
Expert Systems with Applications 36 (2009) 7535–7543 

 

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

 

Least squares twin support vector machines for pattern classification

M. Arun Kumar *, M. Gopal
Control Group, Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

a r t i c l e i n f o
Keywords:
Pattern classification
Support vector machines
Machine learning
Proximal classification
Text categorization
0957-4174/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.eswa.2008.09.066

* Corresponding author. Tel.: +91 11 26596133; fax
E-mail address: sendtoarun@rediffmail.com (M. Ar
a b s t r a c t

In this paper we formulate a least squares version of the recently proposed twin support vector machine
(TSVM) for binary classification. This formulation leads to extremely simple and fast algorithm for gen-
erating binary classifiers based on two non-parallel hyperplanes. Here we attempt to solve two modified
primal problems of TSVM, instead of two dual problems usually solved. We show that the solution of the
two modified primal problems reduces to solving just two systems of linear equations as opposed to solv-
ing two quadratic programming problems along with two systems of linear equations in TSVM. Classifi-
cation using nonlinear kernel also leads to systems of linear equations. Our experiments on publicly
available datasets indicate that the proposed least squares TSVM has comparable classification accuracy
to that of TSVM but with considerably lesser computational time. Since linear least squares TSVM can
easily handle large datasets, we further went on to investigate its efficiency for text categorization appli-
cations. Computational results demonstrate the effectiveness of the proposed method over linear proxi-
mal SVM on all the text corpuses considered.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Support vector machines (SVMs), being computationally pow-
erful tools for supervised learning, are widely used in classification
and regression problems. SVMs have been successfully applied to a
variety of real-world problems like particle identification, face rec-
ognition, text categorization and bioinformatics (Burges, 1998).
The approach is systematic and motivated by statistical learning
theory (SLT) and Bayesian arguments. The central idea of SVM is
to find the optimal separating hyperplane between the positive
and negative examples. The optimal hyperplane is defined as the
one giving maximum margin between the training examples that
are closest to the hyperplane.

Recently proposed (Mangasarian & Wild, 2006) generalized
eigenvalue proximal SVM (GEPSVM), does binary classification by
obtaining two non-parallel hyperplanes, one for each class. In this
approach, datapoints of each class are clustered around the corre-
sponding hyperplane. The new datapoints are assigned to a class
based on its proximity to one of the two hyperplanes. This formu-
lation leads to two generalized eigenvalue problems, whose solu-
tions are obtained as eigenvectors corresponding to the smallest
eigenvalues.

Jayadeva, Khemchandani, and Chandra (2007) proposed twin
SVM (TSVM) which is similar in spirit to GEPSVM that obtains
two non-parallel hyperplanes by solving two novel formulations
of quadratic programming problems (QPPs). The idea is to solve
ll rights reserved.

: +91 11 26581606.
un Kumar).
two dual QPPs of smaller size rather than solving single dual QPP
with large number of parameters in conventional SVM. Experimen-
tal results of Jayadeva et al. (2007) show the effectiveness of TSVM
over GEPSVM and standard SVM on UCI datasets.

In this paper we have enhanced TSVM to least squares TSVM
(LSTSVM) using the idea proposed in Fung and Mangasarian
(2001) and Suykens and Vandewalle (1999). We first modified
the primal QPPs of TSVM in least squares sense and solved them
with equality constraints instead of inequalities of TSVM. As a re-
sult the solution of LSTSVM follows directly from solving two sys-
tems of linear equations as opposed to solving two QPPs and two
systems of linear equations in TSVM. We extended LSTSVM to han-
dle nonlinear kernels whose solution also leads to systems of linear
equations. The algorithm can accurately solve large datasets with-
out any external optimizers. Computational comparisons of
LSTSVM, TSVM, GEPSVM and proximal SVM (PSVM) (Fung & Man-
gasarian, 2001) in terms of classification accuracy have been made
on 11 UCI datasets and several artificial datasets for both linear and
nonlinear kernels. Training time comparison of LSTSVM and TSVM
shows that the proposed method is faster in both linear and non-
linear cases.

Given the two facts: (1) LSTSVM surpasses TSVM in speed and
gives very comparable classification accuracy; (2) TSVM has better
generalization than conventional SVM and GEPSVM, we explored
the application of linear LSTSVM to text categorization (TC) prob-
lems. TC is the task of assigning a given text document to one or
more predefined categories. It is gaining popularity due to the
increased availability of documents in digital form and the follow-
ing need to access them in flexible ways. Automatic indexing of

mailto:sendtoarun@rediffmail.com
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


20 25 30 35 40 45
0

5

10

15

20

25

Class -1

Class +1

Margin

Bounding Planes

Separating Plane

7536 M. Arun Kumar, M. Gopal / Expert Systems with Applications 36 (2009) 7535–7543 
scientific articles, hierarchical categorization of web pages, filtering
of spam e-mails, quick search of interesting topics from large dat-
abases and retrieving the information based on user’s preferences
from information sources, are some examples where automatic
TC can play a significant role. The suitability of linear LSTSVM for
TC has been verified by conducting experiments on three bench-
mark text corpuses: reuters-21578, ohsumed and 20 Newsgroups
(20NG). We also conducted experiments with PSVM on same data-
sets for comparison.

The paper is organized as follows. In Section 2, we briefly dis-
cuss the SVM problem formulation and its dual problem. Section
3 gives a short summary of TSVM. In Section 4, we extend TSVM
to LSTSVM for both linear and nonlinear kernels. Computational
comparisons on UCI datasets are done in Section 5. In Section 6
we investigate the performance of linear LSTSVM for TC tasks;
and Section 7 gives concluding remarks.

In this paper, all vectors will be column vectors unless trans-
formed to a row vector by a prime 0. A column vector of ones in real
space of arbitrary dimension will be denoted by e. For a matrix
A 2 Rl�n, Ai is the ith row of A which is a row vector in Rn. For a vec-
tor x 2 Rn, x* denotes the vector in Rn with components (x*)i = 1 if
xi > 0 and 0 otherwise; i = 1, . . . ,n. In other words x* is the result of
applying step function component-wise to x. Identity matrix of
arbitrary dimension will be denoted by I.

2. Support vector machines

SVMs represent novel learning techniques that have been intro-
duced in the framework of structural risk minimization (SRM) and
in the theory of VC bounds. Compared to state-of-the-art methods,
SVMs have showed excellent performance in pattern recognition
tasks. In the simplest binary pattern recognition tasks, SVMs use
a linear separating hyperplane to create a classifier with maximal
margin. Consider the problem of binary classification wherein a
linearly inseparable dataset X of l points in real n-dimensional
space of features is represented by the matrix X 2 Rl�n. The corre-
sponding target or class of each datapoint Xi; i = 1,2, . . . , l, is repre-
sented by a diagonal matrix D 2 Rl�l with entries Dii as +1 or �1.
Given the above problem, SVM’s linear softmargin algorithm is to
solve the following primal QPP (Burges, 1998):

Min
w;b

1
2

w0wþ Ce0y

subject to DðXwþ ebÞ þ y P e; y P 0e:
ð1Þ

where C is a penalty parameter and y are the nonnegative slack vari-
ables. The optimal separating hyperplane can be expressed as

dðxÞ ¼ w0xþ b; ð2Þ

where x 2 Rn is a test datapoint. Since the number of constraints in
(1) is large, the dual of (1) is usually solved. The Wolfe dual of (1) is
(Mangasarian, 1998):

Max
a

e0a� 1
2
a0DXX0Da

subject to e0Da ¼ 0; 0e 6 a 6 Ce
ð3Þ

where a 2 Rl are Lagrangian multipliers. The optimal separating
hyperplane is same as in (2) whose parameters are given by

w ¼ X0Da; b ¼ 1
Nsv

XNsv

i¼1

Dii � Xiw; ð4Þ

where Nsv represents the number of support vectors such that
0 < ai < C. The hyperplane described by (2) lies midway between
the bounding planes given by

w0xþ b ¼ 1 and w0xþ b ¼ �1; ð5Þ

 

 

and separates the two classes from each other with a margin of 2
kwk2

.
A new datapoint is classified as +1 or �1 according to whether the
decision function (w

0
x + b)* yields 1 or 0 respectively. Fig. 1 shows

the geometric interpretation of this formulation for a toy example.
An important characteristic of SVM is that it can be extended in a
relatively straightforward manner to create nonlinear decision
boundaries (Scholkopf & Smola, 2002).

3. Twin support vector machine

TSVM is a binary classifier that does classification using two
non-parallel hyperplanes instead of a single hyperplane as in the
case of conventional SVMs (Jayadeva et al., 2007). The two non-
parallel hyperplanes are obtained by solving two QPPs of smaller
size compared to a single large QPP solved by conventional SVMs.
Consider a binary classification problem of classifying m1 data-
points belonging to class +1 and m2 datapoints belonging to class
�1 in the n-dimensional real space Rn. Let matrix A in Rm1�n rep-
resent the datapoints of class +1 and matrix B in Rm2�n represent
the datapoints of class �1. Given the above stated binary classifica-
tion problem, linear TSVM seeks two non-parallel hyperplanes in
Rn:

x0wð1Þ þ bð1Þ ¼ 0 and x0wð2Þ þ bð2Þ ¼ 0; ð6Þ

such that each hyperplane is closest to datapoints of one class and
farthest from the datapoints of other class. A new datapoint is as-
signed to class +1 or �1 depending upon its proximity to the two
non-parallel hyperplanes. Geometrically the concept of TSVM is de-
picted in Fig. 2 for a toy example.

The idea in linear TSVM is to solve two QPPs (7) and (8) with
objective function corresponding to one class and constraints cor-
responding to the other class.

Min
wð1Þ ;bð1Þ

1
2
ðAwð1Þ þ ebð1ÞÞ0ðAwð1Þ þ ebð1ÞÞ þ C1e0y

subject to � ðBwð1Þ þ ebð1ÞÞ þ y P e; y P 0e: ð7Þ

Min
wð2Þ ;bð2Þ

1
2
ðBwð2Þ þ ebð2ÞÞ0ðBwð2Þ þ ebð2ÞÞ þ C2e0y

subject to ðAwð2Þ þ ebð2ÞÞ þ y P e; y P 0e: ð8Þ

The Wolfe dual of QPPs (7) and (8) has been shown in Jayadeva et al.
(2007) to be QPPs (9) and (10) in terms of the Lagrangian multipli-
ers a 2 Rm2 and b 2 Rm1 , respectively.

Max
a

e0a� 1
2
a0GðH0HÞ�1G0a

subject to 0e 6 a 6 C1e
ð9Þ
Fig. 1. Geometric interpretation of standard SVM.



20 25 30 35 40 45
0

5

10

15

20

25

Class -1

Class +1

Proximal Planes

Fig. 2. Geometric interpretation of TSVM.

M. Arun Kumar, M. Gopal / Expert Systems with Applications 36 (2009) 7535–7543 7537 
 

 

where G ¼ B e½ � and H ¼ A e½ �

Max
b

e0b� 1
2

b0PðQ 0QÞ�1P0b

subject to 0e 6 b 6 C2e
ð10Þ

where P ¼ A e½ � and Q ¼ B e½ �.
The non-parallel hyperplanes (6) can be obtained from the solu-

tion of QPPs (9) and (10), as given in (11) and (12), respectively.

v1 ¼ �ðH0HÞ�1G0a; where v1 ¼ wð1Þ bð1Þ
h i0

ð11Þ

v2 ¼ ðQ 0QÞ�1P0b; where v2 ¼ wð2Þ bð2Þ
h i0

ð12Þ

Solving two dual QPPs has the advantage of bounded constraints
and reduced number of parameters as QPP (9) has only m2 param-
eters and QPP (10) has only m1 parameters, when compared with
QPP (3) of SVM which has l = m1 + m2 parameters. However, it is
to be noted that in addition to solving dual QPPs (9) and (10), TSVM
also requires inversion of matrix of size (n + 1) � (n + 1) twice,
where n� l. The datapoints for which 0 < ai < C1(i = 1,2, . . . m2) or
0 < bj < C2 (j = 1,2, . . . m1) are defined as support vectors, as they
are significant in determining the hyperplanes (6) and it has been
shown in Jayadeva et al. (2007) that, the support vectors will lie
on its corresponding hyperplane. Once the non-parallel hyperplanes
(6) are obtained, a new datapoint x 2 Rn is assigned to a class +1 or
�1 depending on which of the two hyperplanes lies closest to the
point in terms of perpendicular distance.

TSVM was also extended in Jayadeva et al. (2007) to handle
nonlinear kernels by considering two non-parallel kernel gener-
ated surfaces:

Kðx0; C0Þuð1Þ þ cð1Þ ¼ 0 and Kðx0;C 0Þuð2Þ þ cð2Þ ¼ 0; ð13Þ

where C ¼ A
B

� �
and K is any arbitrary kernel. The primal QPPs of

nonlinear TSVM corresponding to the surfaces (13) are given below
in (14) and (15), respectively.

Min
uð1Þ ;cð1Þ

1
2
kðKðA;C0Þuð1Þ þ ecð1ÞÞk2 þ C1e0y

subject to � ðKðB;C 0Þuð1Þ þ ecð1ÞÞ þ y P e; y P 0e ð14Þ

Min
uð2Þ ;cð2Þ

1
2
kðKðB;C 0Þuð2Þ þ ecð2ÞÞk2 þ C2e0y

subject to ðKðA;C0Þuð2Þ þ ecð2ÞÞ þ y P e; y P 0e ð15Þ

Dual QPPs of (14) and (15) were derived and solved to get the
hyperplanes (13) in Jayadeva et al. (2007). However it is worth
mentioning that the solution of nonlinear TSVM requires inversion
of two matrices of order (m1 �m1) and (m2 �m2) respectively along
with two QPPs to be solved.
TSVMs are similar in spirit to GEPSVM proposed by Mangasari-
an and Wild (2006), as both does binary classification using two
non-parallel hyperplanes as opposed to two parallel hyperplanes
used by PSVM. However it is to be noted that, TSVMs may fail in
some cases when dataset is perfectly symmetric; at least with lin-
ear kernel (a classical XOR example). This problem can be allevi-
ated by either slightly shifting a point, so as to disturb the
symmetry or by using nonlinear kernels. Experimental results of
Jayadeva et al. (2007) show that, generalization performance of
TSVM is better than GEPSVM and conventional SVM on UCI ma-
chine learning datasets for both linear and nonlinear cases. Com-
parison tables on training time between conventional SVM and
TSVM for linear kernel reveal that TSVM is at least four times faster
than conventional SVM.

4. Least squares twin support vector machine

In this section, we solve the primal QPPs of TSVM rather than
dual QPPs using PSVM idea proposed in Fung and Mangasarian
(2001). PSVM is an extremely fast and simple algorithm that re-
quires only solution of a system of linear equations for generating
both linear and nonlinear classifiers. PSVM formulation is obtained
from conventional SVM formulation by modifying inequality con-
straints to equality constraints. Here we modify the primal prob-
lem (7) of linear TSVM in least squares sense as (16), with the
inequality constraints replaced with equality constraints as
follows:

Min
wð1Þ ;bð1Þ

1
2
ðAwð1Þ þ ebð1ÞÞ0ðAwð1Þ þ ebð1ÞÞ þ C1

2
y0y

subject to � ðBwð1Þ þ ebð1ÞÞ þ y ¼ e;

ð16Þ

Also note that QPP (16) uses the square of 2-norm of slack variables
y with weight C1

2 instead of 1-norm of y with weight C1 as used in
(7), which makes the constraint y P 0e redundant (Mangasarian &
Musicant, 2001). This very simple modification allows us to write
the solution of QPP (16) as a solution of simultaneous system of lin-
ear equations. On substituting the equality constraints into the
objective function, QPP (16) becomes:

Min
wð1Þ ;bð1Þ

1
2
kAwð1Þ þ ebð1Þk2 þ C1

2
kBwð1Þ þ ebð1Þ þ ek2 ð17Þ

Setting the gradient of (17) with respect to w(1) and b(1) to zero,
gives:

A0ðAwð1Þ þ ebð1ÞÞ þ C1B0ðBwð1Þ þ ebð1Þ þ eÞ ¼ 0e; ð18Þ
e0ðAwð1Þ þ ebð1ÞÞ þ C1e0ðBwð1Þ þ ebð1Þ þ eÞ ¼ 0: ð19Þ

Arranging (18) and (19) in matrix form and solving for w(1) and b(1)

gives:

B0B B0e
e0B m2

� �
wð1Þ

bð1Þ

" #
þ 1

C1

A0A A0e

e0A m1

" #
wð1Þ

bð1Þ

" #
þ B0e

m2

� �
¼ 0e ð20Þ

wð1Þ

bð1Þ

" #
¼

B0Bþ 1
C1

A0A B0eþ 1
C1

A0e

e0Bþ 1
C1

e0A m2 þ 1
C1

m1

" #�1
�B0e

�m2

� �
ð21Þ

wð1Þ

bð1Þ

" #
¼ B0

e0

� �
B e½ � þ 1

C1

A0

e0

" #
A e½ �

" #�1
�B0e

�m2

� �
ð22Þ

Defining E ¼ A e½ � and F ¼ B e½ �; the solution becomes:

wð1Þ

bð1Þ

" #
¼ � F 0F þ 1

C1
E0E

� ��1

F 0e: ð23Þ

In an exactly similar way the solution of QPP (24) can be shown to
be (25).



7538 M. Arun Kumar, M. Gopal / Expert Systems with Applications 36 (2009) 7535–7543 
Min
wð2Þ ;bð2Þ

1
2
ðBwð2Þ þ ebð2ÞÞ0ðBwð2Þ þ ebð2ÞÞ þ C2

2
y0y

subject to ðAwð2Þ þ ebð2ÞÞ þ y ¼ e ð24Þ
wð2Þ

bð2Þ

" #
¼ ðE0Eþ 1

C2
F 0FÞ�1E0e ð25Þ

Thus the linear LSTSVM completely solves the classification prob-
lem with just two matrix inverses of much smaller dimensional ma-
trix of order (n + 1) � (n + 1) where n� l.

Once the weights and biases of the two non-parallel separating
hyperplanes

x0wð1Þ þ bð1Þ ¼ 0 and x0wð2Þ þ bð2Þ ¼ 0; ð26Þ

are obtained from (23) and (25), a new datapoint x 2 Rn is assigned
to a class +1 or �1 depending on to which of the two hyperplanes,
its perpendicular distance is minimum: jx0 w(1) + b(1)j or jx0w(2) +
b(2)j. Here j�j denotes the perpendicular distance of a datapoint from
the hyperplane. It can be noted that LSTSVM does not change the
meaning of support vectors defined in TSVM, however we will not
be able to identify them as we are solving primal problems instead
of dual problems. For clarity, we explicitly state our linear LSTSVM
algorithm.

Algorithm 4.1. Linear least squares twin SVM
Given m1 datapoints in Rn of class +1 represented by matrix A,

m2 datapoints in Rn of class �1 represented by matrix B, linear
LSTSVM can be obtained using the following steps:

(i) Define E ¼ A e½ � and F ¼ B e½ �.
(ii) Select penalty parameters C1 and C2. Usually these parame-

ters are selected based on validation.
(iii) Determine parameters of two non-parallel hyperplanes

using (23) and (25).
(iv) Calculate perpendicular distances jx0 w(1) + b(1)j and jx0w(2) +

b(2)j for a new datapoint x 2 Rn.
(v) Assign the datapoint to class +1 or �1 based on which of the

distance jx0w(1) + b(1)j or j x
0
w(2) + b(2)j is minimum.

Following the same idea, we extended nonlinear TSVM to non-
linear LSTSVM by considering the following kernel generated
surfaces:

Kðx0;C 0Þuð1Þ þ cð1Þ ¼ 0 and Kðx0;C 0Þuð2Þ þ cð2Þ ¼ 0 ð27Þ

where C ¼ A
B

� �
and K is any arbitrary kernel. The primal QPPs of

nonlinear TSVM can be modified in the same way with 2-norm of
slack variables and inequality constraints replaced by equality con-
straints as shown in (28) and (29).

Min
uð1Þ ;cð1Þ

1
2
kðKðA;C0Þuð1Þ þ ecð1ÞÞk2 þ C1

2
y0y

subject to � ðKðB;C 0Þuð1Þ þ ecð1ÞÞ þ y ¼ e: ð28Þ

Min
uð2Þ ;cð2Þ

1
2
kðKðB; C0Þuð2Þ þ ecð2ÞÞk2 þ C2

2
y0y

subject to ðKðA;C0Þuð2Þ þ ecð2ÞÞ þ y ¼ e: ð29Þ

By substituting the constraints into objective function, these QPPs
become:

Min
uð1Þ ;cð1Þ

1
2
kðKðA;C 0Þuð1Þ þ ecð1ÞÞk2 þ C1

2
kKðB; C0Þuð1Þ þ ecð1Þ þ ek2

ð30Þ

Min
uð2Þ ;cð2Þ

1
2
kðKðB; C0Þuð2Þ þ ecð2ÞÞk2 þ C2

2
k � KðA; C0Þuð2Þ � ecð2Þ þ ek2

ð31Þ

 

 

The solution of QPPs (30) and (31) can be derived to be:

uð1Þ

cð1Þ

" #
¼ � H0H þ 1

C1
G0G

� ��1

H0e ð32Þ

uð2Þ

cð2Þ

" #
¼ G0Gþ 1

C2
H0H

� ��1

G0e ð33Þ

where G ¼ KðA; C0Þ e
� �

and H ¼ KðB;C 0Þ e
� �

:

Once the parameters of two hypersurfaces (27): u(1), c(1), u(2)

and c(2), were obtained, a new datapoint is classified in the same
way as it is done in linear case based on perpendicular distance.

It can be noted that the solution of nonlinear LSTSVM requires
inversion of matrix of size (l + 1) � (l + 1) twice. However using
Sherman–Morrison–Woodbury (SMW) (Golub & Van Loan, 1996)
formula, we show that nonlinear LSTSVM can be solved using three
inverses of smaller dimension than (l + 1) � (l + 1). Below we dis-
cuss the solution of nonlinear LSTSVM for two cases.

Case m1 < m2:
Using SMW formula we can rewrite (32) and (33) as

uð1Þ

cð1Þ

" #
¼ �ðY � YG0ðC1I þ GYG0Þ�1GYÞH0e ð34Þ

uð2Þ

cð2Þ

" #
¼ C2 Y � YG0

I
C2
þ GYG0

� ��1

GY

 !
G0e ð35Þ

where Y = (H0H)�1. Following (Jayadeva et al., 2007), we introduce a
regularization term eI,e > 0 to Y to take care of problems due to pos-
sible ill-conditioning of H0H. This allows us to use SMW formula in
finding Y as

Y ¼ 1
e
ðI � H0ðeI þ HH0Þ�1HÞ ð36Þ

Case m2 < m1:
Using SMW formula we can rewrite (32) and (33) as

uð1Þ

cð1Þ

" #
¼ �C1 Z � ZH0

I
C1
þ HZH0

� ��1

HZ

 !
H0e ð37Þ

uð2Þ

cð2Þ

" #
¼ ðZ � ZH0ðC2I þ HZH0Þ�1HZÞG0e ð38Þ

where Z = (G0G)�1 which can be found using SMW formula as

Z ¼ 1
e
ðI � G0ðeI þ GG0Þ�1GÞ ð39Þ

Thus for the case of m1 < m2, nonlinear LSTSVM requires two
matrix inverses of order (m1 �m1) and one matrix inverses of or-
der (m2 �m2). For the case of m2 < m1 nonlinear LSTSVM requires
two matrix inverses of order (m2 �m2) and one matrix inverse of
order (m1 �m1). We now give an explicit statement of our nonlin-
ear LSTSVM algorithm.

Algorithm 4.2. Nonlinear least squares twin SVM
Given m1 datapoints in Rn of class +1 represented by matrix A,

and m2 datapoints in Rn of class �1 represented by matrix B
nonlinear LSTSVM can be obtained using the following steps:

(i) Choose a kernel function K.
(ii) Define G ¼ KðA;C0Þ e

� �
and H ¼ KðB;C0Þ e

� �
.

(iii) Select penalty parameters C1 and C2. Usually these parame-
ters are selected based on validation.

(iv) If m1 < m2:

determine the parameters of two hypersurfaces using

(34)–(36).
Else

determine the parameters of two hypersurfaces using
(37)–(39).



M. Arun Kumar, M. Gopal / Expert Systems with Applications 36 (2009) 7535–7543 7539 
(v) Calculate perpendicular distances jK(x0, C0)u(1) + c(1)j and
jK(x0, C0)u(2) + c(2)j for a new datapoint x 2 Rn.

(vi) Assign the datapoint to class +1 or �1 based on which of the
distance jK(x0,C0)u(1) + c(1)j or jK(x0,C0)u(2) + c(2)j is minimum.

 

 

5. Experimental results on standard datasets

Before introducing experimental results on standard datasets
we will present a simple two dimensional ‘‘Cross Planes” example,
which shows the effectiveness of multi plane/surface classifiers
like GEPSVM, TSVM and LSTSVM over PSVM. The ‘‘Cross Planes”
dataset used in Mangasarian and Wild (2006) is generated by per-
turbing points lying on two intersecting lines. Fig. 3 shows the
dataset and the linear classification results obtained by GEPSVM,
TSVM, LSTSVM, and PSVM. While all multi plane classifiers ob-
tained 100% accuracy, PSVM obtained only 83.2% accuracy.

To demonstrate the performance of LSTSVM we conducted
experiments on a synthetic dataset and 11 datasets from the UCI
Repository (Blake & Merz, 1998): Australian, CMC, heart-statlog,
heart-c, hepatitis, ionosphere, liver, pima, sonar, WPBC, and votes.
The synthetic dataset is an extension of two dimensional ‘‘Cross
Planes” to R7. We also conducted experiments on TSVM, GEPSVM
and PSVM for comparison with LSTSVM on the same datasets. All
algorithms were implemented in MATLAB 7.3.0 (R2006b) (http://
www.mathworks.com, 2007) environment on a PC with Intel Cor-
e2Duo processor (2.13 GHz), 1 GB RAM. The dual QPPs arising in
TSVM were solved using mosek optimization toolbox for MATLAB
(http://www.mosek.com, 2007), which implements fast interior
point based algorithms. Classification accuracy of each algorithm
was measured by standard tenfold cross-validation methodology.

Table 1 shows the comparison of classification accuracy for
LSTSVM with TSVM, GEPSVM and PSVM for linear kernel on 11
UCI and ‘‘Cross Planes” datasets. For each dataset, we estimated
the generalized accuracy using best penalty parameter C of PSVM
obtained through tuning in the range 2�7 to 212. For TSVM,
GEPSVM and LSTSVM, a two-dimensional grid search on penalty
parameters C1 and C2 was carried out in the same range. Table 2
shows the comparison of classification accuracy for the nonlinear
extensions of the LSTSVM, TSVM, GEPSVM and PSVM on 11 UCI
and ‘‘Cross Planes” datasets. We used Gaussian kernel for all exper-
iments, given by KðXi;XjÞ ¼ e�lkXi�Xjk2

. The kernel parameter l
along with penalty parameters were tuned for best classification
accuracy. The kernel parameter l was obtained through search
from the range 2�20 to 24. Tables 1 and 2 show that the generaliza-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Classification results of GEPSVM/TSVM/LSTSVM
tion capability of both LSTSVM and TSVM are better than GEPSVM
and PSVM on many of the datasets considered. It also reveals that
LSTSVM, whose solution is obtained by solving just two systems of
linear equations, performs comparable to TSVM.

We also conducted experiments on large datasets, generated
using David Musicant’s NDC Data Generator (Musicant, 1998) to
get a clear picture of how the computing time of all these algo-
rithms scale with respect to number of datapoints. Table 3 gives
a description of NDC datasets. For experiments with NDC datasets,
we fixed penalty parameters of all algorithms to be one (i.e,
C = 1,C1 = 1,C2 = 1). We used Gaussian kernel with l = 2�17 for all
experiments with nonlinear kernel. Table 4 shows the comparison
of computing time and accuracy for LSTSVM, TSVM, GEPSVM and
PSVM with linear kernel. For almost same accuracy, LSTSVM per-
formed several orders of magnitude faster than TSVM on all data-
sets. It is also worth mentioning that LSTSVM does not require any
special optimizers whereas TSVM has been implemented with fast
interior point solvers of mosek optimization toolbox for MATLAB.
While LSTSVM is fast, it is not as fast as PSVM which is evident
from Table 4. This is obvious because in LSTSVM, we require solv-
ing two systems of linear equations whereas in PSVM we solve sin-
gle system of linear equations. Table 5 shows comparison of
computing time and accuracy of all four algorithms considered
on several NDC datasets with nonlinear kernel. The results demon-
strate that LSTSVM performs better than TSVM in terms of gener-
alization. For NDC-2k and NDC-3k datasets, we used rectangular
kernel (Fung & Mangasarian, 2001) using 10% of total datapoints.
Results on these datasets show that LSTSVM, GEPSVM and PSVM
algorithms are much faster than TSVM with reduced kernels. This
is because even with reduced kernel of dimension ðl��lÞ, TSVM still
requires solving two QPPs of same size m1 and m2.
6. Application to text categorization

Given the impressive performance of LSTSVM with linear ker-
nel, we further went on to investigate its effectiveness for TC appli-
cations. Automatic TC is a supervised learning problem which
involves training a classifier with some labeled documents and
then using the classifier to predict the labels of unlabeled docu-
ments. Each document may belong to multiple labels or single la-
bel or no label at all. So, a binary classifier learns for each category
to form a complete TC system. We performed experiments on 3
well-known datasets in TC research, reuters-21578 (Reuters-
21578, 2007), ohsumed (Ohsumed, 2007) and 20 Newsgroups
(20NG) (20 Newsgroups, 2004).
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(left) and PSVM (right) for ‘‘cross planes” dataset.



Table 1
Classification accuracy for linear kernel

Dataset l � n LSTSVM TSVM GEPSVM PSVM

Hepatitis (155 � 19) 86.42 ± 9.78 85.71 ± 6.73 85.0 ± 9.19 85.71 ± 5.83
WPBC (198 � 34) 83.88 ± 5.52 83.68 ± 6.24 81.11 ± 7.94 83.3 ± 4.53
Sonar (208 � 60) 80.47 ± 6.7 80.52 ± 4.9 79.47 ± 7.6 78.94 ± 4.43
Heart-statlog

(270 � 14)
85.55 ± 4.07 86.66 ± 6.8 85.55 ± 6.1 85.55 ± 7.27

Cross Planes (300 � 7) 98.12 ± 4.67 98.02 ± 3.92 98.2 ± 5.1 60.71 ± 4.19
Heart-c (303 � 14) 85.86 ± 6.17 85.86 ± 6.9 85.51 ± 5.08 85.51 ± 5.08
Bupa Liver (345 � 7) 70.90 ± 6.09 70.5 ± 6.6 66.36 ± 4.39 70.15 ± 8.82
Ionosphere (351 � 34) 89.70 ± 5.58 88.23 ± 3.10 84.11 ± 3.2 89.11 ± 2.79
Votes (435 � 16) 95.23 ± 1.94 95.9 ± 2.2 95.0 ± 2.36 95.0 ± 3.06
Australian (690 � 14) 86.61 ± 4.0 86.91 ± 3.5 80.00 ± 3.99 85.43 ± 3.0
Pima-Indian (768 � 8) 79.4 ± 2.65 78 ± 6.29 76.66 ± 4.62 77.86 ± 3.67
CMC (1473 � 9) 68.84 ± 2.77 68.84 ± 2.39 68.76 ± 2.98 68.98 ± 3.95
Mean accuracy 84.24 84.06 82.14 80.52

Table 2
Classification accuracy for gaussian kernel

Dataset l � n LSTSVM TSVM GEPSVM PSVM

Hepatitis (155 � 19) 84.28 ± 10.24 83.73 ± 6.25 79.28 ± 5.2 78.57 ± 0.24
WPBC (198 � 34) 81.66 ± 6.95 82.22 ± 6.82 80 ± 5.97 80.55 ± 3.92
Sonar (208 � 60) 90.52 ± 7.36 90.0 ± 7.5 80.0 ± 5.97 90.0 ± 7.21
Heart-statlog

(270 � 14)
85.18 ± 5.23 85.84 ± 6.52 86.52 ± 7.36 70.74 ± 6.86

Cross Planes
(300 � 7)

98.97 ± 3.7 98.6 ± 2.6 99.02 ± 4.16 83.93 ± 2.8

Heart-c (303 � 14) 83.79 ± 5.87 82.17 ± 5.21 70.37 ± 8.90 70.68 ± 7.66
Bupa Liver (345 � 7) 74.84 ± 6.85 75.15 ± 6.51 68.18 ± 6.2 74.84 ± 9.04
Ionosphere

(351 � 34)
96.17 ± 3.68 96.17 ± 3.9 84.41 ± 6.20 95.0 ± 4.17

Votes (435 � 16) 96.19 ± 2.79 95.95 ± 3.37 94.5 ± 3.37 95.95 ± 2.25
Australian (690 � 14) 76.17 ± 5.36 75.8 ± 4.91 69.55 ± 5.37 73.97 ± 6.16
Pima-Indian

(768 � 8)
75.33 ± 4.67 75.74 ± 5.2 75.33 ± 4.91 76.8 ± 3.83

CMC (1473 � 9) 74.42 ± 2.55 73.95 ± 3.48 68.62 ± 2.64 73.91 ± 4.12
Mean accuracy 84.79 84.61 79.64 80.42

Table 3
Description of NDC datasets

Dataset #Training data #Test data #Features

NDC-500 500 50 32
NDC-700 700 70 32
NDC-900 900 90 32
NDC-1k 1000 100 32
NDC-2k 2000 200 32
NDC-3k 3000 300 32
NDC-4k 4000 400 32
NDC-5k 5000 500 32
NDC-10k 10,000 1000 32
NDC-1l 100,000 10,000 32
NDC-3l 300,000 30,000 32
NDC-5l 500,000 50,000 32
NDC-1m 1,000,000 100,000 32

Table 4
Comparison on NDC datasets with linear kernel

Dataset LSTSVM TSVM GEPSVM PSVM
Train % Train % Train % Train %
Test % Test % Test % Test %
Time (s) Time (s) Time (s) Time (s)

NDC-3k 79.4 78.73 77.6 79.4
75.33 74.66 77.33 75.33

0.009 27.12 0.017 0.009
NDC-4k 79.62 79.67 76.9 79.62

73.75 73.75 71.0 73.75
0.011 60.86 0.021 0.01

NDC-5k 78.98 78.78 75.0 78.98
80 79.8 74.4 80

0.013 116.50 0.0224 0.012
NDC-10k 86.26 86.36 84.76 86.27

87 87.3 83.9 87
0.022 1094.19 0.0353 0.02

NDC-1l 86.15 a 83.90 86.15
85.94 84.32 85.94

0.178 0.26 0.127
NDC-3l 78.71 a 75.66 78.71

78.53 75.34 78.53
0.51 0.78 0.376

NDC-5l 78.67 a 75.64 78.67
78.64 75.62 78.64

0.86 1.32 0.627
NDC-1m 86.06 a 84.13 86.06

86.24 84.12 86.24
2.30 3.74 1.63

a We stopped experiments as computing time was very high.

Table 5
Comparison on NDC datasets with gaussian kernel nonlinear kernel

Dataset LSTSVM TSVM GEPSVM PSVM
Train % Train % Train % Train %
Test % Test % Test % Test %
Time (s) Time (s) Time (s) Time (s)

NDC-500 100 99 82.0 95.4
82 80 76.0 82
0.106 0.721 8.25 0.073

NDC-700 100 99.42 80.71 96.71
82.85 84.28 71.42 85.71
0.256 1.609 24.58 0.174

NDC-900 100 98.88 83.33 95.66
87.77 80 66.66 81.11
0.488 3.11 52.12 0.329

NDC-1k 100 98.1 79.1 96.1
88 83 69.0 80
0.636 3.99 71.46 0.443

NDC-2ka 86.60 88.25 76.05 84.65
81 80.5 72.5 78.5
0.043 9.22 1.58 0.046

NDC-3ka 89.06 90.76 78.6 85.93
86.33 85 74 80.33
0.111 28.56 4.16 0.108

a A rectangular kernel (Fung & Mangasarian, 2001) KðA;AÞwith A typically of size
10% of A was used.

7540 M. Arun Kumar, M. Gopal / Expert Systems with Applications 36 (2009) 7535–7543 
 

 

6.1. Document representation

Documents which typically are string of characters have to be
transformed into a representation suitable for the learning algo-
rithm of classifier. This transformation involves several steps like
preprocessing, dimensionality reduction, feature subset selection
and term weighting. We used simple ‘bag of words’ representation
in all our experiments. We removed stop words using a stop word
dictionary (Stop words, 2004) consisting of 319 words to reduce
the dimension. In addition to stop words, we removed words that
occurred in only one training document, uniformly for all three
text corpuses considered. We also performed word stemming
using Porter stemmer algorithm (Porter, 1980). After dimensional-
ity reduction we did local feature selection using mutual informa-
tion (MI) measure between a feature f and category c described in
Dumais, Platt, Heckerman, and Sahami (1998), given by:

MIðf ; cÞ ¼
X

f2f0;1g

X
c2f0;1g

pðf ; cÞ log
pðf ; cÞ

pðf ÞpðcÞ ð40Þ

The selected features were associated with a weight using log(T-
FIDF) (Liao, Alpha, & Dixon, 2007) term weighting scheme described
as



Table 6
Confusion matrix

Category Cj Expert judgments

YES NO

Classifier output YES TP FP
NO FN TN

Table 7
BEP performance of 10 largest categories from reuters-21578

LSTSVM PSVM

Earn 0.9876 0.9848
Acq 0.9573 0.9515
Money-fx 0.8326 0.7868
Grain 0.9284 0.9386
Crude 0.8464 0.8599
Trade 0.7595 0.7797
Interest 0.7921 0.6908
Ship 0.7672 0.7339
Wheat 0.843 0.846
Corn 0.8477 0.8817
Micro avg. BEP 0.9202 0.9176
Macro avg. BEP 0.8562 0.8454

M. Arun Kumar, M. Gopal / Expert Systems with Applications 36 (2009) 7535–7543 7541 
wfd ¼ logðtffd þ 0:5Þ log
D

dff
ð41Þ

where wfd is the weight of feature f in document d, tffd is the occur-
rence frequency of feature f in document d, D is the total number of
documents in the training set and dff is the number of documents
containing the feature f. In all our experiments, we scaled the
weights obtained from log(TFIDF) weighting using cosine normali-
zation, given as

wn
fd ¼

wfdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
f¼1w2

fd

q : ð42Þ

where k is the number of features selected to represent a document.

6.2. Data collections

6.2.1. Reuters-21578
The reuters-21578 (Reuters-21578, 2007) dataset was compiled

by David Lewis and originally collected by the Carnegie group from
the reuters newswire in 1987. It contains 21578 news articles each
belonging to one or more categories. The frequency of occurrence
of documents varies greatly from category to category. We used
the mode Apt split which led us to a corpus of 9603 training and
3299 testing documents. Out of the 135 potential categories, only
90 categories have at least one training and one testing document.
In our experiments, following other TC projects, we ran a test on
the top 10 categories having highest number of documents. After
stemming and stop word removal, the training corpus contains
10,789 distinct terms in the global dictionary. We evaluated MI
measure for all these 10,789 distinct terms with respect to each
category and selected the top 300 words as features for document
representation of the corresponding category.

6.2.2. Ohsumed
The ohsumed corpus compiled by William hersh (Ohsumed,

2007) consists of medline documents from the year 1981 to
1991. Following (Joachims, 1998), from the 50,216 documents in
1991, we used first 10,000 for training and second 10,000 for test-
ing. The resulting training set and testing set have more homoge-
neous distribution across 23 different MeSH ‘‘diseases” categories.
Unlike reuters-21578, it is more difficult to learn a classifier in oh-
sumed corpus because of the presence of noisy data. We used top
10 out of 23 categories in our experiments. The training corpus of
ohsumed contained 12,180 distinct terms after stemming and stop
word removal. We evaluated MI measure for all 12,180 terms with
respect to each category and selected top 500 words as features for
further document representation of the corresponding category.

6.2.3. 20 Newsgroups
The 20NG corpus was first collected as a text corpus by Lang (20

Newsgroups, 2004). It almost contains 20,000 articles taken from
the Usenet newsgroups evenly distributed across 20 categories.
This corpus is different from the previous corpuses because it in-
cludes large vocabulary and words that have more meaning. Unlike
other corpuses that we have considered, 20NG does not have stan-
dard training and testing sets. So we randomly selected 67% of the
total documents in each category for training set and the rest we
used for testing. We ran all our experiments on top 10 categories
of 20NG. 20NG contained 27,159 distinct terms after stemming
and stop word removal, out of which we selected top 500 using
MI measure for document representation.

6.3. Evaluation methodology

A number of metrics are being used in TC to measure its effec-
tiveness. In this paper, we used the standard information retrieval

 

 

metrics, precision and recall, to evaluate each binary classifier.
They can be calculated from the confusion matrix as shown in Ta-
ble 6. A confusion matrix provides counts of different outcomes
from an evaluation system. True positive (TP) represents the num-
ber of documents the system correctly labeled as positive and true
negative (TN) represents the number of documents the system cor-
rectly labeled as negative. False positive (FP) and false negative
(FN) are the number of documents the system incorrectly labeled
as positive or negative respectively. Precision is defined simply as
the ratio of correctly assigned category Cj documents to the total
number of documents classified as category Cj. Recall is the ratio
of correctly assigned category Cj documents to the total number
of documents actually in category Cj. They can be obtained from
the confusion matrix as

Precision ¼ TP
TP þ FP

and Recall ¼ TP
TP þ FN

ð43Þ

Neither precision nor recall is meaningful in isolation of the other.
In practice, combined effectiveness measure namely precision-re-
call breakeven point (BEP), and F1 measure are used. F1 measure
is calculated as the harmonic mean of precision (P) and recall (R) gi-
ven as

F1 ¼ 2PR=ðP þ RÞ ð44Þ

The precision-recall BEP is the point where precision is equal to re-
call and is often determined by calculating the arithmetic mean of
precision and recall. BEP performance metric is to be computed
for each category separately and the overall performance of an ap-
proach can be found with the help of microaverage or macroaverage
of BEP over all categories. Macroaverage gives equal weight to each
category, while microaverage gives equal weight to each document.

6.4. Experimental results

All text categorization steps discussed in Section 6.1 were per-
formed using MATLAB 7.3.0 (R2006b) software (http://www.math-
works.com, 2007). We conducted experiments on the three text
corpuses described in Section 6.2 using LSTSVM algorithm with lin-
ear kernel implemented in MATLAB. We also conducted experi-
ments on same datasets using linear PSVM for comparison.
However we did not conduct experiments using TSVM as its



Table 10
F1 performance of LSTSVM and PSVM

Reuters-21578 Ohsumed 20NG

LSTSVM 0.8512 0.7041 0.8320
PSVM 0.8348 0.6810 0.8034

Table 8
BEP performance of 10 largest categories from ohsumed

LSTSVM PSVM

Pathology 0.542 0.5123
Neoplasma 0.8239 0.8085
Cardiovascular 0.8021 0.7913
Nervous 0.6404 0.6206
Environment 0.6736 0.6819
Digestion 0.7288 0.7185
Immunology 0.7413 0.7277
Respiratory 0.6578 0.6751
Urology 0.7724 0.7953
Bacteria 0.6816 0.6747
Micro avg. BEP 0.6939 0.6886
Macro avg. BEP 0.7064 0.7006

Table 9
BEP performance of 10 largest categories from 20 newsgroups

LSTSVM PSVM

Hockey 0.9259 0.9124
Christian 0.762 0.7353
Motor cycles 0.9131 0.8958
Baseball 0.913 0.8779
Crypt 0.9412 0.9302
Autos 0.8431 0.8106
Med 0.8556 0.8423
Space 0.8923 0.8822
Windows misc 0.7214 0.6966
Hardware 0.6252 0.6065
Micro avg. BEP 0.823 0.822
Macro avg. BEP 0.8393 0.8190

7542 M. Arun Kumar, M. Gopal / Expert Systems with Applications 36 (2009) 7535–7543 
 

 

computing time is high. Similar to previous sections the penalty
parameters of linear PSVM and LSTSVM were tuned to maximize
micro BEP. Tables 7–9 summarize the BEP of top 10 categories ob-
tained by LSTSVM and PSVM on reuters-21578, ohsumed and
20NG corpuses, respectively. It can be observed from these tables
that LSTSVM achieves better BEP performance than PSVM on many
of the categories over the three text corpuses. Particularly on 20NG
corpus, LSTSVM has performed better than PSVM on all the ten cat-
egories considered. Table 10 shows the average F1 performance ob-
tained by both algorithms. Thus LSTSVM achieves improved
performance on all the three text corpuses considered in terms
of both BEP and F1 performance measures. However this improved
performance is obtained at the cost of more tuning effort involved.
This is because LSTSVM requires tuning of two parameters
whereas, PSVM has only single parameter.

7. Conclusion and future work

In this paper we have enhanced TSVM to least squares TSVM
(LSTSVM). LSTSVM is an extremely simple algorithm for generating
linear/nonlinear binary classifiers using two non-parallel hyper-
planes/hypersurfaces. In LSTSVM, we solve the two primal prob-
lems of TSVM using proximal SVM (PSVM) idea instead of two
dual problems usually solved in TSVM. LSTSVM requires just the
solution of two systems of linear equations for both linear and non-
linear cases in contrast to TSVM, which requires solving two qua-
dratic programming problems (QPPs) in addition to two systems
of linear equations. For a linear classifier, LSTSVM requires inver-
sion of two matrices of the order of input space dimension. For a
nonlinear classifier, LSTSVM requires inversion of three matrices
of order less than the number of datapoints in the dataset. LSTSVM
takes advantage of reduced kernel techniques which leads to much
faster training of a nonlinear classifier. This allows LSTSVM to eas-
ily classify large datasets for which TSVM requires very high train-
ing times. Our computational results on UCI and NDC datasets
demonstrate that LSTSVM obtains classification accuracy compara-
ble to that of TSVM, however, at reduced computational effort for
both linear and nonlinear kernels. Linear LSTSVM easily classifies
a large 1 million datapoint 32-attribute dataset in 2.3 s. Also
LSTSVM obviates the need for any external optimizers as required
by TSVM for both linear and nonlinear classifiers. On both linear
and nonlinear classifiers, LSTSVM has better generalization than
PSVM.

We further investigated the application of linear LSTSVM to text
categorization using three benchmark text categorization datasets:
reuters-21578, ohsumed and 20 Newsgroups (20NG). Comparison
of experimental results against linear PSVM shows that linear
LSTSVM has better generalization on all the three text corpuses
considered. Since both linear LSTSVM and linear PSVM require
solution of system of linear equations of the order of input space
dimension, the dimensionality reduction and feature selection
steps discussed in Section 6.1 are vital. Thus the performance of
LSTSVM and PSVM on text categorization can greatly be improved
by using it along with advanced feature selection/extraction meth-
ods which can bring down the dimension of input document vec-
tors and will be the subject of our future work.

Acknowledgements

The authors are extremely thankful to Prof. S. Chandra for his
valuable comments and suggestions. Also, they acknowledge the
help of Mr. K.R. Shivaram in text categorization.

References

Blake, C. L. & Merz, C. J. (1998). UCI repository for machine learning databases. Irvine:
Department of Information and Computer Sciences, University of California.
<http://www.ics.uci.edu/~mlearn/MLRepository.html>.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2, 1–43.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning
algorithms and representations for text categorization. In Proceedings of seventh
international conference on information and knowledge management.

Fung, G., & Mangasarian, O. L. (2001). Proximal support vector machine classifiers.
In Proceedings of seventh international conference on knowledge and data
discovery (pp. 77–86).

Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). The John
Hopkins University Press.

<http://www.mathworks.com>, 2007.
<http://www.mosek.com>, 2007.
Jayadeva, Khemchandani, R., & Chandra, S. (2007). Twin support vector machines

for pattern classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(5), 905–910.

Joachims, T. (1998). Text categorization with support vector machines: Learning
with many relevant features. In Proceedings of ECML-98, 10th European
conference on machine learning (pp. 137–142).

Liao, C., Alpha, S., & Dixon, P. (2007). Feature preparation in text categorization,
Technical Report, Oracle Corporation. Available at: <http://www.oracle.com/
technology/products/text/pdf/feature_preparation.pdf>.

Mangasarian, O. L. (1998). Nonlinear programming. SIAM.
Mangasarian, O. L., & Musicant, D. R. (2001). Lagrangian support vector machines.

Journal of Machine Learning Research, 1, 161–177.
Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector

classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(1), 69–74.

Musicant, D. R. (1998). NDC: Normally distributed clustered datasets. <http://
www.cs.wisc.edu/~musicant/data/ndc>.

20 Newsgroups. (2004). <http://kdd.ics.uci.edu/databases/20newsgroups/20news-
groups.htm>.

Ohsumed. (2007). <ftp://medir.ohsu.edu/pub/ohsumed>.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.mathworks.com
http://www.mosek.com
http://www.oracle.com/technology/products/text/pdf/feature_preparation.pdf
http://www.oracle.com/technology/products/text/pdf/feature_preparation.pdf
http://www.cs.wisc.edu/~musicant/data/ndc
http://www.cs.wisc.edu/~musicant/data/ndc
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.htm
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.htm


M. Arun Kumar, M. Gopal / Expert Systems with Applications 36 (2009) 7535–7543 7543 
Porter, M. (1980). An algorithm for suffix stripping. Program (Automated Library and
Information Systems), 14(3), 130–137.

Reuters-21578. (2007). <http://www.daviddlewis.com/resources/testcollections/
reuters21578/>.

 

 

Scholkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge, MA: MIT Press.
Stop words. (2004). <http://www.dcs.gla.ac.uk/idom/ir_resources/linuistic_utils/>.
Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machines

classifiers. Neural Processing Letters, 9(3), 293–300.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.dcs.gla.ac.uk/idom/ir_resources/linuistic_utils/

	Least squares twin support vector machines for pattern classification
	Introduction
	Support vector machines
	Twin support vector machine
	Least squares twin support vector machine
	Experimental results on standard datasets
	Application to text categorization
	Document representation
	Data collections
	Reuters-21578
	Ohsumed
	20 Newsgroups

	Evaluation methodology
	Experimental results

	Conclusion and future work
	Acknowledgements
	References


