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To Jill





And lest I should be exalted above measure through the abundance of
revelations, there was given to me a thorn in the flesh, a messenger of Satan to

buffet me, lest I should be exalted above measure.

Second Epistle of St Paul to the Corinthians, Chapter 12

The more we jump – the more we get – if not more quality, then at least more
variety. James Gleick Faster
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Preface to Second Edition

It is four years since the first version of this book appeared and there has con-
tinued to be intense activity focused on Lévy processes and related areas. One
way of gauging this is to look at the number of books and monographs which
have appeared in this time. Regarding fluctuation theory of Lévy processes,
there is a new volume by A. Kyprianou [221] and the St Flour lectures of
R. Doney [96]. From the point of view of interactions with analysis, N. Jacob
has published the third and final volume of his impressive trilogy [182]. Appli-
cations to finance has continued to be a highly active and fast moving area and
there are two new books here – a highly comprehensive and thorough guide
by R. Cont and P. Tankov [81] and a helpful introduction aimed at practioners
fromW.Schoutens [329]. There have also been new editions of classic texts by
Jacod and Shiryaev [183] and Protter [298].
Changes to the present volume are of two types. On the one hand there was

the need to correct errors and typos and also to make improvements where this
was appropriate. In this respect, I am extremely grateful to all those readers who
contacted me with remarks and suggestions. In particular I would like to thank
Fangjun Xu, who is currently a first-year graduate student at Nanzai University,
who worked through the whole book with great zeal and provided me with an
extremely helpful list of typos and mistakes. Where there were more serious
errors, he took the trouble to come up with his own proofs, all of which were
correct.
I have also included some new material, particularly where I think that the

topics are important for futurework.These include the following.Chapter 1 now
has a short introductory section on regular variationwhich is themain tool in the
burgeoning field of ‘heavy tailed modelling’. In Chapter 2, there is additional
material on bounded variation Lévy processes and on the existence of moments
for Lévy processes. Chapter 4 includes new estimates onmoments of Lévy-type
stochastic integrals which have recently been obtained by H. Kunita [218]. In

xiii



xiv Preface to Second Edition

Chapter 5, I have replaced the proof of the Itô and martingale representation
theorem which was previously given only in the Brownian motion case, with
one that works for general Lévy processes. I then develop the theory of multi-
pleWiener–Itô integrals (again in the general context) and apply the martingale
representation theorem to prove Itô’s result on chaos decomposition. I have also
included a short introduction to Malliavin calculus, albeit only in the Brownian
case, as this is now an area of intense activity which extends from quite abstract
path space analysis and geometry to option pricing. As it is quite extensively
dealt with in Cont and Tankov [81] and Schoutens [329], I resisted the tempta-
tion to include more material on mathematical finance with one exception – a
natural extension of the Black–Scholes pde to include jump terms now makes
a brief entrance on to the stage. In Chapter 6, the rather complicated proof of
continuity of solutions of SDEs with respect to their initial conditions has been
replaced by a new streamlined version due to Kunita [218] and employing his
estimates on stochastic integrals mentioned above. There is also a new section
on Lyapunov exponents for SDEs which opens the gates to the study of their
asymptotic stability. Once again it is a pleasure to thank Fangjun Xu who care-
fully read and commented on all of this material. The statutory free copy of
the book will be small recompense for his labours. I would also like to thank
N.H. Bingham and H. Kunita for helpful remarks and my student M. Siakalli
for some beneficial discussions. Cambridge University Press have continued
to offer superb support and I would once again like to thank my editor David
Tranah and all of his staff, particularly Peter Thompson who took great pains
in helping me navigate through the elaborate system of CUP-style LaTeX.
Of course the ultimate responsibility for any typos and more serious

errors is mine. Readers are strongly encouraged to continue to send them to
me at d.applebaum@sheffield.ac.uk. They will be posted on my website at
http://www.applebaum.staff.shef.ac.uk/.

http://www.applebaum.staff.shef.ac.uk/


Preface

The aim of this book is to provide a straightforward and accessible introduc-
tion to stochastic integrals and stochastic differential equations driven by Lévy
processes.
Lévy processes are essentially stochastic processes with stationary and inde-

pendent increments. Their importance in probability theory stems from the
following facts:

• they are analogues of random walks in continuous time;
• they form special subclasses of both semimartingales and Markov processes
for which the analysis is on the one hand much simpler and on the other hand
provides valuable guidance for the general case;

• they are the simplest examples of random motion whose sample paths are
right-continuous and have a number (at most countable) of random jump
discontinuities occurring at random times, on each finite time interval.

• they include a number of very important processes as special cases, includ-
ing Brownian motion, the Poisson process, stable and self-decomposable
processes and subordinators.

Although much of the basic theory was established in the 1930s, recent
years have seen a great deal of new theoretical development as well as novel
applications in such diverse areas as mathematical finance and quantum field
theory. Recent texts that have given systematic expositions of the theory have
been Bertoin [39] and Sato [323]. Samorodnitsky and Taqqu [319] is a bible for
stable processes and related ideas of self-similarity, while a more applications-
oriented view of the stable world can be found in Uchaikin and Zolotarev
[350]. Analytic features of Lévy processes are emphasised in Jacob [179, 180].
A number of new developments in both theory and applications are surveyed
in the volume [26].

xv



xvi Preface

Stochastic calculus is motivated by the attempt to understand the behaviour
of systems whose evolution in time X = (X (t), t ≥ 0) contains both deter-
ministic and random noise components. If X were purely deterministic then
three centuries of calculus have taught us that we should seek an infinitesimal
description of the way X changes in time by means of a differential equation

dX (t)

dt
= F(t,X (t))dt.

If randomness is also present then the natural generalisation of this is a stochastic
differential equation:

dX (t) = F(t,X (t))dt + G(t,X (t))dN (t),

where (N (t), t ≥ 0) is a ‘driving noise’.
There are many texts that deal with the situation where N (t) is a Brown-

ian motion or, more generally, a continuous semimartingale (see e.g. Karatzas
and Shreve [200], Revuz and Yor [306], Kunita [215]). The only volumes that
deal systematically with the case of general (not necessarily continuous) semi-
martingales are Protter [298], Jacod and Shiryaev [183], Métivier [262] and,
more recently, Bichteler [47]; however, all these make heavy demands on the
reader in terms of mathematical sophistication. The approach of the current
volume is to take N (t) to be a Lévy process (or a process that can be built from
a Lévy process in a natural way). This has two distinct advantages:

• The mathematical sophistication required is much less than for general semi-
martingales; nonetheless, anyone wanting to learn the general case will find
this a useful first step in which all the key features appear within a simpler
framework.

• Greater access is given to the theory for those who are only interested in
applications involving Lévy processes.

The organisation of the book is as follows. Chapter 1 begins with a brief
review of measure and probability. We then meet the key notions of infinite
divisibility and Lévy processes. The main aim here is to get acquainted with
the concepts, so proofs are kept to a minimum. The chapter also serves to
provide orientation towards a number of interesting theoretical developments
in the subject that are not essential for stochastic calculus.
InChapter 2,we begin by presenting someof the basic ideas behind stochastic

calculus, such as filtrations, adapted processes andmartingales. Themain aim is
to give a martingale-based proof of the Lévy–Itô decomposition of an arbitrary
Lévy process into Brownian and Poisson parts.We thenmeet the important idea
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of interlacing, whereby the path of a Lévy process is obtained as the almost-sure
limit of a sequence of Brownian motions with drift interspersed with jumps of
random size appearing at random times.
Chapter 3 aims tomovebeyondLévyprocesses to studymore generalMarkov

processes and their associated semigroups of linear mappings. We emphasise,
however, that the structure of Lévy processes is the paradigm case and this is
exhibited both through the Courrège formula for the infinitesimal generator of
Feller processes and the Beurling–Deny formula for symmetric Dirichlet forms.
This chapter is more analytical in flavour than the rest of the book and makes
extensive use of the theory of linear operators, particularly those of pseudo-
differential type. Readers who lack background in this area can find most of
what they need in the chapter appendix.
Stochastic integration is developed in Chapter 4. A novel aspect of our

approach is that Brownian and Poisson integration are unified using the idea of
a martingale-valued measure. At first sight this may strike the reader as tech-
nically complicated but, in fact, the assumptions that are imposed ensure that
the development remains accessible and straightforward. A highlight of this
chapter is the proof of Itô’s formula for Lévy-type stochastic integrals.
The first part of Chapter 5 deals with a number of useful spin-offs from

stochastic integration. Specifically, we study theDoléans-Dade stochastic expo-
nential, Girsanov’s theorem and its application to change of measure, the
Cameron–Martin formula and the beginnings of analysis in Wiener space and
martingale representation theorems. Most of these are important tools in math-
ematical finance and the latter part of the chapter is devoted to surveying the
application of Lévy processes to option pricing, with an emphasis on the spe-
cific goal of finding an improvement to the celebrated but flawedBlack–Scholes
formula generated by Brownian motion. At the time of writing, this area is
evolving at a rapid pace and we have been content to concentrate on one
approach using hyperbolic Lévy processes that has been rather well devel-
oped. We have included, however, a large number of references to alternative
models.
Finally, in Chapter 6, we study stochastic differential equations driven by

Lévy processes. Under general conditions, the solutions of these are Feller
processes and so we gain a concrete class of examples of the theory developed
in Chapter 3. Solutions also give rise to stochastic flows and hence generate
random dynamical systems.
The book naturally falls into two parts. The first three chapters develop the

fundamentals of Lévy processes with an emphasis on those that are useful in
stochastic calculus. The final three chapters develop the stochastic calculus of
Lévy processes.



xviii Preface

Each chapter closes with some brief historical remarks and suggestions for
further reading. I emphasise that these notes are only indicative; no attempt has
been made at a thorough historical account, and in this respect I apologise to
any readers who feel that their contribution is unjustly omitted. More thorough
historical notes in relation to Lévy processes can be found in the chapter notes
to Sato [323], and for stochastic calculus with jumps see those in Protter [298].
This book requires background knowledge of probability andmeasure theory

(such as might be obtained in a final-year undergraduate mathematics honours
programme), some facility with real analysis and a smattering of functional
analysis (particularly Hilbert spaces). Knowledge of basic complex variable
theory and some general topology would also be an advantage, but readers
who lack this should be able to read on without too much loss. The book is
designed to be suitable for underpinning a taught masters level course or for
independent study by first-year graduate students in mathematics and related
programmes. Indeed, the two parts would make a nice pair of linked half-year
modules. Alternatively, a course could also be built from the core of the book,
Chapters 1, 2, 4 and 6. Readers with a specific interest in finance can safely
omit Chapter 3 and Section 6.4 onwards, while analysts who wish to deepen
their understanding of stochastic representations of semigroups might leave out
Chapter 5.
A number of exercises of varying difficulty are scattered throughout the text.

I have resisted the temptation to include worked solutions, since I believe that
the absence of these provides better research training for graduate students.
However, anyone having persistent difficulty in solving a problem may contact
me by e-mail or otherwise.
I began my research career as a mathematical physicist and learned modern

probability as part of my education in quantum theory. I would like to express
my deepest thanks to my teachers Robin Hudson, K.R. Parthasarathy and Luigi
Accardi for helping me to develop the foundations on which later studies have
been built.My fascinationwith Lévy processes beganwithmy attempt to under-
stand their wonderful role in implementing cocycles by means of annihilation,
creation and conservation processes associated with the free quantum field, and
this can be regarded as the starting point for quantum stochastic calculus. Unfor-
tunately, this topic lies outside the scope of this volume but interested readers
can consult Parthasarathy [291], pp. 152–61 or Meyer [267], pp. 120–1.
My understanding of the probabilistic properties of Lévy processes has deep-

ened as a result of work in stochastic differential equations with jumps over
the past 10 years, and it is a great pleasure to thank my collaborators Hiroshi
Kunita, Serge Cohen, Anne Estrade, Jiang-Lun Wu and my student Fuchang
Tang for many joyful and enlightening discussions. I would also like to thank
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René Schilling for many valuable conversations concerning topics related to
this book. It was hewho taught me about the beautiful relationship with pseudo-
differential operators, which is described in Chapter 3. Thanks are also due to
Jean Jacod for clarifying my understanding of the concept of predictability and
to my colleague Tony Sackfield for advice about Bessel functions.
Earlier versions of this book were full of errors and misunderstandings and

I am enormously indebted to Nick Bingham, Tsukasa Fujiwara, Fehmi Özkan
and René Schilling, all of whom devoted the time and energy to read exten-
sively and criticize early drafts. Some very helpful comments were also made
by Krishna Athreya, Ole Barndorff-Nielsen, Uwe Franz, Vassili Kolokoltsov,
Hiroshi Kunita, Martin Lindsay, Nikolai Leonenko, Carlo Marinelli (particu-
larly with regard to LaTeX) and Ray Streater. Nick Bingham also deserves a
special thanks for providing me with a valuable tutorial on English grammar.
Many thanks are also due to two anonymous referees employed by Cam-
bridge University Press. The book is greatly enriched thanks to their perceptive
observations and insights.
In March 2003, I had the pleasure of giving a course, partially based on

this book, at the University of Greifswald, as part of a graduate school on
quantum independent increment processes. My thanks go to the organisers,
Michael Schürmann and Uwe Franz, and all the participants for a number of
observations that have improved the manuscript.
Many thanks are also due to David Tranah and the staff at Cambridge Uni-

versity Press for their highly professional yet sensitive management of this
project.
Despite all this invaluable assistance, some errors surely still remain and the

author would be grateful to be e-mailed about these at dba@maths.ntu.ac.uk.
Corrections received after publication will be posted on his website
http://www.scm.ntu.ac.uk/dba/.1

1 Note added in second edition. This website is no longer active. The relevant address is now
http://www.applebaum.staff.shef.ac.uk/

http://www.scm.ntu.ac.uk/dba/
http://www.applebaum.staff.shef.ac.uk/




Overview

It can be very useful to gain an intuitive feel for the behaviour of Lévy pro-
cesses and the purpose of this short introduction is to try to develop this. Of
necessity, our mathematical approach here is somewhat naive and informal –
the structured, rigorous development begins in Chapter 1.
Suppose that we are given a probability space (�,F ,P). A Lévy process

X = (X (t), t≥ 0) taking values in Rd is essentially a stochastic process having
stationary and independent increments; we always assume that X (0) = 0 with
probability 1. So:

• each X (t) : �→ Rd ;
• given any selection of distinct time-points 0 ≤ t1 < t2 < · · · < tn, the
random vectors X (t1),X (t2) − X (t1),X (t3) − X (t2), . . . ,X (tn) − X (tn−1)
are all independent;

• given any two distinct times 0 ≤ s < t < ∞, the probability distribution of
X (t)− X (s) coincides with that of X (t − s).

The key formula in this book from which so much else flows, is the magnifi-
cent Lévy–Khintchine formula, which says that any Lévy process has a specific
form for its characteristic function. More precisely, for all t ≥ 0, u∈Rd ,

E(ei(u,X (t))) = etη(u) (0.1)

where

η(u) = i(b, u)− 1

2
(u, au)+

∫
Rd−{0}

[
ei(u,y) − 1− i(u, y)χ0<|y|<1(y)

]
ν(dy).

(0.2)

In this formula b∈Rd , a is a positive definite symmetric d × d matrix and ν

is a Lévy measure on Rd − {0}, so that ∫Rd−{0}min{1, |y|2}ν(dy) <∞. If you

xxi
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have not seen it before, (0.2) will look quite mysterious to you, so we need to
try to extract its meaning.
First suppose that a = ν = 0; then (0.1), just becomesE(ei(u,X (t))) = eit(u,b),

so that X (t) = bt is simply deterministic motion in a straight line. The vector
b determines the velocity of this motion and is usually called the drift.
Now suppose that we also have a �= 0, so that (0.1) takes the form

E(ei(u,X (t))) = exp{t[i(b, u)− 1
2 (u, au)]}. We can recognise this as the char-

acteristic function of a Gaussian random variable X (t) having mean vector
tb and covariant matrix ta. In fact we can say more about this case: the pro-
cess (X (t), t ≥ 0) is a Brownian motion with drift, and such processes have
been extensively studied for over 100 years. In particular, the sample paths
t → X (t)(ω) are continuous (albeit nowhere differentiable) for almost all
ω∈�. The case b = 0, a = I is usually called standard Brownian motion.

Now consider the case where we also have ν �= 0. If ν is a finite measure we
can rewrite (0.2) as

η(u) = i(b′, u)− 1
2 (u, au)+

∫
Rd−{0}

(ei(u,y) − 1)ν(dy),

where b′ = b− ∫0<|y|<1 yν(dy). We will take the simplest possible form for ν,

i.e. ν = λδh where λ > 0 and δh is a Dirac mass concentrated at h∈Rd − {0}.
In this case we can set X (t) = b′t+√aB(t)+N (t), where B = (B(t), t ≥ 0)

is a standard Brownianmotion andN = (N (t), t ≥ 0) is an independent process
for which

E(ei(u,N (t))) = exp
[
λt(ei(u,h) − 1)

]
.

We can now recognise N as a Poisson process of intensity λ taking values in
the set {nh, n∈N}, so that P(N (t) = nh) = e−λt[(λt)n/n!] and N (t) counts
discrete events that occur at the random times (Tn, n∈N). Our interpretation of
the paths of X in this case is now as follows. X follows the path of a Brownian
motion with drift from time zero until the random time T1. At time T1 the path
has a jump discontinuity of size |h|. Between T1 and T2 we again see Brownian
motion with drift, and there is another jump discontinuity of size |h| at time T2.
We can continue to build the path in this manner indefinitely.
The next stage is to take ν =∑m

i=1 λiδhi , wherem∈N, λi > 0 and hi ∈Rd −
{0}, for 1 ≤ i ≤ m. We can then write

X (t) = b′t +√aB(t)+ N1(t)+ · · · + Nm(t),
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where N1, . . . ,Nm are independent Poisson processes (which are also indepen-
dent of B); eachNi has intensity λi and takes values in the set {nhi, n∈N}where
1 ≤ i ≤ m. In this case, the path of X is again a Brownian motion with drift,
interspersed with jumps taking place at random times. This time, though, each
jump size may be any of the m numbers |h1|, . . . , |hm|.
In the general case where ν is finite, we can see that we have passed to the

limit in which jump sizes take values in the full continuum of possibilities,
corresponding to a continuum of Poisson processes. So a Lévy process of this
type is a Brownian motion with drift interspersed with jumps of arbitrary size.
Even when ν fails to be finite, if we have

∫
0<|x|<1 |x|ν(dx) < ∞ a simple

exercise in using the mean value theorem shows that we can still make this
interpretation.
The most subtle case of the Lévy–Khintchine formula (0.2) is when∫

0<|x|<1 |x|ν(dx) = ∞ but
∫
0<|x|<1 |x|2ν(dx) < ∞. Thinking analytically,

ei(u,y) − 1 may no longer be ν-integrable but

ei(u,y) − 1− i(u, y)χ0<|y|<1(y)

always is. Intuitively, we may argue that the measure ν has become so fine that
it is no longer capable of distinguishing small jumps from drift. Consequently it
is necessary to amalgamate them together under the integral term. Despite this
subtlety, it is still possible to interpret the general Lévy process as a Brownian
motion with drift b interspersed with ‘jumps’ of arbitrary size, provided we
recognise that at the microscopic level tiny jumps and short bursts of drift
are treated as one. A more subtle discussion of this, and an account of the
phenomenon of ‘creep’, can be found at the end of Section 2.4. We will see in
Chapter 2 that the path can always be constructed as the limit of a sequence of
terms, each of which is a Brownian motion with drift interspersed with bona
fide jumps.
When ν <∞, we can write the sample-path decomposition directly as

X (t) = bt +√aB(t)+
∑
0≤s≤t

�X (s), (0.3)

where �X (s) is the jump at time s (e.g. if ν = λδh then �X (s) = 0 or h).
Instead of dealing directly with the jumps it is more convenient to count the
times at which the jumps occur, so for each Borel set A in Rd − {0} and for
each t ≥ 0 we define

N (t,A) = #{0 ≤ s ≤ t;�X (s)∈A}.
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This is an interesting object: if we fix t and A then N (t,A) is a random variable;
however, if we fixω∈� and t ≥ 0 thenN (t, ·)(ω) is ameasure. Finally, if we fix
Awith ν(A) <∞ then (N (t,A), t ≥ 0) is a Poisson process with intensity ν(A).
When ν <∞, we can write

∑
0≤s≤t

�X (s) =
∫

R−{0}
xN (t, dx).

(Readers might find it helpful to consider first the simple case where ν =∑m
i=1 λiδhi .)
In the case of general ν, the delicate analysis whereby small jumps and drift

become amalgamated leads to the celebrated Lévy–Itô decomposition,

X (t) = bt +√aB(t)+
∫
0<|x|<1

x
[
N (t, dx)− tν(dx)

]+ ∫
|x|≥1

xN (t, dx).

Full proofs of the Lévy–Khintchine formula and the Lévy–Itô decomposition
are given in Chapters 1 and 2.
Let us return to the consideration of standard Brownian motion

B= (B(t), t≥ 0). Each B(t) has a Gaussian density

pt(x) = 1

(2π t)d/2
exp

(
−|x|

2

2t

)
and, as was first pointed out by Einstein [106], this satisfies the diffusion
equation

∂pt(x)

∂t
= 1

2�pt(x),

where � is the usual Laplacian in Rd . More generally, suppose that we want
to build a solution u = (u(t, x), t ≥ 0, x ∈Rd ) to the diffusion equation that
has a fixed initial condition u(0, x) = f (x) for all x ∈Rd , where f is a bounded
continuous function on Rd . We then have

u(t, x) =
∫

Rd
f (x + y)pt(y)dy = E(f (x + B(t))). (0.4)

The modern way of thinking about this utilises the powerful machinery of oper-
ator theory. We define (Ttf )(x) = u(t, x); then (Tt , t ≥ 0) is a one-parameter
semigroup of linear operators on the Banach space of bounded continuous func-
tions. The semigroup is completely determined by its infinitesimal generator
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�, so that we may formally write Tt = et� and note that, from the diffusion
equation,

�f = d

dt
(Ttf )

∣∣∣
t=0

for all f where this makes sense.
This circle of ideas has a nice physical interpretation. The semigroup or,

equivalently, its infinitesimal version – the diffusion equation – gives a deter-
ministic macroscopic description of the effects of Brownian motion. We see
from (0.4) that to obtain this we must average over all possible paths of the par-
ticle that is executing Brownian motion. We can, of course, get a microscopic
description by forgetting about the semigroup and just concentrating on the
process (B(t), t ≥ 0). The price we have to pay for this is that we can no longer
describe the dynamics deterministically. Each B(t) is a random variable, and
any statement we make about it can only be expressed as a probability. More
generally, as we will see in Chapter 6, we have a dichotomy between solutions
of stochastic differential equations, which are microscopic and random, and
their averages, which solve partial differential equations and are macroscopic
and deterministic.
Thefirst stage in generalising this interplay of concepts is to replaceBrownian

motion by a general Lévy process X = (X (t), t ≥ 0). Although X may not in
general have a density, we may still obtain the semigroup by (T (t)f )(x) =
E(f (X (t) + x)), and the infinitesimal generator then takes the more general
form

(Af )(x) = bi(∂if )(x)+ 1
2a

ij(∂i∂jf )(x)

+
∫

Rd−{0}
[f (x + y)− f (x)− yi(∂if )(x)χ0<|y|<1(y)]ν(dy).

(0.5)

In fact this structure is completely determined by the Lévy–Khinchine formula,
and we have the following important correspondences:

• drift←→ first-order differential operator
• diffusion←→ second-order differential operator
• jumps←→ superposition of difference operators

This enables us to read off our intuitive description of the path from the form
of the generator, and this is very useful in more general situations where we
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no longer have a Lévy–Khinchine formula. The formula (0.5) is established in
Chapter 3, and we will also derive an alternative representation using pseudo-
differential operators.
More generally, the relationship between stochastic processes and semi-

groups extends to a wider class of Markov processes Y = (Y (t), t ≥ 0), and
here the semigroup is given by conditioning:

(Ttf )(x) = E
(
f (Y (t))|Y (0) = x

)
.

Under certain general conditions that we will describe in Chapter 3, the
generator is of the Courrège form

(Af )(x) = c(x)f (x)+ bi(x)(∂if )(x)+ aij(x)(∂i∂jf )(x)

+
∫

Rd−{x}
[f (y)− f (x)−φ(x, y)(yi−xi)(∂if )(x)]µ(x, dy).

(0.6)

Note the similarities between equations (0.5) and (0.6). Once again there
are drift, diffusion and jump terms, however, these are no longer fixed in
space but change from point to point. There is an additional term, controlled
by the function c, that corresponds to killing (we could also have included
this in the Lévy case), and the function φ is simply a smoothed version
of the indicator function that effects the cut-off between large and small
jumps.
Under certain conditions, we can generalise the Lévy–Itô decomposition and

describe the process Y as the solution of a stochastic differential equation

dY (t) = b(Y (t−))dt +√a(Y (t−))dB(t)

+
∫
|x|<1

F(Y (t−), x)
[
N (dt, dx)− dtν(dx)

]
+
∫
|x|≥1

G(Y (t−), x)N (dt, dx). (0.7)

The kernel µ(x, ·) appearing in (0.6) can be expressed in terms of the Lévy
measure ν and the coefficientsF andG. This is described in detail in Chapter 6.
To make sense of the stochastic differential equation (0.7), we must rewrite

it as an integral equation, which means that we must give meaning to stochastic
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integrals such as

∫ t

0
U (s)dB(s) and

∫ t

0

∫
0<|x|<1

V (s, x)(N (ds, dx)− dsν(dx))

for suitable U and V . The usual Riemann–Stieltjes or Lebesgue–Stieltjes
approach no longer works for these objects, and we need to introduce some
extra structure. To model the flow of information with time, we introduce a
filtration (Ft , t ≥ 0) that is an increasing family of sub-σ -algebras of F , and
we say that a processU is adapted if eachU (t) isFt-measurable for each t ≥ 0.
We then define

∫ t

0
U (s)dB(s) = lim

n→∞

mn∑
j=1

U
(
t(n)j

) [
B
(
t(n)j+1
)− B

(
t(n)j

)]

where 0 = t(n)0 < t(n)1 < · · · < t(n)mn = t is a sequence of partitions of [0, t]whose
mesh tends to zero asn→∞.The keypoint in the definition is that for each term
in the summand,U (t(n)j ) is fixed in the past while the incrementB(t(n)j+1)−B(t(n)j )

extends into the future. If a Riemann–Stieltjes theory were possible, we could
evaluate U (x(n)j ) at an arbitrary point for which t(n)j < x(n)j < t(n)j+1. The other
integral,

∫ t

0

∫
0<|x|<1

V (s, x)
[
N (ds, dx)− dsν(dx)

]
,

is defined similarly.
This definition of a stochastic integral has profound implications. In Chapter

4, we will explore the properties of a class of Lévy-type stochastic integrals
that take the form

Y (t) =
∫ t

0
G(s)ds+

∫ t

0
F(s)dB(s)+

∫ t

0

∫
0<|x|<1

H (s, x)
[
N (ds, dx)

− dsν(dx)
]+∫ t

0
K(s, x)N (ds, dx)

and, for convenience, we will take d = 1 for now. In the case where F , H and
K are identically zero and f is a differentiable function, the chain rule from
differential calculus gives f (Y (t)) = ∫ t

0 f
′(Y (s))G(s)ds, which we can write

more succinctly as df (Y (t)) = f ′(Y (t))G(t)dt. This formula breaks down for
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Lévy-type stochastic integrals, and in its place we get the famous Itô formula,

df (Y (t))

= f ′(Y (t))G(t)dt + f ′(Y (t))F(t)dB(t)+ 1
2 f
′′(Y (t))F(t)2dt

+
∫
|x|≥1

[f (Y (t−)+ K(t, x))− f (Y (t−))]N (dt, dx)

+
∫
0<|x|<1

[f (Y (t−)+H (t, x))− f (Y (t−))](N (dt, dx)− ν(dx)dt)

+
∫
0<|x|<1

[
f (Y (t−)+ H (t, x))− f (Y (t−))

− H (t, x)f ′(Y (t−))
]
ν(dx)dt.

If you have not seen this before, think of a Taylor series expansion in which
dB(t)2 behaves like dt and N (dt, dx)2 behaves like N (dt, dx). Alternatively,
you can wait for the full development in Chapter 4. Itô’s formula is the key
to the wonderful world of stochastic calculus. It lies behind the extraction of
the Courrège generator (0.6) from equation (0.7). It also has many important
applications including option pricing, the Black–Scholes formula and attempts
to replace the latter using more realistic models based on Lévy processes. This
is all revealed in Chapter 5, but now the preview is at an end and it is time to
begin the journey . . .



Notation

Throughout this book, we will deal extensively with random variables taking
values in the Euclidean space Rd , where d ∈N. We recall that elements of Rd

are vectors x = (x1, x2, . . . , xd ) with each xi ∈R for 1 ≤ i ≤ d . The inner
product in Rd is denoted by (x, y) where x, y ∈Rd , so that

(x, y) =
d∑
i=1

xiyi.

This induces the Euclidean norm |x| = (x, x)1/2 =
(∑d

i=1 x2i
)1/2

. We will use

the Einstein summation convention throughout this book, wherein summation
is understood with respect to repeated upper and lower indices, so for example
if x, y ∈Rd and A = (Aij) is a d × d matrix then

Aijxiy
j =

d∑
i,j=1

Aijxiy
j = (x,Ay).

We say that such a matrix is positive definite if (x,Ax) ≥ 0 for all x ∈Rd and
strictly positive definite if the inequality can be strengthened to (x,Ax) > 0 for
all x ∈Rd , with x �= 0 (note that some authors call these ‘non-negative definite’
and ‘positive definite’, respectively). The transpose of a matrix A will always
be denoted AT. The determinant of a square matrix is written as det(A) and its
trace as tr(A). The identity matrix will always be denoted I .
The set of all d × d real-valued matrices is denoted Md (R).

If S ⊆ Rd then its orthogonal complement is S⊥ = {x ∈Rd ; (x, y)= 0
for all y ∈ S}.
The open ball of radius r centred at x in Rd is denoted Br(x) = {y ∈Rd ; |y−

x| < r} and we will always write B̂ = B1(0). The sphere in Rd is the

xxix
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(d − 1)-dimensional submanifold, denoted Sd−1, defined by Sd−1 =
{x ∈Rd ; |x| = 1}.
We sometimes write R+ = [0,∞).
The sign of u∈R is denoted sgn(u) so that sgn(u) = (u/|u|) if u �= 0, with

sgn(0) = 0.
For z ∈C,�(z) and�(z)denote the real and imaginary parts of z, respectively.
The complement of a setAwill always be denotedAc and Āwill mean closure

in some topology. If f is a mapping between two sets A and B, we denote its
range as Ran(f ) = {y ∈B; y = f (x) for some x ∈A}.

For 1 ≤ n ≤ ∞, we write Cn(Rd ) to denote the set of all n-times differen-
tiable functions from Rd to R, all of whose derivatives are continuous. The jth
first-order partial derivative of f ∈C1(Rd ) at x ∈Rd will sometimes be written
(∂jf )(x). Similarly, if f ∈C2(Rd ), we write

(∂i∂jf )(x) for
∂2f

∂xi∂xj
(x).

When d = 1 and f ∈Cn(R), we sometimes write

f (r)(x) for
drf

dxr
(x),

where 1 ≤ r ≤ n.
Let H be a real inner product space, equipped with the inner product 〈·, ·〉

and associated norm ||x|| = 〈x, x〉1/2, for each x ∈H. We will frequently have
occasion to use the polarisation identity

〈x, y〉 = 1
4 (||x + y||2 − ||x − y||2),

for each x, y ∈H.
For a, b∈R, we will use a ∧ b = min{a, b} and a ∨ b = max{a, b}.
We will occasionally use Landau notation, according to which (o(n), n∈N)

is any real-valued sequence for which lim
n→∞(o(n)/n) = 0 and (O(n), n∈N) is

any non-negative sequence for which lim sup
n→∞

(O(n)/n) < ∞. Functions o(t)

and O(t) are defined similarly. If f , g :R → R and a ∈R∪ {∞}, then by f ∼ g
as x→ a we mean lim

x→a

[
f (x)/g(x)

] = 1.

If f :Rd → R then by lims↑t f (s) = l we mean lims→t, s<t f (s) = l.
Similarly, lims↓t f (s) = l means lims→t, s>t f (s) = l.
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Lévy processes

Summary Section 1.1 is a review of basic measure and probability theory. In

Section 1.2, we meet the key concepts of the infinite divisibility of random vari-

ables and of probability distributions, which underly the whole subject. Important

examples are the Gaussian, Poisson and stable distributions. The celebrated Lévy–

Khintchine formula classifies the set of all infinitely divisible probability distributions

by means of a canonical form for the characteristic function. Lévy processes are

introduced in Section 1.3. These are essentially stochastic processes with stationary

and independent increments. Each random variable within the process is infinitely

divisible, and hence its distribution is determined by the Lévy–Khintchine formula.

Important examples are Brownian motion, Poisson and compound Poisson processes,

stable processes and subordinators. Section 1.4 clarifies the relationship between

Lévy processes, infinite divisibility and weakly continuous convolution semigroups

of probability measures. Finally, in Section 1.5, we briefly survey recurrence and tran-

sience,Wiener–Hopf factorisation, local times for Lévy processes, regular variation and

subexponentiality.

1.1 Review of measure and probability

The aim of this section is to give a brief resumé of key notions ofmeasure theory
and probability thatwill be used extensively throughout the book and to fix some
notation and terminology once and for all. I emphasise that reading this section
is no substitute for a systematic study of the fundamentals from books, such as
Billingsley [48], Itô [177],Ash andDoléans-Dade [17],Rosenthal [311],Dudley
[98] or, for measure theory without probability, Cohn [80]. Knowledgeable
readers are encouraged to skip this section altogether or to use it as a quick
reference when the need arises.

1



2 Lévy processes

1.1.1 Measure and probability spaces

Let S be a non-empty set and F a collection of subsets of S. We call F a
σ-algebra if the following hold:

(1) S ∈F .
(2) A∈F ⇒ Ac ∈F .
(3) If (An, n∈N) is a sequence of subsets in F then

⋃∞
n=1 An ∈F .

The pair (S,F) is called a measurable space. A measure on (S,F) is a
mapping µ :F → [0,∞] that satisfies
(1) µ(∅) = 0,
(2)

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An)

for every sequence (An, n∈N) of mutually disjoint sets in F .

The triple (S,F ,µ) is called a measure space.
The quantity µ(S) is called the total mass of µ and µ is said to be finite if

µ(S) < ∞. More generally, a measure µ is σ-finite if we can find a sequence
(An, n∈N) in F such that S =⋃∞

n=1 An and each µ(An) <∞.
For the purposes of this book, there will be two cases of interest. The first

comprises

• Borel measures The Borel σ -algebra of Rd is the smallest σ -algebra of
subsets of Rd that contains all the open sets. We denote it by B(Rd ). If
S ∈B(Rd ) we define its Borel σ -algebra to be

B(S) = {E ∩ S;E ∈B(Rd ).

Equivalently, B(S) is the smallest σ -algebra of subsets of S that contains
every open set in S when S is equipped with the relative topology induced
fromRd , so thatU ⊆ S is open in S ifU ∩S is open inRd . Elements of B(S)
are called Borel sets and any measure on (S,B(S)) is called a Borel measure.

One of the best known examples of a Borel measure is given by the Lebesgue
measureonS = Rd .This takes the following explicit formon sets in the shapeof
boxesA = (a1, b1)×(a2, b2)×· · ·×(ad , bd )where each−∞ < ai < bi <∞:

µ(A) =
d∏
i=1

(bi − ai).
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Lebesgue measure is clearly σ-finite but not finite.
Of course, Borel measures make sense in arbitrary topological spaces, but

we will not have need of this degree of generality here.
The second case comprises

• Probabilitymeasures Herewe usually write S = � and take� to represent
the set of outcomes of some random experiment. Elements of F are called
events and any measure on (�,F) of total mass 1 is called a probability
measure and denoted P. The triple (�,F ,P) is then called a probability
space.

Occasionally we will also need counting measures, which are those that take
values in N ∪ {0}.
A proposition p about the elements of S is said to hold almost every-

where (usually shortened to a.e.) with respect to a measure µ if N =
{s∈ S; p(s)is false} ∈F and µ(N ) = 0. In the case of probability measures,
we use the terminology ‘almost surely’ (shortened to a.s.) instead of ‘almost
everywhere’, or alternatively ‘with probability 1’. Similarly, we say that ‘almost
all’ the elements of a set A have a certain property if the subset of A for which
the property fails has measure zero.

Continuity of measures Let (A(n), n∈N) be a sequence of sets in F with
A(n) ⊆ A(n+1) for each n∈N.We thenwriteA(n) ↑ AwhereA =⋃∞

n=1 A(n),
and we have

µ(A) = lim
n→∞µ(A(n)).

Whenµ is a probability measure, this is usually called continuity of probability.

Let G be a group whose members act as measurable transformations of
(S,F), so that g : S → S for each g ∈G and gA∈F for all A∈F , g ∈G,
where gA = {ga, a ∈A}. We say that a measure µ on (S,F) is G-invariant if

µ(gA) = µ(A)

for each g ∈G, A∈F .
A (finite) measurable partition of a set A∈F is a family of sets

B1,B2, . . . ,Bn ∈F for which Bi ∩ Bj = ∅ whenever i �= j and
⋃n

i=1 Bi = A.
We use the term Borel partition when F is a Borel σ -algebra.
We say that a σ -algebra G is a sub-σ -algebra of F if G ⊆ F , i.e. A ⊆ G ⇒

A ⊆ F . If {Gi, i ∈ I} is a (not necessarily countable) family of sub-σ -algebras of
F then

⋂
i ∈ I Gi is the largest sub-σ -algebra contained in each Gi and

∨
i ∈ I Gi

denotes the smallest sub-σ -algebra that contains each Gi.
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If P is a probability measure and A,B∈F , it is sometimes notationally
convenient to write P(A,B) = P(A ∩ B).

Completion of a measure Let (S,F ,µ) be a measure space. Define

N = {A ⊆ S; ∃N ∈F with µ(N ) = 0 and A ⊆ N }

and

F = {A ∪ B;A∈F ,B∈N }.

Then F is a σ -algebra and the completion of the measure µ on (S,F) is the
measure µ on (S,F) defined by

µ(A ∪ B) = µ(A), A∈F , B∈N .

In particular, B(S) is called the σ -algebra of Lebesgue measurable sets in S.

π -systems and d -systems Let C be an arbitrary collection of subsets of S. We
denote the smallest σ -algebra containing C by σ(C), so σ(C) is the intersection
of all the σ -algebras which contain C.
Sometimes we have to deal with collections of sets which do not form a

σ -algebra but which still have enough structure to be useful. To this end we
introduce π - and d -systems.AcollectionH of subsets of S is called a π -system
if A ∩ B∈H for all A,B∈H.
A collection D of subsets of S is called a d -system if

(i) S ∈D,
(ii) If A,B∈D with B⊆A then the set theoretic difference A− B∈D,
(ii) If (An, n∈N) is a sequence of subsets wherein An ∈D and An ⊆ An+1 for

each n∈N, then
⋃

n∈N An ∈D.

If C is an arbitrary collection of subsets of S then we denote the smallest
d -system containing C by d(C), so d(C) is the intersection of all the d -systems
which contain C.
The key result that we will need about π -systems and d -systems is the

following.

Lemma 1.1.1 (Dynkin’s lemma) If H is a π -system then d(H) = σ(H).
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1.1.2 Random variables, integration and expectation

For i = 1, 2, let (Si,Fi) be measurable spaces. A mapping f : S1 → S2 is said
to be (F1,F2)-measurable if f −1(A)∈F1 for all A∈F2. If each S1 ⊆ Rd ,
S2 ⊆ Rm and Fi = B(Si), f is said to be Borel measurable. In the case d = 1,
we sometimes find it useful to write each Borel measurable f as f + − f −
where, for each x ∈ S1, f +(x) = max{f (x), 0} and f −(x) = −min{f (x), 0}. If
f = (f1, f2, . . . , fd ) is a measurable mapping from S1 to Rd , we write f + =
(f +1 , f +2 , . . . , f +d ) and f − = (f −1 , f −2 , . . . , f −d ).
In what follows, whenever we speak of measurable mappings taking values

in a subset of Rd , we always take it for granted that the latter is equipped with
its Borel σ -algebra.
When we are given a probability space (�,F ,P) then measurable mappings

from � into Rd are called random variables. Random variables are usually
denoted X , Y , . . . . Their values should be thought of as the results of quanti-
tative observations on the set �. Note that if X is a random variable then so
is f (X ) = f ◦ X , where f is a Borel measurable mapping from Rd to Rm. A
measurable mapping Z = X + iY from � into C (equipped with the natural
Borel structure inherited from R2) is called a complex random variable. Note
that Z is measurable if and only if both X and Y are measurable.
If X is a random variable, its law (or distribution) is the Borel probability

measure pX on Rd defined by

pX = P ◦ X−1.

We say that X is symmetric if pX (A) = pX (−A) for all A∈B(Rd ).
Two random variables X and Y that have the same probability law are said to

be identically distributed, and we sometimes denote this as X
d= Y . For a one-

dimensional random variableX , its distribution function is the right-continuous
increasing function defined by FX (x) = pX ((−∞, x]) for each x ∈R.

IfW = (X , Y ) is a random variable taking values in R2d , the probability law
ofW is sometimes called the joint distribution ofX andY . The quantities pX and
pY are then called the marginal distributions ofW , where pX (A) = pW (A,Rd )

and pY (A) = pW (Rd ,A) for each A∈B(Rd ).
Suppose that we are given a collection of random variables (Xi, i ∈ I) in a

fixed probability space; then we denote by σ(Xi, i ∈ I) the smallest σ -algebra
contained in F with respect to which all the Xi are measurable. When there
is only a single random variable X in the collection, we denote this σ -algebra
as σ(X ).



6 Lévy processes

TheDoob–Dynkin lemma states that a random variable Y is measurable with
respect to σ(X1, . . . ,Xn) if and only if there is a Borel measurable function
g :Rdn → Rd such that Y = g(X1, . . . ,Xn).

Let S be a Borel subset of Rd that is locally compact in the relative topology.
We denote as Bb(S) the linear space of all bounded Borel measurable func-
tions from S to RBanach space) with respect to ||f || = supx ∈ S |f (x)| for each
f ∈Bb(S). Let Cb(S) be the subspace of Bb(S) comprising continuous func-
tions, C0(S) be the subspace comprising continuous functions that vanish at
infinity and Cc(S) be the subspace comprising functions with compact support,
so that

Cc(S) ⊆ C0(S) ⊆ Cb(S).

Cb(S) and C0(S) are both Banach spaces under || · || and Cc(S) is norm
dense in C0(S). When S is compact, all three spaces coincide. For each n∈N,
Cn
b (R

d ) is the space of all f ∈Cb(R
d )∩Cn(Rd ) such that all the partial deriva-

tives of f , of order up to and including n, are in Cb(R
d ). We further define

C∞b (Rd ) = ⋂n∈N Cn
b (R

d ). We define Cn
c (R

d ) and Cn
0 (R

d ) analogously, for
each 1 ≤ n ≤ ∞.

Let (S,F) be a measurable space. A measurable function, f : S → Rd , is
said to be simple if

f =
n∑
j=1

cjχAj

for some n∈N, where cj ∈Rd andAj ∈F for 1 ≤ j ≤ n.We callχA the indicator
function, defined for any A∈F by

χA(x) = 1 whenever x ∈A; χA(x) = 0 whenever x /∈ A.

Let �(S) denote the linear space of all simple functions on S and let µ be a
measure on (S,F). The integral with respect to µ is the linear mapping from
�(S) into Rd defined by

Iµ(f ) =
n∑
j=1

cjµ(Aj)

for each f ∈�(S). The integral is extended to measurable functions f =
(f1, f2, . . . , fd ), where each fi ≥ 0, by the prescription for 1 ≤ i ≤ d

Iµ(fi) = sup{Iµ(gi), g = (g1, . . . , gd )∈�(S), gi ≤ fi}
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and to arbitrary measurable functions f by

Iµ(f ) = Iµ(f
+)− Iµ(f

−).

We write Iµ(f ) =
∫
f (x)µ(dx) or, alternatively, Iµ(f ) =

∫
fdµ. Note that at this

stage there is no guarantee that any of the Iµ(fi) is finite.
We say that f is integrable if |Iµ(f +)| <∞ and |Iµ(f −)| <∞. For arbitrary

A∈F , we define ∫
A
f (x)µ(dx) = Iµ(f χA).

It is worth pointing out that the key estimate∣∣∣∣∫
A
f (x)µ(dx)

∣∣∣∣ ≤ ∫
A
|f (x)|µ(dx)

holds in this vector-valued framework (see e.g. Cohn [80], pp. 352–3).
In the case where we have a probability space (�,F ,P), the linear mapping

IP is called the expectation and written simply as E so, for a random variable
X and Borel measurable mapping f :Rd → Rm, we have

E(f (X )) =
∫
�

f (X (ω))P(dω) =
∫

Rm
f (x)pX (dx),

if f ◦ X is integrable. If A∈F , we sometimes write E(X ;A) = E(XχA).
In the case d = m = 1 we have Jensen’s inequality,

f (E(X )) ≤ E(f (X )),

whenever f :R → R is a convex function and X and f (X ) are both integrable.
The mean of X is the vector E(X ) (when it exists) and this is sometimes

denoted µ (if there is no measure called µ already in the vicinity) or µX , if we
want to emphasise the underlying random variable. If X = (X1,X2, . . . ,Xd )
and Y = (Y1, Y2, . . . , Yd ) are two random variables then the d × d matrix with
(i, j)th entryE[(Xi−µXi )(Yj−µYj )] is called the covariance of X and Y (when
it exists) and denoted Cov(X , Y ). In the case X = Y and d = 1, we write
Var(X ) = Cov(X , Y ) and call this quantity the variance of X . It is sometimes
denoted σ 2 or σ 2

X . When d = 1 the quantity E(X n), where n∈N, is called
the nth moment of X , when it exists. X is said to have moments to all orders
if E(|X |n) < ∞, for all n∈N. A sufficient condition for this is that X has an
exponential moment, i.e. E(eα|X |) <∞ for some α > 0.
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For an arbitrary Rd -valued random variable X , we can easily verify the
following for all p > 0:

• E(|X |p) <∞ if and only if E(|Xj|p) <∞, for all 1 ≤ j ≤ d .
• If E(|X |p) <∞ then E(|X |q) <∞, for all 0 < q < p.

The Chebyshev–Markov inequality for a random variable X is

P(|X − αµ| ≥ C) ≤ E(|X − αµ|n)
Cn

,

where C > 0, α ∈R, n∈N. The commonest forms of this are the Chebyshev
inequality (n = 2, α = 1) and the Markov inequality (n = 1, α = 0).
We return to a general measure space (S,F ,µ) and list some key theorems

for establishing the integrability of functions from S to Rd . For the first two of
these we require d = 1.

Theorem 1.1.2 (Monotone convergence theorem) If (fn, n∈N) is a sequence
of non-negative measurable functions on S that is (a.e.) monotone increasing
and converging pointwise to f (a.e.), then

lim
n→∞

∫
S
fn(x)µ(dx) =

∫
S
f (x)µ(dx).

From this we easily deduce the following corollary.

Corollary 1.1.3 (Fatou’s lemma) If (fn, n∈N) is a sequence of non-negative
measurable functions on S, then

lim inf
n→∞

∫
S
fn(x)µ(dx) ≥

∫
S
lim inf
n→∞ fn(x)µ(dx),

which is itself then applied to establish the following theorem.

Theorem 1.1.4 (Lebesgue’s dominated convergence theorem) If (fn, n∈N)

is a sequence of measurable functions from S to Rd converging pointwise to f
(a.e.) and g ≥ 0 is an integrable function such that |fn(x)| ≤ g(x) (a.e.) for all
n∈N, then

lim
n→∞

∫
S
fn(x)µ(dx) =

∫
S
f (x)µ(dx).

We close this section by recalling function spaces of integrablemappings. Let
1 ≤ p <∞ and denote by Lp(S,F ,µ;Rd ) the Banach space of all equivalence
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classes of mappings f : S → Rd which agree a.e. (with respect to µ) and for
which ||f ||p <∞, where || · ||p denotes the norm

||f ||p =
[∫

S
|f (x)|pµ(dx)

]1/p
.

In particular, when p = 2 we obtain a Hilbert space with respect to the inner
product

〈f , g〉 =
∫
S
(f (x), g(x))µ(dx),

for each f , g ∈ L2(S,F ,µ;Rd ). If 〈f , g〉 = 0,we say that f and g are orthogonal.
A linear subspace V of L2(S,F ,µ;Rd ) is called a closed subspace if it is closed
with respect to the topology induced by || · ||2, i.e. if (fn; n∈N) is a sequence
in V that converges to f in L2(S,F ,µ;Rd ) then f ∈V .
When there can be no room for doubt, we will use the notation Lp(S) or

Lp(S,µ) for Lp(S,F ,µ;Rd ).
Hölder’s inequality is extremely useful. Let p, q > 1 be such that

1/p+ 1/q = 1.

Let f ∈ Lp(S) and g ∈ Lq(S) and define (f , g) : S → R by (f , g)(x) =
(f (x), g(x)) for all x ∈ S. Then (f , g)∈ L1(S) and we have

||(f , g)||1 ≤ ||f ||p||g||q.

When p = 2, this is called the Cauchy–Schwarz inequality.
Another useful fact is that for each 1 ≤ p < ∞ if we define �p(S) =

�(S) ∩ Lp(S), then �p(S) is dense in Lp(S), i.e. given any f ∈ Lp(S) we can
find a sequence (fn, n∈N) in �p(S) such that limn→∞ ||f − fn||p = 0.
The spaceLp(S,F ,µ) is said to be separable if it has a countable dense subset.

Asufficient condition for this is that the σ -algebraF is countably generated, i.e.
there exists a countable set C such that F is the smallest σ -algebra containing
C. If S ∈B(Rd ) then B(S) is countably generated.

1.1.3 Conditional expectation

Let (S,F ,µ) be an arbitrary measure space.Ameasure ν on (S,F) is said to be
absolutely continuous with respect to µ if A∈F and µ(A) = 0⇒ ν(A) = 0.
We then write ν * µ. Two measures µ and ν are said to be equivalent if they
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are mutually absolutely continuous. The key result on absolutely continuous
measures is

Theorem 1.1.5 (Radon–Nikodým) If µ is σ -finite and ν is finite with ν * µ,
then there exists a measurable function g : S → R+ such that, for each A∈F ,

ν(A) =
∫
A
g(x)µ(dx).

The function g is unique up to µ-almost-everywhere equality.

The functions g appearing in this theorem are sometimes denoted dν/dµ and
called (versions of ) the Radon–Nikodým derivative of ν with respect to µ. For
example, if X is a random variable with law pX that is absolutely continuous
with respect to Lebesgue measure on Rd , we usually write fX = dpX /dx and
call fX a probability density function (or sometimes a density or a pdf for short).

Now let (�,F ,P) be a probability space and G be a sub-σ -algebra of F .
Let X be an R-valued random variable with E(|X |) <∞, and for now assume
that X ≥ 0. We define a finite measure QX on (�,G) by the prescription
QX (A) = E(XχA) for A∈G; then QX * P, and we write

E(X |G) = dQX

dP
.

We call E(X |G) the conditional expectation of X with respect to G. It is a
random variable on (�,G,P) and is uniquely defined up to sets of P-measure
zero. For arbitrary real-valued X with E(|X |) <∞, we define

E(X |G) = E(X+|G)− E(X−|G).

When X = (X1,X2, . . . ,Xd ) takes values in Rd with E(|X |) <∞, we define

E(X |G) = (E(X1|G),E(X2|G), . . . ,E(Xd |G)).

We sometimes write EG(·) = E(·|G).
We now list a number of key properties of the conditional expectation:

• E(E(X |G)) = E(X ).
• |E(X |G)| ≤ E(|X ||G) a.s.
• If Y is a G-measurable random variable and E(|(X , Y )|) <∞ then

E((X , Y )|G) = (E(X |G), Y ) a.s.
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• If H is a sub-σ -algebra of G then

E(E(X |G)|H) = E(X |H) a.s.

• The mapping EG : L2(�,F ,P)→ L2(�,G,P) is an orthogonal projection.

In particular, given any G-measurable random variable Y such that
E(|Y |)<∞ and for which

E(YχA) = E(XχA)

for all A∈G, then Y = E(X |G) (a.s.).
The monotone and dominated convergence theorems and also Jensen’s

inequality all have natural conditional forms (see e.g. Dudley [98], pp. 266
and 274).
The following result is, in fact, a special case of the convergence theorem for

reversed martingales. This is proved, in full generality, in Dudley [98], p. 290.

Proposition 1.1.6 If Y is a random variable with E(|Y |) <∞ and (Gn, n∈N)

is a decreasing sequence of sub-σ -algebras of F , then

lim
n→∞E(Y |Gn) = E(Y |G) a.s.,

where G =⋂n∈N Gn.
If Y is a random variable defined on the same probability space as X we

write E(X |Y ) = E(X |σ(Y )). By the Doob-Dynkin lemma there exists a Borel
measurable function gX :Rd → Rd for which E(X |Y ) = gX (Y ). It is then
natural to define E(X |Y = y) = gX (y), for each y ∈Rd .

If A∈F we define P(A|G) = E(χA|G). We call P(A|G) the conditional
probability of A given G. Note that it is not, in general, a probability measure
on F (not even a.s.) although it does satisfy each of the requisite axioms with
probability 1. Let Y be an Rd -valued random variable on � and define the
conditional distribution of Y , given G to be the mapping PY |G :B(Rd )×�→
[0, 1] for which

PY |G(B,ω) = P(Y−1(B)|G)(ω)

for each B∈B(Rd ), ω∈�. Then PY |G is a probability measure on B(Rd ) for
almost all ω∈�. Moreover, for each g :Rd → Rd with |E(g(Y ))| < ∞
we have

E(g ◦ Y |G) =
∫

Rd
g(y)PY |G(dy, ·) a.s. (1.1)
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1.1.4 Independence and product measures

Let (�,F ,P) be a probability space.A sequence (Fn, n∈N) of sub-σ -algebras
of F is said to be independent if, for any n-tuple i1, i2, . . . , in and any Aij ∈Fj,
1 ≤ j ≤ n,

P(Ai1 ∩ Ai2 ∩ · · · ∩ Ain) =
n∏
j=1

P(Aij ).

In particular, a sequence of random variables (Xn, n∈N) is said to be indepen-
dent if (σ (Xn), n∈N) is independent in the above sense. Such a sequence is
said to be i.i.d. if the random variables are independent and also identically
distributed, i.e. the laws (pXn , n∈N) are identical probability measures.We say
that a random variable X and a sub-σ -algebra G of F are independent if σ(X )

and G are independent. In this case we have

E(X |G) = E(X ) a.s.

Now let {(S1,F1,µ1), . . . , (Sn,Fn,µn)} be a family of measure spaces. We
define their product to be the space (S,F ,µ), where S is the Cartesian product
S1 × S2 × · · · × Sn, F = F1 ⊗ F2 ⊗ · · · ⊗ Fn is the smallest σ -algebra
containing all sets of the form A1 × A2 × · · · × An for which each Ai ∈Fi and
µ = µ1 × µ2 × · · · × µn is the product measure for which

µ(A1 × A2 × · · · × An) =
n∏
i=1

µ(Ai).

To ease the notation, we state the following key result only in the case n = 2.

Theorem 1.1.7 (Fubini) If (Si,Fi,µi) are measure spaces for i = 1, 2 and if
f : S1 × S2 → R is F1 ⊗ F2-measurable with∫ ∫

|f (x, y)|µ1(dx)µ2(dy) <∞,

then ∫
S1×S2

f (x, y)(µ1 × µ2)(dx, dy) =
∫
S2

[∫
S1
f (x, y)µ1(dx)

]
µ2(dy)

=
∫
S1

[∫
S2
f (x, y)µ2(dy)

]
µ1(dx).
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The functions y → ∫
f (x, y)µ1(dx) and x →

∫
f (x, y)µ2(dy) are defined µ2

(a.e.) and µ1 (a.e.), respectively.

For 1 ≤ j ≤ n, let Xj be a random variable defined on a probability space
(�,F ,P) and form the random vector X = (X1,X2, . . . ,Xn); then the Xn are
independent if and only if pX = pX1 × pX2 × · · · × pXn .
At various times in this book,wewill require a conditional version of Fubini’s

theorem. Since this is not included in many standard texts, we give a statement
and proof of the precise result we require.

Theorem 1.1.8 (Conditional Fubini) Let (�,F ,P) be a probability space
and G be a sub-σ -algebra of F . If (S,�,µ) is a measure space and
F ∈ L1(S ×�,� ⊗ F ,µ× P), then

E

(∣∣∣∣∫
S

EG(F(s, ·))µ(ds)

∣∣∣∣) <∞,

and

EG
(∫

S
F(s, ·)µ(ds)

)
=
∫
S

EG(F(s, ·))µ(ds) a.s.

Proof Using the usual Fubini theorem, we find that

E

(∣∣∣∣∫
S

EG(F(s, ·))µ(ds)

∣∣∣∣) ≤ ∫
S

E(|EG(F(s, ·))|)µ(ds)

≤
∫
S

E(EG(|F(s, ·)|))µ(ds)

=
∫
S

E(|F(s, ·)|)µ(ds) <∞

and, for each A∈G,

E

(
χA

∫
S
F(s, ·)µ(ds)

)
=
∫
S

E(χAF(s, ·))µ(ds)

=
∫
S

E(χAEG(F(s, ·)))µ(ds)

= E

(
χA

∫
S

EG(F(s, ·))µ(ds)

)
,

from which the required result follows. �
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The following result gives a nice interplay between conditioning and inde-
pendence and is extremely useful for proving the Markov property, as we will
see later. For a proof, see Sato [323], p. 7.

Lemma1.1.9 LetG be a sub-σ -algebra ofF . If X andY areRd -valued random
variables such that X is G-measurable and Y is independent of G then

E(f (X , Y )|G) = Gf (X ) a.s.

for all f ∈Bb(R2d ), where Gf (x) = E(f (x, Y )) for each x ∈Rd .

1.1.5 Convergence of random variables

Let (X (n), n∈N) be a sequence of Rd -valued random variables and X be an
Rd -valued random variable. We say that:

• X (n) converges to X almost surely if limn→∞ X (n)(ω) = X (ω) for all
ω∈�−N , where N ∈F satisfies P(N ) = 0;

• X (n) converges to X in Lp (1 ≤ p < ∞) if limn→∞ E(|X (n) − X |p) = 0.
The case p = 2 is often called convergence in mean square and in this case
we sometimes write L2 − lim X (n)n→∞ = X ;

• X (n) converges to X in probability if, for all a > 0, limn→∞ P(|X (n)−X | >
a) = 0;

• X (n) converges to X in distribution if

lim
n→∞

∫
Rd

f (x)pX (n)(dx) =
∫

Rd
f (x)pX (dx) for all f ∈Cb(R

d ).

In the case d = 1, convergence in distribution is equivalent to the requirement
on distribution functions that limn→∞ FX (n)(x) = FX (x) at all continuity points
of FX .
The following relations between modes of convergence are important:

almost-sure convergence⇒ convergence in probability

⇒ convergence in distribution;

Lp-convergence⇒ convergence in probability

⇒ convergence in distribution.

Conversely, if X (n) converges in probability to X then we can always find a
subsequence that converges almost surely to X .
Let L0 = L0(�,F ,P) denote the linear space of all equivalence classes

of Rd -valued random variables that agree almost surely; then L0 becomes a
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complete metric space with respect to the Ky Fan metric

d(X , Y ) = inf {ε > 0,P(|X − Y | > ε) ≤ ε}

for X , Y ∈ L0. The function d metrises convergence in probability in that a
sequence (X (n), n∈N) in L0 converges in probability to X ∈ L0 if and only if
limn→∞ d(X (n),X ) = 0.
We will find the following result of use later on.

Proposition 1.1.10 If (X (n), n∈N) and (Y (n), n∈N) are sequences of random
variables for which X (n) → X in probability and Y (n) → 0 almost surely,
then X (n)Y (n)→ 0 in probability.

Proof We will make use of the following elementary inequality for random
variables W and Z , where a > 0:

P(|W + Z| > a) ≤ P
(
|W | > a

2

)
+ P

(
|Z| > a

2

)
.

We then find that, for all n∈N,

P(|X (n)Y (n)| > a)

= P(|X (n)Y (n)− XY (n)+ XY (n)| > a)

≤ P
(
|X (n)Y (n)− XY (n)| > a

2

)
+ P

(
|XY (n)| > a

2

)
.

Now Y (n)→ 0 (a.s.)⇒ XY (n)→ 0 (a.s.)⇒ XY (n)→ 0 in probability.
For each k > 0 letNk = {ω∈�; |Y (n)(ω)| ≤ k} and assume, without loss of

generality, that P({ω∈�; Y (n)(ω) = 0}) = 0 for all sufficiently large n; then

P
(
|X (n)Y (n)− XY (n)| > a

2

)
≤ P

(
|Y (n)||X (n)− X | > a

2

)
= P

(
|Y (n)||X (n)− X | > a

2
, Nk

)
+P

(
|Y (n)||X (n)− X | > a

2
, N c

k

)
≤ P

(
|X (n)− X | > a

2k

)
+ P(|Y (n)| > k)

→ 0 as n→∞,

and the result follows. �
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As well as random variables, we will also want to consider the convergence
of probability measures. A sequence (µ(n), n∈N) of such measures on Rd is
said to converge weakly to a probability measure µ if

lim
n→∞

∫
f (x)µ(n)(dx) =

∫
f (x)µ(dx)

for all f ∈Cb(R
d ). A sufficient (but not necessary) condition for this to hold is

that µ(n)(E)→ µ(E) as n→∞, for every E ∈B(Rd ).

1.1.6 Characteristic functions

Let X be a random variable defined on (�,F ,P) and taking values in Rd with
probability law pX . Its characteristic function φX :Rd → C is defined by

φX (u) = E
(
ei(u,X )

) = ∫
�

ei(u,X (ω))P(dω)

=
∫

Rd
ei(u,y)pX (dy),

for each u∈Rd . More generally, if p is a probability measure on Rd then its
characteristic function is the map u → ∫

Rd ei(u,y)p(dy), and it can be shown
that this mapping uniquely determines the measure p.
The following properties of φX are elementary:

• |φX (u)| ≤ 1;
• φX (−u) = φX (u);
• X is symmetric if and only if φX is real-valued;
• if X = (X1, . . . ,Xd ) and E(|X n

j |) <∞ for some 1 ≤ j ≤ d and n∈N then

E(X n
j ) = i−n ∂n

∂unj
φX (u)

∣∣∣∣∣
u=0

.

If MX (u)=φX (−iu) exists, at least in a neighbourhood of u= 0, then
MX is called the moment generating function of X . In this case all the
moments of X exist and can be obtained by partial differentiation of MX

as above.
For fixed u1, . . . , ud ∈Rd , we denote as �X the d × d matrix whose (i, j)th

entry is φX (ui − uj). Further properties of φX are collected in the following
lemma.
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Lemma 1.1.11

(1) �X is positive definite for all u1, . . . , ud ∈Rd .
(2) φX (0) = 1.
(3) The map u→ φX (u) is continuous at the origin.

Proof Parts (2) and (3) are straightforward.
For (1) we need to show that

∑d
j,k=1 cjckφX (uj − uk) ≥ 0 for all

u1, . . . , ud ∈Rd and all c1, . . . , cd ∈C.
Define f :Rd → C by f (x) = ∑d

j=1 cjei(uj ,x) for each x ∈Rd ; then

f ∈ L2(Rd , pX ) and we find that

d∑
i=1

d∑
j=1

cicjφX (ui − uj) =
∫

Rd

d∑
i,j=1

cicje
i(ui−uj , x)pX (dx)

=
∫

Rd
|f (x)|2pX (dx) = ||f ||2 ≥ 0.

�

A straightforward application of dominated convergence verifies that φX is,
in fact, uniformly continuous on the whole of Rd . Nonetheless the weaker
statement (3) is sufficient for the following powerful theorem.

Theorem 1.1.12 (Bochner’s theorem) If φ :Rd → C satisfies parts (1), (2)
and (3) of Lemma 1.1.11, then φ is the characteristic function of a probability
distribution.

Wewill sometimes want to apply Bochner’s theorem to functions of the form
φ(u) = etψ(u) where t > 0 and, in this context, it is useful to have a condition
on ψ that is equivalent to the positive definiteness of φ.
We say that ψ :Rd → C is conditionally positive definite if for all n∈N and

c1, . . . , cn ∈C for which
∑n

j=1 cj = 0 we have

n∑
j,k=1

cjc̄kψ(uj − uk) ≥ 0

for all u1, . . . , un ∈Rd . The mapping ψ :Rd → C is said to be hermitian if
ψ(u) = ψ(−u) for all u∈Rd .

Theorem 1.1.13 (Schoenberg correspondence) The mapping ψ :Rd → C is
hermitian and conditionally positive definite if and only if etψ is positive definite
for each t > 0.
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Proof We give only the easy part here. For the full story, see Berg and Forst
[38], p. 41, or Parthasarathy and Schmidt [288], pp. 1–4.
Suppose that etψ is positive definite for all t > 0. Fix n∈N and choose

c1, . . . , cn and u1, . . . , un as above. We then find that, for each t > 0,

1

t

n∑
j,k=1

cjc̄k
[
etψ(uj−uk ) − 1

] ≥ 0,

and so

n∑
j,k=1

cjc̄kψ(uj − uk) = lim
t→0

1

t

n∑
j,k=1

cjc̄k
[
etψ(uj−uk ) − 1

] ≥ 0. �

To see the need for ψ to be hermitian, define ψ̃(·) = ψ(·) + ix, where ψ

is hermitian and conditionally positive definite and x ∈R, x �= 0. ψ̃ is clearly
conditionally positive definite but not hermitian, and it is then easily verified
that etψ̃ cannot be positive definite for any t > 0.
Note that Berg and Forst [38] adopt the analyst’s convention of using −ψ ,

which they call ‘negative definite’, rather than the hermitian, conditionally
positive definite ψ .
Two important convergence results are the following.

Theorem 1.1.14 (Glivenko) If φn and φ are the characteristic functions of
probability distributions pn and p (respectively), for each n∈N, then φn(u)→
φ(u) for all u∈Rd ⇒ pn → p weakly as n→∞.

Theorem 1.1.15 (Lévy continuity theorem) If (φn, n∈N) is a sequence of
characteristic functions and there exists a function ψ :Rd → C such that, for
all u∈Rd , φn(u) → ψ(u) as n → ∞ and ψ is continuous at 0 then ψ is the
characteristic function of a probability distribution.

Now let X1, . . . ,Xn be a family of random variables all defined on the same
probability space. Our final result in this section is

Theorem 1.1.16 (Kac’s theorem) The random variables X1, . . . ,Xn are
independent if and only if

E

exp
i n∑

j=1
(uj,Xj)

 = φX1(u1) · · ·φXn(un)

for all u1, . . . , un ∈Rd .
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1.1.7 Stochastic processes

To model the evolution of chance in time we need the notion of a stochastic
process. This is a family of random variables X = (X (t), t ≥ 0) that are all
defined on the same probability space.
Two stochastic processes X = (X (t), t ≥ 0) and Y = (Y (t), t ≥ 0) are

independent if, for all m, n∈N, all 0 ≤ t1 < t2 < · · · < tn < ∞ and all
0 ≤ s1 < s2 < · · · < sm < ∞, the σ -algebras σ(X (t1),X (t2), . . . ,X (tn)) and
σ(Y (s1), Y (s2), . . . , Y (sm)) are independent.
Similarly, a stochastic process X = (X (t), t ≥ 0) and a sub-σ -algebra G are

independent if G and σ(X (t1),X (t2), . . . ,X (tn)) are independent for all n∈N,
0 ≤ t1 < t2 < · · · < tn <∞.
The finite-dimensional distributions of a stochastic process X are the col-

lection of probability measures (pt1,t2,...,tn , t1, t2, . . . , tn ∈R+, t1 �= t2 �= · · · �=
tn, n∈N) defined on Rdn for each n∈N by

pt1,t2,...,tn(H ) = P((X (t1),X (t2), . . . ,X (tn))∈H )

for each H ∈B(Rdn).
Let π be a permutation of {1, 2, . . . , n}; then it is clear that, for each

H1,H2, . . . ,Hn ∈B(Rd ),

pt1,t2,...,tn(H1 × H2 × · · · × Hn)

= ptπ(1),tπ(2),...,tπ(n) (Hπ(1) × Hπ(2) × · · · × Hπ(n)); (1.2)

pt1,t2,...,tn,tn+1(H1 × H2 × · · · × Hn × Rd )

= pt1,t2,...,tn(H1 × H2 × · · · × Hn). (1.3)

Equations (1.2) and (1.3) are called Kolmogorov’s consistency criteria.
Now suppose that we are given a family of probability measures

(pt1,t2,...,tn , t1, t2, . . . , tn ∈R+, t1 �= t2 �= · · · �= tn, n∈N)

satisfying these criteria. Kolmogorov’s construction, which we will now
describe, allows us to build a stochastic process for which these are the
finite-dimensional distributions. The procedure is as follows.
Let � be the set of all mappings from R+ into Rd and F be the smallest

σ -algebra containing all cylinder sets of the form

IHt1,t2,...,tn = {ω∈�; (ω(t1),ω(t2), . . . ,ω(tn))∈H },

where H ∈B(Rdn).
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Define the co-ordinate process X = (X (t), t ≥ 0) by

X (t)(ω) = ω(t)

for each t ≥ 0, ω∈�.
The main result is the following theorem.

Theorem 1.1.17 (Kolmogorov’s existence theorem) Given a family of prob-
ability measures (pt1,t2,...,tn , t1, t2, . . . , tn ∈R+, t1 �= t2 �= · · · �= tn, n∈N)

satisfying the Kolmogorov consistency criteria, there exists a probability mea-
sure P on (�,F) such that the co-ordinate process X is a stochastic process
on (�,F ,P) having the pt1,t2,...,tn as its finite-dimensional distributions.

A stochastic process X = (X (t), t ≥ 0) is said to be separable if there
exists a countable subset D ⊂ R+ such that, for each t ≥ 0, there exists a
sequence (t(n), n∈N) in D with each t(n) �= t such that limn→∞ t(n) = t and
limn→∞ X (t(n)) = X (t).

Kolmogorov’s theorem can be extended to show that, given a family
(pt1,t2,...,tn , t1, t2, . . . , tn ∈R+, t1 �= t2 �= · · · �= tn, n∈N) of probability mea-
sures satisfying the Kolmogorov consistency criteria, we can always construct
a separable process X = (X (t), t ≥ 0) on some (�,F ,P) having the pt1,t2,...,tn
as its finite-dimensional distributions. Bearing this in mind, we will suffer no
loss in generality if we assume all stochastic processes considered in this book
to be separable.
The maps from R+ to Rd given by t → X (t)(ω), where ω∈� are called the

sample paths of the stochastic process X . We say that a process is continuous,
bounded, increasing etc. if almost all its sample paths have this property.
Let G be a group of matrices acting on Rd . We say that a stochastic process

X = (X (t), t ≥ 0) is G-invariant if the law pX (t) is G-invariant for all t ≥ 0.
Clearly X is G-invariant if and only if

φX (t)(g
Tu) = φX (t)(u)

for all t ≥ 0, u∈Rd , g ∈G.
In the case where G = O(d), the group of all d × d orthogonal matrices

acting in Rd , we say that the process X is rotationally invariant and when G is
the normal subgroup of O(d) comprising the two points {−I , I} we say that X
is symmetric.
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1.1.8 Random fields

A random field is a natural generalisation of a stochastic process in which
the time interval is replaced by a different set E. Here we will assume that
E ∈B(Rd ) and define a random field on E to be a family of random vari-
ables X = (X (y), y ∈E). We will only use random fields on one occasion, in
Chapter 6, and it will be important for us to be able to show that they are (almost
surely) continuous. Fortunately, we have the celebrated Kolmogorov criterion
to facilitate this.

Theorem 1.1.18 (Kolmogorov’s continuity criterion) Let X be a random
field on E and suppose that there exist strictly positive constants γ , C and ε

such that

E(|X (y2)− X (y1)|γ ) ≤ C|y2 − y1|d+ε

for all y1, y2 ∈E. Then there exists another random field X̃ on E such that
X̃ (y) = X (y) (a.s.), for all y ∈E, and X̃ is almost surely continuous.

For a proof of this result, see Revuz and Yor [306], section 1.2, or Kunita
[215], section 1.4.

1.2 Infinite divisibility

1.2.1 Convolution of measures

Let M1(Rd ) denote the set of all Borel probability measures on Rd . We define
the convolution of two probability measures as follows:

(µ1 ∗ µ2)(A) =
∫

Rd
χA(x + y)µ1(dx)µ2(dy) (1.4)

for each µi ∈M1(R
d ), i = 1, 2, and each A∈B(Rd ).

By Fubini’s theorem we have

(µ1 ∗ µ2)(A) =
∫

Rd
µ1(A− x)µ2(dx) =

∫
Rd

µ2(A− x)µ2(dx), (1.5)

whereA−x = {y−x, y ∈A} andwe have used the fact thatχA(x+y) = χA−x(y).

Proposition 1.2.1 The convolution µ1 ∗ µ2 is a probability measure on Rd .
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Proof First we show that convolution is a measure. Let (An, n∈N) be a
sequence of disjoint sets in B(Rd ); then, for each x ∈Rd , the members of the
sequence (An − x, n∈N) are also disjoint and

(µ1 ∗ µ2)

(⋃
n∈N

An

)
=
∫

Rd
µ1

[(⋃
n∈N

An

)
− x

]
µ2(dx)

=
∫

Rd
µ1

[⋃
n∈N

(An − x)

]
µ2(dx)

=
∫

Rd

∑
n∈N

µ1(An − x)µ2(dx)

=
∑
n∈N

∫
Rd

µ1(An − x)µ2(dx)

=
∑
n∈N

(µ1 ∗ µ2)(An),

where the interchange of sum and integral is justified by dominated conver-
gence.
The fact that µ1 ∗ µ2 is a probability measure now follows easily from the

observation that the map from Rd to itself given by the translation y → y − x
is a bijection, and so Rd = Rd − x. �

From the above proposition, we see that convolution is a binary operation
on M1(Rd ).

Proposition 1.2.2 If f ∈Bb(Rd ), then for all µi ∈M1(Rd ), i = 1, 2, 3,

(1) ∫
Rd

f (y)(µ1 ∗ µ2)(dy) =
∫

Rd

∫
Rd

f (x + y)µ1(dy)µ2(dx),

(2)

µ1 ∗ µ2 = µ2 ∗ µ1,

(3)

(µ1 ∗ µ2) ∗ µ3 = µ1 ∗ (µ2 ∗ µ3).

Proof (1) When f is an indicator function, the result is just the definition of
convolution. The result is then extended by linearity to simple functions. The
general result is settled by approximation as follows.



1.2 Infinite divisibility 23

Let M = supx ∈Rd |f (x)|, fix ε > 0 and, for each n∈N, let a(n)0 <

a(n)1 < · · ·< a(n)mn be such that the collection of intervals {(a(n)i−1, a
(n)
i ]; 1 ≤ i ≤

mn} covers [−M ,M ]with max1≤i≤mn |a(n)i −a(n)i−1| < ε, for sufficiently large n.

Define a sequence of simple functions by fn = ∑mn
i=1 a

(n)
i−1χA(n)

i
, where each

A(n)
i = f −1((a(n)i−1, a

(n)
i ]). Then for sufficiently large n we have∫

Rd
|fn(x)− f (x)|(µ1 ∗ µ2)(dx) ≤ sup

x ∈Rd
|fn(x)− f (x)|

= max
1≤i≤mn

sup
x ∈A(n)

i

|fn(x)− f (x)| < ε.

If we define gn(x, y) = fn(x + y) and g(x, y) = f (x + y) for each n∈N,
x, y ∈Rd , then an argument similar to the above shows that limn→∞ gn = g
in L1(Rd × Rd ,µ1 × µ2). The required result now follows from use of the
dominated convergence theorem.

(2) This is clear from (1.5).

(3) Use Fubini’s theorem to show that both expressions yield∫
Rd

∫
Rd

∫
Rd

f (x + y + z)µ1(dx)µ2(dy)µ3(dz),

when integrated against f ∈Bb(Rd ). Now take f = χA where A is a Borel set
and the result follows. �

Let X1 and X2 be independent random variables defined on a probability
space (�,F ,P)with joint distribution p and marginals µ1 and µ2 respectively.

Corollary 1.2.3 For each f ∈Bb(Rn),

E(f (X1 + X2)) =
∫

Rd
f (z)(µ1 ∗ µ2)(dz).

Proof Using part (1) of Proposition 1.2.2,

E(f (X1 + X2)) =
∫

Rd

∫
Rd

f (x + y)p(dx, dy)

=
∫

Rd

∫
Rd

f (x + y)µ1(dx)µ2(dy)

=
∫

Rd
f (z)(µ1 ∗ µ2)(dz). �
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By Corollary 1.2.3, we see that convolution gives the probability law for the
sum of two independent random variables X1 and X2, i.e.

P(X1 + X2 ∈A) = E(χA(X1 + X2)) = (µ1 ∗ µ2)(A).

Proposition 1.2.2 also tells us that M1(Rd ) is an abelian semigroup under ∗ in
which the identity element is given by the Dirac measure δ0, where we recall
that in general, for x ∈Rd ,

δx(A) =
{
1 if x ∈A,
0 otherwise,

for any Borel set A, so we have δ0 ∗ µ = µ ∗ δ0 = µ for all µ∈M1(Rd ).
We define µ∗n = µ ∗ · · · ∗ µ (n times) and say that µ has a convolution nth

root, if there exists a measure µ1/n ∈M1(Rd ) for which (µ1/n)∗n =µ.

Exercise 1.2.4 IfX andY are independent randomvariables having probability
density functions (pdfs) fX and fY respectively, show that X + Y has density

fX+Y (x) =
∫

Rd
fX (x − y)fY (y)dy,

where x ∈Rd .

Exercise 1.2.5 Let X have a gamma distribution with parameters n∈N and
λ > 0, so that X has pdf

f (x) = λnxn−1e−λx

(n− 1)! for x > 0.

Show that X has a convolution nth root given by the exponential distribution
with parameter λ and pdf f 1/nX (x) = λe−λx.

Note In general, the convolution nth root of a probability measure may not be
unique. However, it is always unique when the measure is infinitely divisible
(see e.g. Sato [323], p. 34).

1.2.2 Definition of infinite divisibility

Let X be a random variable taking values in Rd with law µX . We say that
X is infinitely divisible if, for all n∈N, there exist i.i.d. random variables
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Y (n)
1 , . . . , Y (n)

n such that

X
d= Y (n)

1 + · · · + Y (n)
n . (1.6)

Let φX (u) = E(ei(u,X )) denote the characteristic function of X , where u∈Rd .
More generally, if µ∈M1(Rd ) then φµ(u) =

∫
Rd ei(u,y)µ(dy).

Proposition 1.2.6 The following are equivalent:

(1) X is infinitely divisible;
(2) µX has a convolution nth root that is itself the law of a random variable,

for each n∈N;
(3) φX has an nth root that is itself the characteristic function of a random

variable, for each n∈N.

Proof (1) ⇒ (2). The common law of the Y (n)
j is the required convolution

nth root.
(2) ⇒ (3). Let Y be a random variable with law (µX )

1/n. We have by
Proposition 1.2.2(1), for each u∈Rd ,

φX (u) =
∫
· · ·
∫

ei(u, y1+···+yn)(µX )
1/n(dy1) · · · (µX )

1/n(dyn)

= ψY (u)
n

where ψY (u) =
∫
Rd ei(u,y)(µX )

1/n(dy), and the required result follows.

(3) ⇒ (1). Choose Y (n)
1 , . . . , Y (n)

n to be independent copies of the given
random variable; then we have

E(ei(u,X )) = E
(
ei(u,Y

(n)
1 )
) · · ·E(ei(u,Y (n)

n )
) = E

(
ei(u,(Y

(n)
1 +···+Y (n)

n )
)
,

from which we deduce (1.6) as required. �

Proposition 1.2.6(2) suggests that we generalise the definition of infinite
divisibility as follows:µ∈M1(Rd ) is infinitely divisible if it has a convolution
nth root in M1(Rd ) for each n∈N.

Exercise 1.2.7 Show that µ∈M1(Rd ) is infinitely divisible if and only if for
each n∈N there exists µ1/n ∈M1(Rd ) for which

φµ(x) =
[
φµ1/n(x)

]n
for each x ∈Rd .
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Note As remarked above, the convolution nth root µ1/n in Exercise 1.2.7 is
uniquewhenµ is infinitely divisible.Moreover, in this case the complex-valued
function φµ always has a ‘distinguished’ nth root, which we denote by φ

1/n
µ ;

this is the characteristic function of µ1/n (see Sato [323], pp. 32–4, for further
details).

1.2.3 Examples of infinite divisibility

Example 1.2.8 (Gaussian random variables) Let X = (X1, . . . ,Xd ) be a
random vector.
We say that it is (non-degenerate) Gaussian, or normal, if there exists a

vector m∈Rd and a strictly positive definite symmetric d × d matrix A such
that X has a pdf of the form

f (x) = 1

(2π)d/2
√
det(A)

exp
[− 1

2 (x − m,A−1(x − m))
]
, (1.7)

for all x ∈Rd .
In this casewewill writeX ∼ N (m,A). The vectorm is themean ofX , so that

m = E(X ), and A is the covariance matrix, so that A = E((X −m)(X −m)T).
A standard calculation yields

φX (u) = exp
[
i(m, u)− 1

2 (u,Au)
]
, (1.8)

and hence [
φX (u)

]1/n = exp
[
i(mn , u)− 1

2 (u,
1
nAu)

]
,

so we see that X is infinitely divisible with Y (n)
j ∼ N (m/n, (1/n)A) for each

1 ≤ j ≤ n.
We say that X is a standard normal whenever X ∼ N (0, σ 2I) for some σ > 0.

Normal random variables have moments to all orders. Indeed, if X is a
standard normal, we can easily verify the following by induction.

E(X 2n+1) = 0 , E(X 2n) = (2n− 1)(2n− 3) · · · 5.3.1,

for all n∈N.

Remark: Degenerate Gaussians Suppose that the matrix A is only required
to be positive definite; then we may have det(A) = 0, in which case the density
(1.7) does not exist. Let φ(u) denote the quantity appearing on the right-hand
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side of (1.8); if we now replace A therein by A + (1/n)I and take the limit
as n → ∞, it follows from Lévy’s convergence theorem that φ is again the
characteristic function of a probability measureµ.Any random variable X with
such a lawµ is called a degenerateGaussian, andwe againwriteX ∼ N (m,A).

Let S denote the linear subspace of Rn that is the linear span of those eigen-
vectors corresponding to non-zero eigenvalues of A; then the restriction of A
to S is strictly positive definite and so is associated with a non-degenerate
Gaussian density of the form (1.7). On S⊥ we have φ(u) = eimu, which corre-
sponds to a random variable taking the constant value m, almost surely. Thus
we can understand degenerate Gaussians as the embeddings of non-degenerate
Gaussians into higher-dimensional spaces.

Example 1.2.9 (Poisson random variables) In this case, we take d = 1 and
consider a random variable X taking values in the set n∈N ∪ {0}. We say that
X is Poisson if there exists c > 0 for which

P(X = n) = cn

n! e
−c.

In this case we will write X ∼ π(c). We have E(X ) = Var(X ) = c. It is easy
to verify that

φX (u) = exp[c(eiu − 1)],

from which we deduce that X is infinitely divisible with each Y (n)
j ∼ π(c/n),

for 1 ≤ j ≤ n, n∈N.

Example 1.2.10 (Compound Poisson random variables) Suppose that
(Z(n), n∈N) is a sequence of i.i.d. random variables taking values in Rd with
common law µZ and let N ∼ π(c) be a Poisson random variable that is inde-
pendent of all the Z(n). The compound Poisson random variable X is defined
as follows: X = Z(1) + · · · + Z(N ), so we can think of X as a random walk
with a random number of steps, which are controlled by the Poisson random
variable N .

Proposition 1.2.11 For each u∈Rd ,

φX (u) = exp

[∫
Rd

(ei(u,y) − 1)cµZ (dy)

]
.
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Proof Let φZ be the common characteristic function of the Zn. By conditioning
and using independence we find that

φX (u) =
∞∑
n=0

E
(
exp
[
i(u, Z(1)+ · · · + Z(N ))

]∣∣N = n
)
P(N = n)

=
∞∑
n=0

E
(
exp
[
i(u, Z(1)+ · · · + Z(n))

])
e−c c

n

n!

= e−c
∞∑
n=0

[cφZ (u)]n
n!

= exp[c(φZ (u)− 1)],

and the result follows on writing φZ (u) =
∫
Rd ei(u,y)µZ (dy). �

NoteWe have employed the convention that Z(0)=0 (a.s.).
If X is compound Poisson as above, we write X ∼ π(c,µZ ). It is clearly

infinitely divisible with each Y (n)
j ∼ π(c/n,µZ ), for 1 ≤ j ≤ n.

The quantity X will have a finite mean if and only if each Zn does. Indeed,
in this case, straightforward differentiation of φX yields E(X ) = cmZ , where
mZ is the common value of the E(Zn). Similar remarks apply to higher-order
moments of X .

Exercise 1.2.12

(1) Verify that the sum of two independent infinitely divisible random variables
is itself infinitely divisible.

(2) Show that the weak limit of a sequence of infinitely divisible probability
measures is itself infinitely divisible. (Hint: use Lévy’s continuity theorem.)

We will frequently meet examples of the following type. Let X = X1 + X2,
where X1 and X2 are independent with X1 ∼ N (m,A) and X2 ∼ π(c,µZ ); then,
for each u∈Rd ,

φX (u) = exp

[
i(m, u)− 1

2 (u,Au)+
∫

Rd
(ei(u,y) − 1)cµZ (dy)

]
. (1.9)

1.2.4 The Lévy–Khintchine formula

In this section,wewill present a beautiful formula, first established byPaul Lévy
andA. Ya. Khintchine in the 1930s, which gives a characterisation of infinitely
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divisible random variables through their characteristic functions. First we need
a definition.
Let ν be a Borel measure defined on Rd − {0} = {x ∈Rd , x �= 0}. We say

that it is a Lévy measure if∫
Rd−{0}

(|y|2 ∧ 1)ν(dy) <∞. (1.10)

Since |y|2 ∧ ε ≤ |y|2 ∧ 1 whenever 0 < ε ≤ 1, it follows from (1.10) that

ν((−ε, ε)c) <∞ for all ε > 0.

Exercise 1.2.13 Show that every Lévy measure on Rd − {0} is σ -finite.
Alternative characterisations of Lévymeasures can be found in the literature.

One of the most popular replaces (1.10) by∫
Rd−{0}

|y|2
1+ |y|2 ν(dy) <∞. (1.11)

To see that (1.10) and (1.11) are equivalent, it is sufficient to verify the
inequalities

|y|2
1+ |y|2 ≤ |y|

2 ∧ 1 ≤ 2
|y|2

1+ |y|2

for each y ∈Rd .
Note that any finite measure on Rd − {0} is a Lévy measure. Also, if the

reader so wishes, the alternative convention may be adopted of defining Lévy
measures on the whole of Rd via the assignment ν({0}) = 0; see e.g. Sato
[323].
The result given below is usually called the Lévy–Khintchine formula and it

is the cornerstone for much of what follows.

Theorem 1.2.14 (Lévy–Khintchine) µ∈M1(Rd ) is infinitely divisible if
there exists a vector b∈Rd , a positive definite symmetric d × d matrix A and
a Lévy measure ν on Rd − {0} such that, for all u∈Rd ,

φµ(u) = exp

{
i(b, u)− 1

2 (u,Au)

+
∫

Rd−{0}
[
ei(u,y) − 1− i(u, y)χB̂(y)

]
ν(dy)

}
, (1.12)

where B̂ = B1(0).
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Conversely, any mapping of the form (1.12) is the characteristic function of
an infinitely divisible probability measure on Rd .

Proof We are only going to prove the second part of the theorem here; the more
difficult first part will be proved as a by-product of the Lévy–Itô decomposition
in Chapter 2. First, we need to show that the right-hand side of (1.12) is a
characteristic function. To this end, let (U (n), n∈N) be a sequence of Borel
sets in Rd that is monotonic decreasing to {0} and define for all u∈Rd , n∈N,

φn(u) = exp

[
i

(
b−

∫
U (n)c∩B̂

yν(dy), u

)
− 1

2
(u,Au)

+
∫
U (n)c

(ei(u,y) − 1)ν(dy)

]
.

Then each φn represents the convolution of a normal distribution with an inde-
pendent compoundPoisson distribution, as in (1.9), and thus is the characteristic
function of a probability measure µn. We clearly have

φµ(u) = lim
n→∞φn(u).

The fact that φµ is a characteristic function will follow by Lévy’s continuity
theorem if we can show that it is continuous at zero. This boils down to proving
the continuity at 0 of ψµ, where, for each u∈Rd ,

ψµ(u) =
∫

Rd−{0}
[
ei(u,y) − 1− i(u, y)χB̂(y)

]
ν(dy)

=
∫
B̂

[
ei(u,y) − 1− i(u, y)

]
ν(dy)+

∫
B̂c
(ei(u,y) − 1)ν(dy).

Now using Taylor’s theorem, the Cauchy–Schwarz inequality, (1.10) and
dominated convergence, we obtain

|ψµ(u)| ≤ 1

2

∫
B̂
|(u, y)|2ν(dy)+

∫
B̂c
|ei(u,y) − 1|ν(dy)

≤ |u|2
2

∫
B̂
|y|2ν(dy)+

∫
B̂c
|ei(u,y) − 1|ν(dy)

→ 0 as u→ 0.

It is now easy to verify directly that µ is infinitely divisible. �
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Notes

(1) The technique used in the proof above of taking the limits of sequences
composed of sums of Gaussians with independent compound Poissons will
recur frequently.

(2) The proof of the ‘only if’ part involves much more work. See e.g. Sato
([323]), pp. 41–5, for one way of doing this. An alternative approach will
be given in Chapter 2, as a by-product of the Lévy–Itô decomposition.

(3) There is nothing special about the ‘cut-off’ function c(y) = yχB that occurs
within the integral in (1.12). An alternative that is often used is c(y) =
y/(1+ |y|2). The only constraint in choosing c is that the function gc(y) =
ei(u,y) − 1 − i(c(y), u) should be ν-integrable for each u∈Rd . Note that
if you adopt a different c then you must change the vector b accordingly
in (1.12).

(4) Relative to the choice of c that we have taken, the members of the triple
(b,A, ν) are called the characteristics of the infinitely divisible random
variable X . Examples of these are as follows:
• Gaussian case: b is the mean, m, A is the covariance matrix, ν = 0.
• Poisson case: b = 0, A = 0, ν = cδ1.
• Compound Poisson case: b = c

∫
B̂ xµ(dx), A = 0, ν = cµ, where c > 0

and µ is a probability measure on Rd .
(5) It is important to be aware that the interpretation of b and A as mean and

covariance, respectively, is particular to the Gaussian case; e.g. in (1.9),

E(X ) = m+ c
∫

Rd
yµZ (dy),

when the integral is finite.

In the proof of Theorem 1.2.14, we wrote down the characteristic function
φµ(u) = eη(u). We will call the map η :Rd → C a Lévy symbol, as it is the
symbol for a pseudo-differential operator (see Chapter 3). Many other authors
call η the characteristic exponent or Lévy exponent.
Since, for all u∈Rd , |φµ(u)| ≤ 1 for any probabilitymeasureµ andφµ(u) =

eη(u), when µ is infinitely divisible we deduce that �η(u) ≤ 0.

Exercise 1.2.15 Show that η is continuous at every u∈Rd (and uniformly so
in a neighbourhood of the origin).

Exercise 1.2.16 Establish the useful inequality

|η(u)| ≤ C(1+ |u|2)
for each u∈Rd , where C > 0.
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Suppose that an infinitely divisible probability measure is such that its Lévy
measure ν is absolutely continuous with respect to Lebesguemeasure.Wewrite
gν = dν/dx and call it the Lévy density . For example, a compound Poisson
random variable (as given in Example 1.2.10) will have a Lévy density if and
only if each Zj has a pdf. In this case, we see that gν = cfZ where fZ is the
common pdf of the Zjs.
The following theorem gives an interesting analytic insight into the Lévy–

Khintchine formula.

Theorem 1.2.17 The map η is a Lévy symbol if and only if it is a continuous,
hermitian, conditionally positive definite function for which η(0) = 0.

Proof Suppose that η is a Lévy symbol; then so is tη, for each t > 0. Then there
exists a probability measure µ(t) for each t ≥ 0, such that φµ(t)(u) = etη(u) for
each u∈Rd . But η is continuous by Exercise 1.2.15 and η(0) = 0. Since φµ is
positive definite then η is hermitian and conditionally positive definite by the
Schoenberg correspondence.
Conversely, suppose that η is continuous, hermitian and conditionally posi-

tive definitewithη(0) = 0.By the Schoenberg correspondence (Theorem1.1.2)
and Bochner’s theorem, there exists a probability measureµ for which φµ(u) =
eη(u) for each u∈Rd . Since η/n is, for each n∈N, another continuous, hermi-
tian, conditionally positive definite function that vanishes at the origin, we see
that µ is infinitely divisible and the result follows. �

We will gain more insight into the meaning of the Lévy–Khintchine formula
when we consider Lévy processes. For now it is important to be aware that
all infinitely divisible distributions can be constructed as weak limits of con-
volutions of Gaussians with independent compound Poissons, as the proof of
Theorem 1.2.14 indicated. In the next section we will see that some very inter-
esting examples occur as such limits. The final result of this section shows that
in fact the compound Poisson distribution is enough for a weak approximation.

Theorem 1.2.18 Any infinitely divisible probability measure can be obtained
as the weak limit of a sequence of compound Poisson distributions.

Proof Let φ be the characteristic function of an arbitrary infinitely divisible
probability measure µ, so that φ1/n is the characteristic function of µ1/n; then
for each n∈N, u∈Rd , we may define

φn(u) = exp
{
n
[
φ1/n(u)− 1

]} = exp

[∫
Rd

(ei(u,y) − 1)nµ1/n(dy)

]
,
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so that φn is the characteristic function of a compound Poisson distribution.We
then have

φn(u) = exp
[
n(e(1/n) log[φ(u)] − 1)

]
= exp

{
log
[
φ(u)

]+ n o

(
1

n

)}
→ φ(u) as n→∞,

where ‘log’ is the principal value of the logarithm; the result follows by
Glivenko’s theorem. �

Corollary 1.2.19 The set of all infinitely divisible probability measures on
Rd coincides with the weak closure of the set of all compound Poisson
distributions on Rd .

Proof This follows directly from Theorem 1.2.18 and Exercise 1.2.12(2). �

Although the Lévy–Khintchine formula represents all infinitely divisible ran-
dom variables as arising through the interplay between Gaussian and Poisson
distributions, a vast array of different behaviour appears between these two
extreme cases. A large number of examples are given in Chapter 1 of Sato
([323]). We will be content to focus on a subclass of great importance and
then look at two rather diverse and interesting cases that originate from outside
probability theory.1

1.2.5 Stable random variables

We consider the general central limit problem in dimension d = 1, so let
(Yn, n∈N) be a sequence of real-valued i.i.d. random variables and construct
the sequence (Sn, n∈N) of rescaled partial sums

Sn = Y1 + Y2 + · · · + Yn − bn
σn

,

where (bn, n∈N) is an arbitrary sequence of real numbers and (σn, n∈N) an
arbitrary sequence of positive numbers. We are interested in the case where
there exists a random variable X for which

lim
n→∞P(Sn ≤ x) = P(X ≤ x) (1.13)

1 Readers with an interest in statistics will be pleased to know that the gamma distribution (of
which the chi-squared distribution is a special case) is infinitely divisible. We will say more
about this is Section 1.3.2. The t-distribution is also infinitely divisible; see Grosswald [144].
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for all x ∈R, i.e. (Sn, n∈N) converges in distribution to X . If each bn = nm
and σn = √

nσ for fixed m∈R, σ > 0, then X ∼ N (m, σ 2) by the usual
Laplace–de-Moivre central limit theorem.
More generally a random variable is said to be stable if it arises as a limit, as

in (1.13). It is not difficult (see e.g. Breiman [62], Gnedenko and Kolmogorov
[140]) to show that (1.13) is equivalent to the following. There exist real-valued
sequences (cn, n∈N) and (dn, n∈N) with each cn > 0 such that

X1 + X2 + · · · + Xn
d= cnX + dn, (1.14)

where X1,X2, . . . ,Xn are independent copies of X . In particular, X is said to be
strictly stable if each dn = 0.
To see that (1.14)⇒ (1.13) take each Yj = Xj, bn = dn and σn = cn. In fact

it can be shown (see Feller [119], p. 166) that the only possible choice of cn in
(1.14) is of the form σn1/α , where 0 < α ≤ 2. The parameter α plays a key
role in the investigation of stable random variables and is called the index of
stability.
Note that (1.14) can be expressed in the equivalent form

φX (u)
n = eiudnφX (cnu),

for each u∈R.
It follows immediately from (1.14) that all stable random variables are

infinitely divisible. The characteristics in the Lévy–Khintchine formula are
given by the following result.

Theorem 1.2.20 If X is a stable real-valued random variable, then its
characteristics must take one of the two following forms:

(1) when α = 2, ν = 0, so X ∼ N (b,A);
(2) when α �= 2, A = 0 and

ν(dx) = c1
x1+α

χ(0,∞)(x)dx + c2
|x|1+α

χ(−∞,0)(x)dx,

where c1 ≥ 0, c2 ≥ 0 and c1 + c2 > 0.

A proof can be found in Sato [323], p. 80.
A careful transformation of the integrals in the Lévy–Khintchine formula

gives a different form for the characteristic function, which is often more
convenient (see Sato [323], p. 86).



1.2 Infinite divisibility 35

Theorem 1.2.21 A real-valued random variable X is stable if and only if there
exist σ > 0,−1 ≤ β ≤ 1 and µ∈R such that for all u∈R:

(1) when α = 2,

φX (u) = exp
(
iµu− 1

2σ
2u2
)
;

(2) when α �= 1, 2,

φX (u) = exp
{
iµu− σα|u|α

[
1− iβ sgn(u) tan

(πα

2

)]}
;

(3) when α = 1,

φX (u) = exp

{
iµu− σ |u|

[
1+ iβ

2

π
sgn(u) log(|u|)

]}
.

It can be shown that E(X 2) < ∞ if and only if α = 2 (i.e. X is Gaussian) and
that E(|X |) <∞ if and only if 1 < α ≤ 2.
All stable random variables have densities fX , which can in general be

expressed in series form. These expansions are in terms of a real number λ

which is determined by the four parameters α,β,µ and σ . For x > 0 and
0 < α < 1:

fX (x, λ) = 1

πx

∞∑
k=1

�(kα + 1)

k! (−x−α)k sin

(
kπ

2
(λ− α)

)
For x > 0 and 1 < α < 2,

fX (x, λ) = 1

πx

∞∑
k=1

�(kα−1 + 1)

k! (−x)k sin
(
kπ

2α
(λ− α)

)
,

where �(·) is the usual gamma function.2

In each case the formula for negative x is obtained by using

fX (−x, λ) = fX (x,−λ), for x > 0.

See Feller [119], chapter 17, section 6) for further details. In three important
cases, there are closed forms.

2 �(α) = ∫∞0 xα−1e−xdx, for α > 0.
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The normal distribution

α = 2, X ∼ N (µ, σ 2).

The Cauchy distribution

α = 1, β = 0, fX (x) = σ

π [(x − µ)2 + σ 2] .

The Lévy distribution

α = 1
2 , β = 1,

fX (x) =
( σ

2π

)1/2 1

(x − µ)3/2
exp

[
− σ

2(x − µ)

]
for x > µ.

Exercise 1.2.22 (The Cauchy distribution) Prove directly that∫ ∞

−∞
eiux

σ

π [(x − µ)2 + σ 2]dx = eiµu−σ |u|.

(Hint: One approach is to use the calculus of residues. Alternatively, by
integrating from −∞ to 0 and then 0 to∞, separately, deduce that∫ ∞

−∞
e−itxe−|x|dx = 2

1+ t2
.

Now use Fourier inversion; see Section 3.8.4)

Exercise 1.2.23 Let X and Y be independent standard normal random vari-
ables. Show that Z has a Cauchy distribution, where Z = Y /X whenX �= 0 and
Z = 0 otherwise. Also show thatW has a Lévy distribution, whereW = 1/X 2

when X �= 0 and W = 0 otherwise.

Note that if a stable randomvariable is symmetric thenTheorem1.2.21 yields

φX (u) = exp(−ρα|u|α) for all 0 < α ≤ 2, (1.15)

where ρ = σ for 0 < α < 2 and ρ = σ/
√
2 when α = 2; we will write

X ∼ SαS in this case.
Although it does not have a closed-form density, the symmetric stable dis-

tribution with α = 3/2 is of considerable practical importance. It is called
the Holtsmark distribution and its three-dimensional generalisation has been
used to model the gravitational field of stars: see Feller [119], p. 173 and
Zolotarev [366].
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One of the reasons why stable laws are so important in applications is the
nice decay properties of the tails. The case α= 2 is special in that we have
exponential decay; indeed, for a standard normal X there is the elementary
estimate

P(X > y) ∼ e−y2/2√
2πy

as y→∞;

see Feller [118], chapter 7, section 1.
When α �= 2 we have a slower, polynomial, decay as expressed in the

following:

lim
y→∞ yαP(X > y) = Cα

1+ β

2
σα ,

lim
y→∞ yαP(X < −y) = Cα

1− β

2
σα ,

where Cα > 1; see Samorodnitsky and Taqqu [319], pp. 16–18 or Section 1.5.4
below for a proof and an explicit expression for the constant Cα . The relatively
slowdecay of the tails of non-Gaussian stable lawsmakes them ideally suited for
modelling a wide range of interesting phenomena, some of which exhibit ‘long-
range dependence’; see Taqqu [346] for a nice survey of such applications. The
mathematical description of ‘heavy tails’ is intimately related to the concept
of regular variation. For a detailed account of this, see Bingham et al. [50],
particularly chapter 8, or Resnick [303]. We will return to this theme at the end
of the chapter.
The generalisation of stability to random vectors is straightforward: just

replace X1, . . . ,Xn,X and each dn in (1.14) by vectors, and the description
in Theorem 1.2.20 extends directly. Note however that when α �= 2 in the
random vector version of Theorem 1.2.20, the Lévy measure takes the form

ν(B) =
∫
Sd−1

∫ ∞

0
χB(rθ)

dr

r1+α
τ(dθ),

for each B∈B(Rd )where τ is a finite Borel measure on Sd−1 (see e.g. theorem
14.3 in Sato [323].)
In the rotationally invariant case this simplifies to

ν(dx) = c

|x|d+α
dx

where c > 0.
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The corresponding extension of Theorem 1.2.21 is as follows (see Sato [323],
p. 83 for a proof).

Theorem 1.2.24 A random variable X taking values inRd is stable if and only
if for all u∈Rd there exists a vector m∈Rd and

(1) there exists a positive definite symmetric d × d matrix A such that, when
α = 2,

φX (u) = exp
[
i(m, u)− 1

2 (u,Au)
]
;

(2) there exists a finite Borel measure ρ on Sd−1 such that, when α �= 1, 2,

φX (u)

= exp

{
i(m, u)−

∫
Sd−1

|(u, s)|α
[
1− i tan

(πα

2

)
sgn(u, s)

]
ρ(ds)

}
;

(3) there exists a finite Borel measure ρ on Sd−1 such that, when α = 1,

φX (u)

= exp

{
i(m, u)−

∫
Sd−1

|(u, s)|
[
1+ i

2

π
sgn (u, s) log |(u, s)|

]
ρ(ds)

}
.

Note that, for 0 < α < 2, X is symmetric if and only if

φX (u) = exp

[
−
∫
Sd−1

|(u, s)|αρ(ds)
]

for each u∈Rd and X is rotationally invariant for 0 < α ≤ 2 if and only if the
Rd -version of equation (1.15) holds.
We can generalise the definition of stable random variables if we weaken

the conditions on the random variables (Y (n), n∈N) in the general central
limit problem by requiring these to be independent but no longer necessarily
identically distributed. In this case, provided the Y (n)’s form a ‘null array’,3

the limiting random variables are called self-decomposable (or of class L) and
they are also infinitely divisible. Alternatively, a random variable X is self-
decomposable if and only if for each 0 < a < 1 there exists a random variable
Ya that is independent of X and such that

X
d= aX + Ya ⇔ φX (u) = φX (au)φYa (u),

3 That is, limn→∞max1≤k≤n P(|Yk | > εσn) = 0, for all ε > 0.
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for all u∈Rd . Examples include gamma, Pareto, Student-t, F and log-
normal distributions. Self-decomposable distributions are discussed in Sato
[323], pp. 90–9, where it is shown that an infinitely divisible law on R is
self-decomposable if and only if the Lévy measure is of the form

ν(dx) = k(x)

|x| dx,

where k is decreasing on (0,∞) and increasing on (−∞, 0). There has recently
been increasing interest in these distributions from both the theoretical and
applied perspectives; see for example Bingham and Keisel [53] or the article
by Z. Jurek in [22] and references therein.

1.2.6 Diversion: Number theory and relativity

We will look at two interesting examples of infinitely divisible distributions.

The Riemann zeta distribution

TheRiemann zeta function ζ is defined, initially for complex numbers z = u+iv
where u > 1, by the (absolutely) convergent series expansion

ζ(z) =
∞∑
n=1

1

nz
,

which is equivalent to the Euler product formula

ζ(z) =
∏
p∈P

1

1− p−z
, (1.16)

P being the set of all prime numbers.
Riemann showed that ζ can be extended by analytic continuation to a mero-

morphic function on the whole of C, having a single (simple) pole at z = 1. He
also investigated the zeros of ζ and showed that that these are at {−2n, n∈N}
and in the ‘critical strip’ 0 ≤ u ≤ 1. The celebrated Riemann hypothesis is that
all the latter class are in fact on the line u = 1/2, and this question remains
unresolved although Hardy has shown that an infinite number of zeros are of
this form. For more about this and related issues, see e.g. Patterson [292] and
references therein.
We will now look at a remarkable connection between the Riemann zeta

function and infinite divisibility that is originally due to A. Khintchine (see
[140], pp. 75–6), although it has its antecedents in work by Jessen and
Wintner [191].
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Fix u∈R with u > 1 and define φu :R → C by

φu(v) = ζ(u+ iv)

ζ(u+ i0)
,

for all v ∈R.

Proposition 1.2.25 (Khintchine) For each u > 1, φu is the characteristic
function of an infinitely divisible probability measure.

Proof Using (1.16) and the Taylor series expansion of the complex function
log(1+w), where |w| < 1, we find for all v ∈R that (taking the principal value
of the logarithm),

log
[
φu(v)

] = log
[
ζ(u+ iv)

]− log
[
ζ(u + i0)

]
=
∑
p∈P

log(1− p−u)−
∑
p∈P

log(1− p−(u+iv))

=
∑
p∈P

∞∑
m=1

(
p−m(u+iv)

m
− p−mu

m

)

=
∑
p∈P

∞∑
m=1

p−mu

m
(e−im log(p) v − 1)

=
∑
p∈P

∞∑
m=1

∫
R

(eiαv − 1)
euα

m
δ−m log(p)(dα).

Hence we see that φu is the limit of a sequence of characteristic functions of
Poisson laws. It follows by the Lévy continuity theorem that φu is the character-
istic function of a probability measure that is infinitely divisible, by Glivenko’s
theorem and exercise 1.2.12(2). �

After many years of neglect, some investigations into this distribution have
recently appeared in Lin and Hu [234] (see also [314]). Other developments
involving number-theoretic aspects of infinite divisibility can be found in Jurek
[196], where the relationship between Dirichlet series and self-decomposable
distributions is explored, and in the survey article byBiane, Pitman andYor [44].

A relativistic distribution

We will consider an example that originates in Einstein’s theory of relativity. A
particle of rest mass m > 0 has momentum p = (p1, p2, p3) ∈R3. According
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to relativity theory, its total energy is

E(p) =
√
m2c4 + c2|p|2,

where c > 0 is the velocity of light (see, e.g. Born [58], p. 291) and, if we
subtract the energy mc2 that is tied up in the rest mass, we obtain the kinetic
energy, i.e. the energy due to motion,

Em,c(p) =
√
m2c4 + c2|p|2 − mc2.

Although m and c are ‘fixed’ by physics we have indicated an explicit depen-
dence of the energy on these ‘parameters’ for reasons that will become clearer
below. Define

φm,c(p) = e−Em,c(p),

where we now take p∈Rd for greater generality.

Theorem 1.2.26 φm,c is the characteristic function of an infinitely divisible
probability distribution.

Proof The fact that φm,c is a characteristic function follows by Bochner’s
theorem once we have shown that it is positive definite.
SinceEm,c is clearly hermitian, demonstrating this latter fact is equivalent, by

the Schoenberg correspondence, to showing that−Em,c is conditionally positive
definite. Observing that

−Em,c(p) = mc2

1−
√
1+ |p|2

m2c2

 ,

we see that it is sufficient to prove conditional positive definiteness of

ψ(p) = 1−
√
1+ |p|2

λ
,

where λ > 0.
Using the result of Appendix 1.7 and the fact that �( 12 ) =

√
π , we obtain

ψ(p) = 1− 1

2
√
π

∫ ∞

0

(
1− exp

{
−
(
1+ |p|2

λ

)
x

})
dx

x
3
2

.
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To ensure that all the integrals we consider below are finite, for each n∈N

we define

ψn(p) = 1− 1

2
√
π

∫ ∞
1
n

(
1− exp

{
−
(
1+ |p|2

λ

)
x

})
dx

x
3
2

.

Now choose m∈N, pi ∈Rd ,αi ∈C (1 ≤ i ≤ d) with
∑d

i=1 αi = 0, then

m∑
i,j=1

αiαjψn(pi − pj)

= 1

2
√
π

∫ ∞
1
n

e−x
m∑

i,j=1
αiαj exp

{
−|pi − pj|2x

λ

}
dx

x
3
2

,

≥ 0,

where we have used the fact that for each x > 0, the map p → e−|p|2x/λ is
positive definite – indeed it is the characteristic function of a N (0, λ

2x ) random
variable.
Now we have

m∑
i,j=1

αiαjψ(pi − pj) = lim
n→∞

m∑
i,j=1

αiαjψn(pi − pj) ≥ 0.

To verify that the associated probability measure is infinitely divisible, it is
sufficient to observe that

[
φm,c(p)

]1/n = φnm,c/n(p)

for all p∈Rd , n∈N. �

The characteristics of the relativistic distribution are (0, 0, ν) where ν has
Lévy density

gν(x) = 2

(
2π |x|
ρ

)− d+1
2

Kd+1
2

(ρ|x|),

for each x ∈Rd , where ρ = mc2 andK is a Bessel function of the third kind (see
Appendix 5.6). Further details may be found in Ichinose and Tsuchida [166]
and references therein.
We will meet this example again in Chapter 3 in ‘quantised’ form.
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1.3 Lévy processes

Let X = (X (t), t ≥ 0) be a stochastic process defined on a probability space
(�,F ,P). We say that it has independent increments if for each n∈N and
each 0 ≤ t1 < t2 ≤ · · · < tn+1 < ∞ the random variables (X (tj+1) −
X (tj), 1 ≤ j ≤ n) are independent and that it has stationary increments if each

X (tj+1)− X (tj)
d= X (tj+1 − tj)− X (0).

We say that X is a Lévy process if:

(L1) X (0) = 0 (a.s);
(L2) X has independent and stationary increments;
(L3) X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P(|X (t)− X (s)| > a) = 0.

Note that in the presence of (L1) and (L2), (L3) is equivalent to the condition

lim
t↓0 P(|X (t)| > a) = 0

for all a > 0.
We are now going to explore the relationship between Lévy processes and

infinite divisibility.

Proposition 1.3.1 If X is a Lévy process, then X (t) is infinitely divisible for
each t ≥ 0.

Proof For each n∈N, we can write

X (t) = Y (n)
1 (t)+ · · · + Y (n)

n (t)

where each

Y (n)
k (t) = X

(
kt

n

)
− X

(
(k − 1)t

n

)
.

The Y (n)
k (t) are i.i.d. by (L2). �

By Proposition 1.3.1, we can write φX (t)(u) = eη(t,u) for each t ≥ 0, u∈Rd ,
where each η(t, ·) is a Lévy symbol. We will see below that η(t, u) = tη(1, u)
for each t ≥ 0, u∈Rd , but first we need the following lemma.

Lemma 1.3.2 If X = (X (t), t ≥ 0) is stochastically continuous, then the map
t → φX (t)(u) is continuous for each u∈Rd .
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Proof For each s, t ≥ 0 with t �= s, write X (s, t) = X (t) − X (s). Fix u∈Rd .
Since the map y → ei(u,y) is continuous at the origin, given any ε > 0 we can
find δ1 > 0 such that

sup
0≤|y|<δ1

|ei(u,y) − 1| < ε

2

and, by stochastic continuity, we can find δ2 > 0 such that whenever 0 <

|t − s| < δ2, P(|X (s, t)| > δ1) < ε/4.
Hence for all 0 < |t − s| < δ2 we have

|φX (t)(u)− φX (s)(u)| =
∣∣∣∣∫

�

ei(u,X (s)(ω))
[
ei(u,X (s,t)(ω)) − 1

]
P(dω)

∣∣∣∣
≤
∫

Rd
|ei(u,y) − 1|pX (s,t)(dy)

=
∫
Bδ1 (0)

|ei(u,y) − 1|pX (s,t)(dy)

+
∫
Bδ1 (0)

c
|ei(u,y) − 1|pX (s,t)(dy)

≤ sup
0≤|y|<δ1

|ei(u,y) − 1| + 2P(|X (s, t)| > δ1)

< ε,

and the required result follows. �

Theorem 1.3.3 If X is a Lévy process, then

φX (t)(u) = etη(u)

for each u∈Rd , t ≥ 0, where η is the Lévy symbol of X (1).

Proof Suppose that X is a Lévy process and that, for each u∈Rd , t ≥ 0. Define
φu(t) = φX (t)(u); then by (L2) we have for all s ≥ 0

φu(t + s) = E
(
ei(u,X (t+s)))

= E
(
ei(u,X (t+s)−X (s))ei(u,X (s)))

= E
(
ei(u,X (t+s)−X (s))) E

(
ei(u,X (s)))

= φu(t)φu(s). (1.17)
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Now
φu(0) = 1 (1.18)

by (L1), and from (L3) and Lemma 1.3.2 we have that the map t → φu(t) is
continuous. However, the unique continuous solution to (1.17) and (1.18) is
given by φu(t) = etα(u), where α :Rd → C (see, e.g. Bingham et al. [50],
pp. 4–6). Now by Proposition 1.3.1 X (1) is infinitely divisible, hence α is a
Lévy symbol and the result follows. �

We now have the Lévy–Khinchine formula for a Lévy process
X = (X (t), t≥ 0),

E(ei(u,X (t))) = exp

(
t

{
i(b, u)− 1

2 (u,Au)

+
∫

Rd−{0}
[
ei(u,y) − 1− i(u, y)χB̂(y)

]
ν(dy)

})
(1.19)

for each t ≥ 0, u∈Rd , where (b,A, ν) are the characteristics of X (1).
We will define the Lévy symbol and the characteristics of a Lévy process X

to be those of the random variable X (1). We will sometimes write the former
as ηX when we want to emphasise that it belongs to the process X .

Exercise 1.3.4 If X is a Lévy process with characteristics (b,A, ν), show that
−X = (−X (t), t ≥ 0) is also a Lévy process and has characteristics (−b,A, ν̃),
where ν̃(A) = ν(−A) for each A∈B(Rd ). Show also that for each c∈R the
process, (X (t)+ tc, t ≥ 0) is a Lévy process, and find its characteristics.

Exercise 1.3.5 Show that if X and Y are stochastically continuous processes
then so is their sum X + Y = (X (t)+ Y (t), t ≥ 0). (Hint: Use the elementary
inequality

P(|A+ B| > c) ≤ P
(
|A| > c

2

)
+ P

(
|B| > c

2

)
,

where A and B are random variables and c > 0.)

Exercise 1.3.6 Show that the sum of two independent Lévy processes is again
a Lévy process. (Hint: Use Kac’s theorem to establish independent increments.)

Theorem 1.3.7 If X = (X (t), t ≥ 0) is a stochastic process and there
exists a sequence of Lévy processes (Xn, n∈N) with each Xn = (Xn(t), t ≥
0) such that Xn(t) converges in probability to X (t) for each t ≥ 0 and
limn→∞ lim supt→0 P(|Xn(t) − X (t)| > a) = 0 for all a > 0, then X is a
Lévy process.



46 Lévy processes

Proof (L1) follows immediately from the fact that (Xn(0), n∈N) has a subse-
quence converging to 0 almost surely. For (L2) we obtain stationary increments
by observing that for each u∈Rd , 0 ≤ s < t <∞,

E(ei(u,X (t)−X (s))) = lim
n→∞E(ei(u,Xn(t)−Xn(s)))

= lim
n→∞E(ei(u,Xn(t−s)))

= E(ei(u,X (t−s))),

where the convergence of the characteristic functions follows by the argument
used in the proof of Lemma 1.3.2. The independence of the increments is proved
similarly.
Finally, to establish (L3), for each a > 0, t ≥ 0, n∈N we have

P(|X (t)| > a) ≤ P(|X (t)− Xn(t)| + |Xn(t)| > a)

≤ P
(
|X (t)− Xn(t)| > a

2

)
+ P

(
|Xn(t)| > a

2

)
and hence

lim sup
t→0

P(|X (t)| > a)

≤ lim sup
t→0

P
(
|X (t)− Xn(t)| > a

2

)
+ lim sup

t→0
P
(
|Xn(t)| > a

2

)
.

(1.20)

But each Xn is a Lévy process and so

lim sup
t→0

P
(
|Xn(t)| > a

2

)
= lim

t→0
P
(
|Xn(t)| > a

2

)
= 0,

and the result follows on taking limn→∞ in (1.20). �

1.3.1 Examples of Lévy processes

Example 1.3.8 (Brownian motion and Gaussian processes) A (standard)
Brownian motion in Rd is a Lévy process B = (B(t), t ≥ 0) for which

(B1) B(t) ∼ N (0, tI) for each t ≥ 0,
(B2) B has continuous sample paths.
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It follows immediately from (B1) that if B is a standard Brownian motion
then its characteristic function is given by

φB(t)(u) = exp
(− 1

2 t|u|2
)

for each u∈Rd , t ≥ 0.

We introduce the marginal processes Bi = (Bi(t), t ≥ 0), where each Bi(t)
is the ith component of B(t); then it is not difficult to verify that the Bi are
mutually independent Brownian motions in R. We will henceforth refer to
these as one-dimensional Brownian motions.
Brownian motion has been the most intensively studied Lévy process. In the

early years of the twentieth century, it was introduced as amodel for the physical
phenomenon of Brownian motion by Einstein and Smoluchowski and as a
description of the dynamical evolution of stock prices by Bachelier. Einstein’s
papers on the subject are collected in [106] while Bachelier’s thesis can be
found in [19]. The theory was placed on a rigorous mathematical basis by
Norbert Wiener [355] in the 1920s; see also [354]. The first part of Nelson
[277] contains a historical account of these developments from the physical
point of view.
We could try to use the Kolmogorov existence theorem (Theorem 1.1.17) to

construct one-dimensional Brownian motion from the following prescription
on cylinder sets of the form IHt1,t2,...,tn (where 0 ≤ t1 < t2 < · · · < tn <∞):

P(IHt1,t2,...,tn)

=
∫
H

1

(2π)n/2
√
t1(t2 − t1) · · · (tn − tn−1)

× exp

{
−1

2

[
x21
t1
+ (x2 − x1)2

t2 − t1
+ · · · + (xn − xn−1)2

tn − tn−1

]}
dx1 · · · dxn.

However, the resulting canonical process lives on the space of all mappings
from R+ to R and there is then no guarantee that the paths are continuous. A
nice account of Wiener’s solution to this problem can be found in [354].
The literature contains a number of ingeniousmethods for constructingBrow-

nian motion. One of the most delightful of these, originally due to Paley and
Wiener [286], obtains Brownian motion in the case d = 1 as a random Fourier
series

B(t) =
√
2

π

∞∑
n=0

sin
[
π t(n+ 1

2 )
]

n+ 1
2

ξ(n)
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for each t ≥ 0, where (ξ(n), n∈N∪ {0}) is a sequence of i.i.d. N (0, 1) random
variables; see chapter 1 of Knight [204]) for a modern account. A construction
of Brownian motion from a wavelet point of view can be found in Steele [339],
pp. 35–9.
We list a number of useful properties of Brownian motion in the case d = 1;

this is far from exhaustive and, for further examples as well as details of the
proofs, the reader is advised to consult works such as Sato [323], pp. 22–8,
Revuz and Yor [306], Rogers and Williams [308], Karatzas and Shreve [200],
Knight [204] and Itô and McKean [170].

• Brownian motion is locally Hölder continuous with exponent α for every
0 < α < 1/2, i.e. for every T > 0, ω∈�, there exists K=K(T ,ω) such that

|B(t)(ω)− B(s)(ω)| ≤ K |t − s|α

for all 0 ≤ s < t ≤ T .
• The sample paths t → B(t)(ω) are almost surely nowhere differentiable.
• For any sequence (tn, n∈N) in R+ with tn ↑ ∞,

lim inf
n→∞ B(tn) = −∞ a.s., lim sup

n→∞
B(tn) = ∞ a.s.

• The law of the iterated logarithm,

P

(
lim sup

t↓0
B(t){

2t log
[
log(1/t)

]}1/2 = 1

)
= 1

holds.

For deeper properties of Brownian motion, the reader should consult two
volumes by Marc Yor [361, 362].
Let A be a positive definite symmetric d × d matrix and let σ be a square

root of A, so that σ is a d ×m matrix for which σσT = A. Now let b∈Rd and
let B be a Brownian motion in Rm. We construct a process C = (C(t), t ≥ 0)
in Rd by

C(t) = bt + σB(t); (1.21)

then C is a Lévy process with each C(t) ∼ N (tb, tA). It is not difficult to verify
thatC is also a Gaussian process, i.e. that all its finite-dimensional distributions
are Gaussian. It is sometimes called Brownian motion with drift. The Lévy
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symbol of C is

ηC(u) = i(b, u)− 1
2 (u,Au).

In the case b = 0, we sometimes write BA(t) = C(t), for each t ≥ 0, and call
the process Brownian motion with covariance A.
We will show in the next chapter that a Lévy process has continuous sample

paths if and only if it is of the form (1.21).

Example 1.3.9 (The Poisson process) The Poisson process of intensity λ > 0
is a Lévy process N taking values in N ∪ {0} wherein each N (t) ∼ π(λt), so
that we have

P(N (t) = n) = (λt)n

n! e−λt

for each n = 0, 1, 2, . . . . The Poisson process is widely used in applications
and there is a wealth of literature concerning it and its generalisations; see
e.g. Kingman [202] and references therein. We define non-negative random
variables (Tn,N ∪ {0}), usually called waiting times, by T0 = 0 and for n∈N

Tn = inf {t ≥ 0;N (t) = n};

it is well known that the Tn are gamma distributed. Moreover, the inter-arrival
times Tn − Tn−1 for n∈N are i.i.d. and each has exponential distribution with
mean 1/λ; see e.g. Grimmett and Stirzaker [143], section 6.8. The sample paths
ofN are clearly piecewise constant onfinite intervalswith ‘jump’discontinuities
of size 1 at each of the random times (Tn, n∈N).

For later work it is useful to introduce the compensated Poisson process
Ñ = (Ñ (t), t ≥ 0) where each Ñ (t) = N (t) − λt. Note that E(Ñ (t)) = 0 and
E(Ñ (t)2) = λt for each t ≥ 0 .

Example 1.3.10 (The compound Poisson process) Let (Z(n), n∈N) be a
sequence of i.i.d. random variables taking values in Rd with common law µZ

and let N be a Poisson process of intensity λ that is independent of all the Z(n).
The compound Poisson process Y is defined as follows:

Y (t) = Z(1)+ · · · + Z(N (t)) (1.22)

for each t ≥ 0, so each Y (t) ∼ π(λt,µZ ).

Proposition 1.3.11 The compound Poisson process Y is a Lévy process.
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Proof To verify (L1) and (L2) is straightforward. To establish (L3), let a > 0;
then by conditioning and independence we have

P(|Y (t)| > a) =
∞∑
n=0

P(|Z(1)+ · · · + Z(n)| > a)P(N (t) = n),

and the required result follows by dominated convergence. �

By Proposition 1.2.11 we see that Y has Lévy symbol

ηY (u) =
[∫

Rd
(ei(u,y) − 1)λµZ (dy)

]
.

Again the sample paths of Y are piecewise constant on finite intervals with
‘jump discontinuities’ at the random times (T (n), n∈N); however, this time
the size of the jumps is itself random, and the jump at T (n) can take any value
in the range of the random variable Z(n).
The compound Poisson process has important applications to models of

insurance risk; see, e.g. chapter 1 of Embrechts et al. [108].
Clearly a compound Poisson process is Poisson if and only if d = 1 and

each Z(n) = 1 (a.s.), so µZ = δ1. The following proposition tells us that two
independent Poisson processes must jump at distinct times (a.s.).

Proposition 1.3.12 If (N1(t), t ≥ 0) and (N2(t), t ≥ 0) are two independent
Poisson processes defined on the same probability space, with arrival times
(T (j)

n , n∈N) for j = 1, 2, respectively, then

P
(
T (1)
m = T (2)

n for some m, n∈N
) = 0.

Proof Let N (t) = N1(t) + N2(t) for each t ≥ 0; then it follows from Exer-
cise 1.3.6 and a straightforward computation of the characteristic function
that N is another Poisson process. Hence, for each t ≥ 0, we can write
N (t)= Z(1)+ · · ·+Z(N (t)) where (Z(n), n∈N) is i.i.d. with each Z(n) = 1
(a.s.). Now letm, n∈N be such that T (1)

m = T (2)
n (a.s.); if these are the first times

at which such an event occurs, it follows that Z(m+ n− 1) = 2 (a.s.), and we
have our required contradiction. �

Example 1.3.13 (Interlacing processes) Let C be a Gaussian Lévy process as
in Example 1.3.8 and Y be a compound Poisson process, as in Example 1.3.10,
that is independent of C. Define a new process X by

X (t) = C(t)+ Y (t),
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for all t ≥ 0; then it is not difficult to verify that X is a Lévy process with Lévy
symbol of the form (1.9). The paths of X have jumps of random size occurring
at random times. In fact, using the notation of Examples 1.3.9 and 1.3.10,
we have

X (t) =


C(t) for 0 ≤ t < T1,
C(T1)+ Z1 for t = T1,
X (T1)+ C(t)− C(T1) for T1 < t < T2,
X (T2)+ Z2 for t = T2,

and so on recursively.We call this procedure an interlacing, since a continuous-
path process is ‘interlaced’ with random jumps. This type of construction will
recur throughout the book. In particular, if we examine the proof of Theorem
1.2.14, it seems reasonable that the most general Lévy process might arise as
the limit of a sequence of such interlacings, and we will investigate this further
in the next chapter.

Example 1.3.14 (Stable Lévy processes) A stable Lévy process is a Lévy
process X in which each X (t) is a stable random variable. So the Lévy symbol
is given by Theorem 1.2.24. Of particular interest is the rotationally invariant
case, where the Lévy symbol is given by

η(u) = −σα|u|α;

here 0 < α ≤ 2 is the index of stability and σ > 0.
One reason why stable Lévy processes are important in applications is that

they display self-similarity. In general, a stochastic process Y = (Y (t), t ≥ 0)
is self-similar with Hurst index H > 0 if the two processes (Y (at), t ≥ 0) and
(aHY (t), t ≥ 0) have the same finite-dimensional distributions for all a ≥ 0.
By examining characteristic functions, it is easily verified that a rotationally
invariant stable Lévy process is self-similar with Hurst index H = 1/α, so that
e.g. Brownian motion is self-similar with H = 1/2. A nice general account
of self-similar processes can be found in Embrechts and Maejima [111]. In
particular, it is shown therein that a Lévy process X is self-similar if and only
if each X (t) is strictly stable.

Just as with Gaussian processes, we can extend the notion of stability beyond
the class of stable Lévy processes. In general, then, we say that a stochastic
process X = (X (t), t ≥ 0) is stable if all its finite-dimensional distributions are
stable. For a comprehensive introduction to such processes, see Samorodnitsky
and Taqqu [319], chapter 3.
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1.3.2 Subordinators

A subordinator is a one-dimensional Lévy process that is non-decreasing (a.s.).
Such processes can be thought of as a random model of time evolution, since
if T = (T (t), t ≥ 0) is a subordinator we have

T (t) ≥ 0 a.s. for each t > 0,

and

T (t1) ≤ T (t2) a.s. whenever t1 ≤ t2.

Now since for X (t) ∼ N (0,At) we have P(X (t) ≥ 0) = P(X (t) ≤ 0) = 1/2,
it is clear that such a process cannot be a subordinator. More generally we have

Theorem 1.3.15 If T is a subordinator, then its Lévy symbol takes the form

η(u) = ibu+
∫ ∞

0
(eiuy − 1)λ(dy), (1.23)

where b ≥ 0 and the Lévy measure λ satisfies the additional requirements

λ(−∞, 0) = 0 and
∫ ∞

0
(y ∧ 1)λ(dy) <∞.

Conversely, any mapping from Rd → C of the form (1.23) is the Lévy symbol
of a subordinator.

Aproof of this can be found in Bertoin [40], theorem 1.2 (see also Rogers and
Williams [308], pp. 78–9). We will also give a proof of this result in Chapter 2,
after we have established the Lévy–Itô decomposition.
We call the pair (b, λ) the characteristics of the subordinator T .

Exercise 1.3.16 Show that the additional constraint on Lévy measures of
subordinators is equivalent to the requirement∫ ∞

0

y

1+ y
λ(dy) <∞.

Now for each t ≥ 0 the map u → E(eiuT (t)) can clearly be analytically
continued to the region {iu, u > 0}, andwe then obtain the following expression
for the Laplace transform of the distribution:

E(e−uT (t)) = e−tψ(u),
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where

ψ(u) = −η(iu) = bu +
∫ ∞

0
(1− e−uy)λ(dy) (1.24)

for each u > 0. We observe that this is much more useful for both theoretical
and practical applications than the characteristic function.
The function ψ is usually called the Laplace exponent of the subordinator.

Examples

Example 1.3.17 (The Poisson case) Poisson processes are clearly subordina-
tors. More generally, a compound Poisson process will be a subordinator if and
only if the Z(n) in equation (1.22) are all R+-valued.

Example 1.3.18 (α-stable subordinators) Using straightforward calculus (see
the appendix at the end of this chapter if you need a hint), we find that for
0 < α < 1, u ≥ 0,

uα = α

�(1− α)

∫ ∞

0
(1− e−ux) dx

x1+α
.

Hence by (1.24), Theorem 1.3.15 and Theorem 1.2.20 we see that for each
0 < α < 1 there exists an α-stable subordinator T with Laplace exponent

ψ(u) = uα ,

and the characteristics of T are (0, λ) where

λ(dx) = α

�(1− α)

dx

x1+α
.

Note that when we analytically continue this to obtain the Lévy symbol we
obtain the form given in Theorem 1.2.21(2), with µ = 0, β = 1 and σα =
cos (απ/2).

Example 1.3.19 (The Lévy subordinator) The 1
2 -stable subordinator has a

density given by the Lévy distribution (with µ = 0 and σ = t2/2)

fT (t)(s) =
(

t

2
√
π

)
s−3/2e−t2/(4s),

for s ≥ 0. The Lévy subordinator has a nice probabilistic interpretation as a
first hitting time for one-dimensional standard Brownian motion (B(t), t ≥ 0).
More precisely:

T (t) = inf

{
s > 0;B(s) = t√

2

}
. (1.25)
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For details of this see Revuz and Yor [306], p. 109, and Rogers and Williams
[308], p. 133.We will prove this result by using martingale methods in the next
chapter (Theorem 2.2.9).

Exercise 1.3.20 Show directly that, for each t ≥ 0,

E(e−uT (t)) =
∫ ∞

0
e−usfT (t)(s)ds = e−tu1/2 ,

where (T (t), t ≥ 0) is the Lévy subordinator. (Hint: Write gt(u) = E(e−uT (t)).
Differentiate with respect to u and make the substitution x = t2/(4us) to obtain
the differential equation g′t(u) = −(t/2

√
u)gt(u). Via the substitution y =

t/(2
√
s) we see that gt(0) = 1, and the result follows; see also Sato [323]

p. 12.)

Example 1.3.21 (Inverse Gaussian subordinators) We generalise the Lévy
subordinator by replacing the Brownian motion by the Gaussian process C =
(C(t), t ≥ 0) where each C(t) = B(t) + γ t and γ > 0. The inverse Gaussian
subordinator is defined by

T (t) = inf {s > 0;C(s) = δt},
where δ > 0, and is so-called because t → T (t) is the generalised inverse of a
Gaussian process.
Again by using martingale methods, as in Theorem 2.2.9, we can show that

for each t, u > 0,

E(e−uT (t)) = exp

[
−tδ(

√
2u + γ 2 − γ )

]
(1.26)

(see Exercise 2.2.10). In fact each T (t) has a density, and we can easily compute
these from (1.26) and the result of Exercise 1.3.20, obtaining

fT (t)(s) = δt√
2π

eδtγ s−3/2 exp
[
− 1

2 (t
2δ2s−1 + γ 2s)

]
(1.27)

for each s, t ≥ 0.
In general any random variable with density fT (1) is called an inverse

Gaussian and denoted as IG (δ, γ ).

Example 1.3.22 (Gamma subordinators) Let (T (t), t ≥ 0) be a gamma
process with parameters a, b > 0, so that each T (t) has density

fT (t)(x) = bat

�(at)
xat−1e−bx,
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for x ≥ 0; then it is easy to verify that, for each u ≥ 0,∫ ∞

0
e−uxfT (t)(x)dx =

(
1+ u

b

)−at = exp
[
−ta log

(
1+ u

b

)]
.

From here it is a straightforward exercise in calculus to show that∫ ∞

0
e−uxfT (t)(x)dx = exp

[
−t
∫ ∞

0
(1− e−ux)ax−1e−bxdx

]
;

see Sato [323] p. 45 if you need a hint.
From this we see that (T (t), t ≥ 0) is a subordinator with b = 0 and λ(dx) =

ax−1e−bxdx. Moreover, ψ(u) = a log(1 + u/b) is the associated Bernstein
function (see below).

Before we go further into the probabilistic properties of subordinators we
will make a quick diversion into analysis.
Let f ∈C∞((0,∞)) with f ≥ 0. We say f is completely monotone if

(−1)nf (n) ≥ 0 for all n∈N and a Bernstein function if (−1)nf (n) ≤ 0 for
all n∈N. We then have the following.

Theorem 1.3.23

(1) f is aBernstein function if and only if themapping x→ e−tf (x) is completely
monotone for all t ≥ 0.

(2) f is a Bernstein function if and only if it has the representation

f (x) = a + bx +
∫ ∞

0
(1− e−yx)λ(dy)

for all x > 0, where a, b ≥ 0 and
∫∞
0 (y ∧ 1)λ(dy) <∞.

(3) g is completely monotone if and only if there exists a measure µ on [0,∞)

for which

g(x) =
∫ ∞

0
e−xyµ(dy).

A proof of this theorem can be found in Berg and Forst [38], pp. 61–72.
To interpret this theorem, first consider the case a = 0. In this case, if we

compare the statement in Theorem 1.3.23(2) with equation (1.24), we see that
there is a one-to-one correspondence between Bernstein functions for which
limx→0 f (x) = 0 and Laplace exponents of subordinators. The Laplace trans-
forms of the laws of subordinators are always completely monotone functions,
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and a subclass of all possible measures µ appearing in Theorem 1.3.23(3)
is given by all possible laws pT (t) associated with subordinators. Now let f
be a general Bernstein function with a > 0. We can give it a probabilistic
interpretation as follows. Let T be the subordinator with Laplace exponent
ψ(u) = f (u) − a for each u ≥ 0 and let S be an exponentially distributed
random variable with parameter a independent of T , so that S has the pdf
gS(x) = ae−ax for each x ≥ 0.
Now define a process TS = (TS(t), t ≥ 0), which takes values in R+ ∪ {∞}

and which we will call a killed subordinator, by the prescription

TS(t) =
{
T (t) for 0 ≤ t < S,
∞ for t ≥ S.

Proposition 1.3.24 There is a one-to-one correspondence between killed
subordinators TS and Bernstein functions f , given by

E(e−uTS (t)) = e−tf (u)

for each t, u ≥ 0.

Proof By independence, we have

E(e−uTS (t)) = E(e−uTS (t) χ[0,S)(t))+ E(e−uTS (t)χ[S,∞)(t))

= E(e−uT (t))P(S ≥ t)

= e−t[ψ(u)+a],

where we have adopted the convention e−∞ = 0. �

One of the most important probabilistic applications of subordinators is to
‘time changing’. Let X be an arbitrary Lévy process and let T be a subordinator
defined on the same probability space as X such that X and T are independent.
We define a new stochastic process Z = (Z(t), t ≥ 0) by the prescription

Z(t) = X (T (t)),

for each t ≥ 0, so that for each ω∈�, Z(t)(ω) = X (T (t)(ω))(ω). The key
result is then the following.

Theorem 1.3.25 Z is a Lévy process.

Proof (L1) is trivial. To establish (L2) we first prove stationary increments. Let
0 ≤ t1 < t2 < ∞ and A∈B(Rd ). We denote as pt1,t2 the joint probability law
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of T (t1) and T (t2); then by the independence of X and T and the fact that X
has stationary increments we find that

P
(
Z(t2)− Z(t1)∈A

) = P
(
X (T (t2))− X (T (t1))∈A

)
=
∫ ∞

0

∫ ∞

0
P
(
X (s2)−X (s1)∈A

)
pt1,t2(ds1, ds2)

=
∫ ∞

0

∫ ∞

0
P
(
X (s2 − s1)∈A

)
pt1,t2(ds1, ds2)

= P
(
Z(t2 − t1)∈A

)
.

For independent increments, let 0 ≤ t1 < t2 < t3 < ∞. We write pt1,t2,t3 for
the joint probability law of T (t1), T (t2) and T (t3). For arbitrary y ∈Rd , define
hy :R+ → C by hy(s) = E(ei(y,X (s))) and, for arbitrary y1, y2 ∈Rd , define
fy1,y2 :R

+ × R+ × R+ → C by

fy1,y2(u1, u2, u3) = E
(
exp[i(y1, X (u2)− X (u1))]

)
× E(exp[i(y2, X (u3)− X (u2))]

)
,

where 0 ≤ u1 < u2 < u3 <∞. By conditioning, using the independence of X
and T and the fact that X has independent increments we obtain

E
(
exp{i[(y1, Z(t2)− Z(t1))+ (y2, Z(t3)− Z(t2))]}

)
= E

(
fy1,y2(T (t1), T (t2), T (t3))

)
.

However, since X has stationary increments, we have that

fy1,y2(u1, u2, u3) = hy1(u2 − u1)hy2(u3 − u2)

for each 0 ≤ u1 < u2 < u3 <∞.
Hence, by the independent increments property of T , we obtain

E
(
exp{i[(y1, Z(t2)− Z(t1))+ (y2, Z(t3)− Z(t2))]}

)
= E(hy1(T2 − T1)hy2(T3 − T2))

= E(hy1(T2 − T1))E(hy2(T3 − T2))

= E
(
exp [i(y1, Z(t2 − t1))]

)
E
(
exp [i(y2, Z(t3 − t2))]

)
,

by the independence of X and T .
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The fact that Z(t2) − Z(t1) and Z(t3) − Z(t2) are independent now follows
by Kac’s theorem from the fact that Z has stationary increments, which was
proved above. The extension to n time intervals is by a similar argument; see
also Sato [323], pp. 199–200.
We now establish (L3). Since X and T are stochastically continuous, we

know that, for any a ∈Rd , if we are given any ε > 0 then we can find δ > 0
such that 0 < h < δ ⇒ P(|X (h)| > a) < ε/2, and we can find δ

′
> 0 such

that 0 < h < δ
′ ⇒ P(T (h) > δ) < ε/2.

Now, for all t ≥ 0 and all 0 ≤ h < min{δ, δ′ }, we have

P(|Z(h)| > a)

= P(|X (T (h))| > a) =
∫ ∞

0
P(|X (u)| > a)pT (h)(du)

=
∫
[0,δ)

P(|X (u)| > a)pT (h)(du)+
∫
[δ,∞)

P(|X (u)| > a)pT (h)(du)

≤ sup
0≤u<δ

P(|X (u)| > a)+ P(T (h) ≥ δ)

<
ε

2
+ ε

2
= ε.

�

Exercise 1.3.26 Show that for each A∈B(Rd ), t ≥ 0,

pZ(t)(A) =
∫ ∞

0
pX (u)(A)pT (t)(du).

We now compute the Lévy symbol ηZ of the subordinated process Z .

Proposition 1.3.27

ηZ = −ψT ◦ (−ηX ).

Proof For each u∈Rd , t ≥ 0,

E(eiηZ(t)(u)) = E(ei(u,X (T (t)))) =
∫ ∞

0
E(ei(u,X (s)))pT (t)(ds)

=
∫ ∞

0
esηX (u)pT (t)(ds) = E(e−(−ηX (u))T (t))

= e−tψT (−ηX (u)).

�
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Example 1.3.28 (From Brownian motion to 2α-stable processes) Let T be
an α-stable subordinator, with 0 < α < 1, and X be a d -dimensional Brownian
motion with covariance A = 2I that is independent of T . Then for each s ≥ 0,
u∈Rd , ψT (s) = sα and ηX (u) = −|u|2, and hence ηZ (u) = −|u|2α , i.e. Z is a
rotationally invariant 2α-stable process.

In particular, if d = 1 and T is the Lévy subordinator then Z is the Cauchy
process, so each Z(t) has a symmetric Cauchy distribution with parameters
µ = 0 and σ = 1. It is interesting to observe from (1.25) that Z is constructed
from two independent standard Brownian motions.

Example 1.3.29 (From Brownian motion to relativity) Let T be the Lévy
subordinator, and for each t ≥ 0 define

fc,m(s; t) = exp(−m2c4s+ mc2t)fT (t)(s)

for each s ≥ 0, where m, c > 0.
It is then an easy exercise in calculus to deduce that∫ ∞

0
e−usfc,m(s; t)ds = exp{−t[(u+ m2c4)1/2 − mc2]}.

Since the map u→ (u+m2c4)1/2 −mc2 is a Bernstein function that vanishes
at the origin, we deduce that there is a subordinator Tc,m = (Tc,m(t), t ≥ 0) for
which each Tc,m(t) has density fc,m(· ; t). Now let B be a Brownian motion, with
covariance A = 2c2I , that is independent of Tc,m; then for the subordinated
process we find, for all p∈Rd ,

ηZ (p) = −[(c2|p|2 + m2c4)1/2 − mc2]

so that Z is a relativistic process, i.e. each Z(t) has a relativistic distribution as
in Section 1.2.6.

Exercise 1.3.30 Generalise this last example to the case where T is an α-
stable subordinator with 0 < α < 1; see Ryznar [316] for more about such
subordinated processes.

Examples of subordinated processes have recently found useful applications
in mathematical finance and we will discuss this again in Chapter 5. We briefly
mention two interesting cases.

Example 1.3.31 (The variance gamma process) In this case Z(t) = B(T (t))
for each t ≥ 0, where B is a standard Brownian motion and T is an independent
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gamma subordinator. The name derives from the fact that, in a formal sense,
each Z(t) arises by replacing the variance of a normal random variable by a
gamma random variable. Using Proposition 1.3.27, a simple calculation yields

�Z(t)(u) =
(
1+ u2

2b

)−at
for each t ≥ 0, u∈R, where a and b are the usual parameters determining the
gamma process. It is an easy exercise in manipulating characteristic functions
to compute the alternative representation:

Z(t) = G(t)− L(t),

where G and L are independent gamma subordinators each with parameters√
2b and a. This yields a nice financial representation of Z as a difference of

independent ‘gains’and ‘losses’. From this representation, we can compute that
Z has a Lévy density

gν(x) = a

|x| (e
√
2bxχ(−∞,0)(x)+ e−

√
2bxχ(0,∞)(x)).

For further details, see Madan and Seneta [244].
The CGMY processes are a generalisation of the variance-gamma processes

due to Carr et al. [73, 74]. They are Lévy processes which are characterised by
their Lévy density:

gν(x) = a

|x|1+α
(eb1xχ(−∞,0)(x)+ e−b2xχ(0,∞)(x)),

where a > 0, 0 ≤ α < 2 and b1, b2 ≥ 0. We obtain stable Lévy processes
when b1 = b2 = 0. In fact, the CGMYprocesses are a subclass of the tempered
stable processes. For more details, see Cont and Tankov [81], pp. 119–24 and
the article by Kyprianou and Loeffen in [220].

Example 1.3.32 (The normal inverse Gaussian process) In this case Z(t) =
C(T (t)) + µt for each t ≥ 0, where each C(t) = B(t) + βt with β ∈R. Here
T is an inverse Gaussian subordinator which is independent of B and in which
we write the parameter γ = √α2 − β2, where α ∈R with α2 ≥ β2. Z depends
on four parameters and has characteristic function

�Z(t)(α,β, δ,µ)(u)

= exp

{
δt

[√
α2 − β2 −

√
α2 − (β + iu)2

]
+ iµtu

}
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for each u∈R, t ≥ 0.Here δ > 0 is as in (1.26). Note that the relativistic process
considered in Example 1.3.29 is a special case of thiswhereinµ = β = 0, δ = c
and α = mc.
Each Z(t) has a density given by

fZ(t)(x) = C(α,β, δ,µ; t)q

(
x − µt

δt

)−1
K1

(
δt αq

(
x − µt

δt

))
eβx,

for each x ∈R, where q(x) = √
1+ x2;

C(α,β, δ,µ; t) = π−1αeδt
√

α2−β2−βµt

and K1 is a Bessel function of the third kind (see Section 5.8).
For further details, see Barndorff-Nielsen [30, 31] and Carr et al. [73].

We now return to general considerations and probe a little more deeply into
the structure of ηZ . To this end we define a Borel measuremX ,T on Rd −{0} by

mX ,T (A) =
∫ ∞

0
pX (t)(A)λ(dt)

for each A∈B(Rd − {0}); λ is the Lévy measure of the subordinator T . In
fact, mX ,T is a Lévy measure satisfying the stronger condition

∫∞
0 (|y| ∧ 1)

mX ,T (dy) < ∞. You can derive this from the fact that for any Lévy process X
there exists a constant C ≥ 0 such that for each t ≥ 0

∣∣E(X (t); |X (t)| ≤ 1
)∣∣ ≤ C(t ∧ 1);

see Sato [323] p. 198, lemma 30.3, for a proof of this.

Theorem 1.3.33 For each u∈Rd ,

ηZ (u) = bηX +
∫

Rd
(ei(u,y) − 1)mX ,T (dy).
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Proof By Proposition 1.3.27, (1.24) and Fubini’s theorem we find that

ηZ (u) = bηX (u)+
∫ ∞

0
(esηX (u) − 1)λ(ds)

= bηX (u)+
∫ ∞

0
[E(ei(u,X (s)))− 1]λ(ds)

= bηX (u)+
∫ ∞

0

∫
Rd

(ei(u,y) − 1)pX (s)(dy)λ(ds)

= bηX (u)+
∫

Rd
(ei(u,y) − 1)mX ,T (dy).

�

More results about subordinators can be found in Bertoin’s Saint-Flour
lectures on the subject [40], chapter 6 of Sato [323] and chapter 3 ofBertoin [39].

1.4 Convolution semigroups of probability measures

In this section, we look at an important characterisation of Lévy processes. We
begin with a definition. Let (pt , t ≥ 0) be a family of probability measures on
Rd . We say that it is weakly convergent to δ0 if

lim
t↓0

∫
Rd

f (y)pt(dy) = f (0)

for all f ∈Cb(R
d ).

Proposition 1.4.1 If X is a stochastic process wherein X (t) has law pt for each
t ≥ 0 and X (0) = 0 (a.s.) then (pt , t ≥ 0) is weakly convergent to δ0 if and
only if X is stochastically continuous at t = 0.

Proof First, assume that X is stochastically continuous at t = 0 and suppose
that f ∈Cb(R

d ) with f �= 0; then given any ε > 0 there exists δ > 0 such that
supx ∈Bδ(0) |f (x)− f (0)| ≤ ε/2 and there exists δ

′
> 0 such that 0 < t < δ

′ ⇒
P(|X (t)| > δ) < ε/(4M ), whereM = supx ∈Rd |f (x)|. For such t we then find
that ∣∣∣∣∫

Rd

[
f (x)− f (0)

]
pt(dx)

∣∣∣∣
≤
∫
Bδ(0)

|f (x)− f (0)|pt(dx)+
∫
Bδ(0)c

|f (x)− f (0)|pt(dx)
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≤ sup
x ∈Bδ(0)

|f (x)− f (0)| + 2MP(X (t)∈Bδ(0)
c)

< ε.

Conversely, suppose that (pt , t ≥ 0) is weakly convergent to δ0. We use
the argument of Malliavin et al. [246], pp. 98–9. Fix r > 0 and ε > 0. Let
f ∈Cb(R

d )with support in Br(0) be such that 0 ≤ f ≤ 1 and f (0) > 1− (ε/2).
By weak convergence we can find t0 > 0 such that

0 ≤ t < t0 ⇒
∣∣∣∣∫

Rd

[
f (y)− f (0)

]
pt(dy)

∣∣∣∣ < ε

2
.

We then find that

P(|X (t)| > r) = 1− P(|X (t)| ≤ r)

≤ 1−
∫
Br(0)

f (y)pt(dy) = 1−
∫

Rd
f (y)pt(dy)

= 1− f (0)+
∫

Rd

[
f (0)− f (y)

]
pt(dy)

<
ε

2
+ ε

2
= ε.

�

A family of probability measures (pt , t ≥ 0) with p0 = δ0 is said to be a
convolution semigroup if

ps+t = ps ∗ pt for all s, t ≥ 0,

and such a semigroup is said to be weakly continuous if it is weakly convergent
to δ0.

Exercise 1.4.2 Show that a convolution semigroup is weakly continuous if and
only if

lim
s↓t

∫
Rd

f (y)ps(dy) =
∫

Rd
f (y)pt(dy)

for all f ∈Cb(R
d ), t ≥ 0.
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Exercise 1.4.3 Show directly that the Gauss semigroup defined by

pt(dx) = 1√
2π t

e−x2/(2t)dx

for each x ∈R, t ≥ 0, is a weakly continuous convolution semigroup.

Of course,we can recognise theGauss semigroup in the last example as giving
the law of a standard one-dimensional Brownian motion. More generally we
have the following:

Proposition 1.4.4 If X = (X (t), t ≥ 0) is a Lévy process wherein X (t) has law
pt for each t ≥ 0 then (pt , t ≥ 0) is a weakly continuous convolution semigroup.

Proof This is straightforward once you have Proposition 1.4.1. �

We will now aim to establish a partial converse to Proposition 1.4.4.

1.4.1 Canonical Lévy processes

Let (pt , t ≥ 0) be a weakly continuous convolution semigroup of probability
measures on Rd . Define � = {ω :R+ → Rd ; ω(0) = 0}. We construct a
σ -algebra of subsets of � as follows: for each n∈N, choose 0 ≤ t1 < t2 <

· · · < tn < ∞ and choose A1,A2, . . . ,An ∈B(Rd ). As in Section 1.1.7, we
define cylinder sets IA1,A2,...,Ant1,t2,...,tn by

IA1,A2,...,Ant1,t2,...,tn = {ω∈�;ω(t1)∈A1,ω(t2)∈A2, . . . ,ω(tn)∈An}.
LetF denote the smallest σ -algebra containing all such cylinder sets.We define
a set-function P on the collection of these cylinder sets by the prescription

P(IA1,A2,...,Ant1,t2,...tn )

=
∫
A1
pt1(dy1)

∫
A2
pt2−t1(dy2 − y1) · · ·

∫
An
ptn−tn−1(dyn − yn−1)

=
∫

Rd

∫
Rd
· · ·
∫

Rd
χA1(y1)χA2(y1 + y2) · · ·χAn(y1 + y2 + · · · + yn)

× pt1(dy1)pt2−t1(dy2) · · · ptn−tn−1(dyn). (1.28)

By a slight variation on Kolmogorov’s existence theorem (Theorem 1.1.17)
P extends uniquely to a probability measure on (�,F). Furthermore if we
define X = (X (t), t ≥ 0) by

X (t)(ω) = ω(t)
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for allω∈�, t≥ 0, thenX is a stochastic process on�whose finite-dimensional
distributions are given by

P(X (t1)∈A1,X (t2)∈A2, . . . ,X (tn)∈An) = P
(
IA1,A2,...,Ant1,t2,...,tn

)
,

so that in particular eachX (t) has law pt .Wewill show thatX is a Lévy process.
First note that (L1) and (L3) are immediate (via Proposition 1.4.1). To obtain
(L2) we remark that, for any f ∈Bb(Rdn),

E
(
f (X (t1),X (t2), . . . ,X (tn))

)
=
∫

Rd

∫
Rd
· · ·
∫

Rd
f (y1, y1 + y2, . . . , y1 + y2 + · · · + yn)

× pt1(dy1)pt2−t1(dy2) · · · ptn−tn−1(dyn).

In fact this gives precisely equation (1.28) when f is an indicator function, and
the more general result then follows by linearity, approximation and dominated
convergence. (L2) can now be deduced by fixing u∈Rn and setting

f (x1, x2, . . . , xn) = exp

i n∑
j=1

(uj, xj − xj−1)


for each x ∈Rn; see Sato [323], p. 36 for more details. So we have proved the
following theorem.

Theorem 1.4.5 If (p(t), t ≥ 0) is a weakly continuous convolution semigroup
of probability measures, then there exists a Lévy process X such that, for each
t ≥ 0, X (t) has law p(t).

We call X as constructed above the canonical Lévy process. Note that
Kolmogorov’s construction ensures that

F = σ {X (t), t ≥ 0}.

We thus obtain the following result, which makes the correspondence between
infinitely divisible distributions and Lévy processes quite explicit:

Corollary 1.4.6 If µ is an infinitely divisible probability measure on Rd with
Lévy symbol η, then there exists a Lévy process X such that µ is the law
of X (1).

Proof Suppose that µ has characteristics (b,A, ν); then for each t ≥ 0 the
mapping from Rd to C given by u → etη(u) has the form (1.12) and hence,
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by Theorem 1.2.14, for each t ≥ 0 it is the characteristic function of an
infinitely divisible probability measure p(t). Clearly p(0) = δ0 and, by the
unique correspondence between measures and characteristic functions, we
obtain p(s + t) = p(s) ∗ p(t) for each s, t ≥ 0. By Glivenko’s theorem we
have the weak convergence p(t) → δ0 as t ↓ 0, and the required result now
follows from Theorem 1.4.5. �

When we specialise the range of the measure to non-negative real numbers,
we obtain the following.

Theorem 1.4.7 If µ is an infinitely divisible probability measure on
(R+,B(R+)), then there exists a subordinator (T (t), t ≥ 0) wherein T (1) has
law µ.

Proof By Corollary 1.4.6, there exists a real valued Lévy process (X (t), t ≥ 0)
where X (1) has law µ. Hence P(X (1) ≥ 0) = 1. We first show that X (t) ≥ 0

(a.s.) for all t ∈R+. Since for each n∈N,X (1)
d= X ( 1n )+ X ( 1n )+ · · · + X ( 1n )

(n times), we must have X ( 1n ) ≥ 0 (a.s.), or we obtain a contradiction. Sim-

ilarly, for each r ∈N, X ( rn )
d= X ( 1n ) + X ( 1n ) + · · · + X ( 1n ), (r times) and so

we deduce that X (q) > 0 for all q∈Q ∩ R+. For each t ≥ 0, we can find
a sequence of rationals (qn, n∈N) so that X (t) = limn→∞ X (qn) in proba-
bility by (L3). Upon extracting a subsequence which converges almost surely
we see that X (t) ≥ 0 (a.s.) as required. Then for all 0 ≤ s ≤ t < ∞, we
have by (L2),

P(X (t) ≥ X (s)) = P(X (t)− X (s) ≥ 0)

= P(X (t − s) ≥ 0) = 1,

so X is a subordinator, as required. �

Note Let (pt , t ≥ 0) be a family of probability measures on Rd . We say that it
is vaguely convergent to δ0 if

lim
t↓0

∫
Rd

f (y)pt(dy) = f (0),

for all f ∈Cc(Rd ). We leave it to the reader to verify that Propositions 1.4.1
and 1.4.4 and Theorem 1.4.5 continue to hold if weak convergence is replaced
by vague convergence. We will need this in Chapter 3.
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1.4.2 Modification of Lévy processes

Let X = (X (t), t ≥ 0) and Y = (Y (t), t ≥ 0) be stochastic processes defined
on the same probability space; then Y is said to be a modification of X if, for
each t ≥ 0, P(X (t) �= Y (t)) = 0. It then follows that X and Y have the same
finite-dimensional distributions.

Lemma 1.4.8 If X is a Lévy process and Y is a modification of X , then Y is a
Lévy process with the same characteristics as X .

Proof (L1) is immediate. For (L2), fix 0 ≤ s < t <∞ and let

N (s, t) = {ω∈�;X (s)(ω) = Y (s)(ω) and X (t)(ω) = Y (t)(ω)}.
It follows that P(N (s, t)) = 1 since

P(N (s, t)c) = {ω∈�; X (s)(ω) �= Y (s)(ω) or X (t)(ω) �= Y (t)(ω)}
≤ P

(
X (s) �= Y (s)

)+ P
(
X (t) �= Y (t)

) = 0.

To see that Y has stationary increments, let A∈B(Rd ); then

P
(
Y (t)− Y (s)∈A)
= P

(
Y (t)− Y (s)∈A, N (s, t)

)+ P
(
Y (t)− Y (s)∈A, N (s, t)c

)
= P

(
X (t)− X (s)∈A, N (s, t)

)
≤ P

(
X (t)− X (s)∈A)

= P
(
X (t − s)∈A) = P

(
Y (t − s)∈A).

The reverse inequality is obtained in similar fashion. Similar arguments can be
used to show that Y has independent increments and to establish (L3).
We then see easily that X and Y have the same characteristic functions and

hence the same characteristics. �

Note In view of Lemma 1.4.8, we lose nothing in replacing a Lévy process by
a modification if the latter has nicer properties. For example, in Chapter 2, we
will show that we can always find a modification that is right-continuous with
left limits.

1.5 Some further directions in Lévy processes

This is not primarily a book about Lévy processes themselves. Our main aim is
to study stochastic integration with respect to Lévy processes and to investigate
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new processes that can be built from them. Nonetheless, it is worth taking a
short diversion from our main task in order to survey briefly some of the more
advanced properties of Lévy processes, if only to stimulate the reader to learn
more from the basic texts by Bertoin [39] and Sato [323]. We emphasise that
the remarks in this section are of necessity somewhat brief and incomplete.
The first two topics we will consider rely heavily on the perspective of Lévy
processes as continuous-time analogues of random walks.

1.5.1 Recurrence and transience

Informally, an Rd -valued stochastic process X = (X (t), t ≥ 0) is recurrent at
x ∈Rd if it visits every neighbourhood of x an infinite number of times (almost
surely) and transient if it makes only a finite number of visits there (almost
surely). If X is a Lévy process then if X is recurrent (transient) at some x ∈Rd ,
it is recurrent (transient) at every x ∈Rd ; thus it is sufficient to concentrate on
behaviour at the origin.We also have the useful dichotomy that 0 must be either
recurrent or transient.
More precisely, we can make the following definitions. ALévy process X is

recurrent (at the origin) if

lim inf
t→∞ |X (t)| = 0 a.s.

and transient (at the origin) if

lim
t→∞ |X (t)| = ∞ a.s.

Aremarkable fact about Lévy processes is that we can test for recurrence or tran-
sience using the Lévy symbol η alone. More precisely, we have the following
two key results.

Theorem 1.5.1 (Chung–Fuchs criterion) Fix a > 0. Then the following are
equivalent:

(1) X is recurrent;
(2)

lim
q↓0

∫
Ba(0)

�
(

1

q− η(u)

)
du = ∞;
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(3)

lim sup
q↓0

∫
Ba(0)

�
(

1

q− η(u)

)
du = ∞.

Theorem 1.5.2 (Spitzer criterion) X is recurrent if and only if∫
Ba(0)

�
(

1

−η(u)

)
du = ∞,

for any a > 0.

The Chung–Fuchs criterion is proved in Sato [323], pp. 252–3, as is the ‘only
if’ part of the Spitzer criterion. For the full story, see the original papers by Port
and Stone [295], but readers should be warned that these are demanding.
By application of the Spitzer criterion, we see immediately that Brownian

motion is recurrent for d = 1, 2 and that for d = 1 every α-stable process is
recurrent if 1 ≤ α < 2 and transient if 0 < α < 1. For d = 2, all strictly
α-stable processes are transient when 0 < α < 2. For d ≥ 3, every Lévy
process is transient. Further resultswith detailed proofs can be found in chapter 7
of Sato [323].
A spectacular application of the recurrence and transience of Lévy processes

to quantum physics can be found in Carmona et al. [70]. Here the existence
of bound states for relativistic Schrödinger operators is shown to be intimately
connectedwith the recurrence of a certain associated Lévy process, whose Lévy
symbol is precisely that of the relativistic distribution discussed in Section 1.2.6.

1.5.2 Wiener–Hopf factorisation

Let X be a one-dimensional Lévy process with càdlàg paths (see Chapter 2 for
more about these) and define the extremal processes M = (M (t), t ≥ 0) and
N = (N (t), t ≥ 0) by

M (t) = sup
0≤s≤t

X (s) and N (t) = inf
0≤s≤t X (s).

Fluctuation theory for Lévy processes studies the behaviour of a Lévy process
in the neighbourhood of its suprema (or equivalently its infima) and a nice
introduction to this subject is given in chapter 6 of Bertoin [39]. For a more
recent introductory approach at a textbook level see Kyprianou [221]. There
is also a comprehensive survey by Doney [96]. One of the most fundamental
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and beautiful results in the area is the Wiener–Hopf factorisation, which we
now describe. First we fix q > 0; then there exist two infinitely divisible
characteristic functions φ+q and φ−q , defined as follows:

φ+q (u) = exp

[∫ ∞

0
t−1e−qt

∫ ∞

0
(eiux − 1)pX (t)(dx)dt

]
,

φ−q (u) = exp

[∫ ∞

0
t−1e−qt

∫ 0

−∞
(eiux − 1)pX (t)(dx)dt

]
,

for each u∈R. The Wiener–Hopf factorisation identities yield a remarkable
factorisation of the Laplace transform of the joint characteristic function ofM
and M − X in terms of φ+q and φ−q . More precisely we have the following.

Theorem 1.5.3 (Wiener–Hopf factorisation) For each q, t > 0, x, y ∈R,

q
∫ ∞

0
e−qt E

(
exp(i{xM (t)+ y[X (t)−M (t)]}))dt

= q
∫ ∞

0
e−qt E

(
exp(i{yN (t)+ x[X (t)− N (t)]}))dt

= φ+q (x)φ−q (y).

For a proof and related results, see chapter 9 of Sato [323].
In Prabhu [296], Wiener–Hopf factorisation and other aspects of fluctuation

theory for Lévy processes are applied to a class of ‘storage problems’ that
includes models for the demand of water from dams, insurance risk, queues
and inventories.

1.5.3 Local times

The local time of aLévy process is a randomfield that, for each x ∈Rd , describes
the amount of time spent by the process at x in the interval [0, t]. More precisely
we define a measurable mapping L :Rd × R+ ×�→ R+ by

L(x, t) = lim sup
ε↓0

1

2ε

∫ t

0
χ{|X (s)−x|<ε}ds,

and we have the ‘occupation density formula’∫ t

0
f (X (s))ds =

∫ ∞

−∞
f (x)L(x, t)dx a.s.
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for all non-negative f ∈Bb(Rd ). From this we gain a pleasing intuitive
understanding of local time as a random distribution, i.e.

L(x, t) =
∫ t

0
δ(|x − X (s)|) ds,

where δ is the Dirac delta function.
It is not difficult to show that the map t → L(x, t) is continuous almost

surely; see e.g. Bertoin [39], pp. 128–9. A more difficult problem, which was
the subject of a great deal of work in the 1980s and 1990s, concerns the joint
continuity of L as a function of x and t. A necessary and sufficient condition
for this, which we do not state here as it is quite complicated, was established
by Barlow [21] and Barlow and Hawkes [20] and is described in chapter 5 of
Bertoin [39], pp. 143–50. The condition is much simpler in the case where X
is symmetric. In this case, we define the 1-potential density of X by

u(y) =
∫ ∞

0
e−tpX (t)(y) dt

for each u∈Rd and consider the centred Gaussian field (G(x), x ∈Rd ) with
covariance structure determined by u, so that for each x, y ∈Rd ,

E(G(x)G(y)) = u(x − y).

The main result in this case is that the almost-sure continuity of G is a nec-
essary and sufficient condition for the almost-sure joint continuity of L. This
result is due to Barlow and Hawkes [20] and was further developed by Marcus
and Rosen [252]. The brief account by Marcus in [22] indicates many other
interesting consequences of this approach.
Another useful property of local times concerns the generalised inverse

process at the origin, i.e. the process L−10 = (L−10 (t), t ≥ 0), where each
L−10 (t) = inf {s ≥ 0; L(0, s) ≥ t}. When the origin is ‘regular’, so that X
returns to 0 with probability 1 at arbitrary small times, then L−10 is a killed
subordinator and this fact plays an important role in fluctuation theory; see e.g.
chapters 5 and 6 of Bertoin [39].

1.5.4 Regular Variation and Subexponentiality

For the final topic in this chapter we briefly discuss an important analytic topic
in probability theory which has an increasing number of important applica-
tions to infinite divisibility, Lévy processes and stochastic integrals built from
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these. Suppose that X is a real-valued random variable. We are particularly
interested in the asymptotic behaviour of F(x) = P(|X | > x) as x → ∞. Of
course limx→∞ F(x) = 0, but how fast is this decay ? In Section 1.2.5, we
have observed that for a Gaussian random variable this decay is exponentially
fast. This is the hallmark of ‘light tails’. On the other hand, for stable random
variables the decay is at a slower polynomial rate and this is an indication of
‘heavy tails’. To generalise the heavy-tailed behaviour we find in the stable
case, we will make a definition.
Fix d ≥ 0 and let g : [d ,∞) → [0,∞) be a measurable function. We say

that g is regularly varying of degree α ∈R if

lim
x→∞

g(cx)

g(x)
= cα ,

for all c > 0.Wewill denote the class of regularly varying functions of degree α
onR+ byRα . Elements of the classR0 are said to be slowly varying. Examples
of functions in R0 are x→ log(1+ x) and x→ log log(e+ x). Clearly g ∈Rα

if and only if there exists l ∈R0 such that

g(x) = l(x)xα ,

for all x ∈R+. The following representation theorem for slowly varying
functions can be found in Bingham et al. [50].

Theorem 1.5.4 l ∈R0 if and only if there exist measurable functions c and ε

defined on R+ with c(x) → c > 0 and ε(x) → 0 as x →∞, such that for all
x ∈R+,

l(x) = c(x) exp

{∫ x

0

ε(y)

y
dy

}
.

In probability theory, we are generally trying to investigate regular variation
with α < 0 of F for e.g. a non-negative random variable X . In this case we
write X ∈R−α for some α > 0, whenever pX ∈R−α . A typical example is
the Pareto distribution with parameters K ,β > 0 which has density f (x) =
βKβ/(K + x)1+β . Here we have F(x) = (K/K + x)β and it is easily verified
thatF ∈R−β , for allK > 0.We remark in passing that the Pareto distribution is
not only infinitely divisible, but also self-decomposable (see e.g. Thorin [348]).
At this stage, the concept of regular variation appears to be largely analytical

and devoid of direct probabilistic significance. In order to gain greater insight,
wemake another definition. Letµ be a probabilitymeasure defined onR+ andF



1.5 Some further directions in Lévy processes 73

be the associated distribution function, so that for each x ≥ 0,F(x) = µ([0, x]).
We say that µ is subexponential if

lim
x→∞

F ∗ F(x)

F(x)
= 2. (1.29)

If X is a random variable with distribution µ, it is said to be subexponential if
µ is. In this case, if X1,X2 are independent copies of X , then (1.29) becomes

lim
x→∞

P(X1 + X2 > x)

P(X > x)
= 2.

If you are seeing it for the first time, this definition may seem obscure. Have
patience and note first of all that

P(max{X1,X2} > x) = P({X1 > x} ∪ {X2 > x})
= P(X1 > x)+ P(X2 > x)− P(X1 > x)P(X2 > x)

= 2P(X > x)− P(X > x)2

∼ 2P(X > x),

so that X is subexponential if and only if

P(X1 + X2 > x) ∼ P(max{X1,X2} > x). (1.30)

In fact µ is subexponential if and only if

lim
x→∞

F∗n(x)
F(x)

= n, (1.31)

for some (equivalently, all) n ≥ 2. Note however that the following condition
is sufficient for subexponentiality (see e.g. Embrechts et al. [108])

lim sup
x→∞

F∗2(x)
F(x)

≤ 2, (1.32)

(1.30) and its extension to n random variables via (1.31) gives us a clear
probabilistic insight into the significance of subexponential distributions. They
encapsulate the ‘principle of parsimony’whereby in a model in which there are
many i.i.d. sources of randomness, a rare event takes place solely because of
the behaviour of one random factor rather than incremental contributions from
more than two of these.
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There are two questions you may be asking at this stage. First, why are these
distributions called ‘subexponential’ and second, what does any of this have to
do with regular variation? To answer the first question, it can be shown (see
e.g. Embrechts et al. [108]) that if µ is subexponential then for all ε > 0,

lim
x→∞ eεxF(x) = ∞,

so that F(x) decays to zero more slowly than any negative exponential and
hence is ‘sub’ (i.e. less potent than an) exponential. Using the asymptotic esti-
mate given in Section 1.2.5, we see easily that a normal distribution cannot
be subexponential. Indeed, from a modelling point of view, this is a paradigm
example of ‘light tails’ wherein rare events happen through a conspiracy of
more than one random factor.
To answer the second question, we have the following.

Theorem 1.5.5 If X ∈R−α for some α ≥ 0, then X is subexponential.

Proof. Let X1 and X2 be independent copies of X . Given any ε > 0, we have
for each x > 0

P(X1 + X2 > x)

≤ P(X1 > (1− ε)x)+ P(X2 > (1− ε)x)+ P(X1 > εx,X2 > εx)

= 2P(X > (1− εx))+ P(X > εx)2.

Hence

lim sup
x→∞

P(X1 + X2 > x)

P(X > x)

≤ 2 lim sup
x→∞

P(X > (1− ε)x)

P(X > x)
+ lim sup

x→∞
P(X > εx)2

P(X > x)2
P(X > x)

= 2(1− ε)−α + ε−2α .0.

Now take limits of both sides as ε → 0 and apply (1.32) to obtain the required
result. �
From the optimal modelling perspective on heavy tails, the subexponential

distributions are the ideal class, but the subclass of regularly varying distri-
butions are ubiquitous in probability theory, partly because they have a richer
mathematical structure. For example:

• If X and Y are independent random variables for which X ∈R−α and
Y ∈R−β then X + Y ∈Rmax{−α,−β} (see the proof by G.Samorodnitsky in
the appendix to Applebaum [12]).
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• If X and Y are independent and subexponential, examples are known for
which X + Y is not subexponential (see Leslie [227] and also theorem 5.1 in
Goldie and Klüppelberg [137]).

Before we give some applications of these ideas, we present a useful tool
which connects asymptotic behaviour of a function at infinity with that of its
Laplace transform at zero. IfF : R+ → R+ is a distribution function, we define
its Laplace-Stieltjes transform by

F̂(s) =
∫ ∞

0
e−sxF(dx),

for each s ≥ 0.

Theorem 1.5.6 (Karamata’s Tauberian theorem) If l ∈R0 and c, ρ ≥ 0, the
following are equivalent:

(i) F(x) ∼ cxρ l(x)

�(1+ ρ)
as x→∞.

(ii) F̂(s) ∼ cs−ρ l

(
1

s

)
as s ↓ 0.

It is also useful to have a version of this theorem which works for densities,
so let f :R+ → R+ be measurable, monotonic decreasing and such that its
Laplace transform f̂ (s) = ∫∞0 e−sxf (x)dx exists for all s > 0.

Theorem 1.5.7 If l ∈R0 and c ≥ 0, ρ ≥ −1, the following are equivalent:

(i) f (x) ∼ cxρ l(x)

�(1+ ρ)
as x→∞.

(ii) f̂ (s) ∼ cs−ρ−1l
(
1

s

)
as s ↓ 0.

Proofs of Theorems 1.5.6 and 1.5.7 can be found in Bingham et al. [50].More
general conditions than the one that f is monotonic decreasing under which this
theorem holds are given in Theorem 1.7.5 therein.
Wewill now give three applications of these ideas within the realm of infinite

divisibility.

(i) Regular variation of non-Gaussian stable laws
We have already discussed the polynomial decay of tail probabilities for
non-Gaussian stable laws in Section 1.2.5. Here we give a short proof of
this and an explicit determination of the constant Cα following the elegant
proof in Samorodnitsky and Taqqu [319], for the case of the α-stable
subordinator T = (T (t), t ≥ 0) described in Example 1.3.18. We recall
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that in this case, 0 < α < 1 and for each t, u ≥ 0,E(e−uT (t)) = e−tuα . For
each t > 0, we integrate by parts to obtain:∫ ∞

0
e−uxP(T (t) > x)dx = 1

u
− 1

u

∫ ∞

0
e−uxdFTt (x)

= 1− E(e−uT (t))

u

= 1− e−tuα

u

∼ tuα−1 as u ↓ 0.

Hence by Theorem 1.5.7,

P(T (t) > x) ∼ t

�(1− α)
x−α , as x→∞.

(ii) Domains of attraction for non-Gaussian stable laws
We recall from Section 1.2.5 that stable laws arise via the general central
limit theorem. We’ll look at this from a slightly different point of view, so
letρα be anα-stable probabilitymeasure onR(0<α< 2). Letµbe an arbi-
trary probability measure onRwith associated distribution function F and
let (Yn, n∈N) be a sequence of i.i.d. randomvariableswith common lawµ.
Now suppose that we can find a sequence (an, n∈N) of positive numbers
and a sequence (bn, n∈N) of real numbers, so that the sequence of prob-

ability measures whose nth term is the law of
Y1 + Y2 + · · · + Yn − bn

an
converges weakly to ρ. In this case we say thatµ is in the domain of attrac-
tion of ρ. Necessary and sufficient conditions are knownwhich completely
classify such domains of attraction. In fact µ is in the domain of attraction
of ρα if and only if there exists l ∈R0 and c1, c2 ≥ 0 with c1 + c2 > 0
such that

F(−x) = c1 + o(1)

xα
l(x), and F(x) = c2 + o(1)

xα
l(x), as x→∞.

Further details can be found in Feller [119], Bingham et al. [50] and
Embrechts et al. [108].

(iii) Tail equivalence for infinitely divisible laws
If µ is an infinitely divisible probability measure defined on R+, then by
Theorem 1.4.7 it is the law of some subordinator. Hence the only source
of randomness is through the Lévy measure ν. We will find it convenient
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below to introduce the obvious notation ν(x) = ν([x,∞)), for each x > 0.
In the α-stable case, we have already seen that the regular variation of

µ is intimately connected with that of its Lévy density fν(x) = C
1

x1+α
,

for all x > 0, where C > 0. We can now ask the question, whether we
can classify all regularly varying infinitely divisible laws bymeans of their
Lévymeasures. The answer is yes, as the following theorem demonstrates:

Theorem 1.5.8 (Tail equivalence) Let F be the distribution function of
an infinitely divisible probability measure defined on R+ with associated
Lévy measure ν.
(a) If α ≥ 0, then F ∈R−α if and only if ν ∈R−α and in either case we

have limx→∞
F(x)

ν(x)
= 1.

(b) The following are equivalent:
(i) F is subexponential.

(ii) The probability measure
ν(·)

ν([1,∞))
defined on [1,∞) is subex-

ponential.
(iii) F(x) ∼ ν((x,∞)) as x→∞.

Theproof of (a) is found inFeller [119] and further clarified inProposition0
of Embrechts andGoldie [110]. (b) is established in Embrechts et al. [109].
When you’ve met the Lévy–Itô decomposition, which is one of the main
themes of the next chapter, you will see that these results tell us that
from a dynamical point of view ‘large deviations’ in the tail behaviour are
associated with ‘large jumps’, and this is fully consistent with the principle
of parsimony.

There are many other important applications of regular variation and subex-
ponentiality in e.g. extremevalue theory and insurance. See e.g. Embrechts et al.
[108] for further details. Standard references for regular variation are Bingham
et al. [50] andResnick [303]. Goldie andKlüppelberg [137] is a valuable review
article about subexponentiality. For more on the theme of heavy tails see the
notes by Samorodnitsky [320] and the recent book by Resnick [305].
We close this section by indicating how to extend the regular variation con-

cept, not only to R but to the multivariate case. In fact the extension to the
real line is easy and was already effectively carried out when we looked at
domains of attraction above. To motivate the definition in the multivariate case,
we begin by considering a real-valued random variable X and observe that for
X �= 0,X /|X | takes values in the ‘zero-sphere’ S0 = {−1, 1}. We note that for
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each x, c > 0,

P(|X | > cx)

P(|X | > x)
= P(|X | > cx, X

|X | = 1)

P(|X | > x)
+ P(|X | > cx, X

|X | = −1)
P(|X | > x)

,

and so a sufficient condition for |X | ∈R−α for some α ≥ 0 is that there exists
p, q ≥ 0 with p+ q = 1 such that

lim
x→∞

P(|X | > cx, X
|X | = 1)

P(|X | > x)
= p

cα
and

lim
x→∞

P(|X | > cx, X
|X | = −1)

P(|X | > x)
= q

cα
.

We observe that the pair of numbers p and q induce a (Bernoulli) probability
measure on S0. This gives us an important clue as to how tomake a multivariate
generalisation. We now let X be an Rd -valued random variable. We say that
X is regularly varying of degree −α, where α ≥ 0 if there exists a probability
measure σ on B(Sd−1) such that for all c > 0,

lim
x→∞

P(|X | > cx, X
|X | ∈ ·)

P(|X | > x)
= 1

cα
σ (·), (1.33)

where the limit is taken in the sense of weak convergence of probability mea-
sures.Multivariate regular variation is currently an area of considerable activity.
A nice review can be found in Resnick [304]. Hult and Lindskog [162] have
recently extended the tail equivalence result ofTheorem1.5.8 to the case ofmul-
tivariate infinitely divisible random vectors. Indeed they have established that
such a random variable has regular variation in the sense of (1.33) if and only
if the associated Lévy measure has regular variation. Moreover the measure σ

is the same in each case.

1.6 Notes and further reading

The Lévy–Khintchine formula was established independently by Paul Lévy
and Alexander Khintchine in the 1930s. Earlier, both B. de Finetti and A.
Kolmogorov had established special cases of the formula. The book by
Gnedenko and Kolmogorov [140] was one of the first texts to appear on this
subject and it is still highly relevant today. Proofs of the Lévy–Khintchine for-
mula often appear in standard graduate texts in probability; see e.g. Fristedt
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and Gray [123] or Stroock [342]. An alternative approach, based on distribu-
tions, which has been quite influential in applications of infinite divisibility to
mathematical physics, may be found in Gelfand and Vilenkin [130]. Another
recent proof, which completely avoids probability theory, is given by Jacob and
Schilling [178].Aficionados of convexity canfind theLévy–Khintchine formula
deduced from the Krein–Milman theorem in Johansen [192] or in Appendix 1
of Linnik and Ostrovskii [236]. A pleasing geometric interpretation of infinite
divisibility, based on insights due to K.Itô, is given in Stroock [344].
As the Fourier transform generalises in a straightforward way to general

locally compact abelian groups, the Lévy–Khintchine formula can be gener-
alised to that setting; see Parthasarathy [289]. Further generalisations to the
non-abelian case require the notion of a semigroup of linear operators (see
Chapter 3); a classic reference for this is Heyer [150]. Amore recent survey by
the author of Lévy processes in Lie groups and Riemannian manifolds can be
found in the volume [26], pp. 111–39. For a thorough study of Lévy processes
in Lie groups at a monograph level, see Liao [232].
Lévy processes are also studied inmore exotic structures based on extensions

of the group concept. For processes in quantum groups (or Hopf algebras) see
Schürmann [330], while the case of hypergroups can be found in Bloom and
Heyer [56].
Another interesting generalisation of the Lévy–Khintchine formula is to the

infinite-dimensional linear setting, and in the context of a Banach space the
relevant references areAraujo andGiné [14] andLinde [235]. TheHilbert-space
case can again be found in Parthasarathy [289].Arecentmonograph byH.Heyer
[151] contains proofs of the Lévy-Khintchine formula in both the Banach space
and locally compact abelian group settings.
The notion of a stable law is also due to Paul Lévy, and there is a nice

early account of the theory in Gnedenko and Kolmogorov [140]. A number of
books and papers appearing in the 1960s and 1970s contained errors in either
the statement or proof of the key formulae in Theorem 1.2.21 and these are
analysed by Hall in [146]. Accounts given in modern texts such as Sato [323]
and Samorodnitsky and Taqqu [319] are fully trustworthy.
In Section 1.2.5, we discussed how stable and self-decomposable laws arise

naturally as limiting distributions for certain generalisations of the central
limit problem. More generally, the class of all infinitely divisible distribu-
tions coincides with those distributions that arise as limits of row sums of
uniformly asymptotically negligible triangular arrays of random variables. The
one-dimensional case is one of the main themes of Gnedenko and Kolmogorov
[140]. The multi-dimensional case is given a modern treatment in Meerschaert
and Scheffler [257]; see also chapter VII of Jacod and Shiryaev [183].
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The concept of a Lévy process was of course due to Paul Lévy and readers
may consult his books [228, 229] for his own account of these. The key modern
references are Bertoin [39] and Sato [323]. For a swift overview of the scope of
the theory, see Bertoin [41]. Fristedt [124] is a classic source for sample-path
properties of Lévy processes. Note that many books and articles, particularly
those written before the 1990s, call Lévy processes ‘stochastic processes with
stationary and independent increments’. In French, this is sometimes shortened
to ‘PSI’.
Astraightforward generalisation of a Lévy process just drops the requirement

of stationary increments from the axioms. You then get an additive process.
The theory of these is quite similar to that of Lévy processes, e.g. the Lévy–
Khinchine formula has the same structure but the characteristics are no longer
constant in time. For more details, see Sato [323] and also the monograph
by Skorohod [338]. Another interesting generalisation is that of an infinitely
divisible process, i.e. a process all of whose finite-dimensional distributions are
infinitely divisible. Important special cases are the Gaussian and stable pro-
cesses, whose finite-dimensional distributions are always Gaussian and stable,
respectively. Again there is a Lévy–Khinchine formula in the general case,
but now the characteristics are indexed by finite subsets of [0,∞). For further
details, see Lee [224] and Maruyama [256].
Subordination was introduced by S. Bochner and is sometimes called ‘sub-

ordination in the sense of Bochner’ in the literature. His approach is outlined in
his highly influential book [57]. The application of these to subordinate Lévy
processes was first studied systematically by Huff [160]. If you want to learn
more about the inverse Gaussian distribution, there is a very interesting book
devoted to it by V. Seshradi [331].
Lévy processes are sometimes called ‘Lévy flights’ in physics: [335] is a

volume based on applications of these, and the related concept of the ‘Lévy
walk’ (i.e. a random walk in which the steps are stable random variables), to a
range of topics including turbulence, dynamical systems, statistical mechanics
and biology.

1.7 Appendix: An exercise in calculus

Here we establish the identity

uα = α

�(1− α)

∫ ∞

0
(1− e−ux) dx

x1+α
,

where u ≥ 0, 0 < α < 1.
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This was applied to study α-stable subordinators in Section 1.3.2. We follow
the method of Sato [323], p. 46, and employ the well-known trick of writing a
repeated integral as a double integral and then changing the order of integration.
We thus obtain∫ ∞

0
(1− e−ux)x−1−αdx = −

∫ ∞

0

(∫ x

0
ue−uydy

)
x−1−αdx

= −
∫ ∞

0

(∫ ∞

y
x−1−αdx

)
ue−uydy

= u

α

∫ ∞

0
e−uyy−αdy = uα

α

∫ ∞

0
e−xx−αdx

= uα

α
�(1− α),

and the result follows immediately.
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Martingales, stopping times and
random measures

Summary We begin by introducing the important concepts of filtration, martingale

and stopping time. These are then applied to establish the strong Markov property for

Lévy processes and to prove that every Lévy process has a càdlàg modification.We then

meet random measures, particularly those of Poisson type, and the associated Poisson

integrals, which track the jumps of a Lévy process. The most important result of this

chapter is the Lévy–Itô decomposition of a Lévy process into a Brownian motion with

drift (the continuous part), a Poisson integral (the large jumps) and a compensated

Poisson integral (the small jumps). As a corollary, we complete the proof of the Lévy–

Khintchine formula. We then obtain necessary and sufficient conditions for a Lévy

process to be of finite variation and also to have finite moments. Finally, we establish

the interlacing construction, whereby a Lévy process is obtained as the almost-sure limit

of a sequence of Brownian motions with drift wherein random jump discontinuities are

inserted at random times.

In this chapter, we will frequently encounter stochastic processes with càdlàg
paths (i.e. paths that are continuous on the right and always have limits on
the left). Readers requiring background knowledge in this area should consult
Appendix 2.9 at the end of the chapter.

Before you start reading this chapter, be aware that parts of it are
quite technical. If you are mainly interested in applications, feel free to
skim it, taking note of the results of the main theorems without worry-
ing too much about the proofs. However, make sure you get a ‘feel’ for
the important ideas: Poisson integration, the Lévy–Itô decomposition and
interlacing.

82
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2.1 Martingales

2.1.1 Filtrations and adapted processes

Let F be a σ -algebra of subsets of a given set �. A family (Ft , t ≥ 0) of sub
σ -algebras of F is called a filtration if

Fs ⊆ Ft whenever s ≤ t.

A probability space (�,F ,P) that comes equipped with such a family
(Ft , t ≥ 0) is said to be filtered. We write F∞ = ∨

t≥0 Ft . A family of σ -
algebras (Gt , t ≥ 0) is called a subfiltration of (Ft , t ≥ 0) if Gt ⊆ Ft for each
t ≥ 0.
Now let X = (X (t), t ≥ 0) be a stochastic process defined on a filtered

probability space (�,F ,P). We say that it is adapted to the filtration (or Ft-
adapted ) if

X (t) is Ft-measurable for each t ≥ 0.

Any process X is adapted to its own filtration FX
t = σ {X (s); 0 ≤ s ≤ t} and

this is usually called the natural filtration.
Clearly, if X is adapted we have

E(X (s)|Fs) = X (s) a.s.

The intuitive idea behind an adapted process is that Ft should contain all
the information needed to predict the behaviour of X up to and including
time t.

Exercise 2.1.1 If X is Ft-adapted show that, for all t ≥ 0, FX
t ⊆ Ft .

Exercise 2.1.2 Let X be a Lévy process, which we will take to be adapted to
its natural filtration. Show that for any f ∈Bb(Rd ), 0 ≤ s < t <∞,

E(f (X (t))|Fs) =
∫

Rd
f (X (s)+ y)pt−s(dy),

where pt is the law of X (t) for each t ≥ 0. (Hint: Use Lemma 1.1.9.)
Hence deduce that any Lévy process is a Markov process, i.e.

E
(
f (X (t))

∣∣FX
s

) = E(f (X (t))|X (s)) a.s.

The theme of this example will be developed considerably in Chapter 3.
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Let X and Y be Ft-adapted processes and let α,β ∈R; then it is a
simple consequence of measurability that the following are also adapted
processes:

• αX + βY = (αX (t)+ βY (t), t ≥ 0);
• XY = (X (t)Y (t), t ≥ 0);
• f (X ) = (f (X (t)), t ≥ 0) where f is a Borel measurable function on Rd ;
• limn→∞ Xn = (limn→∞ Xn(t), t ≥ 0), where (Xn, n∈N) is a sequence of
adapted processes wherein Xn(t) converges pointwise almost surely for each
t ≥ 0.

Whenwe deal with a filtration (Ft , t ≥ 0)wewill frequentlywant to compute
conditional expectations E(·|Fs) for some s ≥ 0, and we will often find it
convenient to use the more compact notation Es(·) for this.
It is convenient to require some further conditions on a filtration, and we

refer to the following pair of conditions as the usual hypotheses. These are
precisely:

(1) (completeness) F0 contains all sets of P-measure zero (see Section 1.1);
(2) (right continuity) Ft = Ft+, where Ft+ =⋂ε>0 Ft+ε .

Given a filtration (Ft , t ≥ 0) we can always enlarge it to satisfy the com-
pleteness property (1) by the following trick. Let N denote the collection of
all sets of P-measure zero in F and define Gt = Ft ∨N for each t ≥ 0; then
(Gt , t ≥ 0) is another filtration of F , which we call the augmented filtration.
The following then hold:

• any Ft-adapted stochastic process is Gt-adapted;
• for any integrable random variable Y defined on (�,F ,P), we have

E(Y |Gt) = E(Y |Ft) (a.s.) for each t ≥ 0.

If X is a stochastic process with natural filtration FX then we denote the
augmented filtration as GX and call it the augmented natural filtration.
The right-continuity property (2) is more problematic than (1) and needs to

be established on a case by case basis. In the next section, we will show that
it always holds for the augmented natural filtration of a Lévy process, but we
will need to employ martingale techniques.

2.1.2 Martingales and Lévy processes

Let X be an adapted process defined on a filtered probability space that also
satisfies the integrability requirement E(|X (t)|) <∞ for all t ≥ 0. We say that



2.1 Martingales 85

it is a martingale if, for all 0 ≤ s < t <∞,

E(X (t)|Fs) = X (s) a.s.

Note that if X is a martingale then the map t → E(X (t)) is constant.
We will find the martingale described in the following proposition to be of

great value later.

Proposition 2.1.3 If X is a Lévy process with Lévy symbol η, then, for each
u∈Rd ,Mu = (Mu(t), t ≥ 0) is a complexmartingale with respect toFX , where
each

Mu(t) = exp
[
i(u,X (t))− tη(u)

]
.

Proof E(|Mu(t)|) = exp [−t�(η(u))] <∞ for each t ≥ 0.
For each 0≤ s≤ t, writeMu(t)=Mu(s) exp [i(u, X (t)− X (s))−(t−s)η(u)];

then by (L2) and Theorem 1.3.3

E(Mu(t)|FX
s ) = Mu(s)E

(
exp

[
i(u,X (t − s))

])
exp

[− (t − s)η(u)
]

= Mu(s)

as required. �

Exercise 2.1.4 Show that the following processes, whose values at each t ≥ 0
are given below, are all martingales:

(1) C(t) = σB(t), where B(t) is a standard Brownian motion in Rm and σ is a
d × m matrix.

(2) |C(t)|2 − tr(A) t, where A = σσT.
(3) exp [(u,C(t))− 1

2 (u,Au)t] where u∈Rd .
(4) Ñ (t) where Ñ is a compensated Poisson process with intensity λ (see

Section 1.3.1).
(5) Ñ (t)2 − λt.
(6) (E(Y |Ft), t ≥ 0) where Y is an arbitrary random variable in a filtered

probability space for which E(|Y |) <∞.

Martingales that are of the form (6) above are called closed. Note that in (1)
to (5) the martingales have mean zero. In general, martingales with this latter
property are said to be centred. A martingale M = (M (t), t ≥ 0) is said to be
L2 (or square-integrable) if E(|M (t)|2) <∞ for each t ≥ 0 and is continuous
if it has almost surely continuous sample paths.
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One useful generalisation of the martingale concept is the following.
An adapted process X for which E(|X (t)|) < ∞ for all t ≥ 0 is a

submartingale if, for all 0 ≤ s < t <∞, 1 ≤ i ≤ d ,

E(Xi(t)|Fs) ≥ Xi(s) a.s.

We call X a supermartingale if −X is a submartingale.
By a straightforward application of the conditional form of Jensen’s inequal-

ity we see that if X is a real-valued martingale and if f :R → R is convex
with E(|f (X (t))|) < ∞ for all t ≥ 0 then f (X ) is a submartingale. In partic-
ular, if each X (t) ≥ 0 (a.s.) then (X (t)p, t ≥ 0) is a submartingale whenever
1 < p <∞ and E(|X (t)|p) <∞ for all t ≥ 0.
A vital estimate for much of our future work is the following.

Theorem 2.1.5 (Doob’s martingale inequality) If (X (t), t ≥ 0) is a positive
submartingale then for any p > 1 and for all t > 0,

E

(
sup
0≤s≤t

X (s)p
)
≤ qp E(X (t)p),

where 1/p+ 1/q = 1.

See Williams [358], p. A143, for a nice proof in the discrete-time case and
Dellacherie and Meyer [88], p. 18, or Revuz and Yor [306], section 2.1, for
the continuous case. Note that in the case p = 2 this inequality also holds
for vector-valued martingales, and we will use this extensively below. More
precisely, let X = (X (t), t ≥ 0) be a martingale taking values in Rd . Then the
component (Xi(t)2, t ≥ 0) is a real-valued submartingale for each 1 ≤ i ≤ d
and so, by Theorem 2.1.5, we have for each t ≥ 0

E

(
sup
0≤s≤t

|X (s)|2
)
≤

d∑
i=1

E

(
sup
0≤s≤t

Xi(s)
2

)
≤

d∑
i=1

4E(Xi(t)
2)

= 4E(|X (t)|2).

If we combine Doob’s martingale inequality with the Chebychev–Markov
inequality, we easily deduce the following tail estimate for a positive submartin-
gale X where c > 0, p > 1 and t ≥ 0:

P

(
sup
0≤s≤t

X (s) > c

)
≤
(q
c

)p
E(X (t)p).
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Amore powerful martingale inequality, also due to Doob, gives an improved
bound and also allows us to include the case p = 1.

Theorem 2.1.6 (Doob’s tail martingale inequality) If (X (t), t ≥ 0) is a
positive submartingale then for any c > 0, p ≥ 1 and t ≥ 0

P

(
sup
0≤s≤t

X (s) > c

)
≤
(
1

c

)p
E(X (t)p).

We will also need the following technical result.

Theorem 2.1.7 Let M = (M (t), t ≥ 0) be a submartingale.

(1) For any countable dense subset D of R+, the following left and right limits
exist and are almost surely finite for each t > 0:

M (t−) = lim
s∈D,s↑t M (s); M (t+) = lim

s∈D,s↓t M (s).

(2) If the filtration (Ft , t ≥ 0) satisfies the usual hypotheses and if the map
t → E(M (t)) is right-continuous, then M has a càdlàg modification.

In fact (2) is a consequence of (1), and these results are both proved in
Dellacherie and Meyer [88], pp. 73–6, and in Revuz and Yor [306], pp. 63–5.
The proofs of the next two results are based closely on the accounts of

Bretagnolle [65] and of Protter [298], chapter 1, section 4.

Theorem 2.1.8 Every Lévy process has a càdlàg modification that is itself a
Lévy process.

Proof Let X be a Lévy process that is adapted to its own augmented natural
filtration. For each u∈Rd we recall the martingales Mu of Proposition 2.1.3.
Let D be a countable, dense subset of R+. By splitting Mu into its real and
imaginary parts and using the fact that these are also martingales it follows
from Theorem 2.1.7(1) that at each t > 0 the left and right limits Mu(t−) and
Mu(t+) exist alongD almost surely. Now for each u∈Rd , letOu be that subset
of � for which these limits fail to exist; then O = ⋃u∈Qd Ou is also a set of
P-measure zero.
Fix ω∈Oc and for each t ≥ 0 let (sn, n∈N) be a sequence in D increas-

ing to t. Let x1(t)(ω) and x2(t)(ω) be two distinct accumulation points of the
set {X (sn)(ω), n∈N}, corresponding to limits along subsequences (sni , ni ∈N)

and (snj , nj ∈N), respectively. We deduce from the existence of Mu(t−) that
limsn↑t ei(u,X (sn)(ω)) exists and hence that x1(t)(ω) and x2(t)(ω) are both finite.
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Now choose u∈Qd such that (u, x1t (ω) − x2t (ω)) �= 2nπ for any n∈Z. By
continuity,

lim
sni↑t

ei(u,X (sni )(ω)) = ei(u,x
1
t (ω)) and lim

snj↑t
ei(u,X (snj )(ω)) = ei(u,x

2
t (ω)),

and so we obtain a contradiction. Hence X always has a unique left limit along
D, at every t > 0 onOc. A similar argument shows that it always has such right
limits on Oc. It then follows from elementary real analysis that the process Y
is càdlàg, where for each t ≥ 0

Y (t)(ω) =
{
lims∈D,s↓t X (t)(ω) if ω∈Oc,
0 if ω∈O.

To see that Y is amodification ofX , we use the dominated convergence theorem
for each t ≥ 0 to obtain

E(ei(u,Y (t)−X (t))) = lim
s∈D,s↓t E(ei(u,X (s)−X (t))) = 1,

by (L2) and (L3) in Section 1.3 and Lemma 1.3.2.
Hence P({ω, Y (t)(ω) = X (t)(ω)}) = 1 as required. That Y is a Lévy

process now follows immediately from Lemma 1.4.8. �

Note. Readers should be mindful that for stochastic processes ‘càdlàg’ should
always be read as ‘a.s. càdlàg’. Hence if X is a càdlàg Lévy process, then there
exists �0 ∈F with P(�0) = 1 such that t → X (t)(ω) is càdlàg for all ω∈�0.

Example 2.1.9 It follows that the canonical Lévy process discussed in Section
1.4.1 has a càdlàg version that lives on the space of all càdlàg paths starting at
zero.Aclassic result, originally due toNorbertWiener (see [354, 355]),modifies
the path-space construction to show that there is a Brownian motion that lives
on the space of continuous paths starting at zero. We will see below that a
general Lévy process has continuous sample paths if and only if it is Gaussian.

We can now complete our discussion of the usual hypotheses for Lévy
processes.

Theorem 2.1.10 If X is a Lévy process with càdlàg paths, then its augmented
natural filtration is right-continuous.

Proof For convenience, we will write GX = G. First note that it is sufficient to
prove that

Gt =
⋂
n∈N

Gt+1/n
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for each t ≥ 0, so all limits as w ↓ t can be replaced by limits as n→∞. Fix
t, s1, . . . , sm ≥ 0 and u1, . . . , um ∈Rd . Our first task is to establish that

E

exp
i m∑

j=1
(uj,X (sj))

∣∣∣Gt


= E

exp
i m∑

j=1
(uj,X (sj))

∣∣∣Gt+
 . (2.1)

Now, (2.1) is clearly satisfied when max1≤j≤m sj ≤ t and the general case
follows easily when it is established for min1≤j≤m sj > t, as follows. We take
m = 2 for simplicity and consider s2 > s1 > t. Our strategy makes repeated
use of the martingales described in Proposition 2.1.3. We begin by applying
Proposition 1.1.6 to obtain

E
(
exp

{
i[(u1,X (s1))+ (u2,X (s2))]

}∣∣Gt+)
= lim

w↓t E
(
exp{i[(u1,X (s1))+ (u2,X (s2))]}

∣∣Gw
)

= exp
[
s2η(u2)

]
lim
w↓t E

(
exp

[
i(u1,X (s1))

]
Mu2(s2)

∣∣Gw
)

= exp
[
s2η(u2)

]
lim
w↓t E

(
exp

[
i(u1,X (s1))

]
Mu2(s1)

∣∣Gw
)

= exp
[
(s2 − s1)η(u2)

]
lim
w↓t E

(
exp

[
i(u1 + u2,X (s1))

]∣∣Gw
)

= exp
[
(s2 − s1)η(u2)+ s1η(u1 + u2)

]
lim
w↓t E(Mu1+u2(s1)|Gw)

= exp
[
(s2 − s1)η(u2)+ s1η(u1 + u2)

]
lim
w↓t Mu1+u2(w)

= lim
w↓t exp

[
i(u1 + u2,X (w))

]
× exp

[
(s2 − s1)η(u2)+ (s1 − w)η(u1 + u2)

]
= exp

[
i(u1 + u2,X (t))

]
exp

[
(s2 − s1)η(u2)+ (s1 − t)η(u1 + u2)

]
= E

(
exp

{
i[(u1,X (s1))+ (u2,X (s2))]

}∣∣Gt),
where, in the penultimate step, we have used the fact that X is càdlàg.
Now let X (m) = (X (s1), . . . ,X (sm)); then by the unique correspondence

between characteristic functions and probability measures we deduce that

P(X (m)|Gt+) = P(X (m)|Gt) a.s.
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and hence, by equation (1.1), we have

E
(
g(X (s1), . . . ,X (sm)))

∣∣Gt+) = E
(
g(X (s1), . . . ,X (sm)))

∣∣Gt)
for all g :Rdm → R with E(|g(X (s1), . . . ,X (sm))|) < ∞. In particular, if we
vary t,m and s1, . . . , sm we can deduce that

P(A|Gt+) = P(A|Gt)

for all A∈G∞. Now, suppose that A∈Gt+; then we have

χA = P(A|Gt+) = P(A|Gt) = E(χA|Gt) a.s.

Hence, since Gt is augmented, we deduce that Gt+ ⊆ Gt and the result
follows. �

Some readersmay feel that using the augmented natural filtration is an unnec-
essary restriction. After all, nature may present us with a practical situation
wherein the filtration is much larger. To deal with such circumstances we will,
for the remainder of this book, always make the following assumptions:

• (�,F ,P) is a fixed probability space equipped with a filtration (Ft , t ≥ 0)
that satisfies the usual hypotheses;

• every Lévy process X = (X (t), t ≥ 0) is assumed to be Ft-adapted and to
have càdlàg sample paths;

• X (t)− X (s) is independent of Fs for all 0 ≤ s < t <∞.

Theorems 2.1.8 and 2.1.10 confirm that these are quite reasonable
assumptions.

2.1.3 Martingale spaces

We can define an equivalence relation on the set of all martingales on a
probability space by the prescription thatM1 ∼ M2 if and only ifM1 is a mod-
ification of M2. Note that by Theorem 2.1.7 each equivalence class contains a
càdlàg member.
Let M be the linear space of equivalence classes of Ft-adapted L2-

martingales and define a (separating) family of seminorms (|| · ||t , t ≥ 0) by the
prescription

||M ||t = E(|M (t)|2)1/2;
then M becomes a locally convex space with the topology induced by these
seminorms (see chapter 1 of Rudin [315]). We call M a martingale space.
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For those unfamiliar with these notions, the key point is that a sequence
(Mn, n∈N) in M converges to N ∈M if ||Mn − N ||t → 0 as n →∞ for all
t ≥ 0.

Lemma 2.1.11 M is complete.

Proof By the completeness of L2, any Cauchy sequence (Mn, n∈N) in M has
a limit N that is an Ft-adapted process with E(|N (t)|2) < ∞ for all t ≥ 0.
We are done if we can show that N is a martingale. We use the facts that each
Mn is a martingale and that the conditional expectation Es = E(·|Fs) is an
L2-projection (and therefore a contraction). Hence, for each 0 ≤ s < t <∞,

E
(|N (s)− Es(N (t))|2) = E

(|N (s)−Mn(s)+Mn(s)− Es(N (t))|2)
≤ 2||N (s)−Mn(s)||2+ 2||Es(Mn(t)−N (t))||2

≤ 2||N (s)−Mn(s)||2 + 2||Mn(t)− N (t)||2
→ 0 as n→∞,

where ||·|| without a subscript is the usual L2-norm; the required result follows.
�

Exercise 2.1.12 Define another family of seminorms onM by the prescription

||M ||′t =
(

sup
0≤s≤t

E(|M (s)|2)
)1/2

for each M ∈M, t ≥ 0. Show that (||·||t , t ≥ 0) and (||·||′t , t ≥ 0) induce
equivalent topologies on M. (Hint: Use Doob’s inequality.)

In what follows, when we speak of a process M ∈M we will always
understand M to be the càdlàg member of its equivalence class.

2.2 Stopping times

A stopping time is a random variable T :� → [0,∞] for which the event
(T ≤ t)∈Ft for each t ≥ 0.
Any ordinary deterministic time is clearly a stopping time. A more interest-

ing example, which has many important applications, is the first hitting time
TA of a process to a set. This is defined as follows. Let X be an Ft-adapted
càdlàg process and A∈B(Rd ); then

TA = inf {t > 0;X (t)∈A},
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where we adopt the convention that inf {∅} = ∞. It is fairly straightforward to
prove that TA really is a stopping time if A is open or closed (see e.g. Protter
[298], chapter 1, section 1). The general case is more problematic (see e.g.
Rogers and Williams [308], chapter II, section 76, and references therein).
If X is an adapted process and T is a stopping time (with respect to the same

filtration) then the stopped random variable X (T ) is defined by

X (T )(ω) = X (T (ω))(ω)

(with the convention that X (∞)(ω) = limt→∞ X (t)(ω) if the limit exists (a.s.)
and X (∞)(ω) = 0 otherwise) and the stopped σ -algebra FT by

FT = {A∈F ;A ∩ {T ≤ t} ∈Ft , ∀t ≥ 0}.

If X is càdlàg, it can be shown that X (T ) is FT -measurable (see e.g. Kunita
[215], p. 8).
A key application of these concepts is in providing the following ‘random

time’ version of the martingale notion.

Theorem 2.2.1 (Doob’s optional stopping theorem) If X is a càdlàg mar-
tingale and S and T are bounded stopping times for which S ≤ T (a.s.), then
X (S) and X (T ) are both integrable, with

E(X (T )|FS) = X (S) a.s.

See Williams [358], p. 100, for a proof in the discrete case and Dellacherie
andMeyer [88], pp. 8–9, or Revuz andYor [306], section 2.3, for the continuous
case. An immediate corollary is that

E(X (T )) = E(X (0))

for each bounded stopping time T .

Exercise 2.2.2 If S and T are stopping times and α ≥ 1, show that S + T , αT ,
S ∧ T and S ∨ T are also stopping times.

If T is an unbounded stopping time and one wants to employ Theorem 2.2.1,
a useful trick is to replace T by the bounded stopping times T ∧n (where n∈N)
and then take the limit as n→∞ to obtain the required result. This procedure
is sometimes called localisation.
Another useful generalisation of the martingale concept that we will use

extensively is the local martingale. This is an adapted processM = (M (t), t ≥
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0) for which there exists a sequence of stopping times τ1 ≤ · · · ≤ τn → ∞
(a.s.) such that each of the processes (M (t ∧ τn), t ≥ 0) is a martingale. Any
martingale is clearly a local martingale. For an example of a local martingale
that is not a martingale see Protter ([298], chapter 1, section 6).

2.2.1 The Doob–Meyer decomposition

Do not worry too much about the technical details in this section unless, of
course, they appeal to you. The main reason for including this material is to
introduce the Meyer angle bracket 〈·〉, and you should concentrate on getting
a sound intuition about how this works.
In Exercise 2.1.4, we saw that if B is a one-dimensional standard Brownian

motion and Ñ is a compensated Poisson process of intensity λ then B and Ñ are
both martingales and, furthermore, so are the processes defined by B(t)2− t and
Ñ 2 − λt, for each t ≥ 0. It is natural to ask whether this behaviour extends to
more general martingales. Before we can answer this question, we need some
further definitions. We take d = 1 throughout this section.
Let I be some index set and X = {Xi, i ∈ I} be a family of random variables.

We say X is uniformly integrable if

lim
n→∞ sup

i ∈I
E
(|Xi|χ{|Xi|>n}) = 0.

A sufficient condition for this to hold is that E(supi ∈I |Xi|) < ∞; see e.g.
Klebaner [203], pp. 171–2, or Williams [358], p. 128. Let M = (M (t), t ≥ 0)
be a closed martingale, so that M (t) = E(X |Ft), for each t ≥ 0, for some
randomvariableX whereE(|X |) <∞; then it is easy to see thatM is uniformly
integrable. Conversely, any uniformly integrable martingale is closed; see e.g.
Dellacherie and Meyer ([88], p. 79).
AprocessX = (X (t), t≥ 0) is in theDirichlet classor classD if {X (τ ), τ ∈ T }

is uniformly integrable, where T is the family of all finite stopping times on
our filtered probability space.
The process X is integrable if E(|X (t)|) <∞, for each t ≥ 0.
The process X is predictable if the mapping X :R+ × � → R given by

X (t,ω) = X (t)(ω) is measurable with respect to the smallest σ -algebra gener-
ated by all adapted left-continuous mappings from R+ ×�→ R. The idea of
predictability is very important in the theory of stochastic integration and will
be developed more extensively in Chapter 4.
Our required generalisation is then the following result.

Theorem 2.2.3 (Doob–Meyer 1) Let Y be a submartingale of class
D; then there exists a unique predictable, integrable, increasing process
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A = (A(t), t ≥ 0) with A(0) = 0 (a.s.) such that the process given by Y (t) −
Y (0)− A(t) for each t ≥ 0 is a uniformly integrable martingale.

The discrete-time version of this result is due to Doob [97] and is rather easy
to prove (see, e.g. Williams [358], p. 121). Its extension to continuous time
is much harder and was carried out by Meyer in [263, 264]. For more recent
accounts see e.g. Karatzas and Shreve [200], pp. 24–5, or Rogers andWilliams
[309], chapter 6, section 6.
In the case where each Y (t) = M (t)2 for a square-integrable martingaleM ,

it is common to use the ‘inner-product’ notation 〈M ,M 〉(t) = A(t) for each
t ≥ 0 and we call 〈M ,M 〉 Meyer’s angle-bracket process. This notation was
originally introduced by Motoo and Watanabe [273]. The logic behind it is as
follows.
Let M ,N ∈M; then we may use the polarisation identity to define

〈M ,N 〉(t) = 1
4

[〈M + N ,M + N 〉(t)− 〈M − N ,M − N 〉(t)].
Exercise 2.2.4 Show that

M (t)N (t)− 〈M ,N 〉(t) is a martingale.

Exercise 2.2.5 Deduce that, for each t ≥ 0;

(1) 〈M ,N 〉(t) = 〈N ,M 〉(t);
(2) 〈αM1 + βM2,N 〉(t) = α〈M1,N 〉(t) + β〈M2,N 〉(t) for each M1,M2 ∈M

and α,β ∈R;
(3) E(〈M ,N 〉(t)2) ≤ E(〈M ,M 〉(t))E(〈N ,N 〉(t)), the equality holding if and

only if M (t) = cN (t) (a.s.) for some c∈R. (Hint: Mimic the proof of the
usual Cauchy–Schwarz inequality.)

The Doob–Meyer theorem has been considerably generalised and, although
we will not have need of it, we quote the following result, a proof of which can
be found in Protter [298], chapter 3, section 3.

Theorem 2.2.6 (Doob–Meyer 2) Any càdlàg submartingale Y has a unique
decompositionY (t) = Y (0)+M (t)+A(t), whereA is an increasing, predictable
process and M is a local martingale.

We close this section by quoting an important theorem – Lévy’s martingale
characterisation of Brownianmotion – which will play an important role below.

Theorem 2.2.7 Let X = (X (t), t ≥ 0) be an adapted process with continuous
sample paths having mean 0 and covariance E(Xi(t)Xj(s)) = aij(s ∧ t) for
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1 ≤ i,j ≤ d, s,t ≥ 0; where a = (aij) is a positive definite symmetric d × d
matrix. Then the following are equivalent:

(1) X is a Brownian motion with covariance a;
(2) X is a martingale with 〈Xi,Xj〉(t) = aijt for each 1 ≤ i, j ≤ d, t ≥ 0;
(3)

(
exp [i(u,X (t))+ t

2 (u, au)], t ≥ 0
)
is a martingale for each u∈Rd .

We postpone a proof until Chapter 4, where we can utilise Itô’s formula for
Brownian motion. In fact it is the following consequence that we will need in
this chapter.

Corollary 2.2.8 If X is a Lévy process satisfying the hypotheses of Theorem
2.2.7 then X is a Brownian motion if and only if

E(ei(u,X (t))) = e−t(u,au)/2

for each t ≥ 0, u∈Rd .

Proof The result is an easy consequence of Proposition 2.1.3 and Theorem
2.2.7(3). �

2.2.2 Stopping times and Lévy processes

We now give three applications of stopping times to Lévy processes. We begin
by again considering the Lévy subordinator (see Section 1.3.2).

Theorem2.2.9 Let B = (B(t), t ≥ 0) be a one-dimensional standardBrownian
motion and for each t ≥ 0 define

T (t) = inf

{
s > 0;B(s) = t√

2

}
;

then T = (T (t), t ≥ 0) is the Lévy subordinator.

Proof (cf. Rogers and Williams [308], p. 18). Clearly each T (t) is a stop-
ping time. By Exercise 2.1.4(3), the process given for each θ ∈R by Mθ (t) =
exp[θB(t) − 1

2θ
2t] is a continuous martingale with respect to the augmented

natural filtration for Brownianmotion. ByTheorem 2.2.1, for each t ≥ 0, n∈N,
θ ≥ 0, we have

1 = E
(
exp

[
θB(T (t) ∧ n)− 1

2θ
2(T (t) ∧ n)

])
.
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Now for each n∈N, t ≥ 0, let An,t = {ω∈�; T (t)(ω) ≤ n}; then

E
(
exp

[
θB(T (t) ∧ n)− 1

2θ
2(T (t) ∧ n)

])
= E

(
exp

{[
θB(T (t))− 1

2θ
2T (t)

]
χAn,t

})
+ exp

(− 1
2θ

2n
)
E
(
exp [θB(n)]χAcn,t

)
.

But, for each ω∈�, T (t)(ω) > n⇒ B(n) < t/
√
2; hence

exp
(− 1

2θ
2n
)
E
(
eθB(n)χAcn,t

)
< exp

[
− 1

2θ
2n+ (tθ/

√
2)
]
→ 0 as n→∞.

By the monotone convergence theorem,

1=E
(
exp

[
θB(T (t))− 1

2θ
2T (t)

])= exp (θ t/
√
2)E

(
exp

[− 1
2θ

2T (t)
])
.

On substituting θ = √
2u we obtain

E
(
exp [−uT (t)]) = exp(−t√u),

as required. �

Exercise 2.2.10 Generalise the proof given above to obtain (1.26) for the
inverse Gaussian subordinator, as given in Example 1.3.21.

If X is an Ft-adapted process and T is a stopping time then we may define a
new process XT = (XT (t), t ≥ 0) by the procedure

XT (t) = X (T + t)− X (T )

for each t ≥ 0. The following result is called the strong Markov property
for Lévy processes. For the proof, we again follow Protter [298], chapter 3,
section 4, and Bretagnolle [65].
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Theorem 2.2.11 (Strong Markov property) If X is a Lévy process and T is a
stopping time, then, on (T <∞):

(1) XT is a Lévy process that is independent of FT ;
(2) for each t ≥ 0, XT (t) has the same law as X (t);
(3) XT has càdlàg paths and is FT+t -adapted.

Proof We assume, for simplicity, that T is a bounded stopping time. Let A∈FT

and for each n∈N, 1 ≤ j ≤ n, let uj ∈Rd , tj ∈R+. Recall from Proposition
2.1.3 the martingales given by Muj (t) = ei(uj ,X (t))−tη(uj) for each t ≥ 0. Now
we have

E

χA exp

i n∑
j=1

(
uj,X (T + tj)− X (T + tj−1)

)

= E

χA

n∏
j=1

Muj (T + tj)

Muj (T + tj−1)

n∏
j=1

φtj−tj−1(uj)

 ,

where we use the notation φt(u) = E(ei(u,X (t))), for each t ≥ 0, u ∈Rd .
Hence by conditioning and Theorem 2.2.1, we find that for each 1 ≤ j ≤ n,

0 < a < b <∞, we have

E

(
χA

Muj (T + b)

Muj (T + a)

)
= E

(
χA

1

Muj (T + a)
E(Muj (T + b)|FT+a)

)

= E(χA) = P(A).

Repeating this argument n times yields

E

χA exp

i n∑
j=1

(
uj,X (T + tj)− X (T + tj−1)

)
= P(A)

n∏
j=1

φtj−tj−1(uj) (2.2)

Take A = �, n = 1, u1 = u, t1 = t in (2.2) to obtain

E(ei(u,XT (t))) = E(ei(u,X (t))),

from which (2) follows immediately.
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To verify that XT is a Lévy process, first note that (L1) is immediate. (L2)
follows from (2.2) by taking A = � and n arbitrary. The stochastic continuity
(L3) ofXT follows directly from that ofX and the stationary-increment property.
We now show thatXT andFT are independent. It follows from (2.2) on choosing
appropriate u1, . . . , un and t1, . . . , tn that for all A∈FT

E

χA exp
i n∑

j=1
(uj,XT (tj))

 = E

exp
i n∑

j=1
(uj,XT (tj))

P(A),
so that

E

exp
i n∑

j=1
(uj,XT (tj))

∣∣∣∣FT

 = E

exp
i n∑

j=1
(uj,XT (tj))

,
and the result follows from (1.1). Part (1) is now fully proved. To verify (3),
we need only observe that XT inherits càdlàg paths from X . �

Exercise 2.2.12 Use a localisation argument to extend Theorem 2.2.11 to the
case of unbounded stopping times.

Before we look at our final application of stopping times, we introduce a very
important process associated to a Lévy process X . The jump process �X =
(�X (t), t ≥ 0) is defined by

�X (t) = X (t)− X (t−)

for each t ≥ 0. (X (t−) is the left limit at the point t; see Section 2.9.)

Theorem 2.2.13 If N is an integer-valued Lévy process that is increasing (a.s.)
and is such that (�N (t), t ≥ 0) takes values in {0, 1}, then N is a Poisson
process.

Proof Define a sequence of stopping times recursively by T0 = 0 and Tn =
inf {t > Tn−1; (N (t)− N (Tn−1)) �= 0} for each n∈N. Hence for each n∈N,

Tn − Tn−1 = inf {t > 0; (N (t + Tn−1)− N (Tn−1)) �= 0}.
It follows from Theorem 2.2.11 that the sequence (T1, T2 − T1, . . . , Tn −

Tn−1, . . .) is i.i.d.
By (L2) again, we have for each s, t ≥ 0

P(T1 > s+ t) = P
(
N (s) = 0, N (t + s)− N (s) = 0

)
= P(T1 > s)P(T1 > t).
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From the fact that N is increasing (a.s.), it follows easily that the map
t → P(T1 > t) is decreasing and, by (L3), we find that the map t → P(T1 > t)
is continuous at t= 0. So the solution to the above functional equation is con-
tinuous everywhere, hence there exists λ > 0 such that P(T1 > t) = e−λt for
each t ≥ 0 (see, e.g. Bingham et al. [50], pp. 4–6). So T1 has an exponential
distribution with parameter λ and

P(N (t) = 0) = P(T1 > t) = e−λt

for each t ≥ 0.
Now assume as an inductive hypothesis that

P(N (t) = n) = e−λt (λt)
n

n! ;

then

P(N (t) = n+ 1) = P(Tn+2 > t, Tn+1 ≤ t)

= P(Tn+2 > t)− P(Tn+1 > t).

But
Tn+1 = T1 + (T2 − T1)+ · · · + (Tn+1 − Tn)

is the sum of n + 1 i.i.d. exponential random variables and so has a gamma
distribution with density

fTn+1(s) = e−λs λ
n+1sn

n! for s > 0;

see Exercise 1.2.5. The required result follows on integration. �

2.3 The jumps of a Lévy process – Poisson random
measures

We have already introduced the jump process�X = (�X (t), t ≥ 0) associated
with a Lévy process. Clearly�X is an adapted process but it is not, in general,
a Lévy process, as the following exercise indicates.

Exercise 2.3.1 Let N be a Poisson process and choose 0 ≤ t1 < t2 < ∞.
Show that

P
(
�N (t2)−�N (t1) = 0

∣∣�N (t1) = 1
) �= P

(
�N (t2)−�N (t1) = 0

)
,

so that �N cannot have independent increments.
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The following result demonstrates that �X is not a straightforward process
to analyse.

Lemma 2.3.2 If X is a Lévy process, then, for fixed t > 0,�X (t) = 0 (a.s.).

Proof Let (t(n), n∈N) be a sequence inR+with t(n) ↑ t as n→∞; then, since
X has càdlàg paths, limn→∞ X (t(n)) = X (t−). However, by (L3) the sequence
(X (t(n)), n∈N) converges in probability to X (t) and so has a subsequence that
converges almost surely toX (t). The result follows by uniqueness of limits. �

Warning! Do not be tempted to assume that we also have �X (T ) = 0 (a.s.)
when T is a stopping time.

Much of the analytic difficulty in manipulating Lévy processes arises from
the fact that it is possible for them to have∑

0≤s≤t
|�X (s)| = ∞ a.s.

and theway these difficulties are overcome exploits the fact that we always have∑
0≤s≤t

|�X (s)|2 <∞ a.s.

We will gain more insight into these ideas as the discussion progresses.

Exercise 2.3.3 Show that
∑

0≤s≤t |�X (s)| < ∞ (a.s.) if X is a compound
Poisson process.

Rather than exploring �X itself further, we will find it more profitable
to count jumps of specified size. More precisely, let 0 ≤ t < ∞ and
A∈B(Rd − {0}). Define

N (t,A)(ω) = #{0 ≤ s ≤ t;�X (s)(ω)∈A} =
∑
0≤s≤t

χA(�X (s)(ω)),

if ω∈�0, and (by convention) N (t,A)(ω) = 0, if ω∈�c
0.
1

Note that for each ω∈�0, t ≥ 0, the set function A → N (t,A)(ω) is a
counting measure on B(Rd − {0}) and hence

E(N (t,A)) =
∫

N (t,A)(ω)dP(ω)

1 Recall the definition on �0 from the discussion following the proof of Theorem 2.1.8.
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is a Borel measure on B(Rd − {0}). We write µ(·) = E(N (1, ·)) and call it the
intensity measure2 associated with X . We say that A∈B(Rd − {0}) is bounded
below if 0 /∈ Ā.

The next result plays a crucial role in the sequel (c.f. Theorem 2.9.2 in the
appendix, Section 2.9).

Lemma 2.3.4 If A is bounded below, then N (t,A) <∞ (a.s.) for all t ≥ 0.

Proof Define a sequence of stopping times (TA
n , n∈N) by TA

1 = inf {t >

0;�X (t)∈A} and, for n > 1, by TA
n = inf {t > TA

n−1;�X (t)∈A}. Since X
has càdlàg paths, we have TA

1 > 0 (a.s.) and limn→∞ TA
n = ∞ (a.s.). Indeed

suppose that TA
1 = 0 with non-zero probability and let N = {ω∈� : TA

1 �= 0}.
Assume that ω∈� − N . Then given any u > 0, we can find 0 < δ, δ′ < u
and ε > 0 such that |X (δ)(ω) − X (δ′)(ω)| > ε and this contradicts the
(almost sure) right continuity ofX (·)(ω) at the origin. Similarly, we assume that
limn→∞ TA

n = TA < ∞ with non-zero probability and define M = {ω∈� :
limn→∞ TA

n = ∞}. If ω∈�−M then we obtain a contradiction with the fact
that X has a left limit (almost surely) at TA(ω).
Hence, for each t ≥ 0,

N (t,A) =
∑
n∈N

χ{TAn ≤t} <∞ a.s.

�

Be aware that ifA fails to be bounded below then Lemma 2.3.4may no longer
hold, because of the accumulation of infinite numbers of small jumps.
For the proof of the following theorem we will require the family of sub-

σ -algebras Fs,t = σ {X (v) − X (u), s < u < v ≤ t} defined for all 0 ≤ s <

t <∞.

Theorem 2.3.5

(1) If A is bounded below, then (N (t,A), t ≥ 0) is a Poisson process with
intensity µ(A).

(2) If A1, . . . ,Am ∈B(Rd − {0}) are disjoint and bounded below and if
s1, . . . , sm ∈R+ are distinct, then the random variables N (s1,A1), . . . ,
N (sm,Am) are independent.

Proof (1) We first need to show that (N (t,A), t ≥ 0) is a Lévy process, as we
can then deduce immediately that it is a Poisson process by Theorem 2.2.13.

2 Readers should be aware that many authors use the term ‘intensity measure’ to denote the product
of µ with Lebesgue measure on R+.
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(L1) is obvious. To verify (L2) note first that for 0 ≤ s < t <∞, n∈N∪{0},
we have N (t,A)−N (s,A) ≥ n if and only if there exists s < t1 < · · · < tn ≤ t
such that

�X (tj)∈A (1 ≤ j ≤ n). (2.3)

Furthermore, �X (u)∈A if and only if there exists a ∈A for which, given any
ε > 0, there exists δ > 0 such that

0 < u− w < δ ⇒ |X (w)− X (u)− a| < ε. (2.4)

From (2.3) and (2.4), we deduce that (N (t,A)− N (s,A) = n) = (N (t,A)−
N (s,A) ≥ n) − (N (t,A) − N (s,A) ≥ n − 1)∈Fs,t . Since the Lévy process
X has independent increments it follows that the σ -algebras F0,s and Fs,t are
independent. Hence (N (t,A), t ≥ 0) has independent increments.
To show that it also has stationary increments we use the result of Proposition

2.10.1 in Appendix 2.10 to deduce that for all t ≥ 0, h > 0, n∈N ∪ {0},

P(N (t,A) = n) = E(|χ(N (t,A)=n)|2)
= E(|χ(N (t+h,A)−N (h,A)=n)|2)
= P(N (t + h,A)− N (h,A) = n).

To establish (L3), note first that ifN (t,A) = 0 for some t > 0 thenN (s,A)= 0
for all 0 ≤ s < t. Hence, since (L2) holds we find that for all n∈N ∪ {0}

P(N (t,A) = 0)

= P

(
N

(
t

n
,A

)
= 0,N

(
2t

n
,A

)
= 0, . . . ,N (t,A) = 0

)
= P

(
N

(
t

n
,A

)
= 0,N

(
2t

n
,A

)
− N

(
t

n
,A

)
= 0,

. . . ,N (t,A)−N

(
(n− 1)t

n
,A

)
= 0

)
=
[
P

(
N

(
t

n
,A

)
= 0

)]n
.

From this we deduce that

lim sup
t→0

P(N (t,A) = 0) = lim
n→∞ lim sup

t→0

[
P

(
N

(
t

n
,A

)
= 0

)]n
,

and, since we can herein replace lim supt→0 by lim inf t→0, we see that either
limt→0 P(N (t,A) = 0) exists and is 0 or 1 or lim inf t→0 P(N (t,A) = 0) = 0
and lim supt→0 P(N (t,A) = 0) = 1.
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First suppose that lim inf t→0 P(N (t,A) = 0) = 0 and that lim supt→0
P(N (t,A) = 0) = 1. Recall that ifN (t,A) = 0 for some t > 0 thenN (s,A) = 0
for all 0 ≤ s ≤ t. From this we see that the map t → P(N (t,A) = 0) is mono-
tonic decreasing. So if P(N (t,A) = 0) = ε > 0 for some t ≥ 0 we must have
lim inf t→0 P(N (t,A) = 0) ≥ ε. Hence, if lim inf t→0 P(N (t,A) = 0) = 0 then
P(N (t,A) = 0) = 0 for all t ≥ 0 and so lim supt→0 P(N (t,A) = 0) = 0, which
yields our desired contradiction.
Now suppose that limt→0 P(N (t,A) = 0) = 0; then limt→0 P(N (t,A) �=

0) = 1. LetA andB be bounded below and disjoint. SinceN (t,A∪B) �= 0 if and
only ifN (t,A) �= 0 orN (t,B) �= 0, we find that limt→0 P(N (t,A∪B �= 0) = 2,
which is also a contradiction.
Hence we have deduced that limt→0 P(N (t,A) = 0) = 1 and so limt→0

P(N (t,A) �= 0) = 0, as required.
(2) Using arguments similar to those that led up to (2.3) and (2.4), we deduce

that the events

(N (s1,A1) = n1), . . . , (N (sm,Am) = nm)

are members of independent σ -algebras. �

An alternative and highly elegant proof of Theorem 2.3.5(2) which employs
stochastic integration is given by Kunita in [218], pp. 320–1. We will present
this material in Chapter 5 after we have covered the necessary background.

Remark 1 It follows immediately that µ(A) < ∞ whenever A is bounded
below, hence the measure µ is σ -finite.

Remark 2ByTheorem 2.1.8,N has a càdlàg modification that is also a Poisson
process. We will identify N with this modification henceforth, in accordance
with our usual philosophy.

2.3.1 Random measures

Let S be a set andA be a ring of subsets of S, i.e. ∅∈A and for all A,B∈A,A∪
B∈A and A − B∈A (where we recall that A − B = A ∩ Bc). If A,B∈A, we
have A ∩ B∈A since A ∩ B = A− (A− B). Clearly if F is a σ -algebra then it
is also a ring.
Let (�,F ,P) be a probability space. A random measure M on (S,A) is a

collection of random variables (M (B),B∈A) such that:

(i) M (∅) = 0;
(ii) (finite additivity). Given any disjoint A,B∈A,

M (A ∪ B) = M (A)+M (B)
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A random measure is said to be σ -additive if (ii) can be strengthened to (ii)′.

(ii)′ (σ -additivity) Given any sequence (An, n∈N) of mutually disjoint sets
in A which are such that

⋃
n∈N An ∈A,

M

( ⋃
n∈N

An

)
=
∑
n∈N

M (An);

Note that for some applications of random measures to stochastic partial
differential equations, the identity in (ii) is only required to holdwith probability
1 (see, e.g. Walsh [352]).

A random measure is said to be independently scattered if for each dis-
joint family {B1, . . . ,Bn} in A, the random variables M (B1), . . . ,M (Bn) are
independent.

Example Let X = (X (t), t ≥ 0) be a Lévy process and choose S = [0, T ]
for some T > 0. Take A to be the smallest ring that contains all finite unions
of disjoint intervals in S. These intervals may be open, closed or half-open so
that A also contains isolated points. If A = (s1, t1) ∪ · · · ∪ (sn, tn), define

M (A) =
n∑
j=1

X (tj)− X (sj),

with M ({t}) = 0 if t ∈ [0, T ]. Then M is an independently scattered random
measure on (S,A).

Let S be a σ -algebra of subsets of set S. Fix a non-trivial ring A ⊆ S
An independently scattered σ -finite random measure M on (S,S) is called
a Poisson random measure if M (B) < ∞ for each B∈A and each such
M (B) has a Poisson distribution. In many cases of interest, the prescription
λ(A) = E(M (A)) for all A∈A extends to a σ -finite measure λ on (S,S).
Conversely we have:

Theorem 2.3.6 Given a σ -finite measure λ on ameasurable space (S,S), there
exists a Poisson random measure M on a probability space (�,F ,P) such that
λ(A) = E(M (A)) for all A∈S. In this case A = {A∈S, λ(B) <∞}.
Proof See, Ikeda and Watanabe [167], p. 42, or Sato [323], p. 122. �

Example Let X = (X (t), t ≥ 0) be a Lévy process. Choose S = Rd −{0},S =
B(S) and take A to be the ring of all sets in S which are bounded below. For
fixed t ≥ 0 and for each A∈A define Mt(A) = N (t,A) then by Theorem 2.3.5
Mt is a Poisson random measure and λ(·) = tµ(·).
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More generally the prescriptionM ([s, t]×A) = N (t,A)−N (s,A) extends to
a σ -additive Poisson randommeasure on (S,B(S))where S = R+×(Rd−{0}).
In this case λ(dx, dt) = dtµ(dx). See chapter 4 of Sato [323] for a proof.

Suppose that S = R+ ×U , where U is a measurable space equipped with a
σ -algebra U , and S = B(R+)⊗U . Let p = (p(t), t ≥ 0) be an adapted process
taking values in U such thatM is a Poisson random measure on (S,S), where
M ([0, t) × A) = #{0 ≤ s < t; p(s)∈A} for each t ≥ 0,A∈U . In this case we
say that p is a Poisson point process and M is its associated Poisson random
measure.
The final concept we need is a merger of the two important ideas of the

random measure and the martingale. Let U be a topological space with Borel
σ -algebra U and let A ⊆ U be a ring . Let S = R+ × U and let I be the ring
comprising finite unions of sets of the form I ×A, where A∈A and I is itself a
finite union of intervals. LetM be a random measure on (S, I). In this case we
will frequently use the notationM (I ,A) instead ofM (I × A). For each A∈A,
define a processMA = (MA(t), t ≥ 0) byMA(t) = M ([0, t),A). We say thatM
is a martingale-valued measure if each MA is a martingale.
The key example of these concepts for our work is as follows.

Example Let U = Rd − {0} and U be its Borel σ -algebra. Let A be the ring
of all sets in U which are bounded below. Let X be a Lévy process; then�X is
a Poisson point process and N is its associated Poisson random measure. For
each t ≥ 0 and A bounded below, we define the compensated Poisson random
measure by

Ñ (t,A) = N (t,A)− tµ(A).

By Exercise 2.1.4(4), (Ñ (t,A), t ≥ 0) is a martingale and so Ñ is a martingale-
valued measure.
In case you are unfamiliar with Poisson random measures we summarise

below the main properties of N . These will be used extensively later.

(1) For each t > 0, ω∈�, N (t, ·)(ω) is a counting measure on B(Rd − {0}).
(2) For each A bounded below, (N (t,A), t ≥ 0) is a Poisson process with

intensity µ(A) = E(N (1,A)).
(3) Ñ is a σ -finite independently scattered martingale-valued measure, where

Ñ (t,A) = N (t,A)− tµ(A), for A bounded below.

RemarkAfar more sophisticated approach to randommeasures than that given
here can be found in Kallenberg [198].
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2.3.2 Poisson integration

Let N be the Poisson random measure associated to a Lévy process X =
(X (t), t ≥ 0).

Let f be a Borel measurable function from Rd to Rd and let A be bounded
below; then for each t > 0,ω∈�, we may define the Poisson integral of f as
a random finite sum by∫

A
f (x)N (t, dx)(ω) =

∑
x ∈A

f (x)N (t, {x})(ω).

Note that each
∫
A f (x)N (t, dx) is an Rd -valued random variable and gives rise

to a càdlàg stochastic process as we vary t.
Now, since N (t, {x}) �= 0⇔ �X (u) = x for at least one 0 ≤ u ≤ t, we have∫

A
f (x)N (t, dx) =

∑
0≤u≤t

f (�X (u))χA(�X (u)). (2.5)

Let (TA
n , n∈N) be the arrival times for the Poisson process (N (t,A), t≥ 0).

Then another useful representation for Poisson integrals, which follows
immediately from (2.5), is∫

A
f (x)N (t, dx) =

∑
n∈N

f (�(X (TA
n )))χ[0,t](TA

n ). (2.6)

Henceforth, we will sometimes use µA to denote the restriction to A of the
measure µ.

Theorem 2.3.7 Let A be bounded below. Then:

(1) for each t ≥ 0,
∫
A f (x)N (t, dx) has a compound Poisson distribution such

that, for each u∈Rd ,

E

(
exp

[
i

(
u,
∫
A
f (x)N (t, dx)

)])
= exp

[
t
∫

Rd
(ei(u,x) − 1)µf ,A(dx)

]
,

where µf ,A(B) = µ(A ∩ f −1(B)), for each B∈B(Rd ).;
(2) if f ∈ L1(A,µA), we have

E

(∫
A
f (x)N (t, dx)

)
= t
∫
A
f (x)µ(dx);
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(3) if f ∈ L2(A,µA), we have

Var

(∣∣∣∣∫
A
f (x)N (t, dx)

∣∣∣∣) = t
∫
A
|f (x)|2µ(dx).

Proof (1) For simplicity, we will prove this result in the case f ∈ L1(A,µA).
The general proof for arbitrary measurable f can be found in Sato [323], p. 124.
First let f be a simple function and write f =∑n

j=1 cjχAj , where each cj ∈Rd .
We can assume, without loss of generality, that the Aj are disjoint Borel subsets
of A. By Theorem 2.3.5 we find that

E

(
exp

[
i

(
u,
∫
A
f (x)N (t, dx)

)])

= E

(
exp

[
i

(
u,

n∑
j=1

cjN (t,Aj)

)])

=
n∏
j=1

E
(
exp

[
i(u, cjN (t,Aj))

])

=
n∏
j=1

exp
{
t
[
exp

(
i(u, cj)

)− 1
]
µ(Aj)

}
= exp

[
t
∫
A

{
exp

[
i(u, f (x))

]− 1
}
µ(dx)

]
.

Given an arbitrary f ∈ L1(A,µA), we can find a sequence of simple functions
converging to f inL1 and hence a subsequence that converges to f almost surely.
Passing to the limit along this subsequence in the above yields the required
result, via dominated convergence.
Parts (2) and (3) follow from (1) by differentiation. �

It follows from Theorem 2.3.7(2) that a Poisson integral will fail to have a
finite mean if f /∈ L1(A,µ).

Exercise 2.3.8 Show that if f :Rd → Rd is Borel measurable then∑
0≤u≤t

|f (�X (u))|χA(�X (u)) <∞ a.s.

Consider the sequence of jump size random variables (YA
f (n), n∈N), where

each

YA
f (n) =

∫
A
f (x)N

(
TA
n , dx

)− ∫
A
f (x)N

(
TA
n−1, dx

)
. (2.7)
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It follows from (2.6) and (2.7) that

YA
f (n) = f (�(X (TA

n )))

for each n∈N.

Theorem 2.3.9

(1) (YA
f (n), n∈N) are i.i.d. with common law given by

P(YA
f (n)∈B) = µ(A ∩ f −1(B))

µ(A)
(2.8)

for each B∈B(Rd ).
(2)

( ∫
A f (x)N (t, dx), t ≥ 0

)
is a compound Poisson process.

Proof (1) We begin by establishing (2.8). Using Theorem 2.3.7(2) and (2.7),
together with the fact that (TA

n −TA
n−1, n∈N) are i.i.d. exponentially distributed

random variables with common mean 1/µ(A), we obtain

P(YA
f (n)∈B) = E(χB(Y

A
f (n)) = E

[
ETAn −TAn−1(χB(Y

A
f (n)))

]
=
∫ ∞

0
s
∫
A
χB(f (x))µ(dx)pTAn −TAn−1(ds)

= µ(A ∩ f −1(B))
µ(A)

,

as required. Hence our random variables are identically distributed. To see that
they are independent, we use a similar argument to that above to write, for any
finite set of natural numbers {i1, i2, . . . , im} and Bi1 ,Bi2 , . . . ,Bim ∈B(Rd ),

P
(
YA
f (i1)∈Bi1 , YA

f (i2)∈Bi2 , . . . , YA
f (im)∈Bim

)
= E

[
ETA1 ,T

A
2 −TA1 ,...,TAn −TAn−1

m∏
j=1

χBij

(
YA
f (ij)

)]

=
∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
si1si2 · · · sim

m∏
j=1

∫
A
χBij (f (x))µ(dx)

× pTAi1
(dsi1)pTAi2−T

A
i1
(dsi2) · · · pTAim−TAim−1 (dsim)

= P(YA
f (i1)∈Bi1)P(YA

f (i2)∈Bi2) · · ·P(YA
f (im)∈Bim),

by (2.8).
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(2) First we observe that (YA
f (n), n∈N) and the Poisson process (N (t,A),

t ≥ 0) are independent. Indeed, this follows from a slight extension of the
following argument. For each m∈N, n∈N ∪ {0}, t ≥ 0, B∈B(Rd ), we have

P
(
YA
f (m)∈B∣∣N (t,A) = n

) = P
(
YA
f (m)∈B∣∣TA

n ≤ t, TA
n+1 > t

)
= P(YA

f (m)∈B),

by a calculation similar to that in (1). For each t ≥ 0, we have∫
A
f (x)N (t, dx) = YA

f (1)+ YA
f (2)+ · · · + YA

f (N (t,A)).

The summands are i.i.d. by (1), and the result follows. �

For each f ∈ L1(A,µA), t ≥ 0, we define the compensated Poisson integral
by ∫

A
f (x)Ñ (t, dx) =

∫
A
f (x)N (t, dx)− t

∫
A
f (x)µ(dx).

A straightforward argument, as in Exercise 2.1.4(4), shows that(∫
A
f (x)Ñ (t, dx), t ≥ 0

)
is a martingale, and we will use this fact extensively later. By Theorem
2.3.7(1), (3) we can easily deduce the following two important facts:

E

(
exp

[
i

(
u,
∫
A
f (x)Ñ (t, dx)

)])
= exp

{
t
∫

Rd

[
ei(u,x) − 1− i(u, x)

]
µf ,A(dx)

}
(2.9)

for each u∈Rd and, for f ∈ L2(A,µA),

E

(∣∣∣∣∫
A
f (x)Ñ (t, dx)

∣∣∣∣2
)
= t
∫
A
|f (x)|2µ(dx). (2.10)

Exercise 2.3.10 For A, B bounded below and f ∈ L2(A,µA), g ∈ L2(B,µB),
show that〈∫

A
f (x)Ñ (t, dx),

∫
B
g(x)Ñ (t, dx)

〉
= t
∫
A∩B

f (x)g(x)µ(dx).
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Exercise 2.3.11 For each A bounded below define

MA =
{∫

A
f (x)Ñ (t, dx), f ∈ L2(A,µA)

}
.

Show that MA is a closed subspace of the martingale space M.

Exercise 2.3.12 Deduce that limn→∞ TA
n = ∞ (a.s.) whenever A is bounded

below.

2.3.3 Processes of finite variation

We begin by introducing a useful class of functions. Let P = {a = t1 < t2 <

· · · < tn < tn+1 = b} be a partition of the interval [a, b] in R, and define its
mesh to be δ = max1≤i≤n |ti+1 − ti|. We define the variation varP (g) of a
càdlàg mapping g : [a, b] → Rd over the partition P by the prescription

varP (g) =
n∑
i=1

|g(ti+1)− g(ti)|.

If Vg = supP varP (g) < ∞, we say that g has finite variation on [a, b] and
we call Vg the (total) variation of g on [a, b]. If g is not of finite variation, it is
said to be of infinite variation . If g is defined on the whole of R (or R+), it is
said to have finite variation if it has finite variation on each compact interval.
It is a trivial observation that every non-decreasing g is of finite variation.

Conversely, if g is of finite variation then it can always be written as the
difference of two non-decreasing functions; to see this, just write

g = Vg + g

2
− Vg − g

2
,

where Vg(t) is the variation of g on [a, t]. Functions of finite variation are
important in integration: suppose that we are given a function g that we are
proposing as an integrator, then as a minimum we will want to be able to define
the Stieltjes integral

∫
I fdg for all continuous functions f , where I is some finite

interval. It is shown in chapter 1, section 8 of Protter [298] that a necessary and
sufficient condition for obtaining such an integral as a limit of Riemann sums
is that g has finite variation (see also the discussion and references in Mikosch
[269], pp. 88–92).

Exercise 2.3.13

(i) Show that all the functions of finite variation on [a, b] (or on R) form a
vector space.
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(ii) Deduce that a vector-valued function is of bounded variation if and only if
each of its components is.

We will find the following result to be of value in the sequel.

Theorem 2.3.14 If f :R+ → R is càdlàg and has finite variation on [0, t]
where t > 0 then ∑

0≤s≤t
|�f (s)| ≤ Vf (t).

Proof Suppose that (tn, n∈N) are the points of discontinuity (in increasing
order) of f in [0, t]. We choose the first n of these: {t1, . . . , tn}. Then given
any ε > 0, for each 1 ≤ i ≤ n, there exists δi > 0 such that ti − s <

δi ⇒ |f (ti−)− f (s)| < ε/n. Hence by the triangle inequality, with s as above,
each

|�f (ti)| ≤ |f (ti)− f (s)| + ε

n
.

We can thus construct a partition (0 = τ0 < τ1 < · · · < τ2n < τ2n+1 = t)
where each τ2i − τ2i−1 < δi(1 ≤ i ≤ n) such that

n∑
i=1

|�f (ti)| ≤
2n∑
i=0

|f (τi+1)− f (τi)| + ε

≤ Vf (t)+ ε.

The result follows on first taking limits as ε ↓ 0 and then as n→∞. �
A stochastic process (X (t), t ≥ 0) is of finite variation if the paths

(X (t)(ω), t ≥ 0) are of finite variation for almost allω∈�.Aprocess of infinite
variation is defined analogously.
The following is an important example for us.

Example 2.3.15 (Poisson integrals) Let N be a Poisson random measure,
with intensity measure µ, that counts the jumps of a Lévy process X and let
f :Rd → Rd be Borel measurable. For A bounded below, let Y = (Y (t), t ≥ 0)
be given by Y (t) = ∫A f (x)N (t, dx); then Y is of finite variation on [0, t] for
each t ≥ 0. To see this, we observe that, for all partitionsP of [0, t], by Exercise
2.3.8, we have

varP (Y ) ≤
∑
0≤s≤t

|f (�X (s))|χA(�X (s)) <∞ a.s. (2.11)
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Exercise 2.3.16 Let Y be a Poisson integral as above and let η be its Lévy
symbol. For each u∈Rd consider the martingales Mu = (Mu(t), t ≥ 0) where
each

Mu(t) = ei(u,Y (t))−tη(u).

Show that Mu is of finite variation. (Hint: Use the mean value theorem.)

Exercise 2.3.17 Show that every subordinator is of finite variation.

On the other hand, we have the following result.

Theorem 2.3.18 A continuous martingale is of finite variation if and only if it
is constant (a.s.)

Proof. See Revuz and Yor, chapter 4, proposition 1.2. �
An immediate consequence of this result is that Brownianmotion is of infinite

variation. Of course this fact can also be proved directly, see e.g. proposition
A.3.2 in Mikosch [269]. We will give a proof of this result in Section 4.4. using
the concept of quadratic variation.
In fact, a necessary and sufficient condition for a Lévy process to be of

finite variation is that there is no Brownian part (i.e. A = 0 in the Lévy–
Khinchine formula) and that

∫
|x|<1 |x|ν(dx) < ∞; see e.g. Bertoin [39], p. 15,

or Bretagnolle [64]. We will give a proof of this result towards the end of the
next section.

2.4 The Lévy–Itô decomposition

Here we will give a proof of one of the key results in the elementary theory of
Lévy processes, namely the celebrated Lévy–Itô decomposition of the sample
paths into continuous and jump parts. Our approach closely follows that of
Bretagnolle [65]. First we will need a number of preliminary results.

Proposition 2.4.1 Let Mj, j = 1, 2, be two càdlàg-centred martingales where
eachMj(0) = 0 (a.s.). Suppose that, for some j, Mj is L2 and that for each t ≥ 0
E(|VMk (t)|2) <∞ where k �= j; then

E[(M1(t),M2(t))] = E

∑
0≤s≤t

(�M1(s),�M2(s))

 .

Proof For convenience, we work in the case d = 1. We suppose throughout
that M1 is L2 and so M2 has square-integrable variation. Let P = {0 = t0 <
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t1 < t2 < · · · < tm = t} be a partition of [0, t]; then by the martingale property
we have

E(M1(t)M2(t))

=
m−1∑
i=0

m−1∑
j=0

E
([
M1(ti+1)−M1(ti)

][
M2(tj+1)−M2(tj)

])

=
m−1∑
i=0

E
([
M1(ti+1)−M1(ti)

][
M2(ti+1)−M2(ti)

])
.

Now let (P(n), n∈N) be a sequence of such partitions with

lim
n→∞ max

0≤i(n)≤m(n)−1
∣∣t(n)i+1 − t(n)i

∣∣ = 0.

Then, with probability 1, we claim that

lim
n→∞

m(n)−1∑
i(n)=0

[
M1(ti(n)+1)−M1(ti(n))

][
M2(ti(n)+1)−M2(ti(n))

]
=
∑
0≤s≤t

�M1(s)�M2(s).

To establish this claim, fix ω∈� and assume (without loss of generality) that
(M1(t)(ω), t ≥ 0) and (M2(t)(ω), t ≥ 0) have common points of discontinuity
A = (tn, n∈N).
We first consider the set Ac. Let (Pn, n∈N) be a sequence of partitions of

[0, t] such that, for each n∈N,A ∩ [t(n)j , t(n)j+1] = ∅ for all 0 ≤ j ≤ m(n) − 1.
Dropping ω for notational convenience, we find that

m(n)−1∑
i=0

∣∣∣∣[M1
(
ti(n)+1

)−M1
(
ti(n)
)][

M2
(
ti(n)+1

)−M2
(
ti(n)
)]∣∣∣∣

≤ max
0≤i≤m(n)−1

∣∣M1
(
ti(n)+1

)−M1
(
ti(n)
)∣∣VarPn(M2)

→ 0 as n→∞.
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Turning our attention to A, we fix ε > 0 and choose δ = (δn, n∈N) to be such
that

max
{|M1(tn)−M1(tn − δn)−�M1(tn)|,

|M2(tn)−M2(tn − δn)−�M2(tn)|
}
<

ε

K2n
,

where

K = 2 sup
0≤s≤t

|M1(s)| + 2 sup
0≤s≤t

|M2(s)|.

To establish the claim in this case, we consider

S(δ) =
∞∑
n=1

{[
M1(tn)−M1(tn − δn)

][
M2(tn)−M2(tn − δn)

]
−�M1(tn)�M2(tn)

}
.

We then find that

|S(δ)|

≤
∞∑
n=1

∣∣(M1(tn)−M1(tn − δn)−�M1(tn)
∣∣∣∣M2(tn)−M2(tn − δn)

∣∣
+

∞∑
n=1

∣∣M2(tn)−M2(tn − δn)−�M2(tn)
∣∣∣∣�M1(tn)

∣∣
≤ 2

(
sup
0≤s≤t

|M1(s)| + sup
0≤s≤t

|M2(s)|
) ∞∑

n=1

ε

K2n
< ε,

and the claim is thus established.
The result of the theorem follows by dominated convergence, using the fact

that for each n∈N∣∣∣∣∣∣
m(n)−1∑
i(n)=0

[
M1(ti(n)+1)−M1(ti(n))

][
M2(ti(n)+1)−M2(ti(n))

]∣∣∣∣∣∣
≤ 2 sup

0≤s≤t
|M1(s)|VM2(t)),
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and, on using Doob’s martingale inequality,

E

(
sup
0≤s≤t

|M1(s)|VM2(t))

)
≤ E

(
sup
0≤s≤t

|M1(s)|2
)
+ E

(|VM2(t))|2
)

≤ 4E(|M1(t)|2)+ E
(|VM2(t))|2

)
<∞.

�

The following special case of Proposition 2.4.1 plays a major role below.

Example 2.4.2 Let A and B be bounded below and suppose that f ∈ L2(A,µA),
g ∈ L2(B,µB). For each t ≥ 0, let M1(t) =

∫
A f (x)Ñ (t, dx) and M2(t) =∫

B g(x)Ñ (t, dx); then, by (2.11),

VM1(t) ≤ V∫
A f (x)N (t,dx) + Vt

∫
A f (x)ν(dx)

≤
∫
A
|f (x)|N (t, dx)+ t

∣∣∣∣∫
A
f (x)ν(dx)

∣∣∣∣ .
From this and the Cauchy–Schwarz inequality we have E(|VM1(t)|2) < ∞,
and so we can apply Proposition 2.4.1 in this case. Note the important fact that
E(M1(t)M2(t)) = 0 for each t ≥ 0 if A ∩ B = ∅.
Exercise 2.4.3 Show that Proposition 2.4.1 fails to hold whenM1 = M2 = B,
where B is a standard Brownian motion.

Exercise 2.4.4 Let N = (N (t), t ≥ 0) be a Poisson process with arrival times
(Tn, n∈N) and let M be a centred càdlàg L2-martingale. Show that, for each
t ≥ 0,

E(M (t)N (t)) = E

(∑
n∈N

�M (Tn)χ{Tn≤t}

)
.

Exercise 2.4.5 Let A be bounded below and M be a centred càdlàg L2-
martingale that is continuous at the arrival times of (N (t,A), t ≥ 0). Show
that M is orthogonal to every process in MA (as defined in Exercise 2.3.11).

For A bounded below note that, for each t ≥ 0,∫
A
xN (t, dx) =

∑
0≤u≤t

�X (u)χA(�X (u))
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is the sum of all the jumps taking values in the set A up to the time t. Since the
paths of X are càdlàg, this is clearly a finite random sum.

Theorem 2.4.6 If Ap, p= 1, 2, are disjoint and bounded below, then( ∫
A1
xN (t, dx), t ≥ 0

)
and

( ∫
A2
xN (t, dx), t ≥ 0

)
are independent stochastic

processes.

Proof For each p = 1, 2, t ≥ 0, write X (t,Ap) =
∫
Ap
xN (t, dx) and let ηAp be

the Lévy symbol of each of these compound Poisson processes (recall Theorem
2.3.7).We will also have need of the centred càdlàg L2-martingales (Mp(t), t ≥
0) for p = 1, 2, given by

Mp(t) = exp
[
i(up,X (t,Ap))− tηAp

]− 1

for each t ≥ 0, where u1, u2 ∈Rd . We will need the fact below that at least one
Mp has square-integrable variation on finite intervals. This follows easily after
using the mean value theorem to establish that, for each t ≥ 0, there exists a
complex-valued random variable ρ(t) with 0 ≤ |ρ(t)| ≤ 1 for which

Mp(t) = ρ(t)
[
i(up,X (t,Ap))− tηAp

]
.

Now for 0 ≤ s ≤ t <∞ we have

E
(
M1(t)M2(s)

) = E
(
M1(s)M2(s)

)+ E
([
M1(t)−M1(s)

]
M2(s)

)
.

SinceA1 andA2 are disjoint,M1 andM2 have their jumps at distinct times and so
E(M1(s)M2(s))= 0 by Proposition 2.4.1. However, M1 is a martingale and so
a straightforward conditioning argument yields E([M1(t)−M1(s)]M2(s)) = 0.
Hence we have that, for all u1, u2 ∈Rd ,

E
(
ei(u1,X (t,A1))ei(u2,X (s,A2))

) = E
(
ei(u1,X (t,A1))

)
E
(
ei(u2,X (s,A2))

)
,

and so the random variables X (t,A1) and X (s,A2) are independent by Kac’s
theorem.
Now we need to show that the processes are independent. To this end, fix

n1, n2 ∈N, choose 0 = tp0 < tp1 < · · · < tpnp < ∞ and upj ∈Rd , 0 ≤ j ≤ np and

write v
p
j = upj + upj+1 + · · · + upn, for p = 1, 2. By (L2) we obtain
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E

exp
i n1∑

j=1
(u1j ,X (t1j ,A1))

E

(
exp

[
i
n2∑
k=1

(u2k ,X (t2k ,A2))

])

= E

exp
i n1∑

j=1
(v1j ,X (t1j ,A1)− X (t1j−1,A1))


×E

(
exp

[
i
n2∑
k=1

(v2k ,X (t2k ,A2)− X (t2k−1,A2))
])

=
n1∏
j=1

E
(
exp

[
i(v1j ,X (t1j − t1j−1,A1))

])

×
n2∏
k=1

E
(
exp

[
i(v2k ,X (t2k − t2k−1,A2))

])
=

n1∏
j=1

n2∏
k=1

E
(
exp {i[(v1j ,X (t1j − t1j−1,A1))+ (v2k ,X (t2k − t2k−1,A2))]}

)

=
n1∏
j=1

n2∏
k=1

E
(
exp{i[(v1j ,X (t1j ,A1)− X (t1j−1,A1))

+ (v2k ,X (t2k ,A2)− X (t2k−1,A2))]}
)

= E

exp
i n1∑

j=1
(v1j ,X (t1j ,A1)− X (t1j−1,A1))

+ i
n2∑
k=1

(v2k ,X (t2k ,A2)− X (t2k−1,A2))
])

= E

exp
i n1∑

j=1
(u1j ,X (t1j ,A1))+ i

n2∑
k=1

(u2k ,X (t2k ,A2))

,
and again the result follows by Kac’s theorem. �

We say that a Lévy processes X has bounded jumps if there exists C > 0
with

sup
0≤t<∞

|�X (t)| < C.
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Theorem 2.4.7 If X is a Lévy process with bounded jumps then we have
E(|X (t)|m) <∞ for all m∈N.

Proof Let C> 0 be as above and define a sequence of stopping times
(Tn, n∈N) by T1= inf {t≥ 0, |X (t)|>C} and, for n> 1, Tn= inf {t> Tn−1, |
X (t)−X (Tn−1)|>C}. We first assume that T1 < ∞ (a.s.). We note that
|�X (Tn)| ≤C and that Tn+1− Tn= inf {t ≥ 0; |X (t + Tn) − X (Tn)| > C},
for all n∈N.

Our first goal will be to establish that, for all n∈N,

sup
0≤s<∞

|X (s ∧ Tn)| ≤ 2nC (2.12)

and we will prove this by induction. To see that this holds for n = 1 observe
that

sup
0≤s≤∞

|X (s ∧ T1)| = |X (T1)|

≤ |�X (T1)| + |X (T1−)| ≤ 2C.

Now suppose that inequality (2.12) holds for some n > 1. We fix ω∈� and
consider the left-hand side of (2.12) when n is replaced by n + 1. Now the
supremum of |X (s ∧ Tn+1)| is attained over the interval [0, Tn(ω)) or over the
interval [Tn(ω), Tn+1(ω)]. In the former case we are done, and in the latter case
we have

sup
0≤s<∞

|X (s ∧ Tn+1)(ω)|

= sup
Tn(ω)≤s≤Tn+1(ω)

|X (s)(ω)|

≤ sup
Tn(ω)≤s≤Tn+1(ω)

|X (s)(ω)− X (Tn)(ω)| + |X (Tn)(ω)|

≤ |X (Tn+1)(ω)− X (Tn)(ω)| + 2nC

≤ |X (Tn+1)(ω)− X (Tn+1−)(ω)|
+ |X (Tn+1−)(ω)− X (Tn)(ω)| + 2nC

≤ 2(n+ 1)C,

as required.
By the strong Markov property (Theorem 2.2.11), we deduce that, for each

n ≥ 2, the random variables Tn − Tn−1 are independent of FTn−1 and have the
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same law as T1. Hence by repeated use of Doob’s optional stopping theorem,
we find that there exists 0 < a < 1 for which

E(e−Tn) = E
(
e−T1e−(T2−T1) · · · e−(Tn−Tn−1))=[E(e−T1)

]n = an. (2.13)

Now combining (2.12) and (2.13) and using theChebyshev–Markov inequal-
ity we see that for each n∈N, t ≥ 0,

P(|X (t)| ≥ 2nC) ≤ P(Tn < t) ≤ et E(e−Tn) ≤ etan. (2.14)

Finally, to verify that each E(|X (t)|m) <∞, observe that by (2.14) we have

∫
|x|≥2nC

|x|mpX (t)(dx) =
∞∑
r=n

∫
2rC≤|x|<2(r+1)C

|x|mpX (t)(dx)

≤ (2C)met
∞∑
r=n

(r + 1)mar <∞.

If it is not the case that T1 < ∞ (a.s.), we first argue as above on the event
T1 <∞ and use

E(|X (t)|mχ{T1=∞}) ≤ CmP(T1 = ∞) ≤ Cm,

for all t ≥ 0, hence

E(|X (t)|m) = E(|X (t)|mχ{T1<∞})+ E(|X (t)|mχ{T1=∞}) <∞.

�

An immediate consequence of Theorem 2.4.7 is that if X has bounded jumps
then its Lévy symbol η is C∞ and for all t > 0, the moments of X (t) are
polynomials in t whose coefficients are expressed in terms of the values of the
derivatives of η at 0.
For each a > 0, consider the compound Poisson process(∫

|x|≥a
xN (t, dx), t ≥ 0

)
and define a new stochastic process Ya = (Ya(t), t ≥ 0) by the prescription

Ya(t) = X (t)−
∫
|x|≥a

xN (t, dx).
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Intuitively, Ya is what remains of the Lévy process X when all the jumps of size
greater than a have been removed. We can get more insight into its paths by
considering the impact of removing each jump. Let (Tn, n∈N) be the arrival
times for the Poisson process (N (t,Ba(0)c), t ≥ 0). Then we have

Ya(t) =


X (t) for 0 ≤ t < T1,
X (T1−) for t = T1,
X (t)− X (T1)+ X (T1−) for T1 < t < T2,
Ya(T2−) for t = T2,

and so on recursively.

Theorem 2.4.8 Ya is a Lévy process.

Proof (L1) is immediate. For (L2) we argue as in the proof of Theorem 2.3.5
and deduce that, for each 0 ≤ s < t < ∞, Ya(t) − Ya(s) is Fs,t-measurable
where Fs,t = σ {X (u) − X (v); s ≤ v ≤ u < t}. To establish (L3), use the fact
that for each b > 0, t ≥ 0,

P
(|Ya(t)| > b

) ≤ P

(
|X (t)| > b

2

)
+ P

(∣∣∣∣∫|x|≥a xN (t, dx)

∣∣∣∣ > b

2

)
.

�

We then immediately deduce the following.

Corollary 2.4.9 A Lévy process has bounded jumps if and only if it is of the
form Ya for some a > 0.

The proof is left as a (straightforward) exercise for the reader.
For each a > 0, we define a Lévy process Ŷa = (Ŷa(t), t ≥ 0) by

Ŷa = Ya(t)− E(Ya(t)).

It is then easy to verify that Ŷa is a càdlàg centred L2-martingale.

Exercise 2.4.10 Show that E(Ya(t)) = t E(Ya(1)) for each t ≥ 0.

In the following, we will find it convenient to take a = 1 and write the
processes Y1, Ŷ1 simply as Y , Ŷ , respectively. So Y is what remains of our
Lévy process when all jumps whose magnitude is larger than 1 have been
removed, and Ŷ is the centred version of Y . We also introduce the notation
M (t,A) = ∫A xÑ (t, dx) for t ≥ 0 and A bounded below.
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The following is a key step towards our required result.

Theorem 2.4.11 For each t ≥ 0,

Ŷ (t) = Yc(t)+ Yd(t),

where Yc and Yd are independent Lévy processes and Yc has continuous sample
paths.

Proof Let (εn, n∈N) be a sequence that decreases monotonically to zero,
wherein ε1 = 1. For each m∈N let

Bm =
{
x ∈Rd , εm+1 ≤ |x| < εm

}
and for each n∈N letAn =⋃n

m=1 Bm. Our first task is to show that the sequence
(M (·,An), n∈N) converges in martingale space. First note that for each t ≥ 0
theM (t,Bm) are mutually orthogonal by Proposition 2.4.1. So, for each n ≥ 0,

E(|M (t,An)|2) =
n∑

m=1
E(|M (t,Bm)|2). (2.15)

By Proposition 2.1.3, the argument in the proof of Theorem 2.4.6 and Exer-
cise 2.4.5, we find that the Lévy processes Ŷ − M (·,An) and M (·,An) are
independent, and so

Var(|Ŷ (t)|) = Var(|Ŷ (t)−M (t,An)|)+Var(|M (t,An)|).

Hence
E(|M (t,An)|2) = Var(|M (t,An)|) ≤ Var(|Ŷ (t)|). (2.16)

By (2.15) and (2.16) we see that, for each t ≥ 0, the sequence (E(M (t,An)2),
n∈N) is increasing and bounded above and hence convergent. Furthermore by
(2.15), for each n1 ≤ n2,

E
(|M (t,An2)−M (t,An1)|2

) = E(|M (t,An2)|2)− E(|M (t,An1)|2).

Hence we deduce that (M (t,An), n∈N) converges in the L2-sense. We denote
its limit by Yd(t) and observe that the process Yd = (Yd(t), t ≥ 0) lives in
martingale space.
Furthermore it follows from Theorem 1.3.7 that Yd is a Lévy process, where

we useChebyshev’s inequality to deduce that for each b > 0, limt→0 P(|Yd(t)−
M (t,An)| > b) ≤ limt→0(4/b

2)E(Ŷ (t)2) = 0 for all n∈N, by the remarks
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following the proof of theorem 2.4.7. A similar argument shows that Yc is a
Lévy process in martingale space, where

Yc(t) = L2 − lim
n→∞

[
Ŷ (t)−M (t,An)

]
.

The fact that Yc and Yd are independent follows by a straightforward limiting
argument applied to characteristic functions.
Now we need to show that Yc has continuous sample paths. If Yc(t) = 0

(a.s.) for all t ≥ 0 we are finished, so suppose that this is not the case. We
seek a proof by contradiction. Let N ⊆ � be the set on which the paths of Yc
fail to be continuous. If P(N ) = 0, we can replace Yc by a modification that
has continuous sample paths, so we will assume that P(N ) > 0. Then there
exists some b > 0 and a stopping time T such that P(|�X (T )| > b) > 0.
Let A = {x ∈Rd ; |x| > b}; then by Proposition 2.4.1 we have for each t ≥ 0,
f ∈ L2(A,µA),

0 �= E

((
Yc(t),

∫
|x|>b

f (x)Ñ (t, dx)

))

= lim
n→∞E

((
Ŷ (t)−M (t,An),

∫
|x|>b

f (x)Ñ (t, dx)

))
= 0,

and we have obtained our desired contradiction. �

From now on we will write Yd (t) as
∫
|x|<1 xÑ (t, dx), so that we are defining∫

|x|<1
Ñ (t, dx) = lim

n→∞

∫
εn<|x|<1

xÑ (t, dx),

where the limit is taken in the L2-sense.

Remark. The argument of Theorem 2.4.11 extends to enable us to define∫
|x|<1

f (x)Ñ (t, dx) = lim
n→∞

∫
εn<|x|<1

f (x)Ñ (t, dx),

for any measurable f for which f χB̂1 ∈ L2(Rd ,µ). To do this we must replace
the measure µ by µf ,B̂1

as defined in Theorem 2.3.7(i). For the purposes of this
construction, it is then sufficient to replace Y by a Lévy process Yf having char-
acteristics (0, 0,µf ,B̂1

). For alternative approaches to defining these integrals,
see e.g. chapter 12 of Kallenberg [199].
We recall that µ is the intensity measure of the Poisson random measure N .



2.4 The Lévy–Itô decomposition 123

Corollary 2.4.12 µ is a Lévy measure.

Proof We have already shown that µ((−1, 1)c) < ∞ (see Remark 1 after
Theorem 2.3.5). We also have∫

|x|≤1
|x|2µ(dx) = lim

n→∞

∫
An
|x|2µ(dx) = lim

n→∞E(|M (1,An|)2)

= E(|Yd(1)|2) <∞,

and the result is established. �

Corollary 2.4.13 For each t ≥ 0, u∈Rd ,

E(ei(u,Yd(t))) = exp

{
t
∫
|x|<1

[
ei(u,x) − 1− i(u, x)

]
µ(dx)

}
.

Proof Take limits in equation (2.9). �

Exercise 2.4.14 Deduce that for each t ≥ 0, 1 ≤ i ≤ d ,

〈Y i
d, Y

i
d〉(t) = t

∫
|x|<1

x2i µ(dx).

Theorem 2.4.15 Yc is a Brownian motion.

Proof Our strategy is to prove that for all u∈Rd , t ≥ 0,

E(ei(u,Yc(t))) = e−t(u,Au)/2, (2.17)

where A is a positive definite symmetric d × d matrix. The result then follows
from Corollary 2.2.8, the corollary to Lévy’s martingale characterisation of
Brownian motion.
For convenience we take d = 1. Note that, since Yc has no jumps, all its

moments exist by Theorem 2.4.7 and since Yc is a centred Lévy process we
must have

φt(u) = E(ei(u,Yc(t))) = etη(u), (2.18)

where η∈C∞(R) and η′(0) = 0. Repeated differentiation yields for each t ≥ 0,
m ≥ 2,

E(Yc(t)
m) = a1t + a2t

2 + · · · + am−1tm−1 (2.19)

where a1, a2, . . . , am−1 ∈R.
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Let P = {0 = t0 < t1 < · · · < tn = t} be a partition of [0, t] and, for the
purposes of this proof, write�Yc(tj) = Yc(tj+1)−Yc(tj) for each 0 ≤ j ≤ n−1.
Now by Taylor’s theorem we find

E(eiuYc(t) − 1) = E

n−1∑
j=0

(
eiuYc(tj+1) − eiuYc(tj)

)
= E(I1(t))+ E(I2(t))+ E(I3(t)),

where

I1(t) = iu
n−1∑
j=0

eiuYc(tj)�Yc(tj),

I2(t) = −u2

2

n−1∑
j=0

eiuYc(tj)
[
�Yc(tj)

]2,
I3(t) = −u2

2

n−1∑
j=0

(
eiu[Yc(tj)+θj�Yc(tj)] − eiuYc(tj)

)[
�Yc(tj)

]2,
with each 0 < θj < 1.

Now by independent increments we find immediately that

E(I1(t)) = iu
n−1∑
j=0

E(eiuYc(tj))E(�Yc(tj)) = 0

and

E(I2(t)) = −u2

2

n−1∑
j=0

E (eiuYc(tj))E((�Yc(tj))
2)

= −au2

2

n−1∑
j=0

φtj (u)(tj+1 − tj), (2.20)

where we have used (2.18) and (2.19) and written a1 = a ≥ 0.
The analysis of I3(t) is more delicate, and we will need to introduce, for each

α > 0, the event

Bα = max
0≤j≤n−1 sup

tj≤u,v≤tj+1
|Yc(v)− Yc(u)| ≤ α



2.4 The Lévy–Itô decomposition 125

and write

E(I3(t)) = E(I3(t)χBα )+ E(I3(t)χBcα ).

Now on using the elementary inequality |eiy−1| ≤ 2, for any y ∈R, we deduce
that

|E(I3(t))χBcα | ≤ u2
n−1∑
j=0

∫
Bcα

[
�Yc(tj)(ω)

]2
dP(ω)

≤ u2(P(Bc
α))

1/2

E

n−1∑
j=0

�Yc(tj)
2

2

1/2

≤ u2(P(Bc
α))

1/2 O(t2 + t3)1/2, (2.21)

where we have used the Cauchy–Schwarz inequality and (2.19).
On using the mean value theorem and (2.19) again, we obtain

|E(I3(t)χBα )| ≤
|u|3
2

∫
Bα

n−1∑
j=0

|�Yc(tj)(ω)|3dP(ω) ≤ αat|u|3
2

. (2.22)

Now let (P(n), n∈N) be a sequence of partitions with limn→∞ δn = 0, where
the mesh of each partition δn = max1≤j(n)≤m(n) |t(n)j+1 − t(n)j |, and for each n∈N

write the corresponding Ik(t) as I
(n)
k (t) for j = 1, 2, 3, and write each Bα as

B(n)
α . Now

max
1≤j≤m(n)

sup
t(n)j ≤u,v≤t(n)j+1

|Yc(v)− Yc(u)| ≤ sup
0≤u,v≤t,|u−v|≤δn

|Yc(v)− Yc(u)|

→ 0 as n→∞,

by sample-path continuity, and so it follows (e.g. by dominated convergence)
that limn→∞ P((B(n)

α )c) = 0. Hence we obtain, by (2.21) and (2.22), that

lim sup
n→∞

E
(
I (n)3 (t)

) ≤ αat|u|3
2

.

But α can be made arbitrarily small, and so we deduce that

lim
n→∞E

(
I (n)3 (t)

) = 0. (2.23)
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Taking limits in (2.20) yields

lim
n→∞E

(
I (n)2 (t)

) = −au2

2

∫ t

0
φs(u)ds. (2.24)

Combining the results of (2.23) and (2.24), we find that

φt(u)− 1 = −au2

2

∫ t

0
φs(u)ds.

Hence φt(u) = e−at|u|2/2, as required. �

At last we are ready for the main result of this section.

Theorem 2.4.16 (The Lévy–Itô decomposition) If X is a Lévy process, then
there exists b∈Rd , a Brownian motion BA with covariance matrix A and an
independent Poisson random measure N on R+ × (Rd − {0}) such that, for
each t ≥ 0,

X (t) = bt + BA(t)+
∫
|x|<1

xÑ (t, dx)+
∫
|x|≥1

xN (t, dx). (2.25)

Proof This follows from Theorems 2.4.11 and 2.4.15 with

b = E

(
X (1)−

∫
|x|≥1

xN (1, dx)

)
.

The fact that BA and N are independent follows from the argument of Theorem
2.4.6 via Exercise 2.4.4. �

NoteWe will sometimes find it convenient for each t ≥ 0, to write

BA(t) =
(
B1
A(t), . . . ,B

d
A(t)
)

in the form

BiA(t) =
m∑
j=1

σ i
j B

j(t),

where B1, . . . ,Bm are standard one-dimensional Brownian motions and σ is a
d × m real-valued matrix for which σσT = A.

Exercise 2.4.17 Write down the Lévy–Itô decompositions for the cases where
X is (a) α-stable, (b) a subordinator, (c) a subordinated process.
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Exercise 2.4.18 Show that an α-stable Lévy process has finite mean if 1 <

α ≤ 2 and infinite mean otherwise.

Exercise 2.4.19 Deduce that if X is a Lévy process then, for each t ≥ 0,∑
0≤s≤t[�X (s)]2 <∞ (a.s.).

An important by-product of the Lévy–Itô decomposition is the Lévy–
Khintchine formula.

Corollary 2.4.20 If X is a Lévy process then for each u∈Rd , t ≥ 0,

E(ei(u,X (t))) = exp

(
t

{
i(b, u)− 1

2 (u,Au)

+
∫

Rd−{0}
[
ei(u,y) − 1− i(u, y)χB(y)

]
µ(dy)

})
. (2.26)

Proof By independence we have

E(ei(u,X (t))) = E(ei(u,Yc(t)))E(ei(u,Yd(t)))E

(
ei
(
u,
∫
|x|≥1 xN (t,dx)

))
,

and the result follows by using equation (2.17) and the results of Corollary
2.4.13 and Theorem 2.3.7. �

Now let ρ be an arbitrary infinitely divisible probability measure; then by
Corollary 1.4.6 we can construct a canonical Lévy process X for which ρ

appears as the law of X (1). Note that X is adapted to its augmented natural
filtration and thus we obtain a proof of the first part of the Lévy–Khinchine
formula (Theorem 1.2.14).

Note 1 We emphasise that the above argument is not circular, in that we
have at no time used the Lévy–Khinchine formula in the proof of the Lévy–
Itô decomposition. We have used extensively, however, the weaker result
E(ei(u,X (t))) = etη(u), where u∈Rd , t ≥ 0, with η(u) = log

[
E(ei(u,X (1)))

]
.

This is a consequence of the definition of a Lévy process (see Theorem 1.3.3).

Note 2 The process
(∫
|x|<1 xÑ (t, dx), t ≥ 0

)
in (2.25) is the compensated sum

of small jumps. The compensation takes care of the analytic complications in
the Lévy–Khintchine formula in a probabilistically pleasing way – since it is
an L2-martingale.

The process
(∫
|x|≥1 xN (t, dx), t ≥ 0

)
describing the ‘large jumps’ in (2.25)

is a compound Poisson process by Theorem 2.3.9.



128 Martingales, stopping times and random measures

Note 3 In the light of (2.25), it is worth revisiting the result of Theorem 2.4.7.
IfX is a Lévy process then the Lévy process whose value at time t ≥ 0 isX (t)−∫
|x|≥1 xN (t, dx)hasfinitemoments to all orders.However,

( ∫
|x|≥1 xN (t, dx), t ≥

0
)
may have no finite moments, e.g. consider the case where X is α-stable with

0 < α ≤ 1. We will explore this in greater detail in the next section.

Corollary 2.4.21 The characteristics (b,A, ν) of a Lévy process are uniquely
determined by the process.

Proof This follows from the construction that led to Theorem 2.4.16. �

Corollary 2.4.22 Let G be a group of matrices acting onRd . A Lévy process is
G-invariant if and only if, for each g ∈G,

b = gb+
∫

Rd−{0}
[gy(χB(gy)− χB(y))]ν(dy), A = gAgT

and ν is G-invariant.

In the case where G acts as a group of isometries, the first of these conditions
reduces to b = gb.

Proof This follows immediately from the above corollary and the Lévy–
Khintchine formula. �

Exercise 2.4.23 Show that a Lévy process is O(d)-invariant if and only if it
has characteristics (0, aI , ν) where a ≥ 0 and ν is O(d)-invariant. Show that a
Lévy process is symmetric if and only if it has characteristics (0,A, ν) where
A is an arbitrary positive definite symmetric matrix and ν is symmetric, i.e.
ν(B) = ν(−B) for all B∈B(Rd − {0}).
Exercise 2.4.24 Let X be a Lévy process for which∫

|x|≥1
|x|nν(dx) <∞

for all n ≥ 2. For each n ≥ 2, t ≥ 0, define

X (n)(t) =
∑
0≤s≤t

[
�X (s)

]n and Y (n)(t) = X (n)(t)− E(X (n)(t)).

Show that each (Y (n)(t), t ≥ 0) is a martingale.
Note that these processes were introduced by Nualart and Schoutens [278]

and called Teugels martingales therein.
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Now that we have established the Lévy–Itô decomposition, we can return to
studying finite variation Lévy processes.

Theorem 2.4.25 A Lévy process with characteristics (b,A, ν) has finite
variation if and only if A = 0 and

∫
|x|<1 |x|ν(dx) <∞.

Proof. First suppose that A = 0 and
∫
|x|<1 |x|ν(dx) < ∞. Then the Lévy

process X = (X (t), t ≥ 0) has Lévy–Itô decomposition

X (t) = bt +
∫
|x|<1

xÑ (t, dx)+
∫
|x|≥1

xN (t, dx),

for each t ≥ 0. Since functions of finite variation form a vector space (see
Exercise 2.3.13) it follows from Exercise 2.3.15 that X has finite variation if
and only if the process

∫
|x|<1 xÑ (t, dx) does. For each n∈N, t ≥ 0, define

Yn(t) =
∫
1
n<|x|<1 xN (t, dx). For each t ≥ 0,m, n∈N, n > m,

E(|Yn(t)− Ym(t)|) ≤ t
∫

1
n<|x|≤ 1

m

|x|ν(dx)

→ 0 as n,m→∞.

Hence (Yn(t), t ≥ 0) converges in L1 (uniformly on compacta) to a limit
which we write as

∫
|x|<1 xN (t, dx). Clearly we have

∫
|x|<1 xN (t, dx) =∑

0≤s≤t �X (s)χB̂(�X (s)). For each 1 ≤ i ≤ d we may thus write each

Xi(t) =
(
bi −

∫
|x|<1

xiν(dx)

)
t +
∫
xi>0

xiN (t, dx)+
∫
xi<0

xiN (t, dx).

The processXi is hence a sumofmonotone processes and so is of finite variation.
The fact that each X = (X1, . . . ,Xd ) is of finite variation now follows by
Exercise 2.3.13.
Conversely suppose that X is of finite variation. Then again by Exercise

2.3.13 and Theorem 2.3.18 we must have A = 0. By Theorem 2.3.14, we have∑
0≤s≤t |�X (s)| <∞, and hence (restricting to sums of jumps whose size is at

most 1) we can assert the existence of the almost sure limit
∫
|x|<1 |x|N (t, dx) =

limn→∞
∫
1
n<|x|<1 |x|N (t, dx). By restricting to a subsequence if necessary, we

also know that
∫
|x|<1 |x|Ñ (t, dx) = limn→∞

∫
1
n<|x|<1 |x|Ñ (t, dx), almost surely.

In the following, we work with an arbitrary sample point where both sequences
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converge. We obtain∫
|x|<1

|x|ν(dx) = lim
n→∞

∫
1
n<|x|<1

|x|ν(dx)

= lim
n→∞

∫
1
n<|x|<1

|x|N (1, dx)− lim
n→∞

∫
1
n<|x|<1

|x|Ñ (1, dx)

=
∫
|x|<1

|x|N (1, dx)−
∫
|x|<1

|x|Ñ (1, dx).

Hence
∫
|x|<1 |x|ν(dx) <∞, as required. �

As a consequence of this theorem and its proof, wemay assert that a Lévy pro-
cess has finite variation if and only if we can write its Lévy–Itô decomposition
in the form

X (t) = b′t +
∫

Rd−{0}
xN (t, dx)

= b′t +
∑
0≤s≤t

�X (s),

where each b′ = b− ∫|x|<1 xν(dx). Such processes have Lévy symbol

η(u) = b′u+
∫

Rd−{0}
(ei(u,y) − 1)ν(dy), (2.27)

for each u∈Rd .

Exercise Check that an α-stable Lévy process has finite variation if and only if
d = 1 and α < 1.

Jump and creep

Suppose that X is a Lévy process with Lévy–Itô decomposition of the form

X (t) =
∫
|x|<1

xÑ (t, dx),

for all t ≥ 0. Subtle behaviour can take place in the case ν(B̂ − {0}) = ∞.
Intuitively, the resulting path can be seen as the outcome of a competition
between an infinite number of jumps of small size and an infinite drift. A deep
analysis of this has been carried out by Millar [271], in the case where d = 1
and ν((0, 1)) > 0. For each x > 0, let Tx = inf {t ≥ 0;X (t) > x}; then

P
(
X (Tx−) = x < X (Tx)

) = P
(
X (Tx−) < x = X (Tx)

) = 0,
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so that either paths jump across x or they are continuous at x, with probability
one. Furthermore, either P(X (Tx) = x) > 0 for all x > 0 or P(X (Tx) = x) = 0
for all x > 0. In the first case, every positive point has a non-zero probability
of lying on a continuous part of the sample path of X and this phenomena is
called creep in Bertoin [39], pp. 174–5. In the second case, only jumps can
occur (almost surely). Millar [271] classified completely the conditions for
creep or jump for general one-dimensional Lévy processes, in terms of their
characteristics. For example, a sufficient condition for creep is A = 0 and∫ 0
−1 |x|ν(dx) = ∞,

∫ 1
0 xν(dx) < ∞. This is clearly satisfied by ‘spectrally

negative’ α-stable Lévy processes (0 < α < 2), i.e. those for which c1 = 0
in Theorem 1.2.20(2). More detailed discussions of ‘creep’ can be found in
chapter 6 of Doney [96] and chapter 8 of Kyprianou [221].

2.5 Moments of Lévy Processes

In this section, we will give necessary and sufficient conditions for a Lévy
process X = (X (t), t ≥ 0) to have a finite moment. We begin with a lemma on
compound Poisson random variables.We recall that if Y is a compound Poisson
random variable then

Y = W1 + · · · +WN ,

where (Wn, n∈N) is a sequence of i.i.d random variables and N is an inde-
pendent Poisson random variable of intensity λ > 0 (see Section 1.2.3). In
the sequel, we will use W to denote a generic random variable which has the
same law as the Wns. We will also have need of the multinomial coefficients
defined by (

n
k1, k2, · · · , km

)
= n!

k1 !k2! · · · km! ,

for each set of non-negative integers {k1, . . . , km} satisfying k1+k2+· · ·+km =
n. We recall the multinomial theorem, for real valued x1, x2 . . . , xm,

(x1 + x2 + · · · + xm)
n =

∑
k1,k2,...km

(
n

k1, k2, · · · , km
)
xk11 x

k2
2 · · · xkmm .

In particular, if we take each xj = 1(1 ≤ j ≤ m), we obtain the identity

mn =
∑

k1,k2,...km

(
n

k1, k2, · · · , km
)
.
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Lemma 2.5.1 If Y is a compound Poisson random variable then for each
n∈N,E(|Y |n) <∞ if and only if E(|W |n) <∞.

Proof.We begin by taking d = 1. If E(|Y |n) <∞, then by using conditioning,
we obtain

E(|Y n|) = E[|W1 +W2 + · · · +WN |n]

=
∞∑
m=0

e−λ λ
m

m!E[|W1 +W2 + · · · +Wm|n]

≥ λe−λE(|W1|n).

Hence E(|Wn|) ≤ eλ

λ
E(|Y |n) <∞.

Conversely, if E(|W |n) <∞ we have by conditioning and independence

E(|Y |n) ≤ e−λ
∞∑
m=0

λm

m!
∑

k1,k2,...km

(
n

k1, k2, · · · , km
)

× E(|W1|k1)E(|W2|k2) · · ·E(|Wm|km)

≤ e−λ max
0≤k1,...,km≤n

E(|W1|k1)E(|W2|k2) · · ·E(|Wm|km)
∞∑
m=0

λm

m!m
n

<∞.

If d > 1, write Y = (Y1, Y2, . . . , Yd ) and use the (easily verified) fact that
E(|Y |n) <∞ if and only each E(|Yi|n) <∞(1 ≤ i ≤ d ). �

Theorem 2.5.2 If X is a Lévy process and n∈N, E(|X (t)|n) <∞ for all t > 0
if and only if

∫
|x|≥1 |x|nν(dx) <∞.

Proof. By Theorems 2.4.7 and 2.4.16, we may write each X (t) = X1(t)+X2(t)
where X1 = (X1(t), t ≥ 0) is a Lévy process having finite moments to all orders
andX2(t) =

∫
|x|≥1 xN (t, dx). HenceX (t) has an nth moment if and only ifX2(t)

does. By Theorem 2.3.9 X2 = (X2(t), t ≥ 0) is a compound Poisson process of
the form X2(t) = W1 + W2 + · · · + WN (t), where the Wjs have common law
pW (A) = ν(A ∩ B̂c)/ν(B̂c) for each A∈B(Rd ) and (N (t), t ≥ 0) is a Poisson
processwith intensity ν(B̂c). The required result now follows immediately upon
applying Lemma 2.5.1. �
Note. A stronger result than this is proved in chapter 5, section 25 of [323].
Here it is shown that E(g(X (t)) < ∞ for all t > 0 if and only if
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∫
|x|≥1 g(x)

nν(dx) < ∞. The function g is required to be a non-negative,

measurable, sub-multiplicative function on Rd , i.e. there exists K > 0 such
that

g(x + y) ≤ Kg(x)g(y),

for all x, y ∈Rd .

It follows from Theorem 2.5.2 that a Lévy process X is integrable, i.e.
E(|X (t)|) < ∞ for all t ≥ 0 if and only if

∫
|x|≥1 |x|ν(dx). From this and

(2.25) we can easily deduce that X is a martingale if and only if it is integrable
and

b+
∫
|x|≥1

xν(dx) = 0.

Exercise Let X be a square-integrable Lévy process, i.e. E(|X (t)|2 <∞ for
all t ≥ 0. Deduce that you can write its Lévy–Itô decomposition as

X (t) = b′t + BA(t)+
∫

Rd−{0}
xÑ (t, dx),

for all t ≥ 0where b′ ∈Rd . Hence show that a square-integrable Lévy process is
centred if and only if it is a martingale. What can you say about the Lp case
where p > 2?

2.6 The interlacing construction

In this section we are going to use the interlacing technique to gain greater
insight into the Lévy–Itô decomposition. First we need some preliminaries.

2.6.1 Limit events – a review

Let (A(n), n∈N) be a sequence of events in F . We define the tail events

lim inf
n→∞ A(n) =

∞⋃
n=1

∞⋂
k=n

A(k) and lim sup
n→∞

A(n) =
∞⋂
n=1

∞⋃
k=n

A(k).

Elementary manipulations yield

P
(
lim inf
n→∞ A(n)c

)
= 1− P

(
lim sup
n→∞

A(n)

)
. (2.28)
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The following is a straightforward consequence of the continuity of probability:

P
(
lim inf
n→∞ A(n)

)
≤ lim inf

n→∞ P(A(n)) ≤ lim sup
n→∞

P(A(n))

≤ P

(
lim sup
n→∞

A(n)

)
. (2.29)

For a proof, see e.g. Rosenthal [311], p. 26.
We will need Borel’s lemma (sometimes called the first Borel–Cantelli

lemma), which is proved in many textbooks on elementary probability. The
proof is simple, but we include it here for completeness.

Lemma 2.6.1 (Borel’s lemma) If (A(n), n∈N) is a sequence of events for
which

∑∞
n=1 P(A(n)) <∞, then P(lim supn→∞ A(n)) = 0.

Proof Given any ε > 0wecanfindn0 ∈N such thatm> n0⇒ ∑∞
n=m P(A(n)) <

ε, hence we find

P

(
lim sup
n→∞

A(n)

)
≤ P

( ∞⋃
n=m

A(n)

)
≤

∞∑
n=m

P(A(n)) < ε,

and the result follows. �

For the second Borel–Cantelli lemma, which we will not use in this book,
see e.g. Rosenthal [311], p. 26, or Grimmett and Stirzaker [143], p. 288.

2.6.2 Interlacing

Let Y = (Y (t), t ≥ 0) be a Lévy process with jumps bounded by 1, so that we
have the Lévy–Itô decomposition

Y (t) = bt + BA(t)+
∫
|x|<1

xÑ (t, dx)

for each t ≥ 0. For the following construction to be non-trivial we will find it
convenient to assume that Y may have jumps of arbitrarily small size, i.e. that
there exists no 0 < a < 1 such that ν((−a, a)) = 0.

Now define a sequence (εn, n∈N) that decreases monotonically to zero by

εn = sup

{
y ≥ 0,

∫
0<|x|<y

x2ν(dx) ≤ 1

8n

}
,
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where ν is the Lévy measure of Y . We define an associated sequence of Lévy
processes Yn = (Yn(t), t ≥ 0), wherein the size of each jump is bounded below
by εn and above by 1, as follows:

Yn(t) = bt + BA(t)+
∫
εn≤|x|<1

xÑ (t, dx)

= Cn(t)+
∫
εn≤|x|<1

xN (t, dx),

where, for each n∈N, Cn is the Brownian motion with drift given by

Cn(t) = BA(t)+ t

[
b−

∫
εn≤|x|<1

xν(dx)

]
,

for each t ≥ 0.
Now

∫
εn≤|x|<1 xN (t, dx) is a compound Poisson process with jumps �Y (t)

taking place at times (Tm
n ,m∈N). We can thus build the process Yn by

interlacing, as in Example 1.3.13:

Yn(t) =


Cn(t) for 0 ≤ t < T 1

n ,
Cn(T 1

n )+�Y (T 1
n ) for t = T 1

n ,
Yn(T 1

n )+ Cn(t)− Cn(T 1
n ) for T 1

n < t < T 2
n ,

Yn(T 2
n−)+�Y (T 2

n ) for t = T2,

and so on recursively.
Our main result is the following (cf. Fristedt and Gray [123], theorem 4,

p. 608).

Theorem 2.6.2 For each t ≥ 0,

lim
n→∞Yn(t) = Y (t) a.s.

and the convergence is uniform on compact intervals of R+.

Proof Fix T ≥ 0 then, for each 0 ≤ t ≤ T , n∈N we have

Yn+1(t)− Yn(t) =
∫
εn+1<|x|<εn

xÑ (t, dx),
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which is an L2-martingale. Hence by Doob’s martingale inequality we obtain

E

(
sup

0≤t≤T
|Yn+1(t)− Yn(t)|2

)
≤ 4E(|Yn+1(T )− Yn(T )|2)

= 4T
∫
εn+1<|x|<εn

|x|2ν(dx) ≤ 4T

8n
,

where we have used (2.10). By Chebyshev’s inequality

P

(
sup

0≤t≤T
|Yn+1(t)− Yn(t)| ≥ 1

2n

)
≤ 4T

2n

and by Borel’s lemma (Lemma 2.6.1), we deduce that

P

(
lim sup
n→∞

sup
0≤t≤T

|Yn+1(t)− Yn(t)| ≥ 1

2n

)
= 0;

so, by (2.28),

P

(
lim inf
n→∞ sup

0≤t≤T
|Yn+1(t)− Yn(t)| < 1

2n

)
= 1.

Hence given any δ > 0 there exists n0 ∈N such that, for m, n > n0, we have

sup
0≤t≤T

|Yn(t)− Ym(t)| ≤
n−1∑
r=m

sup
0≤t≤T

|Yr+1(t)− Yr(t)| <
n−1∑
r=m

1

2r
< δ

with probability 1, from which we see that (Yn(t), n∈N) is almost surely uni-
formly Cauchy on compact intervals and hence is almost surely uniformly
convergent on compact intervals. �

Now letX be an arbitrary Lévy process; then by the Lévy–Itô decomposition,
for each t ≥ 0,

X (t) = Y (t)+
∫
|x|≥1

xN (t, dx).

But
∫
|x|≥1 xN (t, dx) is a compound Poisson process and so the paths of X can be

obtained by a further interlacing with jumps of size bigger than 1, as in Example
1.3.13.
Subordinators are Lévy processes of finite variation. To prove Theorem

1.3.15, we now need only apply (2.27) and the interlacing structure to see
that we must have b ≥ 0 and each jump to be positive so that ν has support on
(0,∞).
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2.7 Semimartingales

Akey aim of stochastic calculus is to make sense of
∫ t
0 F(s)dX (s) for a suitable

class of adapted processes and integrators X . It turns out, as we will see, that
the processes we will now define are ideally suited for the role of integrators.
We say that X is a semimartingale if it is an adapted process such that, for each
t ≥ 0,

X (t) = X (0)+M (t)+ C(t),

where M = (M (t), t ≥ 0) is a local martingale and C = (C(t), t ≥ 0) is an
adapted process of finite variation. In many cases of interest to us the process
M will be a martingale.
TheDoob–Meyer decomposition (Theorem2.2.3) implies that (M (t)2, t ≥ 0)

is a semimartingale wheneverM is square-integrable. Another important class
of semimartingales is given by the following result.

Proposition 2.7.1 Every Lévy process is a semimartingale.

Proof By the Lévy–Itô decomposition we have, for each t ≥ 0,

X (t) = M (t)+ C(t),

where

M (t) = BA(t)+
∫
|x|<1

xÑ (t, dx), C(t) = bt +
∫
|x|≥1

xN (t, dx).

We saw above that M = (M (t), t ≥ 0) is a martingale.
But Y (t) = ∫|x|≥1 xN (t, dx) is a compound Poisson process and thus for any

partition P of [0, t] we find that
varP (Y ) ≤

∑
0≤s≤t

|�X (s)|χ[1,∞)(�X (s)) <∞ a.s.,

and the required result follows. �

In Chapter 4, we will explore the problem of defining∫ t

0
F(s)dX (s) =

∫ t

0
F(s)dM (s)+

∫ t

0
F(s)dC(s),

for a class of semimartingales. Observe that if F is say locally bounded and
measurable and N is the set on which C fails to be of finite variation then we
can define∫ t

0
F(s)dC(s)(ω) =

{∫ t
0 F(s)(ω)dC(s)(ω) if ω∈�−N ,
0 if ω∈N .
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In general
∫ t
0 F(s)dM (s) cannot be defined as a Stieltjes integral; indeed the only

continuous martingales that are of finite variation are constants (see Revuz and
Yor [306], p. 114). We will learn how to get around this problem in Chapter 4.

The Lévy–Itô decomposition admits an interesting generalisation to arbitrary
semimartingales.We sketch this very vaguely – full details can be found in Jacod
and Shiryaev [183], p. 84. We define a random measureMX on R+ ×Rd in the
usual way:

MX (t,A) = #{0 ≤ s ≤ t;�X (s)∈A}
for each t ≥ 0, A∈B(Rd ). It can be shown that a compensator νX always
exists, this being a random measure on R+ × Rd for which (in particular)∫
Rd f (x)[MX (t, dx) − νX (t, dx)] is a martingale for all measurable f such that
the integral exists.
For all t ≥ 0 we then have the decomposition

X (t) = B(t)+ X c(t)+
∫

Rd
h(x)

[
MX (t, dx)− νX (t, dx)

]
+
∫

Rd

[
x − h(x)

]
MX (t, dx),

where X c is a continuous local martingale and B is an adapted process. The
mapping h appearing here is a fixed truncation function, so that h is bounded
and has compact support and h(x) = x in a neighbourhood of the origin. Write
Cij = 〈X c

i ,X
c
j 〉; then the characteristics of the semimartingaleX are (B,C, νX ).

Note that B depends upon the choice of h.
Resources for general material about semimartingales include Jacod and

Shiryaev [183], Métivier [262], Protter [298] and He et al. [149].

2.8 Notes and further reading

Martingales were first developed by Doob [97] in discrete time and many
of their properties were extended to continuous time by P.A. Meyer. His
work and that of his collaborators is summarised in Dellacherie and Meyer
[88]. Readers should also consult early editions of Séminaire de Prob-
abilités: for reviews of some of these articles, consult the database at
http://www-irma.u-strasbg.fr/irma/semproba/e_index.shtml. See also the col-
lection of articles edited by Emery and Yor [112].
Brémaud [63] contains a systematic martingale-based approach to point

processes, with a number of applications including queues, filtering and control.
The Lévy–Itô decomposition is implicit in work of Lévy [228] and was rig-

orously established by Itô in [171]. The interlacing construction also appears, at

http://www-irma.u-strasbg.fr/irma/semproba/eprotect LY1	extunderscore index.shtml
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least implicitly, for the first time in this paper. Bretagnolle [65] was responsible
for the martingale-based approach used in the present text. Note that he credits
this to unpublished work of Marie Duflo. An alternative proof that is closer in
spirit to that of Itô can be found in chapter 4 of Sato [323].
The objects which we have called ‘martingale-valued measures’were called

‘martingale measures’byWalsh [352]; however, the latter terminology has now
become established in mathematical finance to denote probability measures
under which the discounted stock price is a martingale (see Chapter 5).

2.9 Appendix: càdlàg functions

Let I = [a, b] be an interval in R+. Amapping f : I → Rd is said to be càdlàg
(from the French continue à droite et limité à gauche) if, for all t ∈ [a, b], f has
a left limit at t and f is right-continuous at t, i.e.

• for all sequences (tn, n∈N) in (a, b) with each tn < t and limn→∞ tn = t we
have that limn→∞ f (tn) exists;

• for all sequences (tn, n∈N) in (a, b) with each tn ≥ t and limn→∞ tn = t we
have that limn→∞ f (tn) = f (t);

• for the end-points we stipulate that f is right continuous at a and has a left
limit at b.

A càglàd function (i.e. one that is left-continuous with right limits) is defined
similarly.
Clearly any continuous function is càdlàg but there are plenty of other exam-

ples, e.g. take d = 1 and consider the indicator functions f (t) = χ[a,b)(t)where
a < b.
If f is a càdlàg function we will denote the left limit at each point t ∈ (a, b]

as f (t−) = lims↑t f (s), and we stress that f (t−) = f (t) if and only if f is
continuous at t. We define the jump at t by

�f (t) = f (t)− f (t−).

Clearly a càdlàg function can only have jump discontinuities.
We give a proof of the following key result following Billingsley [49]

(chapter 3, lemma 1).

Lemma 2.9.1 For each càdlàg function f defined on [a, b] and each k > 0,
there exists a finite partition P = {a = t0 < t1 < · · · < tn = b} for which

sup{|f (u)− f (v)|; u, v ∈ [tj, tj+1), j = 0, . . . , n− 1} < k.
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Proof Fix k > 0 and let t∗ be the supremum of all those t ∈ [a, b] such that a
finite partition of [0, t) can be found which satisfies the condition given in the
statement of the lemma. Since f is right continuous at a, t∗ > 0. Since f has a
left limit at t∗, [0, t∗) may be partitioned as required. Suppose t∗ < b. Since f
is right continuous at t∗ we can find t∗∗ > t∗ such that

sup{|f (u)− f (v)|, u, v ∈ [t∗, t∗∗)} < k.

Hence we have obtained a contradiction and so t∗ = b. �
The following result is of great importance for stochastic calculus.

Theorem 2.9.2 If f is a càdlàg function then

(i) For each k > 0, the set Sk = {t,�f (t) > k} is finite.
(ii) The set S = {t,�f (t) �= 0} is at most countable.
Proof

(i) IfP is the partition whose existence is guaranteed by Lemma 2.9.1, we see
that the only places where the required jump discontinuities can occur are
at the points t1, . . . , tn.

(ii) This follows immediately from the fact that S =⋃n∈N S1/n.

�

Note that a more general theorem, which establishes the countability of the
set of discontinuities of the first kind for arbitrary real-valued functions, can be
found in Hobson [154], p. 304 (see also Klebaner [203], p. 3).
Many useful properties of continuous functions continue to hold for càdlàg

functions and we list some of these below:

(1) Let D(a, b) denote the set of all càdlàg functions on [a, b]; then D(a, b) is
a linear space with respect to pointwise addition and scalar multiplication.

(2) If f , g ∈D(a, b) then fg ∈D(a, b). Furthermore, if f (x) �= 0 for all x ∈ [a, b]
then 1/f ∈D(a, b).

(3) If f ∈C(Rd ,Rd ) and g ∈D(a, b) then the composition f ◦ g ∈D(a, b).
(4) Every càdlàg function is bounded on finite closed intervals and attains its

bounds there.
(5) Every càdlàg function is uniformly right-continuous on finite closed

intervals.
(6) The uniform limit of a sequence of càdlàg functions on [a, b] is itself càdlàg.
(7) Any càdlàg function can be uniformly approximated on finite intervals by

a sequence of step functions.
(8) Every càdlàg function is Borel measurable.
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All the above can be proved by tweaking the technique used for establishing
the corresponding result for continuous functions. Note that by symmetry these
results also hold for càglàd functions.
If f ∈D(a, b)wewill sometimes find it convenient to consider the associated

mapping f̃ : (a, b] → R defined by f̃ (x) = f (x−) whenever x ∈ (a, b]. Note
that f and f̃ differ at most on a countable number of points and f̃ is càglàd on
(a, b]. It is not difficult to verify that

sup
a<x≤b

|f (x−)| ≤ sup
a≤x≤b

|f (x)|.

Using (4), we can define seminorms on D(R+) = D((0,∞)) by taking the
supremum, i.e. ||f ||a,b = supa≤t≤b |f (t)| for all 0 ≤ a ≤ b < ∞; then the
{|| · ||0,n, n∈N} form a separating family and so we obtain a complete metric
on D(R+) by the prescription

d(f , g) = max
n∈N

||f − g||0,n
2n(1+ ||f − g||0,n) ,

(see e.g. Rudin [315] p. 33). Note however that d is not separable. In order
to turn D(R+) into a Polish space (i.e. a separable topological space that is
metrisable by a complete metric), we need to use a topology different from
that induced by d . Such a topology exists and is usually called the Skorohod
topology. We will not have need of it herein and refer the interested reader to
chapter 6 of Jacod and Shiryaev [183] or chapter 3 of Billingsley [49] for details.

2.10 Appendix: Unitary action of the shift

For simplicity, we work with the canonical representation of the Lévy process.
Fix 0 ≤ s ≤ t and let Fs,t = σ {X (v) − X (u), s < u < v ≤ t}. Let πs,t
be the π -system which comprises all sets of the form JA1,...,Anu1,v1,...,un,vn where s <

u1, v1, . . . , un, vn ≤ t with ui < vi, 1 ≤ i ≤ n,A1, . . . ,An ∈B(Rd ), n∈N and
JA1,...,Anu1,v1,...,un,vn = (X (v1)− X (u1)∈A1) ∩ · · · ∩ (X (vn)− X (un)∈An).
It follows from Dynkin’s lemma (Lemma 1.1.1) that the linear span Ds,t of

all sets of the form {χJ , J ∈πs,t} is dense in L2(�,Fs,t ,P). For each h > 0
define the shift θh :� → � by the prescription θh(ω)(t) = ω(t + h) − ω(h),
then we obtain a mapping �h : L2(�,Fs,t ,P) → L2(�,Fs+h,t+h,P) by the
prescription �hF = F ◦ θh for all F ∈ L2(�,Fs,t ,P), h > 0. It is easily verified
that the action of �h on Ds,t is given by linear extension of the prescription
�hJ

A1,...,An
u1,v1,...,un,vn = JA1,...,Anu1+h,v1+h,...,un+h,vn+h.
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Proposition 2.10.1 For each h > 0, �h is a unitary operator.

Proof It is sufficient to take s = 0. Fix 0 < u < v < w < r ≤ t. We will show
that the joint distribution of X (r)− X (v) and X (w)− X (u) is the same as that
of X (r+ h)− X (v+ h) and X (w+ h)− X (u+ h). To do this it is sufficient to
examine the joint characteristic function. Let c = (c1, c2)∈R2, then using the
fact that the process X has stationary and independent increments, we see that

E(exp{ic1(X (r)− X (v))+ ic2(X (w)− X (u))})
= E(exp{i(c1 + c2)(X (w)− X (v))+ ic1(X (r)− X (w))

+ ic2(X (v)− X (u))})
= E(exp{i(c1 + c2)(X (w)− X (v))})E(exp{ic1(X (r)− X (w))})
× E(exp{ic2(X (v)− X (u))})

= E(exp{i(c1 + c2)(X (w + h)− X (v + h))})
× E(exp{ic1(X (r + h)− X (w + h))})
× E(exp{ic2(X (v + h)− X (u+ h))})

= E(exp{ic1(X (r + h)− X (v + h))+ ic2(X (w + h)− X (u+ h))}).

From this we easily deduce that E(|�hX |2 = E(|X |2) where X = c1χJAu,w +
c2χJBv,r and A,B∈B(Rd ). Using a straightforward but tedious induction argu-
ment it follows that�hmapsD0,t isometrically ontoDh,t+h and hence it extends
uniquely to a unitary operator as required. �
This result also holds in general (�,F ,P). In this case you should define �h

by its action on the dense linear manifold Ds,t and then the above argument
again shows that it extends to a unitary operator.
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Markov processes, semigroups
and generators

Summary Markov processes and the important subclass of Feller processes are intro-

duced and shown to be determined by the associated semigroups. We take an analytic

diversion into semigroup theory and investigate the important concepts of generator

and resolvent. Returning to Lévy processes, we obtain two key representations for the

generator: first, as a pseudo-differential operator; second, in ‘Lévy–Khintchine form’,

which is the sum of a second-order elliptic differential operator and a (compensated)

integral of difference operators. We also study the subordination of such semigroups

and their action in Lp-spaces.

The structure of Lévy generators, but with variable coefficients, extends to a general

class of Feller processes, via Courrège’s theorems, and also to Hunt processes associated

with symmetric Dirichlet forms, where the Lévy–Khintchine-type structure is apparent

within the Beurling–Deny formula.

3.1 Markov processes, evolutions and semigroups

3.1.1 Markov processes and transition functions

Intuitively, a stochastic process is Markovian (or, a Markov process) if using
the whole past history of the process to predict its future behaviour is no more
effective than a prediction based only on a knowledge of the present. This
translates into precise mathematics as follows.
Let (�,F ,P) be a probability space equipped with a filtration (Ft , t ≥ 0).

LetX = (X (t), t ≥ 0) be an adapted process.We say thatX is aMarkov process
if, for all f ∈Bb(Rd ), 0 ≤ s ≤ t <∞,

E(f (X (t))|Fs) = E(f (X (t))|X (s)) a.s. (3.1)

143
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Notes

(1) The defining equation (3.1) is sometimes called the ‘Markov property’.
(2) Rd may be replaced here by any Polish space, i.e. a separable topological

space that is metrisable by a complete metric.
(3) In discrete time, we obtain the well-known notion of the Markov chain.

Example 3.1.1 (Lévy processes) Let X be a Lévy process; then it follows by
Exercise 2.1.2 that X is a Markov process.

Recall that Bb(Rd ) is a Banach space with respect to the norm

||f || = sup{|f (x)|, x ∈Rd }

for each f ∈Bb(Rd ).

With each Markov process X , we associate a family of operators (Ts,t , 0 ≤
s ≤ t < ∞) from Bb(Rd ) to the Banach space (under the supremum norm) of
all bounded functions on Rd by the prescription

(Ts,t f )(x) = E
(
f (X (t))|X (s) = x

)
for each f ∈Bb(Rd ), x ∈Rd .We recall that I is the identity operator, If = f , for
each f ∈Bb(Rd ).We say that theMarkov processX is normal ifTs,t(Bb(Rd )) ⊆
Bb(Rd ), for each 0 ≤ s ≤ t <∞.

Theorem 3.1.2 If X is a normal Markov process, then

(1) Ts,t is a linear operator on Bb(Rd ) for each 0 ≤ s ≤ t <∞.
(2) Ts,s = I for each s ≥ 0.
(3) Tr,sTs,t = Tr,t whenever 0 ≤ r ≤ s ≤ t <∞.
(4) f ≥ 0⇒ Ts,t f ≥ 0 for all 0 ≤ s ≤ t <∞, f ∈Bb(Rd ).
(5) Ts,t is a contraction, i.e. ||Ts,t || ≤ 1 for each 0 ≤ s ≤ t <∞.
(6) Ts,t(1) = 1 for all t ≥ 0.

Proof Parts (1), (2), (3) and (4) are obvious.
For (3) let f ∈Bb(Rd ), x ∈Rd ; then, for each 0 ≤ r ≤ s ≤ t < ∞, applying

conditioning and the Markov property (3.1) yields

(Tr,t f )(x)=E
(
f (X (t))

∣∣X (r) = x
) = E

(
E(f (X (t))

∣∣Fs)|X (r) = x
)

=E
(
E(f(X(t))

∣∣X (s))|X(r)= x
)=E

(
Ts,t f (X(s))

∣∣X (r)= x
)

= (Tr,s(Ts,t f ))(x).
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(5) For each f ∈Bb(Rd ), 0 ≤ s ≤ t <∞,

||Ts,t f || = sup
x ∈Rd

∣∣E(f (X (t))|X (s)= x)
∣∣≤ sup

x ∈Rd
E
(|f (X (t))|∣∣X (s) = x

)
≤ sup

x ∈Rd
|f (x)| sup

x ∈Rd
E(1|X (s) = x)

= ||f ||.

Hence each Ts,t is a bounded operator and

||Ts,t || = sup{||Ts,t(g)||, ||g|| = 1} ≤ 1.

�

Any family satisfying (1)–(6) of Theorem 3.1.2 is called aMarkov evolution.
Note that of all the six conditions, (3) is the most important, as this needs the
Markov property for its proof.
For each 0 ≤ s ≤ t <∞, A∈B(Rd ), x ∈Rd , define

ps,t(x,A) = (Ts,tχA)(x) = P
(
X (t)∈A|X (s) = x

)
. (3.2)

By the properties of conditional probability, each ps,t(x, ·) is a probability mea-
sure on B(Rd ). We call the mappings ps,t transition probabilities, as they give
the probabilities of ‘transitions’ of the process from the point x at time s to the
set A at time t.
If X is an arbitrary Markov process, by equation (1.1) we have

(Ts,t f )(x) =
∫

Rd
f (y)ps,t(x, dy) (3.3)

for each 0 ≤ s ≤ t <∞, f ∈Bb(Rd ), x ∈Rd .
From (3.3) we see that aMarkov process is normal if and only if themappings

x→ ps,t(x,A) are Borel measurable for each A∈B(Rd ), 0 ≤ s ≤ t <∞.
Normal Markov processes are a natural class to deal with from both analytic

and probabilistic perspectives, and fromnowonwewill concentrate exclusively
on these.

Exercise 3.1.3 Let X be a Lévy process and let qt be the law of X (t) for each
t ≥ 0. Show that

ps,t(x,A) = qt−s(A− x)

for each 0 ≤ s ≤ t <∞, A∈B(Rd ), x ∈Rd .
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Exercise 3.1.4 AMarkov process is said to have a transition density if for each
x ∈Rd , 0 ≤ s ≤ t <∞, there exists a measurable function y→ ρs,t(x, y) such
that

ps,t(x,A) =
∫
A
ρs,t(x, y) dy.

Deduce that a Lévy process X = (X (t), t ≥ 0) has a transition density if and
only if qt has a density ft for each t ≥ 0, and hence show that

ρs,t(x, y) = ft−s(y − x)

for each 0 ≤ s ≤ t <∞, x, y ∈Rd .
Write down the transition densities for (a) standard Brownian motion,

(b) the Cauchy process.

The following result will be familiar to students of Markov chains in its
discrete form.

Theorem 3.1.5 (The Chapman–Kolmogorov equations) If X is a normal
Markov process then for each 0 ≤ r ≤ s ≤ t <∞, x ∈Rd , A∈B(Rd ),

pr,t(x,A) =
∫

Rd
ps,t(y,A)pr,s(x, dy). (3.4)

Proof Note that since X is normal, the mappings y→ ps,t(y,A) are integrable.
Now applying Theorem 3.1.2 and (3.3), we obtain

pr,t(x,A) = (Tr,tχA)(x) = (Tr,s(Ts,tχA))(x)

=
∫

Rd
(Ts,tχA)(y)pr,s(x, dy) =

∫
Rd

ps,t(y,A)pr,s(x, dy).

�

Exercise 3.1.6 Suppose that the Markov process X has a transition density as
in Exercise 3.1.4. Deduce that

ρr,t(x, z) =
∫

Rd
ρr,s(x, y)ρs,t(y, z)dy

for each 0 ≤ r ≤ s ≤ t <∞ and x, z ∈Rd .

We have started with a Markov process X and then obtained the Chapman–
Kolmogorov equations for the transition probabilities. There is a partial
converse to this, which we will now develop. First we need a definition.
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Let {ps,t ; 0 ≤ s ≤ t < ∞} be a family of mappings from Rd ×
B(Rd ) → [0, 1]. We say that they are a normal transition family if, for each
0≤ s≤ t<∞:

(1) the maps x→ ps,t(x,A) are measurable for each A∈B(Rd );
(2) ps,t(x, ·) is a probability measure on B(Rd ) for each x ∈Rd ;
(3) the Chapman–Kolmogorov equations (3.4) are satisfied.

Theorem 3.1.7 If {ps,t ; 0 ≤ s ≤ t < ∞} is a normal transition family and
µ is a fixed probability measure on Rd , then there exists a probability space
(�,F ,Pµ), a filtration (Ft , t ≥ 0) and a Markov process (X (t), t ≥ 0) on that
space such that:

(1) P
(
X (t)∈A|X (s) = x

) = ps,t(x,A) (a.s.) for each 0 ≤ s ≤ t <∞, x ∈Rd ;
A∈B(Rd );

(2) X (0) has law µ.

Proof We remind readers of the Kolmogorov existence theorem (Theorem
1.1.17). We take � to be the set of all mappings from R+ to Rd and F to be
the σ -algebra generated by cylinder sets IA0×A1×···×Ant0,t1,...,tn , where 0 = t0 �= t1 �=
· · · �= tn <∞ and A0,A1, . . . ,An ∈B(Rd ). In the case where t1 < · · · < tn we
define

pt0,t1,...,tn(A0 × A1 × · · · × An)

=
∫
A0

µ(dx0)
∫
A1
p0,t1(x0, dx1)

∫
A2
pt1,t2(x1, dx2) · · ·

×
∫
An
ptn−1,tn(xn−1, dxn).

For arbitrary distinct t1, . . . , tn define

pt0,t1,...,tn = pt0,tπ(1),...,tπ(n) ,

where π is the unique permutation of {1, . . . , n} for which tπ(1) < · · · <

tπ(n). By the Chapman–Kolmogorov equations (3.4), we can easily verify that
{pt0,t1,...,tn , t0 �= t1 �= t2 �= . . . �= tn} satisfy Kolmogorov’s consistency criteria
and so, by a slight extension of Kolmogorov’s existence theorem, Theorem
1.1.17, there exists a probability measurePµ and a process X = (X (t), t ≥ 0)
on (�,F ,Pµ) having the pt0,t1,...,tn as finite-dimensional distributions. X is
adapted to its natural filtration.
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(2) is now immediate. To establish (1) observe that by the above construction,
for each 0 ≤ s ≤ t <∞, A∈B(Rd ),

P(X (t)∈A) =
∫

Rd

∫
Rd

ps,t(x,A)µ(dx0)p0,s(x0, dx).

However,

P(X (t)∈A) =
∫

Rd
P
(
X (t)∈A|X (s) = x

)
pX (s)(dx)

=
∫

Rd

∫
Rd

P
(
X (t)∈A|X (s) = x

)
µ(dx0)p0,s(x0, dx),

and the result follows.
Finally we must show that X is Markov. Let 0 ≤ s < t < ∞ and

let Rs be the collection of all cylinder sets of the form A = IA0×A1×···×Ant0,t1,...,tn
with max0≤ i≤ n ti < s. For convenience we will put t0 = 0. Let π be the
unique permutation of {1, . . . , n} for which tπ(1) < · · · < tπ(n). For each
f ∈Bb(Rd ),A∈Rs we have,

E(χAE(f (X (t))|Fs)

= E(χAf (X (t)))

= E(χ{X (t0)∈A0,X (t1)∈A1,...,X (tn)∈An}f (X (t)))

= E(χ{X (t0)∈A0,X (tπ(1))∈Aπ(1),...,X (tπ(n))∈Aπ(n)}f (X (t)))

=
∫
A0

µ(dx0)
∫
Aπ(1)

pt0,tπ(1) (x0, dx1) . . .
∫
Aπ(n)

ptπ(n−1),tπ(n) (xn−1, dxn)

×
∫

Rd
f (y)ptπ(n),t(xn, dy)

On the other hand

E(χAE(f (X (t))|X (s))

= E(χ{X (t0)∈A0,X (t1)∈A1,...,X (tn)∈An}E(f (X (t))|X (s)))

=
∫
A0

µ(dx0)
∫
Aπ(1)

pt0,tπ(1) (x0, dx1) . . .
∫
Aπ(n)

ptπ(n−1),tπ(n) (xn−1, dxn)

×
∫

Rd
ptπ(n),s(xn, dx)

∫
Rd

f (y)ps,t(x, dy)
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=
∫
A0

µ(dx0)
∫
Aπ(1)

pt0,tπ(1) (x0, dx1) . . .
∫
Aπ(n)

ptπ(n−1),tπ(n) (xn−1, dxn)

×
∫

Rd
f (y)ptπ(n),t(xn, dy),

by Fubini’s theorem and the Chapman–Kolmogorov equations. So we have
deduced that

E(χAE(f (X (t))|Fs) = E(χAE(f (X (t))|X (s)),

for all A∈Rs. Now Rs forms a π -system. Since it generates the σ -algebra
Fs we may appeal to Dynkin’s lemma (Lemma 1.1.1) to conclude that Fs is
the smallest d -system containing Rs. We may then use linearity and monotone
convergence to conclude that

E(χAE(f (X (t))|Fs) = E(χAE(f (X (t))|X (s)),

for allA∈Fs, and the result follows since {χA,A∈Fs} is total1 inL2(�,Fs,Pµ).
�

We call the process X constructed in this way a canonical Markov process.
A great simplification in the study of Markov processes is made by reduction

to the following important subclass. A Markov process is said to be (time-)
homogeneous if

Ts,t = T0,t−s

for all 0 ≤ s ≤ t < ∞; using (3.3), it is easily verified that this holds if and
only if

ps,t(x,A) = p0,t−s(x,A)

for each 0 ≤ s ≤ t < ∞, x ∈Rd , A∈B(Rd ). If a Markov process is not
homogeneous, it is often said to be inhomogeneous.
For homogeneous Markov processes, we will always write the operators T0,t

as Tt and the transition probabilities p0,t as pt .
The key evolution property Theorem 3.1.2(3) now takes the form

Ts+t = TsTt (3.5)

1 Aset of vectors S is total in a Hilbert spaceH if the set of all finite linear combinations of vectors
from S is dense in H .
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for each s, t ≥ 0. Theorem 3.1.2(2) now reads T0 = I and the Chapman-
Kolmogorov equations can be written as

pt+s(x,A) =
∫

Rd
ps(y,A)pt(x, dy) (3.6)

for each s, t ≥ 0, x ∈Rd , A∈B(Rd ).
In general any family of linear operators on a Banach space that satisfies (3.5)

is called a semigroup. By (3.3) and Theorem 3.1.7 we see that the semigroup
effectively determines the process if the transition probabilities are normal.
There is a deep and extensive analytical theory of semigroups, which we will
begin to study in the next chapter. In order to be able to make more effective
use of this and to deal with one of the most frequently encountered classes of
Markov processes, we will make a further definition.
A homogeneous Markov process X is said to be a Feller process if

(1) Tt :C0(Rd ) ⊆ C0(Rd ) for all t ≥ 0,
(2) limt→0 ||Ttf − f || = 0 for all f ∈C0(Rd ).

In this case, the semigroup associated with X is called a Feller semigroup.
More generally, we say that any semigroup defined on the Banach space
C0(Rd ) is Feller if it satisfies (2) above and (one-parameter versions of) all
the conditions of Theorem 3.1.2.

Note 1 Some authors prefer to use Cb(R
d ) in the definition of a Feller process

instead of C0(Rd ). Although this can make life easier, the space C0(Rd ) has
nicer analytical properties thanCb(R

d ) and this can allow the proof of important
probabilistic theorems such as the one below. In particular, for most of the
semigroups which we study in this book, condition (2) above fails when we
replace C0(Rd ) with Cb(R

d ). For more on this theme, see Schilling [325]. We
will consider this point again in Chapter 6.

Note 2 There is also a notion of a strong Feller semigroup, for which it is
required that Tt(Bb(Rd )) ⊆ Cb(R

d ) for each t ≥ 0. We will not have need of
this concept in this book.

Theorem 3.1.8 If X is a Feller process, then its transition probabilities are
normal.

Proof See Revuz and Yor [306], p. 83. �

The class of all Feller processes is far from empty, as the following result
shows.
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Theorem 3.1.9 Every Lévy process is a Feller process.

Proof If X is a Lévy process then it is a homogeneous Markov process by
Exercise 2.1.2. Let qt be the law of X (t); then, by Proposition 1.4.4, (qt , t ≥ 0)
is a weakly continuous convolution semigroup of probability measures and,
using the result of Exercise 3.1.3 and (3.3), we see that for each f ∈Bb(Rd ),
x ∈Rd , t ≥ 0,

(Ttf )(x) =
∫

Rd
f (x + y)qt(dy).

Now let f ∈C0(Rd ). We need to prove that Ttf ∈C0(Rd ) for each t ≥ 0. First
observe that if (xn, n∈N) is any sequence converging to x ∈Rd then, by the
dominated convergence theorem,

lim
n→∞(Ttf )(xn) = lim

n→∞

∫
Rd

f (xn + y)qt(dy)

=
∫
Rd

f (x + y)qt(dy) = (Ttf )(x),

from which it follows that Ttf is continuous. We can then apply dominated
convergence again to deduce that

lim|x|→∞ |(Ttf )(x)| ≤ lim|x|→∞

∫
Rd
|f (x + y)|qt(dy)

=
∫

Rd
lim|x|→∞ |f (x + y)|qt(dy) = 0.

To prove the second part of the Feller condition, observe that the result is
trivial if f = 0, so assume that f �= 0 and use the stochastic continuity of X
to deduce that, for any ε > 0 and any r > 0, there exists t0 > 0 such that
0 ≤ t < t0 ⇒ qt(Br(0)c) < ε/(4||f ||).
Since every f ∈C0(Rd ) is uniformly continuous, we can find δ > 0 such that

supx ∈Rd |f (x + y)− f (x)| < ε/2 for all y ∈Bδ(0).
Choosing r = δ, we then find that, for all 0 ≤ t ≤ t0,

||Ttf − f || = sup
x ∈Rd

|Ttf (x)− f (x)|

≤
∫
Bδ(0)

sup
x ∈Rd

|f (x + y)− f (x)|qt(dy)
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+
∫
Bδ(0)c

sup
x ∈Rd

|f (x + y)− f (x)|qt(dy)

<
ε

2
qt(Bδ(0))+ 2||f ||qt(Bδ(0)

c) < ε,

and the required result follows. �

3.1.2 Sub-Markov processes

Much of the material that we have discussed so far can be extended to a more
general formalism. Suppose that we are given a family {ps,t , 0 ≤ s ≤ t <∞} of
mappings fromRd ×B(Rd )→ [0, 1]which satisfy (1) and (3) of the definition
of a normal transition family, but (2) is weakened to

(2′) for each 0 ≤ s ≤ t < ∞, x ∈Rd , ps,t(x, ·) is a finite measure on B(Rd ),
with ps,t(x,Rd ) ≤ 1.

We can then extend the ps,t to give a normal transition family by using the
following device. We introduce a new point �, called the cemetery point, and
work in the one-point compactification Rd ∪ {�}; then {p̃s,t , 0 ≤ s ≤ t < ∞}
is a normal transition family, where we define

p̃s,t(x,A) = ps,t(x,A) whenever x ∈Rd , A∈B(Rd ),

p̃s,t(x, {�}) = 1− ps,t(x,R
d ) whenever x ∈Rd ,

p̃s,t(�,Rd ) = 0, p̃s,t(�, {�}) = 1.

Exercise 3.1.10 Check that the members of the family {p̃s,t , 0 ≤ s ≤ t < ∞}
satisfy the Chapman–Kolmogorov equations.

Given such a family, we can then apply Theorem 3.1.7 to construct a Markov
process X = (X (t), t ≥ 0) onRd ∪{�}.We emphasise that X is not, in general,
a Markov process on Rd and we may introduce the lifetime of X as the random
variable lX , where

lX (ω) = inf {t > 0;X (t)(ω) /∈ Rd }

for each ω∈�.
We call X a sub-Markov process; it is homogeneous if ps,t = pt−s for each

0 ≤ s ≤ t < ∞. We may associate a semigroup (T̃t , t ≥ 0) of linear operators
on Bb(Rd ∪ {∞}) with such a homogeneous Markov process X , but it is more



3.2 Semigroups and their generators 153

interesting to consider the semigroup (Tt , t ≥ 0) of linear operators on Bb(Rd )

given by

(Ttf )(x) =
∫

Rd
f (y)pt(x, dy)

for each t ≥ 0, f ∈Bb(Rd ), x ∈Rd . This satisfies all the conditions of Theorem
3.1.2 except (6), which is weakened to Tt(1) ≤ 1 for all t ≥ 0.

If, also, each Tt(C0(Rd )) ⊆ C0(Rd ) and limt→0 ||Ttf − f || = 0, we say
that X is a sub-Feller process and (Tt , t ≥ 0) is a sub-Feller semigroup. Many
results obtained in this chapter for Feller processes andFeller semigroups extend
naturally to the sub-Feller case; see e.g. Berg and Forst [38] and Jacob [179].

3.2 Semigroups and their generators

In the last section, we saw that the theory of homogeneous Markov processes is
very closely related to the properties of families of linear operators in Banach
spaces called semigroups. In this section, we will develop some understanding
of these from a purely analytical point of view, which we can then feed back
into later probabilistic discussions. Readers who feel they lack the necessary
background in functional analysis are recommended to study the appendix to
this chapter (Section 3.8), where they can learn in particular about unbounded
operators and related concepts used below such as domains, closure, graph
norms, cores and resolvents.
Most of the material given below is standard. There are many good books on

semigroup theory and we have followed Davies [85] very closely. Many books
about Markov processes also contain introductory material of a similar type to
that given below, and readers may consult e.g. Jacob [180], Ethier and Kurtz
[116] or Ma and Röckner [242].
Let B be a real Banach space and L(B) be the algebra of all bounded linear

operators on B. A one-parameter semigroup of contractions on B is a family of
bounded, linear operators (Tt , t ≥ 0) on B for which

(1) Ts+t = TsTt for all s, t ≥ 0,
(2) T0 = I ,
(3) ||Tt || ≤ 1 for all t ≥ 0,
(4) the map t → Tt from R+ to L(B) is strongly continuous at zero, i.e.

limt↓0 ||Ttψ − ψ || = 0 for all ψ ∈B,
From now on we will say that (Tt , t ≥ 0) is a semigroupwhenever it satisfies

the above conditions.
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Lemma 3.2.1 If (Tt , t ≥ 0) is a semigroup in a Banach space B, then the map
t → Tt is strongly continuous from R+ to L(B), i.e. lims→t ||Ttψ − Tsψ || = 0
for all t ≥ 0, ψ ∈B.
Proof If (Tt , t ≥ 0) is a semigroup then it is strongly continuous at zero. Fix
t ≥ 0, ψ ∈B; then for all h > 0 we have

||Tt+hψ − Ttψ || = ||Tt(Th − I)ψ || by (1) and (2)

≤ ||Tt || ||(Th − I)ψ || ≤ ||(Th − I)ψ || by (3).

A similar argument holds when h < 0, and the result follows. �

Note Semigroups satisfying just the conditions (1), (2) and (4) given above
are studied in the literature, and these are sometimes called C0-semigroups.
Although they are no longer necessarily contractions, it can be shown that there
exist M ≥ 1 and β ≥ 0 such that ||Tt || ≤ Meβt for all t ≥ 0. Although all
the theory given below extends naturally to encompass this more general class,
we will be content to study the more restrictive case as this is sufficient for our
needs. Indeed, the reader should quickly confirm that every Feller semigroup
is a (contraction) semigroup on C0(R

d ) in the above sense.

Example 3.2.2 Let B = C0(R) and consider the semigroup (Tt , t ≥ 0) defined
by (Ttf )(x) = f (x + t) for each f ∈C0(R), x ∈Rd , t ≥ 0. This is called the
translation semigroup. Now if f ∈C∞0 (R) is real-analytic, so that it can be
represented by a Taylor series, we have

(Ttf )(x) =
∞∑
n=0

tn

n! (D
nf )(x) = ‘etDf ’,

where Df (x) = f ′(x) defines the operator of differentiation.

Exercise 3.2.3 Check the semigroup conditions (1) to (4) for the translation
semigroup.

Exercise 3.2.4 Let A be a bounded operator in a Banach space B and for each
t ≥ 0, ψ ∈B, define

Ttψ =
∞∑
n=0

tn

n!A
nψ = ‘etAψ’.

Show that (Tt , t ≥ 0) is a strongly continuous semigroup of bounded operators
in B, that (Tt , t ≥ 0) is norm-continuous, in that limt↓0 ||Tt − I || = 0.
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These examples have a valuable moral. Given a semigroup (Tt , t ≥ 0), we
should try to find a linear operator A for which Tt=etA can be given meaning.
In general, just as (in Example 3.2.2) D is an unbounded operator that does
not operate on the whole of C0(Rd ) so we would expect A to be unbounded in
general.
Now let (Tt , t ≥ 0) be an arbitrary semigroup in a Banach space B.We define

DA =
{
ψ ∈B; ∃φψ ∈B such that lim

t↓0

∣∣∣∣∣∣∣∣Ttψ − ψ

t
− φψ

∣∣∣∣∣∣∣∣ = 0

}
.

It is easy to verify that DA is a linear space and thus we may define a linear
operator A in B, with domain DA, by the prescription

Aψ = φψ ,

so that, for each ψ ∈DA,

Aψ = lim
t↓0

Ttψ − ψ

t
.

We call A the infinitesimal generator, or sometimes just the generator, of the
semigroup (Tt , t ≥ 0). In the case where (Tt , t ≥ 0) is the Feller semigroup
associated with a Feller process X = (X (t), t ≥ 0), we sometimes call A the
generator of X .
In the following,wewill utilise theBochner integral ofmeasurablemappings

f :R+ → B, which we write in the usual way as
∫ t
0 f (s)ds. This is defined, in a

similar way to the Lebesgue integral, as a limit of integrals of simple B-valued
functions, and we will take for granted that standard results such as dominated
convergence can be extended to this context.Anice introduction to this topic can
be found in Appendix E of Cohn [80], pp. 350–7. For an alternative approach
based on the Riemann integral, see Ethier and Kurtz [116], pp. 8–9.
Let (Tt , t ≥ 0) be a semigroup in B and let ψ ∈B. Consider the family of

vectors (ψ(t), t ≥ 0), where each ψ(t) is defined as a Bochner integral

ψ(t) =
∫ t

0
Tuψ du.

For s> 0, we will frequently apply the continuity of Ts together with the
semigroup condition (1) to write

Tsψ(t) =
∫ t

0
Ts+uψ du. (3.7)
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Readers who are worried about moving Ts through the integral should read
Cohn [80], p. 352.
The following technical lemma plays a key role later.

Lemma 3.2.5 ψ(t)∈DA for each t ≥ 0,ψ ∈B and

Aψ(t) = Ttψ − ψ .

Proof Using (3.7), the fundamental theorem of calculus, the fact that T0 = I
and a standard change of variable, we find for each t ≥ 0,

lim
h↓0

1

h

[
Thψ(t)− ψ(t)

] = lim
h↓0

(
1

h

∫ t

0
Th+uψ du− 1

h

∫ t

0
Tuψ du

)

= lim
h↓0

(
1

h

∫ t+h

h
Tuψ du− 1

h

∫ t

0
Tuψ du

)

= lim
h↓0

(
1

h

∫ t+h

t
Tuψ du− 1

h

∫ h

0
Tuψ du

)
= Ttψ − ψ ,

and the required result follows. �

Theorem 3.2.6

(1) DA is dense in B.
(2) TtDA ⊆ DA for each t ≥ 0.
(3) TtAψ = ATtψ for each t ≥ 0,ψ ∈DA.

Proof (1) By Lemma 3.2.5, ψ(t)∈DA for each t ≥ 0, ψ ∈B, but, by the
fundamental theorem of calculus, limt↓0(ψ(t)/t) = ψ ; hence DA is dense in B
as required.
For (2) and (3), suppose that ψ ∈DA and t ≥ 0; then, by the definition of A

and the continuity of Tt , we have

ATtψ =
[
lim
h↓0

1

h
(Th − I)

]
Ttψ = lim

h↓0
1

h
(Tt+h − Tt)ψ

= Tt

[
lim
h↓0

1

h
(Th − I)

]
ψ = TtAψ .

�
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The strong derivative in B of the mapping t → Ttψ , where ψ ∈DA, is
given by

d

dt
Ttψ = lim

h↓0
Tt+hψ − Ttψ

h
.

From the proof of Theorem 3.2.6, we deduce that

d

dt
Ttψ = ATtψ . (3.8)

More generally, it can be shown that t → Ttψ is the unique solution of the
following initial-value problem in Banach space:

d

dt
u(t) = Au(t), u(0) = ψ ;

see e.g. Davies [85], p. 5. This justifies the notation Tt = etA.

Theorem 3.2.7 A is closed.

Proof Let (ψn, n∈N)∈DA be such that limn→∞ ψn = ψ ∈B and
limn→∞ Aψn = φ ∈B. We must prove that ψ ∈DA and φ = Aψ .
First observe that, for each t ≥ 0, by continuity, equation (3.8) and Theorem

3.2.6(3),

Ttψ − ψ = lim
n→∞(Ttψn − ψn) = lim

n→∞

∫ t

0
TsAψn ds

=
∫ t

0
Tsφ ds, (3.9)

where the passage to the limit in the last line is justified by the fact that

lim
n→∞

∣∣∣∣∣∣∣∣∫ t

0
TsAψn ds−

∫ t

0
Tsφ ds

∣∣∣∣∣∣∣∣ ≤ lim
n→∞

∫ t

0
||Ts(Aψn − φ)||ds

≤ t lim
n→∞ ||(Aψn − φ)|| = 0.

Now, by the fundamental theorem of calculus applied to (3.9), we have

lim
t↓0

1

t
(Ttψ − ψ) = φ,

from which the required result follows. �

The next result is extremely useful in applications.
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Theorem 3.2.8 If D ⊆ DA is such that

(1) D is dense in B,
(2) Tt(D) ⊆ D for all t ≥ 0,

then D is a core for A.

Proof Let D be the closure of D in DA with respect to the graph norm |||.|||
(where we recall that |||ψ ||| = ||ψ || + ||Aψ || for each ψ ∈DA).
Letψ ∈DA; then by hypothesis (1), we know there exist (ψn, n∈N) inD such

that limn→∞ ψn = ψ . Now define the Bochner integralsψ(t) = ∫ t0 Tsψ ds and
ψn(t) =

∫ t
0 Tsψn ds for each n∈N and t ≥ 0. By hypothesis (2) and Lemma

3.2.5, we deduce that each ψn(t)∈D. Using Lemma 3.2.5 again and the fact
that Tt is a contraction, we obtain for each t ≥ 0

lim
n→∞ |||ψ(t)− ψn(t)|||
= lim

n→∞ ||ψ(t)− ψn(t)|| + lim
n→∞ ||Aψ(t)− Aψn(t)||

≤ lim
n→∞

∫ t

0
||Ts(ψ − ψn)||ds+ lim

n→∞ ||(Ttψ − ψ)− (Ttψn − ψn)||

≤ (t + 2) lim
n→∞ ||ψ − ψn|| = 0,

and so ψ(t)∈D for each t ≥ 0. Furthermore, by Lemma 3.2.5 and the
fundamental theorem of calculus, we find

lim
t↓0

∣∣∣∣∣∣∣∣∣∣∣∣1t ψ(t)− ψ

∣∣∣∣∣∣∣∣∣∣∣∣
= lim

t↓0

∣∣∣∣∣∣∣∣1t
∫ t

0
Tsψ ds− ψ

∣∣∣∣∣∣∣∣+ lim
t↓0

∣∣∣∣∣∣∣∣1t Aψ(t)− Aψ

∣∣∣∣∣∣∣∣
= lim

t↓0

∣∣∣∣∣∣∣∣1t
∫ t

0
Tsψ ds− ψ

∣∣∣∣∣∣∣∣+ lim
t↓0

∣∣∣∣∣∣∣∣1t (Ttψ − ψ)− Aψ

∣∣∣∣∣∣∣∣ = 0.

From this we can easily deduce that DA ⊆ D, from which it is clear that D is a
core for A, as required. �

We now turn our attention to the resolvent Rλ(A) = (λ − A)−1, which is
defined for all λ in the resolvent set ρ(A). Of course, there is no a priori reason
why ρ(A) should be non-empty. Fortunately we have the following.
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Theorem 3.2.9 If A is the generator of a semigroup (Tt , t ≥ 0), then (0,∞) ⊆
ρ(A) and, for each λ > 0,

Rλ(A) =
∫ ∞

0
e−λtTt dt. (3.10)

Proof For each λ > 0, we define a linear operator Sλ(A) by the Laplace trans-
form on the right-hand side of (3.10). Our goal is to prove that this really is the
resolvent. Note first of all that Sλ(A) is a bounded operator on B; indeed, for
each ψ ∈B, t ≥ 0, on using the contraction property of Tt we find that

||Sλ(A)ψ || ≤
∫ ∞

0
e−λt ||Ttψ ||dt ≤ ||ψ ||

∫ ∞

0
e−λtdt = 1

λ
||ψ ||.

Hence we have ||Sλ(A)|| ≤ 1/λ.
Now define ψλ = Sλ(A)ψ for each ψ ∈B. Then by continuity, change of

variable and the fundamental theorem of calculus, we have

lim
h↓0

1

h
(Thψλ − ψλ)

= lim
h↓0

(
1

h

∫ ∞

0
e−λtTt+hψdt − 1

h

∫ ∞

0
e−λtTtψ dt

)

= lim
h↓0

(
1

h

∫ ∞

h
e−λ(t−h)Ttψdt − 1

h

∫ ∞

0
e−λtTtψ dt

)

= − lim
h↓0

eλh
1

h

∫ h

0
e−λtTtψdt + lim

h↓0
1

h
(eλh − 1)

∫ ∞

0
e−λtTtψ dt

= −ψ + λSλ(A)ψ .

Hence ψλ ∈DA and Aψλ = −ψ + λSλ(A)ψ , i.e. for all ψ ∈B

(λ− A)Sλ(A)ψ = ψ .

So λ− A is surjective for all λ > 0 and its right inverse is Sλ(A).
Our proof is complete if we can show that λ−A is also injective. To establish

this, assume that there exists ψ �= 0 such that (λ − A)ψ = 0 and define
ψt = eλtψ for each t ≥ 0. Then differentiation yields the initial-value problem

ψ ′
t = λeλtψ = Aψt
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with initial condition ψ0 = ψ . But, by the remarks following equation (3.8),
we see that ψt = Ttψ for all t ≥ 0. We then have

||Ttψ || = ||ψt || = |eλt | ||ψ ||,

and so ||Tt || ≥ ||Ttψ ||/||ψ || = |eλt | > 1, since λ > 0. But we know that each
Tt is a contraction, and so we have a contradiction. Hence we must have ψ = 0
and the proof is complete. �

The final question that we will consider in this section leads to a converse
to the last theorem. Suppose that A is a given densely defined closed linear
operator in a Banach space B. Under what conditions is it the generator of a
semigroup?The answer to this is given by the celebrated Hille–Yosida theorem.

Theorem 3.2.10 (Hille–Yosida) Let A be a densely defined closed linear oper-
ator in a Banach space B and let Rλ(A) = (λ − A)−1 be its resolvent for
λ∈ ρ(A) ⊆ C. A is the generator of a one-parameter contraction semigroup in
B if and only if

(1) (0,∞) ⊆ ρ(A),
(2) ||Rλ(A)|| ≤ 1/λ for all λ > 0.

Proof Necessity has already been established in the proof of Theorem 3.2.9.
We will not prove sufficiency here but direct the reader to standard texts such
as Davies [85], Ma and Röckner [242] and Jacob [180]. �

TheHille–Yosida theorem can be generalised to give necessary and sufficient
conditions for the closure of a closable operator to generate a semigroup. This
result can be found in, e.g. section 4.1 of Jacob [180] or chapter 1 of Ethier and
Kurtz [116].

3.3 Semigroups and generators of Lévy processes

Here we will investigate the application to Lévy processes of some of the
analytical concepts introduced in the last section. To this end, we introduce a
Lévy process X = (X (t), t ≥ 0) that is adapted to a given filtration (Ft , t ≥ 0)
in a probability space (�,F ,P). The mapping η is the Lévy symbol of X , so
that

E(ei(u,X (t))) = etη(u)

for all u∈Rd . FromTheorem 1.2.17 we know that η is a continuous, hermitian,
conditionally positive mapping from Rd to C that satisfies η(0) = 0 and whose
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precise form is given by the Lévy–Khintchine formula. For each t ≥ 0, qt will
denote the law of X (t).We have already seen in Theorem 3.1.9 that X is a Feller
process and if (Tt , t ≥ 0) is the associated Feller semigroup then

(Ttf )(x) =
∫

Rd
f (x + y)qt(dy)

for each f ∈Bb(Rd ), x ∈Rd , t ≥ 0, i.e.

(Ttf )(x) = E(f (X (t)+ x)). (3.11)

3.3.1 Translation-invariant semigroups

Let (τa, a ∈Rd ) be the translation group acting in Bb(Rd ), so that (τaf )(x) =
f (x − a) for each a, x ∈Rd , f ∈Bb(Rd ).
We then find that

(Tt(τaf ))(x) = E
(
(τaf )(X (t)+ x)

) = E
(
f (X (t)+ x − a)

)
= (Ttf )(x − a) = (τa(Ttf ))(x),

i.e.

Ttτa = τaTt

for each t ≥ 0, a ∈Rd . The semigroup (Tt , t ≥ 0) is then said to be translation
invariant. This property gives us another way of characterising Lévy processes
within the class of Markov processes.
In the following result, we will take (�,F ,P) to be the canonical triple given

by the Kolmogorov existence theorem, as used in Theorem 3.1.7.

Theorem 3.3.1 If (Tt , t ≥ 0) is the semigroup associated with a canonical
Feller process X for which X (0) = 0 (a.s.), then this semigroup is translation
invariant if and only if X is a Lévy process.

Proof We have already seen that the semigroup associated with a Lévy pro-
cess is translation invariant. Conversely, let (Tt , t ≥ 0) be a translation-invariant
Feller semigroup associatedwith a Feller processX with transition probabilities
(pt , t ≥ 0). Then for each a, x ∈Rd , t ≥ 0, f ∈C0(Rd ), by (3.3) we have

(τa(Ttf ))(x) =
∫

Rd
f (y)pt(x − a, dy).
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Moreover,

(Tt(τaf ))(x) =
∫

Rd
(τaf )(y)pt(x, dy) =

∫
Rd

f (y − a)pt(x, dy)

=
∫

Rd
f (y)pt(x, dy + a).

So, by translation invariance, we have∫
Rd

f (y)pt(x − a, dy) =
∫

Rd
f (y)pt(x, dy + a).

Now we may apply the Riesz representation theorem for continuous linear
functionals on C0(Rd ) (see e.g. Cohn [80], pp. 209–10) to deduce that

pt(x − a,B) = pt(x,B+ a) (3.12)

for all t ≥ 0, a, x ∈Rd , B∈B(Rd ).
Let qt be the law of X (t) for each t ≥ 0, so that qt(B) = pt(0,B) for each

B∈B(Rd ); then, by (3.12), we have pt(x,B) = qt(B− x) for each x ∈Rd . Now
apply the Chapman–Kolmogorov equations to deduce that, for all s, t ≥ 0,

qt+s(B)= pt+s(0,B)=
∫
Rd

pt(y,B)ps(0, dy)=
∫
Rd

qt(B− y)qs(dy),

so (qt , t ≥ 0) is a convolution semigroup of probability measures. It is vaguely
continuous, since (Tt , t ≥ 0) is a Feller semigroup and so

lim
t↓0

∫
Rd

f (y)qt(dy) = lim
t↓0 (Ttf )(0) = f (0)

for all f ∈C0(R
d ). Hence byTheorem1.4.5 and the note at the end of Subsection

1.4.1, we deduce that the co-ordinate process on (�,F ,P) is a Lévy process.
�

Exercise 3.3.2 Let X be a Lévy process with infinitesimal generator A. Deduce
that, for all a ∈Rd , τa(DA) ⊆ DA and that for all f ∈DA

τaAf = Aτaf .



3.3 Semigroups and generators of Lévy processes 163

3.3.2 Representation of semigroups and generators by
pseudo-differential operators

We now turn our attention to the infinitesimal generators of Lévy processes.2

Here we will require a very superficial knowledge of pseudo-differential opera-
tors acting in the Schwartz space S(Rd ) of rapidly decreasing functions. Those
requiring some background in this may consult the final part of Section 3.8.
There is also no harm (apart from a slight reduction in generality) in replacing
S(Rd ) by C∞c (Rd ) in what follows.

Let f ∈ S(Rd ). We recall that its Fourier transform is f̂ ∈ S(Rd ,C), where

f̂ (u) = (2π)−d/2
∫

Rd
e−i(u,x)f (x)dx

for all u∈Rd , and the Fourier inversion formula yields

f (x) = (2π)−d/2
∫

Rd
f̂ (u)ei(u,x)du

for each x ∈Rd .
A number of useful results about the Fourier transform are collected in the

appendix at the end of this chapter. The next theorem is of great importance in
the analytic study of Lévy processes and of their generalisations.

Theorem 3.3.3 Let X be a Lévy process with Lévy symbol η and characteris-
tics (b, a, ν). Let (Tt , t ≥ 0) be the associated Feller semigroup and A be its
infinitesimal generator.

(1) For each t ≥ 0, f ∈ S(Rd ), x ∈Rd ,

(Ttf )(x) = (2π)−d/2
∫

Rd
ei(u,x)etη(u) f̂ (u)du,

so that Tt is a pseudo-differential operator with symbol etη.
(2) For each f ∈ S(Rd ), x ∈Rd ,

(Af )(x) = (2π)−d/2
∫

Rd
ei(u,x)η(u)f̂ (u)du,

so that A is a pseudo-differential operator with symbol η.

2 In order to continue denoting the infinitesimal generator as A, we will henceforth use a to denote
the positive definite symmetric matrix appearing in the Lévy–Khinchine formula.
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(3) For each f ∈ S(Rd ), x ∈Rd ,

(Af )(x) = bi∂if (x)+ 1
2a

ij∂i∂jf (x)

+
∫

Rd−{0}
[f (x + y)− f (x)− yi∂if (x)χB̂(y)]ν(dy). (3.13)

Proof (1) We apply Fourier inversion within (3.11) to find for all t ≥ 0,
f ∈ S(Rd ), x ∈Rd ,

(Ttf )(x) = E
(
f (X (t)+ x)

) = (2π)−d/2 E

(∫
Rd

ei(u,x+X (t)) f̂ (u)du

)
.

Since f̂ ∈ S(Rd ) ⊂ L1(Rd ), we have∣∣∣∣∫
Rd

ei(u,x)E(ei(u,X (t))) f̂ (u)du

∣∣∣∣ ≤ ∫
Rd

∣∣ei(u,x)E(ei(u,X (t)))
∣∣|f̂ (u)|du

≤
∫

Rd
|f̂ (u)|du <∞,

so we can apply Fubini’s theorem to obtain

(Ttf )(x) = (2π)−d/2
∫

Rd
ei(u,x)E(ei(u,X (t)))f̂ (u)du

= (2π)−d/2
∫

Rd
ei(u,x)etη(u) f̂ (u)du.

(2) For each f ∈ S(Rd ), x ∈Rd , we have by result (1),

(Af )(x) = lim
t↓0

1

t
[(Ttf )(x)− f (x)]

= (2π)−d/2 lim
t↓0

∫
Rd

ei(u,x)
etη(u) − 1

t
f̂ (u)du.

Now, by the mean value theorem and Exercise 1.2.16, there exists K > 0 such
that ∫

Rd

∣∣∣∣∣ei(u,x) etη(u) − 1

t
f̂ (u)

∣∣∣∣∣ du ≤
∫

Rd
|η(u)f̂ (u)|du

≤ K
∫

Rd
(1+ |u|2|)|f̂ (u)|du <∞,

since (1+ |u|2)f̂ (u)∈ S(Rd ,C).
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We can now use dominated convergence to deduce the required result.
(3) Applying the Lévy–Khinchine formula to result (2), we obtain for each

f ∈ S(Rd ), x ∈Rd ,

(Af )(x) = (2π)−d/2
∫

Rd
ei(x,u)

{
i(b, u)− 1

2 (au, u)

+
∫

Rd−{0}
[
ei(u,y) − 1− i(u, y)χB̂(y)

]
ν(dy)

}
f̂ (u)du.

The required result now follows immediately from elementary properties of
the Fourier transform, all of which can be found in Section 3.8. Of course an
interchange of integrals is required, but this is justified by Fubini’s theorem in
a similar way to the arguments given above. �

Note 1 The alert readerwill have noticed that we have appeared to have cheated
in our proof of (2), in that we have computed the generator using the pointwise
limit instead of the uniform one. In fact the operators defined by both limits
coincide in this context; see Sato [323], lemma 31.7, p. 209.

Note 2 An alternative derivation of the important formula (3.13), which does
not employ the calculus of pseudo-differential operators or Schwartz space, can
be found in Sato [323], pp. 205–12. It is also shown therein that C∞c (Rd ) is a
core for A and that C2

0 (R
d ) ⊆ DA.

Note that C2
0 (R

d ) is dense in C0(R
d ). We will establish the result C2

0 (R
d ) ⊆

DA later on, using stochastic calculus.An alternative analytic approach to these
ideas may be found in Courrège [82].

Note 3 The results of Theorem 3.3.3 can be written in the convenient shorthand
form

(T̂ (t)f )(u) = etη(u) f̂ (u), Âf (u) = η(u)f̂ (u)

for each t ≥ 0, f ∈ S(Rd ), u∈Rd .

We will now consider a number of examples of specific forms of (3.13)
corresponding to important examples of Lévy processes.

Example 3.3.4 (Standard Brownian motion) Let X be a standard Brownian
motion in Rd . Then X has characteristics (0, I , 0), and so we see from (3.13)
that

A = 1

2

d∑
i=1

∂2i =
1

2
0,

where 0 is the usual Laplacian operator.
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Example 3.3.5 (Brownian motion with drift) Let X be a Brownian motion
with drift inRd . ThenX has characteristics (b, a, 0) andA is a diffusion operator
of the form

A = bi∂i + 1
2a

ij∂i∂j.

Of course, we can construct far more general diffusions in which each bi and
aij is a function of x, and we will discuss this later in the chapter. The rationale
behind the use of the term ‘diffusion’ will be explained in Chapter 6.

Example 3.3.6 (The Poisson process) Let X be a Poisson process with
intensity λ > 0. Then X has characteristics (0, 0, λδ1) and A is a difference
operator,

(Af )(x) = λ(f (x + 1)− f (x)),

for all f ∈ S(Rd ), x ∈Rd . Note that ||Af || ≤ 2λ||f ||, so that A extends to a
bounded operator on the whole of C0(Rd ).

Example 3.3.7 (The compound Poisson process) We leave it as an exercise
for the reader to verify that

(Af )(x) =
∫

Rd

[
f (x + y)− f (x)

]
ν(dy)

for all f ∈ S(Rd ), x ∈Rd , where ν is a finite measure. The operator A again
extends to a bounded operator on the whole of C0(Rd ).

Example 3.3.8 (Rotationally invariant stable processes) LetX be a rotation-
ally invariant stable process of index α, where 0 < α < 2. Its symbol is given
by η(u) = −|u|α for all u∈Rd (see Section 1.2.5), where we have taken σ = 1
for convenience. It is instructive to pretend that η is the symbol for a legiti-
mate differential operator; then, using the usual correspondence uj →−i∂j for
1 ≤ j ≤ d , we would write

A = η(D) = −
(√

−∂21 − ∂22 − · · · − ∂2d

)α

= −(−�)α/2.

In fact, it is very useful to interpret η(D) as a fractional power of the Lapla-
cian. We will consider fractional powers of more general generators in the next
section.

Example 3.3.9 (Relativistic Schrödinger operators) Fix m, c > 0 and recall
from Section 1.2.6 the Lévy symbol −Em,c, which represents (minus) the free
energy of a particle of mass m moving at relativistic speeds (when d = 3):

Em,c(u) =
√
m2c4 + c2|u|2 − mc2.
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Arguing as above, we make the correspondence uj → −i∂j, for 1 ≤ j ≤ d .
Readers with a background in physics will recognise that this is precisely the
prescription for quantisation of the free energy, and the corresponding generator
is then given by

A = −
(√

m2c4 − c2�− mc2
)
.

Physicists call −A a relativistic Schrödinger operator. Of course, it is more
natural from the point of view of quantum mechanics to consider this as an
operator inL2(Rd ), andwewill address such considerations later in this chapter.
For more on relativistic Schrödinger operators from both a probabilistic and
physical point of view, see Carmona et al. [70] and references therein.

Note Readers trained in physics should note that we are employing a system
of units wherein � = 1.

Exercise 3.3.10 Show that Schwartz space is a core for the Laplacian. (Hint:
Use Theorem 3.2.8.)

We will now examine the resolvent of a Lévy process from the Fourier-
analytic point of view and show that it is always a convolution operator.

Theorem 3.3.11 If X is a Lévy process, with associated Feller semigroup
(Tt , t ≥ 0) and resolvent Rλ for each λ > 0, then there exists a finite measure
µλ on Rd such that

Rλ(f ) = f ∗ µλ

for each f ∈ S(Rd ).

Proof Fix λ > 0, let η be the Lévy symbol of X and define rλ :Rd → C by
rλ(u) = 1/[λ− η(u)]. Since �(η(u)) ≤ 0 for all u∈Rd , it is clear that rλ is
well defined, and we have

rλ(u) =
∫ ∞

0
e−λtetη(u) dt

for each u∈Rd . We will now show that rλ is positive definite. For each
c1, . . . , cn ∈C and u1, . . . , un ∈Rd ,

d∑
i,j=1

cicjrλ(ui − uj) =
∫ ∞

0
e−λt

d∑
i,j=1

cicje
tη(ui−uj) dt ≥ 0,

as u → etη(u), is positive definite. Since u → η(u) is continuous, so also is
u→ rλ(u) and hence, by a slight variant on Bochner’s theorem, there exists a
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finite measure µλ on B(Rd ) for which

rλ(u) = µ̂λ(u) = (2π)−d/2
∫

Rd
e−i(u,x)µλ(dx)

for all u∈Rd .
Now we can apply Theorem 3.2.9, Theorem 3.3.3(2), Fubini’s theorem and

known results on the Fourier transform of a convolution (see Section 3.8) to
find that for all f ∈ S(Rd ), x ∈Rd ,

(Rλf )(x) =
∫ ∞

0
e−λt(Ttf )(x) dt

= (2π)−d/2
∫ ∞

0
e−λt

(∫
Rd

ei(u,x)etη(u) f̂ (u)du

)
dt

= (2π)−d/2
∫

Rd
ei(u,x) f̂ (u)

(∫ ∞

0
e−λtetη(u) dt

)
du

= (2π)−d/2
∫

Rd
ei(u,x) f̂ (u)rλ(u)du

= (2π)−d/2
∫

Rd
ei(u,x) f̂ (u)µ̂λ(u)du

= (2π)−d/2
∫

Rd
ei(u,x) f̂ ∗ µλ(u)du

= (f ∗ µλ)(x).

�

Exercise 3.3.12 Show that, for all B∈B(Rd ),

µλ(B) =
∫ ∞

0
e−λtpX (t)(−B)dt;

see Bertoin [39], p. 23.

Just like the semigroup and its generator, the resolvent can also be represented
as a pseudo-differential operator. In fact, for each λ > 0, Rλ has symbol [λ −
η(·)]−1. The following makes this precise.

Corollary 3.3.13 For each λ > 0, f ∈ S(Rd ), x ∈Rd ,

(Rλf )(x) = (2π)−d/2
∫

Rd
ei(x,u)

f̂ (u)

λ− η(u)
du
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Proof This is implicit in the proof of Theorem 3.3.11. �

We remark that an interesting partial converse to Theorem 3.3.3(1) is
established in Reed and Simon [302], as follows.
Let F :Rd → C be such that there exists k ∈R with �(F(x)) ≥ k for all

x ∈Rd .

Theorem 3.3.14 (Tt , t ≥ 0) is a positivity-preserving semigroup in L2(Rd )

with
T̂t f (u) = e−tF(u) f̂ (u)

for all f ∈ S(Rd ), u∈Rd , t ≥ 0, if and only if F = −η, where η is a Lévy
symbol.

The proof can be found in pp. 215–22 of Reed and Simon [302].

3.3.3 Subordination of semigroups

We now apply some of the ideas developed above to the subordination of
semigroups. It is recommended that readers recall the basic properties of
subordinators as described in Section 1.3.2.
In the following, X will always denote a Lévy process in Rd with symbol

ηX , Feller semigroup (TX
t , t ≥ 0) and generator AX .

Let S = (S(t), t ≥ 0) be a subordinator, so that S is a one-dimensional,
non-decreasing Lévy process and, for each u, t > 0,

E(e−uS(t)) = e−tψ(u),

where ψ is the Bernstein function given by

ψ(u) = bu +
∫ ∞

0
(1− e−uy)λ(dy)

with b ≥ 0 and
∫∞
0 (y ∧ 1)λ(dy) <∞.

Recall from Theorem 1.3.25 and Proposition 1.3.27 that Z = (Z(t), t ≥ 0)
is also a Lévy process, where we define each Z(t) = X (T (t)) and the symbol
of Z is ηZ = −ψ ◦ (−ηX ). We write (TZ

t , t ≥ 0) and AZ for the semigroup and
generator associated with Z , respectively.

Theorem 3.3.15

(1) For all t ≥ 0, f ∈Bb(Rd ), x ∈Rd ,

(
TZ
t f
)
(x) =

∫ ∞

0

(
TX
s f
)
(x)pS(t) (ds).
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(2) For all f ∈ S(Rd ),

AZ f = bAX f +
∫ ∞

0

(
TX
s f − f

)
λ (ds).

Proof (1) In Exercise 1.3.26, we established that for each t ≥ 0, B∈B(Rd ),
pZ(t)(B) =

∫∞
0 pX (s)(B)pS(t)(ds). Hence for each t ≥ 0, f ∈Bb(Rd ), x ∈Rd ,

we obtain (
TZ
t f
)
(x) = E(f (Z(t)+ x)) =

∫
Rd

f (x + y)pZ(t)(dy)

=
∫ ∞

0

(∫
Rd

f (x + y)pX (s)(dy)

)
pS(t)(ds)

=
∫ ∞

0

(
TX
s f
)
(x)pS(t)(ds).

(2) From the first equation in the proof of Theorem 1.3.33, we obtain for each
u∈Rd ,

ηZ (u) = bηX (u)+
∫ ∞

0

{
exp
[
sηX (u)

]− 1
}
λ(ds), (3.14)

but by Theorem 3.3.3(2) we have

(AZf )(x) = (2π)−d/2
∫

Rd
ei(u,x)ηZ (u)f̂ (u)du. (3.15)

The required result now follows from substitution of (3.14) into (3.15), a
straightforward application of Fubini’s theorem and a further application of
Theorem 3.3.3(1), (2). The details are left as an exercise for the reader. �

The formulaηZ = −ψ◦(−ηX ) suggests a natural functional calculuswherein
we define AZ = −ψ(−AX ) for any Bernstein function ψ . As an example, we
may generalise the fractional power of the Laplacian, discussed in the last
section, to define (−AX )α for any Lévy process X and any 0 < α < 1. To carry
this out, we employ the α-stable subordinator (see Example 1.3.18). This has
characteristics (0, λ) where

λ(dx) = α

�(1− α)

dx

x1+α
.

Theorem 3.3.15(2) then yields the beautiful formula
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−(−AX )αf = α

�(1− α)

∫ ∞

0
(TX

s f − f )
ds

s1+α
(3.16)

for all f ∈ S(Rd ).
Theorem 3.3.15 has a far-reaching generalisation, which we will now quote

without proof.

Theorem3.3.16 (Phillips) Let (Tt , t ≥ 0) be a strongly continuous contraction
semigroup of linear operators on a Banach space B with infinitesimal generator
A and let (S(t), t ≥ 0) be a subordinator with characteristics (b, λ).

• The prescription

TS
t φ =

∫ ∞

0
(Tsφ)pS(t)(ds),

for each t ≥ 0, φ ∈B, defines a strongly continuous contraction semigroup
(TS

t , t ≥ 0) in B.
• If AS is the infinitesimal generator of (TS

t , t ≥ 0), then DA is a core for AS

and, for each φ ∈DA,

ASφ = bAφ +
∫ ∞

0
(TX

s φ − φ)λ(ds).

• If B = C0(Rd ) and (Tt , t ≥ 0) is a Feller semigroup, then (TS
t , t ≥ 0) is also

a Feller semigroup.

For a proof of this result, see e.g. Sato [323], pp. 212–5, or Section 5.3 in
Jacob [180].
This powerful theorem enables the extension of (3.16) to define fractional

powers of a large class of infinitesimal generators of semigroups (see also
Schilling [324]).
To give Theorem 3.3.16 a probabilistic flavour, let X = (X (t), t≥ 0) be a

homogeneous Markov process and S = (S(t), t≥ 0) be an independent subor-
dinator; thenwe can form the processY = (Y (t), t ≥ 0), whereY (t) = X (T (t))
for each t ≥ 0. For each t ≥ 0, f ∈Bb(Rd ), x ∈Rd , define

(TY
t f )(x) = E

(
f (Y (t))|Y (0) = x

)
.
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Then by direct computation (or appealing to Phillips’theorem,Theorem3.3.16),
we have that (TY

t , t ≥ 0) is a semigroup and

(TY
t f )(x) =

∫ ∞

0
(TX

s f )(x)pS(t)(ds),

where (TX
t , t ≥ 0) is the semigroup associated with X .

Exercise 3.3.17 Deduce that (TY
t , t ≥ 0) is a Feller semigroup whenever

(TX
t , t ≥ 0) is and that Y is a Feller process in this case.

Exercise 3.3.18 Show that for all t ≥ 0, B∈B(Rd ),

pY (t)(B) =
∫ ∞

0
pX (s)(B)pT (t)(ds),

and hence deduce that, for all x ∈Rd ,

P
(
Y (t)∈B∣∣Y (0) = x

) = ∫ ∞

0
P
(
X (s)∈B∣∣X (0) = x

)
pT (t)(ds)

(a.s. with respect to pX (0)).

3.4 Lp-Markov semigroups

We have seen above how Feller processes naturally give rise to associated
Feller semigroups acting in the Banach space C0(Rd ). Sometimes, it is more
appropriate to examine the process via semigroups induced in Lp(Rd ), where
1 ≤ p <∞, and the present section is devoted to this topic.

3.4.1 Lp-Markov semigroups and Lévy processes

We fix 1 ≤ p < ∞ and let (Tt , t ≥ 0) be a strongly continuous contraction
semigroup of operators inLp(Rd ).We say that it is sub-Markovian if f ∈ Lp(Rd )

and
0 ≤ f ≤ 1 a.e. ⇒ 0 ≤ Ttf ≤ 1 a.e.

for all t ≥ 0.
Any semigroup on Lp(Rd ) can be restricted to the dense subspace Cc(Rd ).

If this restriction can then be extended to a semigroup on Bb(Rd ) that satisfies
Tt(1) = 1 then the semigroup is said to be conservative.
A semigroup that is both sub-Markovian and conservative is said to be Lp-

Markov.
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Notes

(1) Readers should be mindful that the phrases ‘strongly continuous’ and ‘con-
traction’ in the above definition are now with respect to the Lp-norm, given
by ||g||p =

(∫
Rd |g(x)|pdx

)1/p for each g ∈ Lp(Rd ).
(2) If (Tt , t ≥ 0) is sub-Markovian then it is Lp-positivity preserving, in that

f ∈ Lp(Rd ) and f ≥ 0 (a.e.)⇒ Ttf ≥ 0 (a.e.) for all t ≥ 0; see Jacob [180],
p. 365, for a proof.

Example 3.4.1 Let X = (X (t), t ≥ 0) be a Markov process on Rd and define
the usual stochastic evolution

(Ttf )(x) = E
(
f (X (t))|X (0) = x

)
for each f ∈Bb(Rd ), x ∈Rd , t ≥ 0. Suppose that (Tt , t ≥ 0) also yields a
strongly continuous contraction semigroup on Lp(Rd ); then it is clearly Lp-
Markov.

Our good friends the Lévy processes provide a natural class for which the
conditions of the last example hold, as the next theorem demonstrates.

Theorem 3.4.2 If X = (X (t), t ≥ 0) is a Lévy process then, for each 1 ≤
p <∞, the prescription (Ttf )(x) = E(f (X (t)+ x)) where f ∈ Lp(Rd ), x ∈Rd ,
t ≥ 0 gives rise to an Lp-Markov semigroup (Tt ≥ 0).

Proof Let qt be the law of X (t) for each t ≥ 0. We must show that each
Tt : Lp(Rd )→ Lp(Rd ). In fact, for all f ∈ Lp(Rd ), t ≥ 0, by Jensen’s inequality
(or Hölder’s inequality if you prefer) and Fubini’s theorem, we obtain

||Ttf ||pp =
∫

Rd

∣∣∣∣∫
Rd

f (x + y)qt(dy)

∣∣∣∣p dx
≤
∫

Rd

∫
Rd
|f (x + y)|pqt(dy)dx

=
∫

Rd

(∫
Rd
|f (x + y)|pdx

)
qt(dy)

=
∫

Rd

(∫
Rd
|f (x)|pdx

)
qt(dy) = ||f ||pp,

and we have proved that each Tt is a contraction in Lp(Rd ).
Now we need to establish the semigroup property Ts+t f = TsTtf for all

s, t ≥ 0. By Theorem 3.1.9 and the above, we see that this holds for all
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f ∈C0(Rd ) ∩ Lp(Rd ). However, this space is dense in Lp(Rd ), which follows
from that fact that Cc(R

d ) ⊂ C0(R
d ) ∩ Lp(Rd ), and the result follows by

continuity since each Tt is bounded.
Finally, we must prove strong continuity. First we let f ∈Cc(Rd ) and choose

a ballB centred on the origin inRd . Then, using Jensen’s inequality and Fubini’s
theorem as above, we obtain for each t ≥ 0

||Ttf − f ||pp =
∫

Rd

∣∣∣∣∫
Rd

[
f (x + y)− f (x)

]
qt(dy)

∣∣∣∣p dx
≤
∫
B

(∫
Rd
|f (x + y)− f (x)|pdx

)
qt(dy)

+
∫
Bc

(∫
Rd
|f (x + y)− f (x)|pdx

)
qt(dy)

≤
∫
B

(∫
Rd
|f (x + y)− f (x)|pdx

)
qt(dy)

+
∫
Bc

(∫
Rd

2pmax{|f (x + y)|p, |f (x)|p}dx
)
qt(dy)

≤ sup
y ∈B

∫
Rd
|f (x + y)− f (x)|pdx + 2p||f ||ppqt(Bc).

By choosing B to have sufficiently small radius, we obtain limt↓0 ||Ttf −
f ||p = 0 from the continuity of f and dominated convergence in the first term
and the weak continuity of (qt , t ≥ 0) in the second term, just as in the proof
of Theorem 3.1.9.
Now let f ∈ Lp(Rd ) be arbitrary and choose a sequence (fn, n∈N) in Cc(Rd )

that converges to f . Using the triangle inequality and the fact that each Tt is a
contraction we obtain, for each t ≥ 0,

||Ttf − f || ≤ ||Ttfn − fn|| + ||Tt(f − fn)|| + ||f − fn||
≤ ||Ttfn − fn|| + 2||f − fn||,

from which the required result follows. �

For the case p = 2 we can explicitly compute the domain of the infinitesimal
generator of a Lévy process. To establish this result, let X be a Lévy pro-
cesswithLévy symbolη and letAbe the infinitesimal generator of the associated
L2-Markov semigroup.
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Exercise 3.4.3 Using the fact that the Fourier transform is a unitary isomor-
phism of L2(Rd ,C) (see Section 3.8.4), show that

(Ttf )(x) = (2π)−d/2
∫

Rd
ei(u,x)etη(u) f̂ (u)du

for all t ≥ 0, x ∈Rd , f ∈ L2(Rd ).

DefineHη(Rd ) =
{
f ∈ L2(Rd );

∫
Rd |η(u)|2|f̂ (u)|2du <∞

}
. Then we have

Theorem 3.4.4 DA = Hη(Rd ).

Proof We follow Berg and Forst [38], p. 92. Let f ∈DA; then Af =
limt↓0[(1/t)(Ttf − f )] in L2(Rd ). We take Fourier transforms and use the
continuity of F to obtain

Âf = lim
t↓0

1

t
(T̂t f − f̂ ).

By the result of Exercise 3.4.3, we have

Âf = lim
t↓0

1

t
(etη f̂ − f̂ );

hence, for any sequence (tn, n∈N) in R+ for which limn→∞ tn = 0, we get

Âf = lim
n→∞

1

tn
(etnη f̂ − f̂ ) a.e.

However, limn→∞[(1/tn)(etnη − 1)] = η and so Âf = ηf̂ (a.e.). But then
ηf̂ ∈ L2(Rd ), i.e. f ∈Hη(Rd ).
So we have established that DA ⊆ Hη(Rd ).
Conversely, let f ∈Hη(Rd ); then by Exercise 3.4.3 again,

lim
t→0

1

t
(T̂t f − f̂ ) = lim

t→0

1

t
(etη f̂ − f̂ ) = ηf̂ ∈ L2(Rd ).

Hence, by the unitarity and continuity of the Fourier transform,
limt↓0[(1/t)(Ttf − f )] ∈L2(Rd ) and so f ∈DA. �

Readers should note that the proof has also established the pseudo-differential
operator representation

Af = (2π)−d/2
∫

Rd
ei(u,x)η(u)f̂ (u)du

for all f ∈Hη(Rd ).
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The space Hη(Rd ) is called an anisotropic Sobolev space by Jacob [179].
Note that if we take X to be a standard Brownian motion then η(u) = − 1

2 |u|2
for all u∈Rd and

Hη(R
d ) =

{
f ∈ L2(Rd );

∫
Rd
|u|4|f̂ (u)|2du <∞

}
.

This is precisely the Sobolev space,which is usually denotedH2(Rd ) andwhich
can be defined equivalently as the completion of C∞c (Rd ) with respect to the
norm

||f ||2 =
(∫

Rd
(1+ |u|2)2|f̂ (u)|2du

)1/2

for each f ∈C∞c (Rd ). ByTheorem3.4.4,H2(Rd ) is the domain of theLaplacian
� acting in L2(Rd ).

Exercise 3.4.5 Write down the domains of the fractional powers of the
Laplacian (−�)α/2, where 0 < α < 2.

For more on this topic, including interpolation between Lp and Lq sub-
Markovian semigroups (p < q < ∞) and between Lp sub-Markovian
semigroups and Feller semigroups, see Farkas et al. [117].

3.4.2 Self-adjoint semigroups

We begin with some general considerations.
LetH be a Hilbert space and (Tt , t ≥ 0) be a strongly continuous contraction

semigroup in H . We say that (Tt , t ≥ 0) is self-adjoint if Tt = T ∗t for each
t ≥ 0.

Theorem 3.4.6 There is a one-to-one correspondence between the generators
of self-adjoint semigroups in H and linear operators A in H such that −A is
positive and self-adjoint.

Proof We follow Davies [85], pp. 99–100. In fact we will prove only that half
of the theorem which we will use, and we commend [85] to the reader for the
remainder.
Suppose that (Tt , t ≥ 0) is a self-adjoint semigroup with generator A, and

consider the Bochner integral

Xψ =
∫ ∞

0
Tte

−tψ dt



3.4 Lp-Markov semigroups 177

for eachψ ∈H ; then it is easily verified thatX is a bounded self-adjoint operator
(in fact, X is a contraction). Furthermore, by Theorem 3.2.9, we have X =
(I +A)−1, hence (I +A)−1 is self-adjoint. We now invoke the spectral theorem
(Theorem 3.8.8) to deduce that there exists a projection-valued measure P inH
such that (I +A)−1= ∫R λP(dλ). If we define f :R → R by f (λ) = (1/λ)−1
then A = ∫R f (λ)P(dλ) is self-adjoint. By Theorem 3.2.10, (0,∞) ⊆ ρ(A);
hence σ(A) ⊆ (−∞, 0) and so −A is positive. �

There is a class of Markov processes that will be important in Section 3.6,
where we study Dirichlet forms. Let X = (X (t), t ≥ 0) be a Markov process
with associated semigroup (T (t), t ≥ 0) and let µ be a Borel measure on Rd .
We say that X is a µ-symmetric process if

∫
Rd

f (x)(Ttg)(x)µ(dx) =
∫

Rd
(Ttf )(x)g(x)µ(dx) (3.17)

for all t ≥ 0 and all f , g ∈Bb(R
d ) with f , g ≥ 0 (a.e. µ). Readers should be

clear that the integrals in (3.17) may be (simultaneously) infinite.
In the case whereµ is a Lebesgue measure, we simply say that X is Lebesgue

symmetric.

Exercise 3.4.7 LetX be a normalMarkov processwith a transition densityρ for
which ρ(x, y) = ρ(y, x) for all x, y ∈Rd . Show that X is Lebesgue symmetric.

Theorem 3.4.8 If X is a µ-symmetric Markov process with associated semi-
group (Tt , t ≥ 0) and ||Ttf ||2 < ∞ for all f ∈Cc(R

d ) with f ≥ 0, then
(Tt , t ≥ 0) is self-adjoint in L2(Rd ,µ).

Proof By linearity, if f , g ∈Cc(Rd ), with f ≥ 0 and g ≤ 0, we still have that
(3.17) holds and both integrals are finite. Now let f , g ∈Cc(Rd ) be arbitrary;
then, writing f = f + − f − and g = g+ − g−, we again deduce by linearity
that (3.17) holds in this case. Finally let f , g ∈ L2(Rd ,µ); then, by the density
therein of Cc(Rd ), we can find sequences (fn, n∈N) and (gn, n∈N) in Cc(Rd )
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that converge to f and g respectively. Using the continuity of Tt and of the inner
product, we find for each t ≥ 0 that

〈f , Ttg〉 = lim
n→∞ lim

m→∞〈fn, Ttgm〉 = lim
n→∞ lim

m→∞〈Ttfn, gm〉 = 〈Ttf , g〉.

�

Now let X = (X (t), t ≥ 0) be a Lévy process taking values in Rd . We have
already seen in Theorem 3.4.2 that (Tt , t ≥ 0) is an Lp-Markov semigroup
where (Ttf )(x) = E(f (X (t)+ x) for each f ∈ Lp(Rd ), x ∈Rd , t ≥ 0. We recall
that a Lévy process with laws (qt , t ≥ 0) is symmetric if qt(A) = qt(−A) for
all A∈B(Rd ).

Exercise 3.4.9 Deduce that every symmetric Lévy process is a Lebesgue-
symmetric Markov process.

Although we could use the result of Exercise 3.4.9 and Theorem 3.4.8 to
establish the first part of Theorem 3.4.10, we will find it more instructive to
give an independent proof.

Theorem3.4.10 If X is aLévy process, then its associated semigroup (Tt , t≥ 0)
is self-adjoint in L2(Rd ) if and only if X is symmetric.

Proof Suppose that X is symmetric; then qt(A) = qt(−A) for each A∈B(Rd ),
t ≥ 0, where qt is the law of X (t). Then for each f ∈ L2(Rd ), x ∈Rd , t ≥ 0,

(Ttf )(x) = E(f (x + X (t)) =
∫

Rd
f (x + y)qt(dy)

=
∫

Rd
f (x + y)qt(−dy) =

∫
Rd

f (x − y)qt(dy)

= E(f (x − X (t)).

So for each f , g ∈ L2(Rd ), t ≥ 0, using Fubini’s theorem, we obtain

〈Ttf , g〉 =
∫

Rd
(Ttf )(x)g(x)dx =

∫
Rd

E(f (x − X (t)) g(x)dx

=
∫

Rd

[∫
Rd

f (x − y)g(x)dx

]
qt(dy)

=
∫

Rd

[∫
Rd

f (x)g(x + y)dx

]
qt(dy)

= 〈f , Ttg〉.
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Conversely, suppose that (Tt , t ≥ 0) is self-adjoint. Then by a similar argument
to the one above, we deduce that for all f , g ∈ L2(Rd ), t ≥ 0,∫

Rd
E(f (x + X (t)) g(x)dx =

∫
Rd

E(f (x − X (t)) g(x)dx.

Now define a sequence of functions (gn, n∈N) by

gn(x) = n−d/2 exp
(
−πx2

n

)
.

Then each gn ∈ S(Rd ) ⊂ L2(Rd ), and

lim
n→∞

∫
Rd

E(f (x ± X (t))gn(x)dx = E(f (±X (t));

see e.g. Lieb and Loss [233], Theorem 2.16, p. 58 and the argument in the proof
of Theorem 5.3, p. 118 therein.
We thus deduce that E(f (X (t)) = E(f (−X (t)) and, if we take f = χA where

A∈B(Rd ), we obtain

P(X (t)∈A) = P(X (t)∈ − A),

i.e. X is symmetric. �

Corollary 3.4.11 If A is the infinitesimal generator of a Lévy process with Lévy
symbol η, then −A is positive and self-adjoint if and only if

η(u) = − 1
2 (u, au)+

∫
Rd−{0}

[
cos(u, y)− 1

]
ν(dy)

for each u∈Rd , where a is a positive definite symmetric matrix and ν is a
symmetric Lévy measure.

Proof This follows immediately from Theorems 3.4.10 and 3.4.6 and Exercise
2.4.23. �

Equivalently, we see that A is self-adjoint if and only if �η = 0.
In particular, we find that the discussion of this section has yielded a proba-

bilistic proof of the self-adjointness of some important operators in L2(Rd ), as
is shown in the following examples.
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Example 3.4.12 (The Laplacian) In fact, we consider multiples of the
Laplacian and let a = 2γ I where γ > 0; then, for all u∈Rd ,

η(u) = −γ |u|2 and A = γ�.

Example 3.4.13 (Fractional powers of the Laplacian) Let 0 < α < 2; then,
for all u ∈ Rd ,

η(u) = |u|α and A = −(−�)α/2.

Example 3.4.14 (Relativistic Schrödinger operators) Letm, c > 0; then, for
all u∈Rd ,

Em,c(u)=
√
m2c4 + c2|u|2 − mc2 and A= − (

√
m2c4 − c2�− mc2);

recall Example 3.3.9.

Note that in all three of the above examples the domain of the operator is the
appropriate non-isotropic Sobolev space of Theorem 3.4.4.
Examples 3.4.12 and 3.4.14 are important in quantum mechanics as the

observables (modulo a minus sign) that describe the kinetic energy of a particle
moving at non-relativistic speeds (for a suitable value of γ ) and relativistic
speeds, respectively.We emphasise that it is vital that we know that such opera-
tors really are self-adjoint (and not just symmetric, say) so that they legitimately
satisfy the quantum-mechanical formalism.
Note that, in general, if AX is the self-adjoint generator of a Lévy process and

(S(t), t ≥ 0) is an independent subordinator then the generator AZ of the sub-
ordinated process Z is also self-adjoint. This follows immediately from (3.14)
in the proof of Theorem 3.3.15(2).

3.5 Lévy-type operators and the positive
maximum principle

3.5.1 The positive maximum principle and Courrège’s theorems

Let X be a Lévy process with characteristics (b, a, ν), Lévy symbol η and
generator A. We remind the reader of key results from Theorem 3.3.3. For each
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f ∈ S(Rd ), x ∈Rd ,

(Af )(x) = bi∂if (x)+ 1
2a

ij∂i∂jf (x)

+
∫

Rd−{0}
[f (x + y)− f (x)− yi∂if (x)χB̂(y)]ν(dy),

(3.18)

and A is a pseudo-differential operator with symbol η, i.e.

(Af )(x) = (2π)−d/2
∫

Rd
ei(u,x)η(u)f̂ (u)du. (3.19)

In this section, we turn our attention to general Feller processes and ask
the question, to what extent are the above representations typical of these?
Clearly Lévy processes are a special case and, to go beyond these, we must
abandon translation invariance (see Theorem 3.3.1), in which case we would
expect variable coefficients (b(x), a(x), ν(x)) in (3.18) and a variable symbol
η(x, ·) in (3.19). In this section, we will survey some of the theoretical structure
underlying Feller processes having generators with such a form.
The key to this is the following analytical concept.
Let S be a linear operator in C0(Rd ) with domain DS . We say that S satisfies

the positive maximum principle if, whenever f ∈DS and there exists x0 ∈Rd

such that f (x0) = supx ∈Rd f (x) ≥ 0, we have (Sf )(x0) ≤ 0.
Our first hint that the positive maximum principle may be of some use in

probability comes from the following variant on the Hille–Yosida theorem
(Theorem 3.2.10).

Theorem 3.5.1 (Hille–Yosida–Ray) A densely defined closed linear operator
A is the generator of a strongly continuous positivity-preserving contraction
semigroup on C0(Rd ) if and only if

(1) (0,∞) ⊆ ρ(A),
(2) A satisfies the positive maximum principle.

For a proof, seeEthier andKurtz [116], pp. 165–6, or Jacob [180], Section 4.5.
Just as in the case of Theorem 3.2.10, the above, theorem can be generalised in
such a way as to weaken the condition on A and simply require it to be closable.
Now we return to probability theory and make a direct connection between

the positive maximum principle and the theory of Markov processes.

Theorem3.5.2 If X is aFeller process, then its generatorA satisfies the positive
maximum principle.
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Proof We follow Revuz and Yor [306], Section 7.1. Let f ∈DA and suppose
there exists x0 ∈Rd such that f (x0) = supx ∈Rd f (x) ≥ 0.

Let (Tt , t ≥ 0) be the associated Feller semigroup and (pt , t ≥ 0) be the
transition probabilities; then, by (3.3), we have

(Ttf )(x0) =
∫

Rd
f (y)pt(x0, dy).

Hence

(Af )(x0) = lim
t↓0

1

t

∫
Rd

[
f (y)− f (x0)

]
pt(x0, dy).

However, for each y ∈Rd ,

f (y)− f (x0) ≤ sup
y ∈Rd

f (y)− f (x0) = 0,

and so (Af )(x0) ≤ 0 as required. �

We will now present some fundamental results due to Courrège [83], which
classify linear operators that satisfy the positive maximum principle. First we
need some preliminary concepts.

(1) AC∞ mapping φ :Rd × Rd → [0, 1] will be called a local unit if:
(i) φ(x, y) = 1 for all (x, y) in a neighbourhood of the diagonal D =

{(x, x); x ∈Rd };
(ii) for every compact setK inRd the mappings y→ φ(x, y), where x ∈K ,

have their support in a fixed compact set in Rd .
(2) A mapping f :Rd → R is said to be upper semicontinuous if f (x) ≥

lim supy→x f (y) for all x ∈Rd .

(3) A Lévy kernel is a family {µ(x, ·), x ∈Rd }, where each µ(x, ·) is a Borel
measure on Rd − {x}, such that:
(i) the mapping x → ∫

Rd−{x} |y − x|2f (y)µ(x, dy) is Borel measurable

and locally bounded for each f ∈Cc(Rd );
(ii) for each x ∈Rd , and for every neighbourhood Vx of x,µ(x,Rd −

Vx)<∞.

Now we can state the first of Courrège’s remarkable theorems.

Theorem 3.5.3 (Courrège’s first theorem) If A is a linear operator in C0(Rd )

and C∞c (Rd ) ⊆ DA, then A satisfies the positive maximum principle if and only
if there exist

• continuous functions c and bj, 1 ≤ j ≤ d, from Rd to R such that c(x) ≤ 0
for all x ∈Rd ,
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• mappings aij :Rd → R, 1 ≤ i, j ≤ d, such that (aij(x)) is a positive definite
symmetric matrix for each x ∈Rd and the map x → (y, a(x)y) is upper
semicontinuous for each y ∈Rd ,

• a Lévy kernel µ,
• a local unit φ,

such that for all f ∈C∞c (Rd ), x ∈Rd ,

(Af )(x)

= c(x)f (x)+ bi(x)∂if (x)+ aij(x)∂i∂jf (x)

+
∫

Rd−{x}
[f (y)− f (x)− φ(x, y)(yi − xi)∂if (x)]µ(x, dy).

(3.20)

A full proof of this result can be found in Courrège [83] or section 4.5 of
Jacob [180].
It is tempting to interpret (3.20) probabilistically, in terms of a killing rate c,

a drift vector b, a diffusion matrix a and a jump term controlled by µ. We will
return to this later.
Note that both Courrège and Jacob write the integral term in (3.20) as∫

Rd−{x}
[f (y)− φ(x, y)f (x)− φ(x, y)(yi − xi)∂if (x)]µ(x, dy).

This is equivalent to the form we have given since, by definition of φ, we can
find a neighbourhood Nx of each x ∈Rd such that φ(x, y) = 1 for all y ∈Nx;
then ∫

N c
x

[
φ(x, y)− 1

]
µ(x, dy) <∞,

and so this integral can be absorbed into the ‘killing term’.
Suppose that we are give a linear operator A inC0(Rd ) for whichC∞c (Rd ) ⊆

DA. We say that it is of Lévy type if it has the form (3.20).

Exercise 3.5.4 Show that the generator of a Lévy process can be written in the
form (3.20).

Now we turn our attention to pseudo-differential operator representations.

Theorem 3.5.5 (Courrège’s second theorem) Let A be a linear operator in
C0(Rd ); suppose that C∞c (Rd ) ⊆ DA and that A satisfies the positive maximum
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principle. For each x, u∈Rd , define

η(x, u) = e−i(x,u)(Aei(·,u))(x). (3.21)

Then:

• for every x ∈Rd , the map u → η(x, u) is continuous, hermitian and
conditionally positive definite;

• there exists a positive locally bounded function h :Rd → R such that, for
each x, u∈Rd ,

|η(x, u)| ≤ h(x)|u|2;
• for every f ∈C∞c (Rd ), x ∈Rd ,

(Af )(x) = (2π)−d/2
∫

Rd
ei(u,x)η(x, u)f̂ (u)du. (3.22)

Conversely, if η is a continuous map fromRd ×Rd toC that is hermitian and
conditionally positive definite in the second variable then the linear operator
defined by (3.22) satisfies the positive maximum principle.

Note that it is implicit in the statement of the theorem that A is such that
(3.21) makes sense.
Probabilistically, the importance of Courrège’s theorems derives from

Theorem 3.5.2. If A is the generator of a Feller process and satisfies the domain
condition C∞c (Rd ) ⊆ DA then it can be represented as a Lévy-type operator
of the form (3.20), by Theorem 3.5.3, or a pseudo-differential operator of the
form (3.22), by Theorem 3.5.5.
In recent years, there has been considerable interest in the converse to the

last statement. Given a pseudo-differential operator A whose symbol η is con-
tinuous from Rd × Rd to C and hermitian and conditionally positive definite
in the second variable, under what further conditions does A generate a (sub-)
Feller process? One line of attack follows immediately from Theorem 3.5.5:
since A must satisfy the positive maximum principle we can try to fulfil the
other condition of the Hille–Yosida–Ray theorem (Theorem 3.5.1) and then
use positivity of the semigroup to generate transition probabilities from which
a process can be built using Kolmogorov’s construction, as in Theorem 3.1.7.
Other approaches to constructing a process include the use of Dirichlet forms
(see Section 3.6) and martingale problems (see Section 6.7.3). The pioneers
in investigating these questions have been Niels Jacob and his collaborators
René Schilling and Walter Hoh. To go more deeply into their methods and
results would be beyond the scope of the present volume but interested readers
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are referred to the monograph by Jacob [179], the review article by Jacob and
Schilling in [26] and references therein.
Schilling has also used the analytical behaviour of the generator, in its pseudo-

differential operator representation, to obtain sample-path properties of the
associated Feller process. In [326] he studied the limiting behaviour, for both
t ↓ 0 and t → ∞, while estimates on the Hausdorff dimension of the paths
were obtained in [327].

3.5.2 Examples of Lévy-type operators

Here we will consider three interesting examples of Lévy-type operators.

Example 3.5.6 (Diffusion operators) Consider a second-order differential
operator of the form

(Af )(x) = bi(x)∂if (x)+ aij(x)∂i∂jf (x),

for each f ∈C∞c (Rd ), x ∈Rd . In general, it is possible to construct a Markov
process X in Rd that is naturally associated with A under quite general condi-
tions on b and a. We call X a diffusion process and A the associated diffusion
operator. Specifically, we require only that each bi be bounded and measurable
and that the aij are bounded and continuous, the matrix (aij(x)) being positive
definite and symmetric for each x ∈Rd . We will discuss this in greater detail in
Chapter 6. Conditions underwhichX is a Feller processwill also be investigated
there.

Example 3.5.7 (Feller’s pseudo-Poisson process) Here we give an example
of a genuine Feller process whose generator is a Lévy-type operator. It was
called the pseudo-Poisson process by Feller [119], pp. 333–5.
Let S = (S(n), n∈N) be a homogeneous Markov chain taking values in Rd .

For each n∈N, we denote its n-step transition probabilities by q(n) so that for
each x ∈Rd , B∈B(Rd ),

q(n)(x,B) = P
(
S(n)∈B|S(0) = x

)
.

We define the transition operator Q of the chain by the prescription

(Qf )(x) =
∫

Rd
f (y)q(x, dy)

for each f ∈Bb(Rd ), x ∈Rd , where we have used the notation q = q(1).
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Exercise 3.5.8 Deduce that for all f ∈Bb(Rd ), x ∈Rd ,

(Qnf )(x) =
∫

Rd
f (y)q(n)(x, dy).

Now let N = (N (t), t ≥ 0) be a Poisson process, of intensity λ > 0, that is
independent of theMarkov chain S and define a new process X = (X (t), t ≥ 0)
by subordination,

X (t) = S(N (t)),

for all t ≥ 0. Then X is a Feller process by Exercise 3.3.17. Clearly, if S
is a random walk then X is nothing but a compound Poisson process. More
generally, using independence and the results of Exercises 3.5.8 and 3.2.4, we
obtain for each t ≥ 0, f ∈Bb(Rd ), x ∈Rd ,

(Ttf )(x) = E
(
f (X (t))

∣∣X (0) = x
)

=
∞∑
n=0

E
(
f (S(n))

∣∣S(0) = x
)
P(N (t) = n)

= e−λt
∞∑
n=0

E
(
f (S(n))

∣∣S(0) = x
) (λt)n

n!

= e−λt
∞∑
n=0

(Qnf )(x)
(λt)n

n!
= et[λ(Q−I)]f (x).

Hence, if A is the infinitesimal generator of the restriction of (Tt , t ≥ 0) to
C0(Rd ) then A is bounded and, for all f ∈C0(R

d ), x ∈Rd ,

(Af )(x) = λ((Q − I)f )(x) =
∫

Rd

[
f (y)− f (x)

]
λq(x, dy).

Clearly A is of the form (3.20) with finite Lévy kernel µ = λq.
The above construction has a converse. Define a bounded operator B on

C0(R
d ), by

(Bf )(x) =
∫

Rd

[
f (y)− f (x)

]
λ(x)q(x, dy),

where λ is a non-negative bounded measurable function on Rd and q is a
transition function, i.e. q(x, ·) is a probability measure on B(Rd ), for each
x ∈Rd and the map x→ q(x,A) is Borel measurable for each A∈B(Rd ). It is
shown in Ethier and Kurtz [116], pp. 162–4, that B is the infinitesimal generator
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of a Feller process that has the same finite-dimensional distributions as a certain
pseudo-Poisson process.

Example 3.5.9 (Stable-like processes) Recall from Section 1.2.5 that if X =
(X (t), t ≥ 0) is a rotationally invariant stable process of index α ∈ (0, 2) then
it has Lévy symbol η(u) = −|u|α , for all u∈Rd (where we have taken σ = 1
for convenience) and Lévy–Khintchine representation

−|u|α = K(α)

∫
Rd−{0}

(ei(u,y) − 1− iuyχB̂)
dy

|y|d+α
,

where K(α) > 0.
Now let α :Rd → (0, 2) be continuous; then we can assert the existence of

a positive function K on Rd such that

−|u|α(x) =
∫

Rd−{0}
(ei(u,y) − 1− iuyχB̂)

K(x)dy

|y|d+α(x)
.

Define a mapping ζ :Rd × Rd → C by ζ(x, u) = −|u|α(x). Then ζ clearly
satisfies the conditions ofTheorem3.5.5 and so is the symbol of a linear operator
A that satisfies the positive maximum principle.
Using the representation

(Af )(x) = −(2π)d/2
∫

Rd
|u|α(x) f̂ (u)ei(x,u)du

for each f ∈ S(Rd ), x ∈Rd , we see that S(Rd ) ⊆ DA. An exercise in the use of
the Fourier transform then yields

(Af )(x) =
∫

Rd−{0}
[
f (y + x)− f (x)− yj∂jf (x)χB̂

] K(x)dy

|y|d+α(x)
.

It can now be easily verified that this operator is of Lévy type, with associated
Lévy kernel

µ(x, dy) = K(x)dy

|y − x|d+α(x)

for each x ∈Rd .
By the usual correspondence, we can also write

(Af )(x) = (−(−�)α(x)/2f )(x).

Of course, we cannot claim at this stage that A is the generator of a Feller
semigroup associated with a Feller process. Bass [32] associated aMarkov pro-
cess with X by solving the associated martingale problem under the additional
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constraint that 0 < inf x ∈Rd α(x) < supx ∈Rd α(x) < 2. Tsuchiya [349] then
obtained the process as the solution of a stochastic differential equation under
the constraint that α be Lipschitz continuous. For further studies of properties of
these processes, see Negoro [276], Kolokoltsov [208, 209] and Uemura [351].

3.5.3 The forward equation

For completeness, we include a brief non-rigorous account of the forward
equation. Let (Tt , t ≥ 0) be the semigroup associated with a Lévy-type Feller
process and, for each f ∈ Dom(A), x ∈Rd , t ≥ 0 write u(t, x) = (Ttf )(x); then
we have the initial-value problem

∂u(t, x)

∂t
= Au(t, x), (3.23)

with initial condition u(0, x) = f (x). Let (pt , t ≥ 0) be the transition probability
measures associated with (Tt , t ≥ 0). We assume that each pt(x, ·) is absolutely
continuous with respect to Lebesgue measure with density ρt(x, ·). We also
assume that, for each y ∈Rd , the mapping t → ρt(x, y) is differentiable and that
its derivative is uniformly bounded with respect to y. By (3.3) and dominated
convergence, for each t ≥ 0, x ∈Rd , we have for all f ∈C∞c (Rd ),

∂u(t, x)

∂t
= ∂(Ttf )(x)

∂t

= ∂

∂t

∫
Rd

f (y)pt(x, y)dy=
∫

Rd
f (y)

∂pt(x, y)

∂t
dy.

On the other hand,

Au(t, x) = (TtAf )(x) =
∫

Rd
(Af )(y)pt(x, y) dy

=
∫

Rd
f (y)A†pt(x, y) dy,

where A† is the ‘formal adjoint’ of A, which acts on pt through the y-variable.
We thus conclude from (3.23) that∫

Rd
f (y)

[
∂pt(x, y)

∂t
− A†pt(x, y)

]
dy = 0.

In the general case, there appears to be no nice form for A†; however, if X is a
killed diffusion (so that µ ≡ 0 in (3.20)), integration by parts yields

A†pt(x, y) = c(y)pt(x, y)− ∂i
[
bi(y)pt(x, y)

]+ ∂i∂j
[
aij(y)pt(x, y)

]
.
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In this case, the partial differential equation

∂pt(x, y)

∂t
= A†pt(x, y) (3.24)

is usually called the Kolmogorov forward equation by probabilists and the
Fokker–Planck equation by physicists. In principle, we can try to solve it with
the initial condition ρ0(x, y)= δ(x−y) and then use the density to construct the
process from its transition probabilities. Notice that all the action in (3.24) is
with respect to the ‘forward variables’ t and y. An alternative equation, which
can be more tractable analytically, is the Kolmogorov backward equation

∂pt−s(x, y)
∂s

= −Apt−s(x, y). (3.25)

Note that, on the right-hand side of (3.25),A operateswith respect to the variable
x, so this time all the action takes place in the ‘backward variables’ s and x.
A nice account of this partial differential equation approach to constructing

Markov processes can be found in Chapter 3 of Stroock and Varadhan [340].
The discussion of forward and backward equations in their introductory chapter
is also highly recommended.

Exercise 3.5.10 Find an explicit form forA† in the casewhereA is the generator
of Lévy process.

3.6 Dirichlet forms

In this section, we will attempt to give a gentle and somewhat sketchy intro-
duction to the deep and impressive modern theory of Dirichlet forms. We will
simplify matters by mainly restricting ourselves to the symmetric case and also
by continuing with our programme of studying processes whose state space is
Rd . However, readers should bear in mind that some of the most spectacular
applications of the theory have been to the construction of processes in quite
general contexts such as fractals and infinite-dimensional spaces.
For more detailed accounts, we recommend the reader to Fukushima et al.

[129], Bouleau andHirsch [59],Ma andRöckner [242],Albeverio [5], chapter 3
of Jacob [179] and chapter 4 of Jacob [180].

3.6.1 Dirichlet forms and sub-Markov semigroups

If you are unfamiliar with the notion of a closed symmetric form in a Hilbert
space, then you should begin by reading Section 3.8.3. We fix the real Hilbert
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space H = L2(Rd ). By Theorem 3.8.9 there is a one-to-one correspondence
between closed symmetric forms E inH and positive self-adjoint operators T in
H , given by E(f ) = ||T 1/2f ||2 for each f ∈DT 1/2 . When we combine this with
Theorem 3.4.6, we deduce that there is a one-to-one correspondence between
closed symmetric forms in H and self-adjoint semigroups (Tt , t ≥ 0) in H .

Now suppose that (Tt , t ≥ 0) is a self-adjoint sub-Markovian semigroup in
H , so that 0 ≤ f ≤ 1 (a.e.) ⇒ 0 ≤ Ttf ≤ 1 (a.e.). We can ‘code’ the self-
adjoint semigroup property into a closed symmetric form E . How can we also
capture the sub-Markov property? The answer to this question is contained in
the following definition.
Let E be a closed symmetric form in H with domain D. We say that it is a

Dirichlet form if f ∈D⇒ (f ∨ 0) ∧ 1∈D and

E((f ∨ 0) ∧ 1) ≤ E(f ) (3.26)

for all f ∈D.
A closed densely defined linear operator A in H with domain DA is called a

Dirichlet operator if

〈Af , (f − 1)+〉 ≤ 0

for all f ∈DA.
The following theorem describes the analytic importance of Dirichlet forms

and operators. We will move on later to their probabilistic value.

Theorem 3.6.1 The following are equivalent:

(1) (Tt , t ≥ 0) is a self-adjoint sub-Markovian semigroup in L2(Rd ) with
infinitesimal generator A;

(2) A is a Dirichlet operator and −A is positive self-adjoint;
(3) E(f ) = ||(−A)1/2f ||2 is a Dirichlet form with domain D = D(−A)1/2 .

A proof of this can be found in Bouleau and Hirsch [59], pp. 12–13.

Example 3.6.2 (Symmetric Lévy processes) Let X = (X (t), t ≥ 0) be a sym-
metric Lévy process. In Theorem 3.4.10, we showed that these give rise to
self-adjoint L2-Markov semigroups and so they will induce a Dirichlet form
E , by Theorem 3.6.1(3). Let A be the infinitesimal generator of the process. It
follows from Corollary 3.4.11 via the argument that established Theorem 3.3.3
(3) that, for each f ∈C∞c (Rd ),

(Af )(x) = 1
2a

ij∂i∂jf (x)+ 1

2

∫
Rd−{0}

[
f (x + y)+ f (x − y)− 2f (x)

]
ν(dy).
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The following formula is of course just a consequence of the Lévy–
Khintchine formula. Intriguingly, as we will see in the next section, it is a
paradigm for the structure of symmetric Dirichlet forms.
For all f , g ∈C∞c (Rd ),

E(f , g) = 1

2
aij
∫

Rd
(∂if )(x)(∂jg)(x)dx

+ 1

2

∫
Rd

∫
Rd−{0}

[
f (x)− f (x + y)

]
× [g(x)− g(x + y)

]
ν(dy)dx. (3.27)

To verify (3.27) we just use integration by parts, the symmetry of ν and a
change of variable to obtain

E(f , g) = −〈f ,Ag〉

= 1

2
aij
∫

Rd
(∂if )(x) (∂jg)(x) dx

− 1

2

∫
Rd

∫
Rd−{0}

f (x)
[
g(x + y)+ g(x − y)− 2g(x))

]
ν(dy) dx

= 1

2
aij
∫

Rd
(∂if )(x) (∂jg)(x) dx

− 1

2
lim
ε→0

∫
Rd

∫
||y||>ε

f (x)
[
g(x + y)+ g(x − y)− 2g(x))

]
ν(dy) dx

= 1

2
aij
∫

Rd
(∂if )(x)(∂jg)(x) dx

+ 1

2
lim
ε→0

∫
Rd

∫
||y||>ε

[
f (x + y)(g(x + y)− f (x + y)g(x)

− f (x)g(x + y)+ f (x)g(x)
]
ν(dy)dx,

and the result follows.
A special case of Example 3.6.2 merits particular attention:

Example 3.6.3 (The energy integral) Take X to be a standard Brownian
motion; then, for all f ∈H2(Rd ),

E(f ) = 1

2

d∑
i=1

∫
Rd

(∂if )(x)
2 dx = 1

2

∫
Rd
|∇f (x)|2 dx.

This form is often called the energy integral or the Dirichlet integral.
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3.6.2 The Beurling–Deny formula

In this section we will see how the structure of symmetric Lévy processes
generalises to a natural class of Dirichlet forms. First we need a definition.
A core of a symmetric closed form E with domain D in L2(Rd ) is a subset C

of D ∩ Cc(Rd ) that is dense in D with respect to the norm ||·||E (see Section
3.8.3) and dense in Cc(Rd ) in the uniform norm. If E possesses such a core, it
is said to be regular.

Example 3.6.4 Let T be a positive symmetric linear operator in L2(Rd ) and
suppose that C∞c (Rd ) is a core for T in the usual operator sense; then it is also
a core for the closed form given by E(f ) = 〈f , Tf 〉, where f ∈DT .

We can now state the celebrated Beurling–Deny formula,

Theorem 3.6.5 (Beurling–Deny) If E is a regular Dirichlet form in L2(Rd )

with domain D, then, for all f , g ∈D ∩ Cc(Rd ),

E(f , g) =
∫

Rd
∂if (x)∂jg(x)µ

ij(dx)+
∫

Rd
f (x)g(x)k(dx)

+
∫

Rd×Rd−D
[
f (x)− f (y)

][
g(x)− g(y)

]
J (dx, dy), (3.28)

where k is a Borel measure on Rd , J is a Borel measure on Rd × Rd − D
(D = {(x, x), x ∈Rd } being the diagonal); the {µij, 1 ≤ i, j ≤ d} are Borel
measures in Rd with each µij = µji and (u,µ(K)u) ≥ 0 for all u∈Rd and all
compact K ∈B(Rd ), where µ(K) denotes the d × d matrix with (i, j)th entry
µij(K).

This important result clearly generalises (3.27), and its probabilistic inter-
pretation is clear from the names given to the various measures that appear in
(3.28): the µij are called diffusion measures, J is called the jump measure and
k is the killing measure. For generalisations of the Beurling–Deny formula to
the context of semi-Dirichlet forms, see Hu et. al. [158].
In general, a Dirichlet form E with domain D is said to be local if, for all

f , g ∈D for which supp (f ) and supp (g) are disjoint compact sets, we have
E(f , g) = 0. A Dirichlet form that fails to be local is often called non-local.
Since partial differentiation cannot increase supports, the non-local part of the
Beurling–Deny form (3.28) is that controlled by the jump measure J .

3.6.3 Closable Markovian forms

In concrete applications it is quite rare to have a closed form. Fortunately, many
forms that have to be dealt with have the pleasing property of being closable
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(see Section 3.8.3). In this case, we need an analogue of definition (3.26) for
such forms, so that they can code probabilistic information.
Let E be a closable positive symmetric bilinear form with domain D. We

say that it is Markovian if, for each ε > 0, there exists a family of infinitely
differentiable functions (φε(x), x ∈R) such that:

(1) φε(x) = x for all x ∈ [0, 1];
(2) −ε ≤ φε(x) ≤ 1+ ε for all x ∈R;
(3) 0 ≤ φε(y)− φε(x) ≤ y − x whenever x, y ∈R with x < y.

Furthermore, for all f ∈D, φε(f )∈D and

E(φε(f )) ≤ E(f ).

Exercise 3.6.6 Given (φε(x), x ∈R) as above, show that, for each x, y ∈Rd ,
|φε(x)| ≤ |x|, |φε(y)− φε(x)| ≤ |y − x| and 0 ≤ φ′ε(x) ≤ 1.

Note that when D = C∞c (Rd ), a family (φε(x), x ∈R) satisfying the con-
ditions (1) to (3) above can always be constructed using mollifiers (see e.g.
Fukushima et al. [129], p. 8.) In this case we also have φε(f )∈C∞c (Rd )

whenever f ∈C∞c (Rd ).
If we are given a closableMarkovian form then we have the following result,

which allows us to obtain a bona fide Dirichlet form.

Theorem 3.6.7 If E is a closable Markovian symmetric form on L2(Rd ) then
its closure E is a Dirichlet form.

Proof See Fukushima et al. [129], pp. 98–9. �

Example 3.6.8 (Symmetric diffusions) Leta(x) = (aij(x))be amatrix-valued
function from Rd to itself such that each a(x) is a positive definite symmetric
matrix and for each 1 ≤ i, j ≤ d the mapping x→ aij(x) is Borel measurable.
We consider the positive symmetric bilinear form on D given by

E(f ) =
∫

Rd
aij(x)∂if (x)∂jf (x) dx, (3.29)

on the domain D = {f ∈C1(Rd ) ∩ L2(Rd ), E(f ) <∞}.
Forms of the type (3.29) appear in association with elliptic second-order

differential operators in divergence form, i.e.

(Af )(x) =
d∑

i,j=1
∂i
[
aij(x)∂jf (x)

]
,
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for each f ∈C∞c (Rd ), x ∈Rd , where we assume for convenience that each aij is
bounded and differentiable. In this case, it is easily verified that A is symmetric
and hence that E is closable on the domain C∞c (Rd ) by Theorem 3.8.10.
More generally, it is shown in Fukushima et al. [129], pp. 100–1, that E as

given by (3.29) is closable if either of the following two conditions is satisfied:

• for each 1 ≤ i, j ≤ d , aij ∈ L2loc(Rd ) and ∂iaij ∈ L2loc(Rd ).
• (uniform ellipticity) there exists K > 0 such that (ξ , a(x)ξ) ≥ K |ξ |2 for all
x, ξ ∈Rd .

If E is closable on C∞c (Rd ) then it is Markovian. To see this, we use the
result of Exercise 3.6.6 to obtain for all ε > 0, f ∈C∞c (Rd ),

E(φε(f )) =
∫

Rd
aij(x)∂iφε(f )(x) ∂jφε(f )(x) dx

=
∫

Rd
aij(x)|φ′ε(f (x))|2∂if (x)∂jf (x) dx

≤
∫

Rd
aij(x)∂if (x)∂jf (x) dx = E(f ).

It then follows by Theorem 3.6.7 that E is indeed a Dirichlet form.

Note that from a probabilistic point of view, a form of this type contains
both diffusion and drift terms (unless a is constant). This is clear when E is
determined by the differential operator A in divergence form.

Example 3.6.9 (Symmetric jump operators) Let " be a Borel measurable
mapping from Rd × Rd → R that satisfies the symmetry condition "(x, y) =
"(y, x) for all x, y ∈Rd . We introduce the form

E(f ) = 1

2

∫
Rd×Rd−D

[
f (y)− f (x)

]2
"(x, y)dx, (3.30)

with domain C∞c (Rd ).
We examine the case where E is induced by a linear operator A for which

(Af )(x) =
∫

Rd−{x}
[
f (y)− f (x)

]
"(x, y)dy

for f ∈C∞c (Rd ).
Let us suppose that " is such that A is a bona fide operator in L2(Rd ); then,

by the symmetry of ", it follows easily that A is symmetric on C∞c (Rd ), with

E(f ) = 〈f ,Af 〉.
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We can now proceed as in Example 3.6.8 and utilise Theorem 3.8.10 to deduce
that E is closable, Exercise 3.6.6 to show that it is Markovian and Theorem
3.6.7 to infer that E is indeed a Dirichlet form.

We will now look at some conditions under which A operates in L2(Rd ).
We impose a condition on " that is related to the Lévy kernel concept

considered in Section 3.5. For each f ∈C∞c (Rd ) we require that the mapping

x→
∫

Rd−{x}
|y − x|"(x, y)dy

is in L2(Rd ). Using the mean value theorem, there exists 0 < θ < 1 such that,
for all x ∈Rd ,∣∣(Af )(x)∣∣ ≤ ∫

Rd−{x}
∣∣yi − xi

∣∣∣∣∂if (x + θ(y − x))
∣∣"(x, y)dy

≤
∫

Rd−{x}
∣∣y − x

∣∣ ( d∑
i=1

∣∣∂if (x + θ(y − x))
∣∣2)1/2"(x, y)dy

≤ d1/2 max
1≤i≤n sup

z ∈Rd

∣∣∂if (z)∣∣∣∣∣ ∫
Rd−{x}

∣∣y − x
∣∣"(x, y)dy∣∣∣,

from which we easily deduce that ||Af ||2 <∞, as required.
Another condition is given in the following exercise.

Exercise 3.6.10 Suppose that∫
Rd

∫
Rd

∣∣"(x, y)∣∣2dydx <∞.

Deduce that ||Af ||2 <∞ for each f ∈C∞c (Rd ).

A generalisation of this example was studied by René Schilling in [328]. He
investigated operators, of a similar type to A above, that are symmetric and
satisfy the positive maximum principle. He was able to show that the closure of
A is a Dirichlet operator, which then gives rise to a Dirichlet form by Theorem
3.6.1 (see Schilling [328], pp. 89–90).
We also direct readers to the paper byAlbeverio and Song [3], where general

conditions for the closability of positive symmetric forms of jump type are
investigated.

3.6.4 Dirichlet forms and Hunt processes

Most of this subsection is based on Appendix A.2 of Fukushima et al. [129],
pp. 310–31. We begin with the key definition. Let X = (X (t), t ≥ 0) be a
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homogeneous sub-Markov process defined on a probability space (�,F ,P)
and adapted to a right-continuous filtration (Ft , t ≥ 0). We will also require the
augmented natural filtration (GX

t , t ≥ 0). We say that X is a Hunt process if:

(1) X is right-continuous;
(2) X has the strong Markov property with respect to (GX

t , t ≥ 0), i.e. given
any GX

t -adapted stopping time T ,

P
(
X (T + s)∈B∣∣GX

t

) = P
(
X (s)∈B∣∣X (T )

)
for all s ≥ 0, B∈B(Rd );

(3) X is quasi-left-continuous, i.e. if given anyGX
t -adapted stopping timeT and

any sequence of GX
t -adapted stopping times (Tn, n∈N) that are increasing

to T we have

P
(
lim
n→∞X (Tn) = X (T ), T <∞

)
= P(T <∞).

If the notion of Hunt process seems a little unfamiliar and obscure, the good
news is:

Theorem 3.6.11 Every sub-Feller process is a Hunt process.

In particular, then, every Lévy process is a Hunt process.
We now briefly summarise the connection between Hunt processes and

Dirichlet forms.
First suppose that X is a Hunt process with associated semigroup (Tt , t ≥ 0)

and transition probabilities (pt , t ≥ 0). We further assume that X is symmetric.
It can then be shown (see Fukushima et al. [129], pp. 28–9) that there existsM ⊆
Bb(Rd )∩L1(Rd ), withM dense inL2(Rd ), such that limt↓0

∫
Rd f (y)pt(x, dy) =

f (x) (a.e.) for all f ∈M , x ∈Rd . From this it follows that the semigroup (Tt , t ≥
0) is strongly continuous. Now since X is symmetric, (Tt , t ≥ 0) is self-adjoint
and hence we can associate a Dirichlet form E with X by Theorem 3.6.1.
We note two interesting consequences of this construction.

• Every Lebesgue-symmetric Feller process induces a Dirichlet form in
L2(Rd ).

• Every Lebesgue-symmetic sub-Feller semigroup in C0(Rd ) induces a self-
adjoint sub-Markov semigroup in L2(Rd ).

The converse, whereby a symmetric Hunt process is associated with an arbi-
trary regular Dirichlet form, is much deeper and goes beyond the scope of the
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present volume. The full story can be found in chapter 7 of Fukushima et al.
[129] but there is also a nice introduction in chapter 3 of Jacob [179].
We give here the briefest of outlines. Let E be a regular Dirichlet form

in L2(Rd ). By Theorem 3.6.1, we can associate a sub-Markov semigroup
(Tt , t ≥ 0) to E . Formally, we can try to construct transition probabilities
by the usual procedure pt(x,A) = (TtχA)(x) for all t ≥ 0, A∈B(Rd ) and
(Lebesgue) almost all x ∈Rd . The problem is that the Chapman–Kolmogorov
equations are only valid on sets of ‘capacity zero’. It is only by systemati-
cally avoiding sets of non-zero capacity that we can associate a Hunt process
X = (X (t), t ≥ 0) with E . Even when such a process is constructed, the map-
ping x→ E(f (X (t)|X (0) = x) for f ∈Bb(Rd )∩L2(Rd ) is only defined up to a
‘set of capacity zero’, and this causes difficulties in giving a sense to the unique-
ness of X . For further discussion and also an account of the important notion of
capacity, see Fukushima et al. [129], Jacob [179] and Ma and Röckner [242].

3.6.5 Non-symmetric Dirichlet forms

The material in this subsection is mostly based on Ma and Röckner [242], but
see also chapter 3 of Jacob [179] and section 4.7 of Jacob [180]).
Let D be a dense domain in L2(Rd ). We want to consider bilinear forms E

with domainD that are positive, i.e. E(f , f ) ≥ 0 for all f ∈D, but not necessarily
symmetric. We introduce the symmetric and antisymmetric parts of E , which
we denote as Es and Ea, respectively, for each f , g ∈D, by

Es(f , g)= 1
2

[E(f , g)+ E(g, f )
]
and Ea(f , g)= 1

2

[E(f , g)− E(g, f )
]
.

Note that E = Es + Ea and that Es is a positive symmetric bilinear form.
In order to obtain a good theory of non-symmetric Dirichlet forms, we need

to impose more structure than in the symmetric case.
We recall (see Section 3.8.3) the inner product 〈·, ·〉E induced by E and

given by
〈f , g〉E = 〈f , g〉 + E(f , g)

for each f , g ∈D. We say that E satisfies the weak-sector condition if there
exists K > 0 such that, for each f , g ∈D,

|〈f , g〉E | ≤ K ||f ||E ||g||E .

Exercise 3.6.12 Show that if E satisfies the weak-sector condition then there
exists K1 ≥ 0 such that, for all f ∈D,

|E(f )| ≤ K1
[||f ||2 + Es(f )

]
.
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A positive bilinear form E with dense domain D is termed coercive if:

(1) Es is a closed symmetric form;
(2) E satisfies the weak sector condition.

A coercive form E with domain D is said to be a Dirichlet form if, for all
f ∈D, we have (f ∨ 0) ∧ 1∈D and:

(D1) E(f + (f ∨ 0) ∧ 1, f − (f ∨ 0) ∧ 1
) ≥ 0;

(D2) E(f − (f ∨ 0) ∧ 1, f + (f ∨ 0) ∧ 1) ≥ 0.

We comment below on why there are two conditions of this type. Note how-
ever that if E is symmetric then both (D1) and (D2) coincide with the earlier
definition (3.26).
Many results of the symmetric case carry over to the more general formal-

ism, but the development is more complicated. For example, Theorem 3.6.1
generalises as follows.

Theorem 3.6.13

(1) (Tt , t ≥ 0) is a sub-Markovian semigroup in L2(Rd ) with generator A if
and only if A is a Dirichlet operator.

(2) If E is a coercive form with domain D, then there exists a Dirichlet operator
A such that D = DA and E(f , g) = −〈f ,Ag〉 for all f , g ∈DA if and only if
E satisfies (D1).

See Ma and Röckner [242], pp. 31–2, for a proof.
You can clarify the relationship between (D1) and (D2) through the following

exercise.

Exercise 3.6.14 Let A be a closed operator in L2(Rd ) for which there exists a
dense linear manifold D such that D ⊆ DA ∩ DA∗ . Define two bilinear forms
EA and EA∗ with domain D by

EA(f , g) = −〈f ,Ag〉, EA∗(f , g) = −〈f ,A∗g〉.

Deduce that EA satisfies (D1) if and only if EA∗ satisfies (D2).
We can also associate Hunt processes with non-symmetric Dirichlet forms.

This is again more complex than in the symmetric case and, in fact, we need to
identify a special class of forms called quasi-regular from which processes can
be constructed. The details can be found in chapter 3 of Ma and Röckner [242].
There are many interesting examples of non-symmetric Dirichlet forms on

both Rd and in infinite-dimensional settings, and readers can consult chapter 2
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ofMa and Röckner [242] for some of these.We will consider the case of a Lévy
process X = (X (t), t ≥ 0) with infinitesimal generator A and Lévy symbol η.
We have already seen that if X is symmetric then it gives rise to the prototype
symmetric Dirichlet form.
Define a bilinear form E on the domain S(Rd ) by

E(f , g) = −〈f ,Ag〉

for all f , g ∈ S(Rd ). We will find that the relationship between Lévy processes
and Dirichlet forms is not so clear cut as in the symmetric case. First, though,
we need a preliminary result.

Lemma 3.6.15 For all f , g ∈ S(Rd ),

Es(f , g) = −
∫

Rd
f̂ (u)�(η(u)) ĝ(u)du.

Proof For all f , g ∈ S(Rd ), by Theorem 3.3.3(2),

Es(f , g) = 1

2

[E(f , g)+ E(g, f )
] = −1

2

[〈f ,Ag〉 + 〈g,Af 〉]
= −1

2

[∫
Rd

f̂ (u)η(u)ĝ(u)du +
∫

Rd
ĝ(u)η(u)f̂ (u)du

]
.

In particular, we have

Es(f ) = −
∫

Rd
|f̂ (u)|2η(u)du

= −
∫

Rd
|f̂ (u)|2�(η(u)) du − i

∫
Rd
|f̂ (u)|2 �(η(u))du.

However, A : S(Rd ) → C0(R
d ) and hence Es(f )∈R, so we must have∫

Rd |f̂ (u)|2 �(η(u)) du = 0. The result then follows by polarisation. �

Exercise 3.6.16 Deduce that E is positive, i.e. that E(f ) ≥ 0 for all f ∈ S(Rd ).

The following result is based on Jacob [180], Example 4.7.32.

Theorem 3.6.17 If E satisfies the weak-sector condition, then, for all u∈Rd ,
there exists C > 0 such that

|�(η(u))| ≤ C
[
1−�(η(u)

]
. (3.31)
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Proof Suppose that E satisfies the weak-sector condition; then, by Exercise
3.6.12, there exists K1 > 0 such that |E(f )| ≤ K1[||f ||2 + Es(f )] for all
f ∈ S(Rd ). Using Parseval’s identity and the result of Lemma 3.6.15, we thus
obtain ∣∣∣∣∫

Rd
|f̂ (u)|2η(u)du

∣∣∣∣ ≤ K1

∫
Rd

[
1−�(η(u))

]|f̂ (u)|2du.
Hence [∫

Rd
|f̂ (u)|2�(η(u)) du

]2
+
[∫

Rd
|f̂ (u)|2 �(η(u)) du

]2
≤ K2

1

[∫
Rd

[
1−�(η(u))

]|f̂ (u)|2du]2 .
We thus deduce that there exists C > 0 such that∣∣∣∣∫

Rd
|f̂ (u)|2 �(η(u)) du

∣∣∣∣ ≤ C
∫

Rd

[
1−�(η(u))

]|f̂ (u)|2du,
from which the required result follows. �

Theorem 3.6.17 indicates that the theory of non-symmetric Dirichlet forms
is not powerful enough to cover all Lévy processes: indeed, if we take X to be
a ‘pure drift’with characteristics (b, 0, 0) then it clearly fails to satisfy equation
(3.31) and so cannot yield a Dirichlet form. In Jacob [180], Example 4.7.32, it
is shown that the condition (3.31) is both necessary and sufficient for E to be a
Dirichlet form. A result of similar type, but under slightly stronger hypotheses,
was first established by Berg and Forst in [37].

3.7 Notes and further reading

The general theory of Markov processes is a deep and extensive subject
and we have only touched on the basics here. The classic text by Dynkin
[100] is a fundamental and groundbreaking study. Indeed, Dynkin is one
of the giants of the subject, and I also recommend the collection of his
papers [101] for insight into his contribution. Another classic text for Markov
process theory is Blumenthal and Getoor [55]. A more modern approach,
which is closer to the themes of this book, is the oft-cited Ethier and
Kurtz [116].
A classic resource for the analytic theory of semigroups is Hille and Phillips

[152]. In fact the idea of studying semigroups of linear mappings in Banach
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spaces seems to be due to Hille [153]. It is not clear which author first realised
that semigroups could be used as a tool to investigate Markov processes; how-
ever, the idea certainly seems to have been known to Feller in the 1950s (see
chapters 9 and 10 of [119]).
The modern theory of Dirichlet forms originated with the work of Beurling

and Deny [42, 43] and Deny [89] provides a very nice expository account from
a potential-theoretic point of view. The application of these to construct Hunt
processes was developed by Fukushima and is, as discussed above, described
in Fukushima et al. [129]. The notion of a Hunt process is, of course, due to
G.A. Hunt and can be found in [164].

3.8 Appendix: Unbounded operators in Banach spaces

In this section, we aim to give a primer on all the results about linear operators
that are used inChapter 3. In order to keep the book as self-contained as possible,
we have included proofs of some key results; however, our account is, by its
very nature, somewhat limited and those who require more sustenance should
consult a dedicated book on functional analysis. Our major sources, at least for
the first two subsections, are chapter 8 of Reed and Simon [301] and chapters 1
and 7 of Yosida [363]. The classic text by Kato [201] is also a wonderful
resource. We assume a basic knowledge of Banach and Hilbert spaces.

3.8.1 Basic concepts: operators, domains, closure,
graphs, cores, resolvents

Let B1 and B2 be Banach spaces over either R or C. An operator from B1 to B2
is a mapping T from a subset DT of B1 into B2. We call DT the domain of T . T
is said to be linear if DT is a linear space and

T (αψ1 + βψ2) = αTψ1 + βTψ2

for all ψ1,ψ2 ∈DT and all scalars α and β. Operators that fail to be linear are
usually called non-linear.
From now on, all our operators will be taken to be linear and we will take

B1 = B2 = B to be a real Banach space, as this is usually sufficient in prob-
ability theory (although not in quantum probability, see e.g. Meyer [267] or
Parthasarathy [291]). Readers can check that almost all ideas extend naturally
to the more general case (although one needs to be careful with complex conju-
gateswhen considering adjoint operators in complex spaces).When considering
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the Fourier transform, in the final section, we will in fact need some spaces of
complex functions, but these should present no difficulty to the reader.
Linear operators from B to B are usually said to operate in B. The norm in B

will always be denoted as || · ||.
LetT1 andT2 be linear operators inBwith domainsDT1 andDT2 , respectively.

We say that T2 is an extension of T1 if

(1) DT1 ⊆ DT2 ,
(2) T1ψ = T2ψ for all ψ ∈DT1 .

We write T1 ⊆ T2 in this case. If T2 is an extension of T1, we often call T1
the restriction of T2 to DT1 and write T1 = T2|DT1

.
Linear operators can be added and composed so long as we take care with

domains. Let S and T be operators in B with domains DS and DT , respectively.
Then S + T is an operator with domain DS ∩ DT and

(S + T )ψ = Sψ + Tψ

for all ψ ∈DS ∩ DT .
The composition ST has domain DST = DT ∩ T−1(DS) and

(ST )ψ = S(Tψ),

for all ψ ∈DST .
Let T be a linear operator in B. It is said to be densely defined if its domain

DT is dense in B. Note that even if S and T are both densely defined, S + T
may not be.
A linear operator T in B with domain DT is bounded if there exists K ≥ 0

such that
||Tψ || ≤ K ||ψ ||

for all ψ ∈DT .
Operators that fail to be bounded are often referred to as unbounded.

Proposition 3.8.1 A densely defined bounded linear operator T in B has a
unique bounded extension whose domain is the whole of B.

Proof (Sketch) Letψ ∈B; then sinceDT is dense there exists (ψn, n∈N) inDT

with limn→∞ ψn = ψ . Since T is bounded, we deduce easily that (Tψn, n∈N)

is a Cauchy sequence inB and so converges to a vectorφ ∈B. Define an operator
T̃ with domain B by the prescription

T̃ψ = φ.
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Then it is easy to see that T̃ is linear and extends T . Moreover, T is bounded
since

||T̃ψ || = ||φ|| = lim
n→∞ ||Tψn|| ≤ K lim

n→∞ ||ψn|| = K ||ψ ||,

where we have freely used the Banach-space inequality

|(||a|| − ||b||)| ≤ ||a − b|| for all a, b∈B.

It is clear that T̃ is unique. �

In the light of Proposition 3.8.1, whenever we speak of a bounded operator
in B, we will implicitly assume that its domain is the whole of B.
Let T be a bounded linear operator in B. We define its norm ||T || by

||T || = sup{||Tψ ||;ψ ∈B, ||ψ || = 1};

then the mapping T → ||T || really is a norm on the linear space L(B) of all
bounded linear operators in B. L(B) is itself a Banach space (and in fact, a
Banach algebra) with respect to this norm.
Abounded operatorT is said to be a contraction if ||T || ≤ 1 and an isometry if

||T || = 1 (the Itô stochastic integral as constructed in Chapter 4 is an example of
an isometry between two Hilbert spaces). An operator T in B that is isometric
and bijective is easily seen to have an isometric inverse. Such operators are
called isometric isomorphisms.

Proposition 3.8.2 A linear operator T in B with DT = B is bounded if and
only if it is continuous.

Proof (Sketch) Suppose that T is bounded in B and let ψ ∈B and (ψn, n∈N)

be any sequence in B converging to ψ . Then by linearity

||Tψ − Tψn|| ≤ ||T || ||ψ − ψn||,

fromwhichwededuce that (Tψn, n∈N) converges toTψ and the result follows.
Conversely, suppose that T is continuous but not bounded; then for each

n∈Nwe can findψn ∈Bwith ||ψn|| = 1 and ||Tψn|| ≥ n. Now let φn = ψn/n;
then limn→∞ φn = 0 but ||Tφn|| > 1 for each n∈N. Hence T is not continuous
at the origin and we have obtained the desired contradiction. �

For unbounded operators, the lack of continuity is somewhat alleviated if the
operator is closed, which we may regard as a weak continuity property. Before
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defining this explicitly, we need another useful concept. Let T be an operator
in B with domain DT . Its graph is the set GT ⊆ B× B defined by

GT = {(ψ , Tψ);ψ ∈DT }.

We say that T is closed if GT is closed in B × B. Clearly this is equivalent to
the requirement that, for every sequence (ψn, n∈N) which converges to ψ ∈B
and for which (Tψn, n∈N) converges to φ ∈B, ψ ∈DT and φ = Tψ . If T is
a closed linear operator then it is easy to check that its domain DT is itself a
Banach space with respect to the graph norm |||·||| where

|||ψ ||| = ||ψ || + ||Tψ ||

for each ψ ∈DT .
Inmany situations, a linear operator only fails to be closed because its domain

is too small. To accommodate this we say that a linear operator T inB is closable
if it has a closed extension T̃ . Clearly T is closable if and only if there exists
a closed operator T̃ for which GT ⊆ GT̃ . Note that there is no reason why T̃
should be unique, and we define the closure T of a closable T to be its smallest
closed extension, so that T is the closure of T if and only if the following hold:

(1) T is a closed extension of T ;
(2) if T̃ is any other closed extension of T then DT ⊆ DT̃ .

The next theoremgives a useful practical criterion for establishing closability.

Theorem 3.8.3 A linear operator T in B with domain DT is closable if and
only if for every sequence (ψn, n∈N) in DT which converges to 0 and for which
(Tψn, n∈N) converges to some φ ∈B, we always have φ = 0.

Proof If T is closable then the result is immediate from the definition. Con-
versely, let (x, y1) and (x, y2) be two points in GT . Our first task is to show that
we always have y1 = y2. Let (x1n, n∈N) and (x2n, n∈N) be two sequences inDT

that converge to x; then (x1n − x2n, n∈N) converges to 0 and (Tx1n − Tx2n, n∈N)

converges to y1 − y2. Hence y1 = y2 by the criterion.
From now on, we write y = y1 = y2 and define T1x = y. Then T1 is a well-

defined linear operatorwithDT1 = {x ∈B; there exists y ∈B such that (x, y)∈GT }.
Clearly T1 extends T and by construction we have GT1 = GT , so that T1 is
closed, as required. �

It is clear that the operator T1 constructed in the proof of Theorem 3.8.3 is
the closure of T . Indeed, from the proof of Theorem 3.8.3, we see that a linear
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operator T is closable if and only if it has an extension T1 for which

GT1 = GT .

Having dealt with the case where the domain is too small, we should also
consider the case where we know that an operator T is closed, but the domain
is too large or complicated for us to work in it with ease. In that case it is very
useful to have a core available.
Let T be a closed linear operator in B with domain DT . A linear subspace C

of DT is a core for T if

T |C = T ,

i.e. given any ψ ∈DT , there exists a sequence (ψn, n∈N) in C such that
limn→∞ ψn = ψ and limn→∞ Tψn = Tψ .

Example 3.8.4 Let B = C0(R) and define

DT = {f ∈C0(R); f is differentiable and f ′ ∈C0(R)}

and

Tf = f ′

for all f ∈DT ; then T is closed and C∞c (R) is a core for T .

The final concept we need in this subsection is that of a resolvent. Let T be
a linear operator in B with domain DT . Its resolvent set ρ(T ) = {λ∈C; λI −
T is invertible}. The spectrum of T is the set σ(T ) = ρ(T )c. Note that every
eigenvalue of T is an element of σ(T ). If λ∈ ρ(T ), the linear operator Rλ(T ) =
(λI − T )−1 is called the resolvent of T .

Proposition 3.8.5 If T is a closed linear operator in B with domain DT and
resolvent set ρ(T ), then, for all λ∈ ρ(T ),Rλ(T ) is a bounded operator from B
into DT .

Proof Wewill need the inversemapping theorem,which states that a continuous
bijection between two Banach spaces always has a continuous inverse (see e.g.
Reed and Simon [301], p. 83). Now since T is closed, DT is a Banach space
under the graph norm and we find that for each λ∈ ρ(T ),ψ ∈DT ,

||(λI − T )ψ || ≤ |λ| ||ψ || + ||Tψ || ≤ max{1, |λ|} |||ψ |||.

So λI − T is bounded and hence continuous (by Proposition 3.8.2) from DT to
B. The result then follows by the inverse mapping theorem. �
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3.8.2 Dual and adjoint operators – self-adjointness

Let B be a real Banach space and recall that its dual space B∗ is the linear space
comprising all continuous linear functionals from B to R. The space B∗ is itself
a Banach space with respect to the norm

||l|| = sup{|l(x)|; ||x|| = 1}.

Now let T be a densely defined linear operator in B with domain DT . We
define the dual operator T c of T to be the linear operator in B∗ with DTc =
{l ∈B∗; l ◦ T ∈B∗} and for which

T cl = l ◦ T

for each l ∈DT c , so that T cl(ψ) = l(T (ψ)) for each l ∈DT c ,ψ ∈DT .
One of themost important classes of dual operators occurswhenB is aHilbert

space with inner product 〈·, ·〉. In this case the Riesz representation theorem
ensures that B and B∗ are isometrically isomorphic and that every l ∈B∗ is of
the form lψ for some ψ ∈B, where lψ(φ) = 〈ψ ,φ〉 for each ψ ∈B. We may
then define the adjoint operator T ∗ of T with domainDT∗ = {ψ ∈B; lψ ∈DT c}
by the prescription T ∗ψ = T c(lψ) for each ψ ∈DT∗ . If S and T are both linear
operators in a Hilbert space B, and α ∈R, we have

(S + αT )∗ ⊆ S∗ + αT ∗, (ST )∗ ⊆ T ∗S∗, if S ⊆ T then T ∗ ⊆ S∗.

Note that T ∗∗ = (T ∗)∗ is an extension of T .
The following result is very useful.

Theorem 3.8.6 Let T be a linear operator in a Hilbert space B. Then

(1) T ∗ is closed,
(2) T is closable if and only if T ∗ is densely defined, in which case we have

T = T ∗∗,
(3) if T is closable then (T )∗ = T ∗.

Proof See Reed and Simon [301], pp. 252–3, or Yosida [363], p. 196. �

In applications, we frequently encounter linear operators T that satisfy the
condition

〈ψ1, Tψ2〉 = 〈Tψ1,ψ2〉
for all ψ1,ψ2 ∈DT . Such operators are said to be symmetric and the above
condition is clearly equivalent to the requirement that T ⊆ T ∗. Note that if T
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is densely defined and symmetric then it is closable by Theorem 3.8.6(2) and
we can further deduce that T ⊆ T ∗∗ ⊆ T ∗.
We often require more than this, and a linear operator is said to be self-adjoint

if T = T ∗. We emphasise that for T to be self-adjoint we must haveDT = DT∗ .
The problem of extending a given symmetric operator to be self-adjoint

is sometimes fraught with difficulty. In particular, a given symmetric operator
may have many distinct self-adjoint extensions; see e.g. Reed and Simon [301],
pp. 257–9. We say that a symmetric operator is essentially self-adjoint if it has
a unique self-adjoint extension.

Proposition 3.8.7 A symmetric operator T in a Hilbert space B is essentially
self-adjoint if and only if T = T ∗.

Proof We prove only sufficiency here. To establish this, observe that if S is
another self-adjoint extension of T then T ⊆ S and so, on taking adjoints,

S = S∗ ⊆ T
∗ = T ∗∗ = T .

Hence S = T . �

Readers should be warned that for a linear operator T to be closed and
symmetric does not imply that it is essentially self-adjoint. Of course, if T
is bounded then it is self-adjoint if and only if it is symmetric. The simplest
example of a bounded self-adjoint operator is a projection. This is a linear
self-adjoint operator P that is also idempotent, in that P2 = P. In fact any
self-adjoint operator can be built in a natural way from projections. To see this,
we need the idea of a projection-valued measure. This is a family of projections
{P(A),A∈B(R)} that satisfies the following:
(1) P(∅) = 0, P(R) = 1;
(2) P(A1 ∩ A2) = P(A1)P(A2) for all A1,A2 ∈B(R);
(3) if (An, n∈N) is a Borel partition of A∈B(R) then

P(A)ψ =
∞∑
n=1

P(An)ψ

for all ψ ∈B.
For each φ,ψ ∈B, a projection-valued measure gives rise to a finite measure

µφ,ψ on B(R) via the prescription µφ,ψ(A) = 〈φ,P(A)ψ〉 for each A∈B(R).

Theorem 3.8.8 (The spectral theorem) If T is a self-adjoint operator in a
Hilbert spaceB, then there exists a projection-valuedmeasure {P(A),A∈B(R)}
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in B such that for all f ∈B, g ∈DT ,

〈φ, Tψ〉 =
∫

R

λµφ,ψ(dλ).

We write this symbolically as

T =
∫

R

λP(dλ).

Note that the support of themeasureµφ,φ for each φ ∈DT is σ(T ), the spectrum
of T .
Spectral theory allows us to develop a functional calculus for self-adjoint

operators; specifically, if f is a Borel function from R to R then f (T ) is again
self-adjoint, where

f (T ) =
∫

R

f (λ)P(dλ).

Note that ||f (T )ψ ||2 = ∫R |f (λ)|2 ||P(dλ)ψ ||2 for all ψ ∈Df (T ).
A self-adjoint operator T is said to be positive if 〈f , Tf 〉 ≥ 0 for all f ∈DT .

We have that T is positive if and only if σ(T ) ⊆ [0,∞).
It is easily verified that a bounded linear operator T in a Hilbert space B is

isometric if and only if T ∗T = I . We say that T is a co-isometry if TT ∗ = I
and unitary if it is isometric and co-isometric. T is an isometric isomorphism
of B if and only if it is unitary, and in this case we have T−1 = T ∗.

3.8.3 Closed symmetric forms

A useful reference for this subsection is chapter 1 of Bouleau and Hirsch [59].
Let B be a real Hilbert space and suppose that D is a dense linear subspace

of B. A closed symmetric form in B is a bilinear map E :D×D→ R such that:

(1) E is symmetric, i.e. E(f , g) = E(g, f ) for all f , g ∈D;
(2) E is positive, i.e. E(f , f ) ≥ 0 for all f ∈D;
(3) D is a real Hilbert space with respect to the inner product 〈·, ·〉E , where, for

each f , g ∈D,
〈f , g〉E = 〈f , g〉 + E(f , g).

With respect to the inner product in (3), we have the associated norm || · ||E =
〈·, ·〉1/2E .
For each f ∈D, we write E(f ) = E(f , f ) and note that E(·) determines E(·, ·)

by polarisation.
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An important class of closed symmetric forms is generated as follows. Let T
be a positive self-adjoint operator in B; then, by the spectral theorem, we can
obtain its square root T 1/2, which is also a positive self-adjoint operator in B.
We have DT ⊆ DT 1/2 since, for all f ∈DT ,

||T 1/2f ||2 = 〈f , Tf 〉 ≤ ||f || ||Tf ||.

Now take D = DT 1/2 ; then E(f ) = ||T 1/2f ||2 is a closed symmetric form.
Indeed (3) above is just the statement that DT 1/2 is complete with respect to the
graph norm. Suppose that E is a closed symmetric form in B with domain D.
Then we can define a positive self-adjoint operator A in B by the prescription

DA = {f ∈D, ∃g ∈B such that E(f , h) = (g, h), ∀h∈D},
Af = g for all f ∈DA.

Our conclusion from the above discussion is

Theorem 3.8.9 There is a one-to-one correspondence between closed symmet-
ric forms in B and positive self-adjoint operators in B.

Sometimes we need a weaker concept than the closed symmetric form. Let
E be a positive symmetric bilinear form on B with domain D. We say that it
is closable if there exists a closed form E1 with domain D1 that extends E ,
in the sense that D ⊆ D1 and E(f ) = E1(f ) whenever f ∈D. Just as in the
case of closable operators, we can show that a closable E has a smallest closed
extension, which we call the closure of E and denote as E . We always write its
domain asD. Here are some useful practical techniques for proving that a form
is closable.

• Anecessary and sufficient condition for a positive symmetric bilinear form to
be closable is that for every sequence (fn, n∈N) inD for which limn→∞ fn =
0 and limm,n→∞ E(fn − fm) = 0 we have limn→∞ E(fn) = 0.

• A sufficient condition for a positive symmetric bilinear form to be closable
is that for every sequence (fn, n∈N) in D for which limn→∞ fn = 0 we have
limn→∞ E(fn, g) = 0 for every g ∈D.
The following result is useful in applications.

Theorem3.8.10 Let T be a densely defined symmetric positive operator inB, so
that 〈f , Tf 〉 ≥ 0 for all f ∈DT . Define a form E by D = DT and E(f ) = 〈f , Tf 〉
for all f ∈D. Then:
(1) E is closable;
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(2) there exists a positive self-adjoint operator TF that extends T such that
E(f ) = 〈f , TFf 〉 for all f ∈D.

The operator TF of Theorem 3.8.10 is called the Friedrichs extension of T .

3.8.4 The Fourier transform and pseudo-differential
operators

The material in the first part of this section is largely based on Rudin [315].
Let f ∈ L1(Rd ,C); then its Fourier transform is the mapping f̂ , defined by

f̂ (u) = (2π)−d/2
∫

Rd
e−i(u,x)f (x)dx (3.32)

for all u∈Rd . If we defineF(f ) = f̂ thenF is a linearmapping from L1(Rd ,C)

to the space of all continuous complex-valued functions on Rd called the
Fourier transformation.
We introduce two important families of linear operators in L1(Rd ,C),

translations (τx, x ∈Rd ) and phase multiplications (ex, x ∈Rd ), by

(τxf )(y) = f (y − x), (exf )(y) = ei(x,y)f (y)

for each f ∈ L1(Rd ,C) and x, y ∈Rd .
It is easy to show that each of τx and ex are isometric isomorphisms of

L1(Rd ,C). Two key, easily verified, properties of the Fourier transform are

τ̂xf = e−xf̂ and êxf = τxf̂ (3.33)

for each x ∈Rd .
Furthermore, if we define the convolution f ∗ g of f , g ∈ L1(Rd ,C) by

(f ∗ g)(x) = (2π)−d/2
∫

Rd
f (x − y)g(y)dy

for each x ∈Rd , then we have (̂f ∗ g) = f̂ ĝ.
If µ is a finite measure on Rd , we can define its Fourier transform by

µ̂(u) = (2π)−d/2
∫

Rd
e−i(u,x)µ(dx)

for each u∈Rd , and µ̂ is then a continuous positive definite mapping from Rd

to C.
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The convolution f ∗ µ, for f ∈ L1(Rd ,C) ∩ C0(Rd ,C), is defined by

(f ∗ µ)(x) = (2π)−d/2
∫

Rd
f (x − y)µ(dy),

and we have again that (̂f ∗ µ) = f̂ µ̂.
Valuable information about the range of F is given by the following key

theorem, wherein || · ||0 denotes the supremum norm on C0(Rd ).

Theorem 3.8.11 (Riemann–Lebesgue lemma) If f ∈ L1(Rd ,C) then
f̂ ∈C0(Rd ,C) and ||f̂ ||0 ≤ ||f ||1.
If f ∈ L2(Rd ,C), we can also define its Fourier transform as in (3.32). It then

transpires that F : L2(Rd ,C) → L2(Rd ,C) is a unitary operator. The fact that
F is isometric is sometimes expressed by

Theorem 3.8.12 (Plancherel) If f ∈ L2(Rd ,C) then∫
Rd
|f (x)|2dx =

∫
Rd
|f̂ (u)|2du;

or

Theorem 3.8.13 (Parseval) If f , g ∈ L2(Rd ,C) then∫
Rd

f (x)g(x)dx =
∫

Rd
f̂ (u)ĝ(u)du.

Although, as we have seen, F has nice properties in both L1 and L2, perhaps
the most natural context in which to discuss it is the Schwartz space of rapidly
decreasing functions. These are smooth functions such that they, and all their
derivatives, decay to zero at infinity faster than any negative power of |x|. To
make this precise, we first need some standard notation for partial differential
operators. Let α= (α1, . . . ,αd ) be a multi-index, so that α ∈ (N ∪ {0})d . We
define |α| = α1 + · · · + αd and

Dα = 1

i|α|
∂α1

∂xα11
· · · ∂αd

∂xαdd
.

Similarly, if x = (x1, . . . , xd )∈Rd then xα = xα11 · · · xαdd .
Now we define Schwartz space S(Rd ,C) to be the linear space of all

f ∈C∞(Rd ,C) for which

sup
x ∈Rd

|xβDαf (x)| <∞
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for all multi-indices α and β. Note that C∞c (Rd ,C) ⊂ S(Rd ,C) and that the
‘Gaussian function’x→ exp(−x2) is in S(Rd ,C). The space S(Rd ,C) is dense
in C0(Rd ,C) and in Lp(Rd ,C) for all 1 ≤ p < ∞. These statements remain
true when C is replaced by R.
The space S(Rd ,C) is a Fréchet space with respect to the family of norms

{||.||N ,N ∈N ∪ {0}}, where for each f ∈ S(Rd ,C)

||f ||N = max|α|≤N sup
x ∈Rd

(1+ |x|2)N |Dαf (x)|.

The dual of S(Rd ,C) with this topology is the space S ′(Rd ,C) of tempered
distributions.
The operator F is a continuous bijection of S(Rd ,C) into itself with a

continuous inverse, and we have the following important result.

Theorem 3.8.14 (Fourier inversion) If f ∈ S(Rd ,C) then

f (x) = (2π)−d/2
∫

Rd
f̂ (u)ei(u,x)du.

In the final part of this subsection, we show how the Fourier transform allows
us to build pseudo-differential operators. We begin by examining the Fourier
transform of differential operators. More or less everything flows from the
following simple fact:

Dαei(u,x) = uαei(u,x),

for each x, u∈Rd and each multi-index α.
Using Fourier inversion and dominated convergence, we then find that

(Dαf )(x) = (2π)−d/2
∫

Rd
uα f̂ (u)ei(u,x)du

for all f ∈ S(Rd ,C), x ∈Rd .
If p is a polynomial in u of the form p(u) = ∑

|α|≤k cαuα , where k ∈N

and each cα ∈C, we can form the associated differential operator P(D) =∑
|α|≤k cαDα and, by linearity,

(P(D)f )(x) = (2π)−d/2
∫

Rd
p(u)f̂ (u)ei(u,x)du.

The next step is to employ variable coefficients. If each cα ∈C∞(Rd ), for exam-
ple, we may define p(x, u)= ∑|α|≤k cα(x)uα and P(x,D)=∑|α|≤k cα(x)Dα .
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We then find that

(P(x,D)f )(x) = (2π)−d/2
∫

Rd
p(x, u)f̂ (u)ei(u,x)du.

The passage fromD to P(x,D) has been rather straightforward, but nowwewill
take a leap into the unknown and abandon formal notions of differentiation. So
we replace p by a more general function σ :Rd × Rd → C. Informally, we
may then define a pseudo-differential operator σ(x,D) by the prescription:

(σ (x,D)f )(x) = (2π)−d/2
∫

Rd
σ(x, u)f̂ (u)ei(u,x)du,

and σ is then called the symbol of this operator. Of course we have been some-
what cavalier here, andwe shouldmake some further assumptions on the symbol
σ to ensure that σ(x,D) really is a bona fide operator. There are various classes
of symbols that may be defined to achieve this. One of the most useful is the
Hörmander class Smρ,δ . This is defined to be the set of all σ ∈C∞(Rd ) such that,
for each multi-index α and β,

|Dα
x D

β
u σ(x, u)| ≤ Cα,β(1+ |u|2)(m−ρ|α|+δ|β|)/2

for each x, u∈Rd , where Cα,β > 0, m∈R and ρ, δ ∈ [0, 1]. In this case
σ(x,D) : S(Rd ,C) → S(Rd ,C) and extends to an operator S ′(Rd ,C) →
S ′(Rd ,C).
For those who hanker after operators in Banach spaces, note the following:

• if ρ > 0 andm < −d +ρ(d − 1) then σ(x,D) : Lp(Rd ,C)→ Lp(Rd ,C) for
1 ≤ p ≤ ∞;

• if m = 0 and 0 ≤ δ < ρ ≤ 1 then σ(x,D) : L2(Rd ,C)→ L2(Rd ,C).

Proofs of these and more general results can be found in Taylor [347]. How-
ever, note that this book, like most on the subject, is written from the point
of view of partial differential equations, where it is natural for the symbol to
be smooth in both variables. For applications to Markov processes this is too
restrictive, and we usually impose much weaker requirements on the depen-
dence of σ in the x-variable. A systematic treatment of these can be found in
section 2.3 of Jacob [181].
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Stochastic integration

Summary We will now study the stochastic integration of predictable processes

against martingale-valuedmeasures. Important examples are the Brownian, Poisson and

Lévy-type cases. In the case where the integrand is a sure function, we investigate the

associated Wiener–Lévy integrals, particularly the important example of the Ornstein–

Uhlenbeck process and its relationship with self-decomposable random variables. In

Section 4.4, we establish Itô’s formula, which is one of the most important results in this

book. Immediate spin-offs from this are Lévy’s characterisation of Brownian motion,

Burkholder’s inequality and estimates for stochastic integrals. We also introduce the

Stratonovitch, Marcus and backwards stochastic integrals and indicate the role of local

time in extending Itô’s formula beyond the class of twice-differentiable functions.

4.1 Integrators and integrands

In Section 2.6, we identified the need to develop a theory of integration against
martingales that is not based on the usual Stieltjes integral. Given that our aim
is to study stochastic differential equations driven by Lévy processes, our expe-
rience with Poisson integrals suggests that it might be profitable to integrate
against a class of real-valued independently scattered martingale-valued mea-
sures M defined on (S, I). Here S = R+ × E, where E ∈B(Rd ) and I is the
ring comprising finite unions of sets of the form I ×A where A∈B(E) and I is
itself a finite union of intervals.At this stage, readers should recall the definition
of martingale-valued measure from Section 2.3.1. We will frequently employ
the notation

M ((s, t],A) = M (t,A)−M (s,A)

for all 0 ≤ s < t <∞, A∈B(E).

214
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In order to get a workable stochastic integration theory, we will need to
impose some conditions on M . These are as follows:

(M1) M ({0},A) = 0 (a.s.);
(M2) M ((s, t],A) is independent of Fs;
(M3) there exists a σ -finite measure ρ on R+ × E for which

E(M (t,A)2) = ρ(t,A)

for all 0 ≤ s < t < ∞, A∈B(E). Here we have introduced the abbreviated
notation ρ(t,A) = ρ((0, t] × A).

Martingale-valued measures satisfying (M1)–(M3) are said to be of type
(2, ρ), as the second moment always exists and can be expressed in terms of the
measure ρ. It is worth emphasising that we are not imposing any σ -additivity
requirement on these martingale-valued measures.
In all the examples that we will consider, ρ will be a product measure taking

the form

ρ((0, t] × A) = tµ(A)

for each t ≥ 0, A∈B(E), where µ is a σ -finite measure on E, and we will
assume that this is the case from now on.
By Theorem 2.2.3, we see that E

(〈M (t,A),M (t,A)〉) = ρ(t,A).
A martingale-valued measure is said to be continuous if the sample paths

t → M (t,A)(ω) are continuous for almost all ω∈� and all A∈B(E).

Example 4.1.1 (Lévy martingale-valued measures) Let X be a Lévy pro-
cess with Lévy–Itô decomposition given by (2.25) and take E = B̂ − {0},
where we recall that B̂ = {x ∈Rd , |x| < 1}. For each 1 ≤ i ≤ d ,A∈B(E),
define

Mi(t,A) = αÑ (t,A− {0})+ βσ
j
i Bj(t)δ0(A),

whereα,β ∈R are fixed andσσT= a. Then eachMi is a real-valuedmartingale-
valued measure and we have

ρi(t,A) = t
[
α2ν(A− {0})+ β2aiiδ0(A)

]
.

Note that ρi(t,A) <∞ whenever A− {0} is bounded below.
Inmost of the applications thatwe consider henceforth,wewill have (α,β) =

(1, 0) or (0, 1).
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Example 4.1.2 (Gaussian space–time white noise) Although we will not
use them directly in this book, we will briefly give an example of a class of
martingale-valued measures that do not arise from Lévy processes.
Let (S,�,µ) be a measure space; then aGaussian space–time white noise is

a random measure W on (S × R+ ×�,� ⊗ B(R+)⊗ F) for which:

(1) W (A) and W (B) are independent whenever A and B are disjoint sets in
B(R+)⊗ F ;

(2) each W (A) is a centred Gaussian random variable.

For each t ≥ 0, A∈�, we can consider the process (WA(t), t ≥ 0) where
WA(t) = W (A × [0, t]) and this is clearly a martingale-valued measure. In
concrete applications, we may want to impose the requirements (M1)–(M3)
above.
The simplest non-trivial example of a space–time white noise is a Brownian

sheet, for which S = (R+)d and � is its Borel σ -algebra. Writing Wt = W
([0, t1] × [0, t2] × · · · × [0, td+1]), for each t = (t1, t2, . . . , td+1) ∈ (R+)d+1,
the Brownian sheet is defined to be a Gaussian white noise with covariance
structure

E(WtWs) = (s1 ∧ t1)(s2 ∧ t2) · · · (sd+1 ∧ td+1).

For further details and properties, seeWalsh [352], pp. 269–71. Some examples
of non-Gaussian white noises, that are generalisations of Lévy processes, can
be found in Applebaum and Wu [10].

Now we will consider the appropriate space of integrands. First, we need to
consider a generalisation of the notion of predictability, which was introduced
earlier in Section 2.2.1.
Fix E ∈B(Rd ) and 0 < T <∞ and letP denote the smallest σ -algebra with

respect to which all mappings F : [0, T ] × E × � → R satisfying (1) and (2)
below are measurable:

(1) for each 0 ≤ t ≤ T the mapping (x,ω) → F(t, x,ω) is B(E) ⊗ Ft-
measurable;

(2) For each x ∈E, ω∈�, the mapping t → F(t, x,ω) is left-continuous.

We call P the predictable σ -algebra. AP-measurable mapping G : [0, T ] ×
E × � → R is then said to be predictable. Clearly the definition extends
naturally to the case where [0, T ] is replaced by R+.
Note that, by (1), ifG is predictable then the process t → G(t, x, ·) is adapted,

for each x ∈E. If G satisfies (1) and is left-continuous then it is clearly pre-
dictable. As the theory of stochastic integration unfolds below, we will see
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more clearly why the notion of predictability is essential. Some interesting
observations about predictability are collected in Klebaner [203], pp. 214–15.
Now let M be a (2, ρ)-type martingale-valued measure. We also fix T > 0

and defineH2(T ,E) to be the linear space of all equivalence classes ofmappings
F : [0, T ] × E × � → R which coincide almost everywhere with respect to
ρ × P and which satisfy the following conditions:

• F is predictable;

•
∫ T

0

∫
E

E(|F(t, x)|2) ρ(dt, dx) <∞.

We may now define the inner product 〈·, ·〉T ,ρ on H2(T ,E) by

〈F ,G〉T ,ρ =
∫ T

0

∫
E

E((F(t, x),G(t, x))) ρ(dt, dx)

for each F ,G ∈H2(T ,E), and we obtain a norm ||·||T ,ρ in the usual way. Note
that by Fubini’s theorem we may also write

||F ||2T ,ρ = E

(∫ T

0

∫
E
|F(t, x)|2ρ(dt, dx)

)
.

Lemma 4.1.3 H2(T ,E) is a real Hilbert space.

Proof Clearly H2(T ,E) is a subspace of L2([0, T )×E×�, ρ×P)). We need
only prove that it is closed and the result follows.Let (Fn, n∈N)be a sequence in
H2(T ,E) converging toF ∈ L2. It follows by theChebyshev–Markov inequality
that (Fn, n∈N) converges to F in measure, with respect to ρ × P, and hence
(see e.g. Cohn [80], p. 86) there is a subsequence that converges to F almost
everywhere. Since the subsequence comprises predictable mappings it follows
that F is also predictable, hence F ∈H2(T ,E) and we are done. �

Recall that ρ is always of the form ρ(dx, dt) = µ(dx)dt. In the case where
E = {0} and µ({0}) = 1, we write H2(T ,E) = H2(T ). The norm in H2(T ) is
given by

||F ||2T = E

(∫ T

0
|F(t)|2dt

)
.

For the general case, we have the natural (i.e. basis-independent) Hilbert-space
isomorphisms

H2(T ,E) ∼= L2(E,µ;H2(T )) ∼= L2(E,µ)⊗H2(T ),
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where ⊗ denotes the Hilbert space tensor product (see, e.g. Reed and Simon
[301], pp. 49–53), and ∼= means ‘is isomorphic to’.
Define S(T ,E) to be the linear space of all simple processes in H2(T ,E)

where F is simple if, for some m, n∈N, there exists 0 ≤ t1 ≤ t2 ≤ · · · ≤
tm+1 = T and disjoint Borel subsets A1,A2, . . . ,An of E with each µ(Ai) <∞
such that

F =
m∑
j=1

n∑
k=1

ckF(tj)χ(tj ,tj+1]χAk ,

where each ck ∈R and eachF(tj) is a boundedFtj -measurable random variable.
Note thatF is left-continuous andB(E)⊗Ft-measurable, hence it is predictable.

In the case of H2(T ), the space of simple processes is denoted S(T ) and
comprises mappings of the form

F =
m∑
j=1

F(tj)χ(tj ,tj+1].

Lemma 4.1.4 S(T ,E) is dense in H2(T ,E).

Proof We carry this out in four stages. In the first two of these, our aim is to
prove a special case of the main result, namely that S(T ) is dense in H2(T ).
Step 1 (Approximation by bounded maps)We will denote Lebesgue measure

on [0, T ) by l. Let F ∈H2(T ) and, for each 1 ≤ i ≤ d , n∈N, define

Fi
n(s,ω) =

{
Fi(s,ω) if |F(s,ω)| < n,

0 if |F(s,ω)| ≥ n.

The sequence (Fn, n∈N) converges to F pointwise almost everywhere (with
respect to l × P), since, given any δ > 0, there exists n0 ∈N such that

(l × P)

 ⋃
ε ∈Q∩R+

⋂
n0 ∈N

⋃
n≥n0

{
(t,ω); |Fn(t,ω)− F(t,ω)| > ε

}
= (l × P)

 ⋂
n0 ∈N

⋃
n≥n0

{
(t,ω); |F(t,ω)| ≥ n

}
≤

∞∑
n=n0

(ρ × P)(|F(t,ω)| ≥ n) ≤
∞∑

n=n0

||F ||2T
n2

< δ,

where we have used the Chebyshev–Markov inequality.
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By dominated convergence, we obtain

lim
n→∞ ||Fn − F ||T = 0.

Step 2 (Approximation by step functions on [0, T ]) Let F ∈H2(T ) be
bounded as above. Define

Fn(t,ω) = 2nT−1
2n−1∑
k=1

(∫ 2−nkT

2−n(k−1)T
F(s,ω)ds

)
χ{2−nkT<t≤2−n(k+1)T }

for all n∈N, 0 ≤ t < T , ω∈�; then it is easy to see that each Fn ∈ S(T ).
For each n∈N, define AnF = Fn; then An is a linear operator in H2(T ) with
range in S(T ). It is not difficult to verify that each An is a contraction, i.e. that
||AnF ||T ≤ ||F ||T , for eachF ∈H2(T ). The result we seek follows immediately
once it is established that, for each F ∈H2(T ), limn→∞ ||AnF−F ||T = 0. This
is comparatively hard to prove and we direct the reader to Steele [339], pp. 90–
3, for the full details. An outline of the argument is as follows. For each n∈N,
define a linear operator Bn :H2(T )→ L2([0, T )×�, l × P) by

(BnF)(t,ω)

= 2nT−1
2n∑
k=1

(∫ 2−nkT

2−n(k−1)T
F(s,ω)ds

)
χ{2−n(k−1)T<t≤2−nkT }

for each ω∈�, 0 ≤ t < T . Note that the range of each Bn is not
in S(T ). However, if we fix ω∈� then each ((BnF)(·,ω), n∈N) can be
realised as a discrete-parameter martingale on the filtered probability space
(Sω,Gω, (G(n)

ω , n∈N),Qω), which is constructed as follows:

Sω = {ω} × [0, T ], Gω = {(ω,A),A∈B([0, T ])}, Qω(A) = l(A)

T

for each A∈B([0, T ]). For each n∈N, G(n)
ω is the smallest σ -algebra with

respect to which all mappings of the form

2n∑
k=1

ckχ{2−n(k−1)T<t≤2−nkT },

where each ck ∈R, are G(n)
ω -measurable. Using the fact that conditional expec-

tations are orthogonal projections, we deduce the martingale property from
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the observation that, for each n∈N, (BnF)(t,ω) = EQ(F(t,ω)|G(n)
ω ). By

the martingale convergence theorem (see, e.g. Steele [339], pp. 22–3), we
can conclude that (BnF)(t,ω), n∈N) converges to F(t,ω) for all t ∈ [0, T )

except a set of Lebesgue measure zero. The dominated convergence theo-
rem then yields limn→∞ ||BnF − F ||T = 0. Further manipulations lead to
limn→∞ ||An(BmF)− F ||T = 0 for each fixed m∈N. Finally, using these two
limiting results and the fact that each An is a contraction, we conclude that for
each n,m∈N

||AnF − F ||T ≤ ||An(F − Bm(F))||T + ||An(BmF)− F ||T
≤ ||F − Bm(F)||T + ||An(BmF)− F ||T

and the required result follows.
By steps 1 and 2 together, we see that S(T ) is dense in H2(T ).
Step 3 (Approximation by mappings with support having finite measure) Let

f ∈ L2(E,µ). Since µ is σ -finite, we can find a sequence (An, n∈N) in B(E)
such that each µ(An) < ∞ and An ↑ E as n → ∞. Define (fn, n∈N) by
fn = f χAn . Then we can use dominated convergence to deduce that

lim
n→∞ ||fn − f ||22 = ||f ||2 − lim

n→∞ ||fn||
2 = 0.

Step 4 (S(T ,E) is dense in H2(T ,E)) Vectors of the form

m∑
j=1

F(tj)χ(tj ,tj+1]

are dense in H2(T ) by steps 1 and 2, and vectors of the form
∑n

k=1 ckχAk are
dense in L2(E,µ), with each µ(Ak) < ∞, by step 3. Hence vectors of the
form (

n∑
k=1

ckχAk

)
⊗
 m∑

j=1
F(tj)χ(tj ,tj+1]


are total in L2(E,µ)⊗H2(T ), and the result follows. �

Henceforth, we will simplify the notation for vectors in S(T ,E) by writing
each ckF(tj) = Fk(tj) and

m∑
j=1

n∑
k=1

ckF(tj)χ(tj ,tj+1]χAk =
m,n∑
j,k=1

Fk(tj)χ(tj ,tj+1]χAk .
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4.2 Stochastic integration

4.2.1 The L2-theory

In this section our aim is to define, for fixed T ≥ 0, the stochastic inte-
gral IT (F)= ∫ T0 ∫E F(t, x)M (dt, dx) as a real-valued random variable, where
F ∈H2(T ,E) and M is a martingale-valued measure of type (2, ρ).
We begin by considering the case where F ∈ S(T ,E), for which we can write

F =
m,n∑
j,k=1

Fk(tj)χ(tj ,tj+1]χAk

as above. We then define

IT (F) =
m,n∑
j,k=1

Fk(tj)M ((tj, tj+1],Ak). (4.1)

Before we analyse this object, we should sit back and gasp at the breathtaking
audacity of this prescription, due originally to K. Itô. The key point in the
definition (4.1) is that, for each time interval [tj, tj+1],Fk(tj) is adapted to the past
filtration Ftj while M ((tj, tj+1],Ak) ‘sticks into the future’ and is independent
of Ftj . For a Stieltjes integral, we would have taken instead Fk(uj), where
tj ≤ uj ≤ tj+1 is arbitrary. It is impossible to exaggerate the importance for
what follows of Itô’s simple but highly effective idea.
Equation (4.1) also gives us an intuitive understanding of why we need the

notion of predictability.The present tj and the future (tj, tj+1] should not overlap,
forcing us to make our step functions left-continuous.

Exercise 4.2.1 Deduce that if F ,G ∈ S(T ,E) and α,β ∈R then αF +
βG ∈ S(T ,E) and

IT (αF + βG) = αIT (F)+ βIT (G).

Lemma 4.2.2 For each T ≥ 0, F ∈ S(T ,E),

E(IT (F)) = 0, E(IT (F)2) =
∫ T

0

∫
E

E(|F(t, x)|2)ρ(dt, dx).

Proof By the martingale property, for each 1 ≤ j ≤ m, 1 ≤ k ≤ n, we have

E(M ((tj, tj+1],Ak)) = 0.

Hence by linearity and (M2),

E(IT (F)) =
m,n∑
j,k=1

E
(
Fk(tj)

)
E
(
M ((tj, tj+1],Ak)

) = 0.
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By linearity again, we find that

E(IT (F)2)

=
m,n∑
j,k=1

m,n∑
l,p=1

E
(
Fk(tj)M ((tj, tj+1],Ak)F(tl)M ((tl , tl+1],Ap)

)

=
m,n∑
j,k=1

n∑
p=1

∑
l<j

E
(
Fk(tj)M ((tj, tj+1],Ak)F(tl)M ((tl , tl+1],Ak)

)

+
m,n∑
j,k=1

n∑
p=1

E
(
Fk(tj)Fp(tj)M ((tj, tj+1],Aj)M ((tj, tj+1],Ap)

)

+
m,n∑
j,k=1

n∑
p=1

∑
l>j

E
(
Fk(tj)M ((tj, tj+1],Ak)Fp(tl)M ((tl , tl+1],Ap)

)
.

Dealing with each of these three terms in turn, we find that by (M2) again

m,n∑
j,k=1

n∑
p=1

∑
l<j

E
(
Fk(tj)M ((tj, tj+1],Ak)Fp(tl)M ((tl , tl+1],Ak)

)

=
m,n∑
j=1

n∑
p=1

∑
l<j

E
(
Fp(tl)M((tl ,tl+1],Ap)Fk(tj)

)
E
(
M ((tj,tj+1],Ak)

) = 0,

and a similar argument shows that

m,n∑
j,k=1

n∑
p=1

∑
l>j

E
(
Fk(tj)M ((tj, tj+1],Ak)F(tp)M ((tl , tl+1],Ap)

) = 0.

By (M2) and the independently scattered property of these random measures,

m,n∑
j,k=1

n∑
p=1

E
(
Fk(tj)Fp(tj)M ((tj, tj+1],Ak)M ((tj, tj+1],Ap)

)

=
m,n∑
j,k=1

n∑
p=1

E
(
Fk(tj)Fp(tj))

)
E
(
M ((tj, tj+1],Ak)M ((tj, tj+1],Ap)

)

=
m,n∑
j,k=1

E
(
Fk(tj)

2)
)

E
(
M ((tj, tj+1],Ak)2

)
.
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Finally, we use the martingale property and (M3) to obtain

m,n∑
j,k=1

n∑
p=1

E
(
Fk(tj)Fp(tj)M ((tj, tj+1],Ak)M ((tj, tj+1],Ap)

)

=
m,n∑
j,k=1

E(Fk(tj)
2)
[
E(M (tj+1,Ak)2)− E(M (tj,Ak)

2)
]

=
m,n∑
j,k=1

E(Fk(tj)
2)ρ((tj, tj+1],Ak),

and this is the required result. �

We deduce from Lemma 4.2.2 and Exercise 4.2.1 that IT is a linear isom-
etry from S(T ,E) into L2(�,F ,P), and hence by Lemma 4.1.4 it extends to
an isometric embedding of the whole of H2(T ,E) into L2(�,F ,P). We will
continue to denote this extension as IT and will call IT (F) the (Itô) stochastic
integral of F ∈H2(T ,E). When convenient, we will use the Leibniz notation
IT (F) = ∫ T0 ∫E F(t, x)M (dt, dx). We have

E(|IT (F)|2) = ||F ||2T ,ρ

for all F ∈H2(T ,E), and this identity is sometimes called Itô’s isometry. It
follows from Lemma 4.1.4 that for any F ∈H2(T ,E) we can find a sequence
(Fn, n∈N)∈ S(T ,E) such that limn→∞ ||F − Fn||T ,ρ = 0 and

∫ T

0

∫
E
F(t, x)M (dt, dx) = L2 − lim

n→∞

∫ T

0

∫
E
Fn(t, x)M (dt, dx).

If 0 ≤ a ≤ b ≤ T , A∈B(E) and F ∈H2(T ,E), it is easily verified that
χ(a,b)χAF ∈H2(T ,E) and we may then define

Ia,b;A(F) =
∫ b

a

∫
A
F(t, x)M (dt, dx) = IT (χ(a,b)χAF).

We will also write Ia,b = Ia,b;E .
If ||F ||t,ρ < ∞ for all t ≥ 0 it makes sense to consider (It(F), t ≥ 0) as a

stochastic process, and we will implicitly assume that this condition is satisfied
whenever we do this.
The following theorem summarises some useful properties of the stochastic

integral.
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Theorem 4.2.3 If F ,G ∈H2(T ,E) and α,β ∈R then:

(1) IT (αF + βG) = αIT (F)+ βIT (G);
(2) E(IT (F)) = 0, E(IT (F)2) = ∫ T0 ∫E E(|F(t, x)|2)ρ(dt, dx);
(3) (It(F), t ≥ 0) is Ft -adapted;
(4) (It(F), t ≥ 0) is a square-integrable martingale.

Proof (1) and (2) follow by continuity from Exercise 4.2.1 and Lemma 4.2.2.
For (3), let (Fn, n∈N) be a sequence in S(T ,E) converging to F ; then each

process (It(Fn), t ≥ 0) is clearly adapted. Since each It(Fn) → It(F) in L2

as n → ∞, we can find a subsequence (Fnk , nk ∈N) such that It(Fnk ) →
It(F) (a.s.) as nk →∞, and the required result follows.
(4) Let F ∈ S(T ,E) and (without loss of generality) choose 0 < s = tl <

tl+1 < t.Then it is easy to see that It(F) = Is(F)+Is,t(F) andhenceEs(It(F)) =
Is(F)+ Es(Is,t(F)) by (3). However, by (M2),

Es(Is,t(F)) = Es

 m∑
j=l+1

n∑
k=1

Fk(tj)M ((tj, tj+1],Ak)


=
n∑

j=l+1

n∑
k=1

Es(Fk(tj)) E(M ((tj, tj+1],Ak)) = 0.

The result now follows by the contractivity of Es in L2. Indeed, let (Fn, n∈N)

be a sequence in S(T ,E) converging to F ; then we have∣∣∣∣Es(It(F))− Es(It(Fn))
∣∣∣∣
2 ≤ ||It(F)− It(Fn)||2
= ||F − Fn||T ,ρ → 0 as n→∞. �

Exercise 4.2.4 Deduce that if F ,G ∈H2(T ,E) then

E(IT (F)IT (G)) = 〈F ,G〉T ,ρ .

Exercise 4.2.5 Let M be an independently scattered martingale-valued mea-
sure that satisfies (M1) and (M2) but not (M3). Define the stochastic integral
in this case as an isometric embedding of the space of all predictable map-
pings F for which

∫ T
0

∫
E E(|F(t, x)|2)〈M ,M 〉(dt, dx) < ∞, where for each

A∈B(E), t ≥ 0, we define

〈M ,M 〉(t,E) = 〈M (·,E),M (·,E)〉(t).
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4.2.2 The extended theory

We define P2(T ,E) to be the set of all equivalence classes of mappings
F : [0, T ] × E × � → R which coincide almost everywhere with respect to
ρ × P and which satisfy the following conditions:

• F is predictable;

• P

(∫ T

0

∫
E
|F(t, x)|2ρ(dt, dx) <∞

)
= 1.

Exercise 4.2.6 Deduce that P2(T ,E) is a linear space and show that

H2(T ,E) ⊆ P2(T ,E).

Show also that P2(T ,E) is a topological space with topology generated by the
basis {Oa,F ;F ∈P2(T ,E), a > 0}, where Oa,F equals

{
G ∈P2(T ,E);P

(∫ T

0

∫
E
|G(t, x)− F(t, x)|2ρ(dt, dx) < a

)
= 1

}
.

We have a good notion of convergence for sequences in P2(T ,E), i.e.
(Fn, n∈N) converges to F if

P

(
lim
n→∞

∫ T

0

∫
E
|Fn(t, x)− F(t, x)|2ρ(dt, dx) = 0

)
= 1.

Exercise 4.2.7 Imitate the argument in the proof of Lemma 4.1.4 to show that
S(T ,E) is dense in P2(T ,E).

Lemma 4.2.8 (cf. Gihman and Skorohod [135], p. 20) If F ∈ S(T ,E) then for
all C,K ≥ 0

P

(∣∣∣∣∫ T

0

∫
E
F(t, x)M (dt, dx)

∣∣∣∣ > C

)
≤ K

C2
+ P

(∫ T

0

∫
E
|F(t, x)|2ρ(dt, dx) > K

)
.

Proof Fix K > 0 and define F̃K by

F̃K
p (tj) =

{
Fp(tj), if

∑j,p
i,l=1 Fl(ti)

2ρ((ti, ti+1],Al) ≤ K ,
0, otherwise.
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Then F̃K ∈ S(T ,E) and
∫ T

0

∫
E
|F̃K (t, x)|2ρ(dt, dx) =

mK∑
i=1

nK∑
l=1

Fl(ti)
2ρ((ti, ti+1],Al),

where mK and nK are the largest integers for which

mK∑
i=1

nK∑
l=1

Fl(ti)
2ρ((ti, ti+1],Ai) ≤ K .

By definition, we have

F = F̃K if and only if
∫ T

0

∫
E
|F(t, x)|2ρ(dt, dx) ≤ K ;

then, by the Chebychev–Markov inequality,

P

(∣∣∣∣∫ T

0

∫
E
F(t, x)M (dt, dx)

∣∣∣∣ > C

)
= P

(∣∣∣∣∫ T

0

∫
E
F(t, x)M (dt, dx)

∣∣∣∣ > C, F = F̃K

)
+ P

(∣∣∣∣∫
0,T

∫
E
F(t, x)M (dt, dx)

∣∣∣∣ > C, F �= F̃K

)
≤ P

(∣∣∣∣∫ T

0

∫
E
F̃K (t, x)M (dt, dx)

∣∣∣∣ > C

)
+ P(F �= F̃K )

≤ E(IT (F̃K )2)

C2
+ P

(∫ T

0

∫
E
|F(t, x)|2ρ(dt, dx) > K

)
≤ K

C2
+ P

(∫ T

0

∫
E
|F(t, x)|2ρ(dt, dx) > K

)
,

as required. �

Now let F ∈P2(T ,E); then by Exercise 4.2.7 we can find (Fn, n∈N) in
S(T ,E) such that limn→∞ α(F)n = 0 (a.s.), where for each n∈N α(F)n =∫ T
0

∫
E |F(t, x) − Fn(t, x)|2ρ(dt, dx). Hence limn→∞ α(F)n = 0 in probability

and so (α(F)n, n∈N) is a Cauchy sequence in probability.
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By Lemma 4.2.8, for any m, n∈N,K ,β > 0,

P

(∣∣∣∣∫ T

0

∫
E

[
Fn(t, x)− Fm(t, x)

]
M (dt, dx)

∣∣∣∣ > β

)
≤ K

β2
+ P

(∫ T

0

∫
E
|Fn(t, x)− Fm(t, x)|2ρ(dt, dx)>K

)
. (4.2)

Hence, for any γ > 0, given ε > 0 we can find m0 ∈N such that whenever
n,m > m0

P

(∫ T

0

∫
E
|Fn(t, x)− Fm(t, x)|2ρ(dt, dx) > γβ2

)
< ε.

Now choose K = γβ2 in (4.2) to deduce that the sequence(∫ T

0

∫
E
Fn(t, x)M (dt, dx), n∈N

)
is Cauchy in probability and thus has a unique limit in probability (up to almost-
sure agreement). We denote this limit by

ÎT (F) =
∫ T

0

∫
E
F(t, x)M (dt, dx),

so that

T∫
0

∫
E

F(t, x)M (dt, dx) = lim
n→∞

T∫
0

∫
E

Fn(t, x)M (dt, dx) in probability.

We call ÎT (F) an (extended) stochastic integral and drop the qualifier ‘extended’
when the context is clear.
We can again consider (extended) stochastic integrals as stochastic processes

(Ît(F), t ≥ 0), provided that we impose the condition

P

(∫ t

0

∫
E
|F(t, x)|2ρ(dt, dx) <∞

)
= 1

for all t ≥ 0.

Exercise 4.2.9 Show that (1) and (3) of Theorem 4.2.3 continue to hold for
extended stochastic integrals.
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Exercise 4.2.10 Extend the result of Lemma 4.2.8 to arbitrary F ∈P2(T ,E).

Exercise 4.2.11 Let Y be an adapted càdlàg process on [0, T ] and let
F ∈P2(T ,E). Confirm that the mapping (s, x, ·) → Y (s−)(·)F(s, x)(·) is in
P2(T ,E).

Of course we cannot expect the processes (Ît(F), t ≥ 0) to be martingales in
general, but we have the following theorem.

Theorem 4.2.12

(1) (Ît(F), t ≥ 0) is a local martingale.
(2) (Ît(F), t ≥ 0) has a càdlàg modification.

Proof (1) Define a sequence of stopping times (Tn, n∈N) by:

Tn(ω) = inf

{
t ≥ 0;

∫ t

0

∫
E
|F(s, x)(ω)|2ρ(ds, dx) > n

}
for all ω∈�, n∈N. Then limn→∞ Tn = ∞ (a.s.). Define Fn(t, x) =
F(t, x)χ{Tn≥t} for all x ∈E, t ≥ 0, n∈N; then∫ t

0

∫
E
|Fn(t, x)(ω)|2ρ(dt, dx) ≤ n,

hence Fn ∈H2(t,E) for all t ≥ 0. By Theorem 4.2.3(4), each (Ît(Fn), t ≥ 0) is
an L2-martingale, but Ît(Fn) = Ît∧Tn(F) (see, e.g. theorem 12 in [298]) and so
we have our required result.
(2) Since (Tn, n∈N) is increasing, for each ω∈� we can find n0(ω)∈N

such that t0 = t0 ∧ Tn0(ω). But by Theorem 4.2.3 each (Ît∧Tn(F), t ≥ 0) is a
martingale and so has a càdlàg modification by Theorem 2.1.7, and the required
result follows. �

We finish this section by looking at the special case when our martingale-
valued measure is continuous.

Exercise 4.2.13 Show that ifM is continuous then Ît(F) is continuous at each
0 ≤ t ≤ T , when F ∈ S(T ,E).
Theorem 4.2.14 If M is continuous and F ∈P2(T ,E), then Ît(F) is continuous
on [0, T ].
Proof First we consider the case where F ∈H2(T ,E). Let (Fn, n∈N) be
a sequence in S(T ,E) converging to F ; then by the Chebyshev–Markov
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inequality and Doob’s martingale inequality we have, for each ε > 0,

P

(
sup

0≤t≤T
|It(Fn)− It(F)| > ε

)
≤ 1

ε2
E

(
sup

0≤t≤T
|It(Fn)− It(F)|2

)

≤ 4

ε2
E(|IT (Fn)− IT (F)|2)

→ 0 as n→∞.

Hence we can find a subsequence (Fnk , nk ∈N) such that

lim
nk→∞ sup

0≤t≤T
|It(Fnk )− It(F)| = 0 a.s.,

and the required continuity follows from the result of Exercise 4.2.13 by an ε/3
argument. The extension to P2(T ,E) follows by the stopping argument given
in the proof of Theorem 4.2.12(2). �

There is an alternative approach to extending stochastic integrals so that
integrands lie inP2(T ,E). This utilises stopping times instead of the inequality
in Lemma 4.2.8. In the case of integrals based on Brownian motion, there is
a nice account in section 7.1 of Steele [339] and readers can check that this
approach generalises to our context.

4.3 Stochastic integrals based on Lévy processes

In this section our aim is to examine various stochastic integrals for which the
integrator is a Lévy process.

4.3.1 Brownian stochastic integrals

In this case we take E = {0} and we write P2(T , {0}) = P2(T ), so that
this space comprises all predictable mappings F : [0, T ] × � → R for which

P
(∫ T

0 |F(t)|2dt <∞
)
= 1.

For our martingale-valued measure M we take any of the components
(B1,B2, . . . ,Bm) of an m-dimensional standard Brownian motion B =
(B(t), t ≥ 0). For most of the applications in which we will be interested,
we will want to consider integrals of the type

Y i(t) =
∫ t

0
Fi
j (s)dB

j(s)
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for 1 ≤ i ≤ d , 0 ≤ t ≤ T , where F = (Fi
j ) is a d × m matrix with entries

in P2(T ). This stochastic integral generates an Rd -valued process Y = (Y (t),
0 ≤ t ≤ T ) with components (Y 1, Y 2, . . . , Y d ), and Y is clearly continuous at
each 0 ≤ t ≤ T by Theorem 4.2.14. Furthermore, if G = (G(t), t ≥ 0) is an
Rd -valued predictable processwith eachG(t)∈ L1[0, T ] then Z = (Z(t), t ≥ 0)
is adapted and has continuous sample paths, where for each 1 ≤ i ≤ d

Zi(t) =
∫ t

0
Fi
j (s)dB

j(s)+
∫ t

0
Gi(s)ds (4.3)

(see, e.g. Royden [313], p. 105, for a proof of the almost-sure continuity of
t → ∫ t

0 G
i(s)(ω)ds, where ω∈� ).

In the next section we will meet the following situation. Let (Pn, n∈N) be a
sequence of partitions of [0, T ] of the form

Pn =
{
0 = t(n)0 < t(n)1 < · · · < t(n)m(n) < t(n)m(n)+1 = T

}
and suppose that limn→∞ δ(Pn) = 0, where the mesh

δ(Pn) = max
0≤j≤m(n)

∣∣∣t(n)j+1 − t(n)j

∣∣∣.
Let (F(t), t ≥ 0) be a left-continuous adapted process and define a sequence

of simple processes (Fn, n∈N) by writing

Fn(t) =
m(n)∑
j=0

F(t(n)j )χ
(t(n)j ,t(n)j+1](t)

for each n∈N, 0 ≤ t ≤ T .

Lemma 4.3.1 Fn → F in P2(T ) as n→∞.

Proof This is left as an exercise for the reader. �

It follows by Lemma 4.3.1 via Exercise 4.2.10 that Ît(Fn) → Ît(F) in
probability as n→∞, for each 0 ≤ t ≤ T .

4.3.2 Poisson stochastic integrals

In this section, wewill takeE = B̂−{0}. LetN be a Poisson randommeasure on
R+ × (Rd−{0})with intensity measure ν.We will find it convenient to assume
that ν is a Lévymeasure. Now takeM to be the associated compensated Poisson
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random measure Ñ . In this case, P2(T ,E) is the space of all predictable map-

pingsF : [0, T ]×E×�→ R forwhichP
(∫ T

0

∫
E |F(t, x)|2ν(dx)dt <∞

)
= 1.

LetH be a vectorwith components (H 1,H 2, . . . ,Hd ) takingvalues inP2(T ,E);
then we may construct an Rd -valued process Z = (Z(t), t ≥ 0) with
components (Z1, Z2, . . . , Zd ) where each

Zi(T ) =
∫ T

0

∫
|x|<1

Hi(t, x)Ñ (dt, dx).

By a straightforward perturbation of a our construction of stochastic inte-
grals, readers can check that the construction of Z extends to the case where H

no longer lies in P2(T ,E) but satisfies P
(∫ T

0

∫
E |H (t, x)|ν(dx)dt <∞

)
=

1. In this case Z is still a local martingale. It is an L1-martingale if∫ T
0

∫
E E(|H (t, x)|)ν(dx)dt <∞.

We can gain greater insight into the structure of Z by using our knowledge
of the jumps of N .
Let A be a Borel set in Rd − {0} that is bounded below, and introduce the

compound Poisson process P = (P(t), t ≥ 0), where each P(t) = ∫A xN (t, dx).
Let K be a predictable mapping; then, generalising equation (2.5), we define

∫ T

0

∫
A
K(t, x)N (dt, dx) =

∑
0≤u≤T

K(u,�P(u))χA(�P(u)) (4.4)

as a random finite sum.
In particular, ifH satisfies the square-integrability (or integrability) condition

given above we may then define, for each 1 ≤ i ≤ d ,

∫ T

0

∫
A
Hi(t, x)Ñ (dt, dx)

=
∫ T

0

∫
A
Hi(t, x)N (dt, dx)−

∫ T

0

∫
A
Hi(t, x)ν(dx)dt.

Exercise 4.3.2 Confirm that the above integral is finite (a.s.) and verify that
this is consistent with the earlier definition (2.5) based on martingale-valued
measures. (Hint: Begin with the case where H is simple.)

The definition (4.4) can, in principle, be used to define stochastic integrals
for a more general class of integrands than we have been considering. For
simplicity, let N = (N (t), t ≥ 0) be a Poisson process of intensity 1 and let
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f :R → R; then we may define∫ t

0
f (N (s))dN (s) =

∑
0≤s≤t

f
(
N (s−)+�N (s)

)
�N (s).

Exercise 4.3.3 Show that, for each t ≥ 0,∫ t

0
N (s)dÑ (s)−

∫ t

0
N (s−)dÑ (s) = N (t).

Hence deduce that the process whose value at time t is
∫ t
0 N (s)dÑ (s) cannot

be a local martingale.

Within any theory of stochastic integration, it is highly desirable that the
stochastic integral of a process against a martingale as integrator should at least
be a local martingale. The last example illustrates the perils of abandoning
the requirement of predictability of our integrands, which, as we have seen in
Theorem 4.2.12, always ensures that this is the case. The following result allows
us to extend the interlacing technique to stochastic integrals.

Theorem 4.3.4

(1) If F ∈P2(T ,E) then for every sequence (An, n∈N) in B(E) with An ↑ E
as n→∞ we have

lim
n→∞

∫ T

0

∫
An
F(t, x)Ñ (dt, dx) =

∫ T

0

∫
E
F(t, x)Ñ (dt, dx)

in probability.
(2) If F ∈H2(T ,E) then there exists a sequence (An, n∈N) in B(E) with each

ν(An) <∞ and An ↑ E as n→∞ for which

lim
n→∞

∫ T

0

∫
An
F(t, x)Ñ (dt, dx) =

∫ T

0

∫
E
F(t, x)Ñ (dt, dx) a.s.

and the convergence is uniform on compact intervals of [0, T ].
Proof (1) Using the result of Exercise 4.2.10, we find that for any δ, ε > 0,
n∈N,

P

(∣∣∣∣∫ T

0

∫
E
F(t, x)Ñ (dt, dx)−

∫ T

0

∫
An
F(t, x)Ñ (dt, dx)

∣∣∣∣ > ε

)
≤ δ

ε2
+ P

(∫ T

0

∫
E−An

|F(t, x)|2ν(dx)dt > δ

)
,
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from which the required result follows immediately.
(2) Define a sequence (εn, n∈N) that decreases monotonically to zero, with

ε1 = 1 and, for n ≥ 2,

εn = sup

(
y ≥ 0,

∫ T

0

∫
0<|x|<y

E(|F(t, x)|2) ν(dx)dt ≤ 8−n
)
.

Define An = {x ∈E; εn < |x| < 1} for each n∈N. By Doob’s martingale
inequality, for each n∈N,

E

(
sup
0≤s≤t

∣∣∣∣∫ s

0

∫
An+1

F(u, x)Ñ (du, dx)−
∫ s

0

∫
An
F(u, x)Ñ (du, dx)

∣∣∣∣2
)

≤ 4E

(∣∣∣∣∫ t

0

∫
An+1−An

F(u, x)Ñ (du, dx)

∣∣∣∣2
)

= 4
∫ t

0

∫
An+1−An

E(|F(u, x)|2) ν(dx)du.

The result then follows by the argument in the proof of Theorem 2.6.2. �

4.3.3 Lévy-type stochastic integrals

We continue to take E = B̂ − {0} throughout this section. We say that an Rd -
valued stochastic process Y = (Y (t), t ≥ 0) is a Lévy-type stochastic integral
if it can be written in the following form, for each 1 ≤ i ≤ d , t ≥ 0:

Y i(t) = Y i(0)+
∫ t

0
Gi(s)ds+

∫ t

0
Fi
j (s)dB

j(s)

+
∫ t

0

∫
|x|<1

Hi(s, x)Ñ (ds, dx)

+
∫ t

0

∫
|x|≥1

Ki(s, x)N (ds, dx), (4.5)

where, for each 1 ≤ i ≤ d , 1 ≤ j ≤ m, t ≥ 0, we have |Gi|1/2,Fi
j ∈P2(T ),

Hi ∈P2(T ,E) and K is predictable. Here B is an m-dimensional standard
Brownian motion and N is an independent Poisson random measure on
R+ × (Rd − {0}) with compensator Ñ and intensity measure ν, which we
will assume is a Lévy measure.
Let (τn,N ∪ {∞}) be the arrival times of the Poisson process (N (t,Ec),

t ≥ 0). Then the process with value
∫ t
0

∫
|x|≥1 K

i(s, x)N (ds, dx) at time t is a
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fixed randomvariable on each interval [τn, τn+1) and hence it has càdlàg paths. It
then follows fromTheorems 4.2.12 and 4.2.14 that Y has a càdlàg modification,
and from now on we will identify Y with this modification. We will assume
that the random variable Y (0) is F0-measurable, and then it is clear that Y is
an adapted process.
We can often simplify complicated expressions by employing the notation of

stochastic differentials (sometimes called Itô differentials) to represent Lévy-
type stochastic integrals. We then write (4.5) as

dY (t) = G(t)dt + F(t)dB(t)+ H (t, x)Ñ (dt, dx)+ K(t, x)N (dt, dx).

Whenwewant particularly to emphasise the domains of integrationwith respect
to x, we will use the equivalent notation

dY (t) = G(t)dt + F(t)dB(t)

+
∫
|x|<1

H (t, x)Ñ (dt, dx)+
∫
|x|≥1

K(t, x)N (dt, dx).

Clearly Y is a semimartingale.

Exercise 4.3.5 Find conditions under which Y is (a) a local martingale (b) a
martingale. We will return to this question in Section 5.2.1.

Let L(�) denote the set of all Lévy-type stochastic integrals on (�,F ,P).

Exercise 4.3.6 Show that L(�) is a linear space.

Exercise 4.3.7 Let (Pn, n∈N) be a sequence of partitions of [0, T ] as above.
Show that if Y is a Lévy-type stochastic integral then

lim
n→∞

m(n)∑
j=0

Y (t(n)j )
[
Y (t(n)j+1)− Y (t(n)j )

]
=
∫ T

0
Y (s−)dY (s),

where the limit is taken in probability.

LetM = (M (t), t ≥ 0) be an adapted process that is such thatMJ ∈P2(t,A)
whenever J ∈P2(t,A), where A∈B(Rd ) is arbitrary. For example, it is
sufficient to take M to be adapted and left-continuous.
For these processes we can define an adapted process Z = (Z(t), t ≥ 0) by

the prescription that it has the stochastic differential

dZ(t) = M (t)G(t)dt +M (t)F(t)dB(t)+M (t)H (t, x)Ñ (dt, dx)

+M (t)K(t, x)N (dt, dx),
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and we will adopt the natural notation

dZ(t) = M (t)dY (t).

Example 4.3.8 (Lévy stochastic integrals) Let X be a Lévy process with
characteristics (b, a, ν) and Lévy–Itô decomposition given by Equation (2.25):

X (t) = bt + Ba(t)+
∫
|x|<1

xÑ (t, dx)+
∫
|x|≥1

xN (t, dx),

for each t ≥ 0. Let L∈P2(t) for all t ≥ 0 and in (4.5) choose each Fi
j = σ i

j L,

Hi = Ki = xiL, where σσ T = a. Then we can construct processes with the
stochastic differential

dY (t) = L(t)dX (t). (4.6)

We call Y a Lévy stochastic integral.
In the case where X has finite variation (necessary and sufficient condi-

tions for this are given at the end of Section 2.3), the Lévy stochastic integral
Y can also be constructed as a Lebesgue–Stieltjes integral and this coincides
(up to a set of measure zero) with the prescription (4.6); see Millar [270],
p. 314.

Exercise 4.3.9 Check that each Y (t), t ≥ 0, is almost surely finite.

We can construct Lévy-type stochastic integrals by interlacing. Indeed if
we let (An, n∈N) be defined as in the hypothesis of Theorem 4.3.4, we may
consider the sequence of processes (Yn, n∈N) defined by

Y i
n(t) =

∫ t

0
Gi(s)ds+

∫ t

0
Fi
j (s)dB

j(s)+
∫ t

0

∫
An
H i(s, x)Ñ (ds, dx)

+
∫ t

0

∫
|x|≥1

Ki(s, x)N (ds, dx)

for each 1 ≤ i ≤ d , t ≥ 0. We then obtain from Theorem 4.3.4 the following.

Corollary 4.3.10

(1) If H ∈P2(t,E), then, for every sequence (An, n∈N) in B(E) with An ↑ E
as n→∞, we have

lim
n→∞Yn(t) = Y (t) in probability.
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(2) If F ∈H2(T ,E) then there exists a sequence (An, n∈N) in B(E) with each
ν(An) <∞ and An ↑ E as n→∞ for which

lim
n→∞Yn(t) = Y (t) a.s.

and for which the convergence is uniform on compact intervals of [0, T ].
We can gain greater insight into the above result by directly constructing the

path of the interlacing sequence in the case where the (An, n∈N) appearing in
part (1) is such that each ν(An) <∞.
Let C = (C(t), t ≥ 0) be the process with stochastic differential dC(t) =

G(t)dt + F(t)dB(t); let dW (t) = dC(t) + K(t, x)N (dt, dx). We can construct
W from C by interlacing with the jumps of the compound Poisson process
P= (P(t), t ≥ 0) for which P(t)= ∫|x|>1 xN (t, dx), as follows. Let (Sn, n∈N)

be the jump times of P; then we have

W (t) =


C(t) for 0 ≤ t < S1,

C(S1)+ K(S1,�P(S1)) for t = S1,

W (S1)+ C(t)− C(S1) for S1 < t < S2,

W (S2−)+ K(S2,�P(S2)) for t = S2,

and so on recursively.
To construct the sequence (Yn, n∈N) we need a sequence of compound

Poisson processes Qn = (Qn(t), t ≥ 0) for which each Qn(t) =
∫
An
xN (t, dx),

and we will denote by (Tm
n ,m∈N) the corresponding sequence of jump times.

We will also need the sequence of Lévy-type stochastic integrals (Zn, n∈N)

wherein each

Zin(t) = Wi(t)−
∫ t

0

∫
An
H i(s, x)ν(dx)ds.

We construct the sequence (Yn, n∈N) appearing in Corollary 4.3.10 as follows:

Yn(t) =


Zn(t) for 0 ≤ t < T 1

n ,

Zn(T 1
n )+ H (T 1

n ,�Qn(T 1
n )) for t = T 1

n ,

Yn(T 1
n )+ Zn(t)− Zn(T 1

n ) for T 1
n < t < T 2

n ,

Yn(T 2
n−)+ H (T 2

n ,�Qn(T 2
n )) for t = T 2

n ,

and so on recursively.
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4.3.4 Stable stochastic integrals

The techniques we have developed above allow us to define stochastic integrals
with respect to an α-stable Lévy process (Xα(t), t ≥ 0) for 0 < α < 2; indeed,
we can define such an integral as a Lévy stochastic integral of the form

Y (t) =
∫ t

0
L(s)dXα(s),

where L∈P2(t) and, in the Lévy–Itô decomposition, we take a = 0 and the
Poisson random measure N to have Lévy measure

ν(dx) = C
1

|x|d+α
dx,

where C > 0. There are alternative approaches to the problem of defining such
stochastic integrals, (at least in the case d = 1) that start off aswe do, by defining
the integral on step functions as in equation (4.1). However, the corresponding
limit is taken in a more subtle way, that exploits the form of the characteristic
function given in Theorem 1.2.21 rather than the Lévy–Khintchine formula
and which allows intrinsic properties of the stable process X to pass through
to the integral. In Samorodnitsky and Taqqu [319], pp. 121–6, this is carried
out for sure measurable functions f , which, instead of being L2, satisfy the
requirement

∫ t
0 |f (s)|αds < ∞ and in the case α = 1 the additional constraint∫ t

0

∣∣f (s) log |f (s)|∣∣ds <∞. It is shown that each
∫ t
0 f (s)dXα(s) is itselfα-stable.

The extension to predictable processes (L(s), s ≥ 0) satisfying the integra-
bility property (||L||α)α =

∫ t
0 E(|L(s)|α) ds < ∞ was carried out by Giné and

Marcus [136]; see also Rosiński and Woyczyński [312] for further develop-
ments. The extent to which the structure of the stable integrator is carried over
to the integral is reflected in the inequalities

c1(||L||α)α ≤ sup
λ>0

λαP

(
sup

0≤t≤T

∣∣∣∣∫ t

0
L(s)dXα(s)

∣∣∣∣ > λ

)
≤ c2(||L||α)α ,

where c1, c2 > 0. The left-hand side of this inequality is established in Rosiński
and Woyczyński [312] and the right-hand side in Giné and Marcus [136].

4.3.5 Wiener–Lévy integrals, moving averages and
the Ornstein–Uhlenbeck process

In this section, we study stochastic integrals with sure integrands. These have
a number of important applications, as we shall see. Let X = (X (t), t ≥ 0) be
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a Lévy process taking values in Rd and let f ∈ L2(R+); then we can consider
the Wiener–Lévy integral Y = (Y (t), t ≥ 0) where each

Y (t) =
∫ t

0
f (s)dX (s). (4.7)

These integrals are defined by the same procedure as that used above for random
integrands. The terminology ‘Wiener–Lévy integral’ recognises that we are
generalisingWiener integrals, which are obtained in (4.7) when X is a standard
Brownian motion B = (B(t), t ≥ 0). In this latter case, we have the following
useful result.

Lemma 4.3.11 For each t ≥ 0, we have Y (t) ∼ N
(
0,
∫ t
0 |f (s)|2ds

)
.

Proof Employing our usual sequence of partitions, we have

∫ t

0
f (s)dB(s) = L2 − lim

n→∞

m(n)∑
j=0

f
(
t(n)j

)[
B
(
t(n)j+1
)
− B

(
t(n)j

)]
,

so that each Y (t) is the L2-limit of a sequence of Gaussians and thus is itself
Gaussian. The expressions for the mean and variance then follow immediately,
from arguments similar to those that established Theorem 4.2.3(2). �

We now return to the general case (4.7). We write each X (t) = M (t)+A(t),
whereM is amartingale andA has finite variation, and recall the precise form of
these from the Lévy–Itô decomposition. Our first observation is that the process
Y has independent increments.

Lemma 4.3.12 For each 0≤ s< t<∞, Y (t)− Y (s) is independent of Fs.

Proof Utilising the partitions of [s, t] from Lemma 4.3.11 we obtain

Y (t)− Y (s) =
∫ t

s
f (u)dX (u)

= lim
n→∞

m(n)∑
j=0

f
(
t(n)j

)[
M
(
t(n)j+1
)
−M

(
t(n)j

)]

+
∫ t

s
f (u)du +

∑
s<u≤t

f (u)�X (u)χB̂c(�X (u)),

where the limit is taken in the L2-sense. In both non-deterministic cases, each
term in the summand is adapted to the σ -algebra σ {X (v)−X (u); s≤ u< v≤ t},
which is independent of Fs, and the result follows. �
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From now on we assume that f ∈ L2(R) ∩ L1(R) so that, for each t ≥ 0, the
shifted function s→ f (s− t) is also in L2(R)∩ L1(R). It is also convenient to
assume that f is càglàd. This assumption allows us to consider

∫ b
a f (s)ds as a

Riemann integral and we will implicitly use this in the proof of Theorem 4.3.16
below.
We want to make sense of the moving-average process Z = (Z(t), t ≥ 0)

given by

Z(t) =
∫ ∞

−∞
f (s− t)dX (s)

for all t ≥ 0, where the integral is defined by taking (X (t), t < 0) to be an
independent copy of (−X (t), t > 0).1

Assumption 4.3.13 For the remainder of this subsection, we will impose the
condition

∫
|x|>1 |x|ν(dx) <∞ on the Lévy measure ν of X .

Exercise 4.3.14 Show that for each t ≥ 0, the following exist:∫ ∞

−∞
f (s− t)dM (s) = L2 − lim

T→∞

∫ T

−T
f (s− t)dM (s),∫ ∞

−∞
f (s− t)dA(s) = L1 − lim

T→∞

∫ T

−T
f (s− t)dA(s).

Exercise 4.3.15 Let f ∈ L2(R)∩L1(R) and consider theWiener– Lévy integral
defined by Y (t) = ∫ t0 f (s)dX (s) for each t ≥ 0. Show that Y = (Y (t), t ≥ 0) is
stochastically continuous. (Hint: Use

P

(∣∣∣∣∫ t

0
f (s)dX (s)

∣∣∣∣ > c

)
≤ P

(∣∣∣∣∫ t

0
f (s)dM (s)

∣∣∣∣ > c

2

)
+ P

(∣∣∣∣∫ t

0
f (s)dA(s)

∣∣∣∣ > c

2

)
for each c ≥ 0, and then apply the appropriate Chebyshev–Markov inequality
to each term.)

Recall that a stochastic process C = (C(t), t ≥ 0) is strictly stationary if,
for each n∈N, 0 ≤ t1 < t2 < · · · < tn <∞, h > 0, we have

(C(t1 + h),C(t2 + h), . . . ,C(tn + h))
d= (C(t1),C(t2), . . . ,C(tn)).

1 If you want (X (t), t ∈R) to be càdlàg, when t < 0 take X (t) to be an independent copy of
−X (−t−).
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Theorem 4.3.16 The moving-average process Z = (Z(t), t ≥ 0) is strictly
stationary.

Proof Let t ≥ 0 and fix h > 0, then

Z(t + h) =
∫ ∞

−∞
f (s− t − h)dX (s) =

∫ ∞

−∞
f (s− t)dX (s+ h)

= lim
T→∞ lim

n→∞

m(n)∑
j=0

f
(
s(n)j − t

)[
X
(
s(n)j+1 + h

)
− X

(
s(n)j + h

)]
,

where {−T = s(n)0 < s(n)1 < · · · < s(n)m(n)+1 = T } is a sequence of partitions

of each [−T , T ] and limits are taken in the L2 (respectively, L1) sense for the
martingale (respectively, finite-variation) parts of X .
Since convergence in Lp (for p ≥ 1) implies convergence in distribution and

X has stationary increments, we find that for each u∈Rd

E(ei(u,Z(t+h))) = lim
T→∞ lim

n→∞E

(
exp

[
i

(
u,

m(n)∑
j=0

f
(
s(n)j − t

)

×
[
X
(
s(n)j+1 + h

)
− X

(
s(n)j + h

)])])

= lim
T→∞ lim

n→∞E

(
exp

[
i

(
u,

m(n)∑
j=0

f
(
s(n)j − t

)

×
[
X
(
s(n)j+1

)
− X

(
s(n)j

)])])
= E(ei(u,Z(t))),

so that Z(t + h)
d= Z(t).

In the general case, let 0 ≤ t1 < t2 < · · · < tn and uj ∈Rd , 1 ≤ j ≤ n.
Arguing as above, we then find that

E

exp
 n∑
j=1

(uj, Z(tj + h))


= E

exp
 n∑
j=1

(
uj,
∫ ∞

−∞
f (s− tj − h)dX (s)

)
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= E

exp
 n∑
j=1

(
uj,
∫ ∞

−∞
f (s− tj)dX (s)

)
= E

exp
 n∑
j=1

(uj, Z(tj))

 ,

from which the required result follows. �

Note In the case where X is α-stable (0<α≤ 2) and
∫∞
−∞ |f (s)|αds<∞, then

Z is itself α-stable; see Samorodnitsky and Taqqu [319], p. 138, for details.
TheOrnstein–Uhlenbeck process is an important special case of the moving-

average process. To obtain this, we fix λ> 0 and take f (s)=eλsχ(−∞,0](s) for
each s ≤ 0. Then we have, for each t ≥ 0,

Z(t) =
∫ t

−∞
e−λ(t−s)dX (s) =

∫ 0

−∞
e−λ(t−s)dX (s)+

∫ t

0
e−λ(t−s)dX (s)

= e−λtZ(0)+
∫ t

0
e−λ(t−s)dX (s). (4.8)

The Ornstein–Uhlenbeck process has interesting applications to finance and to
the physics of Brownian motion, and we will return to these in later chapters.
We now examine a remarkable connection with self-decomposable random
variables. We write Z = Z(0) so that, for each t > 0,

Z =
∫ 0

−∞
eλsdX (s) =

∫ −t

−∞
eλsdX (s)+

∫ 0

−t
eλsdX (s),

and we observe that these two stochastic integrals are independent by Lemma
4.3.12. Now since X has stationary increments, we can argue as in the proof of
Theorem 4.3.16 to show that∫ −t

−∞
eλsdX (s) = e−λt

∫ 0

−∞
eλsdX (s− t)

d= e−λt
∫ 0

−∞
eλsdX (s)

= e−λtZ .

Hence we have that Z = Z1 + Z2, where Z1 and Z2 are independent and

Z2
d= e−λtZ . It follows that Y is self-decomposable (see Section 1.2.5). This
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result has a remarkable converse, namely that given any self-decomposable
random variable Z there exists a Lévy process X = (X (t), t ≥ 0) such that

Z =
∫ 0

−∞
e−sdX (s).

This result is due toWolfe [360] in one dimension and to Jurek andVervaat [195]
in the many- (including infinite-) dimensional case (see also Jurek and Mason
[194], pp. 116–44). When it is used to generate a self-decomposable random
variable in this way, the Lévy process X is often called a background-driving
Lévy process, or BDLP for short.

Note Our study of the Ornstein–Uhlenbeck process has been somewhat crude
as, through our assumption on the Lévy measure ν, we have imposed conver-
gence in L1 on limt→∞

∫ 0
−t e

−sdX (s). The following more subtle theorem can
be found in Wolfe [360], Jurek and Vervaat [195] and Jacod [155]; see also
Barndorff-Nielsen et al. [24] and Jeanblanc et al. [190].

Theorem 4.3.17 The following are equivalent:

(1) Z is a self-decomposable random variable;
(2) Z = limt→∞

∫ 0
−t e

−sdX (s) in distribution, for some càdlàg Lévy pro-
cess X = (X (t), t ≥ 0);

(3)
∫
|x|>1 log(1+ |x|)ν( dx) <∞, where ν is the Lévy measure of X;

(4) Z can be represented as Z(0) in a stationary Ornstein–Uhlenbeck process
(Z(t), t ≥ 0).

The term ‘Ornstein–Uhlenbeck process’ is also used to describe processes of
the form Y = (Y (t), t ≥ 0) where, for each t ≥ 0,

Y (t) = e−λty0 +
∫ t

0
e−λ(t−s)dX (s), (4.9)

where y0 ∈Rd is fixed. Indeed, these were the first such processes to be studied
historically, in the case where X is a standard Brownian motion (see Chapter 6
for more details). Note that such processes cannot be stationary, as illustrated
by the following exercise.

Exercise 4.3.18 If X is a standard Brownian motion show that each Y (t) is
Gaussian with mean e−λty0 and variance (1/2λ)(1− e−2λt I ).
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The final topic in this section is the integrated Ornstein–Uhlenbeck process
IZ = (IZ (t), t ≥ 0), defined as

IZ (t) =
∫ t

0
Z(u)du.

Clearly, IZ has continuous sample paths. We derive an interesting relation
due to Barndorff-Nielsen [31]. Note that the use of Fubini’s theorem below
to interchange integrals is certainly justified when X is of finite variation.
Integrating (4.8) yields, for each t ≥ 0,

IZ (t) = 1

λ
(1− e−λt)Z(0)+

∫ t

0

∫ u

0
e−λ(u−s)dX (s)du

= 1

λ
(1− e−λt)Z(0)+

∫ t

0

∫ t

s
e−λ(u−s)dudX (s)

= 1

λ
(1− e−λt)Z(0)+ 1

λ

∫ t

0
(1− e−λ(t−s))dX (s)

= 1

λ

[
Z(0)− Z(t)+ X (t)

]
.

This result expresses the precise mechanism for the cancellation of jumps in
the sample paths of Z and X to yield sample-path continuity for IZ .

4.4 Itô’s formula

In this section, we will establish the rightly celebrated Itô formulae for suf-
ficiently smooth functions of stochastic integrals. Some writers refer to this
acclaimed result as Itô’s lemma, but this author takes the point of view that the
result is far more important than many others in mathematics that bear the title
‘theorem’. As in drinking a fine wine, we will proceed slowly in gradual stages
to bring out the full beauty of the result.

4.4.1 Itô’s formula for Brownian integrals

Let M = (M (t), t ≥ 0) be a Brownian integral of the form

M i(t) =
∫ t

0
Fi
j (s)dB

j(s)
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for 1 ≤ i ≤ d , where F = (Fi
j ) is a d × m matrix taking values in P2(T ) and

B = (B1, . . . ,Bm) is a standard Brownian motion in Rm. Our goal is to analyse
the structure of (f (M (t)), t ≥ 0), where f ∈C2(Rd ).
We begin with a result of fundamental importance. Here we meet in dis-

guise the notion of ‘quadratic variation’, which controls many of the algebraic
properties of stochastic integrals.
Let (Pn, n∈N) be a sequence of partitions of the form

Pn =
{
0 = t(n)0 < t(n)1 < · · · < t(n)m(n) < t(n)m(n)+1 = T

}
,

and suppose that limn→∞ δ(Pn) = 0, where the mesh δ(Pn) is given by
max0≤j≤m(n)

∣∣t(n)j+1 − t(n)j

∣∣.
Lemma 4.4.1 If Wkl ∈ S(T ) for each 1 ≤ k, l ≤ m then

L2 − lim
n→∞

n∑
j=0

Wkl

(
t(n)j

)[
Bk
(
t(n)j+1
)
− Bk

(
t(n)j

)][
Bl
(
t(n)j+1
)
− Bl

(
t(n)j

)]

=
m∑
k=1

∫ T

0
Wkk(s)ds.

Proof To simplify the notation we will suppress n, write eachWkl
(
t(n)j

)
asWj

kl

and introduce �Bkj = Bk
(
t(n)j+1
)
− Bk

(
t(n)j

)
and �tj = t(n)j+1 − t(n)j .

Now since Bk and Bl are independent Brownian motions, we find that

E


∑

j

W j
kl(�Bkj )(�Blj)−

∑
j

∑
k

W j
kk�tj

2


= E


∑

j

W j
kk(�Bkj )

2 −
∑
j

∑
k

W j
kk�tj

2


=
∑
i,j,k

E
(
Wi
kkW

j
kk

[
(�Bki )

2 −�ti
][
(�Bkj )

2 −�tj
])
.

As in the proof of Lemma 4.2.2, we can split the sum in the last term into three
cases: i < j; j > i; i = j. By use of (M2) and independent increments we
see that the first two vanish. We then use the fact that each �Bkj ∼ N (0,�tj),
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which implies E((�Bkj )
4) = 3(�tj)2, to obtain

∑
i,j,k

E
(
Wi
kkW

j
kk

[
(�Bki )

2 −�ti
][
(�Bkj )

2 −�tj
])

=
∑
j,k

E
(
(Wj

kk)
2[(�Bkj )

2 −�tj
]2)

=
∑
j,k

E((Wj
kk)

2) E
([

(�Bkj )
2 −�tj

]2) by (M2)

=
∑
j,k

E((Wj
kk)

2) E
(
(�Bkj )

4 − 2(�Bkj )
2�tj + (�tj)

2
)

= 2
∑
j,k

E((Wj
kk)

2) (�tj)
2

→ 0 as n→∞,

and the required result follows. �

Corollary 4.4.2 Let B be a one-dimensional standard Brownian motion; then

L2 − lim
n→∞

n∑
j=0

[
B
(
t(n)j+1
)− B

(
t(n)j

)]2 = T .

Proof Immediate from the above. �

Now let M be a Brownian integral with drift of the form

M i(t) =
∫ t

0
Fi
j(s)dB

j(s)+
∫ t

0
Gi(s)ds, (4.10)

where each Fi
j , (G

i)1/2 ∈P2(t) for all t ≥ 0, 1 ≤ i ≤ d , 1 ≤ j ≤ m.
For each 1 ≤ i ≤ j, we introduce the quadratic variation process, denoted

as ([M i,M j](t), t ≥ 0), by

[M i,M j](t) =
m∑
k=1

∫ t

0
Fi
k(s)F

j
k(s)ds.

We will explore quadratic variation in greater depth as this chapter unfolds.
Now let f ∈C2(Rd ) and consider the process (f (M (t)), t ≥ 0). The chain

rule from elementary calculus leads us to expect that f (M (t)) will again have
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a stochastic differential of the form

df (M (t)) = ∂if (M (t)) dM i(t).

In fact, Itô showed that df (M (t)) really is a stochastic differential but that in
this case the chain rule takes a modified form. Additional second-order terms
appear and these are described by the quadratic variation. More precisely we
have the following.

Theorem 4.4.3 (Itô’s theorem 1) If M = (M (t), t ≥ 0) is a Brownian integral
with drift of the form (4.10), then for all f ∈C2(Rd ), t ≥ 0, with probability 1
we have

f (M (t))− f (M (0))

=
∫ t

0
∂if (M (s)) dMi(s)+ 1

2

∫ t

0
∂i∂jf (M (s)) d [M i,M j](s).

Proof We follow closely the argument given in Kunita [215], pp. 64–5.
We begin by assuming that Fi

j ,G
i ∈ S(T ) for all 1 ≤ i ≤ d , 1 ≤ j ≤ m. We

also introduce the sequence of stopping times (T (r), r ∈N) defined by

T (r) = inf {t ≥ 0;max{M i(t); 1 ≤ i ≤ d , } > r} ∧ r,

so that limr→∞ T (r) = ∞ (a.s.).
We will prove the theorem first in the cases where t is replaced by t ∧ Tr

throughout, but to keep the notation simple, we will not write the Trs explicitly.
The upshot of this is that we can treat the M (t)s as if they were uniformly
bounded random variables.
Let (Pn, n∈N) be a sequence of partitions of [0, t] as above. By Taylor’s

theorem we have, for each such partition (where we again suppress the
index n),

f (M (t))− f (M (0)) =
m∑
k=0

f (M (tk+1))− f (M (tk)) = J1(t)+ 1
2J2(t),

where

J1(t) =
m∑
k=0

∂if (M (tk))
[
M i(tk+1)−M i(tk)

]
,

J2(t) =
m∑
k=0

∂i∂jf (N
k
ij )
[
M i(tk+1)−M i(tk)

][
M j(tk+1)−M j(tk)

]
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and where the Nk
ij are each F(tk+1)-adapted Rd -valued random variables

satisfying
∣∣Nk

ij −M (tk)
∣∣ ≤ |M (tk+1)−M (tk)|.

Now by Lemma 4.3.1 we find that, as n→∞,

J1(t)→
∫ t

0
∂if (M (s)) dMi(s)

in probability.
We write J2(t) = K1(t)+ K2(t), where

K1(t) =
m∑
k=0

∂i∂jf (M (tk))
[
M i(tk+1)−M i(tk)

][
M j(tk+1)−M j(tk)

]
,

K2(t) =
m∑
k=0

[
∂i∂jf

(
Nk
ij

)− ∂i∂jf (M (tk))
]

× [M i(tk+1)−M i(tk)
][
M j(tk+1)−M j(tk)

]
.

Then by a slight extension of Lemma 4.4.1, we find that as n→∞,

K1(t)→
∫ t

0
∂i∂jf (M (s)) d [M i,M j](s),

in probability. By the Cauchy–Schwarz inequality, we have

|K2(t)| ≤ max
0≤k≤m

∣∣∂i∂jf (Nk
ij

)− ∂i∂jf (M (tk))
∣∣

×
{

m∑
k=0

[
M i(tk+1)−M i(tk)

]2}1/2{ m∑
k=0

[
(M j(tk+1)−M j(tk)

]2}1/2

.

Now as n→∞, by continuity,

max
0≤k≤m

∣∣∂i∂jf (Nk
ij

)− ∂i∂jf (M (tk))
∣∣→ 0

while

m∑
k=0

(
M i(tk+1)−M i(tk)

)2 → [M i,M i](t)

in L2. Hence, by Proposition 1.1.10 we have K2(t)→ 0 in probability.
To establish the general result, first for each 1≤ i, k ≤ d , 1≤ j≤m let

F(n)
i,j ,G

(n)
k be a sequence of processes in S(T ) converging to Fi,j,Gk ∈



248 Stochastic integration

P2(T ) (respectively). We thus obtain a sequence of continuous semimartin-
gales (Mn, n∈N) such that each Mn(t) converges to M (t) in proba-
bility. Similarly, by using Exercise 4.2.9, it is not difficult to verify
that each of the sequences whose nth terms are

∫ t
0 (∂if )(Mn(s))dM i

n(s)

and
∫ t
0 (∂i∂jf )(Mn(s))d [M i

n,M
j
n](s) converge in probability to

∫ t
0 (∂if )(M (s))

dM i(s) and
∫ t
0 (∂i∂jf )(M (s))d [M i,M j](s), respectively. The required result for

general F andG is now obtained by taking limits with respect to a subsequence
where the convergence is almost sure. The result is now established in full gen-
erality for each process (M (t ∧ T (r)), t ≥ 0). Finally we take limits as r →∞
and the proof is complete. �

Now let C1,2(R+,Rd ) denote the class of mappings from R+ × Rd to R

that are continuously differentiable with respect to the first variable and twice
continuously differentiable with respect to the second.

Corollary 4.4.4 If M = (M (t), t ≥ 0) is a Brownian integral with drift of the
form (4.10), then for all f ∈C1,2(R+,Rd ), t ≥ 0, with probability 1 we have

f (t,M (t))−f(0,M (0)) =
∫ t

0

∂f

∂s
(s,M (s)) ds+

∫ t

0

∂f

∂xi
(s,M(s)) dMi(s)

+ 1

2

∫ t

0

∂2f

∂xi∂xj
(s,M (s)) d [M i,M j](s).

Proof Using the same notation as in the previous theorem, we write

f (t,M (t))− f (0,M (0)) =
m∑
k=0
[f (tk+1,M (tk+1))− f (tk ,M (tk+1))]

+
m∑
k=0
[f (tk ,M (tk+1))− f (tk ,M (tk))].

By themean value theorem,we can find tk < sk < tk+1, for each 0 ≤ k ≤ m−1,
such that

m∑
k=0
[f (tk+1,M (tk+1))− f (tk ,M (tk+1))]

=
m∑
k=0

∂f

∂s
(sk ,M (tk+1)) (tk+1 − tk)

→
∫ t

0

∂f

∂s
(s,M (s)) ds as n→∞.
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The remaining terms are treated as in Theorem 4.4.3. �

4.4.2 Itô’s formula for Lévy-type stochastic integrals

We begin by considering Poisson stochastic integrals of the form

Wi(t) = Wi(0)+
∫ t

0

∫
A
Ki(s, x)N (ds, dx) (4.11)

for 1 ≤ i ≤ d , where t ≥ 0, A is bounded below and each Ki is predictable.
Itô’s formula for such processes takes a particularly simple form.

Lemma 4.4.5 If W is a Poisson stochastic integral of the form (4.11), then for
each f ∈C(Rd ), and for each t ≥ 0, with probability 1 we have

f (W (t))− f (W (0))

=
∫ t

0

∫
A
[f (W (s−)+ K(s, x))− f (W (s−))]N (ds, dx).

Proof Let Y (t) = ∫A xN (dt, dx) and recall that the jump times for Y are defined
recursively as TA

0 = 0 and, for each n∈N, TA
n = inf {t > TA

n−1;�Y (t) ∈A}.
We then find that

f ((W (t))− f (W (0))

=
∑
0≤s≤t

f (W (s))− f (W (s−))

=
∞∑
n=1

f (W (t ∧ TA
n ))− f (W (t ∧ TA

n−1))

=
∞∑
n=1

[
f (W (t ∧ TA

n −))+K(t∧TA
n ,�Y(t∧TA

n ))− f (W (t∧TA
n −))

]
=
∫ t

0

∫
A
[f (W (s−)+ K(s, x))− f (W (s−))]N (ds, dx).

�

Now consider a Lévy-type stochastic integral of the form

Y i(t) = Y i(0)+ Y i
c(t)+

∫ t

0

∫
A
Ki(s, x)N (ds, dx), (4.12)
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where

Y i
c(t) =

∫ t

0
Gi(s)ds+

∫ t

0
Fi
j (s)dB

j(s)

for each t ≥ 0, 1 ≤ i ≤ d .
In view of Theorem 4.2.14, the notation Yc used to denote the continuous

part of Y is not unreasonable.
We then obtain the following Itô formula.

Lemma 4.4.6 If Y is a Lévy-type stochastic integral of the form (4.12), then,
for each f ∈C2(Rd ), t ≥ 0, with probability 1 we have

f (Y (t))− f (Y (0))

=
∫ t

0
∂if (Y (s−)) dY i

c(s)+
1

2

∫ t

0
∂i∂jf (Y (s−)) d [Y i

c, Y
j
c](s)

+
∫ t

0

∫
A
[f (Y (s−)+ K(s, x))− f (Y (s−))]N (ds, dx).

Proof Using the stopping times from the previous lemma, we find that

f (Y (t))− f (Y (0)) =
∞∑
j=0

[
f
(
Y
(
t ∧ TA

j+1
))− f

(
Y
(
t ∧ TA

j

))]

=
∞∑
j=0

[
f
(
Y
(
t ∧ TA

j+1 −
))− f

((
Y (t ∧ TA

j

))]

+
∞∑
j=0

[
f
(
Y
(
t ∧ TA

j+1
))− f

(
Y
(
t ∧ TA

j+1 −
))]

.

Now using the interlacing structure, we observe that for each TA
j < t < TA

j+1
we have

Y (t) = Y (TA
j −)+ Yc(t)− Yc(T

A
j ),

and the result then follows by applying Theorem 4.4.3 within the first sum and
Lemma 4.4.5 within the second. �
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Now we are ready to prove Itô’s formula for general Lévy-type stochastic
integrals, so let Y be such a process with stochastic differential

dY (t) = G(t) dt + F(t) dB(t)+
∫
|x|<1

H (t, x)Ñ (dt, dx)

+
∫
|x|≥1

K(t, x)N (dt, dx), (4.13)

where, for each 1 ≤ i ≤ d , 1 ≤ j ≤ m, t ≥ 0, |Gi|1/2,Fi
j ∈P2(T ) and

Hi ∈P2(T ,E). Furthermore, we take K to be predictable and E = B̂− {0}. We
will also continue to use the notation introduced above,

dYc(t) = G(t)dt + F(t)dB(t),

andwewill, later on, have need of the discontinuous part of Y , whichwe denote
as Yd and which is given by

dYd(t) =
∫
|x|<1

H (t, x)Ñ (dt, dx)+
∫
|x|≥1

K(t, x)N (dt, dx)

so that for each t ≥ 0

Y (t) = Y (0)+ Yc(t)+ Yd(t).

From now on we will find it convenient to impose the following local
boundedness constraint on the small jumps.

Assumption. For all t > 0,

sup
0≤s≤t

sup
0<|x|<1

|H (s, x)| <∞ a.s. (4.14)

Theorem 4.4.7 (Itô’s theorem 2) If Y is a Lévy-type stochastic integral
of the form (4.13), then, for each f ∈C2(Rd ), t ≥ 0, with probability 1
we have

f (Y (t))− f (Y (0))

=
∫ t

0
∂if (Y (s−)) dY i

c(s)+
1

2

∫ t

0
∂i∂jf (Y (s−)) d [Y i

c, Y
j
c](s)

+
∫ t

0

∫
|x|≥1

[
f (Y (s−)+ K(s, x))− f (Y (s−))

]
N (ds, dx)
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+
∫ t

0

∫
|x|<1

[
f (Y (s−)+ H (s, x))− f (Y (s−))

]
Ñ (ds, dx)

+
∫ t

0

∫
|x|<1

[
f (Y (s−)+ H (s, x))− f (Y (s−))

− Hi(s, x)∂if (Y (s−))
]
ν(dx)ds.

Proof First we must show that all the terms in the formula are well defined.
Using Taylor’s theorem with integral remainder term (see, e.g. Burkill [67],

theorem 7.7) we find that∫ t

0

∫
|x|<1

[
f (Y (s−)+ H (s, x))− f (Y (s−))− Hi(s, x)∂if (Y (s−))

]
ν(dx)ds

=
∫ t

0

∫
|x|<1

∫ 1

0
(∂i∂jf )(Y (s−)+ θH (s, x))(1− θ)dθ

× Hi(s, x)Hj(s, x)ν(dx)ds.

For each t ≥ 0, x ∈ B̂− {0}, 1 ≤ i, j ≤ d , define

gfi,j(t, x) = sup
0≤θ≤1

(∂i∂jf )(Y (s−)+ θH (s, x)),

and note that on using Assumption 4.14, we have

sup
0≤s≤t

sup
0<|x|<1

|gfi,j(s, x)| <∞ a.s.

Using the Cauchy-Schwarz inequality, we obtain∫ t

0

∫
|x|<1

|f (Y (s−)+ H (s, x))− f (Y (s−))

− Hi(s, x)∂if (Y (s−))|ν(dx)ds

≤ 1

2
sup
0≤s≤t

sup
0<|x|<1

|gfij(s, x)|
∫ t

0

∫
|x|<1

|Hi(s, x)Hj(s, x)|ν(dx)ds

≤ 1

2

 d∑
i,j=1

sup
0≤s≤t

sup
0<|x|<1

|gfij(s, x)|2


1
2 ∫ t

0

∫
|x|<1

|H (s, x)|2ν(dx)ds

<∞ a.s.
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A similar argument shows that∫ t

0

∫
|x|<1

|f (Y (s−)+ H (s, x))− f (Y (s−))|2ν(dx)ds <∞ a.s.

Now, to establish the formula itself we recall the sets (An, n∈N) defined as
in the hypothesis of Theorem 4.3.4 and the sequence of interlacing processes
(Yn, n∈N) defined by

Y i
n(t) =

∫ t

0
Gi(s)ds+

∫ t

0
Fi
j (s)dB

j(s)+
∫ t

0

∫
An
H i(s, x)Ñ (ds, dx)

+
∫ t

0

∫
|x|≥1

Ki(s, x)N (ds, dx)

for each 1 ≤ i ≤ d , t ≥ 0.
By Lemma 4.4.6, for each n∈N,

f (Yn(t))− f (Yn(0))

=
∫ t

0
∂if (Y (s−)) dY i

c(s)+
1

2

∫ t

0
∂i∂jf (Y (s−)) d [Y i

c, Y
j
c](s)

+
∫ t

0

∫
|x|≥1

[
f (Y (s−)+ K(s, x))− f (Y (s−))

]
N (ds, dx)

+
∫ t

0

∫
An

[
f (Y (s−)+ H (s, x))− f (Y (s−))

]
N (ds, dx)

−
∫ t

0

∫
An
H i(s, x)∂if (Y (s−))ν(dx)ds

=
∫ t

0
∂if (Y (s−)) dY i

c(s)+
1

2

∫ t

0
∂i∂jf (Y (s−)) d [Y i

c, Y
j
c](s)

+
∫ t

0

∫
|x|≥1

[
f (Y (s−)+ K(s, x))− f (Y (s−))

]
N (ds, dx)

+
∫ t

0

∫
An

[
f (Y (s−)+ H (s, x))− f (Y (s−))

]
Ñ (ds, dx)

+
∫ t

0

∫
An

[
f (Y (s−)+ H (s, x))− f (Y (s−))

− Hi(s, x)∂if (Y (s−))
]
ν(dx)ds.

Now by Corollary 4.3.10 we have that Yn(t) → Y (t) in probability as n →
∞, and hence there is a subsequence that converges to Y (t) almost surely.
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The required result follows by passage to the limit in the above along that
subsequence. �

Note

(i) It is clear from the first part of the proof that Assumption 4.14 can be
dropped if f has bounded first and second derivatives.

(ii) Theorem 4.4.7 is extended to a more general class of semimartingales in
Ikeda and Watanabe [167], chapter II, section 4.

We have not yet finished with Itô’s formula, but before we probe it further
we need some subsidiary results.

Proposition 4.4.8 If H i ∈P2(t,E) for each 1 ≤ i ≤ d then∫ t

0

∫
|x|<1

|Hi(s, x)Hj(s, x)|N (ds, dx) <∞ a.s.

for each 1 ≤ i, j ≤ d, t ≥ 0.

Proof The required result follows by the inequality 2|xy| ≤ |x|2 + |y|2, for
x, y ∈R, if we can first show that

∫ t
0

∫
|x|<1 |Hi(s, x)|2N (ds, dx) < ∞ (a.s.) for

each 1 ≤ i ≤ d , and so we will aim to establish this result.
Suppose that each Hi ∈H2(t,E); then

E

(∫ t

0

∫
|x|<1

|Hi(s, x)|2N (ds, dx)

)
=
∫ t

0

∫
|x|<1

E(|Hi(s, x)|2) dsν(dx) <∞.

Hence
∫ t
0

∫
|x|<1 |Hi(s, x)|2N (ds, dx) <∞ (a.s.). Now let each Hi ∈ P2(t,E).

For each n∈N, define

Tn = inf

{
t > 0;

∫ t

0

∫
|x|<1

|Hi(s, x)|2)dsν(dx) > n

}
,

so that limn→∞ Tn = ∞. Then each∫ t∧Tn

0

∫
|x|<1

|Hi(s, x)|2N (ds, dx) <∞ a.s.

and the required result follows on taking limits. �
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Corollary 4.4.9 If Y is a Lévy-type stochastic integral then for 1 ≤ i ≤ d,
t ≥ 0, ∑

0≤s≤t
�Y i(s)2 <∞ a.s.

Proof By Proposition 4.4.8,∑
0≤s≤t

�Y i(s)2

=
∑
0≤s≤t

[
Hi(s,�Y (s))χ{�Y (s)∈E} + Ki(s,�Y (s))χ{�Y (s)∈Ec}

]2
=
∑
0≤s≤t

H i(s,�Y (s))2χ{�Y (s)∈E} +
∑
0≤s≤t

Ki(s,�Y (s))2χ{�Y (s)∈Ec}

=
∫ t

0

∫
E
Hi(s, x)2N (ds, dx)+

∫ t

0

∫
Ec
Ki(s, x)2N (ds, dx) <∞a.s. �

We will use Proposition 4.4.8 to transform Itô’s formula in Theorem 4.4.7 to
a more general form.

Theorem 4.4.10 (Itô’s theorem 3) If Y is a Lévy-type stochastic integral
of the form (4.13) then, for each f ∈C2(Rd ), t ≥ 0, with probability 1
we have

f (Y (t))− f (Y (0))

=
∫ t

0
∂if (Y (s−)) dY i(s)+ 1

2

∫ t

0
∂i∂jf (Y (s−)) d [Y i

c, Y
j
c](s)

+
∑
0≤s≤t

[
f (Y (s))− f (Y (s−))−�Y i(s)∂if (Y (s−))

]
.

Proof To show that the infinite series is finite, we use Taylor’s theorem with
integral remainder term to write∑

0≤s≤t
|f (Y (s))− f (Y (s−))−�Y i(s)∂if (Y (s−))|

≤
∑
0≤s≤t

∣∣∣∣∣
∫ 1

0
(∂i∂jf )(Y (s−)+ θ�Y (s))(1− θ)dθ

∣∣∣∣∣ |�Y i(s)�Y j(s)|,

and argue as in the proof of Theorem 4.4.7, using Corollary 4.4.9.
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For simplicity, we establish the result in the case Y (t)= ∫ t0 ∫|x|<1

H (s, x)Ñ (ds, dx). The extension to the more general formula is then a straight-
forward exercise for the reader. For each t ≥ 0, we have by Theorem 4.4.7

f (Y (t)− f (Y (0))

=
∫ t

0

∫
|x|<1

[
f (Y (s−)+ H (s, x))− f (Y (s−))

]
Ñ (ds, dx)

+
∫ t

0

∫
|x|<1

[
f (Y (s−)+ H (s, x))− f (Y (s−))

− Hi(s, x)∂if (Y (s−))
]
ν(dx)ds.

=
∫ t

0

∫
|x|<1

(∂if )(Y (s−))Hi(s, x)Ñ (ds, dx)

+
∫ t

0

∫
|x|<1

[
f (Y (s−)+ H (s, x))− f (Y (s−))

− Hi(s, x)∂if (Y (s−))
]
N (ds, dx)

=
∫ t

0
∂if (Y (s−)) dY i(s)

+
∑
0≤s≤t

[
f (Y (s))− f (Y (s−))−�Y i(s)∂if (Y (s−))

]
. �

The advantage of this formula over its predecessor is that the right-hand
side is expressed entirely in terms of the process Y itself and its jumps. It is
hence in a form that extends naturally to general semimartingales (see, e.g.
Protter [298], chapter 2, section 7 or He et al. [149] chapter 9, section 5). As
can be seen from these references, the proof of this theorem in the general
case does not require the local boundedness Assumption 4.14 on the small
jumps.

Exercise 4.4.11 Let d = 1 and apply Itô’s formula to find the stochastic dif-
ferential of (eY (t), t ≥ 0), where Y is a Lévy-type stochastic integral. Can you
find an adapted process Z that has a stochastic differential of the form

dZ(t) = Z(t−)dY (t)?

We will return to this question in the next chapter.

The investigation of stochastic integrals using Itô’s formula is called stochas-
tic calculus (or sometimes Itô calculus), and the remainder of this chapter and
much of the next will be devoted to this topic.
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4.4.3 Quadratic variation and Itô’s product formula

We have already met the quadratic variation of a Brownian stochastic integral.
We now extend this definition to the more general case of Lévy-type stochastic
integrals Y = (Y (t), t ≥ 0) of the form (4.13). So for each t ≥ 0 we define
a d × d matrix-valued adapted process [Y , Y ] = ([Y , Y ](t), t ≥ 0) by the
following prescription for its (i, j)th entry (1 ≤ i, j ≤ d ):

[Y i, Y j](t) = [Y i
c, Y

j
c
]
(t)+

∑
0≤s≤t

�Y i(s)�Y j(s). (4.15)

By Corollary 4.4.9 each [Y i, Y j](t) is almost surely finite, and we deduce that

[Y i, Y j](t) =
m∑
k=1

∫ T

0
Fi
k(s)F

j
k(s)ds+

∫ t

0

∫
|x|<1

Hi(s, x)Hj(s, x)N (ds, dx)

+
∫ t

0

∫
|x|≥1

Ki(s, x)Kj(s, x)N (ds, dx), (4.16)

so that we clearly have each [Y i, Y j](t) = [Y j, Y i](t).
Exercise 4.4.12 Show that for each α,β ∈R and 1 ≤ i, j, k ≤ d , t ≥ 0,

[αY i + βY j, Y k ](t) = α[Y i, Y k ](t)+ β[Y j, Y k ](t).

The importance of [Y , Y ] is that it measures the deviation in the stochastic
differential of products from the usual Leibniz formula. The following result
makes this precise.

Theorem 4.4.13 (Itô’s product formula) If Y 1 and Y 2 are real-valued Lévy-
type stochastic integrals of the form (4.13) then, for all t ≥ 0, with probability
1 we have that

Y 1(t)Y 2(t) = Y 1(0)Y 2(0)+
∫ t

0
Y 1(s−)dY 2(s)

+
∫ t

0
Y 2(s−)dY 1(s)+ [Y 1, Y 2](t).

Proof We consider Y 1 and Y 2 as components of a vector Y = (Y 1, Y 2) and
take f in Theorem 4.4.10 to be the smooth mapping from R2 to R given by
f (x1, x2) = x1x2.
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By Theorem 4.4.10 we then obtain, for each t ≥ 0, with probability 1,

Y 1(t)Y 2(t) = Y 1(0)Y 2(0)+
∫ t

0
Y 1(s−)dY 2(s)

+
∫ t

0
Y 2(s−)dY 1(s)+ [Y 1

c , Y
2
c ](t)

+
∑
0≤s≤t

{
Y 1(s)Y 2(s)− Y 1(s−)Y 2(s−)

− [Y 1(s)− Y 1(s−)
]
Y 2(s−)

− [Y 2(s)− Y 2(s−)
]
Y 1(s−)

}
,

from which the required result easily follows. �

Exercise 4.4.14 Extend this result to the case where Y 1 and Y 2 are d -
dimensional.

We can learn much about the way our Itô formulae work by writing the
product formula in differential form:

d(Y 1(t)Y 2(t)) = Y 1(t−)dY 2(t)+ Y 2(t−)dY 1(t)+ d [Y 1, Y 2](t).

By equation (4.16), we see that the term d [Y 1, Y 2](t), which is sometimes called
an Itô correction, arises as a result of the following formal product relations
between differentials:

dBi(t)dBj(t) = δijdt, N (dt, dx)N (dt, dy) = N (dt, dx)δ(x − y)

for 1 ≤ i, j ≤ m, where all other products of differentials vanish; if you have
little previous experience of this game, these relations are a very valuable guide
to intuition.
Notewehave derived Itô’s product formula as a corollary of Itô’s theorem, but

we could just as well have gone in the opposite direction, indeed the two results
are equivalent; see, e.g. Rogers and Williams [309], chapter IV, section 32.

Exercise 4.4.15 Consider the Brownian stochastic integrals given by I k(t) =∫ t
0 F

k
j (s)dB

j(s) for each t ≥ 0, k = 1, 2, and show that

[I1, I2](t) = 〈I1, I2〉(t) =
m∑
j=1

∫ t

0
F1
j (s)F

2
j (s)ds.
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Exercise 4.4.16 For the Poisson stochastic integrals

J i(t) =
∫ t

0

∫
E
Hi(s, x)Ñ (dt, dx),

where t ≥ 0 and i = 1, 2, deduce that

[J 1, J 2](t)− 〈J 1, J 2〉(t) =
∫ t

0

∫
E
H 1(s, x)H 2(s, x)Ñ (dt, dx).

For completeness,wewill give another characterisation of quadratic variation
that is sometimes quite useful. We recall the sequence of partitions (Pn,n∈N)

with mesh tending to zero that were introduced earlier.

Theorem 4.4.17 If X and Y are real-valued Lévy-type stochastic integrals of
the form (4.13), then, for each t ≥ 0, with probability 1 we have

[X , Y ](t) = lim
n→∞

m(n)∑
j=0

[
X
(
t(n)j+1
)
− X

(
t(n)j

)][
Y
(
t(n)j+1
)
− Y

(
t(n)j

)]
,

where the limit is taken in probability.

Proof By polarisation, it is sufficient to consider the case X = Y . Using the
identity

(x − y)2 = x2 − y2 − 2y(x − y)

for x, y ∈R, we deduce that

m(n)∑
j=0

[
X
(
t(n)j+1
)
− X

(
t(n)j

)]2 = m(n)∑
j=0

X
(
t(n)j+1
)2 − m(n)∑

j=0
X
(
t(n)j

)2

− 2
m(n)∑
j=0

X
(
t(n)j

)[
X
(
t(n)j+1
)
− X

(
t(n)j

)]
,

and the required result follows from Itô’s product formula (Theorem 4.4.13)
and Exercise 4.3.7. �

We now use this result to give a proof (promised in Chapter 2) that Brownian
motion is of infinite variation.

Theorem 4.4.18 Brownian motion is of infinite variation
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Proof For simplicity we take B = (B(t), t ≥ 0) to be a standard one-
dimensional Brownian motion. Assume that B is of finite variation on [0, t].
Using the result of Theorem 4.4.17, on taking limits in probability we obtain

t = [B,B](t)

= lim
n→∞

m(n)∑
j=0
[B(t(n)j+1)− B(t(n)j )]2

≤ lim
n→∞ max

0≤j≤m(n)
|B(t(n)j+1)− B(t(n)j )|

m(n)∑
j=0

|B(t(n)j+1)− B(t(n)j )|

≤ VB(t) lim
n→∞ max

0≤j≤m(n)
|B(t(n)j+1)− B(t(n)j )|

→ 0,

by sample path continuity. Hence we have obtained a contradiction and the
result follows. �

The proof of Theorem 4.4.18 can be generalised to show that any contin-
uous martingale is either constant or of infinite variation, see Kunita [215],
Section 2.2.
Many of the results of this chapter extend fromLévy-type stochastic integrals

to arbitrary semimartingales, and full details can be found in Jacod and Shiryaev
[183], Protter [298] and He et al. [149]. In particular, if F is a simple process
and X is a semimartingale we can again use Itô’s prescription to define∫ t

0
F(s)dX (s) =

∑
j

F(tj)
[
X (tj+1)− X (tj)

]
,

and then pass to the limit to obtain more general stochastic integrals. In
particular, if M is a real-valued centred martingale and F is predictable

with E
(∫ t

0 |F(s)|2d〈M ,M 〉(s)
)

<∞, then
∫ t
0 F(s)dM (s) is a centred L2-

martingale with

E

(∣∣∣∣∫ t

0
F(s)dM (s)

∣∣∣∣2
)
= E

(∫ t

0
|F(s)|2d〈M ,M 〉(s)

)
.

Itô’s formula can be established in the form given in Theorem 4.4.10 and
the quadratic variation of semimartingales defined as the correction term in
the corresponding Itô product formula (or, equivalently, via the prescription
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of Theorem 4.4.17). In particular, if X and Y are semimartingales and Xc, Yc
denote their continuous parts then we have, for each t ≥ 0,

[X , Y ](t) = 〈Xc, Yc〉(t)+
∑
0≤s≤t

�X (s)�Y (s); (4.17)

see Jacod and Shiryaev [183], p. 55.

4.4.4 Applications of Itô’s Formula

From now on, Itô’s formula will be a vital tool in our armory. In this section
we begin obtaining some benefits from it. The first and last results exploit
stochastic calculus for general semimartingales as has just been described in
outline.Although this theory, in its full generality, is not the subject of this book
it would be a great pity to deprive ourselves of these insights.We begin with the
famous Lévy characterisation of Brownian motion that we have already used
in Chapter 2.

Lévy’s characterisation of Brownian motion

Theorem 4.4.19 (Lévy’s characterisation) Let M = (M (t), t ≥ 0) be a
continuous centred martingale that is adapted to a given filtration (Ft , t ≥ 0).
If 〈Mi,Mj〉(t) = aijt for each t ≥ 0, 1 ≤ i, j ≤ d , where a = (aij) is a
positive definite symmetric matrix, then M is an Ft -adapted Brownian motion
with covariance a.

Proof Fix u∈Rd and define the process (Yu(t), t ≥ 0) by Yu(t) = ei(u,M (t));
then, by Itô’s formula and incorporating (4.17), we obtain

dYu(t) = iujYu(t)dMj(t)− 1
2u

iujYu(t)d〈Mi,Mj〉(t)
= iujYu(t)dMj(t)− 1

2 (u, au)Yu(t)dt.

Upon integrating from s to t, we obtain

Yu(t) = Yu(s)+ iuj
∫ t

s
Yu(τ )dMj(τ )− 1

2 (u, au)
∫ t

s
Yu(τ )dτ .

Now take conditional expectations of both sides with respect to Fs, and use the
conditional Fubini theorem (Theorem 1.1.8) to obtain

E(Yu(t)|Fs) = Yu(s)− 1
2 (u, au)

∫ t

s
E(Yu(τ )|Fs) dτ .
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Hence

E(ei(u,M (t)−M (s))|Fs) = e−(u,au)(t−s)/2.

From here it is a straightforward exercise for the reader to confirm that M is a
Brownian motion, as required. �

Note A number of interesting propositions that are equivalent to the Lévy
characterisation can be found in Kunita [215], p. 67.

Exercise 4.4.20 Extend the Lévy characterisation to the case where M is a
continuous local martingale.

Burkholder’s Inequality

Another classic and fairly straightforward application of Itô’s formula for
Brownian integrals is Burkholder’s inequality. Let M = (M (t), t ≥ 0) be a
(real-valued) Brownian integral of the form

M (t) =
∫ t

0
Fj(s)dBj(s), (4.18)

where each Fj ∈H2(t), 1 ≤ j ≤ d , t ≥ 0. By Exercise 4.4.15,

[M ,M ](t) =
m∑
j=1

∫ t

0
Fj(s)

2ds

for each t ≥ 0. Note that by Theorem 4.2.3(4), M is a square-integrable
martingale.

Theorem 4.4.21 (Burkholder’s inequality) If M = (M (t), t ≥ 0) is a Brow-
nian integral of the form (4.18), for which E([M ,M ](t)p/2) <∞, then for any
p ≥ 2 there exists C(p) > 0 such that, for each t ≥ 0,

E(|M (t)|p) ≤ C(p) E([M ,M ](t)p/2).

Proof We follow Kunita [215], p. 66.Assume first that eachM (t) is a bounded
random variable. By Itô’s formula we have, for each t ≥ 0,

|M (t)|p = p
∫ t

0
|M (s)|p−1 sgn (M (s)) Fj(s)dBj(s)

+ 1

2
p(p− 1)

∫ t

0
|M (s)|p−2d [M ,M ](s),
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and, by the boundedness assumption, the stochastic integral is a martingale.
Hence on taking expectations we obtain

E(|M (t)|p) = 1

2
p(p− 1) E

(∫ t

0
|M (s)|p−2d [M ,M ](s)

)

≤ 1

2
p(p− 1) E

(
sup
0≤s≤t

|M (s)|p−2[M ,M ](t)
)
.

By Hölder’s inequality and Doob’s martingale inequality, we obtain

E

(
sup
0≤s≤t

|M (s)|p−2[M ,M ](t)
)

≤ E

(
sup
0≤s≤t

|M (s)|p
)(p−2)/p

E([M ,M ](t)p/2)2/p

≤
(

p

p− 1

)(p−2)/p
E(|M (t)|p)(p−2)/p E([M ,M ](t)p/2)2/p.

Let D(p) = 1
2p(p− 1)[p/(p− 1)](p−2)/p; then we have

E(|M (t)|p) ≤ D(p) E(|M (t)|p)1−(2/p) E([M ,M ](t)p/2)2/p,

and the required result follows straightforwardly, with C(p) = D(p)p/2.
For the general case, define a sequence of stopping times (Tn, n∈N) by

Tn = inf {|M (t)| > n or [M ,M ](t) > n}. Then the inequality holds for each
process (M (t∧Tn), t ≥ 0), andwemay use dominated convergence to establish
the required result. �

Finally, we extend the result of Theorem 4.4.21 to finite dimensional
Brownian integrals. Let M (t) = (M1(t), . . . ,Md (t)) where each Mi(t) =∫ t
0 F

j
i (s)dBj(s) with each Fj

i ∈P2(t). Considering the quadratic variation as
a matrix-valued process we have

tr([M ,M ](t)) =
d∑
i=1
[Mi,Mi](t) =

d∑
i=1

m∑
j=1

Fi,j(s)
2.

Theorem 4.4.22 If M = (M (t), t ≥ 0) is a d-dimensional Brownian integral
then for each p ≥ 2 there exists C ′(p) > 0 such that

E(|M (t)|p) ≤ C ′(p)E({tr([M ,M ](t))} p2 ).
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Proof. By Jensen’s inequality and Theorem 4.4.21

E(|M (t)|p) ≤ d
p−2
2

d∑
i=1

E(|Mi(t)|p)

≤ d
p−2
2 C(p)

d∑
i=1

E




m∑
j=1

∫ t

0
Fi,j(s)

2ds


p
2


≤ d
p
2C(p)E




d∑
i=1

m∑
j=1

∫ t

0
Fi,j(s)

2ds


p
2
 ,

where we have used the elementary inequality

(
d∑
i=1

|ai|r
) 1

r

≤ d
1
r

d∑
i=1

|ai|,

for a1, . . . , ad ∈R, r > 1.
Note thatwe can strengthenboth ofTheorems4.4.21 and4.4.22by combining

them with Doob’s martingale inequality, so e.g. the result of Theorem 4.4.22
then becomes

E

(
sup
0≤s≤t

|M (s)|p
)
≤ C ′′(p)E({tr([M ,M ](t))} p2 ), (4.19)

where C ′′(p) = qpC ′ with q = p
p−1 . Such inequalities are often used in

applications.

Note By another more subtle application of Itô’s formula, the inequality
of Theorem 4.4.21 can be strengthened to show that there exists c(p)> 0
such that

c(p) E([M ,M ](t)p/2) ≤ E(|M (t)|p) ≤ C(p) E([M ,M ](t)p/2);

see Kunita [215], pp. 66–7, for details. With more effort the inequality can be
extended to arbitrary continuous local martingales M for which M (0) = 0
and also to all p > 0. This more extensive treatment can be found in Revuz
and Yor [306], chapter 4, section 4. A further generalisation, where the pth
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power is replaced by an arbitrary convex function, is due to Burkholder
et al. [68].
The inequalities still hold in the case where M is an arbitrary local mar-

tingale (so jumps are included), but we have been unable to find a direct
proof using Itô’s formula, as above, even in the case of Poisson integrals.
Details of this general result may be found in Dellacherie and Meyer [88],
pp. 303–4.

Moments of Lévy-type stochastic integrals – Kunita’s inequalities

Burkholders inequality is very useful in applications as it expresses moments
of Brownian integrals in terms of those of the integrand process. In this section,
we develop similar inequalities for more general Lévy-type stochastic integrals
in the case where the driving Lévy process has bounded jumps. These results
are due to H. Kunita [218] and we call them Kunita’s inequalities.
We begin by noting a very useful inequality for numbers. Let x, y > 0 and

p, q > 1 satisfy 1
p + 1

q = 1, then

xy ≤ xp

p
+ yq

q
. (4.20)

This inequality can be found inHardy et al. [147] p.61 but it is also instructive
to read earlier discussions on pages 17 and 37 therein.
Now let c, t > 0 and choose E = Bc(0) − {0}. Let each Hi ∈P2(t,E) and

consider the stochastic integral I(t) = (I1(t), I2(t), . . . , Id (t)) where for each
1 ≤ i ≤ d ,

Ii(t) =
∫ t

0

∫
E
Hi(s, x)Ñ (ds, dx).

Theorem 4.4.23 (Kunita’s first inequality) For any p ≥ 2, there exists
D(p) > 0 such that

E

(
sup
0≤s≤t

|I(s)|p
)
≤ D(p)

{
E

[(∫ t

0

∫
E
|H (s, x)|2ν(dx)ds

)p/2]

+ E

[∫ t

0

∫
E
|H (s, x)|pν(dx)ds

]}
. (4.21)

Proof We will only consider the case p > 2 as p = 2 is already covered in
Lemma 4.2.2. In this proof ci(p), 1 ≤ i ≤ 4 will denote positive constants



266 Stochastic integration

depending only on p. By Itô’s formula, we have (with probability one)

|I(t)|p = M (t)+ A(t),

where

M (t) =
∫ t

0

∫
E
(|I(s−)+ H (s, x)|p − |I(s−)|p)Ñ (ds, dx), and

A(t) =
∫ t

0

∫
E
(|I(s−)+ H (s, x)|p − |I(s−)|p − p|I(s−)|p−2

× Ii(s−)Hi(s, x))ν(dx)ds.

M = (M (t), t ≥ 0) is a local martingale. For simplicity we will assume that
it is in fact a martingale, and note that we can easily reduce the general case to
this one by using an appropriate sequence of stopping times.
Now let 0 < θi < 1 for each 1 ≤ i ≤ d and let J (I ,H ; θ) denote the Rd -

valued process whose ith component has the value Ii(s−)+ θiHi(s, x) at s. By
Taylor’s theorem, there exist such θis for which

A(t) =
∫ t

0

∫
E

[
1

2
p(p− 2)|J (I ,H ; θ)(s)|p−4(J (I ,H ; θ)(s),H (s, x))2

+ p|J (I ,H ; θ)(s)|p−2|H (s, x)|2
]
ν(dx)ds.

Using theCauchy–Schwarz inequality and the fact that for a, b∈R, |a+b|p ≤
max{2p−1, 1}(|a|p + |b|p), we obtain

|A(t)| ≤ c1(p)
∫ t

0

∫
E
[|I(s−)|p−2|H (s, x)|2 + |H (s, x)|p]ν(dx)ds.

By Doob’s martingale inequality we have

E

(
sup
0≤s≤t

|I(s)|p
)
≤ K1(t)+ K2(t), where

K1(t) = c2(p)E

[∫ t

0

∫
E
|I(s−)|p−2|H (s, x)|2ν(dx)ds

]
and K2(t) = c2(p)E

[∫ t

0

∫
E
|H (s, x)|pν(dx)ds

]
.
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Now using Hölder’s inequality and the inequality (4.20), we find that for
each α > 1,

K1(t) ≤ c2(p)E

[
sup
0<s≤t

1

α
|I(s−)|p−2

∫ t

0

∫
E
α|H (s, x)|2ν(dx)ds

]

≤ c2(p)α
2−p
[

E

(
sup
0<s≤t

|I(s−)|p
)]p−2/p

×
[

E

(∫ t

0

∫
E
α|H (s, x)|2ν(dx)ds

)p/2]2/p

≤ c3(p)α
2−pE

(
sup
0≤s<t

|I(s)|p
)

+ c4(p)α
p
2 E

(∫ t

0

∫
E
|H (s, x)|2ν(dx)ds

)p/2
.

Hence we obtain

E

(
sup
0≤s≤t

|I(s)|p
)

≤ c3(p)α
2−pE

(
sup
0≤s≤t

|I(s)|p
)

+ c4(p)α
p
2 E

(∫ t

0

∫
E
|H (s, x)|2ν(dx)ds

)p/2
+ c2(p)E

[∫ t

0

∫
E
|H (s, x)|pν(dx)ds

]
,

and the result follows on takingα sufficiently large to ensure that c3(p)α2−p < 1,
and then rearranging terms. �

Now consider a Lévy-type stochastic integral M = (M (t), t ≥ 0) whose ith
component is given as

Mi(t) =
∫ t

0
Gi(s)ds+

∫ t

0
Fj
i (s)dBj(s)+

∫ t

0

∫
E
Hi(s, x)Ñ (ds, dx),

where each |Gi| 12 ,Fj
i ∈P2(t) and each Hi ∈P2(t,E). We then obtain
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Corollary 4.4.24 (Kunita’s second inequality) For each p ≥ 2 and each
t > 0, there exists D′(p, t) > 0 such that

E

(
sup
0≤s≤t

|M (s)|p
)
≤ D′(p, t)

{
E

(∫ t

0
|G(s)|pds

)
+ E({tr([Mc,Mc](t))}p/2)

+ E

[∫ t

0

(∫
E
|H (s, x)|2ν(dx)

)p/2
ds

]

+ E

[∫ t

0

(∫
E
|H (s, x)|pν(dx)

)
ds

]}
. (4.22)

Proof This follows from Theorems 4.4.22 and 4.4.23 via Hölder’s inequality.
�

Poisson random measures revisited

Aspromised,we revisit the proof ofTheorem2.3.5. LetN be thePoisson random
measure onR+×(Rd−{0})which is associated to a Lévy process X .We know
from Theorem 2.3.5(1) that if A is bounded below, then (N (t,A), t ≥ 0) is a
Poisson process with intensity ν(A), where ν is the Lévy measure associated
to X . We aim to give an alternative, more elegant and arguably perhaps more
enlightening proof of Theorem 2.3.5(2) which states that
If A1, . . . ,An are bounded below and disjoint, then the processes

{(N (t,Ai), t ≥ 0), 1 ≤ i ≤ n} are independent.
The proof (which is due to Kunita [218]) utilises stochastic integration based

on general martingales and the corresponding Itô formula. None of these results
require any properties of random measures and so the proof does not involve a
circular argument.
We proceed as follows. For eachm∈N and each α = (α1, . . . ,αm)∈Rm, we

consider the real valued process Yα = (Yα(t), t ≥ 0) defined by

Yα(t) =
m∑
k=1

αkN (t,Ak).

Yα is a Lévy process by the argument of Theorem 2.3.5(1). Hence there exists
ψ :Rm → C such that

E(eiYα(t)) = etψ(α),

for all t ≥ 0. By Proposition 2.1.3, we see that Mα = (Mα(t), t ≥ 0) is a
complex-valued martingale where for each t ≥ 0,

Mα(t) = eiYα(t)−tψ(α),
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By Itô’s formula (the finite variation case) we have

dMα(t) = −ψ(α)Mα(t−)dt +Mα(t−)

m∑
k=1

(eiαk − 1)N (dt,Ak),

and hence

∫ t

0

dMα(s)

Mα(s−)
= −ψ(α)t +

m∑
k=1

(eiαk − 1)N (t,Ak).

Since 1/Mα is bounded on�× [0, t] it follows that the process given by the
left hand side of the last equation is a centredmartingale.On taking expectations,
we thus deduce that for each α ∈Rm

ψ(α) =
m∑
k=1

(eiαk − 1)ν(Ak).

Hence for each t ≥ 0

E

(
exp

{
i

m∑
k=1

αkN (t,Ak)

})
=

m∏
k=1

exp {eiαk − 1)tν(Ak)}

=
m∏
k=1

E[exp{iαkN (t,Ak)}],

and so N (t,A1), . . . ,N (t,Am) are independent by Kac’s theorem.
To see that the processes themselves are independent we can use a similar

argument to the last part of the proof of Theorem 2.4.6. To see how it works,
we will show that N (s,A) and N (t,B) are independent when s < t and A ∩
B = ∅. We use that facts that each of N (s,A) and N (s,B) are Fs-adapted and
independent (as shown above) and that (N (t,A), t ≥ 0) has stationary and
independent increments. Let α,β ∈R, then

E(ei[αN (t,A)+βN (s,B)]) = E(ei[βN (s,B)+αN (s,A)].eiα(N (t,A)−N (s,A)))

= E(eiβN (s,A))E(eiαN (s,A))E(eiαN (t−s,A))

= exp{(eiβ − 1)sν(B)+ (eiα − 1)tν(A)}
= E(eiαN (t,A))E(eiβN (s,B)). �
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4.4.5 The Stratonovitch and Marcus canonical integrals

The Itô integral is a truly wonderful thing, and we will explore manymore of its
implications in the next chapter. Unfortunately it does have some disadvantages
and one of the most important of these is – as Itô’s formula has shown us –
that it fails to satisfy the usual chain rule of differential calculus. This is the
source of much beautiful mathematics, as we will see throughout this book,
but if we examine stochastic differential equations and associated flows on
smooth manifolds then we find that the Itô integral is not invariant under local
co-ordinate changes and so is not a natural geometric object. Fortunately, there
is a solution to this problem. We can define new ‘integrals’ as ‘perturbations’
of the Itô integral that have the properties we need.

The Stratonovitch integral

Let M = (M (t), t ≥ 0) be a Brownian integral of the form M i(t) =∫ t
0 F

i
j (s)dB

j(s) and let G = (G1, . . . ,Gd ) be a Brownian integral such that

GiFi
j ∈P2(t) for each 1 ≤ j ≤ m, t ≥ 0. Then we define the Stratonovitch

integral of G with respect to M by the prescription

∫ t

0
Gi(s) ◦ dMi(s) =

∫ t

0
Gi(s)dMi(s)+ 1

2
[Gi,Mi](t).

The notation ◦ (sometimes called ‘Itô’s circle’) clearly differentiates the
Stratonovitch and Itô cases.
We also have the differential form

Gi(s) ◦ dMi(s) = Gi(s)dMi(s)+ 1
2d [Gi,Mi](t).

Exercise 4.4.25 Establish the following relations, where α,β ∈R and X , Y ,
M1 and M2 are one-dimensional Brownian integrals:

(1) (αX + βY ) ◦ dM = αX ◦ dM + βY ◦ dM ;
(2) X ◦ (dM1 + dM2) = X ◦ dM1 + X ◦ dM2;
(3) XY ◦ dM = X ◦ (Y ◦ dM ).

Find suitable extensions of these in higher dimensions.

Themost important aspect of theStratonovitch integral for us is that it satisfies
a Newton–Leibniz-type chain rule.
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Theorem 4.4.26 If M is a Brownian integral and f ∈C3(Rd ), then, for each
t ≥ 0, with probability 1 we have

f (M (t))− f (M (0)) =
∫ t

0
∂if (M (s)) ◦ dM i(s).

Proof By the definition of the Stratonovitch integral, we have

∂if (M (t)) ◦ dM i(t) = ∂if (M (t))dM i(t)+ 1
2d
[
∂if (M (·)),M i](t)

and, by Itô’s formula, for each 1 ≤ i ≤ d ,

d{∂if (M (t))} = ∂j∂if (M (t)) dMj(t)+ 1
2∂j∂k∂if(M(t)) d [M j,Mk ](t),

giving

d [∂if (M (·)),M i](t) = ∂i∂jf (M (t)) d [M i,M j](t).

So, by using Itô’s formula again, we deduce that∫ t

0
∂if (M (s)) ◦ dM i(s)

=
∫ t

0
∂if (M (s)) dM i(s)+ 1

2

∫ t

0
∂i∂jf (M (s)) d [M i,M j](s)

= f (M (t))− f (M (0)).

�

For thosewhohanker after a legitimate definition of the Stratonovitch integral
as a limit of step functions, we consider again our usual sequence of partitions
(Pn, n∈N).

Theorem 4.4.27∫ t

0
Gi(s) ◦ dM i(s)

= lim
n→∞

m(n)∑
j=0

Gi

(
t(n)j+1
)
+ Gi

(
t(n)j

)
2

[
M i
(
t(n)j+1
)
−M i

(
t(n)j

)]
,

where the limit is taken in probability.
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Proof We suppress the indices i and n for convenience and note that, for each
0 ≤ j ≤ m,

G(tj+1)+ G(tj)

2

[
M (tj+1)−M (tj)

]
= G(tj)

[
M(tj+1)−M (tj)

]+ 1
2

[
G(tj+1)−G(tj)

][
M (tj+1)−M (tj)

]
,

and the result follows from the remark following Lemma 4.3.1 and
Theorem 4.4.17. �

The Marcus canonical integral

Now let Y be a Lévy-type stochastic integral; then you can check that the
Stratonovich integral will no longer give us a chain rule of the Newton–Leibniz
type and so we need a more sophisticated approach to take care of the jumps.
The mechanism for doing this was developed by Marcus [253, 254].
We will define the Marcus canonical integral for integrands of the form

(G(s, Y (s−)), s ≥ 0), whereG :R+×Rd → Rd is such that s→ G(s, Y (s−))

is predictable and the Itô integrals
∫ t
0 Gi(s, Y (s−))dY i(s) exist for all t ≥ 0.

We also need the following assumption.
There exists a measurable mapping � :R+ ×R×Rd ×Rd → R such that,

for each s ≥ 0, x, y ∈Rd :

(1) u→ �(s, u, x, y) is continuously differentiable;

(2) ∂�
∂u

(s, u, x, y) = yiGi(s, x + uy) for each u∈R;

(3) �(s, 0, x, y) = �(s, 0, x, 0).

Such a � is called a Marcus mapping.
Given such a mapping, we then define the Marcus canonical integral as

follows: for each t ≥ 0,∫ t

0
Gi(s, Y (s−)) 4 dY i(s)

=
∫ t

0
Gi(s, Y (s−)) ◦ dY i

c(s)+
∫ t

0
Gi(s, Y (s−))dY i

d(s)

+
∑
0≤s≤t

[
�(s, 1,Y (s−),�Y (s))−�(s, 0,Y (s−),�Y (s))

− ∂�

∂u
(s, 0,Y (s−),�Y (s))

]
.

We consider two cases of interest.
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(i) G(s, y) = G(s) for all s ≥ 0, y ∈Rd . In this case, we have

�(s, u, x, y) = Gi(s)(x
i + uyi).

We then have that∫ t

0
Gi(s) 4 dY i(s) =

∫ t

0
Gi(s) ◦ dY i

c(s)+
∫ t

0
Gi(s)dY

i
d(s);

so, if Yd ≡ 0 then the Stratonovitch and Marcus integrals coincide while if
Yc ≡ 0 then the Marcus integral is the same as the Itô integral.
(ii) G(s, y) = G(y) for all s ≥ 0, y ∈Rd . We will consider this case within
the context of the required Newton–Leibniz rule by writing Gi(y) = ∂if (y) for
each 1 ≤ i ≤ d , where f ∈C3(Rd ), y ∈Rd . We then have the following the
theorem.

Theorem 4.4.28 If Y is a Lévy-type stochastic integral of the form (4.13) and
f ∈C3(Rd ), then

f (Y (t))− f (Y (0)) =
∫ t

0
∂if (Y (s−)) 4 dY i(s)

for each t ≥ 0, with probability 1.

Proof Our Marcus map satisfies

∂�

∂u
(u, x, y) = yi∂if (x + uy),

and hence �(u, x, y) = f (x + uy).
We then find that∫ t

0
∂if (Y (s−)) 4 dY i(s)

=
∫ t

0
∂if (Y (s−)) dY i(s)+ 1

2

∫ t

0
∂i∂jf (Y (s−)) d [Y i

c, Y
j
c](s)

+
∑
0≤s≤t

[
f (Y (s))− f (Y (s−))−�Y j(s)∂if (Y (s−))

]
= f (Y (t))− f (Y (0)),

by Itô’s formula. �
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The probabilistic interpretation of the Marcus integral is as follows. The
Marcus map introduces a fictitious time u with respect to which, at each jump
time, the process travels at infinite speed along the straight line connecting
the starting point Y (s−) and the finishing point Y (s). When we study stochas-
tic differential equations later on, we will generalise the Marcus integral and
replace the straight line by a curve determined by the geometry of the driving
vector fields.

4.4.6 Backwards stochastic integrals

So far, in this book, we have fixed as forward the direction in time; all pro-
cesses have started at time t = 0 and progressed to a later time t. For some
applications it is useful to reverse the direction of time, so we fix a time T and
then proceed backwards to some earlier time s. In the discussion below, we will
develop backwards notions of the concepts of filtration, martingale, stochastic
integral etc. In this context, whenever we mention the more familiar notions
that were developed earlier in this chapter, we will always prefix them by the
word ‘forward’.
We begin, as usual, with our probability space (�,F ,P). Let (F s, 0 ≤ s ≤ T )

be a family of sub σ -algebras of F . We say that it is a backwards filtration if

F t ⊆ F s for all 0 ≤ s ≤ t ≤ T .

For an example of a backwards filtration, let X = (X (s), 0 ≤ s ≤ T ) be an
Rd -valued stochastic process on (�,F ,P) and, for each 0 ≤ s ≤ T , define
Gs
X = σ {X (u); s ≤ u ≤ T }; (Gs

X , 0 ≤ s ≤ T ) is then called the natural
backwards filtration of X . Just as in the forward case, it is standard to impose
the ‘usual hypotheses’ on backwards filtrations, these being

(1) (completeness) FT contains all sets of P-measure zero in F ,
(2) (left continuity) for each 0 ≤ s ≤ T , F s = F s− whereF s− =⋂ε>0 F s−ε .

A process X = (X (s), 0 ≤ s ≤ T ) is said to be backwards adapted to a
backwards filtration (F s, 0 ≤ s ≤ T ) if each X (s) is F s-measurable, e.g. any
process is backwards adapted to its own natural backwards filtration.
A backwards adapted process (M (s), 0 ≤ s ≤ T ) is called a backwards

martingale if E(|M (s)|) <∞ and E(M (s)|F t) = M (t)whenever 0 ≤ s ≤ t ≤
T . Backwards versions of the supermartingale submartingale, local martingale
and semimartingale are all obvious extensions (Note that some authors prefer
to use ‘reversed’ rather than ‘backwards’).
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Exercise 4.4.29 For each 0 ≤ s ≤ t ≤ T , let

M (s) = σ(B(T )− B(s))+ λ

∫ T

s

∫
|x|<1

xÑ (ds, dx),

where σ , λ∈R and B and N are independent one-dimensional Brownian
motions and Poisson random measures, respectively. Show that M is a
backwards martingale with respect to its own natural backwards filtration.

Let E ∈B(Rd ). We define Rd -valued backwards martingale-valued mea-
sures on [0, T ] × E analogously to the forward case, the only difference being
that we replace the axiom (M2) (see the start of Section 4.1) by (M2)b, where

(M2)b M ([s, t),A) is independent of F t for all 0 ≤ s ≤ t ≤ T and for all
A∈B(E).

Examples of the type of backwards martingale measure that will be of
importance for us can be generated from Exercise 4.4.29, yielding

M ([s, t),A) = σ(B(t)− B(s))δ0(A)+ λ

∫ t

s

∫
A
xÑ (ds, dx),

for each 0 ≤ s ≤ t ≤ T , A∈B(E), where E = B̂− {0}.
We now want to carry out stochastic integration with respect to backwards

martingalemeasures. Firstwe need to consider appropriate spaces of integrands.
Fix 0 ≤ s ≤ T and let P− denote the smallest σ -algebra that contains all
mappings F : [s, T ] × E ×�→ Rd such that:

(1) for each s ≤ t ≤ T , the mapping (x,ω) → F(t, x,ω) is B(E) ⊗ F t

measurable;
(2) for each x ∈E, ω∈�, the mapping t → F(t, x,ω) is right-continuous.

We call P− the backwards predictable σ -algebra. A P−-measurable map-
ping G : [0, T ] ×E×�→ Rd is then said to be backwards predictable. Using
the notion of P− in place of P , we can then form the backwards analogues of
the spaces H2(s,E) and P2(s,E). We denote these by H−

2 (s,E) and P−
2 (s,E),

respectively. The space of backwards simple processes, which we denote by
S−(s,E), is defined to be the set of all F ∈H2(s,E) for which there exists a
partition s = t1 < t2 · · · < tm < tm+1 = T such that

F =
m∑
j=1

n∑
k=1

Fk(tj+1)χ[tj ,tj+1)χAk ,
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whereA1, . . . ,An are disjoint sets inB(E)with ν(Ak) <∞, for each 1 ≤ k ≤ n,
and each Fk(tj) is bounded and F tj -measurable.
For such an F we can define its Itô backwards stochastic integral by∫ t

s

∫
E
F(u, x) ·b M (du, dx) =

n∑
j=1

n∑
k=1

Fk(tj+1)M ([tj, tj+1),Ak).

We can then pass to the respective completions for F ∈H−
2 (s,E) and F ∈

P−
2 (s,E), just as in Section 4.2. The reader should verify that backwards

stochastic integrals with respect to backwards martingale measures are back-
wards local martingales. In particular, we can construct Lévy-type backwards
stochastic integrals

Y i(s) = Y i(T )−
∫ T

s
Gi(u)du −

∫ T

s
Fi
j (u) ·b dBj(u)

−
∫ T

s

∫
|x|<1

Hi(u, x) ·b Ñ (du, dx)−
∫ T

s

∫
|x|≥1

Ki(u, x)N (du, dx),

where for each 1 ≤ i ≤ d , 1 ≤ j ≤ m, t ≥ 0, we have |Gi|1/2,Fi
j ∈P−

2 (s),

Hi ∈P−
2 (s,E), and K is backwards predictable.

Exercise 4.4.30 Let Y = (Y (s), 0 ≤ s ≤ T ) be a backwards Lévy integral and
suppose that f ∈C3(Rd ). Derive the backwards Itô formula

f (Y (s)) = f (Y (T ))−
∫ T

s
∂if (Y (u)) ·b dY i(u)

+ 1

2

∫ T

s
∂i∂jf (Y (u)) d [Y i

c, Y
j
c](u)

−
∑

s≤u≤T

[
f (Y (u))− f (Y (u−))−�Y i(u)∂if (Y (u))

]
.

(Hint: Imitate the arguments for the forward case.)

As well as the backwards Itô integral, it is also useful to define backwards
versions of the Stratonovitch and Marcus integrals.
Using the same notation as in Section 4.4.5, we define the backwards

Stratonovitch integral by∫ T

s
G(u) ◦b dM (u) =

∫ T

s
G(u) ·b dM (u)+ 1

2 [G,M ](T )− 1
2 [G,M ](s),
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with the understanding that G is now backwards predictable. We again obtain
a Newton–Leibniz-type chain rule,

f (M (T ))− f (M (s)) =
∫ T

s
∂if (M (u)) ◦b dM i(u),

with probability 1, for each f ∈C3(Rd ), 0 ≤ s ≤ T . Taking the usual sequence
of partitions (Pn, n∈N) of [s, T ], we have

∫ T

s
G(u) ◦b dM (u) = lim

n→∞

m(n)∑
j=0

G
(
t(n)j+1
)
+ G

(
t(n)j

)
2

[
M
(
t(n)j+1
)
−M

(
t(n)j

)]
,

where the limit is taken in probability.
Again using the same notation as in Section 4.4.5, the backwards Marcus

canonical integral is defined as∫ T

s
Gi(u, Y (u)) 4b dY i(u)

=
∫ T

s
Gi(u, Y (u)) ◦b dY i

c(u) +
∫ T

s
Gi(u, Y (u)) ·b dY i

d(u)

+
∑
s≤t≤T

[
�(t, 1,Y (t),�Y (t))−�(t, 0,Y (t),�Y (t))

− ∂�

∂u
(t, 0,Y (t),�Y (t))

]
.

Sometimeswewant to consider both forward andbackwards stochastic integrals
within the same framework.As usual, we fix T > 0.A two-parameter filtration
of the σ -algebra F is a family (Fs,t ; 0 ≤ s < t ≤ T ) of sub σ -fields such that

Fs1,t1 ⊆ Fs2,t2 for all 0 ≤ s2 ≤ s1 < t1 ≤ t2.

If we now fix s > 0 then (Fs,t , t > s) is a forward filtration, while if we fix t > 0
then (Fs,t , 0 ≤ s < t) is a backwards filtration. A martingale-valued measure
on [0, T ] × E is localised if M ((s, t),A) is Fs,t-measurable for each A∈B(E)
and each 0 ≤ s < t ≤ T . Provided that both (M2) and (M2)b are satisfied,
localisedmartingalemeasures canbe used to defineboth forward andbackwards
stochastic integrals. Readers can check that examples of these are given by
martingale measures built from processes with independent increments, as in
Exercise 4.4.29.
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4.4.7 Local times and extensions of Itô’s formula

Here we sketch without proof some directions for extending Itô’s formula
beyond the case where f is aC2-function, for d = 1.A far more comprehensive
discussion can be found in Protter [298], chapter 4, section 7.
We begin by considering the case of a one-dimensional standard Brownian

motion andwe take f (x) = |x| for x ∈R. Now f is notC2; however, it is convex.
We have f ′(x) = sgn(x) (for x �= 0) but, in this case, f ′′ only makes sense as
a distribution: f ′′(x) = 2δ(x) where δ is the Dirac delta function. We include a
very swift proof of this to remind readers.

Proposition 4.4.31 If f (x) = |x|, then f ′′(x) = 2δ(x), in the sense of
distributions.

Proof Let g ∈C∞c (R) and, for convenience, assume that the support of g is the
interval [−a, b] where a, b > 0; then∫

R

f ′′(x)g(x)dx = −
∫

R

f ′(x)g′(x)dx

= −
∫

R

sgn(x) g′(x)dx

=
∫ 0

−a
g′(x)dx −

∫ b

0
g′(x)dx = 2g(0). �

Now let us naively apply Itô’s formula to this set-up. So if B is our Brownian
motion we see that, for each t ≥ 0,

|B(t)| =
∫ t

0
sgn(B(s)) dB(s)+

∫ t

0
δ(B(s))ds

=
∫ t

0
sgn(B(s)) dB(s)+ L(0, t),

where (L(0, t), t ≥ 0) is the local time ofB at zero (see Section 1.5.3). In fact this
result can be proved rigorously and is called Tanaka’s formula in the literature.

Exercise 4.4.32 Show that
∫ t
0 sgn(B(s)) dB(s) is a Brownian motion.

We can push the idea behind Tanaka’s formula a lot further. Let f be the dif-
ference of two convex functions; then f has a left derivative f ′l (see, e.g. Dudley
[98], pp. 158–9). If f ′′l is its second derivative (in the sense of distributions) then
we have the following generalisation of Itô’s formula for arbitrary real-valued
semimartingales:
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Theorem 4.4.33 (Meyer–Itô) If X = (X (t), t ≥ 0) is a real-valued semi-
martingale and f is the difference of two convex functions, then, for each x ∈R,
there exists an adapted process (L(x, t), t ≥ 0) such that, for each t ≥ 0, with
probability 1 we have

f (X (t)) = f (X (0))+
∫ t

0
f ′l (X (s−))dX (s)+ 1

2

∫ ∞

−∞
f ′′l (x)L(x, t)dx

+
∑
0≤s≤t

[
f (X (s))− f (X (s−))−�X (s)f ′l (X (s−))

]
.

The quantity (L(x, t), t ≥ 0) is called the local time of the semimartingale X
at the point x. Be aware that in the case where X is a Lévy process, it may not
necessarily coincide with the notion introduced in Subsection 1.5.3. To explore
this seeming disparity further, have a look at corollary 1 in chapter 4, section 7
of Protter [298].

4.5 Notes and further reading

Stochastic integration for adapted processes against Brownian motion was first
developed by Itô [172] and his famous lemma was established in [173]. The
extension of stochastic integration to square-integrable martingales is due to
Kunita and Watanabe [214] while Meyer [265] took the next step in gener-
alising to semimartingales. Any book with ‘stochastic calculus’ or ‘stochastic
differential equations’ in the title contains an account of stochastic integration,
with varying levels of difficulty. See e.g. Øksendal [282], Mikosch [269], Gih-
man and Skorohod [135], Liptser and Shiryaev [237] for Brownian motion;
Karatzas and Shreve [200], Durrett [99], Krylov [212], Rogers and Williams
[309] andKunita [215] for continuous semimartingales; and Jacod and Shiryaev
[183], Ikeda and Watanabe [167], Protter [298], Métivier [262] and Klebaner
[203] for semimartingales with jumps. Millar’s article [270] is interesting for
Lévy stochastic integrals. ForWiener–Lévy stochastic integrals where the noise
is a general infinitely divisible randommeasure, see Rajput and Rosiński [300].
Dinculeanu [91] utilises the concept of semivariation to unify Lebesgue–

Stieltjes integration with stochastic integration for Banach-space-valued
processes.
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Exponential martingales, change of measure
and financial applications

Summary We begin this chapter by studying two different types of ‘exponential’

of a Lévy-type stochastic integral Y . The first of these is the stochastic exponential,

dZ(t) = Z(t−)dY (t), and the second is the process eY . We are particularly interested in

identifying conditions under which eY is a martingale. It can then be used to implement

a change to an equivalent measure. This leads to Girsanov’s theorem, and an important

special case of this is the Cameron–Martin–Maruyama theorem, which underlies anal-

ysis in Wiener space. In Section 5.3, we prove the martingale representation theorem

and this is then applied to obtain the chaos decomposition for multiple Wiener–Lévy

integrals. We then give a brief introduction to Malliavin calculus in the Brownian case.

The final section of this chapter surveys some applications to option pricing. We dis-

cuss the search for equivalent risk-neutral measures within a general ‘geometric ‘Lévy

process’ stock price model. In the Brownian case, we derive the Black–Scholes pricing

formula for a European option. In the general case, where the market is incomplete, we

discuss the Föllmer–Schweitzer minimal measure and Esscher transform approaches.

The case where the market is driven by a hyperbolic Lévy process is discussed in some

detail.

In this chapter, we will explore further important properties of stochastic inte-
grals, particularly the implications of Itô’s formula. Many of the developments
which we will study here, although of considerable theoretical interest in their
own right, are also essential tools in mathematical finance as we will see in the
final section of this chapter. Throughout, we will for simplicity take d = 1 and
deal with Lévy-type stochastic integrals Y = (Y (t), t ≥ 0) of the form (4.13)
having the stochastic differential

dY (t) = G(t)dt + F(t)dB(t)+ H (t, x)Ñ (dt, dx)

+ K(t, x)N (dt, dx).

280
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5.1 Stochastic exponentials

In this section, we return to a question raised in Exercise 4.4.11, i.e. the problem
of finding an adapted process Z = (Z(t), t ≥ 0) that has a stochastic differential

dZ(t) = Z(t−)dY (t).

The solution of this problem is obtained as follows. We take Z to be the
stochastic exponential (sometimes called the Doléans–Dade exponential after
its discoverer), which is denoted as EY = (EY (t), t ≥ 0) and defined as

EY (t) = exp

{
Y (t)− 1

2
[Yc, Yc](t)

} ∏
0≤s≤t

[
1+�Y (s)

]
e−�Y (s) (5.1)

for each t ≥ 0.
We will need the following assumption:

(SE) inf {�Y (t), t > 0} > −1 (a.s.).
Proposition 5.1.1 If Y is a Lévy-type stochastic integral of the form (4.13) and
(SE) holds, then each EY (t) is almost surely finite.
Proof We must show that the infinite product in (5.1) converges almost surely.
We write ∏

0≤s≤t

[
1+�Y (s)

]
e−�Y (s) = A(t)+ B(t),

where

A(t) =
∏

0≤s≤t

[
1+�Y (s)

]
e−�Y (s)χ{|�Y (s)|≥1/2}

and

B(t) =
∏

0≤s≤t

[
1+�Y (s)

]
e−�Y (s)χ{|�Y (s)|<1/2}.

Now, since Y is càdlàg is, #{0 ≤ s ≤ t; |�Y (s)| ≥ 1/2} < ∞ (a.s.), and so
A(t) is almost surely a finite product. Using the assumption (SE), we have

B(t) = exp

∑
0≤s≤t

{
log
[
1+�Y (s)

]−�Y (s)
}
χ{|�Y (s)|<1/2}

.
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We now employ Taylor’s theorem to obtain the inequality

log(1+ y)− y ≤ Ky2

where K > 0, which is valid whenever |y| < 1/2. Hence∣∣∣∣∣∣
∑
0≤s≤t

{
log
[
1+�Y (s)

]−�Y (s)
}
χ{|�Y (s)|<1/2}

∣∣∣∣∣∣
≤ K

∑
0≤s≤t

|�Y (s)|2χ{|�Y (s)|<1/2} < ∞ a.s.,

by Corollary 4.4.9, and we have our required result. �

Of course (SE) ensures that EY (t) > 0 (a.s.).

Note 1 In the next chapter we will see that the stochastic exponential is in fact
the unique solution of the stochastic differential equation dZ(t)= Z(t−)dY (t)
with initial condition Z(0) = 1 (a.s.).

Note 2 The restrictions (SE) can be dropped and the stochastic exponential
extended to the case where Y is an arbitrary (real-valued) semimartingale, but
the price we have to pay is that EY may then take negative values. See Jacod
and Shiryaev [183], pp. 58–61, for details, and also for a further extension to
the case of complex Y .

Exercise 5.1.2 Establish the following alternative form of (5.1):

EY (t) = eSY (t),

where

dSY (t) = F(t)dB(t)+ [G(t)− 1
2F(t)2

]
dt

+
∫

|x|≥1
log
[
1+ K(t, x)

]
N (dt, dx)

+
∫

|x|<1

log
[
1+ H (t, x)

]
Ñ (dt, dx)

+
∫

|x|<1

{
log
[
1+ H (t, x)

]− H (t, x)
}
ν(dx)ds. (5.2)
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Theorem 5.1.3 We have

dEY (t) = EY (t−)dY (t).

Proof We apply Itô’s formula to the result of Exercise 5.1.2 to obtain, for each
t ≥ 0,

dEY (t) = EY (t−)

[
F(t)dB(t)+ G(t)dt

+
∫
|x|<1

{
log
[
1+ H (t, x)

]− H (t, x))
}
ν(dx)dt

]
+
∫
|x|≥1

(
exp
{
SY (t−)+ log

[
1+K(t, x)

]}
− exp

[
SY (t−)

])
N (dt, dx)

+
∫
|x|<1

(
exp
{
SY (t−)+ log

[
1+H (t, x)

]}
− exp

[
SY (t−)

])
Ñ (dt,dx)

+
∫
|x|<1

(
exp
{
SY (t−)+ log

[
1+ H (t, x)

]}
− exp

[
SY (t−)

]
− log

[
1+ H (t, x)

][exp SY (t−)])ν(dx)dt
= EY (t−)[F(t)dB(t)+ G(t)dt + K(t, x)N (dt, dx)

+ H (t, x)Ñ (dt, dx)],

as required. �

Exercise 5.1.4 Let X and Y be Lévy-type stochastic integrals. Show that, for
each t ≥ 0,

EX (t)EY (t) = EX+Y+[X ,Y ](t).

Exercise 5.1.5 Let Y = (Y (t), t ≥ 0) be a compound Poisson process, so
that each Y (t) = X1 + · · · + XN (t), where (Xn, n∈N) are i.i.d. and N is an
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independent Poisson process. Deduce that, for each t ≥ 0,

EY (t) =
N (t)∏
j=1

(1+ Xj).

Let X be a real valued Lévy process with characteristics (b, σ , ν) and
associated Lévy-Itô decomposition given by (2.25). For applications to
finance, it is useful to know whether the stochastic exponential EX (t) can
be rewritten as the exponential exp(X1(t)) of a Lévy process X1 and vice
versa.
Suppose that (SE) holds so that EX (t) > 0, then by (5.2) we have EX (t) =

exp(SX (t)), where for each t ≥ 0,

SX (t) = σB(t)+
∫
|x|≥1

log(1+ x)N (t, dx)+
∫
|x|<1

log(1+ x)Ñ (t, dx)

+
[
b− 1

2
σ 2 +

∫
|x|<1

(log(1+ x)− x)ν(dx)

]
t. (5.3)

Theorem 5.1.6 If X is a Lévy process with each EX (t) > 0, then EX (t) =
exp(X1(t)) for each t ≥ 0 where X1 is the Lévy process with characteristics
(b1, σ1, ν1) given by

ν1 = ν ◦ f −1 where f (x) = log(1+ x),

b1 = b− 1

2
σ 2 +

∫
R−{0}

[log(1+ x)χB̂(log(1+ x))− xχB̂(x)]ν(dx),

σ1 = σ ,

Conversely, there exists a Lévy process with characteristics (b2, σ2, ν2) such
that exp(X (t)) = EX2(t) for all t ≥ 0 wherein

ν2 = ν ◦ g−1, where g(x) = ex − 1,

b2 = b+ 1

2
σ 2 +

∫
R−{0}

[(ex − 1)χB̂(e
x − 1)− xχB̂(x)]ν(dx),

σ2 = σ .

Proof We will only demonstrate the first of these results as the second is
established similarly.
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For each t ≥ 0, define Y (t) = ∫|x|≥1 log(1 + x)N (t, dx) + ∫|x|<1 log(1+ x)

Ñ (t, dx). Using Theorem 2.3.7 (1) and (2.9) we obtain for each u∈R, t ≥ 0,

E(eiuY (t)) = exp

{∫
R−{0}

[eiuy − 1− iuyχf (B̂)(y)]ν1(dy)
}

= exp

{
ib′u+

∫
R−{0}

[eiuy − 1− iuyχB̂(y)]ν1(dy)
}
,

where

b′ =
∫

R−{0}
y[χB̂(y)− χf (B̂)(y)]ν1(dy)

=
∫

R−{0}
[log(1+ x)χB̂(log(1+ x))− xχB̂(x)]ν(dx).

The result now follows on rewriting (5.3) in terms of ν1 and comparing
with (2.25). �

Note For an alternative approach to the proof of this result, see lemma A.8 in
the appendix to Goll and Kansen [138] or Cont and Tankov [81], proposition
8.22, p. 287.

5.2 Exponential martingales

In this section, our first goal is to find conditions under which eY = (eY (t), t ≥
0) is a martingale, where Y is as usual a Lévy-type stochastic integral. Such
processes are an important source of Radon–Nikodým derivatives for changing
themeasure as described byGirsanov’s theorem, and this leads to the Cameron–
Martin–Maruyama formula, which underlies ‘infinite-dimensional analysis’ in
Wiener space as well as being a vital tool in the derivation of the Black–Scholes
formula in mathematical finance.

5.2.1 Lévy-type stochastic integrals as local martingales

Our first goal is to find necessary and sufficient conditions for a Lévy-type
stochastic integral Y to be a local martingale. First we impose some conditions
on K and G:

(LM1) E
(∫ t

0

∫
|x|≥1 |K(s, x)|ν(dx)ds

)
<∞;

(LM2) G1/2 ∈H2(t) for each t > 0.

(Note that E = B̂− {0} throughout this section.)
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From (LM1), it follows that
∫ t
0

∫
|x|≥1 |K(s, x)|ν(dx)ds < ∞ (a.s.). We may

then define∫ t

0

∫
|x|≥1

K(s, x)Ñ (dx, ds)

=
∫ t

0

∫
|x|≥1

K(s, x)N (dx, ds)−
∫ t

0

∫
|x|≥1

K(s, x)ν(dx)ds,

for each t ≥ 0. Note that this compensated integral is a local martingale (it is
in fact an L1- martingale).

Theorem 5.2.1 If Y is a Lévy-type stochastic integral of the form (4.13) and
the assumptions (LM1) and (LM2) are satisfied, then Y is a local martingale
if and only if

G(t)+
∫
|x|≥1

K(t, x)ν(dx) = 0 a.s.,

for (Lebesgue) almost all t ≥ 0.

Proof First assume that Y is a local martingale with respect to the stopping
times (Tn, n∈N). Then, for each n∈N, 0 ≤ s < t <∞,

Y (t ∧ Tn)

= Y (s ∧ Tn)+
∫ t∧Tn

s∧Tn
F(u)dB(u)+

∫ t∧Tn

s∧Tn

∫
|x|<1

H (u, x)Ñ (du, dx)

+
∫ t∧Tn

s∧Tn

∫
|x|>1

K(u, x)Ñ (du, dx)

+
∫ t∧Tn

s∧Tn

[
G(u)+

∫
|x|≥1

K(u, x)ν(dx)

]
du.

Now, for each n∈N, (Y (t ∧ Tn), t ≥ 0) is a martingale, so we have

Es

(∫ t∧Tn

s∧Tn

[
G(u)+

∫
|x|≥1

K(u, x)ν(dx)

]
du

)
= 0.

We take the limit as n→∞ and, using the fact that by (LM1) and (LM2)∣∣∣∣∫ t∧Tn

s∧Tn

[
G(u)+

∫
|x|≥1

K(u, x)ν(dx)

]
du

∣∣∣∣
≤
∫ t

0

∣∣∣∣G(u)+
∫
|x|≥1

K(u, x)ν(dx)

∣∣∣∣ du < ∞ a.s.,
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together with the conditional version of dominated convergence (see e.g.
Williams [358], p. 88), we deduce that

Es

(∫ t

s

[
G(u)+

∫
|x|≥1

K(u, x)ν(dx)

]
du

)
= 0.

Conditions (LM1) and (LM2) ensure that we can use the conditional Fubini
theorem 1.1.8 to obtain

∫ t

s
Es

(
G(u)+

∫
|x|≥1

K(u, x)ν(dx)

)
du = 0.

It follows that

lim
h→0

1

h

∫ s+h

s
Es

(
G(u)+

∫
|x|≥1

K(u, x)ν(dx)

)
du = 0,

and hence by Lebesgue’s differentiation theorem (see e.g. Cohn [80], p. 187)
we have

Es

(
G(s)+

∫
|x|≥1

K(s, x)ν(dx)

)
= 0

for (Lebesgue) almost all s ≥ 0. But G(·)+ ∫|x|≥1 K(·, x)ν(dx) is adapted, and
the result follows. The converse is immediate. �

Note that, in particular, Y is a martingale if F ∈H2(t), H ∈H2(t,E) and
K ∈H2(t,Ec) for all t ≥ 0.

5.2.2 Exponential martingales

In this section, we study Lévy-type stochastic integrals which satisfy the
conditions (LM2) as above and (LM1)′ in place of (LM1).

(LM1)′ E
(∫ t

0

∫
|x|≥1 |eK(s,x) − 1|ν(dx)ds

)
<∞.

We now turn our attention to the process eY = (eY (t), t ≥ 0) (cf. Exercise
4.4.11).
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By Itô’s formula, we find, for each t ≥ 0,

eY (t) = 1+
∫ t

0
eY (s−)F(s)dB(s)+

∫ t

0

∫
|x|<1

eY (s−)
(
eH (s,x)−1

)
Ñ (ds, dx)

+
∫ t

0

∫
|x|≥1

eY (s−)(eK(s,x) − 1)Ñ (ds, dx)

+
∫ t

0
eY (s−)

{
G(s)+ 1

2
F(s)2 +

∫
|x|<1

[
eH (s,x)−1−H (s, x)

]
ν(dx)

+
∫
|x|≥1

(eK(s,x) − 1)ν(dx)

}
ds. (5.4)

Condition (LM1)′ ensures that all the terms in (5.4) are well-defined.

Corollary 5.2.2 eY is a local martingale if and only if

G(s)+ 1

2
F(s)2 +

∫
|x|<1

(eH (s,x) − 1− H (s, x))ν(dx) (5.5)

+
∫
|x|≥1

(eK(s,x) − 1)ν(dx) = 0, (5.6)

almost surely and for (Lebesgue) almost all s ≥ 0.

Proof Define an increasing sequence of stopping times by the prescription
T0 = 0 (a.s.) and for n∈N, Tn = inf{t > 0, |Y (s)| > n}. Define the sequence
of processes Yn = (Yn, t ≥ 0) by Yn(t) = Y (t ∧ Tn), for each t ≥ 0, n∈N.
If we replace F ,G,H and K , with Fχ[0,Tn), etc. in (5.4), then it follows from
Theorem 5.2.1 that each eYn is a local martingale if and only

[
G(s)+ 1

2
F(s)2 +

∫
|x|<1

(eH (s,x) − 1− H (s, x))ν(dx)

+
∫
|x|≥1

(eK(s,x) − 1)ν(dx)

]
χ[0,Tn) = 0,

almost surely and for (Lebesgue) almost all s ≥ 0. The required result follows
on taking limits as n→∞. �
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It follows from Corollary 5.2.2 that eY is a local martingale if and only if for
(Lebesgue) almost all t ≥ 0,

eY (t) = 1+
∫ t

0
eY (s−)F(s)dB(s)

+
∫ t

0

∫
|x|<1

eY (s−)(eH (s,x) − 1)Ñ (ds, dx)

+
∫ t

0

∫
|x|≥1

eY (s−)(eK(s,x) − 1)Ñ (ds, dx). (5.7)

We would like to go further and establish conditions under which eY is in fact a
martingale. First we need the following general result about supermartingales.

Lemma 5.2.3 If M = (M (t), t ≥ 0) is a supermartingale for which the
mapping t → E(M (t)) is constant, then M is a martingale.

Proof We follow the argument of Liptser and Shiryaev [237], p. 228.
Fix 0 < s < t <∞, let A = {ω∈�; Es(M (t))(ω) < M (s)(ω)} and assume

that P(A) > 0. Then

E(M (t)) = E(Es(M (t)))

= E(χA Es(M (t)))+ E((1− χA) Es(M (t)))

< E(χAM (s))+ E((1− χA)M (s))

= E(M (s)),

which contradicts the fact that t → E(M (t)) is constant. Hence P(A) = 0 and
the result follows. �

From now on we assume that the condition (5.5) is satisfied for all t ≥ 0, so
that eY is a local martingale.

Theorem 5.2.4 If Y is a Lévy-type stochastic integral of the form (4.13) which
is such that eY is a local martingale, then eY is a martingale if and only if
E(eY (t)) = 1 for all t ≥ 0.

Proof Let (Tn, n∈N) be the sequence of stopping times such that (eY (t∧Tn), t ≥
0) is a martingale; then, by the conditional form of Fatou’s lemma (see, e.g.
Williams [358], p. 88), we have for each 0 ≤ s < t <∞

Es(e
Y (t)) ≤ lim inf

n→∞ Es(e
Y (t∧Tn))

= lim inf
n→∞ eY (s∧Tn) = eY (s),
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so eY is a supermartingale. Now if we assume that the expectation is identi-
cally unity, it follows that eY is a martingale by Lemma 5.2.3. The converse is
immediate from equation (5.7). �

For the remainder of this section, we will assume that the condition of Theo-
rem 5.2.4 is valid. Under this constraint the process eY given by equation (5.7)
is called an exponential martingale. Two important examples are:

Example 5.2.5 (TheBrownian case) HereY is aBrownian integral of the form

Y (t) =
∫ t

0
F(s)dB(s)+

∫ t

0
G(s)ds

for each t ≥ 0. The unique solution to (5.5) is G(t) = − 1
2F(t)2 (a.e.). We then

have, for each t ≥ 0,

eY (t) = exp

(∫ t

0
F(s)dB(s)− 1

2

∫ t

0
F(s)2ds

)
.

Example 5.2.6 (The Poisson case) Here Y is a Poisson integral driven by a
Poisson process N of intensity λ and has the form

Y (t) =
∫ t

0
K(s)dN (s)+

∫ t

0
G(s)ds

for each t ≥ 0.
The unique solution to (5.5) is G(t) = −λ

∫ t
0 (e

K(s) − 1)ds (a.e.). For each
t ≥ 0, we obtain

eY (t) = exp

[∫ t

0
K(s)dN (s)− λ

∫ t

0
(eK(s) − 1)ds

]
.

For the Brownian case, a more direct condition for eY to be a martingale than
Theorem 5.2.4 is established in Liptser and Shiryaev [237], pp. 229–32. More
precisely, it is shown that

E

(
exp

(∫ T

0

1
2F(s)2ds

))
<∞,

for allT > 0 is a sufficient condition, called theNovikov criterion.More general
results that establish conditions for(

exp[M (t)− 1
2 〈M ,M 〉(t)], t ≥ 0

)
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to be a martingale, whereM is an arbitrary continuous local martingale, can be
found in, for example, Revuz andYor [306], pp. 307–9, Durrett [99], pp. 108–9,
and Chung and Williams [78], pp. 120–3.

Exercise 5.2.7 Let Y be a Lévy process with characteristics (b, a, ν) for which
the generating function E(euY (t)) <∞ for all t, u ≥ 0. Choose the parameter b
to be such that condition (5.5) is satisfied, andhence show that eY is amartingale.

Exercise 5.2.8 LetY be aLévy-type stochastic integral. Show that eY coincides
with the stochastic exponential EY if and only if Y is a Brownian integral.

We finish this subsection with a rather technical exponential martingale
inequality. Its value will be apparent when we study Lyapunov exponents for
stochastic differential equations in Section 6.8.
We consider a Lévy type stochastic integral Y = (Y (t), t ≥ 0) where for

each t ≥ 0,

Y (t) =
∫ t

0
F(s)dB(s)+

∫ t

0

∫
|x|<1

H (s, x)Ñ (ds, dx),

with F ∈P2(t) andH ∈P2(t,E). For each α > 0, we associate to Y the process
Yα given for t ≥ 0 by

Yα(t) = Y (t)− α

2

∫ t

0
|F(s)|2ds

− 1

α

∫ t

0

∫
|x|<1

(eαH (s,x) − 1− αH (s, x))ν(dx)ds. (5.8)

The following result is given for Brownian integrals in chapter 2 of Mao
[251]. The proof is extended here to the Lévy case. It is based on joint work
with M. Siakalli.

Theorem 5.2.9 Let T ,α,β > 0. If Yα is given by (5.8)

P

(
sup

0≤t≤T
Yα(t) > β

)
≤ e−αβ .

Proof We assume that P(∀K > 0, ∃t > 0 such that |Yα(t)| > K) > 0. If this is
not the case, then the process (Yα(t), t ≥ 0) is almost surely bounded and the
argument given below simplifies.
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Define an increasing sequence of stopping times (τn, n∈N) for which
limn→∞ τn = ∞ (a.s.) by the prescription

τn = inf

{
t ≥ 0;

∣∣∣∣∫ t

0
F(s)dB(s)

∣∣∣∣+ ∣∣∣∣∫ t

0

∫
|x|<1

H (s, x)Ñ (ds, dx)

∣∣∣∣
+ α

2

∣∣∣∣∫ t

0
|F(s)|2ds

∣∣∣∣+ 1

α

∣∣∣∣∫ t

0

∫
|x|<1

(eαH (s,x)− 1−αH (s, x))ν(dx)ds

∣∣∣∣≥ n

}
In the definitions of both Y (t) and Yα(t)we replace the processes F andH by

Fχ[0,τn] andHχ[0,τn] (respectively), for each n∈N.We thus obtain a sequence of
bounded processes (Y (n)

α , n∈N). Indeed each sup0≤t≤T |Y (n)
α (ω)| ≤ n (a.s.). By

Corollary 5.2.2 it follows that each process (eαY
(n)
α (t), 0 ≤ t ≤ T ) is a positive

local martingale. By the conditional version of dominated convergence (using
the bound given above), we see that it is in fact a martingale and so by Theorem

5.2.4, E(eαY
(n)
α (t)) = 1 for each 0 ≤ t ≤ T . Hence by Doob’s (tail) martingale

inequality (Theorem 2.1.6) we have

P

(
sup

0≤t≤T
eαY

(n)
α (t) ≥ eαβ

)
≤ e−αβE(eαY

(n)
α (T ))

= e−αβ .

The result follows on taking limits, using the fact that if

An =
{
ω∈�; sup

0≤t≤T
Y (n)
α (t)(ω) ≥ β

}
,

then lim inf n→∞ An = lim supn→∞ An. �

5.2.3 Change of measure – Girsanov’s theorem

If we are given two distinct probability measures P and Q on (�,F), we will
write EP (EQ) to denote expectation with respect to P (respectively, Q). We
also use the terminology P-martingale, P-Brownian motion etc. when we want
to emphasise that P is the operative measure. We remark that Q and P are
each also probability measures on (�,Ft), for each t ≥ 0, and we will use the
notation Qt and Pt when the measures are restricted in this way. Suppose that
Q * P; then each Qt * Pt and we sometimes write

dQ

dP

∣∣∣∣
t
= dQt

dPt
.
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Lemma 5.2.10
(
dQ

dP

∣∣∣∣
t
, t ≥ 0

)
is a P-martingale.

Proof For each t ≥ 0, let M (t) = dQ

dP

∣∣∣∣
t
. For all 0 ≤ s ≤ t, A∈Fs,

EP
(
χA EP(M (t)|Fs)

) = EP(χAM (t))

= EPt (χAM (t)) = EQt (χA)

= EQs(χA) = EPs(χAM (s))

= EP(χAM (s)).

�

Now let eY be an exponential martingale. Then, since EP(eY (t)) =
EPt (e

Y (t)) = 1, we can define a probability measure Qt on (�,Ft) by

dQt

dPt
= eY (t), (5.9)

for each t ≥ 0.
From now on, we will find it convenient to fix a time interval [0, T ].We write

P = PT and Q = QT .
Before we establish Girsanov’s theorem, which is the key result of this

section, we need a useful lemma.

Lemma 5.2.11 M = (M (t), 0 ≤ t ≤ T ) is a local Q-martingale if and only if
MeY = (M (t)eY (t), 0 ≤ t ≤ T ) is a local P-martingale.

Proof We will establish a weaker result and show that M is a Q-martingale
if and only if MeY is a P-martingale. We leave it to the reader to insert the
appropriate stopping times.
Let A∈Fs and assume thatM is a Q-martingale; then, for each 0 ≤ s < t <

∞, ∫
A
M (t)eY (t)dP =

∫
A
M (t)eY (t)dPt =

∫
A
M (t)dQt

=
∫
A
M (t)dQ =

∫
A
M (s)dQ =

∫
A
M (s)dQs

=
∫
A
M (s)eY (s)dPs =

∫
A
M (s)eY (s)dP.

The converse is proved in the same way. �
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In the following we take Y to be a Brownian integral, so that for each
0 ≤ t ≤ T

eY (t) = exp

[∫ t

0
F(s)dB(s)− 1

2

∫ t

0
F(s)2ds

]
.

We define a new process W = (W (t), 0 ≤ t ≤ T ) by

W (t) = B(t)−
∫ t

0
F(s)ds,

for each t ≥ 0.

Theorem 5.2.12 (Girsanov) W is a Q-Brownian motion.

Proof We follow the elegant proof given by Hsu in [157].
First we use Itô’s product formula (Theorem 4.4.13) to find that, for each

0 ≤ t ≤ T ,

d
[
W (t)eY (t)]
= dW (t)eY (t) +W (t)deY (t) + dW (t)deY (t)

= eY (t)dB(t)− eY (t)F(t)dt +W (t)eY (t)F(t)dB(t)+ eY (t)F(t)dt

= eY (t)[1+W (t)F(t)]dB(t).

Hence WeY is a P-local martingale and so (by Lemma 5.2.11) W is a Q-local
martingale. Moreover, since W (0) = 0 (a.s.), we see that W is centred (with
respect to Q).
Now define Z = (Z(t), 0 ≤ t ≤ T ) by Z(t) = W (t)2 − t; then, by another

application of Itô’s product formula, we find

dZ(t) = 2W (t)dW (t)− dt + dW (t)2.

But dW (t)2 = dt and so Z is also a Q-local martingale. The result now follows
fromLévy’s characterisationofBrownianmotion (Theorem4.4.19 andExercise
4.4.20). �

Exercise 5.2.13 Show that Girsanov’s theorem continues to hold when eY

is any exponential martingale with a Brownian component (so that F is not
identically zero).
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Exercise 5.2.14 Let M = (M (t), 0 ≤ t ≤ T ) be a local P-martingale of
the form

M (t) =
∫ t

0

∫
|x|<1

L(x, s)Ñ (ds, dx),

where L∈P2(t,E). Let eY be an exponential martingale. Use Lemma 5.2.11 to
show that N = (N (t), 0 ≤ t ≤ T ) is a local Q-martingale, where

N (t) = M (t)−
∫ t

0

∫
|x|<1

L(x, s)(eH (s,x) − 1)ν(dx)ds,

and we are assuming that the integral exists. A sufficient condition for this is
that

∫ t
0

∫
|x|<1 |eH (s,x)− 1|2ν(dx)ds <∞. (Hint: Apply Lemma 5.2.11 and Itô’s

product formula.)

Quite abstract generalisations of Girsanov’s theorem to general semimartin-
gales can be found in Jacod and Shiryaev [183], pp. 152–66, in Protter [298],
chapter 3, section8 andHe et al. [149], chapter 12.The results established above,
namely Theorem 5.2.12 and Exercises 5.2.13 and 5.2.14, will be adequate for
all the applications we will consider.
Readers may be tempted to take the seemingly natural step of extending

Girsanov’s theorem to the whole of R+. Beware, this is fraught with difficulty!
For a nice discussion of the pitfalls, see Bichteler [47], pp. 162–8.

5.2.4 Analysis on Wiener space

The Cameron–Martin–Maruyama theorem

In this section, we will continue to restrict all random motion to a finite time
interval I = [0, T ].
We introduce the Wiener space,

W0(I) = {ω : I → R;ω is continuous and ω(0) = 0}.

Let F be the σ -algebra generated by cylinder sets and define a process B =
(B(t), t ∈ I) by B(t)ω = ω(t) for each t ≥ 0,ω∈W0(I). We have already
mentionedWiener’s famous result, which asserts the existence of a probability
measure P (usually called the Wiener measure) on (W0(I),F ) such that B
is a standard Brownian motion; see [355, 354] for Wiener’s justly celebrated
original work on this).
Our first task is to consider a very important special case of the Girsanov

theorem in this context, but first we need some preliminaries.
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We define the Cameron–Martin space H(I) to be the set of all h∈W0(I)
for which h is absolutely continuous with respect to Lebesgue measure and
ḣ∈ L2(I), where ḣ = dh/dt. Then H(I) is a Hilbert space with respect to the
inner product

(h1, h2)H =
∫ T

0
ḣ1(s)ḣ2(s)ds,

and we denote the associated norm as ||h||H.
There is a canonical unitary isomorphism U between H(I) and L2(I). Its

action is (Uf )(t) = ḟ (t), for each f ∈H(I), t ∈ I . It is easily verified that
(U ∗g)(t) = ∫ t0 g(s)ds, for each g ∈ L2(I), t ∈ I .
We also need to consider translation inWiener space so, for each φ ∈W0(I),

define τφ :W0(I)→ W0(I) by

τφ(ω) = ω + φ,

for each ω∈W0(I).
Since each τφ is measurable we can interpret it as a W0(I)-valued random

variable with law Pφ , where Pφ(A) = P((τφ)−1(A)) for each A∈F .
Thefinal ideawewill require is that of cylinder functions. LetF :W0(I)→ R

be such that, for some n∈N, there exists f ∈C∞(Rn) and 0 < t1 < · · · < tn ≤
T such that

F(ω) = f (ω(t1), . . . ,ω(tn)) (5.10)

for each ω∈W0(I). We assume further that, for each m∈N ∪ {0}, f (m) is
polynomially bounded, i.e. for each x = (x1, . . . , xn)∈Rn,

|f (m)(x1, . . . , xn)| ≤ pm(|x1|, . . . , |xn|)

where pm is a polynomial.
We call such an F a cylinder function. The set of all cylinder functions, which

we denote as C(I), is dense in Lp(W0(I),F ,P) for all 1 ≤ p < ∞; see e.g.
Huang and Yan [159], pp. 62–3, for a proof of this.

Theorem 5.2.15 (Cameron–Martin–Maruyama) If h∈H(I), then Ph is
absolutely continuous with respect to P and

dPh

dP
= exp

[∫ T

0
ḣ(s)dB(s)− 1

2 ||h||2H
]
.
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Proof First note that by Lemma 4.3.11 we have

E

(
exp

[∫ T

0
ḣ(s)dB(s)

])
= exp

(
1
2 ||h||2H

)
.

By Theorem 5.2.4,
(
exp

[ ∫ t
0 ḣ(s)dB(s)− 1

2

∫ t
0 ḣ(s)

2ds
]
, 0 ≤ t ≤ T

)
is a mar-

tingale, and so we can assert the existence of a probability measure Q on
(W0(I),F) such that

dQ

dP
= exp

[∫ T

0
ḣ(s)dB(s)− 1

2 ||h||2H
]
.

Now, by Girsanov’s theorem, W is a Q-Brownian motion where each W (t) =
B(t)− h(t). Let F ∈ C(I), and for ease of notation we will assume that n = 1,
so that F(ω) = f (ω(t)) for some 0 < t ≤ T , for each ω∈W0(I). We then have

EQ(f (W (t))) = EP(f (B(t))).

Hence ∫
W0(I)

f (B(t)(ω − h))dQ(ω) =
∫
W0(I)

f (B(t)(ω))dQ(ω + h)

=
∫
W0(I)

f (B(t)(ω))dP(ω),

and so ∫
W0(I)

f (W (t)(ω))dPh(ω) =
∫
W0(I)

f (B(t)(ω − h))dP(ω − h)

=
∫
W0(I)

f (B(t)(ω))dP(ω)

=
∫
W0(I)

f (B(t)(ω − h))dQ(ω)

=
∫
W0(I)

f (W (t)(ω))
dQ

dP
(ω)dP(ω).

This extends to f ∈ Lp(W0(I),F ,P) by a straightforward limiting argument and
the required result follows immediately. �
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In Stroock [342], pp. 287–8, it is shown that the condition h∈H(I) is both
necessary and sufficient for Ph to be absolutely continuous with respect to P.

Directional derivative and integration by parts

An important development within the emerging field of infinite-dimensional
analysis is the idea of differentiation of Wiener functionals. We give a brief
insight into this, following the excellent exposition of Hsu [157].
Let F ∈ C(I) be of the form (5.10); then it is natural to define a directional

derivative along φ ∈W0(I) as

(DφF)(ω) = lim
ε→0

F(τ εφ)(ω)− F(ω)

ε
,

for each ω∈W0(I). It is then easy to verify that

(DφF)(ω) =
n∑
i=1

∂iF(ω) φ(ti), (5.11)

where

∂iF(ω) = (∂if )(ω(t1), . . . ,ω(tn)),

and ∂i is the usual partial derivative with respect to the ith variable (1 ≤ i ≤ n).
Hence, from an analytic point of view, Dφ is a densely defined linear operator
in Lp(W0(I),F ,P) for all 1 ≤ p <∞.
To be able to use the directional derivative effecively, we need it to have

some stronger properties. As we will see below, these become readily available
when we make the requirement that φ ∈H(I). The key is the following result,
which is usually referred to as integration by parts in Wiener space.

Theorem 5.2.16 (Integration by parts) For all h∈H(I) and all F ,G ∈ C(I),

E
(
(DhF)(G)

) = E(F(D∗hG)),

where

D∗hG = −DhG +
∫ T

0
ḣ(s)dB(s).



5.3 Martingale representation theorems 299

Proof For each ε ∈R we have, by Theorem 5.2.15,

E((F ◦ τ εh)G) =
∫
W0(I)

F(ω + εh)G(ω)dP(ω)

=
∫
W0(I)

F(ω)G(ω − εh)dPεh(ω)

=
∫
W0(I)

F(ω)G(ω − εh)
dPεh

dP
(ω)dP(ω).

Now subtract E(FG) from both sides and pass to the limit as ε → 0. The
required result follows when we use Theorem 5.2.15 to write

dPεh

dP
= exp

[
ε

∫ T

0
ḣ(s)dB(s)− ε2

2
||h||2H

]
.

Note that the interchange of limit and integral is justified by dominated con-
vergence, where we utilise the facts that cylinder functions are polynomially
bounded and that Brownian paths are Gaussian and so have moments to all
orders. �

Readers with a functional analysis background will be interested in knowing
that each Dh is closable for each 1< p<∞ and that C(I) is a core for the
closure. Details can be found in Hsu [157].
Having defined a directional derivative, the next step is to construct a gradient

from this. For each F ∈ C(I),φ ∈H(I),ω∈� , we define the gradient DF by

〈DF(ω),φ〉H(I) = Dφ(F)(ω).

We again refer the reader to Hsu [157] for a proof thatD:Lp(W0(I),F ,P)→
Lp(W0(I),F ,P;H(I)) is closable.
Infinite-dimensional analysis based on the study ofWiener space is a deep and

rapidly developing subject, which utilises techniques from probability theory,
analysis and differential geometry. For further study, try Nualart [280], Stroock
[343], Huang and Yan [159] or Malliavin [247].

5.3 Martingale representation theorems

LetX = (X (t), t ≥ 0) be aLévy processwithLévy symbolη and characteristics
(b, a, ν). Fix T > 0 and let FT be the augmentation of σ {X (t), 0 ≤ t ≤ T }.
Throughout this section we will work extensively with the complex Hilbert
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space L2(�,FT ,P;C), which we will sometimes denote as HC, for simplicity.
A key fact to remember is that every f ∈HC can be written uniquely in the
form f = fR + ifI , where fR, fI ∈ L2(�,FT ,P). We need a technical lemma
about Fourier transforms.

Lemma 5.3.1 Let µ be a probability measure on Rd and Z ∈ L1(Rd ,µ;C),
then

∫
Rd ei(u,x)Z(x)µ(dx) = 0 for all u∈Rd if and only if Z = 0 (µ-a.e).

Proof We need only prove that if
∫
Rd ei(u,x)Z(x)µ(dx) = 0 then Z = 0 (µ-a.e).

First suppose that Z is real valued and write Z = Z+ − Z−. The prescriptions
µ+(dx) = Z+(x)µ(dx) and µ−(dx) = Z−(x)µ(dx) define finite measures on
Rd . We have ∫

Rd
ei(u,x)µ+(dx) =

∫
Rd

ei(u,x)µ−(dx).

Hence by injectivity of the Fourier transform for finite measures (see, e.g.
theorem 2.1.4 in Heyer [151]), we have µ+ = µ−, and so Z+ = Z− (µ-a.e).
The result then holds in this case.

Now suppose that Z is complex valued. Taking complex conjugates yields∫
Rd e−i(u,x)Z(x)µ(dx) = 0. Now replace u by −u in this expression. We then
easily obtain

∫
Rd ei(u,x)�(Z(x))µ(dx) = 0 and

∫
Rd ei(u,x)�(Z(x))µ(dx) = 0

and the required result follows. �

Lemma5.3.2 If X = (X (t), t≥ 0) is aLévyprocess, then
{
exp
{
i
∑n

j=1 ujX (tj)
}
,

uj ∈R, tj ∈ [0, T ], 1 ≤ j ≤ n, n∈N
}
is total in HC.

Proof Let G ∈HC be such that

E

exp
i

n∑
j=1

ujX (tj)

G
 = 0,

for all uj ∈R, tj ∈ [0, T ], 1 ≤ j ≤ n, n∈N, then

E

exp
i

n∑
j=1

ujX (tj)

E(G|X (t1), . . . ,X (tn))

 = 0.

By the Doob–Dynkin lemma there exists a measurable function gG :Rn → C

such that

E(G|X (t1), . . . ,X (tn)) = gG(X (t1), . . . ,X (tn)).
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Hence we deduce that ∫
Rn

ei(u,x)gG(x)γn(dx) = 0,

where γn is the law of (X (t1), . . . ,X (tn)). By Lemma 5.3.1, gG = 0 (γn a.s.)
and so we find that

E(G|X (t1), . . . ,X (tn)) = 0 a.s.

for all tj ∈ [0, T ], 1 ≤ j ≤ n, n∈N. Now let TQ = [0, T ] ∩ Q and order the
elements of TQ as (sn, n∈N). For each n∈N, defineFn to be the augmentation
of σ {X (s1, . . . ,X (sn)}. We define F∞ = ∨

n∈N Fn. We have F∞ = FT ,
indeed the inclusion FT ⊆ F∞ follows from the fact that for any t ∈ [0, T ], we
can find a sequence of rationals (rn, n∈N) with rn ↓ t as n→∞ such that for
any open set A in R,

{X (t)∈A} =
∞⋃
n=1

∞⋂
m=n

{X (rm)∈A} (a.s.)

by right continuity of X .
By a corollary to the martingale convergence theorem (see corollary C.9 in

Øksendal [282]) we have

G = E(G|FT ) = E(G|F∞) = lim
n→∞E(G|Fn) = 0 (a.s.)

�

Let f ∈ L2([0, T ]). For each 0 ≤ t ≤ T , we can form the Wiener–Lévy
integrals Xf (t) =

∫ t
0 f (s)dX (s) as described in Section 4.3.5. We define

Mf (t) = exp

{
iXf (t)−

∫ t

0
η(f (s))ds

}
.

Each Mf (t) is well-defined since by Exercise 1.2.16, we have∫ t

0
|η(f (s))|ds ≤ C

[
t +
∫ t

0
|f (s)|2ds

]
<∞,

where C ≥ 0.
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Lemma 5.3.3 For each f ∈ L2([0, T ]), u∈R, t ∈ [0, T ],
(i) E(eiuXf (t)) = exp

{∫ t
0 η(uf (s))ds

}
.

(ii) (Mf (t), t ∈ [0, T ]) is a complex-valued martingale with stochastic differen-
tial

dMf (t) = iσ f (t)Mf (t−)dB(t)+ (eif (t)x − 1)Mf (t−)Ñ (dt, dx). (5.12)

Proof

(i) By Itô’s formula, we have

eiuXf (t) = 1+ iσu
∫ t

0
f (s)eiuXf (s−)dB(s)+

∫ t

0

∫
R−{0}

(eiuf (s)x − 1)

× eiuXf (s−)Ñ (ds, dx)+
∫ t

0
eiuXf (s−)η(uf (s))ds.

Hence, by Fubini’s theorem

E(eiuXf (t)) = 1+
∫ t

0
E(eiuXf (s))η(uf (s))ds,

and this expresses the fact that y(t) = E(eiuXf (t)) coincides with the unique
solution of the initial value problem

dy(t)

dt
= y(t)η(uf (t)),

with initial condition y(0) = 1. But standard techniques yield y(t) =
exp {∫ t0 η(uf (s))ds} and the result follows.

(ii) Apply Itô’s formula as above to deduce (5.12). Mf is then a martingale
by Theorem 5.2.4 (In fact we need a slight generalisation of that result to
take account of sure integrands). Alternatively use a similar argument to
the proof of Proposition 2.1.3.

�

Lemma 5.3.4 {Mf (T ), f ∈ L2([0, T ]) is total in HC.

Proof This follows easily from the result of lemma 5.3.2 by considering all
f =∑n

j=1 ujχ[0,tj], where u1, . . . , un ∈R, 0 < t1 < · · · < tn ≤ T , n∈N. �

We now come to the two main results of this section. The proof of the first is
based closely onone given inLøkka [239] forL2-Lévyprocesses (for the general
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case, see also Bichteler [47], p. 261). We denote by H2,C(T ) and H2,C(T ,R−
{0}) respectively, the spaces of complex-valued square-integrable predictable
processes defined on [0, T ] and [0, T ] × (R − {0}) (respectively) by obvious
generalisation of the real-valued case, as described in Section 4.1.

Theorem 5.3.5 [The Itô Representation]
If F ∈HC, then there exists uniqueψ0 ∈H2,C(T ) andψ1 ∈H2,C(T ,R−{0})

such that

F = E(F)+ σ

∫ T

0
ψ0(s)dB(s)+

∫ T

0

∫
R−{0}

ψ1(s, x)Ñ (ds, dx). (5.13)

Proof First takeF to be of the formMf (T ), where f ∈ L2([0, T ]). By (5.12), this
satisfies (5.13) with ψ0(s) = if (s)Mf (s−) and ψ1(s, x) = (eif (s)x− 1)Mf (s−).
Indeed we have

∫ T

0
E(|ψ0(s)|2)ds =

∫ T

0
|f (s)|2ds <∞, and∫ T

0

∫
R−{0}

E(|ψ1(s, x)|2)ν(dx)ds =
∫ T

0

∫
R−{0}

|eif (s)x − 1|2ν(dx)ds

=
∫ T

0

∫
B̂
|eif (s)x − 1|2ν(dx)ds

+
∫ T

0

∫
B̂c
|eif (s)x − 1|2ν(dx)ds

≤
∫ T

0
|f (s)|2ds

∫
B̂
|x|2ν(dx)+ 4Tν(B̂c)<∞.

By linearity, it is clear that (5.13) also holds when F is a finite linear
combination of Mf (T )s.

Now take arbitrary F ∈HC. By Lemma 5.3.4, we can find a sequence
(Fn, n∈N) which converges to F in HC wherein each Fn is a finite linear
combination ofMf (T )s. Hence for each n∈N, we can findψ

(n)
0 ∈H2,C(T ) and

ψ
(n)
1 ∈H2,C(T ,R− {0}) such that

Fn = E(Fn)+ σ

∫ T

0
ψ

(n)
0 (s)dB(s)+

∫ T

0

∫
R−{0}

ψ
(n)
1 (s, x)Ñ (ds, dx).
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By the Itô isometry, for each m, n∈N,

E(|Fn − Fm|2) = |E(Fn − Fm)|2 + E

(∫ T

0
|ψ(n)

0 (s)− ψ
(m)
0 (s)|2ds

)
+ E

(∫ T

0

∫
R−{0}

|ψ(n)
1 (s, x)− ψ

(m)
0 (s, x)|2ν(dx)ds

)

But since (Fn, n∈N) is Cauchy in HC (and hence also in L1(�,F ,P;C)) it
follows that (ψ(n)

0 , n∈N) and ψ
(n)
1 , n∈N are Cauchy, and hence convergent,

in H2,C(T ) and H2,C(T ,R−{0}), respectively. If ψ0 and ψ1 are the respective
limits, then (5.13) follows immediately.
To establish uniqueness, suppose that we also have the representation

F = E(F)+ σ

∫ T

0
φ0(s)dB(s)+

∫ T

0

∫
R−{0}

φ1(s, x)Ñ (ds, dx),

then

σ

∫ T

0
(φ0(s)− ψ0(s))dB(s)+

∫ T

0

∫
R−{0}

(φ1(s, x)− ψ1(s, x))Ñ (ds, dx) = 0.

By the injectivity of Itô’s isometry we see that φ0 = ψ0 a.e. and φ1 = ψ1 a.e.,
as required. �

We follow the proof given for the Brownian case in Øksendal [282] for the
next result.

Theorem 5.3.6 (Martingale Representation Theorem) If M = (M (t), t ≥
0) is a square-integrable complex-valued martingale, then there exists unique
G and H such that for all t ≥ 0,G ∈H2,C(t),H ∈H2,C(t,R− {0}) and

M (t) = E(M (0))+ σ

∫ t

0
G(s)dB(s)+

∫ t

0

∫
R−{0}

H (s, x)Ñ (ds, dx). (5.14)

Proof First fix t > 0. ByTheorem 5.3.5 and themartingale property, there exist
unique ψ

(t)
0 ∈H2,C(t) and ψ

(t)
1 ∈H2,C(t,R− {0}) such that

M (t) = E(M (0))+ σ

∫ t

0
ψ

(t)
0 (u)dB(u)+

∫ t

0

∫
R−{0}

ψ
(t)
1 (u, x)Ñ (du, dx).



5.3 Martingale representation theorems 305

Now take any 0 ≤ s < t, then

M (s) = E(M (t)|Fs)

= E(M (0))+ σ

∫ s

0
ψ

(t)
0 (u)dB(u)+

∫ s

0

∫
R−{0}

ψ
(t)
1 (u, x)Ñ (du, dx).

So by the uniqueness inTheorem5.3.5,we haveψ(t)
i = ψ

(s)
i (a.e) for i = 0, 1.

Now for all N ∈N define G(s) = ψ
(N )
0 (s) and H (s, ·) = ψ

(N )
1 (s, ·), whenever

s∈ [0,N ]. Uniqueness clearly follows from Theorem 5.3.5. �

Note that the corresponding Itô andmartingale representations for real-valued
F are obtained by taking real parts in (5.13) and (5.14).
Observe that if we takeX to be either a standardBrownianmotion or the com-

pensated Poisson process in (5.14), then we have the predictable representation
property , whereby for each t ≥ 0

M (t) =
∫ t

0
J (s)dX (s), (5.15)

for some suitable process J . In general, martingales X which have such a
property (i.e. every other square-integrable martingale adapted to the filtration
of X may be expressed as a stochastic integral with respect to X ) are rare and
the only ones that are Lévy processes are the two cases mentioned above. A
proof of this can be found in Dermeune [90]. A third known case is Azéma’s
martingale, but this is not a Lévy process. For further developments of the
predictable representation concept see chapter 4, section 5 of Protter [298] and
the fundamental article by Emery [113].
The martingale representation theorem was originally established by Kunita

and Watanabe in the classic paper [214]. A nice alternative proof to the one
given here for the Brownian motion case which is due to Parthasarathy can be
found in [290].
Using deep techniques, Jacod has extensively generalised the martin-

gale representation theorem. The following result from Jacod [184] has
been specialised to apply to the ‘jump’ part of a Lévy process. Let
Gt = σ {N ([0, s)×A); 0≤ s≤ t;A∈B(Rd−{0})} and assume that our filtration
is such that Ft = Gt ∨ F0.

Theorem 5.3.7 (Jacod) If M = (M (t), t ≥ 0) is a adapted process, there
exists a sequence of stopping times (S(n), n∈N) with respect to which (M (t ∧
S(n)), t ≥ 0) is a uniformly integrable martingale, for each n∈N, if and only
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if there exists a predictable H :R+ × (Rd − {0}) × � → R such that for
each t ≥ 0 ∫ t

0

∫
Rd−{0}

|H (s, x)|ν(dx)ds <∞,

and then, with probability 1, we have the representation

M (t) = M (0)+
∫ t

0

∫
Rd−{0}

H (s, x)Ñ (dx, ds).

Further, more extensive, results were obtained in Jacod [185] and, in partic-
ular, it is shown on p. 51 therein that any local martingaleM = (M (t), t ≥ 0)
adapted to the filtration of a ‘Lévy process has a representation of the
following type:

M (t) = M (0)+
∫ t

0
Fj(s)dB

j(s)+
∫ t

0

∫
Rd−{0}

H (s, x)Ñ (dx, ds),

for each t ≥ 0, where F andH satisfy suitable integrability conditions.A result
of similar type can be found in [217]. More on martingale representation can
be found in Jacod and Shiryaev [183], pp. 179–91, Liptser and Shiryaev [238],
theorem 19.1, and Protter [298], pp. 147–57. In a recent interesting develop-
ment, Nualart and Schoutens [278] established the martingale representation
property (and a more general chaotic representation) for the Teugels martin-
gales introduced in Exercise 2.4.19. This yields the Brownian and compensated
Poisson representation theorems as special cases.

5.4 Multiple Wiener–Lévy Integrals

5.4.1 Orientation

Let X = (X (t), t ≥ 0) be a Lévy process taking values in R with Lévy–Itô
decomposition (2.25). Let S = [0, T ] × R, where T > 0. We recall from
Example 4.1.1 the Lévy martingale-valued measureM defined on (S, I) by the
prescription

M (t,A) = Ñ (t,A− {0})+ σB(t)δ0(A)

for each A∈B(R) where I is the ring comprising finite unions of sets of the
form I × A where A∈B(R) and I is itself a finite union of intervals.
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Our aim in this section is to construct multiple integrals of the form

In(fn) =
∫
Sn
fn(z1, . . . , zn)M (dz1) · · ·M (dzn),

for suitable deterministic functions fn : Sn → R.We call thesemultipleWiener–
Lévy integrals .
Note that when n = 1, this has already been effectively carried out in

section 4.3.5. In the general case, our construction will includemultiple Wiener
integrals

I (B)n (fn) =
∫
[0,T ]n

fn(s1, . . . , sn)dB(s1) · · · dB(sn),

where T > 0, and multiple Poisson integrals

I (N )
n (gn) =

∫
([0,T ]×(R−{0}))n

gn(s1, x1 . . . , sn, xn)Ñ (ds1, dx1) · · · Ñ (dsn, dxn).

Before we begin, WE need some background on symmetric functions.

5.4.2 Symmetric Functions

Let (S,S,µ) be an arbitrary measure space and (Sn,Sn,µn) be its n-fold

product, so that Sn =
n×
i=1

S,Sn = ⊗n
i=1 S and µn =

n×
i=1

µ. Let �n denote

the symmetric group on n letters. For each π ∈�n, we obtain a bijection
π∗ : Sn → Sn by the prescription:

π∗(x1, . . . , xn) = (xπ(1), . . . , xπ(n)),

for all x1, . . . , xn ∈ S. Let Hn denote the real Hilbert space L2(Sn,Sn,µn). For
each π ∈�n,µn ◦ π∗ = µn. Hence we obtain a family of unitary operators
(Vπ ,π ∈�n) acting in Hn, via the prescription

Vπ f = f ◦ π−1∗ ,

for each π ∈�n, f ∈Hn. These satisfy the group representation properties:

V−1π = Vπ−1 , and Vπρ = VπVρ ,

for each π , ρ ∈�n.
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Define a linear operator P on Hn by

P = 1

n!
∑

π ∈�n

Vπ .

Using the group representation properties, we can easily verify that P =
P2 = P, and so P is an orthogonal projection in Hn. We denote the range of
P by H (S)

n . Elements of H (S)
n are called symmetric functions . Clearly we have

H (S)
1 = H and (by convention) it is convenient to define H (S)

0 = R.

If f ∈Hn, we will write f̂ = Pf and call f̂ the symmetrisation of f .

Proposition 5.4.1 f ∈Hn is symmetric if and only if Vπ f = f for all π ∈�n.

Proof It is immediate that the condition is sufficient.Toprovenecessity, observe
that if f is symmetric then f = Pf , hence for each π ∈�n, using the group
representation properties,

Vπ f = VπPf

= 1

n!
∑

ρ ∈�n

Vπρ f

= 1

n!
∑

π−1ρ ∈�n

Vρ f

= 1

n!
∑

ρ ∈�n

Vρ f

= Pf = f .

�

It follows from this proposition that f is symmetric if and only if

f (x1, . . . , xn) = f (xπ(1), . . . , xπ(n)), a.e.

for all x1, . . . , xn ∈ S and all π ∈�n.
We complete this short discussion of symmetric functions with a number of

useful facts which we will employ later on.
If f ∈H (S)

n and g ∈Hn, note that

〈f , g〉 = 〈Pf , g〉 = 〈f ,Pg〉 = 〈f , ĝ〉. (5.16)
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If Dn is a linear subspace in Hn, we define D(S)
n = H (S)

n ∩Dn. If Dn is dense
in Hn, it follows from the contractive property of P that D(S)

n is dense in H (S)
n .

In the sequel, wewill sometimeswant to use a slightlymodified inner product
on H (S)

n . To this end, we define

〈〈f , g〉〉 = n!〈f , g〉,

for all f , g ∈H (S)
n .

Let Hn(C) denote the complex Hilbert space L2(Sn,Sn,µn;C) and H (S)
n (C)

be the subspace of symmetric functions therein. It is easily verified that f =
g + ih∈H (S)

n (C) if and only if each of g, h∈H (S)
n .

5.4.3 Construction of Multiple Wiener–Itô Integrals

Fromnowonwewill take S = [0, T ]×R and letµ = λ×ρ where λ is Lebesgue
measure on [0, T ] and ρ(E) = σ 2δ0(E)+ ν(E − {0}), for all E ∈B(R), where
ν is the Lévy measure of X .
Fix n∈N and define Dn to be the linear space of all functions fn ∈Hn which

take the form

fn =
N∑

j1,...,jn=1
aj1,...,jnχAj1×···×Ajn , (5.17)

whereN ∈N, each aj1,...,jn ∈R, and is zero whenever two or more of the indices
j1, . . . , jn coincide and A1, . . . ,AN ∈B(S) are disjoint sets wherein each Ai =
Ji × Bi where Ji is an interval in [0, T ] and Bi ∈B(R) with ρ(Bi) < ∞, for
each 1 ≤ i ≤ N .

Proposition 5.4.2 Dn is dense in Hn.

Proof We postpone this to Appendix 5.7 (see also Proposition 1.6 of Huang
and Yan [159]). �

It is easily verified that a given fn of the form (5.17) is symmetric if and
only if

aj1,...,jn = ajπ(1),...,jπ(n) ,

for each π ∈�n, 1 ≤ j1, . . . , jn ≤ N .
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For each fn ∈Dn we define its multiple Wiener–Lévy integral by

In(fn) =
N∑

j1,...,jn=1
aj1,...,jnM (Aj1) · · ·M (Ajn). (5.18)

The mapping fn → In(fn) is easily seen to be linear.

Lemma 5.4.3 For each fn ∈Dn,

In(fn) = In(f̂n).

Proof Since each

f̂n = 1

n!
∑

π ∈�n

N∑
j1,...,jn=1

aj1,...,jnχAjπ(1)×···×Ajπ(n)
,

by linearity we obtain

In(f̂n) = 1

n!
∑

π ∈�n

N∑
j1,...,jn=1

aj1,...,jnM (Ajπ(1) ) · · ·M (Ajπ(n) )

= 1

n!
∑

π ∈�n

N∑
j1,...,jn=1

aj1,...,jnM (Aj1) · · ·M (Ajn) = In(fn).

�

We can thus restrict ourselves to integrating symmetric functions, without
loss of generality.

Theorem 5.4.4 For each fm ∈D(S)
m , gn ∈D(S)

n ,m, n∈N

E(Im(fm)) = 0, E(Im(fm)In(gn)) = n!〈fn, gn〉δmn.

Proof For simplicity we will work in the case where M is a compensated
Poisson random measure and each Ai = [si, ti] × Bi with 0 ≤ s1 < t1 < · · · <
sN < tN and each ν(Bi) <∞. We then have

Im(fm) =
N∑

j1,...,jm=1
aj1,...,jm Ñ ([sj1 , tj1 ],Bj1) · · · Ñ ([sjm , tjm ],Bjm).
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E(Im(fm))= 0 follows immediately from the independently scattered
property of the random measure. By a similar argument, we see that
E(Im(fm)In(gn)) = 0, when m �= n.
Now consider the case m = n. By symmetry, we have

fn = n!
N∑

j1<···<jn=1
aj1,...,jnχAj1×···×Ajn .

It is sufficient to choose gn having the form

gn =
N∑

j1,...,jn=1
bj1,...,jnχAj1×···×Ajn .

We then find that, by independence

E(In(fn)In(gn))

= (n!)2
∑

j1<···<jn
aj1,...,jnbj1,...,jnE[Ñ ([sj1 , tj1 ],Bj1)2] · · ·E[Ñ ([sjn , tjn ],Bjn)2]

= (n!)2
∑

j1<···<jn
aj1,...,jnbj1,...,jn(tj1 − sj1) · · · (tjn − sjn)ν(Bj1) · · · ν(Bjn)

= n!〈fn, gn〉,

as required. �

So for each n∈N, In is an isometry from D(S)
n (equipped with the inner

product 〈〈·, ·〉〉) into L2(�,F ,P). It hence extends to an isometry which is
defined on the whole of H (S)

n . We continue to denote this mapping by In and
for each fn ∈H (S)

n , we call In(fn) the multiple Wiener-Lévy integral of fn. By
continuity and Theorem 5.4.4, we obtain

E(Im(fm)) = 0, E(Im(fm)In(gn)) = n!〈fn, gn〉δmn, (5.19)

for each fm ∈H (S)
m , gn ∈H (S)

n ,m, n∈N.
If fn = gn + ihn ∈H (S)

n (C), we define In(fn) = In(gn)+ iIn(hn).

Iterated stochastic integrals

For further developments using multiple stochastic integrals, it is sometimes
helpful to be able to consider them as iterated Itô stochastic integrals.
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Throughout this section, wewill take S = [0, T ]whenwe consider Brownian
integrals and S = [0, T ] × (R− {0}) for Poisson integrals. The function fn will
always be defined within the first context while gn will be defined within the
second. We introduce the n-simplex �n in [0, T ]n so

�n = {0 < t1 < · · · < tn < T }.

We have already constructed the multiple Wiener–Itô integrals

IBn (fn) =
∫
[0,T ]n

f (s1, . . . , sn)dB(s1) · · · dB(sn),

INn (gn) =
∫
([0,T ]×(R−{0}))n

g(s1, z1, . . . , sn, zn)Ñ (ds1, dz1) · · · Ñ (dsn, dzn).

We also define the iterated stochastic integrals ,

JBn (fn) =
∫
�n

f (t1, . . . , tn)dB(t1) · · · dB(tn)

=
∫ T

0

(∫ tn

0

(
· · ·
(∫ t2

0
f (t1, . . . , tn)dB(t1)

)
· · ·
)
dB(tn−1)

)
dB(tn)

JNn (gn) =
∫
�n×(R−{0})n

g(s1, z1, . . . , sn, zn)Ñ (ds1, dz1) · · · Ñ (dsn, dzn)

=
∫ T

0

∫
R−{0}

(∫ tn−

0

∫
R−{0}

(
· · ·
(∫ t2−

0

∫
R−{0}

g(t1, z1,

. . . , tn, zn)Ñ (t1, z1)
)
· · ·
)
Ñ (tn−1, zn−1)

)
Ñ (tn, zn)

and more generally

Jn(fn) =
∫
�n×Rn

fn(w1, . . . ,wn)M (dw1) · · ·M (dwn),

Each of these is well-defined, e.g. if n = 2, we have JB2 (f2) =
∫ T
0 F(t)dB(t)

where F(t) = ∫ t0 f (s, t)dB(s), for each 0 ≤ t ≤ T . F = (F(t), 0 ≤ t ≤ T ) is
predictable (see Theorem 4.2.14) and F ∈H2(T ) since for each 0 ≤ t ≤ T ,

E(|F(t)|2) =
∫ t

0
|f (s, t)|2ds <∞.

The general case is settled by induction (see theorem 18.13 in Kallenberg [199]
for a suitably careful argument).
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In the construction that we’ve just given, there was no need for either fn or
gn to be symmetric, but they are in the following useful result.

Theorem 5.4.5 For each n∈N,

In(fn) = n!Jn(fn),

and in particular

IBn (fn) = n!JBn (fn), INn (gn) = n!JNn (gn).

Proof We only show the Brownian case here. The argument in the Poisson and
general cases is similar but more messy.
Let fn ∈D(S)

n . In this case, we can take each Aj = [sj, tj] as above and write

fn =
N∑

j1,...,jn=1
aj1,...,jnχAj1×···×Ajn = n!

N∑
j1<···<jn=1

aj1,...,jnχAj1×···×Ajn .

Hence we have

I (B)n (fn) = n!
N∑

j1<···<jn=1
[aj1,...,jnB(tj1)− B(sj1)]B(tj2)− B(sj2)]

· · ·B(tjn)− B(sjn)] = n!J (B)
n (fn).

The general result follows by approximation. �

5.4.4 The Chaos decomposition

In this section,we again fixT > 0 and letFT be the augmentation ofσ {X (t), 0 ≤
s ≤ T }.
We work in the complex Hilbert space L2(�,FT ,P;C) which we denote by

HC as above.
Let f ∈ L2([0, T ]) and consider the complex-valued exponential martingale

(Mf = (Mf (t), 0 ≤ t ≤ T ) where each

Mf (t) = exp

{
i
∫ t

0
f (s)dX (s)−

∫ t

0
η(f (s))ds

}
.

We recall that its stochastic differential is given by (5.12).
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Note that each E(Mf (t)) = 1 and

E(|Mf (t)|2) = exp

{
−2
∫ t

0
�(η(f (s)))ds

}
= exp

{
−σ 2

∫ t

0
|f (s)|2ds+

∫ t

0

∫
R−{0}

|eif (s)x − 1|2ν(dx)ds
}
.

(5.20)

In the following we will systematically use the predictable representation
(Theorem 5.3.5) for F ∈HC:-

F = E(F)+ σ

∫ T

0
G(s)dB(s)+

∫ T

0

∫
R−{0}

H (s, x)Ñ (ds, dx)

= E(F)+
∫
S
R(s, x)M (ds, dx), (5.21)

where

R(s, x) =
{
G(s) if x = 0,
H (s, x) if x �= 0,

for all 0 ≤ s ≤ T .

Theorem 5.4.6 If F ∈ L2
C
(�,F ,P), there exists a sequence (fn, n∈N) with

each fn ∈H (S)
n (C), such that

F =
∞∑
n=0

In(fn). (5.22)

Furthermore, we have

E(|F |2) =
∞∑
n=0

n!||fn||2. (5.23)

Proof We begin with the predictable representation (5.21) for F . Iterating this
once we obtain

F = E(F)+
∫
S

E(R(s, x))M (ds, dx)

+
∫
�2×(R−{0})2

R1(s1, x1, s2, x2)M (ds1, dx1)M (ds2, dx2),
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where R1 is predictable and square-integrable. Iterating this procedure, we
obtain a sequence (gn, n∈N) with each gn ∈Hn(C) such that for each n∈N

F =
n∑

k=0
Jk(gk)+ Rn+1(F),

where Rn+1(F) takes the form

∫
�n+1×(R−{0})n+1

Rn+1(t1, z1, . . . , tn+1, zn+1)M (ds1, dz1) · · ·M (dsn+1, dzn+1).

Since for each 1 ≤ k ≤ n,E(Jk(gk)Rn+1(F)) = 0, we have

E(|F |2) =
n∑

k=0
E(|Jk(gk)|2)+ E(|Rn+1(F)|2).

Hence

n∑
k=0

E(|Jk(gk)|2) ≤ E(|F |2),

and so
∑n

k=0 Jk(gk) converges in the L2-sense. It then follows that R(F) =
limn→∞ Rn(F) exists as an L2-limit. On taking limits we obtain

E

( ∞∑
k=0

Jk(gk)R(F)

)
= 0 (i)

NowchooseF to beMf (T ) fromanexponentialmartingale (Mf (t), 0≤ t≤ T )

where f ∈ L2([0, T ]). The functions gn arising from the iterative scheme will
be denoted by gfn in this case. Using (5.12), we see that

gf0 = 1, gf1(s, z) = if (s)δ0(z)+ (eif (s)z − 1)χR−{0}(z)

and in general

gfn(s1, z1, . . . , sn, zn) = gf1(s1, z1) · · · gf1(sn, zn).
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Note that the function gfn is symmetric. Hence for each n∈N, by Theorems
5.4.4 and 5.4.5

E(|Jn(gfn)|2) =
(
1

n!
)2

E(|In(gfn)|2)

= 1

n! ||g
f
n ||2

= 1

n!
(∫

S
|gf1(y)|2µ(dy)

)n
= 1

n!
(
−σ 2

∫ T

0
|f (s)|2ds+

∫ T

0

∫
R−{0}

(eif (s)z − 1)2dsν(dz)

)n
.

On using (5.20) we obtain

∞∑
n=0

E(|Jn(gfn)|2)= exp

{
−σ 2

∫ T

0
|f (s)|2ds+

∫ T

0

∫
R−{0}

|eif (s)x − 1|2ν(dx)ds
}

= E(|Mf (T )|2

Hence we must have R(Mf (T )) = 0 (a.s.).
Now return to the case where F is arbitrary. For all f ∈ L2([0, T ]), by the

argument which yielded (i) we have

E(Mf (T )R(F)) = E

( ∞∑
k=0

Jk(g
f
k )R(F)

)
= 0,

hence R(F) = 0 a.s. by Lemma 5.3.4.
Now define a sequence of functions (hn, n∈N) by

hn(t1, z1, . . . , tn, zn) =
{

gn(t1, z1, . . . , tn, zn) if 0 ≤ t1 < · · · < tn ≤ T
0 otherwise

For each n∈N, let fn = ĥn. By Theorem 5.4.5, we have

In(fn) = n!Jn(ĥn) = Jn(hn) = Jn(gn),

and (5.22) follows. (5.23) can then be easily deduced using (5.19). �

Wenote that the chaos decomposition (5.22) also holds for real valued random
variables. This follows easily by taking real parts in (5.22).
The chaos decomposition was first established by Itô for multiple Brownian

integrals [175] and generalised by him to the Lévy case in ([176]). It has its
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antecedents in work of Wiener [356] Our approach, which deduces the chaos
decomposition from the predictable representation is based closely on that of
Øksendal [283] in the Brownian case, and Løkka [239] for a square-integrable
pure jump ‘Lévy process. An interesting companion result to the chaos decom-
position is established in Nualart and Schoutens [278]. Here it is shown that
every element of L2(�,F ,P) has a representation in terms of multipleWiener-
Lévy integrals wherein the integrators are finite linear combinations of Teugels
martingales, as described in Exercises 2.4.24.

5.5 Introduction to Malliavin Calculus

There is no clear demarkation point between the subjects of ‘analysis onWiener
space’ and ‘Malliavin calculus’ (sometimes called ‘stochastic calculus of vari-
ations’) . Indeed the latter topic employs all the ideas which we have explored
within the former one and these can be developed in themore general context of
‘Gaussian probability spaces’ (see Huang and Yu [159] or Malliavin [247]) as
well as for Lévy processes. For most of this section, we will concentrate on the
Wiener space case as this is themostwell developed.Hencewe take� = W0(I)
equipped with Wiener measure P. We emphasise that this section is designed
purely as a brief introduction to a large and growing subject. Consequently we
will eschew full proofs and aim only to try to gain a bare understanding of some
basic ideas.To make a deeper study, see e.g. Huang and Yu [159], Malliavin
[247], Nualart [280] or Shigekawa [332].
Recall from Section 5.2 that the gradient operator D maps L2(�,F ,P) to

L2(�,F ,P;H(I)). Define Ũ : L2(�,F ,P;H(I))→ L2(�,F ,P; L2(I)) by

(ŨF)(ω) = UF(ω),

for all F ∈ L2(�,F ,P;H(I)),ω∈�. Ũ clearly inherits unitarity from U . We
define

DUF = ŨDF ,

for all F ∈ C(I), so that DU is a closable linear operator from L2(�,F ,P) to
L2(�,F ,P; L2(I)) which we continue to call the gradient.
The advantage of using Ũ to move away fromH(I) is that L2(�,F ,P; L2(I))

is naturally identified with L2(� × I ,F ⊗ B(I),P × λ), where λ is Lebesgue
measure on I = [0, T ]. This space is a natural context for stochastic integration.
Indeed the spaceH2(T )of square-integrable predictable processes (with respect
to a give filtration) on [0, T ] is a subspace of it.
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For each F ∈ C(I),φ ∈H(I), we have

Dφ(F) = 〈DF ,φ〉H(I)

= 〈DUF ,Uφ〉L2(I)
=
∫ T

0
(DUF)(t)Uφ(t)dt

For each t ∈ I , we define a linear operator Dt : L2(�,F ,P) → L2(�,F ,P)
with domain C(I) by

DtF = (DUF)(t).

Dt is called the Malliavin derivative and we can now identify the gra-
dient DU with the operator-valued process (Dt , t ∈ I). By (5.11), for each
φ ∈H(I),F ∈ C(I),ω∈� we have

(DφF)(ω) =
n∑
i=1

(∂iF)(ω)φ(ti)

=
n∑
i=1

(∂iF)(ω)

∫ ti

0
φ̇(s)ds

=
n∑
i=1

(∂iF)(ω)

∫ T

0
χ[0,ti]φ̇(s)ds

=
∫ T

0

(
n∑
i=1

(∂iF)(ω)χ[0,ti]

)
φ̇(s)ds.

Hence we deduce that

(DtF)(ω) =
n∑
i=1

(∂iF)(ω)χ[0,ti](t). (5.24)

Two useful results follow immediately from (5.24). First for all s, t ∈ I ,

DtB(s) = χ[0,s](t). (5.25)

Second, we have the Leibniz rule

Dt(FG) = Dt(F)G + FDt(G), (5.26)

for all F ,G ∈ C(I).
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The closability of Dt follows from that of the gradient D and it’s maximal
domain is the infinite dimensional Sobolev space D1,2 which is the Banach
space obtained by completing C(I) with respect to the norm || · ||1,2 where

||F ||21,2 = E(|F |)2 +
∫ T

0
E(|DtF |2)dt.

We gain greater insight into the action of Dt by using chaos expansions.
Let F ∈D1,2. By Theorem 5.4.6 there exists a sequence (fn, n∈N) with each
fn ∈H (S)

n , such that

F =
∞∑
n=0

In(fn),

where we have dropped the (B) superscript to ease the notation.
Note that for each n∈N, we obtain fn−1 ∈H (S)

n−1 by evaluating fn at one of its
variables, i.e.

fn−1(t1, . . . , tn; tj) = fn(t1, . . . , tj−1, tj+1, . . . , tn, tj),

for each t1, . . . , tn ∈ I .
Theorem 5.5.1 F ∈D1,2 if and only if

∑∞
n=0 nn!||fn||2 < ∞. In this case, we

have

DtF =
∞∑
n=1

nIn−1(fn−1(·; t)), (5.27)

and ∫ T

0
E(|DtF |2)dt =

∞∑
n=0

nn!||fn||2.

Proof We won’t give a full proof of this result. We simply verify (5.27) in the
case where F = In(fn)with fn ∈Dn for some n ≥ 2.We thus take fn to be of the
form (5.17) with each Ai = [si, ti] where 0 ≤ s1 < t1 < · · · < sN < tN ≤ T .
We then have

In(fn) =
N∑

j1,...,jn=1
aj1,...,jnB(sj1 , tj1) · · ·B(sjn , tjn),
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where we define B(s, t) = B(t)− B(s) whenever 0 ≤ s ≤ t ≤ T . Using (5.25)
and (5.26) we obtain

DtIn(fn) =
N∑

j1,..., jn=1
aj1,..., jn

jn−1∏
i=j1

B(si, ti)χ[sjn ,tjn ](t)

= nIn−1(fn−1(·; t)),

since

fn−1(·; t) =
N∑

j1,... jn−1=1
aj1, ...,jn−1, jnχAj1×···×Ajn−1χAjn (t)

= 1

n

N∑
j1,... jn=1

aj1,..., jnχAj1×···×Ajn−1χAjn (t),

by symmetry. �

Example Let F = exp
{∫ T

0 f (s)dB(s)
}
, where f ∈ L2(I). We aim to compute

DtF for t ∈ I . We introduce the martingale (Mf (t), t ∈ I) where each

Mf (t) = exp

{∫ t

0
f (s)dB(s)− 1

2

∫ t

0
|f (s)|2ds

}
.

From the proof of Theorem 5.4.6 (and using notation developed therein) we
see that we have the chaos expansion

Mf (T ) =
∞∑
n=0

1

n! In(g
(−if )
n ).

Hence by theorem 5.5.1

DtF = exp

{
1

2

∫ T

0
|f (s)|2ds

} ∞∑
n=1

1

(n− 1)! In−1(g
(−if )
n−1 )f (t)

= f (t)F .
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We define the divergence δ : L2(�× [0, T ],P × λ)→ L2(�,F ,P) by

δ = D∗U ,

so that

E

(∫ T

0
(DtF)G(t)dt

)
= E(Fδ(G)), (5.28)

for all F ∈D1,2,G = (G(t), t ∈ I)∈Dom(δ). Further properties of δ can be
obtained by using the integration by parts formula (Theorem 5.2.16) and chaos
decompositions. We will give one result here which employs the latter. It is the
natural companion to Theorem 5.5.1.
LetG = (G(t), t ∈ I)∈ L2(�×[0, T ],P×λ). For each t ∈ I ,G(t)∈ L2(�,F ,P)

and hence by Theorem 5.4.6 there exists a sequence (gn(·, t), n∈N) with each
gn(·, t)∈H (S)

n , such that

G(t) =
∞∑
n=0

In(gn(·, t)).

Of course, there is no good reason why the extension of gn to n+ 1 variables
should be symmetric, but its symmetrisation ĝn+1 always is.

Theorem 5.5.2 G ∈Dom(δ) if and only if

∞∑
n=1

n!||̂gn||2 <∞.

In this case, we have

δG =
∞∑
n=1

n!In(̂gn), (5.29)

and

E(|δG|2) =
∞∑
n=1

n!||̂gn||2.
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Proof For simplicity,wewill just aim to establish (5.29). LetF ∈D1,2,G ∈Dom(δ).
Using (5.28), (5.27) and the orthogonality relations (5.19), we obtain

〈F , δG〉 = E

(∫ T

0
(DtF)G(t)dt

)

=
∞∑
n=1

∞∑
m=0

∫ T

0
nE(In−1(fn−1(·; t))Im(gm(·; t))dt

=
∞∑
n=1

n
∫ T

0
E(In−1(fn−1(·; t))In−1(gn−1(·; t))dt

=
∞∑
n=1

n!
∫ T

0
〈fn−1(·; t))gn−1(·; t))〉Hn−1(I)dt

=
∞∑
n=1

n!〈fn, gn〉Hn(I)dt

=
∞∑
n=1

n!〈fn, ĝn〉Hn(I)dt,

by (5.16), and the required result follows. �

As an example, we let each G(t) = f (t) where f ∈ L2(I), so each
f (t)∈H (S)

0 (I) = R. By (5.29) we then have

δ(f ) = I1(̂f (t)) =
∫ T

0
f (s)dB(s),

This result tells us that δ is a ‘stochastic integral’ at least in its action
on deterministic functions. A natural question to ask is whether this action
extends to random functions. We have the following result which we won’t
prove here.

Theorem 5.5.3 If G ∈H2(T ) then G ∈Dom(δ) and

δ(G) =
∫ T

0
G(s)dB(s).

Since δ coincides with the Itô integral onH2(T ) it is a natural step to continue
to regard it as an integral on D̂(δ) = Dom(δ) − H2(T ). We write δ(G) =∫ T
0 G(s)δB(s), wheneverG ∈ D̂(δ). Elements of D̂(δ) are in general not adapted
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to our given filtration and so we obtain a non-anticipating stochastic calculus.
δ is often called the Skorohod integral in this context.

Example By the usual Itô calculus, we have∫ T

0
B(t)dB(t) = 1

2
(B(T )2 − T ).

The same reasoning cannot be applied to
∫ T
0 B(T )δB(t) as B(T ) is onlyF(t)-

adapted for t ≥ T and hence is not Itô-integrable. However, B(T ) has a chaos
expansion with

f1 = 1 and fn = 0 for n ≥ 2.

Since (as a function of two variables) f̂1 = 1, we have by (5.29)∫ T

0
B(T )δB(t) =

∫ T

0

∫ T

0
1dB(s)dB(t)

= 2
∫ T

0

∫ t

0
dB(s)dB(t) = 2

∫ T

0
B(t)dB(t) = B(T )2 − T .

We complete this brief survey of Malliavin calculus for Brownian motion
by including one additional result (without proof) which has recently found
significant applications to option pricing (see below). It employs the Malliavin
derivative to gain a greater insight into the predictable representation.

Theorem 5.5.4 [Clark–Ocone Formula] If F ∈D1,2 then

F = E(F)+
∫ T

0
E(DtF |Ft)dB(t).

Many of the ideas that we have discussed in this section extend to general
Lévy processes and this is currently the focus of extensive work by a number
of authors. In particular we can define a Poisson analogue of the Malliavin
derivative, using the chaos decomposition so if F = ∑∞

n=0 I
(N )
n (gn), then the

Malliavin derivative is defined by

Dt,xF =
∞∑
n=1

I (N )
n−1(gn−1(·, t, x)),

provided F ∈D(N )
1,2 =

{
F ∈ L2(�,F ,P);

∑∞
n=1 nn!||gn||2 <∞.

}
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The Malliavin derivative is also naturally associated to a gradient defined on
the canonical space of the Poisson point process given by the jumps of the Lévy
process.
If G ∈ L2(�,F ,P; L2(I × (R − {0}), λ × ν) is of the form G =

(G(t, x), t ∈ I , x ∈R−{0})we may write eachG(t, x) =∑∞
n=0 I

(N )
n (hn(·; t, x)).

We define the Poissonian divergence by

δ(N )G =
∞∑
n=1

n!In(̂hn),

provided
∑∞

n=1 n!||̂hn||2 < ∞, and we may then realise δ(N ) as a non-
anticipating Skorohod integral for integration of non-adapted processes with
respect to compensated Poisson random measures. Finally if F ∈D(N )

1,2 and G
is as above, we have the natural duality formula

E

[∫ T

0

∫
R−{0}

G(t, x)(Dt,xF)ν(dx)dt

]
= E[Fδ(N )(G)].

For further development of these ideas in the Lévy process context see Løkka
[239], di Nunno et al. [93], Solé et al. [337] and references therein.

5.6 Stochastic calculus and mathematical finance

Beginning with the fundamental papers on option pricing by Black and Scholes
[54] and Merton [260], there has been a revolution in mathematical finance in
recent years, arising from the introduction of techniques based on stochastic
calculus with an emphasis on Brownian motion and continuous semimartin-
gales. Extensive accounts can be found in a number of specialist texts of
varying rigour and difficulty; see e.g. Baxter and Rennie [35], Bingham and
Kiesel [51], Etheridge [115], Lamberton and Lapeyre [222], Mel’nikov [259],
Shiryaev [334] and Steele [339]. A very concise introduction can be found in a
short article by Protter [299]. It is not our intention here to try to give a compre-
hensive account of such a huge subject. For a general introduction to financial
derivatives see the classic text by Hull [161]. The short book by Shimko [333]
is also highly recommended.
In recent years, there has been a growing interest in the use of Lévy pro-

cesses and discontinuous semimartingales to model market behaviour (see e.g.
Madan and Seneta [244], Eberlein and Keller [103], Barndorff-Nielsen [30],
Chan [75], Geman, Madan and Yor [132] and articles on finance in [23]); not
only are these of great mathematical interest but there is growing evidence
that they may be more realistic models than those that insist on continuous
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sample paths. Our aim in this section is to give a brief introduction to some of
these ideas.

5.6.1 Introduction to financial derivatives

Readers who are knowledgeable about finance can skip this first section.
We begin with a somewhat contrived example to set the scene. It is 1st April

and the reader is offered the opportunity to buy shares in the Frozen Delight
Ice Cream Company (FDICC). These are currently valued at £1 each. Looking
forward, we might envisage that a long hot summer will lead to a rise in value
of these shares, while if there is a wet miserable one they may well crash. There
are, of course, many other factors that can affect their value, such as advertising
and trends in taste. Now suppose that as well as being able to buy shares, we
might also purchase an ‘option’. Specifically, for a cost of £0.20 we can buy a
ticket that gives us the right to buy one share of FDICC for £1.20 on 1stAugust,
irrespective of the actual market value of this share.
Now suppose I buy 1000 of these tickets and 1stAugust arrives. The summer

has been hot and the directors of FDICC have wisely secured the franchise for
merchandising for the summer’s hit filmwith pre-teens –The InfinitelyDivisible
Man. Consequently shares are nowworth £1.80 each. I then exercise my option
to buy 1000 shares at £1.20 each and sell them immediately at their market
value to make a profit of £600 (£400 if you include the cost of the options).
Alternatively, suppose that the weather has been bad and the film nosedives, or
competitors secure the franchise, and shares drop to £0.70 each. In this case, I
simply choose not to exercise my option to purchase the shares and I throw all
my tickets away to make an overall profit of £0 (or a loss of £200, if I include
the cost of the tickets).
The fictional example that we have just described is an example of a financial

derivative. The term ‘derivative’ is used to clarify that the value of the tickets
depends on the behaviour of the stock, which is the primary financial object,
sometimes called the ‘underlying’. Such derivatives can be seen as a form of
insurance, as they allow investors to spread risk over a range of options rather
than being restricted to the primary stock and bondmarkets, and they have been
gaining considerably in importance in recent years.
For now let us focus on the £0.20 that we paid for each option. Is this

a fair price to pay? Does the market determine a ‘rational price’ for such
options?These are questions thatwewill address in this section, using stochastic
calculus.
We now introduce some general concepts and notations. We will work in

a highly simplified context to make the fundamental ideas as transparent as
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possible1. Our market consists of stock of a single type and also a riskless
investment such as a bank account. We model the value in time of a single
unit of stock as a stochastic process S = (S(t), t≥ 0) on some probability space
(�,F ,P). We will also require S to be adapted to a given filtration (Ft , t ≥ 0),
and indeed all processes discussed henceforthwill be assumed to beFt-adapted.
The bank account grows deterministically in accordance with the compound
interest formula from a fixed initial value A0 > 0, so that

A(t) = A0e
rt

for each t ≥ 0, where r > 0 is the interest rate, which we will take to be
constant (in practice, it is piecewise constant).
Now we will introduce our option. In this book, we will only be concerned

with the simplest type and these are called European call options. In this sce-
nario, one buys an option at time 0 to buy stock at a fixed later time T at a given
price k. We call T the expiration time of the contract and k the strike price or
exercise price. The value of the option at time T is the random variable

Z = max{S(T )− k, 0} = (S(T )− k)+.

Our contrived option for FDICC shares is a European call option with T = 4
months and k = £1.20 and we have already described two different scenarios,
within which Z = £0.60 or Z = 0.

European call options are the simplest of a wide range of possible deriva-
tives. Another common type is the American call option, where stocks may be
purchased at any time within the interval [0, T ], not only at the endpoint. For
every call option that guarantees you the right to buy at the exercise price there
corresponds a put option, which guarantees owners of stock the right to sell at
that price. Clearly a put option is only worth exercising when the strike price
is below the current market value.

Exercise 5.6.1 Deduce that the value of a European put option is Z = max{k−
S(T ), 0}.
To be able to consider more general types of option in a unified frame-

work, we define a contingent claim, with maturity date T , to be a non-negative
FT -measurable random variable. So European options are examples of contin-
gent claims.
A key concept is the notion of arbitrage. This is essentially ‘free money’

or risk-free profit and is forbidden in rational models of market behaviour.

1 If you are new to option pricing then you should first study the theory in a discrete time setting,
where it is much simpler.You can find this in the early chapters of any of the textbooksmentioned
above.
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An arbitrage opportunity is the possibility of making a risk-free profit by the
simultaneous purchase and sale of related securities. Here is an example of
how arbitrage can take place, taken from Mel’nikov [259], p. 4. Suppose that
a stock sells in Frankfurt for 150 euros and in New York for $100 and that the
dollar–euro exchange rate is 1.55. Then one can borrow 150 euros and buy the
stock in Frankfurt to sell immediately in NewYork for $100.We then exchange
this for 155 euros, which we use to immediately pay back the loan leaving a
5-euro profit. So, in this case, the disparity in pricing stocks in Germany and
the USAhas led to the availability of ‘free money’. Of course this discussion is
somewhat simplified as we have ignored all transaction costs. It is impossible
to overestimate the importance of arbitrage in option pricing, as we will see
shortly.
First we need to recall some basic ideas of compound interest. Suppose that

a sum of money, called the principal and denoted P, is invested at a constant
rate of interest r. After an amount of time t, it grows to Pert . Conversely, if we
want to obtain a given sum of money Q at time t then we must invest Qe−rt
at time zero. The process of obtaining Qe−rt from Q is called discounting. In
particular, if (S(t), t ≥ 0) is the stock price, we define the discounted process
S̃ = (S̃(t), t ≥ 0), where each S̃(t) = e−rtS(t).
At least in discrete time, we have the following remarkable result, which

illustrates how the absence of arbitrage forces the mathematical modeller into
the world of stochastic analysis.

Theorem 5.6.2 (Fundamental theorem of asset pricing 1) If the market
is free of arbitrage opportunities, then there exists a probability measure Q,
which is equivalent to P, with respect to which the discounted process S̃ is a
martingale.

Asimilar result holds in the continuous case but we need to make more tech-
nical assumptions; see Bingham and Kiesel [51], pp. 176–7, or the fundamental
paper by Delbaen and Schachermeyer [87]. The classic paper by Harrison
and Pliska [148] is also valuable background for this topic. The philosophy
of Theorem 5.6.2 will play a central role later.

Portfolios

An investor (which may be an individual or a company) will hold their invest-
ments as a combination of risky stocks and cash in the bank, say. Let α(t) and
β(t) denote the amount of each of these, respectively, that we hold at time t. The
pair of adapted processes (α,β) where α= (α(t), t≥ 0) and β = (β(t), t ≥ 0)
is called a portfolio or trading strategy. The total value of all our investments
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at time t is denoted as V (t), so

V (t) = α(t)S(t)+ β(t)A(t).

One of the key aims of the Black–Scholes approach to option pricing is to be
able to hedge the risk involved in selling options, by being able to construct a
portfolio whose value at the expiration time T is exactly that of the option. To
be precise, a portfolio is said to be replicating if

V (T ) = Z .

Clearly, replicating portfolios are desirable objects.
Another class of interesting portfolios are those that are self-financing, i.e.

any change in wealth V is due only to changes in the values of stocks and bank
accounts and not to any injections of capital from outside. We can model this
using stochastic differentials if we make the assumption that the stock price
process S is a semimartingale. We can then write

dV (t) = α(t)dS(t)+ β(t)dA(t) = α(t)dS(t)+ rβ(t)A(t)dt,

so the infinitesimal change in V arises solely through those in S and A. Notice
how we have sneakily slipped Itô calculus into the picture by the assumption
that dS(t) should be interpreted in the Itô sense. This is absolutely crucial. If
we try to use any other type of integral (e.g. the Lebesgue–Stieltjes type) then
certainly the theory that follows will no longer work.
A market is said to be complete if every contingent claim can be replicated

by a self-financing portfolio. So, in a complete market, every option can be
hedged by a portfolio that requires no injections of capital between its starting
time and the expiration time. In discrete time, we have the following:

Theorem 5.6.3 (Fundamental theorem of asset pricing 2) An arbitrage-free
market is complete if and only if there exists a unique probability measure Q,
which is equivalent to P, with respect to which the discounted process S̃ is a
martingale.

Once again, for the continuous-time version, see Bingham and Kiesel [51]
and Delbaen and Schachermeyer [87].
Theorems 5.6.2 and 5.6.3 identify a key mathematical problem: to find a

(unique, if possible)Q, which is equivalent to P, under which S̃ is a martingale.
Such a Q is called a martingale measure or risk-neutral measure. If Q exists,
but is not unique, then the market is said to be incomplete. We will address the
problem of finding Q in the next two subsections.
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5.6.2 Stock prices as a Lévy process

So far we have said little about the key process S that models the evolution of
stock prices. As far back as 1900, Bachelier [19] in his Ph.D. thesis proposed
that this should be a Brownian motion. Indeed, this can be intuitively justified
on the basis of the central limit theorem if one perceives themovement of stocks
as due to the ‘invisible hand of the market’, manifested as a very large number
of independent, identically distributed, decisions. One immediate problemwith
this is that it is unrealistic, as stock prices cannot become negative but Brownian
motion can. An obvious way out of this is to take exponentials, but let us be
more specific.
Financial analysts like to study the return on their investment, which in a

small time interval [t, t + δt] will be
δS(t)

S(t)
= S(t + δt)− S(t)

S(t)
;

it is then natural to introduce directly the noise at this level and write

δS(t)

S(t)
= σδX (t)+ µδt,

whereX = (X (t), t ≥ 0) is a semimartingale and σ ,µ are parameters called the
volatility and stock drift respectively. The parameter σ > 0 controls the strength
of the coupling to the noise whileµ∈R represents deterministic effects; indeed
if E(δX (t))= 0 for all t≥ 0 then µ is the logarithmic mean rate of return.
We now interpret this in terms of Itô calculus, by formally replacing all small

changes that are written in terms of δ by Itô differentials. We then find that

dS(t) = σS(t−)dX (t)+ µS(t−)dt = S(t−)dZ(t), (5.30)

where Z(t) = σX (t)+ µt.
We see immediately that S(t) = EZ (t) is the stochastic exponential of the

semimartingale Z , as described in Section 5.1. Indeed, when X is a standard
Brownian motion B = (B(t), t ≥ 0) we obtain geometric Brownian motion,
which is very widely used as a model for stock prices:

S(t) = S(0) exp [σB(t)+ (µt − 1
2σ

2t
)]. (5.31)

There has been recently a great deal of interest in taking X to be a Lévy
process. One argument in favour of this is that stock prices clearly do not move
continuously, and a more realistic approach is one that allows small jumps in
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small time intervals. Moreover, empirical studies of stock prices indicate dis-
tributions with heavy tails, which are incompatible with a Gaussian model (see
e.g. Akgiray and Booth [2]).
We will make the assumption from now on that X is indeed a ‘Lévy process.

Note immediately that in order for stock prices to be non-negative, (SE) yields
�X (t) > −σ−1 (a.s.) for each t > 0 and, for convenience, we will write
c = −σ−1 henceforth. We will also impose the following condition on the
Lévy measure ν :

∫
(c,−1)∪[1,∞)

x2ν(dx) < ∞. It then follows from Theorem
2.5.2 that each X (t) has finite first and second moments, which would seem to
be a reasonable assumption for stock returns.
By the Lévy–Itô decomposition (Theorem 2.4.16), for each t ≥ 0,

X (t) = mt + κB(t)+
∫ ∞

c
xÑ (t, dx) (5.32)

where κ ≥ 0 and, in terms of the earlier parametrisation,

m = b+
∫
(c,−1]∪[1,∞)

xν(dx).

To keep the notation simple we assume in (5.32), and below, that 0 is omitted
from the range of integration. Using Exercise 5.1.2, we obtain the following
representation for stock prices:

d
[
log(S(t)

] = κσdB(t)+ (mσ + µ− 1
2κ

2σ 2)dt
+
∫ ∞

c
log[1+ σx)Ñ (dt, dx)

+
∫ ∞

c

[
log(1+ σx)− σx

]
ν(dx)dt. (5.33)

Note The use of Lévy processes in finance is at a relatively early stage of
development and there seems to be some disagreement in the literature as to
whether it is best to employ a stochastic exponential to model stock prices, as in
(5.30), or to use geometric Lévy motion, S(t) = eX (t) (the reader can check that
these are, more or less, equivalent when X is Gaussian). Using Theorem 5.1.2
we see that we can easily pass from one of these representations to the other.
From now on we will take (Ft , t ≥ 0) to be the augmented natural filtration

of the Lévy process X .
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5.6.3 Change of measure

Motivated by the philosophy behind the fundamental theorems of asset pricing
(Theorems 5.6.2 and 5.6.3), we seek to findmeasuresQ, which are equivalent to
P, with respect to which the discounted stock process S̃ is a martingale. Rather
than consider all possible changes of measure, we work in a restricted context
where we can exploit our understanding of stochastic calculus based on Lévy
processes. In this respect, we will follow the exposition of Chan [75]; see also
Kunita [217].
Let Y be a Lévy-type stochastic integral that takes the form

dY (t) = G(t)dt + F(t)dB(t)+
∫

R−{0}
H (t, x)Ñ (dt, dx),

where in particular H ∈P2(t, R − {0}) for each t ≥ 0. Note that we have
deliberately chosen a restricted form of Y compatible with that of the Lévy
process X , in order to simplify the discussion below.
We consider the associated exponential process eY and we assume that the

conditions of Corollary 5.2.2 and Theorem 5.2.4 are satisfied, so that eY is a
martingale (and G is determined by F and H ). Hence we can define a new
measure Q by the prescription dQ/dP = eY (T ). Furthermore, by Girsanov’s
theorem and Exercise 5.2.14, for each 0 ≤ t ≤ T , E ∈B([c,∞)),

BQ(t) = B(t)−
∫ t

0
F(s)ds is a Q-Brownian motion

and

ÑQ(t,E) = Ñ (t,E)− νQ(t,E) is a Q-martingale,

where

νQ(t,E) =
∫ t

0

∫
E
(eH (s,x) − 1)ν(dx)ds.

Note that

EQ(ÑQ(t,E)
2) =

∫ t

0

∫
E

EQ(e
H (s,x)) ν(dx)ds;

see, e.g. Ikeda and Watanabe [167], chapter II, theorem 3.1.
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We rewrite the discounted stock price in terms of these new processes,
to find

d
{
log
[
S̃(t)

]} = κσdBQ(t)+
(
mσ + µ− r − 1

2κ
2σ 2 + κσF(t)

+ σ

∫
R−{0}

x(eH (t,x) − 1)ν(dx)

)
dt

+
∫ ∞

c
log(1+ σx)ÑQ(dt, dx)

+
∫ ∞

c

[
log(1+ σx)− σx

]
νQ(dt, dx). (5.34)

Now write S̃(t) = S̃1(t)S̃2(t), where

d
{
log
[
S̃1(t)

]}= κσdBQ(t)− 1

2
κ2σ 2dt +

∫ ∞

c
log(1+ σx)ÑQ(dt, dx)

+
∫ ∞

c

[
log(1+ σx)− σx

]
νQ(dt, dx)

and

d
{
log
[
S̃2(t)

]}
=
[
mσ + µ− r + κσF(t)+ σ

∫
R−{0}

x(eH (t,x) − 1)ν(dx)

]
dt.

On applying Itô’s formula to S̃1, we obtain

dS̃1(t) = κσ S̃1(t−)dBQ(t)+ σ S̃1(t−)xÑQ(dt, dx).

So S̃1 is a Q-local martingale, and hence S̃ is a Q-local martingale if and
only if

mσ + µ− r + κσF(t)+ σ

∫
R−{0}

x(eH (t,x) − 1)ν(dx) = 0 a.s. (5.35)

In fact, if we impose the additional condition that

t →
∫ t

0

∫ ∞

c
x2 EQ(e

H (s,x)) ν(dx)ds
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is locally bounded, then S̃ is a martingale. This follows from the representation
of S̃ as the solution of a stochastic differential equation (see Exercise 6.2.5).
Note that a sufficient condition for the above condition to hold is that H is
uniformly bounded (in x and ω) on finite intervals [0, t].
Now, equation (5.35) clearly has an infinite number of possible solution pairs

(F ,H ). To see this, suppose that f ∈ L1(R− {0}, ν); then if (F ,H ) is a solution
so too is (

F +
∫

R−{0}
f (x)ν(dx), log

(
eH − κf

x

))
.

Consequently, there is an infinite number of possible measures Q with respect
to which S̃ is a martingale. So the general Lévy-process model gives rise to
incomplete markets. The following example is of considerable interest.

The Brownian case Here we have ν ≡ 0, κ �= 0, and the unique solution to
(5.35) is

F(t) = r − µ− mσ

κσ
a.s.

So in this case the stock price is a geometric Brownian motion, and in fact we
have a complete market; see e.g. Bingham and Keisel [51], pp. 189–90, for
further discussion of this.
The only other example of a Levy process that gives rise to a completemarket

is that where the driving noise in (5.33) is a compensated Poisson process.

The Poisson case Here we take κ = 0 and ν = λδ1 for λ > m + (µ− r)/σ .
Writing H (t, 1) = H (t), we find that

H (t) = log

[
r − µ+ (λ− m)σ

λσ

]
a.s.

5.6.4 The Black–Scholes formula

Wewill follow the simple account given in Baxter and Rennie [35] of the classic
Black–Scholes approach to pricing a European option. We will work with the
geometric Brownian motion model for stock prices (5.31), so that the market
is complete. Note that κ = 1 in (5.32). We will also make a slight change
in the way we define the discounted stock price: in this section we will put
S̃(t) = A(t)−1S(t) for each 0 ≤ t ≤ T . We effect the change of measure as
described above, and so by (5.34) and the condition (5.35) we obtain

d
{
log
[
S̃(t)

]} = σdBQ(t)− 1
2σ

2dt,



334 Exponential martingales

so that

dS̃(t) = S̃(t)σdBQ(t). (5.36)

Let Z be a contingent claim and assume that it is square-integrable with respect
to the measure Q, i.e. EQ(|Z|2) < ∞. Define a Q-martingale (Z(t), t ≥ 0) by
discounting and conditioning as follows:

Z(t) = A(T )−1EQ(Z|Ft)

for each 0 ≤ t ≤ T . Then Z is an L2-martingale, since, by the conditional form
of Jensen’s inequality, we have

EQ(EQ(Z|Ft))
2) ≤ EQ(EQ(Z

2|Ft)) = EQ(Z
2) <∞.

Nowwe can appeal to themartingale representation theorem (Theorem5.3.6)
in the probability space (�,F ,Q) to deduce that there exists a square-integrable
process δ = (δ(t), t ≥ 0) such that, for all 0 ≤ t ≤ T ,

dZ(t) = δ(t)dBQ(t) = γ (t)dS̃(t), (5.37)

where, by (5.36), each γ (t) = δ(t)/[σ S̃(t)].
The Black–Scholes strategy is to construct a portfolio V which is both self-

financing and replicating and which effectively fixes the value of the option at
each time t. We will show that the following prescription does the trick:

α(t) = γ (t), β(t) = Z(t)− γ (t)S̃(t), (5.38)

for all 0 ≤ t ≤ T .
We call this the Black–Scholes portfolio. Its value is

V (t) = γ (t)S(t)+ [Z(t)− γ (t)S̃(t)
]
A(t) (5.39)

for each 0 ≤ t ≤ T .

Theorem 5.6.4 The Black–Scholes portfolio is self-financing and replicating.

Proof First note that since for each 0 ≤ t ≤ T we have S̃(t) = A(t)−1S(t),
(5.39) becomes

V (t) = A(t)γ (t)S̃(t)+ [Z(t)− γ (t)S̃(t)
]
A(t) = Z(t)A(t). (5.40)
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To see that this portfolio is replicating, observe that

V (T ) = A(T )Z(T ) = A(T )A(T )−1 E(Z|FT ) = Z ,

since Z is FT -measurable.
To see that the portfolio is self-financing, we apply the Itô product formula

in (5.40) to obtain

dV (t) = dZ(t)A(t)+ Z(t)dA(t) = γ (t)A(t)dS̃(t)+ Z(t)dA(t),

by (5.37).
But, by (5.38), Z(t) = β(t)+ γ (t)S̃(t) and so

dV (t) = γ (t)A(t)dS̃(t)+ [β(t)+ γ (t)S̃(t)
]
dA(t)

= β(t)dA(t)+ γ (t)
[
A(t)dS̃(t)+ S̃(t)dA(t)

]
= β(t)dA(t)+ γ (t)d

[
A(t)S̃(t)

]
= β(t)dA(t)+ γ (t)dS(t),

where again we have used the Itô product formula. �

Using formula (5.40) in the above proof, we see that the value of the portfolio
at any time 0 ≤ t ≤ T is given by

V (t) = A(t) EQ(A(T )−1Z|Ft) = e−r(T−t) EQ(Z|Ft) (5.41)

and, in particular,

V (0) = e−rTEQ(Z). (5.42)

We note that V (0) is the arbitrage price for the option, in that if the claim is
priced higher or lower than this then there is the opportunity for risk-free profit
for the seller or buyer, respectively. To see that this is true, suppose that the
option sells for a price P > V (0). If anyone is crazy enough to buy it at this
price, then the seller can spend V (0) to invest in γ (0) units of stock and β(0)
units of the bank account. Using the fact that the portfolio is self-financing and
replicating, we know that at time T it will deliver the value of the option V (T )

without any further injection of capital. Hence the seller has made P − V (0)
profit. A similar argument applies to the case where P < V (0).
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We can now derive the celebrated Black–Scholes pricing formula for a
European option. First observe that, by (5.42), we have

V (0) = e−rTEQ((S(T )− k)+).

Now, after the change of measure S̃ is a stochastic exponential driven by
Brownian motion and so

S̃(T ) = S̃(0) exp
[
σBQ(T )− 1

2σ
2T
]
,

hence

S(T ) = A(0)S̃(0) exp
[
σBQ(T )+

(
r − 1

2σ
2
)
T
]

= S(0) exp
(
σBQ(T )+

(
r − 1

2σ
2
)
T
]
.

But BQ(T ) ∼ N (0, T ), from which it follows that

V (0) = e−rT EQ((se
U+rT − k)+)

where U ∼ N (−σ 2T/2, σ 2T ), and we have adopted the usual convention in
finance of writing S(0) = s. Hence we have

V (0) = 1

σ
√
2πT

∫ ∞

log(k/s)−rT
(sex − ke−rT ) exp

[
− (x + σ 2T/2)2

2σ 2T

]
dx.

Nowwrite�(z) = P(Z ≤ z), whereZ ∼ N (0, 1) is a standard normal. Splitting
the above formula into two summands and making appropriate substitutions
(see e.g. Lamberton and Lapeyre [222], p. 70, if you need a hint) yields the
celebrated Black–Scholes pricing formula for European call options:

V (0) = s�

(
log(s/k)+ (r + σ 2/2)T

σ
√
T

)
− ke−rT�

(
log(s/k)+ (r − σ 2/2)T

σ
√
T

)
. (5.43)

Before we leave the Black–Scholes context, we make an intriguing connec-
tion with Malliavin calculus. By (5.36) and (5.37), we have

Z(T ) = Z(0)+ σ

∫ T

0
S̃(t)γ (t)dBQ(t),
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however, by the Clark–Ocone formula

Z(T ) = Z(0)+
∫ T

0
EQ(DtZ(T )|Ft)dBQ(t).

Hence by uniqueness of Itô representations, we deduce that

γ (t) = σ−1S̃(t)−1A(T )−1EQ(DtZ|Ft), (λ× P a.e.)

At the time of writing, applications of Malliavin calculus to option pricing is
a rapidly developing field. The recent monograph Malliavin and Thalmaier
[245] and references therein contain many revealing insights. For specific
financial applications of jump processes see León et al. [225] and Davis and
Johansson [86].

5.6.5 Incomplete markets

If the market is complete and if there is a suitable martingale representation
theorem available, it is clear that the Black–Scholes approach described above
can be applied in order to price contingent claims, in principle. However, if
stock prices are driven by a general ‘Lévy process as in (5.32), the market will
be incomplete. Provided that there are no arbitrage opportunities, we know that
equivalent measures Q exist with respect to which S̃ will be a martingale, but
these will no longer be unique. In this subsection we examine briefly some
approaches that have been developed for incomplete markets. These involve
finding a ‘selection principle’ to reduce the class of all possible measures Q to
a subclass within which a unique measure can be found. We again follow Chan
[75]. An extensive discussion from a more general viewpoint can be found in
chapter 7 of Bingham and Kiesel [51].

The Föllmer–Schweizer minimal measure

In the Black–Scholes set-up, we have a unique martingale measureQ for which

dQ

dP

∣∣∣∣Ft

= eY (t),

where d(eY (t)) = eY (t)F(t)dB(t) for 0 ≤ t ≤ T . In the incomplete case, one
approach to selecting Q would be simply to replace B by the martingale part of
our Lévy process (5.32), so that we have

d(eY (t)) = eY (t)P(t)

[
κdB(t)+

∫
(c,∞)

xÑ (ds, dx)

]
, (5.44)
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for some adapted process P = (P(t), t ≥ 0). If we compare this with the usual
coefficients of exponential martingales in (5.4), we see that we have

κP(t) = F(t), xP(t) = eH (t,x) − 1

for each t ≥ 0, x > c. Substituting these conditions into (5.35) yields

P(t) = r + µ− mσ

σ(κ2 + ρ)
,

where ρ = ∫∞c x2ν(dx), so this procedure selects a unique martingale measure
under the constraint that we consider only measure changes of the type (5.44).
Chan [75] demonstrates that this coincides with a general procedure introduced
by Föllmer and Schweizer [121], which works by constructing a replicating
portfolio of value V (t) = α(t)S(t) + β(t)A(t) and discounting it to obtain
Ṽ (t) = α(t)S̃(t) + β(t)A(0). If we now define the cumulative cost C(t) =
Ṽ (t)− ∫ t0 α(s)dS̃(s) then Q minimises the risk E((C(T )− C(t))2|Ft).

The Esscher transform

We will now make the additional assumption that∫
|x|≥1

euxν(dx) <∞

for all u∈R. In this case we can analytically continue the Lévy–Khintchine
formula to obtain, for each t ≥ 0,

E(e−uX (t)) = e−tψ(u)

where

ψ(u) = −η(iu)

= bu − 1
2κ

2u2 +
∫ ∞

c

[
1− e−uy − uyχB̂(y)

]
ν(dy).

Now recall the martingales Mu= (Mu(t), t≥ 0), where each Mu(t)=
eiuX (t)−tη(u), which were defined in Chapter 2. Readers can check directly that
the martingale property is preserved under analytic continuation, and we will
write Nu(t) = Miu(t) = e−uX (t)+tψ(u). The key distinction between the mar-
tingales Mu and Nu is that the former are complex valued while the latter are
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strictly positive. For each u∈R we may thus define a new probability measure
by the prescription

dQu

dP

∣∣∣∣Ft

= Nu(t),

for each 0 ≤ t ≤ T . We call Qu the Esscher transform of P by Nu. It has a long
history of application within actuarial science (see Gerber and Shiu [133] and
references therein). Applying Itô’s formula to Nu, we obtain

dNu(t) = Nu(t−)
[− κuB(t)+ (e−ux − 1)Ñ (dt, dx)

]
. (5.45)

On comparing this with our usual prescription (5.4) for exponential martingales
eY , we find that

F(t) = −κu, H (t, x) = −ux,

and so (5.35) yields the following condition forQu to be a martingale measure:

−κ2uσ + mσ + µ− r + σ

∫ ∞

c
x(e−ux − 1)ν(dx) = 0.

Define z(u) = ∫∞c x(e−ux − 1)ν(dx)− κ2u for each u∈R. Then our condition
takes the form

z(u) = r − µ− mσ

σ
.

Since z′(u) ≤ 0, we see that z is monotonic decreasing and so is invertible.
Hence this choice of u yields a martingale measure, under the constraint that
we only consider changes of measure of the form (5.45).
Chan [75] showed that thisQu minimises the relative entropyH (Q|P), where

H (Q|P) =
∫

dQ

dP
log

(
dQ

dP

)
dP.

Further investigations of such minimal entropy martingale measures can be
found in Fujiwara and Miyahara [127].

5.6.6 The generalised Black–Scholes equation

In their original work [54], Black and Scholes derived a partial differential
equation for the price of a European option. It is worth trying to imitate this in
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the general Lévy market.We price our option using, e.g. the Esscher transform,
to establish that there is a measureQ such that S̃(t) = e−rtEX (t) is a martingale,
hence

dS̃(t) = σ S̃(t−)dBQ(t)+
∫
(c,∞)

σ S̃(t−)xÑQ(dt, dx).

(where we have taken κ = 1, for convenience). It follows that

dS(t) = rS(t−)dt + σS(t−)dBQ(t)+
∫
(c,∞)

σS(t−)xÑQ(dt, dx).

We consider a generalised European contingent claim which is of the form
Z = h(S(T )) where h : [0,∞)→ R is a Borel measurable function. The value
of the option at time t is

C(t, s) = EQ(e
−r(T−t)h(S(T ))|S(t) = s).

Now consider the integro-partial differential operatorL defined on functions
which are twice differentiable in the space variable and differentiable in the
time variable:

(LF)(t, x) = ∂F

∂t
(t, x)+ rx

∂F

∂x
(t, x)+ σ 2x2

2

∂2F

∂x2
(t, x)− rF(t, x)

+
∫
(c,∞)

[
F(t, x(1+ σy))− F(t, x)− xσy

∂F

∂x
(t, x)

]
ν(dy).

(5.46)

In the following derivation, we will be cavalier regarding important domain
questions.

Theorem 5.6.5 If LF = 0 with terminal boundary condition F(T , z) = X (z)
then F = C.

Proof First consider the related integro-differential operator

L0F(t, x) = LF(t, x)+ rF(t, x).

It is an easy exercise in calculus to deduce that LF = 0 if and only if
L0G = 0, where G(t, x) = De−rtF(t, x) and D is a constant. By Itô’s formula:

G(T , S(T ))− G(t, S(t)) = a Q−martingale +
∫ T

t
L0G(u, S(u−))du

= a Q−martingale,
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hence

G(t, s) = EQ(G(T , S(T ))|S(t) = s)

and we thus deduce that

F(t, s) = e−r(T−t)EQ(F(T , S(T ))|S(t) = s)

= e−r(T−t)EQ(h(S(T ))|S(t) = s),

as was required. �

If we take ν = 0 so we have a stock market driven solely by Brownian
motion, thenwe recapture the famousBlack-Scholes pde (seeBlack andScholes
[54]). Themore general operatorL is muchmore complicated, nonetheless both
analytic and numerical methods have been devised to enable it to be applied to
option pricing problems. See chapter 12 of Cont and Tankov [81] for further
details. Note that our equation (5.46) differs from the corresponding (12.7) in
[81] because our stock is modelled by a stochastic exponential whereas they
employ an exponential Lévy process.

5.6.7 Hyperbolic Lévy processes in finance

So far we have concentrated our efforts in general discussions about Lévy
processes as models of stock prices, without looking at any particular case
other than Brownian motion. In fact, as far back as the 1960s Mandelbrot [248]
proposed that α-stable processes might be a good model; see also chapter 14 of
his collected papers [249]. However, empirical studies appear to rule out these,
as well as the classical Black–Scholes model (see e.g. Akgiray and Booth [2]).
An example of a Lévy process that appears to be well suited to modelling stock
price movements is the hyperbolic process, which we will now describe.

Hyperbolic distributions

Let ϒ ∈B(R) and let (gθ ; θ ∈ϒ) be a family of probability density functions
on R such that the mapping (x, θ) → gθ (x) is jointly measurable from R× ϒ

to R. Let ρ be another probability distribution on ϒ , which we call the mixing
measure; then, by Fubini’s theorem, we see that the probability mixture

h(x) =
∫
ϒ

gθ (x)ρ(dθ),

yields another probability density function h onR. The hyperbolic distributions
that wewill now introduce arise in exactly thismanner. First we need to describe
the mixing measure ρ.
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We begin with the following integral representation for Bessel functions of
the third kind:

Kν(x) = 1

2

∫ ∞

0
uν−1 exp

[
−1

2
x

(
u + 1

u

)]
du,

where x, ν ∈R; see Section 5.8 for all the facts we need about Bessel functions
in the present section.
From this, we see immediately that f a,bν is a probability density function on

(0,∞) for each a, b > 0, where

f a,bν (x) = (a/b)ν/2

2Kν(
√
ab)

xν−1 exp
[
−1

2

(
ax + b

x

)]
.

The distribution that this represents is called a generalised inverseGaussian and
denoted GIG(ν, a, b). It clearly generalises the inverse Gaussian distribution
discussed in Section 1.3.2. In our probability mixture, we now take ρ to be
GIG(1, a, b),ϒ = (0,∞), and gσ 2 to be the probability density function of an
N (µ + βσ 2, σ 2), where µ,β ∈R. A straightforward but tedious computation,
in which we apply the beautiful result K1/2(x) = √

π/(2x)e−x (proved as
Proposition 5.8.1 in Section 5.8), yields

hα,βδ,µ(x) =
√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp
[− α

√
δ2 + (x − µ)2 + β(x − µ)

]
(5.47)

for all x ∈R, where we have, in accordance with the usual convention,
introduced the parameters α2 = a + β2 and δ2 = b.
The corresponding law is called a hyperbolic distribution, as log(hα,βδ,µ) is

a hyperbola. These distributions were first introduced by Barndorff–Nielsen
in [29], within models for the distribution of particle size in wind-blown
sand deposits. In Barndorff-Nielsen and Halgreen [23], they were shown
to be infinitely divisible. Halgreen [145] also established that they are
self-decomposable.
All the moments of a hyperbolic distribution exist and we may compute the

moment generating function M α,β
δ,µ (u) = ∫R euxhα,βδ,µ(x)dx, to obtain:

Proposition 5.6.6 For |u+ β| < α,

M α,β
δ,µ (u) = eµu

√
α2 − β2

K1
(
δ
√
α2 − β2

) K1
(
δ
√
α2 − (β + u)2

)√
α2 − (β + u)2

.
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Proof Use straightforward manipulation (see Eberlein et al. [102]). �

Note that, by analytic continuation, we get the characteristic function φ(u) =
M (iu), which is valid for all u∈R. Using this, Eberlein andKeller in [103] were
able to show that the Lévy measure of the distribution is absolutely continuous
with respect to Lebesgue measure, and they computed the exact form of the
Radon–Nikodým derivative.

Exercise 5.6.7 Let X be a hyperbolically distributed random variable. Use
Proposition 5.6.6 and (5.51) in Section 5.8 to establish

E(X ) = µ+ δβ√
α2 − β2

K2(ζ )

K1(ζ )

and

Var(X ) = δ2
[
K2(ζ )

ζK1(ζ )
+ β2

α2 − β2

(
K3(ζ )

K1(ζ )
− K2(ζ )

2

K1(ζ )2

)]
,

where ζ = δ
√
α2 − β2.

For simplicity, we will restrict ourselves to the symmetric case where µ =
β = 0. If we reparametrise, using ζ = δα, we obtain the two-parameter family
of densities

hζ ,δ(x) = 1

2δK1(ζ )
exp

[
−ζ

√
1+

(x
δ

)2]
.

It is shown in Eberlein and Keller [103] that the corresponding Lévy process
Xζ ,δ = (Xζ ,δ(t), t ≥ 0) has no Gaussian part and can be written

Xζ ,δ(t) =
∫ t

0

∫
R−{0}

xÑ (ds, dx)

for each t ≥ 0.

Option pricing with hyperbolic Lévy processes

The hyperbolic Lévy process was first applied to option pricing by Eberlein and
Keller in [103], following a suggestion by O. Barndorff-Nielsen. There is an
intriguing analogy with sand production in that just as large rocks are broken
down to smaller and smaller particles to create sand so, to quote Bingham and
Kiesel in their review article [52], ‘this “energy cascade effect” might be paral-
leled in the “information cascade effect”, whereby price-sensitive information
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originates in, say, a global newsflash and trickles down through national and
local level to smaller and smaller units of the economic and social environment.’
We may again model the stock price S = (S(t), t ≥ 0) as a stochastic

exponential driven by a process Xζ ,δ , so that

dS(t) = S(t−)dXζ ,δ(t)

for each t ≥ 0 (we omit volatility for now and return to this point later). A
drawback of this approach is that the jumps in Xζ ,δ are not bounded below.
Eberlein and Keller [103] suggested overcoming this problem by introducing a
stopping time τ = inf {t > 0; �Xζ ,δ(t) < −1} and working with X̂ζ ,δ instead
of Xζ ,δ , where for each t ≥ 0

X̂ζ ,δ(t) = Xζ ,δ(t)χ{t≤τ },

but this is clearly a somewhat contrived approach.An alternative point of view,
also put forward by Eberlein and Keller [103], is to model stock prices by an
exponential hyperbolic Lévy process and utilise

S(t) = S(0) exp [Xζ ,δ(t)].

This has been found to be a highly successful approach from an empirical point
of view. As usual we discount and consider

Ŝ(t) = S(0) exp [Xζ ,δ(t)− rt],

and we require a measure Q with respect to which Ŝ = (Ŝ(t), t ≥ 0) is a
martingale.As expected, the market is incomplete, and we will follow Eberlein
and Keller [103] and use the Esscher transform to price the option. Hence we
seek a measure, of the form Qu, that satisfies

dQu

dP

∣∣∣∣Ft

= Nu(t) = exp
{−uXζ ,δ(t)− t log

[
Mζ ,δ(u)

]}
.

Here Mζ ,δ(u) denotes the moment generating function of Xζ ,δ(1), as given by
Proposition 5.6.6, for |u| < α. Recalling Lemma 5.2.11, we see that Ŝ is a
Q-martingale if and only if ŜNu = (Ŝ(t)Nu(t), t ≥ 0) is a P-martingale. Now

Ŝ(t)Nu(t) = exp
(
(1− u)Xζ ,δ(t)− t

{
log
[
Mζ ,δ(u)

]+ r
})
.
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But we know that (exp
(
(1− u)Xζ ,δ(t)− t{log[Mζ ,δ(1− u)]}), t≥ 0) is a mar-

tingale and, comparing the last two facts, we find that Ŝ is a Q-martingale if
and only if

r = log[Mζ ,δ(1− u)
]− log

[
Mζ ,δ(u)]

= log

[
K1
(√

ζ 2 − δ2(1− u)2
)

K1
(√

ζ 2 − δ2u2
) ]

− 1

2
log

[
ζ 2 − δ2(1− u)2

ζ 2 − δ2u2

]
.

The required value of u can now be determined from this expression by
numerical means.2

We can now price a European call option with strike price k and expiration
time T . Writing S(0) = s as usual, the price is

V (0) = EQu

(
e−rT [S(T )− k]+) = EQu

(
e−rT

{
s exp[Xζ ,δ(t)]− k

}+).
Exercise 5.6.8 Let f (t)ζ ,δ be the pdf of Xζ ,δ(t) with respect to P. Use the Esscher
transform to show that Xζ ,δ(t) also has a pdf with respect to Qu, which is
given by

f (t)ζ ,δ (x; u) = f (t)ζ ,δ (x) exp
{−ux − t log[Mζ ,δ(u)]

}
for each x ∈R, t ≥ 0. Hence obtain the pricing formula

V (0) = s
∫ ∞

log(k/s)
f (T )
ζ ,δ (x; 1− u) dx − e−rT k

∫ ∞

log(k/s)
f (T )
ζ ,δ (x; u) dx.

As shown in Eberlein and Keller [103], this model seems to give a more
accurate description of stock prices than the usual Black–Scholes formula. An
online programme for calculating stock prices directly can be found at the
website http://www.fdm.uni-freiburg.de/groups/financial/UK.
Finally we discuss the volatility, as promised. Suppose that, instead of a

hyperbolic process, we revert to a Brownian motion model of logarithmic stock
price growth and write S(t) = eZ(t) where Z(t) = σB(t) for each t ≥ 0; then
the volatility is given by σ 2 = E(Z(1)2). By analogy, we define the volatility
in the hyperbolic case by σ 2 = E(Xζ ,δ(1)2). Using the results of Exercise 5.6.7
we obtain

σ 2 = δ2K2(ζ )

ζK1(ζ )
.

2 Note that the equivalent expression in Eberlein and Keller [103], p. 297, is given in terms of the
parameter θ = −u.

http://www.fdm.uni-freiburg.de/groups/financial/UK
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Further discussions of pricing using hyperbolicmodels can be found inEberlein,
Keller and Prause [102] and Bingham andKiesel [52]. Bibby and Sørenson [45]
introduced a variation on thismodel inwhich the stock prices satisfy a stochastic
differential equation driven by Brownian motion but the coefficients are chosen
so that the stock price is approximately a geometric hyperbolic Lévy process for
large time.

5.6.8 Other Lévy process models for stock prices

Hyperbolic processes are one of a number of different models that have been
advocated to replace the Black–Scholes process by using Lévy processes. Here
we briefly survey some others. One of the first of these was proposed byMerton
[261] and simply interlaced the Brownian noise with the jumps of a compound
Poisson process. So this model lets the stock price process S = (S(t), t ≥ 0)
evolve as

S(t) = S(0) exp

[
βt + σB(t)− 1

2
σ 2t

] N (t)∏
j=1

Yj

for each t ≥ 0, where the sequence (Yn, n∈N) of i.i.d. random variables, the
Poisson process (N (t), t ≥ 0) and the Brownian motion (B(t), t ≥ 0) are all
independent. There has recently been renewed interest in this approach; see
Benhamou [36].
Although we have ruled out the use of stable noise to model stock prices on

empirical grounds there is still some debate about this, and recent stable-law
models are discussed byMcCulloch [243] andMeerschaert and Scheffler [258].

One of the criticisms levelled at the classical Black–Scholes formula is that it
assumes constant volatility σ .We could in practice test this by using knowledge
of known option prices for fixed values of the other parameters to deduce the
corresponding value of σ . Although the Black–Scholes pricing formula (5.43)
is not invertible as a function of σ , we can use numerical methods to estimate
σ , and the values so obtained are called implied volatilities. Rather than giving
constant values, the graph of volatility against strike price produces a curve
known as the volatility smile; see e.g. Hull [161], chapter 7. To explain the
volatility smile many authors have modified the Black–Scholes formalism to
allow σ to be replaced by an adapted process (σ (t), t ≥ 0). Of particular
interest to fans of Lévy processes is work by Barndorff-Nielsen and Shephard
[28], wherein (σ (t)2, t ≥ 0) is taken to be an Ornstein–Uhlenbeck process
driven by a non-Gaussian Lévy process; see Subsection 4.3.5.



5.6 Stochastic calculus and mathematical finance 347

Recently, it has been argued in some fascinating papers by Geman, Madan
and Yor [131, 132] that asset-price processes should be modelled as pure jump
processes of finite variation. On the one hand,where the corresponding intensity
measure is infinite the stock price manifests ‘infinite activity’, and this is the
mathematical signature of the jitter arising from the interaction of pure supply
shocks and pure demand shocks. On the other hand, where the intensitymeasure
is finite we have ‘finite activity’, and this corresponds to sudden shocks that
can cause unexpected movements in the market, such as a terrorist atrocity or
a major earthquake.
By a remarkable result of Monroe [272] any such process (in fact, any semi-

martingale) can be realised as (B(T (t)), t ≥ 0), where B is a standard Brownian
motion and (T (t), t ≥ 0) is a time change, i.e. a non-negative increasing process
of stopping times.Of course,we obtain aLévyprocesswhenT is an independent
subordinator, and models of this type that had already been applied to option
pricing are the variance gamma process (see Section 1.3.2) ofMadan and Seneta
[244] and its generalisations by Carr et al. [72], [74]. Another subordinated
process, which we discussed in Subsection 1.3.2 and which has been applied
to model option prices, is the normal inverse Gaussian process of Barndorff-
Nielsen ([30, 31], see also Barndorff-Nielsen and Prause [27]), although this is
of not of finite variation.
Barndorff-Nielsen and Levendorskiǐ [25] have proposed a model where the

logarithm of the stock price evolves as a Feller process of Lévy type obtained by
introducing a spatial dependence into the four parameters of the normal inverse
Gaussian process. Their analysis relies upon the use of the pseudo-differential-
operator techniques introduced in Chapter 3. A common criticism of Lévy-
processes-driven models (and this of course includes Black–Scholes) is that it
is unrealistic to assume that stock prices have independent increments. The use
of more general Feller processes arising from stochastic differential equations
driven by Lévy processes certainly overcomes this problem, and this is one of
the main themes of the next chapter. Another interesting approach is to model
the noise in the basic geometric model (5.30) by a more complicated process.
For example, Rogers [310] proposed a Gaussian process that does not have
independent increments. This process is related to fractional Brownian motion,
which has also been proposed as a log-price process; however, as is shown in
[310], such a model is inadequate since it allows arbitrage opportunities.
There are a number of different avenues opening up in finance for the appli-

cation of Lévy processes. For example, pricing American options is more
complicated than the European case as the freedom in choosing any time in
[0, T ] to trade the option is an optional stopping problem. For progress in using
Lévy processes in this context seeAvram, Chan and Usabel [18] and references
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therein. Boyarchenko and Levendorskiǐ [60] is a very interesting paper on the
application of Lévy processes to pricing barrier and touch-and-out options.
The pricing formula is obtained using Wiener–Hopf factorisation, and pseudo-
differential operators also play a role in the analysis. The same authors have
recently published a monograph [61], in which a wide range of problems in
option pricing are tackled by using Lévy processes of exponential type, i.e.
those for which there exist λ1 < 0 < λ2 such that∫ −1

−∞
e−λ2xν(dx)+

∫ ∞

1
e−λ1xν(dx) <∞.

A number of specific Levy processes used in financial modelling, such as the
normal inverse Gaussian and hyperbolic processes, are of this type.
In addition to option pricing, Eberlein and Raible [105] considered a model

of the bond market driven by the exponential of a Lévy stochastic integral; see
also Eberlein and Özkan [104]. For other directions, see the articles on finance
in the volume [26].

5.7 Notes and further reading

Stochastic exponentials were first introduced by C. Doléans-Dade in [94].
Although the order was reversed in the text, the Cameron–Martin–Maruyama
formula as first conceived by Cameron and Martin [69] preceded the more
general Girsanov theorem [139]. The first proof of the martingale represen-
tation theorem was given by Kunita and Watanabe in their ground-breaking
paper [214].
We have already given a large number of references to mathematical finance

in the text. The paper from which they all flow is Black and Scholes [54]. It
was followed soon after by Merton [260], in which the theory was axiomatised
and the key role of stochastic differentials was clarified. In recognition of this
achievement, Merton and Scholes received the 1997 Bank of Sweden Prize
in Economic Sciences in Memory of Alfred Nobel (which is often incorrectly
referred to as the ‘Nobel Prize for Economics’); sadly, Blackwas no longer alive
at this time. See http://www.nobel.se/economics/laureates/1997/index.html for
more information about this.

5.8 Appendix: Bessel functions

The material given here can be found in any reasonable book on special func-
tions. We draw the reader’s attention to the monumental treatise of Watson
[353] in particular.

http://www.nobel.se/economics/laureates/1997/index.html
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Let ν ∈R. Bessel’s equation of order ν is of great importance in classical
mathematical physics. It takes the form

x2
d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0 (5.48)

for each x ∈R.
A series solution yields the general solution (for ν /∈ Z)

y(x) = C1Jν(x)+ C2J−ν(x),

where C1,C2 are arbitrary constants and Jν is a Bessel function of the first kind,

Jν(x) =
∞∑
n=0

(−1)n(x/2)ν+2n
n!�(ν + n+ 1)

. (5.49)

An alternative representation of the general solution is

y(x) = C1Jν(x)+ C2Yν(x),

where Yν is a Bessel function of the second kind:

Yν(x) = 2πeiπν Jν(x) cos(νπ)− J−ν(x)

sin(2νπ)
.

We now consider the modified Bessel equation of order ν,

x2
d2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0. (5.50)

We could clearly write the general solution in the form

y(x) = C1Jν(ix)+ C2J−ν(ix),

but it is more convenient to introduce the modified Bessel functions

Iν(x) = e−iνπ/2Jν(ix),

as these are real-valued.
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Bessel functions of the third kind were introduced by H. M. Macdonald and
are defined by

Kν(x) =
(π
2

) I−ν(x)− Iν(x)

sin(νπ)
.

The most important results for us are the recurrence relations

Kν+1(x) = Kν−1(x)+ 2ν

x
Kν(x) (5.51)

and the key integral formula,

Kν(x) = 1

2

∫ ∞

0
uν−1 exp

[
−1

2
x

(
u + 1

u

)]
du. (5.52)

Note that a straightforward substitution yields, in particular,

K1/2(x) =
∫ ∞

0
exp

[
−1

2
x

(
u2 + 1

u2

)]
du.

The following result is so beautiful that we include a short proof. This was
communicated to me by Tony Sackfield.

Proposition 5.8.1

K1/2(x) =
√

π

2x
e−x.

Proof Using the various definitions given above we find that

K1/2(x) = π

2
eiπ/4 [J−1/2(ix)+ iJ1/2(ix)

]
.

But it follows from (5.49) that

J1/2(x) =
√

2

πx
sin(x)

and

J−1/2(x) =
√

2

πx
cos(x),
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and so

K1/2(x) = π

2
eiπ/4

√
2

π ix

[
cos(ix)+ i sin(ix)

] = √ π

2ix

(
1+ i√

2

)
e−x.

The result follows from the fact that (1+ i)/
√
i = √

2. �

5.9 Appendix: A density result

The aim of this appendix is to give a thorough proof of Proposition 5.4.2 i.e. the
fact that the space Dn is dense in Hn. This plays a vital part in the construction
of multiple Wiener–Lévy integrals as described in Section 5.4. We begin with
some general considerations.
Let (S,�,µ) be a measure space. A set A∈� is said to be an atom for µ if

µ(A) > 0 and µ(B) = 0 for all B ⊂ A with B∈�. The measure µ is said to be
non-atomic if no such atoms exist. In this case and if µ is σ -finite then there
are a continuuum of values for µ i.e. if A∈� and a ∈R with µ(A) > a > 0
then there exists B∈� with B ⊂ A such that µ(B) = a (see e.g. Dudley [98],
section 3.5).
From now on we will assume that µ is �-finite. We define

�0 = {A∈�;µ(A) <∞},

then �0 is a ring of subsets (i.e. it is closed under set theoretic differences and
finite unions). A key role in our work is played by the following result.

Lemma 5.9.1 If (S,�,µ) is a�-finite non-atomicmeasure space then for each
A∈�0 − {∅} and each ε > 0 there exists M ∈N and disjoint B1, . . . ,BM ∈�0

such that max1≤j≤M µ(Bj) ≤ ε and

A =
M⋃
j=1

Bj.

Proof We take M = 1 + max{k ∈N;µ(A) ≥ kε}. By non-atomicity we can
find B1 ∈� with B1 ⊂ A such that µ(B1) = ε. Then µ(A − B1) ≥ (M − 2)ε
and we can similarly find B2 ∈� with B2 ⊂ A − B1 with µ(B2) = ε. We
continue in this fashion to obtain disjoint B1, . . . ,BM−1 where eachµ(Bi) = ε.
We complete the proof by choosing BM = A−⋃M−1

j=1 Bj. �
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Now fix n∈N and consider the linear subspace En of the real Hilbert space
L2(Sn,�n,µn) which comprises all functions of the form

f =
N∑

j1,..., jn=1
aj1,..., jnχAj1×···×Ajn ,

whereN ∈N, each aj1,..., jn ∈R, and is zero whenever two or more of the indices
j1, . . . , jn coincide and A1, . . . ,AN are disjoint sets in �0. Our aim is to show
that En is dense in L2(Sn,�n,µn).

Lemma 5.9.2 If A = A1 × · · · × An ∈�n with Ai ∈�0 (1 ≤ i ≤ n) then given
any ε > 0 there exists g ∈ En such that ||χA − g|| < ε.

Proof (cf Huang and Yu [159], pp. 68–9.) Fix β > 0. By Lemma 5.9.1, there

existsMj ∈N and B(j)
1 , . . . ,B(j)

Mj
such that A =⋃Mj

i=1 B
(j)
i with µ(B(j)

i ) < (βε)
1
n

for each 1 ≤ i ≤ Mj and for each 1 ≤ j ≤ n. After a relabelling exercise we
can assert the existence of N ∈N and disjoint sets C1, . . . ,CN with Cj ∈�0 and

µ(Cj) < (βε)
1
n for 1 ≤ j ≤ N such that

χA =
N∑

j1,..., jn=1
αj1,..., jnχCj1×···×Cjn

=
∑
S

αj1,..., jnχCj1×···×Cjn +
∑
Sc

αj1,..., jnχCj1×···×Cjn ,

where each αj1,...,jn ∈ {0, 1} and S ={(j1, . . . , jn)∈ {1, . . . ,N }n; j1 �= j2 �= · · ·
�= jn}. The required result easily follows from here on taking
g= ∑S αj1,..., jnχCj1×···×Cjn and β = #Sc. �

Theorem 5.9.3 En is dense in L2(Sn,�n,µn).

Proof Let S denote the space of all simple functions of the form
f = ∑N

j1,..., jn=1 cj1,..., jnχAj1×···×Ajn where N ∈N, cj1,..., jn ∈R and Aj1 , . . . ,
AjN ∈�0 for 1 ≤ j1, . . . , jn ≤ N . Fix ε > 0. By Lemma 5.9.2 for each
(j1, . . . , jn)∈ {1, . . . ,N }n, there exists gj1,..., jn ∈ En such that ||χAj1×···×Ajn −
gj1,..., jn || < ε

2α where α = ∑N
j1,..., jn=1 |cj1,..., jn |. Now define h =∑N

j1,..., jn=1 cj1,..., jngj1,..., jn then h∈ En and if f ∈ S is as above we have

||f − h|| ≤
N∑

j1,..., jn=1
|cj1,..., jn

∣∣∣∣∣∣χAj1×···×Ajn − gj1,..., jn

∣∣∣∣∣∣ < ε

2
.
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The required result follows easily from here on using the triangle inequality
and the fact that S is dense in L2(Sn,�n,µn). �

In Section 5.4.3 we apply Theorem 5.9.3 in the case where S = [0, T ] ×
R,� = B(S) and µ = λ × ρ. µ is clearly σ -finite and inherits non-atomicity
from λ. The proof of Proposition 5.4.2 then follows from Theorem 5.9.3 by
using the fact that for any A∈B(S) with µ(A) <∞ and any ε > 0 there exists
N ∈N and disjoint sets of the form J1×B1, . . . , JN ×BN where Jk is an interval
in [0, T ] and Bk ∈B(R) with ρ(Bk) <∞ for 1 ≤ k ≤ N such that

µ

(
A−

N⋃
k=1

Jk × Bk

)
< ε.
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Stochastic differential equations

Summary After a review of first-order differential equations and their associated

flows, we investigate stochastic differential equations (SDEs) driven by Brownian

motion and an independent Poisson random measure. We establish the existence and

uniqueness of solutions under the standard Lipschitz and growth conditions, using the

Picard iteration technique. We then turn our attention to investigating properties of

the solution. These are exhibited as stochastic flows and as multiplicative cocycles. The

interlacing structure is established, and we prove the continuity of solutions as a func-

tion of their initial conditions. We then show that solutions of SDEs are Feller processes

and compute their generators. Perturbations are studied via the Feynman–Kac formula.

We briefly survey weak solutions and associated martingale problems. The existence of

Lyapunov exponents for solutions of SDES will be investigated.

Finally, we study solutions of Marcus canonical equations and discuss the respec-

tive conditions under which these yield stochastic flows of homeomorphisms and

diffeomorphisms.

One of the most important applications of Itô’s stochastic integral is in the
construction of stochastic differential equations (SDEs). These are important
for a number of reasons.

(1) Their solutions form an important class of Markov processes where the
infinitesimal generator of the corresponding semigroup can be constructed
explicitly. Important subclasses that can be studied in this way include
diffusion and jump-diffusion processes.

(2) Their solutions give rise to stochastic flows, and hence to interesting
examples of random dynamical systems.

(3) They have many important applications to, for example, filtering, control,
finance and physics.

354
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Before we begin our study of SDEs, it will be useful to remind ourselves of
some of the key features concerning the construction and elementary properties
of ordinary differential equations (ODEs).

6.1 Differential equations and flows

Our main purpose in this section is to survey some of those aspects of ODEs
that recur in the study of SDEs. We aim for a simple pedagogic treatment that
will serve as a useful preparation and we do not attempt to establish optimal
results. We mainly follow Abraham et al. [1], section 4.1.
Let b :Rd → Rd , so that b = (b1, . . . , bd)where bi :Rd → R for 1 ≤ i ≤ d .
We study the vector-valued differential equation

dc(t)

dt
= b(c(t)), (6.1)

with fixed initial condition c(0) = c0 ∈Rd , whose solution, if it exists, is a
curve (c(t), t ∈R) in Rd .
Note that (6.1) is equivalent to the system of ODEs

dci(t)

dt
= bi(c(t))

for each 1 ≤ i ≤ d .
To solve (6.1), we need to impose some structure on b. We say that b is

(globally) Lipschitz if there exists K > 0 such that, for all x, y ∈Rd ,

|b(x)− b(y)| ≤ K |x − y|. (6.2)

The expression (6.2) is called a Lipschitz condition on b and the constant K
appearing therein is called a Lipschitz constant. Clearly if b is Lipschitz then it
is continuous.

Exercise 6.1.1 Show that if b is differentiable with bounded partial derivatives
then it is Lipschitz.

Exercise 6.1.2 Deduce that if b is Lipschitz then it satisfies a linear growth
condition

|b(x)| ≤ L(1+ |x|)

for all x ∈Rd , where L = max{K , |b(0)|}.
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The following existence and uniqueness theorem showcases the important
technique of Picard iteration. We first rewrite (6.1) as an integral equation,

c(t) = c(0)+
∫ t

0
b(c(s))ds,

for each t ∈R. Readers should note thatwe are adopting the conventionwhereby∫ t
0 is understood to mean

∫ 0
t when t < 0.

Theorem 6.1.3 If b :Rd → Rd is (globally) Lipschitz, then there exists a
unique solution c :R → Rd of the initial value problem (6.1).

Proof Define a sequence (cn, n∈N ∪ {0}), where cn :R → Rd is defined by

c0(t) = c0, cn+1(t) = c0 +
∫ t

0
b(cn(s))ds,

for each n ≥ 0, t ∈R. Using induction and Exercise 6.1.2, it is straightforward
to deduce that each cn is integrable on [0, t], so that the sequence is well defined.

Define αn = cn − cn−1 for each n∈N. By Exercise 6.1.2, for each t ∈R

we have

|α1(t)| ≤ |b(c0)| |t| ≤ Mt, (6.3)

where M = L(1+ |c0|).
Using the Lipschitz condition (6.2), for each t ∈R, n∈N, we obtain

|αn+1(t)| ≤
∫ t

0
|b(cn(s))− b(cn−1(s))|ds ≤ K

∫ t

0
|αn(s)|ds (6.4)

and a straightforward inductive argument based on (6.3) and (6.4) yields the
estimate

|αn(t)| ≤ MKn−1|t|n
n!

for each t ∈R. Hence for all t > 0 and n,m∈N with n > m, we have

sup
0≤s≤t

|cn(s)− cm(s)| ≤
n∑

r=m+1
sup
0≤s≤t

|αr(s)| ≤
n∑

r=m+1

MKr−1|t|r
r! .

Hence (cn, n∈N) is uniformly Cauchy and so uniformly convergent on finite
intervals [0, t] (and also on intervals of the form [−t, 0] by a similar argument.)
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Define c = (c(t), t ∈R) by

c(t) = lim
n→∞ cn(t) for each t ∈R.

To see that c solves (6.1), note first that by (6.2) and the uniformity of the
convergence we have, for each t ∈R, n∈N,∣∣∣∣∫ t

0
b(c(s))ds−

∫ t

0
b(cn(s))ds

∣∣∣∣ ≤ ∫ t

0
|b(c(s))− b(cn(s))|ds

≤ Kt sup
0≤s≤t

|c(s)− cn(s)|

→ 0 as n→∞.

Hence, for each t ∈R,

c(t)− c(0)+
∫ t

0
b(c(s))ds = lim

n→∞

[
cn+1(t)− c(0)+

∫ t

0
b(cn(s))ds

]
= 0.

Finally, we show that the solution is unique. Assume that c′ is another solution
of (6.1) and, for each n∈N, t ∈R, define

βn(t) = cn(t)− c′(t),

so that βn+1(t) =
∫ t
0 b(βn(s))ds.

Arguing as above, we obtain the estimate

|βn(t)| ≤ MKn−1|t|n
n! ,

from which we deduce that each limn→∞ βn(t) = 0, so that c(t) = c′(t) as
required. �

Note that by the uniformity of the convergence in the proof of Theorem 6.1.3
the map t → c(t) is continuous from R to Rd .
Now that we have constructed unique solutions to equations of the type (6.1),

we would like to explore some of their properties. A useful tool in this regard
is Gronwall’s inequality, which will also play a major role in the analysis of
solutions to SDEs.
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Proposition 6.1.4 (Gronwall’s inequality) Let [a, b] be a closed interval inR

and α,β : [a, b] → R be non-negative with α locally bounded and β integrable.
If there exists C ≥ 0 such that, for all t ∈ [a, b],

α(t) ≤ C +
∫ t

a
α(s)β(s)ds, (6.5)

then we have

α(t) ≤ C exp

[∫ t

a
β(s)ds

]
for all t ∈ [a, b].
Proof First assume that C > 0 and let h : [a, b] → (0,∞) be defined by

h(t) = C +
∫ t

a
α(s)β(s)ds

for all t ∈ [a, b]. By Lebesgue’s differentiation theorem (see e.g. Cohn [80],
p. 187), h is differentiable on (a, b), with

h′(t) = α(t)β(t) ≤ h(t)β(t)

by (6.5), for (Lebesgue) almost all t ∈ (a, b).
Hence h′(t)/h(t) ≤ β(t) (a.e.) and the required result follows on integrating

both sides between a and b.
Now suppose that C = 0; then, by the above analysis, for each t ∈ [a, b]

we have α(t) ≤ (1/n) exp
[ ∫ b

a β(s)ds
]
for each n∈N, hence α(t) = 0 as

required. �

Note that in the case where equality holds in (6.5), Gronwall’s inequality is
(essentially) just the familiar integrating factor method for solving first-order
linear differential equations.
Now let us return to our consideration of the solutions to (6.1). There are two

useful perspectives from which we can regard these.

• If we fix the initial condition c0 = x ∈R then the solution is a curve
(c(t), t ∈R) in Rd passing through x when t = 0.

• If we allow the initial condition to vary, we can regard the solution as a
function of two variables (c(t, x), t ∈R, x ∈Rd ) that generates a family of
curves.



6.1 Differential equations and flows 359

It is fruitful to introduce some notation that allows us to focus more clearly
on our ability to vary the initial conditions. To this end we define for each t ∈R,
x ∈Rd ,

ξt(x) = c(t, x),

so that each ξt :Rd → Rd .

Lemma 6.1.5 For each t ∈R, x, y ∈Rd ,

|ξt(x)− ξt(y)| ≤ eK |t||x − y|,

so that, in particular, each ξt :Rd → Rd is continuous.

Proof Fix t, x and y and let γt = |ξt(x)− ξt(y)|. By (6.1) and (6.2) we obtain

γt ≤ |x − y| +
∫ t

0
|b(ξs(x))− b(ξs(y))|ds ≤ |x − y| + K

∫ t

0
γsds,

and the result follows by Gronwall’s inequality. �

Suppose now that b is C1; then we may differentiate b at each x ∈Rd , and
its derivative Db(x) :Rd → Rd is the Jacobian matrix of b. We will now
investigate the implications of the smoothness of b for the solution (ξt , t ∈R).

Exercise 6.1.6 Let (ξt , t ≥ 0) be the solution of (6.1) and suppose that
b∈C1

b (R
d ). Deduce that for each x ∈Rd there is a unique solution to the

d × d -matrix-valued differential equation

d

dt
γ (t, x) = Db(ξt(x))γ (t, x)

with initial condition γ (0, x) = I .

Theorem 6.1.7 If b∈Ck
b (R

d ) for some k ∈N, then ξt ∈Ck(Rd ) for
each t ∈R.

Proof We begin by considering the case k = 1.
Let γ be as in Exercise 6.1.6. We will show that ξt is differentiable and that

Dξt(x) = γ (t, x) for each t ∈R, x ∈Rd .
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Fix h∈Rd and let θ(t, h) = ξt(x + h)− ξt(x). Then, by (6.1),

θ(t, h)− γ (t, x)(h) =
∫ t

0

[
b(ξs(x + h))− b(ξs(x))

]
ds

−
∫ t

0
Db(ξs(x))γ (s, x)(h)ds

= I1(t)+ I2(t), (6.6)

where

I1(t) =
∫ t

0

[
b(ξs(x + h))− b(ξs(x))− Db(ξs(x))θ(s, h)

]
ds

and

I2(t) =
∫ t

0
Db(ξs(x))

(
θ(s, h)− γ (s, x)(h)

)
ds.

By the mean value theorem,

|b(ξs(x + h))− b(ξs(x))| ≤ C|θ(s, h)|,
where C = d supy ∈Rd max1≤i,j≤d |Db(y)ij|. Hence, by Lemma 6.1.5,

|I1(t)| ≤ 2Ct sup
0≤s≤t

|θ(s, h)| ≤ 2Ct|h|eK |t|, (6.7)

while

|I2(t)| ≤ C ′
∫ t

0
|θ(s, h)− γ (s, x)(h)|ds,

where C ′ = Cd1/2.
Substitute (6.7) and (6.8) in (6.6) and apply Gronwall’s inequality to

deduce that

|θ(t, h)− γ (t, x)(h)| ≤ 2Ct|h|e(K+C ′)|t|,
from which the required result follows. From the result of Exercise 6.1.6, we
also have the ‘derivative flow’ equation

dDξt(x)

dt
= Db(ξt(x))Dξt(x).

The general result is proved by induction using the argument given above. �
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Exercise 6.1.8 Under the conditions ofTheorem6.1.7, show that, for all x ∈Rd ,
the map t → ξt(x) is Ck+1.

We recall that a bijection φ :Rd → Rd is a homeomorphism if φ and φ−1
are both continuous and a Ck-diffeomorphism if φ and φ−1 are both Ck .
A family φ = {φt , t ∈R} of homeomorphisms of Rd is called a flow if

φ0 = I and φsφt = φs+t (6.8)

for all s, t ∈R. If each φt is a Ck -diffeomorphism, we say that φ is a flow of
Ck-diffeomorphisms.

Equation (6.8) is sometimes called the flow property. Note that an immediate
consequence of it is that

φ−1t = φ−t

for all t ∈R, so that (6.8) tells us that φ is a one-parameter group of homeo-
morphisms of Rd .

Lemma 6.1.9 If φ = {φt , t ≥ 0} is a family of Ck-mappings from Rd to
Rd such that φ0 = I and φsφt = φs+t for all s, t ∈R then φ is a flow of
Ck-diffeomorphisms.

Proof It is enough to observe that, for all t ∈R, we have φ−tφt = φtφ−t = I , so
that each φt has a two-sided Ck -inverse and thus is a Ck -diffeomorphism. �

Theorem 6.1.10 Let ξ = (ξt , t ∈R) be the unique solution of (6.1). If
b∈Ck

b (R
d ), then ξ is a flow of Ck-diffeomorphisms.

Proof We seek to apply Lemma 6.1.9. By Theorem 6.1.7 we see that each
ξt ∈Ck(Rd ), so we must establish the flow property.
The fact that ξ0= I is immediate from (6.1). Now, for each x ∈Rd and s, t ∈R,

ξt+s(x) = x +
∫ t+s

0
b(ξu(x))du

= x +
∫ s

0
b(ξu(x))du +

∫ t+s

s
b(ξu(x))du

= ξs(x)+
∫ t+s

s
b(ξu(x))du

= ξs(x)+
∫ t

0
b(ξu+s(x))du.
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However, we also have

ξt(ξs(x)) = ξs(x)+
∫ t

0
b(ξu(ξs(x)))du,

and it follows that ξt+s(x) = ξt(ξs(x)) by the uniqueness of solutions to (6.1).
�

Exercise 6.1.11 Deduce that if b is Lipschitz then the solution ξ = (ξ(t), t ∈R)

is a flow of homeomorphisms.

Exercise 6.1.12 Let ξ be the solution of (6.1) and let f ∈Ck(Rd ); show that

df

dt
(ξt(x)) = bi(ξt(x))

∂f

∂xi
(ξt(x)). (6.9)

If b∈Ck(Rd ), it is convenient to consider the linear mapping Y :Ck+1
(Rd )→Ck(Rd ) defined by

(Yf )(x) = bi(x)
∂f

∂xi
(x)

for each f ∈Ck(Rd ), x ∈Rd . The mapping Y is called a Ck-vector field. We
denoted as Lk(R

d ) the set of all Ck -vector fields on Rd .

Exercise 6.1.13 Let X , Y and Z ∈Lk(R
d ).

(1) Show that αX + βY ∈Lk(R
d ) for all α,β ∈R.

(2) Show that the commutator [X , Y ] ∈Lk(R
d ), where

([X , Y ]f )(x) = (X (Y (f ))(x)− (Y (X (f )
)
(x)

for each f ∈Ck(Rd ), x ∈Rd .
(3) Establish the Jacobi identity

[X , [Y , Z]] + [Y , [Z ,X ]] + [Z , [X , Y ]] = 0.

We saw in the last exercise thatLk(R
d ) is a Lie algebra, i.e. it is a real vector

space equipped with a binary operation [·, ·] that satisfies the Jacobi identity
and the condition [X ,X ] = 0 for all X ∈Lk(R

d ). Note that a Lie algebra is not
an ‘algebra’ in the usual sense since the commutator bracket is not associative
(we have the Jacobi identity instead).
In general, a vector field Y = bi∂i is said to be complete if the associated

differential equation (6.1) has a unique solution (ξ(t)(x), t ∈R) for all initial
conditions x ∈Rd . The vector field Y fails to be complete if the solution only
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exists locally, e.g. for all t ∈ (a, b) where −∞ < a < b < ∞, and ‘blows up’
at a and b.

Exercise 6.1.14 Let d = 1 and Y (x) = x2d/dx for each x ∈R. Show that Y is
not complete.

IfY is complete, each (ξ(t)(x), t ∈R) is called the integral curve ofY through
the point x, and the notation ξ(t)(x) = exp(Y )(x) is often employed to empha-
sise that, from an infinitesimal viewpoint, Y is the fundamental object from
which all else flows. We call ‘exp’ the exponential map. These ideas all extend
naturally to the more general set-up where Rd is replaced by a differentiable
manifold.

6.2 Stochastic differential equations – existence and uniqueness

We now turn to the main business of this chapter. Let (�,F ,P) be a probability
space equipped with a filtration {Ft , t ≥ 0} that satisfies the usual hypotheses.
Let B = (B(t), t ≥ 0) be an r-dimensional standard Brownian motion and N
an independent Poisson random measure on R+ × (Rd − {0}) with associated
compensator Ñ and intensity measure ν, where we assume that ν is a Lévy
measure. We always assume that B and N are independent of F0.

In the last section, we considered ODEs of the form

dy(t)

dt
= b(y(t)), (6.10)

whose solution (y(t), t ∈R) is a curve in Rd .
We begin by rewriting this ‘Itô-style’ as

dy(t) = b(y(t))dt. (6.11)

Now restrict the parameter t to the non-negative half-line R+ and consider
y = (y(t), t ≥ 0) as the evolution in time of the state of a system from some
initial value y(0).Wenowallow the system to be subject to randomnoise effects,
which we introduce additively in (6.11). In general, these might be described in
terms of arbitrary semimartingales (see e.g. Protter [298]), but in line with the
usual philosophy of this book, we will use the ‘noise’ associated with a Lévy
process.
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We will focus on the following SDE:

dY (t) = b(Y (t−))dt + σ(Y (t−))dB(t)

+
∫
|x|<c

F(Y (t−), x)Ñ (dt, dx)

+
∫
|x|≥c

G(Y (t−), x)N (dt, dx), (6.12)

which is a convenient shorthand for the system of SDEs

dY i(t) = bi(Y (t−))dt + σ i
j (Y (t−))dBj(t)

+
∫
|x|<c

Fi(Y (t−), x)Ñ (dt, dx)

+
∫
|x|≥c

Gi(Y (t−), x)N (dt, dx), (6.13)

where each 1 ≤ i ≤ d . Here themappings bi :Rd → R, σ i
j :R

d → R,Fi :Rd×
Rd → R and Gi :Rd × Rd → R are all assumed to be measurable for 1 ≤
i ≤ d , 1 ≤ j ≤ r. Further conditions on these mappings will follow later. The
convenient parameter c∈ [0,∞] allows us to specify what we mean by ‘large’
and ‘small’ jumps in specific applications. Quite often, it will be convenient
to take c = 1. If we want to put both ‘small’ and ‘large’ jumps on the same
footing we take c = ∞ (or 0), so that the term involving G (or F , respectively)
is absent in (6.12)).
We will always consider (6.12), or equivalently (6.13), as a random initial-

value problem with a fixed initial condition Y (0) = Y0, where Y0 is a given
Rd -valued random vector. Sometimes we may want to fix Y0 = y0 (a.s.), where
y0 ∈Rd .
In order to give (6.13) a rigorous meaning we rewrite it in integral form, for

each t ≥ 0, 1 ≤ i ≤ d , as

Y i(t) = Y i(0)+
∫ t

0
bi(Y (s−))ds+

∫ t

0
σ i
j (Y (s−))dBj(s)

+
∫ t

0

∫
|x|<c

Fi(Y (s−), x)Ñ (ds, dx)

+
∫ t

0

∫
|x|≥c

Gi(Y (s−), x)N (ds, dx) a.s. (6.14)
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The solution to (6.14), when it exists, will be anRd -valued stochastic process
(Y (t), t ≥ 0) with each Y (t) = (Y 1(t), . . . , Y d(t)). Note that we are implicitly
assuming that Y has left-limits in our formulation of (6.14), and we will in fact
be seeking càdlàg solutions so that this is guaranteed.
As we have specified the noise B and N in advance, any solution to (6.14) is

sometimes called a strong solution in the literature. There is also a notion of a
weak solution, which we will discuss in Section 6.7.3.We will require solutions
to (6.14) to be unique, and there are various notions of uniqueness available.
The strongest of these, which we will look for here, is to require our solutions
to be pathwise unique, i.e. if Y1 = (Y1(t), t ≥ 0) and Y2 = (Y2(t), t ≥ 0) are
both solutions to (6.14) then P

(
Y1(t) = Y2(t) for all t ≥ 0

) = 1.
The term in (6.14) involving large jumps is that controlled by G. This is

easy to handle using interlacing, and it makes sense to begin by omitting this
term and concentrate on the study of the equation driven by continuous noise
interspersed with small jumps. To this end, we introduce the modified SDE

dZ(t)=b(Z(t−))dt+σ(Z(t−))dB(t)+
∫
|x|<c

F(Z(t−), x)Ñ (dt, dx),

(6.15)

with initial condition Z(0) = Z0.
We now impose some conditions on the mappings b, σ and F that will enable

us to solve (6.15). First, for each x, y ∈Rd we introduce the d × d matrix

a(x, y) = σ(x)σ (y)T,

so that aik(x, y) =∑r
j=1 σ i

j (x)σ
k
j (y) for each 1 ≤ i, k ≤ d .

We will have need of the matrix seminorm on d × d matrices, given by

||a|| =
d∑
i=1

|aii |.

We impose the following two conditions.

(C1) Lipschitz condition There exists K1 > 0 such that, for all y1, y2 ∈Rd ,

|b(y1)− b(y2)|2 + ||a(y1, y1)− 2a(y1, y2)+ a(y2, y2)||

+
∫
|x|<c

|F(y1, x)− F(y2, x)|2ν(dx) ≤ K1|y1 − y2|2. (6.16)
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(C2) Growth condition There exists K2 > 0 such that, for all y ∈Rd ,

|b(y)|2 + ||a(y, y)|| +
∫
|x|<c

|F(y, x)|2ν(dx) ≤ K2(1+ |y|2).

(6.17)

We make some comments on these.
First, the condition ||a(y1, y1)− 2a(y1, y2) + a(y2, y2)|| ≤ L|y1 − y2|2, for

some L > 0, is sometimes called bi-Lipschitz continuity. It may seem at odds
with the other terms on the left-hand side of (6.16) but this is an illusion. A
straightforward calculation yields

||a(y1, y1)− 2a(y1, y2)+ a(y2, y2)|| =
d∑
i=1

r∑
j=1

[
σ i
j (y1)− σ i

j (y2)
]2,

and if you take d = r = 1 then

|a(y1, y1)− 2a(y1, y2)+ a(y2, y2)| = |σ(y1)− σ(y2)|2.

Exercise 6.2.1 If a is bi-Lipschitz continuous, show that there exists L1 > 0
such that

||a(y, y)|| ≤ L1(1+ ||y||2)

for all y ∈Rd .

Our second comment on the conditions is this: if you take F = 0, it follows
from Exercises 6.1.2 and 6.2.1 that the growth condition (C2) is a consequence
of the Lipschitz condition (C1). Hence in the case of non-zeroF , in the presence
of (C1), (C2) is equivalent to the requirement that there existsM > 0 such that,
for all y ∈Rd , ∫

|x|<c
|F(y, x)|2ν(dx) ≤ M (1+ |y|2).

Exercise 6.2.2

(1) Show that if ν is finite, then the growth condition is a consequence of the
Lipschitz condition.

(2) Show that ifF(y, x)=H (y)f (x) for all y ∈Rd , |x| ≤ c, whereH is Lipschitz
continuous and

∫
|x|≤c |f (x)|2ν(dx)<∞, then the growth condition is a

consequence of the Lipschitz condition.
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Having imposed conditions on our coefficients, we now discuss the initial
condition. Throughout this chapter, wewill always deal with the standard initial
condition Y (0) = Y0 (a.s.), for which Y0 is F0-measurable. Hence Y (0) is
independent of the noise B and N .
Throughout the remainder of this chapter, we will frequently employ the

following inequality for n∈N and x1, x2, . . . , xn ∈R:

|x1 + x2 + · · · + xn|2 ≤ n(|x1|2 + |x2|2 + · · · + |xn|2). (6.18)

This is easily verified by using induction and the Cauchy–Schwarz inequality.
Our existence and uniqueness theorem will employ the technique of Picard

iteration, which served us well in the ODE case (Theorem 6.1.3); cf. Ikeda and
Watanabe [167], chapter 4, section 9.

Theorem 6.2.3 Assume the Lipschitz and growth conditions. There exists a
unique solution Z = (Z(t), t ≥ 0) to the modified SDE (6.15) with the standard
initial condition. The process Z is adapted and càdlàg.

Our strategy is to first carry out the proof of existence and uniqueness in the
case E(|Z0|2) <∞ and then consider the case E(|Z0|2) = ∞.

Proof of existence for E(|Z0|2)<∞ Define a sequence of processes
(Zn, n∈N ∪ {0}) by Z0(t) = Z0 and, for all n∈N ∪ {0}, t ≥ 0,

dZn+1(t) = b(Zn(t−))dt + σ(Zn(t−))dB(t)

+
∫

|x|<c
F(Zn(t−), x)Ñ (dt, dx).

A simple inductive argument and use of Theorem 4.2.12 demonstrates that each
Zn is adapted and càdlàg.
For each 1 ≤ i ≤ d , n∈N ∪ {0}, t ≥ 0, we have

Zin+1(t)− Zin(t)

=
∫ t

0

[
bi(Zn(s−))− bi(Zn−1(s−)

]
ds

+
∫ t

0

[
σ i
j (Zn(s−))− σ i

j (Zn−1(s−))
]
dB j(s)

+
∫ t

0

∫
|x|<c

[
Fi(Zn(s−), x)− Fi(Zn−1(s−), x)

]
Ñ (ds, dx).

We need to obtain some inequalities, and we begin with the case n = 0.
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First note that on using the inequality (6.18), with n = 3, we have

|Z1(t)− Z0(t)|2

=
d∑
i=1

[∫ t

0
bi(Z(0))ds+

∫ t

0
σ i
j (Z(0))dB

j(s)

+
∫ t

0

∫
|x|<c

Fi(Z(0), x)Ñ (ds, dx)

]2

≤ 3
d∑
i=1

{[∫ t

0
bi(Z(0))ds

]2
+
[∫ t

0
σ i
j (Z(0))dB

j(s)

]2

+
[∫ t

0

∫
|x|<c

Fi(Z(0), x)Ñ (ds, dx)

]2}

= 3
d∑
i=1

{
t2
[
bi(Z(0))

]2 + [σ i
j (Z(0))B

j(t)
]2

+
[∫

|x|<c
Fi(Z(0), x)Ñ (t, dx)

]2}

for each t≥ 0. We now take expectations and apply Doob’s martingale
inequality to obtain

E

(
sup
0≤s≤t

|Z1(s)− Z0(s)|2
)

≤ 3t2 E(|b(Z(0))|2)+ 12t E(||a(Z(0), Z(0))||)

+ 12t
∫
|x|<c

E(|F(Z(0), x)|)2 ν(dx).

On applying the growth condition (C2), we can finally deduce that

E

(
sup
0≤s≤t

|Z1(s)− Z0(s)|2
)
≤ C1(t)tK2(1+ E(|Z(0)|2)), (6.19)

where C1(t) = max{3t, 12}.
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We now consider the case for general n∈N. Arguing as above, we obtain

E

(
sup
0≤s≤t

|Zn+1(s)− Zn(s)|2
)

≤
d∑
i=1

[
3 E

(
sup
0≤s≤t

{∫ s

0

[
bi
(
Zn(u−)

)− bi(Zn−1(u−))
]
du

}2)

+ 12 E

({∫ t

0

[
σ i
j (Zn(s−))− σ i

j (Zn−1(s−))
]
dBj(s)

}2)

+ 12 E

({∫ t

0

∫
|x|<c

[
Fi(Zn(s−), x)

−Fi(Zn−1(s−), x)
]
Ñ (ds, dx)

}2)]
.

By the Cauchy–Schwarz inequality, for all s ≥ 0,

{∫ s

0

[
bi(Zn(u−))− bi(Zn−1(u−))

]
du

}2
≤ s
∫ s

0

[
bi(Zn(u−))− bi(Zn−1(u−))

]2
du

and so, by Itô’s isometry, we obtain

E

(
sup
0≤s≤t

|Zn+1(s)− Zn(s)|2
)

≤ C1(t)

[ ∫ t

0
E
(|b(Zn(s−))− b(Zn−1(s−))|2)ds

+
∫ t

0
E
(∣∣∣∣a(Zn(s−), Zn(s−))− 2a(Zn(s−), Zn−1(s−))

+ a(Zn−1(s−), Zn−1(s−))
∣∣∣∣)ds

+
∫ t

0

∫
|x|<c

E
(∣∣F(Zn(s−), x)−F(Zn−1(s−), x)

∣∣2)ν(dx)ds] .
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We now apply the Lipschitz condition (C1) to find that

E

(
sup
0≤s≤t

|Zn+1(s)− Zn(s)|2
)

≤ C1(t)K1

∫ t

0
E

(
sup

0≤u≤s
|Zn(u)− Zn−1(u)|2

)
ds (6.20)

By induction based on (6.19) and (6.20), we thus deduce the key estimate

E

(
sup
0≤s≤t

|Zn(s)− Zn−1(s)|2
)
≤ C2(t)nKn

3

n! (6.21)

for all n∈N, where C2(t) = tC1(t) and

K3 = max
{
K1, K2

[
1+ E(|Z(0)|2)]}.

Our first observation is that (Zn(t), t ≥ 0) is convergent in L2 for each t ≥ 0.
Indeed, for each m, n∈N we have (using || · ||2 = [E(| · |2)]1/2 to denote the
L2-norm), for each 0 ≤ s ≤ t,

||Zn(s)− Zm(s)||2 ≤
n∑

r=m+1
||Zr(s)− Zr−1(s)||2 ≤

n∑
r=m+1

C2(t)r/2K
r/2
3

(r!)1/2 ,

and, since the series on the right converges, we have that each (Zn(s), n∈N) is
Cauchy and hence convergent to some Z(s)∈ L2(�,F ,P). We denote as Z the
process (Z(t), t ≥ 0). A standard limiting argument yields the useful estimate

||Z(s)− Zn(s)||2 ≤
∞∑

r=n+1

C2(t)r/2K
r/2
3

(r!)1/2 , (6.22)

for each n∈N ∪ {0}, 0 ≤ s ≤ t.
We also need to establish the almost sure convergence of (Zn, n∈N).

Applying the Chebyshev–Markov inequality in (6.21), we deduce that

P

(
sup
0≤s≤t

|Zn(s)− Zn−1(s)| ≥ 1

2n

)
≤ [4K3C2(t)]n

n! ,
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from which we see that

P

(
lim sup
n→∞

sup
0≤s≤t

|Zn(s)− Zn−1(s)| ≥ 1

2n

)
= 0,

byBorel’s lemma.Arguing as inTheorem2.6.2, we deduce that (Zn, n∈N∪{0})
is almost surely uniformly convergent on finite intervals [0, t] to Z , from which
it follows that Z is adapted and càdlàg.
Now we must verify that Z really satisfies the SDE. Define a stochastic

process Z̃ = (Z̃(t), t ≥ 0) by

Z̃ i(t) = Zi0 +
∫ t

0
bi(Z(s−))ds+

∫ t

0
σ i
j (Z(s−))dBj(s)

+
∫ t

0

∫
|x|<c

Fi(Z(s−), x)Ñ (ds, dx)

for each 1 ≤ i ≤ d , t ≥ 0. Hence, for each n∈N ∪ {0},

Z̃ i(t)− Zin(t) =
∫ t

0

[
bi(Z(s−))− bi(Zn(s−))

]
ds

+
∫ t

0

[
σ i
j (Z(s−))− σ i

j (Zn(s−))
]
dBj(s)

+
∫ t

0

∫
|x|<c

[
Fi(Z(s−), x)−Fi(Zn(s−), x)

]
Ñ (ds, dx).

Now using the same argument with which we derived (6.20) and then
applying (6.22), we obtain for all 0 ≤ s ≤ t <∞,

E(|Z̃(s)− Zn(s)|2) ≤ C1(t)K1

∫ t

0
E(|Z(u)− Zn(u)|2)du

≤ C2(t)K1 sup
0≤u≤t

E(|Z(u)− Zn(u)|2)

≤ C2(t)K1

 ∞∑
r=n+1

C2(t)r/2K
r/2
3

(r!)1/2

2

→ 0 as n→∞.

Hence each Z(s) = L2− limn→∞ Zn(s) and so, by uniqueness of limits, Z̃(s) =
Z(s) (a.s.) as required.
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Proof of uniqueness for E(|Z0|2) <∞ Let Z1 and Z2 be two distinct solutions
to (6.15). Hence, for each t ≥ 0, 1 ≤ i ≤ d ,

Zi1(t)− Zi2(t)

=
∫ t

0

[
bi(Z1(s−))− bi(Z2(s−))

]
ds

+
∫ t

0

[
σ i
j (Z1(s−))− σ i

j (Z2(s−))
]
dBj(s)

+
∫ t

0

∫
|x|<c

[
Fi(Z1(s−), x)− Fi(Z2(s−), x)

]
Ñ (ds, dx).

We again follow the same line of argument as used in deducing (6.20), to
find that

E

(
sup
0≤s≤t

|Z1(s)− Z2(s)|2
)

≤ C1(t)K1

∫ t

0
E

(
sup

0≤u≤s
|Z1(u)− Z2(u)|2

)
ds.

Thus, by Gronwall’s inequality, E
(
sup0≤s≤t |Z1(s)− Z2(s)|2

) = 0. Hence
Z1(s) = Z2(s) for all 0 ≤ s ≤ t (a.s.). By continuity of probability, we obtain,
as required,

P
(
Z1(t) = Z2(t) for all t ≥ 0

)
= P

( ⋂
N ∈N

(
Z1(t) = Z2(t) for all 0 ≤ t ≤ N

)) = 1.

Proof of existence and uniqueness for E(|Z0|2) = ∞ (cf. Itô [174]). For each
n∈N, define �N = {ω∈�; |Z0| ≤ N }. Then �N ⊆ �M whenever n ≤ M
and � = ⋃n∈N �N . Let ZN0 = Z0χ�N . By the above analysis, the equation
(6.15) with initial condition ZN0 has a unique solution (ZN (t), t ≥ 0). Clearly,
for M > N , ZM (t)(ω) = ZM−1(t)(ω) = · · · = ZN (t)(ω) for all t ≥ 0 and
almost all ω∈�N .

By continuity of probability, given any ε > 0 there exists n∈N such that
n > N ⇒ P(�n) > 1− ε. Then given any δ > 0, for all m, n > N ,

P

(
sup
t≥0

|Zn(t)− Zm(t)| > δ

)
< ε.
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Hence (Zn, n∈N) is uniformly Cauchy in probability and so is uniformly
convergent in probability to a process Z = (Z(t), t ≥ 0). We can extract a
subsequence for which the convergence holds uniformly (a.s.) and from this it
follows that Z is adapted, càdlàg and solves (6.15).
For uniqueness, suppose that Z ′ = (Z ′(t), t ≥ 0) is another solution to (6.15);

then, for allM ≥ N , Z ′(t)(ω) = ZM (t)(ω) for all t ≥ 0 and almost all ω∈�N .
For, suppose this fails to be true for someM ≥ N . DefineZ ′′M (t)(ω) = Z ′M (t)(ω)

forω∈�N andZ ′′M (t)(ω) = ZM (t)(ω) forω∈�c
N . ThenZ

′′
M andZM are distinct

solutions to (6.15)with the same initial conditionZM0 , and our earlier uniqueness
result gives the required contradiction. That P(Z(t) = Z ′(t) for all t ≥ 0) = 1
follows by a straightforward limiting argument, as above. �

Corollary 6.2.4 Let Z be the unique solution of (6.15) as constructed in The-
orem 6.2.3. If E(|Z0|2) < ∞ then E(|Z(t)|2) < ∞ for each t ≥ 0 and there
exists a constant D(t) > 0 such that

E(|Z(t)|2) ≤ D(t)
[
1+ E(|Z0|2)

]
.

Proof By (6.22) we see that, for each t ≥ 0, there exists C(t) ≥ 0 such that

||Z(t)− Z0||2 ≤
∞∑
n=0

||Zn(t)− Zn−1(t)||2 ≤ C(t).

Now

E(|Z(t)|2) ≤ 2E(|Z(t)− Z(0)|2)+ 2 E(|Z(0)|2),

and the required result follows with D(t) = 2max{1,C(t)2}. �

Exercise 6.2.5 Consider the SDE

dZ(t) = σ(Z(t−))dB(t)+
∫
|x|<c

F(Z(t−), x)Ñ (dt, dx)

satisfying all the conditions of Corollary 6.2.4. Deduce that Z is a square-
integrable martingale. Hence deduce that the discounted stock price S̃1
discussed in Section 5.6.3 is indeed a martingale, as was promised.

Exercise 6.2.6 Deduce that Z = (Z(t), t ≥ 0) has continuous sample paths,
where

dZ(t) = b(Z(t))dt + σ(Z(t))dB(t).
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(Hint: Use the uniformity of the convergence in Theorem 6.2.3 and recall the
discussion of Section 4.3.1)

Exercise 6.2.7 Show that the following Lipschitz condition on the matrix-
valued function σ(·) is a sufficient condition for the bi-Lipschitz continuity of
a(·) = σ(·)σ (·)T: there exists K > 0 such that, for each 1 ≤ i ≤ d , 1 ≤ j ≤ r,
y1, y2 ∈Rd ,

∣∣σ i
j (y1)− σ i

j (y2)
∣∣ ≤ K |y1 − y2|.

Having dealt with the modified equation, we can now apply a standard inter-
lacing procedure to construct the solution to the original equation (6.12). We
impose the following assumption on the coefficient G, which ensures that the
integrands in Poisson integrals are predictable.

Assumption 6.2.8 From now on we will assume that c > 0. We also require
that the mapping y→ G(y, x) is continuous for all x ≥ c.

Theorem 6.2.9 There exists a unique càdlàg adapted solution to (6.12).

Proof Let (τn, n∈N)be the arrival times for the jumps of the compoundPoisson
process (P(t), t ≥ 0), where each P(t) = ∫|x|≥c xN (t, dx). We then construct a
solution to (6.12) as follows:

Y (t) = Z(t) for 0 ≤ t < τ1,

Y (τ1) = Z(τ1−)+ G(Z(τ1−),�P(τ1)) for t = τ1,

Y (t) = Y (τ1)+ Z1(t)− Z1(τ1) for τ1 < t < τ2,

Y (τ2) = Y (τ2−)+ G(Y (τ2−),�P(τ2)) for t = τ1,

and so on, recursively. Here Z1 is the unique solution to (6.15) with ini-
tial condition Z1(0)= Y (τ1). Y is clearly adapted, càdlàg and solves (6.12).
Uniqueness follows by the uniqueness in Theorem 6.2.3 and the interlacing
structure. �

NoteTheorem 6.2.9 may be generalised considerably. More sophisticated tech-
niques were developed by Protter [298], chapter 5, and Jacod [186], pp. 451ff.,
in the case where the driving noise is a general semimartingale with jumps.
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In some problems we might require time-dependent coefficients and so we
study the inhomogeneous SDE

dY (t) = b(t, Y (t−))dt + σ(t, Y (t−))dB(t)

+
∫
|x|<c

F(t, Y (t−), x)Ñ (dt, dx)

+
∫
|x|>c

G(t, Y (t−), x)N (dt, dx). (6.23)

We can again reduce this problem by interlacing to the study of the modified
SDE with small jumps. In order to solve the latter we can impose the following
(crude) Lipschitz and growth conditions.
For each t > 0, there exists K1(t) > 0 such that, for all y1, y2 ∈Rd ,

|b(t, y1)− b(t, y2)| + ||a(t, y1, y1)− 2a(t, y1, y2)+ a(t, y2, y2)||

+
∫
|x|<c

|F(t, y1, x)− F(t, y2, x)|2ν(dx) ≤ K1(t)|y1 − y2|2.

There exists K2(t) > 0 such that, for all y ∈Rd ,

|b(t, y)|2 + ||a(t, y, y)|| +
∫
|x|<c

|F(t, y, x)|2 ≤ K2(t)(1+ |y|2),

where a(t, y1, y2) = σ(t, y1)σ (t, y2)T for each t ≥ 0, y1, y2 ∈Rd . We assume
that the mappings t → Ki(t)(i = 1, 2) are locally bounded and measurable.

Exercise 6.2.10 Show that (6.23) has a unique solution under the above
conditions.

The final variation which we will examine in this chapter involves local
solutions. Let T∞ be a stopping time and suppose that Y = (Y (t), 0 ≤ t < T∞)

is a solution to (6.12). We say that Y is a local solution if T∞ <∞ (a.s.) and a
global solution if T∞ = ∞ (a.s.). We call T∞ the explosion time for the SDE
(6.12). So far in this chapter we have looked at global solutions. If we want to
allow local solutions to (6.12) we can weaken our hypotheses to allow local
Lipschitz and growth conditions on our coefficients.More precisely we impose:
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(C3) Local Lipschitz condition For all n∈N and y1, y2 ∈Rd with
max{|y1|, |y2|} ≤ n, there exists K1(n) > 0 such that

|b(y1)− b(y2)| + ||a(y1, y1)− 2a(y1, y2)+ a(y2, y2)||

+
∫
|x|<c

|F(y1, x)− F(y2, x)|2ν(dx) ≤ K1(n)|y1 − y2|2.

(C4) Local Growth condition For all n∈N and for all y ∈Rd with |y| ≤ n,
there exists K2(n) > 0 such that

|b(y)|2 + ||a(y, y)|| +
∫
|x|<c

|F(y, x)|2 ≤ K2(n)(1+ |y|2).

We then have

Theorem 6.2.11 If we assume (C3) and (C4) and impose the standard initial
condition, then there exists a unique local solution Y = (Y (t), 0 ≤ t < T∞) to
the SDE (6.12).

Proof Once again we can reduce the problem by interlacing to the solution
of the modified SDE. The proof in this case is almost identical to the case of
equations driven by Brownian motion, and we refer the reader to the account
of Durrett [99] for the details. �

We may also consider backwards stochastic differential equations on a time
interval [0, T ]. We write these as follows (in the time-homogeneous case):

dY (t) = −b(Y (t))dt − σ(Y (t)) ·b dB(t)

−
∫
|x|<c

F(t, Y (t−), x) ·b Ñ (dt, dx)

−
∫
|x|>c

G(t, Y (t−), x)N (dt, dx),

where ·b denotes the backwards stochastic integral. The solution (when it exists)
is a backwards adapted process (Y (s); 0 ≤ s ≤ T ). Instead of an initial condi-
tion Y (0) = Y0 (a.s.) we impose a final condition Y (T ) = YT (a.s.). We then



6.3 Examples of SDEs 377

have the integral form

Y i(s) = Y i
T −

∫ T

s
bi(Y (u))du −

∫ T

s
σ i
j (Y (u)) ·b dBj(u)

−
∫ T

s

∫
|x|<c

Fi(Y (u), x) ·b Ñ (dt, dx)

−
∫ T

s

∫
|x|≥c

Gi(Y (u)), x)N (dt, dx) a.s.

for each 0 ≤ s ≤ T , 1 ≤ i ≤ d .
The theory of backwards SDEs can now be developed just as in the forward

case, so we can obtain the existence and uniqueness of solutions by imposing
Lipschitz and growth conditions on the coefficients and the usual independence
condition on YT .
Backwards SDEs with discontinuous noise have not been developed so thor-

oughly as the forward case. This may change in the future as more applications
are found; see e.g. Nualart and Schoutens [279], where backwards SDEs driven
by the Teugels martingales of Exercise 2.4.24 are applied to option pricing.
Other articles on backwards SDEs include Situ [336] and Ouknine [285].

6.3 Examples of SDEs

SDEs driven by Lévy processes

Let X = (X (t), t ≥ 0) be a Lévy process taking values in Rm. We denote its
Lévy–Itô decomposition as

X i(t) = λit + τ ij B
j(t)+

∫ t

0

∫
|x|<1

xiÑ (ds, dx)+
∫ t

0

∫
|x|≥1

xiN (ds, dx)

for each 1 ≤ i ≤ m, t ≥ 0. Here, as usual, λ∈Rm and (τ ij ) is a real-valued
m× r matrix.
For each 1 ≤ i ≤ d , 1 ≤ j ≤ m, let Lij :R

d → Rd be measurable, and form

the d × m matrix L(x) = (Lij(x)) for each x ∈Rd . We consider the SDE

dY (t) = L(Y (t−))dX (t), (6.24)

with standard initial condition Y (0) = Y0 (a.s.), so that, for each 1 ≤ i ≤ d ,

dY i(t) = Lij(Y (t−))dX j(t).
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This is of the same form as (6.12), with coefficients given by b(·) =
L(·)λ, σ(·) = L(·)τ , F(·, x) = L(·)x for |x| < 1 and G(·, x) = L(·)x for
|x| ≥ 1.
To facilitate discussion of the existence and uniqueness of solutions of (6.24),

we introduce two new matrix-valued functions, N , a d × d matrix given by
N (x) = L(x)ττTL(x)T for each x ∈Rd and M , a m × m matrix defined by
M (x) = L(x)TL(x).
We impose the following Lipschitz-type conditions on M and N :

there exist D1,D2 > 0 such that, for all y1, y2 ∈Rd ,

||N (y1, y1)− 2N (y1, y2)+ N (y2, y2)|| ≤ D1|y1 − y2|2, (6.25)

max
1≤p,q≤m |M

p
q (y1, y1)− 2Mp

q (y1, y2)+Mp
q (y2, y2)| ≤ D2|y1 − y2|2.

(6.26)

Note that (6.25) is just the usual bi-Lipschitz condition, which allows control
of the Brownian integral terms within SDEs.
Tedious but straightforward algebra then shows that (6.25) and (6.26) imply

the Lipschitz and growth conditions (C1) and (C2) and hence, by Theorems
6.2.3 and 6.2.9, equation (6.24) has a unique solution. In applications, we often
meet the casem = d and L = diag (L1, . . . , Ld ). In this case, readers can check
that a sufficient condition for (6.25) and (6.26) is the single Lipschitz condition
that there exists D3 > 0 such that, for all y1, y2 ∈Rd ,

|L(y1)− L(y2)| ≤ D3|y1 − y2|, (6.27)

where we are regarding L as a vector-valued function.
Another class of SDEs that are often considered in the literature take the form

dY (t) = b(Y (t−)dt + L(Y (t−))dX (t),

and these clearly have a unique solution whenever L is as in (6.27) and b is
globally Lipschitz. The important case where X is α-stable was studied by
Janicki et al. [188].

Stochastic exponentials

We consider the equation

dY (t) = Y (t−)dX (t),

so that, for each 1 ≤ i ≤ d , dY i(t) = Y i(t−)dX i(t).
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This trivially satisfies the Lipschitz condition (6.27) and so has a unique
solution. In the case d = 1 with Y0 = 1 (a.s.), we saw in Section 5.1 that the
solution is given by the stochastic exponential

Y (t) = EX (t) = exp
{
X (t)− 1

2 [Xc,Xc](t)
} ∏
0≤s≤t

[
1+�X (s)

]
e−�X (s),

for each t ≥ 0.

The Langevin equation and Ornstein–Uhlenbeck process revisited

The process B = (B(t), t ≥ 0) that we have been calling ‘Brownian motion’
throughout this book is not the best possible description of the physical
phenomenon of Brownian motion.
A more realistic model was proposed by Ornstein and Uhlenbeck [284] in

the 1930s; see also chapter 9 of Nelson [277] and Chandrasekar [76]. Let x =
(x(t), t ≥ 0), where x(t) is the displacement after time t of a particle of mass
m executing Brownian motion, and let v = (v(t), t ≥ 0), where v(t) is the
velocity of the particle. Ornstein and Uhlenbeck argued that the total force on
the particle should arise from a combination of random bombardments by the
molecules of the fluid and also a macroscopic frictional force, which acts to
dampen the motion. In accordance with Newton’s laws, this total force equals
the rate of change of momentum and so we write the formal equation

m
dv

dt
= −βmv + m

dB

dt
,

where β is a positive constant (related to the viscosity of the fluid) and the
formal derivative ‘dB/dt’ describes random velocity changes due to molecular
bombardment. This equation acquires a meaning as soon as we interpret it as
an Itô-style SDE. We thus obtain the Langevin equation, named in honour of
the French physicist Paul Langevin,

dv(t) = −βv(t)dt + dB(t). (6.28)

It is more appropriate for us to generalise this equation and replace B by a Lévy
process X = (X (t), t ≥ 0), to obtain

dv(t) = −βv(t)dt + dX (t), (6.29)

which we continue to call the Langevin equation. It has a unique solution by
Theorem 6.2.9. We can in fact solve (6.29) by multiplying both sides by the
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integrating factor e−βt and using Itô’s product formula. This yields our old
friend the Ornstein–Uhlenbeck process (4.9),

v(t) = e−βtv0 +
∫ t

0
e−β(t−s)dX (s)

for each t ≥ 0. Recall fromExercise 4.3.18 that whenX is a Brownianmotion, v
is Gaussian. In this latter case, the integrated Ornstein–Uhlenbeck process also
has a physical interpretation. It is nothing but the displacement of the Brownian
particle

x(t) =
∫ t

0
v(s)ds,

for each t ≥ 0.
An interesting generalisation of the Langevin equation is obtained when the

number β is replaced by a matrix Q, all of whose eigenvalues have a positive
real part. We thus obtain the equation

dY (t) = −QY (t)dt + dX (t),

whose unique solution is the generalised Ornstein–Uhlenbeck process, Y =
(Y (t), t ≥ 0), where, for each t ≥ 0,

Y (t) = e−QtY0 +
∫ t

0
e−Q(t−s)dX (s).

For further details see Sato andYamazoto [322] and Barndorff-Nielsen, Jensen
and Sørensen [24].

Diffusion processes

Themost intensively studied class of SDEs is the class of those that lead to diffu-
sion processes. These generalise the Ornstein–Uhlenbeck process for Brownian
motion, but now the aim is to describe all possible randommotions that are due
to ‘diffusion’. A hypothetical particle that diffuses should move continuously
and be characterised by two functions, a ‘drift coefficient’ b that describes the
deterministic part of the motion and a ‘diffusion coefficient a’ that corresponds
to the random part. Generalising the Langevin equation, we model diffusion as
a stochastic process Y = (Y (t), t ≥ 0), starting at Y (0) = Y (a.s.) and solving
the SDE

dY (t) = b(Y (t))dt + σ(Y (t))dB(t), (6.30)
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where a(·) = σ(·)σ (·)T. We impose the usual Lipschitz conditions on b and
the stronger one given in Exercise 6.2.7 on σ ; these ensure that (6.30) has a
unique strong solution. In this case, Y = (Y (t), t ≥ 0) is sometimes called an
Itô diffusion.
A more general approach was traced back to Kolmogorov [206] by David

Williams in [357]. A diffusion process in Rd is a path-continuous Markov pro-
cess Y = (Y (t), t ≥ 0) starting at Y0 = x (a.s) for which there exist continuous
functions β :Rd → Rd and α :Rd → Md (R) such that

d

dt
E(Y (t))

∣∣∣∣
t=0

= β(x) and
d

dt
Cov (Y (t), Y (t))ij

∣∣∣∣
t=0

= αij(x). (6.31)

We call β and α the infinitesimal mean and infinitesimal covariance, respec-
tively. The link between this more general definition and SDEs is given in the
following result.

Theorem 6.3.1 Every Itô diffusion is a diffusion with β = b and α = a.

Proof Every Itô diffusion Y = (Y (t), t ≥ 0) has continuous sample paths.
To see this, return to the proof of Theorem 6.2.3 and put F ≡ 0 therein, then
each Picard iterate Zn has continuous paths (see Section 4.3.1). Y then inherits
this property through the a.s. uniform convergence of the sequence on finite
intervals. The Markov property will be discussed later in this chapter. We now
turn our attention to the mappings b and a. Continuity of these follows from
the Lipschitz conditions. For the explicit calculations below, we follow Durrett
[99], pp. 178–9.
Writing the Itô diffusion in integral form we have, for each t ≥ 0,

Y (t) = x +
∫ t

0
b(Y (s))ds+

∫ t

0
σ(Y (s))dB(s).

Since the Brownian integral is a centred L2-martingale, we have that

E(Y (t)) = x +
∫ t

0
E(b(X (s)) ds,

and β(x) = b(x) now follows on differentiating.
For each 1 ≤ i, j ≤ d , t ≥ 0,

Cov (Y (t), Y (t))ij = E(Yi(t)Yj(t))− E(Yi(t)) E(Yj(t)).
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By Itô’s product formula,

d(Yi(t)Yj(t)) = dYi(t)Yj(t)+ Yi(t)dYj(t)+ d [Yi, Yj](t)
= dYi(t)Yj(t)+ Yi(t)dYj(t)+ aij(Y (t))dt.

Hence

E(Yi(t)Yj(t))

= xixj +
∫ t

0
E
(
Yi(s)bj(Y (s))+ Yj(s)bi(Y (s))+ aij(Y (s))

)
ds

and so

d

dt
E(Yi(t)Yj(t))

∣∣∣∣
t=0

= xibj(x)+ xjbi(x)+ aij(x).

We can easily verify that

d

dt

[
E(Yi(t)) E(Yj(t))

]∣∣∣∣
t=0

= xibj(x)+ xjbi(x),

and the required result follows. �

Diffusion processes have a much wider scope than physical models of
diffusing particles; for example, the Black–Scholes model for stock prices
(S(t), t ≥ 0) is an Itô diffusion taking the form

dS(t) = βS(t)dt + σS(t)dt,

where β ∈R and σ > 0 denote the usual stock drift and volatility parameters.
Wewill not make a detailed investigation of diffusions in this book. For more

information on this extensively studied topic, see e.g. Durrett [99], Ikeda and
Watanabe [167], Itô and McKean [170], Krylov [212], Rogers and Williams
[308], [309] and Stroock and Varadhan [340].
When a particle diffuses in accordance with Brownian motion, its standard

deviation at time t is
√
t. In anomalous diffusion, particles diffuse through a

non-homogeneous medium that either slows the particles down (subdiffusion)
or speeds them up (superdiffusion). The standard deviation behaves like tν ,
where ν < 1/2 for subdiffusion and ν > 1/2 for superdiffusion. A survey of
some of these models is given in chapter 12 of Uchaikin and Zolotarev [350];
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compound Poisson processes and symmetric stable laws play a key role in the
analysis.

Jump-diffusion processes

By a jump-diffusion process, we mean the strong solution Y = (Y (t), t ≥ 0) of
the SDE

dY (t) = b(Y (t−))dt + σ(Y (t−))dB(t)

+ intRd−{0}G(Y (t−), x)N (dt, dx),

where N is a Poisson random measure that is independent of the Brownian
motion B having finite intensity measure ν [so we have effectively taken c = 0
in (6.12)]. It then follows, by the construction in the proof of Theorem 6.2.9,
that the paths of Z simply consist of that of an Itô diffusion process interlaced by
jumps at the arrival times of the compound Poisson process P = (P(t), t ≥ 0),
where each P(t) = ∫ t0 ∫Rd−{0} xN (dt, dx).
We note that there is by no means universal agreement about the use of the

phrase ‘jump-diffusion process’, and some authors use it to denote the more
general processes arising from the solution to (6.12). The terminology may also
be used when N is the random measure counting the jumps of a more general
point process.

6.4 Stochastic flows, cocycle and Markov properties of SDEs

6.4.1 Stochastic flows

Let Yy = (Yy(t), t ≥ 0) be the strong solution of the SDE (6.12) with fixed
deterministic initial condition Y0 = y (a.s.). Just as in the case of ordinary
differential equations, we would like to study the properties of Yy(t) as y varies.
Imitating the procedure of Section 6.1, we define �t :Rd ×�→ Rd by

�t(y,ω) = Yy(t)(ω)

for each t ≥ 0, y ∈Rd , ω∈�. We will find it convenient below to fix y ∈Rd

and regard these mappings as random variables. We then employ the notation
�t(y)(·) = �t(y, ·).

Based on equation (6.8), we might expect that

‘�s+t(y,ω) = �t(�s(y,ω),ω),’

for each s, t ≥ 0. In fact this is not the case, as the following example shows.
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Example 6.4.1 (Random translation) Consider the simplest SDE driven by
a Lévy process X = (X (t), t ≥ 0),

dYy(t) = dX (t), Yy(0) = y, a.s.,

whose solution is the random translation �t(y) = y + X (t). Then

�t+s(y) = y + X (t + s).

But �t(�s(y)) = y + X (t) + X (s) and these are clearly not the same (except
in the trivial case where X (t) = mt, for all t ≥ 0, with m∈R). However, if we
define the two-parameter motion

�s,t(y) = y + X (t)− X (s),

where 0 ≤ s ≤ t <∞, then it is easy to check that, for all 0 ≤ r < s < t <∞,

�r,t(y) = �s,t(�r,s(y)),

and this gives us a valuable clue as to how to proceed in general.

Example6.4.1 suggests that if we want to study the flow property for random
dynamical systems then we need a two-parameter family of motions. The inter-
pretation of the random mapping �s,t is that it describes motion commencing
at the ‘starting time’ s and ending at the ‘finishing time’ t. We now give some
general definitions.
Let � = {�s,t , 0 ≤ s ≤ t < ∞} be a family of measurable mappings from

Rd ×�→ Rd . For eachω∈�, we have associated mappings�ω
s,t :R

d → Rd ,
given by �ω

s,t(y) = �s,t(ω, y) for each y ∈Rd .
We say that � is a stochastic flow if there exists N ⊂ �, with P(N ) = 0,

such that for all ω∈�−N :

(1) �ω
r,t = �ω

s,t ◦�ω
r,s for all 0 ≤ r < s < t <∞;

(2) �ω
s,s(y) = y for all s ≥ 0, y ∈Rd .

If, in addition, each �ω
s,t is a homeomorphism (Ck -diffeomorphism) of Rd ,

for all ω∈� − N , we say that � is a stochastic flow of homeomorphisms
(Ck -diffeomorphisms, respectively).
If, in addition to properties (1) and (2), we have that

(3) for each n∈N, 0 ≤ t1 < t2 < · · · < tn <∞, y ∈Rd , the random variables
{�tj ,tj+1(y); 1 ≤ j ≤ n− 1} are independent,

(4) the mappings t → �s,t(y) are càdlàg for each y ∈Rd , 0 ≤ s < t,

we say that � is a Lévy flow.
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If (4) can be strengthened from ‘càdlàg’ to ‘continuous’, we say that � is a
Brownian flow.
The reason for the terminology ‘Lévy flow’ and ‘Brownian flow’ is that

when property (3) holds we can think of� as a Lévy process on the group of all
diffeomorphisms from Rd to itself (see Baxendale [33], Fujiwara and Kunita
[125] and Applebaum and Kunita [6] for more about this viewpoint).
Brownian flows of diffeomorphisms were studied extensively by Kunita in

[215]. It was shown in Section 4.2 therein that they all arise as solutions of
SDEs driven by (a possibly infinite number of) standard Brownian motions.
The programme for Lévy flows is less complete, see section 3 of Fujiwara and
Kunita [125] for some partial results.
Here we will study flows driven by the SDEs studied in Section 6.2. We

consider two-parameter versions of these, i.e.

d�s,t(y) = b(�s,t−(y))dt + σ(�s,t−(y))dB(t)

+
∫
|x|<c

F(�s,t−(y), x)Ñ (dt, dx)

+
∫
|x|≥c

G(�s,t−(y), x)N (dt, dx) (6.32)

with initial condition �s,s(y) = y (a.s.), so that, for each 1 ≤ i ≤ d ,

�s,t(y)
i = yi +

∫ t

0
bi(�s,u−(y))du +

∫ t

0
σ i
j (�s,u−(y))dBj(u)

+
∫ t

0

∫
|x|<c

Fi(�s,u−(y), x)Ñ (du, dx)

+
∫ t

0

∫
|x|≥c

Gi(�s,u−(y), x)N (du, dx).

The fact that (6.32) has a unique strong solution under the usual Lipschitz
and growth conditions is achieved by a minor modification to the proofs of
Theorems 6.2.3 and 6.2.9.

Theorem 6.4.2 � is a Lévy flow.

Proof The measurability of each �s,t and the càdlàg property (4) follow from
the constructions of Theorems 6.2.3 and 6.2.9. Property (2) is immediate. To
establish the flow property (1), we follow similar reasoning to that in the proof
of Theorem 6.1.10.
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To simplify the form of expressions appearing below, we will omit, without
loss of generality, all except the compensated Poisson terms in (6.32).
For all 0 ≤ r < s < t <∞, 1 ≤ i ≤ d , y ∈Rd , we have

�r,t(y)
i = yi +

∫ t

r

∫
|x|<c

Fi(�r,u−(y), x)Ñ (du, dx)

= yi +
∫ s

r

∫
|x|<c

Fi(�r,u−(y), x)Ñ (du, dx)

+
∫ t

s

∫
|x|<c

Fi(�r,u−(y), x)Ñ (du, dx)

= �r,s(y)
i +
∫ t

s

∫
|x|<c

Fi(�r,u−(y), x)Ñ (du, dx).

However,

�s,t(�r,s(y))
i = �r,s(y)

i +
∫ t

s

∫
|x|<c

Fi(�s,u−(�r,s(y)), x)Ñ (du, dx),

and the required result follows by the uniqueness of solutions to SDEs.
For the independence (3), consider the sequence of Picard iterates

(�
(n)
s,t , n∈N∪ {0}) constructed in the proof of Theorem 6.2.3. Using induction

and arguing as in the proof of Lemma 4.3.12, we see that each �
(n)
s,t is measur-

able with respect to σ {N (v,A)− N (u,A), 0 ≤ s ≤ u < v ≤ t, A∈B(Bc(0))},
from which the required result follows. �

Exercise 6.4.3 Extend Theorem 6.4.2 to the case of the general standard initial
condition.

Example 6.4.4 (Randomising deterministic flows) We assume that b ∈ Ck
b

(R) and consider the one-dimensional ODE

dξ(a)

da
= b(ξ(a)).

By Theorem 6.1.10, its unique solution is a flow of Ck -diffeomorphisms ξ =
(ξ(a), a ∈R). We randomise the flow ξ by defining

�s,t(y) = ξ(X (t)− X (s))(y)

for all 0 ≤ s ≤ t < ∞, y ∈Rd , where X is a one-dimensional Lévy pro-
cess with characteristics (m, σ 2, ν). It is an easy exercise to check that � is a
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Lévy flow of Ck -diffeomorphisms. It is of interest to find the SDE satisfied
by �. Thanks to Exercise 6.1.8, we can use Itô’s formula to obtain

d�s,t(y)

= mb(�s,t−(y))dt + σb(�s,t−(y))dB(t)

+ 1
2σ

2b′(�s,t−(y))b(�s,t−(y))dt

+
∫
|x|<1

[
ξ(x)(�s,t−(y))−�s,t−(y)

]
Ñ (dt, dx)

+
∫
|x|≥1

[
ξ(x)(�s,t−(y))−�s,t−(y)

]
N (dt, dx)

+
∫
|x|<1

[
ξ(x)(�s,t−(y))−�s,t−(y)− xb(�s,t−(y))

]
ν(dx)dt. (6.33)

Here we have used the flow property for ξ in the jump term and the fact that

d2

da2
ξ(a) = b′(ξ(a))b(ξ(a)).

The SDE (6.33) is the simplest example of aMarcus canonical equation. We
will return to this theme in Section 6.10.

6.4.2 The Markov property

Here we will apply the flow property established above to prove that solutions
of SDEs give rise to Markov processes.

Theorem 6.4.5 The strong solution to (6.12) is a Markov process.

Proof Let t ≥ 0. Following Exercise 6.4.3, we can consider the solution Y =
(Y (t), t ≥ 0) as a stochastic flow with random initial condition Y0, and we will
abuse notation to the extent of writing each

Y (t) = �0,t(Y0) = �0,t .

Our aim is to prove that

E(f (�0,t+s)|Fs) = E(f (�0,t+s)|�0,s)

for all s, t ≥ 0, f ∈Bb(Rd ).



388 Stochastic differential equations

Now define Gf ,s,t ∈Bb(Rd ) by

Gf ,s,t(y) = E(f (�s,s+t(y))),

for each y ∈Rd . By Theorem 6.4.2, and Exercise 6.4.3, we have that �0,t+s =
�s,s+t ◦�0,s (a.s.) and that�s,s+t is independent ofFs. Hence, by Lemma 1.1.9,

E(f (�0,t+s)|Fs) = E(f (�s,s+t ◦�0,s)|Fs) = E(Gf ,s,t(�0,s)).

By the same argument, we also get E(f (�0,t+s)|�0,s) = E(Gf ,s,t(�0,s)), and
the required result follows. �

As in Section 3.1, we can now define an associated stochastic evolution
(Ts,t , 0 ≤ s ≤ t <∞), by the prescription

(Ts,t f )(y) = E
(
f (�s,t)|�0,s = y

)
for each f ∈Bb(Rd ), y ∈Rd . We will now strengthen Theorem 6.4.5.

Theorem 6.4.6 The strong solution to (6.12) is a homogeneous Markov
process.

Proof We must show that Ts,s+t = T0,t for all s, t ≥ 0.
Without loss of generality, we just consider the compensated Poisson terms in

(6.12). Using the stationary increments property of Lévy processes, we obtain
for each f ∈Bb(Rd ), y ∈Rd ,

(Ts,s+t f )(y) = E
(
f (�s,s+t(y))

∣∣�0,s = y
)

= E

(
f

(
y +

∫ s+t

s

∫
|x|<c

F(�0,s+u−(y), x)Ñ (ds, du)

))
= E

(
f

(
y +

∫ t

0

∫
|x|<c

F(�0,u−(y), x)Ñ (ds, du)

))
= E

(
f (�0,t(y))

∣∣�0,0(y) = y
)

= (T0,t f )(y).

�

Referring again to Section 3.1, we see that we have a semigroup (Tt , t ≥ 0)
on Bb(Rd ), which is given by

(Ttf )(y) = E
(
f (�0,t(y))

∣∣�0,0(y) = y
) = E(f (�0,t(y))
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for each t ≥ 0, f ∈Bb(Rd ), y ∈Rd . We would like to investigate the Feller
property for this semigroup, but first we need to probe deeper into the properties
of solution flows.

Exercise 6.4.7 Establish the strong Markov property for SDEs, i.e. show that

E(f (�0,t+S)|FS) = E(f (�0,t+S)|�0,S)

for any t ≥ 0, where S is a stopping time with P (S <∞) = 1.
(Hint: Imitate the proof of Theorem 6.4.5, or see theorem 32 in Protter [298],

chapter 5.)

6.4.3 Cocycles

As we will see below, the cocycle property of SDEs is quite closely related to
the flow property. In this section, we will work throughout with the canonical
Lévy process constructed in Section 1.4.1. So � is the path space {ω :R+ →
R; ω(0) = 0},F is the σ -algebra generated by the cylinder sets and P is the
unique probability measure given by Kolmogorov’s existence theorem from
the recipe (1.28) on cylinder sets. Hence X = (X (t), t ≥ 0) is a Lévy process
on (�,F ,P), where X (t)ω = ω(t) for each ω∈�, t ≥ 0.
The space � comes equipped with a shift θ = (θt , t ≥ 0), each θt :� → �

being defined as follows (see Appendix 2.10). For each s, t ≥ 0,

(θtω)(s) = ω(t + s)− ω(t). (6.34)

Exercise 6.4.8 Deduce the following:

(1) θ is a one-parameter semigroup, i.e. θt+s = θtθs for all s, t ≥ 0;
(2) the measure P is θ -invariant, i.e. P(θ−1t (A)) = P(A) for all A∈F , t ≥ 0.

(Hint: First establish this on cylinder sets, using (1.28).)

Lemma 6.4.9 X is an additive cocycle for θ , i.e. for all s, t ≥ 0,

X (t + s) = X (s)+ (X (t) ◦ θ(s)).

Proof For each s, t ≥ 0, ω∈�,

X (t)(θs(ω))= (θsω)(t)=ω(s+ t)− ω(s)=X (t + s)(ω)− X (s)(ω). �

Additive cocycles were introduced into probability theory by Kolmogorov
[207], who called them helices; see also de Sam Lazaro and Meyer [321] and
Arnold and Scheutzow [15].

We now turn to the Lévy flow � that arises from solving (6.32).
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Lemma 6.4.10 For all 0 ≤ s ≤ t <∞, y ∈Rd , ω∈�,

�s,s+t(y,ω) = �0,t(y, θsω) a.s.

Proof (See proposition 24 ofArnold and Scheutzow [15].)We use the sequence
of Picard iterates (�(n)

s,s+t , n∈N∪{0}) constructed in the proof of Theorem 6.4.2
and aim to show that

�
(n)
s,s+t(y,ω) = �

(n)
0,t (y, θsω) a.s.

for all n∈N ∪ {0}, from which the result follows on taking limits as n→∞.
We proceed by induction. Clearly the result is true when n = 0. Suppose that

it holds for some n∈N. Just as in the proof of Theorem 6.4.2 we will consider a
condensed SDE, without loss of generality, and this time we will retain only the
Brownian motion terms. Using our usual sequence of partitions and the result
of Lemma 6.4.9, for each 1 ≤ i ≤ d , s, t ≥ 0, y ∈Rd , ω∈�, the following
holds with probability 1:

�
i,(n+1)
s,s+t (y,ω)

= yi +
∫ t+s

s
σ i
j

(
�

(n)
s,s+u(y,ω)

)
dBj(u)(ω)

= yi + lim
n→∞

m(n)∑
k=0

σ i
j

(
�

(n)
s,s+tk (y,ω)

)(
Bj(s+ tk+1)

− B j(s+ tk)
)
(ω)

= yi + lim
n→∞

m(n)∑
k=0

σ i
j

(
�

(n)
0,tk

(y, θsω)
)(
Bj(tk+1)− Bj(tk)

)
(θsω)

= yi +
∫ t

0
σ i
j

(
�

(n)
0,u(y, θsω)

)
dBj(u)(θsω)

=
[
yi +

∫ t

0
σ i
j

(
�

(n)
0,u(y)

)
dBj(u)

]
(θsω)

= �
i,(n+1)
0,t (y, θsω),

where the limit is taken in the L2 sense. �
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Corollary 6.4.11 � is a multiplicative cocycle, i.e.

�0,s+t(y,ω) = �0,t(�0,s(y), θs(ω))

for all s, t ≥ 0, y ∈Rd and almost all ω∈�.

Proof By the flow property and Lemma 6.4.10, we obtain

�0,s+t(y,ω) = �s,s+t(�0,s(y),ω) = �0,t(�0,s(y), θsω) a.s.

�

We can use the cocycle property to extend our two-parameter flow to a one-
parameter family (as in the deterministic case) by including the action of the
shift on �. Specifically, define ϒt :Rd ×�→ Rd ×� by

ϒt(y,ω) = (�0,t(y, θt(ω)), θt(ω)
)

for each t ≥ 0, ω∈�.

Corollary 6.4.12 The following holds almost surely:

ϒt+s = ϒt ◦ϒs

for all s, t ≥ 0.

Proof By using the semigroup property of the shift (Exercise 6.4.8(1)) and
Corollary 6.4.11, we have, for all y ∈Rd and almost all ω∈�,

ϒt+s(y,ω) = (�0,t+s(y, θt+s(ω)), θt+s(ω))

= (�0,t
(
�0,s

(
(y, θsω), (θtθs)(ω)

)
, (θtθs)(ω)

)
= (ϒt ◦ϒs)(y,ω).

�

Of course, it would bemore natural for Corollary 6.4.12 to hold for allω∈�,
and a sufficient condition for this is that Corollary 6.4.11 is itself valid for all
ω∈�. Cocycles that have this property are called perfect, and these are also
important in studying ergodic properties of stochastic flows. For conditions
under which cocycles arising from Brownian flows are perfect, see Arnold and
Scheutzow [15].
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6.5 Interlacing for solutions of SDEs

In this section, we will apply interlacing to the solution flow % = (%s,t , 0 ≤
s ≤ t <∞) associated with the solution of themodified SDE Z = (Z(t), t ≥ 0)
in order to obtain % as the (almost-sure) limit of an interlacing sequence. We
assume that ν(Bc(0) − {0}) �= 0, where Bc is a ball of radius c, and fix a
sequence (εn, n∈N) of positive real numbers which decrease monotonically
to zero. We will give a precise form of each εn below. Let (An, n∈N) be the
sequence of Borel sets defined by An = {x ∈Bc(0) − {0}; εn < |x| < c} and
define a sequence of associated interlacing flows (%n, n∈N) by

d%n
s,t(y) = b(%n

s,t−(y))dt + σ(%n
s,t−(y))dB(t)

+
∫
An
F(%n

s,t−(y), x)Ñ (dt, dx)

for each n∈N, 0 ≤ s ≤ t < ∞, y ∈Rd . In order to carry out our analysis we
need to impose a stronger condition on the mapping F :

Assumption 6.5.1 We assume that for all y ∈Rd , x ∈Bc(0)− {0},

|F(y, x)| ≤ |ρ(x)||δ(y)|,

where ρ :Bc(0)−{0} → R satisfies
∫
|x|<c |ρ(x)|2ν(dx) <∞ and δ :Rd → Rd

is Lipschitz continuous with Lipschitz constant Cδ .

Note that ifAssumption6.5.1 holds then, for each x ∈Bc(0)−{0}, themapping
y→ F(y, x) is continuous. Assumption 6.5.1 implies the growth condition for
F in (6.17).
The following theorem generalises the result of Corollary 4.3.10 to strong

solutions of SDEs. A similar result can be found in the appendix to Apple-
baum [11].

Theorem 6.5.2 If Assumption 6.5.1 holds, then for each y ∈Rd , 0 ≤ s ≤
t < ∞,

lim
n→∞%n

s,t(y) = %s,t(y) a.s.

and the convergence is uniform on finite intervals of R+.
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Proof First note that for each y ∈Rd , 0 ≤ s ≤ t, n∈N,

%n+1
s,t (y)−%n

s,t(y)

=
∫ t

s

[
b
(
%n+1
s,u−(y)

)− b
(
%n
s,u−(y)

)]
du

+
∫ t

s

[
σ
(
%n+1
s,u−(y)

)− σ
(
%n
s,u−(y)

)]
dB(u)

+
∫ t

s

∫
An+1

F
(
%n+1
s,u−(y), x

)
Ñ (du, dx)

−
∫ t

s

∫
An
F
(
%n
s,u−(y), x

)
Ñ (du, dx)

=
∫ t

s

[
b
(
%n+1
s,u−(y)

)− b
(
%n
s,u−(y)

)]
du

+
∫ t

s

[
σ
(
%n+1
s,u−(y)

)− σ
(
%n
s,u−(y)

)]
dB(u)

+
∫ t

s

∫
An+1−An

F
(
%n+1
s,u−(y), x

)
Ñ (du, dx)

+
∫ t

s

∫
An

[
F
(
%n+1
s,u−(y), x

)− F
(
%n
s,u−(y), x

)]
Ñ (du, dx).

Now take the norm of each side of this identity, apply the triangle inequality and
the inequality (6.18) with n= 4 and take expectations. UsingDoob’smartingale
inequality, we then have that

E

(
sup
s≤u≤t

|%n+1
s,u (y)−%n

s,u(y)|2
)

≤ 4

{
E

(∣∣∣∣∫ t

s

[
b
(
%n+1
s,u−(y)

)− b
(
%n
s,u−(y)

)]
du

∣∣∣∣2
)

+ 4 E

(∣∣∣∣∫ t

s

[
σ(%n+1

s,u−(y))− σ
(
%n
s,u−(y)

)]
dB(u)

∣∣∣∣2
)

+ 4 E

(∣∣∣∣∫ t

s

∫
An+1−An

F
(
%n+1
s,u−(y), x

)
Ñ (du, dx)

∣∣∣∣2
)

+ 4 E

(∣∣∣∣∫ t

s

∫
An

[
F
(
%n+1
s,u−(y), x

)− F
(
%n
s,u−(y), x

)]
Ñ (du, dx)

∣∣∣∣2
)}

.
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Applying the Cauchy–Schwarz inequality in the first term and Itô’s isometry in
the other three, we obtain

E

(
sup
s≤u≤t

|%n+1
s,u (y)−%n

s,u(y)|2
)

≤ 4

[
t
∫ t

s
E
(∣∣b(%n+1

s,u (y)
)− b

(
%n
s,u(y)

)∣∣2)du
+ 4

∫ t

s
E
(||a(%n+1

s,u (y),%n+1
s,u (y)

)− 2a
(
%n+1
s,u (y),%n

s,u(y)
)

+ a
(
%n
s,u(y),%

n
s,u(y))||

)
du

+ 4
∫ t

s

∫
An+1−An

E
(∣∣F(%n+1

s,u (y), x)2
∣∣)ν(dx)du

+ 4
∫ t

s

∫
An

E
(∣∣F(%n+1

s,u (y), x
)− F

(
%n
s,u(y), x)

∣∣2)ν(dx)du].
We can now apply the Lipschitz condition in the first, second and fourth terms.
For the third term we use Assumption 6.5.1, the results of Exercise 6.1.1 and
Corollary 6.2.4 to obtain

∫ t

s

∫
An+1−An

E
(∣∣F(%n+1

s,u (y), x
)2∣∣)ν(dx)du

≤
∫
An+1−An

|ρ(x)|2ν(dx)
∫ t

s
E
(∣∣δ(%n+1

s,u (y)
)∣∣2)du

≤ C1

∫
An+1−An

|ρ(x)|2ν(dx)
∫ t

s
E
(
1+ |%n+1

s,u (y)
∣∣2)du

≤ C2(t − s)(1+ |y|2)
∫
An+1−An

|ρ(x)|2ν(dx),

where C1,C2 > 0.
Now we can collect together terms to deduce that there exists C3(t) > 0

such that

E

(
sup
s≤u≤t

∣∣%n+1
s,u (y)−%n

s,u(y)
∣∣2)≤C2(t − s)(1+|y|2)

∫
An+1−An

|ρ(x)|2ν(dx)

+C3

∫ t

s
E

(
sup

s≤v≤u
∣∣%n+1

s,v (y)−%n
s,v(y)

∣∣2) du.
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On applying Gronwall’s inequality, we find that there exists C4 > 0 such that

E

(
sup
s≤u≤t

∣∣%n+1
s,u (y)−%n

s,u(y)
∣∣2)≤ C4(t − s)(1+ |y|2)

∫
An+1−An

|ρ(x)|2ν(dx).

Now fix each εn = sup{z ≥ 0;
∫
0<|x|<z |ρ(x)|2ν(dx) ≤ 8−n} and then follow

the argument of Theorem 2.6.2 to obtain the required result. �

In accordance with our usual philosophy, we can gain more insight into the
structure of the paths by constructing the interlacing sequence directly.
Let (Qn, n∈N) be the sequence of compound Poisson processes associ-

ated with the sets (An, n∈N) where, for each t≥ 0, Qn(t)=
∫ t
0

∫
An
xN (ds, dx).

So, for each 0≤ s≤ t<∞, Qn(t)−Qn(s)=
∫ t
s

∫
An
xN (ds, dx). We denote the

arrival times of (Qn(t)− Qn(s), 0≤ s≤ t<∞) by (Smn ,m∈N) for each n∈N.
We will have need of the sequence of solution flows to diffusion equations

�n = (�n
s,t , 0 ≤ s ≤ t <∞); these are defined by

d�n
s,t(y) =

(
b(�n

s,t(y))−
∫
An
F(�n

s,t(y), x)ν(dx)

)
dt+ σ(�n

s,t(y))dB(t).

Let πF ,x :Rd → Rd be defined by πF ,x(y) = y + F(y, x) for each y ∈Rd ,
0 ≤ |x| < c; then we can read off the following interlacing construction. For
each t ≥ 0, y ∈Rd ,

%n
s,t(y) =


�n
s,t(y) for s ≤ t < S1n ,

πF ,�Qn(S1n )
◦%n

0,S1n−(y) for t = S1n ,

�n
S1n ,t

◦%n
0,S1n

(y) for S1n < t < S2n ,

πF ,�Qn(S2n )
◦%n

0,S2n−(y) for t = S2n ,

and so on, recursively.
Hence we see that % is the almost-sure limit of solution flows associated to

a sequence of jump-diffusion processes.

6.6 Continuity of solution flows to SDEs

Let� be the solution flow associatedwith the SDE (6.12). In this sectionwewill
investigate the continuity of the mappings fromRd toRd given by y→ �s,t(y)
for each 0 ≤ s < t <∞.
We will need to make additional assumptions. Fix γ , γ ′ ∈Nwith γ ∧γ ′ > 2.
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Assumption 6.6.1

(i) γ -Lipschitz conditionThere exists Kγ > 0 such that, for all y1, y2 ∈Rd ,∫
|x|<c

|F(y1, x)− F(y2, x)|pν(dx) ≤ Kγ |y1 − y2|p

for all 2 ≤ p ≤ γ .
(ii) γ ′ growth condition. There exists Kγ ′ > 0 such that for all y ∈Rd ,∫

|x|<c
|F(y, x)|pν(dx) ≤ Kγ ′(1+ |y|)p,

for all 2 ≤ p ≤ γ ′.
(iii) For all bounded sets K in Rd ,

sup
y ∈K

sup
|x|<c

|F(y, x)| <∞.

Note that if Assumption 6.5.1 holds then Assumption 6.6.1 (i) and (ii) is
simply the requirement that

∫
|x|<c |ρ(x)|pν(dx) < ∞ for all p∈ [2, γ ∨ γ ′].

Moreover, if Assumption 6.5.1 holds with |ρ(x)| ≤ |x|, for all x ∈Bc(0) −
{0}, then Assumption 6.6.1(i) and (ii) is automatically satisfied. Assump-
tion 6.6.1(iii) is of a different type. It is playing the same role as Assumption
4.1.4 in that it ensures that we can safely apply Itô’s theorem 2 (Theorem 4.4.7)
and other results which were derived using this.
We recall that the modified flow % = (%s,t , 0 ≤ s ≤ t < ∞) satisfies

the SDE

d%s,t(y) = b(%s,t−(y))dt + σ(%s,t−(y))dB(t)

+
∫
|x|<c

F(%s,t−(y), x)Ñ (dt, dx). (6.35)

The main result of this section depends critically on the following technical
estimates for the modified flow, which is due to Fujiwara and Kunita [125],
pp. 84–6. We give a much simplified proof, due to Kunita [218].

Proposition 6.6.2

(i) For all 0 ≤ s ≤ t, there exists D(γ ′, t) > 0 such that

E

(
sup
s≤u≤t

(1+ |%s,u(y)|p)
)
≤ D(γ ′, t)(1+ |y|p)

for all 2 ≤ p ≤ γ ′, y ∈Rd .
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(ii) For all 0 ≤ s ≤ t, there exists E(γ , t) > 0 such that

E

(
sup
s≤u≤t

|%s,u(y1)−%s,u(y2)|p
)
≤ E(γ , t)|y1 − y2|p

for all 2 ≤ p ≤ γ , y1, y2 ∈Rd .

Proof

(i) We apply Kunita’s second inequality (4.22) and Jensen’s inequality to
obtain

E

(
sup
s≤u≤t

(|%s,u(y)|p
)
≤ 2p−1C(p, t)

{
|y|p + E

[∫ t

s
|b(%s,u−(y)|pdu

]
+ E

[∫ t

s
||a(%s,u−(y),%s,u−(y))||

p
2 du

]

+ E

[∫ t

s

(∫
|x|<c

|F(%s,u−(y), x)|2ν(dx)
)p/2

du

]

+ E

[∫ t

s

∫
|x|<c

|F(%s,u−(y), x)|pν(dx)du
]}

.

Now by using the growth condition (C2) and the γ ′ growth assumption,
we obtain

E

(
sup
s≤u≤t

(|%s,u(y)|p
)
≤ 2p−1C(p, t)

{
|y|p+3K2

∫ t

s
E[(1+|%s,u−(y)|2)p/2 ] du

+ Kγ ′
∫ t

s
E
[(
1+ |%s,u−(y)|)p

)]
du

≤ 2p−1K(p, t)
{|y|p + (3K2 + Kγ ′)

×
∫ t

s
E[(1+ |%s,u−(y)|)p)] du

}
.

Hence by Jensen’s inequality, there exists C1(p, t) > 0 such that

E

(
sup
s≤u≤t

(1+ |%s,u(y)|p)
)
≤ C1(p, t)

{
(1+ |y|)p

+ (3K2 + Kγ ′)
∫ t

s
E

[(
sup
s≤u≤t

(1+ |%s,u(y)|)p
)]

du

}
.

and the result follows on applying Gronwall’s inequality.
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(ii) The proof of (ii) is similar to that of (i). We have

%s,t(y1)−%s,t(y2) = y1 − y2 +
∫ t

s
[b(%s,u−(y1))− b(%s,u−(y2))]du

+
∫ t

s
[σ(%s,u−(y1))− σ(%s,u−(y2))]dB(u)

+
∫ t

s

∫
|x|<c

[F(%s,u−(y1), x)

− F(%s,u−(y2), x)]Ñ (du, dx).

Now we again apply Kunita’s second inequality (4.22) to find that

E

(
sup
s≤u≤t

(|%s,u(y1)−%s,u(y2)|p
)

≤ 2p−1C(p, t)

{
|y1 − y2|p + E

[∫ t

s
|b(%s,u−(y1)− b(%s,u−(y2)|pdu

]
+ E

[∫ t

s
||a(%s,u−(y1),%s,u−(y1))− 2a(%s,u−(y1),%s,u−(y2))

+ a(%s,u−(y2),%s,u−(y2))||
p
2 du
]

+ E

[∫ t

s

(∫
|x|<c

|F(%s,u−(y1), x)− F(%s,u−(y2), x)|2ν(dx)
)p/2

du

]

+ E

[∫ t

s

∫
|x|<c

|F(%s,u−(y1), x)− F(%s,u−(y2), x)|pν(dx)du
]}

.

We now apply the Lipshitz condition (C1) and the γ -Lipshitz condition
and argue as in the proof of (i) to get the required result. �

Theorem 6.6.3 The map y → �s,t(y) has a continuous modification for each
0 ≤ s < t <∞.

Proof First consider the modified flow %. Take γ > d ∨ 2 in Proposition
6.6.2(ii) and appeal to the Kolmogorov continuity criterion (Theorem 1.1.18)
to obtain the required continuous modification. The almost-sure continuity of
y → �s,t(y) is then deduced from the interlacing structure in Theorem 6.2.9,
using the continuity of y→ G(y, x) for each |x| ≥ c. �

Note An alternative approach to proving Theorem 6.6.3 was developed in
Applebaum and Tang [8]. Instead of Assumption 6.6.1 (i) and (ii) we impose
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Assumption 6.5.1. We first prove Proposition 6.6.2, but only in the technically
simpler case of the Brownian flow

d�s,t(y) = b(�s,t(y))dt + σ(�s,t(y))dB(t),

so that y → �s,t(y) is continuous by the argument in the proof of Theorem
6.6.3. Now return to the interlacing theorem, Theorem 6.5.2. By Assumption
6.5.1, it follows that, for each n∈N, y→ %n

s,t(y) is continuous. From the proof
of Theorem 6.5.2, we deduce that we have limn→∞%n

s,t(y) = %s,t(y) (a.s.)
uniformly on compact intervals of Rd containing y, and the continuity of y→
%s,t(y) follows immediately.

6.7 Solutions of SDEs as Feller processes, the
Feynman–Kac formula and martingale problems

6.7.1 SDEs and Feller semigroups

Let (Tt , t ≥ 0) be the semigroup associated with the solution flow � of the
SDE (6.12).
We need to make an additional assumption on the coefficients.

Assumption 6.7.1 For each 1 ≤ i, j ≤ d , the mappings y → bi(y), y →
aij(y, y), y→ Fi(y, x) (|x| < c) and y→ Gi(y, x) (|x| ≥ c) are in Cb(R

d ).

We require Assumptions 6.6.1 and 6.7.1 both to hold in this section.

Theorem 6.7.2 For all t ≥ 0,

Tt(C0(R
d )) ⊆ C0(R

d ).

Proof First we establish continuity. Let (yn, n∈N) be any sequence in Rd that
converges to y ∈Rd . Since for each t ≥ 0, f ∈C0(Rd ), we have (Ttf )(y) =
E(f (�0,t(y))), it follows that

|(Ttf )(y)− (Ttf )(yn)| =
∣∣E (f (�0,t(y))− f (�0,t(yn))

)∣∣ .
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Since |E(f (�0,t(y)) − f (�0,t(yn)))| ≤ 2||f ||, we can use dominated conver-
gence and Theorem 6.6.3 to deduce the required result.
For the limiting behaviour of Ttf , we first consider the modified flow%. The

following argumentwas suggested to the author byH.Kunita. FromApplebaum
and Tang [8], pp. 158–162, we have the estimate

E((1+ |%s,t(y)|2)p) ≤ C(p, t)(1+ |y|2)p

for all 0 ≤ s ≤ t <∞, y ∈Rd , p∈R, where C(p, t) > 0 (see also Fujiwara and
Kunita [125], p. 92; in fact, this result can be established by using an argument
similar to that in the proof of Proposition 6.6.2(i)). If we take p = −1, we
find that

lim sup
|y|→∞

E
(
(1+ |%s,t(y)|2)−1

) = 0.

From this we deduce that

lim|y|→∞
1

1+ |%s,t(y)|2 = 0

in probability, and hence that lim|y|→∞ |%s,t(y)| = ∞, in probability.
For each t ≥ 0, f ∈C0(Rd ), y ∈Rd , we define the semigroup (St , t ≥ 0) by

(Stf )(y) = E(f (%0,t(y))). We will now show that lim|y|→∞(Stf )(y) = 0 (so
that the solution of the modified SDE is a Feller process).
Since f ∈C0(Rd ), given any δ > 0 there exists ε > 0 such that |y| > δ ⇒

|f (y)| < ε/2. Since lim|y|→∞ |%0,t(y)| = ∞, in probability, there exists K > 0
such that |y| > K ⇒ P(|%0,t(y)| < δ) < ε/(2||f ||).
Now, for |y| > max{δ,K} we have

|(Stf )(y)| ≤
∫

Rd
|f (z)|p%0,t(y)(dz)

=
∫
Bδ(0)

|f (z)|p%0,t(y)(dz)+
∫
Bδ(0)c

|f (z)|p%0,t(y)(dz)

≤ sup
z ∈Bδ(0)

|f (z)|P (%0,t(y)∈Bδ(0)
)+ sup

z ∈Bδ(0)c
|f (z)|

< ε.

To pass to the general flow�, we use the interlacing structure from the proof
of Theorem 6.2.9 and make use of the notation developed there. For each t ≥ 0,
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define a sequence of events (An(t), n∈N) by

A2n(t) = (τn = t), A2n−1(t) = (τn−1 < t < τn).

By the above discussion for the modified flow, for each f ∈C0(R
d ), y ∈Rd , we

have

E(f (�0,t(y))|A1) = E(f (%0,t(y))) = (Stf )(y),

hence lim|y|→∞ E(f (�0,t(y))|A1) = 0.
Using dominated convergence and Assumption 6.7.1, we have

E(f (�0,t(y))|A2) = E
(
f
(
%0,τ1−(y)+ G(%0,τ1−(y),�P(τ1))

))→ 0

as |y| → ∞. Using the independence of �0,s and %s,t , we also find that, for
each 0 ≤ s ≤ t <∞,

E(f (�0,t(y))|A3) = E
(
f (%τ1,t(�0,τ1(y)))

)
= E

(
E
(
f (%s,t(�0,s(y)))

∣∣τ1 = s
))

=
∫ ∞

0
E
(
f (%s,t(�0,s(y)))

∣∣τ1 = s
)
pτ1(ds)

=
∫ ∞

0
(T0,s ◦ S0,t−sf )(y)pτ1(ds)

→ 0 as |y| → ∞

by dominated convergence and the previous result. We can now use induction
to establish

lim|y|→∞E(f (�0,t(y))|An) = 0 for all n∈N.

Finally,

(Ttf )(y) = E(f (�0,t(y))) =
∞∑
n=1

E(f (�0,t(y))|An) P(An)

and so lim|y|→∞(Ttf )(y) = 0, by dominated convergence. �
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Note 1 To prove Theorem 6.7.2, we only needed that part ofAssumption 6.7.1
that pertains to the mapping G. The rest of the assumption is used below
to ensure that the generator of (Tt , t ≥ 0) has some ‘nice’ functions in its
domain.

Note 2 As an alternative to the use of Assumption 6.7.1 to prove Theorem
6.7.2, we can impose the growth condition that there exists D > 0 such that∫
|x|≥c | G(y, x)|2ν(dx) < D(1+ |y|2) for all y ∈Rd . In this case, the estimate

E
(
(1+ |�s,t(y)|2)p

) ≤ C(p, t)(1+ |y|2)p

holds for all 0 ≤ s ≤ t <∞.

Note 3 To establish Tt :Cb(R
d )→ Cb(R

d ) instead of Tt :C0(Rd )→ C0(Rd )

in Theorem 6.7.2 is relatively trivial and requires neither Assumption 6.7.1 nor
the growth condition discussed in Note 1 above.
Before we establish the second part of the Feller property, we introduce an

important linear operator.
Define L :C2

0 (R
d )→ C0(Rd ) by

(Lf )(y) = bi(y)(∂if )(y)+ 1
2a

ij(y)(∂i∂jf )(y)

+
∫
|x|<c

[
f (y+F(y, x))− f (y)−Fi(y, x)(∂if )(y)

]
ν(dx)

+
∫
|x|≥c

[
f (y + G(y, x))− f (y)

]
ν(dx) (6.36)

for each f ∈C2
0 (R

d ), y ∈Rd , and where each matrix a(y, y) is written
as a(y).

Exercise 6.7.3 Confirm that each Lf ∈C0(Rd ).

Theorem 6.7.4 (Tt , t ≥ 0) is a Feller semigroup, and if A denotes its
infinitesimal generator, then C2

0 (R
d ) ⊆ Dom(A) and A(f ) = L(f ) for all

f ∈C2
0 (R

d ).
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Proof Let f ∈C2
0 (R

d ). By Itô’s formula, for each t ≥ 0, y ∈Rd ,

df (�0,t(y))

= (∂if )(�0,t−(y)
)
bi(�0,t−(y))dt + (∂if )(�0,t−(y))

× σ i
j (�0,t−(y))dBj(t)

+ 1
2 (∂i∂jf )(�0,t−(y))aij(�0,t−(y))dt

+
∫
|x|<c

[
f (�0,t−(y)+F(�0,t−(y), x))− f (�0,t−(y))

]
Ñ (ds, dx)

+
∫
|x|≥c

[
f (�0,t−(y)+G(�0,t−(y), x))− f (�0,t−(y))

]
N (ds, dx)

+
∫
|x|<c

[
f (�0,t−(y)+ F(�0,t−(y), x))− f (�0,t−(y))

− Fi(�0,t−(y), x)(∂if )(�0,t−(y))
]
ν(dx).

Now integrate with respect to t, take expectations and use the martingale
property of stochastic integrals to obtain

(Ttf )(y)− f (y) =
∫ t

0
(TsLf )(y)ds (6.37)

and so, using the fact that each Tt is a contraction, we obtain

||Ttf − f || = sup
y ∈Rd

∣∣∣∣∫ t

0
(TsLf )(y)ds

∣∣∣∣
≤
∫ t

0
||TsLf ||ds

≤
∫ t

0
||Lf ||ds = t||Lf || → 0 as t → 0.

The fact that limt→0 ||Ttf − f || → 0, for all f ∈C0(Rd ) follows by a straight-
forward density argument. Hence we have established the Feller property. The
rest of the proof follows on applying the analysis of Section 3.2 to (6.37). �

Exercise 6.7.5 Let X be a Lévy process with infinitesimal generator A. Show
that C2

0 (R
d ) ⊆ DomA.
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It is interesting to rewrite the generator in the Courrège form, as in Section
3.5. Define a family of Borel measures (µ(y, ·), y ∈Rd ) by

µ(y,A)=
{

ν ◦ [F(y, ·)+ y
]−1

(A) if A∈B(Bc(0)− {0})
ν ◦ [G(y, ·)+ y

]−1
(A) if A∈B((Bc(0)− {0})c).

Then µ is a Lévy kernel and, for all f ∈C2
0 (R

d ), y ∈Rd ,

(Lf )(y) = bi(y)(∂if )(y)+ 1
2a

ij(y)(∂i∂jf )(y)

+
∫

Rd−D
[
f (z)− f (y)− (zi − yi)(∂if )(y) φ(y, z)

]
µ(y, dz),

(6.38)

where D is the diagonal and

φ(y, ·) = χBc(0)−{0} ◦
[
F(y, ·)+ y

]−1 = χ(F(y,·)+y)(Bc(0)−{0}).

The only difference from the Courrège form (3.20) is that φ is not a local
unit, but this is can easily be remedied by making a minor modification to b.

Example 6.7.6 [The Ornstein–Uhlenbeck process (yet again)] We recall
that the Ornstein–Uhlenbeck process (Y (t), t ≥ 0) is the unique solution of the
Langevin equation

dY (t) = −βY (t)dt + dB(t),

whereβ > 0 andB is a standardBrownianmotion. By an immediate application
of (6.36), we see that the generator has the form

L = −βx · ∇ + 1
2�

on C2
0 (R

d ). However, by (4.9) we know that the process has the specific form

Yx(t) = e−βtx +
∫ t

0
e−β(t−s)dB(s)

for each t ≥ 0, where Yx(0) = x (a.s.). In Exercise 4.3.18, we saw that

Yx(t) ∼ N

(
e−βtx,

1

2β
(1− e−2βt)I

)
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and so, in this case, we can make the explicit calculation

(Ttf )(x) = E(f (Yx(t)))

= 1

(2π)d/2

∫
Rd

f

e−βtx +
√
1− e−2βt

2β
y

 e−|y|2/2dy

for each t ≥ 0, f ∈C0(Rd ), x ∈Rd . This result is known as Mehler’s formula,
and using it one can verify directly that (Tt , t ≥ 0) is a Feller semigroup. For
an infinite-dimensional generalisation of this circle of ideas, see for example
Nualart [280], pp. 49–53.

Exercise 6.7.7 Let X = (X (t), t ≥ 0) be a Markov process with associated
semigroup (Tt , t ≥ 0) and transition probabilities (pt(x, ·), t ≥ 0, x ∈Rd ). We
say that a Borel measure µ on Rd is an invariant measure for X if∫

Rd
(Ttf )(x)µ(dx) =

∫
Rd

f (x)µ(dx)

for all t ≥ 0, f ∈C0(Rd ).

(1) Show that µ is invariant for X if and only if
∫
Rd pt(x,A)µ(dx) = µ(A) for

all x ∈Rd , A∈B(Rd ).
(2) Deduce that Lebesgue measure is an invariant measure for all Lévy

processes.
(3) Show that µ ∼ N (0, (2β)−1I) is an invariant measure for the Ornstein–

Uhlenbeck process.

6.7.2 The Feynman–Kac formula

If we compare (6.38) with (3.20), we see that a term is missing. In fact, if we
write the Courrège generator as Lc then, for all f ∈C2

0 (R
d ), y ∈Rd , we have

(Lcf )(y) = −c(y)f (y)+ (Lf )(y).

Here we assume that c∈Cb(R
d ) and that c(y) > 0 for all y ∈Rd .

Our aim here is to try to gain a probabilistic understanding of Lc. Let Y be
as usual the strong solution of (6.12) with associated flow �. We introduce a
cemetery point � and define a process Yc = (Yc(t), t ≥ 0) on the one-point
compactification Rd ∪ {�} by

Yc(t) =
{
Y (t) for 0 ≤ t < τc,

� for t ≥ τc.
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Here τc is a stopping time for which

P(τc > t|Ft) = exp

(
−
∫ t

0
c(Y (s))ds

)
.

Note that Yc is an adapted process. The probabilistic interpretation is that parti-
cles evolve in time according to the random dynamics Y but are ‘killed’ at the
rate c(Y (t)) at time t.
We note that, by convention, f (�) = 0 for all f ∈Bb(Rd ).

Lemma 6.7.8 For each 0 ≤ s ≤ t <∞, f ∈Bb(Rd ), we have, almost surely,

(1) E(f (Yc(t))|Fs) = E

(
exp

[
−
∫ t

0
c(Y (s))ds

]
f (Y (t))

∣∣∣Fs

)
,

(2) E(f (Yc(t))|Yc(s)) = E

(
exp

[
−
∫ t

0
c(Y (s))ds

]
f (Y (t))

∣∣∣Yc(s)).
Proof (1) For all 0 ≤ s ≤ t <∞, f ∈Bb(Rd ),A∈Fs, we have

E(χAf (Yc(t))) = E
(
χAχ(τc>t)f (Yc(t))

)+ E
(
χAχ(τc≤t)f (Yc(t))

)
= E

(
E(χAχ(τc>t)f (Yc(t))|Ft)

)
= E(χAf (Yc(t)) E(χ(τc>t)|Ft))

= E

(
χA exp

[
−
∫ t

0
c(Y (s))ds

]
f (Y (t))

)
and the required result follows. We can prove (2) similarly. �

The following is our main theorem and to simplify proofs we will work
in path space (�,F ,P) with its associated shift θ . Again, we will adopt the
convention of writing the solution at time t of (6.12) as �0,t , so that we can
exploit the flow property.

Theorem 6.7.9 Yc is a sub-Feller process with associated semigroup

(Tc
t f )(y) = E

(
exp

[
−
∫ t

0
c(�0,s(y))ds

]
f (�0,t(y))

)
(6.39)

for all t ≥ 0, f ∈C0(Rd ), y ∈Rd . The infinitesimal generator acts as Lc on
C2
0 (R

d ).

Proof We must first establish the Markov property. Using Lemma 6.7.8(1),
the independent multiplicatives-increments property of� (Theorem 6.4.2) and
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Lemma 1.1.9 we find, for all s, t ≥ 0, f ∈Bb(Rd ), y ∈Rd , that the following
holds almost surely:

E(f (Yc(s+ t)|Fs)

= E

(
exp

[
−
∫ t+s

0
c(�0,r)dr

]
f (�0,t+s)

∣∣∣∣Fs

)
= E

(
exp

[
−
∫ s

0
c(�0,r)dr

]
exp

[
−
∫ t+s

s
c(�0,r)dr

]
f (�0,t+s)

∣∣∣∣Fs

)
= exp

[
−
∫ s

0
c(�0,r)dr

]
E

(
exp

[
−
∫ t

0
c(�0,r+s)dr

]
f (�0,t+s)

∣∣∣∣Fs

)
= exp

[
−
∫ s

0
c(�0,r)dr

]
× E

(
exp

[
−
∫ t

0
c(�s,s+r�0,s)dr

]
f (�s,s+t�0,s)

∣∣∣∣Fs

)
= exp

[
−
∫ s

0
c(�0,r)dr

]
(Tc

s,s+t f )(�0,s),

where, for each y ∈Rd ,

(Tc
s,s+t f )(y) = E

(
exp

[
−
∫ t

0
c(�s,s+r(y))dr

]
f (�s,s+t(y))

)
.

A similar argument using Lemma 6.7.8(2) yields

E(f (Yc(s+ t)|Yc(s)) = exp

[
−
∫ s

0
c(�0,r)dr

]
(Ts,s+t f )(�0,s) a.s.

and we have the required result.
To see that Y c is homogeneous Markov, we need to show that

(Tc
s,s+t f )(y) = (Tc

0,t f )(y)
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for all s, t ≥ 0, f ∈Bb(Rd ), y ∈Rd . By Lemma 6.4.10 and Exercise 6.4.8(2),
we have

(Tc
s,s+t f )(y)

= E

(
exp

[
−
∫ t

0
c(�s,s+r(y))dr

]
f (�s,s+t(y))

)
=
∫
�

exp

[
−
∫ t

0
c(�0,r(y, θs(ω)))dr

]
f (�0,t(y, θs(ω)))dP(ω)

=
∫
�

exp

[
−
∫ t

0
c(�0,r(y,ω))dr

]
f (�0,t(y,ω))dP(θ−1s ω)

= (Tc
0,t f )(y),

as required. The fact that (Tc
t , t ≥ 0) is the semigroup associated with Y c now

follows easily.
To establish that each Tc

t :C0(Rd ) → C0(Rd ) is straightforward. To obtain
strong continuity and the form of the generator, argue as in the proof of Theorem
6.7.4, using the fact that if we define

Mf (t) = exp

[
−
∫ t

0
c(�0,s)ds

]
f (�0,t)

for each t ≥ 0, f ∈C2
0 (R

d ), then by Itô’s product formula,

dMf (t) = −c(�0,t)Mf (t)dt + exp

[
−
∫ t

0
c(�0,s)ds

]
df (�0,t). �

The formula (6.39) is called the Feynman–Kac formula. Note that the
semigroup (Tc

t , t ≥ 0) is not conservative; indeed we have, for each t ≥ 0,

Tc
t (1) = E

(
exp

[
−
∫ t

0
c(Y (s))ds

])
= P(τc > t|Ft).

Historically, the Feynman–Kac formula can be traced back to Mark Kac’s
attempts to understand Richard Feynman’s ‘path-integral’ solution to the
Schrödinger equation,

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
+ V (x)ψ ,

where ψ ∈ L2(R) is the wave function of a one-dimensional quantum system
with potential V . Feynman [120] found a formal path-integral solution whose
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rigorous mathematical meaning was unclear. Kac [197] observed that if you
make the time change t →−it then you obtain the diffusion equation

∂ψ

∂t
= 1

2

∂2ψ

∂x2
− V (x)ψ

and, if V = 0, the solution to this is just given by

(Ttψ)(y) = E(ψ(y + B(t))

for each y ∈R, whereB = (B(t), t ≥ 0) is a one-dimensional Brownianmotion.
Moreover, Feynman’s prescription when V �= 0 essentially boiled down to
replacing Tt by TV

t in (6.39).
For a deeper analytic treatment of the Feynman–Kac formula in theBrownian

motion case, see e.g. Durrett [99], pp. 137–42. Applications to the potential
theory of Schrödinger’s equation are systematically developed in Chung and
Zhao [79]. For a Feynman–Kac-type approach to the problem of a relativistic
particle interactingwith an electromagnetic field see Ichinose andTamura [165].
This utilises the Lévy-process approach to relativistic Schrödinger operators
(see Example 3.3.9).
The problem of rigorously constructing Feynman integrals has led to a great

deal of interesting mathematics. For a very attractive recent approach based on
compound Poisson processes see Kolokoltsov [210]. The bibliography therein
is an excellent guide to other work in this area.
The Feynman–Kac formula also has important applications to finance, where

it provides a bridge between the probabilistic andPDE representations of pricing
formulae; see e.g. Etheridge [115], section 4.8, and chapter 15 of Steele [339].

6.7.3 Weak solutions to SDEs and the martingale problem

So far, in this chapter, we have always imposed Lipschitz and growth conditions
on the coefficients in order to ensure that (6.12) has a unique strong solution. In
this subsection,wewill drop these assumptions andbriefly investigate the notion
of the weak solution. Fix x ∈Rd ; letDx be the path space of all càdlàg functions
ω from R+ to Rd for which ω(0) = x and let Gx be the σ -algebra generated
by the cylinder sets. A weak solution to (6.12) with initial condition Z(0) = x
(a.s.) is a triple (Qx,X , Z), where:

• Qx is a probability measure on (Dx,Gx);
• X = (X (t), t ≥ 0) is a Lévy process on (Dx,Gx,Qx);
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• Z = (Z(t), t ≥ 0) is a solution of (6.12) whose Brownian motion and
Poisson random measure are those associated with X through the Lévy–Itô
decomposition.

Aweak solution is said to be unique in distribution if, whenever (Q1
x ,X

1, Z1)

and (Q2
x ,X

2, Z2) are both weak solutions,

Q1
x (X

1(t)∈A) = Q2
x (X

2(t)∈A)

for all t ≥ 0, A∈B(Rd ).
Notice that, in contrast to strong solutions, where the noise is prescribed in

advance, for weak solutions the construction of (a realisation of) the noise is
part of the problem.
Finding weak solutions to SDEs is intimately related to martingale problems.

We recall the linear operator L on C0(R
d ) as given in (6.38). We say that a

probability measure Qx on (Dx,Gx) solves the martingale problem associated
with L if

f (Z(t))−
∫ t

0
(Lf )Z(s)ds

is a Qx-martingale for all f ∈C2
0 (R

d ), where Z(t)(ω) = ω(t) for all t ≥ 0,
ω∈Dx, and Qx(Z(0) = x) = 1. The martingale problem is said to be well
posed if such a measure Qx exists and is unique. Readers for whom such ideas
are new should ponder the case where L is the generator of the strong solution
to (6.12).
The martingale-problem approach to weak solutions of SDEs has been most

extensively developed in the case of the diffusion equation

dZ(t) = σ(Z(t))dB(t)+ b(Z(t))dt. (6.40)

Here the generator is the second-order elliptic differential operator

(L0f )(x) = 1
2a

ij(x)(∂i∂jf )(x)+ bi(x)(∂if )(x),

where each f ∈C2
0 (R

d ) and x ∈Rd and, as usual, a(·) = σ(·)σ (·)T. In this
case, every solution of the martingale problem induces a weak solution of
the SDE (6.40). This solution is unique in distribution if the martingale prob-
lem is well posed, and Z is then a strong Markov process (see e.g. Durrett
[99], p. 189). The study of the martingale problem based on L0 was the sub-
ject of extensive work by D. Stroock and S. R. S. Varadhan in the late 1960s
and is presented in their monograph [340]. In particular, if a and b are both
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bounded and measurable, with a also strictly positive definite and continuous,
then the martingale problem for L0 is well posed. For more recent accounts
and further work on weak solutions to (6.40) see Durrett [99], sections 5.3
and 5.4 of Karatsas and Shreve [200] and sections 5.3 and 5.4 of Rogers and
Williams [309].
The well-posedness of the martingale problem for Lévy-type generators of

the form (6.38) was first studied by D. Stroock [341] and the relationship to
solutions of SDEswas investigated byLepeltier andMarchal [226] and by Jacod
[186], section 14.5. An alternative approach due to Komatsu [211] exploited
the fact that L is a pseudo-differential operator (see Courrège’s second the-
orem, Theorem 3.5.5 in the present text) to solve the martingale problem.
Recent work in this direction is due toW. Hoh [155, 156]; see also chapter 4 of
Jacob [179].
There are other approaches to weak solutions of SDEs that do not require one

to solve the martingale problem. The case dZ(t)= L(Z(t−))dX (t), where X is
a one-dimensional α-stable Lévy process, is studied in Zanzotto [364, 365],
who generalised an approach due to Engelbert and Schmidt in the Brownian
motion case; see Engelbert and Schmidt [114] or Karatzas and Shreve [200],
Section 5.5.

6.8 Lyapunov exponents for stochastic
differential equations

Let Y = (Y (t), t ≥ 0) be the unique solution of equation (6.12) under the usual
Lipschitz and growth conditions and let � = (�s,t , 0 ≤ s ≤ t < ∞) be the
associated stochastic flow. We say that Y has a Lyapunov exponent λ if

λ = lim sup
t→∞

1

t
log |Y (t)| <∞ a.s.

If it exists then λ controls the long-time asymptotic behaviour of Y , indeed
if λ <∞ (a.s.) then there exists a positive random variable ξ such that

|Y (t)| ≤ ξeλt a.s.

for sufficiently large t. Clearly if λ < 0, we have limt→∞ Y (t) = 0 a.s. These
ideas are important for studying the asymptotic stability of solutions of SDEs.
To understand why this is so, we will assume that the coefficients b, σ ,F and

G are such that for all 1 ≤ i ≤ d , 1 ≤ j ≤ m, bi(0) = σ i
j (0) = Hi(0, x) = 0 for

all |x| < c and Gi(0, x) = 0 for all |x| ≥ c. It follows from the Picard iteration
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procedure of Theorem 6.2.3 and the interlacing construction of Theorem 6.2.9
that the unique solution corresponding to the initial conditionY0 = 0 isY (t) = 0
(a.s.) for each t ≥ 0. We call this the trivial solution. The trivial solution is said
to be almost surely exponentially stable if

lim sup
t→∞

1

t
log |�0,t(y)| < 0 a.s.

for all y ∈Rd , i.e. the SDE has a negative Lyapunov exponent for all initial
conditions. Clearly, in this case the sample paths of the solution will converge
to the trivial solution exponentially fast.
Stability of stochastic dynamical systems is a vast subject and we will not

develop it further here.Wewill be content to establish one result in this direction,
which is the existence of Lyapunov exponents for SDEs wherein the driving
noise has bounded jumps. Let Z = (Z(t), t ≥ 0) be the unique solution to the
modified SDE (6.15). In addition to the usual Lipshitz and growth conditions,
we make the following additional assumption on the coefficient b.

Assumption 6.8.1 There exists L > 0 so that for each y ∈Rd ,

yibi(y) ≤ L(1+ |y|2). (6.41)

The proof given below is closely related to that of theorem 5.1 in chapter 2
of Mao [251] where the driving noise is Brownian motion. It is based on joint
work with M. Siakalli.

Theorem 6.8.2 If Z = (Z(t), t ≥ 0) is the solution of the modified SDE (6.15)
with initial condition Z0 = z0 (a.s.) and if assumption 6.8.1 holds, then Z has
a Lyapunov exponent.

Proof We apply Itô’s formula to the mapping f :Rd → R given by f (x) =
log(1+ |x|2) to obtain for each t ≥ 0,

log(1+ |Z(t)|2)

= log(1+ |z0|2)+M (t)− 2
∫ t

0

Zi(s−)aij(Z(s−), Z(s−))Zj(s−)

(1+ |Z(s−)|2)2 ds

+
∫ t

0

1

1+ |Z(s−)|2 [2Z
i(s−)bi(Z(s−))+ tr(a(Z(s−), Z(s−)))]ds
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+
∫ t

0

∫
|x|<c

{
log(1+ |Z(s−)+ F(Z(s−), x)|2)− log(1+ |Z(s−)|2)

− 2Zi(s−)Fi(Z(s−), x)

1+ |Z(s−)|2
}
ν(dx)ds,

where

M (t) = 2
∫ t

0

Zi(s−)σ i
j (Z(s−))

1+ |Z(s−)|2 dBj(s)

+
∫ t

0

∫
|x|<c

[log(1+ |Z(s−)+ F(Z(s−), x)|2)

− log(1+ |Z(s−)|2)]Ñ (ds, dx).

We rewrite the term

∫ t

0

∫
|x|<c

{
log(1+ |Z(s−)+ F(Z(s−), x)|2)− log(1+ |Z(s−)|2)

− 2Zi(s−)Fi(Z(s−), x)

1+ |Z(s−)|2
}
ν(dx)ds = I1(t)+ I2(t),

where

I1(t) =
∫ t

0

∫
|x|<c

[
log

{
1+ |Z(s−)+ F(Z(s−), x)|2

1+ |Z(s−)|2
}
+ 1

− 1+ |Z(s−)+ F(Z(s−), x)|2
1+ |Z(s−)|2

]
ν(dx)ds,

and

I2(t) =
∫ t

0

∫
|x|<c

{
|Z(s−)+ F(Z(s−), x)|2 − |Z(s−)|2 − 2Zi(s−)Fi(Z(s−), x))

1+ |Z(s−)|2
}

ν(dx)ds

=
∫ t

0

∫
|x|<c

|F(Z(s−), x)|2
1+ |Z(s−)|2 ν(dx)ds.
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We thus obtain

log(1+ |Z(t)|2) = log(1+ |z0|2)+M (t)

− 2
∫ t

0

Zi(s−)aij(Z(s−), Z(s−))Zj(s−)

(1+ |Z(s−)|2)2 ds+ I1(t)

+
∫ t

0

{
1

1+ |Z(s−)|2 [2Z
i(s−)bi(Z(s−))

+ tr(a(Z(s−), Z(s−)))]

+
∫
|x|<c

|F(Z(s−), x)|2
1+ |Z(s−)|2 ν(dx)

}
ds.

Using assumption X and the growth condition (C2), we find that

log(1+ |Z(t)|2) ≤ log(1+ |z0|2)+M (t)− I3(t)+ αt,

where

I3(t) = 2
∫ t

0

Zi(s−)aij(Z(s−), Z(s−))Zj(s−)

(1+ |Z(s−)|2)2 ds− I1(t)

and α = L + K2. We observe that the process I3 is of precisely the right form
to enable us to apply a straightforward d -dimensional generalisation of the
exponential martingale inequality, Theorem 5.2.9. We take α = 1,β = log(n2)
and T = n therein to obtain

P

(
sup

0≤t≤n
(M (t)− I3(t)) > 2 log(n)

)
≤ 1

n2
.

We can now follow the exact argument of p.64 of [251] which we include
for completeness. So by Borel’s lemma

P

(
lim inf
n→∞ sup

0≤t≤n
(M (t)(ω)− I3(t)(ω)) ≤ 2 log(n)

)
= 1,

i.e. for almost all ω∈�, there exists n0(ω)∈N such that if n ≥ n0(ω)

sup
0≤t≤n

(M (t)(ω)− I3(t)(ω)) ≤ 2 log(n).

Hence for almost all ω∈�, if n ≥ n0(ω) and n− 1 ≤ t ≤ n,

1

t
log(1+ |Z(t)|2) ≤ 1

n− 1
[log(1+ |z0|2)+ αn+ 2 log(n)]
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and so

lim sup
t→∞

1

t
log(|Z(t)|)

≤ lim sup
t→∞

1

2t
log(1+ |Z(t)|2)

≤ lim sup
n→∞

1

2(n− 1)
[log(1+ |z0|2)+ αn+ 2 log(n)] = α

2
,

and our proof is complete. �

Note. If we know that we have a solution to equation (6.13) and this doesn’t
require us to impose the usual Lipshitz and growth conditions, we can still
establish the existence of Lyapunov exponents by substituting the following
condition for assumption 6.8.1:
There exists L′ > 0 so that for each y ∈Rd ,

yibi(y)+ ||a(y, y)|| +
∫
|x|<c

|F(x, y)|2ν(dx) ≤ L′(1+ |y|2). (6.42)

6.9 Densities for Solutions of SDEs

In this section we will briefly indicate howMalliavin calculus is applied to find
conditions under which the solution to an SDE has a smooth density.
Fix T > 0 and let (�,F ,P) be the canonical space for d -dimensional

standard Brownian motion. We recall the discussion of Malliavin calculus
from Chapter 5. Let F ∈ L2(�,F ,P;Rd ), so each F = (F1, . . . ,Fd ). If each
Fj ∈D1,2, we may construct the Malliavin covariance matrix � = (�i,j; 1 ≤
i, j ≤ d) where

�ij =
∫ T

0
(DtFi)(DtFj)dt,

and Dt is the Malliavin derivative.
σ is said to be non-degenerate if

(i) det(�) > 0 (a.s.)
(ii) E[det(�)−p] <∞, for all p > 1.

The following result is due to Bouleau and Hirsch ([59]) – see also Huang
and Yan [159], p.105.

Theorem 6.9.1 If � is invertible (a.s.) then F has a density ρF .
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If� is in fact non-degenerate then we can establish more general smoothness
properties of F . The most important context for these results is when F is the
solution of a SDE. To this end, consider the Itô diffusion generated by

dY (t) = b(Y (t))dt + σ(Y (t))dB(t),

where b andσ are infinitely differentiablewith bounded derivatives to all orders.
In this case,we obtain a stochastic flowof diffeomorphisms (�s,t , 0≤ s≤ t≤ T )

(see e.g. theorem 4.6.5 in Kunita [215]). For each x ∈Rd , 0 ≤ t ≤ T , we can
then form the random Jacobian matrix

Jt(x) = (∂jφ
i
0,t(x), 1 ≤ i, j ≤ d),

which is a.s. invertible. In this case, �t exists for each Xt and is given by

�t = Jt

(∫ t

0
J−1s a(Xs,Xs)(J

−1
s )T ds

)
JTt .

We are interested in establishing conditions for the transition probability ofX
to have a smooth density. It is well known from the theory of partial differential
equations that this is true if the matrix a is uniformly positive definite, i.e. there
exists λ > 0 such that a(y, y) ≥ λI for all y ∈Rd .Aweaker conditionwas found
by Hormander. L is required to be hypoelliptic where L is the infinitesimal
generator of the associated Markov semigroup (as given by (6.36) with ν = 0).
This means that given any distribution ξ (in the sense of L.Schwartz) defined
on Rd and any open set U in Rd then

Lg |U ∈C∞(U )⇒ g |U ∈C∞(U ).

In fact a more convenient geometric formulation of hypoellipticity can be given
in terms of the vector fieldswhich generateL.Malliavin calculuswas bornwhen
Paul Malliavin gave a probabilistic proof of this important result. This proof
relies extensively on proving non-degeneracy of what is now called the Malli-
avin covariance matrix. As a consequence we can assert that any hypoelliptic
Itô diffusion Y = (Y (t), t ≥ 0) whose coefficents are infinitely differentiable
with bounded derivatives to all orders has an infinitely differentiable density
for each t > 0. For detailed textbook accounts of this work, see e.g. Huang and
Yan [159] and Nualart [280]. For extension to SDEs with jumps see Bichteler
et al. [46] and Picard [294].



6.10 Marcus canonical equations 417

6.10 Marcus canonical equations

We recall the Marcus canonical integral from Chapter 4. Here, as promised, we
will replace straight lines by curves within the context of SDEs. Let (Lj, 1 ≤
j ≤ n) be complete C1-vector fields so that, for each 1 ≤ j ≤ n, there exist
cij :R

d → R, where 1 ≤ i ≤ d , such that Lj = cij∂i. We will also assume that,

for all x ∈Rn − {0}, the vector field xjLj is complete, i.e. for each y ∈Rd there
exists an integral curve (ξ(ux)(y), u∈R) such that

dξ i(ux)

du
= xjcij(ξ(ux))

for each 1 ≤ i ≤ d . Using the language of Section 4.4.5,we define a generalised
Marcus mapping � :R+ × R× Rn × Rd → Rd by

�(s, u, x, y) = ξ(ux)(y)

for each s ≥ 0, u∈R, x ∈Rn, y ∈Rd .

Note We have slightly extended the formalism of Section 4.4.5, in that
translation in Rd has been replaced by the action of the deterministic flow ξ .
We consider the general Marcus SDE (or Marcus canonical equation)

dY (t) = c(Y (t−)) 4 dX (t), (6.43)

where X =(X (t), t ≥ 0) is an n-dimensional Lévy process (although we could
replace this by a general semimartingale).
The meaning of this equation is given by the Marcus canonical integral of

Section 4.4.5, which yields, for each 1 ≤ i ≤ d , t ≥ 0,

dY i(t)

= cij(Y (t−)) ◦ dX j
c(t)+ cij(Y (t−))dX j

d(s)

+
∑
0≤s≤t

[
ξ(�X (s)(Y (s−))− Y (s−)− cij(Y (s−))�X j(s)

]
,

(6.44)

where Xc and Xd are the usual continuous and discontinuous parts of X and
◦ denotes the Stratonovitch differential. Note that when Xd = 0 this is just a
Stratonovitch SDE (see e.g. Kunita [215], section 3.4).
In order to establish the existence and uniqueness of such equations, we

must write them in the form (6.12). This can be carried out by employing the
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Lévy–Itô decomposition,

X j(t) = mjt + τ
j
kB

k(t)+
∫
|x|<1

xjÑ (dt, dx)+
∫
|x|≥1

xjN (dt, dx)

for each t ≥ 0, 1 ≤ j ≤ n. We write a = ττT as usual.
We then obtain, for each 1 ≤ i ≤ d , t ≥ 0,

dY i(t) = mjcij(Y (t−))dt + τ
j
kc

i
j(Y (t−))dBk(t)

+ 1
2a

jlckl (Y (t−))(∂kc
i
j)(Y (t−))dt

+
∫
|x|<1

[
ξ i(x)(Y (t−))− Y (t−)i

]
Ñ (dt, dx)

+
∫
|x|≥1

[
ξ i(x)(Y (t−))− Y (t−)i

]
N (dt, dx)

+
∫
|x|<1

[
ξ i(x)(Y (t−))− Y (t−)i − xjcij(Y (t−))

]
ν(dx)dt.

(6.45)

We usually consider such equations with the deterministic initial condition
Y (0) = y (a.s.).
We can now rewrite this in the form (6.12) where, for each 1 ≤ i ≤ d ,

1 ≤ k ≤ r, y ∈Rd ,

bi(y) = mjcij(y)+ 1
2a

jlckl (y)(∂kc
i
j)(y)

+
∫
|x|<1

[
ξ i(x)(y)− yi − xjcij(y)

]
ν(dx),

σ i
k(y) = τ

j
kc

i
j(y),

Fi(y, x) = ξ i(x)(y)− yi for all |x| < 1,

Gi(y, x) = ξ i(x)(y)− yi for all |x| ≥ 1.

We will find it convenient to define

Hi(y, x) = ξ i(x)(y)− yi − xjcij(y)

for each 1 ≤ i ≤ d , |x| < 1, y ∈Rd .
In order to prove existence and uniqueness for the Marcus equation, we

will need to make some assumptions. First we introduce some notation. For
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each 1 ≤ i ≤ d , y ∈Rd , we denote by (∇̃ ic)(y) the n × n matrix whose
(j, l)th entry is (∂cij(y)/∂yk)c

k
l (y). We also define (∇̃c)(y) to be the vector in

Rd whose ith component is max1≤j,l≤n |(∇̃ ic(y))j,l |. For each 1 ≤ j ≤ n,
cj(y) = (c1j (y), . . . , c

d
j (y))

Assumption 6.10.1

(1) For each 1 ≤ j ≤ n we have that cj is globally Lipschitz, so there exists
P1 > 0 such that

max
1≤j≤n |cj(y1)− cj(y2)| ≤ P1|y1 − y2|

for all y1, y2 ∈Rd .
(2) For each 1 ≤ j ≤ n we have that (∇̃c)j is globally Lipschitz, so there exists

P2 > 0 such that

|(∇̃c)(y1)− (∇̃c)(y2)| ≤ P2|y1 − y2|

for all y1, y2 ∈Rd .

Exercise 6.10.2 Show that forAssumption 6.10.1(1), (2) to hold, it is sufficient
that each cij ∈C2

b (R
d ).

Note thatAssumption 6.10.1(1) is enough to ensure that each xjLj is complete,
by Theorem 6.1.3.
We will have need of the following technical lemma.

Lemma 6.10.3 For each y, y1, y2 ∈Rd , |x| < 1, there exist M1,M2,M3 ≥ 0
such that:

(1) |F(y, x)| ≤ M1|x|(1+ |y|);
(2) |F(y1, x)− F(y2, x)| ≤ M2|x||y1 − y2|;
(3) |H (y1, x)− H (y2, x)| ≤ M3|x|2|y1 − y2|.
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Proof We follow Tang [346], pp. 34–6.
(1) Using the Cauchy–Schwarz inequality and Exercise 6.1.1, there exists

Q> 0 such that, for each u∈R,

|F(y, ux)| =
∣∣∣∣∫ u

0
xjcj(ξ(ax)(y))da

∣∣∣∣
≤ d1/2|x|

∫ u

0
max
1≤j≤n |cj(ξ(ax)(y))| da

≤ Qd1/2|x|
∫ u

0

[
1+ |ξ(ax)(y)|]da

≤ Qd1/2|x|
∫ u

0

[
(1+ |y|)+ |F(y, ax)|]da

≤ Qd1/2|x|u(1+ |y|)+ Qd1/2|x|
∫ u

0
(|F(y, ax)|)da,

and the required result follows by Gronwall’s inequality.
(2) For each u∈R, using the Cauchy–Schwarz inequality we have

|F(y1, ux)− F(y2, ux)| =
∣∣[ξ(ux)(y1)− y1

]− [ξ(ux)(y2)− y2
]∣∣

=
∣∣∣∣∫ u

0
xj[cj(ξ(ax)(y1))− cj(ξ(ax)(y2))]da

∣∣∣∣
≤ P1|x|

∫ u

0
|ξ(ax)(y1)− ξ(ax)(y2)|da.

(6.46)

From this we deduce that

|(ξ(ux)(y1)− (ξ(ux)(y2)|

≤ |y1 − y2| + P1u|x|
∫ u

0
|ξ(ax)(y1)− ξ(ax)(y2)|da

and hence, by Gronwall’s inequality,

|(ξ(ux)(y1)− (ξ(ux)(y2)| ≤ eP1u|x||y2 − y1|. (6.47)

The required result is obtained on substituting (6.47) into (6.46).
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(3) For each 1 ≤ i ≤ d ,

Hi(y1, x)− Hi(y2, x)

= [ξ i(x)(y1)− y1
]− [ξ i(x)(y2)− y2

]− xj
[
cij(y1)− cij(y2)

]
=
∫ 1

0
xj
{[
cij(ξ(ax)(y1))− cij(y1)

]− [cij(ξ(ax)(y2))− cij(y2
]}
da

=
∫ 1

0

∫ a

0
xj
(
∂cij(ξ(bx)(y1))

∂yk

∂ξ k(bx)(y1)

∂b

− ∂cij(ξ(bx)(y2))

∂yk

∂ξ k(bx)(y2)

∂b

)
dbda

=
∫ 1

0

∫ a

0
xjxl

(
∂cij(ξ(bx)(y1))

∂yk
ckl (ξ(bx)(y1))

− ∂cij(ξ(bx)(y2))

∂yk
ckl (ξ(bx)(y2))

)
dbda

=
∫ 1

0

∫ a

0
xj
[∇̃ci(ξ(bx)(y1))jl − ∇̃ci(ξ(bx)(y2))jl]xldbda.

Now use the Cauchy–Schwarz inequality and Assumption 6.10.1 to obtain

|Hi(y1, x)− Hi(y2, x)|

≤ |x|2
∫ 1

0

∫ a

0

∣∣(∇̃c)(ξ(bx)(y1))i − (∇̃c)(ξ(bx)(y2))i
∣∣dbda

≤ |x|2
∫ 1

0

∫ a

0
|ξ(bx)i(y1)− ξ(bx)i(y1)|dbda.

The result follows on substituting (6.47) into the right-hand side. �

Exercise 6.10.4 Deduce that y → G(y, x) is globally Lipschitz for each
|x| > 1.

Theorem 6.10.5 There exists a unique strong solution to the Marcus equation
(6.45). Furthermore the associated solution flow has an almost surely continu-
ous modification.

Proof Astraightforward application of Lemma6.10.3 ensures that the Lipschitz
and growth conditions on b, σ andF are satisfied; these ensure that themodified
equation has a unique solution. We can then extend this to the whole equation
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by interlacing. Lemma 6.10.3(1) also ensures that Assumptions 6.5.1 and 6.6.1
hold, and so we can apply Theorem 6.6.3 to deduce the required continuity. �

Note that, since Assumption 6.5.1 holds, we also have the interlacing con-
struction of Theorem 6.5.2. This gives a strikingly beautiful interpretation of
the solution of the Marcus canonical equation: as a diffusion process controlled
by the random vector fields LjX (t)j, with jumps at the ‘fictional time’ u = 1
along the integral curves (ξ(u�X (t)jLj), u∈R).

If each cij ∈C1
b (R

d ), we may introduce the linear operator N :C2
b (R

d ) →
Cb(R

d ) where, for each f ∈C2
b (R

d ), y ∈Rd ,

(N f )(y) = m j(Ljf )(y)+ 1
2a

jm(LjLm f )(y)

+
∫

Rn−{0}
[
f (ξ(x)y)− f (y)− xj(Ljf )(y)χB̂(x)

]
ν(dx)

and each

(LjLmf )(y) = (Lj(Lmf ))(y)

= cij(y)
[
∂ic

k
m(y)

]
(∂k f )(y)+ cij(y)c

k
m(y)(∂i∂k f )(y).

Now apply Itô’s formula to the solution flow � = (�s,t , 0 ≤ s ≤ t < ∞) of
equation (6.45), to find that, for all f ∈C2

b (R
d ), y ∈Rd , 0 ≤ s ≤ t <∞,

f (�s,t(y)) = f (y)+ (N f )(�s,t−(y))dt + τ
j
k(Ljf )(�s,t−(y))dBk(t)

+
∫
|x|<1

[
f (ξ i(x)(�s,t−(y)))− f (�s,t−(y))

]
Ñ (dt, dx)

+
∫
|x|≥1

[
f (ξ i(x)(�s,t−(y)))− f (�s,t−(y))

]
N (dt, dx).

If c is such that N :C2
0 (R

d ) → C0(Rd ) then (Tt , t ≥ 0) is a Feller semigroup
by Theorem 6.7.4. The following exercise gives a sufficient condition on c for
this to hold.

Exercise 6.10.6 Show that Assumption 6.7.1 is satisfied (and so the solution
to (6.45) is a Feller process) if cij ∈C0(Rd ) for each 1 ≤ j ≤ n, 1 ≤ i ≤ d .

(Hint: You need to show that lim|y|→∞ [ξ i(x)(y) − yi] = 0 for each x �= 0,
1 ≤ i ≤ d . First use induction to prove this for each member of the sequence
of Picard iterates and then approximate.)

The structure of N can be thought of as a higher level Lévy–Khintchine
type-formula in which the usual translation operators are replaced by integral
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curves of the vector fields xjLj. This is the key to further generalisations of
stochastic flows and Lévy processes to differentiable manifolds (see e.g. the
article by the author in [23]).
We now discuss briefly the homeomorphism and diffeomorphism properties

of solution flows to Marcus canonical equations. As the arguments are very
lengthy and technical we will not give full proofs but be content with providing
an outline. We follow the account in Kunita [216]. The full story can be found
in Fujiwara and Kunita [126]. For alternative approaches, see Kurtz et al. [219]
or Applebaum and Tang [8].

Theorem 6.10.7 � is a stochastic flow of homeomorphisms.

Proof First consider themodifiedflow%. For each0 ≤ s < t <∞, y1, y2 ∈Rd ,
with y1 �= y2, we define

χs,t(y1, y2) = 1

%s,t(y1)−%s,t(y2)
.

The key to establishing the theorem for % is the following pair of technical
estimates. For each 0 ≤ s < t < ∞, p > 2, there exist K1,K2 > 0 such that,
for all y1, y2, z1, z2, y ∈Rd , y1 �= y2, z1 �= z2,

E
(|χs,t(y1, y2)− χs,t(z1, z2)|−p

) ≤ K1(|y1 − z1|−p + |y2 − z2|−p),
(6.48)

E

(
sup
s≤r≤t

|1+%s,r(y)|−p
)
≤ K2|1+ y|−p. (6.49)

By Kolmogorov’s continuity criterion (Theorem 1.1.18) applied to (6.48), we
see that the random field on R2d −D given by (y1, y2)→ χs,t(y1, y2) is almost
surely continuous. From this we deduce easily that y1 �= y2 ⇒ %s,t(y1) �=
%s,t(y2) (a.s.) and hence that each %s,t is almost surely injective.
To prove surjectivity, suppose that lim inf |y|→∞ inf r ∈ [s,t) |%r,t(y)| =

a ∈ [0,∞) (a.s.). Applying the reverse Fatou lemma (see e.g.Williams [358],
p. 53), we get

lim sup
|y|→∞

E

(
sup
s≤r≤t

|1+%s,r(y)|−p
)
= 1

a
,

contradicting (6.49). So we must have each lim inf |y|→∞ |%s,t(y)| = ∞ (a.s.).
But we know that each %s,t is continuous and injective. In the case d = 1, a
straightforward analytic argument then shows that %s,t is surjective and has a
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continuous inverse. For d > 1, more sophisticated topological arguments are
necessary (see e.g. Kunita [215], p. 161). This proves that the modified flow %

comprises homeomorphisms almost surely.
For the general result, we apply the interlacing technique of Theorem 6.2.9.

Let (τn, n∈N) be the arrival times for the jumps ofP(s, t) = ∫s,t ∫|x|≥c xN (t, dx)
and suppose that τn−1 < t < τn; then

�s,t = %τn−1,t ◦ ξ(�P(s, τn−1)) ◦%τn−2,τn−1− ◦ · · · ◦ ξ(�P(s, τ1)) ◦%s,τ1−.

Recalling Exercise 6.1.11, we see that�s,t is the composition of a finite number
of almost-sure homeomorphisms and so is itself a homeomorphism (a.s.). �

Exercise 6.10.8 Let � be a stochastic flow of homeomorphisms. Show that,
for each 0 ≤ s < t <∞,�s,t = �0,t ◦�−1

0,s (a.s).

In order to establish the diffeomorphism property, we need to make an
additional assumption on the driving vector fields. Fix m∈N ∪ {∞}.
Assumption 6.10.9 cij ∈Cm+2

b (Rd ) for 1 ≤ j ≤ d , 1 ≤ j ≤ n.

Theorem 6.10.10 If Assumption 6.10.9 holds, then � is a stochastic flow of
Cm-diffeomorphisms.

Proof (Sketch) We fix m = 1 and again deal with the modified flow %. Let
{e1, . . . , ed } be the natural basis for Rd , so that each

ej = (0, . . . , 0,
(j)
1 , 0, . . . 0).

For h∈R, h �= 0, 1 ≤ j ≤ d , 0 ≤ s ≤ t <∞, y ∈Rd , define

(�j%s,t)(y, h) = %s,t(y + hej)−%s,t(y)

h
;

then, for all 0 ≤ s ≤ t <∞, p > 2, there exists K > 0 such that

E

(
sup
s≤r≤t

∣∣(�j%s,t)(y1, h1)− (�j%s,t)(y2, h2)
∣∣p)

≤ K(|y1 − y2|p + |h1 − h2|p)

for all y1, y2 ∈Rd and h1, h2 ∈R− {0}.
By Kolmogorov’s continuity criterion (Theorem 1.1.18), we see that

(y, h)→ sup
s≤r≤t

�j%s,t(y, h)
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is a continuous random field on Rd × (R − {0}). In fact it is uniformly
continuous and so it has a continuous extension to Rd × R. Hence % is
differentiable.
To show that%−1

s,t is differentiablewefirstmust show that the Jacobianmatrix
of %s,t is non-singular, and the result then follows by the implicit function
theorem.
To see that �s,t is a diffeomorphism, use the interlacing argument from the

end of Theorem 6.10.7 together with the result of Theorem 6.1.7.
The result for general m is established by induction. �

In the second paper of Fujiwara and Kunita [126], it was shown that for each
t > 0, the inverse flow (�−1

s,t , 0 ≤ s ≤ t) satisfies a backwards Marcus SDE

d�−1
s,t = −c(�−1

s,t
) 4b dX (s)

(with final condition �−1
t,t (y) = y (a.s.) for all y ∈Rd ).

Recent work by Ishiwara and Kunita [169] has applied Malliavin calculus to
establish conditions under which a Marcus SDE has a smooth density.
We conjecture that, just as in the Brownian case ([215], Chapter 4), every

Lévy flow on Rd with reasonably well-behaved characteristics can be obtained
as the solution of an SDE driven by an infinite-dimensional Lévy process. This
problem was solved for a class of Lévy flows with stationary multiplicative
increments in Fujiwara and Kunita [125].
Just as in the case of ODEs, stochastic flows driven by Marcus canonical

equations make good sense on smooth manifolds. Investigations of such Lévy
flows can be found in Fujiwara [128] in the case where M is compact and in
Kurtz, Pardoux and Protter [219], Applebaum and Kunita [6] or Applebaum
and Tang [9] for more general M .
Stochastic flows of diffeomorphisms of Rd have also been investigated as

solutions of the Itô SDE

d�s,t = c(�s,t)dX (t);

see e.g. chapter 5, section 10 of Protter [298], or Meyer [266] or Léandre [223].
However, as is pointed out in Kunita [216], in general these will not even be
homeomorphisms unless, as is shown by the interlacing structure, the maps
from Rd to Rd given by y → y + xjcj(y) are also homeomorphisms for each
x ∈Rd , and this is a very strong and quite unnatural constraint.
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6.11 Notes and further reading

Like so many of the discoveries described in this book, the concept of a
stochastic differential equation is due to Itô [174]. In fact, he established
the existence and uniqueness of strong solutions of SDEs driven by Lévy
processes that are essentially of the form (6.12). His treatment of SDEs is
standard fare in textbooks on stochastic calculus (see for example the list
at the end of Chapter 4), but the majority of these omit jump integrals. Of
course, during the 1960s, 1970s and 1980s, when most of these text books
were written, stochastic analysts were absorbed in exploring the rich world
of diffusion processes, where Brownian motion reigns supreme. The natural
tendency of mathematicians towards greater abstraction and generality led to
interest in SDEs driven by semimartingales with jumps, and the first system-
atic accounts of these were due to C. Doléans-Dade [95] and J. Jacod [186].
This is also one of the main themes of Protter [298].Recent developments in
flows driven by SDEs with jumps were greatly stimulated by the important
paper of Fujiwara and Kunita [125]. They worked in a context more gen-
eral than that described above, by employing an infinite-dimensional Lévy
process takingvalues inC(Rd ,Rd ) to driveSDEs.Thenonlinear stochastic inte-
gration theory of Carmona and Nualart [71] was a further generalisation of this
approach.
The study of SDEs and associated flows is muchmore advanced in the Brow-

nian case than in the general Lévy case. In particular, there are some interesting
results giving weaker conditions than the global Lipschitz condition for solu-
tions to exist for all time. Some of these are described in Section 5.3 of Durrett
[99]. For a powerful recent result, see Li [230]. For the study of an SDE driven
by a Poisson random measure with non-Lipschitz coefficients, see Fournier
[122]. An important resource for Brownian flows on manifolds and stochastic
differential geometry is Elworthy [107].
Simulation of the paths of SDEs can be very important in applications. A

valuable guide to this for SDEs driven by α-stable Lévy processes is given by
Janicki and Weron [189]. For a discussion of the simulation of more general
SDEs driven by Lévy processes, which is based on the Euler approximation
scheme, see Protter and Talay [297]. For a nice introduction to applications of
SDEs to filtering and control, respectively, in the Brownian case, see chapters 6
and 11 of Øksendal [282]. A fuller account of filtering, which includes the use
of jump processes, can be found in chapters 15 to 20 of Liptser and Shiryaev
[238]. Øksendal and Sulem [281] is devoted to the stochastic control of jump
diffusions. A wide range of applications of SDEs, including some in material
science and ecology, can be found in Grigoriu [141].
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SDEs driven by Lévy processes and more general semimartingales are sure
to see much further development in the future. Here are some future directions
in which work is either ongoing or not yet started.

• The study of Lévy flows as random dynamical systems is far more greatly
developed in the Brownian case than for general Lévy processes, and a sys-
tematic account of this is given inArnold [16]. Some asymptotic and ergodic
properties of Lévy flows have been investigated by Kunita and Oh [213]
and Applebaum and Kunita [7]. So far there has been little work on the
behaviour of Lyapunov exponents (see Baxendale [34] and references therein
for the Brownian case, and Mao and Rodkina [250] for general semimartin-
gales with jumps). Liao [231] has studied these in the special case of flows
on certain homogeneous spaces induced by Lévy processes in Lie groups.
An applications-oriented approach to Lyapunov exponents of SDEs, which
includes the case of compound Poisson noise, can be found in Section 8.7 of
Grigoriu [141] (see also Grigoriu and Samorodnitsky [142]).

• Malliavin calculus has been applied to establish the existence and unique-
ness of solutions to SDEs driven by Brownian motion when the standard
initial condition is weakened in such a way that Z0 is no longer indepen-
dent of the driving noise; see e.g. chapter 3 of Nualart [280]. As yet, to the
author’s knowledge there has been no work in this direction for SDEs with
jumps.

• A new approach to stochastic calculus has recently been pioneered by
T. J. Lyons [240, 241], in which SDEs driven by Brownian motion are solved
pathwise as deterministic differential equations with an additional driving
term given by the Lévy area. This has been extended to SDEs driven by Lévy
processes in Williams [359]. Related ideas are explored in Mikosch and
Norvaiša [268]. It will be interesting to see whether this approach generates
new insights about SDEs with jumps in the future.

• One area of investigation that has been neglected until very recently is the
extent to which the solution of an SDE can inherit interesting probabilistic
properties from its driving noise. For example, Samorodnitsky and Grigoriu
[318] recently studied the SDE

dZ(t) = −f (Z(t−))dt + dX (t),

whereX has heavy tails (e.g.X might be anα-stableLévy process) and d = 1.
Under certain restrictions on f , they were able to show that Z also has heavy
tails. Equations of this type have recently found interesting applications to
climate dynamics (see [92], [168]).
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Another aspect of heavy-tailed modelling is to describe the extremal
behaviour of Lévy-type stochastic integrals. Intuitively and based on corre-
sponding results about Lévy processes (see Section 1.5.4), we would expect
heavy tails of such integrals to be associated with regular variation or subex-
ponentiality of the driving Lévy measure. Conditions are established for a
result of this type to hold inApplebaum [12].Adeeper andmore sophisticated
study is carried out in Hult and Lindskog [163].

• The interaction between Lévy processes and statistics is attracting increasing
attention, partly because of the needs of finance. The stochastic volatility
model of Barndorff-Nielsen and Shephard [28] describes the volatility as a
stationary Ornstein-Uhlenbeck process (Y (t), t ≥ 0) where

dY (t) = −λY (t)dt + dX (λt).

Here λ > 0 and X = (X (t), t ≥ 0) is the background driving Lévy process.
Suppose that we have a discrete series of samples Y0, YI , Y2I , . . . , Y(n−1)I
where I is a fixed sampling interval. In Jongbloed et al [193], the authors
develop non-parametric methods for estimating both λ and the function k
which determines the self-decomposable stationary distribution of Y (see
Sections 4.3.5 and 1.2.5). In Roberts et al. [307] a Bayesian approach is
taken to estimating the posterior distribution of Y which utilisesMonte-Carlo
Markov chains.
Another important direction in statistics is time series. Lévy-driven

CARMAprocesses (i.e. continuous timeARMAprocesses) have been intro-
duced by P. Brockwell [66]. These are processes Y = (Y (t), t ≥ 0) which
satisfy the formal equation

a(Dt)Y (y) = b(Dt)DtX (t).

Here a and b are the autoregressive andmoving average polynomials (respec-
tively), X = (X (t), t ≥ 0) is a Lévy process and Dt is the usual time
derivative. A state space representation enables the rigorous interpretation
of these as observation and state equations :

Y (t) = bTZ(t),

dZ(t) = AZ(t)dt + edX (t),

where b is a vector derived from b(·), A is a matrix depending on a(·) and
e = (0, 0, . . . , 0, 1)T. The solution to the state equation is then a Lévy-
driven Ornstein–Uhlenbeck process. For further investigations of this topic
see Marquand and Seltzer [255].
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• An important area related to SDEs is the study of stochastic partial differential
equations (SPDEs). These are partial differential equations perturbed by a
random term, so that the solution, if it exists, is a space–time random field.
The case based on Brownian noise has been extensively studied, see e.g. the
lecture notes by Walsh [352] and the survey by Pardoux [287], but so far
there has been little work on the case of Lévy-type noise.
InApplebaum andWu [10], existence and uniqueness were established for

an SPDE written formally as

∂u(t, x)

∂t
= ∂2u(t, x)

∂x2
+ a(t, x, u(t, x))+ b(t, x, u(t, x))Ḟt,x (6.50)

on the region [0,∞)×[0, c], where c > 0, with initial andDirichlet boundary
conditions. Here Ft,x is a Lévy space–time white noise. An extensive study
of the case where F is a Poisson random measure is due to Saint Loubert Bié
[317]; see also Albeverio et al. [4].
In a separate development, Mueller [274] established the short-time

existence for solutions to the equation

∂u(t, x)

∂t
= −(−�)p/2u(t, x)+ u(t, x)γ Ṁt,x

on R+ × D, where D is a domain in Rd , with given initial condition and u
vanishing on the complement of D. Here 0 ≤ α < 1, p∈ (0, 2], γ > 0 and
(M (t, x), t ≥ 0, x ∈D) is an α-stable space–time white noise. There seems
to be an intriguing relationship between this equation and stable measure-
valued branching processes.Weak solutions of this equation in the casewhere
1 < α < 2 and p = 2 have recently been found by Mytnik [275].
Solutions of certain SPDEs driven by Poisson noise generate interesting

examples of quantum field theories. For recent work in this area, see Gielerak
and Lugiewicz [134] and references therein.

• Stochastic evolution equations are closely related to SPDEs. Indeed consider
the equation 6.50) wherein a = 0 and b = 1. Suppose the initial condition
u(0, ·)∈ L2([0, c]). If Ḟ is sufficiently regularwe can regard it as the stochastic
differential of an L2([0, c])-valued Lévy process and rewrite the SPDE as an
infinite dimensional ordinary SDE:

du(t) = Ju(t−)+ dF(t),

where J is the one-dimensional Laplacian operator.
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More generally, we can consider equations of the form

dY (t) = (JY (t−)+ F(Y (t−))dt + G(Y (t−))dX (t), (6.51)

where Y = (Y (t), t ≥ 0) (if it exists) takes values in a real Hilbert space H .
Here J is the infinitesimal generator of aC0-semigroup (S(t), t ≥ 0) acting in
H ,X = (X (t), t ≥ 0) is an H -valued Lévy process and F and G are suitable
mappings from H to H and from H to the algebra L(H ) of all bounded
linear maps onH (respectively).We emphasise that the main novelty of such
equations arises from taking H to be infinite dimensional as in the case of
SPDEs.
The simplest interesting case is where F = 0 and C(·) is a fixed element

of L(H ). In this case, there is a unique (in a suitable weak sense) solution to
(6.51) and this is given by the H -valued Ornstein-Uhlenbeck process

Y (t) = S(t)Y (0)+
∫ t

0
S(t − s)CdX (s).

For construction and properties of this process, see Chojnowska-Michalik
[77] and Applebaum [13]. In the case where X is an H -valued Brownian
motion, an extensive theory of stochastic evolution equations can be found
inDa Prato and Zabczyk [84]. The casewhereX is a Poisson randommeasure
is treated in Knoche [205].A recent monograph by Peszat and Zabczyk [293]
gives a thorough treatment of such equations within the general Lévy process
framework.
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Index of notation

·b backwards stochastic integral 276
∼= Hilbert-space isomorphism 217
⊗ Hilbert-space tensor product 218
〈·, ·〉T ,ρ inner product in H2(T ,E) 217
◦ Itô’s circle (Stratonovitch integral) 270
◦b backwards Stratonovitch integral 276
4 Marcus canonical integral 272
4b backwards Marcus canonical integral 277
α index of stability 34
�(α) gamma function

∫∞
0 xα−1e−xdx 53

δ mesh of a partition 110
η Lévy symbol or characteristic exponent 31
ηX Lévy symbol of a Lévy process X 45
δx Dirac measure at x ∈Rn 24
�X (t)= X (t)− X (t−) jump process 98
ηZ Lévy symbol of the subordinated

process Z 58
µ intensity measure 101
µ1 ∗ µ2 convolution of probability measures 21
ν Lévy measure 29
ξt , t ∈R solution flow to an ODE 359
ρ(A) resolvent set of generator A 158
ρs,t transition density 146
σ(T ) spectrum of an operator T 208
(τa, a ∈Rd ) translation group of Rd 160
φ local unit 182
� = (�s,t , 0 ≤ s ≤ t <∞) solution flow to an SDE 384
χA indicator function of the set A 6
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ψ Laplace exponent 53
% = (%s,t , 0 ≤ s ≤ t <∞) solution flow to a modified SDE 392
(�,F ,P) probability space 3
A infinitesimal generator of a semigroup 155
AX infinitesimal generator of a Lévy

process 169
AZ infinitesimal generator of a

subordinated Lévy process 169
(b,A, ν) characteristics of an infinitely divisible

distribution 45
(b, λ) characteristics of a subordinator 52
B̂ {x ∈Rd ; |x| < 1} 29
B = (B(t), t ≥ 0) standard Brownian motion 46
BA(t) Brownian motion with covariance A 49
B(S) Borel σ -algebra of a Borel set S ⊆ Rd 2
Bb(S) bounded Borel measurable functions

from S to R 6
C(I) cylinder functions over I = [0, T ] 296
Cc(S) continuous functions with compact

support on S 6
C0(S) continuous functions from S to R that

vanish at∞ 6
Cn(Rd ) n-times differentiable functions from

Rd to R 7
Cov(X , Y ) covariance of X and Y 7
dY stochastic differential of a

semimartingale Y 234
D diagonal, {(x, x); x ∈Rd } 182
DA domain of a generator A 155
DφF directional derivative of Wiener

functional F in direction φ 298
DF gradient of a Wiener functional F 299
Dt Malliavin derivative 318
δ divergence (Skorohod integral) 323
E expectation 7
EG conditional expectation mapping 10
Es E(·|Fs) conditional expectation

given Fs 91
E(X ;A) E(XχA) 7
E(X |G) conditional expectation of X given G 10
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E closed form, Dirichlet form 190
EY stochastic (Doléans-Dade) exponential of Y 279
f̂ Fourier transform of f 163
f +(x) max{f (x), 0} 5
f −(x) −min{f (x), 0} 5
fX probability density function (pdf) of a random

variable X 10
F σ -algebra 2
(Ft , t ≥ 0) filtration 83
(FX

t , t ≥ 0) natural filtration of the process X 83
F∞

∨
t≥0 Ft 83

Ft+
⋂

ε>0 Ft+ε 84
GT graph of the linear operator T 204
(Gt , t ≥ 0) augmented filtration 84
GX , t ≥ 0 augmented natural filtration of the process X 84
H Hurst index 51
HC L2(�,FT ,P;C) 300
Hη non-isotropic Sobolev space 176
H(I) Cameron–Martin space over I = [0, T ] 296
H2(T ,E) Hilbert space of square-integrable, predictable

mappings on [0, T ] × E ×� 217
H−

2 (s,E) Hilbert space of square-integrable, backwards
predictable mappings on [0, s] × E ×� 275

I identity matrix 26
I identity operator 144
IG(δ, γ ) inverse Gaussian random variable 54
IT (F) Itô stochastic integral of F 223
ÎT (F) extended Itô stochastic integral of F 227
In(fn) multiple Wiener-Lévy integral 307

I (B)n (fn) multiple Wiener integral 307

I (N )
n (fn) multiple Poisson integral 307
Jn(fn) iterated Wiener-Lévy integral 312

J (B)
n (fn) iterated Wiener integral 313

J (N )
n (fn) iterated Poisson integral 313
Kν Bessel function of the third kind 342
lX lifetime of a sub-Markov process X 152
L(B) space of bounded linear operators in a Banach

space B 153
Lp(S,F ,µ;Rd ) Lp-space of equivalence classes of mappings from S

to Rd 8
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L(x, t) local time at x in [0, t] 70
M = (M (t), t ≥ 0) local martingale 69
M martingale space 90
M (·) random measure 103
〈M ,N 〉 Meyer angle bracket 94
[M ,N ] quadratic variation of M and N 245
M1(Rd ) set of all Borel probability measures on Rd 21
N = (N (t), t ≥ 0) Poisson process 49
Ñ = (Ñ (t), t ≥ 0) compensated Poisson process 49
N (t,A) #{0 ≤ s ≤ t;�X (s)∈A} 99
Ñ (t,A) compensated Poisson random measure 105
p Poisson point process 105
ps,t(x,A) transition probabilities 145
(pt , t ≥ 0) convolution semigroup of probability measures 63
pt1,t2,...,tn finite-dimensional distributions of a stochastic

process 19
pt(x,A) homogeneous transition probabilities 149
pX probability law (distribution) of a random

variable X 5
P partition 110
P predictable σ -algebra 216
P− backwards predictable σ -algebra 275
P2(T ,E) predictable processes whose squares are a.s.

integrable on [0, T ] × E 275
P−
2 (s,E) backwards predictable processes whose

squares are a.s. integrable on [s, T ] × E 275
P(·) projection-valued measure 177
P(A|G) conditional probability of the set A given G 11
PY |G conditional distribution of a random variable Y ,

given G 11
qt probability law of a Lévy process at time t 145
Rα regularly varying function of degree α ∈R 72
R0 slowly varying function 72
Rλ(A) resolvent of generator A at the point λ 158
(S,F ,µ) measure space 2
S(Rd ) Schwartz space 163
S(T ,E) simple processes on [0, T ] 218
S−(s,E) backwards simple processes on [s, T ] 275
(S(t), t ≥ 0) stock price process 346
(S̃(t), t ≥ 0) discounted stock price process 346



Index of notation 453

� Malliavin covariance matrix 415
T stopping time 91
TA first hitting time to a set A 91
T closure of a closable operator T 204
T c dual operator to T 206
T ∗ adjoint operator to T 206
T = (T (t), t ≥ 0) subordinator 52
(Ts,t , 0 ≤ s ≤ t <∞) Markov evolution 144
(Tt , t ≥ 0) semigroup of linear operators 153
(TX

t , t ≥ 0) semigroup associated with a Lévy process X 169
(TZ

t , t ≥ 0) semigroup associated with a subordinated
Lévy process Z 169

V (t) value of a portfolio at time t 328
varP (g) variation of a function g over a partition P 110
Vg (total) variation of g 110
Var(X ) variance of X 7
W0(I) Wiener space over I = [0, T ] 295
X ∼ N (m,A) X is Gaussian with mean m and covariance A 26
X ∼ π(c) X is Poisson with intensity c 27
X ∼ π(c,µZ ) X is compound Poisson with Poisson

intensity c and Lévy measure cµ(·) 28
X ∼ SαS X is symmetric α-stable 36
X (t−) left limit of X at t 98



Subject index

C0-semigroup, 151, 154
G-invariant measure, 3
Lp-Markov semigroup, 169, 172
Lp-positivity-preserving, 169, 173
µ-symmetric process, 173, 177
π -system, 4
σ -additivity, 101, 104
σ -algebra, 2
d -system, 4
n-step transition probabilities, 181, 185
Lévy process

canonical, 64, 65
recurrent, 67, 68
transient, 67, 68

càdlàg paths, 80, 82, 86, 88

adjoint operator, 202, 206
almost all, 3
almost everywhere (a.e.), 3
almost sure (a.s.), 3
American call option, 47, 320, 326
anomalous diffusion, 373, 382
arbitrage, 48, 320, 326
asset pricing

fundamental theorem of, 48, 49, 321, 322,
327, 328

atom (of a measure), 72, 343, 351

Bachelier, L., 46, 47, 50, 322, 329
background-driving Lévy process, 239, 242
backwards adapted, 270, 274
backwards filtration, 269, 274

natural, 270, 274
backwards Marcus canonical integral, 272, 277
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