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Abstract

Optimization problems with constraints involving stochastic parameters that are required
to be satisfied with a prespecified probability threshold arise in numerous applications. Such
chance constrained optimization problems involve the dual challenges of stochasticity and
nonconvexity. In the setting of a finite distribution of the stochastic parameters, an optimiza-
tion problem with linear chance constraints can be formulated as a mixed integer linear pro-
gram (MILP). The natural MILP formulation has a weak relaxation bound and is quite difficult
to solve. In this paper, we review some recent results on improving the relaxation bounds
and constructing approximate solutions for MILP formulations of chance constraints. We also
discuss a recently introduced bicriteria approximation algorithm for covering type chance con-
strained problems. This algorithm uses a relaxation to construct a solution whose (constraint
violation) risk level may be larger than the pre-specified threshold, but is within a constant
factor of it, and whose objective value is also within a constant factor of the true optimal value.
Finally, we present some new results that improve on the bicriteria approximation factors in the
finite scenario setting and shed light on the effect of strong relaxations on the approximation
ratios.

1 Introduction

We consider optimization problems with probabilistic or chance constraints of the form

v∗ = min
x

{
c>x : P

{
ξ̃ : x ∈ X (ξ̃)

}
≥ 1− ε

}
, (1)

where x ∈ Rn is a decision vector, ξ̃ is a random vector with support Ξ ⊆ Rd and probability
distribution P, and X (ξ̃) denotes a system of stochastic constraints whose data is specified by the
random vector ξ̃. Any deterministic constraints on x are assumed to be absorbed in the stochastic
constraints. Problem (1) seeks a solution x that minimizes the cost c>x and is required to satisfy
the stochastic constraints X (ξ̃) with probability at least (1 − ε), where ε ∈ (0, 1) is a prespecified
risk level.

Since its introduction in 1958 [11], chance constrained optimization problems have been stud-
ied extensively (cf. [3, 33, 37]). Their applications can be found in numerous diverse areas such as
finance [30], facility location [19], production [7, 48], telecommunication [13], healthcare [12], and
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energy systems [8, 38, 44, 46], among others. These problems are extremely challenging because of
the difficulties in computing the probability of feasibility and in optimizing over their nonconvex
feasible regions. In this paper our focus will be restricted to with finite distributions and linear
chance constraints, i.e. we assume that

(a) the underlying probability distribution is finite, i.e. ξ̃ hasN realizations (or scenarios) {ξ1, . . . , ξN}
with pi = P

{
ξ̃ = ξi

}
for i ∈ [N ] := {1, 2, . . . , N},

(b) the uncertain constraint system corresponding to realization ξi, or scenario i in short, is a set
of the form X (ξi) = {x : Aix ≥ bi} for i ∈ [N ], and

(c) the sets X (ξi) for all i ∈ [N ] are non-empty and have the same recession cone.

Even in this restricted setting, the chance constrained optimization problem (1) is strongly NP-
hard [24, 34]. A natural mixed integer linear programming (MILP) formulation of (1) under the
assumptions (a)-(c) is:

v∗ = min
x,z

c>x :

Aix ≥ zibi − (1− zi)Mi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N

 , (2)

where, for each i ∈ [N ] and Mi is a nonnegative vector of the same dimension as bi such that
Aix ≥ −Mi for all feasible x-solutions to (2). We assume thatMi exists. It is well known that this
natural MILP formulation with big-M coefficients typically has a very weak linear programming
(LP) relaxation. Consequently, there has been significant research on improving the relaxation
bounds of (2). Another important line of research has been on approximations, i.e. efficiently con-
structing feasible solutions. This includes developing tractable convex inner approximations to
the nonconvex feasible region of chance constraints and problem-dependent construction heuris-
tics.

In this paper, we review some recent results on relaxations and approximations of chance con-
strained problems of the form (2). In particular, we discuss coefficient tightening, strong valid in-
equalities, and problem reformulations to improve the relaxation bounds. Then we discuss some
existing approximation approaches for constructing good feasible solutions. Finally, we discuss
a recently introduced bicriteria approximation algorithm for covering type chance constrained
problems. This algorithm uses the solution to a convex relaxation to construct a solution whose
(constraint violation) risk level may be larger than ε, but is within a constant factor of it, and whose
objective value is within a constant factor of the true optimal value. We improve on the bicriteria
approximation factors in the finite scenario setting and investigate the effect of strong relaxations
on the approximation ratios.

Notation: All vectors and matrices are denoted in bold font, and their corresponding scalar com-
ponents are in regular font. The vectors e and ei denote the vector of all ones and the i-th basis
vector, respectively. Their dimension will be clear from the context. For a vector x, the opera-
tions bxc, dxe, and max(x, 0), denotes its component-wise integer round-down, integer round-up,
and positive part, respectively. The multiplication yx of a vector x with a scalar y is component-
wise. For a natural number N , the set [N ] = {1, 2, . . . , N}. The convex hull of a set S is denoted
conv(S). The set of feasible solutions of the MILP (2) is denoted by X . Additional notation will be
introduced as needed.
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2 Relaxations

2.1 Coefficient tightening

A straightforward attempt to improve the LP relaxation bound of (2) is by tightening the big-M
coefficients. Specifically, a single row (`-th row) of the constraint system corresponding to scenario
i can be written as

(ai`)
>x ≥ bi`zi −Mi`(1− zi)

where the row-specific big-M coefficient Mi` satisfies

−Mi` ≤ inf{(ai`)>x : x ∈ X}.

Of course computing these coefficients exactly could be as hard as solving the original problem,
but it is valid to replace X by a relaxation in the above minimization problem. In particular, we
can start out by very weak coefficients, improve them by minimizing (ai`)

>x over the current
relaxation, and proceed recursively. This simple and well-known coefficient tightening idea has
been effectively adapted to chance constrained problems of the form of (2) to dramatically improve
their relaxation bounds (cf. [2, 31, 34, 40]).

2.2 Mixing inequalities

Next we discuss a family of valid inequalities for (2). Our presentation follows that of [47]. Let us
assume that X (ξi) ⊆ S for all i ∈ [N ], for some compact set S. This holds, for example, when S
is a deterministic constraint system inherited by each of the uncertain constraint systems. Given a
vector α ∈ Rn, let us define the following quantities

βαi (S) := inf{α>x : x ∈ S ∩ X (ξi)} ∀ i ∈ [N ]. (3)

Note that we have allowed the above definition to depend on S so that we can account for suc-
cessive applications with changing S (in Section 2.3). The (1 − ε)-quantile associated with these
quantities is

βαq (S) := min

η :

η ≥ βαi (S)zi −K(1− zi) ∀i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N

 , (4)

where K = mini∈[N ] β
α
i (S). When pi = 1/N for all i ∈ [N ], then βαq (S) can be computed by first

sorting the values {βαi (S)}i∈[N ] in nondecreasing order, and then picking the the (bεNc+1) largest
value.

Now consider the set

Y α =

(x, z) :

α>x+ [βαi (S)− βαq (S)](1− zi) ≥ βαi (S) ∀ i ∈ Nα

α>x ≥ βαq (S)

z ∈ {0, 1}N

 , (5)

where Nα := {i ∈ [N ] : βαi (S) ≥ βαq (S)}. From the definitions of βαi (S) and βαq (S), it follows
that Y α ⊇ X, i.e., the mixed-integer set Y α is a relaxation of the chance constrained system given
by (2) [22]. Thus any inequality that is valid for Y α is valid for X . The set Y α is an example
of a mixing set which has been extensively studied in varying degrees of generality in the MILP
literature (cf. [5, 16, 17, 24, 25]). A complete polyhedral description of the convex hull of this set,
i.e. conv(Y α), is given by the following result.
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Theorem 1 [5, 17, 24] Given {i1, i2, . . . , iJ} ⊆ Nα such that βαi1(S) ≥ βαi2(S) ≥ · · · ≥ βαiJ (S), consider
the mixing inequality

α>x+
J∑
j=1

[βαij (S)− βαij+1
(S)](1− zij ) ≥ βαi1(S) (6)

where βαiJ+1
(S) := βαq (S).

(a) The mixing inequality (6) is valid for conv(Y α).

(b) If i1 = argmax{βαi (S) : i ∈ Nα} then the mixing inequality (6) defines a facet of conv(Y α).

(c) The set of all mixing inequalities together with the bounds on the binary variables are sufficient to
describe conv(Y α).

(d) A violated mixing inequality can be separated in time that is polynomial in |Nα|.

A key issue in finding mixing inequalities for the chance constraint setX is the choice of theα-
vector to use in the mixing relaxation Y α. If the uncertainties are only on the right-hand-side, i.e.
the constraint system for scenario i is of the formAx ≥ bi for a fixedA, then it is sufficient to use
the rows ofA as the α-vectors. Mixing inequalities derived in this manner have been successfully
used in branch-and-cut approaches for chance constrained problems with only right-hand-side
uncertainties [18, 24]. For general chance constraint systems, to find a violated mixing inequality
we need to find the corresponding α-vector. Unfortunately, this separation is NP-hard [47]. In
[22], heuristic approaches to separate α-vectors and corresponding mixing inequalities are used
within a branch-and-cut scheme to effectively solve general chance constrained problems. This
scheme has been extended to two-stage chance constrained problems in [21]. There has also been
work on combining multiple mixing inequalities to get a strong inequality [18, 20, 49]. Note that
the mixing relaxation Y α ignores the system

Z =

z ∈ {0, 1}N :
∑
i∈[N ]

pizi ≥ 1− ε

 (7)

that is inherent in X . When the probabilities are uniform, i.e. pi = 1/N , [24] propose strengthened
inequalities for conv(Y α ∩ (Rn×Z)). For general probabilities the set Z is a knapsack system and
is hard to optimize/separate over. In [1], the authors extend mixing inequalities to account for the
knapsack constraint.

2.3 Quantile cuts and their closure

It can be shown that [34], for any α ∈ Rn,

Projx (conv(Y α ∩ (Rn × Z))) = {x : α>x ≥ βαq (S)}

where Projx(·) denotes projection on to the x-variables. Thus the inequalityα>x ≥ βαq (S), called a
quantile cut [47], is a valid inequality for conv(Projx(X)), and captures the effect of all inequalities
derived from the mixing system Y α and the knapsack system Z with respect to the x-variables.
Of course, the quantile cut depends on the choice of the α vector. In the recent paper [47], we
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study the closure of all possible quantile cuts, i.e. the intersection of quantile cuts for all α ∈ Rn,
for a chance constrained system. We briefly review these results next.

Recall that S is a compact set such thatX (ξi) ⊆ S for all i ∈ [N ], and the β-values are computed
with respect to this set as in (3) and (4). The first quantile closure is defined as

S1 =
⋂
α∈Rn

{x : α>x ≥ βαq (S)}. (8)

Since Projx(X) ⊆ S1, we can update each scenario system such that X (ξi) ⊆ S1 for each i. Recall
from (3) and (4) that this effects the β values. We can then recursively define the r-th quantile
closure as

Sr =
⋂
α∈Rn

{x : α>x ≥ βαq (Sr−1)} for r > 1. (9)

A natural theoretical question is whether a successive application of the quantile cuts in the above
manner can eventually recover the convex hull of the chance constrained system.

Theorem 2 [47] Assuming that the initial set S is compact, successive quantile closures converge to the
convex hull of the chance constrained set (in the space of the x-variables) with respect to Hausdorff distance,
i.e

lim
r→∞

dH
(
Sr, conv(Projx(X))

)
= 0

where dH(A,B) is the Hausdorff distance between two closed convex sets A and B (cf. [36]).

The above result establishes that the quantile cuts, and therefore the mixing inequalities, are es-
sentially all that are needed to describe the convex hull of the chance constrained set (in the space
of the x-variables). Unfortunately, as mentioned earlier, separating a violated quantile cut, i.e
determining a α-vector, is NP-hard.

2.4 Nonanticipative relaxations

In this section, we discuss relaxations obtained by a specific dualization of problem (2), and asso-
ciated extended formulations derived from them. The material in this section is from [2].

Let us reformulate the chance constrained problem (2) into an equivalent form by making N
copies of the variables x, denoted as {xi}i∈[N ], and enforcing them to be equal, i.e., x1 = . . . = xN .
These constraints are known as “nonanticipativity constraints” in the stochastic programming
literature. For notational convenience, we let

∑
i∈[N ]Hix

i = h denote the system of nonanticipa-
tivity constraints. Therefore, (2) is equivalent to

v∗ = min
x,z


∑
i∈[N ]

pic
>xi :

∑
i∈[N ]

Hix
i = h

Aixi ≥ zibi − (1− zi)Mi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N


. (10)

Relaxing the nonanticipativity constraints with Lagrangian multipliers λ, we obtain the following
dual problem

vLD1 = sup
λ

{
L1(λ)− λ>h

}
(11)
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where

L1(λ) = min
x,z


∑
i∈[N ]

(
pic
>xi + λ>Hix

i
)

:

Aixi ≥ zibi − (1− zi)Mi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N

 . (12)

It can be shown that, for a given vector λ, the optimization problem (12) to evaluate L1(λ) can
be decomposed over the N scenarios and solved efficiently (see [2]). Thus we can obtain a lower
bound on v∗. The optimal dual bound vLD1 can be obtained by solving the convex problem (11)
with standard techniques such as the subgradient method.

Next we discuss a second dual problem. Note that in (10), maxi∈[N ] c
>xi =

∑
i∈[N ] pic

>xi

holds for any feasible solution satisfying the nonanticipativity constraints. Thus, we can replace
the objective function in (10) with maxi∈[N ] c

>xi, which can be further linearized by introducing
an auxiliary variable y to obtain the following formulation

v∗ = min
y,x,z


y :

c>xi ≤ y ∀ i ∈ [N ]∑
i∈[N ]

Hix
i = h

Aixi ≥ zibi − (1− zi)Mi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N


. (13)

As before, by relaxing the nonanticipativity constraints we can construct the following dual prob-
lem to get a lower bound on v∗:

vLD2 = min
y

sup
λ

{
y + L2(λ, y)− λ>h

}
(14)

where

L2(λ, y) = min
x,z


∑
i∈[N ]

λ>Hix
i :

c>xi ≤ y ∀ i ∈ [N ]
Aixi ≥ zibi − (1− zi)Mi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N

 . (15)

For fixed y and λ, problem (15) can be decomposed over the N scenarios and solved efficiently.
The dual problem (14) can be solved by combining bisection to optimize over y with standard
subgradient methods to optimize over λ (see [2] for details).

We can show the following relationship between the above derived bounds and that obtained
from the linear programming relaxation of (2).

Theorem 3 [2] Let vM denote the optimal value of the LP relaxation of (2) (note that this value depends
on the big-M coefficients used, hence the superscript). Then

vLD2 ≥ vLD1 ≥ vM .

Thus the bounds obtained from the nonanticipative relaxations are at least as good as that of the
LP relaxation even with the best possible big-M coefficients. Using primal characterization of
the Lagrangian dual of an MILP and disjunctive programming techniques, we can use the above
Lagrangian duals to derive reformulations of (2) with strong relaxations bounds.
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Theorem 4 [2] The chance constrained optimization problem (2) can be reformulated as the following big-
M -free MILP:

min
x,z,u,w


c>x :

ui +wi = x ∀ i ∈ [N ]
Aiui ≥ zibi ∀ i ∈ [N ]
Aiwi ≥ (1− zi)bi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N


. (16)

The optimal value of the LP relaxation of the above formulation is at least as large as that of the LP relaxation
of (2). If pi = 1/N for all i ∈ [N ] then the optimal value of the LP relaxation of the above formulation is
equal to vLD1 .

Theorem 5 [2] The chance constrained optimization problem (2) can be reformulated as the following big-
M -free mixed-integer nonlinear program (MINLP):

min
x,y,z


y :

c>ui ≤ yzi ∀ i ∈ [N ]
c>wi ≤ y(1− zi) ∀ i ∈ [N ]
ui +wi = x ∀ i ∈ [N ]
Aiui ≥ zibi ∀ i ∈ [N ]
Aiwi ≥ (1− zi)bi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N


. (17)

The optimal value of the continuous relaxation of the above formulation (i.e. when z ∈ [0, 1]N ) is at least as
large as that of the LP relaxation of (2). If pi = 1/N for all i ∈ [N ] then the optimal value of the continuous
relaxation of the above formulation is equal to vLD2 .

The continuous relaxation of (17) is a nonlinear program, and [2] propose a successive linear pro-
gramming technique and a successive second-order cone programming (SOCP) technique for its
solution. These schemes also lead to an MILP reformulation and a mixed integer second-order
cone programming (MISOCP) reformulation of (2).

3 Approximations

Motivated by the difficulty of chance constrained optimization problems, there has been a great
deal of elegant work in developing tractable methods to construct a good feasible solution. These
include designing a deterministic safe convex approximation, i.e. a tractable convex set that is
an inner approximation to the chance constraint set, such as robust optimization [6], conditional-
value-at-risk (CVaR) approximation [28, 35], Bernstein approximation [28], and related approaches
[32]. Another line of work has been on scenario approximations [9, 10, 23, 27], where the chance
constraint is replaced by a sampled set of constraints, and the sample size is chosen to guaran-
tee that a solution to the sampled system is feasible to the chance constrained problem with high
probability. See [26] for a survey of safe and scenario approximations of chance constraints. While
these approximation methods have guarantees on feasibility, they do not have any guarantee on
optimality. That is, the approximate solutions could be arbitrarily far from being optimal. To the
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best of our knowledge, all existing approximation algorithms with provable optimality guaran-
tees have been studied for chance constrained combinatorial optimization problems, i.e. where the
decision vector x is restricted to be binary (cf. [14, 15, 41]).

In this section we review the CVaR based safe approximation and the scenario approximation
approach. We also discuss a recently proposed bisection heuristic [2]. For each of these approx-
imations, we provide examples to show that the optimality guarantees could be arbitrarily bad.
The worst-case examples for CVaR and scenario approximations are from [45], while that for the
bisection heuristic of [2] is new.

3.1 CVaR approximation

For a scalar continuous random variable W with distribution P and some α ∈ (0, 1), the value-at-
risk (VaR) (at level α) is the quantile defined as

VaRα(W ) = inf{t : P{W ≤ t} ≥ α},

and the corresponding conditional-value-at-risk (CVaR) is

CVaRα(W ) = E[W |W ≥ VaRα(W )].

For notational convenience, let us use v to denote VaRα(W ). Notice that

CVaRα(W ) = E[W |W ≥ v]

=
(∫

W≥v
WdP

)
/
(∫

W≥v
dP
)

= 1
1−α

(∫
W≥v

(W + v − v)dP
)

= 1
1−α

(∫
W≥v

(W − v)dP +
∫
W≥v

vdP
)

= v + 1
1−αE[(W − v)+],

where (a)+ = max{0, a}. Thus

CVaRα(W ) = VaRα(W ) +
1

1− α
E[(W − VaRα(W ))+].

Using the above construction and standard convex analysis, [35] show the following important
representation theorem for the CVaR of a continuous random variable W ,

CVaRα(W ) = inf
y

{
y +

1

1− α
E[(W − y)+]

}
. (18)

Since CVaRα(W ) ≥ VaRα(W ), it is easy to see that for a continuous random variable

P{W ≤ 0} ≥ α ⇔ VaRα(W ) ≤ 0
⇐ CVaRα(W ) ≤ 0
⇔ ∃y : y + 1

1−αE[(W − y)+] ≤ 0.
(19)

Now consider the chance constraint

P{Ãx ≥ b̃} ≥ 1− ε (20)
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where the random quantities (Ã, b̃) have a continuous joint distribution. The chance constraint
(20) can be written as

P{W (x) ≤ 0} ≥ 1− ε,

whereW (x) = ‖(b̃−Ãx)+‖∞ is a scalar random variable with a continuous distribution. Using the
construction in (19) we see that the following constraint on the variables x and the new variable y
implies the nonconvex chance constraint (20):

y +
1

ε
E
[
(‖(b̃− Ãx)+‖∞ − y)+

]
≤ 0. (21)

Note that ‖(b̃ − Ãx)+‖∞ is convex in x, and (·)+ is convex and nondecreasing, thus above con-
straint is convex in x and y. Thus we have a safe convex approximation to the chance constraint
(20).

Note that the above construction works when the random variables are continuously dis-
tributed. The following result shows that it is also valid for the chance constrained optimization
problem (2) with discrete random variables.

Proposition 1 Let x̂ be a solution to the following linear program

min
x,y,θ1,...,θN

c
>x :

y + 1
ε

∑
i∈[N ]

piθi ≤ 0

y + θi ≥ 0 ∀ i ∈ [N ]
(y + θi) e ≥ bi −Aix ∀ i ∈ [N ]
θi ≥ 0 ∀ i ∈ [N ]

 (22)

then x̂ is a feasible solution of (2). (Note that we have introduced the θ variables to linearize the nonlinear
operations (·)+ and ‖(·)+‖∞.)

Proof: Let (x̂, ŷ, θ̂1, . . . , θ̂N ) be a solution to the linear program. We need to construct a solution
(ẑ1, . . . , ẑN ) such that (x̂, ẑ1, . . . , ẑN ) is feasible to (2). Let

N1 = {i ∈ [N ] : Aix̂ ≥ bi} and N2 = {i ∈ [N ] : Aix̂ 6≥ bi}.

Let ẑi = 1 for i ∈ N1 and ẑi = 0 for i ∈ N2. Then the solution (x̂, ẑ1, . . . , ẑN ) satisfies the constraints

Aix ≥ zibi − (1− zi)Mi ∀ i ∈ [N ]
z ∈ {0, 1}N .

We only need to show that it satisfies
∑

i∈[N ]pizi ≥ 1− ε. Consider the first constraint of the linear
program (22):

0 ≥ ŷ + 1
ε

∑
i∈N1

piθ̂i +
1

ε

∑
i∈N2

piθ̂i

≥ ŷ + 1
ε

∑
i∈N2

piθ̂i

≥ ŷ + 1
ε

∑
i∈N2

pi[‖(bi −Aix̂)+‖∞ − ŷ],

where the second inequality is due to θ̂i ≥ 0 for all i ∈ N1 and the third inequality is because
ŷ + θ̂i ≥ ‖(bi −Aix̂)+‖∞ for all i ∈ [N ].
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Note that ‖(bi −Aix̂)+‖∞ > 0 for all i ∈ N2, and let C = mini∈N2 ‖(bi −Aix̂)+‖∞ > 0. Then∑
i∈N2

pi ≤
−ŷ
C − ŷ

ε ≤ ε

since ŷ ≤ 0 from the first constraint of (22). Thus∑
i∈[N ]

piẑi =
∑
i∈N1

pi = 1−
∑
i∈N2

pi ≥ 1− ε.

Thus (x̂, ẑ1, . . . , ẑN ) satisfies all the constraints of (2), hence x̂ is a feasible solution. �
The above CVaR approximation is a widely used convex approximation of chance constraints,

and can be shown to be in some sense the best one (see [28] for details). Unfortunately, the CVaR
approximation can be overly conservative (cf. [4]), and the following example shows that this
approximation does not have any optimality guarantee.

Example 1 [45] Given a parameter κ > 1, consider the following instance of the chance constrained
problem (2):

(Pκ) : v∗κ = min
x≥0

x :

ξix ≥ zi −Mi(1− zi) ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N .

 ,

where εN is an integer, pi = 1/N for all i ∈ [N ], {ξi}i∈[N ] is such that ξi = 1 for i ∈ [εN ] and ξi = κ for
i ∈ [N ] \ [εN ]. Note that for this problem we can set Mi = 0 for all i ∈ [N ]. Let vCVaR

κ be the optimal value
of the CVaR approximation (22) of (Pκ). Then it can be shown (see [45]) that

lim
κ→∞

vCVaR
κ

v∗κ
=∞.

3.2 Scenario approximation

Consider the chance constrained optimization problem under general distributions

v∗ = min
x

{
c>x : P{Ãx ≥ b̃} ≥ 1− ε

}
. (23)

Recall that (2) is a special case of (23) with a finite distribution. The scenario approximation (SA)
approach for (23), proposed by [10], uses N̄ i.i.d. samples of (Ã, b̃) and considers the linear pro-
gram where the constraints corresponding to each sampled scenario are enforced:

vSA = min
x

{
c>x : Akx ≥ bk ∀k ∈ [N̄ ]

}
. (24)

In [10] it is shown that when the sample size N̄ satisfies

N̄ ≥
⌈

2

ε
log

(
1

δ

)
+

2n

ε
log

(
2

ε

)
+ 2n

⌉
.

If the approximate problem (24) is feasible then with probability at least (1− δ), where δ ∈ (0, 1) is
a given confidence level, an optimal solution to (24) is feasible to the chance constrained problem
(23), thus, vSA ≥ v∗. The following example illustrates that approximation quality from the SA
approach can be arbitrarily bad by showing that (24) can be infeasible with high probability.
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Example 2 [45] Consider the following instance of the chance constrained problem (23):

(P ) : v∗ = min
x≥0

{
x : P{ξ̃x ≥ 1} ≥ 1− ε

}
,

where ξ̃ is a Bernoulli random variable with probability (1 − ε). Let vSAδ denote the optimal value of the
scenario approximation problem (24) corresponding to (P ) for a given confidence parameter δ ∈ (0, 1) and

sample size N̄δ =

⌈
2
ε log

(
1
δ

)
+ 2

ε log
(
2
ε

)
+ 2

⌉
. Then it can be shown (see [45]) that v∗ = 1 and

P
{
vSAδ
v∗

=∞
}
≥ 1− δ2ε2,

i.e., with probability at least 1− δ2ε2, a scenario approximation of (P ) is infeasible.

3.3 Bisection heuristic of [2]

In [2], the authors propose a heuristic for constructing a feasible solution to the chance constrained
problem (2). The key idea of this heuristic is to minimize the sum of infeasibilities for each sce-
nario while bounding the objective value by a prescribed amount by solving the following linear
program

min
x, s∈RN

+

∑
i∈[N ]

pisi :
Aix ≥ bi − si i ∈ [N ],
c>x ≤ v

 (25)

where v is a provided bound on the objective value. The heuristic searches over v (by bisection) in
order to find a feasible solution. The procedure is as follows.

Algorithm 1 Bisection heuristic of [2]
1: Let L > −∞ and U < ∞ be known lower and upper bounds on the optimal value of (2), let
δ̂ > 0 be a stopping tolerance parameter.

2: while U − L > δ̂ do
3: v ← (L+ U)/2.
4: Let (x̂, ŝ) be an optimal solution of (25) and set ẑi = I(ŝi = 0) for all i ∈ [N ].
5: if

∑N
i=1 piẑi ≥ 1− ε then

6: U ← v.
7: else
8: L← v.
9: end if

10: end while
11: Output vheur ← U .

In [2], the above heuristic is proven to be exact for some restricted classes of chance constrained
problems, and is shown to perform very well in numerical experiments with more general classes
of problems. Here we show that, in general, the heuristic solution can be quite far from being
optimal.
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Example 3 Consider the following instance of (2)

v∗ = min
x∈R2

+


1

1− ε
x1 + x2 :

(ξi)>x ≥ zi − (1− zi)Mi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N .

 (26)

where ε = (N − 1)/N , ξi = (1, 0)> for i ∈ [εN ], ξi = (1, 1)> for i ∈ [N ] \ [εN ], and pi = 1/N for
all i ∈ [N ], and Mi = 0. The following result shows that objective value of the heuristic solution for this
problem is a factor N of the optimal value.

Proposition 2 Let v∗ be the optimal value of the chance constrained optimization problem (26) and let
vheur be the optimal value returned by the value found by the bisection heuristic (Algorithm 1) applied to
(26). Then vheur/v∗ ≥ N .

Proof: It is easily verified that the optimal value v∗ = 1. Problem (25) corresponding to (26) is

min
(x,s)∈RN+2

+

(1/N)
∑
i∈[N ]

si :

x1 ≥ 1− si i ∈ [εN ]
x1 + x2 ≥ 1− si i ∈ [N ] \ [εN ]
1

1−εx1 + x2 ≤ v

 (27)

Suppose in Algorithm 1, we start with any U > 1
1−ε and L = 0. Then, for any v ∈ [1, 1

1−ε), we
must have si = 1 − (1 − ε)v > 0 for each i ∈ [N ] and x1 = (1 − ε)v, x2 = 0 in an optimal solution
of the above linear program. Thus, we can get vheur = 1

1−ε while v∗ = 1. Since ε = N−1
N , we have

vheur/v∗ = N . �

4 Bicriteria approximation

Given a violation ratio σ ≥ 1 and an approximation ratio γ ≥ 1, a (σ, γ)-bicriteria approximation
algorithm for chance constrained optimization problem (2) returns a solution (x̂, ẑ) ∈ Rn×{0, 1}N ,
such that

Aix̂ ≥ ẑibi − (1− ẑi)Mi ∀ i ∈ [N ],
∑
i∈[N ]

piẑi ≥ 1− σε and c>x̂ ≤ γv∗

i.e., the solution violates the uncertain constraints with probability at most σε and has an objective
value at most γ times the optimal value. Note that σ, γ may be dependent on the risk parameter
ε and the underlying probability distribution {p1, . . . , pN}. As a special case, when the violation
ratio σ = 1, we have a single criterion approximation algorithm with an approximation ratio
γ ≥ 1.

In the previous section we discussed examples to show that several existing approximation
schemes do not come with any constant factor approximation guarantees. The following recent
result formally establishes the inapproximability of these problems.

Theorem 6 [45] Suppose we have a polynomial time algorithm that returns a (σ, γ)-approximate solu-
tion to the chance constraint optimization problem (2) with a discrete distribution with N equiprobable
realizations. Then, unless P=NP , the following holds:

12



(i) if γ = 1, then we must have σ = 1/ε − f(N)(1 − ε)/ε for some function f such that f(N) → 0 as
N →∞;

(ii) if σ = 1, then we must have γ = g(N) for some function g such that g(N)→∞ as N →∞.

The above result shows that, unless P = NP , it is impossible to obtain a polynomial time al-
gorithm for a chance constrained problem with a constant single criteria approximation in terms
of the approximation ratio or the violation ratio. This result motivates the need for the bicriteria
approximations that simultaneously relax both optimality and feasibility.

Recently [45] propose a bicriteria approximation for chance constrained covering problems
under general distributions. In the following, we present this algorithm and the analysis for the
discrete distribution setting and slightly improve the approximation ratios.

4.1 Chance constrained covering problems

For the remainder of the paper we focus on covering type instances of (2), where x ∈ Rn+, c ∈ Rn+
and, for each i ∈ [N ], the data for the constraint system Aix ≥ zib

i satisfies Ai ∈ Rm×n+ and
bi ∈ Rm+ . In this case, the big-M coefficients in (2) reduce to zero, and the formulation becomes

v∗ = min
x∈Rn

+,z

c>x :

Aix ≥ zibi ∀ i ∈ [N ]∑
i∈[N ]

pizi ≥ 1− ε

z ∈ {0, 1}N

 . (28)

Although a restricted class, chance constrained covering problems are of importance in a wide
variety of applications (cf. [29, 7, 48, 42, 43, 39, 13, 38]). From the complexity point of view, even
this restricted problem is NP-hard [34]. Furthermore, the inapproximability result in Theorem 6
applies to these problems. Finally, the worst-case examples in Section 3 are all covering type
instances.

The bicriteria approximation algorithm of [45], called Relax-and-Scale, for chance constrained
covering problems proceeds by solving a convex relaxation of the problem, and then scaling its
solution appropriately to obtain the desired optimality and violation ratios. For (28), the Relax-
and-Scale algorithm is as follows.

Algorithm 2 : Relax-and-Scale(σ, γ)
1: input: parameters σ ≥ 1, γ ≥ 1
2: initialize: set l = 1, u = γ and let δ > 0 be a stopping tolerance
3: solve the linear programming relaxation of (28), and let (x̂, ẑ) be an optimal solution
4: while u− l > δ do
5: set τ ← (l + u)/2
6: set x̄← τ x̂ and z̄ ← min(bτ ẑc, e)
7: if

∑
i∈[N ] piz̄i ≥ 1− σε set u← τ , else set l← τ

8: end while
9: output: (x̄, z̄) where x̄ = ux̂ and z̄ = min(buẑc, e)

Next, we establish the choice of the parameters σ, γ, such that Relax-and-Scale(σ, γ) returns a
(σ, γ)-bicriteria approximate solution to (28).
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4.2 Bicriteria analysis

For the remainder of the paper we assume that pi = 1/N for all i ∈ [N ]. The analysis can be
extended to the general (rational) probability setting. The following result is a slight strengthening
of Theorem 5 of [45] which establishes a (σ, σ

σ−1)-bicriteria approximation result.

Theorem 7 If the violation ratio and the approximation ratio are chosen as

σ ∈ [1, 1/ε) and γ =
1 + bσεNc

1 + bσεNc − εN
,

respectively, then Relax-and-Scale(σ, γ) returns a (σ, γ)-bicriteria approximate solution to the chance con-
strained covering problem (28) with equiprobable scenarios. Furthermore, γ ≤ σ

σ−1 .

Proof: Let (x̂, ẑ) be an optimal solution of the linear programming relaxation of (28). Note that the
Relax-and-Scale outputs a solution (x̄, z̄) where x̄ = ux̂ and z̄ = min(buẑc, e) for some u ∈ [1, γ]
as long as

∑
i∈[N ] z̄i ≥ (1 − σε)N . If uẑi < 1 then z̄i = 0 ≤ uẑi, otherwise z̄i = 1 ≤ uẑi. Thus

z̄ ∈ {0, 1}N and z̄i ≤ uẑi for all i ∈ [N ]. It then follows that for all i ∈ [N ],

Aix̂ ≥ biẑi ⇔ Ai(ux̂) ≥ bi(uẑi)⇒ Aix̄ ≥ biz̄i,

where the second implication is due to the nonnegativity of bi.
It remains to show that

∑
i∈[N ] z̄i ≥ (1−σε)N . It is sufficient to do this for u = γ = 1+bσεNc

1+bσεNc−εN .
Let

I :=

{
i ∈ [N ] : ẑi ≥

1

γ
= 1− εN

1 + bσεNc

}
.

We claim that |I| ≥ N −bσεNc. For contradiction, suppose not. That is, |I| ≤ N −bσεNc−1. Note
that this hypothesis implies N − |I| > 1. Then

1

N

∑
i∈[N ]

ẑi =
1

N

∑
i∈I

ẑi +
1

N

∑
i∈[N ]\I

ẑi

<
|I|
N

+

(
1− εN

1 + bσεNc

)
N − |I|
N

= 1− εN

1 + bσεNc
+
|I|
N

εN

1 + bσεNc
≤ 1− εN

1 + bσεNc
+
N − bσεNc − 1

N

εN

1 + bσεNc
= 1− ε,

where the first strict inequality is because ẑi < 1 − εN
1+bσεNc for all i ∈ [N ] \ I and the fact that

N − |I| > 1, and the second inequality follows from the hypothesis |I| ≤ N − bσεNc − 1. This
contradicts the fact that (x̂, ẑ) is a feasible solution to the linear programming relaxation of (28).

Thus γẑi ≥ 1 and z̄i = 1 for all i ∈ I . Then∑
i∈[N ]

z̄i ≥
∑
i∈I

z̄i = |I| ≥ N − bσεNc ≥ (1− σε)N.

We have shown that the constructed solution (x̄, z̄) ∈ Rn+ × {0, 1}N satisfies the constraints

Aix̄ ≥ z̄ibi ∀ i ∈ [N ],
∑
i∈[N ]

z̄i ≥ (1− σε)N.
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Also, since (x̂, ẑ) is an optimal solution to the LP relaxation of (28), it holds that c>x̂ ≤ v∗. Thus
c>x̄ = c>(ux̂) ≤ uv∗ ≤ γv∗. Thus (x̄, z̄) is a (σ, γ)-bicriteria approximate solution to the chance
constrained covering problem (28) with equiprobable scenarios.

Finally, simple calculations ensure that

σ

σ − 1
≥ 1 + bσεNc

1 + bσεNc − εN
.

�
The following corollary to Theorem 7 establishes a (non-constant) single criterion approxima-

tion guarantee.

Corollary 1 If the violation ratio σ = 1 then the Relax-and-Scale algorithm returns a γ-approximate
solution to the chance constrained covering problem (28) with equiprobable scenarios with γ = εN + 1.

We close this subsection by providing an example for which the approximation ratio of Theo-
rem 7 is tight.

Example 4 Given σ ∈ [1, 1/ε), consider the following instance of (28):

v∗ = min
x∈R2

+,z


x1 + x2 :

γx1 ≥ zi ∀ i ∈ [1 + bσεNc]
x1 ≥ zi ∀ i ∈ [N ] \ [1 + bσεNc]
x1 + x2 ≥ 1

(1/N)
∑
i∈[N ]

zi ≥ 1− ε

z ∈ {0, 1}N


. (29)

where γ = 1+bσεNc
1+bσεNc−εN .

Proposition 3 Relax-and-scale(σ, γ) applied to (29) (where σ and γ are equal to those of the instance)
returns a solution whose violation ratio is at most σ and whose optimality ratio is equal to γ.

Proof: Note that the optimal value of the linear programming relaxation of (29) is at least 1, and
the following solution

x̂1 =
1

γ
, x̂2 = 1− 1

γ
, ẑi =

{ 1
γ ∀ i ∈ [1 + bσεNc]
1 ∀i ∈ [N ] \ [1 + bσεNc]

is feasible and achieves the bound, and hence is optimal. For this solution∑
i∈[N ]

min{buẑic, 1} ≥ N − bσεNc

if and only if u ≥ γ. Thus the solution returned by Relax-and-scale(σ, γ) must have an approxima-
tion ratio equal to γ. �
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4.3 Effect of tighter relaxation

The Relax-and-Scale algorithm scales a solution to the linear programming relaxation of the chance
constrained problem (28). In Section 2 we discussed several techniques to improve the quality of
the relaxations. In this subsection, we address the natural question of whether the performance of
the Relax-and-Scale algorithm can be improved by using a stronger relaxation.

We restrict our attention to covering chance constraints (28) with only right-hand-side uncer-
tainties, and equiprobable scenarios. In this case (28) can be written as:

v∗ = min
x∈Rn

+,y,z

c
>x :

Ax ≥ y
y ≥ zibi ∀ i ∈ [N ]∑
i∈[N ]

zi ≥ (1− ε)N

z ∈ {0, 1}N

 . (30)

Consider the following mixed integer set which is a substructure of (30):

Y =

(y, z) :

y ≥ zibi ∀ i ∈ [N ]∑
i∈[N ]

zi ≥ (1− ε)N

z ∈ {0, 1}N

 .

Recall from Section 2.2 that the set Y is a collection of mixing sets intersected with a cardinality
constraint. Although it is NP-hard to optimize over Y (and hence to separate over conv(Y )), vari-
ous families of strong inequalities for conv(Y ) have been derived that have proven to be very ef-
fective in computations. These include the mixing inequalities and their variants (see Section 2.2).

Let us consider the following (hypothetical) stronger linear programming relaxation of (30)
obtained by adding all possible inequalities describing conv(Y ):

min
x∈Rn

+,y,z

{
c>x :

Ax ≥ y
(y, z) ∈ conv(Y )

}
. (31)

The following result shows that even such a tight relaxation does not allow us to improve the
approximation ratio of Relax-and-Scale.

Theorem 8 If the violation ratio and the approximation ratio are chosen as

σ ∈ [1, 1/ε) and γ =
1 + bσεNc

1 + bσεNc − εN
,

respectively, then Relax-and-Scale(σ, γ) using the relaxation (31) returns a (σ, γ)-bicriteria approximate
solution to the chance constrained problem (30). Furthermore, the approximation ratio is tight.

Proof: The proof of the first part is analogous to that of Theorem 7 since (31) is at least as strong
the standard linear programming relaxation of (30).

To prove the second part we consider the following instance for given σ ∈ [1, 1/ε) and γ =
(1 + bσεNc)/(1 + bσεNc − εN) where εN is an integer:

min
x∈R2

+,z

x1 + x2 :

x1 + x2 ≥ 1
ex1 ≥ ξizi ∀ i ∈ [N ]

(1/N)
∑
i∈[N ]

zi ≥ 1− ε

z ∈ {0, 1}N

 . (32)
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where

ξi =

{
(1/γ)ei i ∈ [1 + bσεNc]
ei i ∈ [N ] \ [1 + bσεNc],

with e ∈ RN being a vector of ones, and ei ∈ RN being the i-th basis vector of RN . By introducing
the y-variables as in (30) we can rewrite (32) as

min
x,y,z

{x1 + x2 : x1 + x2 ≥ 1, x1 ≥ yi ∀ i ∈ [N ], (y, z) ∈ Y } ,

and

Y =

(y, z) ∈ R2N :

yi ≥ 1
γ zi ∀i ∈ [1 + bσεNc]

yi ≥ zi ∀i ∈ [N ] \ [1 + bσεNc]∑
i∈[N ]

zi ≥ (1− ε)N

z ∈ {0, 1}N

 .

We only need to show that the convex hull of Y , i.e. conv(Y ), is equal to its continuous relaxation:

Y LP =

(y, z) ∈ R2N :

yi ≥ 1
γ zi ∀i ∈ [1 + bσεNc]

yi ≥ zi ∀i ∈ [N ] \ [1 + bσεNc]∑
i∈[N ]

zi ≥ (1− ε)N

z ∈ [0, 1]N

 .

We know that conv(Y ) ⊆ Y LP . Thus, it remains to show that conv(Y ) ⊇ Y LP . Equivalently,
we can show that all the extreme points of Y LP belong to Y . Indeed, given an extreme point
(ŷ, ẑ) ∈ RN × RN of Y LP , we know that it should satisfy exactly 2N equalities. Note that except
for the bounds on the z variables (i.e., z ∈ [0, 1]N ), there are only N +1 additional inequalities. We
consider the following two cases:

Case 1.
∑

i∈[N ] ẑi > N − εN . Then we must have N of the bound constraints binding, i.e. ẑ ∈
{0, 1}N .

Case 2.
∑

i∈[N ] ẑi = N − εN . It follows that at least N − 1 of the bound constraints on ẑ must
be tight. If N are tight we are done. So suppose only N − 1 are tight, i.e. exactly one
of {ẑi}i∈[N ] is fractional. However recall that εN , and so N − εN , is an integer. So this
contradicts

∑
i∈[N ] ẑi = N − εN . Hence we again have ẑ ∈ {0, 1}N .

Thus conv(Y ) = Y LP , hence for this instance the stronger relaxation does not offer any strength-
ening. To establish the tightness of approximation ratio note that, by the above discussion, the
stronger relaxation (31) for instance (32) is equivalent to

min
x,y,z

{
x1 + x2 : x1 + x2 ≥ 1, x1 ≥ yi, i ∈ [N ], (y, z) ∈ Y LP

}
.

By projecting out the y-variables, the above formulation reduces to the continuous relaxation of
(29). Hence, by the tightness of approximation ratio in Proposition 3, it follows that the stronger
relaxation (31) cannot improve the performance of Relax-and-Scale algorithm. �
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5 Some future research directions

In this paper, we focused on MILP based approaches for chance constrained optimization and dis-
cussed research on improving relaxation bounds and constructing approximate solutions. There
are several important avenues for future research. As discussed in Section 2.2, the mixing set and
the cardinality set are important substructures in MILP formulations of chance constraints. De-
spite significant research, a complete description of the convex hull of the intersection of these
substructures is still unknown. Extended formulations of this intersection have been introduced
in [18, 24], but a description in the original space will significantly help in developing strong MILP
formulations of chance constraints. In Section 2.3, we saw that a successive application of quan-
tile cuts (or projected mixing inequalities) recovers the convex hull of the chance constrained set
in the limit. In general, this convergence is infinite. It would be very useful to derive a bound
on the quantile rank (i.e. number of successive rounds needed) for specially structured sets, and
also tractable methods to approximate the quantile closure. Some preliminary results along this
directions are presented in [47]. The Lagrangian dual bounds introduced in Section 2.4 are prov-
ably stronger than the LP relaxation bounds, but are, in general, incomparable to the strengthened
bounds using mixing inequalities and quantile cuts. A natural question is to establish a relative
comparison of these bounds for specially structured problems. Another question in this regard is
whether the dual bounds (and their corresponding) primal formulations can be further strength-
ened using nonlinear constructions (such as in the case of vLD2 ). The approximation methods dis-
cussed in Section 3 perform well in practice despite their relatively bad worst-case performance.
Some important directions are average-case analysis of these methods, tailoring them to specially
structured problems, and establishing corresponding performance bounds. For example, [2] iden-
tify a large class of problems for which the bisection heuristic (Section 3.3) is optimal. Finally,
the bicriteria analysis of Section 4 is restricted to covering problems, and its extensions to more
general problem classes would be very significant.
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