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Abstract
High-speed, locational, phone-to-phone (HLPP) games

and apps constitute a provocative class of mobile apps that
are currently unsupported on commodity mobile devices.
This work looks at a key problem for enabling HLPP: a spe-
cific variant of the localization problem in which two phones
estimate each other’s relative positions in 3D space without
infrastructure support. Moreover, position estimates should
reflect changes due to the phones’ possible mobility.

We present a solution for achieving high speed 3D con-
tinuous localization for phone-to-phone scenarios. Our ba-
sic approach uses acoustic cues based on time-of-arrival and
power level. It assumes at least two microphones and one
speaker per phone, which is common on new smartphones.
Accelerometers and digital compasses assist in resolving
ambiguous acoustic-only localization. Continuous localiza-
tion is achieved with the aid of a loose time synchronization
protocol and an extended Kalman filter. Experimental re-
sults across a range of motion paths show localization reso-
lution to within 13.9 centimeters for 90% of estimates, and to
within 4.9 centimeters for 50% of estimates when the phones
are several meters apart.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcom-

puters—Portable devices

General Terms
Algorithms, Design, Performance
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1 Introduction
The proliferation of smartphones and the growth of a rich

accompanying application ecosystem has given rise to effec-
tive solutions for countless applications scenarios. But even
with the most modern and sophisticated of smartphones, cer-
tain classes of applications remain elusive. Consider for ex-
ample a real-time, face-to-face multiplayer pong game, in
which two players Alice and Bob are located in the same
room, and use their phones as if they were paddles. Alice and
Bob wave their phones; the orientation and location of one
phone relative to the other affects the ping pong ball’s flight
and the game’s outcome. Similarly, consider a high-speed,
real-time sword fight in which each participating player uses
her phone to simulate a sword. Or perhaps Alice and Bob
wish to combine their mobile device screen surfaces into one
extended gaming surface. The devices could be in any orien-
tation and position relative to one another.

Such high-speed, locational, phone-to-phone (HLPP)
games do not exist on commodity phones and enabling them
seems particularly challenging. Existing solutions that pro-
vide real-time, locational functionality in commercial game
consoles such as the Kinect or the Wii rely heavily on the ex-
istence of fixed, external infrastructure such as microphone
arrays or cameras. In contrast, enabling HLPP games such
as pong or sword-fight (as well as similar non-gaming HLPP
applications) would require implementing a similar function-
ality entirely on the two participating phones, without the
help of any such external infrastructure.

The underlying technical challenge that has to be solved
in order to enable these novel HLPP-type applications on
smartphones is a new real-time 3D mobile device localiza-
tion problem. While numerous variants of localization and
positioning problems have been studied in the context of mo-
bile phones, the one required for our purpose is particularly
challenging, because the two devices need to establish a rel-
ative coordinate system with neither the use of additional in-
frastructure nor hardware modifications. Moreover, the co-
ordinate system must be maintained in real-time, i.e., as the
relative positions of the phones change, position estimates
should be continuously revised with delay that is ideally im-
perceptible to human observers.

In this work, we show that in principle, such fine-grained,
real-time 3D localization is feasible on commodity smart
phones. Our basic insight is to leverage the different sen-
sors already commonly found on mobile devices. The core



algorithm uses each device’s multiple microphones to per-
form acoustic 3D triangulation and derive position esti-
mates. Some smartphones such as Apple’s iPhone 4 and
Google’s Nexus One already ship with two mics for video
conferencing purposes, and more devices are continuing this
trend. To accurately perform triangulation, we develop a
new method that combines time-of-arrival (TOA) and sig-
nal power cues. In addition, each device uses its standard
accelerometer and digital compass to assist triangulation by
resolving ambiguous positions, and identifying alignment re-
gions when two phones might be well-positioned for trian-
gulation. Outside alignment regions, inertial displacement
is used to estimate position. In order to enable each phone
to track the other phone’s movement, position estimates are
continuously collected, and our algorithm employs a Kalman
filter to smooth point samples and decrease measurement
variance. The filter accounts for the various forms of mea-
surement errors inherent in the phone-based triangulation
process.

The idea of using acoustic signals for deriving informa-
tion about two phone’s relative position was first used in
BeepBeep [12], which showed that a pair of audio tone ex-
changes between two phones can be used to estimate dis-
tances between two phones. Our solution builds on these
ideas by showing that with the benefit of additional sensors
on commodity phones, one-dimensional position can be ex-
tended to real-time three-dimensional position.

We have implemented our new high-speed, phone-to-
phone 3D localization algorithms on commodity Android
devices. Our preliminary investigation shows that using the
combination of sensors and acoustic signaling, two phones
can localize each other’s relative 3D position with under
13.9cm error over 90% of the time, and under 4.9cm error
over 50% of the time at a distance of up to several meters,
even without additional infrastructure support. Moreover, by
employing Kalman filtering as well as other means, we can
maintain continuous real-time localization under simulated
motion paths with both linear and angular position change.
Our findings are preliminary in that we have not evaluated
robustness to noise and live motion paths.

The paper is organized as follows. §2 discusses back-
ground on acoustic ranging, and particularly the Beep-
Beep [12] system. §3 discusses the challenges, and how they
impact our system design. A detailed description of our tech-
niques to enable static and real-time/mobile localization are
then given in §4 and §5, respectively. §6 discusses imple-
mentation details, and §7 presents the results of our evalua-
tion. Finally, related work and other interesting aspects are
discussed in §8 and §9.

2 Background
Acoustic signaling on mobile phones has been used for

estimating distances between two phones. Our real-time 3D
positioning algorithm uses one such system, BeepBeep [12],
as a building block. We therefore review the BeepBeep
mechanism in this section.

BeepBeep is a pairwise acoustic ranging (1D localization)
system for COTS devices. Its main advantages are that it
does not rely on time synchronization, and is robust to soft-
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Figure 1. BeepBeep mechanism for distance ranging

ware delays. Each device is assumed to have one mic and
one speaker, and can communicate through WiFi or another
radio protocol. The BeepBeep ranging algorithm (see Fig-
ure 11) is based on active acoustic time-difference-of-arrival.
It operates as follows. Device A sends an audio Tone A at
a time of its choosing, tA0. Device A and Device B both
record the arrival of Tone A at their respective microphones
and timestamp the arrival with the local clock time, tA1∗ and
tB1∗ respectively. At some arbitrary point in the future tB0,
Device B emits an audio Tone B, which is similarly recorded
and timestamped by both Device A and B as tA3∗ and tB3∗ re-
spectively. Each device calculates the interval (in local time)
between the arrival of Tone A and Tone B. In Figure 1, this is
tA1∗− tA3∗ for Device A and tB1∗− tB3∗ for Device B. Lastly,
the devices exchange the interval information (e.g. via WiFi)
and subtract the intervals from each other. The final differ-
ence is the time of flight of the two tones, or the roundtrip
time between Device A and B. Since the speed of sound can
be assumed constant, the ranging distance can be estimated
as half the roundtrip distance.

Note that only the sum of the distance from Device A’s
mic to Device B’s speaker and from Device B’s mic to De-
vice A’s speaker is available with this method. The compo-
nent distances are not computed directly.

3 Challenges and Design Overview
Enabling HLPP-type games and applications requires the

solving of a novel 3D localization problem that needs to be
accurate, real-time, and run on the two participating phones
only. These requirements result in a number of unique and
interesting challenges. In this section, we discuss some of
these challenges and show how they impact the design of
our suggested solution.

3.1 Requirements
Centimeter-resolution accuracy: The class of HLPP (gam-
ing) applications we envision demand very high resolution
accuracy. This suggests that omnipresent commercial ge-
olocation infrastructure such as GPS satellites, WiFi access
points, or 3G cell towers are unable to provide the desired
accuracy. Whereas these techniques can deliver resolution at
the granularity of one or more meters, we seek substantially
better accuracy.

1Included with permission from the authors of [12].



Ad hoc usage without infrastructure support: Densely
deployed localization infrastructure such as in Active
Bats [8] and Cricket [13] can achieve high accuracy, but they
obviously cannot be used on mobile smartphones. Our goal
is to achieve highly accurate, real-time positioning informa-
tion in the absence of external infrastructure, relying entirely
on phones.
Mobility tolerant: HLPP applications such as the pong
game or sword fight rely on people’s mobility to play the
game. Therefore, localization must be able to cope with con-
stantly changing motion up to the speed of reasonable human
movement.
Works with existing phone hardware: Finally, we seek
to understand the possibilities and limitations of real-
time, phone-to-phone 3D localization on commodity phones,
rather than on some sophisticated custom hardware. This
voluntary constraint limits the resources and inputs that can
be used by our algorithms to the sensors currently found on
smartphones.

Furthermore, we are most intrigued by scenarios in which
the distance separation between the phones is in the range
of normal human social interaction. For example, in ca-
sual gathering places like a bus stop, family room and coffee
shop, people are typically interacting with each other within
a distance of several meters. This also suggests that we can
reasonably assume line-of-sight between the two parties, as
it is more typical for people to engage in prolonged interac-
tions while within sight of the other party.
3.2 Design Overview

The requirements discussed in the previous section guide
our system design. For example, WiFi-based localization so-
lutions are insufficient since they would not meet our accu-
racy requirements, which suggests the use of acoustic sig-
naling. However, a simple, BeepBeep-like acoustic system
fails to solve the problem since it only provides 1D distance
information at any given time step.

In fact, it is easy to see that at least two mics or two speak-
ers are necessary in order to provide 2D position informa-
tion. By the principal of acoustic reciprocity, a transmission
from speaker to mic is equivalent to a transmission with the
speaker and mic reversed [11]. Therefore, exchanging each
phone’s local 2D measurement doubles the number of 2D
measurements per phone. At this stage, as long as the 2D
measurements are not coplanar, possible 3D positions have
been reduced to two. In principle, three mics (or three speak-
ers) on one phone is sufficient for completely passive 3D lo-
calization, and eliminates the need for any communication.
However, no commodity phones are yet equipped with such
capabilities. Therefore, it is mandatory that we engage pair-
wise data exchange and extra sensory information in order
to resolve the remaining ambiguity. Information from these
extra sensors, accelerometer and digital compass ubiquitous
to new phones, are non-trivially combined to resolve to one
unique 3D position.

Accelerometers and compasses have another use as well.
Acoustic localization performs well when the two phones
are favorably positioned within one another’s alignment re-
gion. Intuitively, the alignment region corresponds to cases
in which the two phones’ speakers and mics are facing each

other. Outside of the alignment region, we engage the assis-
tance of accelerometer and compass for displacement track-
ing. However, displacement tracking is susceptible to signifi-
cant error accumulation over time. Therefore, our basic algo-
rithm consists of primary mode supplemented with fallback
mode. Primary mode consists of acoustic localization using
the two mics available on the phone. Fallback mode con-
sists of IMU-based displacement tracking. Figure 2 shows a
commercially-available phone with two mics, and its canon-
ical axes. The main focus of this work is primary mode. We
start by providing an overview of the primary mode protocol.

Our protocol in primary mode starts off by executing the
Initialization Stage. The protocol then switches to continu-
ously iterating through Tone Exchange Stage, Distance and
Angle Measurement Stage, and Position Estimation Stage.

1. Initialization Stage: Two phones X and Y establish
loose time synchronization by calculating WiFi round
trip time and exchanging local clock values.

2. Tone Exchange Stage: One of the phones, say X , turns
on its two microphones and sends a “start” message
to phone Y . Upon receiving “start”, Y replies with a
“confirm” message, turns on its two microphones for
recording, and sends an audio tone as soon as its mi-
crophones are turned on. After receiving the “confirm”
message, X schedules its time to send its audio tone
based on the time sync information. Microphones on
both phones are turned off after X finishes sending its
audio tone. During this stage, both phones also sample
their accelerometer and geomagnetic sensors to obtain
a rotation matrix.

3. Distance and Angle Measurement Stage: The recorded
tones are first correlated with reference tones to com-
pute raw TOA cues. Then the two phones exchange
their TOA cues to calculate distance values and local
angles. The local angle measurement and the rotation
matrix obtained in the previous stage are transmitted to-
gether to the other phone.

4. Position Estimation Stage: The distance measurement,
two angle values and rotation matrices are fed to a
Kalman filter to estimate the phone’s relative 3D loca-
tion coordinate.

The next two sections establish the algorithmic details by
which we accomplish this protocol.
4 Static Localization

In this section, we derive the basic positioning mecha-
nism, assuming that the two mobile phones are static, i.e.,
they do not move. We first consider two localization cues for
the simpler 2D problem, which will then serve as building
blocks for our solution to the full-fledged 3D case.
4.1 Localization Cues

In primary mode, triangulation is based on two pieces
of information: TOA and power difference. Each of TOA
and Power contributes to its own individual angle estimate.
These angle estimates are later combined in §5.3.
4.1.1 Time of Arrival Cues

Assume that each phone has two mics and one speaker,
labeled as in Figure 3. Using BeepBeep as a subprocedure,



Figure 2. Typical phone with 2 mics
and 1 speaker

Figure 3. Two phones each with 2 mics
and 1 speaker

Figure 4. Deriving θ by the law of
cosines

we obtain four distances for each pair of mic-speaker com-
binations.

d1 = AC+DE d2 = AC+DF
d3 = BC+DE d4 = BC+DF

While we cannot solve these equations for any individual
mic–speaker distance, we can solve for the difference of two
mic–speaker distances for mics hosted on the same phone:

DE−DF =
d1−d2 +d3−d4

2
(1)

AC−BC =
d2−d3 +d1−d4

2
(2)

Consider the triangle shown in Figure 4 formed by mic A
and mic B on the local phone and speaker C on the remote
phone. Let O be the point that bisects AB, and let θ be the
angle 6 COA. The distance between the two mics AB is fixed
by the geometry of the phone.

We derive θ using the distance measurements above.
From the law of cosines, it follows that

cos(θ) =
AO2 +OC2−AC2

2AO·OC

cos(π−θ) =−cos(θ) =
B02 +OC2−BC2

2BO·OC
.

Combining these equations, and solving for θ yields

θ = arccos
(BC−AC)(BC+AC)

AB·(2·OC)
≈ arccos

BC−AC
AB

,

where BC+AC is approximated as twice OC. This approx-
imation is accurate when AB is small relative to OC, which
is typically the case as the distance to the remote phone is
much greater than between the mics on the local phone.

The algorithm uses a similar computation for triangle
DEF , resulting in an estimate for an angle φ, albeit in a po-
tentially different 2D plane.
4.1.2 Power Difference Cues

The idea of using power difference as an additional cue
stems from the observation that the received acoustic signal
of the contralateral mic experiences greater attenuation than
that of the ipsilateral mic. We use this difference in attenua-
tion as an additional indicator for the relative angle between
the two phones.

The principle of acoustic attenuation is complex and we
did not find it straightforward to model it analytically. For
example, Figure 5 shows that neither mic’s attenuation fol-
lows a simple relationship with relative azimuth angle. For
example, mic 1’s position at the back of the phone suggests
a power peak around 0 degrees. Instead, a power valley oc-
curs between -30 and +15 degrees at 1m. Similarly, mic 2’s
position at the base of the phone would suggest a monotonic
decrease as the azimuth rotates away from mic 2. This rela-
tionship is evident at 1m, but at 2m there is non-monotonic
behavior at -75, -15, and above +45 degrees.

Instead of an analytical model, we therefore use empirical
measurements to construct a lookup table with the following
attributes.
• distance: measured distance.
• power ratio: measured ratio of mic 1’s power to mic 2’s

power.
• angle mean: expected angle at the measured distance and

power ratio.
• angle stddev: expected standard deviation of the expected
angle.

As part of each position estimation, the power difference and
distance are mapped to estimates of angle and standard devi-
ation. These constitute the power difference cue.

Figure 6 shows the power ratios corresponding to Fig-
ure 5. The non-injective relationship between angle and
power ratio means a given power ratio is not definitively
mapped to a unique angle. In order to resolve the ambiguity,
each curve is partitioned into piecewise injective relations.
For example, the power ratio at 1m is represented by two
relations: one from [-90,+15), and another from [+15,+75].
To use the appropriate piecewise relation, an angle estimate
from the TOA cue is first calculated by the technique de-
scribed in §4.1.1. The TOA cue’s accuracy is not a concern
here because it is only necessary to select among relatively
large partitions in the angle space. Finally, the power infor-
mation is mapped to an angle estimate.

Undesirable attenuation may occur even with the assump-
tion that two users maintain line of sight. For example, a
user’s hand grip may block her phone’s speaker or mics. This
specific situation can be corrected by comparing the cap-
tured signal from the local speaker to the local mic with its
known signature, and upon detecting a mismatch, reminding



the user to unblock the speaker and mics.

4.1.3 Alternative Cues
Note that in principle, additional cues for position estima-

tion could be used. We did consider several of these, but for
various reasons decided to employ only TOA and power dif-
ference. For example, one tempting cue is the spectral trans-
formation information which is an important cue for human
hearing localization [6]. The high frequency component of
an audio signal can be blocked by a human’s head, result-
ing in a frequency difference of the received signal between
the human’s two ears. The spectrum difference is obvious
when the wavelength of the high frequency component in
the signal is much smaller than the size of the human’s head.
However, the limited frequency response of microphones in
current phones (the receiving bandwidth commonly has an
upper limit of 8k Hz) prevents us from using a broadband
audio signal, and the wavelength of currently used signals is
comparable to the size of the phone. Therefore, we found in
our tests that due to the diffraction effect, the received signals
at the two mics are insufficiently different in the frequency
domain for our purposes.

4.2 Static 3D Localization
The TOA and power cues discussed in the previous sec-

tion yield for each phone 2D angle information relative to
this phone’s own coordinate system. The next step is now
to combine these cues from both phones, and calculate each
phone’s 3D position. To do so, we must translate the angle
calculated in one phone’s (phone Y ) coordinate system to an
angle in the other phone’s (phone X) coordinate system.

Let the two mics of phone X lie along a phone’s x-axis,
and let the z-axis be normal to the face of the phone. The 2D
angle θ calculated by this phone and the measured distance
d define a circle whose center is on the x-axis as illustrated
by Circle 1 in Figure 7. This circle is the well-known cone of
confusion [3]; with one phone’s measurements alone, the lo-
cation of the remote phone is underconstrained and can lie at
any point along the rim of the circle. Fortunately, with both
phone’s measurements and with additional sensor informa-
tion, the ambiguity can be resolved.

The coordinate of the center of the circle can be repre-
sented by a vector ~v1 = (d cosθ,0,0). The radius of the cir-
cle is d sinθ. Thus the circle is determined by its center’s
coordinate and radius. Similarly, let the remote phone also
define its own circle ~v2 = (d cosφ,0,0) relative to its coor-
dinate system, where φ is an angle in the remote phone’s
coordinate system.

The translation – which must map the mirror of ~v2 which
is ~v−2 = (−d cosφ,0,0) in the local phone’s coordinate sys-
tem – is computed as follows. First, the rotation matrix R
is used to map a vector in a phone’s coordinates to Earth
coordinates. R is calculated by using data from gravity (ac-
celerometer) and geomagnetic (digital compass) sensors. On
the Android operating systems, R is provided as a library
function. The vector to represent the same circle on another
phone is:

~v∗2 = R−1
1 R2

~v−2 (3)

The vector is translated from the local phone’s coordinate
system to Earth coordinate system using rotation matrix R2,
and then translated to the other phone’s coordinate system
using rotation matrix R1. This gives us two circles on the
local phone’s coordinate system, and their intersection point
~p = (px, py, pz) is the coordinate of the remote phone. Fig-
ure 7 shows two circles: Circle 1 is given from ~v1 calculated
with the local angle measurement, and Circle 2 is transferred
from the remote phone.

We now have three equations:

|~p|= d (4)
~p ·~v1

|~x||~v1|
= cosθ (5)

~p ·~v∗2
|~x||~v∗2|

= cosφ (6)

We illustrate how the coordinate ~p of the remote phone is
obtained using a closed form method. Equation (5) is solved
first and we obtain px = d cosθ. px is then substituted into
equation (4) and (6). As long as the two phones’ x-axis are
not parallel to each other, a pair of py and pz values can be
obtained by solving these two equations. Since there are ac-
tually two intersection points of the two circles, we eliminate
the point with negative pz on one of the two phones’ coor-
dinate system based on each phone’s z-axis accelerometer.
As shown in Figure 7, pz of ~p and pz of ~p′ are both positive
in the local phone’s coordinate system. However, pz of ~p′ is
negative in the remote phone’s coordinate system, hence ~p′ is
eliminated. As an alternative to the closed form method, the
least squares method can be applied for obtaining a single
coordinate. In addition, the next section achieves continu-
ous localization by employing Equations (4)-(6) in a linear
estimator model.

5 Continuous Localization
The basic procedure for continuous localization simply

takes sequential static position estimates as fast as possible.
We are able to cope with very fast changes in relative posi-
tion by tackling the following additional challenges.

5.1 Motion-Induced Measurement Error
Our static acoustic localization algorithm assumes that

both phones are stationary during the exchange of audio
tones. Figure 8 illustrates the measurement error caused by
translational and rotational movement during one-way audio
tone exchange. The error s is limited to the displacement of
the phone in the intervening period between the reception of
the tone at the ipsilateral mic B and at the contralateral mic
A.

For translation motion shown in Figure 8(a), consider a
tone that reaches B and A at time t1 and t2 respectively.
Translation motion away from the tone between the time
when the tone reaches B and when it reaches A causes the
contralateral mic to receive the tone at position A′ at time t3.
We assume that the distance to the remote phone dominates
the distance between the mics AB, so θ′ ≈ θ, and that the
line k tangent to t2 at x3 intersects A. Therefore, s can be
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calculated as:

s = d′1−d1 ≈ l cosθ

where l is found by comparing the distance sound travels to
the distance the phone travels in the interval [t1, t3].

l = (d′1−d2)
vtranslation

vsound

For rotation motion shown in Figure 8(b), we continue
our assumptions from above. Specifically, we assume that
6 A′AB is a right angle because the absolute separation be-
tween A and A′ is small, providing θ′′ ≈ θ′ ≈ θ. Also, we
assume that A′x3 is a reasonable approximation of the tone’s
arc at t3. Therefore:

s = d′1−d1 ≈ l sinθ

Fortunately, the practical consequences of movement er-
ror are limited due to slow human movement velocity rel-
ative to sound velocity. Table 1 shows the degree of angle
measurement error resulting from various movement veloci-
ties and phone orientations.
5.2 Time Synchronization and Tone Overlap

The preceding analysis only considers error introduced by
one-way error tone transmission. BeepBeep acoustic rang-
ing and our usage of it described thus far performs an un-
synchronized two-way tone exchange. During the arbitrarily
long round trip time, phone displacement may be significant.
Therefore, we use two techniques to minimize round trip
time. First, the phones perform loose time synchronization
once at initialization. Second, the phones exchange tones

orientation (degree)
velocity (m/s) 20◦ 45◦ 70◦

Translation
1m/s 0.416 0.113 0.020
5m/s 2.200 0.574 0.100

10m/s 4.779 1.169 0.204
20m/s 12.58 2.436 0.420

Rotation
1m/s 0.149 0.112 0.054
5m/s 0.731 0.555 0.268

10m/s 1.432 1.093 0.530
20m/s 2.755 2.127 1.031

Table 1. Impact of phone velocity and
orientation on angle error (degree)

in close succession with partial overlap. The net result is
a decrease in two-way tone exchange time to nearly that of
one-way tone exchange time plus clock sync error.

Loose time sync is performed as follows. The phones first
exchange several pings with CSMA backoff disabled to de-
termine stack traversal plus WiFi round trip time. The phone
with the lower device id then sends its local clock value
(again without CSMA backoff) to the phone with the higher
device id which adjusts its local clock by the appropriate off-
set minus estimated WiFi round trip time. This suffices to
synchronize clocks within 10 milliseconds.

Once synchronized, the phones exchange tones at a fixed
period and phase. Because the two directions of the au-
dio exchange may overlap with one another, the tones must
be easy to detect despite interference. We choose tones
with low cross-correlation (interference rejection) and high



auto-correlation (pulse detection) following the techniques
in [7]. Figure 9 shows strong relevance impulse for the auto-
correlated tone but not for the cross-correlated tones, indi-
cating that we can robustly distinguish tones.

Tone overlap does introduce the issue that the local
phone’s signal may be strong enough to mask the envelope
of the remote phone, especially when the distance between
the two phones is large. It will increase error of correlation
measurement even though special tones are used. Such over-
lapping impacts both power cue extraction and TOA cue ex-
traction. Therefore, our approach is an adaptive one in which
we insert a gap period between tone starting times and adjust
the gap based on the distance of the two phones and motion
speed. When the distance of the two phones is small and
the motion speed is fast, the gap is decreased as long as two
tones can still be successfully detected. When the distance
of the two phones gets longer, the gap is increased until there
is no overlap. This pleasantly trades off static accuracy for
motion error sensitivity to achieve higher overall continuous
localization accuracy.
5.3 Extended Kalman Filtering

We use an Extended Kalman Filter to smooth the mea-
surements from TOA and power cues, and track the motion
of the phone. The filter recursively updates its state of the
phone’s position, and adjusts the state based on the noisy
measurements of angle and distance. The filter model is sim-
ilar to the one proposed in [2] which is developed to track hu-
man motion based on acoustic signals received by a passive
microphone array. We adapt it to use our TOA and power
cues.

In our model, the state contains remote phone’s posi-
tion, velocity and acceleration on each axis of the local
phone’s coordinate system. The state vector at time k is:
sk = [ px py pz vx vy vz ax ay az ]

T , and the
state estimation equation is:

sk = Ask−1 +wk−1

where A is state transition matrix, and wk is a random vari-
able representing the state update error.

The measurement vector z contains the distance between
two phones d and two angles (one angle θ measured by the
local phone and another angle φ measured by the remote
phone). The measurement at time k is zk = [d,θ,φ]T . The
relationship between state vector and measurement vector,
which can be obtained using 3D coordinate transfer as shown
in Equations (4)-(6), is nonlinear. Hence the measurement
equation at time k must be linearized as shown below to fit
the Kalman filter model.

zk = h(s−k )+Hk(sk− s−k )+ vk

where the linearized matrix is

Hk = [
∂h(sk)

∂sk
]s−k

s−k denotes the estimated state before it is corrected by the
measurement. The random variable vk represents measure-
ment error, which in our problem gives error of distance and
angle measurement. wk and vk are assumed to be Gaussian

white noise and known a priori. Their covariance matrices
are denoted as Qk and Rk, respectively. Qk is determined by
standard deviation of updated state and state update speed.
To obtain Qk, we assume that the estimation noise comes
from acceleration estimation error which then leads to ve-
locity and distance estimation error.

Qk = GGT
σ

2
a

where G= [ 4t2

2
4t2

2
4t2

2 4t 4t 4t 1 1 1 ]T .
In the equations, σa denotes the standard deviation of es-
timated acceleration, and 4t denotes the time difference
between two consecutive measurements.

Rk can be obtained if the standard deviation of distance
and angles measurements are known. Let the standard devi-
ation of distance and two angles be σd , σθ and σφ, respec-
tively.

Rk = [ σd σθ σφ ]T [ σd σθ σφ ]

To simplify the calculation in our problem, we assume that
the angle and distance measurement errors and estimation
error are independent Gaussian distributions.

Based on the two equations above, the Kalman Filter al-
gorithm falls into two steps running recursively: predict step
and correct step.

1. In predict step, a new state is updated based on state
estimation equation, and an estimated error covariance
matrix P−k is obtained.

s−k = Ask−1

P−k = APk−1AT +Qk

2. In correct step, blending factor Kk is calculated at first,
then the state is corrected based on the measurement
residual. Finally, the estimate error covariance matrix
is updated.

Kk = P−k HT (HP−k HT +Rk)
−1

sk = s−k +Kk(zk−h(s−k ))

Pk = (I−KkH)P−k

Since we have multiple cues (TOA and power), we can get
multiple angles measurements at one time. There are two ap-
proaches to combine these multiple measurements. One ap-
proach calculates a weighted angle at time k which then is fed
into the Kalman filter. The weight of each cue is determined
by the standard deviation of the angle calculated by the cue.
Let αP and σP denote the angle measured by power and its
standard deviation. Let αT and σT denote angle measured
by TOA and its standard deviation. The weighting equation
is shown as below.

αC =
σ2

T

σ2
T +σ2

P
αT +

σ2
P

σ2
P +σ2

T
αP (7)

Another approach assumes that the angle measurement of
each cue is obtained at different time point (k +4 and
k−4), then angles from different cues are all used during
filtering process. The measurement error covariance matrix



R should be recalculated at each time an angle measured by
different cue is used. We have used the first approach to com-
bine the measured angles by different cues which has lower
time complexity.
5.4 Fallback Mode

When localization detects that the phones’ relative posi-
tions are near the alignment region, we switch from primary
mode to fallback mode. Fallback mode has two objectives:
(1) to provide location estimates while the two phones are
not in the alignment region, and (2) to detect when the two
phones have re-entered each other’s alignment region. Both
of these objectives are accomplished by continuously cal-
culating the displacement of each phone with accelerometer
and compass readings. Fallback mode operates as follows.

• Initialization establishes initial coordinates based on the
last primary mode coordinates.

• Phones continuously exchange accelerometer and com-
pass readings.

• Based on local and remote accelerometer and com-
pass updates, each phone calculates its relative displace-
ment, and updates its position estimate.

• If it is detected that the phones are back within the align-
ment region, primary mode is restarted.

The accelerometer is sampled very frequently at 20-50Hz.
A key requirement of fallback mode is to quickly update po-
sition estimates based on initial position estimates of the lo-
cal phone p1 = (0,0,0) and remote phone p2 = (x2,y2,z2),
and the accelerometer and compass updates u1 = (a1,c1) and
u2 = (a2,c2) where a and c each consist of triples (x,y,z).
Our phone-relative localization scheme assumes that p′1 =
(0,0,0), and therefore:

p′2 = p2 +R−1
2 R1d(a2)−d(a1)

where R1 and R2 are Rotation Matrices as described in §4 and
d(a) = v∆T + 1

2 a∆T 2. The initial velocity v is estimated by
the state of Kalman filter at the initial position. With updated
position p′2, detection of the alignment region is performed.
Let ρ be the empirically determined angle that defines the
boundary of the alignment region. Let θ be the angle of p′2
relative to the z-axis (recall the axes defined in Figure 7) in
the plane defined by p′2, mic A and mic B. Then we have:

θ = arcsin
x′2
|p′2|

A comparison of θ > ρ serves to indicate whether the remote
phone is outside the alignment region.
5.4.1 Identifying the Alignment Region

We propose a systematic method to identify the optimal
alignment region. The idea is to select a fallback mode or pri-
mary mode based on the expected error. The primary mode
error is angle-dependent, whereas the fallback mode error
is time-dependent. Specifically, the fallback mode error in-
creases over time because of displacement measurement er-
ror accumulation. Fortunately, primary mode measurement
is not subject to time-dependent error, and therefore any pri-
mary mode measurement acts as a new initial position for

fallback mode. Therefore, we know the primary mode error
from Equation (7), and we know the fallback mode error be-
cause we bound the time between measurements according
to §5.2. For every angle θ, we precompute both expected pri-
mary and fallback error. Past a certain angle ρ, the expected
primary error will start to exceed the expected fallback error.
At this point we switch to fallback mode.

We define an indicator I = e f allback(n∆T )− εeprimary(θ).
e f allback(n∆T ) denotes the position error after running fall-
back mode n∆T time. It can be approximated by the standard
deviation of acceleration σa as e f allback ≈ |σ2

a(n∆T )2/2|.
eprimary(θ) denotes the position error of primary mode at an-
gle θ. It can also be obtained if the standard deviation σθ

is known. If the indicator I has positive value, the phone is
changed to fallback mode until I changes to positive.

While the above method identifies the optimal alignment
region, we used a heuristic for simplicity. Namely, we op-
erate in primary mode whenever we are between the angles
(−90,90). This heuristic is based on prior work [7] that in-
dicates acoustic localization operates poorly when mics and
speakers are turned away from each other.

6 Implementation
We implemented our primary acoustic localization

scheme on the Android v2.2 operating system. We have im-
plemented fallback mode in a simulator, and are currently
incorporating it into the phone implementation. Below, we
discuss implementation details.

Audio Signal Selection: Audio signal selection is impor-
tant for angle and distance measurement by the TOA cue.
Due to the fact that speakers and mics on smartphones are
not ideal devices, audio signals will be distorted when sent
and received. These distortions are the main cause for angle
and distance measurement errors. To reduce this error, the
signal should be carefully selected based on the frequency re-
sponse of the phone’s speaker and mics. We have tested with
different parts of the audio spectrum (2-6 kHz, 2-4 kHz, and
4-6 kHz) and duration time (25ms, 50ms and 100ms). We
found that mic B (the mic near the camera on the Nexus One)
cannot receive signals with frequency higher than 4 kHz, be-
cause its intended purpose is to sample ambient noise for
noise cancellation. Hence we chose a signal frequency of 2-
4 kHz and a duration of 25ms because long duration signals
are more susceptible to error when the phones are moving.
We also found that the angle and distance accuracy did not
increase with longer duration signals. The selected 2-4 kHz,
25ms signal is then modulated with a pair of 20-bit pseudo
random codes using Binary Phase Shift Keying. The pseudo
random code is generated using the same method as in [7].
The resulting two signals exhibit low cross correlation and
high auto correlation.

Position Estimation Calculation: It is critical to keep
the time for computing one localization point to a minimum,
in order to reduce lag. In our prototype, we have imple-
mented two approaches to enable efficient position estima-
tion calculation. The first approach is phone-only: phones
exchange angle and distance information with one another
as described in §3, and each phone calculates the position
based on the exchanged data. The second approach is server-



assisted: phones send their received and timestamped audio
tones to a cloud server, the server performs the position cal-
culation, and returns the results to the clients. The benefits
of this approach is that the server can perform the necessary
calculations significantly faster. This is particularly true be-
cause the bulk of the position calculation time is spent on
correlation calculation (see §7), which is readily paralleliz-
able. For example, the recorded tone can be split into multi-
ple pieces, and the correlation of each piece can then be cal-
culated in parallel, utilizing multiple (phone or server) cores.
Upon completion of calculating individual pieces, the results
can be recombined in a straightforward manner to find the
peak correlation. Another strategy is to recode the correla-
tion algorithm for parallel GPU hardware already available
on the phone or server. It should be noted that dedicated DSP
hardware performs correlation calculations at line speeds for
all variety of radio signals on the modern phone. Investi-
gation of these options is left for future work. Overall, we
believe there are no inherent barriers to lowering latencies
substantially.

Android Issues: The Android OS does not currently pro-
vide an API to turn on two microphones and fetch recording
data from them simultaneously. Our current implementation
simulates simultaneous activation of two microphone by first
turning on one microphone to record one tone, then switch-
ing to the other microphone to record the same tone sent a
second time. Mic driver and operating system modifications
may permit both microphones to record at the same time.

7 Evaluation
We have evaluated our two phone localization scheme,

and found it is capable of the following.

• Achieves continuous 3D localization accuracy within
13.9cm position error over 90% of the time, and within
4.9cm position error over 50% of the time.

• Incorporates both TOA and power cues in a comple-
mentary manner to estimate angles and distances.

• Operates smoothly with simulated motion paths up to
distances of 2m.

After detailing our methodology, we first look at mi-
crobenchmarks on individual protocol elements, before look-
ing at macrobenchmarks on full motion paths.

7.1 Methodology
We set up our experiments in the following manner.

7.1.1 Devices
We tested on two off-the-shelf Nexus One phones. Both

devices run Android operating system v2.2. The Nexus One
contains the minimum set of sensors necessary for our local-
ization scheme. These are: two microphones, one speaker,
three-axis accelerometer, and three-axis digital compass. It
has a single core 1GHz Qualcomm Snapdragon Scorpion
processor and GPU. It is capable of communication in WiFi
802.11 a/b/g, 3G, EDGE and GPRS.
7.1.2 Metrics

We are interested in the following metrics.
Position Error. Our primary target is small position mean
error and small standard deviation. Error is defined as the

Figure 10. Experimental Setup

distance between measured position and ground truth posi-
tion. Results for mean and standard deviation are conducted
over 30 trials.
Angle Error. The overall position error is a combination of
ranging (distance) error and angle error. However, several of
the evaluations we present are based on angle error, rather
than position error. This is because position error is more
sensitive to angle error than distance error. Ranging error
was extensively studied in [12] and was found to be mini-
mal. In addition, the Kalman filter position estimate requires
as input empirically measured angle standard deviations de-
rived from both TOA and Power.
Operational Range. As the distance separating the two
phones increases, distance error (and hence position error)
accumulates. We also measure the position error as a func-
tion of distance.
Sync Time. Short sync time permits us to tolerate phone mo-
tion and still accurately estimate position.
Position Update Lag. Delay between tone exchange and po-
sition computation results in position update lag.

7.1.3 Experimental Setup
The test environment consisted of a 4m x 3m office room.

The office was not anechoic, and therefore was subject to
echo and multi-path effects. Furthermore, there was regular
office furniture consisting of a bookshelf, desk and chair in
the room, though nothing occluded the direct path between
the two phones. The office was quiet most of the time, with
only very occasional disturbances.

In order to precisely control ground truth position, we af-
fixed each phone to a standard tripod as shown in Figure 10.
We taped each phone securely to the tripod head in such
a fashion as to not obstruct speaker nor microphones. The
tripods were capable of angular rotation in both azimuth and



elevation, and had a height adjustment range between 100cm
to 200cm. In order to precisely control ground truth angle,
we implemented a helper GUI on the phone that displayed
the angular orientation of the phone in real time.

For continuous localization experiments, we had the ad-
ditional challenge of determining ground truth while poten-
tially both phones were in motion. Our initial efforts with
various physically constrained, motion generating gadgets
proved unsuccessful. We settled on a method in which we
simulated continuous motion with discrete time steps. We
chose one phone to be fixed, and the other phone to be mo-
bile. Between estimations, we manually moved the mobile
phone and tripod to fixed points along the motion path. Fig-
ure 10 shows the Z motion path with the mobile phone and
tripod. Establishing ground truth was subject to the error of
aligning the center of the tripod with the motion path, which
we estimate to be within 2cm. An alternative approach to ac-
quire ground truth is to use vision-based tracking [2], which
we leave for future work.

7.2 Microbenchmarks
7.2.1 TOA Cue Performance

We first look at TOA Cue performance independently.
We fixed the position of one phone X and the distance be-
tween two phones. We then placed the other phone Y at
various azimuth and elevation angles relative to X . Fig-
ure 11(a) and Figure 11(c) show the mean elevation and az-
imuth angle error respectively, as calculated by TOA cues
alone. Similarly, Figure 11(b) and Figure 11(d) show the
corresponding standard deviations. Overall, there is notice-
able asymmetry in both the mean and standard deviations,
across the phone, which is less surprising upon consider-
ing the asymmetrical placement of the sensors on the phone
shown in Figure 3. Of note, the azimuth mean error is very
low from (azimuth =−15,elevation =−45) to (−15,−15),
and from (15,0) to (45,30). On the other hand, the elevation
mean error is best from (azimuth = −30,elevation = −45)
to (0,−15). Low standard deviation for both azimuth and
elevation is clustered around the center (0,0).

These results suggest two conclusions. First, it is im-
portant to obtain mean error and standard deviation values
empirically because it is nontrivial to model them from first
principal, even though our phones are ostensibly simple geo-
metric structures amenable to modeling. Standard deviation
plays an especially important role in the weighting of our
Kalman filtering in Equation (7).

Second, mean error and standard deviation exhibit dif-
ferent trends: whereas the mean error is lowest toward the
periphery, standard deviation is lowest toward (0,0). This
can be attributed to two factors. First, differences between
ranging distances are larger toward the periphery, making it
easier to estimate the angle. On the other hand, variability
of the ranging distance also has a higher impact on the an-
gle estimation toward the periphery, causing higher standard
deviation at the periphery as well.

7.2.2 Power Cue Performance
Based on empirical measurements collected simultane-

ously with those in the preceding section, we built a mapping
from power ratio to angles as described in §4.1.2. It is shown

in Figure 12. It shows that for a power ratio of 0.6, the angle
should be mapped to −60 degrees. We currently use a two
piecewise injective functions split at 0 degrees. Therefore,
in order to map power of 0.5 or below, a determination must
first be made as to whether the angle is positive or negative.
Above power ratio 0.5, the standard deviation on the positive
angle side is too large to be of much utility, so we completely
ignore the power cue in this region.

Figure 15 shows the resulting angle mean error and stan-
dard deviation when using power cues and map alone to es-
timate the true angle. Angles in the range (−90,−60) per-
form extremely well in mean error and standard deviation,
whereas angles in the mirror positive range perform poorly.
This can be attributed to the specific phone geometry, which
has one mic positioned on the lower lip of the phone, and
another mic positioned on the back face of the phone (see
Figure 3). Power cue’s error properties actually complement
TOA cue’s properties nicely: Power cue’s standard devia-
tions are best past −45, whereas TOA’s cue’s standard devi-
ations start to degrade at −45. The Kalman filter accounts
for these empirically measured weightings.
7.2.3 Time Sync and Tone Overlap

We next evaluate the minimal sync time obtainable at a
reference distance of 1.5m distance between phones. We
adjusted the interval between tone exchange until the tones
were just distinguishable from one another. Figure 14 shows
the operation where a tone from the remote phone is received
at 15ms, and a tone from the local phone is received at 50ms.
Therefore, since each tone is 25ms long, we have achieved
an overlap of 15ms, yet still maintained the ability to distin-
guish tones and power levels from one another. For shorter
reference distances (and hence louder remote tones), we may
obtain even tighter overlap. For longer reference distances
(and hence quieter remote tones), the gap time is capped by
the time to exchange both tones non-overlapped, which is
50ms.
7.2.4 Position Estimation Lag

As noted in §6, we have implemented both phone-only,
and server-assisted position estimation. We tested their rela-
tive performance. Our server implementation is on a vanilla
workstation PC, with a 2 GHz single core processor and
512MB of main memory.

The entire estimation procedure consists of (1) correla-
tion calculation, (2) distance and angle calculation for TOA
cues, (3) angle calculation for power cues, and (4) Kalman
filter position estimation. From Figure 13, it is clear that the
vast majority of the time is spent on the first step: calculating
correlation between the reference signal and the audio signal
recorded by each of the two microphones. The computa-
tion time of other subprocedures in position estimation are
all less than 1ms. §6 mentions several available techniques
for reducing correlation calculation time.

7.3 Macrobenchmarks
7.3.1 Motion Path Performance

We tested a range of different motion patterns by fixing
one phone X , and moving the other phone Y according to a
predefined motion pattern. We selected three basic patterns:
a straight line, a staircase Z, and a sinusoidal S. Phone Y ’s



Azimuth
-‐45 -‐30 -‐15 0 15 30 45

-‐45 5.8 4.35 0.56 2.35 1.63 1.76 2.31
-‐30 3.36 0.91 0.05 2.19 2.68 1.06 1.96
-‐15 0.16 3.97 0.47 3.73 3.53 2.68 3.32
0 1.1 1.8 1.7 1.8 1.7 0.9 0.7
15 2.31 1.89 3.85 3.73 2.69 0.95 0.79
30 0.9 2.86 3.84 3.73 0.69 0.89 1.05
45 3.17 0.87 2.98 3.96 1.62 2 3.53

Azimuth
-‐45 -‐30 -‐15 0 15 30 45

-‐45 8.83 6.74 7.49 4.68 6.35 6.94 7.05
-‐30 10.25 6.01 4.45 4.1 3.76 6.31 8.42
-‐15 8.31 7.2 4.83 5.79 5.68 6.75 5.51
0 4.1 3.7 5.9 4.5 3.1 6.8 3.5
15 5.85 7.18 5.53 5.39 3.1 9.32 5.29
30 9.74 8.26 3.15 4.97 6.71 8.18 10.43
45 7.87 6.92 2.26 5.05 6.32 5.16 10.61
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(a) Azimuth mean error (degrees)

Azimuth
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-‐30 3.36 0.91 0.05 2.19 2.68 1.06 1.96
-‐15 0.16 3.97 0.47 3.73 3.53 2.68 3.32
0 1.1 1.8 1.7 1.8 1.7 0.9 0.7
15 2.31 1.89 3.85 3.73 2.69 0.95 0.79
30 0.9 2.86 3.84 3.73 0.69 0.89 1.05
45 3.17 0.87 2.98 3.96 1.62 2 3.53

Azimuth
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-‐45 8.83 6.74 7.49 4.68 6.35 6.94 7.05
-‐30 10.25 6.01 4.45 4.1 3.76 6.31 8.42
-‐15 8.31 7.2 4.83 5.79 5.68 6.75 5.51
0 4.1 3.7 5.9 4.5 3.1 6.8 3.5
15 5.85 7.18 5.53 5.39 3.1 9.32 5.29
30 9.74 8.26 3.15 4.97 6.71 8.18 10.43
45 7.87 6.92 2.26 5.05 6.32 5.16 10.61
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(b) Azimuth error standard deviation (degrees)

Azimuth
-‐45 -‐30 -‐15 0 15 30 45

-‐45 3.94 0.32 0.95 0.22 5.14 4.32 3.5
-‐30 5.52 2.42 1.91 2.39 1.46 4.85 1.55
-‐15 3.3 3.68 0.82 1.48 3.25 1.64 3.79
0 3.22 1.02 5.15 2.33 4.65 1.02 3.77
15 4.31 4.36 2.91 3.36 3.5 2.94 5.5
30 5.62 1.79 2.53 3.86 2.97 3.6 4.78
45 3.32 0.56 5.56 2.59 3 1.51 3.07

Azimuth
-‐45 -‐30 -‐15 0 15 30 45

-‐45 9.84 8.28 8.05 6.07 7.77 6.32 9.82
-‐30 6.13 7.67 8.03 7.21 8.62 6.37 7.45
-‐15 5.32 8.72 5.64 4.73 3.56 5.29 6.27
0 6.42 6.69 5.05 3.69 5.71 7.26 6.03
15 4.58 4.53 5.65 3.83 3.07 6.41 6.32
30 8.58 7.8 5.31 5.1 6.74 4.45 7.79
45 6.28 8.5 7.21 5.06 6.95 5.04 9.73
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(c) Elevation mean error (degrees)

Azimuth
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-‐30 5.52 2.42 1.91 2.39 1.46 4.85 1.55
-‐15 3.3 3.68 0.82 1.48 3.25 1.64 3.79
0 3.22 1.02 5.15 2.33 4.65 1.02 3.77
15 4.31 4.36 2.91 3.36 3.5 2.94 5.5
30 5.62 1.79 2.53 3.86 2.97 3.6 4.78
45 3.32 0.56 5.56 2.59 3 1.51 3.07
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-‐15 5.32 8.72 5.64 4.73 3.56 5.29 6.27
0 6.42 6.69 5.05 3.69 5.71 7.26 6.03
15 4.58 4.53 5.65 3.83 3.07 6.41 6.32
30 8.58 7.8 5.31 5.1 6.74 4.45 7.79
45 6.28 8.5 7.21 5.06 6.95 5.04 9.73
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(d) Elevation error standard deviation (degrees)
Figure 11. Angle estimation error with TOA cues
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Figure 12. Power cues map to angle
estimates
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Figure 13. Position estimation over-
head
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Figure 14. Distinguishing time sync
overlapped signals

Angle,	  Ground	  Truth
-‐90 -‐75 -‐60 -‐45 -‐30 -‐15 0 15 30 45 60 75 90
5 5.1 6 7.6 10.4 6.6 4 11.7 4.3 3.8 17.8 25.7 34.3

Angle,	  Ground	  Truth
-‐90 -‐75 -‐60 -‐45 -‐30 -‐15 0 15 30 45 60 75 90
1.44 4.23 5.98 12.52 15.73 14.1 20.75 10.79 7.69 3.82 12.94 12.21 17.55

(a) Mean error (degrees)
Angle,	  Ground	  Truth

-‐90 -‐75 -‐60 -‐45 -‐30 -‐15 0 15 30 45 60 75 90
5 5.1 6 7.6 10.4 6.6 4 11.7 4.3 3.8 17.8 25.7 34.3

Angle,	  Ground	  Truth
-‐90 -‐75 -‐60 -‐45 -‐30 -‐15 0 15 30 45 60 75 90
1.44 4.23 5.98 12.52 15.73 14.1 20.75 10.79 7.69 3.82 12.94 12.21 17.55

(b) Standard deviation (degrees)
Figure 15. Angle estimation error with Power cues in 2D

motion path ranges from between 80cm to 160cm away from
the phone X in the horizontal plane. We investigate three
relative height positions of the phones in the vertical plane:
High, Mid and Low. In High, Y was 50cm above X . In
Mid, the two phones were at the same height. In Low, Y was
50cm below X . In all, we present nine distinct motion paths:
one for each pattern and relative height combination. The
positions are reported in terms of fixed phone X’s coordinate
system.

For each motion path, we compare three types of position
estimates. First, we look at raw TOA-only estimates. Sec-

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

Error (cm)

P
er

ce
nt

at
io

n 
(%

)

 

 

raw TOA data
raw TOA+Power data
Kalman Filter

Figure 16. Position error CDF & PDF across all motion
paths

ond, we look at raw TOA+Power estimates. Third, we look
at Kalman filtered TOA+Power estimates. In addition, we



also provide an explicit break down of the measurement er-
ror versus ground truth for each motion path. These errors
can be noisy because individual measurements are noisy.

Figure 16 shows the CDF and PDF for the position esti-
mate errors across all of the tested motion paths. Position
estimation with Kalman filtering achieves less than 13.9cm
position error over 90% of the time, and less than 4.9cm po-
sition error over 50% of the time. Using unfiltered TOA and
Power cues results in less than 19cm error 90% of the time,
and less than 6.1cm error over 50% of the time. Using TOA
cues alone results in less than 20cm error 90% of the time,
and less than 6.9cm error over 50% of the time.

Figure 17 and Figure 18 show individual motion paths for
High and Low respectively. Mid is omitted as it is substan-
tially similar. A few points are worth highlighting. First,
visual inspection indicates that the Kalman filter substan-
tially improves upon both the raw TOA and TOA+Power
cues. The error graphs verify that the average position er-
ror after Kalman filtering is 5.98cm, compared with 9.49cm
by TOA cues only and 8.92cm by TOA and power cues to-
gether. Rarely does the Kalman Filter error exceed that of the
other two for any point estimate. On the other hand, while
TOA+Power cues are superior on average to TOA power
cues alone, a minority of the time, TOA+Power cues actu-
ally perform worse than TOA power cues. This suggests that
we should potentially give less weight to Power cues.

Second, localization of Line path is the best (0-5cm er-
ror); S path localization is fairly good (5-10cm error); Z
paths localization is performs least well (10-15cm error).
This suggests that smooth continuous motion is fairly well
supported by the Kalman filter, and that sharp turns are diffi-
cult to compensate. Future work is to detect sudden acceler-
ation changes and adapt the Kalman filter accordingly.

Third, our localization scheme works well despite
changes in relative phone height: High, Mid, Low. There
was no discernible relationship between the Heights. It is
possible that differences would emerge had we the ability
to further increase the height differential. In this regard, we
were limited by our tripod’s adjustment capability.
7.3.2 Operational Range

We tested the position error as a function of distance. Two
phones were set up at various distances (1m, 2m and 4m) and
angles (−45,45) relative to one another. For this experiment,
we used a larger 6.5m x 5.5m test environment with other-
wise similar properties to the first environment. Figure 19
shows that position error standard deviation is quite small at
1m and at 2m, but exhibits increased sensitivity to distance
at 4m. Of note, the y-axis shows much smaller standard de-
viation than the x-axis in the tighter (−15,15) range because
y-axis position error here is mostly a function of distance er-
ror, which is much less than than angle error.

8 Related Work
Positioning and localization are key primitives in today’s

mobile phone apps, and it is therefore not surprising that
there exists significant research on various variants of these
problems (e.g. [9]). Of most interest with regard to our work
are infrastructure-based approaches for fine-grained local-
ization, as well as other acoustic-based solutions. Finally,
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Figure 19. Position error as a function of distance

it is insightful to compare our proposed solution with work
on human hearing.

Infrastructure-based Solutions: Systems such as Ac-
tiveBat [8] and Cricket [13] are TOA-based and can achieve
centimeter resolution localization, but require dense infras-
tructure deployment, and special end user ultrasonic devices,
which renders them unsuitable for our purposes. A common
technique used in these and other TOA-based localization al-
gorithms is to take multiple distance measurements, generat-
ing a nonlinear system of equations and performing gradient
descent [9]. Unfortunately, when we tested this approach, we
found that it magnified any distance measurement error into
considerable 3D position error. Instead, our algorithm takes
advantage of the unique TOA properties of multiple mics and
speakers on the phones.

Game consoles such as Kinect and Wii also perform high-
precision 3D localization. Kinect projects a near-infrared
mesh and employs a fixed camera with vision recognition
on the near-infrared field to monitor movement of objects in
front of the camera. The Wii uses a sensor bar and hand-
held remote to perform infrared distance measurements to
determine location. Both Kinect and Wii thus assume fixed
infrastructure support.

Acoustic Localization: The system more relevant to
ours is BeepBeep, which performs pairwise acoustic distance
measurements. We discuss it in detail in §2. Other acoustic
localization techniques include ENSBox [7], which is a dis-
tributed and self-calibrating localization system for outdoor
environments. It includes a custom-built hardware with each
node consisting of a 4 mic array. Nodes first perform acous-
tic ranging, followed by bearing estimation and position es-
timation. Several algorithmic differences between our work
and ENSBox are notable. First, ENSBox relies on node-
relative time synchronization for ranging. Second, ENSBox
uses its relatively more abundant mic array to estimate bear-
ing and perform beamforming based on angle of arrival by
phase shift cross-correlation. Third, ENSBox position lo-
calization relies on least squares estimation and gradient de-
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Figure 17. Raw and filtered position estimates for Line, Z and S paths at High height.

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

x (cm)

y 
(c

m
)

 

 

raw TOA data
raw TOA+Power data
Kalman Filter
Ground Truth

−50 0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

x (cm)

y 
(c

m
)

 

 

raw TOA data
raw TOA+Power data
Kalman Filter
Ground Truth

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

x (cm)

y 
(c

m
)

 

 

raw TOA data
raw TOA+Power data
Kalman Filter
Ground Truth

0 5 10 15 20
0

10

20

30

Time (second)

E
rr

or
 (c

m
)

0 5 10 15 20 25
0

10

20

30

40

50

Time (second)

er
ro

r (
cm

)

0 5 10 15 20 25
0

10

20

30

40

50

Time (second)

er
ro

r (
cm

)

Figure 18. Raw and filtered position estimates for Line, Z and S paths at Low height.

scent, which is subject to poor initialization and higher error
rates.

Other work based on acoustic localization includes [10,
14, 4]. These systems achieve resolution in meters, which
is insufficient for us, and they all make strong assumptions
about infrastructure support and availability of spatially dis-
tributed sensors. Similarly, there is significant work on mi-
crophone array beamforming [15], which seeks to detect the
most probable location of a sound source while minimiz-
ing noise from other sources. Unlike our work, this line of
research typically assumes more than two mics (often cus-
tom hardware), a passive receiver, and an exogenous sound
source.

Human Hearing: Interestingly, human hearing naturally
performs a form of real-time 3D localization [3]. It is there-
fore insightful to understand whether techniques used by the
human ear could be applicable in our smartphone context.
In principle, human hearing 3D localization works as fol-
lows: Given an audio source closer to the ipsilateral ear than
the contralateral ear, the received signals at each ear may
exhibit both amplitude and phase differences, termed the in-
teraural intensity difference (IID) and interaural time differ-
ence (ITD) cues respectively. Human audio processing now
translates these IID and ITD cues into distance ranges. How-
ever, two distances from two fixed receivers alone are insuf-
ficient to disambiguate position in 3D. This resulting ambi-



guity is termed the cone of confusion, and is a representation
of the points which are equidistant from the ipsilateral and
contralateral receivers. The key to resolving the ambiguity
is the Head-Related Transfer Function (HRTF), a series of
acoustic filters that transforms the sound due to the intricate
structure of the outer ear, head and torso [6]. Intriguingly,
HRTFs have proven elusive to analytical modeling [5], vary
considerably per individual [16], and are typically measured
empirically [1].
9 Limitations & Future Work

Impact of Externalities: Our work described in previ-
ous sections is preliminary in the sense that we have not yet
evaluated fully the consequences of externalities. For exam-
ple, as with all acoustic localization techniques, our system
is susceptible to error from solid-body interference, and from
the variable propagation speed of sound in more or less hu-
mid air. The former source of error indicates that our local-
ization technique is not suitable for environments with many
obstructions. The latter source of error may be mitigated
with calibration. On the whole, we view these as accept-
able tradeoffs for the ability to perform pairwise localization
with commodity mobile devices. Another potential source
of problems is noise. We have not yet fully evaluated the
impact of background noise on the accuracy of the various
cues employed by our algorithm, but we are hopeful that the
algorithm should have sufficient robustness in practice. This
optimism is spurred by our finding in Figure 14 which shows
that overlapping tones (which is one source of noise) does
not overly affect our algorithm.

More Powerful Devices: Our work is guided by cur-
rently available smartphone platforms. We believe that the
key observations and principles derived in this work will
hold even in next generation phones with additional sensors
and more mics/speakers, however, the having additional mic-
s/speakers or sensors may be utilized to achieve even better
accuracy. For example, it would be possible to extend our
algorithms to the case in which 3 mics/1 speaker, or 2mics/2
speakers (left channel, right channel) are available.
10 Conclusion

In this paper, we ask the question whether it is feasible on
today’s commodity phones to enable high-speed, locational,
phone-to-phone games and applications, in which the two
phones determine and maintain each other’s relative position
in real-time. We have shown that the underlying localiza-
tion problem is unique in that its requirements are particu-
larly challenging. Nevertheless, our results indicate that by
exploiting and suitably combining acoustic signaling mech-

anisms, two microphones on each phone, and various sensor
information, it is possible in principle to achieve real-time
phone-to-phone 3D localization with an accuracy sufficient
for many applications. However, it is clear that before the po-
tential of HPLL applications can be fully tapped, much more
work is required. We view this paper as a first step towards
this goal.
11 References
[1] M. Aytekin, E. Grassi, M. Sahota, and C. F. Moss. The bat head-

related transfer function reveals binaural cues for sound localization
in azimuth and elevation. J Acoust Soc Am, 116(6):3594–605, 2004.

[2] D. Bechler, M. S. Schlosser, and K. Kroschel. System for robust 3d
speaker tracking using microphone array measurements. In Intelligent
Robots and Systems, 2004.

[3] D. R. Begault. 3-D sound for virtual reality and multimedia. Aca-
demic Press Professional, Inc., San Diego, CA, USA, 1994.

[4] X. Bian, G. D. Abowd, and J. M. Rehg. Using sound source localiza-
tion in a home environment. In Pervasive, 2005.

[5] J. Chen, B. D. Van Veen, and K. E. Hecox. A spatial feature extraction
and regularization model for virtual auditory display. In ICASSP’93,
1993.

[6] G. H. Cheng, Corey I.; Wakefield. Introduction to head-related trans-
fer functions (hrtfs): Representations of hrtfs in time, frequency, and
space. In Audio Engineering Society Convention 107, 9 1999.

[7] L. Girod, M. Lukac, V. Trifa, and D. Estrin. A self-calibrating dis-
tributed acoustic sensing platform. In SenSys, 2006.

[8] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The
anatomy of a context-aware application. Wireless Networks, 2002.

[9] A. LaMarca. Location Systems: An Introduction to the Technology
Behind Location (Synthesis Lectures on Mobile and Pervasive Com-
puting). 2008.

[10] C. V. Lopes, A. Haghighat, A. Mandal, T. Givargis, and P. Baldi. Lo-
calization of off-the-shelf mobile devices using audible sound: archi-
tectures, protocols and performance assessment. Mob. Comput. Com-
mun. Rev., 2006.

[11] P. M. Morse and K. Ingard. Theoretical Acoustics). Princeton Univer-
sity Press, 1968.

[12] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan. Beepbeep: a high
accuracy acoustic ranging system using cots mobile devices. In SenSys
’07, 2007.

[13] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket
Location-Support System. In MOBICOM ’00.

[14] J. Scott and B. Dragovic. Audio location: Accurate low-cost location
sensing. In Pervasive, 2005.

[15] I. Tashev and A. Acero. Microphone array post-processor using in-
stantaneous direction of arrival. In IWAENC ’06, 2006.

[16] E. M. Wenzel, M. Arruda, D. J. Kistler, and F. L. Wightman. Local-
ization using nonindividualized head-related transfer functions. The
Journal of the Acoustical Society of America, 94(1):111–123, 1993.


	Introduction
	Background
	Challenges and Design Overview
	Requirements
	Design Overview

	Static Localization
	Localization Cues
	Time of Arrival Cues
	Power Difference Cues
	Alternative Cues

	Static 3D Localization

	Continuous Localization
	Motion-Induced Measurement Error
	Time Synchronization and Tone Overlap
	Extended Kalman Filtering
	Fallback Mode
	Identifying the Alignment Region


	Implementation
	Evaluation
	Methodology
	Devices
	Metrics
	Experimental Setup

	Microbenchmarks
	TOA Cue Performance
	Power Cue Performance
	Time Sync and Tone Overlap
	Position Estimation Lag

	Macrobenchmarks
	Motion Path Performance
	Operational Range


	Related Work
	Limitations & Future Work
	Conclusion
	References

