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Abstract—This paper considers the problem of securing a
linear network coding system against an adversary that is both an
eavesdropper and a jammer. The network is assumed to transport
n packets from source to each receiver, and the adversary is
allowed to eavesdrop on μ arbitrarily chosen links and also to
inject up to t erroneous packets into the network. The goal of the
system is to achieve zero-error communication that is information-
theoretically secure from the adversary. Moreover, this goal must
be attained in a universal fashion, i.e., regardless of the network
topology or the underlying network code. An upper bound on
the achievable rate under these requirements is shown to be
n− μ− 2t packets per transmission. A scheme is proposed that
can achieve this maximum rate, for any n and any field size q,
provided the packet length m is at least n symbols. The scheme is
based on rank-metric codes and admits low-complexity encoding
and decoding. In addition, the scheme is shown to be optimal in
the sense that the required packet length is the smallest possible
among all universal schemes that achieve the maximum rate.

I. INTRODUCTION

Consider a network implementing linear network coding
for multicast [1]. The network may be subject to two types
of attacks: a malicious user injects corrupt packets into the
network in order to disrupt communication; an unauthorized
eavesdropper intercepts packet transmissions in order to ob-
tain as much information as possible about the transmitted
messages. The linear mixing performed by network coding
presents challenges to coding schemes in both scenarios, and
has motivated a significant amount of research.

This paper considers the problem of dealing with the
aforementioned attacks in a universal fashion, i.e., in a way
that is completely independent of the network topology and
the specific network code. This has the advantage of produc-
ing schemes that are compatible with noncoherent (random)
network coding [2]. Also, we focus on the most stringent
requirements of zero error probability and zero information
leakage, i.e., perfectly reliable and perfectly secure (in the
information-theoretic sense) communication.

Most of the previous work on this problem deals with the
special cases where only error control or only security is
required. A dividing assumption among these works refers
to the constraints on the packet length m. For a system that
is required to work under any packet length (in particular,
under m = 1), the error control problem has been extensively
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discussed in [3]–[5] (see references therein) and the security
problem has also received significant attention [6]–[8]. In all
of these works, the proposed solutions require knowledge of
the network code, and therefore are not universal. On the
other hand, universal schemes have been proposed for the
case where m is required to be sufficiently large; this is the
approach taken in [9], [10] for error control and in [11] for
security.

When both requirements of error control and security are
combined, the problem becomes harder, and a simple con-
catenation of an error control scheme and a security scheme
may not necessarily work. The reason is that, if error control
coding is followed by security coding, the overall codeword
may not be robust to errors and, similarly, if security coding
is followed by error control coding, the overall codeword may
not be robust to eavesdropping. Previous work on this problem
has been limited1 to non-universal schemes [13], [14], which
require knowledge of the network code.

In this paper, we propose a universal scheme that
achieves perfectly reliable and perfectly secure communica-
tion. Namely, in a network with a maxflow of n packets, if at
most t error packets are injected in the network, and at most
μ packets are observed by an eavesdropper, then our scheme
can provide perfectly secure and reliable communication while
achieving a rate of k = n− 2t− μ packets per transmission.
This rate is shown to be optimal. Note that a similar upper
bound on rate has been shown [14] in the context of non-
universal network coding with m = 1, but it does not apply to
the problem considered here (since it ignores the possibility
of exploiting m > 1 in the coding scheme).

A requirement of our scheme is that the packet length m

must be at least n symbols. We show that this value is optimal,
in the sense that it is the smallest packet length of a universal
scheme achieving the maximum rate.

A main tool in the design and analysis of our scheme is the
theory of rank-metric codes [15]. We show that our scheme
can benefit from existing efficient algorithms for rank-metric
codes [10], [16], and therefore can be encoded and decoded
with low complexity.

1except for an earlier, suboptimal version of this work [12]. There, a
compatible concatenation of error control coding and security coding is used
over an extension of an extension field. However, the packet length required
is on the order of n2, which is far from optimal.
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It is worth mentioning that there is another line of work
that relaxes the assumption of zero error probability (requiring,
instead, vanishingly small error probability) [17]–[19]. In this
case, even higher rates can be achieved [19], however, the
packet length must be asymptotically large.

The remainder of the paper is organized as follows. Sec-
tion II establishes the notation used and reviews background
material on rank-metric codes and linear network coding. In
Section III, we define the problem of combined error control
and security. In Section IV, we review existing techniques
for the special cases of either error control or security only.
We also provide new results and insights for these scenarios,
which will be useful for our proposed scheme. In Section V,
we present our scheme and show that it achieves the desired
goals. In Section VI, we prove that our scheme is optimal
both in the sense of maximal rate and smallest packet length.
In Section VII, we discuss how the scheme can be extended to
the case of noncoherent network coding. Finally, Section VIII
presents our conclusions.

The full version of this work has been incorporated in [20].

II. BACKGROUND

A. Notation

Let Fq be a finite field. Let Fn×m
q denote the set of all n×m

matrices over Fq , and set Fn
q = F

n×1
q . Let Fqm be an extension

field of Fq . Recall that Fqm is an m-dimensional vector space
over Fq. Thus, by fixing a basis for Fqm over Fq, elements
of Fqm may be viewed as (row) vectors in F

1×m
q and vice-

versa. This identification will be used extensively throughout
the paper. In particular, we may view a column vector in F

n
qm

as a matrix in F
n×m
q and vice-versa.

B. Rank-Metric Codes

Let X,Y ∈ F
n×m
q be matrices. The rank distance between

X and Y is defined as dR(X,Y ) � rank(Y −X). As observed
in [15], the rank distance is indeed a metric.

A rank-metric code C ⊆ F
n×m
q is a matrix code (i.e., a

nonempty set of matrices) used in the context of the rank
metric. The minimum rank distance of C, denoted dR(C), is the
minimum rank distance between all pairs of distinct codewords
of C.

There is a rich coding theory for rank-metric codes that
is analogous to the classical coding theory in the Hamming
metric. In particular, the Singleton bound for the rank metric
[10], [15] states that every rank-metric code C ⊆ F

n×m
q with

minimum rank distance d must satisfy

|C| ≤ qmax{n,m}(min{n,m}−d+1). (1)

Codes that achieve this bound are called maximum-rank-
distance (MRD) codes and they are known to exist for all
choices of parameters q, n, m and d ≤ min{n,m} [15].

In the context of the bijection between F
1×m
q and Fqm , a

rank-metric code may described as a block code C ⊆ F
n
qm

of length n over Fqm . (Note that, differently from classical
coding theory, here we treat each codeword as a column
vector. However, to avoid confusion, we will keep the standard

notation on generator and parity-check matrices of linear
codes.)

It is particularly useful to consider linear block codes over
Fqm . For m ≥ n, an important family of such codes was
proposed by Gabidulin [15]. A Gabidulin code is an [n, k]
linear code over Fqm defined by the generator matrix

G =
[
Gij

]
=

[
g
q(i−1)

(j−1)

]
, i = 1, . . . , k, j = 1, . . . , n (2)

where the elements g0, . . . , gn−1 ∈ Fqm are linearly inde-
pendent over Fq . It is shown in [15] that the minimum rank
distance of a Gabidulin code is d = n− k+1, so the code is
MRD.

C. Linear Network Coding

The basic model for a (multicast) communication system
using linear network coding is that of a finite-field matrix chan-
nel. At each channel use (generation) a source node transmits
a batch of n packets, each consisting of m symbols from a
finite field Fq, which can be regarded as the rows of a matrix
X ∈ F

n×m
q . Each link in the network transports a packet

free of errors, and each node creates outgoing packets as Fq-
linear combinations of incoming packets. The specification
of all such linear combinations defines the network code.
The packets received by a (specific) destination node can
be regarded as the rows of an N × m matrix Y = AX ,
where A ∈ F

N×n
q is the transfer matrix that describes the

linear transformations incurred by packets on route to the
destination. The system is said to be coherent if A is known
to each corresponding destination; otherwise, it is said to be
noncoherent. The linear network code is said to be feasible if
every transfer matrix to a destination has rank n (so that, in a
coherent system, each destination is able to recover X).

The system described above is referred to as an (n×m, k)q
linear coded network, where k denotes the minimum rank
among all transfer matrices. Thus, an (n×m,n)q linear coded
network contains a feasible network code.

III. PROBLEM STATEMENT

For simplicity, we restrict attention to a single destination,
since all the results in this paper can be immediately ex-
tended to multiple destinations. In addition, we focus on the
fundamental case of coherent network coding; extensions to
noncoherent network coding are described in Section VII.

The basic model for linear network coding described in
Section II-C can be extended to incorporate packet errors.
Suppose that at most t errors can occur in any of the links,
causing the corresponding packets to become corrupted. In
this case, we will say that the network is subject to t errors.
Assuming, without loss of generality, an additive error model,
the matrix received by the destination can be expressed as

Y = AX +DZ

where Z ∈ F
t×m
q is a matrix consisting of the error packets

injected and D ∈ F
N×t
q is the transfer matrix from the affected

links to the destination. Note that D depends on the set of links
in error.
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This model can be further extended to include an eavesdrop-
per adversary, in the spirit of the wiretap channel II of Ozarow
and Wyner [21]. The eavesdropper is assumed to have access
to the packets transmitted on any μ arbitrarily chosen links
in the network. In this case, we will say that the network
is subject to μ observations. Let W ∈ F

μ×m
q be a matrix

consisting of the packets observed by the eavesdropper. Then
W can be expressed as

W = BX

where B ∈ F
μ×n
q is the transfer matrix from the source node to

the eavesdropper. Note that B depends on the set of intercepted
links.

To ensure secure and reliable communication, the source
node chooses the matrix X as the (possibly stochastic) encod-
ing of some message S ∈ S (which should be recovered by the
destination but not by the eavesdropper). The coding scheme is
said to be zero-error if S can be uniquely determined from Y ,
i.e., H(S|Y ) = 0. Here we assume that A is a constant known
to all, while D ∈ F

N×t
q and Z ∈ F

t×m
q are unknown random

variables with unknown distributions (which may depend on
X). A zero-error scheme, in this context, may also be called
t-error-correcting scheme. A scheme is said to be universally
t-error-correcting if it satisfies

H(S|Y ) = 0, ∀A : rank A = n (3)

for any arbitrary distributions on D and Z . In other words,
a universally t-error-correcting scheme must provide reliable
communication for any of the choice of the (feasible) linear
network code.

The coding scheme is said to be (perfectly) secret if the
eavesdropper gets no information about the message, i.e., if
I(S;W ) = 0. Note that this requirement depends on the
choice of B. A scheme is said to be universally (perfectly)
secret under μ observations if it satisfies

I(S;W ) = 0, ∀B ∈ F
μ×m
q . (4)

In other words, a universally secret scheme must guarantee
secrecy for any choice of the linear network code.

In this paper, we are interested in schemes that are both
universally t-error-correcting and universally secret under μ

observations, i.e., schemes that satisfy both (3) and (4).

IV. SPECIAL CASES

A. Error Control Only

Consider an (n×m,n)q linear network subject to t errors
but μ = 0 observations. In this case, condition (4) can be
ignored.

In the case of a deterministic encoding, the following
characterization is given in [22].

Theorem 1 ( [22]): Consider a deterministic encoder map-
ping S ∈ S to X ∈ F

n×m
q whose image is given by

C ⊆ F
n×m
q . There exists a universally t-error-correcting

scheme with this encoder if and only if dR(C) ≥ 2t+ 1.

From the Singleton bound (1), it can be seen that the
maximum rate achievable by a universally t-error-correcting
scheme is given by max{n,m}(min{n,m}−2t) symbols per
transmission, and it is achieved by an MRD code. In particular,
the rate of n− 2t packets per transmission is achievable only
if m ≥ n.

In the case of a stochastic encoding, the result above does
not necessarily hold, since it is conceivable that recovering S

from Y does not necessarily enable the receiver to recover X .
Still, it is possible to obtain the following equivalence result,
which will be very useful in the sequel.

Theorem 2: Consider a stochastic encoding from S ∈ S
to X ∈ F

n×m
q . The encoding admits a universally t-error-

correcting scheme if and only if it admits a zero-error scheme
for the coherent channel Y = AX , for all full-rank A ∈
F
(n−2t)×n
q .

Proof: See [20].

Essentially, Theorem 2 shows that any coding scheme that
corrects t packet errors can be modified at the decoder to
instead correct 2t “packet erasures” (i.e., rank deficiency), and
vice-versa.

B. Security Only

Consider an (n × m,n)q linear coded network subject to
μ observations but t = 0 errors. In this case, H(X |Y ) = 0;
thus, condition (3) can be replaced by H(S|X) = 0.

It is shown in [20] that the maximum number of symbols
per transmission that can be reliably communicated with a
universally secret scheme is upper bounded by m(n − μ).
Moreover, this rate is achievable only if m ≥ n.

A scheme is proposed in [11], [20] that is able to achieve
this maximum rate. The scheme uses Ozarow-Wyner coset
coding [21] based on linear MRD codes. In order to describe
the scheme, it is convenient to use the bijection described in
Section II-A and think of vectors in F

1×m
q as elements of the

extension field Fqm . Note that this is used solely to perform the
encoding and decoding operations at the source and destination
nodes, and has no impact in the Fq-linear network coding
operations performed at the internal nodes.

Let C be an [n, μ] linear code over Fqm with parity-check
matrix H ∈ F

k×n
qm , where k = n−μ. Let the message be given

by S ∈ F
k
qm . Encoding is performed by choosing X ∈ F

n
qm

uniformly at random such that S = HX . In other words, S is
viewed as a syndrome specifying a coset of C, and X is chosen
as a random word from that coset. Decoding is performed
simply by computing S = HX . It is shown in [20] that this
scheme is universally secret if and only if C is an MRD code
and m ≥ n.

We now describe a convenient way to perform the encoding
process. Let T ∈ F

n×n
qm be an invertible matrix such that H

corresponds to the first k rows of T−1. Given a message
S ∈ F

k
qm , the encoder chooses V ∈ F

(n−k)
qm uniformly at

random and independently from S, and produces X ∈ F
n
qm

by computing

X = T

[
S

V

]
.
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Note that S = HX . It is easy to show that H(X |S) = n− k,
i.e., X is chosen uniformly at random given S. Thus, this
encoder indeed implements a coset coding approach.

We now give a security condition based directly on the
matrix T rather than its inverse.

Proposition 3: The encoder described above is universally
secure under μ ≤ n − k observations if the last n − k rows
of T T form a generator matrix of an [n, n − k] linear MRD
code over Fqm with m ≥ n.

Proof: Let G ∈ F
(n−k)×n
qm and G1 ∈ F

k×n
qm be such that

T T =

[
G1

G

]
. Then

[
I 0
0 I

]
= T−1T =

[
H

H1

] [
GT

1 GT
]
=

[
HGT

1 HGT

H1G
T
1 H1G

T

]
.

Thus, HGT = 0. Since both G and H are full-rank, it
follows that G and H are generator and parity-check matrices,
respectively, for exactly the same code.

V. PROPOSED SCHEME

In this section, we propose a scheme that is universally t-
error-correcting and universally secret under μ observations.
The scheme achieves a rate of n − μ − 2t packets per
transmission and requires the packet length m to be at least
n symbols. The scheme can be seen as a combination of
the strategies for error control and security described in
Section IV, designed in such a way that they can be coupled
without violating conditions (3) and (4). In what follows
we make use of the identification between F

1×m
q and Fqm

described in Section II-A.
Assume that m ≥ n and 0 < k ≤ n − μ − 2t. Let G ∈

F
(k+μ)×n
qm be a generator matrix of an [n, k + μ] linear MRD

code over Fqm . Suppose that the last μ rows of G form a
generator matrix Gsec ∈ F

μ×n
q of an [n, μ] linear MRD code

over Fqm .
Encoding proceeds as follows. Given a message S ∈ F

k
qm ,

the encoder first produces an auxiliary variable

U =

[
S

V

]

by choosing V ∈ F
μ
qm is uniformly at random and indepen-

dently from S. Then, the encoder computes

X = GTU.

Note that the mapping from U to X is a deterministic map-
ping whose image is (a subset of) C = {GTu, u ∈ F

(k+μ)
qm }.

It follows from Theorem 1 that, when X is transmitted over
an (n × m, n)q linear coded network subject to t errors,
the receiver can uniquely determine U (and therefore S) if
dR(C) > 2t. Since C is an [n, k + μ] linear MRD code over
Fqm , with m ≥ n, we have that dR(C) = n−k−μ+1 ≥ 2t+1.
Thus, the scheme is universally t-error-correcting.

In particular, decoding can be performed in two steps: first,
applying a decoder for C in order to find U ∈ F

k+μ
qm ; then,

extracting the message S as the first k rows of U .

In order to prove the secrecy of the scheme, consider first
an alternative interpretation. Let T ∈ F

n×n
qm be an invertible

matrix such that the last k + μ rows of T T correspond to the
matrix G. Then, we have

X = GTU = T

[
0
U

]
= T

[
S′

V

]
, where S′ =

[
0
S

]
.

In other words, the encoder is identical to the encoder
described in Section IV-B if S′ is taken as the message.
Furthermore, we have that the last μ rows of T T correspond
to Gsec, which is the generator matrix of an [n, μ] linear MRD
code over Fqm . Thus, by Proposition 3 (which holds regardless
of the message distribution), we have that the scheme is
universally secret under μ observations.

The above analysis proves the following result.

Theorem 4: The scheme described above is universally t-
error-correcting and universally secret under μ observations.

Our proposed scheme relies on the assumption that a
generator matrix G for an [n, k+μ] linear MRD code C exists
such that its last μ rows form a generator matrix for another
[n, μ] linear MRD code. It is easy to see that, if G is taken
as a generator matrix of a Gabidulin code given in the form
(2), then any μ consecutive rows of G (in particular the last
ones) indeed form a generator matrix of an MRD sub-code.
In this case, decoding of C can be efficiently performed using
the methods in [10], [12], [16].

VI. CONVERSE RESULTS

In this section, we prove that our proposed scheme is
optimal, both in the sense of achieving the maximum possible
rate and in the sense of requiring the minimum possible packet
length among all schemes that achieve this maximum rate.

Theorem 5: Consider an (n × m)q linear coded network.
Assume that the source message has entropy of k packets.
There exists a scheme that is universally t-error-correcting and
universally secure under μ observations only if k ≤ n−2t−μ.
Moreover, this maximum rate can be attained only if m ≥ n.

Proof: Let n′ = n − 2t. Let B ∈ F
μ×n
q be a full-

rank matrix and let A ∈ F
n′×n
q be a full-rank matrix such

that B = PA for some (necessarily full-rank) P ∈ F
μ×n′

q .
Let YA = AX and WB = BX = PYA. If the encoder
admits a scheme that is universally t-error-correcting then,
by Theorem 2, it also admits a scheme that is zero-error for
the coherent channel YA = AX . Thus, there is a function
fA : Fn′×m

q → S such that S = fA(YA). In particular, there
is also a function f : Fn×m

q → S such that S = f(X). Thus,
we may write Xs = {x ∈ F

n×m
q : f(x) = s}. Now,

k = H(S)

= H(S|YA,WB) + I(S;YA,WB)

= I(S;YA,WB) (5)

= I(S;WB) + I(S;YA|WB)

= I(S;YA|WB) (6)

= H(YA|WB)−H(YA|S,WB)
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≤ H(YA|WB) (7)

≤ n′ − rank P = n′ − μ (8)

where (5) follows since S is a function of YA and (6) follows
since I(S;WB) = 0. This proves the first statement. Now
consider the second statement. Since (8) holds with equality,
we must have H(YA|S,WB) = 0 and H(YA|WB) = n′ − μ.
Note that these conditions hold for all full-rank B and all
A ∈ AB , where

AB = {A ∈ F
n′×n
q : rank A = n′, 〈B〉 ⊆ 〈A〉}

and 〈·〉 denotes the row space of a matrix. This implies
that H({YA : A ∈ AB}|S,WB) = 0 and therefore
H(ȲB|S,WB) = 0, where ȲB = ĀBX and ĀB is the matrix
consisting of the vertical stacking of all matrices in AB . It is
not hard to see that, as long as n′ > μ, rank ĀB = n. (In
fact, ĀB contains every nonzero vector of F1×n

q as one of its
rows.) It follows that H(X |S,WB) = 0, for all full-rank B.
Thus, X must be uniquely determined given WB = BX and
the indication that X ∈ XS . From Theorem 1, this implies that
each Xs must be a rank-metric code with dR(Xs) ≥ n−μ+1.

On the other hand, we have seen that, for each full-rank
A ∈ F

n′×n
q , it holds that H(YA|WB) = n′ − μ for all

full-rank P ∈ F
μ×n′

q , where WB = PYA and B = PA.
By the chain rule of entropy, it is not hard to see that this
implies that YA is uniform (for instance, by choosing some
P ’s that are submatrices of an identity matrix, as in the
wiretap channel II). Thus, H(YA) = n′, which implies that
H(X) ≥ n′. Since H(X) = H(X,S) = H(S) + H(X |S),
we have that H(X |S) ≥ n′ − k = μ. Thus, there must be
some s ∈ S such that H(X |S = s) ≥ μ, which implies that
|Xs| ≥ qmμ. Together with the fact that dR(Xs) ≥ n− μ+ 1,
we can see, from the Singleton bound (1), that this can only
happen if m ≥ n.

VII. EXTENSION TO NONCOHERENT NETWORK CODING

The scheme described in the paper is suitable for coherent
network coding and is indeed optimal. In the case of noncoher-
ent network coding, the scheme can be adapted by including
appropriate packet headers. More precisely, the transmission
matrix should be

[
I X

]
, where X is the transmission matrix

of the original scheme. Clearly, including packet headers does
not affect security, but it allows the scheme to be decoded
when the transfer matrix A is unknown. It is shown in [10]
that such adaptation preserves the error-correcting capability
of the code, so the universally t-error-correcting property is
maintained. Although the rate achieved in this case is no longer
optimal, it is very close to optimal for all practical packet
lengths [10].

VIII. CONCLUSION

In this paper, we have proposed a universal end-to-end cod-
ing scheme that can guarantee perfectly secure and perfectly
reliable communication over a linear coded network subject
to malicious interference and eavesdropping. The scheme is
optimal both in the sense of achieving the maximum possible

rate as well as requiring the smallest possible packet length.
The scheme is based on rank-metric codes and admit efficient
encoding and decoding algorithms.
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