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Preface

Probably I ought to explain why one more book on numerical methods can
be useful. Without any doubt, there are many quite good and excellent books
on the subject. But I know definitely that I did not realize this when I was
a student. In this book, my first desire was to present those lectures that I
wished I would have heard when I was a student.

Besides, in spite of the profusion of textbooks, introductory courses, and
monographs on numerical methods, some of them are too elementary, some
are too difficult, some are far too overwhelmed with applications, and most of
them are too lengthy for those who want to see the whole picture in a short
time.

I hope that the brevity of the course left me no chance to obscure the
beauty and depth of mathematical ideas behind the theory and methods of
numerical analysis.

I am convinced that such a book should be very concise indeed. It should
be thoroughly structured, giving information in short sections which, ideally,
are a half-page in length. Equally important, the book should not give an
impression that nothing is left to work on in this field. Any time it becomes
possible to say something about modern development and recent results, I do
try to find time and place for this.

Still, I do not promise easy reading. This book is addressed, first, to those
who study mathematics. Despite this, it is written so that it can be read by
students majoring in physics and mathematics, and I believe it can be useful
for advanced readers and researchers providing them with new findings and a
new vision of the basic framework.

Somebody might remark that there is no excuse for brevity in the list
of references at the end of this book. I could only agree and beg not to be
blamed for this. I included in the list only the books that I felt influenced
me most directly. Several imposing papers are also mentioned in the footnotes.



vi

The book contains, in fact, a concise and closed exposition of the lectures
given by the author to the 2-3 year students of the Chair of Mathematical
Modelling of Physical Processes of the Faculty of Problems of Physics and
Energetics of the Moscow Institute of Physics and Technology.

To conclude the preface, I get to its main purpose, to express my thanks.
Above all, I am grateful to V. V. Voevodin, my first teacher who had inspired
me by his way of doing science. His advice and encouragement were always
of great importance to me.

Special thanks go to S. A. Goreinov and N. L. Zamarashkin. They were
the first readers and found many opportunities to share with me their remarks

and impressions.

It is my pleasure also to express my gratitude to G. I. Marchuk for sug-
gesting these lectures.

December 1996 Eugene Tyrtyshnikov
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Lecture 1

1.1 Metric space

For various mathematical objects, we want to become aware how to compute
them. However, any algorithm produces no more than some other objects
which, as we hope, are “close” to the ones in question. Thus, we need to have
a rigorous definition of “closeness” for different objects.

Generally, this can be done with the help of a “metric” (or “distance”).
Let M be a nonempty set and let p(z,y) be a nonnegative function defined
for all z,y € M and enjoying the following properties:

(1) p(z,y) 20 Vz,ye M;
plz,y) =0 & z=y;
@) p(z,y) = ply,z) Va,y€M (symmetry);
(3) plz,y) < p(z,y) +p(y,2) Vz,y,2€ M (triangle inequality).
Such a function p(z,y) is called the metric, or distance (between z and y),
and M is termed the metric space in this case.
A very familiar example of the metric space: M is the set of all real
numbers and p(z,y) = |z — y|.

Another instructive example: M is an arbitrary nonempty set; p(z,y) =0
forz=yand1forz#y.

1.2 Some useful definitions

A sequence z, € M is called convergent if 3z € M : le p(zn,z) =0. It is
n—o0o

easy to prove that such a point x is always unique; z is called the limit for
T,. The notation: z = lim z,.

n—oo
A sequence z,, € M is said to be Cauchy sequence if
Ve>0 3IN: nm>N=p(zn,zm) <e.

A metric space M is termed complete if any Cauchy sequence in it is
convergent.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997



2 Lecture 1

A set C C M is referred to as closed if for any convergent sequence z,, € C
its limit belongs to C.

A closed set C C M is called compact if for any sequence in it there is a
subsequence that is convergent.

A set B(a;r) = {z € M : p(z,a) < r} is referred to as an open ball with
the center at point @ and radius . A set B(a;r)= {z € M : p(z,a) < 1} is
called a closed ball.

A set O C M is called open if any point z is included therein together
with some open ball B(z,r).

A set S C M is said to be bounded if the whole of it belongs to some ball.

A set S; is dense in a set Sy if for every point £ € S; there is a sequence
of points from S; convergent to z.

A numeric function f(z),z € M, is termed continuous at a point zq if for
any sequence I, # To such that o = }‘1_1’1}) Ty, f(zo) = nl_'_% f(zn).

1.3 Nested balls

Theorem 1.3.1 Given closed balls B(a,,r,) in a complete metric space M,
assume that

(1) B(a;m1) D B(ag;r2) D ... ;
(2) nll’néorn =0.
-
Then the intersection of all these balls P = [\ B(an,Ty) is not empty and
1

n=
contains ezactly one point.

The requirement (2) is important. To show this, consider an “exotic”
metric space as follows: M = {1,2,...}, and

0, m=mn;

p(m,n) = 1+max<2Lm, -21;), m # n.

It is not difficult to verify that p is a metric indeed (the properties (1)—(3) in
Section 1.1 are fulfilled). Moreover, we have a complete metric space. At the
same time, the balls

B(1,1+3) >B(2,1+%) DB(3,1+5%) D .

have no point in common.

1.4 Normed space

Assume that V is a real or complex vector space on which a nonnegative
function f(z) is defined so that
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(1) f(z)>0 VzeV; f(z)=0&2z=0;
(2) floz) =|alf(z), a€R (or €), zeV;
(2) f(z+y) < f(z)+ f(y) (the triangle inequality).

Such a function f(z) is called the norm of the vector z while V is called the
normed space. The notation: ||z|| = f(z).

For any normed space, the metric is introduced as follows: p(z,y) =
llz — y|l. The convergence and other notions considered in Section 1.2 are
understood in the sense of this metric.

A complete normed space is called the Banach space.

1.5 Popular vector norms

Let V=C" (orR"). fp>1land z =[z4, ..., zn]T, then assume that

n 1/p
llzll, = (Z lzi|p) (the p-norm of z).
=1

Theorem 1.5.1 ||z||, is a norm.

The properties (1) and (2) of the norm are evident. The property (3) is
given by the Minkowski inequality, which will be proven below.

Lemma 1.5.1 Assume that numbers p, ¢ make up the Holder pair, i.e.,

1 1
a2l -+-=1
P q

Then for all a, b > 0,

a? b
ab< — + —.
p q

We can prove this easily using the concavity of the logarithmic function.
The concavity means that for all u,v > 0,

alogu+flogv < log (au+ Bv),

Va,3>0, a+8=1.

Theorem 1.5.2 (The Holder inequality). Assume that p, q are an arbitrary
Hglder pair. Then for any vectors = [z1,...,z)T, y=[y1,---,¥a]T,

n
>z

=1

< lzllpllyllg-
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Proof. If z = 0 and y = 0, then the inequality is trivial. Therefore, consider
nonzero vectors z, y and set

=z/llzll,,  FT=y/llyllg

Then ||Z||, = ||§|l¢ = 1. According to Lemma 1.5.1,

q
il s B0 BE i

Adding up these inequalities we obtain

z:MMHH Il _,

Theorem 1.5.3 (The Minkowski inequality)
llz +yllp < llllp + l1yllo-

Proof.

n n
-1
lle+ylls =D loi +wl® <Y lzi +5l*™ (laal + |al)
=1 i=1

(next we use the Holder inequality)

< (Z (o +yi|”‘1)q) (lillp + llylle) -

i:l

It remains to recall that (p — 1)g=p. O
The following norm is also regarded as a p-norm:

lelloo = max 4.
It is easy to prove that this is a norm, indeed, and that

lzlloe = Jim ).
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The p-norms with p = 1,2 and oo are most widespread. Here is what the
unit spheres for these norms look like (n = 2):

T9 P
= 0P
v
L —p =2
-1 1 n

Some people call the 1-norm octahedral and the co-norm cubic. Can you
explain why?

1.6 Matrix norms

If we take up all matrices of the same size, we can treat them as a finite-
dimensional vector space. Consequently, a norm for matrices can be brought
in through any vector norm. By a matrix norm, however, we mean something
more than this.

Assume that any matrix A is endowed with a number ||A||. Then ||4]| is
called the matrix norm if

(1) |]A]| is a vector norm on any space of matrices of the same size;

(2) for any matrices A and B that can be multiplied,

l1AB]|| < ||AllllBl| (the submultiplicative property).

One of the most important examples of the matrix norm is the Frobenius

norm:
1/2

lAllF = z z |ai;|® , AeC™™

i=1 j=1

Proposition. The Frobenius norm possesses the submultiplicative property.

Proof. Let
o]
A=[ai,...,a,) €C™™,  B=| .. |eC™k
by
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Then
AB = a;bT +--- +anbl.
From the triangle inequality,
l4Bllr < llawdfllr + -+ llanby |l
llaall2llballz + - - - + llanll2lball2

n 3 3
(,§1 ua.-n%) (S, [B:12)* = |All# Bl O

I

IN

1.7 Equivalent norms

Norms || - ||+« and || - ||l«« on the same vector space V are called equivalent if
there exist ¢;, ca > 0 such that

cillells < llelles < eoflells Ve eV.

Clearly, the equivalent norms are of equal worth from the standpoint of conver-
gence. The next theorem is the fundamental fact valid for finite-dimensional
spaces.

Theorem 1.7.1 Any two norms on a finite-dimensional space are equivalent.

Proof. First of all, we need the following basic facts:

1) The compactness of the unit sphere S, = {z € R" : |||l = 1} with
respect to the 2-norm.

2) The continuity of any norm || - ||« with respect to the 2-norm.

3) The Weierstrass theorem stating that any function continuous on a com-
pact set is bounded.

The compactness of the unit sphere. Consider a sequence
k) = [zgk), ceey zs,k)]T € Sn.

The sequence of the first coordinates zgk) belongs to the interval [-1,1], and

. k .
hence it possesses a convergent subsequence: zi NN z,. Consider the sub-

sequence z(¥1) and the second coordinates zg"). Let zgkz) — 3. Further,

consider the subsequence z(¥2), the third coordinates a:gk’), and so on. In the
end we shall have a sequence of the vectors z(¥) such that all its coordinate
sequences are convergent: :cgk") - ;.

Thus, if z = [21, ..., Za)7, then

e -ef, = (Sl -

1

2 2
) - 0.
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The continuity of a norm. Assume that z® — gz, ie., ||z® - z|, = 0.

We want to prove that "m(") |L — ||z||«. Denote by ey, ..., e, the columns of
the unity matrix. Then

=] = et

o®) _ g

IA

*

- (B

llesl

n
Sl -
* =1

1
n 2
< :L'(k)—a:”2 (Zﬂe;”f) —0.
i=1

The Weierstrass theorem. Assume that M is a compact set and a numeric
function f(z) is continuous at any of its points. Assume that f(z) is not
bounded. Then there exists a subsequence z(¥) such that |f(z(¥))| > k. Due

L
From the continuity, f (z("')) — f(z). However, this cannot be true because

to the compactness property there is a subsequence that converges: x

k<|f (=®))| 1@+ |7 (s - 1)

for all k. Hence, the function f(z) is bounded.

Now, the function ||z||. is continuous on the compact set S, with re-
spect to the 2-norm and thence is bounded, i.e., for some c; > 0 ||z|. <
¢2. The function 1 / ||z||. is continuous on S, as well; hence, for some
a >0 1/|zll < ¢*. Therefore, for all z € Sy,

a <zl < co.
Ifz ¢ Sn, z#0,then z / ||z||2 € Sp. Thus,
allzllz < ||zl < callzlle-
We have proven that the norm || -||. is equivalent to the norm ||-||2. It follows
immediately that || - ||« is equivalent to any other norm. O
1.8 Operator norms

Let the norm || - ||« be defined on €™ while || - ||.« on €". Then for 4 € € ™*"
we set

Azx
1A e = max 1AZH.
22 el

Prove that the maximum exists!!

1Remember the results from the previous section.
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It is not difficult to check that ||A||««+ is an operator norm on € ™*™. It
is called the operator norm induced by the vector norms || - ||« and || - ||+«

For an operator norm, the following compatibility property holds:
lAz]l« < [|Allessllz]lss,

which obviously follows from the definition of || A||.xs-

By definition,
ax 142l
All, =

P =550 Tally

This is an operator norm. Actually, if AB # 0 then

|ABz| Bwll

| e |l
a:;éO Ba:;éO Bzll, [l
|ABz |B=||
2708240 i - 2 T, < [14lllBllp- O

Pay attention to some useful formulas (prove them!):

1<]<n Z |a1]|

max, Z|a,,|, Aegmxn,

lABll,

IA

Al

llAlloo

We shall see shortly that ||A||2 is the maximal eigenvalue of the matrix
A*A. That is why the operator norm ||A||z is often referred to as the spectral
norm.

Exercises

1. Devise a metric for which the set of all real numbers is not a Banach
space.

2. Consider a sequence of nested closed balls in a Banach space. Prove
that if their radii tend to zero, then all the balls have exactly one point
in common.

3. Show that a sequence of open nested balls can have an empty intersec-
tion, even if their radii tend to zero.

4. A norm is called absolute if ||z|| = || |z| ||, where |z| is the vector made
up of the absolute values of the components of the vector z. Produce a
norm that is not absolute.

5. Prove that the operator norm is a norm.
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6. Prove the formulas for ||A||; and ||A||co from Section 1.6.

7. Let the norm || - || be given on C". The operator norm
T
T
|||« = ma.xl y',:c e C,
v [yl
is called a dual norm for ||-||. Prove that for the p-norm, the dual norm

is the g-norm, where p and ¢ are the Hélder pair.
8. Suppose that a matrix A € C™*" preserves the p-norm:
lAz|lp = llell, Vz e C™™
Prove that this holds if and only if AT preserves the g-norm:
14 z]lq = ||all, VzeC™"
(p and ¢ are the Holder pair).

9. Prove that the Frobenius norm cannot be an operator norm.

10. P. Groen built up an example of a submultiplicative matrix norm that
takes the value 1 at the unity matrix but is not an operator norm:

||AI|G(C)EII§Z.S" laiil + ¢ lagl |, ¢ > 1,

- J#i
A = [a;] € €V
Prove it!
11. Produce an example of norms that are not equivalent.

12. Prove that the ball B = B(0; 1) for a norm on IR™ possesses the following
properties:
(1) B is a compact set with respect th the 2-norm;
(2) fz,ye Band 0 < a<1,then ax+ (1 —a)y € B (concavity);
(3) if z € B and |a| < 1, then ax € B;
(4) 3Ir>0: {y:|lylla<r}CB.

Prove that for an arbitrary set B C R™ enjoying the properties (1)-(4),
there exists a norm for which

B = B(0,1).

13. Prove that if A is a submatrix in B, then ||A]|, < ||B|l,-
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14. Can the norm of a submatrix be greater than the norm of the whole
matrix?

15. The elements of A and B are nonnegative, and a;; < b;; for all 4, j. Is
it true that ||All, < ||Bllp ?

16. Suppose f(A) is a norm on C"*" not necessary enjoying the submulti-
plicative property. Prove that a number c exists such that ||4]| = ¢ f(A)
acquires the latter property.



Lecture 2

2.1 Scalar product

Assume that V is a real or complex vector space on which, for any pair of
vectors z and y, a number (z,y) is defined so that

1) (z,z) >0 Vaz; (z,2) =0& z =0;

(2) (I7y) = (y’z);

(3) (az,y) = a(z,y), « is a number;
(4) (z+y,2) =(2,2) + (y,2).

Then (z,y) is called the scalar product of the vectors z and y.

A real space with a scalar product is called Fuclidean. A complex space
with a scalar product is called unstary.

If (z,y) = 0, then the vectors are called orthogonal. Assume that V is of
dimension n, and let z; and y; be the coordinates of the vectors z and y in
their expansions in some basis of V. If (z,y) = 131 +. . . + Zp ¥, for all z and
y, then the basis is called orthonormal.

2.2 Length of a vector

Given a scalar product, we can naturally define the length of a vector z as
(z,z)'/2. Prove that the length of a vector is a vector norm. It is talked about
as the norm induced by the scalar product.

If ||z|| = (z,2)'/2, then the parallelogram identity is true:

llz +ylI* + lle = ylI* = 2ll=l|* + 20ly]>.

It follows immediately that there are some norms not induced by any scalar
product (for instance, ||z||;).

Theorem 2.2.1 A norm on a vector space is induced by a scalar product if
and only if it is subject to the parallelogram identity.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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Proof. For simplicity, consider a real space. Set

(@9) = 5 (lz+ 9l = ll=lI* - llyll?) ,

and try to prove that this is a scalar product. Properties (1) and (2) in
Section 2.1 are evident. Property (4) is equivalent to the following identity:

e +y+ 2l = ll=+ylI* - |l21*
= (llz + 2l = llll* — 11211%) + (lly + 211* = llyll* = ll=1%) -

To derive it, we apply the parallelogram identity twice:

(*)

le+y + 22| = |l(z +y +2) + 2|1 = 2llz + y + 2|1 + 22| — [l= + yI1%;
le+y+ 2202 = |I(z +2) + ( + 2)II” = 2l|z + 211> + 2lly + 2I° - [|l= — y]I*-

From these two equations we find that

e +y+ 2l = 3llz +y + 2217 = |lzlI* + zllo + ylI?;
o+ 212 + lly + 2l = gllz +y + 22|* + gllz - yII*.

We substitute the first equation in the left-hand side and the second in the
right-hand side of (x). Once more, remembering the parallelogram identity,
we see that the both sides coincide.

If « is rational, then the property (3) follows from (4). Thanks to the
continuity with respect to a, it holds for all real . O

2.3 Isometric matrices

A matrix Q € C™*" is called norm-preserving || - || on C", or isometric in the
norm || - || on C", if
llQz|| = |l=|| VzeC"

What can be said about the matrices that preserve the p-norms? As a
simple example, consider matrices that can be obtained from the unity matrix
by swapping rows (or columns). Such matrices are known as permutational
matrices. Apart from p = 2, isometric matrices are not too different from
permutational matrices.

Consider as = the columns of the unity matrix = the p-norm of each
column of @ is equal to 1. Moreover, if p and q are the Holder pair, then

T - ly"Qz| _  |yTQz|
e-vlly = = max
220 x|l =0 ||Qx|l,
ly"2|
= maXx = .
240 ”Z”p ”y”q

It follows that the g-norm of each row of Q is equal to 1.
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Let p < 2. Then the 2-norm of each column is at least 1, while the 2-norm
of each row is at most 1 = the 2-norm of each column and each row is equal to
1. If a column has more than one nonzero components than they are less than
1 in modulus = the p-norm of such a column must be less than 1. To dismiss
the contradiction, we conclude that in each column of @ there is exactly one
element equal to 1 in modulus. In the corresponding row, all other elements
are equal to 0. (The case p > 2 is treated similarly.)

Thus, if p # 2, then the matrix @ preserving the p-norm is of the form

Q = P diag(dy,...,d,),

where P is the permutational matrix and |d;| =1,i =1,...,n.

2.4 Preservation of length and unitary
matrices

For p = 2, the set of isometric matrices is much richer. In this case, the preser-
vation of the 2-norm implies the preservation of the scalar product (prove this!)
= the columns ¢, ...,q, of @ comprise an orthonormal system:

g =0; & QQ=1
(9 is the Kronecker symbol: ;; = 1if i = j and 0 if ¢ # 7).

A matrix Q € C™**™ such that Q* = Q™! is called unitary.

The unitary matrices excel in being the only ones that preserve the length
(2-norm) and the scalar product.

The important property of unitary matrices: their products and inverses
remain unitary (prove this).

2.5 Schur theorem

Theorem 2.5.1 (Schur) For any matriz A € C™*" with the eigenvalues
AL,y .-, An, there exists a unitary matriz Q) such that

(1) the matriz Q*AQ is upper triangular,

(2) diag(Q*AQ) = diag(A1,...,An).
Proof. Assume that Av; = Ajvy, ||v1]l2 = 1 and choose vs, ..., v, so that the
matrix V; = [v1,vs,...,v,] is unitary. Then

Al * ... %

. 0

Wwah=1 | 4
0

Proceed by induction. 0O
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2.6 Normal matrices

A matrix A is called normal if A*A = AA*.
The most important classes of normal matrices:

(1) Hermitian matrices: H* = H;
(2) unitary matrices: U* = UL

In the case of real elements, a Hermitian matrix is called symmetric and a
unitary matrix is called orthogonal.

Theorem 2.6.1 A matriz A € C**" is normal if and only if C* has an
orthonormal basis of its eigenvectors.

Proof. For any A € C"*", a unitary matrix U exists such that T = U*AU
is an upper triangular matrix (the Schur theorem). Further, A*A = AA* is
equivalent to T*T = TT*, and, as easily seen, any upper triangular matrix
with such a property is bound to be diagonal. Thus, the columns of U yield
a basis of the eigenvectors of A. O

Theorem 2.6.2 A normal matriz A is Hermitian if and only if its eigenval-
ues are all real.

Theorem 2.6.3 A normal matriz is unitary if and only if its eigenvalues are
all equal to 1 in modulus.

Prove these theorems.
It might be useful to keep in mind that an arbitrary matrix A € C"*" can
be split (uniquely) as

A=H+iK, H*=H, K*'=K, i(=1.

This is the so-called Hermitian decomposition of A.
It is trivial to prove that for A to be normal, it is necessary and sufficient
that H and K commute.

2.7 Positive definite matrices

Among Hermitian matrices, we distinguish those for which the scalar product
(Az,z) = z* Az keeps the same sign for all .

In the case (Az,z) > 0 Vz € C™*", the matrix A is called positive
semidefinite, or nonnegative definite. The notation: A > 0.

In the case (Az,z) >0 Vz € C™*", the matrix A is called positive defi-
nite. The notation: A > 0.
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Definiteness implies Hermitianness. For A > 0, consider its Hermitian
decomposition A = H +1i K. Since

(Az,z) = (Hz,z)+i (Kz,z) e R VzeC",

(Kz,z) =0 Vz€C" = all the eigenvalues of the Hermitian matrix K are
equalto0 = K=0. 0O

Note that if A € R™*" and (Az,z) >0 Vz € R", then the matrix A is
not bound to be symmetric.

For A € C™™™ to be nonnegative (positive) definite, it is necessary and
sufficient that all its eigenvalues be nonnegative (positive). Prove this.

The important property: a matrix is nonnegative (positive) definite if and
only if all its leading submatrices are the same. (A submatrix is called leading
if it occupies the upper-left corner of the matrix.) To prove this, it is sufficient
to observe that

[v* 0][? *HgJ=y‘By Vy.

*
Prove that A*A > 0 for an arbitrary A (it is simple). We are going to use
this no later than in the next section.
2.8 The singular value decomposition

Theorem 2.8.1 Suppose A € C™*", r =rank A. Then there ezist positive
numbers 01 > ... > o, > 0 and unitary matrices U € C**", V € C™*™ for
which there holds

A = VIU*, (2.8.1)
where
o1
T = 0 € C™n, (2.8.2)
0 o,

Proof. A*A >0 = there exists a unitary matrix U = [uy,...,u,] € C**"
such that
U*A*AU = diag (03,...,02).

n

Suppose 0; > Ofor1>i>rando; =0fori > r. Let U, = [ug,...,u,]
and X, = diag (o1,...,0r). Then

Ur A*AU. =32 = (S7UAY) AU =1

Hence, the matrix V, = AU, X! is such that V;*V, = I (V, has orthonormal
columns) =

VAU, = %,.
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Embedding V;, in any way, into a unitary matrix V € C™*™ and taking into
account the formula for V.., we obtain

sy |2 O
VAU—[O 0]. u!

Decomposition (2.8.1) is called the singular value decomposition (SVD) of
the matrix A. The numbers g1 > ... > o, > 0 are called the singular values
while the vectors u; are the right and v; the left singular vectors of A. It
is customary to say that, apart from having r nonzero singular values, the
matrix A has yet min(m,n) — r zero singular values.

Corollary 2.8.1 The singular values of a matriz are determined uniquely.

Corollary 2.8.2 If 61 > ... > g, > 0, then the singular vectors u,,...,u,
and v1,...,v, are determined uniquely up to a factor equal to 1 in modulus.

Corollary 2.8.3

gV, 1 < { <r,

Aui = { 0, r+l<i<n. (2:8.3)
*, oiUq, 1 S i S T,

A”“{o, r+1<i<m. (2:8.4)

T
Corollary 2.8.4 A= 3 owul.
i=1

1=

Corollary 2.8.5

kerA = span{urt1,...,un},
imA = span{v,...,v},
ker A* = span{vr41,...,Um},
imA* = span{u,...,u,}

2.9 Unitarily invariant norms

If ||A|| = ||QAZ|| for any unitary @, Z and any matrix A (provided that the
sizes accord), then the matrix norm involved is called unitarily invariant.

The most important unitarily invariant norms are ||A||; and ||A||r. Here
is the proof:

AZ|, = supleAZelz —gyp QAZ)Z |z
142l = sup 19fFele — aup USEAE:
QAz|l2 _ Az|ls _ .
= sup = sup = ||A4|l2
;,,-;&o ”z 2 z¢0 Ilm |2 ” ” )

IQAZ||% = tr(QAZ)* (QAZ) = trZ* (A*A) Z = trA*A = ||A)%. O
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Due to (2.8.1), for any unitarily invariant norm we have ||A|| = ||Z||, i.e.,
the unitarily invariant norm of a matrix is determined entirely by its singular
values. Concerning the spectral and the Frobenius norms, we find that

lAll2 = o3; (2.9.1)
IAllF = (62 + ... +02)*. (2.9.2)

2.10 A short way to the SVD

The norm ||A||2 appeared as an operator norm. From the compactness of
the unit sphere, there exist normalized vectors z and y for which Az = oy,
o = ||Al||2. Choose unitary matrices of the form U = [z U1], V =[y W]
Then

warr_ | 0 w*
van=]g v,

VAU | 7 |12 > (02 + ww)’ = |[V*AU| > 02 + w*w.
w

Since ||V*AU||2 = ||All2 (the spectral norm is unitary invariant), w = 0.
Proceed by induction.

2.11 Approximations of a lower rank

k
Theorem 2.11.1 Suppose k < rankA, Ay =) o;v;u}. Then

=1

in ||A—Bll2 = |4 - Akllz = oxs1.
rarﬁlgl—_—k ” B”2 ”A k”2 Ok+1

Proof. Since rank B = k, we find that dimker B = n — k. Suppose that
ker B = span {z1,...,Zn—k}

Then there is a nonzero z € span {z1,...,Zp—k} Nspan {uy, ..., uks+1}. (Why?)
Assume that ||z||z = 1. Then

k+1
A= BII5 > I(A = B)z|l5 = |42} = Y 0 (ui2)* > 0}y, O

=1

In particular, the inferior singular value of a nonsingular matrix is the
distance (in the spectral norm) to the nearest singular one.
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2.12 Smoothness and ranks

Sometimes the entries of a matrix are regarded as the values of a function at
some points of a mesh. For sufficiently smooth functions, such matrices are
close to low-rank matrices.

Suppose that f(z,y) has an infinite number of derivativesiny € Y C R
for any £ € X C R. Consider the two suites of points

zgn)7"'7z5l,n)ex, yg")i"'iys:l)eY)
and assume that

An = [f@™, M), 0<i,j<n.

Approximate f(z,y) by a truncated Taylor series at some point z € Y:

p-1 .
f(z,y)ﬁfp(z,y)EZW(y_z)k, 3kf5<%) 5
k=0 -

and consider the following matrix:
An=[fp(a™,yM, 0<ij<n.

Of course A, ~ A,. What is more, A, has a rank that is low compared
to n: _
rank A, < p. (Prove this.)

It is remarkable that this inequality holds no matter how large n is.

To apply the above observation, we need know a bit more about the re-
lation between the ranks and the approximation accuracy. To this end, the
well-known remainder term estimates for the Taylor series may serve. For
example, prove that if |(8/0y)¥f| < M Vk, then for any € > 0,

lAn = Au|lF = O(ne) while p=O(loge™?).

The assumption we made can be relaxed in many ways.

Exercises

1. Prove that in the case p # 2, p > 1 the norm ||z||, cannot be induced
by any scalar product.

2. Prove that for any matrix A € C™*", the subspaces ker A and im A*
are orthogonal and the whole of C" is their direct sum.

3. Prove that ||A||r = ||A]|2 if and only if rank A = 1.
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10.

11.

12.

13.
14.
15.

16.

17.
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A matrix A1997 is normal. Must A be normal?
Prove that for any Hermitian matrix H, the matrix
Q=(I-iH)'(I+iH)

will be unitary. Is it true that an arbitrary unitary matrix can be written
in this way?

. Let A =TI + auu*,||ul|2 = 1. Find all those a for which A is unitary.

. Suppose A* = I 4+ BA. Prove that if A has at least two different eigen-

values, then |8| = 1.

. Prove that a matrix which is the product of a Hermitian matrix and a

positive definite (Hermitian) matrix has all its eigenvalues real.
Calculate the SVD for the following n x n matrix:

1

a=| ? 1.

n

What is the distance between a singular matrix A and the nearest non-
singular one?

Is it valid that B = A* holds if (Az,z) = (z, Bz) for any: (a) z € R"
or (b)zeC"?

Prove that for a square matrix A, Amin(4 + A*) < 20/in(A), where
Amin(:) and opmin(-) denote the minimal eigenvalue and the minimal
singular value. Would this be still true if Ap,;;, from the left-hand side
were changed onto opin?

Prove that ||AB||r < ||All2]|B|F-
Prove that ||A||r < y/rank (A) ||4]|2.

A matrix A = [A;;] is composed of the blocks A;;, and a matrix B = [b;}]
is such that b;; = ||Aij]|2, 1 <i <m, 1< j <n. Prove that

14l < |IBll2-

Suppose that L is the lower triangular part of a matrix A € C"*". Prove
that
|ILll2 < logy 2n || All2.

Let A € C"*". Prove that tr A = 0 if and only if ||I + zA||r > v/n for
all z € C.
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18. Assume that A,y is a Hermitian nonnegatively definite matrix. Prove
that

tr A < vrank A ||Al|p.

19. Let a subspace L € C™ be fixed, and consider matrices P such that
P?2 = P and im P = L. Prove that the least value of the 2-norm over
all such matrices P is attained at a Hermitian matrix.
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3.1 Perturbation theory

Suppose that we are to compute f(z) at some x. We know that algorithms
sometimes do not produce very accurate answers. When thinking this over,
we should comprehend that not only might an algorithm be “bad” but it
might be a problem itself. An important question: how far can f(z) change
when z goes through small perturbations?

In the simplest case, f(z +d) ~ f(z) + f'd, and hence, the value ||f'|| can
serve as an “absolute” measure of the problem’s sensitivity. If f(z) # 0 and

x # 0, then
fa+8)-1@) ( 7'(z) ”Z”) 5
@I \If@) Izl

Consequently, a relative measure of the problem’s sensitivity (in other words,
its condition number) can be defined as

cond (f(z)) = llllj; ((;))IIII llz]].

3.2 Condition of a matrix
Let A be a nonsingular matrix and f(A) = A~1. Then (please check it)
(A+A) T —A = —ATTAA+A) T~ —A71AAT

lA+a)7 A7 -1 Al
< A A=
TAT]] (A=l H)IIAH

=

The quantity
cond(A) = ||A7Y| 1|4]|

is called the condition number of A. It depends on the norm. In the case of
the p-norm, we write cond,. Usually, cond; is called the spectral condition
number.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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For singular matrices, it is natural to set cond = oo. Usually, the con-
dition number of a problem is inversely proportional to the distance between
it and the set of singular (in a proper sense) problems.! If we consider the
inversion of matrices, then the set of singular problems is that of singular
matrices. We already know that

dr{l;no [|A = S||2 = Omin (the minimal singular value)
e =

and, simultaneously (prove this), ||47!||2 = 1 / Omin. Hence,

[l All2

. A_ .
220, 114 = Sl

cond (4) =

Why does (A + A)™! ~ A~! for small A ? This follows from standard
continuity considerations. In matrix analysis, however, there is a simple and
useful framework for such cases.

3.3 Convergent matrices and series

A series Y oo Ak, where Ay € €™, is called convergent if the sequence of

its partial sums Sy = Ef:o Ay, is such. This follows from the convergence of
the numeric series Y po, || Ax|| (prove this).

A series of the form Y jo, F* is called the Neumann series. Obviously, it
converges whenever ||F|| < 1 (prove this). It is less obvious that it converges
whenever the eigenvalues of F' in modulus are less than 1.

The maximal in modulus eigenvalue of a matrix (say, F) is called its
spectral radius. The notation: p(F). If p(F) < 1, then the matrix F is
called convergent.

Lemma 3.3.1 The Neumann series for a matriz F € C**" converges if and
only if the matriz F is convergent.

Sufficiency. From the Schur theorem, for some unitary matrix P, the matrix
T = [tij] = P~ FP is upper triangular. We show that the Neumann series is
convergent for some matrix which is similar to F. (Would you explain why
this is equivalent to its convergence for F'?)

Set D, = diag(l,¢,...,e"!). Then {D;'TD.};; = e¥~it;; fori < j.
The diagonal elements of this matrix in modulus are less then 1 = for
sufficiently small € ||D7!TD.||; < 1 = the Neumann series for the matrix
D7'TD, is convergent.

Necessity. Assume that Fx = Az, £ # 0,and [A| > 1. Then |A\F < ||F¥||2
(why?) = ||F¥||z—=0 = the Neumann series for F is convergent. O

1For more detail, see J. W. Demmel. On condition numbers and the distance to the
nearest ill-posed problem. Numer. Math. 51, 251-289 (1987).
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3.4 The simplest iteration method

To solve a linear algebraic system Az = b with a nonsingular coefficient ma-
trix, we rewrite it as * = Fz + ab, where F =1 — a A, a # 0, and consider
the following iterative method:

To is an arbitrary initial vector;

zx = Frgy + ab for k=1,2,....
This is the so-called simplest iteration method (sometimes it is referred to as
Richardson’s method).

It is easy to deduce (with Lemma 3.3.1) that =3 — z for any initial vector
zo if and only if the matrix F is convergent.

A good idea is to find a splitting A = M — N for which the matrix M~!N
would be convergent while M is easily invertible (that is, there is an efficient
way to solve systems with the coefficient matrix M). Then

Ty = M_I(N:l:k_l +b) — =

3.5 Inverses and series

Lemma 3.5.1 If ||F|| < 1, then the matriz A = I — F is nonsingular, and
the inverse enjoys the following properties:

@ (-F)" ZFk ®) Io-Fs e

Proof. It is easy to verify that

N
(I-F) (ZF") =I-FN+1 .

k=0
To prove (b), let us write

I
D F’°||<||In ||F||’° L
- 1A

Corollary 3.5.1 If A isa nonsmgular matriz and E is a perturbation such
that ||[A71E|| < 1, then

(a) the matriz A+ E is nonsingular and

A+BE) =Y (-4'E)* 4t = A7 Y (-BATY)
k=0 k=0
A+ E)""—AY _ lAIIE]

b
(b) AT S ToJaiE



24 Lecture 3

3.6 Condition of a linear system

Consider a system Az = f, f # 0, with a nonsingular matrix A and a
perturbed system (A+AA)Z = f+Af. How far can Z differ from z? Assume
that ||[A"AA| < 1. Then

-z = (A+AA)Nf+Af)-A"'f
= [(A+AA4) T -Af+(A+AA)TAf

- [i(—A‘lAA)" (A71f) + [i (—A—lAA)’“] ATIAf

12—zl _ A=Al (IIAAII +llAf“), (3.6.1)

lell = 1-llA-tAA QA 1A

The value cond A = ||A™}||]|A]| (the condition number of A) is a character-
istic of the sensitivity of the solution z to small perturbations of the right-hand
side. Matrices with “too large” and “not too large” condition numbers are
said to be ill-conditioned and well-conditioned matrices.

3.7 Consistency of matrix and right-hand side

The bound (3.6.1) cannot be improved on the whole set of matrices and per-
turbations. However, the ill condition of a matrix is not quite the same as
“the ill condition of a linear system”.

Using the singular value decomposition,

n n n ’U*f
A= Zakvkuz = Al= Za;lukvz = z= E k2 k.
k=1

k=1

Suppose that A is fixed and Af = § v+ - - +&pvn, AT = MU+ - -+ NpUg.
Clearly,
o4O =+ 6

This implies that if Af belongs to the ball of the radius € in the coordinates
{&}, then Az belongs to the ellipsoid in the coordinates {7;}:

2

2

Ui MIn 2
<eé”.

1/o 1/02 =€

n

G+..+68<e & 5+ +
1
Thus we see that ||Az|| depends dramatically on the direction of perturba-
tions.

If the right-hand side f has nonzero components along the inferior singular
vector vr41,...,Un (in this case, one says that a matrix and a right-hand side
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are consistent) and the perturbations are zero along the same directions, then
the bound (3.6.1), obviously, becomes better:
|Azlla o1 [|AS]2
lzllz = or Ifll2

3.8 Eigenvalue perturbations

Let A(A) denote the spectrum of a matrix A.

The Bauer—Fike theorem. If u € A(A + F) but p ¢ A(A), then
1
(A = p D)7t

Proof. The matrix (A+ F) —puI = (A—pI)+ F is singular = the matrix
I+(A—-pI)7'Fis also singular = |[(A—pI)7'F|; > 1. O

< 1Fl2.

Theorem 3.8.1 Assume that A is diagonalizable:

P71AP =diag(\y,...,A\n) = A. (3.8.1)
Then, if p € A(A + F), then
min 15= 0 < 1P~k 1Pl Il (382)

Proof. The inequality is trivial if u € A(A). Otherwise, if u ¢ A(A), then
u ¢ A(A) and p € A(A + P71FP), and it remains to apply the Bauer-Fike
theorem. 0O

Thus, the sensitivity of the spectrum to small perturbations is charac-
terized by the condition of the eigenvector matrix P (the columns are the
eigenvectors of A).

Theorem 3.8.2 Let P~1AP = J be the Jordan matriz for A and u € M\(A+
F). Then there exists A € A(A) such that

e =A™
1+|p = AN+...4+p - A1

< IP7H2IIPll2AIFll2,

where m is the mazimal order of the Jordan blocks corresponding to .

Proof. Again use the Bauer-Fike theorem: if 1 ¢ A(A), then

1
— < ||P7YFP||.
G —un < 1P FFl:
Suppose J consists of the Jordan blocks Ji, ..., J;. Then
1 1

>
_ -1 = . =1,
17 =uD7e = max 0~ D)
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Write J; = AI + N;, and assume that this Jordan block is of order m. Then
N =0 and, moreover, ||Ni|2=1 =

(i = D)7l = A=) T+N) Y2 < IT+O=p) 7 N) 72l (A= )Y

< A+IA=m)7TH+ o H A=) A=Y B

Thus, if a matrix with the maximal order of its Jordan blocks equal to m
is perturbed by quantities of an € order of magnitude, then any eigenvalue of
the perturbed matrix differs from some eigenvalue of the original matrix by
the value of the |¢|= order of magnitude.

Is it true that, for sufficiently small perturbations, the eigenvalues of A
and A + F can be divided into pairs of close ones? By way of answering, we
can say that it is so since the roots of a polynomial are continuous functions
of its coefficients. The latter fact itself deserves a special discussion.

3.9 Continuity of polynomial roots
Theorem 3.9.1 Consider a parametrized batch of polynomials
p(z,t) = 2" + a1 ()2 + -+ - + an(t),
where a1(t),...,an(t) € Cla,B]. Then there exist functions
z1(t),...,zn(t) € Cla, B]

such that
p(zi(t),t) =0 for a<t<B, i=1,...,n.

To begin the proof, note that it is sufficient to establish the existence of
any single continuous function z,(t) such that p(z,(t),t) =0 fora <t < .
Should this be done, we write

p(.’l),t) = (2) - zn(t)) Q(z’t)’

where q(z,t) = 2! + b1 (t)z2" 2 + -+ + bp—1(t). On the strength of the
familiar algorithm for dividing polynomials, b;(t),...,bn-1(t) € C[a,]. So
we may prove it by induction.

Now, we shall prove the existence of one continuous root. To do this,
remember the proof of the existence of a solution to a differential equation
‘%i = f(t,y) in the case of a continuous f by the Euler piecewise linear func-
tions and the Arzela-Ascoli theorem.

A sequence of functions y, (t) is called uniformly continuous for t € [a, (]
ifVe>036>0 : Jti—t2] < 8 = |ym(t1) —ym(t2)] < eVm. A sequence of
functions y,, (t) is called uniformly bounded for t € [a, 8] if ¢ > 0 : |ym(t)| <
cVm, Vt€ [a,f].
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Theorem 3.9.2 (Arzela-Ascoli) For any sequence of uniformly continuous
and uniformly bounded functions on [a, ] there exists a subsequence which
converges uniformly on [a, (].

Proof. Enumerate, in any way, all the rational points on [a, ] : t1,t,....
From the original sequence yn(t), we choose, first, a subsequence y; m(t)
convergent at some point t;; from the latter, we choose a subsequence ya,m(t)
convergent at some point ¢z, and so on. In the end, we will have the “nested”
subsequences y1,m(t), ... ,Yk,m(t), ... such that yim,(t) converges at t =
t1,- ..tk (3nd Yr4+1,m(t) is a subsequence of yx m (t) ). Consider the “diagonal”
sequence Ym m(t). Take any € > 0, and choose § > 0 determined by the
uniform continuity property. For an arbitrary point ¢ € [a, 8], there exists ¢;
such that |t — t;] < 4. For sufficiently large m, k, we obtain

[ymm(t) = Yk ()] < [Ymm(t) = Ymm ()] + [Ymm (i) — yre(t:)] +
+ yke (ts) — yrx (t)]
< 2+ |ymm(ti) — yrx(ts)| < 3e,

which means that the ym, n(t) is the Cauchy sequence. O

Proof of Theorem 3.9.1. Build up on [a, 8] a sequence of uniform grids

B -«

m

a=t0m<t1m<.”<tmm=ﬂ; ti+1,m—tim=

Let y.,(t) be a piecewise linear function with breaks at tpm,tim, .- ., tmm-
Define the values at the nodes as follows.
Take a root zy of the polynomial p(z,a), and, for all m, set

Ym (tom) = Zom = 20.

Further, let 2z, be any of those roots of the polynomial p(z,%;,,) nearest
to zom, and, by induction, let z;;1,, be any of the roots of the polynomial
P (&, tiy1,m) nearest to zim,. Set

ym(tim)=zim, i=1,...,m.

The uniform boundedness of the piecewise linear functions y, (¢) is evident.
The uniform continuity emanates from the inequality

3

1
|Zit1,m = Zim| < P (Zims tigr,m)|™ = [P (Zim, tiv1,m) — P (Zim, tim)|

1

n

n
< R max 2 laj(t) —ai () |
a<ltyta <P I=1
[t1 —ta] < 22

where R > 1 is the radius (not necessary minimal) of a circle encompassing
all the roots of all the polynomials p(z,t) for a <t < .
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Using the Arzela-Ascoli theorem we find a uniformly convergent subse-
quence. Take into account that the limit of a uniformly convergent sequence
of continuous functions on [a, 8] must be a continuous function. The only
thing left to check is that the limit function y(t) satisfies p(y(t),t) = 0 for
a <t < . That will do the proof. O

Exercises

1.

That the roots depend continuously on a polynomial coefficients no
longer means that they cannot vary dramatically after some small per-
turbations. Here is Wilkinson’s example:

20
p(z;e)=(z-1)(z—-2)...(x —20) +ez'® = H(z —z;(e)),

i=1

where z;(¢) are continuous functions such that z;(0) = i. For small ¢,
we observe that z;(¢) & 1, but z9(¢) goes far from 20. To explain this,
compare the values of derivatives of the functions z;(e) and zq0(e) at
the point € = 0.

. Does |det A| = 1 mean that A is well conditioned? Does |det A| << 1

mean that A is ill conditioned?

Calculate condoo(A) = ||[A™!||co ||Alloo for the bidiagonal matrix

1 2 0
1 2
Ae) =
1 2
0 1

. Let p(A) be the spectral radius of a matrix A. Prove that any operator

norm || -, .
p(A4) = Tim_[l4™*.

. Denote by Amin(-) the minimal in modulus eigenvalue and by omin(-) the

minimal singular value of a matrix. Prove that for any A € C**",

Pmin(A)] = lm (min(4™)* .

. Suppose A is an arbitrary nonsingular matrix. Is it always possible to

pick up some « so that the matrix I — a A would be convergent?

. Suppose A is a Hermitian positive definite matrix. Prove that, for all a

sufficiently small, the matrix I — a A is convergent.
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10.

11.

12.

13.

Suppose that A = aI— N, where N is a square matrix with nonnegative
elements and @ > |A;(NNV)| for all the eigenvalues of N. Prove that the
matrix A is nonsingular and all elements of A~! are nonnegative.

Is it true that, for any matrix A, there is a splitting A = M — N with
the convergent matrix M1 N?

Let M be nonsingular, and let M*M — N*N be nonnegative-definite.
Prove that
p(M~'N) <1

(p(-) is the spectral radius of a matrix).

Consider a polynomial p(z) = 2™ + a;z"~* + - - - + a,, and the so-called
Frobenius matrices of the following form:

0 0 O 0 Qn
-1 0 0 0 An—1
= 0 -1 O 0 an—s
0 a
0 0 O -1 0
and
0 -1 0 0 0
ag 0 -1 0 0
=]a 0 O 0 0
0 -1
a, 0 O 0 0

Prove (easiest by induction) that p(z) is the characteristic polynomial
both for ® and ¥. Is it possible to transform Theorem 3.8.1 into a
theorem about the perturbation of the polynomial roots?

Find the eigenvalues of the perturbed Jordan block

Al 0
A1
J(e) = g
A1
15 A

nxn

Assume that the eigenvalues of a real symmetric matrix A are pairwise
distinct. Prove that, for all perturbations F' sufficiently small in norm,
the eigenvalues of the perturbed matrix A + F' are real.
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4.1 Diagonal dominance

A matrix A € C"*" is row-wise diagonally dominant if
n
lai| > = Z laij|l, i=1,...,n, (4.1.1)
j=1
J#1
and column-wise diagonally dominant if

n

lajjl > ¢ = Z |a,~j|, j=1,...,n. (4.1.2)
1=1
i#]

Theorem 4.1.1 (Levy-Desplanques) If a matriz is row-wise or column-wise
diagonally dominant, then it is nonsingular.

Proof. Adopt the following notation:

diag (A) = diag (a11,-- -, @nn), off (A) = A — diag (A4).

Then the inequalities (4.1.1) imply that ||[diag (4)]~! off (4)||cc < 1 and,
thence, a matrix A = diag(A4) + off (4) is nonsingular. The case (4.1.2)
reduces to the case (4.1.1) by transition to AT. O

4.2 Gerschgorin disks

Theorem 4.2.1 (Gerschgorin) For a matriz A € C"*", consider the disks

Ri={z€C:|ay— 2| <1},
Ci={z€C:|ay; — 2| < ¢},

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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where r; and c¢; are defined by (4.1.1) and (4.1.2), respectively. Then, if
A € M(A), then

n n
AE U R; n U Ci.
=1

i=1

Proof. If A ¢ |J R;, then the matrix A — AI is row diagonally dominant and,
hence (by the Levy-Desplanques theorem), nonsingular = X ¢ A(4). O

Theorem 4.2.2 Let G be the union of m Gerschgorin discs. If G is isolated
from the other disks, then G contains exactly m eigenvalues.

Proof. Set A(t) = diag(A) + toff (A),0 <t < 1, and denote by G(t) the
union of the Gerschgorin discs with the same centers as those in G, and by
G(t) the union of the remainder discs; G = G(1). Obviously, G(t) C G and
G(t) c G.

Since GNG =0, Gt)NG({) = @ for all 0 < ¢t < 1. According to
the theorem on the continuous dependence of the polynomial roots on their
coefficients, there exist continuous functions A, (¢), ..., Am(t) such that

@ {0, Am(0)} = G(0);
(b)  A(t),-.., Am(t) € MA().

Let t; = max{t : \(t) € G(t)}. If t; <1,, then, for all ¢ > t;, we have
Xi(t) € G(t) (it follows from Theorem 4.2.1).

Thus we conclude that G(t;) N G(t;) # 0, which is impossible. Therefore,
ti=1fori=1,...,m. O

Corollary 4.2.1 If the Gerschgorin discs are pairwise disjoint, then each one
captures ezactly one eigenvalue.

4.3 Small perturbations of eigenvalues
and vectors

Assume that a matrix A has only simple (pairwise distinct) eigenvalues, and
a perturbed matrix is of the form

Ale) = A+ Aie+0 ().

Let P be the eigenvector matrix for A; then A = P~1AP is the diagonal
matrix of the eigenvalues of A. Set

Qe) =P AP =A+Me+0 (?), Q=P 4P

The eigenvalues of ((¢) are the same as those of A(e). By the Gerschgorin
theorems, for all € small enough, these eigenvalues are simple (prove this).
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We may write the diagonal matrix of the eigenvalues of Q(¢) and the
corresponding eigenvector matrix in the following form:

Ale)=A+Ae+AE), A()=A;

Ze)=I+Zie+Z(), Z(0)=1.

In fact, these equations merely define A(e) and Z(e). Since Z(e) is not quite
unique (it is such only up to normalizations of the columns), we can require
that .

diagZ(e) =1, diagZ; =0 = diagZ(e) =0.

Consider the key equation

(A+e+0 (2) (T+Zie+ 2) = (T+ Zie + 2) (A+ e +4) . ()
First of all, rewrite () as follows:

(AZy = ZZ3A+ Q1 — A)e+...=0,
and determine A; and Z; from the equation
AZy - Z3A =AM — Q4.
Obviously (just look at explicit expressions for the elements of Z7),
Ay = diagQy; AZy — Z1A = —off Q. (%)

Now, let A; and Z; satisfy (++). Consider (*) as an equation for A and Z.
Then X R
(@ A=0 (), (b) Z2=0 (¢%).

First, prove (a). To do this, note that
(A+Que+0 ()T +Z1e) — (T + Z1e)(A+ Mie) =0 (%) . (%% %)

For small €, ||(I+ Z1e)7}|| = O(1). On the strength of the Gerschgorin
theorems, the eigenvalues of the matrix A + Qe + 0O (62) are the diagonal
elements of Ag + Ay within the O (%) accuracy. To show that (b) follows
from (a), observe that Z can be regarded as a variation of the solution to the

equation (* x *) whose coefficients go through small perturbations. Thus, we
obtain the following.

Theorem 4.3.1 Assume that P~ AP = A is a diagonal matriz with pairwise
distinct eigenvalues of A. Then, for all sufficiently small €, the matriz A(e) =
A+ Aje + O (£?) is diagonalizable:

P~ (e)A(e)P(e) = Ale),
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and with this
A)=A+Me+0 (2), P)=P(I+Zie+0 (%)),

where
A1 = dlag (P_1A1P) ,

while Z, is such that
diagZ;, =0, AZy — Z A = —off (P71 A4, P).
Corollary 4.3.1 The eigenvalues A;(e) of A(e) are of the form
Xi(€) = Xi + ¢ Aipie + O (€7),

where g7 are the rows of the matriz P~1.

4.4 Condition of a simple eigenvalue

Assume that ||A; ||, = 1. Then (allow for ¢ p; = 1)

”qz A pt“ ”q Ill;"pl ”2

The quantity
(A ) — ”qt u2“pt ”2
|q1 le

is called the eigenvalue condition number for A;. (The vectors p; and g¢; are
the left (Ap; = A\;p;) and right (¢gF A = \ig]) eigenvectors of A, respectively;
the eigenvalue condition number does not depend on how the vectors p; are
g; normalized).

The condition number is correctly defined for a simple eigenvalue even in
the case of a nondiagonalizable matrix. It is significant that Corollary 4.3.1
is still valid for any simple eigenvalue provided that ¢7p; = 1. (This can be
proved by transition to a slightly perturbed but ever diagonalizable matrix
having the same vectors p; and g; for the simple eigenvalue A;.)

The condition of a simple eigenvalue of a matrix is related to the distance
from this matrix to those for which this eigenvalue becomes multiple.

Theorem 4.4.1 (Wilkinson) Suppose that A has a simple eigenvalue \; with
the condition number s()\;). Then there is a matriz A+ E for which X; is a
multiple eigenvalue, and, what is more,

llAll2

lEll2 < W-

(4.4.1)
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Proof. Without loss of generality, we can regard A as taking on the Schur
form: N AT
— i 2
A= [ 0 B ] )
The left and right eigenvectors for A; are of the form
p=[10...07 and ¢7=[10T] = s(\)= (bl +1)"%.

Evidently, vTB+2z = AT = vT(B-XI) =27 = thematrix B = B+||_vT|7

has ); as its eigenvalue. Thus,

0 O T
E:[ ] o Bl < Wl Al 1Al

0 ol = vl /s2(0) =1

v”z

]

4.5 Analytic perturbations

Assume that a series A(e) = Yo Ake* converges for all |¢] < &o. In this
case, if all the eigenvalues of Ay are simple, then A(e) is diagonalizable by
means of P(e):

P~ 1(e)A(e)P(e) = A(e), (4.5.1)
where
Ae) =) Mk, Pe)=) P, (4.5.2)
k=0 k=0

Existence and convergence of the series A(e) for all small ¢ is a consequence
of the analytic version of the implicit function theorem.

Matrices A and P, are easy to determine. Set Z = PO‘IP,c and Q =
Pyl AgPy. Then

Ao+Qe+.. )T +Z1e+..) =T+ Z1e+...) (Ao + Me+...).

By equating the coefficients at ¥, we find

A()Zk - ZkAo = Ak - (I)k, (453)
where
k-1
P, = Z (Q,‘Zk_,‘ - Zk_,ﬂ,-) + Q. (454)
=1
This implies that
Ak = diag @k, AoZk - ZkAo = —off ‘I>k. (4.5.5)

If A; and Z; are known for ¢ < k — 1, we are able to get Ay and Zj from
(4.5.5).
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Consider the operator A: Z — AgZ — Z A acting on the space of the
matrices Z such that diag Z = 0. Using the simplicity of the eigenvalues, we
conclude that the operator A is invertible. Then, for all small £, the operator
A + B is also invertible, where

B: Z —» Ql(E)Z—ZA1(E),
ME) =) Qipre®, Mi(e) = 2 Agyr€.
k=0 k=0

Set

oo

Z1 (E) = Z Zk+16k.

k=0

Then
[A + EB] Zl(E) = A1(8) - 91 (8)

We see from above that Z; (¢) is expressed by a convergent power series (should
A1(g) also be expressed like this).

If Ap has multiple eigenvalues, then the eigenvalues and vectors can be
expanded into the Puiseuz series (the series in fractional powers of ¢).

Exercises

1. Let A = diag()\y,...,\s) where ); are real, pairwise distinct values.
Assume that the matrix A(e) = A+ A; ¢ is Hermitian and diag (A4;) = 0.
Prove that

/\,‘(E) =\+0 (52) .

2. Assume that A is a simple eigenvalue of a matrix A and that p and q are
the corresponding left and right eigenvectors such that ¢”p = 1. Prove
that the perturbed matrix A(e) = A + A;e, for all sufficiently small ¢,
has a simple eigenvalue of the form

Ae) = A+ qTAipe + 0O (7).
3. If one of the condition numbers of the eigenvalues is large, then there

exists at least one more that is large. Explain why.

4. Let A have simple eigenvalues with the condition numbers s;,...,sp.
Prove that if P is the eigenvector matrix, then cond 2 P > max;<i<n $i.

5. Let A have simple eigenvalues with the condition numbers sy,...,sn.
Prove that s; = ... = s, =1 if and only if the matrix A is normal.

6. Assume that A is diagonalizable by means of P:

P71AP =diag (A, .., An),
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and let A + F be a perturbed matrix. Consider the discs
Bi={z: |z= M| <|P7'FP|2}, i=1,...,n.

Let M be a union of m discs B;, and assume that M does not intersect
with the other discs. Prove that there are exactly m eigenvalues of A+ F
located in M.

7. Assume that all the elements of A are different from zero. Then any
eigenvalue A € A(A) is either an internal point of the region R; U...UR,,
or the common boundary point for all the Gerschgorin discs Ry, ..., Ry.

8. In some sense, the unity matrix is “close” to a matrix of rank 1. Prove
that, for any € > 0, there exists a lower triangular matrix L such that
[|L||2 < € and I + L is a lower triangular part of some matrix of rank 1.
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5.1 Spectral distances

The statements of the corollaries of the Bauer-Fike theorem are “nonsym-
metric” with respect to A and A+ F: the matrix A+ F, in contrast to A, can
be nondiagonalizable or have different orders of Jordan blocks. We might be

interested in “symmetric” theorems, which estimate some distance between
the spectra of matrices.

The Hausdorff distance between A and B with the eigenvalues {);} and
{u;}, respectively, is defined as

hd(4, B) = max{maxmin [\; — |, maxmin [X; — ps;]}.
1 J J 1
The spectral p-distance is defined as
dp (4, B) = min [|]A(4) — PA(B)]|p,
where the minimum is taken over all the permutational matrices P and

A(A) = [)‘1’- --aAn]T’ A('B) = [/‘1?‘ . ',ﬂn]T'

5.2 “Symmetric” theorems

Theorem 5.2.1 (Elsner).
1
hd (4, B) < (||All2 +[IBll2)*~* ||A - B3 -

Proof. Let p € A(B) and A(A) = {\;}. Suppose that the vectors zi,...,z,
are the columns of the unitary matrix X, and Bz, = pz;. Then

Hlf\i — p| = |det (A - pI) X)|

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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(remember the Hadamar inequality: the determinant in modulus does not
exceed the product of the 2-norms of its columns <&  the volume of an
n-dimensional cuboid does not exceed the product of the lengths of its edges)

< JINAa-pDzil: < I(A-B)zll: [TIA- gDzl
i=1 =2
< |[A=Bll2 (1Allz +1|Bll2)*"*. O

Theorem 5.2.2 (Ostrowski-Elsner).

1
deo(4, B) < (2n—1)(||All2 +11Bll2)*~*||4 - Bll; .
Proof. Consider the discs
Di={z: |z—XA| < hd(4, B)} and Di(r)={z: |z—XN| < (1)},

where
1-4

)= (2ms A +0(B-Alk) I (B- A

According to Theorem 5.2.1, all eigenvalues of A+7 (B — A) belong to a union
of the discs D;(7). By analogy with the Gerschgorin discs, if some m discs
D;() are isolated from the other discs, then their union contains exactly m
eigenvalues of the matrix A+7 (B—A). = If m discs D; (1) are isolated from
the other discs, then the union of the corresponding discs D; keeps exactly m
eigenvalues p;. (Why?) Suppose that

Mi € U Dy, k=1,...,m.
1<k<m

Then (prove this!) |u; — Aj| < (2m —1)hd(A, B), 1<4,j<m. O

5.3 Hoffman—Wielandt theorem

Theorem 5.3.1 (Hoffman-Wielandt) For any normal matrices A and B,
dz(4, B) < ||A- Bl|F.

Proof. Since A and B are normal, by means of unitary matrices P and Q) we
transform them into diagonal matrices

Dy = diag (X\;) = P*AP, Dp = diag (u;) = Q@*BQ.

Set Z = P*@. Allowing for the unitary invariance property of the Frobenius
norm, we find that

lA-Bll% = IDa-ZDsZ"|I%
tr(DA - ZDBZ*) (DA - ZDBZ*)*

IIDa|l% + ||DBI% - 2Re tr(ZDpZ* D%).



5.4. Permutational vector of a matrix 41

Further (check it),

¥=2Re tr(ZDpZ*D}) = Y ) sijaij,

i=1 j=1
_ 2 — *
sij = |2i5]°, i = 2Re Ajp;.

For any fixed o;j, a functional v = «(S) is linear on the space of matrices
S = [si;]. The values we are after are included in the set of values on those
matrices S with nonnegative elements for which any column and row sum of
elements is equal to 1. Such matrices S are called doubly stochastic.

The Birkhoff theorem. Any doubly stochastic matriz S can be written as
a conver combination of the permutational matrices Py, k = 1,...,m (how
many and which matrices themselves depend on S ):

SszkPIw n+...+vp=1 vy >0 Vk.
k=1

It is easy to verify that the set of all doubly stochastic matrices is compact.
By the Birkhoff theorem,

v(S) £ lg}%xmv(Pk),

i.e., the maximal value of the function v is attained at some permutational
matrix. Denote it by II. Then

1A - B[} IDall% + ||DB||% — 2Re tr(ZDpZ* D)
> ||Dall% + ||TIDBII*||3 — 2Re tr(IIDBII* D)

= ||Da~TIDpIl"||} > d2(4, B). O

The next section is for those who want to know how the Birkhoff theorem
can be proved.

5.4 Permutational vector of a matrix

For a matrix A, a permutational vector corresponding to a permutational
matrix P means the vector made up of the diagonal elements of diag (PT A).
The locations of the elements extracted from A coincide with those of units
in P.

The Birkhoff theorem is almost evident for those who accept as evident
that any doubly stochastic matrix contains a nonzero permutational vector.
As a matter of fact, if 11 is the minimal component of a nonzero permutational
vector corresponding the permutational matrix P;, then S — vy P, = ¢; Sy,
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where 0 < 1,91 < 1, 1 +¢1 =1, and S is a doubly stochastic matrix
which houses at least one zero element more than the original matrix S.
Proceed by induction.

Attempt to prove the existence of a nonzero permutational vector. This
is not at all simple. Prior to being able to do this we need to be armed with
the following (nontrivial) theorem.

The Hall theorem. Every permutational vector of an n X n matriz A con-
tains a zero component if and only if A has a p X q zero submatriz with
p+q > n.

Necessity. Assume that every permutational vector of A contains zero. Write

ai; *°* QGip—-1 Q1n
Q2n
A=
B

Gnn

If the matrix A is not zero then, without loss of generality, let a1, 7 0. Then
the matrix B of order n — 1 must have zero in every permutational vector.
Assume that (the induction in n) for B, there exists a p X ¢ nonzero submatrix
withp+q > n—1. =  There exists a zero submatrix with p + ¢ = n.
Suppose it lies in the lower-left corner:

A=| 4 Ay € €9, Ay € CPXP
= 0 A2 ) 1 ) 2 .
At least one of the matrices A; and A, should have a zero on every per-
mutational vector. Let it be A;. By the inductive hypothesis, A; contains
an r X s zero submatrix with r + s > ¢. Without loss of generality, as-
sume that this submatrix is located in the lower-left corner of the matrix A;.
Then in the same corner of the matrix A, we have a (r +p) x s zero submatrix
with (r+p)+s = (r+s)+p > g¢+p = n, just what was required to be proved.

Sufficiency. Assume that p < ¢ and a nonzero submatrix occupies the lower-

left corner of A. Then
A=| A
- quq A2 ’

and the last row of A; is zero. Thus every permutational vector is bound to
capture some element of this row (i.e., zero). 0

Corollary. Any doubly stochastic matriz contains a nonzero permutational
vector.

Proof. If not, by the Hall theorem, the doubly stochastic matrix (say, A)
has a p x q zero submatrix with p + ¢ = n. Suppose it occupies the lower-left

corner: A R
_ 1
4= [ Ogxq As ] '
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The sum of all elements of R is equal to 0 (why?) = R =0 = the matrices
A; and Ay are both doubly stochastic. Proceed by induction. 0O
5.5 “Unnormal” extension

In the late 80s, an interesting generalization of the Hoffman-Wielandt theorem
appeared on arbitrary diagonalizable matrices (not necessarily normal).

Theorem 5.5.1 (Sun-Zhang) Assume that A and B are diagonalizable and
P and Q are the corresponding eigenvector matrices. Then

d2(A4, B) < condy(P) condz(Q) ||4 — B|F,

where
condy(P) = ||[P7H|2]|P|l2, cond2(Q) = ||Q~"||2/IQll2-
Proof.
lA-Bllr = ||[PD4aP™'-QDpQ7'|Ir

|P [Da(P~'Q) - (P'Q)D5] @7 '|IF
1
WMHDAZ — ZDg||F, where Z = P1Q.

I\

Consider the singular value decomposition Z = VXU*. Then
IDaZ - ZDp||r = |[V{(V*DAV)X - E(U*DU)}U*||F = |IME - EN||F,

where the matrices M = V*D4V and N = U*DpgU are, obviously, normal.
By the Hoffman-Wielandt theorem,

d2(A, B) =d3(D4a, Dp) < ||[M - N||F.
Therefore, it is sufficient to make certain that
IM% - EN||F 2 omin||M — N||F.

Set @ = ¥ — omin I. Then (keep in mind that M and N are normal)

IMZ—SN|Z = [[(MQ=QN)+ omn(M - N)|[%
< IMQ-QN||% +o5,llM - N||7

+ Omintr Q{(M = N)(M = N)* + (M - N)*(M = N)}. O

For a more detailed treatment of the above and related topics, I would
recommend the nice book by Stewart and Sun.!

1G. W. Stewart and J. Sun. Matriz Perturbation Theory. Academic Press, 1990.
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5.6 Eigenvalues of Hermitian matrices

Theorem 5.6.1 (Courant-Fischer) Let \; > ... > A, be the eigenvalues of
a Hermitian matriz A of order n. Then

Tt Az

Ay = i .6.
k digl%)ik Iznelg T* T (56.1)
z#0
and . 4
. Az
A = min max . (5.6.2)
dimL=n-k+1 =€L I*Z
F#0
Proof. Let u;,...,u, be the orthonormal eigenvectors corresponding to
A1, ..., An, respectively. As is easily seen,

k Az
T = Zfiui = o > Ak
i=1
It follows that the right-hand side in (5.6.1) cannot be less than A. (Why?)
Now consider a k-dimensional space M. There exists a nonzero vector
z € MN K, K =span{up_g+1,...,Us}. For any such a vector,

* *
Z*Az Tt Az
< max < A
2*z z€K  IT*T
TH#0

Therefore, the right-hand side in (5.6.1) cannot be greater than ;. The proof
of (5.6.2) is similar. 0O

5.7 Interlacing properties

Theorem 5.7.1 Suppose that A is a Hermitian matriz of order n and B is a
leading principal submatriz of order n—1. Then the eigenvalues \y > ... > A,
of A and the eigenvalues py > ... > un—1 of B satisfy the following interlacing
property:

/\k Z 177 Z /\k+17 k:l,.‘.,n—l. (5.7‘1)

Proof. Denote by Ly C €™ any subspace of the vectors £ € C" of the form
s = z
=10l
Then any m-dimensional space of the vectors & corresponds to some m-
dimensional space Lo of the vectors z. In line with (5.6.1),

. Tt Az . Az
Mk = _max min < max min = Ak
dimLo=k =z€Lyg ZIT*X dimL=k =€L T*zT
z#0 z#0
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In line with (5.6.2),

. * Az . *Ax
te = min max > min max = Agy1- O
dim Lo =(n—1)—k+1 =€Lg T* T dimL=n—-k =zeL I*ZX
z#0 z#0

Theorem 5.7.2 Suppose that a Hermitian matriz A € C™*" is perturbed so
that
B = A+epp*, € € R, peC”, |lpll2 =1, (56.7.2)

and denote by Ay > ... > A\, and py > ... > py, the eigenvalues of A and B,
respectively. If € > 0, then py > A\ > o > ... > pn > Ap, while if e <0,
then A\1 > 11 > Ay > ... > A\p > py. In either case, for all k,

Lr = g + tre, ty >0, and tH+...+t, =1 (56.7.3)

Proof. Let € < 0. By the Courant-Fischer theorem,

. T Az . "Bz
Ar = max min < max min = g,
dimL=k =eL ZI*ZI dimL=k =eL I*ZT
z#0 z#0
and, further, for k£ > 2,
) t*Bzx . Tt Az
pe < max min = max min -
dimL=k =€L,aLp I*I dimL=k =€L,=1p I*T
T#£0 T#0
. Az
< max min = Ag-1.
dimL=k-1 =2eL IT*ZT
z#0

Thus, we may write ur = A\ + txe with ¢, > 0. Adding these equations, we
obtain tr B = tr A+¢ (t; +...+t,) while the starting equation (5.7.2) implies
trB=tr A +¢. Hence, t; +... +t, = 1. The proof for € < 0 is similar. O

5.8 What are clusters?

Sometimes the most of (though not all) eigen or singular values are massed
near some set on the complex plane (one or several points, as a rule). Such
a set is said to be a cluster. However, we need to bring far more into the
picture.

Consider a sequence of matrices A, € C™"*" with eigenvalues \;(A,) and
a subset M of complex numbers. For any ¢ > 0, denote by vy, (€) the number
of those eigenvalues A, that fall outside the € distance from M. Then M is
called a (general) cluster if

im 22— veso,

n—00 n

and a proper cluster if

Tn(€) <cle) Vn, Ve>0.
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We consider chiefly the clusters consisting of one or several (a finite number
of) points (M = C is never of interest).

One might also be interested in the singular value clusters. To distin-
guish between the eigen and the singular value cases, let us write v,(e; A)
and 7,(e;0), respectively. For brevity, we denote that M is a cluster by
A(Ap) ~ M or o(A,) ~ M.

Of course, we tacitly assume that A,, are the elements of some common
process (for instance, they might arise from a digitization of some operator
equation on a sequence on grids).

5.9 Singular value clusters

To prove that a sequence has a cluster, we can try to find a “close” sequence
for which this is already established. That “closeness” can be treated in a
rather broad sense.?

Theorem 5.9.1 Suppose that A, and B,, are such that
| An — Ba||% = o(n) (5.9.1)

or, alternatively,
rank (A, — Bp) = o(n). (5.9.2)
In either case, any singular value cluster for A, is also a singular value cluster

for B,,, and vice versa.

Proof. First, consider the case (5.9.1). Denote by 01(An) > ... > on(4n)
and 01(By) > ... > 0n(By) the singular values of A and B. Then it follows
from the Hoffman-Wielandt theorem (prove this) that

Y (0k(4n) = 0k(Ba))® < ||An = Ball3
k=1

Take an arbitrary § > 0 and denote by a,(8) the number of those k €
{1,...,n} for which |0(An) — on(Bn)| > 4. Together with (5.9.1) the above
implies that

an(6) 6% = o(n) = an(d) = o(n).

Consider a subset M C C, and denote by v/ (¢) and 72 (¢) the v,(¢; 0) func-
tions (introduced in the previous section) for A,, and B,,, respectively. Choos-
ing & = £/2 we obtain (why?)
€ €
B < HE) +an(3)

Since the right-hand side is o(n), that will do the proof.

2E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution
and clustering. Linear Algebra Appl. 323: 1-43 (1996).
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In the case of (5.9.2), we have to recollect that the singular values in
question are the square roots of the eigenvalues of the Hermitian matrices
Ay A, and B} B,. Obviously, rank (A} A, — B;,B,) = o(n). Thus, do not
loose generality if we assume that A, and B, are both Hermitian. If so,
we may apply the interlacing property stated in Theorem 5.7.2. Doing this
several times (as many as rank (4, — B,) is) we arrive in the end at

vB(e) < vA(e) 4 rank (A, — B,). O

5.10 Eigenvalue clusters

To state that the eigenvalue clusters for A, and B,, coincide, we ought to add
something to the premises of Theorem 5.9.1. For example, we can formulate
the following.

Theorem 5.10.1 Suppose that A, B, € C"*" are diagonalizable for every
n, and denote by P,,Q, the corresponding eigenvector matrices. If

cond 2P, cond? Q, ||An — Bu||% = o(n),

then any eigenvalue cluster for A, is also an eigenvalue cluster for B,, and
vice versa.

Proof. Using the “unnormal” extension of the Hoffman-Wielandt theorem
discussed above, we follow the same lines as in proving Theorem 5.9.1. O

Some stronger statements can be made if one of the sequences is a constant
matrix, for example, the zero one.® (In print.)

Theorem 5.10.2 Suppose A, has a singular value cluster at zero and, in
addition, is bounded so that, uniformly in all sufficiently small € > 0,

n
log||Anll2 = O <7n—(£_::‘5_—)) .
Then A, has the eigenvalue cluster at zero, too.
Proof. Let |M(A4n)| > ... > |An(4,)] and 01(4n) > ... > 04(A4,) be the

eigenvalues in modulus and the singular values of A, respectively. We use
the following Weyl inequality:

ﬁ [Ax(4n)] < ﬁ ok(An), m=1,...,n. (5.10.1)
k=1 k=1

(Prove this. Hint: it is not too hard a task for us, because we already wield
the Hoffman-Wielandt theorem and interlacing properties.)

3E. E. Tyrtyshnikov and N. L. Zamarashkin. On eigen and singular value clusters,
Calcolo (1997).
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By contradiction, suppose the eigenvalues of A,, are not clustered at 0.
Therefore, there exist g, co > 0 and some subset of increasing indices N' =
{n1,ng,...} such that y,(e0; \) > con Vn € N. Without loss of generality,
assume that ny =k Vk. Choose any € > 0. Using (5.10.1), we obtain

Yn(g0;A) Tn(0;X)

&V < I el < I ordn) < l14all3 ) ernleoN=mae)
k=1 k=1
In(egid) Infein)
S ()7 < <||An|lz) .
& 3

By the contradictory assumption, if € < €, then the left-hand side is lower-
bounded by a positive constant. For sufficiently small £, this constant can be
made arbitrary large, and in particular, larger than the upper bound of the
right-hand side. O

Exercises

1. Suppose that A, B € C"*" are Hermitian with eigenvalues A\; > ... >
n
An and gy > ... 2> pin. Prove that Y [\ — pif* < ||A - B||%.
=1

2. Suppose that A, B € C™*" have the singular values A\; > ... > A, and
n
g1 > ... > pn. Prove that Y |\ — > < ||A- BJ|%.
i=1
3. Suppose that A € C™*" is Hermitian and B = P*AP, where P € C**"

has orthonormal columns. Prove that
An—k+1(A) + ...+ X(4) < trB < A(A) + ...+ A (4).

4. Prove that ralﬁclgl<k ||A-B||lFr = \ﬂfﬁ_kﬂ (A)+...+02(A).

5. Consider an upper bidiagonal n x n matrix A, with 1 on the main
diagonal and 2 on the neighboring one. Prove that

01(An),...,0n-1(4,) €[1,3] and 0,.(4,) € (0, 2'™™).

6. For any A € C™*", prove the Weyl inequality

m m
T en)l < JIor(4n), m=1,...,n.
k=1 k=1

7. Produce a sequence of matrices A, for which the eigenvalues are clus-
tered at some point, but the singular values are not clustered at any
point.

8. Produce a sequence of matrices A, for which the singular values are
clustered at 1, but the eigenvalues are not.
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6.1 Floating-Point numbers

There are only finite many numbers in a computer. These are the so-called
floating-point numbers:

di d d
a::t(—1+-—;+...+—z—)-p°‘.
p P p

Here, p,a,d;,...,d; are integers. The number p > 0 is said to be the base of
a computer arithmetic. The number in brackets is the mantissa, and « is the
exponent of a floating-point a. The numbers d; € {0,1,...,p — 1} are termed
digits, and ¢ is the length of the mantissa. As a rule, d; # 0. After all, there
are some integers, L and U, which are the boundsof a: L < @ < U. A special
floating-point number is a = 0.

Thus, the set of all floating-point numbers is determined by the parameters
p,t, L,and U.

6.2 Computer arithmetic axioms

When fed into a computer and operated on as floating-point numbers, the
quantities go through a rounding-off as usual. A rounding-off is a mapping
of the real numbers into the floating-point numbers. Let fi(z) denote the
rounding-off result for z. Then the following axiom applies:

fl(z) =z(1 +¢), (6.2.1)

where |¢| < n as long as fl(z) #0 . We define n as the lowest upper bound
for |e|. Then for the school rule of rounding off,' we obtain (check it)

_1

1—-t
5P (6.2.2)

n

11t reads: given a number to be rounded off, take a number nearest to it with a prescribed
mantissa; in the case of two candidates, take the largest one.

E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis
© Springer Science+Business Media New York 1997
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By tradition, the result of a computer operation * on floating-point num-
bers a and b is signified by fl(a * b). We postulate that if fl(a *b) # 0,
then

fla*b) =axb(l+¢), le] <. (6.2.3)

This is the primary axiom we rely on when studying the roundoff errors in
numerical algorithms.

NB: The relative error € must be small only when the result of a computer
operation is not zero.

Sometimes numbers are rounded off by cutting off the “superfluous” digits.
In this case, the equality £ = a * b does not necessarily entail that fl(a *b) =
fl(z). For example, suppose that p = 2, t = 2. Let a = 0.11, b = 0.0001
and z = a — b = 0.1011. Then fi(z) = 0.10 while fl(a — b) = 0.11 (the
handling of numbers reduces to that of ¢-digit ones on a special device called
a “summator”).

For the cutting-off rule, n = p!~*.

6.3 Roundoff errors for the scalar product

Exact equations for actually computed quantities include a good many dif-
ferent €3,€5,.... Not to overload the equations, let us designate all these
€1,€2, ... by the same letter £. Adopt the notation

(1+e)"§ﬁ(1+sk‘);

if such things occur several times, then all e, in the corresponding expan-
sions are regarded as different. This causes no problem when deriving some
inequalities, because any ¢ is subject to (6.2.3) (so long as no floating-point
Z€ro pops up).

Now, let & be an actually computed scalar product:

a=$Ty, Z=[£L‘1,...,.’L‘n]T, yz[yla--'ayn]TeIRn-

Suppose the scalar product appears after the following prescriptions:

a=0; DOi=1,n
a=oa+ T;y;
END DO

Then, in chime with (6.2.3), we find that

n
@@= Z ziyi (14 )", (6.3.1)
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6.4 Forward and backward analysis

One can interpret (6.3.1) in different ways. In the spirit of the forward analy-
sis, we are to estimate the deviation between the exact and computed answers:

|& — o] < nnlzTly| + O@?). (6-4.1)
We assume above and from now on that if A = [a;;] then |4| = [|ai;]].

In the spirit of the backward analysis, we are to represent a really computed
answer as the result of exact computations with perturbed data and, then, to
derive a bound on the corresponding (termed equivalent) perturbation:

s
- _ 6.4.2
& — 2 < Lamlzl + OGR), 15—yl < bnlyl + OG2). (64.2)

Clearly, the perturbations can be distributed between z and y in some other
ways.

6.5 Some philosophy

In the course of examining the roundofTs, it is typical to ignore the quantities of
order O(n?). Following Wilkinson (one of the prominent experts of the field),
we emphasize that the main objective is not the derivation of neat bounds
(“the bound itself is usually the least important part of it”) but mostly to
expose (and to fix, if possible) the potential instabilities of an algorithm at
issue. It would be not right to think that a large inaccuracy in an answer is
due to a large number of operations (and hence, roundoffs). More frequently,
there is just one operation that spoils the picture.

6.6 An example of “bad” operation

An operation with a bad reputation is that of subtracting close numbers of the
same sign. This operation, as such, is not any worse than others, for its own
roundoff error is of order n. Yet it can emplify dramatically the previously
accumulated errors. In particular, let @ = a, b & b; then

fla-b)=(@G-5b(1+e) =(a—-b)1+e+0),

_[a-a)-(-Y

Obviously, § can get very large.

where
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6.7 One more example

Some routine was used to compute the eigenvectors of a block triangular ma-
trix with 2 x 2 blocks, and, after its run, it was seen that exactly one eigen-
vector had a residual of three orders beyond those of the other eigenvectors.
In this case, the instability originated from the solution of a homogeneous
system with two equations and two unknowns:

a1 + azz2 =