • • , Pn - 2

so that the premultiplication by Pi makes zeroes in the ith column of entries
from i + 2 to n. Finally, P =PI .. . Pn - 2 •

Any matrices that are similar have the same spectra. Consequently, if
the eigenvalues and eigenvectors are required for A, we know how to proceed
as soon as we have learned how to solve the same problem for a Hessenberg
matrix H. Important property: since P is unitary, the condition numbers for
simple eigenvalues for H remain the same as those for A (prove it) .

IT A is a Hermitian matrix, then the above Hessenberg matrix H is, in
fact , t ridiagonal (prove it).

Exercises

1. Is it true that, for any vectors a, b E lCn of equal length, there is a
reflection matrix H such that H a = b ?

2. Is it true that any rotation matrix can be expressed as a product of a
finite number of reflection matrices ?

3. Is it true that any reflection matrix can be expressed as a product of a
finite number of rotation matrices?

4. Let H = H". Prove the inequality

(This is behind the estimate (8.9.4» .

5. Show that the modified Gram-Schmidt algorithm for the orthogonaliza­
tion of columns of an n x k matrix A is equivalent, including roundoffs,
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to the Householder algorithm for the QR decomposition applied to an
augmented rectangular matrix of the form

6. Let H = P* A P, where P is a unitary matrix. Prove that, for any
simple eigenvalue, its condition number for A is equal to that for H .
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9.1 The eigenvalue problem

"The eigenvalue problem" is a short name for a variety of settings and prob­
lems related to computing eigenvalues, eigenvectors, spectral projectors, etc.

Suppose we are to find all the eigenvalues of a matrix A E ~nxn . How
would we do this? A rather old idea is to find the characteristic polynomial's
coefficients and, thus, reduce the problem to computing the polynomial roots.

There are several "efficient" algorithms for computing the characteristic
polynomial's coefficients (a direct method exists that requires 0 (n3 ) arith­
metic operations). However, the idea was dismissed with the advent of com­
puters, because the eigenvalues might be slightly sensitive to small pertur­
bations of matrix entries but terribly sensitive to small perturbations of the
characteristic polynomial's coefficients (in this way we risk reducing a "good"
problem to a "bad" one).

9.2 The power method

Another old idea appeared more fruitful. Suppose that A has a basis of the
eigenvectors: A Zi = Ai Zi , and assume that

Consider the following power method:

Yo is an initial guess, Xo = Yo/I\Yolli
Yk = AXk -l, Xk =Yk/I\Ykl\, k=1 ,2, .. . .

(Why is the normalization necessary?)
If Yo = ILl Zl +...+ ILn Zn and ILl =I 0, then Xk is collinear to

Thus, the power method allows one to approximate the senior (greatest in
modulus) eigenvalue.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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To find Ai for i '" 1, one can try some a for Ai - a to become the senior
eigenvalue for A - a I. Is this always possible?

There might be an alternative: to carry out one step of the inductive proof
of the Schur theorem and come to a matrix of order n - 1 with the eigenvalues
A2' . .. ,An (to put it into action, one definitely proceeds rather implicitly; the
method as such is referred to as the deflation method) .

In its pure form, the power method is not used very often. However, most
modern algorithms exploit the idea behind it.

9.3 Subspace iterations

The power method develops naturally into the method of subspace iterations:

Yo is an n x m matrix of rank m,
l'O = X oRo (the QR decomposition of a rectangular matrix);
Yk = AXk- ll and Yk = X k Rk (the QR decomposition), k = 1,2, .. ..

The method generates a sequence of subspaces Lk = im Xk . In this role,
the QR decomposition is similar to the normalization in the power method
(besides, it simply produces orthonormal bases in L k ) .

If Lk is an A-invariant subspace (recall that it means that A Lk eLk),
then Ak = Xi A Xk is a diagonal block of a block triangular matrix that is
similar to A (explain this) . That is why we infer that

Under some hypotheses, as k increases, the subspace L k approaches some A­
invariant subspace. Consequently, the eigenvalues of the m x m matrix Ak

(usually m is far less than n) approximate some eigenvalues of A.

To get on to a precise analysis, we need to define the distance between
subspaces.

9.4 Distances between subspaces

The distance between a vector x E o;n and a subspace M C o;n is defined as

p (x, M) == min IIx - y1l2 .
y E M

It suggests that the distance between subspaces L and M would have been
defined as

p (L, M) == max p (x , M).
z E L, IIzll2 = 1

Will p fulfil the axioms of a metric space?
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We shall see shortly that it will if we consider only subspaces of equal
dimension. If not, it might be that p(L, M) =F p(M, L). Verify that if Lis
not orthogonal to M and dim L > dim M, then

p (L, M) = 1, whereas p (M, L) < 1.

All the axioms of a metric space are obviously met if we define the distance
as follows:

dist (L, M) == max{p(L, M), p(M, Ln.

9.5 Subspaces and orthoprojectors

A matrix P is termed an orthoprojector if p2 = P and P* =P.

Proposition 1. If L = im P, then P x is the orthogonal projection of the
vector x onto the subspace L.

Proof.
yEL ~ y=Pv ~

y*(x - P x) =v*P* (x - P x) =v* (P x - p 2x) =o. 0

It is clear that there is a one-to-one correspondence between subspaces L
and orthoprojectors PL providing for im PL = L. (Prove this.)

Proposition 2. If the columns of a matrix Q make up an orthonormal basis
in L, then PL = QQ*.

Proof.

(1) (Q Q*)2 = Q (Q* Q) Q* =Q cr,
(2) (Q Q*)* = (Q*)* Q* = Q Q* . 0

9.6 Distances and orthoprojectors

Lemma 9.6.1 Suppose orthoprojectors PL and PM correspond to subspaces
Land M. Then

p(L, M) = 11(1 - PM)PL112'

Proof.

p(L, M) = IIPL x - PMh xll2 (for some x =PLx, IIxlb = 1)

$ IIPL - PMPLI12 = 11(1 - PM)PL112.

Now, we show that 11(1 - PM)PLI12 $ p(L, M). Let

11(1 - PM)PLII2 = 11(1 - PM)PLY112, lIyII2 =1.
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If PLY= 0, then that is trivial. If PLY t 0, then

11(1-PM)PLyI12 s 111I::~12 - PM II::~ IJ2 I1PL Y II 2 s p(L,M) .O

Theorem 9.6.1 Suppose orthoprojectors PL and PM correspond to subspaces
Land M. Then

Proof. From Lemma 9.6.1,

p(L, M) = 11(1 - PM)PLII2 = II(PL - PM)PLI12 ~ IIPL - PMlb·

:::} dist (L, M) ~ IIPL - PM112.

FUrther, 3 x E ()n, IIxll2 = 1: IIPL - PMI12 = II(PL - PM) x112' By the
Pythagor theorem,

II(PL - PM)xll~

= IIPL (PL - PM)xll~ + 11(1 - PL) (PL - PM) xll~
= IIPL (I - PM)xll~ + 11(1 - PL)PMxll~

< IIPL (I - PM )II~ 11(1 - PM)xll~ + 11(1 - Pd PMII~ IIPM xll~

< max {1I(PdI - PM)/I~, /1(1 - PL)PM/lD·

It remains to note that

Corollary 9.6 .1 The distance between subspaces is equal to the distance be­
tween their orthogonal complements.

9.7 Subspaces of equal dimension

Lemma 9.7.1 If a matrix

Q = [Q11 Q12], Q11 E ()mxm, Q22 E ()k Xk,
Q21 Q22

is unitary, then /lQ12/12 = /lQ21/12'
Proof. Consider the singular value decomposition Q11 = U11:1 Vt for the
first diagonal block, and, then, take up another unitary matrix

Q = [~i ~] Q [~ ~] = [J:1 g::].
It is clear that IIQ12112 = IIQ12112' IIQ21 112 = /lQ21/12' At the same time,

QQ* = I :::}

Q* Q= I :::}
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Theorem 9.7.1 Suppose that subspaces Land M are of equal dimension and
unitary matrices U = [Ul U2] and V =[VI V2) are such that

im UI =L , im VI = M .

Then

Proof.

U· (Ul U~ - VI Vt) V = [ -U~ VI UiO
V2

] . 0

Corollary 9.7.1 IfdimL =dimM, then p(L, M) = p(M, L) .

Proof.

[~

[~

9.8 The CS decomposition

The distance between subspaces is only one characteristic of their mutual dis­
position. More detailed information is given by the so-called principal angles
between the two subspaces. We determine them from the as decomposition
of a unitary matrix coupled with the two subspaces .

Theorem 9.8.1 Assume that Q is a unitary matrix of order n . Then, for
any m :::; nf2, there exist unitary matrices Ui , VI of order m and unitary
matrices U2, V2 of order n - m such that

[
a s

[ o, 0] Q [VI 0] = -S a
o U2 0 V2 0 0

o ]o ,
I n - 2 m

a= diag(cI" " ,em), S = diag(sl , '" ,sm),

Cl ~ ••• ~ Cm ~ 0,

0:::; 81 :::; . .. :::; 8 m ,

i = 1, ... ,m.

The decomposition (*) is said to be the as decomposition of the unitary
matrix Q.

We embark on the proof by setting Q in block form

[
Q11 Q12] Q11 E <em x m ,
Q21 Q22 '
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and, then, by setting the singular value decomposition for the block Q11 =
U C V· . We obtain

[
U· 0 ] Q [ V 0 ] _ [ C
o In - rn ° In - rn - W21

The equations W W· =W· W = I imply that

and we see that there exist unitary matrices X, Y of order n - m, providing
that

W12 Y = [8,0], X W21 = [-8, of.
(Here, we have some room for choice. For example , we could swap 8 and -8
or multiply them by arbitrary diagonal unitary matrices.) Complete the proof!

Corollary. Let subspaces Land M be of equal dimension m :::; ~ . Then
there exist orthonormal bases '1.£1, ••• ,Urn ELand V1, •.• ,Vrn E M such that

• {Gi' i = i.
ui Vj = 0 . -J. .

, t rl,

where the quantities C1 ~ • •• ~ em ~ 0 are determined uniquely.
To prove the corollary, it is sufficient to regard the C8 decomposition

of the unitary matrix U· V, where U = [U1 U2 ], V = [V1 V2 ] are unitary
matrices such that L = im U1 , M = im V1•

One may write

c, = cos ¢i, 0:::; ¢ :::; i.
The angles ¢i are referred to as the principal angles between the subspaces L
andM.

9.9 Convergence of subspace iterations
for the block diagonal matrix

First, we consider the subspace iterations for a block diagonal matrix. Let

Denote by M the m-dimensional subspace spanned on the first m columns
of the unity matrix. Obviously, M is A-invariant. To "cause" the method
of subspace iterations to converge to M, we shall require that the initial m­
dimensional subspace L be not "too far" from M:

f3 == p (L, M) < 1.
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Lemma 9.9.1 Given (*) and (**), the following inequality holds:

Proof. Let y = Ax, y = [ ~~ ] , x = [ :~ ] , Xl, YI E Gjm. Assume that

x E L, p(AL, M) = p(y, M), IIyI12 = 1. Then

<

<

<

Denote by Am+! the maximal in modulus eigenvalue for the block A2 , by
Am the minimal in modulus eigenvalue for the block AI , and set

(9.9.2)

Corollary 9.9.1 If"( < 1, then Vq E ("(, 1) 3 c = c (q) :

p(Ak L, M) :::; c q", k = 1,2, . . . .

Proof. Applying Lemma 9.9.1 to the matrix Ak,

1

We know that, for any matrix A, the sequence (IIAkIl2)" tends to the spectral
radius of A (the maximal in modulus eigenvalue), as k -+ 00 . Hence,
V 8 > 03 ko such that, for any k > ko,

For any q > "(, for all sufficiently small 8 > 0 the right-hand side of the
above inequality will be less than qk . 0
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9.10 Convergence of subspace iterations
in the general case

Assume that

A = Z Az-l, A= [~l 12],
Al E (Jjmxm, A2 E (Jjrx r, 3 All .

First, consider a simple auxiliary lemma.

(9.10.1)

Zx
P(IIZxI12' ZM) =

Lemma 9.10.1 For any nonsingular matrix Z and for any subspaces L, M,

p (Z c. Z M) s cond- Z pu; M).

Proof. Let x E L , IIxl12 = 1, and assume that

Zx
p(Z£, ZM) =P(IIZxI12' ZM) .

We find that

Zx Z
P(IIZxI12 ' IIZxl 12 M)

1
< liZ xl12 liZ (x - z)112 (Vz EM)

IIZI 12
< liZ xl12 IIx - zl12
< IIZ11211Z-1112 p(£, M) . 0

Theorem 9.10.1 Assume that A is of the form (9.10.1) , M stands for the
linear subspace spanned on the first m columns of the matrix Z , and an m­
dimensional space L is such that

/3 == p(Z-1 L, Z-l M) < 1.

Let v be defined by (9.9.2). If'Y < 1, then Vq E ("(, 1) 3 c = c (q) such that

p(AkL,M) ::; c q", k=I,2, ....

Proof. The general case reduces to that of the block diagonal matrix A for
which the subspace Z-l M is invariant. (Why?) We already know that, for
A, the iterations of the initial subspace Z-l L will converge to Z-l M . Hence,
for any q E ("(, 1),

p(Ak (Z-l L), (Z-l M)) ::; cqk

Since Ak = Z Ak Z-l, using Lemma 9.10.1, we find that

p (Ak L, M) =p (Z (Ak Z-l L), Z (Z-l M)) ::; cond, Z c l . 0
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If you have felt that the analysis above was altogether clear and natural,
please take into account that it has taken some effort to achieve that clarity,
mostly due to a nice recent work of L. Elsner and D. S. Watkins.'

Exercises

1. Suppose that H is an upper Hessenberg matrix of order n with a nonzero
subdiagonal. Consider an upper triangular matrix

T(oX) =

1
o

o
o 0

H-oXI

o 1

and the following system of equations:

T (oX) [<Po (oX) , . . . , <Pn (oX)JT = [0, . . . ,0, IJT,

with respect to polynomials <Po (oX), .. . , <Pn (oX). Prove that <Po (oX) may
differ only by a nonzero coefficient from the characteristic polynomial
of H.

2. Devise an algorithm that computes the coefficients of the characteristic
polynomial for an arbitrary Hessenberg matrix of order n in 0 (n3 )

arithmetic operations.

3. Devise an algorithm that computes the coefficients of the characteristic
polynomial of an arbitrary n x n matrix in 0 (n3 ) arithmetic operations.

4. Prove that dist (L, M) = 1 if and only if L contains a nonzero vector
orthogonal to M .

5. Prove that the distance between any two subspaces in <en is equal to
the distance between their orthogonal complements.

6. Expound a complete proof of the theorem about the CS decomposition
of a unitary matrix.

7. A unitary matrix has the following block form:

Prove that [det (Q12)1 = [det (Q2dl .

1D.S.Watkins and L.Elsner. Convergence of algorithms of decomposition type for the
eigenvalue problem. Linear Algebra Appl. 143: 19-47 (1991).
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8. Let A be a nonsingular matrix of order n, and let Land M be subspaces
in <r::n • Prove that

dist (A L, A M) ~ cond- (A) dist (L, M).

9. If subspaces L and M are of equal dimension, then, for any orthonormal
basis of L (the columns of U), there exists an orthonormal basis of M
(the columns of V) such that

I!U - VI!2 ~ V2 dist (L, M).

10. Is it true that if p(L, M) < 1, L, ME <r:: n , then p(Z L, Z M) < 1
holds for any nonsingular matrix Z E Qjnxn?
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10.1 The QR algorithm

Given a, dense unstructured matrix A of several hundred (thousand) order
with all the eigenvalues (eigenvectors) wanted, a vehicle of choice is definitely
the QR algorithm. Since the early 60s, it is used due to V. N. Kublanovskaya
(Russia) and J. G. F. Francis (England) . We begin with the

Q R iterations in the orthodox form:

Ao = A E lDnxn(a given matrix) ;
Ak-l =Qk Rk (the QR decomposition), and
Ak = Rk Qk, k = 1,2, ... .

How do the eigenvalues come in? We merely reduce the problem for A to
the same one for Ak (because Ak and A are similar) - in the hope that Ak
becomes simpler. In effect, an (n - m) x m block in the lower-left corner of
Ak tends to zero (under a certain hypothesis), and, sooner or later, we neglect
"the zeroes", thus reducing the problem to that for the two blocks of order
m and n - m on the diagonal. But nobody applies the QR in the orthodox
form. We shall see soon that, if lAd ~ ...IAml > IAmHI ~ ... ~ IAnl, then,
the entries of the (n - m) x m block diminish (next to always) up to a factor
of "[m. == IAmHI/IAml at every step . Convergence is slow when "[m. ~ 1, and
how to make "1m smaller is probably to transfer to a "shifted" matrix A - s I.
Eventually, we come to the

QR iterations with shifts:

Ao=Aj
Ak- 1 - Sk1= Qk Rk (the QR decomposition),
Ak = n,Qk + Sk I , k = 1, 2, . . . .

10.2 Generalized QR algorithm

The QR iterations with shifts are a particular case of a more general algo­
rithm involving polynomials I»:

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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Ao=Aj
fk (Ak-d =QkRk (the QR decomposition),
Ak = Qk1Ak- 1Qk, k = 1, 2, .. ..

The generalized QR algorithm is sometimes called the QR algorithm with
multishifts. A multishift of degree r = r (k) means a complete set of the roots
of

r

h(x) = II(x - s~k») .
i=l

One multishift of degree r is equivalent to a sequence of r multishifts of degree
1. (Explain why.)

10.3 Basic formulas

The QR analysis rests totally on the following formulas:

Ak =Zk"lAZk, Zk =Q1 ... Qk;

k

Pk (A) == II Ii (A) = ZkUk, and Uk = Rk ... R1.
i=l

(10.3.1)

(10.3.2)

Proof. The first is obvious. To prove the second (by induction) , assume that
we have already established the equality

Since A1=Q1
1AQ1, we find that

h(Q11AQ1)' " fk(Q1 1AQ1) = (Q11h(A)Q1)'" (Q11h(A)Q1)
= Q1

112(A) ... h(A)Q1,

which is followed by

Premultiply both sides by Q1, and postmultiply by R1. Recall that ft(A) =
Q1R1, and so, arrive at (10.3.2). 0

10.4 The QR iteration lemma

Denote by G(m, n, X) a set of all matrices A E ccn x n satisfying the following
requirements:



10.4. The QR iteration lemma

(1)A=XAX-1, A=[~1 12]'
A1 E ICm x m

, A2 E ICr x r
, m + r =n .

(2) The leading principal submatrix of order m in X- 1 is nonsingular.
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Lemma 10.4.1 Consider one generalized QR iteration with a polynomial
f(>..) for a matrix Ao E G(m,n,X):

f(Ao) =QR, A1 =Q* AoQ,

and set

A
[

A~~) A~~] A _ [AW AW] A(O) A(1) /f'mxmo = (0) (0) , 1 - (1) (1) , 11' 11 E \I.J •
A21 A22 A21 A22

Assume that blocks PI == f(Ad and P2 == f(A2 ) are nonsingular. Then

where

and the constants C1, C2 > 0 depend only upon m and X .

Proof. Owing to requirement (2) on the class G(m, n, X), the matrix X-1
admits the following block LU decomposition:

X-
1 = LU == [i;1 f] [U~1 g~~], U11 E IC

m x m
.

The matrices L and U are nonsingular (why?), and their inverses are of the
same block structure:

L-1 = [1m 0], U-1 = [Uii
1

-Uii1~\2Ui21].
-L21 t, 0 U22

In accordance with the lemma's hypotheses, the block diagonal matrix
P == f(A) is nonsingular, and it is easy to verify that

A1 =RU- 1p-1 {P L -1 AL P-1} PUR-1.

The matrix Q = X(PLP-1) (PUR-1) is unitary ==>

The matrix Q-1 is unitary as well ==>
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Then,

and hence,

Analogously,

Lecture 10

IIFL-lF-1112s IIX-1112 (1+ IIL2dI2¢» '
Now, consider the block partitioning

F(L-lAL)F-
l

= [FdL-l:~hlFll ;2]'

Since L-lAL = UAU-1, we infer {L-lALhl = U22A~~)Ulll, which entails

II{L-lALhdI2 s (1IU221121IUi~1)112) IIA~~)1I2'

Finally,

IIAWI12 < IIRU-lF-
l [AdL-l~L}21All ~] FUR-

1
11
2

< Cl (1+ c2¢»21IA~~)1I2'

where

10.5 Convergence of the QR iterations

Theorem 10.5.1 Suppose that a matrix A satisfies the following require­
ments:

(1) A = X AX-I, A= [~l ~2]' Al E ([)mxm, A2 E ([)rxr.

(2) IAll ~ . .. ~ IAml > IAm+d ~ . . . ~ IAm+rl > 0,
{AI," " Am} = A(AI)' {Am+l,"" Am+r} = A(A2) .

(3) The leading principal submatrix of order m in X-I in nonsingular.

Then the orthodox QR itemtions genemte the matrices

_[Ai~) Ai~)]
Ak - A(k) A(k)

21 22

such that
AW -t 0 for k -t O.

Moreover, if'Y == IAm+lI/IAml, then

'v'qEb,l) 3c=c(q) : IIA~~)II2 < c q"; k=1,2, .. ..
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Proof. Note that k steps of the orthodox QR can be viewed as one step of
the generalized QR with a polynomial f(A) = Ak :

Ak = ZkUk,

By the QR iteration lemma ,

IIAWI12 ~ c IIA~112 IIA1k112,
and it remains to be observed that , for any {) > 0, for sufficiently large k,

Corollary 1. Under the hypothesis of this theorem, if A is a diagonal matrix,
then, for some c > 0,

Corollary 2. Let

A = XAX- I, A = diag(AI , ... , An),

lAd> ... > IAnl > O.

(10.5.1)

(10.5.2)

If the eigenvector matrix X-I is strongly regular (i.e., all its leading principal
submatrices are nonsingular) , then

lim {Akhi = 0, i > j;
k-too

lim diag Ak = A.
k-too

10.6 Pessimistic and optimistic

If the requirements considered above are not fulfilled, then there might be no
subdiagonal blocks that converge to zero.

A pessimistic remark: in general, the orthodox QR iterations are not
bound to converge. (Produce an example .)

An optimistic remark: the requirements (1), (2), and (3) in Section 10.5,
can always be met through arbitrarily small perturbations. (Why?)

In th e convergence proof above, we developed somewhat an elegant ele­
mentary approach of Wilkinson to the QR. Among other requirements , that
of strong regularity of X-I might not seem very natural. It is still essential
as an attribute of a proof where the LU decomposition of X-I features in.
All the same , ought it to be essential?

With the optimistic remark in mind , one might decide not to waste efforts.
I still think that those who feel unsatisfied would be interested in becoming
aware how to do without the strong regularity requirement. To this end , we
need the Bruhat decomposition instead of the LU.
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10.7 Bruhat decomposition

The basic Bruhat decomposition of a nonsingular matrix A is defined as

A = L1 ITL2 ,

where IT = IT (A) is a permutational matrix and L1 and L2 are nonsingular
lower triangular matrices. The modified Bruhat decomposition is of the form

A=LPU,

where P = P (A) is a permutational matrix, and L and U are nonsingular
lower and upper triangular matrices, respectively.

Theorem 10.7.1 The modified and basic Bruhat decompositions exist for any
nonsingular matrix A. The permutational matrices IT = IT(A) and P = P(A)
are defined uniquely and possess the properties

IT (A) =P (A J) J, P (A) = IT (A J) J, where J=[: .: J
Proof. We prove the existence of the modified Bruhat decomposition by a
construction. Show that A can be reduced to a permutational matrix by a
sequence of pre- and postmultiplications using appropriate lower and upper
triangular matrices .

Consider the first (from the left) nonzero entry in the first row of A. Call
it the pivoting entry. Postmultiplication by an upper triangular matrix can
kill all subsequent entries in the first row and make the pivoting entry equal
to 1. Next, premultiplication by a lower triangular matrix can be used to zero
all entries which are located below the pivoting one in its column. Once this is
done, wefind a new pivoting entry, that is, the first nonzero entry in the second
row of the current matrix. Using postmultiplication, we annihilate all entries
to the right of the pivoting one in the second row, and using premultiplication,
then, we get rid of all entries below the pivoting one in its column, and so on.
In the end, we arrive at some permutational matrix P.

Consider the sub-rows

ri(j) =[ail, .. . ,aij],

and denote by a(ij A) the maximal index among those j for which ri(j) ~

span {r1(j), ... ,ri-1 (j)}. It is easy to verify that

a(ij A) =a(ij LAU)

for any nonsingular lower and upper triangular matrices L and U. Since the
unit in the column i of P is located exactly at the position j = a(i; P) =
a(i, A), the permutational matrix P is determined uniquely.

It remains to ascertain the following relationships:

AJ = LPU ¢}

AJ =L1ITL2 ¢}

A = L(PJ)(JUJ)
A = L1 (ITJ) (JL2J) . o
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10.8 What if the matrix X-I is not
strongly regular
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Theorem 10.8.1 Suppose that A satisfies (10.5.1) and (10.5.2). The ortho­
dox QR algorithm generates the matrices Ak such that

{Ak}ij -t 0 for i > j , and
diag (Ak) -t diag (p-1 AP),

(10.8.1)

(10.8.2)

where P is the permutational matrix from the modified Bruhat decomposition
of x-1 = LPU.

Proof. Using the basic formulas for the orthodox QR case we obtain

Ak = (UkU-1p-1A-kP) {P-1Ak [L-1 ALj A-k P} (P-1AkPUU/;1) .

The matrices in the round brackets are mutually inverse upper triangular
matrices. They are bounded uniformly in k (prove this). On the strength of
(10.5.2) and due to an upper triangular form of L -1 AL,

Ak [L-1ALjA-k -t diag(L-1AL) = A.

Consequently, the matrix in curved brackets is of the form p-1AP+Fk , where
Fk -t O. We finish by taking into account that

diag (Ak) =p-1AP + (UkU-1p - 1A-k) Fk (P- 1AkPUU/;1). 0

To sum up, if the eigenvector matrix X -1 is not strongly regular, then the
diagonal entries of Ak (for all sufficiently large k) approximate the eigenvalues
of A taken in another order (not with respect to a decrease of moduli). I still
believe that watching this in practice is next to impossible.

10.9 The QR iterations and
the subspace iterations

Write z, = [z~k), . . . ,z~k)j, and consider the subspaces

Lk - { (k) (k)}
m =span z1 , . .. , Zm •

Let the subspace Lm == L~ be spanned on the first m columns of the unity
matrix.

Assume that A is nonsingular. Then

L~ =Ak Lm , m =1, . . . ,n.

Therefore, one QR iteration generates (virtually) n subspaces L~, ... ,L~,
which would arise at the kth step of the subspace iterations with the matrix
A and initial subspaces Ll, . . . , Ln.
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We are already aware of what can provide for convergenceof the subspace
iterations to some invariant subspace. In particular, let A be diagonalizable
and all its eigenvalues different in modulus:

Let
(1O.9.1)

where Mm is an A-invariant subspace spanned on the first m columns of X.
Then

V m L~ -t Mm for k -t 00.

If the subspace L~ is A-invariant, then the matrix Ak = Zk A Zk possesses
a zero subdiagonal block. It is intuitively clear that the closer the subspace to
an A-invariant subspace, the smaller should be that subdiagonal block. Here
is how we can put it quantitatively:

Lemma 10.9.1 Assume that

T = [Tn T12] E <enxn, Tn E <emxm, T22 E <erxr.T21 T22

Let L be spanned on the first m columns of the unity matrix, and let M be an
arbitrary T -invariant subspace of dimension m in <en . Then

Proof. Consider an orthonormal basis in M, and enlarge it to be an or­
thonormal basis in <en . From the vectors obtained, we make up the unitary
matrix

U = [Un U12],
U21 U22

Since M is invariant with respect to T,

M . [Un]= im U21 .

[~~~ ~~:] [~~~ ~~:] = [~~~ ~~:] [~1 ~~:]
for some blocks Rn , R12, R22. Hence,

Thus, we arrive at IIT21112 ~ 311U2d1211T112. What is left is to note that
p (M, L) = 11U21112 = IIU21yl12 for some y of unit length. (Why?) 0

We have one more proof of the fact that, under rather general assumptions,
all the subdiagonal entries of Ak must tend to zero as k -t 00 =} the
diagonal entries of Ak approximate the eigenvalues of A.

Note that the requirement (1O.9.1) is equivalent to that of the strong
regularity of X- 1 (prove this).
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Exercises
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1. Produce an example of a matrix for which the orthodox QR iterations
do not converge.

2. Assume that an upper triangular matrix A E Q;nxn possesses pairwise
distinct eigenvalues A1,"" An and a sequence of matrices Ak is such
that

{Ak}ij -1 {A} ij for i ~ j.

Prove that, for any k, the eigenvalues of Ai (Ak) can be listed so that

3. Prove that if 11£112 s IIMI12, then

4. Prove that the requirement (10.9.1) is equivalent to the strong regularity
of the matrix X- 1•
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11.1 Quadratic convergence

A(k) E <e m x m A(k) E <er x r
11 '22 •

Suppose that the generalized QR algorithm exploits polynomials fk (multi­
shifts) of the same degree r on every step.

A multishift is called a Rayleigh multishift in the case where !k is chosen
to be the characteristic polynomial of the r x r block A~~):

_[A~~) A~~)]
A k - A(k) A(k) ,

21 22

Let G'(m,n,X) include those and only those matrices from G(m,n,X) of
which the blocks A1 and A2 are diagonal:

A1 =diag{A1, .. . , Am } , A2=diag{Am+l , . .. , Am +r } , m+r=n;

Theorem 11.1.1 Let A E G'(m,n,X), and assume that the generalized QR
algorithm with the Rayleigh multishifts of degree r is convergent, i.e.,

Ck == IIAWI12 -t O.

Then it converges quadratically: 3 8, c > 0: Ck :S 8 => Ck+l :S C c%.

Proof. Consider one step of the generalized QR algorithm:

and apply the QR iteration lemma:

Ck :S c Ck-1 O'.k 13k, where O'.k = Ilfk(A2)112, 13k = 11(!k(Ad)-1112.

Denote by S1, . • • ,Sr the eigenvalues of the block A~21 . By the Bauer-Fike
and the Gerschgorin theorems, for sufficiently small Ck-1, we obtain

min IAm+i - sd :S cond- (X) Ck-1 j = 1, . . . , r,
l$i$r

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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Therefore,

and

Lecture 11

r

Ifk(Am+j)1 = II (Am+j - Si) ~ CI Ck-l, j =1, ... , r,
i=l

r

Ifk(Aj)l= II(Aj-si) ~C2 > 0, j=I, ... ,m,
i=l

where CI, C2 > 0 do not depend on k (prove this). It follows that

(3k ~ C2 > O. 0

Note that, prior to proving the quadratic convergence, we assume that
a convergence takes place. There has been no theorem yet on the global
convergence of the QR algorithm with the Rayleigh multishifts.

11.2 Cubic convergence

Theorem 11.2.1 Let A E G'(m,n,X), and assume that the generalized QR
algorithm with Rayleigh multishifts of order r is convergent, i.e.,

Ck == IIAWII2 ~ 0,

and, moreover, for all k,

cIIIA~~)1I2 ~ IIA~~)1I2 s c21IA~~)1I2' (11.2.1)

where CI, C2 > 0 do not depend on k . Then it converges cubically:

3 8, C > 0 : e« ~ 8 ~ Ck+l ~ C c~ .

From Theorem 11.1.1, we know that the convergence is at least quadratic.
Let us follow the same logic and notation. A novelty that emanates from the
condition (11.2.1) is the bound

The proof can be based on the following analog of the Bauer-Fike theorem.

Theorem 11.2.2 (Elsner-Watkins) Let

A = [A~l A~2]' All = XIAIX11
, A22 = X2A2X2" I ,

Al =diag (AI,'''' Am), A2 =diag (Am+l,"" Am+r).

If J.L is an eigenvalue of A + F, where F = [~l ~2], then

~in IJ.L - Ail m~n IJ.L - Am+jl ~ conde (Xl) cond- (X2) 11F12112 11F2111·
l~.~m 1~1~r
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Proof. If J.L E .x (A), then the inequality is trivial . Let J.L ~ .x (A) . Consider
the following matrices:

[
AI - J.LI XIFI2X21]

MI = X2F2IXli A2 - J.LI '

M - [ Al - J.LI XIFI2X2I
]

2 - 0 (A2 - J.Ll) - X2F2IX1I(AI - J.Ll)-1 XIFI2X2I ,

and
M3 = (I - (A2 - J.Ll)-1 X2F2IX1I(AI - J.Ll)-1 XIFI2X21) .

Clearly, M I is singular => M2 is the same => M3 is also singular.

Corollary 11.2.1 If A is Hermitan , then, under hypotheses of Theorem 11.2.1,
the generalized QR algorithm with Rayleigh multishifts converges cubically.

To prove this, it is sufficient to observe that Ak will also be Hermitian,
which provides (11.2.1) with CI = C2'

11.3 What makes the QR algorithm efficient

Shifts and multishifts are indispensable attributes of an efficient QR algo­
rithm. But it is not enough.

The problem is that a single QR iteration for an unstructured matrix
requires 0 (n3 ) arithmetic operations. It is far too expensive, even if the
number of iterations is modest (usually about 5 iteration per an eigenvalue).

Luckily, there is an utterly simple device to make the iteration really in­
expensive. Remember that any matrix A can be transformed to a unitarily
similar upper Hessenberg matrix H by means of reflections or rotations .
Once this is done, the QR algorithm can be applied to the Hessenberg matrix
Ao=H.

The Hessenberg transformation itself requires, of course, the same 0 (n3 )

operations. What we gain is that now any single QR iteration will be per­
formed in 0 (n2 ) operations!

We have a cut-rate iteration because of invariance property of the Hes­
senberg form with respect to QR iterations. In other words, if H is an upper
Hessenberg matrix, then a QR iteration of the form

f(H) =QR, HI =Q-IHQ

can be performed so that HI remains an upper Hessenberg matrix.

(11.3.1)

It is sufficient to prove this for a multishift of order 1. (Why?) In this
case, the QR decomposition can be computed via rotations eliminating the
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entries along the lower subdiagonal: Q* = Gn n - 1 •• • G21 • That the matrix
HI =RQ =RG21.. .G~n-l is upper Hessenberg can be checked straightfor­
ward (do this).

If A is Hermitian, H is tridiagonal. Hence, HI is also tridiagonal. (Why?)
In this case, we implement a single QR iteration through 0 (n) operations!

11.4 Implicit QR iterations

If the roots for !k are known, then the multishift can be carried out through
a sequence of multishifts of order 1. This is not always desirable.

For example, in the case of real entries, the roots of fk might be complex,
which causes us to use complex arithmetic. On the other hand, in the case
of real entries, the coefficientsof the characteristic polynomial fk defining the
Rayleigh multishift are still real (prove it).

There might be an implicit implementation of the QR iteration that does
not reduce it to a sequence of multishifts of order 1. On input, we have the
coefficients of fk (the characteristic polynomial for AW), not the roots. The
following observation lies behind the algorithm .

Lemma 11.4.1 Let A be a Hessenberg matrix, and assume that two Hessen­
berg matrices Band C with nonzero subdiagonals are such that the equations

B = P* AP, C = Q*AQ

hold for some unitary matrices P and Q of which the first columns are collinear.
Then a diagonal unitary matrix D exists that provides that

P=QD, B=D*CD.

Proof. By induction, if Pi = qidi, Idd = 1, i = 1, ... , k, then bij = dicijdj
for 1 ~ i , j ~ k, and we proceed as follows:

k

Pk+1bk+lk = APk- LPibik
i = 1

k

= Aqkdk - L qidi(d; Cikdk)
i=1

= (Aqk - t qi(did;)Cik) dk
,=1

= qk+lCk+1kdk. 0

At every step of the QR algorithm, we go from some Hessenberg matrix H
to a unitarily similar Hessenberg matrix HI = Q*HQ . In machine arithmetic,
one may always regard the subdiagonal of HI as nonzero. However we come
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to HI, it is sufficient to ensure that the first column of the corresponding ma­
trix Qshould be the same as it were if we would have performed the standard
(explicit) QR step.

Implicit QR iteration:

(1) Find the first column h of the matrix h(H).

(2) Find the reflection matrix Vo such that Vo•h = [*,0, ... ,ojT.

(3) Find the matrix Wo =Vo• HVo.

(4) By reflections, reduce Wo to an unitarily similar matrix WI = VtWo Vl

(with VI being the product of n - 1 reflection matrices).

(5) Set HI =Wl'

lt is easy to see that HI = (VoVl ) · H (YoVI)' The first column of VoVl

coincides with that of Vo (prove it). Simultaneously, the first column of Vo
is the same as the first column of Q in some QR decomposition of fk(H).
(Why?)

11.5 Arrangement of computations

A "clever" routine for the QR algorithm starts with seeking a diagonal matrix
D that makes the rows and columns of AD = D-lAD as close in length as
possible. Such a leveling procedure can improve the condition numbers for
the eigenvalues dramatically (sometimes by several orders).

Then we reduce AD to a Hessenberg form Ao, and proceed as follows:

(1) Scan the subdiagonal in Ao, and replace every sufficiently small entry
(in accordance with some "smallness" criterion) by zero.

(2) Choose a nonempty diagonal block in Ao located in between the nearest­
to-bottom pair of two successive zeroes on the subdiagonal. If there is no
nonempty block, then quit (if so, the matrix has acquired the triangular
form).

(3) For the chosen block, perform a single QR iteration (with a shift) , then
repeat the actions from (1).

The arrangement of computations as above is not bound to manifest high
performance on a parallel computer. From this point of view, the multi­
shifts seem especially attractive. Preliminary experiments with an implicit
implementation of multishifts showed somewhat unsatisfactory results (the
roundoffs were suspected to slow down the convergence). However, in 1994
D. S. Watkins! discovered that implicit multishifts work when implemented

1D.S.Watk ins. Shifting strategies for the parallel QR-algor ithm. SIAM J . Sci. Comput .
15 (4) : 953-958 (1994) .
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in the pipeline fashion as a chained sequence of implicit multishifts of smaller
degrees. The procedure was found to be numerically stable and maintained
fast convergence.

11.6 How to find the singular value
decomposition

First of all, we multiply A E (]Jnxn from both sides by unitary matrices and
obtain an upper bidiagonal matrix B . Without loss of generality, we dare
claim that B is a real matrix. (Why?)

If B has a zero on the diagonal, then by multiplying B in both sides by

unitary matrices, we can obtain a block matrix of the form [~l ~2] with

bidiagonal blocks BI and B2 •

Indeed, let bkk = O. The entry bk k+l can be nullified by a left-side rotation
of the rows k and k + 1. A nonzero that might arise in the position (k, k + 2)
can be annihilated by a left-side rotation of the rows k and k + 2. A nonzero
that might appear in the position (k, k + 3) can be eliminated by a left-side
rotation of the rows k and k+3, and so on. In the end, we obtain the block B2 •

In a similar manner, we can obtain B I using right-side rotations of columns .
Thus, without loss of generality, we find that B is a nonsingular matrix.

Now, we may freely apply the QR algorithm with shifts to a real symmetric
t ridiagonal matrix T == B T B. As soon as we compute the decomposition
B T B = VE2VT with an orthogonal matrix V and a diagonal matrix E > 0,
we set U = BVE-I • The matrix U will be unitary (why?), and , obviously,
B = UEVT .

In 1965, G. Golub and V. Kahan discovered that the implicit form of the
QR iterations allows one not to capture the tridiagonal matrices explicitly.
Consider a single QR iteration for tridiagonal matrices: T - sf =QR, TI =
QTTQ. Set the Cholesky decomposition for TI as TI = BrBI , where B I is
an upper bidiagonal matrix, and try to compute B I without touching T and
TI • This can be done as follows:

• Find the first column h of T - sf =B T B - sf.

• Build up the rotation matrix G so that Gh = [*,0, . . . ,O]T.

• Compute the matrix Wo =BGT , and, then, with the help of rotations of
columns and rows turn it into an upper bidiagonal matrix WI = ZWoV
(with Z, V being products of the rotations involved) .

• Set BI =WI.

As is readily seen, BrB I = (GV)T (BT B) (GV), and the QR decomposion
of T - sf can be done so that the first columns of the orthogonal matrices
GV and Q coincide.
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Exercises
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1. Give an example of a matrix for which the QR algorithm with the
Rayleigh shift (multishift of order 1) does not converge.

2. Suppose that B is an upper bidiagonal matrix, and consider the follow­
ing process:

where Bk are upper bidiagonal, Ck are lower bidiagonal, and Qk, Zk
are unitary matrices. Prove that the matrices Bk and Ck converge to a
common diagonal matrix, as k -+ 00.

3. Devise an algorithm producing the upper and lower bidiagonal matrices
of the previous problem. Show how it serves to compute the singular
value decomposition of a bidiagonal matrix.

4. Devise an algorithm that computes the singular values of an arbitrary
matrix A.

5. Let A = AT E ~nxn. Prove that there exists a decomposition of the
form

where V is a unitary matrix while ~ is a diagonal matrix with a non­
negative diagonal. Propose an algorithm to compute it.
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12.1 Function approximation

Given a class of functions F and a subclass of "simple" functions <I> C F, one
often wishes to approximate I E F by some cP ::::l I , cP E <1> .

To move from the intuitive description to a strict one, it is necessary to
specify the classes F and <I> and give a rigorous definition to what is "to ap­
proximate". Let F be a linear space of functions defined on a domain O.
Then , there are two approaches.

Minimization approach. Choose a norm (or a seminorm 1) \I . lion F , and
seek for a function cP E <I> C F that minimizes III - cPli.

Interpolation approach. Choose some nodes XO, • • • , X n E 0, and seek for
a function ¢ E <1> that satisfies the interpolative conditions

cP (x;) = I (x;), i =0,1, .. . ,n.

12.2 Polynomial interpolation

Consider functions I(x) of one real variable x. If I(x) is chosen to be approx­
imated by a polynomial

cP(x) = Ln(x) == anxn + an_lXn-1 + ., .+ ao,

then the interpolative conditions take the form

IThe seminorm differs from the norm in that the zero value does not imply that the
element is zero.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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This is a system of linear equations. Denote by W T the coefficient matrix.
Then W = W(xo, . . . ,xn) is the Vandermonde matrix. It is well known that
(prove it)

det W(xo, . .. ,xn) = IT (Xj - Xi).
O~i<j~n

If the nodes XO, . . . ,Xn are pairwise distinct, then the coefficient matrix for
(*) is nonsingular. It follows that the interpolating polynomial exists and is
determined uniquely.

It would seem that Ln(x) could have been obtained by standard methods
for solving (*). However, nobody does so for two reasons:

• Standard methods ignore the structure of WT .

• The Vandermonde matrix W is ill-conditionedf for any pairwise dis­
tinct real nodes Xo, Xl , . • • , Xn,

For particular configurations of nodes, there are some other estimates
to bootr' if the nodes are positive, then condj W > 2n .

There is no obligation at all to compute the coefficients of the polynomial.
We need but an easy way to compute the value of the polynomial at any
prescribed point .

12.3 Interpolating polynomial of Lagrange

If polynomials lo(x), ... , In(x) of order n satisfy the interpolative conditions

1 () {
I , i = j,

j Xi = O · -J. •
,t T J,

then, evidently,
n

Ln(x) == L j(xj)lj(x).
j=O

(12.3.1)

The polynomials lj(x) exist and unique (for they are the solutions of a
polynomial interpolative problem). These polynomials are called the elemen­
tary Lagrange polynomials .

A polynomial Ln is termed the Lagrange interpolation polynomial, and
the polynomial interpolative problem itself is frequently referred to as the
Lagrange interpolation.

2E.E.Tyrtyshnikov. How bad are Hankel matrices? Numer. Math. 67: 261-269 (1994) .
3W.Gautschi and G.Inglese. Lower bounds for the condition number of Vandermonde

matrices. Numer . Math. 52: 241-250 (1988) .



12.4. Error of Lagrange interpolation

It is easy to verify that

n

II x - Xk
lj(x) = .

X· -Xk
k=O 3
k#j

Taking this into account, we obtain a useful formula (check it!)

105

(12.3.2)

Ln(x) =~ f(xj) w(x) ,
~ (x - x ·) wl(x·)
3=0 3 3

(Wi (x) is the derivative of w(x) in x).

n

w(x) = II (x - Xk)
k=O

(12.3.3)

12.4 Error of Lagrange interpolation

Theorem 12.4.1 Let X,XO, .. . ,Xn E [a, b) and f E CnH[a, b) . Then

f(nH) (~(x)) n
f(x) - Ln(x) = (n + I)! w (x), w (x) =II (x - Xk) ,

k=O

where
min{x,xo, ,xn} < ~(x) < max{x,xo, ... ,xn}.

Proof. Fix x ~ {xo, , xn}. Then w(x) # 0, and we may consider the
following function of t:

_ _ f(x) - Ln(x)
g(t) = f(t) - Ln(t) - c w (t), c = w (x) .

The function g(t) is zero at t = x, Xo, . . . , xn. By Rolle's theorem , g(1)(t)
has n + 1 zeroes => g(2)(t) has n zeroes => ... => 3 ~ : g(nH)(~) = O. It
remains to be noted that

g(nH) (t) =r-» (t) - c (n + I)!. 0

12.5 Divided differences

The values of a function f(x) at the nodes will be referred to as its divided
differences of order O. For any pair of nodes Xo, Xl, the quantities

f ( . ) - :.....;f(:.......;Xl:.:...,)_-..:....f(.:....xo.:.:.,)Xo , Xl =-
Xl - Xo

will be termed the divided differencesof order 1. By induction, the quantities

f( ' . ) - f(Xl ;'" ;Xk) - f(xo; ... ;xk-dXo I ... , Xk = .;......;..--'--"---'--~'-----'--~

Xk - Xo

will be called the divided differences of order k.
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Lemma 12.5.1

Proof. By induction,

f(Xk)+ -:k~-'--"'---

TI (Xk - XI)
1=0
1#

k

TI(XO -XI)
1=0
1#0

k k-l

L -k---=-~-- - L -k--l-"";""";"-=---

i=l IT (xi - XI) (Xk - XO) i=o IT (xi - XI) (Xk - XO)
1=1 1=0
I#i I#i
f(xo)

=

Corollary 12.5.1 The value of a divided difference f(xo; ... ;Xk) does not
depend on the ordering of the nodes.

Corollary 12.5.2 f(x) - Ln(x) = f(x; Xo; . . . ;xn) W(x).

Proof.

{
f(x) ~ f(xi) }

f(x) - Ln(x) =w (x) W (x) + f;:o (xi _ x) Wi (xi) . 0

Corollary 12.5.3

where
min{xo, ... ,xd < ~ < max{xo, ... ,xd.

12.6 Newton formula

The following formula holds and can be viewed as a discrete analog of the
Taylor series:

Ln(x) = f(xo) + f(xo ; Xl) (X - xo)
+ f(xo; Xl; X2) (X - XO) (X - Xl)

+
+ f(xo ; Xl; ... ; Xn) (X - XO) . .. (X - Xn-l) .
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Proof. Write
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where Lk is the lagrange polynomial interpolating the function f(x) at the
nodes XO, . .• , Xk .

Since Lk-l interpolates Lk at the nodes XO, ... , Xk - l " we find that

Setting Lk(X) = ak x k +... ,by Corollary 12.5.3, we infer that the quantity

does not depend on x . Hence, we may take x = Xk, and then

In contrast to the classical Taylor series, its discrete counterpart possesses
two advantages. First, it does not involve derivatives. Second, it can provide
far better accuracy (we shall see this shortly).

12.7 Divided differences with multiple nodes

Suppose that there are equal (multiple) nodes among Xo , . . . , xn . If y E
{xo, . .. ,xn } occurs precisely m times, then y is called the node of multiplic­
ity m.

A suite of nodes M = {xo, . .. , x n } is termed a multiple mesh, if there are
multiple nodes, and a simple mesh if all the nodes are pairwise distinct.

For any mesh M = {xo, .. . ,xn } , there exist a family of simple meshes
Me = {Xb, .. . , x~ } , e > 0 providing that xi ~ Xi as e ~ 0 for all i. Then
by a divided difference with multiple nodes is meant the limit

f(xo ; . . . ; x n ) == lim f(x~; ... ; x~).
e-TO

Lemma 12.7.1 If the multiplicity for every node does not exceed m and
f E Cm - 1, then the limit (*) exists and does not depend on the choice
of simple meshes Me.

Proof. Divided differences for simple meshes do not depend on the ordering
of nodes. Therefore, we may regard the nodes of the simple meshes to be
ordered so that if any two nodes converge to a common point, then all the
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nodes in between them converge to the same point . There is no question of
the existence of the divided differences f(Xi} of order O. Further,

In the case Xi :P XiH, for all sufficiently small e, we have xi :P xiH , and,
thence, the limits (as e ~ O) of the denominator and numerator exist. In the
case Xi = XiH, the limit exists owing to the property that ~. lies between
xi and xiH ·

According to the recursive definition of divided differencesfor simple meshes,

Suppose that the limits for the divided differences of order k - 1 exist. Then
for Xi :P Xi+k, there exist the limits for the numerator and denominator. For
Xi = Xi+k the limit also exists, because

which implies that ~. ~ Xi = XiH as e ~ O. 0

Corollary 12.7.1 If f E c-, then

where

f(xo ; ... ; Xk}
= f(k)W

k!
(12.7.1)

(12.7.2)

Proof. In the case of simple nodes, the proof stems from Corollary 12.5.3.
In the case of multiple nodes, f(xo; . . . ; Xk} is the limit of the quantities

f(k) (~')
f(x~; ... ; xU = k! .

Let e = lIN. Loosely speaking, the right-hand side is not bound to converge
as N ~ 00. For all this, some subsequence of points ~. is granted to converge
to some point ~ satisfying the inequalities (12.7.2). 0

12.8 Generalized interpolative conditions

If a node z E {xo, ... ,xn } is of multiplicity m, then the generalized inter­
polating polynomial Hn(x} of order n (or less) is defined by the following
generalized interpolative conditions:

H!!)(z} = f(i)(z}, j = 0, .. . ,m-1.
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If there are v pairwise distinct nodes Zl, .. . , z; of multiplicities ml, .. . ,mv ,

then

n =ml + ... + m v - 1.

It is not difficult to establish the uniqueness of the polynomial Hn . (Do
this!) The following generalization of the Newton formula takes place:

Hn(x) = f(xo) + f(xo; Xl) (X - xo)
+ f(xo; Xl ; X2) (X - xo) (X - Xl)

+
+ f(xo; Xl; ... ; xn) (X - xo) . . . (X - xn-d·

Proof. Consider simple meshes Me and the corresponding Lagrange polyno­
mials L~(x). Since L~(x) -t Hn(x) as e -t 0, we obtain the same polynomial
Hn(x) for any ordering of nodes. Let Z = Xo = ... = Xm-l be a node of
multiplicity m. Then

m-l ( .)

Hn(x) = L f J.,(z) (x - z)j + (x - z)m Pn-m (x),
j=O J.

where the degree of the polynomial Pn-m (x) is less than or equal to n - m.
The generalized interpolative conditions at the node Z are met obviously. 0

Prove that if f E enH then

rH(~(X)) nn
f(x) - Hn(x) = (n + I)! w (x), w (x) = (x - Xk),

k=O

where

min{x ,xo, ... ,xn } ~ ~(x) ~ max{x,xo, ... ,xn}.

The generalized interpolation polynomial is often referred to as the Her­
mitian polynomial while the generalized interpolation problem is talked about
as the Hermitian interpolation.

12.9 Table of divided differences

When calculating the divided differences in the case of simple and multiple
nodes, explicitly or implicitly, one builds the following table of divided differ-
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ences:

f(xo)

f(XI) f(xo; xd

f(X2) f(XI; X2) f(xo ; Xl; X2)

f(X3) f(X2; X3) f(XI; X2 ; X3) f(xo; Xl; X2 ; X3)

In the case of multiple nodes, one should list the nodes so that the equality
Xi = Xi entails Xk = Xi for all i ~ k ~ i-

The diagonal of the table of divided differences contains the coefficients of
the discrete analog of the Taylor series. Once we have obtained them, we can
easily solve the Lagrange and Hermitian interpolative problems.

Exercises
1. Consider the following table of values for a polynomial of second degree:

There is exactly one error in the second row. Find the error, correct it,
and recover the polynomial.

2. One makes a table of values for the function
:J:

f(x) = ~ Je-
t2

dt
o

on the interval [0, 1] with a constant step h. It is required that the
quadratic interpolation error must not exceed 0.01. What must h be?

3. A polynomial f(x) = z" + al xn - l + ... + an has pairwise distinct
roots Xl, . . . ,Xn . Prove that

os k s n - 2,
k=n-l.
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5. Prove the uniqueness of the polynomial solving the Hermitian interpo­
lation problem.

6. The Lagrange polynomial Ln(x) approximates a function f (x) with
error c > O. With what error does L~(x) approximate f'(x)?

7. Given the values of a function f (x) at pairwise distinct points Xl, •• • xn ,

the coefficientsof the interpolating polynomial are required. Propose an
algorithm that does this in 0 (log2 n) parallel steps .

8. Suppose that for some ai, an we are required to find a function of
the form ¢J (x) = Cl eat x + + Ck ean x which interpolates the values
of f (x) at pairwise distinct nodes Xl, • • • xn . What are the conditions
on ai, .. , an under which this problem has a unique solution?

00

9. An analytic function f (x) = I: ak xk is given, and it is required to
k=O

find a function of the form

¢J (x) = Po +Pi X + +Pn-l xn- l

qo +ql X + +qn xn

satisfying the generalized interpolative conditions:

¢J(j) (0) = f(j) (0), j = 0, 1, ... , 2n.

Prove that if the matrices Ak = [ak+i-jl~j=o are nonsingular for k =n
and k = n - 1, then the solution exists.
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13.1 Convergence of the interpolation process

Consider a sequence of simple meshes on an interval [a, b]

Mn = {XnO , ... ,Xnn}, n =0, 1, . . .

and the sequence of the Lagrange polynomials Ln(x) interpolating the values
of f(x) at the nodes of Mn.

Is it true that Ln(x) -t f(x) V x E [a, b]? Is the convergence uniform
in x? How do we estimate the convergence rate?

The answers depend on some properties of the sequence Mn and the func­
tion f(x) . Let f E Coo [a, b], and, for some number M > 0, assume that
sup If(n)(x)1 ~ M" for all n. Then Theorem 12.4.1 on the Lagrange inter-

x
polation error provides that

Ilf - LnlIC[a, b] == max If(x) _ Ln(x)1 < (M (b - a))n+l
a~x9 - (n + 1)! .

The right-hand side, obviously, tends to zero as n -t 00.

In a sense, the less we demand of I, the more we require of the meshes.

13.2 Convergence of the projectors

Let F = C [a, b] be a Banach space with the norm

IlfllC[a b] == max If(x)l ·
, a~x~b

If TIn is the space of polynomials of degree n or less, then the Lagrange
interpolation for f E F defines the operator

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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Pn is a linear continuous operator. (Why?) Moreover, it is a projector,
because P~ =Pn .

The question of the interpolation process convergence can be cast as fol­
lows: concerning the property

'V 1 E F,

under what conditions does it hold?

13.3 Sequences of linear continuous
operators in a Banach space

Consider a Banach space F and a sequence of linear continuous operators
Pn : F -t F (not necessarily projectors) .

Theorem 13 .3.1 (Uniform boundedness principle)

sup IlPn 111 ~ c (1) < +00 'V f E F ¢::=} sup IlPnll < +00.
n n

Proof. The part "<¢=" is evident. We prove the part ":::}" by contradic­
tion . Use the following (rather lucid) observation: if a sequence IlPnll is not
bounded, then in any ball there exist some elements Un on which IlPn unll -t 00.

For m = 1, 2, . . . ,consider the sets

Om == {j: sup> m}.
n

These are open sets (why?) such that one is embedded into the other:
0 1 :::> O2 :::> .. .

Assume that Om is not empty for all m. Then it is dense in any ball.
Consider open and close balls Bm and s; ofradius rm ~ 1/ m, belonging
to Om n Bm - 1 (set Bo == Od. The balls Bm make up a sequence of nested
closed balls with the radii tending to zero. Hence,

00 00

3 fEn s; CnOm
m=1 m=1

=:::} sup IlPn 111 > m 'V m. 0
n

Theorem 13.3.2 (Banach-Steinhaus.) For a sequence of functions Pn f to
be convergent for all f E F , it is necessary and sufficient that

(1) sup IlPnll < +00 , and
n

(2) Pn f is convergent, as n -t 00, on a subset F which is dense in F .



13.4. Algebraic and trigonometric polynomials 115

Proof. The "necessary" assertion emanates from the uniform bounded­
ness principle. To prove the "sufficient" one, consider I E F and an £­

approximation Ie E P : III - lell :s; e. Then

IlPn I - r; III < IlPn I - r; lell + IlPn Ie - r; lell + IlPm Ie - r; III
= 0(£) for n,m~oo. 0

If Pn are the interpolative projectors, then the convergence on a set dense
everywhere in C [a, b] is taken for granted. (Why?) For the convergence anal­
ysis of the interpolation process, the key question now becomes the following:
how do the norms IlPnll behave, as n ~ oo?

13.4 Algebraic and trigonometric
polynomials

A change of variable x = ~ + b;a t allows one to get on to functions of
t E [-1, 1].

One more change of variable t = cos rj> allows one to turn to 211"-periodic
functions which are defined on the whole real axis and even. An algebraic
polynomial Pn(t) of order n or less converts into an even trigonometric poly­
nomial

n

Pn(cos rj» = qn(rj» == I:>l:k cos krj>.
k=O

It can be proved (by induction) that a function cos k rj> is an algebraic
polynomial in cos ifJ of degree k, Therefore, any even trigonometric polynomial
qn(ifJ) of order n or less can be written in the form Pn(cos rj», where Pn(t) is
an algebraic polynomial of degree n or less.

An arbitrary (not necessarily even) trigonometric polynomial of order n
or less is defined as

n

Qn(ifJ) = 00 + L (Ok cos kifJ + (3k sin kifJ) ,
k=l

and it is also convenient to write it in the form

n

" "k ,pQn (rj» = LJ Ck e' ,
k=-n

where C-k = Ck (the complex conjugate) for all k (in this and only in this
case the values of Qn (rj» are real for all rj».

An important conclusion: all questions about the function approximation
by algebraic polynomials reduce to those about the approximation of even
periodic functions by even trigonometric polynomials .
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13.5 The Fourier series projectors

Let C be a Banach space of real continuous 271"-periodic functions with the
norm of the space C[-7I", 71"], and let Sn be a projector giving f E C to go
into the n-term partial sum of its Fourier series :

n

Sn (¢) = L Ck ei k
</> ,

k= - n

where

Lemma 13.5.1 IISnl1 ~ C In n, C > o.
Proof. Allowing for the expressions for Ck, we find that

Consequently,

1 J1I"ISin(~+t!)tldt = .!J1I"ISi~NUldU (N=2n+l)
271" sm 2 71" smu

-11" 0

> .!~ ¥J+iNISi~ Nu Idu = 1
71" L...J sin u 71"

k=O ¥

N-l iN

1

· Isin Nv dv
~ J sin (lL! + v)k-O 0 N

--"--
N-l 2N 2 N 1 N-l 1 N (..1!-) 2 1

> 1 L J11"~ V dv > 71" L 11" 1I"k :N 11" 2

71" k=O 0 fiT + V k=O fiT 2N

1 N-l 1 1 N-l 1
= '"' > '"' > C In n. 0471" L...J k + 1 471" L...J k -k=O 2 k=l

Corollary 13.5.1 There exists a continuous periodic function for which the
Fourier series does not converge uniformly to this or any other continuous
function .

Corollary 13.5.2 For any point there exists a continuous periodic function
for which the Fourier series diverges at this point.

For any given point Xo E [-71",71"], it is sufficient to regard the functionals
sn(XO) and observe that Ilsn(xo)1I = IISnll·
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13.6 "Pessimistic" results

Theorem 13.6.1 (Losinsky-Kharshiladze.) Suppose a linear continuous op­
erator Ti,: C -t C is a projector onto a subspace of trigonometric polyno­
mials of degree n or less. Then

IITnl1 ~ IISnl1 ~ c In n.

Proof. We fall back on the Zigmund-Martsinkevich-Berman identity:

71"

2
1
1f ! [Tn I (t + h)] (t - h) dh = [Sn I] (t).

-71"

For I(t) =sin kt or I(t) = cos kt, the identity is verified straightforwardly.
Therefore, it holds true for arbitrary trigonometric polynomials, and then we
use the fact that the set of trigonometric polynomials is dense everywhere in
C.

Consider a function I E C such that

IISnl1 = II Sn III, 11111 = l.

Obviously, III (t + h)11 = 1 and IITnI (t + h)II < IITnll. Hence,

I[Sn I] (t)1 ::; IITnll . 0

Corollary 13.6.1 (Faber's theorem) For any sequence of simple meshes on
[a , b], there exists a function continuous on [a, b] for which the sequence of
interpolating polynomials does not converge uniformly to this or whatever else
continuous function.

A sequence of interpolating polynomials cannot converge uniformly in
I E C [a, b], because IlPnll -t 00.

Try to show that there also exists a continuous function for which the
interpolating polynomials diverge at least at one point.

Bernstein's example: if f(x) = [z], z E [-1, 1], then the interpolating
polynomials on the uniform meshes will not converge to f(x) at any point
save for x = -1, 0, 1.

13.7 Why the uniform meshes are bad

For uniform meshes, the norms IlPnll grow exponentially. Indeed, consider a
uniform mesh on [-1, 1] :

tj = -1 + ~ i. j = 0,1, . . . ,n.
n
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Then

Lecture 13

For t = -1 + '1. 0
n '

n n t s- t,
IlPnll = -~~l L IT t _ ; .

- - k=O j=O k J
i#

o < 0 < 1, we find that

> i: fIO-~
k=O j=O k - J

i#

> 0(1- 0) n n!
- n2 L k! (n - k)! =

k=O

since 2n = (~) + (~) + ... + (~) .
We could obtain an even neater estimate:

o n n! n 0
IIPnl1 ~ nL k! (n _ k)! IT (1 - iC) >

k=O k=l

which follows from the gamma-function theory relationship

n 0
IT(I- iC ) =
k=l

where
00

r(z) = I x z - 1 e-z dx
o

(the Euler formula for the gamma-function).

13.8 Chebyshev meshes

0<0 < 1,

To obtain "optimistic" results, we should give less room to constructing
meshes. We cannot avoid the logarithmic growth of the norms IlPnll. But
to prevent any higher growth, we need to use the Chebyshev meshes.

Take up a uniform mesh on [-11", 11"] with 2n nodes. With trigonometric
polynomials of degree not higher than n - 1, we can interpolate the values
of any 211"-periodic function on this mesh. If the function is even, then the
corresponding trigonometric polynomial will be even. Hence, it can be written
in the form (why?)

Tn - 1(f/J) = Ln - 1(cos f/J),

where Ln - 1(t) is an algebraic polynomial in t of degree not higher than n-1.
A uniform mesh on [-11", 11"] with 2n nodes induces some uniform mesh on

[0 , 11"] with n nodes. Through the mapping t = cos f/J, this mesh generates
the Chebyshev mesh on [-1, 1] :

tni = cos (~ + ~ j), j = 0, 1, ... , n - 1.
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13.9 Chebyshev polynomials
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The above quantities tnj turn out to be the roots of the famous Chebyshev
polynomials Tn(t) defined by the recurrence

Tn+! (t) = 2Tn(t) - Tn - 1(t),

Lemma 13 .9.1 For any 0 ~ t ~ 1,

n-l

Tn(t) =cos (n arccos t) = 2n
-

1 II (t - tnj) .
j=O

Proof. Prove by induction that the function Cn(t) == cos (n arccos t) is,
indeed, a polynomial in t . For n = 0 and n = 1, it is trivial. For n ~ 1,

cos((n+l) arccost) + cos((n-l) arccost) = 2cos(n arccost)cos(arccost)

=> Cn+! (t) = 2 Cn(t) - Cn - 1(t) => Cn(t) =Tn(t) .
It easy to see that Tn is a polynomial of degree n with the senior coefficient
equal to 2n - 1. It remains to verify that the roots of Tn are precisely the
quantities tnj . 0

Corollary 13.9.1 Let Pn : C[-I, 1] -t C[-I, 1] be the interpolation
projector for the Chebyshev mesh with n + 1 nodes. Then

IIPnl1 = max p (t),
-l$t$1

where

p (t)
i: Icos ((n +1) arccos t)1 sin ~ ~:l\

- k=O (n + 1) It- tkl .

13.10 Bernstein's theorem

Theorem 13.10.1 For the interpolation projectors on the Chebyshev meshes,

IlPnll = 0 (In n).

Proof. It is sufficient to consider t E [0, 1]. Let

7l" (2m + 12(}) 1
t = cos 2 (n +1) , 0 < (} < 2' m is integer.

Then

P(t)
n Icos 11" (2m+l+211) I sin 11" 2k+!

= L 2 2 n+l

k=O (n + 1) 21 sin 11" (k2Y::::t )Isin 11" ~k(~~011)

< n (}(2k+l)
C ~ Ik + m + 1 +(}llk - m - (}I
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(we use Cl t/J :c::; sin t/J :c::; t/J for 0 :c::; t/J :c::; C21r, 0 < C2 < 1)

:c::; c +

+

= c +

+

m-l () (2k+ 1)

c ~ (k + m + 1 + ()) (m - k + ())

n () (2k+ 1)
L (k + m + 1+ ()) (k - m - ())

k=m+l

m-l (1 1)
c() ~ m-k+() - k+m+l+()

n (1 1)
c () kf+! k + m + 1 + () + k - m - ()

= o (Inn). 0

13.11 "Optimistic" results

Theorem 13.11.1 II I E em [-1, 1], m ~ 1, and r; is the interpolation
projector on the Chebyshev mesh with n + 1 nodes, then

", (lnnmn) .III - Pn IIIC[-I,1) = v

Consider a one-to-one correspondence

(13.11.1)

a: I (t) -+ g(¢» == I (cos ¢».

Important that if I E em [-1, 1], then 9 E em [-00 ,00].
There are many ways to approximate 9 E em by an even trigonometric

polynomial Sn 9 of degree not higher than n. It can be chosen so that

1IIg-SngliC = 0(-).
nm (13.11.2)

This assertion is not trivial. However, if 9 E em+! ,then we can take as Sn 9
the n-degree truncation of the Fourier series for g. Then (13.11.2) gets quite
elementary.

On the strength of (13.11.2),

II! - s; IIIC[-I ,1) = 0 ( ~) , s; = a-I s; a.
n

The function SI is an algebraic polynomial of degree n or less ===? PnSnl = Snl.
Consequently,

111- PnIII s III - s; III + IlPn s; I - r; III s (1+ IlPnlD III - s; III,
and then we appeal to Bernstein's estimate on the norms IlPnll·
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Exercises
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1. Prove the existence and uniqueness of the trigonometric polynomial of
the form

n

Qn(¢» = 00 + L (Ok cos k¢> + 13k sin k¢»
k=l

that interpolates the values on a simple mesh with 2n + 1 nodes on the
interval [-11", 11"] .

2. Let f(x) = Ixl and Ln(x) be the Lagrange polynomials on the Cheby­
shev meshes on [-1, 1]. Prove that Ln(x) -t f(x) uniformly in
x E [-1 , 1].

3. Suppose that an analytic function

00

f(x) = Lak xk
k=O

is interpolated by the Lagrange polynomials Ln(x) on the Chebyshev
meshes on [-1, 1]. Prove that for some 0 < q < 1,

Ilf - Lnllc [-1,1) = 0 (qn) .

4. Let C be a Banach space of real cont inuous 211"-periodic functions with
the norm of the space C [-11", 11"] and let Sn be the projector causing
f E C to go into the n-degree truncation of its Fourier series . Prove
that

IISnl1 ~ c In n,

where c > 0 does not depend on n.
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14.1 Splines

A natural route to "optimistic" results for convergence of the interpolation
process is to give up using "pure" algebraic polynomials and interpolate, for
example, by piecewisepolynomial functions. Such functions are referred to as
splines. A spline is said to be of degree m if the degree of each polynomial is
not higher than m and equal to m for at least one polynomial.

For a given simple mesh

a = Xo < ... < Xn = b

and values fk = f (Xk), consider the set of functions

iI> == {t/> E C2 [a, b) : t/>(Xk) = /k , k =0,1, ... ,n}. (14.1.1)

A function 8 (x) E <P is termed the interpolative cubic spline if on every
interval [Xk-l, Xk), k = 1, .. . ,n, it is a cubic polynomial.

14.2 Natural splines

To build up a cubic spline, we need to find 4n coefficients defining cubic poly­
nomials on every interval. From the definition of the interpolative cubic spline
we obtain 4n - 2 equations (check this) . For the number of equations to co­
incide with the number of unknowns, we may impose two extra conditions.

An interpolative cubic spline subject to the extra conditions

811 (xo) = 8 11 (xn ) = 0

is said to be a natural spline (for iI».

(14.2.1)

One has to deal also with "unnatural" interpolation cubic splines. For
instance, instead of (14.2.1), we can interpolate the first-order derivatives

(14.2.2)

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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or (in the case fo = fn) impose periodicity conditions on the first- and second­
order derivatives:

(14.2 .3)

14.3 Variational property of natural splines

An imposing property of the natural spline: it minimizes the "energy" func­
tional

Theorem 14.3.1 Suppose that ~ is of the form (14.1.1) and S (x) is a nat­
ural spline for ~ . Then

E (t/J) ~ E (S) V t/J E ~,

and the inequality is strict whenever t/J ::j; S.

Proof. W')2 - (S")2 = (t/J" - S")2 + 2 S'' (t/J" - S") =>

E(t/J) - E(S) = E(t/J-S) + 21bS"(t/J"-S")dx.

Using integration by parts, we obtain

lb
s" (t/J" - S") dx. =

n

~)S" (t/J' - S') 1~:-1
k=l

- Sill (Xk-l + 0) (t/J - S) 1~:-1) o. 0

14.4 How to build natural splines

It is time to make sure of the existence and uniqueness of natural splines.

Consider S (x) on the kth interval [Xk-l, Xk] and set

Uk = s" (Xk), hk = Xk - Xk-l, X = Xk-l + t hko

Since S (x) is a cubic polynomial as x E [Xk-ll Xk], we find the following:

S" (x)

S' (x)

S (x)

=
=

=
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Set o!k = (!k - fk-d/hk. Then for t = 1 the last equation gives

Allowingfor this, we set t = 1 in the expression for 8' (x):

125

Equating the first-order derivatives of the spline or. the right end of the interval
k and on the left end of the interval k + 1, we obtain the equation

Pk == 6 (Ofk+l - o!k) .

Since 1.1.0 = Un = 0 we have obtained, indeed, a linear system

with the tridiagonal coefficient matrix

hn - 1

(14.4.1)

Theorem 14.4.1 The natural spline exists and is determined uniquely.

Proof. We substitute 8' (xk-d into the expression for 8 (x) and so arrive at

where

8 (x) = (1 - t) fk-l + t fk + Uk-l hi a (t) + Uk hi b (t), (14.4.2)

()
_ t (1 - t)3 1

a t - 6+ 6 - 6' (14.4.3)

For any Uk, formula (14.4.2) gives a piecewise polynomial function inter­
polating the values !k and possessing a continuous second-order derivative.
The continuity property for the first-order derivative is described by the sys­
tem (14.4.1 with respect to Uk. The coefficient matrix T is diagonally domi­
nant and, thence, nonsingular. 0
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14.5 Approximation properties of
natural splines

Consider simple meshes Mn a = XnO < .., < Xnn = b and on them the
natural splines interpolating the values of a function I (x). Let

A sequence of meshes Mn is called quasi-uniform if D..n/ 8n ~ C < +00.

Theorem 14.5.1 For any function f (x) E a [a, bj, a sequence of natural
splines Sn (x) on quasi-uniform meshes Mn converges to f (x) uniformly in
x E [a, bj, provided that D..n -+ O.

Proof. Let Ui be the maximal in modulus component of the vector u. From
the ith equation of the system T U =p, we find that

IUil ~ IPil/(hi + hi+d ::}

I
w (D..n ; f)

Ilul 00 ~ Cl 82 , Cl > 0,
n

where
w (D..; f) == max If(x) - f(y)1

1%-111:5.6.

is the continuity modulus of the function I. According to (14.4.2),

IS(x) - l(x)1 ~ w (D..n ; J) (1 + Cl ~t (la(t)1 + Ib(t)l)) ,

and w (D.. n ; J) -+ 0 for D..n -+ 0 for any continuous function f. 0

If meshes are not quasi-uniform, then we should require more of a function
I than its continuity.

Prove that if f E aU) [a, b] for some 1 ~ j ~ 4, then

III - Snllc [c, b) = 0 (D..~) .

14.6 B-splines
Suppose a mesh Xo < .. , < X n is embedded in an infinite simple mesh

Moo = {...X-l < Xo < ... < X n < Xn+l < ., .].

Then any spline of degree m can be represented by a linear combination of
some basic m-degree splines zeroed outside intervals of the form [Xk-m, xkj.
If the mesh is quasi-uniform then all the basic splines can be obtained by
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changing x onto x - Xk from one basic function.
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Let us assume that the functions are defined on the whole real axis. If
f (x) = 0 for all x ~ [a, bj, then f (x) is said to be a function with a finite
support. A support of a function is defined as the closure of its nonzero values.
Notation: supp f .

Let Moo comprise all integers. By recurrence, construct the following
functions:

Bo(x) = { 1, o:=:; x:=:; 1,
o, otherwise,

s; (x) = 11

B m - 1 (x - y) Bo (y) dx, m = 1, 2, ....

The functions B m are called B -splines. Here are their main properties:

(1) Bm is a spline of degree m on the mesh Moo.

(2) Bm E em, and B:n (x) = Bm - 1 (x).

(3) supp Bm = [0, m].

(4) Any spline of degree m om the mesh 0 < 1 < ... < n is uniquely
represented by a linear combination of the splines Bm (x - k) , where k
is an integer running from -m + 1 to n + m - 1.

Verify that the functions Bm (h- 1 X - k) for integer k are the basic splines
on the uniform mesh with step h.

14.7 Quasi-Local property and
banded matrices

A natural spline does not possess the locality property: if we change h onto lk
in just one node Xk, then the values of the spline vary everywhere. However,
the natural spline still possess the quasilocal property: under a perturbation
of h, the spline's values vary very little outside a neighborhood of the point
Xk·

A rather profound property of banded matrices is recognized behind the
quasi-local property.

Theorem 14.7.1 Suppose that A = [aijj is a nons ingular banded matrix of
order n with band semiwidth not greater than L, that is,

aij = 0 for Ii - jl ~ L .

Let A have a nonzero diagonal, and assume that

q == II(diagA)-1 offAll < 1.
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Then, for the entries a~j1) of the inverse matrix A-1, the following inequali­
ties hold:

la~j1)1 ~ c lI(diagA) -lll-1q qli~/I , i,i = 1, . . . , n,
-q

where c > °depends only on what norm II . II is used and possibly on the
order of A .

Proof. Set F == (diag A):"! offA, and consider the Neuman series

(diagA) A-1 = I + F + F2
.. ..

Note that Fk is a banded matrix with the band semiwidth not greater than
(k - 1) L. It follows from an almost evident fact that the band semiwidth
for the product AB does not exceed L1 + L2 - 1, where L1 and L2 are the
bandwidths for A and B, respectively.

Fix i and i, and choose k so that

(k - 1)L ~ Ii - il < k L.

Then
00

gii == (L:Fihi
j=O

I I E.Land, hence, gij ~ 1-q' 0

00
(L::Fi}ij,

j=k

Corollary 14.7.1 Let the natural splines 8 (x) and oS (x) interpolate the val­
ues f i and h coinciding everywhere except for i = k. Let e == Ifk - ikl. Then
for some c' > 0,

18 (x) - oS (x)1 s c'c~; 2Ii~kl'
n

Proof. Since T of the form (14.4.1) is a tridiagonal matrix, we have L = 1.
Beside this, q = ~ and c =1 (for the norm II . 1100) '

If the value f (x) gets different only at the node Xk, then in the right-hand
side ofthe system Tu =P, only three components may change: Pk-1, Pk, and
PHI . Obviously, the perturbations are of the form 0 (ciOn) (as above, On is
the minimal step of the mesh).

For the components of the vectors u = T- 1 P and u = T- I p,

We must remember formula (14.4.2). 0
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Exercises

1. Prove that for the matrix T defined by (14.4.1),

2. Build the natural spline, given the nodes

x = -2, -1, 0, 1, 2

and the corresponding values
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y = 0,
1 2

6' 3'
1
6' 0.

3. Let a mesh a = Xo < ... < Xn = b be given, and assume that for a
function I with period b- a, an interpolative cubic spline is to be found
subject to the periodicity conditions

S' (xo) = S' (xo), SIt (xn ) = SIt (xn ) .

What does the algebraic system with respect to the quantities Uk = S"(Xk)
look like? Prove that it has a unique solution.

4. Given a mesh
a = Xo < ... < Xn = b,

let us interpolate the values 10, .. . , In-i' In = 10 by a cubic spline
S(x) satisfying the periodicity conditions. Prove that if a function ¢ E
C2 [-00, 00] with period b - a interpolates the same values, then

5. Let

Prove that the minimum of a functional

is attained on the function ¢ which is a spline of degree 2r - 1 interpo­
lating the values Ik and subject to the extra conditions

I(j)(xo) = l(j)(xn ) = 0, j = r, r + 1, .. . , 2r - 2.
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6. The natural spline S interpolates the values of a function f E C4 [a, bj
on a mesh with maximal step h. Prove that

7. For the nodes x = -2, -1, 0, 1, 2, find the cubic spline B(x) E C2

subject to the conditions

B(r) (±2) =0, r =0, 1, 2.

Is such a spline unique? Can it be an odd function?

8. Suppose that a mesh a =Xo < ... < X n =b and the values Yo, . . . ,Yn
are given. Prove that if a function f minimizes the functional

J (J) == jb(J")2 dx +i»(Xk) - Yk)2,
a k=O

on C2 [a, bj, then it must be a natural spline.

9. Prove that any spline of degree m on the mesh 0 < 1 < ... < n is
uniquely represented by a linear combination of the splines B m (x - k)
for integer k running from -m + 1 to n + m - 1.

10. A uniform mesh with step h does not include the point x = 0. Is it
true that any spline of degree m on this mesh can be written as a linear
combination of a finite number of functions Bm (h- l X - k) for integer
k?

11. Given uniform meshes {Xk = kh, k = 0" . . . , n} on the interval [0, bj
with step h = bin, assume that a function f E C2 is approximated by
functions Sh of the form

n+l

Sh (x) = L Ct.k B3(h- l X - k).
k=-l

Let Ct.k =f (Xk) for k =-1, 0, ... ,n + 1. Prove that

12. Prove that (*) is still valid if Ct.k = f (Xk) only for k = 0, ... , n
whereas the values Ct.-I and Ct.n+! are determined from f (xo), f (Xl)
and f (xn), f (Xn-l), respectively, via a linear interpolation.

Is Sh an interpolative spline?
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15.1 Norm minimization

The theory and methods of minimizing a norm IIf - r/JII on the whole of a
space of "simple" functions r/J E ~ depend crucially on the norm type. One
should distinguish between the two cases:

• Uniform approximation. Ilfll == sup If (x)1 (there can be no scalar prod-
x

uct inducing such a norm) .

• Least squares method. A norm in quest ion is induced by some scalar
1

product, for instance, Ilfll == (J: If (xW dX) 2" •

15.2 Uniform approximations

Let f (x) E C [a,b), and suppose that a polynomial Pn (x) of degree not higher
than n minimizes the norm Ilf - Pn IIC[a,bj' Such a polynomial is called the
best uniform approximant for f.

In the theory of uniform approximations, the starring role is played by the
notion of the Chebyshev alternance points for the function R (x) = f (x) ­
Pn (x) . The alternance points of degree m are the nodes of a simple mesh

a ~ Xl ~ . .. ~ Xm ~ b

possessing the following properties:

(1) IR(Xi)\ = max IR(x) l, i = 1, .. . , m.
a:$x:$b

(2) R(Xi) R(XHI) < 0, i = 1, .. . , m - 1.

Denote the set of all such meshes on [a, b) by A (m, a, b, R).

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
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Theorem 15.2.1 (P. L. Chebyshev) For a polynomial Pn of degree not higher
than n to be the best uniform approximant for lEe [a, bj, it is necessary and
sufficient that A (n + 2, a, b, R) is not empty.

Proof of sufficiency. Assume that for some polynomial qn of degree n,

III - qnll < III - Pnll·
Then at the Chebyshev alternance points

If (Xi) - qn (xi)1 < If (Xi) - Pn (xi)1 :::}

the function 9 (x) == (J (x) - Pn (x)) - (J (x) - qn (x)) has the same sign at
the points Xi as R (x) = I (x) - Pn (x). Since the signs of R (Xi) alternate,
there is a zero of g(x) inside every interval [Xi, xiHj. Hence, g (x) has n + 1
zeroes on [a, bj. It could not be so if 9 is not identically zero, for 9 (x) is a
polynomial of degree n or less. 0

15.3 More on Chebyshev polynomials

Recall that the Chebyshev polynomials are defined as follows:

To (t)
TnH (t)

= 1, T1 (t) = t ,
2tTn (t) - Tn-dt), n = 1, 2 ....

We already know that

Tn (t) = cos(n arccost) for ItI ::; 1.

Now we add to this that if ItI ~ 1, then

_ ! {(t + Jt2=1) n (t _Jt2=1) n}Tn (t) - 2 2 + 2 .

(15.3.1)

(15.3.2)

Indeed, the sequence Yn == Tn (t) satisfies the equation YnH = 2tYn­
Yn-l, n = 1, 2, . .. for any initial values Yo, Yl. Consider a sequence of the
form Yn = z", where z i 0, and require that it satisfy the same equation.
The latter is equivalent to z2 - 2 t z + 1 = O. Hence, z = z±, where
z± = t±"'J9 :::} For any c+, c., the sequence Yn = c., z~ + C+ z+
satisfies the equation YnH = 2tYn - Yn-l for n = 1,2, .... By way of
getting the solution we are after, it remains to choose c+, c., to fulfill the
initial conditions

= 1,
= t. o

An important property of Chebyshev polynomials: they are bounded in
modulus by 1 on the interval [-1, I] uniformly in n and grow exponentially
in n at any point outside this interval .
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A polynomial qn (x) = z" + an-l x n - 1 + ... + ao is said to have the least
deviation from zero on the interval [a, b] if it has the least possible norm in
e [a , b] among all polynomials whose senior coefficient equals 1.

According to this definition,

Ilqn (x)llc [a,b] ~ Ilxn- Pn-l (x)llc [a , b]

for any polynomial Pn-l (x) of degree n - 1 or less. Therefore, the difference
z" - qn (x) is the best uniform approximant to the function xn on the segment
[a, b] among all polynomials of degree n - 1 or less.

It is easy to verify (do this) that the polynomial z-"?' Tn (x) possesses n+ 1
Chebyshev alternance points on [-1, 1]. A polynomial z" - 21- n Tn (x) is of
degree not higher than n, and on the strength of Chebyshev's theorem it is
the best uniform approximant to z" on [-1, 1].

Consequently, the polynomial z'"?' Tn (x) has the least deviation from zero
on [-1 , 1].

In the case of an arbitrary segment [a, b], consider the transformation
x = ~ + t b;a (it maps [-1, 1] onto [a, b]) and the inverse:

2x-a-b
t =

b-a
2 b 22 n - 1

Since the senior coefficient of Tn ( xb__aa- ) equals (b-al n , we arrive at the
following.

Theorem 15.4.1 The polynomial

(15.4 .1)

has the least deviation from zero on the segment [a, b] and provides that

(15.4.2)

15.5 The Taylor series and its
discrete counterpart

A function f (x) E en+! [a, b] can be approximated by the n-term Taylor
series at the point c = ~:

n f<k) (c) k
Pn (x) = L -r (x - c) .

k=O
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It can also be approximated by the Lagrange polynomial Ln (x) for the nodes
Xi = ~ + b;a t i, i =0, ... ,n, where ti are the roots of the Chebyshev
polynomial Tn+! '

For these two approximating devices, we have the following estimates:

< 11/(n+!lllola,bj (b-2a)n+lIII - Pnllo [c, bj (n + I)! (15.5.1)

II/(n+!lIlO[a,bj (b -a)n+l _1_.
III - Lnllo [c, b] < (n + I)! 2 2n - 1 (15.5 .2)

One can see that the interpolative method using the Chebyshev nodes is
capable of giving us far better accuracy.

15.6 Least squares method

Suppose that a norm is induced by a scalar product. In this case, the theory
and methods of the best approximation on a subspace seem to be entirely
transparent.

The theory dwindles down to the theorem that, for an arbitrary vector I
and any (closed) subspace q>, there is a uniquely determined expansion of the
form

f = u + ifJ, ifJ E q>, u.lif1 .

If q> = span {VI, ••• , vn } , then the best approximant ¢ = al VI + ... +
an Vn can be found by solving the linear system with the Gram coefficient
matrix

Best of all is to deal with an orthonormal basis of q>. Then the Gram
matrix turns to be the unity matrix. Remember that an orthonormal basis
can be built through the Gram-Schmidt orthogonalization algorithm.

15.7 Orthogonal polynomials

Consider the space of all algebraic polynomials with the scalar product

(I, g) == lb

I (z) 9 (x)w (x) dx, (15 .7.1)

where w (x) is a continuous nonnegative function that is allowed to have only
finite many zeroes on [a, b), or, in the general case,

(I, g) == lb

f (x) 9 (x) dW (x) , (15.7 .2)
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where W (x) is a monotonically decreasing function and the integral is under­
stood in the Stieltjes sense.

We still assume further on that the scalar product is of the form (15.7.1),
but keep in mind that the results stand for the general case. The function
w (x) is said to be a weight, or weight function.

Any weight w (x) generates a sequence of orthogonal polynomials qn, n =
0, 1, .. . , where the degree of qn is equal to n . The orthogonal polynomials
are determined up to a nonzero scalar multiplier.

It is remarkable that the orthogonal polynomials possess some common
properties regardless of a concrete form of the weight.

15.8 Three-Term recurrence relations

Write
n+1

xqn (x) = Z::>nkqdx).
k=O

The polynomials are orthogonal, and, due to the integral formula for the scalar
product, for k ~ n - 2,

ank = (x qn, qk) = (qn, x, qk) = O.
s» . qk) qk, qk)

We have obtained the three-term recurrence relations between the orthog­
onal polynomials:

(15.8.1)

Having normalized the polynomials so that (qn, qn) = 1 V n, we get

(15.8.2)

where

15.9 The roots of orthogonal polynomials

For n ~ 1, let us write

qn (x) = (x - (d ... (x - (m) Pn-m (x),

where (1, .. . , (m are pairwise distinct roots of the polynomial qn (x) located
strictly inside the interval [a, b] and having odd multiplicity. Let m be the
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greatest possible number of such roots . Then the polynomial Pn-m (x) keeps
the same sign for all x E [a, b] .

If m < n, then , by the orthogonality of qn to all the polynomials of
smaller degree, we find that

lb

(x - (d2 .. . (x - (m)2 Pn-m (x) w (x) dx = 0.

Such an equality is impossible. (Why?) Hence, m = n.

Conclusion: for n ~ 1 all the roots of qn are real, pairwise distinct, and
located strictly inside the interval [a, b] .

15.10 Three-Term relations and
tridiagonal matrices

The three-term relations (15.8.2) can be expressed in the matrix-vector lan­
guage as follows (check it):

x [qO (x) , .. . , qn(x)] = [qO (x), .. . , qn(x)]Tn + an qn+l (x) , (15.10.1)

where

ao bo
bo al b1

b1 a2 b2

Tn = (15.10.2)

bn - 2 an-l bn - 1

bn- 1 an

It is easy to see that an =I' °for all n. (Why?) If x is a root of the
polynomial qn+l, then it cannot be a root of qn (otherwise, by the three-term
relations x would have been a root for all the polynomials qi for i ~ n, and
in particular, for qo which is free of roots). The relation (15.8.1) acquires the
form

[qo (x) , ... , qn (x)](Tn - x I) = 0,

and since qn(x) =I' 0, we see that x is an eigenvalue of the matrix Tn.

Thus , every root of the polynomial qn+l is an eigenvalueof the tridiagonal
real symmetric matrix Tn of order n + 1.

This fact gives, at least, a sound algorithm for computing the roots of
orthogonal polynomials (based on using the QR algorithm to find the eigen­
values of the tridiagonal matrices Tn).

Moreover, the relation with the tridiagonal matrices allowsone to establish
one more important property of the roots of orthogonal polynomials: the so­
called interlacing inequalities.
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For the roots Al > ... > An and Itl > ... > Itn-l of qn and qn-l,
respectively, the following interlacing inequalities hold:

(15.11.1)

This property inherent to orthogonal polynomials follows quite obviously
from the interlacing properties for Hermitian matrices (see Lecture 5) and the
results from Sections 15.9 and 15.10.

15.12 Orthogonal polynomials and
the Cholesky decomposition

Write qi qiO + qil X + ... + qii xi and consider a lower triangular matrix

[

qoo ]
L

n
= qlO qu .

qnO qnl ... qnn

The orthogonality relations for the polynomials qi and qi for 0 ~ i, j ~ n
can be expressed in the following way:

i = j,
i :f; j.

Introduce the matrix of moments

Mn == [(xi, xi)]ij=o'

Then t.; u; L; = I, and hence,

u; = L;;1 L;;T.

Thus, the matrix Ln composed of the coefficients of orthogonal polynomials
is the inverse to the lower triangular matrix from the Cholesky decomposition
for the matrix of moments Mn .

Exercises
1. Prove the uniqueness of the best uniform approximation polynomial for

f E CIa, bJ.
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2. For any function fEe [a, b], prove the existence of the best uniform
approximation polynomial.

3. Let a function fEe [-1, 1] be even. Prove that the best uniform
approximation polynomial for f must be an even function. Must it be
odd for an odd function?

4. Prove that the Chebyshev polynomials are the orthogonal polynomials
on [-1,1] with weight w(x) = 1/../1 - x2 •

5. Find the coefficientsof the three-term recurrence relations for the Legan­
dre polynomials (by definition, these are the ones orthogonal on [-1, 1]
with weight w (x) = 1).
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16.1 Numerical integration

To obtain an integral of a function f numerically, one approximates f by a
"simple" function ¢ and sets

I(J) == lb

f(x) dx ~ S(J) == lb

¢(x) dx.

As "simple" functions, we usually choose those which are integrated analyti­
cally (for instance, polynomials or splines).

A vast class of numerical integration methods is described by the following
quadrature formula:

n

S(J) = Ldif(Xi)'
i= l

(16.1.1)

A quadrature formula is defined by its nodes Xi and weights di. The weights
are often represented in the form di = b;Q D, , where D; does not depend
on a and b.

16.2 Interpolative quadrature formulas

Consider the standard segment [-1 , 1] and map it onto [a , b]:

a+b b-a
X = x (t) = -2- + -2- t .

Choose the nodes tl, ... ,tn E [-1, 1] and set Xi = X(ti) '

If the nodes are pairwise distinct, then we build the Lagrange polynomial

n n

() '"II f (x.) x - Xj .L n - 1 x = L...J •
i=l j=l Xi - Xj

#i

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
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Having integrated it over [a, bJ, we set

8 (f) =.lb
Ln-dx) dx = t di f (Xi),

a i=l

Lecture 16

b I n
-a! II t-t ·di = -- J dt.
2 1 t ·-t ·- ;=1 t J

j#i

(16.2.1)
Such quadrature formulas are sometimes referred to as the Newton-Cotes for­
mulas.

Let f E O" [a, bJ. Then using the error estimate for the Lagrange
interpolation we obtain

II (f) - 8 (f)1 ~ IIrl~~ [a, bl C; a) nH ill Ifl (t - tj) Id t . (16.2.2)

16.3 Algebraic accuracy
of a quadrature formula

If I (f) = 8 (f) for all polynomials f of degree not higher than m and if
I (f) ::j: 8 (f) for at least one polynomial of degree m+ 1, then the quadrature
formula 8 is said to be of algebraic accuracy m.

Theorem 16.3.1 A quadrature formula with n nodes is of algebraic accuracy
m 2: n - 1 if and only if it is an interpolative quadrature formula of the form
(16.2.1).

Proof. The algebraic accuracy of the formula (16.2.1) is not less than n - 1.
It is evident. If a formula of the form (16.1.1) is accurate for all polynomials
of order n - 1, then, for di to be found, it is sufficient to apply it to the
elementary Lagrange polynomials li (x) . 0

16.4 Popular quadrature formulas

Set h =. b - aand Mm =. IIfm lle [a, bl'

The rectangular formula (t1 = 0): 8 (f) = f (~) h. The error estimate
(check it): fECI =} II - 81 ~ t M 1 h2 •

It is curious that the same formula can be derived by integrating the
Hermitian interpolating polynomial for the multiple node t1 = t2 = O. For
the standard segment, formally, HI (t) = f (0)+f' (0) t, but, after integration,
the term with the derivative disappears - thanks to the oddness. Now, we
arrive at the following error estimate (check it):

1 3
f E C2

=} II - 81 ~ 24 M2 h .
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The trapezoid formula (t1 = -1, t2 = 1): 8 (I) = ~ (I (a) + f (b)) h. The
error estimate (check it) : f E C2 =} II - 81 ::; 112 M2 h3 •

Simpson's formula: t1 = -1, t2 = 1, t3 = t4 = O. On the standard
segment, the Hermitian polynomial takes the form

H3(t) = f(-I) + f(-I; l)(t+l) + f(-I; I;O)(t+l)(t-l)
+ f( -1; 1; 0; 0) (t + l)(t - l)t .

Due to the oddness, the last term vanishes after integration.
Complete the construction: find the weights and error estimate for Simp­

son's formula.

16.5 Gauss formulas

Given a number of nodes n, let us try to seek the quadrature formulas of the
form (16.1.1) with maximal possible algebraic accuracy m. Such formulas are
known as the Gauss formulas.

Theorem 16.5.1 For any prescribed number of nodes n, the Gauss quadra­
ture formula exists, is unique, and of algebraic accuracy 2n - 1.

Proof. Set
n

W n (x) = II (x - Xj) .

j=1

If there would be a formula of algebraic accuracy 2n, then

which is impossible. Hence, m ::; 2n - 1.

Assume that the formula (16.1.1) has algebraic accuracy m =2n-1. Then

I (wn (x) rn - 1 (x)) = 8 (wn (x) rn - 1 (x)) = 0

for any polynomial r n - 1 (x) of degree not higher than n - 1. Therefore, the
polynomial W n (x) is the nth polynomial of the sequence of the orthogonal
polynomials on [a, b] with weight 1. We are already aware that such a poly­
nomial is determined uniquely up to a normalization. We also know that it
must have n pairwise distinct roots inside [a, b] . We use these roots as the
nodes Xi . By Theorem 16.3.1, the quadrature formula in question should be
interpolative. Consequently, it is of the form (16.2.1).

Prove that the formula obtained has, indeed, algebraic accuracy m =
2n-1. Take an arbitrary polynomial P2n-1 (x) , and divide it with a remainder
by W n (x):

P2n-1 (x) = qn-l (x) Wn (x) + r n - 1 (x) .
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From the linearity, orthogonality, and due to the appearance of the formula
obtained, we infer that

I (P2n-d = I (qn-l Wn) + I (Tn-d = I (Tn-i)

= 8 (Tn-d = 8 (qn-l wn) + 8 (Tn-d = 8 (P2n-d . 0

16.6 Compound quadrature formulas

The quadrature formulas considered above provide acceptable accuracy for
small h = b - a. In the general case, one applies the compound quadrature
formulas: subdivide the whole segment into some elementary segments, use
some "elementary" quadrature formula on each of them, and then sum the
results .

The error estimates for the compound quadrature formulas stem easily
from those for the "elementary" quadrature formulas. For example, if [a, b] is
cut into subsegments of the same length h and the trapezoid formula is used
on every subsegment, then the error for this compound quadrature formula
will be of the form 0 (b"h B h3) = 0 (h2).

16.7 Runge's rule for error estimation

When subdividing a segment into smaller elementary segments, it is impor­
tant to take into account the behavior of the function to be integrated. In case
we know nothing beforehand, we can choose the elementary segments "step
by step" progressing, for example, from the left to the right. If the current
step size is h, then prior to integration, we should estimate the error expected
and decide whether to accept, decrease, or increase the step size.

A "naive" approach to error estimation consists in using two quadrature
formulas 81 and 82 and watching the value of 181 - 82 1 to bet on the accuracy.
It might be advisable sometimes to judge the accuracy in a more elaborate
way.

Assume that, for the step size h, we use a quadrature formula 81 which
is accurate for all polynomials of degree n - 1 or less. Expand the function
f (x) in the Taylor series at the middle point c of the current segment. Then

Denote by 82 the quadrature formula obtained by applying 81 to the two
halves of the length h segment. Then, for the same constant Q,
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Prove this! Consequently, up to the 0 (hn+2 ) terms, we obtain the following
Runge rule:

(16.7.1)

If we want the integral within the accuracy e, then every next step should
be done to provide that

16.8 How to integrate "bad" functions

The quadrature formulas considered above are still not good enough if a func­
tion is not sufficiently smooth. Even in those cases, where the automatic
adjustment of the step size is capable of solving the problem, it might take
too many computations. There are two basic approaches to the numerical
integration of "bad" functions.

• Split the function: f =w +g, where w is still a "bad" but prospectively
"simple" function; integrate w individually (best of all, analytically)
while using quadratures for a smoother function g.

• Factorize the function: f = wg, where w is made out to be a fixed
"bad" function. A function 9 is assumed to be sufficiently smooth . It
can be approximated by a polynomial p (for example, the interpolating
polynomial), and then we are to find a sufficiently simple and accurate
way of computing integrals from functions of the form w p. For example,
this approach is advocated when w = sin(wx), allowing one to avoid
using terribly many nodes to integrate a highly oscillating function. If
w is a sign-preserving function, it can be regarded as a weight, and
hence, the Gauss formulas can work.

Of course, other recipes exist. For instance , if a function has a singularity
of the form x':>' where 0 < 0: < ~,then a smoother function can be obtained
easily by the change of variable x = yrn, where m ~ 2.

Exercises

1. Suppose thet a sequence of quadrature formulas is given:

n

S« (J) = L dni f (Xni), Xni E [a, b] .
i=l

Prove that if
n

L Idnil -t 00 for n -t 00,

i = l
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then there exists a function fEe [a, b] such that Sn (f) does not
converge to the integral of f over [a, b].

2. Let a Newton-Cotes formula with an odd number of nodes n be applied
to compute the integrals over the segment [a, b] of the length h =b- a
for the functions f E en+l [a, b] . Prove that the error in modulus does
not exceed cllr+lIlC[a,b] hn+2 , where c > 0 is independent of f and
h.

3. Prove that the weights in the Gauss formula are positive.

4. Let the Gauss formula with n nodes be applied to f E c» [a, b], h =b­
a. Prove that the error in modulus does not exceed c Ilpnllc [a, b] h2n+l ,

where c > 0 is independent of f and h.

5. Estimate the error for the compound quadrature formula using Simp­
son's formula on every elementary segment of the length h.

6. Consider on [a, b] a sequence of the compound trapezoid rules Sn with
step size h = (b - a)Jn. Prove that if f E e4 [a, b], then

lb f (x) dx = s; (f) - 11
2
(f" (b) - 1"(a)) h2 + 0 (h4

) .
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17.1 Nonlinear equations

Given a nonlinear equation f (x) = 0, we might wish to compute an isolated
root z (separated from other roots). To begin with, it seems important to
make out a range D (the smaller the better) localizing z.

In the most trivial fashion, the problem can be tackled by the following
bisection method. If f is a continuous function then z belongs to any interval
D through which the function alters the sign. We bisect D , then go back to
a half-length interval, and proceed the same way.

The bisection method works even without a good enough initial guess. If
a good quess is available, it makes sense (for smooth functions) to switch to
some more rapid iterative methods .

17.2 When to quit?

We want to compute z within some accuracy e and do not want to iterate
very long. When do we to iterations?

The smallness of f (Xk) is a very doubtful stopping criterion. (Why?) If
we can go in for derivatives, then it seems sounder to quit when (y = Xk or
y:::::: Xk)

Prove that if the derivative is continuous and the inequality (*) is fulfilled
for all y E [Xk - C, Xk + e], then Iz - xkl ~ c.

Just the same, the criterion (*) with y = Xk is not error-proof. Let 9 (t) =
f (a t). Then , for tk = Xk/a, the ratio \9 (tk)/9' (tk)\ can be made arbitrarily
small by the choice of a (regardless how close tk is to a root of 9 (t) = 0).

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
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17.3 Simple iteration method

Rewrite the equation f (x) = 0 as x = F (x) (for example, set F (x) =
x - f (x)), then choose an initial guess Xo and consider the following sim­
ple iteration method:

Xk+l = F(Xk) , k = 0,1, . . . .

A point z such that z =F (z) is called a fixed point of the mapping F .

Theorem 17.3.1 Let M be a complete metric space with distance p, and
let a mapping F : M ~ M be contractive, in the sense that, for some
o < q < 1,

p(F{x) , F(y)) ~ qp{x, y) V x, Y E M. (17.3.1)

Then the equation x = F (x) has a unique solution z, and, for any initial guess
xo, the simple iteration method converges to z with the speed of geometrical
progression:

(17.3.2)

Proof. For m ~ k, we find that

::} Xk is a Cauchy sequence ::} since M is complete, Xk converges to
some z E M. It is clear that F (z) = z. (Why?) By transition to the limit,
as m ~ 00, we obtain (17.3.2). 0

17.4 Convergence and divergence
of the simple iteration

Let FECI [z-15, z+c5], where z is a single fixed point for F . If IF' (z)1 < 1,
then, for some 6 > 0,

q == max IF' (x)1 < 1 ::} IF{x)-F(y)1 ~ q Ix-yl V x, y E [z-15, z+15].
Ix-zl9

In this case, F is a contractive mapping on the complete metric space M =
[z - 6, z+6]. Hence, the simple iteration method is convergent for any initial
guess Xo E M .
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If IF' (z)1 > 1, then the simple iteration diverges for any initial guess
Xo f:. z. (Prove this!)

1f'(x)1 > 1 1f'(x)1 < 1

It is interesting to get on to analogous statements in the multidimensional
case.

17.5 Convergence and the Jacobi matrix

Let F: IRn -t IRn be a continuously differentiable mapping in a neighbor­
hood of a single fixed point z = F (z):

F(x) = [Jl (x), .. . , In (x)]T, x = [Xl> " " xnf.

A matrix of the form

[

8~ (x) .. .

F' (x) = 8in~ix) ' "
8Xl

~]8x n

81n (x)
8x n

is called the Jacobi matrix of the mapping F at the point x . The continuous
differentiability of F at the point x means that the Jacobi matrix entries
(partial derivatives) are continuous functions at x .

Theorem 17.5.1 Assume that a mapping F : IRn -t IRn has a single fixed
point z = F (z) and is continuously differentiable in some neighborhood. If the
spectral radius of the Jacobi matrix F' (z) is less than 1, then for any initial
guess Xo in some neighborhood of z, the simple iteration method converges to
z .

The proof is similar to that for the one-dimensional case.
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17.6 Optimization of the simple iteration

Usually we can pass from an equation I (x) =°to an equivalent one of the
form x = F (x) in many ways. For example,

F (x) = x - Q (x) I (x), where 9 (x) :/;°V z,

In particular, Q can be an arbitrary nonzero constant. If z is an isolated
root in search and f' (z) :/;0, then Q can be always chosen so that

IF' (e)] = 11 - Q I' (z)1 < 1.

To accelerate the convergence, we need to diminish the value of IF' (z)l.
(Why?) The best, but impractical, choice,of course, is Q = 1/f' (z). However,
we can also settle for some close value

1 1
Q = --~--I' (Xk) I' (z)'

In the end, the Newton method arises:

I (Xk)
Xk+l = Xk - I' (Xk) .

It is nothing but the simple iteration method for a function

I (x)
F (x) = x - I' (x)'

17.7 Method of Newton and Hermitian
interpolation

(17.6.1)

The method of Newton is also known as the tangent method, the name stem­
ming from its geometrical interpretation. We can also approach it using the
interpolation ideas.

If we have Xk, let us set Xk+l to be the single root of the Hermitian in­
terpolating polynomial H (x) = I (Xk) + I' (Xk) (x - Xk). As is readily seen,
this root is given by the formula (17.6.1).

Assume that
I E C2 and !' (z) :/; 0,

and consider the following two equalities:

(17.7.1)

I (z) - H (z) = !" ~~k) (z - Xk)2
H (xk+d - H (z) = f' (Xk) (Xk+l - z)

Since I (z) = H (Xk+l) = 0, it follows that

f" (ek) 2

ek+l = - 2P (Xk) ek'

(the Hermitian interpolation error),
(the Lagrange identity).

(17.7.2)
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17.8 Convergence of the Newton method
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We have everything to make an important resume right now: if f satisfies
the conditions (17.7.1) and the Newton method converges for f , it converges
quadratically.

By definition, a sequence Xk converges to z with order p if

limsup I ek~1 I ~ c < +00.
k --+ 00 ek

If p = 1, then the convergence is called linear. If p > 1, then it is superlinear,
and if p = 2, then quadratic.

The condition l' (z) =I 0 means that z is a simple root (the root of mul­
tiplicity 1). In the general case, z is said to be a root of multiplicity m if
f(j) (z) = 0 for 0 ~ j ~ m - 1 while f(m) (z) =I O.

The Newton method can also converge for a multiple root , but the con­
vergence is no longer bound to be quadratic. For example, for f (x) = x2 ,

ek+l = ek/2, that is, the convergence is linear.

Theorem 17.8.1 Let z be a simple root of an equation f (x) =0, and assume
that

f E C2 [z - 8, z + 8], f' (x) =I 0 for x E [z - 8, z + 8],

"I == max If" (x)1 / min If' (x)1 =I O.
Ix-zl s 6 Ix- zl s 6

Fix any 0 < e < min{8, "I-I}. Then the Newton method is convergent for
any initial guess XQ E [z - c, z + c), and, for all k, the follow ing inequalities
hold:

Proof. Let Xk E [z - c, z + c]. Then, from (17.7.2) and the definition of "I,
we obtain

h+ll ~ 'Ylekl2 ~ ("(c)c ~ c ::} Xk+l E[Z-c, z+c].

Thus, (a) takes place for all k , Multiply both sides of (a) by "I, and set
dk == "IhHI· Thus, we come to

In line with what is required of the initial guess, do < 1. Therefore, ek -t O.
o
Corollary. Under the provisions of Theorem 17.8.1,

1. ek+l
1m -­

k --+ 00 e%
f" (z)= -2f'(z)'
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17.9 Newton everywhere

The Newton method is exploited more frequently than one might imagine. It
helps to divide numbers on a computer.

The division c = alb is usually performed through the two steps :

(1) z = lib, and (2) c = a . z.

And z is computed by the Newton method - as a root of the equation

~-1 = O.
xa

It is clever to use the equation in this very form, for the Newton iterations
turn out to be free of division:

( _ 1 -1)
Xk a 2 2Xk+1 = Xk - 1 = Xk - aXk'
-;;;r

17.10 Generalization for n dimensions

The Newton method is easy to generalize for solving a system of nonlinear
equations of the form

= 0,

= O.

I(x) = 0,
x, I (x) E mn

,

I : mn
~ mn

.

In this case, the quantity IIf' (Xk) is replaced by the inverse to the Jacobi
matrix for the mapping I at the point Xk :

(17.10.1)

Theorem 17.10.1 Let z solve the equation I (x) = 0, and assume that, in
the closed ball B(15) == {x: Ilx - zlloo ::; c5}, the Jacobi matrix for the mapping
I : mn

~ mn exists, is nonsingular, and subject to the following Lipschitz
condition:

Set

III' (x) - I' (Y)lIoo ::; cIlx - ylloo Vx, y E B(c5), c > O.

"1 == c max 11[1' (x)t11Ioo and 0 < e < min{c5, 'Y- 1
} .

IIz-xlloo::;O

Then, for any initial guess

Xo E B(c:) == {x: Ilx - zlloo ::; c:},

the Newton method is convergent, and the error vectors ek == z - Xk satisfy
the following inequalities:



17.11. Forward and backward interpolation 151

Proof. If the Jacobi matrix is continuous on the segment connecting x, Y E IRn ,

then, by the Lagrange identity, there are points 6 , .. . , ~n on this segment
such that

I(x)-/(Y) = Jk(X-Y),

where

8/n (6) ]8x n

. . . .
8/n (~n)

8xn

ekH = ek - [I' (Xk)t1(I (z) - 1(Xk))
= ek - [I' (Xk)]-l Jk ek
= [I' (Xk)t1 (I' (Xk) - Jk) ek =} (a).

From the Lipschitz condition,

Hence,ifllz-xklloo ~ e,then llz-xk+1 1Ioo < (-ye)e ~ e. Since (a) is
valid for every k, we obtain (b) immediately. 0

17.11 Forward and backward interpolation

The interpolative approach to the Newton method is also interesting in that
it suggests a general method of constructing iterative algorithms.

Forward interpolation. Having the points Xk, Xk-1, ... ,Xk-m and the
corresponding values of a function I, we build the interpolative polynomial
L (x) of degree m and take as XkH one of its roots. In the case of pairwise
distinct points, we deal with the Lagrange polynomial, and, otherwise, with
the Hermitian polynomial.

To make this idea a success, we need know how to select between the roots
of L (x).

Backward interpolation. Having the points Xk , Xk-1, . . . , Xk-m and the
corresponding values Yk, Yk-1, ... , Yk-m of 1(x), we build the polynomial
P (y) of order m interpolating the values of the inverse function 1-1 (y) (these
are Xk, Xk-1, . . . , Xk-m) at the points Yk, Yk-ll . . . , Yk-m' Then, it is natu­
ral to set XkH = P (0).

The Lagrange and Hermitian interpolation error estimates give a base for
analyzing such methods. In principle, one might devise a method with any
prescribed convergence order.
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17.12 Secant method

The forward and backward Lagrange interpolating polynomials of order 1 lead
to the same method known as the secant method.

Having different points Xk-l and Xk, we build the Lagrange polynomial

L () f ( ) x - Xk f ( ) x - Xk-l
X = Xk-l + Xk

Xk-l - Xk Xk - Xk-l

and find its single root:

(17.12.1)

On the other hand, having different values f (xk-d and f (Xk) and inter­
polating the inverse function, we find that

It is easy to verify that P (0) = Xk+l '

Suppose that z is the root in search and ek == Z - Xk . Let f E C2 . Then,
for one step of the secant method, we obtain the following relations:

f(z)-L(z)
L (xk+d - L (z) =

(17.12.2)

17.13 Which is better, Newton or secant?

Let f E C2 , l' (z) f; 0, and assume that the secant method is convergent.
According to (17.12.2), for some 'Y > 0, we get on to

Introduce the quantities dk == 'Y lekl, and assume that

do ~ d < 1, d1 ~ d < 1.

Then d2 ~ d1 do ~ ~ , da ~ d2 d1 ~ d5 , and so on. In the general case,

where

rPo = rPl = 1; rPk = rPk-l + rPk-2, k =2, 3, . .. .

(17.13.1)

(17.13.2)
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The quantities <Pk defined by the recurrence relations (17.13.2) are called
Fibonacci numbers. Verify that

Therefore,

The Newton method errors are upper bounded by e: Since

1 +2J5 ~ 1.618 < 2,

we infer that the Newton method converges faster. However, every iteration
of it is twice heavier : we compute the function and derivative values. Con­
sequently, from the standpoint of the total cost, the secant outperforms the
Newton . A more detailed comparison of the methods can be found in the nice
book of A. M. Ostrowski.'

Exercises

1. Let FECI [z - 0, z + 0], where z is a single fixed point for F. Can
the simple iteration method converge to z when IF' (z)1 = I? Can it
diverge in this case?

2. Assume that a mapping F : IRn -t IRn has a unique fixed point
z = F (z) and is continuously differentiable in a vicinity of z. Prove
that if every eigenvalue of the Jacobi matrix for F at z is greater in
modulus than 1, then the simple iteration method is divergent.

3. A mapping F : IRn -t IRn has a unique fixed point z = F (z) and
is continuously differentiable in a vicinity of z. There is at least one
eigenvalue of F' (z) which is greater in modulus than 1. Can the simple
iteration converge for any initial guess Xo sufficiently close to z?

4. Clarify the convergence of the simple iteration for the following equa­
tions :

(1) x = e2
'X - 1;

1
(2) x + lnx = "2; (3) x = tgx.

1A. M. Ostrowski. Solution of Equations and Systems of Equations . University of Basel,
Academic Press, New York and London, 1960.
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5. Check that z = [1,1 , IjT is one of the solutions of the equation I (x) =0,
where I : IR.3 -t IR.3 is of the form

Will the Newton method converge to z for all initial guesses sufficiently
close to z ?

6. People say that the Newton method was tested for the first time on the
equation

I (x) == x5
- 2x - 5 = 0.

Take Xo = 2 and carry out two Newton iterations. Prove that the
equation possesses a single real root zand that Iz - x21 ~ 10-4 •

7. Produce an example of an infinitely differentiable function I for which
the equation I (x) = °has a root z such that the Newton method does
not converge to z for any Xo :I z.

8. Suppose that the Newton method is applied to solve the equation x2 = a
for 1 ~ a ~ 4. The initial guess Xo is chosen to be the value PI (a), where
PI (t) is a polynomial of order 1 giving the best uniform approximation
to the function Jt on [1, 4]. Find the coefficients of PI (t), and prove
that IX4 - val ~ t 10-25

•

9. A function I E CpH has an isolated zero z of multiplicity p. Consider
the iterative process

I (Xk)
XkH = Xk - P I' (Xk)'

and prove that if it converges to z, then it converges quadratically, and
the errors ek == z - Xk satisfy the limiting relation

I. ekH
1m --

k --t 00 e~

l(pH) (z)
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18.1 Minimization methods

It is difficult (practically impossible) to invent a serious problem that would
have not been reduced to a search for the minimum of a functional over some
range. That is why the design and analysis of minimization methods is a vast
field from which we select for discussion only some useful ideas and methods.

To begin with, note that the minimal value and the minimum point are
not sought with the same accuracy. If the minimal value 1min of I E 0 2 is
attained at the point Zmin, then

This implies that if Imin is computed within the accuracy c, then Zmin can be
obtained, at best, with accuracy of the order .,fi.

18.2 Newton again

Let x = [Xl, .. " xn]T E IRn
, and let a functional I (x) E 0 2 have a

unique minimizing point z. Then Z satisfies the equation

[
lli::l ]OX!

I'(X) =grad I (x) = .. . = O.
01 (X)

OX n

The equation l' (x) = 0 can be solved, for example, by the Newton
method:

XkH = Xk - [J"(Xk)r l I' (Xk), (18.2.1)

where f"(x) = [grad I (x)l' is the Jacobi matrix for the mapping grad I (x),
sometimes called the Hesse matrix.

A convergencetheory for the method (18.2.1) can be gotten from what we
already know of the Newton method for solving nonlinear systems.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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18.3 Relaxation

In the Newton method, unfortunately, one has to compute the second-order
derivatives and to start from a sufficiently good initial guess. Methods exist
that are free of either.

A search for the minimum is like a descent from a hill by moderate steps:
at each point Xk, one needs to select a descent direction Pk and also a step
size not far too large lest it lead to a nearby hill's slope. Set

(18.3.1)

where Pk is a direction in which the functional fECI goes down:

(18.3.2)

and a > 0 fulfills the following relaxation condition:

(18.3.3)

where 0 < r < 1 is a constant of relaxation.

The condition (18.3.2) is bound up with the fact that the local fastest
descent direction for a functional is that of its antigradient. It is met obviously
for Pk = - !'(Xk) . In this case, the method is termed the gmdient method.

18.4 Limiting the step size

If the condition (18.3.2) is fulfilled while fECI and !'(Xk) # 0, then the
condition (18.3.3) is satisfied for all sufficiently small a . (Prove this!)

Consequently, an appropriate a can be always found by limiting the step
size: try a = 1, check the relaxation condition, in case it is not fulfilled, take
a/2, and so on but quit right away when the relaxation condition has become
true. (The latter is important since it is no use to keep the step size too small,
and also it permits a lower bound on the step size required in the convergence
proof.)

Lemma 18.4.1 Let f E C2 (IRn
) and 11f"{x)112 ~ M V x E IRn

, and
assume that, at any point Xk, the descent direction Pk satisfies the condi­
tion {18.3.2} with the same c > O. Then, at any point x , the relaxation
condition with the constant r is fulfilled for all 0 ~ ak ~ &, where

(18.4.1)

Proof. By the Taylor formula with the remainder term in Lagrange's form,

2

f (Xk + apk) = f (Xk) + a (J'(Xk), Pk)+ ~ (J"(e) Pk, Pk) ::}
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f(Xk)-f(Xk+O:Pk) ~ ro:(-f'(Xk),Pk)
( f '( ) ){1 aMllpklj }+ 0: - Xk, Pk - T - 2 C 111'{zk II .

With the expression in the curved brackets being nonnegative, we may put it
aside to proceed to the relaxation condition. 0

Corollary 18.4.1 If O:k is chosen by limiting the step size, it is guaranteed
that

(18.4.2)

Theorem 18.4.1 Suppose that the method (18.3.1) - (18.3.3) with relaxation
by limiting the step size is applied to minimize a functional f bounded from
below under the hypotheses of Lemma 18.4.1. Then, for an arbitrary initial
guess Xo E R",

(18.4.3)

Proof. From the relaxation condition and Corollary 18.4.1,

The left-hand side tends to zero, since the sequence f (Xk) is monotonically
decreasing and bounded from below. 0

The key question is how does the relative step size 0: tmtt behave. What

the condition 111"112 ~ M serves for is to provide a uniform lower bound for
the step size.

If the sequence Xk (or any subsequence) converges to z , then, z is the
minimizing point for f. (Why?)

18.5 Existence and uniqueness
of the minimum point

Lemma 18.5.1 Suppose that f E C2(IRn
) and there exist positive constants

m and M such that, for all x, y E IRn
,

mllyW ~ (j"(x)y, y) ~ MllyW·

Then the minimum point z for f exists and is unique.

(18.5.1)

Proof. If f is not bounded from below, then there is a sequence of points
Yk such that f (Yk) -t -00. This sequence Yk cannot be bounded. (Why?)
Taking into account (18.5.1), we obtain
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It follows that I (Yk) -+ +00, and the contradiction means that in reality I
is bounded from below.

Due to (18.5.1)' the set {X: I (x) ~ I (xo)} is compact (prove this).
:::} The minimum point exists.

To prove uniqueness, assume that the points Yl are Yk both the minimum
points. Since f'(yt} = 0, we deduce from (*) that IIYk - ytil = 0 :::} Yl =
Yk. 0

18.6 Gradient method limiting the step size

For brevity, let us write Ik == I (Xk), I~ == f'(Xk), and so on, and accept the
notation

Ck == Ik - I (z), ek == Xk - z,
where z is the minimum point for I.

In the gradient method, Pk = - /k, and hence,

(18.6.1)

(18.6.2)

Theorem 18.6.1 Under the hypotheses 01 Lemma (18.5.1), the gradient method
limiting the stepsize is convergent lor an arbitrary initial guess Xo by geometric
progression:

where 0 < q < 1.

Proof. Using Corollary 18.4.1 for the case Pk = - I~, O:k > 0: == 1;/, and
then, in chime with the relaxation condition,

To obtain an inequality of the form CkH ~ qCk, it is sufficient to make
sure of

11/~112 ~ 'YCk, (18.6.3)

where 0 < q == 1 - TO: 'Y < 1.
It is easy to derive (18.6.3) with 'Y = 2 m2/ M. Indeed,

(f~, ek) = (f~ - !,(z), es) = (f"Wek, ek) :::}

m\lekW s 11/~llllekll :::} 11/~112 ~ m211ekW ~ 2;:;2 Ck.

A neater result asserts that (18.6.3) stands with 'Y = ~ + m. To this end,
consider the Taylor series at z :
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m 2

-"- IIlk' 11
2 > ( +)-.- M m ei :

Thus, Ek+l :::; qEk for q = 1 - T(~T) (~ + m). 0

Prove that q ~ t. This bound pertains exclusively to the claim that O:k is
chosen by halving the step size.

18.7 Steepest descent method

The steepest descent method is the gradient method in which, on every step,
O:k is chosen by minimizing I (Xk -0: Ik)over all 0: E m.. Under the hypotheses
of Lemma (18.5.1), it converges by geometric progression. (Prove this!)

Suppose the steepest descent method is applied to minimize the quadratic
junctionol

where

I (x) 1 (A ) (b ) A = AT E ton xn , bEton,2" x, x - , x , JC\, JC\,

D < mllxW :::; (Ax, x) :::; MllxW "lxi-D.

(18.7.1)

(18.7.2)

Proposition. For the quadratic functional case,

(
M _m)2

Ek+l:::; M + m ei ; (18.7.3)

Proof. In this case, f'(x) = Ax - b (check this), and the minimum point is
z = A-I b. It is easy to show also that

1I (x) - I (z) = 2" (A (x - z), x - z).

Consider the gradient method with a constant step size 0: :

At the same time (check this),

Ek+l = t (A ek+l, ek+l) = t (A (I - 0: A) ek, (I - 0: A) ek)

= t ((I - o:A)Aek' (I - o:A)ek)

< III-o:AI/~(Aek,ek) = III-o:AI I~Ek'

One can show that (do this)

111- 0: AI/2 = max{ll - 0: m], 11 - 0: MI}.
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The right-hand side of the expression takes its minimal value when a = M~m'

and the value itself is ~+: (check this) . For this very a, the errors of the
gradient method with constant step size satisfy the inequality (18.7.3).

If the gradient method with step size a and the steepest descent method
start from the same point Xk , then the latter is bound to provide an equal or
smaller error cH I . 0

In a less trivial way! the inequality (18.7.3) was proved by L. V. Kan­
torovich in 1947.

18.8 Complexity of the simple computation
An obvious "drawback" of the gradient method, of course, is that it requires
computing gradients . It seems that evaluation of grad f at one point in lRn

should be at least n times more expensive than getting a value of f at one
point. In the early 80s, W. Baur and V. Strasserr' showed that this is not the
case. Although the "price" of the gradient is higher than that of the func­
tional, it is only finitely many times higher (independent of n)!

For a solid formulation, we need to define rigorously what we mean by the
price of a computation.

Suppose that there is a reserve (J of "elementary" binary operations , i.e.,
those of the form w = a (u, v) (for example, w = u + v or w = uv), and
consider a sequence of operations as follows:

Yi = Xi, 1 ~ i ~ n;

Yi = ai(Yil ,Yi"), n+l ~ i ~ n+m,

where 1 ~ i' ~ i" < i for all n +1 ~ i ~ n +m. We call such a sequence
a simple computation, and the number m will be termed its complexity (price).

A simple computation can be regarded as an algorithm for computing any
of the quantities Yn+k, k = 1, ... , m, or an ensemble of them.

If the elementary operations are of the form ai (u, v) Ci U + di v,
where Ci, d; are fixed constants , then the corresponding simple computation
is referred to as a linear computation.

18.9 Quick computation of gradients
Let us require that (J contain the operations u ± v, u v and provide that, for
any operation a (u, v) E (J, the partial derivatives a'(u, v) == ~~ (u, v) and

ID . K. Faddeev and V. N. Faddeeva . Computational Methods of Linear Algebra. San
Francisco - London , 1963.

2W.Baur and V.Strassen. The complexity of partial derivatives . Theor. Comput. Sci.
22: 317-330 (1983).
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a"(u, v) == ~~ (U, v) can be found by simple computations of complexity not
higher than c. Then the following holds.

Theorem 18.9.1 Suppose that a functional! of n variables is defined by a
simple computation of complexity m . Then, n components of the gradient of
! and the value of ! itself at one point can be defined by a common simple
computation of complexity not higher than (5 + 2c) m.

Proof. Introduce the quantities

_ 8Yi
Uij = -8'

Xj

and note that, for any fixed j, the quantities Uij satisfy the following linear
equations :

Ulj = . .. = Uj-l j = 0,
Ujj = 1,
Uj+l j = ... = Unj = 0;

-a~ Ui' j - a~1 Ui" j + Uij = 0, n + 1 < i < n + m.

In the matrix notation, it reduces to

vu = Z,

where
Onxm] E IR(n+m) x(n+m),
V22

z = [ In ] E IR(n+m)x n.
Om xn

The matrix V is lower triangular with units on the main diagonal; its first n
rows coincide with those of the unity matrix; in every row i for i > n there
can be at most two nonzeroes, apart from units on the main diagonal.

Without loss of generality, we assume that! (x) =Yn+m' Then, obviously,

grad! = [Un+ml ," " un+m n ].

Of special interest to us are only the first n components of the last row of the
matrix V- l , or, in other words, the first n components of the solution to a
linear system

[Un+ml ... U n+m n ' .. . ]V = [0 . .. 01].

This solution is computed by the backward substitution algorithm which in­
volves, in this case, only multiplications and additions. The number of multi­
plications is equal to that of additions , and either coincides with the number
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of nonzeroes under the main diagonal of V. Beyond these operations, we
need to count those that compute the quantities Ui

',
Ui", a~ (Ui" Ui") , and

a"(Ui' , Ui" ) . 0

The theorem is easy to extend to elementary operations having p argu­
ments, replacing (5 + 2c) m by (1 + (2 + c)p) m. (Think this over.)

The proof of the theorem suggests a way of converting a code computing
the functional into another code that simultaneously computes the functional
and the gradient.

18.10 Useful ideas

Apparently, every minimization method has its own deficiency. In spite of
the global convergence, the gradient methods might be very sluggish. For
example, below is a picture the way the steepest descent method behaves
when minimizing a quadratic functional in IR? :

If the level lines for f are stretched too far, then the direction to the mini­
mum point in search can be almost orthogonal to the gradient. One could try
"more judicious" descent directions. For example, by the two points Xk-l and
Xk, we can find a new point Yk = Xk + (Xk - Xk-l) 13k and, then, make a step
in the antigradient direction computed at this point: XkH = Xk - G:k !'(Yk) .

This is the idea behind the so-called ravine method.
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Another idea might be to seek XkH of the form

163

XkH = Xk + 0 !'(Xk) + f3 (Xk - Xk-l)

with 0 and f3 chosen to minimize f (Xk + 0 l' (Xk) + f3 (Xk - Xk-l)) . Instead
of the one-dimensional minimization of the gradient methods we get on to
the two-dimensional minimization at every step. This is the idea behind the
conjugate gradients method.

One more idea is almost evident: to revamp the Newton method by re­
placing the second-order derivatives with some their approximations. One can
also think of approximating the inverse to the Jacobi matrix by some simpler
devices. This could evolve into quasi-Newton methods .

Finally, a familiar relaxation idea can make the convergence "more global."
In particular, we can consider the following damped Newton method:

If Ok is chosen to satisfy a relaxation condition like (18.3.3) with constant
o < T < 1/2, then under the hypotheses of Lemma 18.5.1, one can prove that
the method converges superlinearly for an arbitrary initial guess. Moreover,
if the Hesse matrix satisfies the Lipschitz condition

11f"(x) - f"(y)11 ~ L Ilx - yll 'if x, y E IRn
,

then, for any initial guess, the method converges quadratically. (Try to prove
this!)

Exercises

1. Prove that the steepest descent method in the general case can not
converge faster than by geometric progression .

2. Suppose f fulfills the conditions of Lemma 18.5.1. Prove that the steep­
est descent method converges to the minimum point by geometric pro­
gression.

Is it true that

(M_m)2
ck+l ~ M + m Ck ?

3. A reserve of elementary operations consists of the four arithmetic oper­
ations (addition, subtraction, multiplication, and division). Prove that
if a functional f (x) at x is defined by a simple computation of com­
plexity m, then f (x) and grad f (x) at x can be found through a simple
computation of complexity not higher than 5 m.
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4. A reserve of elementary operations comprises additions, subtractions,
and multiplications. Prove that if a functional f (x) at x is defined by a
simple computation of complexity m, then f (x) and gradf (x) at x can
be found through a simple computation of complexity not higher than
3m.

5. A linear computation of complexity m gives the components of the vec­
tor y = A x, A E lRk x". Is it true that the components of the vector
z = AT y can be found through a simple computation of the same
complexity m ?
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19.1 Quadratic functionals and linear systems

If f(x) = t (Ax, x) - Re(b, x) , A =A* E lDn x n
, then the boundedness of

f from below is equivalent to the nonnegative definiteness of A (prove this).
Let us assume that A > O. In this case, a linear system A x = b has a
unique solution z , and, for any x,

1
f(x)-f(z) = 2(A(x-z),x-z) == E(x). :::}

z is the single minimum point for f (x). :::} A minimization method for f
can equally serve as a method of solving a linear system with the Hermitian
positively definite coefficient matrix.

The functional E (z) is often referred to as the error functional for A x = b.
It differs from f only by a constant. So, when minimizing f , we do the same
with E.

If A is an arbitrary nonsingular matrix (not necessarily Hermitian) , then
the solution to A x = bcan be obtained by minimizing the quadratic functional
r (x) = lib - Axll~. It is called the residual functional for Ax =b.

19.2 Minimization over the subspace and
projection methods

As in the steepest descent method, in many others every iteration requires
solving a local minimization problem. The local minimization can be con­
ducted over subspaces of a fixed dimension (equal to 1 in the steepest descent
method) . But the wider the subspace, the nearer we can get to the desired
solution.

In lDn
, consider a chain of subspaces

L1 C L2 C . . . C Lk C (Un, dim L, = i, i = 1, ... , k,

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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and for every k go in for Xk = argmin{1 (x): x E Ld. For a functional
1 bounded from below, we come to the solution no later than n steps. (Why?)

This idea evolves into a variety of projection methods. Suppose it is re­
quired to solve Ax = b. Then we bring in projectors Qk, Pk of rank k and
assume that the projection equation

has a unique solution Xk. We would anticipate that Xk approximates x.
The projection equation is often an equivalent formulation for 1 to be

minimized on the subspace Lk = imLk.

19.3 Krylov subspaces

Subspaces of the form

K, == K, (b, A) == span{b, Ab, ... , A i
-

l b}, i = 1, 2, ... ,

are called the K rylov subspaces.

If we intend to solve a system A x = b then the idea of minimization over
the subspace can acquire the following form:

Xi = argmin {lib- Ax112 : x E Ki } , i = 1, 2, ... . (19.3.1)

In case the matrix A is nonsingular, the vectors Xi are determined uniquely
(prove this) . A method of generating the sequence of Xi is referred to as the
method 01 minimal residuals.

Why do we know that the method of minimal residuals always leads to the
solution of Ax = b? Sooner or later, we get K, = KH I ~ AKi C Ki . The
matrix A is nonsingular ~ A Ki = K, ~ since b E K i , for some x E Ki,
A x = b must hold.

We will discuss some implementation details a little later .

19.4 Optimal subspaces

Suppose that a system A x = b with a nonsingular matrix A is solved by
residual minimization over the subspace. How do we choose the subspaces?

Consider an arbitrary algorithm ill that generates the subspaces L i :

LiH = ill (b, u , ALi).

If L, =span {PI, .. . ,Pi}, then a new subspace is defined by a vector

PHI = ifJHI (b, PI, .. . ,Pi , API, .. . , Api) .
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It means that, for every new subspace to appear, we are to perform exactly
one matrix-vector multiplication (A by Pi)' The same operation's result can
be used to minimize the residual over Li. Therefore, we define the cost for
the algorithm <1> as follows:

m(<1> , A, b) == min{i: min Ilb-AYI12 ::; c}.
YEL;

A bad algorithm <1> is not prohibited to have m (<1>, A, b) = +00.

For an individual matrix and right-hand side, the best would be the algo­
rithm of the minimal cost. However, one and the same algorithm of subspace
generation is usually applied to different matrices, and, apparently, we should
judge it by the behavior on all the matrices of interest. By the cost of an
algorithm <1> on a class of matrices A, we understand its cost in the worst
case:

m (<1>, b) == sup m (<1>, A, ,b).
AEA

An algorithm <i> is said to be optimal on the class A if, for any right-hand side
b, it is valid that

m(<i>, b) ::; m(<1>, b) V <1> .

In the late 70s, Nemirovski and Yudin (Russia) discovered that the in­
formation about a linear system captured by the Krylov subspaces is almost
optimal whichever way we use it. We will use it in the following way: having
a subspace (in other words, a basis of it), we minimize the residual.

19.5 Optimality of the Krylov subspace

Denote by K an algorithm generating the Krylov subspaces. It is almost
optimal on an arbitrary unitarily invariant class of matrices A (if A E A,
then Q*AQ E A for any unitary matrix Q ) in the sense that, for any b,

m(K, b) ::; 2m (<1>, b) + 1 V <1>.

This follows immediately from the following theorem.

(19.5.1)

Theorem 19.5.1 For any nonsingular matrix A and any algorithm <1> of sub­
space generation, there exists a unitary matrix Q such that

m(K,A,b) ::; 2m(<1>,Q*AQ,b)+1. (19.5.2)

Proof. Following A. Chou", we construct a unitary matrix Q providing for
5 =Q*AQ to fulfill either m == m (<1> ,5, b) = +00 or

m (K, A, b) s dim span {b, Lm , 5Lm } , (19.5.3)

1A.W.Chou. On the optimality of Krylov information. J. of Complexity 3: 26-40 (1987).
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where Lm is a subspace generated by the algorithm ll> for S.
Consider the orthonormal basis VI, . . . , Vn providing that

span {VI, . .. , vd =K; (A, b) Vi: dim C, =i.

Lecture 19

Using the algorithm ll>, we build a sequence of orthonormal vectors UI, U2, • ••

and unitary matrices Qi being arbitrary in all except the conditions

o,«, = Vj, 1 ~ j s r'(i). (19.5.4)

Set Lo = M o = span{b} = span {ud, Qo = I. Assume that we already
have some matrices Sj = Qj A Qj, 1 ~ j ~ i such that the algorithm ll>
generates for Sj the subspaces L j = span {PI, . .. , Pj} (it is important
that exactly the same subspaces are obtained for Si). Consider the following
subspaces :

=
span{b, Li, SiLi} = span {UI' ,Ur(i)}'
span {Mi, PHd = span {UI, , Ur' (iH)}'

Here, PiHis generated by the algorithm ll> for Si. Let the unitary matrix QHI

enjoy the conditions (19.5.4). Then SHI =QiH A QHI and, by definition,

If r (i + 1) > r (i), then r'(i + 1) = r (i) + 1. In this case, we require that
Ur(HI) = QiH Vr(iH)' The vector defined in such a way is orthogonal to
every Uj for j < r (i + 1). At the same time,

Now, let us assume that 3 y E Lm : lib- Smyl12 ~ c. Then

and now, (19.5.3) follows from r'(m) ~ dim Mm.
If no m provides the accuracy e for Sm on the mth step, then sooner or

later, Qm = QmH = .... Consequently, for this Sm, the accuracy c is never
reached, no matter how long we iterate, and hence, m (ll>, Sm, b) = +00. 0

19.6 Method of minimal residuals

To solve a system Ax = b with a nonsingular matrix A, we choose an (arbi­
trary) initial guess Xo and, then, proceed, in fact, to a reduced system Au = ro,
where ro = b - Axo, x = Xo + u. In the method, we successively minimize
the residual on the Krylov subspaces for the reduced system (provided that
ro # 0).
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There are several ways to implement this .2 I think it is not a big deal to
find one of your own, is it?

Anyway, we go on with those who still want more details. Let ql =
ro/llroI12' To have an orthonormal basis ql, .. . , qi+l in K i+l = K i+l (ro, A),
we orthogonalize the vector A qi to the preceding vectors ql, . . . , qi.

If Qi =[ql . .. qi] E Gjnxi, then we obtain

AQi = Qi+l iIi, tt, = [0 Hi 0 h ] ,
... i+li

where Hi is an upper Hessenberg matrix of order i.

Further, consider the QR decomposition for the rectangular matrix iIi:

iIi = o. s; n;E Gjixi.

Then the residual jlr.,- AQ iyI12 takes its minimum over all Y if Y =Yi satisfies
the equation (prove this)

RiYi = Zi =11ro112 ut el, where el =[10 ... O]T.

The matrix R; is nonsingular. (Why?) Therefore,

Xi = Xo + Qi Yi = Xo + Qi Ril Zi·

Note that the Hessenberg matrices Hi are the leading principal submatri­
ces of the largest Hessenberg matrix coupled with the last iteration. Apart
from multiplying a matrix by a vector, other overheads of the ith iteration
are mostly due to orthogonalization. Beside it, we still have some work for
computing the vectors Zi and then Yi. Thanks to the Hessenberg structure of
the matrix Hi, it takes only 0 W) operations.

More details can be found in the rather recent, well-cited paper of Y. Saad
and M. N. Schultz.P It is probably in this work that the name "GMRES" was
given. By a "nongeneralized yet" method of minimal residuals, one usually
means the method of minimal residuals in the case of a Hermitian matrix. If
so, the matrices Hi turn out to be tridiagonal. (Prove this!)

For a large number of iterations, the arithmetic costs and memory required
to retain the vectors qi can get forbiddingly high. For such cases, one applies
the method of minimal residuals with restarts: in advance, we set the maximal
allowed dimension of the Krylov subspace, and iterate until the stopping cri­
terion bids us to quit or the maximal subspace is reached. In the latter case,
we take the approximate solution at hand as a new initial guess and start to
generate a new chain of Krylov subspaces.

2G. I. Marchuk and Yu. A. Kuznetsov . Iterative methods and quadratic functional .
Methods of Numerical Mathematics. Novosibirsk, 1975, pp. 4-143.

3Y.Saad and M.H.Schultz . GMRES : A generalized minimal residual algorithm for solv­
ing nonsymmetric linear systems. SIAM J. Scientific and Stat. Compo 7: 856-869 (1986).
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19.7 A-norm and A-orthogonality

Let A be a Hermitian positive definite matrix of order n . Then , for any pair
of vectors x , Y E ~n, let us set

(x, Y)A == (Ax, y).

This is a scalar product in ~n (check this) .
The norm IlxliA == J(x, Y)A is called the A-norm. Vectors x are Y said to

be A-orthogonal if (x, Y)A = O. Any two orthogonal vectors enjoy Pythagor's
theorem : Ilx + yll~ = Ilxll~ + Ilyll~ ·

19.8 Method of conjugate gradients

Suppose z is the solution to a system Ax = b with A = A* > O. Choose a
guess xo, take ro =b - Axo to build up Ki =Ki(ro, A), and let Xi =Xo +Yi,
where Yi E Ki. The only difference with the method of minimal residuals is
that now we minimize over K, the A-norm of the error e = x - z:

Yi =argmin {llxo + Y - zlIA : Y E Ki}'

By Pythagor's theorem,

It is best if we have an A-orthogonal basis PI, ... ,Pi in Ki. In this case, the
expansion

Yi = (}:li PI + ... + (}:ii Pi

has coefficients independent of the second index i, i.e., (}:ji == (}:j' Therefore
(do not forget that r, J.. Ki ) ,

A
(ri-l, Pi)

Xi = Xi-l + (}:iPi ~ ri = r i-l - (}:i Pi ~ (}:i = (A . .) '
Pt, Pt

If r i i 0, then write PHI = ri + /3i! PI + .. .+ /3ii Pi· Next, ri J.. Ki ~
/3ij = 0 for j < i . (Prove this!) ~

PHI = ri + /3i Pi, /3i = (ri' Api) .
(Api, Pi)

Since Pi = ri-I + f3i -l Pi-I, we find that (l:i =
then (}:i i O. ~

( A) ( ri-l - ri) _ (ri' ri) ....... /3.ri , Pi = ri, - --- -,r •
(}:i (}:i
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Finally, we obtain the following formulas of the method of conjugate gra­
dients:

ai (Ti-b Ti-d/(Api , Pi),
Xi = Xi-l +aiPi,
Ti = Ti-l - ai APi, (19.8.1)
/3i = (Ti, Ti)/(Ti-l, Ti-d,

PHI Ti + /3i Pi·
A wonderful thing is that the recurrence relations now are short: when mini­
mizing over the subspace Ki , we do it without a full basis!

19.9 Arnoldi method and Lanczos method

Given a vector TO ¥ 0, set i as the minimal index such that K, (TO, A) =
KiH (TO, A). In the subspace Ki , we consider an orthonormal basis qi, ... , qi

providing that span {ql' . . , , qj} = Kj for all 1 ::; j ::; i, The vector qjH can
be built through orthogonalization of the vector A qj to the preceding vectors
ql, .. . , qj'

Set Qj = [ql . . . qj]. Then the matrix

Aj = QiAQj

is called the projective restrictionof A on Kj . For 1 ::; j ::; i, the matrix Aj is
a leading principal submatrix of Ai .

In the general case, Ai is an upper Hessenberg matrix. If A is Hermitian,
then Ai is a Hermitian tridiagonal matrix. If a method constructs the matrices
Aj and Qj, it is associated with the name of Arnoldi, in the general case, and
with Lanczos in the Hermitian case.

Under the assumptions made, K, is A-invariant. Hence, A(Ai) C A(A).
However, the eigenvalues of the projective restrictions A j can approximate the
eigenvalues of A wellenough with j being sometimes far less than i (we explain
this in the following lecture). Such an approach to computing eigenvalues is
attributed to Arnoldi, in the general case, and to Lanczos in the Hermitian
case.

19.10 Arnoldi and Lanczos without Krylov

In the methods of Arnoldi and Lanczos, Krylov subspaces are referenced to
through the orthonormal bases constructed for them. But curiously enough,
one can glean the same bases by analyzing some well-known matrix decom­
positions without giving a thought to Krylov's subspaces.

We know that a matrix A E (lJnxn is unitarily similar to some upper
Hessenberg matrix H:
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Choose qi to be arbitrary in all except for the condition IIqdl2 = 1, and equate
the first columns:

Aql = ql hn + q2 h21.

Since qi and q2 are orthogonal, hn = (Aql, qd . Then the vector q2 is obtained
from A ql - ql hn by normalization (provided that the vector is not zero).
Next, we equate the second columns and find Q3, and so on.

We stop at the ith column, if the candidate for qiH was zero. In this case,
however,

where Hi is the leading i xi submatrix in H. Note that the subspace imHi
is A-invariant.

Thus, we have the subspaces

and can think of using them in the projection methods.
Formally, we did without the Krylov subspace definition, but not without

the subspaces themselves . If we still want to remember that definition, we
should confess that Lj = Kj (ql, A) .

19.11 From matrix factorizations to
iterative methods

The method of conjugate gradients can be derived directly from the Choleski
decomposition.!

Let A = A* > O. Then Aj = Qj AQj is a Hermitian tridiagonal matrix
(we use the notation from the section 19.9). Moreover, Aj > 0 (why?)
and we may consider its Choleski decomposition Aj = Rj Rj. Since Aj is
tridiagonal, the upper triangular matrix Rj is bidiagonal:

Take up a nonsingular diagonal (beside this, arbitrary) matrix Dj and set

41first heard about this striking relation from S. A. Goreinov.
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The columns of the matrix Pj are A-orthogonal, and we can see that
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Meanwhile, we want to solve a system Ax = b. Let Xj = Xo + Pj y and
Tj 1. im Pj (the latter is equivalent to minimizing the error in the A-norm).

This implies that Xj = Xj-l + aj Pj, Tj = Tj-l - aj Apj . What is more,
if Tj i: 0, then qj+l is collinear with rj . Therefore, if we build the vectors
ql, . .. , qj+l starting from ql = To/llroll2' then nothing prevents us from
choosing qj+l =Tj/llrjll2 and then specifying D j in the following way:

All in all, the expression for Pj+l acquires the familiar form

Other matrix factorizations can lead to other useful iterative algorithms.
For example, the unitary bidiagonalization of an arbitrary matrix transforms
into the Lanczos bidiagonalization method that allows one to compute the
singular values and vectors. Every iteration of this method will require two
matrix-vector multiplications, one with A, and the other with A*.

19.12 Surrogate scalar product

A nice thing is that the conjugate gradient method (and the minimal resid­
ual one) for Hermitian matrices can be performed through short recurrences.
With a certain price paid, however, we can also rejuvenate short recurrences
for non-Hermitian matrices.

To cover more applications, we sometimes replace the scalar product by
more convenient bilinear or sesquilinear forms. Take a matrix D E (Cnxn and
introduce a surrogate scalar product in one of the following ways:

or, alternatively,
(X,y)=y*Dx, x,yE(Cn. (**)

For a matrix A E (Cnxn, denote by A' a dual matrix such that (Ax , y) =
(x, A'y) V x, Y E (Cn . If a is a scalar quantity, then ex' designates a dual one
providing that (ax,y) = (x,a'y) V x,y E (Cn. From now on, we write x 1. y
if (x,y) = O.

For the time being, set D = I. Then, A' = AT for the case (*), and
A' = A* for (**).
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19.13 Biorthogonalization approach

To solve Ax = b with a nonsingular A E cn x n
, we start from some Xo and

try to approximate x by a vector Xi = Xo + Yi, where Yi E Ki(ro, A) =
span {Pi, ,Pi}, ro = b - Axo, postulating that ri =b - AXi .1 Ki(ro, A') =
span {p~, ,pa, where ro is chosen at the beginning so that (ro, ro) #: O.

Assume that Pi, ... ,Pi and pL .. . ,p~ are A-biorthogonal in the sence that
(Apj,p~) = 0 for all j #: k, Let it not vanish for j = k. Then from

i

ri =ro - Ax =ro - L: Oji Apj it follows that Oji =OJ = (ro,Pj) / (Api>Pj) .
j=l

=> Xi =Xi-l +0iPi => ri =ri-l - OiApi. If ri-l .1 Ki-l (ro' A') (we assume
this), then 0i = (ri-l,pD / (ApiJpD.

Consider also the vectors rj = rj_l - ajA'pj, stipulating that they satisfy
Kj (ro, A) .1 rj for all j ~ i. If the latter already holds for all j < i, then, we
have to take ai = (Pi, r~_l) / (Api,pD·

Assume that OJ,aj #: 0 for all j ~ i, Then, we can take for granted that

With that much, we immediately conclude that 0 = a = (ri-l, r~_l) / (Api,pD.
Since (Ari,Pj) = (riJA'pj) = 0 for j < i, we maintain the biorthogonality
property by choosing {3i = - (Ari,pD / (Api,pi). Next,

=>

It is easy to verify that Pi = {3i.

Finally, we arrive at the so-called biorthogonal conjugate gradient algo­
rithm:

ro =b - Axo, Pi =ro, choose ro, p~ =ro;
0i = (ri-l,r~_l) / (ApiJpi),
Xi =Xi-l + 0iPi, ri =ri-l - olApi, r~ =r~_l - O~A'p~,

{3i = (ri,ri) / (ri-l,r~_l)'

PHi =ri + {3iPi, P~+l = r~ + {3~p~, i =1, 2, .. . .

Note that o~ = 0i and {3~ ={3i for the surrogate scalar product of the type
(*), and we turn to the complex conjugate values for the case (**).

19.14 Breakdowns
In the biorthogonal conjugate gradient algorithm, one foresees the possibility
of breakdowns of the following two types :
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• (Api,pD = 0 for some i;

• (Ti-l ,T~_l)=O::} ai=OwhereasTi1:-0.
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In fighting against the breakdowns, what can help really are some block ver­
sions of the above algorithm.

19.15 Quasi-Minimization idea

For short recurrences in the non-Hermitian case, the price we pay is the loss
of the minimization property. It results in a teasing chaotic behavior of the
residual values, which makes it difficult to decide whether to quit or not. How­
ever, we can move from the vectors Xi to some other, more agreeable vectors
Xi of which the residuals Ti behave quite decently.

Let Pi = [Pl,'" ,Pi], Pi = IITiIl2' and ~ = [ToIpo,···, Til pi]' If we write
Xi = Xo + Piy, then

T-i = TO - APiy = ~Vi

with the vector Vi of the form

for some ~o , ... , ~i. Let us choose these quantities to provide the least possible
value for IIvlb. Since 1I~1I2 $ Jf+1 (why?),

lIT-ill2 s Vi + 1 min IIvill2.

This is what we call the quasi-minimization property.

Set 1]0 = 1-~0, 1]1 =6 -~o, .. . , 1]i-l = ~i -~i-l, 1]i = ~i. Then, we are to
minimize the functional f = IIvlI~ = p21]5 + ...P~1]~ subject to the constraint
1]0 + ...+ 1]i = 1. By the standard technique using Lagrange's multipliers.t
we find that

u ·.,., _ 3.,j--,
s,

where

Consequently,

i 1
Si = L2'

j=l Pj
(19.15.1)

5L. Zhou and H. F. Walker. Residual smoothing techniques for iterat ive methods. SIAM
J. on Sci. Comput. 15 (2): 297-312 (1994).
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These formulas are not for computation yet. We use them to infer that

(19.15.2)

We are much better off, indeed, by supplementing the biorthogonal con­
jugate gradient algorithm with (19.15.1) and (19.15.2).

The quasi-minimization idea can also be useful for some other iterative
algorithms. It has been widelydiscussedsince the recent workof R. W. Freund
and N. M. Nachtigal."

Exercises
1. In theory, the residual in the method of minimal residuals goes down

monotonically. In practice, it does until a restart, when one might
observe it increasing. Do you have an idea why this happens?

2. What vectors can be simultaneously orthogonal and A-orthogonal?

3. Prove that, in the method of conjugate gradients, the residual of a step
i is A-orthogonal to the residual of any step j so long as Ij - il > 1.

4. Prove that, in the biorthogonal conjugate gradient method, the vectors
ri and rj are biorthogonal in the sence that (ri,rj) = 0 for i i:- i.

6R. W . Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non­
Hermitian linear systems. Numer. Math. 60: 315-339 (1991).
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20.1 Convergence rate of the conjugate
gradient method

k
Consider the expansion of the initial residual TO = L:: eiZi in an orthonormal

i=l
eigenvector system of the given n x n matrix A =A* > O.

Then , the method of conjugate gradients arrives at the solution to Ax = b
no later than the kth step. If A Zi = Ai Zi and Ai :j; Aj for i :j; i. 1 ~ i , j ~ k,
then the solution emerges exactly on the kth step. (Prove this.)

It is remarkable that frequently the approximate solution becomes accu­
rate enough pretty much before the kth step.

Note that Pi = cPi-1 (A) TO, where cPi-1 (A) is a polynomial of degree i - 1.
(Why?) It implies that Ti = 1/Ji (A) TO, where 1/Ji (A) = 1 + AcPi-1 (A)
(::} 1/Ji (0) = 1). Since the conjugate gradient method on the ith step
minimizes the A-norm of the error ei = X i - X (x is the exact solution), we
find that

Iledl~ = (Aei, e.) = (Ti, A-I r.)

~ t, ,pIi;;) ,; $ (,~J't, l,p, (A;) I)' lIeo II~

If A(A) c [m, M] then, obviously, for any polynomial e, (A) of degree not
higher then i with constant term equal to 1, the error can be estimated from
the above as follows:

(20.1.1)

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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20.2 Chebyshev polynomials again

Let T; (t) be the Chebyshev polynomial of degree i . Take into account that

m+M M-m
A = 2 + 2 t E [m, M],

and consider a polynomial

_ . (2A-m-M)Ti;m,M (A) - T, M .
-m

We call it the Chebyshev polynomial for the segment [m, M].

Obviously, we may take

tPi (A) = Ti;m,M (A)/Ti;m,M (0).

Then, since Ti; m, M (0) = l/Ti (- ~~:), we obtain

Thus,

(20.2.1)

This estimate seems attractive, for the Chebyshev polynomials grow ex­
ponentially in i so long as ItI > 1:

Allowing for ITi (t)I ~ ! Itl i , we can derive from there, for example, the esti­
mate

(20.2.2)

which, we dare note, cannot satisfy us very much, because it is not any better
than the steepest decent method estimate. But still do not make haste to
draw conclusions.

20.3 Classical estimate

We need to estimate Ti(t) at t = -(1 + v)/(l- v), where v = m/M.

:::}
t2 _ 1 = (1 + v)2 - (1 - v)2 =

(1 - V)2
4v

(1 - v)2
:::}
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a == ItI+ Jt2=1 l+v+2y'ii
=

I-v

(1+ .jii)2
= =

I-v
1 + y'ii
1 - y'ii'
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Allowing for

we find that

21Tdt)I

(20.4.1)

(
1 - v1f)iIleillA ~ 2 1 +vi IleollA. (20.3.1)

The estimate (20.3.1) is better in a big way than (20.2.2). It confirms
quantitatively what has been felt quite clear: the method of conjugate gradi­
ents is bound to converge much faster than the steepest descent method.

20.4 Tighter estimates

The estimate (20.3.1) suggests that the convergence rate slows down for ill­
conditioned matrices. However, it could be fast enough even for such cases.1

Let us try to explain why.

Denote by Al ~ .. . ~ An the eigenvalues of A = A· > O.

Assume that Al » A2' In this case, the conjugate gradient method behaves
as though the condition number of the matrix is equal to A2/An. Indeed, we
use (20.1.1) with the polynomial

T.._ (2A- A
2 -

An) ( A)
1/Ji (A) = ,1 A~-A~ 1 _ _ . =>

Ti - 1 (-~) Al

( ff)i-l
lIe,llA ,; 2 (1- ~;) : : vF. lIe' IiA

If An « An-I, then, from the standpoint of quality, we have the same
result: the method ignores the smallest eigenvalue and behaves as though the
condition number is equal to AI/An-I. In this case (prove this),

(20.4.2)

All in all, when well-separated from others, the extreme eigenvalues do not
much affect the method's behavior. One might still foresee that , in machine
arithmetic, the ill condition does not render the convergence picture that
exquisite.

10. Axelsson and G. Lindskog. The rate of convergence of the conjugate gradient
method. Numer. Math. 48: 499-523 (1986).
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20.5 "Superlinear" convergence and
"vanishing" eigenvalues

Lecture 20

Strictly speaking, the notion of superlinear convergence rate is not applicable
to a process with a finite number of iterations. However, the conjugate gra­
dient method possesses some of its features: the ratio Wi == IleiIlA/llei-11IA
usually tends to go down (not monotonically), whereas in linear convergence,
one should expect that Wi ~ const).

In 1986, A. van der Sluis and H. A. van der Vorsr' discovered that (in
exact arithmetic) the method of conjugate gradients commences since some
time to behave as though the matrix A keeps no longer its extreme eigenvalues
A1 and An, then after some time to have passed it starts to behave as though
A has lost, to boot , A2 and An- 1 ' and so on.

An eigenvalue "vanishes" at the very moment when it is approximated well
enough by some eigenvalue of the projective restriction matrix that would
be generated (virtually) by the Lanczos method starting from the vector
q1 = To/IIToI12'

Prior to enunciating the corresponding theorem, we need more insight into
the Lanczos method and how it relates to the conjugate gradients .

20.6 Ritz values and Ritz vectors

The projective restriction of A on K, (TO , A) is defined as follows:

A Q* A Q Q [ ] [TO Ti-1 ]i = i i, i = q1," " qi = IIToI12" ' " IITi-dI2

(in the conjugate gradient method , Tj 1. Kj, and the iteration halts with the
zero residual).

Denote by fh ~ ... ~ Oi the eigenvalues of Ai' They are usually called
the Ritz values. If Aivj = OjVj, IIvjl12 = 1, then the vector Yj = QiVj is
termed the Ritz vector coupled with OJ.

It is easy to see that 0 = Qi (A Qi Vj - OJ Qj Vj) = Qi (AYj - OJ Yj)·
Consequently, AYj - OJ Yj 1. x, for all 1 ~ i, j ~ i.

2A. van der Sluis and H.A. van der Verst. The rate of convergence of conjugat e gradients.
Numer. Math . 48: 543-560 (1986).
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To begin with, why does lh ~ AI? To answer this question, let us write

lh = max (Ay, y) = max (A¢>i-1 (A) ro, ¢>i-1 (A) ro) ,
y E K:. (y, y) 1/>.-1 (<Pi-1 (A) ro, <Pi-1 (A) ro)
u # 0

where the maximum is taken over all polynomials ¢>i-1 of degree not higher
than i-I, provided that <Pi-1 (A) ro =P O. Obviously, (}1 :::; AI. (Why?) Using

n
the initial residual's expansion ro = L: ~j Zj in the orthonormal eigenvectors

j=l

of A, we find that

n

')' = ')' (ro) =L l~kl2 / 1612.
k=2

The inequality obtained remains valid for an arbitrary polynomial of de­
gree <Pi-lor less. A good idea is to try such a polynomial of which the value at
the point Al is much greater than the values at the points .A2, .. . , .An. To this
end, we can take the familiar Chebyshev polynomial for the segment [.An, A2] '
The choice 1/Ji-1 (A) = Ti-1;>'n,>'2 (.A) results in the following Kaniel-Paige
estimate (check this):

(20.7.1)

20.8 An important property

Lemma 20.8.1 Suppose A = A* E Qjnxn is reduced via a unitary matrix
Q = [q1 ... qn] to a Hermitian tridiagonal matrix

0:1 f3i
f31 0:2 f32

A = Q* AQ =

f3n-2 O:n-1 f3~-1
f3n-1 O:n
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Assume that /3j =I 0 for 1 ~ j ~ i. Then qi+l = 11"i (A) ql for some polynomial
11"i of degree i, which coincides up to normalization with the characteristic
polynomial of Ai, the leading submatrix of order i in the matrix A.

Proof. Clearly,

eT = [0 . . . 01],

and, with this, we can choose the polynomials 11"j (.oX) so that qj+l = 11"j (A) ql

for 1 ~ j ~ i. Set 11"0 (.oX) = 1. Then,

.oX [11"0 (.oX), '" , 11"i-l (.oX)] = [11"0 (.oX), ••• , 11"i-l (.oX)] Ai + /3i 11"i (.oX) eT,
or, equivalently,

IT r, = "pi (A)ro =I 0, then the roots of the polynomial e, (.oX) coincide with
th eigenvalues of Ai, i.e., with the Ritz values for the projective restriction of
A on JCi (ro, A).

20.9 Theorem of van der Sluis and
van der Vorst

Consider the ith residual's expansion
n

ri = L:ejZj
j=l

in the orthonormal eigenvector basis of A. We proceed to iterate but let us
launch in parallel a comparison process starting from the residual

n

TO = L:ejZj.
j=2

Thus, there arise the vectors Xj generated by the comparison process to­
gether with the approximate solution vectors xi+j . Set ei+j = Xi+j - x and
ej = Xj - x (x is the exact solution of Ax =b).

Theorem 20.9.1 Let.oXl ? ... ? .oXn be the eigenvalues of the matrix A =
A* > 0, and let (h be the greatest eigenvalue of the projective restriction
matrix Ai' Then

where

(20.9.1)

(20.9.2)
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Proof. Let TO = ~~=l ~k Zk. Then

n n

Ti = L 1/Ji (Ak) ~k Zk, Ti+j =L 1/Ji+j (Ak) ~k Zk,
k=l k=l

n n

1'0 = L 1/Ji (Ak) ~k Zk, 1'j =L 1/Ji (Ak) '¢j (Ak)~k Zk,
k=2 k=2

where '¢j (A) is a polynomial of degree not higher than j.
By Lemma 20.8.1, 01 is the root of 1/Ji (A), and hence, the expression

1- 2-
Wi (A) = -41/Ji (A)

1--91
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is a polynomial of degree i-I satisfying the conditions Wi (0) = 1 and
Wi (AI) = O. Since the conjugate gradient method minimizes the A-norm of
the error, we find that

<

20.10 Preconditioning

If an iterative method applied to Ax = b does not hurry to converge, then one
usually attempts to apply it to some other but equivalent system AC-ly = b.
This is called preconditioning.

The best choice is C = A (it shows, by the way, that the idea can always
do the work). Why does no one do so?

To multiply the matrix AC-1 by a vector, one performs the following two
actions:

• Solve a system with the coefficient matrix C;

• Multiply A by a vector.

The matrix C is said to be an implicit preconditioner. Ifone writes AMy =
b, then M is called an explicit preconditioner. With explicit preconditioning,
instead of solving a system with the matrix C, one carries out a matrix-vector
multiplication by the matrix M . When constructing preconditioners, we keep
in mind that C ~ A or M ~ A-I (in a certain, rather broad sense).
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20.11

Lecture 20

Preconditioning for Hermitian matrices

If A is Hermitian, then AC-l is generally not . However, it remains Hermitian
in a generalized sense.

We can treat matrices as operators in a unitary space with a nonstandard
scalar product, say, one of the form

(X,Y)D == (Dx,y) for some D = D· > 0

(check the scalar product axioms). Then, a matrix M is called D-Hermitian
if

(MX'Y)D = (x, MY)D 'r/x,y E <en,

and positive definite for D if (MX,X)D > 0 for all x:f. O.
With such a definition, the matrix AC-l is a D-Hermitian positive definite

matrix with D =c:' or D = A-i. Consequently, we may solve AC-lx = b
by the standard conjugate gradient algorithm (let D = C- l ) :

rh
Qi
x~

r~
(Ji

pi+!

=
=
=
=
=
=

After the substitutions

the formulas turn into those of the preconditioned conjugate gradient method:

ro = b - Axo, Pi =C-lro;

Qi = (ri-l, C-lri_d/(Api, Pi),
Xi = Xi-l + QiPi, (20.11.1)
ri = ri-l - QiAPi,
(Ji = (ri , C-lri)/(ri_l , C-lri_l),

PHi = C-lri + (Ji Pi·

Note that Xi is an approximation to the exact solution while ri = b - AXi is
the residual for the original system. (Derive the above formulas.)

If C and A are Hermitian positive definite matrices, then the eigenvalues
of the preconditionered matrix c:' A are positive. (Why?) One usually tries
to make them fall into a segment [m, M] oflength the smaller the better. The
convergencetheory expounded above, however,says that the convergence rate
is-also kept fast when most of the preconditioned eigenvalues (though not ali!)
are amassed near one point (this point is called a cluster) .
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1. Let Al ~ Ak ~ .. . ~ An-k'+l ~ An be the eigenvalues of A = A* > O.
Let m' == An-k'+l and M' == Ak. Show that for the A-norm of the errors
in the conjugate gradient method, the inequalities of the following form
hold:

2. Let A = A* > 0 be a matrix of order n, and consider the implicit
preconditioner of the form C = diag (A). Prove that

cond, (C-~AC-!) ~ n cond, (DAD)

for any positive definite diagonal matrix D.

Is it true that
cond- (AC-1

) ~ n conde (AD)?
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Lecture 21

21.1 Integral equations

An integral equation of the form

! K(x, y) u(y) du(y) = I(x), x E r,
r

is said, rather formally, to be of the first kind, while that of the form

u(x) +! K(x, y) u(y) da(y) = I(x), x E r,
r

is said to be 01 the second kind. Here, do is the arc length element. In the
operator form, we write Ku = I and (1 + K)u =I, respectively.

For definiteness, assume that r = {'y(t): 0 ~ t ~ 211'} is a sufficiently
smooth closed contour on the complex plane.

The function K(x, y) is termed a kernel of the integral equation. We
assume that it is infinitely differentiable everywhere except for x = y, and the
integrals are understood as the Riemann improper integrals.

21.2 Function spaces

It is important to consider the relevant function spaces for u and I. Since the
functions u and I can be considered as 211'-periodic functions of t defined on
the whole real axis, we consider the Fourier series

00

u(t) = L Uk exp(ikt),
k=-oo

and, for any real s, set

IIull; == /uol 2 + L Ikl2s lukl2 .

k!-O

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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These quantities are defined correctly for any u E Coo (checkthis) and possess
all properties of the norm.

Denote by HS the space of which every element is identified with a set
of equivalent Cauchy sequences in Coo with respect to the norm II . lis (we
call any two sequences equivalent if their difference converges to zero). The
spaces H" are called the Sobolev spaces.

Note that, for a negative s, some elements of H" do not look like any usual
function (such elements are referred to as distributions).

21.3 Logarithmic kernel

In the potential theory, one encounters the kernel of the form

1
K{x,y) = - - In Ix - yl.

7r

Let r be a circle of radius a. With x = a eir and y = a eit ,

K{x, y) == k{r, t) = - .!. In{a11 - ei(r-t) I).
7r

00 k .

Remember that In{l- z) =- L: zk ' for [z] < 1, => With z =et 4> , we arrive
k=l

00

at the expansion In 11 - ei4> 1 = L: co~k4>. Now, we obtain
k=l

a 12". ( eik(r-t») ( . )
[Ku]{r) =;;: Ina +L 21kl L Urn esm t dt

o k#O m

2 I "" Uk ikr= a nauo + a L.J/kje .
k#O

This proves the following.

Proposition. If r is a circle of radius a :I 1, then the operator K with
the logarithmic kernel provides a one-to-one continuously invertible mapping
K: HS -t Hs+l for any real s,

If we consider an arbitrary smooth contour, then the same holds, if not
immediately, then after a small smooth perturbation of it . The proof, how­
ever, is not that straightforward.

We could regard K as an operator acting, suppose, from HO to HO . Then
the equation K u = f may have no solution, and, if it still has, u can change
dramatically after some small perturbations of f .
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For solving an operator equation Au = I, where A : H -t H' is a con­
tinuously invertible linear operator for some Banach spaces H and H', con­
sider a sequence of finite-dimensional projectors Pn : H -t Ln = imPn,
Qn : H' -t L~ = im Qn, and the following projective equation:

The projective method based on Pn, Qn is called convergent if for all suffi­
ciently large n, the projective equations are solved uniquely and Un -t z , as
n -t 00, for any! E H' (z is the solution to Au = J). For this, the following
two properties are crucial:

• Approximation property: Pnu -t 1.1 Vu E H, Qn! -t ! Vf E H'.

• Stability property: for all n sufficiently large,

Lemma 21.4.1 Suppose a projective method possesses the stability property.
Then the inequality

holds true for all sufficiently large n.

Proof. Subtract QnAPnz = QnAPnz from QnAPnun = Qnf. Then
(QnAPn) (un -Pnz) = QnA (z - Pnz) . From the stability, for n large enough,
QnAPn is an invertible mapping of im Pn onto im Qn' =>

Corollary. With the stability property holding, if IIQnllllz - Pnzll-t 0, then
Un -t Z.

Theorem 21.4.1 Suppose a projective method possesses both stability and
approximation properties . Then it is convergent.

Proof. From the Banach-Steinhaus theorem, IIQnl1 < M < +00, and it
remains to refer to the above corollary. 0

Under the hypotheses of the above theorem, prove the following quasi­
optimality property:

lIun - zll < C inf 111.1 - zll, C > O.
uEL n
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21.5 Galerkin method

Consider a sesquilinear [orm (v, u) defined for v E H' and u E H. By defi­
nition, (v,u) is a linear continuous functional on H' for any u E H while the
complex conjugate value (v,u) is a linear continuous functional on H for any
vEH' .

Suppose that <PI, ... ,<Pn E H and .,pl, .. . ,.,pn E H' are dual systems in
the sense that (.,pi, <Pj) = Oij (1 for i = j and 0 otherwise). In the Galerkin
method, we set out the projectors as follows:

n

Pnu =L<Pj(.,pj,u),
j=l

n

Qnv = L .,pi (v,<Pi)'
i=l

n n n
Write Un = Pnun = E Xj<Pj. Then, from QnAPnun = E .,pi E Xj (A<pj, <Pi)

j=l i=l j =l

and Qn! = E .,pi(I, .,pi) , we derive the following Galerkin equation:
i=l

n

L(A<pj, <Pi) Xj = (I, <Pi), i = 1, .. . ,n.
j=l

The matrix M = [A<pj, <Pi]nxn is sometimes referred to as the moment matrix.

21.6 Strong ellipticity

Given A : H -* H' and a sesquilinear form on H, H', suppose that, for some
c> 0, (Au,u) ~ cllullH Vu E H. This important property is known by
different names: strong ellipticity, coerciveness, positive definiteness.

For the Galerkin method, the stability property follows immediately from
the strong ellipticity. (Prove this.)

21.7 Compact perturbation

If there is a convergent projective method for Au = i. it can also be applied
to almost any equation of the form (A + K)u = f , where K is a compact
operator. Recall that a linear continuous operator K: H -* H' is termed a
compact operator if for any bounded sequence Un E H, a convergent subse­
quence can be made from the images K Un E H'.

Theorem 21.7.1 Suppose A and A+K are continuously invertible operators
from H to H', and let a projective method based on Pn, Qn possess the ap­
proximation property and also the stability property when applied to A. Then
it maintains the stability property when applied to A + K.
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Proof. Set An = QnAPn and K n = QnKPn. We take it for granted that
IIAnu11 ~ IIPnuli Vu E H. By contradiction, assume that there exists a
sequence Un = Pnun such that

Without loss of generality we may regard K Un as a convergent sequence. Let
KU n -t V ::} A-IKU n -t A-Iv ::}

A - IK A-In nUn -t v.

The latter can be checked rather straightforwardly:

A;; I Knun - A-Iv = (A;;IQnKnun - A;; I Qnv) + (A;;IQnv - A-Iv) .

The first bracketed sequence converges to zero, because the norm IIA~lQnll

is bounded uniformly in n. The second converges to zero thanks to the con­
vergence of the projective method in question, applied to Au = v.

From (*) and due to the stability property, (I + A~iKn)un -t O. With
(**), we infer that Un -t U = -A-iv. Therefore, (A + K)u = 0 ::} U = 0,
which can not be reconciled with Ilull = 1. 0

21.8 Solution of integral equations

The stability property is guaranteed for the Galerkin method applied to the
equation I U = f with the identity operator I: H -t H' = H. (Prove this.)
Luckily enough, any second kind equation (I +K)u = f with a compact oper­
ator K doe not go very far from this case. The stability property is provided
by Theorem 21.7.1. Concerning the approximation property, we can take it
for granted when using splines, for example.

When the solution Z and the right-hand side f are sufficiently smooth,
we can take care of the approximation property only on some subspaces with
sufficiently smooth functions. Then the norms IlPnll and IIQnl1 might grow,
but still Un -t z, whenever IIQnllllPnz - zil -t O.

For the first kind equation Au = t, all does not seem that clear. Now, we
should be more careful in the choice of relevant function spaces. Still, why
not try reducing this case to the previous one?

21.9 Splitting idea

For the first kind equation Au = f with a continuously invertible linear op­
erator A : H -t H', we often benefit from splitting A = P + K, where P is
a "simple" continuously invertible operator (usually called the principal part
of A) while K is a compact operator. All becomes simple, indeed, with P
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enjoying the strong ellipticity property.

Lecture 21

Consider, for example, the equation Au = f with the logarithmic kernel
(see Section 21.3). If r is a circle of radius a =/;1, then A is a continuously
invertible operator, in particular, from H-! to H!. A sesquilinear form gets
in naturally in the form

211"

(v,u) =f v(t)u(t)dt.
o

The strong ellipticity property is verified straightforwardly.

In the general case, split the kernel as follows:

This induces the operator splitting A = P + K with P, which we know all
about, and K, which is a compact operator from H-! to H! (provided that
the contour is smooth enough). Thus , we have firm grounds for applying the
Galerkin method. Note that the strong ellipticity property holds not only for
P, but even for A itself (after excluding some specific cases like that with a
circle ofradius a = 1). Unfortunately, I cannot suggest any short proof now.!

For an arbitrary continuously invertible P : H -+ H', we can reformulate
the problem as a second kind equation (1+p-1K)u = p-lf with the operator
1+ p-1K acting from H to H and the component p-lK compact.

21.10 Structured matrices

The moment matrix M = [A4>j, 4>ilnxn is usually sparse when A is a differen­
tial operator, and dense when A is an integral operator. By way of efficient
implementation, in either case it is highly desirable to recognize a structure
in it .

For example, surely, the diagonal or tridiagonal matrices are regarded as
structured sparse matrices , in contrast to sparse matrices with rather chaotic
zero pattern. A matrix of the form xyT, X,Y E ([in, is a structured dense
matrices. Of course, there are many other important examples of structure.

21.11 Circulant and Toeplitz matrices

Suppose that an integral equation is given on a circle and the kernel K(x, y)
depends only on the distance between the points x and y (for example, the

-o. C. Hsiao and W. L. Wendland. A finite element method for some integral equations
of the first kind. J. 01 Math. Analysis and Appl. 58: 449-481 (1977).
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logarithmic kernel). Taking a uniform mesh Xk = 2: k, k =1, ... , n, and the
piecewise constant basis functions, we discover the following structure of the
moment matrix:

Co Cn-l Cn-2
C, ]

[ C,
Co Cn-l C2

M=

C:~l
CI Co

.:.r
Cn-2 Cn-3

Such a matrix is called a circulant matrix, or, in brief, a circulant .

If the contour is an arc of the circle, then, the moment matrix loses that
nice structure but still captures some of its features:

to LI L2 L 1

][ t,
to L 1 L2

M=

t~~,
tl to L3

t n - 2 tn - 3 to

The entries of M along the line i - j = k are the same. The matrix is totally
determined by the entries of its first column and row. Such a matrix is termed
a Toeplitz matrix.

21.12 Circulants and Fourier matrices

Structures can provide tremendous savings in memory and arithmetic costs.
Instead of n2 , circulants and Toeplitz matrices can be stored in nand 2n - 1
memory cells, respectively. Low arithmetic costs for them are accounted for
by a profound relation between circulants and Fourier matrices of the form

os k,l ~ n -1,

Theorem 21.12.1 Suppose that C E <en x n is a circulant with the first col­
umn C E <en . Then

C = ! F~ diag (Fnc) r;
n

Proof. Let ( =w k , and set

n-l

Ak = L:(jCj

j=O

n-l

(I Ak = L: (jCj_1 (modn)·

j=O

Gathering these equations for all I and k, we arrive at FnC = diag (Fnc)Fn.
It remains to verify that F;; I = ~F~ . 0
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os k,l s m-1.

One multiplies a circulant by a vector through multiplying the Fourier
matrix three times by a vector . The same applies to solving a linear system
with a circulant coefficient matrix.

To multiply a Toeplitz matrix Tn by a vector, we reduce the problem to
that with a circulant matrix a by imbedding Tn in a:

This can be done for any N ~ 2n - 1. (Prove this!)

21.13 Fast Fourier transform

It is possible to compute y = Fnx in O(nlogn) operations. Some people say
that this goes back to Gauss . We are aware now that Runge and Lanczos
knew this. At any rate, a boom in activities around the fact was triggered
off in 1965 by J . W. Cooley and J. W. Thkey.2 We outline here the idea for
doing this .

Let n = 2m, and denote by Pn the permutational matrix obtained from
I by ordering the rows as follows: 1,3, . . . ,m, 2, 4, . . . ,2m. Then it is not
difficult to verify that

[
[w2kl] [w2k(m+ll] 1

PnFn = [W(2k+lll] [w(2k+l)(m+I)] ,

r.r: = [Fm 0] [Im 0] [Im Im ] ,o r; 0 Wm i; -i;

where Wm = diag{wO,w 1 , .. . ,wm - 1 } .

(21.13.1)

Thus, we sort out the problem with F2m by reducing it to the two problems
with Fm . IT n is a power of 2, then we need ~ n log2n complex multiplications
and n log2n complex addition-subtraction operations. (Check this!)

21.14 Circulant preconditioners

Consider an integral equation with the logarithmic kernel on a smooth closed
contour r = {'y(t) : 0 ~ t ~ 211"}. Using a uniform mesh on [0,211"] and
bringing in a new unknown function in the form U(t) == u(t) 1'Y'(t)l, we split
the moment matrix M = a + R so that a, corresponding to the principal
part of the operator, is a circulant matrix. Since a-1R can be thought about
as a discrete analog of a compact operator, a is anticipated to be a good

2J. W. Cooley and J . W. Thkey. An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19 (90): 297-301 (1965).
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preconditioner for M, because the eigenvalues of C- 1M are clustered at 1.

We may look for a circulant preconditioner for M without reference to the
operator splitting. For example, we can follow the recent advice of T . Charr'
and take an optimal circulant C, one that minimizes 11M - CIIF over all cir­
culants C.4

Circulants prove to be especially efficient for preconditioning Toeplitz ma­
trices. Let An = ai-j E cnxn be a sequence of Toeplitz matrices, and let Cn
be the corresponding optimal circulants.

00

Proposition. Suppose that L: lakl2 < +00. Then IIAn - Cnll} = o(n).
k=-oo

This can be verified by a direct calculation.

Assume that Cn are invertible. If the norms IIC;1112 are uniformly bounded
in n or grow so that IIC;111211An - CnllF = o(J1i) , then

Now it follows from the results presented in Lecture 5 that the singular values
of In - C;1 An are clustered at O. From the same lecture, we know that, in
general, this causes the eigenvalues of In - C;1 An to be clustered at O. If so,
then the eigen and singular values of C;1 An are clustered at 1 (prove this).

Exercises
1. Suppose that r is a circle of radius a :f. 1. Prove that the operator K

with the logarithmic kernel provides a one-to-one continuously invertible
mapping K : H8 -+ H8+l for any real s.

2. Suppose that a projective method with projectors Pn,Qn possesses both
approximation and stability properties, and A: H -+ H' is a continu­
ously invertible linear operator. Prove that the sequence of approximate
solutions Un converges to an exact solution z quasi-optimally, that is,

IIUn - zll ::; C inf Ilu - zll, C > 0, Ln = imPn .
uEL n

3. For the Galerkin method, prove that the strong ellipticity property im­
plies the stability property.

3T . Chan. An opt imal circulant precond itioner for Toeplitz systems. SIAM J. Sci.
Stat ist. Comput. 9: 766-771 (1988).

4For other approahes, see, for example, R. Chan and G. Strang. Toeplitz equations
constructed by conjugate gradients with circulant preconditioners. SIAM J. Stat. Comput.
10: 104-119 (1989). Note that there are many other (quite recent) works.
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4. Let k(r, t) be a continuous function of rand t, and consider the following
integral operator:

211"

[Ku](r) = Jk(r,t) u(t) dt.

°
Prove that K: C[O, 271"] -t C[O, 271"] is a compact operator.

5. Under the notation of the previous problem, consider the projective
method for the equation (I + K)u = I, u, j E C[O, 271"], with Pn =Qn
being the interpolative projector on the Chebyshev nodes. Prove that
Ilun - zllc[O,211") -t 0, provided that z is a continuously differentiable
function.

6. Prove that if the eigenvalues of An E ([)nxn are clustered at 0, then those
of In + An are clustered at 1.

7. Consider an integral operator

1

[Ku] (x) = JK(x,y)u(y)dy

°
with the kernel K(x,y) a continuous function of x and y. Let Mn
be the moment matrices corresponding to the piecewise constant basis
functions on uniform meshes (with n nodes). Prove that the singular
and eigen values of M n are clustered at zero. Is the cluster proper?

8. In the previous problem, do the eigenvalues of M n approximate the
eigenvalues of the operator K?

9. Let Fn be the Fourier matrix of order n . Prove that n-1/ 2 Fn is a unitary
matrix.

10. Prove the equality (21.13.1).

11. Let An = [ai-i]nxn be a Toeplitz matrix and Cn be the corresponding
optimal circulant. Denote by ci:, k = 0,1, ... ,n- 1, the entries of the
first column of Cn. Prove the following formulas:

ci: = L ai-j =
i,j: i- j=k (modn)

12. Prove the proposition from Section 21.14.

13. Assume that An = A~ > 0. Prove that if Cn is the optimal circulant
for An, then Cn = C~ > 0.


