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PREFACE

The objective of the third edition is the same as the first two
editions, that is, to provide the student or practitioner a mean-
ingful introduction to the design of medium-and short-span
girder bridges. However, the manner in which the material is
presented has changed. Instead of the eight chapters of the
second edition, the content has been spread out over twenty
shorter chapters. This organization should lead to easier read-
ing and simpler organization of classroom assignments.
To help understand how these changes have come about,

it is informative to see how the process all started. It was in
August 1990 that the two authors were at an International
Conference on Short and Medium Span Bridges in Toronto,
Canada, where both were presenting papers. They had of-
ten met at these bridge conferences and were familiar with
each other’s work—Puckett’s on analysis and software de-
velopment and Barker’s fundamental application of LRFD
to geotechnical materials. Both were classroom teachers in
structural engineering.
At the time, a number of major changes were taking place

in the design of highway bridges. Philosophically the most
dramatic was the change from a deterministic (allowable
stress) design approach to a probabilistic (limit state) design
concepts. The other big change was a government edict that
highway bridges that were built with federal dollars had to
be constructed and designed in the metric system starting in
1997.
The timing was right for a comprehensive textbook on

the design of highway bridges. The American Association
of State Highway and Transportation Officials (AASHTO)
were in the midst of a complete rewriting of their Bridge
Design Specifications in a LRFD format. Finite-element
analysis tools had matured, truck loads were better under-
stood through weigh-in-motion studies, material behavior
was being unified for prestressed and non-prestressed
concrete by the American Concrete Institute (ACI), post-
buckling strength of plate girder webs and fatigue strength
of weld details were better understood.
The two professors decided that someone needed to write a

textbook to present these changes to students and practicing

civil engineers. So over dinner and a major league baseball
game, they realized they could be the ones to do the writing.
Puckett took his sabbatical with Barker at Virginia Tech in
1993, they wrote trial chapters, prepared a proposal that was
accepted by JohnWiley & Sons, and the first editionwith ten
chapters was published in 1997.
It was not long before the metric system requirement was

dropped and the highway bridge designers needed a textbook
written in U.S. Customary Units. Therefore, it became nec-
essary to make revisions and to prepare a second edition of
the book. Besides the units change, the LRFD specifications
were in their third edition and the textbook needed to be up-
dated. As new material was added, the number of pages was
deemed too large and two chapters were dropped—Wood
Bridges and SubstructureDesign. These two topics are found
only in the metric system units of the first edition.
The remaining eight chapters of the second edition have

been divided into four parts: General Aspects of Bridge De-
sign (Chapters 1–7), Loads and Analysis (Chapters 8–12),
Concrete Bridges (Chapters 13–16), and Steel Bridges
(Chapters 17–20). Another change in the layout of the third
edition is the addition of an insert ofmainly color bridge pho-
tos. These photos have been selected to illustrate bridges of
historical significance; the ones most aesthetically pleasing
that are most beautiful in their surroundings, and noteworthy
as the longest, tallest, or highest bridges of their type.
We suggest that a first course in bridges be based on

Chapters 1–7 with Chapters 5, 6, and 7 compulsory reading.
Loads and analysis should follow with required reading in
Chapter 8 and selected portions of Chapter 9 and 10 depend-
ing upon the students’ background and instructor’s interest.
Design can be addressed with either the chapters on con-

crete (Chapters 13–16) or those on steel (Chapters 17–20).
Instructor guidance is required to lead the student through
these chapters and to address the topics of most interest.
For example, concrete bridges could be addressed with
nonprestressed bridges which would simplify the topic.
However, teaching prestressed concrete within a bridge
context could be an excellent way for students to gain

xi
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broad-based knowledge in this area for both bridges and
buildings. Similarly, teaching design using the steel chapter
leads to a general knowledge of composite cross sections,
staged construction, and plate girders. As the associated
principles are common with buildings and bridges, again the
bridge course can be used within a broader context.
How much of the material to present to a particular class

is at the discretion of the professor, who is the best person
to judge the background and maturity of the students. There
is enough material in the book for more than one course in
highway bridge design.
Practitioners who are entry level engineers will find the

background material in Chapters 1–12 helpful in their new
assignments and can use Chapters 13–16 and 17–20 for
specific guidance on design of a particular bridge type. The
same can be said for seasoned professionals, even though
they would be familiar with the material in the loads chapter,
they should find the other chapters of interest in providing
background and design examples based on the AASHTO
LRFD specifications.
Finally, those practitioners who just appreciate bridge

history and aesthetics might find those chapters of interest
from a personal enjoyment perspective. Bridges are art and
so many are simply beautiful.
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PREFACE TO THE SECOND EDITION

This book has the same intent as the first edition and is
written for senior-level undergraduate or first-year graduate
students in civil engineering. It is also written for practicing
civil engineers who have an interest in the design of highway
bridges. The objective is to provide the reader a meaningful
introduction to the design of medium- and short-span girder
bridges. This objective is achieved by providing fundamen-
tal theory and behavior, background on the development
of the specifications, procedures for design, and design
examples.
This book is based on the American Association of State

Highway and Transportation Officials (AASHTO) LRFD
Bridge Design Specifications, Third Edition, and Customary
U.S. units are used throughout. The general approach is to
present theory and behavior upon which a provision of the
specifications is based, followed by appropriate procedures,
either presented explicitly or in examples. The examples
focus on the procedures involved for a particular structural
material and give reference to the appropriate article in the
specifications. It is, therefore, suggested that the reader have
available a copy of the most recent edition of the AASHTO
LRFD Bridge Design Specifications.
The scope is limited to a thorough treatment of medium-

and short-span girder bridges with a maximum span length
of about 250 ft. These bridge structures comprise approxi-
mately 80% of the U.S. bridge inventory and are the most
common bridges designed by practitioners. Their design
illustrates the basic principles used for the design of longer
spans. Structure types included in this book are built of
concrete and steel. Concrete cast-in-place slab, T-beam,
and box-girder bridges and precast–prestressed systems are
considered. Rolled steel beam and plate girder systems that
are composite and noncomposite are included.
Civil engineers are identified as primary users of this book

because their formal education includes topics important
to a highway bridge designer. These topics include studies
in transportation systems, hydrodynamics of streams and
channels, geotechnical engineering, construction manage-
ment, environmental engineering, structural analysis and

design, life-cycle costing, material testing, quality control,
professional and legal problems, and the people issues as-
sociated with public construction projects. This reference to
civil engineers is not meant to exclude others from utilizing
this book. However, the reader is expected to have one
undergraduate course in structural design for each structural
material considered. For example, if only the design of steel
bridges is of interest, then the reader should have at least
one course in structural analysis and one course in structural
steel design.
Chapter 1 introduces the topic of bridge engineering with

a brief history of bridge building and the development of
bridge specifications in the United States. Added to the sec-
ond edition is an expanded treatment of bridge failure case
histories that brought about changes in the bridge design
specifications. Chapter 2 emphasizes the need to consider
aesthetics from the beginning of the design process and gives
examples of successful bridge projects. Added to the second
edition are a discussion of integral abutment bridges and a
section on the use of computer modeling in planning and
design. Chapter 3 presents the basics on load and resistance
factor design (LRFD) and indicates how these factors are
chosen to obtain a desirable margin of safety. Included at the
end of all the chapters in the second edition are problems that
can be used as student exercises or homework assignments.
Chapter 4 describes the nature, magnitude, and placement

of the various loads that act on a bridge structure. Chapter 5
presents influence function techniques for determining
maximum and minimum force effects due to moving vehicle
loads. Chapter 6 considers the entire bridge structure as a
system and how it should be analyzed to obtain a realistic
distribution of forces.
Chapters 7 and 8 are the design chapters for concrete

and steel bridges. Both chapters have been significantly
revised to accommodate the trend toward U.S. customary
units within the United States and away from SI. New to
the second edition of the concrete bridge design chapter
are discussions of high-performance concrete and control
of flexural cracking, changes to the calculation of creep
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and shrinkage and its influence on prestress losses, and
prediction of stress in unbonded tendons at ultimate.
Chapter 8 includes a major reorganization and rewrite of

content based upon the new specifications whereby Articles
6.10 and 6.11 were completely rewritten by AASHTO. This
specification rewrite is a significant simplification in the
specifications from the previous editions/interims; how-
ever, the use of these articles is not simple, and hopefully
Chapter 8 provides helpful guidance.
The organization of the design chapters is similar. A

description of material properties is given first, followed by
general design considerations. Then a discussion is given
of the behavior and theory behind the member resistance
expressions for the various limit states. Detailed design
examples that illustrate the LRFD specification provisions
conclude each chapter.
We suggest that a first course in bridges be based on

Chapters 1–6, either Sections 7.1–7.6, 7.10.1, and 7.10.3 of
Chapter 7 or Sections 8.1–8.4, 8.6–8.10, and 8.11.2. It is
assumed that some of this material will have been addressed
in prerequisite courses and can be referred to only as a
reading assignment. How much of the material to present to
a particular class is at the discretion of the professor, who
is probably the best person to judge the background and
maturity of the students. There is enough material in the
book for more than one course in highway bridge design.
Practitioners who are entry-level engineers will find the

background material in Chapters 1–6 helpful in their new as-
signments and can use Chapters 7 and 8 for specific guidance
on design of a particular bridge type. The same can be said
for seasoned professionals, even though theywould be famil-
iar with the material in the loads chapter, they should find the
other chapters of interest in providingbackground and design
examples based on the AASHTO LRFD specifications.
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PREFACE TO THE FIRST EDITION

This book is written for senior level undergraduate or first
year graduate students in civil engineering and for practicing
civil engineers who have an interest in the design of highway
bridges. The object of this book is to provide the student
or practitioner a meaningful introduction to the design
of medium- and short-span girder bridges. This objective
is achieved by providing fundamental theory and behav-
ior, background on the development of the specifications,
procedures for design, and design examples.
This book is based on the American Association of State

Highway and Transportation Officials (AASHTO) LRFD
Bridge Design Specifications and System International
(SI) units are used throughout. The general approach is
to present theory and behavior upon which a provision of
the specifications is based, followed by appropriate pro-
cedures, either presented explicitly or in examples. The
examples focus on the procedures involved for a particular
structural material and give reference to the appropriate
article in the specifications. It is, therefore, essential that
the reader have available a copy of the most recent edition
of the AASHTO LRFD Bridge Design Specifications in
SI units. (For those who have access to the World Wide
Web, addendums to the specifications can be found at
http://www2.epix.net/∼modjeski.)
The scope of this book is limited to a thorough treatment

of medium- and short-span girder bridges with a maximum
span length of about 60 m. These bridge structures comprise
approximately 80% of the U.S. bridge inventory and are the
most common bridges designed by practitioners, illustrat-
ing the basic principles found in bridges of longer spans.
Structure types included in this book are built of concrete,
steel, and wood. Concrete cast-in-place slab, T -beam, and
box-girder bridges and precast–prestressed systems are
considered. Rolled steel beam and plate girder systems
that are composite and non-composite are included, as well
as wood systems. This book concludes with a chapter on
substructure design, which is a common component for all
the bridge types.

Civil engineers are identified as primary users of this book
because their formal education includes topics important to
a highway bridge designer. These topics include studies in
transportation systems, hydrodynamics of streams and chan-
nels, geotechnical engineering, construction management,
environmental engineering, structural analysis and design,
life-cycle costing, material testing, quality control, profes-
sional and legal problems, and the people issues associated
with public construction projects. This reference to civil
engineers is not meant to exclude others from utilizing this
book.However, the reader is expected to have one undergrad-
uate course in structural design for each structural material
considered. For example, if only the design of steel bridges is
of interest, then the reader should have at least one course in
structural analysis and one course in structural steel design.
Chapter 1 introduces the topic of bridge engineering with

a brief history of bridge building and the development of
bridge specifications in the United States. Chapter 2 empha-
sizes the need to consider aesthetics from the beginning of
the design process and gives examples of successful bridge
projects. Chapter 3 presents the basics on load and resistance
factor design (LRFD) and indicates how these factors are
chosen to obtain a desirable margin of safety.
Chapter 4 describes the nature, magnitude, and placement

of the various loads that act on a bridge structure. Chapter 5
presents influence function techniques for determining
maximum and minimum force effects due to moving vehicle
loads. Chapter 6 considers the entire bridge structure as a
system and how it should be analyzed to obtain a realistic
distribution of forces.
Chapters 7–9 are the design chapters for concrete, steel,

and wood bridges. The organization of these three chapters
is similar. A description of material properties is given first,
followedby general design considerations. Then a discussion
of the behavior and theory behind the member resistance ex-
pressions for the various limit states, and concluding with
detailed design examples that illustrate the LRFD specifica-
tion provisions.

xv
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Chapter 10 on substructure design completes the book.
It includes general design considerations, an elastomeric
bearing design example, and a stability analysis to check the
geotechnical limit states for a typical abutment.
We suggest that a first course in bridges be based on

Chapters 1–6, either Articles 7.1–7.6, 7.10.1, and 7.10.3
of Chapter 7 or Articles 8.1–8.4, 8.6–8.10, and 8.11.2,
and conclude with Articles 10.1–10.3 of Chapter 10. It is
assumed that some of this material will have been covered
in prerequisite courses and can be referred to only as a
reading assignment. How much of the material to present to
a particular class is at the discretion of the professor, who
is probably the best person to judge the background and
maturity of the students. There is enough material in the
book for more than one course in highway bridge design.
Practitioners who are entry level engineers will find the

background material in Chapters 1–6 helpful in their new as-
signments and can use Chapters 7–10 for specific guidance
on design of a particular bridge type. The same can be said
for seasoned professionals, even though theywould be famil-
iar with the material in the loads chapter, they should find the
other chapters of interest in providingbackground and design
examples based on the AASHTO LRFD specifications.
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Exhibit 1.1 The Pont du Gard Aqueduct, Nimes, France, was built by Romans 40–60 A.D. The lower arches were widened in 1743 to
accommodate a road bridge.

Exhibit 1.2 The Starrucca Viaduct near Lanesboro, Pennsylvania, was built in 1848 by the Erie Railway. At the time of its construction, it
was the largest stone arch rail viaduct in the United States. The bridge has been in continual use for more than 160 years and still carries two
tracks of the New York, Susquehanna and Western Railway. (HAER PA-6-17, photo by Jack E. Boucher, 1971.)
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Exhibit 1.3 The Philippi Covered Bridge across the Tygart River Valley near Philippi, West Virginia, was built in 1852. It was used by
armies of both the North and the South in the Civil War. In 1934 the bridge was strengthened and is today a part of U.S. 250. It is reportedly
the only remaining two-lane “double barrel” covered bridge.

Exhibit 1.4 The Brooklyn Bridge was built 1869–1883 by John and Washington Roebling spanning the East River from Manhattan to
Brooklyn, New York (photo looking east towards Brooklyn). When completed, it was the longest spanning bridge in the world and the
Roebling system of suspension bridge construction became the standard throughout the world. (Jet Lowe, HAER NY-18-75.)

Exhibit 1.5 The Golden Gate Bridge was built across mouth of San Francisco Bay from 1933–1937 by design engineer Charles Ellis and
chief engineer Joseph Strauss. Spanning one of the world’s most spectacular channels, the bridge is internationally renowned as a superb
structural and aesthetic example of suspension bridge design. (Jet Lowe, 1984, HAER CA-31-43.)



Exhibit 1.6 The Eads Bridge spanning the Mississippi River at Saint Louis, Missouri, was built 1867–1874 by James Buchanan Eads. The
triple span, tubular metallic, arch construction required precise quality control and deep caissons to achieve its engineering and aesthetics
success.

Exhibit 1.7 The Alvord Lake Bridge in San Francisco’s Golden Gate Park was built in 1889 by Ernest Ransome. This reinforced concrete
arch bridge is believed to be the oldest in the United States using steel reinforcing bars. It survived the 1906 San Francisco earthquake and
several subsequent tremblers without damage and continues in service today. (sanfranciscodays.com.)

Exhibit 1.8 The TunkhannockCreek Viaduct near Nicholson, Pennsylvania,was built in 1915 for the LackawannaRailroad. It is 2375 feet
long and 240 feet high. The viaduct is the largest concrete bridge in the United States. It has been compared to the nearly two-thousand-year
old Pont du Gard in southern France because of its tall proportions and high semicircular main arches.



Exhibit 1.9 The Rogue River Bridge spans the mouth of the river on the Oregon Coast Highway near Gold Beach, Oregon, and was built
1930–1932. The bridge is the first reinforced concrete arch span built in the United States using the Freyssinet method of prestressing the arch
ribs. Data collected from this bridge provided valuable insight into this technique for the engineering community. (Jet Lowe, 1990, HAER
OR-38-16.)

Exhibit 1.10 TheWalnut Lane Bridge spanningLincolnDrive andMonoshoneCreek, Philadelphia, Pennsylvania,was designedbyGustave
Magnel and constructed in 1949–1950. This bridge was the first prestressed concrete beam bridge built in the United States. It provided the
impetus for the development of methods for design and construction of this type structure in the United States. (A. Pierce Bounds, 1988,
HAER PA-125-5.)

Exhibit 1.11 The Hoover Dam Bypass Bridge was completed in October, 2010, and was the first concrete-steel composite arch bridge
(concrete for the arch and columns and steel for the roadway deck) built in the United States. The function of the bypass and bridge
was to improve travel times, replace the dangerous approach roadway, and reduce the possibility of an attack or accident at the dam site.
(www.hooverdambypass.org/Const_PhotoAlbum.htm.)



Exhibit 1.12 The Smart Road Bridge has pleasing proportions as the span lengths decrease going up the sides of the Ellett Valley near
Blacksburg, Virginia. The bridge is 1985 feet long, 150 feet high, and serves the needs of researchers while protecting the scenic beauty of
southwestern Virginia.

Exhibit 1.13 The bridge crossing the broad valley of the Mosel River (Moseltal-brücke) in southern Germany is a good example of tall
tapered piers with thin constant-depth girders that give a pleasing appearancewhen viewed obliquely.

Exhibit 1.14 The Blue Ridge Parkway (Linn Cove) Viaduct, GrandfatherMountain, North Carolina, was built from the top down to protect
the environment of Grandfather Mountain. This precast concrete segmental bridge was designed to blend in with the rugged environment.



Exhibit 1.15 The Francis Scott Key Bridge over the Potomac at Georgetown, Washington, DC, was built from 1917 to 1923. It has seven
open-spandrel three-ribbed arches that are in an orderly and rhythmic progression.

Exhibit 1.16 The Leonard P. Zakim Bunker Hill Memorial Bridge was designed by Christian Menn, completed in 2002, and spans the
Charles River at Boston, MA. The towering bridge contrasts with the skyline of the city. It has become an icon and nearly as identifiable with
Boston as the Eiffel Tower is to Paris. (leonardpzakimbunkerhillbridge.org.)

Exhibit 1.17 The I-82 Hinzerling Road undercrossing near Prosser, Washington, is a good example of the use of texture. The textured
surfaces on the solid concrete barrier and the abutments have visually reduced the mass of these elements and made the bridge appear more
slender than it actually is. (Photo courtesy Washington State DOT.)



Exhibit 1.18 The interchange between the Red Mountain Freeway (202) and U.S. 60 in Mesa, Arizona, is a good example of using
Southwest-type texture and color to produce a beautiful blend of tall piers and gracefully curved girders. (Photo courtesy of Arizona DOT.)

Exhibit 1.19 The I-35W St. Anthony Falls Bridge over the Mississippi River in Minneapolis, Minnesota, built in 2008 replaced the I-35W
Bridge that collapsed in 2007 (see Section 2.2.7 and compare with Figure 2.14). The brightly lit girder face and sculpted piers contrast with
the shadows cast by the deck overhang and the tops of the piers, accentuating the flow of the structure.

Exhibit 1.20 The 436th Avenue SE Undercrossing of I-90, King County, Washington, by increasing the mass of the central pier provides
a focal point that successfully directs attention away from the split composition effect of the two-span layout and duality is resolved. (Photo
courtesy of Washington State DOT.)



Exhibit 1.21 The Genesee Road (U.S. 40) Bridge over I-70 in Colorado is an elegant single span overcrossing with a slender appearance
because the girder is in shadow and sloping lines on the abutment that invites the flow of traffic. It also provides a framework for an observer’s
first view of the Rocky Mountains. (Photo courtesy of Colorado DOT.)

Exhibit 1.22 The Millau Viaduct spans the valley of the river Tarn near Millau in southern France. Completed in 2004, it has the tallest
piers of any bridge in the world. The sweeping curve of the roadway provides stability as well as breathtaking views of the broad valley.

Exhibit 1.23 The I-17/101 Interchange in Phoenix, Arizona, has tapered textured piers supporting four levels of directional roadways. The
piers and girders have different dimensions, but they all belong to the same family. (Photo courtesy of Arizona DOT.)



PART I

General Aspects of Bridge Design



CHAPTER 1

Introduction to Bridge Engineering

Bridges are important to everyone. But they are not seen or

understood in the same way, which is what makes their study

so fascinating. A single bridge over a small river will be

viewed differently because the eyes each one sees it with are

unique to that individual. Someone traveling over the bridge

everyday may only realize a bridge is there because the road-

way now has a railing on either side. Others may remember a
time before the bridgewas built and how far they had to travel

to visit friends or to get the children to school. Civic leaders

see the bridge as a link between neighborhoods, a way to

provide fire and police protection, and access to hospitals.

In the business community, the bridge is seen as opening

up new markets and expanding commerce. An artist may

consider the bridge and its setting as a possible subject for a
future painting. A theologianmay see the bridge as symbolic

of making a connection with God. While a boater on the

river, looking up when passing underneath the bridge, will

have a completely different perspective. Everyone is looking

at the same bridge, but it produces different emotions and

visual images in each.

Bridges affect people. People use them, and engineers de-

sign them and later build and maintain them. Bridges do not
just happen. They must be planned and engineered before

they can be constructed. In this book, the emphasis is on

the engineering aspects of this process: selection of bridge

type, analysis of load effects, resistance of cross sections,

and conformance with bridge specifications. Although very

important, factors of technical significance should not over-

shadow the people factor.

1.1 A BRIDGE IS THE KEY ELEMENT IN A
TRANSPORTATION SYSTEM

A bridge is a key element in a transportation system for three

reasons:

� It likely controls the capacity.

� It is the highest cost per mile.

� If the bridge fails, the system fails.

If thewidth of a bridge is insufficient to carry the number of

lanes required to handle the traffic volume, the bridge will be

a constriction to the traffic flow. If the strength of a bridge is

deficient and unable to carry heavy trucks, load limits will be

posted and truck traffic will be rerouted. The bridge controls

both the volume and weight of the traffic carried.

Bridges are expensive. The typical cost per mile of a bridge

is many times that of the approach roadways. This is a major
investment and must be carefully planned for best use of the

limited funds available for a transportation system.

When a bridge is removed from service and not replaced,

the transportation system may be restricted in its function.

Traffic may be detoured over routes not designed to handle

the increase in volume. Users of the system experience in-

creased travel times and fuel expenses. Normalcy does not

return until the bridge is repaired or replaced.

Because a bridge is a key element in a transportation sys-

tem, balance must be achieved between handling future traf-

fic volume and loads and the cost of a heavier and wider

bridge structure. Strength is always a foremost consideration

but so shouldmeasures to prevent deterioration.The designer

of new bridges has control over these parameters and must

make wise decisions so that capacity and cost are in balance,

and safety is not compromised.

1.2 BRIDGE ENGINEERING IN THE
UNITED STATES

Usually a discourse on the history of bridges begins with a

log across a small stream or vines suspended above a deep

chasm. This preamble is followed by the development of

the stone arch by the Roman engineers of the second and

first centuries BC and the building of beautiful bridges across

Europe during the Renaissance period of the fourteenth

through seventeenth centuries. Next is the Industrial Revo-

lution, which began in the last half of the eighteenth century

and saw the emergence of cast iron,wrought iron, and finally

steel for bridges. Such discourses are found in the books by

Brown (1993), Gies (1963), and Kirby et al. (1956) and are

not repeated here. An online search for “bridge engineering
history” leads to a host of other references on this topic.

Instead a few of the bridges that are typical of those found

in the United States are highlighted.

1.2.1 Stone Arch Bridges

The Roman bridge builders first come to mind when dis-

cussing stone arch bridges. They utilized the semicircular

arch and built elegant and handsome aqueducts and bridges,
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4 1 INTRODUCTION TO BRIDGE ENGINEERING

many of which are still standing today. The oldest remain-

ing Roman stone arch structure is from the seventh century

BC and is a vaulted tunnel near the Tiber River. However,

the oldest surviving stone arch bridge dates from the ninth

century BC and is in Smyrna, Turkey, over the Meles River.

In excavations of tombs and underground temples, archae-

ologists found arched vaults dating to the fourth millennium

BC at Ur in one of the earliest Tigris–Euphrates civilizations
(Gies, 1963). The stone arch has been around a long time and

how its form was first discovered is unknown. But credit is

due to the Roman engineers because they are the ones who

saw the potential in the stone arch, developed construction

techniques, built foundations in moving rivers, and left us a

heritage of engineering works that we marvel at today such

as Pont du Gard (Exhibit 1 in the color insert).

Compared to these early beginnings, the stone arch bridges

in the United States are relative newcomers. One of the ear-

liest stone arch bridges is the Frankford Avenue Bridge over

Pennypack Creek built in 1697 on the road between Philadel-

phia andNewYork. It is a three-span bridge, 73 ft (23m) long

and is the oldest bridge in the United States that continues to
serve as part of a highway system (Jackson, 1988).

Stone arch bridges were usually small scale and built by

local masons. These bridges were never as popular in the

United States as they were in Europe. Part of the reason for

lack of popularity is that stone arch bridges are labor inten-

sive and expensive to build. However, with the development

of the railroads in the mid- to late-nineteenth century, the

stone arch bridge provided the necessary strength and stiff-

ness for carrying heavy loads, and a number of impressive

spans were built. One was the Starrucca Viaduct, Lanesboro,

Pennsylvania, which was completed in 1848, and another

was the James J. Hill Stone Arch Bridge, Minneapolis, Min-

nesota, completed in 1883.
The Starrucca Viaduct (Exhibit 2 in the color insert) is

1040 ft (317 m) in overall length and is composed of 17

arches, each with a span of 50 ft (15 m). The viaduct is lo-

cated on what was known as the New York and Erie Railroad

over Starrucca Creek near its junctionwith the Susquehanna

River. Except for the interior spandrel walls being of brick

masonry, the structurewas of stonemasonry quarried locally.

The maximum height of the roadbed above the creek is 112 ft

(34 m) (Jackson, 1988) and it still carries heavy railroad

traffic.

The James J. Hill Stone Arch Bridge (Fig. 1.1) is 2490 ft

(760m) long and incorporated 23 arches in its original design

(later, 2 arches were replaced with steel trusses to provide
navigational clearance). The structure carried Hill’s Great

NorthernRailroad (nowmerged into theBurlingtonNorthern

Santa Fe Railway) across the Mississippi River just below

St. Anthony Falls. It played a key role in the development

of the Northwest. The bridge was retired in 1982, just short

of its 100th birthday, but it still stands today as a reminder of

an era gone by and bridges that were built to last (Jackson,

1988).

Fig. 1.1 James J. Hill Stone Arch Bridge, Minneapolis, Min-

nesota. (Hibbard Photo, Minnesota Historical Society, July 1905.)

1.2.2 Wooden Bridges

Early bridge builders in the United States (Timothy Palmer,
LewisWernwag, TheodoreBurr, and Ithiel Town) began their

careers as millwrights or carpenter-mechanics. They had
no clear conception of truss action, and their bridges were

highly indeterminate combinations of arches and trusses

(Kirby and Laurson, 1932). They learned frombuilding large
mills how to increase clear spans by using the king-post

system or trussed beam. They also appreciated the arch form
and its ability to carry loads in compression to the abut-

ments. This compressive actionwas important because wood
joints can transfer compressionmore efficiently than tension.

The long-span wooden bridges built in the late-eighteenth
and early-nineteenth centuries incorporated both the truss

and the arch. Palmer and Wernwag constructed trussed arch
bridges in which arches were reinforced by trusses (Fig. 1.2).

Palmer built a 244-ft (74-m) trussed arch bridge over the
Piscataqua in New Hampshire in the 1790s. Wernwag built

his “Colossus” in 1812 with a span of 340 ft (104 m) over
the Schuylkill at Fairmount, Pennsylvania (Gies, 1963).

In contrast to the trussed arch of Palmer andWernwag, Burr
utilized an arched truss in which a truss is reinforced by an

arch (Fig. 1.3) and patented his design in 1817. An example
of one that has survived until today is the Philippi Covered

Bridge (Fig. 1.4) across the Tygant’s Valley River, West Vir-
ginia. Lemuel Chenoweth completed it in 1852 as a two-span

Burr arched truss with a total length of 577 ft (176 m) long.
In later years, two reinforced concrete piers were added un-

der each span to strengthen the bridge (Exhibit 3 in the color
insert). As a result, it is able to carry traffic loads and is the

nation’s only covered bridge serving a federal highway.
One of the reasons many covered bridges have survived

for well over 100 years is that the wooden arches and trusses
have been protected from the weather. Palmer put a roof and

siding on his “permanent bridge” (called permanent because
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Fig. 1.2 Trussed arch—designed by Lewis Wernwag, patented 1812.

Fig. 1.3 Arched truss—designed by Theodore Burr, patented

1817. (From Bridges and Men by Joseph Gies. Copyright © 1963

by Joseph Gies. Used by permission of Doubleday, a division of

Bantam Doubleday Dell Publishing Group, Inc.)

it replaced a pontoon bridge) over the Schuylkill at Philadel-

phia in 1806, and the bridge lasted nearly 70 years before it

was destroyed by fire in 1875.

Besides protecting the wood from alternating cycles of wet

and dry that cause rot, other advantages of the covered bridge

occurred. During winter blizzards, snow did not accumulate

on the bridge. However, this presented another problem; bare

wooden decks had to be paved with snow because every-

body used sleighs. Another advantage was that horses were

not frightened by the prospect of crossing a rapidly moving

stream over an open bridge because the covered bridge had a

comforting barnlike appearance (so says the oral tradition).

American folklore also says the covered bridges became fa-

vorite parking spots for couples in their rigs, out of sight

except for the eyes of curious children who had climbed up

and hid in the rafters (Gies, 1963). However, the primary pur-

pose of covering the bridge was to prevent deterioration of

the wood structure.

Another successful wooden bridge form first built in 1813

was the lattice truss, which Ithiel Town patented in 1820

(Edwards, 1959). This bridge consisted of strong top and

bottom chords, sturdy end posts, and a web of lattice work

(Fig. 1.5). This truss type was popular with builders because

all of the web members were of the same length and could be

prefabricated and sent to the job site for assembly. Another

advantage is that it had sufficient stiffness by itself and

did not require an arch to reduce deflections. This inherent

stiffness meant that horizontal thrusts did not have to be

resisted by abutments, and a true truss, with only vertical

reactions, had really arrived.

The next step toward simplicity in wooden bridge truss

types in the United States is credited to an army engineer

named Colonel Stephen H. Long who had been assigned

by the War Department to the Baltimore and Ohio Railroad

Fig. 1.4 Philippi covered bridge. (Photo by Larry Belcher, courtesy of West Virginia Department of Transportation.)
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Fig. 1.5 Lattice truss—designed by Ithiel Town, patented 1820.

(From Bridges and Men by Joseph Gies. Copyright © 1963 by

Joseph Gies. Used by permission of Doubleday, a division of Ban-

tam Doubleday Dell Publishing Group, Inc.)

Fig. 1.6 Multiple king-post truss—designed by Colonel Stephen

H. Long in 1829. (From Bridges and Men by Joseph Gies. Copy-

right © 1963 by Joseph Gies. Used by permission of Doubleday, a

division of Bantam Doubleday Dell Publishing Group, Inc.)

(Edwards, 1959). In 1829, Colonel Long built the first

American highway–railroad grade separation project. The

trusses in the superstructure had parallel chords that were

subdivided into panels with counterbraced web members

(Fig. 1.6). The counterbraces provided the necessary stiff-

ness for the panels as the loading changed in the diagonal

web members from tension to compression as the railroad

cars moved across the bridge.

The development of the paneled bridge truss in wooden

bridges enabled long-span trusses to be built with other ma-

terials. In addition, the concept of web panels is important

because it is the basis for determining the shear resistance of

girder bridges. These concepts are called the modified com-

pression field theory in Chapter 14 and tension field action

in Chapter 19.

1.2.3 Metal Truss Bridges

Wooden bridges were serving the public well when the loads

being carried were horse-drawn wagons and carriages. Then

Fig. 1.7 Howe truss—designed by William Howe, patented in

1841. (From Bridges and Men by Joseph Gies. Copyright © 1963

by Joseph Gies. Used by permission of Doubleday, a division of

Bantam Doubleday Dell Publishing Group, Inc.)

along came the railroads with their heavy loads, and the

wooden bridges could not provide the necessary strength

and stiffness for longer spans. As a result, wrought-iron

rods replaced wooden tension members, and a hybrid truss

composed of a combination of wood and metal members

was developed. As bridge builders’ understanding of which

members were carrying tension and which were carrying

compression increased, cast iron replaced wooden compres-

sion members, thus completing the transition to an all-metal

truss form.

In 1841, William Howe, uncle of Elias Howe, the inventor

of the sewing machine, received a patent on a truss arrange-

ment in which he took Long’s panel system and replaced

the wooden vertical members with wrought-iron rods (Gies,

1963). The metal rods ran through the top and bottom chords

and could be tightened by turnbuckles to hold the wooden

diagonal web members in compression against cast-iron an-

gle blocks (Fig. 1.7). Occasionally, Howe truss bridges were

built entirely of metal, but in general they were composed

of both wood and metal components. These bridges have the

advantages of the panel system as well as those offered by

counterbracing.

Thomas and Caleb Pratt (Caleb was the father of Thomas)

patented a second variation on Long’s panel system in 1844

with wooden vertical members to resist compression and

metal diagonal members, which resist only tension (Jackson,

1988). Most of the Pratt trusses built in the United States

were entirely of metal, and they became more commonly

used than any other type. Simplicity, stiffness, constructabil-

ity, and economy earned this recognition (Edwards, 1959).

The distinctive feature of the Pratt truss (Fig. 1.8), and

Fig. 1.8 Pratt truss—designed by Thomas and Caleb Pratt, patented in 1844. (From Bridges and Men by Joseph Gies. Copyright © 1963

by Joseph Gies. Used by permission of Doubleday, a division of Bantam Doubleday Dell Publishing Group, Inc.)
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Fig. 1.9 Bowstring arch—designed by Squire Whipple, patented in 1841.

related designs, is that the main diagonal members are in

tension.

In 1841, Squire Whipple patented a cast-iron arch truss

bridge (Fig. 1.9), which he used to span the Erie Canal at

Utica, New York (Note: Whipple was not a country gentle-

man, his first name just happened to be Squire.) Whipple uti-

lized wrought iron for the tension members and cast iron for

the compression members. This bridge form became known

as a bowstring arch truss, although some engineers consid-

ered the design to be more a tied arch than a truss (Jackson,

1988). The double-intersection Pratt truss of Figure 1.10, in

which the diagonal tension members extended over two pan-

els, was also credited to Whipple because he was the first

to use the design when he built railroad bridges near Troy,

New York.

To implement his designs, it is implied that Squire Whip-

ple could analyze his trusses and knew the magnitudes of the

tensile and compressive forces in the various members. He

was a graduate of Union College, class of 1830, and in 1847

he published the first American treatise on determining the

stresses produced by bridge loads and proportioning bridge

members. It was titled A Work on Bridge Building; consist-
ing of two Essays, the one Elementary andGeneral, the other
giving Original Plans, and Practical Details for Iron and
Wooden Bridges (Edwards, 1959). In it he showed how one

could compute the tensile or compressive stress in each mem-

ber of a truss that was to carry a specific load (Kirby et al.,

1956).

In 1851, Herman Haupt, a graduate of the U.S. Military

Academy at West Point, class of 1835, authored a book

titled General Theory of Bridge Construction , which was

published by D. Appleton and Company (Edwards, 1959).

This book and the one by Squire Whipple were widely used

by engineers and provided the theoretical basis for selecting

cross sections to resist bridge dead loads and live loads.

One other development that was critical to the bridge

design profession was the ability to verify the theoretical

predictions with experimental testing. The tensile and com-

pressive strengths of cast iron, wrought iron, and steel had to

be determined and evaluated. Column load curves had to be

developed by testing cross sections of various lengths. This

experimental work requires large-capacity testing machines.

The first testing machine to be made in America was built

in 1832 to test a wrought-ironplate for boilers by the Franklin

Institute of Philadelphia (Edwards, 1959). Its capacity was

about 10 tons (90 kN), not enough to test bridge components.

About 1862, William Sallers and Company of Philadelphia

built a testing machine that had a rated capacity of 500 tons

(4500 kN) and was specially designed for the testing of full-

size columns.

Two testing machines were built by the Keystone Bridge

Works, Pittsburgh, Pennsylvania, in 1869–1870 for the

St. Louis Bridge Company to evaluate materials for the Eads

Bridge over the Mississippi River. One had a capacity of

100 tons (900 kN) while the other a capacity of 800 tons

(7200 kN). At the time it was built, the capacity of the larger

testing machine was greater than any other in existence

(Edwards, 1959).

During the last half of the nineteenth century, the capacity

of the testing machines continued to increase until in 1904

the American Bridge Company built a machine having a ten-

sion capacity of 2000 tons (18,000 kN) (Edwards, 1959) at

its Ambridge, Pennsylvania, plant. These testing machines

were engineering works in themselves, but they were essen-

tial to verify the strength of the materials and the resistance

of components in bridges of ever increasing proportions.

Fig. 1.10 Double-intersection Pratt—credited to Squire Whipple.
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1.2.4 Suspension Bridges

Suspension bridges capture the imagination of people every-

where. With their tall towers, slender cables, and tremendous

spans, they appear as ethereal giants stretching out to join to-

gether opposite shores. Sometimes they are short and stocky

and seem to be guardians and protectors of their domain.

Other times, they are so long and slender that they seem to be

fragile and easily moved. Whatever their visual image, peo-

ple react to them and remember how they felt when they first

saw them.

Imagine the impression on a young child on a family out-

ing in a state park and seeing for the first time the infamous

“swinging bridge” across the raging torrent of a rock-strewn

river (well, it seemed like a raging torrent).And then the child

hears the jeers and challenge of the older children, daring him

to cross the river as theymoved side to side and purposely got

the swinging bridge to swing. Well, it did not happen that

first day, it felt more comfortable to stay withmother and the

picnic lunch. But it did happen on the next visit, a year or

two later. It was like a rite of passage. A child no longer, he

was able to cross over the rock-strewn stream on the swing-

ing bridge, not fighting it, but moving with it and feeling the

exhilaration of being one with forces stronger than he was.

Suspension bridges also make strong impressions on adults

and having an engineering education is not a prerequisite.

People in the United States have enjoyed these structures on

both coasts, where they cross bays and mouths of rivers. The

most memorable are the Brooklyn Bridge (Exhibit 4 in the

color insert) in the east and theGoldenGate Bridge (Exhibit 5

in the color insert) in the west. They are also in the interior

of the country, where they cross the great rivers, gorges, and

straits. Most people understand that the cables are the ten-

dons from which the bridge deck is hung, but they marvel at

their strength and the ingenuity it took to get them in place.

When people see photographs of workers on the towers of

suspension bridges, they catch their breath, and then wonder

at how small the workers are compared to the towers they

have built. Suspension bridges bring out the emotions: won-

der, awe, fear, pleasure; but mostly they are enjoyed for their

beauty and grandeur.

In 1801, James Finley erected a suspension bridge with

wrought-iron chains of 70-ft (21-m) span over Jacob’s Creek

near Uniontown, Pennsylvania. He is credited as the inven-

tor of the modern suspension bridge with its stiff level floors

and secured a patent in 1808 (Kirby and Laurson, 1932). In

previous suspension bridges, the roadway was flexible and

followed the curve of the ropes or chains. By stiffening the

roadway and making it level, Finley developed a suspension

bridge that was suitable not only for footpaths and trails but

for roads with carriages and heavy wagons.

Most engineers are familiar with the suspension bridges

of John A. Roebling: the Niagara River Bridge, completed

in 1855 with a clear span of 825 ft (250 m); the Cincinnati

Suspension Bridge, completed in 1867 with a clear span of

1057 ft (322m); and theBrooklynBridge, completed in 1883

with a clear span of 1595 ft (486m). Of these threewire cable

suspension bridges from the nineteenth century, the last two

are still in service and are carrying highway traffic. However,

there is one other long-span wire cable suspension bridge

from this era that is noteworthy and still carrying traffic: the

Wheeling Suspension Bridge completed in 1849with a clear

span of 1010 ft (308 m) (Fig. 1.11).

Fig. 1.11 Wheeling Suspension Bridge. (Photo by John Brunell, courtesy of West Virginia Department of Transportation.)
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The Wheeling Suspension Bridge over the easterly chan-

nel of the Ohio River was designed and built by Charles Ellet

who won a competition with John Roebling; that is, he was

the low bidder. This result of a competition was also true of

theNiagaraRiver Bridge, except that Ellet walked away from

it after the cables had been strung, saying that the $190,000

he bid was not enough to complete it. Roebling was then

hired and he completed the project for about $400,000 (Gies,

1963).

The original Wheeling Suspension Bridge did not have

the stiffening truss shown in Figure 1.11. This truss was

added after a windstorm in 1854 caused the bridge to swing

back and forth with increased momentum, the deck to twist

and undulate in waves nearly as high as the towers, until it

all came crashing down into the river (very similar to the

Tacoma Narrows Bridge failure some 80 years later). A web

search for “Tacoma Narrows Movie” will provide several

opportunities to view movies that illustrate the failure.

The Wheeling Bridge had the strength to resist gravity

loads, but it was aerodynamically unstable. Why this lesson

was lost to the profession is unknown, but if it had received

the attention it deserved, it would have saved a lot of trouble

in the years ahead.

What happened to the Wheeling Suspension Bridge was

not lost on John Roebling.He was in themidst of the Niagara

River project when he heard of the failure and immediately

ordered more cable to be used as stays for the double-decked

bridge. An early painting of the Niagara River Bridge shows

the stays running from the bottom of the deck to the shore to

provide added stability.

In 1859 William McComas, a former associate of Charles

Ellet, rebuilt the Wheeling Suspension Bridge. In 1872 Wil-

helm Hildenbrand, an engineer with Roebling’s company,

modified the deck and added diagonal stay wires between

the towers and the deck to increase the resistance to wind

(Jackson, 1988) and to give the bridge the appearance it has

today.

The completion of the Brooklyn Bridge in 1883 brought to

maturity the building of suspension bridges and set the stage

for the long-span suspension bridges of the twentieth century.

Table 1.1 provides a summary of some of the notable long-

span suspension bridges built in the United States and still

standing.

Some comments are in order with regard to the suspension

bridges in Table 1.1. The Williamsburg Bridge and the

Brooklyn Bridge are of comparable span but with noticeable

differences. The Williamsburg Bridge has steel rather than

masonry towers. The deck truss is a 40-ft (12.5-m) deep

lattice truss, compared to a 17-ft (5.2-m) deep stiffening

truss of its predecessor. This truss gives the Williamsburg

Bridge a bulky appearance, but it is very stable under traffic

and wind loadings. Another big difference is that the wire

in the steel cables of the Brooklyn Bridge was galvanized

to protect it from corrosion in the briny atmosphere of the

East River (Gies, 1963), while the wire in its successor was

not. As a result, the cables of the Williamsburg Bridge have

Table 1.1 Long-Span Suspension Bridges in the United States

Bridge Site Designer Clear Span, ft (m) Date

Wheeling West Virginia Charles Ellet 1010 1847

(308)

Cincinnati Ohio John Roebling 1057 1867

(322)

Brooklyn New York John Roebling 1595 1883

Washington Roebling (486)
Williamsburg New York Leffert Lefferts Buck 1600 1903

(488)

Bear Mountain Hudson Valley C. Howard Baird 1632 1924

(497)

Ben Franklin Philadelphia Ralph Modjeski 1750 1926
Leon Moisseiff (533)

Ambassador Detroit Jonathon Jones 1850 1929

Leon Moisseiff (564)

George Washington New York Othmar Ammann 3500 1931

Leon Moisseiff (1067)
Golden Gate San Francisco Joseph Strauss 4200 1937

Charles Ellis

Leon Moisseiff (1280)

Verrazano-Narrows New York Ammann and Whitney 4260 1964

(1298)
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had to be rehabilitated with a new protective system that

cost $73 million (Bruschi and Koglin, 1996). A web search
for “Williamsburg Bridge image,” or other bridge names

listed in Table 1.1, provides a wealth of information and
illustration.

Another observation of Table 1.1 is the tremendous

increase in clear span attained by the George Washington
Bridge over theHudson River in NewYork. It nearly doubled

the clear span of the longest suspension bridge in existence
at the time it was built, a truly remarkable accomplishment.

One designer, Leon Moisseiff, is associated with most of
the suspension bridges in Table 1.1 that were built in the

twentieth century. He was the design engineer of theManhat-

tan and Ben Franklin bridges, participated in the design of the
George Washington Bridge, and was a consulting engineer

on the Ambassador, Golden Gate, and Oakland–Bay bridges
(Gies, 1963). All of these bridges were triumphs and suc-

cesses. He was a well-respected engineer who had pioneered

the use of deflection theory, instead of the erroneous elas-
tic theory, in the design of the Manhattan Bridge and those

that followed. But Moisseiff will also be remembered as the
designer of the Tacoma Narrows Bridge that self-destructed

during a windstorm in 1940, not unlike that experienced by
the Wheeling Suspension Bridge in 1854.

The use of a plate girder to stiffen the deck undoubtedly

contributed to providing a surface on which the wind could
act, but the overall slenderness of the bridge gave it an un-

dulating behavior under traffic even when the wind was not
blowing.Comparing the ratio of depth of truss or girder to the

span length for theWilliamsburg, Golden Gate, and Tacoma

Narrows bridges, we have 1 : 40, 1 : 164, and 1 : 350, respec-
tively (Gies, 1963). The design had gone one step too far in

making a lighter and more economical structure. The tragedy
for bridge design professionals of the Tacoma Narrows fail-

ure was a tough lesson, but one that will not be forgotten.

1.2.5 Metal Arch Bridges

Arch bridges are aesthetically pleasing and can be econom-

ically competitive with other bridge types. Sometimes the
arch can be above the deck, as in a tied-arch design, or as in

the bowstring arch of Whipple (Fig. 1.9). Other times, when
the foundationmaterials can resist the thrusts, the arch is be-

low the deck. Restraint conditions at the supports of an arch

can be fixed or hinged. And if a designer chooses, a third
hinge can be placed at the crown to make the arch statically

determinate or nonredundant.
The first iron arch bridge in the United States was built in

1839 across Dunlap’s Creek at Brownsville in southwestern
Pennsylvania on the National Road (Jackson, 1988). The

arch consists of five tubular cast-iron ribs that span 80 ft

(24 m) between fixed supports. It was designed by Captain
Richard Delafield and built by the U.S. Army Corps of

Engineers (Jackson, 1988). It is still in service today.
The second cast-iron arch bridge in this country was com-

pleted in 1860 across Rock Creek between Georgetown and

Washington, DC. It was built by the Army Corps of Engi-

neers under the direction of Captain Montgomery Meigs as

part of an 18.6-mile (30-km) aqueduct, which brings water

from above the Great Falls on the Potomac to Washington,

DC. The two arch ribs of the bridge are 4-ft (1.2-m) diameter

cast-iron pipes that span 200 ft (61 m) with a rise of 20 ft

(6.1 m) and carry water within its 1.5-inch (38-mm) thick

walls. The arch supports a level roadway on open-spandrel
posts that carried Washington’s first horse-drawn street rail-

way line (Edwards, 1959). The superstructure was removed

in 1916 and replaced by a concrete arch bridge. However, the

pipe arches remain in place between the concrete arches and

continue to carry water to the city today.

Two examples of steel deck arch bridges from the

nineteenth century that still carry highway traffic are the

Washington Bridge across the Harlem River in New York

and the Panther Hollow Bridge in Schenely Park, Pittsburgh

(Jackson, 1988). The two-hinged arches of the Washington

Bridge, completed in 1889, are riveted plate girders with a

main span of 508 ft (155m). This bridge is the first American

metal arch bridge in which the arch ribs are plate girders
(Edwards, 1959). The three-hinged arch of the Panther

Hollow Bridge, completed in 1896, has a span of 360 ft

(110 m). Due to space limitations, not all bridges noted here

can be illustrated in this book; however, web searches for

the bridge name and location easily takes the reader to a host

of images and other resources.

One of the most significant bridges built in the United

States is the steel deck arch bridge designed by James B.

Eads (Exhibit 6 in the color insert) across the Mississippi

River at St. Louis. It took 7 years to construct and was

completed in 1874. The three-arch superstructure consisted

of two 502-ft (153-m) side arches and one 520-ft (159-m)

center arch that carried two decks of railroad and highway
traffic (Fig. 1.12). The Eads Bridge is significant because of

the very deep pneumatic caissons for the foundations, the

early use of steel in the design, and the graceful beauty of

its huge arches as they span across the wide river (Jackson,

1988).

Because of his previous experience as a salvage diver,

Eads realized that the foundations of his bridge could not be

placed on the shifting sands of the riverbed but must be set

on bedrock. The west abutment was built first with the aid

of a cofferdam and founded on bedrock at a depth of 47 ft

(14 m). Site data indicated that bedrock sloped downward

from west to east, with an unknown depth of over 100 ft

(30 m) at the east abutment, presenting a real problem for
cofferdams. While recuperating from an illness in France,

Eads learned that European engineers had used compressed

air to keep water out of closed caissons (Gies, 1963). He

adapted the technique of using caissons, or wooden boxes,

added a few innovations of his own, such as a sand pump,

and completed the west and east piers in the river. The west

pier is at a depth of 86 ft (26 m) and the east pier at a depth

of 94 ft (29 m).
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Fig. 1.12 Eads Bridge, St. Louis, Missouri. (Photo courtesy of Kathryn Kontrim, 1996.)

However, the construction of these piers was not without

cost. Twelve workmen died in the east pier and one in the
west pier from caisson’s disease, or the bends. These deaths

caused Eads and his physician, Dr. Jaminet, much anxiety

because the east abutment had to go even deeper. Based

on his own experience in going in and out of the caissons,

Dr. Jaminet prescribed slow decompression and shorter

working time as the depth increased. At a depth of 100 ft

(30 m), a day’s labor consisted of two working periods of
45 min each, separated by a rest period. As a result of the

strict rules, only one death occurred in the placement of

the east abutment on bedrock at a depth of 136 ft (42 m).

Today’s scuba diving tables suggest a 30-min stay at 100 ft

(30 m) for comparison.

It is ironic that the lessons learned by Eads and Dr. Jaminet
were not passed on to Washington Roebling and his physi-

cian, Dr. AndrewH. Smith, in the parallel construction of the

Brooklyn Bridge. The speculation is that Eads and Roebling

had a falling-out because of Eads’ perception that Roebling

had copied a number of caisson ideas from him. Had they re-

mained on better terms, Roeblingmay not have been stricken
by the bends and partially paralyzed for life (Gies, 1963).

Another significant engineering achievement of the Eads

Bridge was in the use of chrome steel in the tubular arches

that had to meet, for that time, stringent material speci-

fications. Eads insisted on an elastic limit of 50 ksi (345

MPa) and an ultimate strength of 120 ksi (827 MPa) for his

steel at a time when the steel producers (one of which was
Andrew Carnegie) questioned the importance of an elastic

limit (Kirby et al., 1956). The testing machines mentioned

in Section 1.2.3 had to be built, and it took some effort

before steel could be produced that would pass the tests. The

material specification of Eads was unprecedented in both

its scale and quality of workmanship demanded, setting a
benchmark for future standards (Brown, 1993).

The cantilever construction of the arches for the Eads

Bridge was also a significant engineering milestone. False-

work in the river was not possible, so Eads built falsework

on top of the piers and cantilevered the arches, segment by

segment in a balanced manner, until the arch halves met at

midspan (Kirby et al., 1956). On May 24, 1874, the highway
deck was opened for pedestrians; on June 3 it was opened

for vehicles; and on July 2 some 14 locomotives, 7 on each

track, crossed side by side (Gies, 1963). The biggest bridge

of any type ever built anywhere up to that time had been

completed. The Eads Bridge remains in service today and

at the time of this writing is being rehabilitated to repair the
track, ties, and rails, the deck and floor system, masonry and

other structural improvements.

Since the Eads Bridge, steel arch bridges longer than its

520-ft (159-m) center span have been constructed. These in-

clude the 977-ft (298-m) clear span Hell Gate Bridge over

the East River in New York, completed in 1917; the 1675-ft
(508-m) clear span Bayonne Arch Bridge over the Kill van

Kull between Staten Island and New Jersey, completed in

1931; and the United States’ longest 1700-ft (518-m) clear

span New River Gorge Bridge near Fayetteville, West Vir-

ginia, completed in 1978 and designed by Michael Baker,

Jr., Inc. (Fig. 1.13). Annually the locals celebrate “New River

Bridge Day” noted as the state’s biggest party of the year. A
web search provides a lot of detail, movies on base jumping,

and so forth. This is yet another example of the importance

of our bridges for social affairs perhaps not even expected by

the owner or designers.



12 1 INTRODUCTION TO BRIDGE ENGINEERING

Fig. 1.13 New River Gorge Bridge. (Photo by Terry Clark Pho-

tography, courtesy of West Virginia Department of Transportation.)

1.2.6 Reinforced Concrete Bridges

In contrast to wood and metal, reinforced concrete has a rel-

atively short history. It was in 1824 that Joseph Aspdin of
England was recognized for producing Portland cement by

heating ground limestone and clay in a kiln. This cement was

used to line tunnels under the Thames River because it was

water resistant. In the United States, D. O. Taylor produced

Portland cement in Pennsylvania in 1871, and T. Millen pro-

duced it about the same time in South Bend, Indiana. It was
not until the early 1880s that significant amounts were pro-

duced in the United States (MacGregor and Wight, 2008).

In 1867, a French nursery gardener, Joseph Monier, re-

ceived a patent for concrete tubs reinforced with iron. In the

United States, Ernest Ransome of California was experi-

menting with reinforced concrete, and in 1884 he received

a patent for a twisted steel reinforcing bar. The first steel
bar reinforced concrete bridge in the United States was built

by Ransome in 1889: the Alvord Lake Bridge (Exhibit 7 in

the color insert) in Golden Gate Park, San Francisco. This

bridge has a modest span of 29 ft (9 m), is 64 ft (19.5 m)

wide, and is still in service (Jackson, 1988).

After the success of the Alvord Lake Bridge, reinforced
concrete arch bridges were built in other parks because their

classic stone arch appearance fit the surroundings. One of

these that remains to this day is the 137-ft (42-m) span Eden

Park Bridge in Cincinnati, Ohio, built by Fritz von Emperger

in 1895. This bridge is not a typical reinforced concrete arch

but has a series of curved steel I-sections placed in the bot-

tom of the arch and covered with concrete. Joseph Melan of

Austria developed this design and, though it was used only

for a few years, it played an important role in establishing the

viabilityof reinforced concrete bridge construction (Jackson,

1988).

Begun in 1897, but not completed until 1907, was the
high-level Taft Bridge carrying Connecticut Avenue over

Rock Creek in Washington, DC. This bridge consists of five

open-spandrel unreinforced concrete arches supporting a

reinforced concrete deck. George Morison designed it and

Edward Casey supervised its construction (Jackson, 1988).

This bridge has recently been renovated and is prepared to

give many more years of service. A web search for “Rock

Creek Bridge DC” provides nice pictures that illustrate the

rich aesthetics of this structure in an important urban and

picturesque setting.

Two reinforced concrete arch bridges in Washington, DC,

over the Potomac River are also significant. One is the Key

Bridge (named after Francis Scott Key who lived near the
Georgetown end of the bridge), completed in 1923, which

connects Georgetown with Rosslyn, Virginia. It has seven

open-spandrel three-ribbed arches designed by Nathan C.

Wyeth and the bridge has recently been refurbished. The

other is the ArlingtonMemorial Bridge, completed in 1932,

which connects the Lincoln Memorial and Arlington Na-

tional Cemetery. It has nine arches, eight are closed-spandrel

reinforced concrete arches and the center arch, with a span

of 216 ft (66 m), is a double-leaf steel bascule bridge that

has not been opened for several years. It was designed by

the architectural firm ofMcKim, Mead, and White (Jackson,

1988).

Other notable reinforced concrete deck arch bridges still
in service include the 9-span, open-spandrel Colorado

Street Bridge in Pasadena, California, near the Rose Bowl,

designed by Waddell and Harrington, and completed in

1913; the 100-ft (30-m) single-span, open-spandrel Shep-

perd’s Dell Bridge across the Young Creek near Latourell,

Oregon, designed by K. R. Billner and S. C. Lancaster,

and completed in 1914; the 140-ft (43-m) single-span,

closed-spandrel Canyon Padre Bridge on old Route 66 near

Flagstaff, Arizona, designed by Daniel Luten and completed

in 1914; the 10-span, open-spandrel Tunkhannock Creek

Viaduct (Exhibit 8 in the color insert) near Nicholson, Penn-

sylvania, designed by A. Burton Cohen and completed in

1915 (considered to be volumetrically the largest structure of
its type in the world); the 13-span, open-spandrel Mendota

Bridge across the Minnesota River at Mendota, Minnesota,

designed by C. A. P. Turner and Walter Wheeler, and

completed in 1926; the 7-span, open-spandrel Rouge River

Bridge on the Oregon Coast Highway near Gold Beach,

Oregon, designed by Conde B. McCullough and completed

in 1932; the 5-span, open-spandrel George Westinghouse

Memorial Bridge across Turtle Creek at North Versailles,
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Fig. 1.14 Bixby Creek Bridge, south of Carmel, California. [From Roberts (1990). Used with permission of American Concrete Institute.]

Pennsylvania, designed by Vernon R. Covell and completed

in 1931; and the 360-ft (100-m) single-span, open-spandrel

Bixby Creek Bridge south of Carmel, California, on State
Route 1 amid the rugged terrain of the Big Sur (Fig. 1.14),

designed by F. W. Panhorst and C. H. Purcell, and completed
in 1933 (Jackson, 1988).

Reinforced concrete through-arch bridges were also con-

structed. James B. Marsh received a patent in 1912 for the
Marsh rainbow arch bridge. This bridge resembles a bow-

string arch truss but uses reinforced concrete for its main
members. Three examples of Marsh rainbow arch bridges

still in service are the 90-ft (27-m) single-span Spring Street

Bridge across Duncan Creek in Chippewa Falls, Wisconsin,
completed in 1916; the eleven 90-ft (27-m) arch spans of the

Fort Morgan Bridge across the South Platte River near Fort

Morgan, Colorado, completed in 1923; and the 82-ft (25-m)
single-span Cedar Creek Bridge near Elgin, Kansas, com-

pleted in 1927 (Jackson, 1988).
One interesting feature of the 1932 Rogue River Bridge

(Exhibit 9 in the color insert), which is a precursor of things

to come, is that the arches were built using the prestressing
construction techniques first developed by the French engi-

neer Ernest Freyssinet in the 1920s (Jackson, 1988). In the

United States, the first prestressed concrete girder bridgewas
the Walnut Lane Bridge in Philadelphia, which was com-

pleted in 1950. After the success of the Walnut Lane Bridge,
prestressed concrete construction of highway bridges gained

in popularity and is now used throughout the United States.

1.2.7 Girder Bridges

Girder bridges are the most numerous of all highway bridges

in the United States. Their contribution to the transportation

system often goes unrecognized because the great suspen-

sion, steel arch, and concrete arch bridges are the ones people

remember. The spans of girder bridges seldom exceed 500 ft

(150 m), with a majority of them less than 170 ft (50 m),

so they do not get as much attention as they perhaps should.

Girder bridges are important structures because they are used

so frequently.

With respect to the overall material usage, girders are not

as efficient as trusses in resisting loads over long spans. How-

ever, for short and medium spans the difference in material

weight is small and girder bridges are competitive. In ad-

dition, the girder bridges have greater stiffness and are less

subject to vibrations. This characteristic was important to the

railroads and resulted in the early application of plate girders

in their bridges.

A plate girder is an I-section assembled out of flange and

web plates. The earliest ones were fabricated in England

with rivets connecting double angles from the flanges to

the web. In the United States, a locomotive builder, the

Portland Company of Portland, Maine, fabricated a number

of railroad bridges around 1850 (Edwards, 1959). In early

plate girders, the webs were often deeper than the maximum

width of plate produced by rolling mills. As a result, the

plate girders were assembled with the lengthwise dimension

of the web plate in the transverse direction of the section

from flange to flange. An example is a wrought-iron plate

girder span of 115 ft (35 m) built by the Elmira Bridge

Company, Elmira, New York, in 1890 for the New York

Central Railroad with a web depth of 9 ft (2.7 m) fabricated

from plates 6 ft (1.8 m) wide (Edwards, 1959).

Steel plate girders eventually replaced wrought iron in the

railroad bridge.An early example is the 1500-ft (457-m) long
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Fig. 1.15 Napa River Bridge. (Photo courtesy of California Department of Transportation.)

Fort Sumner Railroad Bridge on concrete piers across the
Pecos River, Fort Sumner, New Mexico, completed in 1906

(Jackson, 1988). This bridge is still in service.
Other examples of steel plate girder bridges are the 5935-ft

(2074-m) long Knight’s Key Bridge and the 6803-ft (1809-
m) long Pigeon Key Bridge, both part of the Seven Mile

Bridge across the Gulf of Mexico from the mainland to Key
West, Florida (Jackson, 1988). Construction on these bridges

began in 1908 and was completed in 1912. Originally they

carried railroad traffic but were converted to highway use in
1938.

Following the success of the Walnut Lane Bridge
(Exhibit 10 in color insert) in Philadelphia in 1950, pre-

stressed concrete girders became popular as a bridge type for
highway interchanges and grade separations. In building the

interstate highway system, innumerable prestressed concrete
girder bridges, some with single and multiple box sections

have been and continue to be built.

Some of the early girder bridges, with their multiple short
spans and deep girders, were not very attractive. However,

with the advent of prestressed concrete and the development
of segmental construction, the spans of girder bridges have

become longer and the girdersmore slender. The result is that
the concrete girder bridge is not only functional but can also

be designed to be aesthetically pleasing (Fig. 1.15).

1.2.8 Closing Remarks

Bridge engineering in the United States has come a long way

since those early stone arch and wooden truss bridges. It is a
rich heritage and much can be learned from the early builders

in overcoming what appeared to be insurmountable difficul-
ties. These builders had a vision of what needed to be done

and, sometimes, by the sheer power of their will, completed
projects that we view with awe today.

A brief exerpt from a book on the building of the Golden
Gate by Kevin Starr (2010) reinforces this thought:

But before the bridge could be built it had to be envisioned.
Imagining the bridge began as early as the 1850’s and
reached a crisis point by the 1920’s. In this pre-design
and pre-construction drama of vision, planning, and public
and private organization, four figures played important
roles. A Marin county businessman . . . , the San Francisco
city engineer . . . , an engineering entrepreneur . . . , and
a banker in Sonoma County . . . , played a crucial role in
persuading the counties north of San Francisco that a bridge
across the Golden Gate was in their best interest. Dreamers
and doers, each of these men helped initiate a process
that would after a decade of negotiations enlist hundreds
of engineers, politicians, bankers, steelmakers, and, of
equal importance to all of them, construction workers, in a
successful effort to span the strait with a gently rising arc of
suspended steel.

The challenge for today’s bridge engineer is to follow in

the footsteps of these early designers and create and build
bridges that other engineers will write about 100 and 200

years from now.

1.3 BRIDGE ENGINEER—PLANNER,
ARCHITECT, DESIGNER, CONSTRUCTOR,
AND FACILITY MANAGER

The bridge engineer is often involved with several or all

aspects of bridge planning, design, and management. This
situation is not typical in the building design profession

where the architect usually heads a team of diverse design
professionals consisting of architects and civil, structural,

mechanical, and electrical engineers. In the bridge engineer-
ing profession, the bridge engineer works closely with other
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civil engineers who are in charge of the roadway alignment

and design. After the alignment is determined, the engineer
often controls the bridge type, aesthetics, and technical

details. As part of the design process, the bridge engineer

is often charged with reviewing shop drawing and other

construction details.
Many aspects of the design affect the long-term perfor-

mance of the system, which is of paramount concern to the

bridge owner. The owner, who is often a department of trans-

portation or other public agency, is charged with the man-
agement of the bridge, which includes periodic inspections,

rehabilitation, and retrofits as necessary and continual pre-

diction of the life-cycle performance or deteriorationmodel-
ing. Such bridge management systems (BMS) are beginning

to play a large role in suggesting the allocation of resources

to best maintain an inventory of bridges. A typical BMS is

designed to predict the long-term costs associated with the
deterioration of the inventory and recommend maintenance

items tominimize total costs for a system of bridges. Because

the bridge engineer is charged with maintaining the system

of bridges, or inventory, his or her role differs significantly
from the building engineer where the owner is often a real

estate professional controlling only one, or a few, buildings,

and then perhaps for a short time.

In summary, the bridge engineer has significant control
over the design, construction, and maintenance processes.

With this control comes significant responsibility for public

safety and resources. The decisions the engineer makes in
designwill affect the long-term site aesthetics, serviceability,

maintainability, and ability to retrofit for changing demands.

In short, the engineer is (or interfaces closely with) the plan-

ner, architect, designer, constructor, and facility manager.
Many aspects of these functions are discussed in the fol-

lowing chapters where we illustrate both a broad-based ap-

proach to aid in understanding the general aspects of design,

and also includemany technical and detailed articles to facil-
itate the computation/validation of design. Often engineers

become specialists in one or two of the areas mentioned in

this discussion and interface with others who are expert in
other areas. The entire field is so involved that near-complete

understanding can only be gained after years of professional

practice, and then, few individual engineers will have the

opportunity for such diverse experiences.
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PROBLEMS

1.1 Explain why the people factor is important in bridge
engineering.

1.2 In what way does a bridge control the capacity of a
transportation system?

1.3 Discuss the necessity of considering life-cycle costs in

the design of bridges.
1.4 Howwere the early U.S. wooden bridgebuilders able to

conceive and build the long-spanwooden arch and truss
bridges (e.g., Wernwag’s Colossus) without theoretical

knowledge to analyze and proportion their structures?
1.5 What is themain reason wooden bridgeswere covered?

1.6 How is the bridgedesigner Col. StephenH. Long linked

to Long’s Peak in Colorado?
1.7 Whipple in 1847 and Haupt in 1851 authored books

on the analysis and design of bridge trusses. Discuss
the difficulty steel truss bridge designers prior to these

dates had in providing adequate safety.
1.8 Both cast-iron and wrought-iron components were

used in early metal truss and arch bridges. How do they

differ in manufacture? What makes the manufacture of
steel different from both of them?

1.9 Explain why the development of large-capacity test-
ing machines was important to the progress of steel

bridges.
1.10 Who secured a patent, and when, for the modern sus-

pension bridge with a stiff level floor?

1.11 The Wheeling Suspension Bridge that still carries traf-
fic today is not the same bridge built in 1849. Explain

what happened to the original.
1.12 Who was Charles Ellis and what was his contribution

to the building of the Golden Gate Bridge?
1.13 List four significant engineering achievements of the

Eads Bridge over the Mississippi at St. Louis.

1.14 Use the Historic American Engineering Record
(HAER) digitized collection of historic bridges and

obtain additional information on one of the reinforced
concrete bridges mentioned in Section 1.2.6.

1.15 Explain why girder bridges are not as efficient as
trusses in resisting loads (with respect to material

quantities).

1.16 Comment on the significance of the Walnut Lane
Bridge in Philadelphia.



CHAPTER 2

Specifications and Bridge Failures

2.1 BRIDGE SPECIFICATIONS

For most bridge engineers, it seems that bridge specifica-

tions were always there. But that is not the case. The early
bridges were built under a design–build type of contract. A

bridge company would agree, for some lump-sum price, to

construct a bridge connecting one location to another. There

were no standard bridge specifications and the contract
went to the low bidder. The bridge company basically wrote

its own specifications when describing the bridge it was

proposing to build. As a result, depending on the integrity,
education, and experience of the builder, some very good

bridges were constructed and at the same time some very

poor bridges were built.
Of the highway and railroad bridges built in the 1870s, one

out of every four failed, a rate of 40 bridges per year (Gies,

1963). The publicwas losing confidence and did not feel safe
when traveling across any bridge. Something had to be done

to improve the standards bywhich bridgeswere designed and

built.

An event took place on the night of December 29, 1876,
that attracted the attention of not only the public but also

the engineering profession. In a blinding snowstorm, an 11-

car train with a double-header locomotive started across the
Ashtabula Creek at Ashtabula, Ohio, on a 175-ft (48-m) long

iron bridge,when the first tender derailed, plowed up the ties,

and caused the second locomotive to smash into the abutment
(Gies, 1963).The couplingbrokebetween the lead tender and

the second locomotive, and the first locomotive and tender

went racing across the bridge. The bridge collapsed behind
them. The second locomotive, tender, and 11 cars plunged

some 70 ft (20 m) into the creek. The wooden cars burst into

flames when their pot-bellied stoves were upset, and a total

of 80 passengers and crew died.
In the investigation that followed, a number of shortcom-

ings in the way bridges were designed, approved, and built

were apparent. An executive of the railroad who had limited

bridge design experience designed the bridge. The accep-

tance of the bridge was by test loading with six locomotives,

which only proved that the factor of safety was at least 1.0

for that particular loading. The bridge was a Howe truss with

cast-iron blocks for seating the diagonal compression mem-

bers. These blocks were suspected of contributing to the fail-

ure. It is ironic that at a meeting of the American Society
of Civil Engineers (ASCE), a statement was made that “the

construction of the truss violated every canon of our standard

practice” at a time when there were no standards of practice

(Gies, 1963).

The American practice of using concentrated axle loads

instead of uniformly distributed loads was introduced in

1862 by Charles Hilton of the New York Central Railroad

(Edwards, 1959). It was not until 1894 that Theodore Cooper

proposed his original concept of train loadings with concen-

trated axle loadings for the locomotives and tender followed

by a uniformly distributed load representing the train. The

Cooper series loading became the standard in 1903 when

adopted by the American Railroad Engineering Association
(AREA) and remains in use to the present day.

On December 12, 1914, the American Association of State

Highway Officials (AASHO) was formed, and in 1921 its

Committee on Bridges and Allied Structures was organized.

The charge to this committee was the development of stan-

dard specifications for the design, materials, and construc-

tion of highway bridges. During the period of development,

mimeographed copies of the different sections were circu-

lated to state agencies for their use. The first edition of the

Standard Specifications for Highway Bridges and Incidental
Structures was published in 1931 by AASHO.
The truck train load in the standard specifications is an

adaptation of the Cooper loading concept applied to highway
bridges (Edwards, 1959). The “H” series loading of AASHO

was designed to adjust to different weights of trucks without

changing the spacing between axles and wheels. These

specifications have been reissued periodically to reflect the

ongoing research and development in concrete, steel, and

wood structures with the final seventeenth edition of the

Standard Specifications for Highway Bridges appearing in

2002 (AASHTO, 2002). In 1963, the AASHO became the

American Association of State Highway and Transportation

Officials (AASHTO). The insertion of the word Trans-
portation was to recognize the officials’ responsibility for

all modes of transportation (air, water, light rail, subways,

tunnels, and highways).
In the beginning, the design philosophyutilized in the stan-

dard specification was working stress design (also known

as allowable stress design). In the 1970s, variations in the

uncertainties of loadswere considered and load factor design

(LFD) was introduced as an alternative method. In 1986,

the Subcommittee on Bridges and Structures initiated a

study on incorporating the load and resistance factor design

(LRFD) philosophy into the standard specification. This
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study recommended that LRFD be utilized in the design

of highway bridges. The subcommittee authorized a com-
prehensive rewrite of the entire standard specification to

accompany the conversion to LRFD. The result was the
first edition of the AASHTO (1994) LRFD Bridge Design
Specifications . Additional editions were published in 1998,

2004, 2007, and the fifth edition in 2010 (AASHTO, 2010).
The fifth edition is used for this book.

2.2 IMPLICATION OF BRIDGE FAILURES
ON PRACTICE

On the positive side of the bridge failure at Ashtabula

Creek, Ohio, in 1876 was the realization by the engineering
profession that standards of practice for bridge design and

construction had to be codified. Good intentions and a firm
handshake were not sufficient to ensure safety for the trav-

eling public. Specifications, with legal ramifications if they
were not followed, had to be developed and implemented.

For railroad bridges, this task began in 1899 with the forma-
tion of the American Railway Engineering and Maintenance

ofWay Association and resulted in the adoption of Theodore
Cooper’s specification for loadings in 1903.

As automobile traffic expanded, highway bridges in-
creased in number and size. Truck loadings were constantly

increasing and legal limits had to be established. The original
effort for defining loads, materials, and design procedures

was made by the U.S. Department of Agriculture, Office of
Public Roads in 1913 with the publication of its Circular No.

100, “Typical Specifications for the Fabrication and Erection
of Steel Highway Bridges” (Edwards, 1959). In 1919, the

Office of Public Roads became the Bureau of Public Roads
[now the Federal Highway Administration (FHWA)] and a

revised specification was prepared and issued.
The Committee on Bridges and Allied Structures of the

AASHO issued the first edition of Standard Specifications
for Highway Bridges in 1931. It is interesting to note in the

Preface of the seventeenth edition of this publication the
listing of the years when the standard specifications were

revised: 1935, 1941, 1944, 1949, 1953, 1957, 1961, 1965,
1969, 1973, 1977, 1983, 1989, 1992, 1996, and 2002. It is ob-

vious that this document is constantly changing and adapting
to new developments in the practice of bridge engineering.

In some cases, new information on the performance of
bridges was generated by a bridge failure. A number of
lessons have been learned from bridge failures that have

resulted in revisions to the standard specifications. For
example, changes were made to the seismic provisions after

the 1971 San Fernando earthquake. Other bridge failure in-
cidents that influence the practice of bridge engineering are

given in the sections that follow.

2.2.1 Silver Bridge, Point Pleasant, West Virginia,
December 15, 1967

The collapse of the Silver Bridge over the Ohio River be-
tween Point Pleasant, West Virginia, and Kanauga, Ohio, on

December 15, 1967, resulted in 46 deaths, 9 injuries, and 31

of the 37 vehicles on the bridge fell with the bridge (NTSB,

1970).

Description The Point Pleasant Bridge was a suspension

bridge with a main span of 700 ft (213 m) and two equal side

spans of 380 ft (116 m). The original design was a parallel

wire cable suspension bridge but had provisions for a heat-

treated steel eyebar suspension design (Fig. 2.1) that could

be substituted if the bidders furnished stress sheets and spec-
ifications of the proposed materials. The eyebar suspension

bridge design was accepted and built in 1927 and 1928.

Two other features of the design were also unique (Dicker,

1971): The eyebar chains were the top chord of the stiffening

truss over a portion of all three spans, and the base of each

tower rested on rocker bearings (Fig 2.2). As a result, redun-

dant load paths did not exist, and the failure of a link in the

eyebar chain would initiate rapid progressive failure of the

entire bridge.

Cause of Collapse The National Transportation Safety

Board (NTSB) found that the cause of the bridge collapse

was a cleavage fracture in the eye of an eyebar of the north

suspension chain in the Ohio side span (NTSB, 1970). The

fracture was caused by development of a flaw due to stress
corrosion and corrosion fatigue over the 40-year life of the

bridge as the pin-connected joint adjusted its position with

each passing vehicle.

Effect on Bridge Practice The investigation following the
collapse of the Silver Bridge disclosed the lack of regular

inspections to determine the condition of existing bridges.

Consequently, the National Bridge Inspection Standards

(NBIS) were established under the 1968 Federal Aid High-

way Act. This act requires that all bridges built with federal

monies be inspected at regular intervals not to exceed 2

years. As a result, the state bridge agencies were required

to catalog all their bridges in a National Bridge Inventory

(NBI). There are over 600,000 bridges (100,000 are culverts)
with spans greater than 20 ft (6 m) in the inventory.

Fig. 2.1 Typical detail of eyebar chain and hanger connection

(NTSB, 1970).
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Fig. 2.2 Elevation of Silver Bridge over Ohio River, Point Pleasant, West Virginia (NTSB, 1970).

It is ironic that even if the stricter inspection requirements

had been in place, the collapse of the Silver Bridge probably

could not have been prevented because the flaw could not
have been detected without disassembly of the eyebar joint.

A visual inspection of the pin connections with binoculars

from the bridge deck would not have been sufficient. The

problem lieswithusingmaterials that are susceptible to stress

corrosion and corrosion fatigue, and in designing structures
without redundancy.

2.2.2 I-5 and I-210 Interchange, San Fernando,
California, February 9, 1971

At 6:00 a.m. (Pacific Standard Time), on February 9, 1971,

an earthquakewith aRichter magnitudeof 6.6 occurred in the

north San Fernando Valley area of Los Angeles. The earth-
quake damaged approximately 60 bridges. Of this total, ap-

proximately 10% collapsed or were so badly damaged that

they had to be removed and replaced (Lew et al., 1971). Four

of the collapsed and badly damaged bridgeswere at the inter-

change of the Golden State Freeway (I-5) and Foothill Free-
way (I-210). At this interchange, two men in a pickup truck

lost their liveswhen the SouthConnector Overcrossing struc-

ture collapsed as they were passing underneath. These were

the only fatalities associated with the collapse of bridges in

the earthquake.

Description Bridge types in this interchange included

composite steel girders, precast prestressed I-beam girders,
and prestressed and nonprestressed cast-in-place reinforced

concrete box-girder bridges. The South Connector Over-

crossing structure (bridge 2, Fig. 2.3) was a seven-span,

curved, nonprestressed reinforced concrete box girder,

carried on single-column bents, with a maximum span of
129 ft (39 m). The North Connector Overcrossing struc-

ture (bridge 3, Fig. 2.3) was a skewed four-span, curved,

nonprestressed reinforced concrete box girder, carried on

multiple-column bents, with a maximum span of 180 ft

(55 m). A group of parallel composite steel girder bridges
(bridge group 4, Fig. 2.3) carried I-5 North and I-5 South

over the Southern Pacific railroad tracks and San Fernando

Road. Immediately to the east of this group, over the same

tracks and road, was a two-span cast-in-place prestressed
concrete box girder (bridge 5, Fig. 2.3) that was carried on a

single bent, with a maximum span of 122 ft (37 m).

Fig. 2.3 Layout of the I-5 and I-210 Interchange (Lew et al.,

1971).

When the earthquake struck, the South Connector struc-

ture (Fig. 2.4, center) collapsed on to the North Connector

and I-5, killing the two men in the pickup truck. The North

Connector superstructure (Fig. 2.4, top) held together, but
the columns were bent double and burst their spiral rein-

forcement (Fig. 2.5). One of the group of parallel bridges

on I-5 was also struck by the falling South Connector struc-

ture, and two others fell off their bearings (Fig. 2.4, bottom).

The bridge immediately to the east suffered major column

damage and was removed.

Cause of Collapse More than one cause contributed to the

collapse of the bridges at the I-5 and I-210 interchange. The

bridges were designed for lateral seismic forces of about

4% of the dead load, which is equivalent to an acceleration

of 0.04g , and vertical seismic forces were not considered.
From field measurements made during the earthquake, the

estimated ground accelerations at the interchange were from

0.33g to 0.50g laterally and from 0.17g to 0.25g vertically.

The seismic forces were larger than what the structures

were designed for and placed an energy demand on the

structures that could not be dissipated in the column–girder

and column–footing connections. The connections failed,

resulting in displacements that produced large secondary
effects, which led to progressive collapse. Girders fell off

their supports because the seat dimensions were smaller than
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Fig. 2.4 View looking north at the I-5 and I-210 interchange after the quake showing the collapsed South Connector Overcrossing structure

(bridge 2) in the center, the North Connector Overcrossing structure (bridge 3) at the top, and bridge group 4 at the bottom. (Photo courtesy

E. V. Leyendecker, U.S. Geological Survey.)

Fig. 2.5 Close up of exterior spiral column in bent 2 of bridge 3. (Photo courtesy E. V. Leyendecker,U.S. Geological Survey.)
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the earthquake displacements. These displacement effects

were amplified in the bridges that were curved or skewed

and were greater in spread footings than in pile-supported

foundations.

Effect on Bridge Practice The collapse of bridges during

the 1971 San Fernando earthquake pointed out the inadequa-

cies of the lateral force and seismic design provisions of the

specifications. Modifications were made and new articles

were written to cover the observed deficiencies in design

and construction procedures. The issues addressed in the

revisions included the following: (1) seismic design forces

include a factor that expresses the probability of occurrence

of a high-intensity earthquake for a particular geographic
region, a factor that represents the soil conditions, a factor

that reflects the importance of the structure, and a factor that

considers the amount of ductility available in the design;

(2) methods of analysis capable of representing horizontal

curvature, skewness of span, variation of mass, and foun-

dation conditions; (3) provision of alternative load paths

through structural redundancy or seismic restrainers; (4) in-

creased widths on abutment pads and hinge supports; and (5)

dissipation of seismic energy by development of increased

ductility through closely spaced hoops or spirals, increased

anchorage and lap splice requirements, and restrictions on

use of large-diameter reinforcing bars. Research is continu-

ing in all of these areas, and the specifications are constantly
being revised as new information on seismic safety becomes

available.

2.2.3 Sunshine Skyway, Tampa Bay, Florida,
May 9, 1980

The ramming of the SunshineSkywayBridge by theLiberian

bulk carrier Summit Venture in Tampa Bay, Florida, on May

9, 1980, destroyed a support pier and about 1297 ft (395 m)

of the superstructure fell into the bay. A Greyhound bus, a

small pickup truck, and six automobiles fell 150 ft (45 m)

into the bay. Thirty-five people died and one was seriously

injured (NTSB, 1981).

Description The Sunshine Skyway was comprised of

two parallel bridges across Lower Tampa Bay from Max-

imo Point on the south side of St. Petersburg to Manatee

County slightly north of Palmetto, Florida. The twin bridge

structures are 4.24 miles (6.82 km) long and consist of

posttensioned concrete girder trestles, steel girder spans,

steel deck trusses, and a steel cantilever through truss. The
eastern structure was completed in 1954 and was one of the

first bridges in the United States to use prestressed concrete.

The western structure, which was struck by the bulk carrier,

was completed in 1971. No requirements were made for

structural pier protection.

The main shipping channel was spanned by the steel can-

tilever through truss (Fig. 2.6) with a center span of 864 ft

(263 m) and two equal anchor spans of 360 ft (110 m). The

through truss was flanked on either end by two steel deck

trusses with spans of 289 ft (88 m). The bulk carrier rammed

the second pier south of the main channel that supported

the anchor span of the through truss and the first deck span.

The collision demolished the reinforced concrete pier and
brought down the anchor span and suspended span of the

through truss and one deck truss span.

Cause of Collapse The NTSB determined that the proba-

ble cause of the accident was the failure of the pilot of the

Summit Venture to abort the passage under the bridge when

the navigational references for the channel and bridge were

lost in the heavy rain and high winds of an intense thunder-

storm (NTSB, 1981). The lack of a structural pier protection

system, which could have redirected the vessel and reduced

the amount of damage, contributed to the loss of life. The col-
lapse of the cantilever through truss and deck truss spans of

the Sunshine SkywayBridgewas due to the loss of support of

the pier rammed by the Summit Venture and the progressive

instability and twisting failure that followed.

Effect on Bridge Practice A result of the collapse of the

Sunshine Skyway Bridge was the development of standards

for the design, performance, and location of structural bridge

Fig. 2.6 Diagram of the damaged Sunshine Skyway Bridge (looking eastward) (NTSB, 1981).
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pier protection systems. Provisions for determining vessel

collision forces on piers and bridges are now incorporated
in the AASHTO LRFD Bridge Specifications.

2.2.4 Mianus River Bridge, Greenwich, Connecticut,
June 28, 1983

A 100-ft (30-m) suspended span of the eastbound traffic
lanes of Interstate Route 95 over the Mianus River in Green-

wich, Connecticut, collapsed and fell into the river on June

28, 1983. Two tractor-semitrailers and two automobiles
drove off the edge of the bridge and fell 70 ft (21 m) into the

river. Three people died and three received serious injuries

(NTSB, 1984).

Description The Mianus River Bridge is a steel deck

bridge of welded construction that has 24 spans, 19 of

which are approach spans, and is 2656 ft (810 m) long. The
5 spans over water have a symmetric arrangement about

a 205-ft (62.5-m) main span, flanked by a 100-ft (30-m)

suspended span and a 120-ft (36.6-m) anchor span on each

side (Fig. 2.7). The main span and the anchor span each
cantilever 45 ft (13.7 m) beyond their piers to a pin-and-

hanger assembly, which connects to the suspended span

(Fig. 2.8). The highway is 6 lanes wide across the bridge,
but a lengthwise expansion joint on the centerline of the

bridge separates the structure into 2 parallel bridges that act

independently of each other. The bridge piers in the water are

skewed 53.7◦
to conform to the channel of the Mianus River.

The deck structure over the river consists of two parallel

haunched steel girders with floor beams that frame into the

girders. The continuous five-span girder has four internal

hinges at the connections to the suspended spans and is,

therefore, statically determinate. The inclusion of hinges

raises the question of redundancy and existence of alterna-

tive load paths. During the hearing after the collapse, some

engineers argued that because there were two girders, if one

pin-and-hanger assembly failed, the second assembly could
provide an alternative load path.

The drainage system on the bridge had been altered by cov-

ering the curb drains with steel plates when the roadway was

resurfaced in 1973 with bituminous concrete. With the curb

drains sealed off, rainwater on the bridge ran down the bridge

deck to the transverse expansion joints between the sus-

pended span and the cantilever arm of each anchor span.

During heavy rainfall, considerable water leaked through

the expansion joint where the pin-and-hanger assemblies

were located.
After the 1967 collapse of the Silver Bridge, the Na-

tional Bridge Inspection Standards were established, which

required regular inspections of bridges at intervals not ex-

ceeding 2 years. ConnDOT’s Bridge Safety and Inspection

Section had inspected the Mianus River Bridge 12 times

since 1967 with the last inspection in 1982. The pin-and-

hanger assemblies of the inside girders were observed from

a catwalk between the separated roadways, but the pin-

and-hanger assemblies connecting the outside girders were

visually checked from the ground using binoculars. The

inspectors noted there was heavy rust on the top pins from
water leaking through the expansion joints.

Cause of Collapse The eastbound suspended span that col-

lapsedwas attached to the cantilever arms of the anchor spans

Fig. 2.7 Plan view (top) and longitudinal view (bottom) of the Mianus River Bridge. (Note that the skew of piers 17 through 22 is not

depicted in the longitudinal view) (NTSB, 1984).
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Fig. 2.8 Schematic of pin-and-hanger assembly of the Mianus River Bridge (NTSB, 1984).

at each of its four corners (Fig. 2.7). Pin-and-hanger assem-

blies were used to support the northeast (inside girder) and

southeast (outside girder) corners of the eastern edge of the

suspended span. The western edge was attached to the can-

tilever arms by a pin assembly without hangers. The pin-and-

hanger assemblies consist of an upper pin in the cantilever

arm and a lower pin in the suspended span connected by two

hangers, one on either side of the web (Fig. 2.8).

Sometime before the collapse of the suspended span, the

inside hanger at the southeast corner came off the lower pin,

which shifted all the weight on this corner to the outside

hanger. With time, the outside hanger moved laterally out-

ward on the upper pin. Eventually, a fatigue crack developed

in the end of the upper pin, its shoulder fractured, the outside

hanger slipped off, and the suspended span fell into the river.

The NTSB concluded that the probable cause of the

collapse of the Mianus River Bridge suspended span was

the undetected lateral displacement of the hangers in the

southeast corner suspension assembly by corrosion-induced

forces due to deficiencies in the State of Connecticut’s

bridge safety inspection and bridge maintenance program

(NTSB, 1984).

Effect on Bridge Practice A result of the collapse of the

Mianus River Bridge was the development and enforcement

of detailed and comprehensive bridge inspection procedures.

The Mianus River Bridge was being inspected on a regular

basis, but the inspectors had no specific directions as to what

the critical elements were that could result in a catastrophic

failure.

Another effect of this collapse was the flurry of activity

in all the states to inspect all of their bridges with pin-
and-hanger assemblies. In many cases, they found similar

deterioration and were able to prevent accidents by repair or
replacement of the assemblies. In designs of new bridges,

pin-and-hanger assemblies have found disfavor and will
probably not be used unless special provisions are made for

inspectability and maintainability.

The investigation of the collapse also pointed out the im-
portance of an adequate surface drainage system for the road-

way on the bridge. Drains, scuppers, and downspouts must
be designed to be self-cleaning and placed so that they dis-

charge rainwater and melting snow with de-icing salts away
from the bridge structure in a controlled manner.

Perhaps the most important result of the recommendations
of the NTSB was the development of the FHWA’s fracture-

critical bridge inspection program. As was mentioned previ-

ously in the Silver Bridge collapse, when the eyebar failed,
the whole bridge failed because there was no alternative path

for the loads to be carried. In the case of the Mianus River
Bridge,when the pin assembly failed, it led to the collapse of

the suspended span because the structural system was non-
load-path-redundant . Both the eyebar and the pin assembly

are fracture-critical elements because their failure leads to

partial or total failure of the bridge.A bridge that is non-load-
path-redundant is not inherently unsafe, but it does lack re-

dundancy in the design of its support structure. Such bridges
are sometimes referred to as fracture critical and they require

special attentionwhen being inspected. According to FHWA
2007 data, of the 600,000 bridges in the National Bridge In-

ventory, 19,273 are considered non-load-path-redundant.
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2.2.5 Schoharie Creek Bridge, Amsterdam, New York,
April 5, 1987

Three spans of the Schoharie Creek Bridge on I-90 near

Amsterdam, New York, fell 80 ft (24 m) into a rain-swollen

creek on April 5, 1987, when two of its piers collapsed. Four

automobiles and one tractor-semitrailer plunged into the

creek. Ten people died (NTSB, 1988).

Description The Schoharie Creek Bridge consisted of five

simply supported spans of lengths 100, 110, 120, 110, and

100 ft (30.5, 33.5, 36.6, 33.5, and 30.5 m). The roadway

width was 112.5 ft (34.3 m) and carried four lanes of high-

way traffic (Fig. 2.9). The superstructure was composed of

two main steel girders 12 ft (3.66 m) deep with transverse

floor beams that spanned the 57 ft (17.4 m) between girders

and cantilevered 27.75 ft (8.45 m) on either side. Stringers

ran longitudinally between the floor beams and supported a

noncomposite concrete deck. Members were connected with

rivets.

The substructure consisted of four piers and two abutments.

The reinforced concrete piers had two columns directly under

the two girders and a tie beam near the top (Fig. 2.10). A

spread footing on dense glacial deposits supported each pier.

Piers 2 and 3 were located in the main channel of Schoharie

Creek andwere to be protected by riprap. Only the abutments

were supported on piles. Unfortunately, in the early 1950s

when this bridgewas being designed, no reliable methodwas

available to predict scour depth.

The bridge was opened to traffic on October 26, 1954, and

on October 16, 1955, the Schoharie Creek experienced its

flood of record (1900–1987) of 76,500 cfs (2170 m3/s). The

estimated discharge on April 5, 1987, when the bridge col-

lapsed was 64,900 cfs (1840 m3/s). The 1955 flood caused

slight damage to the riprap, and in 1977 a consulting en-

gineering firm recommended replacing missing riprap. This

replacement was never done.

Records show that the Schoharie Creek Bridge had been
inspected annually or biennially as required by the National

Bridge Inspection Standards of the 1968 Federal Aid High-

way Act. These inspections of the bridge were only of the

above-water elements and were usually conducted by main-

tenance personnel, not by engineers. At no time since its

completion had the bridge received an underwater inspection
of its foundation.

Cause of Collapse The severe flooding of Schoharie

Creek caused local scour to erode the soil beneath pier

3, which then dropped into the scour hole, and resulted

in the collapse of spans 3 and 4. The bridge wreckage

in the creek redirected the water flow so that the soil be-

neath pier 2 was eroded, and some 90 min later it fell into
the scour hole and caused the collapse of span 2. Without

piles, the Schoharie Creek Bridgewas completely dependent

on riprap to protect its foundation against scour and it was

not there.

The NTSB determined that the probable cause of the

collapse of the Schoharie Creek Bridge was the failure of the
New York State Thruway Authority to maintain adequate

riprap around the bridge piers, which led to the severe

erosion of soil beneath the spread footings (NTSB, 1988).

Contributing to the severity of the accident was the lack of

structural redundancy in the bridge.

Effect on Bridge Practice The collapse of the Schoharie

Creek Bridge resulted in an increased research effort to de-
velop methods for estimating depth of scour in a streambed

around bridgepiers and for estimating size of riprap to resist a
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Fig. 2.9 Schematic plan of Schoharie Creek Bridge (NTSB, 1988).
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Fig. 2.10 Sections showing the Schoharie Creek Bridge pier supported on a spread footing (NTSB, 1988).

given discharge rate or velocity.Methods for predicting depth
of scour are now available.

An ongoing problem that needs to be corrected is the lack
of qualified bridge inspection personnel. This problem is es-

pecially true for underwater inspections of bridge founda-
tions because there are approximately 300,000 bridges over

water and 100,000 have unknown foundation conditions.

Once again the NTSB recommends that bridge structures
should be redundant and have alternative load paths. Engi-

neers should finally be getting the message and realize that
continuity is one key to a successful bridge project.

2.2.6 Cypress Viaduct, Loma Prieta Earthquake,
October 17, 1989

The California Department of Transportation (Caltrans) has

been and is a leader in the area of seismic design and protec-
tion of bridges. Over the course of many years and numerous

earthquakes, Caltrans continues to assess seismic risk, update
design procedures, and evaluate existing bridges for catas-

trophic potential. One of the difficulties, however, is gaining

the funding necessary to improve the critical design features
and weakness of existing bridges within the inventory.

Description The 1989 Loma Prieta earthquake that oc-
curred on October 17 resulted in over $8 billion in damage

and loss of 62 lives. Figure 2.11 illustrates the Cypress
Viaduct in Oakland. This bridge was perhaps one of the

most reported-on structures by the national media as this
double-deck bridge failed in shear within the columns and

pancaked the bridge on traffic below.

Cause of Collapse Caltrans was aware of the critical de-

sign features that were necessary to provide the ductility and

energy absorption required to prevent catastrophic failure.

Unfortunately, similar details were common in other bridge
substructures designed by the best practices at the time. Cal-

trans was working on correcting these defects, but with over

13,000 bridges in its inventory and limited resources, engi-

neers had not been able to retrofit the Cypress Viaduct before

the earthquake.

Effect on Bridge Practice With Loma Prieta the political

will was generated to significantly increase the funding

necessary to retrofit hundreds of bridges within the Caltrans
inventory. In addition, Caltrans substantially increased its

research efforts that has resulted in many of the design

specification and construction details used today. From a

Caltrans press release (Caltrans, 2003):

The Department’s current Seismic Safety Retrofit Program
was established following the 1989 Loma Prieta earthquake
to identify and strengthen bridges that needed to be brought
up to seismic safety standards.

This reference outlines the funding and phases that Cal-

ifornia has and will use to improve thousands of bridges

statewide. As illustrated in several examples in this section,
sometime failures are required to provide the catalyst nec-

essary for change either from a technical and/or political

perspective.
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Fig. 2.11 Cypress Viaduct. (Photo courtesy H. G. Wilshire, U.S. Geological Survey.)

Fig. 2.12 Aerial view of I-35W Bridge after collapse (NTSB, 2008).

2.2.7 I-35W Bridge, Minneapolis, Minnesota,
August 1, 2007

About 6:05 p.m. central daylight time onWednesday, August

1, 2007, the eight-lane, 1907-ft (581-m) long I-35W High-

way Bridge over the Mississippi River in Minneapolis, Min-

nesota, experienced a catastrophic failure in the main truss

span of the deck truss. As a result, 1000 ft (305 m) of the

deck truss collapsed, with about 456 ft (140 m) of the main

span falling 108 ft (33 m) into the 15-ft (4.6-m) deep river

(Fig. 2.12). A total of 111 vehicles were on the portion of

the bridge that collapsed. As a result of the bridge collapse,

13 people died, and 145 were injured (NTSB, 2008).

Description The bridge elevation is shown in Figures 2.13

and 2.14. Eleven of the 14 spans were approach spans to the
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Fig. 2.13 East elevation of I-35W bridge. The deck truss portion of the bridge extends from just south of pier 5 to just north of pier 8

(NTSB, 2008).

Fig. 2.14 Center span of I-35W bridge looking northeast. The center span is supported by pier 6 on the near (south) riverbank and pier 7 on

the far (north) riverbank (NTSB, 2008).

deck truss portion that failed. The original bridge design ac-

counted for thermal expansion using a combination of fixed

and expansion bearings for the bridge/pier interfaces. For the

deck truss portion, a fixed bearing assembly was located at

pier 7. Expansion roller bearings were used at piers 5, 6,
and 8.

When opened for traffic in 1967, the cast-in-place concrete

deck slab had a minimum thickness of 6.5 in. Bridge reno-

vation projects eventually increased the average thickness by

about 2 in.

The deck truss portion of the bridge was comprised of

two parallel main Warren-type trusses spaced 72 ft 4 in.

apart. The upper and lower chords of the main trusses were

connected by straight vertical and diagonal members that

made up the truss structure. The upper and lower chords

were welded box members. The vertical and diagonal mem-

bers were H members consisting of flanges welded to a web

plate.

Riveted steel gusset plates at each of the 112 nodes (con-

necting points) of the two main trusses tied the ends of the
truss members to one another and to the rest of the struc-

ture. The gusset plates were riveted to the side plates of the

box members and to the flanges of the H members. A typ-

ical I-35W main truss node with gusset plates is shown in

Figure 2.15.

Cause of Collapse On the day of the collapse, roadway

work was underway on the I-35W Bridge. Four of the eight

travel lanes were closed to traffic. Construction equipment

and piles of sand and gravel were positioned in the deck truss

portion of the bridge. The construction loads were in place

by about 2:30 p.m. in preparation for a concrete pour that was
to begin about 7:00 p.m.

About 6:05 p.m., a motion-activated surveillance video

camera at the Lower St. Anthony Falls Lock and Dam, just

southwest of the bridge center span, recorded a portion of
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Fig. 2.15 Typical five-member node (two upper chord members,

one vertical member, and two diagonal members) on I-35W Bridge

(NTSB, 2008).

the collapse sequence. The video showed the bridge center

span separating from the rest of the bridge with the south

end dropping before the north end and falling into the river

(Fig. 2.16). The center section remained relatively level east

to west as it fell. Many of the vehicles remained in their

lanes as the collapse occurred, indicating that the east and

west main trusses at the south end fractured at about the

same time (e.g., web search “minnesota dot I-35 bridge

failure video”).

What elements in the bridge could have fractured simulta-

neously in both main trusses near the south support to cause

the center span to drop to the river in a flat even manner?

There was no eyebar chain and hanger connection as in the

Silver Bridge; nor was there a pin-and-hanger assembly as in

the Mianus River Bridge.

The NTSB searched the bridge inspection reports dating

from 1971 to 2006 looking for signs of a possible weak

link. One detail that caught their attention was provided by

a series of photographs taken in 2003 that showed visible

bowing in the gusset plates at several upper truss nodes (see

Fig. 2.13). At both U10 nodes, the unsupported edges of the

gusset plates between the upper chords and the diagonals

were bowed. At the two U10 nodes located on each side,

the plate edges between the upper chords and the diagonals

were bowed. The U10 gusset plates were the only plates that

showed obvious evidence of bowing.

In an interview, the bridge safety inspection engineer stated

that he had observed the bowing during his inspections. He

said he consulted with another inspector about the bowing

and concluded (NTSB, 2008, p. 63):

Our inspections are to find deterioration or findings of de-
terioration on maintenance. We do not note or describe con-
struction or design problems .
As previously noted, at or near the beginning of the col-

lapse sequence, most of the bridge center span fractured and

broke away from the rest of the deck truss structure. Video

and physical evidence indicated that the breaks in the span

occurred just north of pier 6 and just south of pier 7. Frac-

tures in the south and north fracture areas were at or adjacent

to the U10 nodes (NTSB, 2008).

Because much of thebridge center span collapsed, its struc-

tural components did not receive detailed inspection until

after their removal. The recovered truss portions were laid

out relative to their original positions at a nearby park. A

gusset plate fracture pattern reconstructed from the pieces

at node U10W (west side) is shown in Fig. 2.17. The curved

Fig. 2.16 Collapsed bridge center section, looking southeast (NTSB, 2008).
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Fig. 2.17 Fracture pattern of outside (west) gusset plate at U10W (NTSB, 2008).

line indicates the fracture, whichwas similar for both trusses.

The diagonal and chords were separated from the remaining
members in the node. The remaining portion of the gusset

plates kept the vertical and other diagonal connected.
During the investigation a finite-element model of the

bridge deck portionwith all its components was constructed.
The model was able to simulate the behavior of the gusset

plates when subjected to different loading conditions. This
analysis showed that areas of the U10 gusset plates at the

ends of the L9/U10 (see Fig. 2.17) diagonals were beyond
their yield stress under the dead load of the initial bridge

design. As loads on the bridge increased as a result of the
added deck thickness (1977) and barriers (1998), the area

of the gusset plates beyond the yield stress expanded, but
large deflections were prevented by the surrounding elastic

material.
With the added construction and traffic loads on the day of

the accident, the areas of yielding increased further, and the
finite-element analysis predicted that the failure mode un-

der these conditionswould be the unstable lateral shifting of
the U10 end of the L9/U10 diagonal. The load-carrying ca-

pacity of the gusset plates would be reduced as the bending
deformations and yielding increase, resulting in the tensile

fracture pattern observed and the tearing away of the L9/U10
diagonal.

The finite-element analysis predicted that the lateral shift-
ing instability of the L9/U10 diagonal would occur first at

the U10W node because it was more highly stressed than the
U10E node due to the placement of the construction materi-

als. As the load-carrying capacity was reduced at the U10W
node, the load would be shed to the U10E node triggering a

similar fracture pattern. The failure likely proceeded rapidly,
and almost simultaneously, through both the U10W and

U10E nodes.
The NTSB therefore concluded that the initiatingevent was

a lateral shifting instability of the upper end of the L9/U10W

diagonal member and the subsequent failure of the U10 node

gusset plates on the center portion of the deck truss.

The deck truss structure of the I-35W Bridge was non-
load-path-redundant, which means that it would lose its en-

tire load-carrying capacity if a single primary load member
failed. The failure of the U10 gusset plates led to the sequen-

tial separation of the structural members connected to the

plates, which placed unsupportable loads on the remainder
of the structure. The total collapse followed immediately.

The NTSB determined that the probable cause of the col-

lapse of the I-35W Bridge was due to a design error by the
original design firm that resulted in an inadequate load ca-

pacity of the gusset plates at the U10 nodes. These plates

failed under a combination of substantial increases in the
bridge weight from previous modifications and the traffic/

construction loads on the bridge on the day of the collapse

(NTSB, 2008).

Effect on Bridge Practice A major effect of the collapse

of the I-35W Bridge was to direct attention on the impor-
tance of proper design, qualitycontrol, and inspection of gus-

set plates. A number of recommendations were given by the

NTSB to the FHWA and the AASHTO for implementation.
The recommendations to the FHWA included procedures

to detect and correct bridge design errors before the design
plans are made final, use of nondestructive evaluation tech-

nologies to assess gusset plate condition, and update of the

training courses to address inspection techniques and condi-
tions specific to gusset plates.

The recommendations to AASHTO, besides working with

the FHWA on quality control, are to modify the Manual for
Bridge Evaluation (AASHTO, 2008) to include the capacity
of gusset plates as part of the load-rating calculations,

develop guidelines to ensure that construction loads and
stockpiled materials do not overload the structure, develop

guidance for responding to potentially damaging conditions
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Fig. 2.18 Bridge failure near Golden, Colorado. (Photo from Golden Fire Department Annual Report 2004, Golden, Colorado. http://ci

.golden.co.us/files/2004fdreport.pdf.)

in gusset plates, such as corrosion and distortion, and revise

theAASHTOGuide for CommonlyRecognized (CoRe) Struc-
tural Elements (AASHTO, 1998) to incorporate this new

information.

In addition, the NTSB issued the following safety rec-

ommendation to the FHWA on January 15, 2008: For all

non-load-path-redundant steel truss bridges within the Na-

tional Bridge Inventory, require that bridge owners conduct

load capacity calculations to verify that the stress levels in all

structural elements, including gusset plates, remain within

applicable requirements whenever planned modifications

or operational changes may significantly increase stresses

(NTSB, 2008).

2.2.8 Failures During Construction

Most of the memorable bridge failures and the ones that

most affect bridge engineering practice have occurred in

structures that were in service for many years. However,

in-service bridges are not the source of the most common

occurrence of failures. Most failures occur during construc-

tion and are likely the most preventable kind of failure.

This topic is simply too voluminous to address in this book;

however, it certainly warrants discussion. Several books and

many references are available; for example, in his landmark

book, Feld (1996) outlines many kinds of construction fail-

ures including technical details, case studies, and litigation

issues.

Discussion of one girder failure that occurred near
Golden, Colorado, illustrates the importance of considering

the construction process during design and construction

(9News.com, 2004). An overpass bridge was being widened
with the placement of a steel plate girder along the edge

of the existing structure. Construction had terminated for
the weekend and the girder was left with some attachments

to provide lateral stability. The girder became unstable,

fell, and killed three people. An aerial view is illustrated in
Figure 2.18. The Web reference provided and the associated

video linked on this page illustrate many aspects of this fail-

ure from a first-day perspective. Stability is the likely cause
of failure and is commonly the cause—either stability of the

girders supporting the deck with wet concrete or the stability
of temporary formwork/shoring required to support the

structure. In later chapters, construction staging is discussed

related to the design. Again, see 9News.com to review what
can happen when mistakes occur. This particular incident

could have killed many more—the failure occurred on a

Sunday morning when traffic volume was relatively light.
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PROBLEMS

2.1 Before AREA and AASHO formalized the specifica-

tions for bridges, how were the requirements for design

specified?

2.2 What shortcomings were evident in the collapse of the
bridge over Ashtabula Creek in December 1876?

2.3 Explain how continuity is linked to redundancy and its

importance in preventing progressive bridge collapse.

Use one of the bridge failure examples to illustrate your

point.

2.4 Discuss the difficulties often encountered in performing
adequate bridge inspections.

2.5 What is a fracture-critical bridge and why does it have

special inspection requirements?

2.6 The bowing of the gusset plates on the I-35WBridgewas

observed by a bridge inspector prior to the collapse.Why
was this observation not noted in the inspection report?



CHAPTER 3

Bridge Aesthetics

3.1 INTRODUCTION

Oftentimes engineers deceive themselves into believing that

if they have gathered enough information about a bridge site
and the traffic loads, the selection of a bridge type for that sit-

uation will be automatic. Engineers seem to subscribe to the

belief that once the function of a structure is properly defined,

the correct form will follow. Furthermore, that form will be
efficient and aesthetically pleasing. Perhaps we believe some

great differential equation exists, and, if we could only de-

scribe the relationships and the gradients between the differ-
ent parameters, apply the correct boundary conditions, and

set the proper limits of integration, a solution of the equation

will give us the best possible bridge configuration. Unfortu-

nately, or perhaps fortunately, no such equation exists that
will define the optimal path.

If we have no equation to follow, how is a conceptual de-

sign formulated? (In this context, the word design is meant

in its earliest and broadest sense; it is the configuration one
has before any calculations are made.) Without an equation

and without calculations, how does a bridge get designed? In

this chapter we address this question by first examining the

nature of the structural design process and then discussing
aesthetics in bridge design.

3.2 NATURE OF THE STRUCTURAL
DESIGN PROCESS

The structural design process itself is probably different for
every engineer because it is so dependent on personal experi-

ence. However, certain characteristics about the process are

common and serve as a basis for discussion. For example,

we know (1) that when a design is completed in our minds,
we must then be able to describe it to others; (2) that we have

different backgrounds and bring different knowledge into the

design process; and (3) that the design is not completely open

Fig. 3.1 Model of structural design process (Addis, 1990).

ended, constraints exist that define an acceptable solution(s).

These characteristics are part of the nature of structural de-
sign and influence how the process takes place.

A model of the design process incorporating these char-

acteristics has been presented by Addis (1990) and includes

the following components: output, input, regulation, and the
design procedure. A schematic of this model is shown in

Figure 3.1.

3.2.1 Description and Justification

The output component consists of description and justifica-

tion. Description of the design will be drawings and speci-

fications prepared by or under the direction of the engineer.
Such drawings and specifications outline what is to be built

and how it is to be constructed. Justification of the design

requires the engineer to verify the structural integrity and sta-

bility of the proposed design.
In describing what is to be built, the engineer must com-

municate the geometry of the structure and thematerial from

which it is made. At one time the engineer was not only
the designer but also the drafter and specification writer. We

would sit at our desk, do our calculations, then turn around,

maybe climb up on a stool, and transfer the results onto fine

linen sheets with surfaces prepared to receive ink from our
pens. It seemed to be a rite of passage that all young engi-

neers put in their time on the “board.” But then the labor was

divided.Drafters and spec writers became specialists, and the

structural engineer began to lose the ability to communicate
graphically and may have wrongly concluded that designing

is mainly performing the calculations.

This trend toward separation of tasks has been somewhat

reversed by the increased capabilities of personal comput-
ers.With computer-aided drafting (CAD), structural analysis

software, and word processing packages all on one system,

the structural engineer is again becoming drafter, analyst, and

spec writer, that is, a more complete structural designer. In
fact, it is becoming necessary for structural engineers to be

CAD literate because the most successful structural analysis

programs have CAD-like preprocessors and postprocessors.
Justification of a proposed design is where most structural

engineers excel. Given the configuration of a structure, its

material properties, and the loads to which it is subjected,
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a structural engineer has the tools and responsibility to verify

that a design satisfies all applicable codes and specifications.

One note of caution: A structural engineer must not fall into

the trap of believing that the verification process is infalli-

ble. To provide a framework for this discussion, a few words

about deductive and inductive reasoning are required.

Deductive reasoning goes from broad general principles to

specific cases. Once the general principles have been estab-
lished, the engineer can follow a series of logical steps based

on the rules of mathematics and applied physics and arrive

at an answer that can be defended convincingly. An example

would be the principle of virtual work, which can be used

for a number of applications such as beam deformations and

element stiffness matrices. Just follow the rules, put in the

numbers, and the answer has to be correct. Wrong.

Inductive reasoning goes from specific cases to general

principles. An example would be going from the experimen-

tal observation that doubling the load on the end of a wire

doubled its elongation to the conclusion that a linear relation-

ship exists between stress and strain. This conclusion may

be true for some materials, and then only with restrictions,
but it is not true for others. If experimental observations can

be put into the form of an algebraic equation, this is often

convenient; however, it is also fallible.

It must be realized that deductive justification is based on

quantities and concepts determined inductively.Consider, for

example, a structural analysis and design program utilized to

justify the adequacy of a reinforced concrete frame. Early

on, screens will be displayed on the monitor asking the ana-

lyst to supply coordinates of joints, connectivity of the mem-

bers, and boundary conditions. From this information, the

computer program generates a mathematical model of stick

members that have no depth, joints that have no thickness,

and supportsmodeled as rollers, hinges, or are completely re-
strained. Often the mathematical model inductively assumes

plane sections remain plane, distributed force values to be

concentrated at nodes, and idealized boundary conditions at

the supports.

Next, the user is asked to supply constants or parameters

describing material behavior, all of which have been deter-

mined inductively from experimental observations. Finally,

the values of forces at the nodes determined by the equation

solvers in the program must be interpreted as to their accep-

tance in the real world. This acceptance is based on induc-

tively determined safety factors, load and resistance factors,

or serviceability criteria. In short, what appears to be infal-

lible deductive justification of a proposed design is, in fact,
based on inductive concepts and is subject to possible error

and, therefore, is fallible.

Oftentimes engineers select designs on the basis that they

are easy to justify. If an engineer feels comfortable with the

analysis of a particular bridge type, that bridge configura-

tion will be used again and again. For example, statically

determinate bridge structures of alternating cantilever spans

and suspended spans were popular in the 1950s before the

widespread use of computers because they were easier to an-
alyze. The same could be said of the earlier railroad truss

bridgeswhose analysis was made simple by graphical statics.
One advantage of choosing designs that are easily justified is

that those responsible for checking the design have no diffi-
culty visualizing the flow of forces from one component to

another. Now, with sophisticated computer software, an engi-
neer must understand how forces are distributed throughout
the members of more complex systems to obtain a completed

design. The advantage of simple analysis of statically deter-
minate structures is easily offset by their lack of redundancy

or multiple load paths. Therefore, it is better to choose con-
tinuous beams with multiple redundancies even though the
justification process requires more effort to ensure that it has

been done properly.
Not only is there an interrelationship between deductive

and inductive reasoning, there is also an interrelationship
between description and justification. The configuration
described for a bridge structure determines its behavior. Tri-

angles in trusses, continuous beams, arches, and suspension
systems have distinctly different spatial characteristics and,

therefore, behave differently. Description and justification
are linked together, and it is important that a bridge engineer

be proficient in both areas with an understanding of the
interactions among them.

3.2.2 Public and Personal Knowledge

The input side of the design process shown in Figure 3.1 in-
cludes engineering knowledge and experience. An engineer

brings both public and personal knowledge to the design pro-
cess. Public knowledge is accumulated in books, databases,

software, and libraries and can be passed on from genera-
tion to generation. Public knowledge includes handbooks of
material properties, descriptions of successful designs, stan-

dard specifications, theoreticalmechanics, construction tech-
niques, computer programs, cost data, and other information

too voluminous to describe here.
Personal knowledge is what has been acquired by an indi-

vidual through experience and is very difficult to pass on to
someone else. People with experience seem to develop an in-
tuitive understanding of structural action and behavior. They

understand how forces are distributed and how elements can
be placed to gather these forces together to carry them in a

simple and efficient manner. And if you were to ask them
how they do it, they may not be able to explain why they
know that a particular configuration will work and another

will not. The link between judgment and experience has been
explained this way: Good judgment comes from experience
and experience comes from bad judgment . Sometimes expe-
rience can be a tough teacher, but it is always increasing our

knowledge base.

3.2.3 Regulation

Our bridge designs are not open ended. There are many
constraints that define the boundaries of an acceptable
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design. These constraints include client’s desires, architect’s

design, relevant codes, accepted practice, engineer’s educa-
tion, available materials, contractor’s capabilities, economic

factors, environmental concerns, legal factors, and last, but
not least, political factors. For example, if a bridge is to

traverse coastal wetlands, the restrictions on how it can be

built will often dictate the selection of the bridge type. If
contractors in a particular region are not experienced in the

construction method proposed by an engineer, then that may
not be the proper design for that locality. Geometric con-

straints on alignment are quite different for a rural interstate
overcrossing than for a densely populated urban interchange.

Somehow a bridge designer must be able to satisfy all these

restrictions and still have a bridge with pleasing appearance
that remains personally and publicly satisfying.

3.2.4 Design Process

The process of design is what occurs within the rectangular

box of Figure 3.1. An engineer knows what the output has

to be and what regulations govern the design, but because
each person has accumulated different knowledge and expe-

rience, it is difficult to describe a procedure for design that
will work in all cases. As Addis (1990) says: “Precisely how

and why a structural engineer chooses or conceives a particu-
lar structure for a particular purpose is a process so nebulous

and individual that I doubt if it is possible to study it at all.”

It may not be possible to definitively outline a procedure
for the design process, but it is possible to identify its gen-

eral stages. The first is the data gathering stage, followed
by the conceptual, rhetorical, and schematic stages. In the

data gathering stage, one amasses as much information as

one can find about the bridge site, topography, functional re-
quirements, soil conditions, material availability, hydrology,

and temperature ranges. Above all, the designer must visit
the bridge site, see the setting and its environment, and talk

to local people because many of them have probably been
thinking about the bridge project for a long time.

The conceptual or creative stage will vary from person to

person because we all have different background, experience,
and knowledge. But one thing is constant. It all begins with

images in the mind. In the mind one can assimilate all of
the information on the bridge site, and then mentally build

the bridge, trying different forms, changing them, combining

them, looking at them from different angles, driving over the
bridge, walking under it, all in the mind’s eye. Sometimes

the configuration comes as a flash of inspiration, other times
it develops slowly as a basic design is adjusted and modified

in the mind of the designer.
Too often engineers associate solving problems with solv-

ing equations. So we are inclined to get out our calculation

pad or get on the computer at our earliest convenience. That
is not how the creative process works, in fact, putting ideas

down on paper too early may restrict the process because
the third spatial dimension and the feeling of spontaneity

are lost.

Creative breakthroughs are not made by solving equations.

Consider the words of Einstein in a letter to his friend Jacque
Hadamard:

The words or the language, as they are written or spoken, do
not seem to play any role in my mechanism of thought. The
psychical entities which seem to serve as elements in thought
are certain signs and more or less clear images which can
be “voluntarily” reproduced and combined . . . this combi-
natory plan seems to be the essential feature in productive
thought before there is any connection with logical construc-
tion in words or other kinds of signs which can be communi-
cated to others. (Friedhoff and Benzon, 1989)

So, if you thought the great physicist developed his theo-

ries using reams of paper and feverishlymanipulating fourth-

order tensors, that is wrong. You may argue Einstein was a
gifted person, very abstract, and what he did would not nec-

essarily apply to ordinary people designing bridges.

Consider then the words of Leonhardt (1982) that follow
the data gathering stage:

The bridge must then take its initial shape in the imagina-
tion of the designer. . . . The designer should now find a quiet
place and thoroughly think over the concept and concentrate
on it with closed eyes. Has every requirement been met, will
it be well built, would not this or that be better looking . . . ?

These are words from a successful bridge designer, one

of the family so to speak, that presents what he has learned

in more than 50 years of designing bridges. When in his

distinguished career he realized this truth I do not know, but
we should listen to him. The design of a bridge begins in
the mind .
The rhetorical and schematic stages do not necessarily fol-

low one another sequentially. They are simply stages that

occur in the design process and may appear in any order and

then reappear again. Once a design has been formulated in

the mind, one may want to make some sketches to serve as a
basis for discussion with one’s colleagues. By talking about

the design and in explaining it to others, the features of the

design come into sharper focus. If there are any shortcom-

ings, chances are they will be discovered, and improved so-
lutionswill be suggested. In addition to being willing to talk

about a design, we must also be willing to have it criticized.

In the design procedure outlined by Leonhardt (1982), he

encourages a designer to seek criticism by posting sketches
of the proposed design on the walls around the office so oth-

ers can comment on them. It is surprising what additional

pairs of trained eyes can see when they look at the sketches.
Well, maybe it is no surprise because behind every pair of

eyes is a whole different set of experiences and knowledge,

which brings to mind what de Miranda (1991) says about the

three mentalities that must be brought to the design process:

One should be creative and aesthetic, the second analytical,
and the third technical and practical, able to give a realistic
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evaluation of the possibilities of the construction technique
envisagedand the costs involved. If these threementalities do
not coexist in a single mind, they must always be present on
terms of absolute equality in the group or team responsible
for the design.

In short, make the sketches, talk about them, make revi-

sions, let others critique them, defend the design, be willing
to make adjustments, and keep interacting until the best pos-

sible design results. It can be a stimulating, challenging, and

intellectually rewarding process.

The function of the design process is to produce a bridge
configuration that can be justified and described to others.

Now is the time to apply the equations for justification of the

design and to prepare its description on plans and in specifi-
cations. Computers can help with the analysis and the draw-

ings, but there are still plenty of tasks to keep engineers busy.

The computer software packages will do thousands of cal-
culations, but they must be checked. Computer-driven hard-

ware can plot full-size plan sheets, but hundreds of details

must be coordinated. Model specifications may be stored in
a word processor file, but every project is different and has a

unique description.A lot of labor follows the selection of the

bridge configuration so it must be done right. As Leonhardt
(1982) says:

The phase of conceptual and aesthetic design needs a com-
paratively small amount of time, but is decisive for the ex-
pressive quality of the work.

In Section 3.3 we look more closely at the aesthetic design

phase.

3.3 AESTHETICS IN BRIDGE DESIGN

If we recognize that the conceptual design of a bridge begins

in the mind, we only need now to convince ourselves that

the design we conceive in our mind is inherently beautiful.
It is our nature to desire things that are lovely and appeal to

our senses. We enjoy good music and soft lights. We furnish

our homes with fine furniture and select paintings and col-
ors that please our eyes. We may say that we know nothing

about aesthetics, yet our actions betray us. We do know what

is tasteful, delights the eye, and is in harmony with its sur-
roundings. Perhaps we have not been willing to express it.

We need to realize that it is all right to have an opinion and

put confidence in what has been placed within us.We simply
need to carry over the love of beauty in our daily lives to our

engineering projects.

When an engineer is comparing the merits of alternative

designs, some factors are more important than others. The
conventional order of priorities in bridge design is safety,

economy, serviceability, constructability, and so on. Some-

where down this list is aesthetics. Little doubt exists that aes-
thetics needs a priority boost and that it can be done without

significantly infringing upon the other factors.

In recent years, engineers have come to realize that im-

proved appearance does not necessarily increase the cost.

Oftentimes the most aesthetically pleasing bridge is also the

least expensive. Sometimes a modest increase in construc-
tion cost is required to improve the appearance of a bridge.

Menn (1991) states that the additional construction costs are

about 2% for short spans and only about 5% for long spans.

Roberts (1992) seconds this conclusion in his article on case

histories of California bridges.

Public expenditures on improved appearance are generally
supported and appreciated. Given a choice, even with a mod-

est increase in initial cost, the public prefers the bridge that

has the nicer appearance. Unfortunately, an engineer may re-

alize this after it is too late. Gottemoeller (1991) tells of the

dedication of a pedestrian bridge over a railroad track in the

heart of a community in which speaker after speaker decried

the ugliness of the bridge and how it had inflicted a scar on
the city. Function or costs were not primary concerns of the

public, only its appearance. Needless to say, they rejected a

proposal for constructing a similar bridge nearby. It is unfor-

tunate that an engineer has to build an ugly bridge that will

remain long after its cost is forgotten to learn the lesson that

the public is concerned about appearance.
It is not possible in this short chapter to completely discuss

the topic of bridge aesthetics. Fortunately, good references

are dedicated to the subject, which summarize the thoughts

and give examples of successful bridge designers through-

out the world. Two of these resources are Esthetics in Con-
crete Bridge Design , edited byWatson and Hurd (1990), and
BridgeAesthetics Around theWorld , edited by Burke (1991).
A third reference of note is Bridgescape: The Art of Design-
ing Bridges by Gottemoeller (2004). By drawing on the ex-

pertise in these references, we will attempt to identify those

qualities that most designers agree influence bridge aesthet-

ics and to give practical guidelines for incorporating them

into medium- and short-span bridges.

3.3.1 Definition of Aesthetics

The definition of the word aesthetics may vary according

to the dictionary one uses. But usually it includes the words

beauty , philosophy , and effect on the senses. A simple

definition could be: Aesthetics is the study of qualities of
beauty of an object and of their perception through our
senses . Fernandez-Ordóñez (1991) has some wonderful

quotations from the philosophers, such as:

Love of beauty is the cause of everything good that exists on
earth and in heaven. (Plato)

and

Even if this particular aesthetic air be the last quality we
seen in a bridge, its influence nonetheless exists and has an
influence on our thoughts and actions. (Santayana)
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and

It is impossible to discover a rule that can be used to judge
what is beautiful and what is not. (Hegel)

The last quote from Hegel seems to contradict what we
propose to do in providing guidelines for aesthetically pleas-

ing bridge designs. However, in another sense, it reinforces

that some equation set or codification does not exist that will
outline how to design a bridge. Lack of codification should

not discourage attempts to find basic principles for aesthetic

design utilized by successful bridge designers.
From the noted philosophers, it is difficult to argue against

making something beautiful. Not everyone agrees about the

elements that make a bridge beautiful, but it is important that
designers be aware of the qualities that influence the percep-
tion of beauty.

3.3.2 Qualities of Aesthetic Design

In the articles compiled by Watson and Hurd (1990) and

Burke (1991) and the book by Gottemoeller (2004), it

becomes apparent that writers on bridge aesthetics agree on

a number of qualities incorporated in successful aesthetic
designs. These qualities are function, proportion, harmony,

order, rhythm, contrast, texture, and use of light and shadow.

Some of these terms are familiar; others may not be, espe-
cially in the application to bridges. To explain, each term is

discussed along with illustrations of its application.

Function For a bridge design to be successful, it must ful-

fill the purpose for which it is intended. Oftentimes the func-

tion of a bridge goes beyond the simple connection of points
along a prescribed alignment with a given volume of traf-

fic. For example, a bridge crossing a valley may have the

function of safely connecting an isolated community with
the schools and services of a larger community by avoid-

ing a dangerous trip down and up steep and twisting roads.
A bridge over a railroad track out on the prairie may have

the function of eliminating a crossing at grade that claimed

a number of lives. Sometimes a bridge has more than one
function, such as the bridge across the Straits of Bosporus at

Istanbul (Fig. 3.2). This bridge replaces a slow ferryboat trip,

Fig. 3.2 Bosporus Straits Bridge at Istanbul (Brown et al., 1976). (Photo courtesy of Turkish Government TourismOffice, Washington,DC.)
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but it also serves the function of connecting two continents

(Brown et al., 1976).
Another example of a bridge with multiple functions is

the Hoover Dam Bypass (Exhibit 11 in the color insert) or
the Mike O’Callaghan–Pat Tillman Memorial Bridge span-

ning the Colorado River 1600 ft downstream from the dam.

The bypass and bridge were constructed in 2005–2010 to
improve safety, security, and traffic capacity. The section of

U.S. 93 that approached and crossed Hoover Dam was nar-
row, had many dangerous curves, and poor sight distances.

As a consequence of heightened security measures follow-
ing the September 11, 2001, attacks, truck traffic over the

dam was diverted south in an effort to safeguard the dam.

Combined with sightseeing and pedestrian traffic at the dam,
traffic often came to a standstill. The function of the bridge

was to improve travel times, replace the dangerous roadway,
and reduce the possibility of an attack or accident at the dam

site (www.hooverdambypass.org/purpose overview.htm).

The function of a bridge must be defined and understood
by the designer, client, and public. How that function is satis-

fied can takemany forms, but it must always be kept in mind
as the basis for all that follows. Implied with the successful

completion of a bridge that fulfills its function is the notion

that it does so safely. If a bridgedisappears in a flood, or other
calamity, one does not take much comfort in the fact that

it previously performed its function. A bridge must safely
perform its function with an acceptably small probability of

failure.

Proportion Artists, musicians, and mathematicians realize
that for a painting, a composition, or a geometric pattern to be

pleasing it must be in proper proportion. Consider the sim-
ple case of dividing a line into two segments. Dividing the

line into unequal segments generates more interest than di-

vision into equal segments. Around 300 BC, Euclid proposed
that a pleasing division of the line would be when the ratio

of the shorter segment to the longer segment was the same as
the ratio of the longer segment to the whole. Stating Euclid’s

propositionmathematically, if the total length of the line is x
and the longer segment is unity, then the shorter segment is
x – 1 and the equality of ratios gives (x − 1)/1 = 1/x . The
positive root of the resulting quadratic equation is (

√
5 + 1)/

2 = 1.6180339 . . . or simply, 1.618. This ratio of the total

length of the line to the longer segment has been called the
golden ratio, the golden proportion, the golden section, and

the golden number.

This particular proportion between two values is not
limited to mathematics but is found in biology, sculpture,

painting, music, astronomy, and architecture (Livio, 2002).
Throughout history, the ratio for length to width of rect-

angles of 1.618 has been considered the most pleasing to

the eye. For example, there are golden section rectangles
down to the smallest details of decoration throughout the

Parthenon in Athens, Greece.
There still are advocates (Lee, 1990) of geometric con-

trols on bridge design and an illustration of the procedure

Fig. 3.3 Proportioning of Mancunian Way cross section (Lee,

1990). (Used with permission of American Concrete Institute.)

is given in Figure 3.3. The proportioning of the Mancunian

Way Bridge cross section in Manchester, England, was car-
ried out by making a layout of golden section rectangles in

four columns and five rows. The three apexes of the triangles

represent the eye-level position of drivers in the three lanes of
traffic. The profile of the cross section was then determined

by intersections of these triangles and the golden sections.

It may be that proportioning by golden sections is pleasing
to the eye, but the usual procedure employed by successful

designers has more freedom and arriving at a solution is often
by trial and error. It is generally agreed that when a bridge

is placed across a relatively shallow valley, as shown in

Figure 3.4, the most pleasing appearance occurs when there
are an odd number of spans with span lengths that decrease

going up the side of the valley (Leonhardt, 1991). The Smart

Road Bridge (Exhibit 12 in the color insert) near Blacksburg,
Virginia, illustrates the application of this principle.

When artists comment on the composition of a painting,

they often talk about negative space. What they mean is the
space in between—the empty spaces that contrast with and

help define the occupied areas. Negative space highlights

what is and what is not. In Figure 3.4, the piers and girders
frame the negative space, and it is this space in between that

must also have proportions that are pleasing to the eye.

Fig. 3.4 Bridge in shallow valley: flat with varying spans; har-

monious (Leonhardt, 1991). (From Bridge Aesthetics around the
World , copyright © 1991 by the Transportation Research Board,

National Research Council, Washington, DC. Reprinted with

permission.)
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Fig. 3.5 Bridge in deep V-shaped valley: large spans and ta-

pered piers (Leonhardt, 1991). (From Bridge Aesthetics around the
World , copyright © 1991 by the Transportation Research Board,

National Research Council, Washington, DC. Reprinted with

permission.)

The bridge over a deep valley in Figure 3.5 (Leonhardt,

1991) again has an odd number of spans, but they are of equal

length. In this case, the negative spaces provide a transition

of pleasing rectangular shapes from vertical to horizontal.

Fig. 3.6 Magnan Viaduct near Nizza, France (Muller, 1991). (From Bridge Aesthetics Around the World , copyright © 1991 by the Trans-

portation Research Board, National Research Council, Washington, DC. Reprinted with permission.)

Fig. 3.7 Three-span beam: (top ) pleasing appearance of slender beam on strong piers; (bottom ) heavy appearance of deep beam on narrow

piers (Leonhardt, 1991). (From Bridge Aesthetics around the World , copyright © 1991 by the Transportation Research Board, National

Research Council, Washington, DC. Reprinted with permission.)

Adding to the drama of the bridge is the slender continuous

girder and the tall, tapered piers. An example of such a bridge

is the Magnan Viaduct, near Nizza on the French Riviera,
shown in Figure 3.6 (Muller, 1991).

Another consideration is the relative proportion between

piers and girders. From a strength viewpoint, the piers can

be relatively thin compared to the girders. However, when

a bridge has a low profile, the visual impression can be

improved by having strong piers supporting slender girders.
This point is illustrated in Figure 3.7 (Leonhardt, 1991).

Slender girders can be achieved if the superstructure

is made continuous. In fact, Wasserman (1991) says that

superstructure continuity is the most important aesthetic

consideration and illustrates this with the two contrasting
photographs in Figures 3.8 and 3.9. Most people would

agree that the bridge in Figure 3.9 is awkward looking. It

shows what can happen when the least effort by a designer

drives a project. It does not have to be that way. Consider this
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Fig. 3.8 Example of superstructure continuity on single hammerhead piers. (Photo courtesy of Tennessee DOT—Geo. Hornal,

photographer.)

Fig. 3.9 Example of poor depth transitions and awkward configurations due to lack of superstructure continuity. (Photo courtesy ofTennessee

DOT.)
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Fig. 3.10 Single columns increase the transparency of tall bridge (Menn, 1991). (From Bridge Aesthetics around the World , copyright ©
1991 by the Transportation Research Board, National Research Council, Washington, DC. Reprinted with permission.)

Fig. 3.11 Proportion for pier width not to exceedone-eighth of the

span (Leonhardt, 1991). (From BridgeAesthetics around theWorld ,
copyright © 1991 by the Transportation Research Board, National

Research Council, Washington, DC. Reprinted with permission.)

quotation from Gloyd (1990): “When push comes to shove,

the future generation of viewers should have preference over

the present generation of penny pinchers.”

A designer should also realize that the proportions of a

bridge change when viewed from an oblique angle as seen in

Figure 3.10 (Menn, 1991). To keep the piers from appearing

as a wall blocking the valley, Leonhardt (1991) recommends

limiting the width of piers to about one-eighth of the span

length (Fig. 3.11). He further recommends that if groups

of columns are used as piers, their total width should be

limited to about one-third of the span length (Fig. 3.12).

The bridge crossing the broad valley of the Mosel River

(Moseltal-brücke) (Exhibit 13 in color insert) in southern

Germany is a good example of tall piers with thin girders

that give a pleasing appearance when viewed obliquely.

Fig. 3.12 Proportion for total width of groups of columns not to be

larger than one-third of the span (Leonhardt, 1991). (From Bridge
Aesthetics around the World , copyright © 1991 by the Transporta-

tion Research Board, National Research Council, Washington, DC.

Reprinted with permission.)

Good proportionsare fundamental to achieving an aestheti-

cally pleasing bridge structure.Words can be used to describe
what has been successful for some designers, but what works

in one setting may not work in another. Rules and formulas

will most likely fail. It finally gets down to the responsibility
of each designer on each project tomake the personal choices

that lead to a more beautiful structure.

Harmony In this context, harmony means getting along

well with others. The parts of the structure must be in
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Fig. 3.13 A graceful long bridge over a wide valley, Napa River Bridge, California. (Permission granted by California DOT.)

Fig. 3.14 Lack of harmony between adjacent bridges (Murray, 1991). (From Bridge Aesthetics around the World , copyright © 1991 by the

Transportation Research Board, National Research Council, Washington, DC. Reprinted with permission.)

agreement with each other, and the whole structure must be

in agreement with its surroundings.

Harmony between the elements of a bridge depends

on the proportions between the span lengths and depth

of girders, height and size of piers, and negative spaces

and solid masses. The elements, spaces, and masses

of the bridge in Figure 3.13 present a pleasing appear-

ance because they are in harmony with one another. An

example of lack of harmony between members and spaces

is shown in Figure 3.14. This dissonance is caused by

the placement of two dissimilar bridges adjacent to one

another.

Harmony between the whole structure and its surround-

ings depends on the scale or size of the structure relative

to its environment. A long bridge crossing a wide valley

(Fig. 3.13) can be large because the landscape is large.

But when a bridge is placed in an urban setting or used

as an interstate overpass, the size must be reduced. Menn

(1991) refers to this as integration of a bridge into its

surroundings. Illustrations of bridges that are in harmony

with their environment are the overpass in Figure 3.15 and

the Blue Ridge Parkway (Linn Cove) Viaduct (Exhibit 14

in color insert) of Figure 3.16. A bridge that is in harmony

derives its size and scale from its surroundings.
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Fig. 3.15 Well-proportioned concrete arch, West Lilac Road overpass, I-15. (Permission granted by California DOT.)

Fig. 3.16 Blue Ridge Parkway (Linn Cove) Viaduct, Grandfather Mountain, North Carolina (Gottemoeller, 1991). (From Bridge Aesthetics
Around the World , copyright © 1991 by the Transportation Research Board, National Research Council, Washington, DC. Reprinted with

permission.)

Order and Rhythm When discussing order and rhythm in

bridge structures, the same words and examples are often

used to describe both. For example, the bridge in Figure 3.17

illustratesboth good order and rhythm.The eye probably first

sees the repeating arches flowing across the valley with the

regularity of a heartbeat. But also one perceives that all of

the members are tied together in an orderly manner in an un-

interrupted flow of beauty with a minimum change of lines

and edges. If a girder were to replace one of the arch spans,

the rhythm would be lost. Rhythm can bring about order,

and good order can bring about a wholeness and unity of the

structure.
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Fig. 3.17 TunkhannockViaduct near Nicholson, Pennsylvania, designed by A. Burton Cohen. (Jet Lowe, HAERCollection, Historic Amer-

ican Engineering Record.)

The use of the same words to describe music and bridge
aesthetics is apparent. Consider these comments by Grant

(1990):

There is beauty and order in classical music—in the har-
monies of different sounds, and in their disharmonies and
rhythms. There is equal beauty in geometric and arithmetic
relationships, similar or equal to those of the sounds.

An example of a bridge that exhibits beauty in geometric and
arithmetic relationships is the Francis Scott Key Bridge (Ex-

hibit 15 in color insert) over the Potomac at Georgetown,
Washington, DC.

There is a downside to this analogy with music when repe-
tition and rhythmbecome excessive. Repeating similar spans

too many times can become boring and monotonous, just as
hearing the same music with a heavy beat that is repeated
over and over again can be uncomfortably similar to driving

down the interstate and seeing the same standard overcross-
ing mile after mile. The first one or two look just fine, but

after a while one has to block out appreciating the bridges to
keep the mind from the monotony.

Contrast and Texture Contrast, as well as harmony, is nec-

essary in bridge aesthetics. As often present in music and in
paintings, bright sounds and bright colors are contrasted with

soft and subtle tones—all in the same composition. Incorpo-
ration of these into our bridges keeps them from becoming
boring and monotonous.

All bridges do not have to blend in with their surround-
ings. Fernandez-Ordóñez (1991) quotes the following from

Eduardo Torroja:

When a bridge is built in the middle of the country, it should
blend in with the countryside, but very often, because of its

proportions and dynamism, the bridge stands out and domi-
nates the landscape.

This dominance seems to be especially true of cable-stayed

and suspension bridges, such as seen in Figures 3.18 and
3.19. This dominance of the landscape does not subtract from

their beauty.

Another example of a bridge that is in contrast with its

surroundings yet is compatible with its urban setting is the

Leonard P. Zakim Bunker Hill Memorial Bridge (Exhibit 16

in color insert) in Boston, Massachusetts.
Contrast between the elements of a bridge may emphasize

the slenderness of the girders and the strength of the piers and

abutments. Texture can be used to soften the hard appear-

ance of concrete and make certain elements less dominant.

Large bridges seen from a distance must develop contrast
through their form and mass, but bridges with smaller spans

seen up close can effectively use texture. A good example of

the use of texture is the I-82 Hinzerling Road undercrossing

(Exhibit 17 in color insert) near Prosser, Washington, shown

in Figure 3.20. The textured surfaces on the solid concrete

barrier and the abutments have visually reduced the mass of
these elements andmade thebridge appear to bemore slender

than it actually is.

The interchange between the RedMountain Freeway (202)

and U.S. 60 (Exhibit 18 in color insert) in Mesa, Arizona, is

a great example of using Southwest-type motif, texture, and
color to create a beautiful blend of tall piers and gracefully

curved girders.

Light and Shadow To use this quality effectively, the de-

signer must be aware of how shadows occur on the structure

throughout the day. If the bridge is running north and south,
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Fig. 3.18 East Huntington Bridge in Huntington, West Virginia. (Photo by David Bowen, courtesy of West Virginia DOT.)

Fig. 3.19 Brooklyn Bridge, New York City. (Jet Lowe, HAER Collection, Historic American Engineering Record.)
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Fig. 3.20 Texture reduces visual mass, I-82 Hinzerling Road undercrossing, Prosser, Washington. (Photo courtesy of Washington State

DOT.)

Fig. 3.21 Concrete barrier wall and short-span overpass without shadow: girders look deeper.

the shadows are quite different than if it is running east and

west. When sunlight is parallel to the face of a girder or wall,

small imperfections in workmanship can cast deep shadows.

Construction joints in concrete may appear to be discontin-

uous. In steel hidden welded stiffeners may no longer be

hidden due to changes in reflectivity of a web surface.

One of the most effective ways to make a bridge girder ap-

pear slender is to put it partially or completely in shadow.

Creating shadow becomes especially important with the use

of solid concrete safety barriers that make the girders look

deeper than they actually are (Fig. 3.21). Shadows can be

accomplished by cantilevering the deck beyond the exterior
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Fig. 3.22 (a) Vertical girder face without overhang presents a vi-

sual impact to the driver: Structure looks deeper. (b) Increase in

overhang creates more shade on face of girder, subduing the visual

impact. (c) Sloping girders recede into shadow. Brightly lit face of

barrier rail contrasts with shadow and stands out as a continuous,

slender band of light, accentuating the flow of the structure. Struc-

ture appears subdued, inviting flow of traffic beneath. (Permission

granted by the California DOT.)

girder as shown inFigure 3.22. The effect of shadow on a box

girder is further improved by giving the side of the girder an

inward slope.

Shadow and light have been used effectively in the bridges

shown previously. The piers in the bridge of Figure 3.6 have

ribs that cast shadows and make them look thinner. The deck

overhangs of the bridges in Figures 3.8, 3.10, 3.15, and 3.20

cause changes in light and shadow that improve their ap-

pearance because the girders appear more slender and the

harshness of a bright fascia is reduced.

The I-35W St. Anthony Falls Bridge (Exhibit 19 in color

insert) in Minneapolis, Minnesota, built to replace the col-

lapsed I-35W Bridge (see Section 2.2.7), is another example

of using light and shadow effectively.

3.3.3 Practical Guidelines for Medium- and
Short-Span Bridges

The previous discussion on qualities of aesthetic design was

meant to apply to all bridges in general. However, what works

for a large bridge may not work for a small bridge. Medium-

and short-span bridges have special problems. We address

those problems and offer a few practical solutions that have

worked for other designers. Most of the illustrationsused are

those of highway-grade separations and crossings over mod-

est waterways.

One word of caution is in order before presenting these

guidelines and that is to reemphasize that rules and formu-

las will likely fail. Burke (1990) provides excerpts from the

literature of bridge aesthetics warning against using them ex-

clusively. However, for the inexperienced designer, or for one

who does not feel particularly gifted artistically, the guide-

lines may be helpful. The following quotation taken from

Burke (1990) is by Munro (1956) and presents a balanced

approach: “Although it is wise to report all past theories of

aesthetics with some suspicion, it is equally wise to utilize

them as suggestions.” Therefore, let us consider the guide-

lines that follow as simply recommendations or suggestions.

Resolutionof Duality Leonhardt (1991)makes the follow-

ing statement: “An odd number of spans is always better than

an even number; this is an old and approved rule in architec-

ture.” He then goes on to illustrate the balance and harmony

of odd-numbered spans crossing a valley (Fig. 3.5) and a wa-

terway (Fig. 3.7). So what is a designer to do with a grade

separation over dual highways? If you are crossing two high-

ways, the logical solution is to use a two-span layout. But

this violates the principle of using odd-numbered spans and

causes a split composition effect (Dorton, 1991).

This problem is often called “unresolved duality” be-

cause the observer has difficulty in finding a central focal

point when viewing two large voidal spaces. He suggests

increasing the visual mass of the central pier to direct atten-

tion away from the large voidal spaces. This redirection has

been done successfully in the design of the 436th Avenue

SE Undercrossing of I-90 (Exhibit 20 in color insert) near

Olympia, Washington, shown in Figure 3.23.

Another effective way to reduce the duality effect is to re-

duce the emphasis on the girder by increasing its slenderness

relative to the central pier. This emphasis can be accom-

plished by increasing the spans and moving the abutments up

the slope and has the added effect of opening up the traveled

way and giving the feeling of free-flowing traffic. As shown

in Figure 3.24, the use of sloping lines in the abutment face

and pier top provides an additional feeling of openness.

Proper proportions between the girder, pier, and abutment

must exist as demonstrated in Figure 3.25. The Hinzerling

Road Bridge (Exhibit 17 in the color insert) of Figure 3.20

gives a fine example of applying these recommendations for

resolving the duality effect.
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Fig. 3.23 436th Avenue SE Undercrossing, I-90, King County, Washington. (Photo courtesy of Washington State DOT.)

Fig. 3.24 (a) Vertical lines appear static. They provide interest and

variety to the horizontal flow of the structure but do not accentuate

the flow. (b) Dynamic sloping lines provide interest and variety and

accentuate flow. (Permission granted by the California DOT.)

Generally speaking, the ideal bridge for a grade separation

or highway interchange has long spans with the smallest pos-

sible girder depth and the smallest possible abutment size

(Ritner, 1990). Continuity is the best way to minimize girder

depth. In two-span applications, haunches can be used ef-

fectively, but as shown in Figure 3.26, proportions must be

selected carefully. Leonhardt (1991) suggests that the haunch

should followa parabolic curve that blends in at midspan and

is not deeper at the pier than twice the depth at midspan.

An elegant engineering solution to the duality problem is to

eliminate the center pier and design an overpass that appears

as a single span between abutments (Fig. 3.27). The low slen-

der profile is obtained by developing end moments through

anchored end spans at the abutments. Disguised externally,

the superstructure is actually a three-span continuous girder

system (Kowert, 1989).

Fig. 3.25 (a) Massive columns overpower superstructure.

(b) Massive superstructure overpowers spindly columns. (c) Sub-

structure and superstructure are properly proportioned. (Permission

granted by the California DOT.)

Another fine example of a single span between abutments

is the Genesee Road (U.S. 40) Bridge over I-70 in Colorado.

This bridge (Exhibit 21 in the color insert) provides a frame-

work for an observer’s first view of the Rocky Mountains.

By utilizing these recommendations, it is possible to over-

come the duality effect and to design pleasing highway over-

passes. Additional guidelines for the individual components

of girders, overhangs, piers, and abutments that help the parts

integrate into a unified, harmonious whole are given in the

sections that follow.
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Fig. 3.26 (a) Long haunches give grace to the structure. (b) Short

haunchesappear awkward and abrupt, detracting from continuity of

bridge. (Permission granted by the California DOT).

Girder Span/Depth Ratio According to Leonhardt (1991),

the most important criterion for the appearance of a bridge is

the slenderness of the beam, defined by the span length/beam

depth ratio (L /d ). If the height of the opening is greater than
the span, he suggests L /d can be as small as 10, while for

long continuous spans L /d could be up to 45. The designer

has a wide range of choices in finding the L /d ratio that best

fits a particular setting. In light of the general objective of

using a beam with the least possible depth, the L /d ratio se-

lected should be on the high end of the range.

Because of structural limitations, the maximum L /d ra-

tio varies for different bridge types. Table 3.1 has been

developed from recommendations given by ACI-ASCE

Committee 343 (1988), and those in Table 2.5.2.6.3-1 of

the AASHTO Specifications (2010). The maximum values

in Table 3.1 are traditional ratios given in previous editions

of the AASHTO Specifications in an attempt to ensure that

vibration and deflection would not be a problem. These

are not absolute maximums; they are only guidelines. They

compare well with L /d ratios that are desirable for a pleasing

appearance.

Fig. 3.27 Anchored end span bridge over I-39 located in north-central Illinois.

Table 3.1 Typical and Maximum Span/Depth Ratios

Bridge Type Typical Maximum

ContinuousConcrete Bridges Committee 343 AASHTO
Nonprestressed slabs 20–24

Nonprestressed girders

T-beams 15 ± 15

Box beams 18 ± 18

Prestressed slabs
Cast in place 24–40 37

Precast 25–33

Prestressed girders

Cast-in-place box beams 25–33 25

Precast I-beams 20–28 25

Continuous Steel Bridges Caltrans AASHTO
Composite I-beam

Overall 31

I-beam portion 37

Composite welded girder 22

Structural steel box 22

Deck Overhangs It is not possible for many of the bridge

types in Table 3.1 to have L /d ratios in excess of 30. How-

ever, it is possible to increase the apparent slenderness of the

superstructure by placing part or the entire girder in shadow.

Cantilevering the deck slab beyond the exterior girder as

shown in Figures 3.22 and 3.28 can create shadow.
When girders are spaced a distance S center to center in

a multigirder bridge, a cantilevered length of the deck over-

hangw of about 0.4S helps balance the positive and negative

moments in the deck slab. Another way to determine the can-

tilever lengthw is to proportion it relative to the depth of the
girder h . Leonhardt (1991) suggests a ratio ofw/h of 2 : 1 for

single-span, low-elevation bridges and 4 : 1 for long, contin-

uous bridges high above the ground.
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1:4 or Less

s w

g
h

Fig. 3.28 Deck slab cantilevered over edge beam (Leonhardt,

1991). (From Bridge Aesthetics around the World , copyright ©
1991 by the Transportation Research Board, National Research

Council, Washington, DC. Reprinted with permission.)

If the slope of the underside of the overhang is less than

1 : 4, that portion of the overhang will be in deep shadow

(Murray, 1991). Both Leonhardt (1991) and Murray (1991)

agree that the ratio of the depth of the fascia g to the depth of

the girder h should be about 1 : 3 to give a pleasing appear-

ance. By first selecting a cantilever length w , a designer can
use these additional proportions to obtain a visual effect of a

more slender superstructure (Figs. 3.8 and 3.15).

When solid concrete barriers are used for safety rails, the

fascia appears to have greater depth. If a box girder with a

sloping side is used, it is possible for the overhang to put

the entire girder in shadow (Fig. 3.23) and improve the ap-

parent slenderness. Also, it may be advantageous to change

the texture (Fig. 3.20), or to introduce an additional shadow

line that breaks up the flat surface at, say, the one-third point

(Fig. 3.29).

Fig. 3.29 Cantilevered overhang with drip groove (Mays, 1990).

(Used with permission of the American Concrete Institute.)

Also shown in Figure 3.29 is an important and practical

detail—the drip groove. This drip groove breaks the surface

tension of rainwater striking the fascia and prevents it from

running in sheets and staining the side of the girder. Archi-
tects have known about drip grooves for decades, but inmany

cases engineers have been slow to catch on and we still see

many discolored beams and girders. Perhaps all that is nec-

essary is to point it out to them one time.

Piers In addition to having proper proportions between a

pier and its superstructure (Fig. 3.25), a pier has features of its
own that can improve the appearance of a bridge. As shown

in Figure 3.30, many styles and shapes of piers are possi-

ble. The most successful ones are those that have some flare,

taper, texture, or other feature that improves the visual expe-

rience of those who pass by them. The key is that they are

harmonious with the superstructure and its surroundings and

that they express their structural process.
In general, tall piers should be tapered (Figs. 3.4, 3.5, and

3.31) to show their strength and stability in resisting lateral

Fig. 3.30 Pier styles of contemporary bridges: wall type (a–e, g,

h); T-type (f); and column type (i). (Glomb, 1991). (From Bridge
Aesthetics around the World , copyright © 1991 by the Transporta-

tion Research Board, National Research Council, Washington, DC.

Reprinted with permission.)
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Fig. 3.31 Tall columnwith parabolic taper and raised edge (Menn,

1991). (From Bridge Aesthetics around the World , copyright ©
1991 by the Transportation Research Board, National Research

Council, Washington, DC. Reprinted with permission.)

loads. The tallest piers in the world are found in the spectac-

ular MillauViaduct (Exhibit 22 in the color insert) in France,

and the slenderness of the structure gives the appearance of

a floating roadway above the broad valley.

Short piers can also be tapered (Fig. 3.32) but in the op-

posite direction to show that less resistance is desired at the
bottom than at the top. And when the piers are of interme-

diate height (Fig. 3.33), they can taper both ways to follow

a bending moment diagram that, in this case, has a point of

inflection about one-third the height from the top.

There appears to be a preference among some designers

for piers that are integral with the superstructure, that is,
they act together with the beams and girders to resist applied

loads. Examples of integral piers are shown in Figures 3.31

and 3.34. Where nonintegral substructures are used, Wasser-

man (1991) recommends hammerhead or T-piers, singly

(Fig. 3.8) or joined (Fig. 3.35), over the more cluttered
appearance of multiple-column bents (Fig. 3.36).

When interchanges are designed, multiple columns cannot

be avoided, but they should be of similar form. In theCalifor-

nia interchange of Figure 3.34 and the Arizona interchange

of (Exhibit 23 in the color insert), there are a variety of pier

shapes and sizes, but they all belong to the same family. Con-
trast these examples with the unfortunatemixture of supports

in the bridge of Figure 3.37. Harmony between the elements

of the bridge has been destroyed. The wall pier is too promi-

nent because it has not been kept in the shade and its sloping
front face adds to the confusion. This mixture of supports is

a good example of what not to do.

Abutments Repeating what was written earlier, to obtain a

pleasing appearance for a bridge, the girder should be as slen-

der as possible. Large abutments may be needed to anchor a
suspension bridge, but they are out of place for medium- and

short-span bridges.

The preferred abutment is placed near the top of the bank,

well out of the way of the traffic below (Fig. 3.24), which
gives the bridge a feeling of openness and invites the flow of

traffic. Some designers refer to this as a stub abutment or, if it

is supported on columns or piling, a spill-through abutment
because the embankment material spills through the piling.

For a given length of an abutment, the flatter the slope of

the embankment, the smaller the abutment appears, which

can be seen in the comparisons of Figure 3.38. The preferred
slope of the bank should be 1 : 2 or less.

Another feature of the abutment that improves its appear-

ance is to slope its face back into the bank from top to bottom.

Elliot (1991) explains it this way:

Sloping the face inward about 15 degrees, creates a magi-
cal illusion. Instead of seeming to suddenly stop against the
vertical faces, the bridge now seems to flow smoothly into the
supportingground. This one featurewill improve the appear-
ance of a simple separation structure at virtually no increase
in cost.

Examples of bridges with abutments illustrating this con-

cept are shown in Figures 3.23, 3.24, and 3.26. The mass of
the vertical-faced abutments of the bridges in Figures 3.35

and 3.36 could be reduced and the appearance improved if

the faces were inclined inward.
The sloping ground from the abutment to the edge of the

stream or roadway beneath the bridge is usually in the shade

and vegetation does not easily grow on it (see Figs. 3.20 and

3.23). Whatever materials are placed on the slope to pre-
vent erosion should relate to the bridge or the surrounding

landscape. Concrete paving blocks or cast-in-place concrete

relate to the abutment while rubble stone relates to the land-

scape. Proper selection of slope protectionmaterials will give
the bridge a neatly defined and finished appearance.

Integral Abutments and Jointless Bridges Expansion

joints in bridges have always been a maintenance problem.

These mechanical devices often break loose from the deck,
get bent, become a road hazard, and need to be replaced.

The joints allow access of water and contaminants from the

roadway that cause deterioration of the abutments, girders,
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Fig. 3.32 Prestressed girders frame into the side of the supporting pier, eliminating from view the usual cap beam. (Permission granted by

the California DOT.)

Fig. 3.33 Piers with double taper (Seim and Lin, 1990). (Used

with permission of the American Concrete Institute.)

and piers beneath the deck. When an abutment is made in-

tegral with the girders, the deck becomes a roof that helps

protect the girders and piers. When all the joints in a bridge

are eliminated, the initial cost is reduced and the riding qual-

ity of the jointless roadway is improved.

An integral abutment bridge is shown in Figure 3.39. Two

components make up the integral bridge: the bridge system

and the approach system. The bridge system consists of a

superstructure integrally connected to a stub abutment sup-

ported on a single row of piles. The superstructure may have

multiple spans with intermediate piers. The jointless bridge

system acts together as a single structural unit.

The approach system consists of the backfill, the approach

fill, the foundation soil, and, if used, an approach slab. Some

designers do not use approach slabs because they believe that

remedial actions with approach slabs are more costly and

inconvenient to the public than periodically regrading the set-

tling approach (Arsoy et al., 1999).With or without approach

slabs, a void between the backfill and the abutment is likely

to develop as the abutments move back and forth due to tem-

perature changes (Arsoy et al., 2004). Differential settlement

between the approach system and the bridge system creates

a bump at the end of the bridge. Without an approach slab,

the bump is at the abutment backwall. When approach slabs

are used, the bump is pushed out to the connection with the

pavement at the sleeper slab.
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Fig. 3.34 Route 8/805 interchange, San Diego, California. (Permission granted by the California DOT.)

Fig. 3.35 Hammerhead piers. (Photo courtesy of TennesseeDOT—Geo. Hornal, photographer.)
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Fig. 3.36 Multiple-column bents. (Photo courtesy of Tennessee DOT—Geo. Hornal, photographer.)

Fig. 3.37 Bridge with displeasingmixture of supports (Murray, 1991). (From Bridge Aesthetics around the World , copyright © 1991 by the

Transportation Research Board, National Research Council, Washington, DC. Reprinted with permission.)
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Fig. 3.38 Slope at abutment (Mays, 1990). (Used with permission

of the American Concrete Institute.)

The lengthsof jointlessbridges continue to increase as state

departments of transportation (DOTs) try to maximize the

savings inmaintenance costs. At one time, 500 ft (150m)was

thought to be amaximum overall length for a jointless bridge

to avoid problems with the interactions between the bridge

and approach systems. However, the Holston River Bridge

in Tennessee has an overall jointless length of 2650 ft (800

m) and has performed well for more than 20 years (Burdette

et al., 2003). Understanding the interactions of the bridge su-

perstructure, the abutment, the approach fill, the foundation

piles, and the foundation soil is important to fully utilize the

advantages of jointless bridges (Arsoy et al., 2001).

Pavement Approach Slab

Bridge System
Approach System

Approach Slab Pavement

Sleeper
Slab

Backfill

Approach Slabs and
Sleeper Slabs Are
Optional Elements

Superstructure

Abutment

Foundation Foundation

Abutment
Sleeper
Slab Backfill

Fig. 3.39 Simplified geometry of an integral abutment bridge (Arsoy et al., 1999).

3.3.4 Computer Modeling

Computer software tools are frequently used to model

bridges that are large, signature spans and for bridges lo-

cated in environmentally and visually sensitive areas where
the bridgescape is critical. Such models are becoming inte-

gral to the planning and design process for such bridges and

will likely become commonplace for more routine struc-

tures in the future. Features such as surrounding landscape,

sky, and water can be added to the rendering to offer the
architect, engineer, and public an accurate representation

of the completed product. Additionally, detailed features

such as lighting, painting, and sculpting options can be

explored. View points from the drivers’, waters’, and aerial

perspectives can be readily created from a three-dimensional

(3D) model.
A few examples of modeled and completed bridges are

illustrated in Figures 3.40–3.42. The Broadway Bridge,

which spans the Halifax River and links the speedway at

Daytona with the nearby beach, is illustrated in Figure 3.40.

Figure 3.40(a) is the computer rendering of the project cre-
ated during design and prior to construction; Figure 3.40(b)

is the completed project photographed near the same vantage

point. This type of realistic modeling helps the public to

develop consensus about the bridge design and specific fea-

tures. In this case, the engineer from the FIGG Engineering
Group led two design charettes with the community that

brought hands-on participation through consensus voting

among 35 participants who voted on 40 different design

features. (The term charette is derived from the French word

for cart in which nineteenth-century architectural students

carried their designs to the Ecole Beaux-Arts for evaluation,
often finishing them en route. Today’s meaning implies a

work session involving all interested parties that compresses

decision making into a few hours or days.) Visualization of

integrated shapes, shadows, textures, color, lighting, railing,

and landscaping are aided with computer modeling. The
likeness of the model and actual photograph is astounding.
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(a)

(b)

Fig. 3.40 BroadwayBridge, Daytona, Florida. (a) Computer model and (b) finished bridge in service. (Photos courtesy of FIGG Engineering

Group, reprinted with permission.)

Similarly, Figure 3.41 illustrates the Lee Roy Selmon

Crosstown Expressway located in Tampa, Florida, during

construction. Figure 3.41(a) is a rendering of the bridge

cutaway during construction, and Figure 3.41(b) is a similar

photograph taken during construction.

Finally, Figure 3.42 illustrates the Smart Road Bridge

located near Blacksburg, Virginia. This bridge is part of a

nationally recognized smart-road research facility used to

test high-tech advancements in transportation. The bridge

elegantly spans the beautiful Ellett Valley.

3.3.5 Web References

The Internet offers a host of references on bridge aesthet-

ics. Using a search engine with the keywords bridge and
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(a)

(b)

Fig. 3.41 LeeRoy Selmon CrosstownExpressway,Tampa, Florida. (a) Computer model and (b) bridge under construction. (Photos courtesy

of FIGG Engineering Group, reprinted with permission.)
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(a)

(b)

Fig. 3.42 Smart Road Bridge, Blacksburg, Virginia. (a) Computer model and (b) finished bridge in service. (Photos courtesy of FIGG

Engineering Group, reprinted with permission.)
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aesthetics will yield many references with fine pictures and

discussion. Many are related to design guidelines for spe-

cific agencies, for example, Iowa DOT (1998a,b), Australian
RTA (2003), Minnesota DOT (1999), Alberta Infrastructure

and Transportation (2005), while others provide specific

examples and case studies for a particular crossing, for
example, Federal Highway Administration (2004) and

Delaware Department of Transportation (2004).

3.3.6 Closing Remarks on Aesthetics

It is important for an engineer to realize that, whether inten-

tional or not, a completed bridge becomes an aesthetic state-

ment. Therefore, it is necessary to understand what qualities
and features of a bridge tend to make that aesthetic state-

ment a good one. This understanding will require training

and time.

Suggestions have been made regarding the improvement
of the appearance of medium- and short-span bridges. Some

of these suggestions include numerical values for propor-

tions and ratios, but most of them simply point out features

that require a designer’s attention. No equations or design
specifications can make our bridges beautiful. It is more our

awareness of beauty that creates a sense of when we are in

the presence of something good.
Aesthetics must be an integral part of bridge design. Begin-

ning with the conceptual design, the engineer must consider

aesthetics in the selection of spans, depths of girders, piers,

abutments, and the relationship of one to another. It is an im-
portant responsibility, and we must demand it of ourselves

because the public demands it of us.
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PROBLEMS

3.1 Discuss the interaction between deductive and induc-

tive reasoning in formulating the principles of struc-

tural analysis and design.

3.2 Explain the interrelationship between description and

justification of a bridge design.
3.3 What makes it difficult for a person, includingyour pro-

fessor and yourself, to pass on personal knowledge?

3.4 List the four general stages of bridge design and give a

brief description of each one.

3.5 Describe how the design of a bridge begins in themind.
3.6 Discuss the necessity of having the three “mentalities”

present in the bridge design team. Imagine you are a

member of the design team and indicate what abilities

you think other people on the team need to have.

3.7 Explain what is meant by the following: “Whether in-
tentional or not, every bridge structure makes an aes-

thetic statement.”

3.8 Some of the qualities of bridge aesthetics are similar to

the qualities of classical music. Choose one of these

qualities common with music and describe how that

quality can improve the appearance of bridges.
3.9 How can shadow be used tomake a bridge appear more

slender?

3.10 What is meant by “resolution of duality”? How can it

be resolved in an overpass of an interstate highway?

3.11 Leonhardt (1991) states that the slenderness ratio L/d
is the most important criterion for the appearance of a

bridge. Explain how continuitycan maximize this ratio.

3.12 In selecting abutments, what steps can be taken to give

a bridge spanning traffic a feeling of openness?

3.13 In what ways do integral abutment and jointless bridge
designs reduce maintenance costs? How are move-

ments due to temperature changes accommodated in

these bridges?



CHAPTER 4

Bridge Types and Selection

4.1 MAIN STRUCTURE BELOWTHE DECK LINE

Arched and truss-arched bridges are included in this classi-
fication. Examples are the masonry arch, the concrete arch

(Fig. 3.17), the steel truss-arch, the steel deck truss, the rigid

frame, and the inclined leg frame (Fig. 3.15) bridges. Strik-

ing illustrations of this bridge type are the New River Gorge

Bridge (Fig. 4.1) in West Virginia and the Salginatobel
Bridge (Fig. 4.2) in Switzerland.

With the main structure below the deck line in the shape

of an arch, gravity loads are transmitted to the supports pri-

marily by axial compressive forces. At the supports, both

vertical and horizontal reactions must be resisted. The arch
rib can be solid or it can be a truss of various forms. Xan-

thakos (1994) shows how the configuration of the elements

affects the structural behavior of an arch bridge and gives

methods for determining the force effects.

O’Connor (1971) summarizes the distinctive features of

arch-type bridges as:

� The most suitable site for this form of structure is a

valley, with the arch foundations located on dry rock

slopes.
� The erection problem varies with the type of structure,

being easiest for the cantilever arch and possibly most

difficult for the tied arch.

� The arch is predominantlya compression structure. The

classic arch form tends to favor concrete as a construc-
tion material.

� Aesthetically, the arch can be the most successful of

all bridge types. It appears that through experience or

familiarity, the average person regards the arch form

as understandable and expressive. The curved shape is

almost always pleasing.

4.2 MAIN STRUCTURE ABOVE THE DECK LINE

Suspension, cable-stayed, and through-truss bridges are in-

cluded in this category. Both suspension and cable-stayed

bridges are tension structures whose cables are supported by
towers. Examples are the Brooklyn Bridge (Fig. 3.19) and

the East Huntington Bridge (Fig. 3.18).

Suspension bridges (Fig. 4.3) are constructed with two

main cables from which the deck, usually a stiffened truss,

is hung by secondary cables. Cable-stayed bridges (Fig. 4.4)
have multiple cables that support the deck directly from the

tower. Analysis of the cable forces in a suspension bridge

must consider nonlinear geometry due to large deflections.

O’Connor (1971) gives the following distinctive features

for suspension bridges:

� The major element of the stiffened suspension bridge

is a flexible cable, shaped and supported in such a way

that it can transfer the major loads to the towers and

anchorages by direct tension.

� This cable is commonly constructed from high-strength
wires either spun in situ or formed from component,

spirally formed wire ropes. In either case the allow-

able stresses are high, typically of the order of 90 ksi

(600 MPa) for parallel strands.

� The deck is hung from the cable by hangers constructed
of high-strength wire ropes in tension.

� The main cable is stiffened either by a pair of stiffening

trusses or by a system of girders at deck level.

� This stiffening system serves to (a) control aerody-

namic movements and (b) limit local angle changes

in the deck. It may be unnecessary in cases where the
dead load is great.

� The complete structure can be erected without interme-

diate staging from the ground.

� The main structure is elegant and neatly expresses its

function.
� It is the only alternative for spans over 2000 ft (600 m),

and it is generally regarded as competitive for spans

down to 1000 ft (300 m). However, even shorter spans

have been built, including some very attractive pedes-

trian bridges.

Consider the followingdistinctive features for cable-stayed

bridges (O’Connor, 1971):

� As compared with the stiffened suspension bridge, the

cables are straight rather than curved. As a result, the

stiffness is greater. It will be recalled that the nonlin-

earity of the stiffened suspension bridge results from

changes in the cable curvature and the corresponding

change in bending moment taken by the dead-load
cable tension. This phenomenon cannot occur in an

arrangement with straight cables.
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Fig. 4.1 New River Gorge Bridge. (Photo courtesy of Michelle Rambo-Roddenberry, 1996.)

Fig. 4.2 General view of Salginatobel Bridge. [From Troitsky (1994). Reprinted with permission of John Wiley & Sons, Inc.]
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Fig. 4.3 Typical suspension bridge. [From Troitsky (1994). Reprinted with permission of John Wiley & Sons, Inc.]

Fig. 4.4 Cable arrangements in cable-stayed bridges (Leonhardt,

1991). (From Bridge Aesthetics around the World , copyright ©
1991 by the Transportation Research Board, National Research

Council, Washington, DC. Reprinted with permission.)

� The cables are anchored to the deck and cause com-

pressive forces in the deck. For economical design, the

deck system must participate in carrying these forces.

In a concrete structure, this axial force compresses the

deck.

� Compared with the stiffened suspension bridge, the

cable-braced girder bridge tends to be less efficient

in supporting dead load but more efficient under live

load. As a result, it is not likely to be economical on

the longest spans. It is commonly claimed to be eco-

nomical over the range of 300–1100 ft (100–350 m),

but some designers would extend the upper bound as

high as 2500 ft (800 m).

� The cables may be arranged in a single plane, at the
longitudinal centerline of the deck. This arrangement

capitalizes on the torsion capacity inherent in a tubular

girder system and halves the number of shafts in the

towers.

� The presence of the cables facilitates the erection of

a cable-stayed girder bridge. Temporary backstays of

this type have been common in the cantilever erection

of girder bridges. Adjustment of the cables provides an

effective control during erection.

Aerodynamic instabilitymay be a problemwith the stays in

light rain andmoderate winds. The water creates a small bead

(or bump) that disturbs the flow of wind around the cable.

This disturbance creates an oscillatory force that may create
large transverse movement of the stays. This phenomenon is

sometimes called “dancing in the rain.”

A truss bridge (Fig. 4.5) consists of twomain planar trusses

tied together with cross girders and lateral bracing to form a

three-dimensional truss that can resist a general system of

loads. When the longitudinal stringers that support the deck
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Fig. 4.5 Types of bridge trusses. [From Troitsky (1994). Reprinted

with permission of John Wiley & Sons, Inc.]

slab are at the level of the bottomchord, this is a through-truss

bridge as shown in Figure 4.6.

O’Connor (1971) gives the following distinctive features

for truss bridges:

� A bridge truss has two major structural advantages:

(1) the primary member forces are axial loads; (2) the
open-web system permits the use of a greater overall

depth than for an equivalent solid-web girder. Both

these factors lead to economy in material and a reduced

dead weight. The increased depth also leads to reduced
deflections, that is, a more rigid structure.

� The conventional truss bridge is most likely to be eco-

nomical for medium spans. Traditionally, it has been

used for spans intermediate between the plate girder
and the stiffened suspension bridge. Modern construc-

tion techniques and materials have tended to increase

the economical span of both steel and concrete girders.

The cable-stayed girder bridge has become a competi-

tor to the steel truss for the intermediate spans. These

factors, all of which are related to the high fabrication
cost of a truss, have tended to reduce the number of

truss spans built in recent years.

� The truss has become almost the standard stiffen-

ing structure for the conventional suspension bridge,

largely because of its acceptable aerodynamic behavior.

� Compared with alternative solutions, the encroachment
of a truss on the opening below is large if the deck is

at the upper chord level but is small if the traffic runs

through the bridge, with the deck at the lower chord

level. For railway overpasses carrying a railway above

a road or another railway, the small construction depth
of a through truss bridge is a major advantage. In some

structures, it is desirable to combine both arrangements

to provide a through truss over the main span with a

small construction depth and approaches with the deck

at upper chord level.

4.3 MAIN STRUCTURE COINCIDES
WITH THE DECK LINE

Girder bridges of all types are included in this category.
Examples include slab (solid and voided), T-beam (cast-in-

place), I-beam (precast or prestressed), wide-flange beam

(composite and noncomposite), concrete box (cast-in-place

and segmental, prestressed), steel box (orthotropic deck),

and steel plate girder (straight and haunched) bridges.

Illustrations of concrete slab, T-beam, prestressed girder,
and box-girder bridges are shown in Figure 4.7. A completed

cast-in-place concrete slab bridge is shown in Figure 4.8. Nu-

merous girder bridges are shown in the section on aesthetics.

Fig. 4.6 Greater New Orleans Through-Truss Bridge. (Photo courtesy of Amy Kohls, 1996.)
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Fig. 4.7 Types of concrete bridges. (Permission granted by the California DOT.)

Fig. 4.8 Cast-in-place posttensioned voided slab bridge (Dorton, 1991). (From Bridge Aesthetics around the World , copyright © 1991 by

the Transportation Research Board, National Research Council, Washington, DC. Reprinted with permission.)

Among these are prestressed girders (Fig. 3.32), concrete box

girders (Figs. 3.10, 3.23, and 3.34), and steel plate girders

(Figs. 3.27, 3.35, and 3.36).

Girder-type bridges carry loads primarily in shear and flex-

ural bending. This action is relatively inefficient when com-

pared to axial compression in arches and to tensile forces in

suspension structures. A girder must develop both compres-

sive and tensile forceswithin its own depth.A lever arm suffi-

cient to provide the internal resistingmoment separates these

internal forces. Because the extreme fibers are the only por-

tion of the cross section fully stressed, it is difficult to obtain

an efficient distribution of material in a girder cross section.

Additionally, stability concerns further limit the stresses and

associated economy from a material utilization perspective.

But from total economic perspective slab–girder bridges pro-

vide an economical and long-lastingsolution for the vast ma-

jorityof bridges. The U.S. construction industry is well tuned

to provide this type of bridge. [As a result, girder bridges
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Table 4.1 Common Girder Bridge Cross Sections

Supporting Components Type of Deck Typical Cross Section

Steel beam Cast-in-place concrete slab, precast concrete slab, steel
grid, glued/spiked panels, stressed wood

Closed steel or precast concrete boxes Cast-in-place concrete slab

Open steel or precast concrete boxes Cast-in-place concrete slab, precast concrete deck slab

Cast-in-place concrete multicell box Monolithic concrete

Cast-in-place concrete T-beam Monolithic concrete

Precast solid, voided, or cellular concrete
boxes with shear keys

Cast-in-place concrete overlay

Precast solid, voided, or cellular concrete

box with shear keys and with or

without transverse posttensioning

Integral concrete

Precast concrete channel sections with
shear keys

Cast-in-place concrete overlay

Precast concrete double T-section with

shear keys and with or without

transverse posttensioning

Integral concrete

Precast concrete T-section with shear

keys and with or without transverse
posttensioning

Integral concrete

Precast concrete I- or bulb T-sections Cast-in-place concrete, precast concrete

Wood beams Cast-in-place concrete or plank, glued/spiked panels or

stressed wood

AASHTO Table 4.6.2.2.1-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State

Highway and Transportation Officials, Washington, DC. Used by permission.

are typical for short- to medium-span lengths, say <250 ft

(75 m).]

In highway bridges, the deck and girders usually act

together to resist the applied load. Typical bridge cross

sections for various types of girders are shown in Table 4.1.

They include steel, concrete, and wood bridge girders with
either cast-in-place or integral concrete decks. These are not

the only combinations of girders and decks but represent

those covered by the approximate methods of analysis in the

AASHTO (2010) LRFD Specifications.

4.4 CLOSING REMARKS ON BRIDGE TYPES

For comparison purposes, typical ranges of span lengths for

various bridge types are given in Table 4.2. In this book, the

discussion is limited to slab and girder bridges suitable for

short to medium spans. For a general discussion on other

bridge types, the reader is referred to Xanthakos (1994).

4.5 SELECTIONOF BRIDGE TYPE

One of the key submittals in the design process is the en-

gineer’s report to the bridge owner of the type, size, and

location (TS & L) of the proposed bridge. The TS & L

report includes a cost study and a set of preliminary bridge

drawings. The design engineer has the main responsibility

for the report, but opinions and advice will be sought from

others within and without the design office. The report is
then submitted to all appropriate agencies, made available

for public hearings, and must be approved before starting on
the final design.

4.5.1 Factors to Be Considered

Selection of a bridge type involves consideration of a num-

ber of factors. In general, these factors are related to function,
economy, safety, construction experience, traffic control, soil

conditions, seismicity, and aesthetics. It is difficult to prepare
a list of factors without implying an order of priority, but a

list is necessary even if the priority changes from bridge to

bridge. The discussion herein follows the outline presented
by ACI-ASCE Committee 343 (1988) for concrete bridges,

but the factors should be the same, regardless of the construc-
tion material.

Geometric Conditions of the Site The type of bridge se-

lected often depends on the horizontal and vertical alignment

of the highway route and on the clearances above and below
the roadway. For example, if the roadway is on a curve, con-

tinuous box girders and slabs are a good choice because they
have a pleasing appearance, can readily be built on a curve,

and have a relatively high torsion resistance. Relatively high



SELECTION OF BRIDGE TYPE 67

Table 4.2 Span Lengths for Various Types of Superstructure

Structural Type Material Range of Spans, ft (m) Maximum Span in Service, ft (m)

Slab Concrete 0–40 (0–12)
Girder Concrete 40–1000 988 (301), Stolmasundet, Norway, 1998

(12–300)

Steel 100–1000 984 (300), Ponte Costa e Silva, Brazil, 1974

(30–300)

Cable-stayed girder Steel 300–3500 3570 (1088), Sutong, China, 2008

(90–1100)
Truss Steel 300–1800 1800 (550), Pont de Quebec, Canada, 1917 (rail)

(90–550) 1673 (510), Minato, Japan, 1974 (road)

Arch Concrete 300–1380 1378 (420), Wanxian, China, 1997

(90–420)

Steel truss 800–1800 1805 (550), Lupu, China, 2003
(240–550)

Suspension Steel 1000–6600 6530 (1991), Akashi-Kaikyo, Japan, 1998

(300–2000)

bridges with larger spans over navigable waterways will re-

quire a different bridge type than one with medium spans

crossing a floodplain.The site geometry will also dictate how
traffic can be handled duringconstruction,which is an impor-

tant safety issue and must be considered early in the planning

stage.

Subsurface Conditions of the Site The foundation soils at

a site will determine whether abutments and piers can be
founded on spread footings, driven piles, or drilled shafts. If

the subsurface investigation indicates that creep settlement

is going to be a problem, the bridge type selected must be
one that can accommodate differential settlement over time.

Drainage conditions on the surface and below ground must

be understood because they influence the magnitude of earth
pressures, movement of embankments, and stability of cuts

or fills. All of these conditions influence the choice of sub-

structure components that, in turn, influence the choice of su-
perstructure. For example, an inclined leg rigid frame bridge

requires strong foundation material that can resist both hor-

izontal and vertical thrust. If this resistance is not present,
then another bridge type may be more appropriate. The po-

tential for seismic activity at a site should also be a part of the

subsurface investigation. If seismicity is high, the substruc-
ture details will change, affecting the superstructure loads

as well.

Functional Requirements In addition to the geometric

alignment that allows a bridge to connect two points on a

highway route, the bridgemust also function to carry present
and future traffic volumes. Decisions must be made on the

number of lanes of traffic, inclusion of sidewalks and/or

bike paths, whether width of the bridge deck should include
medians, drainage of the surface waters, snow removal, and

future wearing surface. In the case of stream and floodplain

crossings, the bridge must continue to function during

periods of high water and not impose a severe constriction

or obstruction to the flow of water or debris. Satisfaction of

these functional requirements will recommend some bridge

types over others. For example, if future widening and

replacement of bridge decks is a concern, multiple girder

bridge types are preferred over concrete box girders.

Aesthetics Chapter 3 emphasizes the importance of de-

signing a bridge with a pleasing appearance. It should

be the goal of every bridge designer to obtain a positive

aesthetic response to the bridge type selected. Details are

presented earlier.

Economics and Ease of Maintenance It is difficult to sep-

arate first cost andmaintenance cost over the life of the bridge

when comparing the economics of different bridge types. A

general rule is that the bridge with the minimum number of

spans, fewest deck joints, and widest spacing of girders will

be the most economical. By reducing the number of spans in

a bridge layout by one span, the construction cost of one pier

is eliminated. Deck joints are a high maintenance cost item,

so minimizing their number reduces the life-cycle cost of the

bridge.

When using the empirical design of bridge decks in the

AASHTO (2010) LRFD Specifications, the same rein-

forcement is used for deck spans up to 13.5 ft (4100 mm).

Therefore, little cost increase is incurred in the deck for

wider spacing of girders, and fewer girders means less cost

although at the “expense” of deeper sections.

Generally, concrete structures require less maintenance

than steel structures. The cost and hazard of maintenance

painting of steel structures should be considered in type

selection studies (Caltrans, 1990).



68 4 BRIDGE TYPES AND SELECTION

One effective way to obtain the minimumconstruction cost

is to prepare alternative designs and allow contractors to pro-

pose an alternative design. The use of alternative designs per-

mits the economics of the construction industry at the time

of bidding to determine the most economical material and

bridge type. By permitting the contractor to submit an al-

ternative design, the greatest advantage can be taken of new

construction techniques to obtain less total project cost. The

disadvantage of this approach is that a low initial cost may

become the controlling criterion and life-cycle costs may not

be effectively considered.

Construction and Erection Considerations The selection

of the type of bridge to be built is often governed by construc-

tion and erection considerations. The length of time required

to construct a bridge is important and varies with bridge type.

In general, the larger the prefabricated or precast members,

the shorter the construction time is. However, the larger the

members, the more difficult they are to transport and lift into

place.

Cast-in-place concrete bridges are generally economical

for grade separations unless the falsework supporting the

nonhardened concrete becomes a traffic problem. In that

case, precast prestressed girders or welded steel plate girders

would be a better choice.

The availability of skilled labor and specified materials

also influences the choice of a particular bridge type. For

example, if no precast plants for prestressed girders are

located within easy transport, a steel fabrication plant is

located nearby that could make the steel structure more

economical. However, other factors in the construction

industry may be at work. The primary way to determine

which bridge type is more economical is to bid alternative

designs. Designers are often familiar with bid histories and

local economics and have significant experience regarding

the lowest first cost.

Design–Build Option In the early years of bridge building

in the United States, the design–build optionwas traditional.

An owner would express an interest in having a bridge built

at a particular location and solicit proposals from engineers

for the design and construction of the bridge. On other oc-

casions an engineer may see the need for a bridge and make

presentations to potential owners of the merits of a particular

design. Such was the case in the building of the Brooklyn

Bridge (McCullough, 1972). John Roebling convinced in-

fluential people in Manhattan and Brooklyn to charter the

New York Bridge Company to promote and finance his de-

sign for a great suspension bridge across the East River. The

company hired his son, Washington Roebling, as chief engi-

neer responsible for executing his father’s design, preparing

drawings and specifications, and supervising the construc-

tion. All services for designing and building the bridge were

the responsibility of one entity.

This design–build practice of single-source responsibil-

ity faded somewhat at the end of the nineteenth century.

The conventional approach became the design–bid–build

model where an owner commissions an engineer to prepare

drawings and specifications and separately selects a con-

struction contractor by competitive bidding. The objective

of the design–bid–build approach is to obtain the quality

product defined by the drawings and specifications at a

reasonable price. The approach works well with the checks

and balances between the engineer and contractor when the

separate parties work well together. Difficulties can occur

when things go wrong on the job site or in the design office.

There can be a lot of “finger pointing” that the other entity

was responsible for the problem. This adversarial situation

can increase the financial risk for all involved.

To alleviate some of the problems of unclear lines of

responsibility, there has been a trend in recent years toward a

return to the design–build option. One company is selected

by the owner to prepare the engineering design and to be the

construction contractor. This approach almost assures that

the design group will possess the three essential mentalities:

creative, analytical, and knowledge of construction tech-

niques. If there is a question about the quality of the work or

there are construction delays, only one entity is responsible.

One objection to the design–build option is the absence of

checks and balances because the same party that supplies a

product approves it. It is important that the owner has staff

people who are knowledgeable and can make independent

judgments about the quality of the work provided. This

knowledgeable staff is present in state DOTs, and more and

more states are giving approval of the design–build option

for construction of their bridges.

Legal Considerations In Figure 3.1, a model of the design

process was presented. One of the components of the model

was the constraint put on the design procedure by regula-

tions. These regulations are usually beyond the control of the

engineer, but they are real and must be considered.

Examples of regulations that will determine what bridge

type can be built and where it can be located include: Permits

over Navigable Waterways, National Environmental Policy

Act, Department of Transportation Act, National Historic

Preservation Act, Clean Air Act, Noise Control Act, Fish

and Wildlife Coordination Act, Endangered Species Act,

Water Bank Act, Wild and Scenic Rivers Act, Prime and

Unique Farmlands, and Executive Orders on Floodplain

Management and Protection of Wetlands. Engineers who

are not conscious of the effect the design of a bridge has

on the environment will soon become conscious once they

begin preparing the environmental documentation required

by these acts.

In addition to the environmental laws and acts defining na-

tional policy, local and regional politics are also of concern.

Commitments to officials or promises made to communities
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often must be honored and may preclude other nonpolitical

issues.

4.5.2 Bridge Types Used for Different Span Lengths

Once a preliminary span length has been chosen, compara-

tive studies are conducted to find the bridge type best suited

to the site. For each group of bridge spans (small, medium,

and large), experience has shown that certain bridge types
are more appropriate than others. This experience can be

found in design aids prepared by associations, state agencies,

and consulting firms. The comments that follow on common

bridge types used for different span lengths are based on the

experience of ACI-ASCE Committee 343 (1988), Caltrans

(1990), and PennDOT (1993).

Small-Span Bridges [up to 50 ft (15 m)] The candidate

structure types include single or multicell culverts, slab

bridges, T-beam bridges, wood beam bridges, precast con-

crete box-beam bridges, precast concrete I-beam bridges,
and composite rolled steel beam bridges.

Culvert. Culverts are used as small-span bridges to allow

passage of small streams, livestock, vehicles, and pedestri-
ans through highway embankments. These buried structures

[A12.1]* are often the most economical solution for short

spans. They are constructed of steel, aluminum, precast or

cast-in-place reinforced concrete, and thermoplastics. Their

structural form can be a pipe, pipe arch, plate arch, plate box,
or rigid frame box. Either trench installationsor embankment

installations may be used. Minimum soil cover to avoid di-

rect application ofwheel loads is a functionof the span length

[Table A12.6.6.3-1] and is not less than 12 in. (300mm). It is

often cited that there are 577,000 bridges over 20 ft (6m) long
in the National Bridge Inventory. What is seldom mentioned

is that 100,000 of them are structural culverts.

Slab. Slab bridges are the simplest and least expensive
structure that can be built for small spans up to 40 ft (12 m).

These bridges can be built on ground-supported falsework

or constructed of precast elements. Construction details and

formwork are the simplest of any bridge type. Their ap-

pearance is neat and simple, especially for low, short spans.
Precast slab bridges constructed as simple spans require

reinforcement in the topping slab to develop continuity over

transverse joints at the piers, which is necessary to improve

the riding quality of the deck and to avoid maintenance

problems. Span lengths can be increased by use of prestress-

ing. A design example of a simple-span solid-slab bridge is
given in Chapter 14.

∗References to AASHTO (2010) LRFD Specifications are enclosed in

brackets and denoted by a letter A followed by the article number. A com-

mentary is cited as the article number preceded by the letter C. Referenced

figures and tables are enclosed in brackets to distinguish them from figures

and tables in the text.

T-Beam. T-beam bridges, Table 4.1(e), are generally eco-

nomical for spans 30–60 ft (10–20 m). These bridges usually

are constructed on ground-supported falsework and require
a good finish on all surfaces. Formwork may be complex,

especially for skewed structures. Appearance of elevation is

neat and simple, but not as desirable from below. Greatest

use is for stream crossings, provided there is at least 6-ft (2-
m) clearance above high water (floating debris may damage

the girder stem). Usually, the T-beam superstructure is con-

structed in two stages: first the stems and then the slabs. To

minimize cracks at the tops of the stems, longitudinal rein-
forcement should be placed in the stem near the construction

joint. To ease concrete placement and finishing, a longitudi-

nal joint within the structure becomes necessary for bridges

wider than about 60 ft (20 m). A design example of a three-
span continuous T-beam bridge is given in Chapter 16.

Wood Beam. Wood beam bridges, Table 4.1(l), may be

used for low truck volume roads or in locationswhere a wood

pile substructure can be constructed economically. Minimum
width of roadway shall be 24 ft (7.2 m) curb to curb. The

deckmay be concrete, glued/spikedpanels, or stressed wood.

All wood used for permanent applications shall be impreg-

nated with wood preservatives [A8.4.3.1]. The wood compo-
nents not subject to direct pedestrian contact shall be treated

with oil-borne preservatives [A8.4.3.2]. Main load-carrying

members shall be precut and drilled prior to pressure treat-
ment. For a waterway crossing, abutments and piers shall

be aligned with the stream and piers shall be avoided in the

stream if debris may be a problem.

Precast Concrete BoxBeam. Precast prestressed concrete
box-beam bridges can have spread boxes, Table 4.1(b), or

butted boxes, Table 4.1(f) and (g), and can be used for spans

from 30 to 150 ft (10 to 50 m). These bridges are most suit-

able for locationswhere the use of falsework is impractical or
too expensive. The construction time is usually shorter than

that needed for cast-in-place T-beams. Precast box beams

may not provide a comfortable ride because adjacent boxes

often have different camber and dead-load deflections. Unre-
inforced grout keys often fail between adjacent units, allow-

ing differential live-load deflections to occur. A reinforced

topping slab or transverse posttensioning can alleviate this

problem. Appearance of the spread-box beam is similar to
a T-beam while the butted-box beam is similar to a cast-in-

place box girder. For multiple spans, continuity should be

developed for live load by casting concrete between the ends

of the simple-span boxes.

Precast Concrete I-Beam. Precast prestressed concrete

I-beam bridges can be used for spans from 30 to 150 ft

(10 to 50 m) and are competitive with steel girders. They
have many of the same characteristics as precast concrete

box-beam bridges including the problems with different

camber and ridability.The girders are designed to carry dead
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load and construction loads as simple-span units. Live-load

and superimposed dead-load design should use continuity
and composite action with the cast-in-place deck slab. Ap-

pearance is like that of the T-beam: The elevation view is
nice, but the underside looks cluttered. As in all concrete

bridges, maintenance is low except at transverse deck joints,
which often may be eliminated.

Rolled Steel Beam. Rolled steel wide-flange beam bridges

are widely used because of their simple design and con-
struction. See Table 4.1(a). These bridges are economical

for spans up to 100 ft (30 m) when designing the deck as

composite and using cover plates in maximum moment
regions. The use of composite beams is strongly recom-

mended because they make a more efficient structure. Shear
connectors, usually in the form of welded studs, are designed

to resist all forces tending to separate concrete and steel
surfaces. The appearance of the multibeam bridge from

underneath is similar to that of the T-beam, but the elevation

is more slender (Table 3.1). The cost and environmental
hazard of maintenance painting must be considered in any

comparison with concrete bridges. Weathering steel is often
used to eliminate paint.

Medium-Span Bridges [up to 250 ft (75 m)] The can-

didate structure types include precast concrete box-beam
bridges, precast concrete I-beam bridges, composite rolled

steel wide-flange beam bridges, composite steel plate girder

bridges, cast-in-place concrete box-girder bridges, and steel
box-girder bridges.

Precast Concrete Box Beam and Precast Concrete I-
Beam. Characteristics of both of these precast prestressed
concrete beams were discussed under small-span bridges.

See Table 4.1(f) and (g). As span lengths increase, trans-
portation and handling may present a problem. Most state

highway departments require a permit for any load over 80
ft (24 m) long and refuse permits for loads over 115 ft (35

m) long. Girders longer than 115 ft (35 m) may have to be

brought to the site in segments and then assembled. The
longer girders are heavy, and firm ground is needed to store

the girders and to provide support for the lifting cranes. The
I-beam may be laterally unstable until incorporated into the

structure and should be braced until the diaphragms are cast.
A design example of a simple-span precast pretensioned

concrete I-beam is given in Chapter 14.

Composite Rolled Steel Beam. Characteristics of com-

posite rolled steel beams were discussed under small bridges.
Composite construction can result in savings of 20–30%

for spans over 50 ft (15 m) (Troitsky, 1994). Adding cover
plates and providing continuity over several spans can

increase their economic range to spans of 100 ft (30 m).
A design example of a simple-span composite rolled steel

beam bridge is given in Chapter 20.

Composite Steel Plate Girder. Composite steel plate gird-

ers [Table 4.1(a)] can be built to any desired size and consist

of two flange plates welded to a web to form an asymmetri-

cal I-section. These bridges are suitable for spans from 75 to

150 ft (25 to 50 m) and have been used for spans well over
300 ft (100 m). Girders must be braced against each other

to provide stability against overturning and flange buckling,

to resist transverse forces, and to distribute concentrated ver-

tical loads. Construction details and formwork are simple.

Transportation of prefabricated girders over 115 ft (35 m)
may be a problem. Composite steel plate girder bridges can

bemade to look attractive and girders can be curved to follow

alignment. This structure type has low dead load, which may

be of value when foundation conditions are poor. A design

example of a three-span continuous composite plate girder
bridge is given in Chapter 20.

Cast-in-Place Reinforced Concrete Box Girder.
Nonprestressed reinforced concrete box-girder bridges

[Table 4.1(d)] are adaptable for use in many locations. These

bridges are used for spans of 50–115 ft (15–35 m) and

are often more economical than steel girders and precast

concrete girders. Formwork is simpler than for a skewed T-
beam, but it is still complicated. Appearance is good from all

directions. Utilities, pipes, and conduits are concealed. High

torsional resistance makes it desirable on curved alignment.

They are an excellent choice in metropolitan areas.

Cast-in-Place Posttensioned Concrete Box Girder. Pre-

stressed concrete box-girder bridges afford many advantages

in terms of safety, appearance, maintenance, and economy.

The cross section is the same as shown in Table 4.1(d) where
a cast in place is shown. These bridges have been used for

spans up to 600 ft (180m). Because longer spans can be con-

structed economically, the number of piers can be reduced

and shoulder obstacles eliminated for safer travel at over-

passes. Appearance from all directions is neat and simple
with greater slenderness than conventional reinforced con-

crete box-girder bridges. High torsional resistance makes it

desirable on curved alignment. Because of the prestress, the

dead-load deflections are minimized. Long-term shortening

of the structuremust be accommodated. Maintenance is very
low, except that bearing and transverse deck joint details re-

quire attention. Addition of proper transverse and longitu-

dinal posttensioning greatly reduces cracking. Posttensioned

concrete box girders can be used in combination with con-

ventional concrete box girders to maintain constant structure
depth in long structures with varying span lengths. In areas

where deck deterioration due to deicing chemicals is a con-

sideration, deck removal and replacement is problematic.

Composite Steel Box Girder. Composite steel box-girder

bridges, Table 4.1(b) and (c), are used for spans of 60–500

ft (20–150 m). These bridges are more economical in the
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upper range of spans and where depth may be limited. The

boxes may be rectangular or trapezoidal and are effective

in resisting torsion. They offer an attractive appearance and
can be curved to followalignment. Generally, multiple boxes

would be used for spans up to 200 ft (60 m) and a single box

for longer spans. Construction costs are often kept down by

shop fabrication; therefore, designers should know the lim-

itations placed by shipping clearances on the dimensions of
the girders.

Large-Span Bridges [150–500 ft (50–150 m)] The can-
didate structure types include composite steel plate girder

bridges, cast-in-place posttensioned concrete box-girder

bridges, posttensioned concrete segmental bridges, concrete

arch bridges, steel arch bridges, and steel truss bridges.

CompositeSteel Plate Girder. Characteristics of compos-
ite steel plate girder bridges are presented in medium-span

bridges. A design example of a medium-span bridge is given

in Chapter 17.

Cast-in-Place Posttensioned Concrete Box Girder.
Characteristics of cast-in-place posttensioned concrete

box-girder bridges are presented in medium-span bridges.

Posttensioned Concrete Segmental Construction (ACI-
ASCE Committee 343, 1988). Various bridge types may

be constructed in segments and posttensioned to complete
the final structure. The basic concept is to provide cost

saving through standardization of details and multiple use of

construction equipment. The segments may be cast-in-place

or precast. If cast in place, it is common practice to use
the balanced cantilever construction method with traveling

forms. If the segments are precast, they may be erected by

the balanced cantilever method, by progressive placement

span by span, or by launching the spans from one end. Both

the designer and the contractor have the opportunity to eval-
uate and choose the most cost-efficient method. Table 4.3

from Troitsky (1994) indicates typical span length ranges

for bridge types by conventional and segmental construction

methods.

The analysis and design of prestressed concrete segmental
bridges is beyond the scope of this book. The reader is re-

ferred to reference books, such as Podolny andMuller (1982)

and ASBI (2003), on the design and construction of segmen-

tal bridges.

Concrete Arch and Steel Arch. Characteristics of arch

bridges are given in Section 4.1. Concrete arch bridges are

usually below the deck, but steel arch bridges can be both

above and below the deck, sometimes in the same struc-

ture. Typical and maximum span lengths for concrete and
steel arch bridges are given in Table 4.2. Arch bridges are

pleasing in appearance and are used largely for that reason

even if a cost premium is involved. Arch bridge design is

Table 4.3 Range of Application of Bridge Type by Span
Lengths Considering Segmental Construction

Span, ft (m) Bridge Type

0–150 (0–45) Precast pretensioned I-beam

conventional

100–300 (30–90) Cast-in-place posttensioned

box-girder conventional

100–300 (30–90) Precast balanced cantilever

segmental, constant depth
200–600 (60–180) Precast balanced cantilever

segmental, variable depth

200–1000 (60–300) Cast-in-place cantilever segmental

800–1500 (240–450) Cable-stay with balanced cantilever

segmental

From Troitsky (1994). Planning and Design of Bridges , Copyright
© 1994. Reprinted with permission of John Wiley & Sons.

not addressed in this book, but information may be found in

Xanthakos (1994) and Troitsky (1994).

Steel Truss. Characteristics of steel truss bridges are given

in Section 4.2. Steel truss bridges can also be below the

deck and sometimes both above and below the deck in the

same structure as seen in the through-truss Sydney Harbour

Bridge (Fig. 4.9). Truss bridges are not addressed in this

book, but they have a long history and numerous books,
besides those already mentioned, can be found on truss

design and construction. Few trusses are being designed and

constructed now because of economic reasons. Those that

are built typically are associated with maintaining a histor-

ical characteristic of a crossing where a truss bridge is being

replaced.

Extra Large (long) Span Bridges [over 500 ft (150m)] An

examination of Table 4.2 shows that all of the general bridge

types, except slabs, have been built with span lengths greater

than 500 ft (150m). Special bridges are designed tomeet spe-

cial circumstances and are not addressed in this book. Some

of the bridge types in Table 4.1 were extended to their limit

in attaining the long-span lengths and may not have been the

most economical choice.
Two of the bridge types, cable stayed and suspension, are

logical and efficient choices for long-span bridges. Char-

acteristics of cable-stayed bridges and suspension bridges

are given in Section 4.2. These tension-type structures are

graceful and slender in appearance and are well suited to

long water crossings. Maintenance for both is above average

because of the complexity of the hanger and suspension
system. Construction is actually simpler than for the con-

ventional bridge types for long spans because falsework

is usually not necessary. For additional information on the

analysis, design, and construction of cable-stayed bridges,

the reader is referred to Podolny and Scalzi (1986) and
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Fig. 4.9 Sydney Harbour Bridge.

Troitsky (1988), while O’Connor (1971) is a good reference

for stiffened suspension bridges.

4.5.3 Closing Remarks

In the selection of a bridge type, there is no unique or

“correct” answer. For each span length range, more than one

bridge type will satisfy the design criteria. Regional differ-

ences and preferences because of available materials, skilled

workers, and knowledgeable contractors are significant. For

the same set of geometric and subsurface circumstances,

the bridge type selected may be different in Pennsylvania

than in California. And both would be a good option for that

place and time.

Because of the difficulties in predicting the cost climate of
the construction industry at the time of bidding, a policy to

allow the contractor the option of proposing an alternative

design is prudent. This design should be made whether or

not the owner has required the designer to prepare alternative

designs. This policy improves the odds that the bridge type

being built is the most economical.

In Section 3.2 on the design process, de Miranda (1991)

was quoted as saying that for successful bridge design three

“mentalities” must be present: (1) creative and aesthetic, (2)

analytical, and (3) technical and practical. Oftentimes a de-

signer possesses the first two mentalities and can select a

bridge type that has a pleasing appearance and whose cross

section has been well proportioned. But a designer may not

be familiar with good, economical construction procedures

and the third mentality is missing. By allowing the contrac-

tor to propose an alternative design, the third mentality may

be restored and the original design(s) are further validated or

a better design may be proposed. Either way, incorporating

the three mentalities enhances the design process.
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PROBLEMS

4.1 Discuss the interaction between deductive and induc-

tive reasoning in formulating the principles of struc-

tural analysis and design.

4.2 Explain the interrelationship between description and

justification of a bridge design.
4.3 What makes it difficult for a person, includingyour pro-

fessor and yourself, to pass on personal knowledge?

4.4 List the four general stages of bridge design and give a

brief description of each one.

4.5 Describe how the design of a bridge begins in themind.
4.6 Discuss the necessity of having the three “mentalities”

present in the bridge design team. Imagine you are a

member of the design team and indicate what abilities

you think other people on the team need to have.

4.7 Explain what is meant by the following: “Whether in-
tentional or not, every bridge structure makes an aes-

thetic statement.”

4.8 Some of the qualities of bridge aesthetics are similar to

the qualities of classical music. Choose one of these

qualities common with music and describe how that
quality can improve the appearance of bridges.

4.9 How can shadow be used tomake a bridge appear more

slender?

4.10 What is meant by “resolution of duality”? How can it

be resolved in an overpass of an interstate highway?

4.11 Leonhardt (1991) states that the slenderness ratio L/d
is the most important criterion for the appearance of a

bridge. Explain how continuitycan maximize this ratio.

4.12 In selecting abutments, what steps can be taken to give

a bridge spanning traffic a feeling of openness?

4.13 In what ways do integral abutment and jointless bridge
designs reduce maintenance costs? How are move-

ments due to temperature changes accommodated in

these bridges?

4.14 What is the difference in the main load-carrying mech-

anism of arch bridges and suspension bridges?
4.15 If girder bridges are structurally less efficient when

compared to suspension and arch bridges, why are

there so many girder bridges?

4.16 List some of the factors to be considered in the selection

of a bridge type. Explain why it is necessary for the

factors to be kept in proper balance and considered of
equal importance.

4.17 If future widening of a bridge deck is anticipated, what

girder bridge type is appropriate?

4.18 Often when an engineer is comparing costs of alter-

native designs, the only cost considered is the initial
construction cost. What other considerations affect the

cost when alternatives are compared?



CHAPTER 5

Design Limit States

5.1 INTRODUCTION

The justification stage of design can begin after the selection

of possible alternative bridge types that satisfy the function
and aesthetic requirements of the bridge location has been

completed. As discussed in the opening pages of Chapter 3,
justification requires that the engineer verify the structural

safety and stability of the proposed design. Justification in-
volves calculations to demonstrate to thosewhohave a vested

interest that all applicable specifications, design, and con-
struction requirements are satisfied.

A general statement for assuring safety in engineering de-

sign is that the resistance of the components supplied exceed
the demands put on them by applied loads, that is,

Resistance ≥ effect of the loads (5.1)

When applying this simple principle, both sides of the in-
equality are evaluated for the same conditions. For example,

if the effect of applied loads is to produce compressive stress
on a soil, this should be compared to the bearing resistance

of the soil, and not some other quantity. In other words, the

evaluation of the inequalitymust be done for a specific load-
ing condition that links together resistance and the effect of

loads. The evaluation of both sides at the same limit state for
each applicable failure mode provides this common link.

When a particular loading condition reaches its limit,
failure is the assumed result, that is, the loading condition

becomes a failure mode. Such a condition is referred to as a
limit state:

A limit state is a condition beyond which a bridge system or
bridge component ceases to fulfill the function for which it is
designed.

Examples of limit states for girder-typebridges include de-
flection, cracking, fatigue, flexure, shear, torsion, buckling,

settlement, bearing, and sliding.Well-defined limit states are

established so that a designer knows what is considered to be

unacceptable.
An important goal of design is to prevent a limit state from

being reached. However, it is not the only goal. Other goals

that must be considered and balanced in the overall design

are function, appearance, and economy. To design a bridge
so that none of its components would ever fail is not eco-

nomical. Therefore, it becomes necessary to determine what

is an acceptable level of risk or probability of failure.
The determination of an acceptable margin of safety (how

much greater the resistance should be compared to the effect

of loads) is not based on the opinion of one individual but on

the collective experience and judgment of a qualified group
of engineers and officials. In the U.S. highway bridge de-

sign community, theAmerican Association of StateHighway

and Transportation Officials (AASHTO) is such a group. It

relies on the experience of the state department of transporta-
tion engineers, research engineers, consultants, practitioners,

and engineers involvedwith design specifications outside the

United States.

5.2 DEVELOPMENT OF DESIGN PROCEDURES

Over the years, design procedures have been developed by

engineers to provide satisfactory margins of safety. These
procedures were based on the engineer’s confidence in the

analysis of the load effects and the strength of the materials

being provided. As analysis techniques improved and qual-

ity control on materials became better, the design procedures
changed as well.

To understand where we are today, it is helpful to look at

the design procedures of earlier AASHTO Specifications and
how they have evolved as technology changed.

5.2.1 Allowable Stress Design

The earliest numerically based design procedures were de-

veloped with a primary focus on behavior of metallic struc-
tures. Structural steels were observed to behave linearly up

to a relatively well-defined yield point that was safely below

the ultimate strength of the material. Safety in the design was
obtained by specifying that the effect of the loads should pro-

duce stresses that were a fraction of the yield stress fy: for
example, one half. This value would be equivalent to provid-

ing a safety factor F of 2; that is,

F = resistance, R

effect of loads, Q
= fy

0.5fy

= 2

Because the specifications set limits on the stresses, this
became known as allowable stress design (ASD).

When ASD methods were first used, a majority of the

bridges were open-web trusses or arches. By assuming pin-
connected members and using statics, the analysis indicated

members that were either in tension or compression. The

required net area of a tension member under uniform stress
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was easily selected by dividing the tension force T by an

allowable tensile stress ft:

Required Anet ≥ effect of load

allowable stress
= T

ft

For compression members, the allowable stress fc de-
pended on whether the member was short (nonslender) or

long (slender), but the rationale for determining the required
area of the cross section remained the same; the required

area was equal to the compressive force divided by an

allowable stress value:

Required Agross ≥ effect of load

allowable stress
= C

fc

These techniques were used as early as the 1860s to design
many successful statically determinate truss bridges. Sim-

ilar bridges are built today, but few are statically determi-
nate because they are no longer pin connected. As a result,

the stresses in the members are no longer uniform because
of the bending moments that occur due to the more rigid

connections.
The ASD method is also applied to beams in bending. By

assuming plane sections remain plane, and linear stress–

strain response, a required section modulus S can be deter-
mined by dividing the bending moment M by an allowable

bending stress fb:

Required S ≥ effect of load

allowable stress
= M

fb

Implied in the ASD method is the assumption that the
stress in the member is zero before any loads are applied,

that is, no residual stresses are introducedwhen themembers

are formed. This assumption is seldom accurate but is closer
to being true for solid bars and rods than for thin open

sections of typical rolled beams. The thin elements of rolled
beams cool at different rates and residual stresses become

locked into the cross section. Not only are these residual
stresses highly nonuniform, they are also difficult to predict.

Consequently, adjustments have to be made to the allowable
bending stresses, especially in compression elements, to

account for the effect of residual stresses. See Figure 17.2

for an example.
Another difficulty in applying ASD to steel beams is that

bending is usually accompanied by shear, and these two
stresses interact. Consequently, it is not strictly correct to use

tensile coupon tests (satisfactory for pin-connected trusses)
to determine the yield strength fy for beams in bending.

Another definition of yield stress that incorporates the effect
of shear stress might be more logical.

What is the point in discussing ASD methods applied to
steel design in a book on bridge analysis and design? Simply

this:

ASD methods were developed for the design of statically de-
terminate metallic structures. They do not necessarily apply
in a straightforward and logical way to other materials and
other levels of redundancy.

Designers of reinforced concrete structures have realized

this for some time and adopted strength design procedures
many years ago. Wood designers are also moving toward

strength design procedures. Both concrete andwood are non-
linear materials whose properties change with time and with
changes in ambient conditions. In concrete, the initial stress

state is unknown because it varies with placement method,
curing method, temperature gradient, restraint to shrinkage,

water content, and degree of consolidation. The only val-
ues that can be well defined are the strengths of concrete

at its limit states. As described in Chapter 10, the ultimate
strength is independent of prestrains and stresses associated

with numerous manufacturing and construction processes,
all of which are difficult to predict and are highly variable. In

short, the ultimate strength is easier to determine and more
reliably predicted than strengths at lower load levels. The im-

proved reliability gives additional rationale for adoption of
strength design procedures.

5.2.2 Variability of Loads

In regard to uncertainties in design, one other point concern-
ing the ASD method needs to be emphasized. Allowable
stress design does not recognize that different loads have
different levels of uncertainty . Dead, live, and wind loads

are all treated equally in ASD. The safety factor is applied
to the resistance side of the design inequality of Eq. 5.1, and

the load side is not factored. In ASD, safety is determined by

Resistance, R

Safety factor, F
≥ effect of loads, Q (5.2)

For ASD, fixed values of design loads are selected, usually
from a specification or design code. The varying degree of

predictability of the different load types is not considered.
Finally, because the safety factor chosen is based on expe-

rience and judgment, quantitativemeasures of risk cannot be
determined for ASD . Only the trend is known: If the safety

factor is higher, the number of failures is lower. However, if
the safety factor is increased by a certain amount, it is not

known by how much this increases the probability of sur-
vival. Also, it is more meaningful to decision makers to say,

“This bridge has a nominal probability of 1 in 10,000 of fail-
ing in 75 years of service,” than to say, “This bridge has a

safety factor of 2.3.”

5.2.3 Shortcomings of Allowable Stress Design

As just shown, ASD is not well suited for design of mod-

ern structures. Its major shortcomings can be summarized as
follows:

1. The resistance concepts are based on elastic behavior of
materials.

2. It does not embody a reasonable measure of strength,

which is a more fundamental measure of resistance than
is allowable stress.

3. The safety factor is applied only to resistance. Loads are
considered to be deterministic (without variation).
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4. Selection of a safety factor is subjective, and it does not

provide a measure of reliability in terms of probability
of failure.

What is needed to overcome these deficiencies is a method
that is (a) based on the strength of material, (b) considers

variability not only in resistance but also in the effect of

loads, and (c) provides a measure of safety related to prob-
ability of failure. Such a method was first incorporated in

the AASHTO LRFD Bridge Specifications in 1994 and is

discussed in Section 5.2.4.

5.2.4 Load and Resistance Factor Design

To account for the variability on both sides of the inequal-
ity in Eq. 5.1, the resistance side is multiplied by a statisti-

cally based resistance factor φ, whose value is usually less

than one, and the load side is multiplied by a statistically
based load factor γ , whose value is usually greater than one.

Because the load effect at a particular limit state involves a

combination of different load types (Qi) that have different
degrees of predictability, the load effect is represented by a

summation of γ iQi values. If the nominal resistance is given

by Rn, the safety criterion is

φRn ≥ effect of
∑

γiQi (5.3)

Because Eq. 5.3 involves both load factors and resistance

factors, the design method is called load and resistance factor
design (LRFD). The resistance factor φ for a particular limit

state must account for the uncertainties in

� Material properties

� Equations that predict strength

� Workmanship
� Quality control

� Consequence of a failure

The load factor γ i chosen for a particular load type must

consider the uncertainties in

� Magnitudes of loads

� Arrangement (positions) of loads

� Possible combinations of loads

In selecting resistance factors and load factors for bridges,

probability theory has been applied to data on strength ofma-
terials and statistics on weights of materials and vehicular

loads.

Some of the pros and cons of the LRFD method can be
summarized as follows:

Advantages of LRFDMethod

1. Accounts for variability in both resistance and load.

2. Achieves fairly uniform levels of safety for differ-

ent limit states and bridge types without involving
probability or statistical analysis.

3. Provides a rational and consistent method of design.

4. Provides consistency with other design specifications

(e.g., ACI and AISC) that are familiar to engineers and
new graduates.

Disadvantages of LRFDMethod

1. Requires a change in design philosophy (from previous

AASHTO methods).
2. Requires an understanding of the basic concepts of prob-

ability and statistics.

3. Requires availability of sufficient statistical data and

probabilistic design algorithms to make adjustments in

resistance factors.

5.3 DESIGN LIMIT STATES

5.3.1 General

The basic design expression in the AASHTO (2010) LRFD

Bridge Specifications that must be satisfied for all limit

states, both global and local, is given as

∑
ηiγiQi ≤ φRn (5.4)

where Qi is the force effect, Rn is the nominal resistance, γ i
is the statistically based load factor applied to the force ef-

fects, φ is the statistically based resistance factor applied to

nominal resistance, and ηi is a load modification factor. For

all nonstrength limit states, φ = 1.0 [A1.3.2.1].*

Equation 5.4 is Eq. 5.3 with the addition of the load mod-

ifier ηi. The load modifier is a factor that takes into account

the ductility, redundancy, and operational importance of the

bridge. It is given for loads for which a maximum value of

γ i is appropriate by

ηi = ηDηRηI ≥ 0.95 (5.5a)

and for loads for which a minimum value of γ i is appropri-

ate by

ηi = 1/ηDηRηI ≤ 1.0 (5.5b)

where ηD is the ductility factor, ηR is the redundancy fac-

tor, and ηI is the operational importance factor. The first two

factors refer to the strength of the bridge and the third refers

to the consequence of a bridge being out of service. For all
nonstrength limit states ηD = ηR = ηI = 1.0 [A1.3.2].

Ductility Factor ηD [A1.3.3] Ductility is important to the

safety of a bridge. If ductility is present, overloaded portions
of the structure can redistribute the load to other portions that

have reserve strength. This redistribution is dependent on the

ability of the overloaded component and its connections to

develop inelastic deformations without failure.

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-

tions are enclosed in brackets and preceded by the letter A if a specification

article and by the letter C if commentary.
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If a bridge component is designed so that inelastic defor-

mations can occur, then there will be a warning that the com-
ponent is overloaded. For example, in reinforced concrete,

cracking will increase and the component will show that it
is in distress. For structural steel flaking of mill scale will

indicate yielding and deflections will increase. The effects
of inelastic behavior are elaborated in Chapter 10.

Brittle behavior is to be avoided because it implies a sud-
den loss of load-carrying capacity when the elastic limit is

exceeded. Components and connections in reinforced con-
crete can be made ductile by limiting the flexural reinforce-

ment and by providing confinement with hoops or stirrups.

Steel sections can be proportioned to avoid buckling, which
may permit inelastic behavior. Similar provisions are given

in the specifications for other materials. In fact, if the provi-
sions of the specifications are followed in design, experience

has shown that the components will have adequate ductility
[C1.3.3].

The values to be used for the strength limit state ductility
factor are:

ηD ≥ 1.05 for nonductile components and connections

ηD = 1.00 for conventional designs and details

complying with the specifications

ηD ≥ 0.95 for components and connections for which

additional ductility-enhancingmeasures have been

specified beyond those required by the specifications

For all other limit states:

ηD = 1.00

Redundancy Factor ηR [A1.3.4] Redundancy signifi-

cantly affects the safety margin of a bridge structure. A
statically indeterminate structure is redundant, that is, it has

more restraints than are necessary to satisfy equilibrium. For

example, a three-span continuous bridge girder may be clas-
sified as statically indeterminate to the second degree. Any

combination of two supports, or twomoments, or one support
and one moment could be lost without immediate collapse

because the applied loads could find alternative paths. The
concept of multiple-load paths is the same as redundancy.

Single-load paths or nonredundant bridge systems are not
encouraged. The Silver Bridge over the Ohio River between

Pt. Pleasant,West Virginia, andKanauga, Ohio,was a single-
load path structure. It was constructed in 1920 as a suspen-

sion bridge with two main chains composed of eyebar links,

much like large bicycle chains, strung between two towers.
However, to make the structure easier to analyze, pin con-

nections were made at the base of the towers. When one of
the eyebar links failed in December 1967, there was no al-

ternative load path, the towers were nonredundant, and the
collapse was sudden and complete. Forty-six lives were lost

(Section 2.2.1).
In the 1950s a popular girder bridge system was the can-

tilever span, suspended span, cantilever span system. These

structures were statically determinate and the critical detail

was the linkage or hanger that supported the suspended span
from the cantilevers. The linkage was a single-load path

connection, and, if it failed, the suspended span would drop
to the ground or water below. This failure occurred in the

bridge over the Mianus River in Greenwich, Connecticut,
June 1983. Three lives were lost (Section 2.2.4).

Redundancy in a bridge system increases its margin of
safety, and this is reflected in the strength limit state by

redundancy factors given as

ηR ≥ 1.05 for nonredundant members

ηR = 1.00 for conventional levels of redundancy

ηR ≥ 0.95 for exceptional levels of redundancy

For all other limit states:

ηR = 1.00

Operational Importance Factor ηI [A1.3.5] Bridges can

be considered of operational importance if they are on the
shortest path between residential areas and a hospital or

school or provide access for police, fire, and rescue vehicles
to homes, businesses, and industrial plants. Bridges can also

be considered essential if they prevent a long detour and
save time and gasoline in getting to work and back home

again. In fact, it is difficult to find a situation where a bridge
would not be operationally important because a bridge must

be justified on some social or security requirement to have
been built in the first place. One example of a less important

bridge could be on a secondary road leading to a remote
recreation area that is not open year round. (But then if you

were a camper or backpacker and were injured or became
ill, you’d probably consider any bridge between you and the

more civilized world to be operationally important!)
In the event of an earthquake, it is important that all life-

lines, such as bridges, remain open. Therefore, the following
requirements apply to the extreme event limit state as well as

to the strength limit state:

ηI ≥ 1.05 for a bridge of operational importance

ηI ≥ 1.00 for typical bridges

ηI ≥ 0.95 for relatively less important bridges

For all other limit states:

ηI = 1.00

Load Designation [A3.3.2] Permanent and transient loads
and forces that must be considered in a design are designated

as follows:

Permanent Loads

CR Force effects due to creep

DD Downdrag force

DC Dead load of structural components and
nonstructural attachments
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DW Dead load of wearing surfaces and utilities
EH Horizontal earth pressure load

EL Miscellaneous locked-in force effects resulting

from the construction process, including the jacking

apart of cantilevers in segmental construction

ES Earth surcharge load

EV Vertical pressure from dead load of earth fill
PS Secondary forces from posttensioning

SH Force effects due to shrinkage

Transient Loads

BR Vehicular braking force

CE Vehicular centrifugal force

CT Vehicular collision force

CV Vessel collision force

EQ Earthquake load

FR Friction load
IC Ice load

IM Vehicular dynamic load allowance

LL Vehicular live load

LS Live-load surcharge

PL Pedestrian live load
SE Force effect due to settlement

TG Force effect due to temperature gradient

TU Force effect due to uniform temperature
WA Water load and stream pressure

WL Wind on live load

WS Wind load on structure

LoadCombinationsand LoadFactors The load factors for

various load combinations and permanent loads are given in

Tables 5.1 and 5.2, respectively. Explanations of the different

limit states are given in the sections that follow.

5.3.2 Service Limit State

The service limit state refers to restrictions on stresses, de-

flections, and crack widths of bridge components that occur

under regular service conditions [A1.3.2.2]. For the service

limit state, the resistance factors φ = 1.0 and nearly all of

the load factors γ i are equal to 1.0. There are four different
service limit state load combinations given in Table 5.1 to

address different design situations [A3.4.1].

Service I This service limit state refers to the load combi-

nation relating to the normal operational use of the bridge

with 55-mph (90-km/h) wind, and with all loads taken at

their nominal values. It also relates to deflection control in

buried structures, crack control in reinforced concrete struc-
tures, concrete compressive stress in prestressed concrete

Table 5.1 Load Combinations and Load Factors

Load Combination DC

DD

DW

EH

EL LL
EV IM

ES CE

PS BR

CR PL Use One of These at a Time

Limit State SH LS WA WS WL FR TU TG SE EQ IC CT CV

Strength I γ p 1.75 1.00 — — 1.00 0.50/1.20 γ TG γ SE

Strength II γ p 1.35 1.00 — — 1.00 0.50/1.20 γ TG γ SE

Strength III γ p — 1.00 1.40 — 1.00 0.50/1.20 γ TG γ SE

Strength IV γ p — 1.00 — — 1.00 0.50/1.20 — —

Strength V γ p 1.35 1.00 0.40 1.0 1.00 0.50/1.20 γ TG γ SE

Extreme Event I γ p γ EQ 1.00 — — 1.00 — — — 1.00

Extreme Event II γ p 0.50 1.00 — — 1.00 — — — — 1.00 1.00 1.00

Service I 1.00 1.00 1.00 0.30 1.0 1.00 1.00/1.20 γ TG γ SE

Service II 1.00 1.30 1.00 — — 1.00 1.00/1.20 — —

Service III 1.00 0.80 1.00 — — 1.00 1.00/1.20 γ TG γ SE

Service IV 1.00 — 1.00 0.70 — 1.00 1.00/1.20 — 1.0

Fatigue I—LL, IM, and CE only — 1.50 — — — — — — —

Fatigue II—LL, IM, and CE only — 0.75 — — — — — — —

AASHTO Table 3.4.1-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State

Highway and Transportation Officials, Washington, DC. Used by permission.
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Table 5.2 Load Factors for Permanent Loads, γ p

Load Factor

Type of Load, Foundation Type, and Method Used to Calculate Downdrag Maximum Minimum

DC: Component and attachments 1.25 0.90

DC: Strength IV only 1.50 0.90

DD: Downdrag Piles, α Tomlinson Method 1.4 0.25

Piles, λ Method 1.05 0.30

Drilled shafts, O’Neill and Reese (1999) Method 1.25 0.35

DW: Wearing surfaces and utilities 1.50 0.65
EH: Horizontal earth pressure

• Active 1.50 0.90

• At rest 1.35 0.90

• AEP for anchored walls 1.35 N/A

EL: Locked-in construction stresses 1.00 1.00
EV: Vertical earth pressure

• Overall stability 1.00 N/A

• Retaining walls and abutments 1.35 1.00

• Rigid buried structure 1.30 0.90

• Rigid frames 1.35 0.90
• Flexible buried structures

• Metal box culverts and structural plate culverts with deep corrugations 1.5 0.9

• Thermoplastic culverts 1.3 0.9

• All others 1.95 0.9

ES: Earth surcharge 1.50 0.75

AASHTO Table 3.4.1-2. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State

Highway and Transportation Officials, Washington, DC. Used by permission.

components, and concrete tensile stress related to transverse

analysis of concrete segmental girders. This load combi-

nation should also be used for the investigation of slope
stability.

Service II This service limit state refers to the load com-
bination relating only to steel structures and is intended to

control yielding and slip of slip-critical connections due to

vehicular live load. It corresponds to the overload provision
for steel structures in past editions of the AASHTO Standard

Specifications (AASHTO 2002).

Service III This service limit state refers to the load com-

bination for longitudinal analysis relating to tension in pre-

stressed concrete superstructures with the objective of crack
control and to principal tension in the webs of segmental

concrete girders. The statistical significance of the 0.80 fac-

tor on live load is that the event is expected to occur about
once a year for bridges with two traffic lanes, less often for

bridges with more than two traffic lanes, and about once a

day for bridges with a single traffic lane. Service I is used to
investigate for compressive stresses in prestressed concrete

components.

Service IV This service limit state refers to the load

combination relating only to tension in prestressed concrete

columns with the objective of crack control. The 0.70 factor

on wind represents an 84-mph (135-km/h)wind. This should

result in zero tension in prestressed concrete substructures

for 10-year mean reoccurrence winds.

5.3.3 Fatigue and Fracture Limit State

The fatigue and fracture limit state refers to a set of re-

strictions on stress range caused by a single design truck.

The restrictions depend on the number of stress–range
excursions expected to occur during the design life of the

bridge [A1.3.2.3]. They are intended to limit crack growth

under repetitive loads and to prevent fracture due to cu-

mulative stress effects in steel elements, components, and

connections. For the fatigue and fracture limit state, φ = 1.0.

Because the only load effect that causes a large number of

repetitive cycles is the vehicular live load, it is the only load

effect that has a nonzero load factor in the fatigue limit state

(see Table 5.1). A load factor of 0.75 is used for fatigue II and

applied to vehicular live load, dynamic load allowance, and

centrifugal force. Use of load factor less than 1.0 is justified

because statistics show that trucks at slightly lower weights

cause more repetitive cycles of stress than those at the weight

of the design truck [C3.4.1]. Incidentally, the fatigue design

truck is different than the design truck used to evaluate other

force effects. It is defined as a single truck with a fixed axle
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spacing [A3.6.1.4.1]. The truck load models are described in

detail in Chapter 8. A load factor of 1.5 is used for fatigue I
and the analysis is similar to that outlined above. The resis-

tance that is used to compare this load effect is outlined in

Chapter 18.
Fracture due to fatigue occurs at stress levels below the

strength measured in uniaxial tests. When passing trucks

cause a number of relatively high stress excursions, cumu-
lative damage will occur. When the accumulated damage

is large enough, a crack in the material will start at a point

of stress concentration. The crack will grow with repeated
stress cycles, unless observed and arrested, until the member

fractures. If fracture of a member may result in collapse of

a bridge, the member is called fracture critical . The eyebar
chain in the Silver Bridge (Section 2.2.1) and the hanger
link in the Mianus River Bridge (Section 2.2.4) were both

fracture-critical members.

5.3.4 Strength Limit State

The strength limit state refers to providing sufficient strength

or resistance to satisfy the inequality of Eq. 5.4 for the sta-
tistically significant load combinations that a bridge is

expected to experience in its design life [A1.3.2.4]. Strength

limit states include the evaluation of resistance to bending,
shear, torsion, and axial load. The statistically determined

resistance factor φ will usually be less than 1.0 and will have

different values for different materials and strength limit
states.

The statistically determined load factors γ i are given in

five separate load combinations inTable 5.1 to address differ-
ent design considerations. For force effects due to permanent

loads, the load factors γ p of Table 5.2 shall be selected to give

the most critical load combination for a particular strength

limit state. Either themaximum orminimumvalue of γ p may
control the extreme effect so both must be investigated. Ap-

plication of two different values for γ p could easily double

the number of strength load combinations to be considered.
Fortunately, not all of the strength limit states apply in every

situation and some can be eliminated by inspection.

For all strength load combinations, a load factor of 0.50
is applied to TU for nondisplacement force effects to rep-

resent the reduction in this force effect with time from the

value predicted by an elastic analysis. In the calculation of
displacements for this load, a load factor of 1.20 is used to

avoid undersized joints and bearings [C3.4.1].

Strength I This strength limit state is the basic load combi-

nation relating to normal vehicular use of the bridge without

wind [A3.4.1].

Strength II This strength limit state is the load combi-

nation relating to the use of the bridge by owner-specified

special design vehicles, evaluation permit vehicles, or both
without wind. If a permit vehicle is traveling unescorted,

or if the escorts do not provide control, the basic design

vehicular live load may be assumed to occupy the other

lanes on the bridge [A4.6.2.2.4].

Strength III This strength limit state is the load combina-

tion relating to the bridgeexposed to wind velocity exceeding

55 mph (90 km/h). The high winds prevent the presence of

significant live load on the bridge [C3.4.1].

Strength IV This strength limit state is the load combina-

tion relating to very high dead- and live-load force effect
ratios. The standard calibration process used to select load

factors γ i and resistance factors φ for the strength limit state

was carried out for bridgeswith spans less than 200 ft (60m).

For the primary components of large-span bridges, the ratio

of dead- and live-load force effects is rather high and could

result in a set of resistance factors different from those found
acceptable for small- and medium-span bridges. To avoid us-

ing two sets of resistance factors with the load factors of the

strength I limit state, the strength IV limit state load factors

were developed for large-span bridges [C3.4.1].

StrengthV This strength limit state is the load combination

relating to normal vehicular use of the bridge with wind of

55-mph (90-km/h) velocity. The strength V limit state differs

from the strength III limit state by the presence of live load
on the bridge, wind on the live load, and reduced wind on the

structure (Table 5.1).

5.3.5 Extreme Event Limit State

The extreme event limit state refers to the structural survival

of a bridge during a major earthquake or flood or when col-

lided by a vessel, vehicle, or ice floe, possibly under scoured

conditions [A1.3.2.5]. The probability of these events oc-

curring simultaneously is extremely low; therefore, they are

specified to be applied separately. The recurrence interval of
extreme events may be significantly greater than the design

life of the bridge [C1.3.2.5]. Under these extreme conditions,

the structure is expected to undergo considerable inelastic de-

formation by which locked-in force effects due to TU, TG,

CR, SH, and SE are expected to be relieved [C3.4.1] (see

Chapter 10). For the extreme event limit state, φ = 1.0.

Extreme Event I This extreme event limit state is the load

combination relating to earthquakes. This limit state also in-

cludes water load WA and friction FR. The probability of a

major flood and an earthquake occurring at the same time is
very small. Therefore, water loads and scour depths based on

mean discharges may be warranted [C3.4.1].

Partial live load coincident with earthquake should be

considered. The load factor for live load γ EQ shall be deter-

mined on a project-specific basis [A3.4.1]. Suggested values

for γ EQ are 0.0, 0.5, and 1.0 [C3.4.1].

Extreme Event II This extreme event limit state is the load

combination relating to ice load, collision by vessels and
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vehicles, and to certain hydraulic events with reduced live

load. The 0.50 live-load factor signifies a low probability

of the combined occurrence of the maximum vehicular live
load, other than CT, and the extreme events [C3.4.1].

5.4 CLOSING REMARKS

The AASHTO LRFD Specifications outline several limit

states that must be satisfied for an acceptable design. Limit

states importantly consider the strength of the bridge but

also consider serviceability, the chance of an extreme event,

and fatigue and fracture. The LRFD format considers the
variability of the material strengths and their use in various

components and, also, the variability of dead, live, and

other loads. Clearly, some loads are more predictable than

others, and this is considered in the formulation. Chapter 6

discusses how load and resistance factors are rationally
determined and how these values were set in the AASHTO

LRFD Specifications.
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PROBLEMS

5.1 What are the main reasons for choosing the probabilis-

tic limit states philosophy of LRFD over the determin-

istic design philosophy of ASD?

5.2 Discuss the influence that residual stresses had on the

selection of a limit states design philosophy.
5.3 The AASHTO LRFD basic design expression includes

a loadmodifier term η.What is the purpose of thismod-

ifier? Why is it on the load side of the inequality?

5.4 How does the amount of ductility in structural mem-

bers, represented by ηD, affect the reliability of bridge
structures?

5.5 Why are the live-load factors in service II and service

III not equal to 1.0?

5.6 Why are only live-load effects considered in the fatigue

and fracture limit state? For this limit state, why is the
live-load factor less than 1.0?

5.7 What is the justification for a smaller live-load factor

for strength II than for strength I when the vehicles in

strength II are larger than those in strength I?

5.8 Why are there no live-load factors in strength III and

strength IV?
5.9 How are the maximum and minimum load factors for

permanent loads γ p to be used in various load combi-

nations?

5.10 For the extreme event limit states, why are the load fac-

tors 1.0 for EQ, IC, CT, and CV?Why is only one used
at a time?



CHAPTER 6

Principles of Probabilistic Design

6.1 INTRODUCTION

A brief primer on the basic concepts is given to facilitate

the use of statistics and probability. This review provides the
background for understanding how the LRFD code was de-

veloped. Probabilistic analyses are not necessary to apply the
LRFD method in practice, except for rare situations that are

not encompassed by the code.
There are several levels of probabilistic design. The fully

probabilistic method (level III) is the most complex and re-
quires knowledge of the probabilitydistributionsof each ran-

dom variable (resistance, load, etc.) and correlation between
the variables. This information is seldom available, so it is

rarely practical to implement the fully probabilistic method.
Level II probabilistic methods include the first-order

second-moment (FOSM) method, which uses simpler sta-
tistical characteristics of the load and resistance variables.

Further, the load Q and resistance R are assumed to be
statistically independent.

The load and resistance factors employed in the AASHTO

(1994, 2010) LRFD Bridge Specifications were determined
by using level II procedures and other simpler methods

when insufficient information was available to use the level
II methods. The following sections define and discuss the

statistical and probabilistic terms that are involved in this
level II theory.

Nowak and Collins (2000) offer an excellent treatment of
probabilisticdesign. Several references and examples related

to bridges and application to AASHTO LRFD are provided.

6.1.1 Frequency Distribution and Mean Value

Consider Figure 6.1, which is a histogramof the 28-day com-
pressive strength distribution of 176 concrete cylinders, all

intended to provide a design strength of 3 ksi (20.7MPa). The
ordinates represent thenumber of times a particular compres-

sive strength (0.200 ksi = 1.38MPa intervals) was observed.
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Fig. 6.1 Distribution of concrete strengths. (After J. G. MacGre-

gor and J. K. Wight, Reinforced Concrete:Mechanics and Design ,
Copyright© 2004.Reprinted by permission of Prentice Hall, Upper

Saddle River, NJ.)

As is well known, themean (average) value x̄ of theN com-

pressive strength values xi is calculated by

Mean

x̄ =
∑

xi

N
(6.1)

For theN = 176 tests, the mean value x̄ is found to be 3.94

ksi (27.2 MPa).

Notice that the dashed smooth curve that approximates this

histogram is the familiar bell-shaped distribution function
that is typical of many natural phenomena.

6.1.2 Standard Deviation

The variance of the data from the mean is determined by

summing up the square of the difference from the mean x̄

(squared so that it is not sign dependent) and normalizing it

with respect to the number of data points minus one:

Variance =
∑

(xi − x̄)2

N − 1
(6.2)

The standard deviation σ is a measure of the dispersion of
the data in the same units as the data xi. It is simply the square

root of the variance:

Standard deviation

σ =

√√√√
∑

(xi − x̄)2

N − 1
(6.3)
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For the distribution of concrete compressive strength given

in Figure 6.1, the standard deviation has been calculated as

0.615 ksi (4.24 MPa).

6.1.3 Probability Density Functions

The bell-shaped curve in Figure 6.1 can also represent the

probability distribution of the data if the area under the

curve is set to unity (probability = 1, includes all possible

concrete strengths). To make the deviation (x − x̄) for a par-

ticular point x nondimensional, it is divided by the standard

deviation σ . The result is a probability density function,
which shows the range of deviations and the frequency with

which they occur. If the data are typical of those encountered

in natural occurrences, the normal distribution curve of

Figure 6.2(a) will often result. It is given by the function

(Benjamin and Cornell, 1970)

fx(x) = 1

σ
√
2π

exp

[
−1

2

(
x − m

σ

)2
]

− ∞ ≤ x ≤ ∞
(6.4)

where fx(x) gives the probable frequency of occurrence of

the variable x as a function of the mean m = x̄ and the stan-

dard deviation σ of the normal distribution. The frequency
distributions need not be centered at the origin. The effect of

changes in m and σ is shown in Figure 6.2.

The normal probability function has been studied for many

years and its properties are well documented in statistics

books. An important characteristic of the areas included
between ordinates erected on each side of the center of the

distribution curve is that they represent probabilities at a

distance of one, two, and three standard deviations. These

areas are 68.26, 95.44, and 99.73%, respectively.

Example 6.1 Statistics indicate the average height of the

American male is 5 ft 9 in. (1.75 m) with a standard devi-

ation of 3 in. (0.076 m). Table 6.1 shows the percentage of

the male population in the United States in different height
ranges. Basketball players greater than 7 ft (2.13 m) tall are

very rare individuals indeed.

Other probability density functions besides the symmet-

ric normal function shown in Figure 6.2 are available. When

the data distributionis nonsymmetrical, a logarithmicnormal

(or simply lognormal) probability density function is often

more suitable. Stated mathematically, if Y = ln(x) is nor-
mally distributed, then x is said to be lognormal. The lognor-

mal function was used in calibrating the AASHTO (1994)

LRFD Bridge Specification because it better represented the

observed distribution of resistance data, and it remains the

basis in subsequent editions (AASHTO, 2010).
Lognormal probability density functions are shown in

Figure 6.3 for different values of its standard deviation

σ = ζ . Notice that as the dispersion (the value of ζ )

increases, the lack of symmetry becomes more pronounced.

Fig. 6.2 Normal density functions. (From J. R. Benjamin and

C. A. Cornell, Probability, Statistics, and Decisions for Civil En-
gineers . Copyright © 1970. Reproduced with permission of the

McGraw-Hill Companies.)

Table 6.1 U.S. Males in Different Height Rangesa

Percent

Standard of Male
Deviation Height Range Population

1σ 5 ft 6 in.–6 ft 0 in. (1.67–1.83 m) 68.26

2σ 5 ft 3 in.–6 ft 3 in. (1.60–1.90 m) 95.44

3σ 5 ft 0 in.–6 ft 6 in. (1.52–1.98 m) 99.73
4σ 4 ft 9 in.–6 ft 9 in. (1.45–2.05 m) 99.997

5σ 4 ft 6 in.–7 ft 0 in. (1.37–2.13 m) 99.99997

a x̄ = 5 ft 9 in. (1.75 m), σ = 3 in. = 0.076 m.

Because ln(x) is a normal distribution, its mean λm and

standard deviation ζ can be determined by a logarithmic
transformation of the normal distribution function to give

Lognormal mean

λm = ln

(
x̄√

1 + V 2

)
(6.5)
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Fig. 6.3 Lognormal density functions. (From A. H-S. Ang and

W. H. Tang, Probability Concepts in Engineering Planning and
Design, Volume I—Basic Principles . Copyright © 1975. Reprinted

with permission of John Wiley & Sons.)

and

Lognormal standard deviation

ζ =
√
ln

(
1 + V 2

)
(6.6)

where V = σ/x̄ is the coefficient of variation and x̄ and σ

are defined by Eqs. 6.1 and 6.3, respectively. Thus, the mean

and standard deviation of the lognormal function can be cal-
culated from the statistics obtained from the standard normal

function.

6.1.4 Bias Factor

In Figure 6.1, it was observed that the mean value x̄ for the

concrete compressive strength is 3.94 ksi (27.2 MPa). The
design value, or nominal value xn, of the concrete compres-

sive strength for this population of concrete cylinders was

specified as 3 ksi (20.7 MPa). There is a clear difference be-

tweenwhat is specified and what is delivered. This difference

is referred to as the bias . The mean value is commonly larger

than the nominal value because suppliers and manufacturers
do not want their products rejected. Defining the bias factor

λ as the ratio of the mean value x̄ to the nominal value xn,
we have

Bias factor

λ = x̄

xn

(6.7)

For the distributionof concrete compressive strength given

in Figure 6.1, the bias factor is 3.94/3.0 = 1.31.

6.1.5 Coefficient of Variation

To provide a measure of dispersion, it is convenient to de-
fine a value that is expressed as a fraction or percentage of

themean value. Themost commonly used measure of disper-

sion is the coefficient of variation (V ), which is the standard
deviation (σ ) divided by the mean value (x̄):

Coefficient of variation

V = σ

x̄
(6.8)

For the distributionof concrete compressive strength given

in Figure 6.1, the coefficient of variation is 0.615/3.94 =
0.156 or 15.6%.

Table 6.2 gives typical values of the bias factor and coeffi-

cient of variation for resistance of materials collected by Siu

et al. (1975). Comparing the statistics in Table 6.2 for con-
crete in compression to those obtained from the tests reported

in Figure 6.1, the bias factor is lower but the coefficient of

variation is the same.

Table 6.3 gives the same statistical parameters for highway

dead and live loads taken from Nowak (1993). The largest

variation is the weight of the wearing surface placed on

bridge decks. Also of interest, as indicated by the bias factor,

is that the observed actual loads are greater than the specified

nominal values.

Table 6.2 Typical Statistics for Resistance of Materials

Limit State Bias (λR) COV (VR)

Light-gage steel

Tension and flexure 1.20 0.14
Hot-rolled steel

Tension and flexure 1.10 0.13

Compression 1.20 0.15

Reinforced concrete

Flexure 1.14 0.15

Compression 1.14 0.16
Shear 1.10 0.21

Wood

Tension and flexure 1.31 0.16

Compression parallel to grain 1.36 0.18

Compression perpendicular
to grain 1.71 0.28

Shear 1.26 0.14

Buckling 1.48 0.22

Reproduced fromW.W. C. Siu, S. R. Parimi, and N. C. Lind (1975).

“Practical Approach to Code Calibration,” Journal of the Structural
Division , ASCE, 101(ST7), pp. 1469–1480. With permission.

Table 6.3 Statistics for Bridge Load Components

Load Component Bias (λQ) COV (VQ)

Dead load

Factory made 1.03 0.08

Cast in place 1.05 0.10
Asphalt wearing surface 1.00 0.25

Live load (with dynamic

load allowance) 1.10–1.20 0.18

From Nowak (1993).
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6.1.6 Probability of Failure

In the context of reliability analysis, failure is defined as the

realization of one of a number of predefined limit states.
Load and resistance factors are selected to ensure that each

possible limit state is reached only with an acceptably small

probability of failure. The probability of failure can be

determined if the statistics (mean and standard deviation) of

the resistance and load distribution functions are known.
To illustrate the procedure, first consider the probability

density functions for the random variables of load Q and re-

sistance R shown in Figure 6.4 for a hypothetical example

limit state. As long as the resistance R is greater than the ef-
fects of the loadQ , amargin of safety is provided for the limit

state under consideration.A quantitativemeasure of safety is

the probability of survival given by

Probability of survival

ps = P (R > Q) (6.9)

where the right-hand side represents the probability that R
is greater than Q . Because the value of both R and Q vary,

there is a small probability that the load effect Q may exceed

the resistance R . The shaded region in Figure 6.4 represents
this situation. The complement of the probability of survival

is the probability of failure, which can be expressed as

Probability of failure

pf = 1 − ps = P (R < Q) (6.10)

where the right-hand side represents the probability that
R < Q .

The probabilitydensity functions forR andQ in Figure6.4

have purposely been drawn to represent different coefficients

of variation,VR and VQ, respectively. The areas under the two
curves are both equal to unity, but the resistance R is shown

with greater dispersion than Q . The shaded area indicates

the region of failure, but the area is not equal to the proba-

bility of failure because it is a mixture of areas coming from

Fig. 6.4 Probability density functions for load and resistance.

distributions with different ratios of standard deviation to

mean value. For quantitative evaluation of probability of
failure pf, it is convenient to use a single combined proba-

bility density function g (R , Q ) that represents the margin of
safety. From this limit state function g (R , Q ), with its own

unique statistics, the probability of failure and the safety

index can be determined in a straightforward manner.
If R andQ are normally distributed, the limit state function

g ( ) can be expressed as

g (R, Q) = R − Q (6.11)

For lognormally distributed R and Q , the limit state func-
tion g ( ) can be written as

g (R, Q) = ln (R) − ln (Q) = ln

(
R

Q

)
(6.12)

In both cases, the limit state is reached when R = Q and
failure occurs when g (R , Q ) < 0. From probability theory,

when two normally distributed random variables are com-

bined, then the resulting probability density function is also
normal, that is, if R and Q are normally distributed, then the

function g (R , Q ) is also normally distributed. Similarly, if
R and Q are lognormal, then the function g (R , Q ) is log-

normal. As a result, the statistics from the individual dis-

tributions can be used to calculate the statistics (mean and
standard deviation) of the combined distribution (Nowak and

Collins, 2000).
Making use of these fundamental properties, the proba-

bility of failure for normally distributed R and Q can be

obtained by

pf = 1 − Fu

⎛

⎜⎝
R̄ − Q̄

√
σ 2

R + σ 2
Q

⎞

⎟⎠ (6.13)

and the probability of failure can be estimated for lognor-

mally distributed R and Q by

pf = 1 − Fu

⎛

⎜⎝
ln

(
R̄/Q̄

)
√

V 2
R + V 2

Q

⎞

⎟⎠ (6.14)

where R̄ and Q̄ are mean values, σR and σQ are standard

deviations, VR and VQ are coefficients of variation of the re-
sistance R and the load effect Q , and Fu( ) is the standard

normal cumulative distributionfunction. The cumulative dis-

tribution function Fu( ) is the integral of fx(x) between the
limits −∞ to u and gives the probability that x is less than

u . The shaded area in Figure 6.2(b) shows this integral. (Note
that u can be interpreted as the number of standard deviations

that x differs from the mean.) To determine the probability

that a normal random variable lies in any interval, the dif-
ference between two values of Fu( ) gives this information.

No simple expression is available for Fu( ), but it has been
evaluated numerically and tabulated. Tables are available in

elementary statistics textbooks.
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6.1.7 Safety Index β

A simple alternativemethod for expressing the probabilityof

failure is to use the safety index β. This procedure is illus-

trated using the lognormal limit state function of Eq. 6.12. As

noted previously, the lognormal distributionrepresents actual
distributionsofR andQ more accurately than the normal dis-

tribution.Also, numerical calculation of the statistics for the

limit state function g ( ) are more stable using the ratio R /Q
than for using the difference R − Q because the difference

R− Q is subject to loss of significant figures when R and Q
are nearly equal.

If the function g (R , Q ) as defined by Eq. 6.12 has a log-
normal distribution, its frequency distributionwouldhave the

shape of the curve shown in Figure 6.5. This curve is a single-

frequency distribution curve combining the uncertainties of

both R and Q . The shaded area in Figure 6.5 represents the
probability of attaining a limit state (R < Q ), which is equal

to the probability that ln(R /Q ) < 0.

The probability of failure can be reduced, and thus safety

increased by either having a tighter grouping of data about
the mean ḡ (less dispersion) or by moving the mean ḡ to the

right.These two approaches can be combined by defining the

position of the mean from the origin in terms of the standard

deviation σ g of g (R , Q ). Thus, the distance βσ g from the
origin to the mean in Figure 6.5 becomes ameasure of safety,

and the number of standard deviations β in this measure is

known as the safety index .

Safety Index β is defined as the number of standard devi-
ations σ g that the mean value ḡ of the limit state function
g( ) is greater than the value defining the failure condition
g( ) = 0, that is, β = ḡ/σg .

Normal Distributions If resistance R and load Q are

both normally distributed random variables, and are statis-

tically independent, the mean value ḡ of g (R , Q ) given by
Eq. 6.11 is

ḡ = R̄ − Q̄ (6.15)

Fig. 6.5 Definition of safety index for lognormal R and Q .

and its standard deviation is

σg =
√

σ 2
R + σ 2

Q (6.16)

where R̄ and Q̄ are mean values and σR and σQ are standard

deviations of R and Q . If the horizontal axis in Figure 6.5

represented the limit state function g (R , Q ) and R − Q ,

equating the distances from the origin, βσg = ḡ, and sub-

stituting Eqs. 6.15 and 6.16, the relationship for the safety
index β for normal distributions becomes

β = R̄ − Q̄√
σ 2

R + σ 2
Q

(6.17)

This closed-formequation is convenient because it does not

depend on the distributionof the combined function g (R ,Q )

but only on the statistics of R and Q individually.

Comparing Eqs. 6.13 and 6.17, the probabilityof failure pf,
written in terms of the safety index β, is

pf = 1 − Fu (β) (6.18)

By relating the safety index directly to the probability of

failure,

β = F−1
u

(
1 − pf

)
(6.19)

where F−1
u is the inverse standard normal cumulative distri-

bution function.

Values for the relationship in Eqs. 6.18 and 6.19 are given

in Table 6.4 based on tabulated values for Fu and Fu
−1 found

in most statistics textbooks. A change of 0.5 in β approx-

imately results in an order of magnitude change in pf. As
mentioned earlier, no comparable relationshipexists between
the safety factor used in ASD and the probability of failure,

which is a major disadvantage of ASD.

Lognormal Distributions If the resistance R and load Q
are lognormally distributed random variables, and are sta-
tistically independent, the mean value of g (R , Q ) given by

Eq. 6.12 is

ḡ = ln

(
R̄

Q̄

)
(6.20)

Table 6.4 Relationships between Probability of Failure
and Safety Index for Normal Distributions

β pf pf β

2.5 0.62 × 10−2 1.0 × 10−2 2.32

3.0 1.35 × 10−3 1.0 × 10−3 3.09

3.5 2.33 × 10−4 1.0 × 10−4 3.72

4.0 3.17 × 10−5 1.0 × 10−5 4.27

4.5 3.4 × 10−6 1.0 × 10−6 4.75

5.0 2.9 × 10−7 1.0 × 10−7 5.20

5.5 1.9 × 10−8 1.0 × 10−8 5.61
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and its standard deviation is approximately

σg =
√

V 2
R + V 2

Q (6.21)

where R̄ and Q̄ are mean values and VR and VQ are coef-

ficients of variation of R and Q , respectively (Nowak and
Collins, 2000). If we equate the distances from the origin in

Figure 6.5, the relationship for the safety index β for lognor-

mal distributions becomes

β = ln
(
R̄/Q̄

)
√

V 2
R + V 2

Q

(6.22)

Again, this closed-form equation is convenient because it

does not depend on the distributionof the combined function

g (R , Q ) but only on the statistics of R and Q individually.

The expression of σ g in Eq. 6.21 is an approximation that is
valid if the coefficients of variation, VR and VQ, are relatively
small, less than about 0.20. Expressing the logarithmic func-

tion in Eq. 6.6 as an infinite series illustrates the magnitude

of this approximation

ln
(
1 + V 2

) = V 2 − 1
2

(
V 2

)2 + 1
3

(
V 2

)3 − 1
4

(
V 2

)4 + · · ·
For an infinite series with alternating signs, the computa-

tional error is no more than the first neglected term. Using
only the first term, a maximum relative error for V = 0.20

can be expressed as

1
2

(
V 2

)2

V 2
= 1

2
V 2 = 1

2
(0.2)2 = 0.02 or 2%

Therefore, ln(1 + V 2) can be replaced by V 2 without large

error, and Eq. 6.12 then gives ζ ≈ V . The typical values given
in Tables 6.2 and 6.3 for coefficient of variation (COV) of

resistance of materials VR and effect of loads VQ are gen-

erally less than about 0.20; therefore, these COVs can be

used to represent the standard deviations of their respective

lognormal distributions.
Rosenblueth and Esteva (1972) have developed an ap-

proximate relationship between the safety index β and the

Table 6.5 Relationships between Probability of Failure
and Safety Index for Lognormal Distributions

β pf pf β

2.5 0.99 × 10−2 1.0 × 10−2 2.50

3.0 1.15 × 10−3 1.0 × 10−3 3.03

3.5 1.34 × 10−4 1.0 × 10−4 3.57

4.0 1.56 × 10−5 1.0 × 10−5 4.10

4.5 1.82 × 10−6 1.0 × 10−6 4.64

5.0 2.12 × 10−7 1.0 × 10−7 5.17

5.5 2.46 × 10−8 1.0 × 10−8 5.71

probability of failure pf for lognormally distributed values

of R and Q , given by the equation

pf = 460 exp (−4.3β) 2 < β < 6 (6.23)

The inverse function for this relationship is

β = ln
(
460/pf

)

4.3
10−1 > pf > 10−9 (6.24)

Values for both of these relationshipsare given in Table 6.5.

Comparing Tables 6.4 and 6.5, the values for the normal and
lognormal distributions are similar but not identical.

Example 6.2 A prestressed concrete girder bridge with a

simple span of 90 ft (27 m) and girder spacing of 8 ft (2.4 m)

has the following bending moment statistics for a typical

girder:

Effect of loads (assumed normally distributed)

Q̄ = 3600 kip ft σQ = 300 kip ft

Resistance (assumed lognormally distributed)

Rn = 5200 kip ft λR = 1.05 VR = 0.075

Determine the safety index for a typical girder using

Eqs. 6.17 and 6.22. To use Eq. 6.17, the mean value and
standard deviation of R must be calculated. From Eqs. 6.7

and 6.18

R̄ = λRRn = 1.05(5200) = 5460 kip ft

σR = VRR̄ = 0.075(5460) = 410 kip ft

Substitution of values into Eq. 6.17 gives a safety index for

normal distributions of Q and R :

β = R̄ − Q̄√
σ 2

R + σ 2
Q

= 5460− 3600√
4102 + 3002

= 3.66

To use Eq. 6.22, the coefficient of variation of Q must be

calculated from Eq. 6.8:

VQ = σQ

Q̄
= 300

3600
= 0.0833

Substitution into Eq. 6.22 yields a safety index for lognor-
mal distributions of Q and R :

β = ln
(
R̄/Q̄

)
√

V 2
R + V 2

Q

= ln (5460/3600)√
0.0752 + 0.08332

= 3.72

The two results for β are nearly equal. The approximation

used for σ g in the development of Eq. 6.22 is reasonable.

From either Table 6.4 or Table 6.5, the nominal probability
of failure of one of these girders is about 1 : 10,000.
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6.2 CALIBRATION OF LRFD CODE

6.2.1 Overview of the Calibration Process

Several approaches can be used in calibrating a design code.
Specifications may be calibrated by use of judgment, fitting

to other codes, use of reliability theory, or a combination of

these approaches.

Calibration by judgment was the first approach used in

arriving at specification parameters. If the performance of a
specification was found to be satisfactory after many years,

the parameter values were accepted as appropriate. Poor

performance resulted in increasing safety margins. A fun-

damental disadvantage of this approach is that it results in
nonuniform margins of safety because excessively conser-

vative specification provisions will not result in problems

and will therefore not be changed.

Calibration by fitting is usually done after there has been
a fundamental change in either the design philosophy or the

specification format. In this type of calibration, the parame-

ters of the new specification are adjusted such that designs

are obtained that are essentially the same as those achieved

using the old specification. The main objective of this type of
calibration is to transfer experience from the old to the new

specification.

Calibration by fitting is a valuable technique for ensuring

that designs obtained with the new specification do not devi-
ate significantly from existing designs. It is also a relatively

simple procedure because all that is involved is to match

the parameters from the old and new specifications. The

disadvantage of this type of calibration is that it does not

necessarily result in more uniform safety margins or econ-
omy because the new specification essentially mimics the

old specification.

A more formal process using reliability theory may also

be used to calibrate a specification. The formal process for
estimating suitable values of load factors and resistance fac-

tors for use in bridge design consists of the following steps

(Barker et al., 1991):

Step 1. Compile the statistical database for load and resis-

tance parameters.

Step 2. Estimate the level of reliability inherent in current

design methods of predicting strengths of bridge
structures.

Step 3. Observe the variation of the reliability levels

with different span lengths, dead-load to live-load

ratios, load combinations, types of bridges, and
methods of calculating strengths.

Step 4. Select a target reliability index based on themargin

of safety implied in current designs.

Step 5. Calculate load factors and resistance factors con-

sistent with the selected target reliability index. It
is also important to couple experience and judg-

ment with the calibration results.

6.2.2 Calibration Using Reliability Theory

Calibration of the LRFD code for bridges using reliability
theory followed the five steps outlined above. These steps

are described in more detail in the following paragraphs.

Step 1. Compile a Database of Load and Resistance
Statistics Calibration using reliability theory re-

quires that statistical data on load and resistance
be available. The FOSM theories require the mean
value and standard deviation to represent the

probability density function. For a given nominal
value, these two parameters are then used to cal-

culate the companion nondimensional bias factor
and coefficient of variation for the distribution.

The statistics for bridge load components given
in Table 6.3 were compiled from available data

and measurements of typical bridges. The live-
load statistics were obtained from surveys of truck

traffic and weigh-in-motion data (Nowak, 1993).
Statistical data for resistance of materials given

in Table 6.2 were obtained from material tests,
component tests, and field measurements (Siu

et al., 1975). Because these typical resistance
statistics were not developed specifically for
bridges, data from current highway bridges were

utilized in the LRFD calibration process.
The highway bridges selected for evaluation

numbered about 200 and were from various geo-
graphic regions in the United States (California,

Colorado, Illinois, Kentucky, Maryland, Michi-
gan, Minnesota, New York, Oklahoma, Pennsyl-

vania, Tennessee, and Texas). When selecting
bridges representative of the nation’s inventory,

emphasis was placed on current and anticipated
future trends in materials, bridge types, and spans.

Steel bridges included composite and noncom-
posite rolled beams and plate girders, box girders,

through trusses, deck trusses, pony trusses, arches,
and a tied arch. Reinforced concrete bridges in-

cluded slabs, T-beams, solid frame, and a box
girder. Prestressed concrete bridges included
a double tee, I-beams, and box girders. Wood

bridges included sawn beam, glulambeam, a truss,
and decks that were either nailed or prestressed

transversely. Spans ranged from 30 ft (9 m) for a
reinforced concrete slab bridge to 730 ft (220 m)

for a steel arch bridge.
Resistance statistics were developed for a re-

duced set of the selected bridges, which included
only the girder-type structures. For each of the

girder bridges, the load effects (moments, shears,
tensions, and compressions) were calculated and

compared to the resistance provided by the ac-
tual cross section. The statistical parameters of
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Table 6.6 Statistical Parameters of Resistance for
Selected Bridges

Type of Structure Bias (λR) COV (VR)

Noncomposite steel girders

Moment (compact) 1.12 0.10

Moment (noncompact) 1.12 0.10

Shear 1.14 0.105

Composite steel girders

Moment 1.12 0.10
Shear 1.14 0.105

Reinforced concrete T-beams

Moment 1.14 0.13

Shear w/steel 1.20 0.155

Shear w/o steel 1.40 0.17
Prestressed concrete girders

Moment 1.05 0.075

Shear w/steel 1.15 0.14

From Nowak (1993).

resistance for steel girders, reinforced concrete
T-beams, and prestressed concrete girders are

shown in Table 6.6 (Nowak, 1993). Comparing

the resistance statistics of Tables 6.2 and 6.6, the

bias factor and coefficient of variation for the

girder bridges are slightly lower than those for the

general population of structures.

Step 2. Estimate the Safety Index β in Current Design
Methods Risk levels implied in the existing spec-

ifications were determined by computing safety

indexes for additional representative bridges. The

additional bridges covered five span lengths from

30 to 200 ft (9 to 60 m) and five girder spacings

from 4 to 12 ft (1.2 to 3.6 m). The reliability

analysis was based on the FOSM methods, a

normal distribution of the load, and a lognormal

distribution of the resistance.

The mean value FOSM (MVFOSM) method

used to derive Eqs. 6.17 and 6.22 is not the most

accurate method that can be used to calculate

values of the safety index β. While values of β

determined from Eqs. 6.17 and 6.22 are suffi-

ciently accurate to be useful for some purposes,

it was considered worthwhile to use the more

accurate advanced FOSM (AFOSM) method to

derive values of β for the AASHTO (1994, 2010)

LRFD Specifications.

An explicit expression for β cannot be written

when the AFOSM method is used because the

limit state function g ( ) is linearized at a point on

the failure surface, rather than at the mean values

of the random variables. For the AFOSM method,

an iterative procedure must be used in which an

initial value of β is assumed and the process is

repeated until the difference in calculated values

of β on successive iterations is within a small
tolerance. This iterative procedure is based on

normal approximations to nonnormal distribu-
tions at the design point developed by Rackwitz

and Fiessler (1978).
An estimate of the mean value of the lognor-

mally distributed resistance Rn with bias factor
λR and coefficient of variation VR is given by

Eq. 6.7 as
R̄ = λRRn

and an assumed design point is

R∗ = R̄
(
1 − kVR

) = RnλR

(
1 − kVR

)
(6.25)

where k is unknown.Because it is a modifier of the

nominal resistance Rn, the term λR(1 − kVR) can
be thought of as an estimate of a resistance factor

φ*, that is,
φ∗ = λR

(
1 − kVR

)
(6.26)

and the parameter k is comparable to the number

of standard deviations from the mean value. As an
initial guess, k is often taken as 2.

An estimate of the standard deviation of Rn is
obtained from Eq. 6.8 as

σR = VRR̄

and at an assumed design point becomes

σ
′
R = RnVRλR

(
1 − kVR

)
(6.27)

For normally distributed R and Q , Eq. 6.17
gives the safety index for the MVFOSM method.

Substituting Eqs. 6.25 and 6.27 into Eq. 6.17 and
transforming the lognormally distributed Rn into

a normal distribution at the design point R*, the
safety index β for normally distributed Q and

lognormally distributed R can be expressed as

(Nowak, 1993)

β = RnλR

(
1 − kVR

) [
1 − ln

(
1 − kVR

)] − Q̄
√[

RnVRλR

(
1 − kVR

)]2 + σ 2
Q

(6.28)

Example 6.3 For the prestressed girder of Example 6.1,

estimate the safety index at the design point R* using
Eq. 6.28 with k = 2. The statistics from Example 6.2 are

Rn = 5200 kip ft λR = 1.05 VR = 0.075

Q̄ = 3600 kip ft

and
σQ = 300 kip ft

φ∗ = λR(1 − kVR) = 1.05[1 − 2(0.075)] = 0.89

R∗ = φ∗Rn = 0.89(5200) = 4628 kip ft

σ
′
R = VRR∗ = 0.075(4628) = 347 kip ft
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Substitution into Eq. 6.28 gives

β = R∗ [
1 − ln

(
1 − kVR

)] − Q̄
√(

σ
′
R

)2 + σ 2
Q

= 4628 [1 − ln (1 − 2 × 0.075)] − 3600√
3472 + 3002

= 5380− 3600

459
= 3.88 (6.29)

This estimate of the safety index β is slightly higher than

the values calculated in Example 6.2. The value of β calcu-
lated at the design point on the failure surface by the iterative

AFOSM method is considered to be more accurate than the

values calculated by the MVFOSM method in Example 6.2.

Step 3. Observe the Variation of the Safety Indexes
Nowak (1993) calculated safety indexes using

the iterative AFOSM method for typical girder

bridges. The study covered the full range of spans
and girder spacings of simple-span noncompos-

ite steel, composite steel, reinforced concrete

T-beam, and prestressed concrete I-beam bridges.
For each of the bridge types five span lengths of

30, 60, 90, 120, and 200 ft (9, 18, 27, 36, and

60 m) were chosen. For each span, five girder
spacing of 4, 6, 8, 10, and 12 ft (1.2, 1.8, 2.4, 3.0,

and 3.6 m) were selected. For each case, cross

sections were designed so that the actual resis-
tance was equal to the required resistance of the

existing code (AASHTO, 1989). In other words,

the cross sections were neither overdesigned nor
underdesigned. It was not possible for one cross

section to satisfy this criterion for both moment

and shear, so separate designs were completed for
both limit states.

Calculated safety indexes for prestressed

concrete girders are shown in Figure 6.6 for
simple-span moment and in Figure 6.7 for shear.

These results are typical of the other bridge types,

that is, higher values of β for wider spacing
of girders and lower values of β for shear than

moment.

Observations of Figures 6.6 and 6.7 indicate

for the moment a range of β from 2.0 to 4.5
with the lower value for small spans while for

shear the range is 2.0–4.0 with the lower value

for large spans. For these ranges of β, Tables 6.4
and 6.5 indicate that the probability of failure of

designs according to AASHTO (1989) Standard

Specifications varies from about 1 : 100 to 1 :
100,000. A uniform level of safety does not exist.

Step 4. Select a Target Safety Index βT Relatively large

ranges of safety indexes were observed for mo-
ment and shear designs using theAASHTO (1989)

Standard Specifications. These safety indexes
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varied mostly with span length and girder spacing

and to a lesser extent with bridge type. What

was desired in the calibration of the AASHTO

(1994) LRFD Specification was a uniform safety

index for all spans, spacings, and bridge types. To

achieve this objective, a desired or target safety

index is chosen, and then load and resistance

factors are calculated to give safety indexes as

close to the target value as possible.

Based on the results of the parametric study by

Nowak (1993), as well as calibrations of other

specifications (OHBDC, 1992; AISC, 1986), a

target safety index βT = 3.5 was selected. This

value of βT corresponds to the safety index calcu-

lated for moment in a simple span of 60 ft (18 m)

with a girder spacing of 6 ft (1.8 m) using the

AASHTO (1989) Standard Specifications. This
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calibration point can be seen in Figure 6.6 for

prestressed concrete girders. Similar results were

obtained for the other bridge types studied.
Step 5. CalculateLoad andResistance Factors To achieve

the desired or target safety index of βT = 3.5, sta-

tistically based load and resistance factors must be

calculated. Load factors must be common for all
bridge types. The variation of β with span length

is due to different ratios of dead load to live load.

This effect can be minimized by proper selection

of load factors for dead load and live load.
Resistance factors must account for the differ-

ences in reliability of the various limit states. For

example, the safety indexes calculated formoment

and shear shown in Figures 6.6 and 6.7 have dif-

ferent values and different trends.
It may not be possible to satisfy all of the con-

ditions with βT = 3.5. However, the objective of

the calibration process is to select load and resis-

tance factors that will generate safety indexes that
are as close as possible to the target value. Ac-

ceptable sets of load factors and resistance factors

occur when the calculated safety indexes cluster in

a narrow band about the target value of βT = 3.5.
To derive load factors γ and resistance factors φ

from statistical considerations, assume that R and

Q are normally distributed and that β is given by

Eq. 6.17 so that

R̄ − Q̄ = β

√
σ 2

R + σ 2
Q (6.30)

It is desirable to separate the effects of R and

Q , which can be done by using the approxima-
tion suggested by Lind (1971) for the value of the

square-root term

√
σ 2

R + σ 2
Q ≈ α

(
σR + σQ

)
(6.31)

where if σR/σQ = 1.0, α = √
2/2 = 0.707. Typ-

ical statistics for σR and σQ indicate that the

maximum range for σR/σQ is between 1
3 and

3.0. Taking the extreme values for σR/σQ, then

α = √
10/4 = 0.79. The maximum error in the

approximation will only be 6% if α = 0.75.

Substitution of Eq. 6.31 into Eq. 6.30 yields

R̄ − Q̄ = αβ
(
σR + σQ

)

which can be separated into

R̄ − αβσR = Q̄ + αβσQ (6.32)

Recalling the definition of the bias factor (Eq.

6.7) and the coefficient of variation (Eq. 6.8), and

setting β = βT, we can write

RnλR

(
1 − αβT VR

) = QnλQ

(
1 + αβT VQ

)

(6.33)

which can be written in the generic form of the ba-

sic design equation

φRn = γ Qn (6.34)

where

γ = λQ

(
1 + αβT VQ

)
(6.35)

φ = λR

(
1 − αβT VR

)
(6.36)

and the load and resistance factors are expressed

only in terms of their own statistics and some frac-

tion of the target safety index.

Establishing Load Factors Trial values for the load fac-

tors γ i can be obtained from Eq. 6.35 using the statistics

from Table 6.3 for the different load components. By taking

α = 0.75 and βT = 3.5, Eq. 6.35 becomes

γi = λQi

(
1 + 2.6 VQi

)
(6.37)

and the trial load factors are

Factory made γDC1 = 1.03 (1 + 2.6 × 0.08) = 1.24

Cast in place γDC2 = 1.05 (1 + 2.6 × 0.10) = 1.32

Asphalt overlay γDW = 1.00 (1 + 2.6 × 0.25) = 1.65

Live load γLL = 1.10 to 1.20 (1 + 2.6 × 0.18)

= 1.61 to 1.76

In the calibration conducted by Nowak (1993), the loadsQi
were considered to be normally distributed and the resistance

Rn lognormallydistributed.The expression used for trial load

factors was

γi = λQi

(
1 + kVQi

)
(6.38)

where k was given values of 1.5, 2.0, and 2.5. The results

for trial load factors were similar to those calculated using

Eq. 6.37.

The final load factors selected for the strength I limit state

(Table 5.1) were

γDC1 = γDC2 = 1.25 γDW = 1.50 γLL = 1.75

Establishing Resistance Factors Trial values for the re-

sistance factors φ can be obtained from Eq. 6.36 using the

statistics from Table 6.6 for the various bridge types and

limit states. Because the chosen load factors represent values

calculated from Eq. 6.38 with k = 2.0, the corresponding

Eq. 6.36 becomes

φ = λR

(
1 − 2.0VR

)
(6.39)

The calculated trial resistance factors and the final recom-

mended values are given in Table 6.7. The recommended val-

ues were selected to give values of the safety index calculated

by the iterative procedure that were close to βT. Because of

the uncertainties in calculating the resistance factors, they

have been rounded to the nearest 0.05.
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Table 6.7 Calculated Trial and Recommended
Resistance Factors

Material Limit State Eq. 6.39 φ, Selected

Noncomposite steel Moment 0.90 1.00

Shear 0.90 1.00

Composite steel Moment 0.90 1.00

Shear 0.90 1.00

Reinforced concrete Moment 0.85 0.90
Shear 0.85 0.90

Prestressed concrete Moment 0.90 1.00

Shear 0.85 0.90

Calibration Results The test of the calibration procedure

is whether or not the selected load and resistance factors

develop safety indexes that are clustered around the target

safety index and are uniform with span length and girder

spacing. The safety indexes have been calculated and tabu-

lated in Nowak (1993) for the representative bridges of span

lengths from 30 to 200 ft (9 to 60 m).

Typical calibration results are shown in Figures 6.8 and 6.9

for moment and shear in prestressed concrete girders. Two

curves for γ of 1.60 and 1.70 in the figures show the effect

of changes in the load factors for live load. Figures 6.8 and

6.9 both show uniform levels of safety over the range of span

lengths,which is in contrast to the variations in safety indexes

shown in Figures 6.6 and 6.7 before calibration.

The selection of the higher than calculated φ factors of

Table 6.7 is justified because Figures 6.8 and 6.9 show that

they result in reduced safety indexes that are closer to the

target value of 3.5. Figure 6.9 indicates that for shear in pre-

stressed concrete girders, a φ factor of 0.95 could be justified.

However, it was decided to keep the same value of 0.90 from

the previous specification.

The selection of the live-load factor 1.75 was done af-

ter the calibration process was completed. With current
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highway truck traffic, this increased load factor provides a
safety index greater than 3.5. This increase was undoubtedly

done in anticipation of future trends in highway truck traffic.

At the time of this writing, only the strength I limit state
has been formally calibrated. Other limit states were adjusted

to agree with present practice. Interestingly, service II and
service III often control the proportioning for steel and pre-

stressed concrete girders, respectively.

6.2.3 Calibration of Fitting with ASD

The process of calibration with the existing ASD criteria

avoids drastic deviations from existing designs. Calibration

by fitting with ASD can also be used where statistical
data are insufficient to calculate φ from an expression like

Eq. 6.39.
In the ASD format, nominal loads are related to nominal

resistance by the safety factor F as stated previously in

Eq. 5.2:
Rn

F
≥

∑
Qi (6.40)

Division of Eq. 5.3 by Eq. 6.40 results in

φ ≥
∑

γiQi

F
∑

Qi

(6.41)

If the loads consist only of dead-load QD and live-loadQL,

then Eq. 6.41 becomes

φ = γDQD + γLQL

F
(
QD + QL

) (6.42)

Dividing both numerator and denominator byQL, Eq. 6.42

may be written as

φ = γD

(
QD/QL

) + γL

F
(
QD/QL + 1

) (6.43)

Example 6.4 Calculate the resistance factor φ for bend-

ing that is equivalent to an ASD safety factor F = 1.6 if the
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dead-load factor γ D is 1.25, the live-load factor γ L is 1.75,

and the dead- to live-load moment ratio MD/ML is 1.5. Sub-

stitution of values into Eq. 6.43 gives

φ = 1.25 (1.5) + 1.75

1.6 (1.5 + 1)
= 0.91

This value for φ is comparable to the values given for mo-

ment in Table 6.7.

6.3 CLOSING REMARKS

The background regarding the calibration of the LRFD
Specifications is provided. The approach used to develop

the load and resistance factors parallel those used for other

specification in the United States and elsewhere. To date,
only the strength I limit has been formally calibrated; how-

ever, research is underway to address the other limit states.

The statistical properties associated with load and resistance
are largely removed from routine structural computations

by the use of codified factors. Some agencies are using

weigh-in-motion methods to better understand their live
loads and to recalibrate based upon more recent data. The

LRFD process and format accommodates such refinements.
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PROBLEMS

6.1 Discuss why this statement is true: “Every bridge struc-

ture is designed for a finite probability of failure.” How

would you modify the statement when making presenta-
tions to the general public?

6.2 Explain the difference between the nominal value of

resistance and the mean value of resistance. Give an
example.

6.3 For the bridge load statistics in Table 6.3, the bias is con-

sistently greater than 1. What is the significance of this
statistic in regard to the safety of bridges designed by

ASD?

6.4 A composite steel girder bridge with a simple span of
90 ft and girder spacing of 8 ft has the following bend-

ing moment statistics: Q̄ = 3028 kip ft, σQ = 300 kip

ft, Rn = 4482 kip ft, λR = 1.12, VR = 0.10. Estimate
the safety index β assuming: (a) both Q and R are nor-

mally distributed, (b) bothQ and R are lognormally dis-

tributed, and (c) Q is normal and R is lognormal.
6.5 A prestressed concrete girder bridge with a simple span

of 60 ft and girder spacing of 6 ft has the following bend-
ing moment statistics: Q̄ = 1442 kip ft, σQ = 142 kip

ft, Rn = 2084 kip ft, λR = 1.05, and VR = 0.075. Esti-

mate the safety index β assuming: (a) both Q and R are
normally distributed, (b) both Q and R are lognormally

distributed, and (c) Q is normal and R is lognormal.

6.6 A prestressed concrete girder bridge with a simple span
of 60 ft and girder spacing of 6 ft has the following shear

force statistics: Q̄ = 110 kips, σQ = 12 kips, Rn = 155

kips,λR = 1.15, andVR = 0.14. Estimate the safety index
β assuming: (a) both Q and R are normally distributed,

(b) bothQ and R are lognormally distributed, and (c) Q
is normal and R is lognormal.

6.7 Consider a reinforced concrete T-beam in bending. Us-

ing the approximate linear form for the resistance fac-

tor (Eq. 6.36), statistics from Table 6.6, and assuming
σR = σQ, estimate a value of φ for a probability of fail-

ure of 1 × 10−3 and 1 × 10−4.

6.8 Consider a composite steel girder in bending. Using

the approximate linear form for the resistance factor
(Eq. 6.36), statistics from Table 6.6, and assuming

σR = 1.5σQ , estimate a value of φ for a probability of

failure of 1 × 10−3 and 1 × 10−4.

6.9 Calculate a resistance factor φ that is equivalent to
an ASD safety factor F of 1.7 if the dead-load factor

γ D = 1.25, the live-load factor γ L = 1.75, and the dead-

to live-load ratio QD/QL is 2.0.



CHAPTER 7

Geometric Design Considerations

7.1 INTRODUCTION TO GEOMETRIC ROADWAY
CONSIDERATIONS

In water crossings or bridges over deep ravines or across
wide valleys, the bridge engineer is usually not restricted by

the geometric design of the highway. However, when two
highways intersect at a grade separation or interchange, the

geometric design of the intersection will often determine the

span lengths and selection of bridge type. In this instance,
collaboration between the highway engineer and the bridge

engineer during the planning stage is essential.
The bridge engineer must be aware of the design elements

that the highway engineer considers to be important.Both en-
gineers are concerned about appearance, safety, cost, and site

conditions. In addition, the highway engineer is concerned
about the efficient movement of traffic between the road-

ways on different levels, which requires an understanding of
the character and composition of traffic, design speed, and

degree of access control so that sight distance, horizontal

and vertical curves, superelevation, cross slopes, and road-
way widths can be determined.

The document that gives the geometric standards is A
Policy on the Geometric Design of Highways and Streets ,
AASHTO (2004). The requirements in this publication are
incorporated in the AASHTO (2010) LRFD Bridge Design

Specification by reference [A2.3.2.2.3].* In the sections that
follow, a few of the requirements that determine the roadway

widths and clearances for bridges are given.

7.2 ROADWAYWIDTHS

Crossing a bridge should not convey a sense of restriction,
which requires that the roadway width on the bridge be the

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-

tions are enclosed in brackets and preceded by the letter A if a specification

article and by the letter C if commentary.

same as that of the approaching highway. A typical overpass

structure of a four-lane divided freeway crossing a secondary

road is shown in Figure 7.1. The recommended minimum
widths of shoulders and traffic lanes for the roadway on the

bridge are given in Table 7.1.

Fig. 7.1 Typical overpass structure. (Courtesy of Modjeski &

Masters, Inc.)

Table 7.1 Typical Roadway Widths for Freeway
Overpasses

Roadway Width (ft) Width (m)

Lane width 12 3.6

Right shoulder width

Four lanes 10 3.0
Six and eight lanes 10 3.0

Left shoulder width

Four lanes 4 1.2

Six and eight lanes 10 3.0

FromA Policy on GeometricDesign of Highways and Streets .Copy-
right © 2004 by the American Association of State Highway and

Transportation Officials, Washington, D.C. Used by Permission.
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Right of
Way

Frontage
Road

Through
Roadways

Median = 2 ft (0.6 m)

+ 2 Shoulderwidths
Right of

Way

Frontage
Road

Restricted Section with No Ramps

Fig. 7.2 Cross section for elevated freeways on structure with

frontage roads (AASHTO Exhibit 8–10). (From A Policy on Ge-
ometric Design of Highways, and Streets , Copyright © 2004 by the

American Association of State Highway and Transportation Offi-

cials, Washington, DC. Used by permission.)

A median barrier must separate the traffic for two-way

elevated freeways in urban settings (Fig 7.2). The width of

the barrier is 2 ft (0.6 m). The minimum median width is

obtained by adding two left shoulder widths in Table 7.1 to

give 10 ft (3.0 m) for a four-lane and 22 ft (6.6 m) for six-

and eight-lane roadways.

If a highway passes under a bridge, it is difficult not to no-

tice the structure and to get a sense of restriction. As was

discussed in the aesthetics section of Chapter 3, it is possible

to increase the sense of openness by placing stub abutments

on top of the slopes and providing an open span beyond the

right shoulder. The geometric design requirements are stated

in A Policy on Geometric Design of Highways and Streets ,
AASHTO (2004) as follows:

Overpass structures should have liberal lateral clearances
on the roadways at each level. All piers and abutment walls
should be suitably offset from the traveled way. The finished
underpass roadway median and off-shoulder slopes should
be rounded and there should be a transition to backslopes to
redirect errant vehicles away from protected or unprotected
structural elements.

In some areas it may be too costly to provide liberal lat-

eral clearances and minimumdimensions are often used. The

minimum lateral clearance from the edge of the traveled way

to the face of the protective barrier should be the normal

shoulder width given in Table 7.1. This clearance is illus-

trated in Figure 7.3 for a typical roadway underpass with a

continuous wall or barrier. If the underpass has a center sup-

port, the same lateral clearance dimensions are applicable for

a wall or pier on the left.

Concrete Median
Barrier

Edge of Through

Face of Wall
or Pier

Traffic Lane

Normal
Shoulder

Width

Normal
Shoulder

Width

Fig. 7.3 Lateral clearances for major roadway underpasses

(AASHTO Exhibit 10–6). (From A Policy on Geometric Design of
Highways and Streets , Copyright © 2004 by the American Associ-

ation of State Highway and Transportation Officials. Washington,

DC. Used by permission.)

7.3 VERTICAL CLEARANCES

For bridges over navigable waterways, the U.S. Coast

Guard establishes the vertical clearance [A2.3.3.1]. For

bridges over highways, the vertical clearances are given by

A Policy on Geometric Design of Highways and Streets ,
AASHTO (2004) [A2.3.3.2]. For freeways and arterial sys-

tems, the minimum vertical clearance is 16 ft (4.9 m) plus an

allowance for several resurfacings of about 6 in. (150 mm).

For other routes, a lower vertical clearance is acceptable,

but in no case should it be less than 18 in. (0.5 m) greater

than the vehicle height allowed by state law. In general, a

desired minimum vertical clearance of all structures above

the traveled way and shoulders is 16.5 ft (5.0 m).

7.4 INTERCHANGES

The geometric design of the intersection of two highwaysde-

pends on the expected volumes of through and turning traffic,

the topography of the site, and the need to simplify signing

and driver understanding to prevent wrong-way movements.

There are a number of tested interchange designs, and they

vary in complexity from the simple two-level overpass with

ramps shown in Figure 7.1 to the four-level directional inter-

change of Figure 7.4.

In comparing Figures 7.1 and 7.4, note that the bridge re-

quirements for interchanges are dependent on the geometric

design. In Figure 7.1, the bridges are simple overpasses with

relatively linear ramps providing access between the two

levels. In Figure 7.4, the through traffic is handled by an

overpass at the lower two levels, but turning movements are

handled by sweeping curved elevated ramps at levels three

and four. The geometric design of the highway engineer

can strongly influence the structural design of the bridge

engineer. These engineers must work in concert during the
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Fig. 7.4 Four-level directional interchange. (Courtesy of Modjeski & Masters, Inc.)

planning phase and share one another’s needs and desires
for integrating the bridge structures into the overall mission

of the highway system.
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PROBLEM

7.1 The roadway width, curb to curb, of a bridge deck is

62 ft. Using typical roadway widths given in Table 7.1,
how many traffic lanes will this bridge normally carry?

If vehicles are allowed to drive on the shoulders, say dur-

ing an emergency, how many lanes of traffic need to be

considered in the design of this bridge?



PART II

Loads and Analysis



CHAPTER 8

Loads

8.1 INTRODUCTION

The engineer must consider all the loads that are expected
to be applied to the bridge during its service life. Such loads
may be divided into two broad categories: permanent loads
and transient loads. The permanent loads remain on the
bridge for an extended period, usually for the entire service
life. Such loads include the self-weight of the girders and
deck, wearing surface, curbs, parapets and railings, utilities,
luminaries, and pressures from earth retainments. Transient
loads typically include gravity loads due to vehicular, rail-
way, and pedestrian traffic as well as lateral loads such as
those due to water and wind, ice floes, ship and vehicular col-
lisions, and earthquakes. In addition, all bridges experience
temperature fluctuations on a daily and seasonal basis and
such effects must be considered. Depending on the structure
type, other loads such as those from creep and shrinkagemay
be important, and, finally, the superstructure supports may
move, inducing forces in statically indeterminate bridges.
Transient loads, as the name implies, change with time

and may be applied from several directions and/or locations.
Typically, such loads are highly variable. The engineer’s
responsibility is to anticipate which of these loads are ap-
propriate for the bridge under consideration as well as the
magnitude of the loads and how these loads are applied for
the most critical effect. Finally, some loads act in combi-
nation, and such combinations must be considered for the
appropriate limit state. A discussion of such considerations
is presented in Chapter 5.
The loads appropriate for the design of short- and medium-

span bridges are outlined in this chapter. The primary focus
is on loads that are necessary for the superstructure design.
Other loads are presented with only limited discussion. For
example, ship impact is an important and complex load that
must be considered for long-span structures over navigable
waters. Similarly, seismic loads are of paramount importance

in regions of high seismicity and must be considered for a
bridge regardless of span length. Some bridges are an inte-
gral part of the lifeline network that must remain functional
after a seismic event. An understanding of such requirements
requires prerequisite knowledge of structural dynamics com-
bined with inelastic material response due to cyclic actions
and is therefore discussed only briefly. This specialized topic
is considered to be beyond the scope of this book. For ref-
erence, the book edited by Chen and Duan (2004) presents
additional material on seismic design of bridges.
Each type of load is presented individually with the ap-

propriate reference to the AASHTO Specification including,
where appropriate and important, a discussion regarding the
development of the AASHTO provisions. The loads defined
in this chapter are used in Chapter 9 to determine the load ef-
fects (shear and moment) for a girder line (single beam). In
Chapter 10, the modeling of the three-dimensional system is
discussed along with the reduction of the three-dimensional
system to a girder line. The primary purpose of this chapter
is to define and explain the rationale of the AASHTO load
requirements. Detailed examples using these loads are com-
bined with structural analysis in the subsequent chapters.

8.2 GRAVITY LOADS

Gravity loads are those caused by the weight of an object on
and the self-weight of the bridge. Such loads are both per-
manent and transient and applied in a downward direction
(toward the center of the earth).

8.2.1 Permanent Loads

Permanent loads are those that remain on the bridge for an
extended period of time, perhaps for the entire service life.
Such loads include:

� Dead load of structural components and nonstructural
attachments (DC)

� Dead load of wearing surfaces and utilities (DW)
� Dead load of earth fill (EV)
� Earth pressure load (EH)
� Earth surcharge load (ES)
� Locked-in erection stresses (EL)
� Downdrag (DD)

The two-letter abbreviations are those used by AASHTO
and are also used in subsequent discussions and examples.
The dead load of the structural components and nonstruc-

tural attachments are definitely permanent loads and must be
included.Here structural components refer to those elements
that are part of the load resistance system. Nonstructural at-
tachments refer to such items as curbs, parapets, barrier rails,
signs, illuminators, and guard rails. Such attachments often
contribute to the stiffness and strength; however, the posi-
tive effects of such loads are traditionally and conservatively
neglect in design.
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Table 8.1 Unit Densities

Material
Unit Weight
(kips/ft3)

Aluminum 0.175
Bituminous wearing surfaces 0.140
Cast iron 0.450
Cinder filling 0.060
Compact sand, silt, or clay 0.120
Concrete, lightweight (includes

reinforcement)
0.110

Concrete, sand—lightweight
(includes reinforcement)

0.120

Concrete, normal (includes
reinforcement) f ′c ≤ 5 ksi

0.145

Concrete, normal (includes
reinforcement) 5 ksi < f ′c < 15
ksi

0.140 + 0.001 f ′c

Loose sand, silt, or gravel 0.100
Soft clay 0.100
Rolled gravel, macadam, or ballast 0.140
Steel 0.490
Stone masonry 0.170
Hardwood 0.060
Softwood 0.050
Water, fresh 0.062
Water, salt 0.064
Transit rails, ties, and fastening per

track
0.200 kip/ft

In AASHTO Table 3.5.1-1. From AASHTO LRFD Bridge Design
Specifications . Copyright © 2010 by the American Association of
State Highwayand TransportationOfficials, Washington,DC. Used
by permission.

The weight of such items can be estimated by using the
unit weight of the material combined with the geometry. For
third-party attachments, for example, the guard rail, the man-
ufacture’s literature often containsweight information. In the
absence of more precise information, the unit weights given
in Table 8.1 may be used.
The dead load of the wearing surface (DW) is estimated

by taking the unit weight times the thickness of the surface.
This value is combined with the DC loads per Tables 5.1 and
5.2 [Tables 3.4.1-1 and 3.4.1-2].* Note that the load factors
are different for the DC and DW loads. The maximum
and minimum load factors for the DC loads are 1.25 and
0.90, respectively, and the maximum and minimum load
factors for the DW loads are 1.50 and 0.65, respectively.
The different factors are used because the DW loads have
been determined to be more variable in load surveys than
the DC loads. For example, Nowak (1993, 1995) noted the

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-
tions are enclosed in brackets and preceded by the letter A if specifications
and by the letter C if commentary.

coefficients of variation (standard deviation per mean) for
factory-made, cast-in-place (CIP), and asphalt surfaces are
0.08, 0.10, and 0.25, respectively. In short, it is difficult
to estimate at the time of design how many layers and
associated thicknesses of wearing surfaces may be applied
by maintenance crews during the service life, but it is fairly
easy to estimate the weight of other components.
The dead load of earth fills (EV) must be considered for

buried structures such as culverts. The EV load is determined
by multiplying the unit weight times the depth of materials.
Soil–structure interaction effects may apply. Again the load
factors per Table 5.1 and 5.2 [Tables A3.4.1-1 and A3.4.1-2]
apply.
The earth surcharge load (ES) is calculated like the EV

loads with the only difference being in the load factors. This
difference is attributed to its variability. Note that part or the
entire load could be removed at some time in the future, or
perhaps the surcharge material (or loads) could be changed.
Thus, the ES load has a maximum load factor of 1.50, which
is higher than the typical EV factors that are about 1.35. Sim-
ilarly, the minimum ES and EV factors are 0.75 and 0.90
(typical), respectively.
Soil retained by a structure such as a retaining wall, wing

wall, or abutment creates a lateral pressure on the structure.
The lateral pressure is a function of the geotechnical char-
acteristics of the material, the system geometry, and the an-
ticipated structural movements. Most engineers use models
that yield a fluidlike pressure against the wall. Such a proce-
dure is outlined in AASHTO Section 3.11 and is described
in more detail in AASHTO Section 10.
Locked-in erection stresses are accumulated force ef-

fects resulting from the construction process. They include
secondary forces from posttensioning. Downdrag is a
force exerted on a pile or drilled shaft due to soil move-
ment around the element. Such a force is permanent and
typically increases with time. The details regarding the
downdrag calculations are outlined in AASHTO Section 10,
Foundations.
In summary, permanent loads must always be considered

in the structural analysis. Some permanent loads are easily
estimated, such as component self-weight, while other loads,
such as lateral earth pressures, are more difficult due to the
greater variability involved. Where variabilities are greater,
higher load factors are used for maximum load effects and
lower factors are used for minimum load effects.

8.2.2 Transient Loads

Although the automobile is the most common vehicular live
load on most bridges, the truck causes the critical load ef-
fects. In a sense, cars are “felt” very little by the bridge and
come “free.” More precisely, the load effects of the car traffic
compared to the effect of truck traffic are negligible. There-
fore, the AASHTO design loads attempt to model the truck
traffic that is highly variable, dynamic, and may occur inde-
pendent of, or in unison with, other truck loads.
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The principal load effect is the gravity load of the truck,
but other effects are significant and must be considered. Such
effects include impact (dynamic effects), braking forces, cen-
trifugal forces, and the effects of other trucks simultaneously
present. Furthermore, different design limit states may re-
quire slightlydifferent truck loadmodels. Each of these loads
is described in more detail in the following sections. Much
of the research involved with the development of the live-
load model and the specification calibration is presented in
Nowak (1993, 1995). Readers interested in the details of this
development are encouraged to obtain this reference formore
background information.

Design Lanes The number of lanes a bridge may accom-
modate must be established and is an important design crite-
rion. Two terms are used in the lane design of a bridge:

� Traffic lane
� Design lane

The traffic lane is the number of lanes of traffic that the traf-
fic engineer plans to route across the bridge. A lane width is
associated with a traffic lane and is typically 12 ft (3600mm).
The design lane is the lane designation used by the bridge
engineer for live-load placement. The design lane width and
location may or may not be the same as the traffic lane. Here
AASHTO uses a 10-ft (3000 mm) design lane, and the vehi-
cle is to be positioned within that lane for extreme effect.
The number of design lanes is defined by taking the inte-

ger part of the ratio of the clear roadway width divided by
12 ft (3600mm) [A3.6.1.1.1]. The clear width is the distance
between the curbs and/or barriers. In cases where the traffic
lanes are less than 12 ft (3600 mm) wide, the number of de-
sign lanes shall be equal to the number of traffic lanes, and
the width of the design lane is taken as the width of traffic
lanes. For roadway widths from 20 to 24 ft (6000 to 7200
mm), two design lanes should be used, and the design lane
width should be one-half the roadway width.
The direction of traffic in the present and future design

scenarios should be considered and the most critical cases
should be used for design. Additionally, there may be con-
struction and/or detour plans that cause traffic patterns to be
significantly restricted or altered. Such situations may con-
trol some aspects of the design loading.
Transverse positioning of trucks is automatically ac-

counted for in the live-load distribution factors outlined in
AASHTO Section 4 and Chapter 11. When positioning is
required for cases where analysis is used or required, such
as lever rule, rigid method, and/or rigorous analysis, the
engineer must position the trucks for the critical load effect.
For exterior girders, this requires placing one wheel of a

truck within 2 ft (600 mm) from the curb or barrier. The next
truck, if considered, is placed within 4 ft (1200 mm) of the
first. A third truck, if required, is placed within 6 ft (1800
mm) of the second so as to not infringe upon the traffic lane

requirement. For an interior girder, one wheel is placed over
a girder and the position of others follows a similar pattern.
From a practical perspective, all trucks can be conservatively
placed transversely within 4 ft (1200mm) of each other with
little loss of “accuracy” when compared to the specification
intent. Patrick et al. (2006) outline this in significant detail.
In several examples, they take a simple approach and place
vehicles at a 4-ft (1200-mm) transverse spacing. Puckett et al.
(2007) also addressed this in an appendix in NCHRP 592.

Vehicular Design Loads A study by the Transporta-
tion Research Board (TRB) was used as the basis for the
AASHTO loads (TRB, 1990). The TRB panel outlinedmany
issues regarding the development (revision of) a national
policy of truckweights. This document provides an excellent
summary of history and policy alternatives and associated
economic trade-offs. Loads that are above the legal weight
and/or length limits but are regularly allowed to operate were
cataloged. Although all states in the Northeast allow such
overlegal loads . . . , many others, from . . .Florida to Alaska ,
also routinely allow such loads. Typically, these loads are
short-haul vehicles such as solid waste trucks and con-
crete mixers. Although above “legal” limits, these vehicles
were allowed to operate routinely due to “grandfathering”
provisions in state statutes. These vehicles are referred to
as exclusion vehicles . The engineers who developed the
load model felt that the exclusion trucks best represented the
extremes involved in the present truck traffic (Kulicki, 1992).
Theoretically, one could use all the exclusion vehicles in

each design and design for the extreme load effects (enve-
lope of actions). As an analysis would be required for many
vehicles, this is clearly a formidable task, even if automated.
Hence, a simpler, more tractable model was developed called
HL-93 (highway load, developed in 1993). The objective of
this model is to prescribe a set of loads such that the same
extreme load effects of the HL-93 model are approximately
the same as the exclusion vehicles. This model consists of
three distinctly different live loads:

� Design truck
� Design tandem
� Design lane

As illustrated in Figure 8.1, the design truck (the first of
three separate live-load configurations) is a model load that
resembles the typical semitrailer truck [A3.6.1.2]. The front
axle is 8 kips (35 kN), the drive axle of 32 kips (145 kN)
is located 14 ft (4300 mm) behind, and the rear trailer axle
is also 32 kips (145 kN) and is positioned at a variable dis-
tance ranging between 14 and 30 ft (4300 and 9000 mm).
The variable range means that the spacing used should cause
a critical load effect. The long spacing typically only controls
where the front and rear portions of the truck may be posi-
tioned in adjacent structurally continuous spans such as for
continuous short-span bridges. The design truck is the same
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Fig. 8.1 The AASHTO HL-93 design loads. (a) Design truck plus design lane, (b) design tandem plus design lane, and (c) dual design truck
plus design lane.

configuration that has been used by AASHTO (2002) Stan-
dard Specifications since 1944 and is commonly referred to
as HS20. The H denotes highway, the S denotes semitrailer,
and the 20 is the weight of the tractor in tons (U.S. cus-
tomary units). The new vehicle combinations as described
in AASHTO (2010) LRFD Bridge Specifications are desig-
nated as HL-93.
The second configuration is the design tandem and is il-

lustrated in Figure 8.1(b). It consists of two axles weighing
25 kips (110 kN) each spaced at 4 ft (1200mm),which is sim-
ilar to the tandem axle used in previous AASHTO Standard
Specifications except the load is changed from 24 to 25 kips
(110 kN).
The third load is the design lane load that consists of a uni-

formly distributed load of 0.64 kips/ft (9.3 N/mm) and is as-
sumed to occupy a region 10 ft (3000 mm) transversely. This
load is the same as a uniform pressure of 64 lb/ft2 (3.1 kPa)
applied in a 10-ft (3000-mm)design lane. This load is similar
to the lane load outlined in the AASHTO Standard Specifica-
tions for many years with the exception that the LRFD lane
load does not require any concentrated loads.
The load effects of the design truck and the design tan-

dem must each be superimposed with the load effects of
the design lane load. This combination of lane and axle
loads is a major deviation from the requirements of the
earlier AASHTO Standard Specifications, where the loads
were considered separately. These loads are not designed

to model any one vehicle or combination of vehicles but
rather the spectra of loads and their associated load ef-
fects. As such these types of loads are often referred to as
“notional.”
Although the live-load model was developed using the ex-

clusion vehicles, it was also compared to other weigh-in-
motion (WIM) studies.WIM studies obtain truckweight data
by using passive weighing techniques, so the operator is un-
aware that the truck is being monitored. Bridges are instru-
mented to perform this task. Such studies include Hwang
and Nowak (1991a,1991b) and Moses and Ghosen (1985).
Kulicki (1992) and Nowak (1993) used these WIM studies
as confirmation of the AASHTO live load.
Kulicki and Mertz (1991) compared the load effects (shear

and moment) for one- and two-span continuous beams for
the previous AASHTO loads and those presently prescribed.
In their study, the HS20 truck and lane loads were compared
to the maximum load effect of 22 trucks representative of
traffic in 1991. The ratio of the maximum moments to the
HS20moment is illustrated in Figure 8.2. Similarly, the shear
ratio is shown in Figure 8.3. Note that significant variation
exists in the ratios and most ratios are greater than 1, indi-
cating that the exclusion vehicle maximums are greater than
themodel load, a nonconservative situation.A perfect model
would contain ordinates of unity for all span lengths. This
model is practically not possible, but the combination of de-
sign truck with the design lane and the design tandem with
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Fig. 8.2 Comparison of the exclusion vehicles to the traditional
HS20 load effects—moment (AASHTO Fig. C3.6.1.2.1-1). (From
AASHTO LRFD Bridge Design Specifications , Copyright © 2010
by the American Association of State Highway and Transportation
Officials, Washington, DC. Used by permission.)
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Fig. 8.3 Comparison of the exclusion vehicles to the traditional
HS20 load effects—shear. (AASHTO Fig. C3.6.1.2.1-2). (From
AASHTO LRFD Bridge Design Specifications , Copyright © 2010
by the American Association of State Highway and Transportation
Officials, Washington, DC. Used by permission.)

the design lane gives improved results, which are illustrated
in Figures 8.4 and 8.5.
Note that the variation is much less than in Figures 8.2

and 8.3 as the ratios are more closely grouped over the span
range, for both moment and shear, and for both simple and
continuous spans. The implication is that the present model
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Fig. 8.4 Comparison of the design load effects with exclusion
vehicle—moment (AASHTO Fig. C3.6.1.2.1-3). (From AASHTO
LRFD Bridge Design Specifications , Copyright © 2010 by the
American Association of State Highway and Transportation Offi-
cials, Washington, DC. Used by permission.)
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Fig. 8.5 Comparison of the design load effects with exclusion
vehicle—shear (AASHTO Fig. C3.6.1.2.1-4). (From AASHTO
LRFD Bridge Design Specifications , Copyright © 2010 by the
American Association of State Highway and Transportation Offi-
cials, Washington, DC. Used by permission.)

adequately represents today’s traffic and a single-load factor
may be used for all trucks. Note that in Figure 8.4, the neg-
ative moment of the model underestimates the effect of the
exclusion vehicles. This underestimation occurs because the
exclusion model includes only one vehicle on the bridge at
a time, likely a nonconservative assumption for the negative
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moments and reactions at interior supports. As it is possible
that an exclusion vehicle could be closely followed by an-
other heavily loaded truck, it was felt that a third live-load
combination was required to model this case. This live-load
combination is specified in AASHTO [A3.6.1.3.1]:

For both negative moment (tension on top) between points of
contraflexureundera uniform load onall spans,and reaction
at interior supports, 90 percent of the effect of two design
trucks spaced a minimum of 50 ft (15,000 mm) between the
lead axle of one truck and the rear axle of the other truck,
combinedwith 90percentof the effect of the design lane load.
The distance between the 32-kip (145-kN) axles of each truck
shall be taken as 14 ft (4300 mm).

Axles that do not contribute to the extreme force effect
should be neglected. Nowak (1993) compared survey vehi-
cles with others in the same lane to theAASHTO loadmodel,
and the results are shown in Figures 8.6 and 8.7. The mo-
ments were chosen for illustration. The M (75) moment rep-
resents the mean of the load effect due to the survey vehi-
cles, HS20 is moment due to the traditionalAASHTO (2002)
Standard Specifications truck (same as the design truck), and
LRFD is the moment due to the present AASHTO (2010)
LRFD loads.Note that the present loads adequately represent
the load survey with a bias of approximately 20%.
In summary, three design loads should be considered: the

design truck, design tandem, and design lane. These loads are
superimposed threeways to yield the live-load effects, which
are combined with the other load effects per Tables 5.1 and
5.2. These cases are illustrated in Table 8.2 where the number
in the table indicates the appropriate multiplier to be used
prior to superposition. The term multiplier is used to avoid
confusion with the load factors that are used to combine the
various types of loads, for example, live and permanent loads
in Tables 5.1 and 5.2.

Fatigue Loads The strengths of various components of the
bridge are sensitive to repeated stressing or fatigue.When the
load is cyclic, the stress level that ultimately fractures thema-
terial can be significantly below the nominal yield strength.
For example, depending on the details of the welds, steel
could have a fatigue strength as low as 2.6 ksi (18 MPa)
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Fig. 8.6 Comparison of the design load effects with survey
vehicles—simple-span moment (Nowak, 1993).
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Fig. 8.7 Comparison of the design load effects with survey
vehicles—negative moment (Nowak, 1993).

[A6.6.1.2.5]. The fatigue strength is typically related to the
range of live-load stress and thenumber of stress cycles under
service load conditions. As the majority of trucks do not ex-
ceed the legal weight limits, it would be unduly conservative
to use the full live-load model, which is based on exclusion

Table 8.2 LoadMultipliers for Live Loads

Live-Load
Combination

Design
Truck

Design
Tandem

Two Design Trucks or Tandems
with 50-ft (15,000-mm)

Headwaya

Design
Lane

1 1.0 1.0
2 1.0 1.0
3 0.9 0.9

aThe two design trucks and lane combination is for the negative moment and reaction at interior
supports only.
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vehicles to estimate this load effect. This means that a lesser
load is used to estimate the live-load stress range and is ac-
commodated by using a single design truck with the variable
axle spacing set at 30 ft (9000 mm) and a load factor of 0.75
as prescribed in Table 5.1 [Table A3.4.1-1].
The dynamic load allowance (IM) [A3.6.2] must be in-

cluded and the bridge is assumed to be loaded in a single
lane [A3.6.1.4.3b]. The average load effect due to the survey
vehicles (used to calibrate the specification) was about 75%
of the moment due to the design truck (Nowak, 1993); hence
a load factor of 0.75 is used.
The number of stress–range cycles is based on traffic

surveys. In lieu of survey data, guidelines are provided
in AASHTO [A3.6.1.4.2]. The average daily truck traffic
(ADTT) in a single lane may be estimated as

ADTTSL = p (ADTT)

where p is the fraction of traffic assumed to be in one lane as
defined in Table 8.3.
Because the traffic patterns on the bridge are uncertain, the

frequency of the fatigue load for a single lane is assumed to
apply to all lanes.
The ADTT is usually available from the bridge owner, but

in some cases only the average daily traffic (ADT) is avail-
able. In such cases, the percentage of trucks in the total traffic
must be estimated. This percentage can vary widely with lo-
cal conditions, and the engineer should try to estimate this
with a survey. For example, it is common for interstate road-
ways in the rural western states to have the percentage of
trucks exceed 50%. If survey data are not possible or practi-
cal, or if the fatigue limit state is not a controlling factor in
the design, then AASHTO provides guidance. This guidance
is illustrated in Table 8.4.
Note that the number of stress–range cycles is not used in

the structural analysis directly. The fatigue truck is applied
in the same manner as the other vehicles and the range of ex-
treme stress (actions) are used. The number of stress–range
cycles is used to establish the available resistance.

Table 8.3 Fraction of Truck Traffic in a
Single Lane, p

Number of Lanes
Available to Trucks p

1 1.00
2 0.85
3 or more 0.80

In AASHTO Table 3.6.1.4.2-1. From AASHTO
LRFD Bridge Design Specifications . Copyright ©
2010 by the American Association of State High-
way and TransportationOfficials, Washington,DC.
Used by permission.

Table 8.4 Fraction of Trucks in Traffic

Class of Highway
Fraction of Trucks

in Traffic

Rural interstate 0.20
Urban interstate 0.15
Other rural 0.15
Other urban 0.10

In AASHTO Table C3.6.1.4.2-1. From AASHTO LRFD
Bridge Design Specifications . Copyright © 2010 by the
American Association of State Highway and Transportation
Officials, Washington, DC. Used by permission.

Pedestrian Loads The AASHTO [A3.6.1.6] pedestrian
load is 0.075 ksf (3.6 × 10–3 MPa), which is applied to
sidewalks that are integral with a roadway bridge. If the load
is applied to a bridge restricted to pedestrian and/or bicycle
traffic, then a 0.085 ksf (4.1 × 10–3 MPa) live load is used.
These loads are comparable to the building corridor load of
0.100 ksf (4.8 × 10–3 MPa) of the International Building
Code (IBC, 2009).
The railing for pedestrian and/or bicycle must be designed

for a load of 0.050 kip/ft (0.73 N/mm), both transversely and
vertically on each longitudinal element in the railing system
[A13.8.2 and A13.9.3]. In addition, as shown in Figure 8.8,
railingmust be designed to sustain a single concentrated load
of 0.200 kip (890N) applied to the top rail at any location and
in any direction.

Deck and Railing Loads The gravity loads for the design
of the deck system are outlined in AASHTO [A3.6.1.3.3].
The deck must be designed for the load effect due to the de-
sign truck or the design tandem, whichever creates the most
extreme effect. The two design vehicles should not be con-
sidered together in the same load case. For example, a design

0.200 kips (890 N)

< 6 ft (1800 mm)

Fig. 8.8 Pedestrian rail loads.
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truck in a lane adjacent to a design tandem is not consid-
ered (consider all trucks of one kind). The design lane load
is not considered in the design of the deck system, except
in slab bridges where the load is carried principally in the
longitudinal direction (see Chapter 4 on bridge types). Sev-
eral methods are available for the analysis of decks subjected
to these loads. A few of the more common methods are de-
scribed in Chapter 11. The vehicular gravity loads for decks
may be found in AASHTO [A3.6.1.3].
The deck overhang, located outside the facia girder and

commonly referred to as the cantilever, is designed for the
load effect of a uniform line load of 1 kip/ft (14.6 N/mm) lo-
cated 1 ft (300 mm) from the face of the curb or railing as
shown in Figure 8.9. This load is derived by assuming that
one-half of the 50-kip (220-kN) tandem is distributed over a
length of 25 ft (7600 mm). The rationale for this rather long
length is that the barrier system is structurally continuous
and periodically supported by cross beams or the cantilever
slab that has been strengthened. In other words, the barrier
behaves as another girder located on top of the deck and dis-
tributes the load over a longer length than if the barrier was
not present.
An illustration of a continuous barrier system is illustrated

in Figure 8.10(a). The concrete curbs, parapets, barriers, and
dividers, should be made structurally continuous with the
deck [A9.4.3]. The exception requires owner approval. If
the barrier is not flexurally continuous, then the load should
be distributed over a lesser length, increasing the cantilever
moments. An example is illustrated in Figure 8.10(b). More
details regarding deck design and analysis are presented in
Chapters 11 and 15.
The traffic barrier system and the deck overhang must sus-

tain the infrequent event of a collision of a truck. The barrier
is commonly referred to by many terms, such as parapet,
railing, and barrier. The AASHTO uses the terms railing or
railing system, and hereafter this term is used in the same
manner. The deck overhang and railing design is confirmed
by crash testing as outlined in AASHTO [A13.7.2]. Here the

Fig. 8.9 Gravity load on cantilever.

Fig. 8.10 (a) Continuous barrier and (b) discontinuous barrier.

rail/cantilever deck system is subjected to crash testing by
literally moving vehicles of specified momentum (weight,
velocity, and angle of attack) into the system. The momen-
tum characteristics are specified as a function of test levels
that attempt to model various traffic conditions. The design
loads crash worthiness is only used in the analysis and design
of the deck and barrier systems. The design forces for the rail
and deck design are illustrated in Table 8.5 for six test levels
(TL). The levels are described as follows [A13.7.2]:

TL-1 is used for work zones with low posted speeds and very
low volume, low speed local streets.

TL-2 is used for work zones and most local and collector
roads with favorable site conditions as well as where a
small number of heavy vehicles is expected and posted
speeds are reduced.

TL-3 is used for a wide range of high-speed arterial high-
ways with very low mixtures of heavy vehicles and with
favorable site conditions.

TL-4 is used for the majority of applications on high-speed
highways, freeways, expressways, and interstate highways
with a mixture of trucks and heavy vehicles.

TL-5 is used for the same applications as TL-4 and where
large trucks make up a significant portion of the average
daily traffic or when unfavorable site conditions justify a
higher level of rail resistance.



GRAVITY LOADS 109

Table 8.5 Test Configurations (Vehicle Weight in Tons)

Vehicle
Characteristics

Small
Automobiles

Pickup
Truck

Single-Unit
Van Truck

Van Type
Tractor-Trailer

Tractor-Tanker
Trailer

W (kips) 1.55 1.8 4.5 18.0 50.0 80.0 80.0
B (ft) 5.5 5.5 6.5 7.5 8.0 8.0 8.0
G (in.) 22 22 27 49 64 73 81
Crash angle, θ 20◦ 20◦ 25◦ 15◦ 15◦ 15◦ 15◦

Test Level Test Speeds (mph)

TL-1 30 30 30 N/A N/A N/A N/A
TL-2 45 45 45 N/A N/A N/A N/A
TL-3 60 60 60 N/A N/A N/A N/A
TL-4 60 60 60 50 N/A N/A N/A
TL-5 60 60 60 N/A N/A 50 N/A
TL-6 60 60 60 N/A N/A N/A 50

In AASHTOTableA13.7.2-1. From AASHTOLRFDBridgeDesignSpecifications . Copyright© 2010 by theAmerican
Association of State Highway and Transportation Officials, Washington, DC. Used by permission.

TL-6 is used for applications where tanker-type trucks or
similar high center-of-gravity vehicles are anticipated,
particularly along with unfavorable site conditions.

The definitions of the TL level that previously were
based upon NCHRP Report 350 (NCHRP, 1993) have been
updated based upon recent research. National Cooperative
Highway Research Program (NCHRP) Project 22-14(02),
“Improvement of Procedures for the Safety-Performance
Evaluation of Roadside Features” addressed the update.
These criteria are now published in the Manual for As-
sessing Safety Hardware (MASH) AASHTO (2009a). This
document changes the test matrix, installations, vehicles,
evaluation criteria, documentation, and performance eval-
uation. FHWA has a video presentation that summarizes
MASH. See http://fhwa.adobeconnect.com/mashfinal/.
Finally, videos of different barrier crash tests can be located

by an Internet search for “crash bridge barrier test video” or
similar keywords. These tests are used to validate the barrier
and deck attachment system. Video is one of the best ways
to gain an initial understanding about what a crash test is and
the results.

Multiple Presence Trucks will be present in adjacent lanes
on roadways with multiple design lanes, but it is unlikely
that three adjacent lanes will be loaded simultaneously with
the heavy loads. Therefore, some adjustments in the design
loads are necessary. To account for this effect, AASHTO
[A3.6.1.1.2] provides an adjustment factor for the multiple
presence. Table 8.6, after AASHTO [Table A3.6.1.1.2-1], is
provided.
Note that these factors should not be applied in situations

where these factors have been implicitly included, such as in
the load distribution factors outlined in AASHTO [A4.6.2].
If statical distribution factors are used or if the analysis is

Table 8.6 Multiple Presence Factors

Number of Design Lanes
Multiple Presence

Factor m

1 1.20
2 1.00
3 0.85
More than 3 0.65

In AASHTO Table 3.6.1.1.2-1. From AASHTO LRFD Bridge
Design Specifications . Copyright © 2010 by the American
Association of State Highway and Transportation Officials,
Washington, DC. Used by permission.

based on refined methods, then the multiple presence factors
apply. The details of these analytical methods are described
in Chapter 11. In addition, these factors apply in the design of
bearings and abutments for the braking forces defined later.
Lastly, the multiple presence factors should not be used in
the case of the fatigue limit state.

Dynamic Effects The roadway surface is not perfectly
smooth, thus the vehicle suspension must react to roadway
roughness by compression and extension of the suspension
system. This oscillation creates axle forces that exceed the
static weight during the time the acceleration is upward and
is less than the static weight when the acceleration is down-
ward. Although commonly called impact, this phenomenon
is more precisely referred to as dynamic loading and the
term to account for this is called dynamic load allowance
(DLA).
There have been numerous experimental and analytical

studies to determine the dynamic load effect. Paultre et al.
(1992) provide an excellent review of analytical and ex-
perimental research regarding the effects of vehicle/bridge
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Fig. 8.11 International perspective of dynamic load allowance
(Paultre et al., 1992).

dynamics. In this article, the writers outline the various
factors used to increase the static load to account for dy-
namic effects. As illustrated in Figure 8.11, various bridge
engineering design specifications from around the world use
widely differing factors. The ordinate axis represents the
load increase or DLA and the abscissa is the fundamental
frequency of the structure. In cases where the specification
value is a function of span length [e.g., AASHTO (2002)],
the frequency is estimated using an empirically based for-
mula. Note the wide variability for DLA. This variability
indicates that the worldwide community has not reached a
consensus about this issue.
One must carefully interpret and compare the results of

such studies as the definitions of the dynamic effects are not
consistent and are well portrayed by Bakht and Pinjarkar
(1991) and Paultre et al. (1992). These writers describe
the many definitions that have been used for dynamic load
effects. Such definitions have a significant effect on the
magnitude of the DLA reported and consequently the pro-
fession’s perception of dynamic effects. It is most common
to compare the static and dynamic deflections as illustrated
in Figure 8.12. A typical plot of a midspan deflection is
shown as a function of vehicle position. The dynamic effect
is defined herein as the amplification factor applied to the
static response to achieve the dynamic load effect. This
effect is called by many different terms: dynamic load fac-
tor, dynamic load allowance, and impact factor. Sometimes
the factor includes the static load response (>1) and other
times it includes only the dynamic response (<1). The term
dynamic load allowance is used by AASHTO, which is
abbreviated IM (for impact). Although the terminology is
inconsistent with the abbreviation, IM is traditionally used
and some old habits will likely never die. When referring to
Figure 8.12, the dynamic load allowance is

IM = Ddyn

Dsta

Fig. 8.12 Typical live-load response (Hwang and Nowak,
1991a).

where D sta is the maximum static deflection and D dyn is the
additional deflection due to the dynamic effects.
It is important to observe that this ratio varies significantly

with different vehicle positions. Thus, it is quite possible to
observe impact factors that greatly exceed those at the max-
imum deflections (and the AASHTO value). Bakht and Pin-
jarkar (1991) and Paultre et al. (1992) describe this charac-
teristic. The DLA is of concern principally because it is used
for the design and evaluation of bridges for the extreme load
effects. Therefore, it is reasonable to define the DLA based
on the extreme values.
The principal parameters that affect the impact factor

are the dynamic characteristics of the truck, the dynamic
characteristics of the bridge, and the roadway roughness.
These characteristics are expected as all transient structural
dynamic problems involve stiffness, mass, damping, and
excitation. Hwang and Nowak (1991a, 1991b) present a
comprehensive analytical study involving modeling a truck
as rigid bodies interconnected with nonlinear suspension
springs. The simply supported bridges were modeled using
the standard equation for forced beam vibration, and the
excitation was derived using actual roadway roughness data.
Numerical integration was used to establish the response.

The truck configurations were taken from weigh-in-motion
studies of Moses and Ghosen (1985). Simply supported steel
and prestressed slab girder bridges were studied. The results
offer insight into vehicle bridge dynamics. The dynamic
and static components of midspan deflection for the steel
girder bridges are illustrated in Figures 8.13 and 8.14. Note
that the dynamic component remains almost unchanged
with the truck weight while the static deflection increases
linearly with weight, as expected. As the ratio of the two
deflections is the DLA, it follows that the DLA decreases
with truck weight, which is illustrated in Figure 8.15. Note
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Fig. 8.13 Dynamic response (Hwang and Nowak, 1991a).

that for the design truck weight (72 kips, 316 kN) the DLA
is approximately 0.3, the AASHTO value.
Note that most of the data are below 0.3. Hwang and

Nowak (1991a) also summarize their findings for various
trucks and roughness profiles, where four span lengths were
considered. The average impact factors ranged from a low
average of 0.09 (COV = 0.43) to a maximum of 0.21 (COV
= 0.72), where COV is the coefficient of variation. These
results indicate that the impact load effects are typically less
than 30%, but with significant variation.
The global load dynamic effects are addressed in most

studies regarding impact. Global means the load effect is
due to the global system response such as the deflection,
moment, or shear of a main girder. Local effects are the
actions that result from loads directly applied to (or in the
local area of) the component being designed. These include
decks and deck components. In short, if a small variation in
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Fig. 8.14 Static response (Hwang and Nowak, 1991a).

the live-load placement causes a large change in load effect,
then this effect should be considered local .
Impacts on such components tend to be much greater than

the effects on the system as a whole and are highly depen-
dent on roadway roughness. First, this is because the load is
directly applied to these elements, and second, their stiffness
is much greater than that of the system as a whole. For many
years the AASHTO used an impact formula that attempted
to reflect this behavior by using the span length as a parame-
ter. The shorter spans required increased impact to an upper
limit of 0.3.
Other specifications, for example, the Ontario Highway

Bridge Design Code (OHBDC, 1983), an extremely pro-
gressive specification for the time, modeled this behavior
as a function of the natural frequency of the system. This
specification is illustrated in Figure 8.11. Although perhaps
the most rational approach, it is problematic because the

0.0
100 200 300 400

Gross Vehicle Weight (kN)

D
yn

am
ic

 L
oa

d 
F

ac
to

r

500 600 700

Span Length

12 m
18 m
24 m

30 m

0.4

0.2

0.6

0.8

1.0

Fig. 8.15 Dynamic load allowance (Hwang and Nowak, 1991a).
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frequency must be calculated (or estimated) during the
design process. Obtaining a good estimate of the natural
frequency can be difficult for an existing structure and
certainly more difficult for a bridge being designed. This
approach adds a level of complexity that is perhaps unwar-
ranted. An empirical-based estimate can be obtained by a
simple formula (Tilly, 1986).
The present AASHTO specification takes a very simplis-

tic approach and defines the DLA as illustrated in Table 8.7
[A3.6.2].
These factors are to be applied to the static load as

UL+I = UL (1 + IM) (8.1)

where UL+I is the live-load effect plus allowance for dy-
namic loading,UL is the live-load effect of live load, and IM
is the fraction given in Table 8.7.
All other components in Table 8.7 include girders, beams,

bearings (except elastomeric bearings), and columns.
Clearly, the present specification does not attempt to model
dynamic effects with great accuracy, but with sufficient ac-
curacy and conservatism for design. Both experimental and
analytical studies indicated that these values are reasonable
estimates. Moreover, considering the variabilities involved, a
flat percentage for dynamic load effect is practical, tractable
for design, and reasonably based on research results. For the
structural evaluation of existing bridges (rating), the engi-
neer will likely use the criteria established in the AASHTO
rating procedures that are a function of roadway roughness.
At the time of design, the future roadway roughness and
associated maintenance are difficult to estimate, thus more
conservative values are appropriate.

Centrifugal Forces Acceleration is the time derivative of
the velocity vector and as such results from either a change
of magnitude or direction of velocity. A truck can increase
speed, decrease speed, and/or change directions as it moves
along a curvilinear path. All of these effects require an
acceleration of the vehicle that causes a force between the
deck and the truck. Because its mass is large compared to
the power available, a truck cannot increase its speed at a
rate great enough to impose a significant force on the bridge.

Table 8.7 Dynamic Load Allowance, IM

Component IM (%)

Deck joints—all limit states 75
All other components
Fatigue and fracture limit states 15
All other limit states 33

In AASHTO Table 3.6.2.1-1. From AASHTO LRFD Bridge
Design Specifications . Copyright © 2010 by the American
Association of State Highway and Transportation Officials,
Washington, DC. Used by permission.

Conversely, a decrease in speed due to braking can create
a significant acceleration (deceleration) that causes large
forces on the bridge in the direction of the truck movement.
The braking effect is described in the next section. Finally,
as a truck moves along a curvilinear path, the change in
direction of the velocity causes a centrifugal acceleration in
the radial direction. This acceleration is

ar = V 2

r
(8.2)

where V is the truck speed, and r is the radius of curvature
of the truckmovement. The forces and accelerations involved
are illustrated in Figure 8.16.
Newton’s second law requires

F = ma (8.3)

where m is the mass. Substitution of Eq. 8.2 into Eq. 8.3
yields

Fr = mV 2

r
(8.4)

where Fr is the force on the truck directed toward the center
of the curve (outward on the bridge). The position of this
force is at the center of mass, assumed to be at 6 ft (1800
mm) above the roadway surface [A3.6.3]. Note that the mass
m is equal to

m = W

g
(8.5)

where W is the weight of the vehicle, and g is the gravita-
tional acceleration: 32.2 ft/s2 (9.807 m/s2). Substitution of
Eq. 8.5 into Eq. 8.4 yields

Fr =
(

V 2

rg

)
W (8.6)

Fig. 8.16 Free-body diagrams for centrifugal force.
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which is similar to the expression given in AASHTO
[A3.6.3] where

Fr = CW (8.7a)

where

C = f

(
v2

Rg

)
(8.7b)

and f = 4
3 is for a combination of trucks positionedalong the

bridge for limit states other than fatigue; for fatigue f = 1.0; v
is the highway design speed in feet/second (meters/second),
R is radius of curvature of traffic lane in feet (meters), and
Fr is applied at the assumed center of mass at a distance of 6
ft (1800 mm) above the deck surface.
Because the combination of the design truck with the

design lane load gives a load approximately 4
3 of the effect

of the design truck considered independently, a 4
3 factor

is used to model the effect of a train of trucks. Equation
8.6 may be used with any system of consistent units. The
multiple presence factors [A3.6.1.1.2] may be applied to
this force, as it is unlikely that all lanes will be fully loaded
simultaneously.

BrakingForces As described in the previous section, brak-
ing forces can be significant. Such forces are transmitted to
the deck and must be taken into the substructure at the fixed
bearings or supports. It is quite probable that all truck oper-
ators on a bridge will observe an event that causes the op-
erators to apply the brakes. Thus, loading of multiple lanes
should be considered in the design. Again, it is unlikely that
all the trucks in all lanes will be at themaximum design level,
therefore the multiple presence factors outlined previously
may be applied [A3.6.1.1.2]. The forces involved are shown
in Figure 8.17. The truck is initially at a velocity V , and this
velocity is reduced to zero over a distance s . The braking
force and the associated acceleration are assumed to be con-
stant. The change in kinetic energy associated with the truck
is assumed to be completely dissipated by the braking force.
The kinetic energy is equated to the work performed by the

W

N

FB

MaB

Fig. 8.17 Free-body diagram for braking force.

braking force giving

1

2
mV 2 =

∫ s

0
FBds = FBs (8.8)

where FB is the braking force transmitted into the deck and
m is the truck mass. Solve for FB and substitute the mass as
defined in Eq. 8.5 to yield

FB = 1

2

(
W

g

) (
V 2

s

)
= 1

2

(
V 2

gs

)
W = bW (8.9a)

where

b = 1

2

(
V 2

gs

)
(8.9b)

where b is the fraction of the weight that is applied to model
the braking force. In the development of the AASHTO brak-
ing force fraction, it was assumed that the truck is moving at
a velocity of 55 mph (90 km/h)= 80 ft/s (25 m/s) and a brak-
ing distance of 400 ft (122,000mm) is required. Substitution
of these values gives the braking force fraction:

b = (80)2

2 (32.2) (400)
= 0.25 = 25%

The braking forces shall be taken as the larger of [A3.6.4]:

� 25% of the axle weights of the design truck or the tan-
dem truck placed in all lanes, or

� 5% of the truck and lane, or
� 5% of the tandem and lane.

Implicit in the AASHTO value is that the coefficient of
friction exceeds 0.25 for the tire–deck interface. The brak-
ing force is assumed to act horizontally at 6 ft (1800 mm)
above the roadway surface in either longitudinal direction.

Permit Vehicles and Miscellaneous Considerations
Transportation agencies may include other vehicle loads to
model load characteristics in their particular jurisdiction.For
example, the Pennsylvania Department of Transportation
(PennDOT) uses a notional vehicle called P-82, which
models various heavy vehicles that operate under special
hauling permits (PennDOT, 2011).
For design, PennDOT incorporates such vehicles, in ad-

dition to the AASHTO LRFD live loads. See Figure 8.18a.
As with HL-93, this vehicle does not represent any one ve-
hicle but rather models an envelope. The P-82 load effect
compared to other loads for a simple span is illustrated in
Figure 8.18b. The use of the strength II limit state is typical
for these kinds of loads. Note that the load effect is greater,
but the load factor is less, 1.35. The background for the de-
velopment of this is related to Koretzky et al. (1986).
Similarly, the Department of Transportation in California

(Caltrans) uses a different load model for its structures (see
Fig. 8.19). Caltrans’ rationale is similar to PennDOT’s.
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Fig. 8.18a PennDOTP-82 (PennDOT, 2007). P-82 width is the same as the design truck. Transverse wheel location is the same as the design
truck.
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Fig. 8.18b PennDOT load effect comparison (PennDOT, 2010).

The load model should closely approximate the service
conditions.
Once the bridge is in operation, the actual vehicle described

by axle weights and spacing is used in the analysis to permit
the heavy hauls. Handling heavy permit vehicles, and heavy
truck loads in general, is a challenging part of managing the
bridge inventory from both a technical and administrative
perspective.
In summary, agencies use loads and procedures that exceed

those found in AASHTO LRFD. Similarly, agencies have
altered the AASHTO LRFD specifications to better model
their specific bridge types, construction methods, loads, and

environmental conditions.Most of these documents are read-
ily available on a DOT’s website.

8.3 LATERAL LOADS

8.3.1 Fluid Forces

The force on a structural component due to a fluid flow (wa-
ter or air) around a component is established by Bernoulli’s
equation in combination with empirically established drag
coefficients. Consider the object shown in an incompressible
fluid in Figure 8.20. With the use of Bernoulli’s equation,
equating the upstream energy associated with the flow at
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Fig. 8.19 Caltrans “purple loads”.

point a with the energy associated with the stagnation point
b , where the velocity is zero, yields

1

2
ρV 2

a + pa + ρgha = 1

2
ρV 2

b + pb + ρghb (8.10)

Assuming that points a and b are at the same elevation,
and that the reference upstream pressure at point a is zero,
pressure at point b is

pb = 1

2
ρV 2

a (8.11)

The stagnation pressure is the maximum inward pressure
possible as all the upstream kinetic energy is transferred to
potential energy associated with the pressure. Because every

a b

Fig. 8.20 Body in incompressible fluid.

point on the surface is not at stagnation, that is, some velocity
exists, the pressures at these points are less than the stagna-
tion pressures. This effect is because the upstream energy is
split between potential (pressure) and kinetic energies. The
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total pressure is integrated over the surface area and is used
to obtain the fluid force. It is conventional to determine the
integrated effect (or force) empirically and to divide the force
by the projected area. This quotient establishes the average
pressure on an object, which is a fraction of the stagnation
pressure. The ratio of the average pressure to the stagnation
pressure is commonly called the drag coefficient Cd. The
drag coefficient is a function of the object’s shape and the
characteristics of the fluid flow, typically Reynolds number.
With the use of a known drag coefficient, the average pres-
sure on an object may be calculated as

p = Cd

1

2
ρV 2 (8.12)

It is important to note that the fluid pressures and associated
forces are proportional to the velocity squared. For example,
a 25% increase in the fluid velocity creates approximately a
50% increase in fluid pressure and associated force.

Wind Forces The velocity of the wind varies with the ele-
vation above the ground and the upstream terrain roughness,
and therefore pressure on a structure is also a function of
these parameters. Velocity increases with elevation, but at
a decreasing rate. If the terrain is smooth, then the veloc-
ity increases more rapidly with elevation. A typical velocity
profile is illustrated in Figure 8.21, where several key param-
eters are shown. The parameter Vg is the geotropic velocity
or the velocity independent of surface (boundary) effects, δ

is the boundary layer thickness, usually defined as the height
where the velocity of 99% of Vg, and V 30 is the reference ve-
locity at 30 ft. Traditionally, this is the height at which wind
velocity data is recorded. Since its introduction in 1916, the
velocity profile has been modeled with a power function of
the form

VDZ = CV30

(
Z

30

)α

Vg

V30

V(z)

30 ft

δ

Fig. 8.21 Velocity profile.

where C and α are empirically determined constants. This
model is used in many building codes. Critics of the power
law point out that its exponent is not a constant for a given
upstream roughness but varies with height, that the standard
heights used to establish the model were somewhat subjec-
tive, and lastly, that the model is purely a best-fit function
and has no theoretical basis (Simiu, 1973, 1976). More re-
cently, meteorologists and wind engineers are modeling the
wind in the boundary layer with a logarithmic function. This
function is founded on boundary layer flow theory and better
fits experimental results. The general formof the logarithmic
velocity profile is

V (Z) = 1

κ
V0 ln

(
Z

Z0

)
(8.13)

where Z is the elevation above the ground,κ is vonKarman’s
constant (∼0.4), Z 0 is the friction length of the ground up-
stream, and

V0 =
√

τ0

ρ
(8.14)

where τ 0 is the shear stress at the ground surface and ρ is the
density of air. The parameter V 0 is termed the shear friction
velocity because it is related to the shear force (friction), and
Z 0 is related to the height of the terrain roughness upstream.
As expected, these parameters are difficult tomathematically
characterize, so empirical values are used. Note that for a
given upstream roughness, two empirical constants Z 0 and
V 0 are required in Eq. 8.13. Therefore, two measurements
of velocity at different heights can be used to establish these
constants. Simiu (1973, 1976) and Simiu and Scanlon (1978)
report on these measurements done in the experiments of
many investigators.
It is interesting that these constants are not independent and

an expression can be formulated to relate them as shown be-
low. The wind-generated shear stress at the surface of the
ground is

τ0 = D0ρV 2
30 (8.15)

where D 0 is the surface drag coefficient and V 30 is the wind
speed at 30 ft (10 m) above the low ground or water level,
miles per hour (mph).
With Z = 30 ft (10 m), Eq. 8.13 is used to solve for V 0:

V0 = κ
V30

ln
(
30/Z0

) (8.16)

Equate the surface shear stress in Eqs. 8.14 and 8.15 to
obtain

D0 =
(

V0

V30

)2

(8.17a)

or
V0 = √

D0V30 (8.17b)

Substitution of Eq. 8.16 into Eq. 8.17a yields

D0 =
[

κ

ln
(
30/Z0

)
]2

(8.18)
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Finally, substitute Eq. 8.18 into Eq. 8.17b to yield

V0 =
[

κ

ln
(
30/Z0

)
]

V30 (8.19)

Equation 8.19 illustrates that for any reference velocity
V 30, Z 0 and V 0 are related.
For unusual situations or for a more complete background,

refer to Liu (1991). Liu outlines many issues in wind engi-
neering in a format amenable to an engineer with a basic
fluid mechanics background. Issues such as terrain rough-
ness changes, local conditions, drag coefficients, and so on
are discussed in a manner relevant to the bridge/structural
engineer.
The equation for velocity profile used by AASHTO

[A3.8.1.1] is

VDZ = 2.5V0

(
V30

VB

)
ln

(
Z

Z0

)
(8.20)

where VDZ is the design wind speed at design elevation Z
(mph) [same as V (Z ) in Eq. 8.13], VB is the base wind ve-
locityof 100mph (160 km/h) yieldingdesign pressures, V 0 is
the “friction velocity,” a meteorological wind characteristic
taken as specified in Table 8.8 for upwind surface character-
istics (mph), and Z 0 is the “friction length” of the upstream
fetch, a meteorological wind characteristic taken as specified
in Table 8.8 (ft).
The constant 2.5 is the inverse of the von Karman’s con-

stant 0.4. The ratio (V 30/VB) is used to linearly proportion
for a reference velocity other than 100 mph (160 km/h).
Equation 8.19 may be used to illustrate the relationship

between V 0 and Z 0. For example, use the open-country
exposure

V0 = 0.4

ln (10,000/70)
(160 km/h) = 12.9 km/h

V0 = 0.4

ln (30/0.23)
(100 mph) = 8.2 mph

which reasonably agrees with Table 8.8.
The velocity at 30 ft (V 30) or 10m (V 10) may be established

by fastest-mile-of-wind charts available in ASCE 7–02 for
various recurrence intervals (ASCE, 2003), by site-specific

Table 8.8 Values of V 0 and Z 0 for Various Upstream
Surface Conditions

Condition Open Country Suburban City

V 0, mph (km/h) 8.20 (13.2) 10.90 (17.6) 12.00 (19.3)
Z 0, ft (mm) 0.23 (70) 3.28 (1000) 8.20 (2500)

In AASHTO Table 3.8.1.1-1. From AASHTO LRFD Bridge Design
Specifications . Copyright © 2010 by the American Association of
State Highway and Transportation Officials, Washington, DC. Used
by permission.

investigations, or in lieu of a better criterion use 100 mph
(160 km/h).
The wind pressure on the structure or component is estab-

lished by scaling a basic wind pressure for VB = 100 mph
(160 km/h). This procedure is

PD = PB

(
VDZ

VB

)2

= PB

V 2
DZ

10,000
(8.21)

where the basic wind pressures are given in Table 8.9 [Table
A3.8.1.2.1-1]. Table 8.9 includes the effect of gusts and the
distributionof pressure on the surface (pressure coefficients).
If we use Eq. 8.11with a velocity of 100 mph (160 km/h) and
a density of standard air 0.00194 slugs/ft3 (1000 kg/m3), we
set a stagnation pressure of 25 psf (1226Pa = 0.00123MPa).
Therefore, Table 8.9 includes a large increase of about 100%
for gusts. A discussion with the code writers established that
the pressures used in the previous AASHTO specifications
were reasonable, seldom controlled the design of short- or
medium-span bridges, and conservative values were used.
So, depending on the assumed gust response and pressure
coefficients, the design wind speed is likely above 100 mph
(160 km/h).
Equation 8.21 uses the ratio of the design and base ve-

locities squared because the pressure is proportional to the
velocity squared. Additionally, the minimum wind loading
shall not be less than 0.30 kip/ft (4.4 N/mm) in the plane
of the windward chord and 0.15 kip/ft (2.2 N/mm) in the
plane of the leeward chord on truss and arch components,
and not less than 0.30 kip/ft (4.4 N/mm) on beam or girder
spans [A3.8.1.2.1]. This wind load corresponds to the wind
pressure on structure–load combination (WS) as given in
Table 8.9. This wind should be considered from all direc-
tions and the extreme values are used for design. Directional
adjustments are outlined in AASHTO [A3.8.1.2.2], where
the pressure is separated into parallel and perpendicular
component pressures as a function of the attack angle. The
details are not elaborated here.
Finally, note that ASCE (2010) in its ASCE-07 document

has significantly changed its approach to wind loads for
the strength/extreme limit state. Here the wind speed has
changed to the 3-s gust, different statistical measures are
used, and the wind speed and associated pressures are much
higher than the previous ASCE (2003) document. However,
the wind load factor is smaller with a value of 1.0 to parallel
seismic loads. AASHTO (2010) has not changed to parallel
this recent work. Therefore, comparison of these approaches
should be made with care.
The wind must also be considered on the vehicle (WL).

This load is 0.10 kip/ft (1.46 N/mm) applied at 6 ft (1800
mm) above the roadway surface [A3.8.1.3].
For long-span structures, the possibility of aeroelastic

instability exists. Here the wind causes a resonance situation
with the structure, creating large deformations, actions, and
possible failures. This phenomenon is best characterized
by the famous Tacoma Narrows Bridge, which completely
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Table 8.9 Base Pressures PB Corresponding to VB = 100 mph (160 km/h)

Superstructure Component Windward Load, ksf (MPa) Leeward Load, ksf (MPa)

Trusses, columns, and arches 0.050 (0.0024) 0.025 (0.0012)
Beams 0.050 (0.0024) N/A
Large flat surfaces 0.040 (0.0019) N/A

In AASHTO Table 3.8.1.2.1-1. From AASHTO Bridge Design Specifications . Copyright © 2010 by
the American Association of State Highway and Transportation Officials, Washington, DC. Used by
permission.

collapsed due to aeroelastic effects. This collapse brought
attention to this important design consideration that is
typically a concern in the analysis of long-span bridges.
Due to the complexities involved, aeroelastic instability is
considered beyond the scope of the AASHTO specifica-
tion and this book. Internet search for “Tacoma Narrows
Bridge aeroelastic” gives several versions of video of the
failure.

Water Forces Water flowing against and around the sub-
structure creates a lateral force directly on the structure as
well as debris that might accumulate under the bridge. Flood
conditions are the most critical. As outlined above, the forces
created are proportional to the square of velocity and to a drag
coefficient. The use of Eq. 8.12 and the substitution of γ =
0.062 kip/ft3(ρ = 1000 kg/m3) yields

pb = 1

2

γ

g
CdV

2
a = CdV

2
a

1038
(8.22US)

pb = 1

2
ρCdV

2
a = 500CdV

2
a (8.22SI)

where the AASHTO equation [A3.7.3.1] is

p = 1

2

γ

g
CdV

2
d = CDV 2

1000
(8.23US)

p = 5.14 × 10−4CDV 2 (8.23SI)

Here CD is the drag coefficient given in Table 8.10, and
V is the design velocity of the water for the design flood in
strength and service limit states, and for the check flood in
the extreme event limit state [ft/s (m/s)]. Note that CD is the
specific AASHTO value and Cd is a generic term.
If the substructure is oriented at an angle to the stream

flow, then adjustments must be made. These adjustments are
outlined in AASHTO [A3.7.3.2]. Where debris deposition is
likely, the bridge area profile should be adjusted accordingly.
Some guidance on this is given in AASHTO [A3.7.3.1] and
its associated references.
Although not a force, the scour of the stream bed around

the foundation can result in structural failure. Scour is the
movement of the stream bed from around the foundation,
and this can significantly change the structural system,
creating a situation that must be considered in the design
[A3.7.5]. AASHTO [A2.6.4.4.2] outlines an extreme limit

Table 8.10 Drag Coefficient

Type CD

Semicircular nosed pier 0.7
Square-ended pier 1.4
Debris lodged against pier 1.4
Wedged-nosed pier with nose angle 90◦ or less 0.8

In AASHTO Table 3.7.3.1-1. From AASHTO LRFD Bridge
Design Specifications . Copyright © 2010 by the American
Association of State Highway and Transportation Officials,
Washington, DC. Used by permission.

state for design. Because this issue is related to hydraulics,
the substructure is not considered in detail here. However,
it should be noted that more bridges collapse due to scour
than any other cause. Assess scour with significant care and
often the help of a bridge hydraulics expert.

8.3.2 Seismic Loads

Depending on the location of the bridge site, the anticipated
earthquake effects can be inconsequential or they can gov-
ern the design of the lateral load resistance system. The
AASHTO Specifications have been developed to apply to all
parts of the United States, so all bridges should be checked
to determine if seismic loads are critical. In many cases the
seismic loads are not critical and other lateral loads, such as
wind, water, and/or ice govern the design.
The provisions of the AASHTO Specifications are based

on the following principles [C3.10.1]:

� Small-to-moderate earthquakes should be resisted
within the elastic range of the structural components
without significant damage.

� Realistic seismic ground motion intensities and forces
should be used in the design procedures.

� Exposure to shaking from large earthquakes should not
cause collapse of all or part of the bridge.Where possi-
ble, damage should be readily detectable and accessible
for inspection and repair.

The AASHTO provisions apply to bridges of conventional
construction [A3.10.1]. Conventional bridges include those
with slab, beam, box girder, or truss superstructures, and
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single- ormultiple-columnpiers, wall-typepiers, or pile-bent
substructures. In addition, conventional bridges are founded
on shallow or piled footings, or shafts. Nonconventional
bridges include bridges with cable-stayed/cable-suspended
superstructures, bridges with towers or hollow piers for
substructures, and arch bridges [C3.10.1].
A discussion of the procedure used to determine when a

bridge at a particular site requires a detailed seismic analysis
is included in the next section. This section is followed
by sections on minimum design forces and seismic load
combinations.

Seismic Design Procedure The six steps in the seismic de-
sign procedure are outlined in this section. A flowchart sum-
marizing the earthquake design provisions is presented in
Appendix A to Section 3 of AASHTO (2010).
The first step is to arrive at a preliminary design describ-

ing the type of bridge, the number of spans, the height of
the piers, a typical roadway cross section, horizontal align-
ment, type of foundations, and subsurface conditions. The
nature of the connections between the spans of the super-
structure, between the superstructure and the substructure,
and between the substructure and the foundation are also im-
portant. For example, if a bridge superstructure has no deck
joints and is integral with the abutments, its response dur-
ing a seismic event is quite different from one with multiple
expansion joints.
There are also innovative energy dissipating connections

that can be placed below the superstructure at the abutments
and pier caps to effectively isolate the superstructure from the
effects of ground shaking. These devices can substantially
reduce the magnitude of the inertial forces transmitted to a
foundation component and can serve as a structural fuse that
can be replaced or repaired if a larger earthquake occurs.
The second step is to determine the acceleration coeffi-

cients for the peak ground acceleration (PGA) (on rock),
short period spectral acceleration Ss, and the one-second
spectral acceleration S 1 [A3.10.2]. Contours of horizontal
acceleration in rock expressed as a percent of gravity are
illustrated on the maps of the United States provided in
A3.10.2.1. Here there are many maps, so these are not in-
cluded here. Alternatively, visit http://earthquake.usgs.gov/
hazards/ where there are many resources associated with
hazards including earthquakes. There is software that can be
downloaded that provides the spectral acceleration values
for several building codes and specifications.
At a given location, the acceleration coefficient from the

map has a 93% probabilityof not being exceeded in 75 years.
This value corresponds to a return period of about 1000 years
for the design earthquake [C3.10.2.1].

Example 8.1 Determine the peak ground acceleration,
short-period acceleration, and one-second accelerations for
an essential bridge located in Blacksburg, Virginia (zip
code 24060) Use the USGS Earthquake Ground Motion

Parameters software and/or the maps in A3.10.2.1-1, -2, and
-3. See discussion above. The bridge is founded on soft rock
which implies site condition B.
PGA = 8.3, Ss = 20.9, S 1 = 5.4 as a percent of the accel-

eration of gravity. These values are illustrated in Figure 8.22.
The horizontal axis is the natural period of the structure (or
mode under study) in seconds.

The third step is to determine site coefficients Fpga, Fa, and
Fv, which adjust the spectral accelerations for the geotechni-
cal characteristics of the site. For example, a soft soil between
bedrock and the structure can significantly amplify the ac-
celerations and associated loads. A discussion of this topic is
beyond the scope of this book. See A3.10.3 and Table 8.11.
The fourth step is to determine the operational category of

a bridge [A3.10.5]. Following a seismic event, transportation
routes to hospitals, police and fire departments, communica-
tion centers, temporary shelters and aid stations, power in-
stallations, water treatment plants, military installations,ma-
jor airports, defense industries, refineries, and railroad and
truck terminals must continue to function. Bridges on such
routes should be classified as essential. In addition, a bridge
that could collapse onto an essential route should also be
classified as essential. Table 8.12 summarizes the character-
istics of the three operational categories, one of which must
be assigned to each bridge. Consideration should be given to
possible future changes in the role of the bridgewhen assign-
ing an operational category.
The fifth step is to determine the seismic performance zone

for each bridge [A3.10.6]. These seismic zones group to-
gether regions of the United States that have similar seismic
risk. The greater the acceleration coefficient, the greater is
the risk. The seismic zones are given in Table 8.13, and the
higher the number the greater are the seismic performance re-
quirements for the bridge in regard to the method of analysis,
the length of bridge seats, and the strength of connections.
The sixth step is to determine the response modification

factors (R factors), which reduce the seismic force based
on an elastic analysis of the bridge system [A3.10.7]. The
force effects from an elastic analysis are to be divided by
the response modification factors given in Table 8.14. The
use of these R factors, generally greater than 1, recognizes
that when a design seismic event (1000-year return period)
occurs, energy is dissipated through inelastic deformation
(hinging) in the substructure. This energy dissipation actu-
ally protects the structure from large shocks and allows it to
be designed for reduced forces.
In the event a large earthquake (2500-year return period)

should occur, the hinging regions may have to be repaired,
but, if all of the components are properly tied together, col-
lapse does not occur. To ensure that proper attention is given
to the transfer of internal actions from one component to an-
other, the R factors for connections given in Table 8.15 do
not reduce, and in some cases amplify, the force effects from
an elastic analysis.
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Fig. 8.22 Example plot from the USGS Ground Motion Software (http://earthquake.usgs.gov/hazards/).

Table 8.11 Soil Profiles

Type Description

A Hard rock (Fpga, Fa, and Fv are less than one, 0.8 is typical)
B Rock (the base case upon which the spectral acceleration require no site adjustment; Fpga, Fa, and Fv are equal to one)
C Dense soil and rock (Fpga, Fa, and Fv are greater than one)
D Stiff soil
E 10 ft or more of soft clay
F Very loose soil (peat, highly plastic, etc.) These require a detailed site investigation.

Based upon AASHTO Table 3.10.3.1-1. From AASHTO LRFD Bridge Design Specifications . Copyright © 2010 by the American Asso-
ciation of State Highway and Transportation Officials, Washington, DC. Used by permission. (The AASHTO table provides more precise
descriptions.)

Based on the information obtained by completing the
above steps, decisions can be made regarding the level
of seismic analysis required, the design forces, and the
design displacement requirements. For example, single-span
bridges and bridges in seismic zone 1 do not have to be
analyzed for seismic loads, while critical bridges in seis-
mic zone 4 require a rigorous method of seismic analysis
[A4.7.4].

Minimum Seismic Design Connection Forces When
ground shaking due to an earthquake occurs and a bridge
superstructure is set in motion, inertial forces equal to the
mass times the acceleration are developed. These forces can
be in any direction and must be restrained, or dissipated, at
the connection between the superstructure and substructure.
For a single-span bridge, the minimum design connection
force in the restrained direction is to be taken as the product
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Table 8.12 Operational Classification [A3.10.5, C3.10.5]

Operational Category Description

Critical bridges Must remain open to all traffic after the design earthquake (1000-year return period event) and
open to emergency vehicles after a large earthquake (2500-year return period event).

Essential bridges Must be open to emergency vehicles after the design earthquake.
Other bridges May be closed for repair after a large earthquake.

Table 8.13 Seismic Performance Zones

Acceleration Coefficient Seismic Zone

SD1 ≤ 0.15 1
0.15 < SD1≤ 0.30 2
0.30 < SD1≤ 0.50 3
0.50 < SD1 4

In AASHTO Table 3.10.6-1. From AASHTO LRFD
Bridge Design Specifications . Copyright © 2010
by the American Association of State Highway and
TransportationOfficials, Washington, DC. Used by
permission. SD1 = FvS1 where Fv is based upon the
soil as described above .

of the acceleration coefficient and the tributary dead load
associated with that connection.
Bridges in seismic zone 1 do not require a rigorous seismic

analysis, and therefore nominal values are specified for the
connection forces. To obtain the horizontal seismic forces in
a restrained direction, the tributary dead load is multipliedby
the value given in Table 8.16 [A3.10.9.2]. The tributary dead
load to be used when calculating the longitudinal connection
force at a fixed bearing of a continuous segment or simply
supported span is the total dead load of the segment. If each
bearing in a segment restrains translation in the transverse
direction, the tributary dead load to be used in calculating
the transverse connection force is the dead-load reaction at
the bearing. If each bearing supporting a segment is an elas-
tomeric bearing, which offers little or no restraint, the con-
nection is to be designed to resist the seismic shear forces
transmitted through the bearing, but not less than the values
represented by the multipliers in Table 8.16. As is the ground
acceleration PGA adjusted by the site factor to account for
the geotechnical characteristics. Therefore, As = Fpga PGA.

Example 8.2 To continue the Example of 8.1, determine
the minimum longitudinal and transverse connection forces
for a simply supported bridge span of 70 ft (21 m) in Blacks-
burg, Virginia (zone 1), with a dead load of 8 kips/ft (115
kN/m) founded on site factor B. Assume that in the longitu-
dinal direction, oneconnection is free tomove while the other
is fixed and that in the transverse direction both connections
to the abutment are restrained. Use A3.10.9.2.

SOLUTION

As = FpgaPGA = 1.0 (0.083) = 0.083 > 0.05

Total dead load WD = 8 (70) = 560 kips

Connection force FC = ma = (
WD/g

) (
AS × g

) = WDAS

Longitudinal(min) FCL = (560) (0.083)

= 46 kips does not control

Table 8.16 FCL = 560 (0.25)

= 140 kips at fixed end (controls)

Transverse FCT = 1
2FCL = 70 kips per abutment

Note that if the nominal approach requires forces that are
considered too conservative, the engineer can perform amore
rigorous analysis.

Connections for bridges in seismic zone 2 are to be de-
signed for the reaction forces determined by a single-mode
elastic spectral analysis divided by the appropriate R factor
of Table 8.15. Connection forces for bridges in seismic zones
3 and 4 can be determined by either a multimode elastic spec-
tral analysis divided by R or by an inelastic step-by-step time
history analysis with R = 1.0 for all connections. The use of
R = 1.0 assumes that the inelastic method properly mod-
els the material hysteretic properties and the accompanying
energy dissipation.
For further information for seismic analysis of bridges,

the reader is referred to the AASHTO Guide Specifications
for LRFD Seismic Bridge Design , AASHTO (2009b). This
guide specification references a host of other works as well.

Combinationof Seismic Forces Because of the directional
uncertainty of earthquake motions, two load cases combin-
ing elastic member forces resulting from earthquakes in two
perpendicular horizontal directions must be considered. The
two perpendicular directions are usually the longitudinal and
transverse axes of the bridge. For a curved bridge, the lon-
gitudinal axis is often taken as the line joining the two abut-
ments. The two load cases are expressed as [A3.10.8]:

Load case 1 1.0FL + 0.3FT (8.24a)

Load case 2 0.3FL + 1.0FT (8.24b)
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Table 8.14 Response Modification Factors—Substructures

Operational Category

Substructure Other Essential Critical

Wall-type piers—larger dimension 2.0 1.5 1.5
Reinforced concrete pile bents

(a) Vertical piles only 3.0 2.0 1.5
(b) One or more batter piles 2.0 1.5 1.5

Single columns 3.0 2.0 1.5
Steel or composite steel and concrete pile bents

(a) Vertical piles only 5.0 3.5 1.5
(b) One or more batter piles 3.0 2.0 1.5

Multiple column bents 5.0 3.5 1.5

In AASHTO Table 3.10.7.1-1. From AASHTO LRFD Bridge Design Specifications . Copyright ©
2010 by the American Association of State Highway and Transportation Officials, Washington, DC.
Used by permission.

Table 8.15 Response Modification
Factors—Connections

Connection
All Operational

Categories

Superstructure to abutment 0.8
Expansion joints within a span of the

superstructure
0.8

Columns, piers, or pile bents to cap beam or
superstructure

1.0

Columns or piers to foundations 1.0

In AASHTOTable 3.10.7.1-2. From AASHTOLRFDBridgeDesign
Specifications . Copyright © 2010 by the American Association of
State Highwayand TransportationOfficials, Washington,DC. Used
by permission.

Table 8.16 Multiplier for Connection
Force in Seismic Zone 1 [A3.10.9.2]

Acceleration Coefficient Multiplier

As ≤ 0.05 0.15
0.05 < As 0.25

where
FL = elastic member forces due to an earthquake in the

direction of the longitudinal axis of the bridge
FT = elastic member forces due to an earthquake in the

direction of the transverse axis of the bridge

8.3.3 Ice Forces

Forces produced by ice must be considered when a structural
component of a bridge, such as a pier or bent, is located in wa-
ter and the climate is cold enough to cause thewater to freeze.

The usual sequence is that freeze-up occurs in late fall, the
ice grows thicker in the winter, and the ice breaks up in the
spring. If the bridge is crossing a lake, reservoir, harbor, or
other relatively quite body of water, the ice forces are gener-
ally static. These static forces can be horizontal when caused
by thermal expansion and contraction or vertical if the body
of water is subject to changes in water level. If the bridge
is crossing a river with flowing water, the static forces exist
throughout the winter months, but when the spring breakup
occurs, larger dynamic forces are produced by floating sheets
of ice impacting the bridge structure.

Effective Strength of Ice Because the strength of ice is less
than that of the steel and concrete used in the construction of
bridge piers, the static and dynamic ice forces on bridge piers
are limited by the effective strength of the ice: the static ther-
mal forces by the crushing strength and the dynamic forces
by either the crushing or the flexural strength. The strength
of the ice depends on the conditions that exist at the time it is
formed, at the time it is growing in thickness, and at the time
it begins to melt and break up. If the ice is formed when the
surface is agitated and freezes quickly, air entraps within the
structure of the ice and gives it a cloudy or milky appearance.
This ice is not as strong as that that is formed gradually and
grows over a long period of time to be very solid and clear in
appearance. The conditions during the winter months, when
this ice is increasing in thickness, affects the strength of the
ice. If snow cover is present and melts during a warming pe-
riod and then freezes, weaker granular snow ice is formed.
In fact, sections cut through ice sheets show varying layers
of clear ice, cloudy ice, and snow ice. This ambiguity makes
classification difficult. The conditions at the time of spring
breakup also affect the strength. If the temperature through-
out the thickness sheet is at the melting temperature when the
ice breaks up, it has less strength than when the average ice
temperature is below the melting temperature.
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Table 8.17 Effective Ice Crushing Strength at Breakup

Average Ice Temperature Condition of Ice Effective Strength

At melting point Substantially disintegrated 8.0 ksf (0.38 MPa)
Somewhat disintegrated 16.0 ksf (0.77 MPa)
Large pieces, internally sound 24.0 ksf (1.15 MPa)

Below melting point Large pieces, internally sound 32.0 ksf (1.53 MPa)

An indication of the variation in crushing strength of ice at
the time of breakup is given inAASHTO [A3.9.2.1] as shown
in Table 8.17. These values are to be used in a semiempirical
formula, discussed later, for determining dynamic ice forces
on bridge piers.

Field Measurement of Ice Forces Haynes et al. (1991)
have measured forces exerted by moving ice on a bridge
pier in the St. Regis River in upstate New York. Other re-
searchers who have measured ice forces in Canada, Alaska,
and Vermont are listed in their report. The purpose of these
studies is to provide data that can be used to calibrate design
codes for changing local conditions.
In the Haynes et al. study, a steel panel was instrumented

and placed on the upstream nose of a pier (see Fig. 8.23). The
panel pivots about its base and a load cell measures a reac-
tive force when the panel is struck by moving ice. Whenever
the signal from the load cell gets above a preset threshold
level, the load cell force data along with the pressure trans-
ducer reading that determines the water depth are recorded.
The ice force that produced the force in the load cell is then
determined by balancing moments about the pin location.
In March 1990, a major ice run took place. Ice thick-

ness was estimated to be about 6–8 in. (152–203 mm)
(nonuniform flow causes variations in ice cover thicknesses
for most rivers). Plots of the ice force versus time for two
of the largest ice force events during this run are shown in

Fig. 8.23 Ice load panel on pier of the St. Regis River Bridge.
(From Haynes et al., 1991.)
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Fig. 8.24 Records of ice force versus time onMarch 16–17, 1990:
(a) ice failure by crushing and (b) ice impactwithoutmuch crushing.
(From Haynes et al., 1991.)

Figure 8.24. For the ice force record shown in Figure 8.24(a),
the ice–structure interaction event lasted about 2.3 s and is
believed to represent crushing failure of the ice because the
force record has many oscillations without the force drop-
ping to zero. The rapid increase and decrease of ice force
shown in Figure 8.24(b) indicates an impact and possible
rotation or splitting of the ice floe without much crushing.
This impact event lasted only about 0.32 s and produced the
maximum measured ice force of nearly 80,000 lb (356 kN).
The largest ice force produced by the crushing failure of the
ice was about 45,000 lb (200 kN).
One observation from these fieldmeasurements is the wide

variation in ice forces against a pier produced in the same ice
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run by ice floes thatwere formed and broken up under similar
conditions. Some of the ice sheets, probably the larger ones,
were indented when they collided with the pier and failed
by crushing. Other ice floes smaller in size and probably of
solid competent ice banged into the pier with a larger force
and then rotated and were washed past the pier. In light of
this observation, it appears prudent to use only the last two
categories for effective ice strength of 24 ksf (1.15 MPa) and
32 ksf (1.53 MPa) in Table 8.17, unless there is long expe-
rience with local conditions that indicate that ice forces are
minimal.

Thickness of Ice The formulas used to predict horizon-
tal ice forces are directly proportional to the effective ice
strength and to the ice thickness. The thicker the ice, the
larger is the ice force. Therefore, the thickness of ice selected
by a designer is important, and at the same time it is the pa-
rameter with the most uncertainty. It is usually thicker at the
piers where cracking, flooding, freezing, and rafting (where
one ice sheet gets under another) have occurred. It is usually
thinner away from the pier where the water is flowing free.
Ice not only grows down into the water but also thickens on
the top. Ice can thicken quite rapidly in cold weather but can
also be effectively insulated by a covering of snow. On some
occasions the ice can melt out in midwinter and freezeup has
to begin again. And even if ice thickness has been measured
over a number of years at the bridge site, this may not be the
ice that strikes the bridge. It could come from as far away as
200 miles (320 km) upstream.
Probably thebest way to determine ice thickness at a bridge

site is to search the historical record for factual information
on measured ice thickness and to talk to local people who
have seen more than one spring breakup. These can be long-
time residents, town or city officials, newspaper editors, state
highway engineers, and representatives of government agen-
cies. A visit to the bridge site is imperative because the locals
can provide information on the thickness of ice and can also
indicate what the elevation of the water level is at spring
breakup.
If historical data on ice thickness is not available, a math-

ematical model based on how cold a region is can serve as a
starting point for estimating thickness of ice. The following
discussion is taken from Wortley (1984).
The measure of “coldness” is the freezing degree-day

(FDD), which is defined as the departure of the daily mean
temperature from the freezing temperature. For example,
if the daily high was 20◦F (−6.7◦C) and the low was 10◦F
(−12◦C), the daily average would be 15◦F (−9.4◦C), which
is 17◦F (9.4◦C) departure from the freezing temperature.
The FDD would therefore be 17◦F (9.4◦C). A running sum
of FDDs (denoted by Sf) is a cumulative measure of winter’s
coldness. If this sum becomes negative due to warmweather,
a new sum is started on the next freezing day.
An 80-year record of values of Sf at various sites around

the Great Lakes accumulated on a daily and weekly basis

Table 8.18 Eighty-Year Mean and Extreme Freezing
Degree Days (◦F)

Great Lake Station Mean Extreme

Lake Superior Thunder Bay, Ontario 2500 3300
Houghton, Michigan 1650 2400
Duluth, Minnesota 2250 3050

Lake Michigan Escanaba, Michigan 1400 2400
Green Bay, Wisconsin 1350 2300
Chicago, Illinois 500 1400

Lake Huron Parry Sound, Ontario 1500 2550
Alpena, Michigan 1150 2000
Port Huron, Michigan 600 1550

Lake Erie Detroit, Michigan 500 1350
Buffalo, New York 500 1200
Erie, Pennsylvania 400 1100
Cleveland, Ohio 300 1200

Lake Ontario Kingston, Ontario 1150 2000
Toronto, Ontario 600 1500
Rochester, New York 600 1300

After Assel (1980).

is given in Table 8.18. The daily basis is termed the mean
Sf and weekly basis is termed the extreme Sf. The extreme
sum is computed by accumulating the coldest weeks over the
80-year period.
Figure 8.25 is a map of the United States developed by

Haugen (1993) from National Weather Service data cover-
ing the 30-year period from 1951 to 1980 giving contours
of extreme freezing degree days in degrees Celsius (◦C). For
example, at Chicago, the map contour gives 700◦C (1292◦F).
This 30-year extreme is slightly less than the 80-year extreme
value of 1400◦F (760◦C) given in Table 8.18.
Observations have shown that the growth of ice thickness

is proportional to the square root of Sf. Neill (1981) suggests
the followingempirical equation for estimating ice thickness:

t = 0.083αt

√
Sf (◦F) (ft) (8.25US)

t = 33.9αt

√
Sf (◦C) (mm) (8.25SI)

where αt is the coefficient for local conditions from
Table 8.19 [C3.9.2.2], and Sf is the sum of freezing degree
days (◦F or ◦C).

Example 8.3 Use the map of Figure 8.25 and Eq. 8.25 to
estimate themaximum thickness of ice on the St. Regis River,
which flows into the St. Lawrence River in northern New
York, assuming it is an average river with snow. The sum of
freezing degree days is 2000◦F (1100◦C), per Figure 8.25.
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Fig. 8.25 Maximum sum of freezing degree days (FDD) in degrees Celsius (◦C). (From Haugen, 1993.)

Table 8.19 Locality Factors for Estimating Ice
Thickness

Local Conditions αt

Windy lakes with no snow 0.8
Average lake with snow 0.5–0.7
Average river with snow 0.4–0.5
Sheltered small river with snow 0.2–0.4

From Neill (1981).

Taking αt = 0.5, Eq. 8.25 yields

t = 0.083αt

√
Sf = 0.083 × 0.5

√
2000 = 1.9 ft

t = 33.9αt

√
Sf = 33.9× 0.5

√
1100 = 560mm

In January 1990, the ice thickness was measured to be
1.17–2.17 ft (358–660 mm) near the bridge piers (Haynes
et al., 1991). The calculated value compares favorably with
the measured ice thickness. As a matter of interest, the
designers of the bridge at this site selected an ice thickness
of 3.0 ft (914 mm).

Dynamic Horizontal Ice Forces When moving ice strikes
a pier, the usual assumption is that the ice fails in crushing

and the horizontal force on the pier is proportional to the
width of the contact area, the ice thickness, and the effec-
tive compressive strength of the ice. During impact, thewidth
of the contact area may increase from zero to the full width
of the pier as the relative velocity of the ice floe with respect
to the pier decreases. By equating the change in kinetic en-
ergy of a moving ice floe to thework done in crushing the ice,
the critical velocity of the ice floe can be determined (Ger-
shunov, 1986). The critical velocity is the velocity required
to achieve full indentation of the structure into the ice. If the
velocity of the ice floe is greater than the critical velocity,
the ice floe continues to move and crush the ice on the full
contact area.
The expressions for dynamic horizontal ice forces in

AASHTO [A3.9.2.2] are independent of the velocity of the
ice, which implies that the velocity of the approaching ice
floe is assumed to be greater than the critical velocity. If
w /t > 6.0, then the horizontal force F, kip (N), due to moving
ice is governed by crushing over the full width of the pier
and is given by

F = Fc = Captw (8.26)

for which

Ca =
(

5t

w + 1

)0.5

(8.27)
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Where
p = effective ice crushing strength from Table 8.18, ksf

(MPa)
t = thickness of ice, ft (mm)
w =pier width at level of ice action, ft (mm)

When the pier nose is inclined at an angle greater than 15◦

from the vertical, an ice floe can ride up the inclined nose
and fail in bending. If w /t ≤ 6, the horizontal ice force F ,
kip (N), is taken as the lesser of the crushing force FC from
Eq. 8.26 or the bending failure force Fb given by

F = Fb = Cnpt2 (8.28)

for which
Cn = 0.5

tan (α−15)
(8.29)

where α is the inclination of the pier nose from the vertical,
degrees, but not less than 15◦.

Example 8.4 Calculate the dynamic horizontal ice force
predicted for the St. Regis River bridge pier at a water level
where the pier width is 4 ft (1220 mm). The pier nose is in-
clined only 5.7◦ from the vertical, so the failure will be by
crushing and Eq. 8.26 controls. Use an effective ice strength
of 24 psf (1.150MPa) and the ice thickness of 8 in. (203mm)
observed on March 16–17, 1990.

Ca =
(
5t

w
+ 1

)0.5

=
(
5×0.66

4.0
+ 1

)0.5

or

×
(
5×203

1220
+ 1

)0.5

=1.35

F = Fc = Captw =1.35(24 ksf)(0.66 ft)(4 ft) = 86 kips

F = Fc = Captw = 1.35(1150 kPa)(203 mm)(1220 mm))

= 385kN

The maximum ice force measured during the ice run of
March 16–17, 1990, was 79.9 kips (355 kN) (Haynes et al.,
1991), which is comparable to the predicted value.

The above ice forces are assumed to act parallel to the lon-
gitudinal axis of the pier. When an ice floe strikes the pier at
an angle, transverse forces are also developed. The magni-
tude of the transverse force Ft depends on the nose angle β

of the pier and is given by [A3.9.2.4.1]

Ft = F

2tan[(β/2) + θf ]
(8.30)

Where
F = horizontal ice force calculated by Eq. 8.26 or Eq. 8.28
β = angle, degrees, in a horizontal plane included between

the sides of a pointed pier as shown in Figure 8.26 (for
a flat nose, β is 0◦;
for a round nose, β may be taken as 100◦).

θ f = friction angle between ice and pier nose, degrees

Fig. 8.26 Transverse ice force when a floe fails over a portion of
a pier (AASHTO Fig. C3.9.2.4.1-1). (From AASHTO LRFDBridge
Design Specifications , Copyright © 2010 by the American Associ-
ation of State Highway and Transportation Officials, Washington,
DC. Used by permission.)

Example 8.5 Determine the transverse ice force corre-
sponding to the dynamic horizontal ice force of Example 8.4
if the St. Regis River bridge pier has a pointed nose with an
included angle of 90◦ and the friction angle is 10◦.

Ft = F

2 tan[(β/2) + θf ]
= 86

2 tan[(90/2) + 10]
= 31 kips

= F

2 tan
[
(β/2) + θf

] = 385

2 tan[(90/2) + 10]
= 135 kN

The longitudinal and transverse ice forces are assumed to
act on the nose of the pier. When the ice movement is gen-
erally parallel to the longitudinal axis of the pier, two load
combination cases need to be investigated [A3.9.2.4.1]:

� A longitudinal force of F shall be combined with a
transverse force of 0.15Ft.

� A longitudinal force of 0.5F shall be combined with a
transverse force of Ft.

If the longitudinal axis of the pier is skewed with respect to
the flow, the total force on the pier is calculated on the basis
of the projected pier width and resolved into components.
In regionswhere ice forces are significant, slender and flex-

ible piers are not recommended. Ice–structure interaction can
lead to amplification of the ice forces if the piers or pier com-
ponents, including piles, are flexible.
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Static Horizontal Ice Forces When ice covers move
slowly, the inertia can be neglected, and the ice forces can be
considered static. When ice is strained slowly, it behaves in a
ductile manner that tends to limit pressure. Additionally, ice
creeps over time, which also decreases forces. The largest
static ice forces are of thermal origin and occur when there
is open water on one side of a structure and ice on the other.
Predictions of thermal ice pressures are difficult because

they depend on the rate of change of temperature in the
ice, the coefficient of thermal expansion ∼0.000030/◦F
(0.000054/◦C), the rheology of ice, the extent to which
cracks have been filled with water, the thickness of the
ice cover, and the degree of restrictions from the shores
(Wortley, 1984). If thermal thrusts are calculated assuming
the ice fails by crushing and using the strength values of
Table 8.17, which neglect creep, the lateral loads determined
will be too high.
Based on observations of ice in the Great Lakes and on

stability calculations for rock-filled crib gravity structures,
Wortley (1984) believes that reasonable ice thermal thrust
values for this region are 5–10 kips/ft (73–146 kN/mm). If
biaxial restraint conditions exist, such as in a harbor basin
with a sheet piling bulkhead on most of its perimeter, the
thermal thrusts can be doubled to 10–20 kips/ft (146–292
kN/mm).

Vertical Ice Forces Changes in water level cause the ice
sheet to move up and down, and vertical loads result from the
ice adhering to the structure. The vertical force on an embed-
ded pile or pier is limited by the adhesive strength between
the ice and the structure surface, by the shear strength of the
ice, or by bending failure of the ice sheet some distance from
the structure (Neill, 1981). Assuming there is no slippage at
the ice–structure interface and no shear failure, a bending
failure of the ice sheet will occur. If the pier is circular, this
bending failure leaves a collar of ice firmly attached to the
pier and a set of radial cracks in the floating ice sheet. When
there is an abrupt water level fluctuation, the ice sheet will
bend until the first circumferential crack occurs and a failure
mechanism is formed. If the water level beneath ice sheet
drops, the ice becomes a hanging dead weight [ice weighs
57 lb/ft3 (pcf) (9.0 kN/m3)]. If the water level rises, a lifting
force is transmitted to the pier or piling that could offset the
dead load of a light structure.
The AASHTO Specifications give the following expres-

sions for the maximum vertical force Fv on a bridge pier
[A3.9.5]:

� For a circular pier, in kips

Fv = 80.0t2
(
0.35 + 0.03R

t0.75

)
(8.31)

� For a oblong pier, in kips

Fv = 0.2t1.25L + 80.0t2
(
0.35 + 0.03R

t0.75

)
(8.32)

Where
t = ice thickness, ft
R = radius of circular pier, ft
L = perimeter of pier, excluding half circles at ends of

oblong pier, ft

Example 8.6 Calculate the vertical ice force on a 6-ft-
diameter circular pier of a bridge crossing a reservoir that
is subject to sudden changes in water level. Assume the ice
is 2 ft thick:

Fv = 80(2)2
[
0.35 + 0.03 (3)

20.75

]
= 129 kips

Snow Loads on Superstructure Generally, snow loads are
not considered on a bridge, except in areas of extremely
heavy snowfall. In areas of significant snowfall, where snow
removal is not possible, the accumulated snow loads may
exceed the vehicle live loads. In some mountainous regions,
snow loads up to 0.700 ksf (33.5 kPa) may be encountered. In
these areas, building code roof loads, historical records, and
local experience should be used to determine the magnitude
of the snow loads. Finally, pedestrian bridges are sometimes
used on a seasonal basis and will collect snow. In such cases,
a portion of live and full snow might be appropriate.

8.4 FORCES DUE TO DEFORMATIONS

8.4.1 Temperature

Two types of temperature changes must be included in the
analysis of the superstructure (see [A3.12.2] and [A3.12.3]).
The first is a uniform temperature change where the entire su-
perstructure changes temperature by a constant amount. This
type of change lengthens or shortens the bridge, or if the sup-
ports are constrained it will induce reactions at the bearings
and forces in the structure. This type of deformation is il-
lustrated in Figure 8.27(a). The second type of temperature
change is a gradient or nonuniform heating (or cooling) of
the superstructure across its depth [see Fig. 8.27(b)]. Sub-
jected to sunshine, the bridge deck heats more than the gird-
ers below. This nonuniformheating causes the temperature to
increase more in the top portion of the system than in the bot-
tom and the girder attempts to bow upward. If restrained by
internal supports or by unintentional end restraints, compati-
bility actions are induced. If completely unrestrained, due to
the piecewise linear nature of the imposed temperature distri-
bution, internal stresses are introduced in the girder. In short,
a statically determinate beam has internal stress due to the
piecewise linear temperature gradient (even for a simply sup-
ported girder). This effect is discussed further in Chapter 12.
As expected, the temperature range is considered a func-

tion of climate. Here AASHTO defines two climatic condi-
tions: moderate and cold. A moderate climate is when the
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Table 8.20 Temperature Ranges

Climate Steel or Aluminum ◦F (◦C) Concrete ◦F (◦C) Wood ◦F (◦C)

Moderate 0–120 (−18–50) 10–80 (−12–27) 10–75 (−12–24)
Cold −30–120 (−35–50) 0–80 (−18–27) 0–75 (−18–24)

In AASHTO Table 3.12.2.1.1-1. From AASHTO LRFDBridgeDesign Specifications . Copyright © 2010 by the Amer-
ican Association of State Highway and Transportation Officials, Washington, DC. Used by permission.

Fig. 8.27 (a) Temperature-induced elongation and (b) temp-
erature-induced curvature.

number of freezing days per year is less than 14. A freez-
ing day is when the average temperature is less than 32◦F
(0◦C). Table 8.20 gives the temperature ranges. The temper-
ature range is used to establish the change in temperature
used in analysis. For example, if a concrete bridge is con-
structed at a temperature of 68◦F (20◦C), then the increase in
a moderate climate for concrete is
T = 80 – 68 = 12◦F (27
– 20 = 7◦C), and the decrease in temperature is 
T = 68 –
(10) = 58◦F (∼41◦C).
Theoretically, the range of climatic temperature is not a

function of structure type, but the structure’s temperature is a
function of the climatic temperature record and specific heat
of thematerial, mass, surface volume ratio, heat conductivity,
wind conditions, shade, color, and so on. Because concrete
bridges are more massive than steel and the specific heat of
concrete is less than steel, an increase in climatic temper-
ature causes a smaller temperature increase in the concrete
structure than in the steel. Loosely stated, the concrete struc-
ture has more thermal inertia (systems with a large thermal
inertia are resistant to changes in temperature) than its steel
counterpart.
The temperature gradients are more sensitive to the bridge

location than the uniform temperature ranges. The gradient
temperature is a function of solar gain to the deck surface. In
western U.S. states, where solar radiation is greater, the tem-
perature increases are also greater. The converse is true in the
eastern U.S. states. Therefore, the country is partitioned into

the solar radiation zones shown in Figure 8.28 [A3.12.3]. The
gradient temperatures outlined in Table 8.21 reference these
radiation zones. The gradient temperature is considered in
addition to the uniformtemperature increase. Typically, these
two effects are separated in the analysis and therefore are sep-
arated here. The AASHTO [A3.12.3] gradient temperatures
are illustrated in Figure 8.29.
A temperature increase is considered positive inAASHTO.

The temperature T 3 is zero unless determined from

Fig. 8.28 Solar radiation zones. (AASHTO Fig. 3.12.3-1). (From
AASHTO LFRD Bridge Design Specifications , Copyright © 2010
by the American Association of State Highway and Transportation
Officials, Washington, DC. Used by permission.)

Table 8.21 Gradient Temperaturesa

Concrete Surface ◦F (◦C)

Zone T 1 T 2

1 54 (30) 14 (7.8)
2 46 (25) 12 (6.7)
3 41 (23) 11 (6)
4 38 (21) 9 (5)

aTo obtain negative gradients multiply by −0.3 and −0.2, for
concrete and asphalt overlay decks, respectively.
In AASHTO Table 3.12.3-1. From AASHTO LRFD Bridge De-
sign Specifications . Copyright© 2010 by the American Associa-
tion of State Highway and Transportation Officials, Washington,
DC. Used by permission.
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Fig. 8.29 Design temperature gradients. (AASHTO Fig. 3.12.3-
2). (From AASHTO LFRDBridgeDesign Specifications , Copyright
© 2010 by the American Association of State Highway and Trans-
portation Officials, Washington, DC. Used by permission.)

site-specific study, but in no case is T 3 to exceed 5◦F
(3◦C). In Figure 8.29, the dimension A is determined as
follows:

A = 12 in. (300 mm) for closed concrete structures that
are 16 in. (400 mm) or more in depth. For shallower
sections, A shall be 4 in. (100 mm) less than the
actual depth.

A = 12 in. (300 mm) for steel superstructures, and the
distance t shall be taken as the depth of the concrete
deck.

These temperature changes are used in the structural anal-
yses described in Chapter 12.

8.4.2 Creep and Shrinkage

The effects of creep and shrinkage can have an effect on
the structural strength, fatigue, and serviceability. Tradition-
ally, creep is considered in concrete where its effect can lead
to unanticipated serviceability problems that might subse-
quently lead to secondary strength problems. In addition, to-
day, however, creep is also of concern in wooden structures.
Because creep and shrinkageare highlydependent on thema-
terial and the system involved, further elaboration is reserved
for the chapters on design.

8.4.3 Settlement

Supportmovements may occur due to the elastic and inelastic
deformation of the foundation. Elastic deformations include
movements that affect the response of the bridge to other
loads but do not lock in permanent actions. Such deforma-
tions may be modeled by approximating the stiffness of the

support in the structural analysis model. This type of set-
tlement is not a load but rather a support characteristic that
should be included in the structural model. Inelastic defor-
mations are movements that tend to be permanent and create
locked-in permanent actions.
Such movements may include the settlement due to con-

solidation, instabilities, or foundation failures. Some such
movements are the results of loads applied to the bridge, and
these load effects may be included in the modeling of the
structural supports.Othermovements are attributed to the be-
havior of the foundation independent of the loads applied to
the bridge. These movements must be treated as a load and
hereafter are called imposed support deformations .
The actions due to imposed support deformations in stat-

ically indeterminate structures are proportional to the stiff-
ness. For example, for a given imposed deformation, a stiff
structure develops larger actions than a flexible one. The stat-
ically determinate structures do not develop any internal ac-
tions due to settlement, which is one of the few inherent ad-
vantages of statically determinate systems. Imposed support
deformations are estimated based on the geotechnical charac-
teristics of the site and system involved. Detailed suggestions
are given in AASHTO, Section 10.

8.5 COLLISION LOADS

8.5.1 Vessel Collision

On bridges over navigable waterways, the possibility of ves-
sel collision with the pier must be considered. Typically, this
is of concern for structures that are classified as long-span
bridges, which are outside the scope of this book. Vessel col-
lision loads are defined in AASHTO [A3.14].

8.5.2 Rail Collision

If a bridge is located near a railway, the possibility of a colli-
sionwith the bridge as a result of a railway derailment exists.
As the possibility is remote, the bridge must be designed
for collision forces using the extreme limit state given in
Tables 5.1 and 5.2. The abutments and piers within 30 ft
(9000mm) of the edge of the roadway, or withina distance of
50 ft (15,000 mm) of the centerline of the track must be de-
signed for a 400-kip (1800-kN) force positioned at a distance
of 4 ft (1200 mm) above the ground [A3.6.5.1].

8.5.3 Vehicle Collision

The collision force of a vehicle with the barrier rail and para-
pets is described previously in the section on deck and railing
loads, as well as in later chapters, and is not reiterated here.

8.6 BLAST LOADING

Unfortunately, an engineer has to consider loads from man-
created blast load. The science and engineering associated
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with this type of load is evolving in both the bridgeand build-
ing engineering professions. Design of a bridge for security
with careful consideration of how the bridge functions in the
overall “lifeline” of the transportation system is becoming
more important for existing and new structures.
Should the owner determine that a bridge or a bridge com-

ponent should be designed for intentional or unintentional
blast force, the following should be considered (A3.15):

� Size of explosive charge
� Shape of explosive charge
� Stand-off distance
� Location of the charge
� Delivery methods

The literature and policy are rapidly changing in this area.
For a primer on approach, issues and a host of additional ref-
erences (to start), see AASHTO (2006).

8.7 SUMMARY

The various types of loads applicable to highway bridges
are described with reference to the AASHTO Specification.
These loads are used in the subsequent chapters to determine
the load effects and to explain the use of these effects in the
proportioningof the structure. For loads that are particular to
bridges, background is provided on the development and use
of the loads, and in other cases, the AASHTO provisions are
outlined with limited explanation leaving the detailed expla-
nation to other references.
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PROBLEMS

8.1 What is the definition of exclusion vehicles? Give
examples of exclusion vehicles. What role did exclusion
vehicles play in the development of the AASHTO
live-load model HL-93?

8.2 What is the purpose in the AASHTO LRFD Specifica-
tions of the following factors? Give an example of each
factor.

• Multiple presence factor, m
• Fraction of truck traffic in a single lane, p

8.3 Select a place in the United States of personal interest,
such as your hometown, and determine its acceleration
coefficient PGA from AASHTO Figures 3.10.2.1-1
to -21 or alternatively, use http://earthquake.usgs.gov/
hazards/. To what seismic zone does this location
belong?

8.4 Determine the minimum longitudinal and transverse
connection forces for a simply supported concrete
bridge span of 100 ft with a dead load of 12.0 kips/ft
founded on soil profile C. At the location of the bridge
the acceleration coefficient AS is 0.047. State any
assumptions made of the restraint provided by the
connections.

8.5 The thickness of ice must be estimated to determine the
static and dynamic horizontal ice forces. Using Eq. 8.25,
estimate the thickness of ice for Lake Superior at Duluth,
Minnesota, and for the Potomac River at Washington,
DC.



CHAPTER 9

Influence Functions and
Girder-Line Analysis

9.1 INTRODUCTION

As outlined in Chapter 8, bridges must carry many differ-
ent types of loads, which may be present individually or in

combination. The bridge engineer has the responsibility for
analysis and design of the bridge subjected to these loads and
for the placement of the loads in themost critical manner. For

example, vehicular loads move, and hence the placement and
analysis varies as the vehicle traverses the bridge. The engi-

neer must determine the most critical load placement for all
cross sections in the bridge. Frequently, this load placement

is not obvious, and the engineer must rely on systematic pro-
cedures to place the loads and to analyze the structure for

this placement. Structural analysis using influence functions
(or influence lines) is the foundation of this procedure and is
fundamental to the understanding of bridge analysis and de-

sign. The term influence function is used instead of the term
influence line because it is more general, that is, the function

may be one dimensional (1D) (a line) or two dimensional
(2D) (a surface).

The reader may have been exposed to influence lines/
functions in past coursework and/or professional practice.

If so, then this chapter provides a review and perhaps a
treatment unlike the previous exposure. To the novice, this
chapter is intended to be comprehensive in both theory and

application. The examples provide background and detailed
analyses of all the structures used in the subsequent design

chapters. Therefore, the reader should take careful note of
the examples as they are referenced frequently throughout

the remainder of this book.
Sign conventions are necessary to properly communicate

the theory, procedures, and analytical results. Conventions
are somewhat arbitrary and textbook writers use different
conventions. Herein, the following conventions are used for

shear and moment diagrams:

Fig. 9.1 Beam segment, with positive designer sign convention.

� For a beam, moment causing compression on the top

and tension on the bottom is considered positive as

shown in Figure 9.1. Moment diagrams are plotted on
the compression side of the element. For frames, the

distinction of positive and negative is ambiguous.

� For a beam, positive shear is upward on the left face and

downward on the right face as shown in Figure 9.1. The

shear diagram is plotted so that the change in shear is
in the direction of the applied load. Again, for frames,

the distinction of positive and negative is ambiguous.

� Axial thrust is considered positive in tension. The side

of the element onwhich to plot this function is arbitrary

but must be consistent throughout the structure and la-
beled appropriately to avoid misinterpretation.

These conventions are summarized in Figure 9.1 and
hereafter are referred to as the designer sign convention
because they refer to those quantities (shears, moments, and

axial load) that a designer uses to select and check member

resistance. Additional sign conventions such as those used

in analysis procedures are given as necessary.

9.2 DEFINITION

Influence function≡ a function that represents the load effect

(force or displacement) at a point in the structure as a unit

action moves along a path or over a surface.
Influence line≡ a one-dimensional influence function (used

for a beam).

Consider the two-span beam illustrated in Figure 9.2(a).

The unit action is a concentrated load that traverses the

structures along the beam from left to right. The dimension
x represents the location of the load. For this discussion,

assume that an instrument that measures the flexural bending

moment is located at point n and records this action as the

unit load moves across the beam. The record of the moment

as a function of load position is the influence function shown
in Figure 9.2(b).

The load positioned in span AB causes a positive influence

(positivemoment) at n . Note that the maximum value occurs

directly at point n . When the load is positioned in span BC ,

the influence of the load on the bending moment at n is neg-
ative, that is, tension on the top (pop up). A load in span BC
causes the beam to deflect upward creating tension on top of

the beam or a negative bending moment.
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Fig. 9.2 Continuous beam influence function.

Fig. 9.3 (a) Concentrated loads on beam segment and (b) influ-

ence function for load effect A .

Consider the beam section shown in Figure 9.3(a) and

the influence function for action A at point n shown in

Figure 9.3(b). Assume that the influence function was cre-
ated by a unit load applied downward in the same direction

of the applied load shown in Figure 9.3(a). Assuming that
the structure behaves linearly, the load P1 applied at point

1 causes a load effect of P1 times the function value η(x1)
= η1. Similarly, the load P2 applied at point 2 causes a load

effect of P2 times the function value η(x2) = η2, and so on.

Superposition of all the load effects yields

Load effect = A = P1η(x1) + P2η(x2) + · · · + Pnη(xn)

=
n∑

i=1

Piη
(
xi

) =
n∑

i=1

Piηi (9.1)

Linear behavior is a necessary condition for application of

Eq. 9.1, that is, the influence coefficients must be based on
a linear relationship between the applied unit action and the

load effect. For example, if the unit load is applied at a spe-
cific point and then doubled, the resulting load effect will also

double if the response is linear. For statically determinate
structures, this relationship typically holds true except for

cases of large deformation where consideration of deformed

geometry must be considered in the equilibriumformulation.

The unit action load effect relationship in statically indeter-

minate structures is a function of the relative stiffness of the
elements.

If stiffness changes are due to load application from

either material nonlinearity and/or geometric nonlinearity

(large deflections), then the application of the superposition
implicit in Eq. 9.1 is incorrect. In such cases, the use of

influence functions is not appropriate, and the loads must be

applied sequentially as expected in the real structure. Such
an analysis is beyond the scope of this book, and the reader is

referred to books on advanced structural and finite-element

analysis.

9.3 STATICALLY DETERMINATE BEAMS

The fundamentals of influence functions and their use are

initially illustratedwith statically determinate beams. Several

examples are given.

9.3.1 Concentrated Loads

Example 9.1 Use the beam shown in Figure 9.4(a) to

determine the influence functions for the reaction at A , and
the shear and moment at B . Point B is located at midspan.

Consider the unit load at position x on the beam AC of

length L . Because this system is statically determinate, the

influence functionmay be based solely on static equilibrium.

Use the free-body diagram shown in Figure 9.4(b) to balance

the moments about A and to determine the reaction RC:
∑

MA = 0

1(x) − RC(L) = 0

RC = x

L

Similarly, balancing moments about C yields the reaction

at RA:
∑

MC = 1(L − x) − RA(L) = 0

RA = L − x

L

Summation of the vertical forces checks the previous

moment computations. If this check does not validate

equilibrium, then an error exists in the calculation:

∑
FV = 0

RA + RC − 1 = 0 (OK)

The influence function for RA is shown in Figure 9.4(c). Note
the function is unity when the load position is directly over A
and decreases linearly to zero when the load position is at C .

Linearity is characteristic of influence functions (actions and

reactions) for statically determinate structures. This point is

elaborated on later. Next, the influence functions for the shear
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Fig. 9.4 (a) Simple beam, (b) moving unit load, (c) influence function for RA, (d) free-body diagram AB with unit load at x ≤ 0.5L , and
(e) free-body diagram AB with unit load at x > 0.5L . (f) Influence diagram for VB and (g) influence diagram for MB.

and moment at B are determined. Use the free-body diagram

shown in Figure 9.4(d) to sum the vertical forces yieldingVB:
∑

FV = 0

RA − 1 − VB = 0

VB = L − x

L
− 1 = − x

L

Balancing moments about B gives the internal moment at B .
∑

MB = 0

RA(0.5L) − 1(0.5L − x) − MB = 0

MB = x

2
when 0 ≤ x ≤ 0.5L

Note that the functions for VB andMB are valid when x ≤
L /2. If x > L /2, then the unit load does not appear on the free-
body diagram. The revised diagram is shown inFigure 9.4(e).

Again, by balancing forces and moments, the influence func-

tions for VB andMB are established:

VB = RA = L − x

L
when 0.5L ≤ x ≤ L

MB = L − x

2
when 0.5L ≤ x ≤ L

The influence functions for VB and MB are illustrated in

Figures 9.4(f) and 9.4(g), respectively.

Example 9.2 Use the influence functions developed in

Example 9.1 to analyze the beam shown in Figure 9.5(a).

Determine the reaction at A and the midspan shear and

moment at B .
Use the influence function for RA shown in Figure 9.4(c)

to determine the influence ordinates at the load positions of

P1 and P2 as shown in Figure 9.5(a). The equation developed

in Example 9.1 may be used or the ordinates may be inter-

polated. As illustrated in Figure 9.5(b), the ordinate values

are two-thirds and one-third for the positions of P1 and P2,
respectively. Application of Eq. 9.1 yields

RA =
2∑

i=1

Piηi = P1

(
2

3

)
+ P2

(
1

3

)

The parameters VB and MB due to the applied loads may be

determined in a similar manner.With the aid of Figures 9.5(c)

and 9.5(d), application of Eq. 9.1 yields

VB = P1

(− 1
3

) + P2

(
1
3

)
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Fig. 9.5 (a) Simple beam, (b) influence function for RA, (c) influence function for VB, and (d) influence function for MB.

and

MB = P1

(
L

6

)
+ P2

(
L

6

)

Comparison of these results with standard statics proce-

dures is left to the reader.

9.3.2 Uniform Loads

Distributed loads are considered in a manner similar to

concentrated loads. Consider the beam segment shown in

Figure 9.6(a) that is loaded with a distributed load of varying

magnitude w (x). The influence function η(x) for action A
is illustrated in Figure 9.6(b). The load applied over the

differential element �x is w (x) �x . This load is used in

Eq. 9.1. In the limit as �x goes to zero, the summation

becomes the integration:

Load effect = A =
n∑

i=1

Piη
(
xi

) =
n∑

i=1

w
(
xi

)
η

(
xi

)
�x

=
∫ b

a

w (x)η(x) dx (9.2)

If the load is uniform, then the load function w (x) = w0

is a constant rather than a function of x and may be placed

outside of the integral. Equation 9.2 becomes

Load effect = A =
∫ b

a

w (x) η (x) dx = w0

∫ b

a

η (x) dx

(9.3)

Note that this integral is simply the area under the influence

function over the range of load application.

w (x)Δx

a b

a b
x

(a)

(b)

Δx

η(x)

Fig. 9.6 (a) Beam segment with distributed load and (b) influence function.
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Example 9.3 Determine the reaction at A and the shear

and moment at midspan for the beam shown in Example 9.1

[Fig. 9.4(a)] subjected to a uniform load of w0 over the entire

span.

Application of Eq. 9.3 yields

RA =
∫ L

0

w (x)ηRA
(x) dx = w0

∫ L

0

ηRA
(x) dx

RA = w0L

2

VB =
∫ L

0

w (x) ηVB
(x) dx = w0

∫ L

0

ηVB
(x) dx

VB = 0

MB =
∫ L

0

w (x) ηMB
(x) dx = w0

∫ L

0

ηMB
(x) dx

MB = w0L
2

8

Again, comparison of these results with standard equilibrium
analysis is left to the reader.

9.4 MULLER–BRESLAU PRINCIPLE

The analysis of a structure subjected to numerous load place-
ments can be labor intensive and algebraically complex. The

unit action must be considered at numerous locations requir-
ing several analyses. The Muller–Breslau principle allows

the engineer to study one load case to generate the entire
influence function. Because this function has the same char-

acteristics generated by traversing a unit action, many of the
complicating features are similar. The Muller–Breslau prin-
ciple has both advantages and disadvantages depending on

the analytical objectives. These concerns are discussed in
detail later.

The development of the Muller–Breslau principle re-
quires application of Betti’s theorem. This important energy

theorem is a prerequisite and is reviewed next.

9.4.1 Betti’s Theorem

Consider two force systems P and Q associated with dis-
placements p and q applied to a structure that behaves lin-

ear elastically. These forces and displacements are shown in
Figures 9.7(a) and 9.7(b). Application of the Q–q system to

the structure and equating the work performed by gradually
applied forces to the internal strain energy yields

1

2

n∑

i=1

Qiqi = UQq (9.4)

where UQq is the strain energy stored in the beam when

the loads Q are applied quasi-statically* through displace-
ment q .

*Because all loads are transient at some time, static load is technically a

misnomer, but if the loads are applied slowly dynamic effects are small.

ns

ns

Fig. 9.7 (a) Displaced beam under system P–p and (b) displaced

beam under systemQ–q .

Now apply the forces of the second system P with the Q
forces remaining in place. Note that the forces Q are now at

the full value and move through displacements p due to force
P . The work performed by all the forces is

1

2

n∑

i=1

Qiqi +
n∑

i=1

Qipi + 1

2

m∑

j=1

Pjpj = Ufinal (9.5)

whereU final is the associated internal strain energy due to all
forces applied in the order prescribed.

Use the same force systems to apply the forces in the
reverse order, that is, P first and thenQ . The work performed

by all forces is

1

2

m∑

j=1

Pj pj +
m∑

j=1

Pj qj + 1

2

n∑

i=1

Qiqi = Ufinal (9.6)

If the structure behaves linear elastically, then final dis-

placed shape and internal strain energy are independent of
the order of load application. Therefore, equivalence of the

U final in Eqs. 9.5 and 9.6 yields

n∑

i=1

Qipi =
m∑

j=1

Pjqj (9.7)

In a narrative format, Eq. 9.7 states Betti’s theorem:

The product of the forces of the first system times the corre-

sponding displacements due to the second force system is
equal to the forces of the second system times the corre-

sponding displacements of the first system.

Althoughderivation is performedwith reference to a beam,
the theorem is generally applicable to any linear elastic struc-

tural system.



138 9 INFLUENCE FUNCTIONS AND GIRDER-LINE ANALYSIS

9.4.2 Theory of Muller–Breslau Principle

Consider the beam shown in Figure9.8(a), where the reaction
RA is of interest. Remove the support constraint and replace
it with the reaction RA as illustrated in Figure 9.8(b). Now

replace the reaction RA with a second force F and remove
the applied forces P . Displace the released constraint a unit

amount in the direction shown in Figure 9.8(c) and consis-
tent with the remaining constraints. Application of Betti’s

theorem to the two systems (Eq. 9.7) yields

RA (1) − P1δ1 − P2δ2 − · · · − Pnδn = F (0) (9.8)

which simplifies to

RA = P1δ1 + P2δ2 + · · · + Pnδn =
n∑

i=1

Piδi (9.9)

A comparison of Eq. 9.1 to Eq. 9.9 reveals that applica-
tion of Betti’s theorem yields the same result as direct appli-
cation of superposition combined with the definition of an

influence function. Hence, the ordinates δ in Eq. 9.9 must
be the same as the ordinates η in Eq. 9.1. This observation

is important because ordinates δ were generated by impos-
ing a unit displacement at the released constraint associated

with the action of interest and consistent with the remaining
constraints. This constitutes the Muller–Breslau principle,

which is summarized below:

An influence function for an action may be established by

removing the constraint associated with the action and

Fig. 9.8 (a) Structure with loads, (b) support A replaced with RA,
and (c) virtual displacement at A .

imposing a unit displacement. The displacement at every

point in the structure is the influence function. In other

words the structure’s displaced shape is the influence
function .

The sense of the displacements that define the influence

function must be considered. For concentrated or distributed

forces, the translation colinear with the direction of action

is used as the influence ordinate or function. If the applied

action is a couple, then the rotation is the associated influ-

ence function. The latter can be established by application of

Betti’s theorem in a similar manner.

Example 9.4 Use the Muller–Breslau principle to deter-

mine the influence function for the moment and shear at

midspan of the beam shown in Example 9.1 (Fig. 9.4) and

reillustrated for convenience in Figure 9.9(a). The moment

is considered first. Release the moment at B by insertion
of a hinge and apply a unit rotation at this hinge, that is,

the relative angle between member AB and BC is one unit.

Fig. 9.9 (a) Simple beam, (b) unit rotation atB , (c) unit translation
atB with mechanism for unit translation, and (d) influence function

of VB.
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Geometric and symmetry considerations require that the

angle at the supports be one-half unit. Assuming small dis-

placements (i.e., tan θ = sin θ = θ), the maximum ordinate
at B is determined by

ηmax = θ

(
L

2

)
= 1

2

(
L

2

)
= L

4
= 0.25L (9.10)

which is the same result as Example 9.1 [compare

Figs. 9.4(g) and 9.9(b)].

The shear influence function is determined in a similar

manner. Release the translation continuity at B and maintain

the rotational continuity. Such a release device is schemat-
ically illustrated in Figure 9.9(c). Apply a relative unit

translation at B and maintain the slope continuity required

on both sides of the release. This displacement gives the

influence function shown in Figure 9.9(d), which is the same

function given in Example 9.1 [Fig. 9.4(f)], as expected.

9.4.3 Qualitative Influence Functions

The displaced shape is not always as easily established as

illustrated in Example 9.4. For example, the displaced shape

of a statically indeterminate structure is more involved.

Related procedures are described in Section 9.5. One of the

most useful applications of theMuller–Breslau principle is in

the development of qualitative influence functions . Because
most displaced shapes due to applied loads may be intu-

itively generated in an approximate manner, the influence

functions may be determined in a similar fashion. Although

exact ordinates and/or functions require more involved
methods, a function can be estimated by simply releasing

the appropriate restraint, inducing the unit displacement, and

sketching the displaced shape. This technique is extremely

useful in determining an approximate influence function

that in turn aids the engineer in the placement of loads

for the critical effect.

Fig. 9.10 (a) Continuous beam and (b) influence function MB.

Example 9.5 Use the qualitative method to establish the

influence function formoment at pointB for the beam shown

in Figure 9.10(a).

Release the moment at B and apply a relative unit rota-

tion consistent with the remaining constraints. The resulting

translation is illustrated in Figure 9.10(b). If a uniform live
load is required, it is necessary to apply this load on spans

AC and EF (location of positive influence) for the maximum

positive moment at B and on CE for the critical negative

moment at B .

9.5 STATICALLY INDETERMINATE BEAMS

Primarily, two methods exist for the determination of influ-

ence functions:

� Traverse a unit action across the structure.

� Impose a unit translation or unit rotation at the released

action of interest (Muller–Breslau).

Both of these methods are viable techniques for either

hand or automated analysis. The principles involved with
these methods have been presented in previous sections

concerning statically determinate structures. Both methods

are equally applicable to indeterminate structures, but are

somewhat more involved. Both methods must employ either

a flexibility approach such as consistent deformations, or

stiffness techniques such as slope–deflection, moment dis-

tribution, and finite-element analysis (matrix displacement

analysis). Typically, stiffness methods are used in practice

where slope–deflection and moment distribution are viable

handmethodswhile thematrix approach is used in automated

procedures. Both the unit load traverse and Muller–Breslau

approaches are illustrated in the following sections using
stiffness methods. Each method is addressed by first pre-

senting the methodology and necessary tools required for

the application, which is followed by examples.

Throughout the remainder of this book a specialized

notation is used to indicate a position on the structure.

This notation, termed span point notation, is convenient for

bridge engineering, and is illustrated by several examples

in Table 9.1. Here the span point notation is described with

the points that typically control the design of a continuous

girder. For example, the shear is a maximum near the sup-

ports, the positive moment is a maximum in the span, and the

negative moment is the largest, often called the maximum
negative moment, at the supports. Mathematically,maximum
negative moment is poor terminology, but nevertheless it is

conventional. Table 9.1 is provided for guidance in typical

situations and for use in preliminary design. Final design

calculations should be based on the envelope of all actions

from all possible live-load placements. Actions described

with span point notation are in the designer’s sign convention

outlined in Section 9.1 (see Fig. 9.1).
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Table 9.1 Span Point Notation

Span Point

Notation

Alternative

Span Point

Notation Span Percentage Explanation

Critical Action

(Typical)

100 1.00 1 0 Left end of the first span Shear

104 1.40 1 40 Forty percent of the way across

the first span

Positive moment

110 1.100 1 100 Right end of the first span
immediately left of the first

interior support

Shear, negative moment

200 2.00 2 0 Left end of the second span

immediately right of the first

interior support

Shear, negative moment

205 2.50 2 50 Middle of the second span Positive moment

Example 9.6 For the prismatic beam shown in

Figure 9.11(a), determine the influence functions for

the moments at the 104, 200, and 205 points and for shear at

the 100, 104, 110, 200, and 205 points. Use span lengths of

100, 120, and 100 ft (30,480, 36,576, and 30,480 mm).

A unit load is traversed across the beam and the slope–
deflection method is used. This problem is repeated in

Example 9.9 using the slope–deflection method combined

with the Muller–Breslau principle.

With the exception of the shear at the 104 and 205 points,

these points were selected because the critical actions due
to vehicular loads usually occur near these locations. These

influence functions are subsequently used in Example 9.12 to

determine the maximum load effect due to vehicular loads.

The slope–deflection relationship between the end moments

and rotations for a prismatic beam on nonsettling supports
is given in Eq. 9.11. The subscripts reference the locations

illustrated in Figure 9.11(b).

Mij = 4EI

L
θi + 2EI

L
θj + Mij0

Mji = 2EI

L
θi + 4EI

L
θj + Mji0

(9.11)

where

EI = flexural rigidity

L = element length

Mij,Mji = moments at ends i and j , respectively
Mij0,Mji0 = fixed-end moments at ends i and j due

the applied loads, respectively

θ i, θ j = rotations at end i and j , respectively

Counterclockwise moments and rotations are considered

positive in Eq. 9.11.
A fixed–fixed beam subjected to a concentrated load

located at position kL is illustrated in Figure 9.11(c). The

end moments are

Mij 0 = PL (k) (1 − k)2 (9.12a)

Mji0 = −PL (
k2

)
(1 − k) (9.12b)

A single set of slope–deflection and equilibrium equations

is desired for all locations of the unit load. Because the load

must traverse all spans, the fixed-end moments must change
from zero when the load is not on the span to moments based

on Eq. 9.12 when the load is located on the span. To facilitate

this discontinuity, a special form of MacCauley’s notation

(Pilkey and Pilkey, 1974) is used.

〈ij 〉 = 〈ji 〉 = 1 if the unit load is located between i and j

〈ij 〉 = 〈ji 〉 = 0 if the unit load is not located between i

and j (9.13)

Application of Eqs. 9.11, 9.12, and 9.13 to the continuous

beam shown in Figure 9.11(a) gives

MAC = 4EI

L1

θA + 2EI

L1

θC + k1
(
1 − k1

)2
L1〈AC 〉

MCA = 4EI

L1

θC + 2EI

L1

θA − k21(1 − k1)L1〈AC 〉

MCE = 4EI

L2

θC + 2EI

L2

θE + k2
(
1 − k2

)2
L2〈CE 〉

MEC = 4EI

L2

θE + 2EI

L2

θC − k22(1 − k2)L2〈CE 〉

MEF = 4EI

L3

θE + 2EI

L3

θF + k3
(
1 − k3

)2
L3〈EF 〉

MFE = 4EI

L3

θF + 2EI

L3

θE − k23
(
1 − k3

)
L3 〈EF 〉

where kLi is the distance from the left end of the span i to the
unit load.

The fixed-end moment terms with MacCauley’s notation
are zero except when the unit load is on the corresponding

span. Equilibrium requires

MAC = 0

MCA + MCE = 0

MEC + MEF = 0

MFE = 0
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EI = constant

0
0

Fig. 9.11 (a) Continuous beam, (b) slope–deflection sign conventions, (c) fixed actions for concentrated loads. (d) Free-body diagram beam

AC , (e) free-body diagram beam segment AB , (f) free-body diagram beam CE , and (g) free-body diagram beam segment CD .

The four rotations are determined by substitution of the

slope–deflection equations into the four equilibrium equa-

tions, which can be solved for the four rotations, a system

of four linear algebraic equations. The resulting rotations

are back-substituted into the slope–deflection equations
to obtain the end moments. Conceptually, this process is

straightforward, but as a practical matter, the solution pro-

cess involves significant algebraic effort. A computer-based

equation solver was employed where all the required

equations were entered and unknowns were automatically
determined and back-substituted to achieve the endmoments.

The end shears and the internal shears andmoments are de-

termined from equilibriumconsiderations of each element. A

free-body diagramof span AC is illustrated in Figure 9.11(d).

This diagram is valid if the unit load is on AC . For other

cases, the diagram is valid without the unit load. Summation
of moments about C [Fig. 9.11(d)] yields

VAC = 1
(
1 − k1

) 〈AC〉 + MCA

L1

Summation of moments about B [Fig. 9.11(e)] yields

MBA = VAC
(
0.4L1

) − (1)
(
0.4L1 − k1L1

) 〈AB 〉
By using Figures 9.11(f) and 9.11(g), the end shears for span
CE and the shear and moments atD are determined in a sim-

ilar manner.

VCE = (1)
(
1 − k2

) 〈CE 〉 + MEC + MCE

L2

VEC = 1 〈CE 〉 − VCE

VDC = 1 〈CD 〉 − VCE

MDC = VCD
(
0.5L2

) − (1)
(
0.5L2 − k2L2

) 〈CD 〉 − MCE

Conventional slope–deflection notation has been used

[counterclockwise (CCW) positive]. The results map to the
span point notation described in Table 9.1 as MCA = M110

= M200, MBA = M104, MDC = M205, VAC = V100, VBA =
−V104, VCA = −V110, VCE = V200, and VDC = −V205. Note

the designer’s sign convention defined in Section 9.1 is used

with all actions described with span point notation, and the
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Table 9.2 Influence Ordinates and Areas (Three-Span Continuous Beam)

Location Position M (104) M (200) M (205) V (100) V (104) V (110) V (200) V (205)

100 0 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
101 10 5.03 −2.43 −0.88 0.88 −0.12 −0.12 0.03 0.03

102 20 10.11 −4.71 −1.71 0.75 −0.25 −0.25 0.05 0.05

103 30 15.32 −6.70 −2.43 0.63 −0.37 −0.37 0.07 0.07

104 40 20.7 −8.25 −3.00 0.52 −0.48/0.52 −0.48 0.09 0.09

105 50 16.32 −9.21 −3.35 0.41 0.41 −0.59 0.10 0.10
106 60 12.23 −9.43 −3.43 0.31 0.31 −0.69 0.10 0.10

107 70 8.49 −8.77 −3.19 0.21 0.21 −0.79 0.09 0.09

108 80 5.17 −7.07 −2.57 0.13 0.13 −0.87 0.08 0.08

109 90 2.32 −4.20 −1.53 0.06 0.06 −0.94 0.04 0.04

110 or 200 100 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 0.00

201 112 −2.04 −5.09 2.53 −0.05 −0.05 −0.05 0.93 −0.07

202 124 −3.33 −8.33 5.83 −0.08 −0.08 −0.08 0.84 −0.16

203 136 −4.00 −9.99 9.90 −0.10 −0.10 −0.10 0.73 −0.27

204 148 −4.14 −10.34 14.74 −0.10 −0.10 −0.10 0.62 −0.38
205 160 −3.89 −9.64 20.4 −0.10 −0.10 −0.10 0.50 −0.5/0.50

206 172 −3.27 −8.18 14.74 −0.08 −0.08 −0.08 0.38 0.38

207 184 −2.48 −6.21 9.90 −0.06 −0.06 −0.06 0.27 0.27

208 196 −1.60 −4.01 5.83 −0.04 −0.04 −0.04 0.16 0.16

209 208 −0.74 −1.85 2.53 −0.02 −0.02 −0.02 0.07 0.07

210 or 300 220 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

301 230 0.46 1.15 −1.53 0.01 0.01 0.01 −0.04 −0.04

302 240 0.77 1.93 −2.57 0.02 0.02 0.02 −0.08 −0.08
303 250 0.96 2.39 −3.19 0.02 0.02 0.02 −0.09 −0.09

304 260 1.03 2.57 −3.43 0.03 0.03 0.03 −0.10 −0.10

305 270 1.00 2.51 −3.35 0.03 0.03 0.03 −0.10 −0.10

306 280 0.90 2.25 −3.00 0.02 0.02 0.02 −0.09 −0.09

307 290 0.73 1.83 −2.44 0.02 0.02 0.02 −0.07 −0.07

308 300 0.51 1.29 −1.71 0.01 0.01 0.01 −0.05 −0.05
309 310 0.27 0.66 −0.88 0.01 0.01 0.01 −0.03 −0.03

310 320 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total positive area 1023 165.7 1036.3 45.6 15.4 1.7 66.4 20.1

Total negative area −305.5 −1371.4 −442.0 −7.60 −17.4 −63.7 −6.4 −20.1

Net area 717.4 −1205.7 594.3 38.0 −2.0 −62.0 60.0 0.00

slope–deflection convention is used for the calculation of

the end moments. The equations given are a function of load
position, x . To generate the influence functions, a solution is
necessary for each position considered. Typically, the load

is positioned at the tenth points. This analysis is done for

the present system. The results are given in Table 9.2. Each

column constitutes an influence function for the associated

action. These functions are illustrated in Figure 9.12(a)
(moments) and 9.12(b) (shears).

9.5.1 Integration of Influence Functions

As discussed previously, the integral or area under the

influence function is useful for the analysis of uniformly

distributed loads. As illustrated in Figures 9.12(a) and
9.12(b), these functions are discontinuous for either value

or slope. These functions could be integrated in a closed-
form manner, but this is extremely tedious. An alternative

approach is to numerically integrate the influence functions.
A piecewise straight linear approximation to an influence

function may be used and integration of this approximation
results in the well-known trapezoidal rule. The integral

approximation is

Area = b

n∑

i=1

(η1

2
+ η2 + · · · + ηn−1 + ηn

2

)
(9.14)

where b is the regular distance between the available
ordinates. Equation 9.14 integrates exactly a linear influence
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Fig. 9.12 (a) Moment influence functions and (b) shear influence functions.

function. Generally, influence functions are nonlinear and

a more accurate approach is desired. Simpson’s rule uses

a piecewise parabolic approximation that typically approx-

imates nonlinear functions more accurately than its linear
counterpart, Eq. 9.14. Simpson’s rule requires that domains

have uniformly spaced ordinates and an odd number of

ordinates with an even number of spaces between them.

Simpson’s rule is

Area = b

3

n∑

i=1

(
η1 + 4η2 + 2η3 + 4η4 + · · · + 2ηn−2

+ 4ηn−1 + ηn

)
(9.15)

Equation 9.15 was used to evaluate the positive, negative,

and net areas for each function determined in Example 9.6.

The results are given at the bottom of Table 9.2.

Example 9.7 Use the trapezoidal rule to determine the

positive, negative, and net areas of the influence function for

M104 in Table 9.2.

ASpan1 = [0/2+ 5.03 + 10.11 + 15.32+ 20.7 + 16.32

+ 12.23 + 8.49 + 5.17 + 2.32 + 0/2](10)

= 956.9

ASpan2 = [0/2+ (−2.04) + (−3.33) + (−4.00) + (−4.14)

+ (−3.89) + (−3.27) + (−2.48) + (−1.60)

+ (−0.74) + 0/2](10) = −305.8

ASpan3 = [0/2+ 0.46 + 0.77 + 0.96 + 1.03 + 1.00 + 0.90

+ 0.73 + 0.51 + 0.27 + 0/2](10) = 66.3

These areas are added to give the positive, negative, and net

areas:

A+ = 956.9+ 66.3 = 1023.2 ft2

A− = −305.8 ft2

ANet = 717.4 ft2

9.5.2 Relationship between Influence Functions*

As illustrated in Example 9.6, the end actions, specifically

endmoments, are determined immediately after the displace-

ments are established. This back-substitutionprocess is char-

acteristic of stiffness methods. The actions in the interior of

the beam are based on static equilibriumconsidering the ele-
ment loads and the end actions. Because the end actions and

the associated influence functions are usually determined be-

fore other actions, it is convenient to establish relationships

between the influence functions for the end actions and the

functions for the actions in the interior portion of the span.

The following discussion is rather detailed and requires tech-

niques and associated notations that require careful study.

Consider the continuous beam shown in Figure 9.13(a)

where the point of interest n is located at a distance βL
from the end i . The actions at n may be determined by

superposition of the actions at point n corresponding to

a simple beam [Fig. 9.13(b)] and those corresponding to
a simple beam with the end moment influence functions

applied [Fig. 9.13(c)]. Note that the influence functions are

actions that are applied on a free-body diagram and treated

in a manner similar to conventional actions. To illustrate,

the influence functions are shown in Figure 9.13(b)–9.13(d)

instead of their corresponding actions. With the use of

superposition, the influence function for an action at n is

determined by

ηn = ηs + ηe (9.16)

where ηs is the influence function for the action at n for the
unit action on the simple beam [Fig. 9.13(b)] and ηe is the

influence function for the action at n due to the end actions

on the simple beam [Fig. 9.13(c)].

By using the free-body diagram shown in Figure 9.13(c),

the shear influence function at i due to the end moments is

determined from summation of moments about end j . The
result is

ηVie =
ηMij

+ ηMji

L
(9.17a)

*Advanced material, may be skipped.



144 9 INFLUENCE FUNCTIONS AND GIRDER-LINE ANALYSIS
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Fig. 9.13 (a) Continuous beam ij , (b) free-body diagram simple beam ij with unit load, (c) free-body diagram simple beam ij with end

moments, and (d) free-body diagram beam segment in βL .

where ηMij
and ηMji

are defined in Figure 9.13(c). Equation
9.16 is used to combine the shear influence function due to

the unit action on the simple beam with the shear due the end

moments. The result is

ηVn
= ηVs

+
ηMij

+ ηMji

L
(9.17b)

By using Figure 9.13(d) and summing the moments about

the point of interest n , the resulting influence function (end
effects only) for moment at n is

ηMn
= ηVieβL − ηMij

(9.18a)

where βL is the distance from the left end of the span to the
point of interest n .
Substitution of the left-end shear given in Eq. 9.17(a) into

the moment expression given in Eq. 9.18(a) yields

ηMn
= (β − 1) ηMij

+ βηMji
(9.18b)

Note the slope–deflection sign convention is used in the
development of Eqs. 9.17 and 9.18.Any sign conventionmay

be used as long as the actions are used consistently on the

free-body diagram, the sense of the action is correctly con-
sidered in the equilibrium equations, and results are properly

interpreted with reference to the actions on the free-body

diagram.

Example 9.8* Determine the influence ordinates for V104,

M104, and M205 for the beam in Example 9.6 [Fig. 9.11(a)].

Use the influence functions for the end moments given in

Table 9.2 and perform the calculations only for the ordinates
at the 105 point.

*Advanced material, may be skipped.

Carefully note that the influence ordinates at 105 for
actions at 104 and 205 are required. This means only one or-
dinate is established for the V104, M104, andM205 functions.

The other ordinates may be determined in a similar manner.

The influence functions for the simple beam case are

shown in Figure 9.14(b) and 9.14(c). The shear and moment
ordinates at 105 are determined by linear interpolation. The

sign convention used in Table 9.2 is the designer’s sign

Fig. 9.14 (a) Continuous beam, (b) simple beam AC influence

function for shear at 104, and (c) simple beam AC influence func-

tion for moment at 104.
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convention, and the slope–deflection sign convention is

used in Eqs. 9.17 and 9.18. Therefore, the appropriate trans-

formation must be performed. This calculation tends to be a
bit confusing and requires careful study. To aid the reader,

symbols have been added to reference the explanatory notes

given below:

[
ηV104

]
unit load @ 105

=
[
ηVs104

+ ηM100
+ ηM110

L

]

unit load @ 105

= 0.6

(
5

6

)
+

[
0 + (−9.21)

100

]

= 0.408
[
ηM104

]
unit load @ 105

=
[
ηMs104

+ (β − 1) ηM100
+ βηM110

]

unit load @ 105

= [
24

(
5
6

) + (
0.4∗ − 1

)
(0) + 0.4 (−9.21)

]
unit load @ 105

= 16.3 ft[
ηM205

]
unit load @ 105

=
[
ηMs205

+ (β − 1) ηM200
+ βηM300

]

unit load @ 105

= 0† + (0.5‡ − 1)(9.21) + (0.50)(2.51¶)

= −3.35 ft

In summary, this method superimposes the effects of a unit
load applied to the simple span with the effects of continuity

(end moments). The unit load is applied only in the span

containing the location of interest. Influence ordinateswithin

this span are “affected” by the unit load and end effects.

Function ordinates outside this span are affected only by the

effects of continuity. Although a specific ordinate was used
in this example, note that algebraic functions may be used

in a similar fashion, and perhaps what is more important,

general algorithms may be developed using Eqs. 9.16, 9.17,

and 9.18 and subsequently coded in computer programs.

In addition, this calculation is amenable to spreadsheet
calculation.

9.5.3 Muller–Breslau Principle for End Moments§

The Muller–Breslau principle may be conveniently used
to establish the influence functions for the end moments.

*Here β is the fraction of the span length from the left end to the point

of interest, that is, 104 is 40% from the left end. Do not confuse this with

the location of where the ordinate is calculated, that is, 105.
†The sign on the M200 and M300 ordinates has been changed from the

table to switch to the slope–deflection convention, for example, Table 9.2

gives −9.21 and +9.21 is used here.
‡Here β is the fraction of the span length from the left end to the point

of interest. In this case, 205 is located at 50% of the second span.
¶The influence function is for the moment at 205 and the ordinate is

being calculated for the ordinate of this function at 105. The simple beam

function is superimposed only if the location where the ordinate calculation

is being performed (105) is in the same span as the location of the point of

interest (205). In this case, the two locations are in different spans.
§Advanced material, may be skipped.

Subsequently, the end moments may be used with Eqs. 9.16

and 9.17 to establish all other influence functions.

The Muller–Breslau principle requires that the displace-

ments (in this case translation) be determined for the entire

structure. The displacement of each element is solely a func-

tion of the end moments. The equation for the translation of
a simple beam subjected to counterclockwise end moments

Mij and Mji is

y = L2

6EI

[
Mij

(
2ε − 3ε2 + ε3

) − Mji

(
ε − ε3

)]
(9.19)

where ε = x /L , and y is the upward translation.

This equation can be derived many different ways, for

example, direct integration of the governing equation. Veri-

fication is left to the reader. The Muller–Breslau procedure

is described in Example 9.9.

Example 9.9* Use the Muller–Breslau principle to estab-

lish the influence function for the momentM 104 for the beam

of Example 9.6. Perform the calculations for the first span

only.
The structure is reillustrated in Figure 9.15(a) for conve-

nience. The influence function for the simple beam moment

at the 104 point is illustrated in Figure 9.15(b). This function

has been discussed previously and is not reiterated. Next

determine the influence function for the end moments. Use
the Muller–Breslau principle to release the moment at 110

A B C D E F

100 ft120 ft

(a)

(b)

(c)

0.01473EI

−0.00402EI(d)

1.0

0.24L1 = 0.24 (100) = 24 ft

100 ft

40 ft 60 ft

4EI
L1

2EI
L1

Fig. 9.15 (a) Continuous beam, (b) simple beam influence func-

tion for moment at 104, and (c) unit rotation at C member CA .
(d) Moment due to unit rotation at C .
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and impose a unit displacement. The displaced shape is

shown in Figure 9.15(c). The end moments for element AB
are determined using the slope–deflection equations given
in Eq. 9.11. Let θ j = 1.0, θ i = 0, and the fixed-end moments

due to element loads are zero. The end moments are 2EI /L 1

and 4EI /L 1 for the left and right ends, respectively.

These moments are the fixed-end moments used in the

slope–deflection equations, that is,

MAC = 4EI

L1

θA + 2EI

L1

θC + 2EI

L1

MCA = 4EI

L1

θC + 2EI

L1

θA + 4EI

L1

MCE = 4EI

L2

θC + 2EI

L2

θE

MEC = 4EI

L2

θE + 2EI

L2

θC

MEF = 4EI

L3

θE + 2EI

L3

θF

MFE = 4EI

L3

θF + 2EI

L3

θE

Equilibrium requires

MAC = 0

MCA + MCE = 0

MEC + MEF = 0

MFE = 0

The slope–deflection equations are substituted into the

equilibrium equations and the four rotations are established.
The resulting rotations are θA = −0.2455, θC = −0.5089,

θE = 0.1339, and θF = 0.0670. These rotations are back-

substituted into the slope–deflection equations to establish

the end moments given below:

MAC = 0 ft kips

MCA = 14.73 × 10−3 EI

MCE = −14.73 × 10−3EI

MEC = −4.02 × 10−3EI

MEF = 4.02 × 10−3EI

MFE = 0

The moment diagram is shown in Figure 9.15(d).

Equation 9.19 is used to determine the translation due the

end moments for the first span. This equation is the influence

functionηM110
and is given in Table 9.3. A sample calculation

is given for the ordinate at location 103, ε = x /L = 0.3:

ηM110
= 1002

6EI
{0.0EI [2(0.3) − 3(0.3)2 + 0.33]

− 14.73 × 10−3 EI [0.3 − 0.33]}
ηM110

= −6.70 ft

A comparison of the values in Tables 9.2 and 9.3 reveals

that the influence ordinate ηM104
is the same. Use Eq. 9.18 to

combine the influence function ηM110
and the simple beam

function ηS104
. The result is shown in Table 9.3 and a sample

calculation for the ordinate at the 103 point is given.

[
ηM104

]
@103

=18 + (0.4 − 1) (0) + (0.4)(−6.70) = 15.3 ft

9.5.4 Automation by Matrix Structural Analysis

Traversing the unit action and the Muller–Breslau methods
may be used in a stiffness-basedmatrix analysis. This unit ac-

tion approach is conceptually straightforward and likely the

easiest to implement in an existing stiffness-based code. Two

Table 9.3 Influence Ordinates forM104 for Span 1a

x (ft)
ε = x

L1

ηMs104

(Unit Load on Simple

Beam) (ft)

ηM110

(Influence Function

forM 110) (ft) (Eq. 9.19)

ηM104
(Influence Function for

Moment at 104) (ft)

0 0 0 0 0

10 0.1 6 −2.43 5.03
20 0.2 12 −4.71 10.11

30 0.3 18 −6.70 15.32

40 0.4 24 −8.25 20.70

50 0.5 20 −9.21 16.32

60 0.6 16 −9.43 12.23

70 0.7 12 −8.77 8.49
80 0.8 8 −7.07 5.17

90 0.9 4 −4.20 2.32

100 1.0 0 0 0

aThe parameter L 1 = 100 ft. = 30 480 mm. The procedure is the same for the remaining span but the simple beam contribution is zero,

which is left to the reader as an exercise.
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Fig. 9.16 (a) Discretized continuous beam—nodes at physical

joints and (b) discretized continuous beam—nodes between physi-

cal joints.

approaches may be taken: (1) The structure is discretized

with one element per span [Fig. 9.16(a)], or (2) the structure

is discretized with several elements per span, often conve-

niently taken as 10 per span [Fig. 9.16(b)].

The use of one element per span requires special algo-

rithms to:

� Generate the equivalent joint loads for load placement

at any position within an element.

� Determine the end actions after the displacements are

known. This procedure involves adding the fixed-end

actions to the actions from the analysis of the released
structure.

� Calculate the actions and displacements at the required

locations in the interior of the element.

With these tools available, one can use the standard matrix

approach to place the unit actions at regular intervals along

the load path and to calculate the actions at the required

locations. This involves the solution of multiple load cases

on a small system of equations. The advantage is its com-

putational efficiency. The disadvantages are its coding com-

plexity and difficulties in including the nonprismatic effects
that affect both stiffness and fixed-end action computations.

Alternatively, each span may be discretized into elements

as illustrated in Figure 9.16(b). The node can be associated

with the influence ordinates, eliminating the need for element

load routines. The unit actions can be applied as joint loads,

and each load case generates one ordinate in the influence

functions. The element end actions are available at regular
locations. Although this is computationally more time con-

suming than one element per span, it is simpler to code and

the number of degrees of freedom required is relatively small

by today’s standards. Another advantage of this method is

that the element cross-sectional properties may vary from

element to element to account for the nonprismatic nature

of the bridge. In addition, the displacements (e.g., influence
function for translation at a point) are always available at ev-

ery degree of freedom. The disadvantage is computational

inefficiency, which is minor.

The Muller–Breslau method may be used with either

discretation scheme. The advantage of the Muller–Breslau

approach is that only one load case is required for each

influence function. Because the displacements establish

the function, the back-substitution process is eliminated.

This process is a minor computational advantage for stan-

dard beam and frame elements. The major disadvantage is

that with an automated approach, one expects to develop

complete action envelopes for locations along the beam for

design, usually tenth points. Therefore, one load case is

required for each action considered, likely one action for

each degree of freedom, which is several times (beam = 2,

frame = 3, etc.) the number of load cases for the unit action

traverse. The computational saving is that the displacements

are the influence ordinates and action recovery is not re-

quired. If one element per span is used, then algorithms

must be developed to determine the influence ordinates

(displacements) in the interior of the element (e.g., Eqs.

9.16–9.19). This increases code complexity, especially if

nonprismatic beams are required.

In summary, designing an automated approach for the gen-

eration of influence functions depends on the objectives and

scope of the program. Typically, the combination of using

multiple elements per span and applying a unit action as a

joint load results in a code that is flexible, easy to main-

tain, and has the capability to generate influence functions for

every end action in the system. Further, nonprismatic effects

are naturally handled by changing the element properties.

The computational efficacy for linear problems of this size

becomes less important with ever increasing computational

capability.With today’s computers, the computation appears

to be instantaneous.

9.6 NORMALIZED INFLUENCE FUNCTIONS

Influence functions may be considered a type of structural

property, as they are independent of the load and dependent

on the relative stiffness of each element. Consider the

Muller–Breslau principle—the displaced shape due to an

imposed displacement is dependent on the relative , not

absolute , values of stiffness. For a continuous prismatic

beam, the cross section and material stiffness do not vary

with location; therefore, the influence functions are based

on the only remaining parameter that affects stiffness, the

span lengths. Note that in Figure 9.4, the influence functions

for reaction and shear are independent of the span length,

and the influence function for moment is proportional to

span length. These relationships are similar for continuous

beams, but here the shape is determined by the relative
stiffness (in the case of a prismatic beam, the relative span

lengths) and the ordinate values for moment are proportional

to a characteristic span length.

For detailing and aesthetic reasons, bridges are often

designed to be symmetrical about the center of the bridge;

for example, the first and third span lengths of a three-span

bridge are equal.
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Table 9.4 Normalized Influence Functions (Three Span, Span Ratio = 1.2)a

Location M (104) M (200) M (205) V (100) V (104) V (110) V (200) V (205)

100 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000

101 0.05028−0.02431−0.00884 0.87569 −0.12431 −0.12431 0.02578 0.02578

102 0.10114−0.04714−0.01714 0.75286 −0.24714 −0.24714 0.05000 0.05000

103 0.15319−0.06703−0.02437 0.63297 −0.36703 −0.36703 0.07109 0.07109

104 0.20700−0.08250−0.03000 0.51750 −0.4825/0.51750 −0.48250 0.08750 0.08750
105 0.16317−0.09208−0.03348 0.40792 0.40792 −0.59208 0.09766 0.09766

106 0.12229−0.09429−0.03429 0.30571 0.30571 −0.69429 0.10000 0.10000

107 0.08494−0.08766−0.03187 0.21234 0.21234 −0.78766 0.09297 0.09297

108 0.05171−0.07071−0.02571 0.12929 0.12929 −0.87071 0.07500 0.07500

109 0.02321−0.04199−0.01527 0.05801 0.05801 −0.94199 0.04453 0.04453
110 or 200 0.00000 0.00000 0.00000 0.00000 0.00000 −1.00000/0.0 0.0/1.00000 0.00000

201−0.02037−0.05091 0.02529−0.05091 −0.05091 −0.05091 0.92700 −0.07300

202−0.03333−0.08331 0.05829−0.08331 −0.08331 −0.08331 0.83600 −0.16400

203−0.03996−0.09990 0.09900−0.09990 −0.09990 −0.09990 0.73150 −0.26850
204−0.04135−0.10337 0.14743−0.10337 −0.10337 −0.10337 0.61800 −0.38200

205−0.03857−0.09643 0.20357−0.09643 −0.09643 −0.09643 0.50000 −0.50/0.50

206−0.03271−0.08177 0.14743−0.08177 −0.08177 −0.08177 0.38200 0.38200

207−0.02484−0.06210 0.09900−0.06210 −0.06210 −0.06210 0.26850 0.26850

208−0.01605−0.04011 0.05829−0.04011 −0.04011 −0.04011 0.16400 0.16400

209−0.00741−0.01851 0.02529−0.01851 −0.01851 −0.01851 0.07300 0.07300
210 or 300 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

301 0.00458 0.01145−0.01527 0.01145 0.01145 0.01145 −0.04453 −0.04453

302 0.00771 0.01929−0.02571 0.01929 0.01929 0.01929 −0.07500 −0.07500

303 0.00956 0.02391−0.03188 0.02391 0.02391 0.02391 −0.09297 −0.09297
304 0.01029 0.02571−0.03429 0.02571 0.02571 0.02571 −0.10000 −0.10000

305 0.01004 0.02511−0.03348 0.02511 0.02511 0.02511 −0.09766 −0.09766

306 0.00900 0.02250−0.03000 0.02250 0.02250 0.02250 −0.08750 −0.08750

307 0.00731 0.01828−0.02437 0.01828 0.01828 0.01828 −0.07109 −0.07109

308 0.00514 0.01286−0.01714 0.01286 0.01286 0.01286 −0.05000 −0.05000
309 0.00265 0.00663−0.00884 0.00663 0.00663 0.00663 −0.02578 −0.02578

310 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Pos. Area span 1 0.09545 0.00000 0.00000 0.43862 0.13720 0.0000 0.06510 0.06510

Neg. Area Span 1 0.00000−0.06138−0.02232 0.00000 −0.09797 −0.56138 0.00000 0.00000

Pos Area Span 2 0.00000 0.00000 0.10286 0.00000 0.00000 0.00000 0.60000 0.13650

Neg. Area Span 2−0.03086−0.07714 0.00000−0.07714 −0.07714 −0.07714 0.00000 −0.13650

Pos. Area Span 3 0.00670 0.01674 0.00000 0.01674 0.01674 0.01674 0.00000 0.00000
Neg. Area Span 3 0.00000 0.00000−0.02232 0.00000 0.00000 0.00000 −0.06510 −0.06510

Total Pos. Area 0.10214 0.01674 0.10286 0.45536 0.15394 0.01674 0.66510 0.20160

Total Neg. Area−0.03086−0.13853−0.04464−0.07714 −0.17512 −0.63853 −0.06510 −0.20160

Net Area 0.07129−0.12179 0.05821 0.37821 −0.02117 −0.62179 0.60000 0.00000

aUsage:

Multiply influence ordinates for moment by length of span 1.

Multiply areas for moment by length of (span 1)2.

Multiply areas for shear by length of span 1.

Notes:

Area M (205) + for span 2 is 0.1036, 0.1052, and 0.1029 for trapezoidal, Simpson’s, and exact integration, respectively.

Areas V (205) + and V (205) − for span 2 were computed by Simpson’s integration.
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For economy and ease of detailing and construction, the

engineer sets the span length to meet the geometric con-

straints and, if possible, to have similar controlling actions
in all spans. In a continuous structure, making the outer

spans shorter than the interior spans balances the controlling

actions. Typical span ratios vary from 1.0 to 1.7. The spans

for Example 9.6 are 100, 120, and 100 ft (30,480, 36,576,

and 30,480 mm) that have a span ratio of 1.2. The shear
influence functions from Example 9.6 can be used for a

prismatic three-span continuous girder bridge with the same

span ratio (i.e., 1.2). Similarly, the moment influence func-

tions can be proportioned. For example, a bridge with spans

of 35, 42, and 35 ft (10,668, 12,802, and 10,668 mm) has
a span ratio of 42 : 35 = 1.2. With the use of the first span

as the characteristic span, the ordinates can be proportioned

by 35 : 100 = 0.35. For example, the smaller bridge has a

maximum ordinate for the moment at 104 of

ηM104
= (0.35) (20.70) = 7.25 ft

The American Institute for Steel Construction (AISC)

published tables of normalized influence functions for vari-

ous span configurations and span ratios (AISC, 1986). These

tables were generated for a characteristic span length of 1.0.

This format allows the engineer to use the tabulated values
by multiplying by the actual characteristic span length.

Table 9.2 (span ratio = 1.2) is normalized to a unit length

for span one and the results are given in Table 9.4. This table

is used in several examples that follow.

9.7 AASHTO VEHICLE LOADS

The AASHTO vehicle loads defined in Chapter 8 are used

to determine the load effects for design. Because the vehicle

loads are moving loads, load placement for maximum load

effect may not be obvious. The influence function for a par-
ticular action is used in combinationwith the prescribed load

to establish the load position for analysis. The engineer may

place the load at one or more positions by inspection and cal-

culate the load effect for each load placement using Eq. 9.1.

The maximum and minimum values are noted and used in
subsequent design calculations.

Alternatively, the load is periodically positioned along the

same path used to generate the influence function. For each

placement, the load effect is calculated and compared to the

previous one. The maximum and minimum load effects are

recorded. This approach is most appropriate for automation
and is the technique most often employed in computer pro-

grams that generate load effect envelopes.

The critical load placement is sometimes obvious when

the influence function is available. As illustrated in Example

9.10, this is the case for the analysis of statically determinate
beams.

Critical load placement on an influence function gives the

maximum or minimum load effect for the particular action

at the location associated with that function. Unfortunately,

this location is likely not the location that gives the absolute

critical load effect in the span. For example, typical influence
functions are generated at tenth points, but the critical loca-

tion may be between the tenth point locations. Tenth point

approximations are typically very close to the absolute max-

imum/minimums.
This critical location can be theoretically established for

simple beams, and this formulation can be found in most

elementary texts on structural analysis (e.g., Hibbeler and

Hibbeler, 2004). We have chosen not to focus a great deal
of attention on this aspect. From a practical perspective,

the method only works for simple-span bridges. Automated

approaches are written in a general way to accommodate

both statically determinate and indeterminate systems with
the same algorithms. Lastly, the absolute maximum or

minimum load effect does not differ significantly from the

tenth point approximation. The two methods are compared

in the following example.

Example 9.10 Use the influence functions determined in

Example 9.1 to calculate the maximum reaction R100, shear
V100, and moment M105 for the AASHTO vehicle loads

(AASHTO, 2010). Use a 35-ft (10,668-mm) span.

The influence lines for the actions required are shown in

Figures 9.17(a)–9.17(d). The critical actions for the design

truck, design tandem, and the design lane loads are deter-

mined independently and are later superimposed as neces-
sary. The design truck is used first, followed by the design

tandem, and finally, the design lane load.

Design Truck Load

The critical load placement for R100 is shown in Figure

9.17(e). By using Eq. 9.1, this reaction is determined as

R100 =
3∑

i=1

Piηi = 32 (1) + 32

(
21

35

)
+ 8

(
7

35

)

= 32+ 19.2 + 1.60 = 52.8 kips

Note that R100 = V100 = 52.8 kips.

The critical load placement for M105 is illustrated in
Figure 9.17(f).Multiplicationof the loads times the ordinates

gives

M105 = 8.75[(32)(1) + 32(3.5/17.5) + 8(3.5/17.5)]

= 350 ft kips

Increasing the distance between the rear axles spreads the

load and decreases the load effect. Thus, the 14-ft (4300-
mm) variable axle spacing is critical; this will be the case for

simple spans. The variable axle spacing can become critical

for short multispan beams where the truck length is approx-

imately the same as the span lengths.
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A B

35 ft

(a)

1.0

0

0.5(1)(35) = 17.5 ft

(b)

(d)

=       = 8.75 ft

8.75 ft

32 kips
14 ft

17.5 ft 17.5 ft

(f)

25
kips

25
kips

4 ft

8.75 ft

35 ft

(h)

14 ft
32 kips 8 kips

0.5

−0.5

(c)

32 kips 32 kips

1.0

0

14 ft 14 ft

35 ft

(e)

25
kips

25
kips

4 ft

35 ft

(g)

1.0

0

8 kips

0.5(8.75)(35)
= 153.125 ft2

C

L
4

35
4

Fig. 9.17 (a) Simple beam, (b) influence functionRA andVA, (c) influence function VB, (d) influence functionMB, (e) design truck positioned

for RA and VA, (f) design truck positioned for MB, (g) tandem truck positioned for RA and VA, and (h) tandem truck positioned for MB.

Design Tandem Load

To determine R100, the design tandem loads are placed as il-

lustrated in Figure 9.17(g). The reaction is

R100 = 25 (1) + 25
(
31
35

) = 47.1 kips

Again note, V100 = R100 = 47.1 kips.

The maximum moment at midspan is determined by

placing the design tandem as shown in Figure 9.17(h). The

result is

M105 = 8.75[25(1) + 25(13.5/17.5)]

= 387.5 ft kips

Design Lane Load

Equation 9.3 is used to determine the shears and moments for

the uniform lane load of 0.64 kip/ft (9.3N/mm). This uniform

load is multiplied by the appropriate area under the influence
function. For example, the integral of the influence function

for R100 is the area of a triangle or

Area = (1) (35) /2 = 17.5 ft

Thus, the reaction R100 is calculated as

R100 = (0.64 kip/ft)(17.5 ft) = 11.2 kips

As before, V100 = R100 = 11.2 kips.
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By using Figure 9.17(d), the moment at midspan is

M105 = (0.64 kip/ft)
[
(8.75) (35)

(
1
2

)
ft2

]

= (0.64 kip/ft)(153.1 ft2)

= 98 ft kips

The absolute maximum reaction and shear are as shown

above, but the absolute maximum moments are slightly dif-

ferent. The actions for simple beams may be establishedwith

the following rules (AASHTO, 2010):

1. The maximum shear due to moving concentrated loads

occurs at one support when one of the loads is at the

support. With several moving loads, the location that

will produce maximum shear must be determined

by trial.

2. The maximum bending moment produced by moving
concentrated loads occurs under one of the loads when

that load is as far fromone support as the center of grav-

ity of all the moving loads on the beam is from the other

support.

Position the design truck with the rear at the short spacing
of 14 ft and locate this rear axle at 6.61 ft from left support.

This position results in a maximummoment under the 32-kip

wheel of 360 ft kips,which is slightlygreater than the value at

the 105 point (350 ft kips). Position the design tandem wheel

at 16.5 ft from the left, resulting in a maximum moment of

388 ft kips under the wheel. The differences between these
moments and themoments at the 105 point are approximately

0.97 and 0.1% for the design truck and tandem trucks, re-

spectively. The absolutemaximummoments are also given in

Table 9.5. Note that the design lane loadmust be added to the

design truck and to the design tandem loads [A3.6.1.3.1].*

The maximums for these load cases occur at different lo-

cations, that is, the uniform lane load is at a maximum at

midspan. This further complicates the analysis. A rigorous

approachmust determine the absolutemaximum for the com-

bined factored loads, which is only reasonable for simple

spans. These calculations are summarized in Table 9.5.

Example 9.11 Repeat Example 9.10 for a 100-ft (30,480-

mm) span. The calculations are given below.

Design Truck Load

R100 = 32(1) + 32
(
86
100

) + 8
(
72
100

) = 65.3 kips

V100 = R100

M105 = (
100
4

) [
32 (1) + 32

(
36
50

) + 8
(
36
50

)]

= 1520 ft kips

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-

tions are enclosed in brackets and preceded by the letter A if a specification

article and by the letter C if commentary.

Table 9.5 Service-Level Vehicle Design Loadsa,b,c

Load

R100 = V100

(kips)

M105

(ft kips)

Absolute

Max

(ft kips)

Design truck 52.8 350.0 360

Design tandem 47.1 387.5 389

Design lane 11.2 98.0 98.0

(1.33)Truck + lane 81.4 563.5 576.8

(1.33)Tandem + lane 73.8 613.4 615.4d

aSimple span = 35 ft (10 668 mm).
bThe critical values are in boldface.
cThe typical impact factors for the truck and tandem is 1.33 and the

lane load is 1.00. These factors are discussed in Chapter 8.
dUsed lane load moment at midspan.

Design Tandem Load

R100 = 25(1) + 25
(
96
100

) = 49.0 kips

V100 = R100

M105 = (
100
4

) [
25 (1) + 25

(
46
50

)]

= 1200 ft kips

Design Lane Load

R100 = 0.64
(
1
2

)
(1)(100) = 32 kips

V100 = R100

M105 = 0.64
(
1
2

) (
100
4

)
(100) = 800 ft kips

The actions for the truck and tandem loads are combinedwith

the lane load in Table 9.6.

The procedure for determining the actions in a continuous

beam is similar to that illustrated for a simple beam. As il-
lustrated previously, the influence diagrams are slightlymore

complicated as the functions are nonlinear with both posi-

tive and negative ordinates. To illustrate the calculation of

the load effects for a continuous system, the three-span con-
tinuous beam of Example 9.6 is used. A few actions are used

for illustration and the remaining actions required for design

follow similar procedures.

Table 9.6 Service-Level Design Loadsa

Load

R100 = V100

(kips)

M104

(ft kips)

Design truck 65.3 1520

Design tandem 49.0 1200
Design lane 32.0 800

(1.33)Truck + lane 118.8 2822
(1.33)Tandem + lane 97.2 2396

aSpan = 100 ft (30 480 mm).
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Example 9.12 Determine the shear V100, the moment

M104, and the moment M110 = M200 for the beam of

Example 9.6 (Fig. 9.11). Use the normalized functions

given in Table 9.4. The span lengths are 100, 120, and 100 ft

(30,480, 36,576, and 30,480mm). Use the AASHTO vehicle

loads.

Design Lane Load

Use the normalized areas at the bottom of Table 9.4 for the

lane loads. Note that these areas require multiplicationby the

characteristic span length for shear and by the span length

squared formoment. The positive and negative areas are used

for the associated actions.

V100− = 0.64(−0.077 14)(100) = −4.94 kips

V100+ = 0.64(0.455 36)(100) = 29.1 kips

M104+ = 0.64(0.102 14)(1002) = 653.6 ft kips

M104− = 0.64(−0.030 86)(1002) = −197.5 ft kips

M110− = 0.64(−0.138 53)(1002) = −886.6 ft kips

M110+ = 0.64(0.016 74)(1002) = 107.1 ft kips

Design Tandem Load

The tandem axle is applied to the structure and the load
effects are calculated with Eq. 9.1. The load placement is by

inspection and noted below for each action.

For V100, place the left axle at 100 and the second axle

at 4 ft (1200 mm) from the left end. The influence ordinate

associated with the second axle is determined by linear inter-
polation:

V100+ = 25(1) + 25
[
1 − (

4
10

)
(1 − 0.875 69)

]

= 25+ 23.75 = 48.75 kips

For the most negative reaction at 100, position the right axle

at 204:

V100− = 25(−0.103 37) + 25
[−0.103 37 + (

4
12

)

× (0.10337 − 0.09990)
]

V100− = −2.58 − 2.56 = −5.14 kips

For the positive moment at 104, position the left axle at 104
(approximate). Again, determine the ordinate for the second

axle by interpolation:

M104+ = 25(0.207 00)(100) + 25
[
0.20700− (

4
12

)
(0.20700

−0.163 17)
]
(100)

= 517.5 + 481.0 = 998 ft kips

Position the right axle at 204 for the most negative moment
at 104 (approximate). The result is

M104− = 25(−0.041 35)(100)

+ 25
[−0.041 35− (

4
10

)
(−0.041 35

+0.039 96)
]
(100)

M104− = −103.4 − 102.0 = −205.4 ft kips

Position the right axle at 204 for the most negative moment

at 110.

M110− = 25(−0.103 37)(100)

+ 25
[−0.103 37− (

4
10

)
(−0.103 37

+0.099 90)
]
(100)

= −258.4 − 254.9 = −513.3 kips

Design Truck Load

Position the rear axle at 100 for the maximum reaction

(position truck traveling to the right = forward):

R100+ = 32(1) + 32(0.8266) + 8(0.6569)

= 32.0 + 26.45 + 5.26 = 63.7 kips

Position the middle axle at 104 for the positive moment at
104 (backward):

M104+ = 8
[
0.153 19− (

4
10

)
(0.153 19− 0.10114)

]
(100)

+ 32(0.207 00)(100)

+ 32
[
0.16317−(

4
10

)
(0.16317 −0.12229)

]
(100)

= 106.0 + 662.4 + 469.8 = 1238.2 ft kips

Position themiddle axle at 204 for the most negative moment

at 104 (forward):

M104− = 8
[−0.03857−(

2
12

)
(−0.038 57+0.032 71)

]
(100)

+ 32(−0.041 35)(100)

+ 32
[−0.03996−(

2
12

)
(−0.03996+0.033 33)

]

× (100)

= −30.1 − 132.3 − 124.3 = −286.6 ft kips

Position themiddle axle at 204 for the most negative moment

at 110 (forward):

M110− = 32
[−0.099 9 − (

2
12

)
(−0.099 9+0.083 31)

]
(100)

+ 32(−0.103 37)(100)

+ 8
[−0.096 43 − (

2
12

)
(−0.096 43 + 0.08177)

]

× (100)

= −310.8 − 330.8− 75.2 = −716.8 ft kips

(A slightlydifferent position in the automated approach gives

−720 ft kips)
Position the middle axle at 304 for the maximum positive

moment at 110 (backward):

M110+ = 8
[
0.0239 − (

4
10

)
(0.0239 − 0.019 29)

]
(100)

+ 32(0.025 71)(100)

+ 32
[
0.02511−(

4
10

)
(0.02511−0.02250)

]
(100)

= 17.6+ 82.2 + 77.0 = 176.8 ft kips

In the previous example, actions at selected points were
determined. This procedure is generally permitted as long
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as the points and actions selected are representative of the
extreme values (action envelope). These points are summa-

rized in Table 9.1. Alternatively, all the extreme actions are
determined at enough sections so that the envelope is repre-

sented. This is an extremely tedious process if performed by
hand. Typically, all actions are determined at the tenth points.
Therefore, this approach is most often automated.

A computer program called BT Beam—LRFD Analysis
(BridgeTech, Inc., 1996) was used to develop the envelope

of all actions at the tenth points. The web-based program
was put online in 2010. (Search “BTBeam online” or http://
www.bridgetech-laramie.com/BTBeam) This program is

free. An output file name.sht provides a text file that is
amenable for import into a spreadsheet.

The automated procedure performs the calculations as pre-
sented in this chapter except that it uses a matrix formulation
rather than a slope–deflection analysis. For a beam analysis,
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Fig. 9.18 Live-load shear envelope for HL-93 on 100–120–100 ft beam.
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Fig. 9.19 Live-load moment envelope for HL-93 on 100–120–100 ft beam.

these analyses are identical. The results from this analysis are

given in Table 9.7. A comparison of the values in this table

with those calculated previously shows minor differences.
These differences are attributed to the load positioning pro-

cedures. The automated procedure moves the load along the

influence diagram at relatively small intervals and the max-

ima/minima are stored. The hand calculations are based on a

single load position estimating the maximum/minimum load

effect. The critical values illustrated in Table 9.7 are plotted
in Figures 9.18 and 9.19.

The AASHTO vehicle loads are also applied to a three-

span continuous beam with spans of 35, 42, and 35 ft

(10,668, 12,802, and 10,668 mm). The results are presented

in Table 9.8 and critical values are illustrated in Figures 9.20
and 9.21. The values in Tables 9.7 and 9.8 and the associated

figures are referenced in the design examples presented in

the remaining chapters.
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Fig. 9.21 Live-load moment envelope for HL-93 on 35–42–35 ft beam.

9.8 INFLUENCE SURFACES

Influence functions (or surfaces) can represent the load ef-
fect as a unit action moves over a surface. The concepts are
similar to those presented previously. A unit load is moved

over a surface, an analysis is performed for each load place-
ment, and the response of a specific action at a fixed loca-

tion is used to create a function that is two dimensional, that
is, η(x , y) where x and y are the coordinates for the load
position.

This function is generated by modeling the system with the
finite-element method (see Chapter 11). The function is used

by employing superposition in a manner similar to Eq. 9.1.

The analogous equation is

A = P1η(x1, y1) + P2η(x2, y2) + L + Pnη(xn, yn)

=
n∑

i=1

Piη
(
xi, yi

)
(9.20)

A distributed patch load is treated in a manner similar to
distributive load in Eq. 9.3. The analogous equation is

A =
∫∫

Area

w (x, y) η (x, y) dA (9.21)

where w (x, y) is the distributive patch load and the integra-

tion is over the area where the load is applied. If the load
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Fig. 9.22 Example of an influence surface for the corner reaction.

is uniform, then w (x, y) may be removed from the integra-

tion. For example, a uniform load such as the self-weight of a

bridge deck is multiplied by the volume under the influence
surface to determine the load effect.

Numerical procedures similar to those described previ-

ously are used for the integration. Influence surfaces can be

normalized and stored for analysis. Influence surfaces were
used extensively in the development of the load distribution

formulas contained in the AASHTO specification (Zokaie

et al., 1991; Puckett et al., 2005). An example from work by

Puckett et al. (2005) is illustrated in Figure 9.22. This work

is described in detail in Chapter 11.

9.9 SUMMARY

Influence functions are important for the structural analysis

of bridges. They aid the engineer in the understanding, place-

ment, and analysis of moving loads. Such loads are required

to determine the design load effects. Several methods exist to
generate influence functions. All methods have advantages

and disadvantages for hand and automated methods. Several

methods are illustrated in this chapter. Design trucks and lane

loads have been used to generate the critical actions for four
bridges. These envelopes are used in design examples pre-

sented in later chapters.
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PROBLEMS

9.1 Determine the influence lines for the shear and bend-

ing moments for the points of interest (POI) labeled.

Instructor to assign structures and POIs.

A B

70 ft

140 ft

C

A B

10 ft

20 ft

C
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A B

35 ft

70 ft 14 ft

C D

9.2 Qualitatively (without values but to scale) draw the

influence lines for shear, moment, and reactions. Use

the structures illustrated in Problem 9.1.

9.3 Qualitatively (without values but to scale) draw the

influence lines for shear, moment, and reactions. Use

the structures illustrated below.

9.4 Use the design truck with a 14-ft rear-axle spacing

to determine the critical (most positive and negative)

shear, moment, and reactions at the points of interest

for Problem 9.1. Instructor to assign structures and

POIs.

9.5 Use the design tandem to determine the critical (most

positive and negative) shear, moment, and reactions at

the points of interest for Problem 9.1. Instructor to as-

sign structures and POIs.

9.6 Use the design lane to determine the critical (most pos-

itive and negative) shear, moment, and reactions at the

points of interest for Problem 9.1. Instructor to assign

structures and POIs.

9.7 Use a dead load of wDC = 1.0 kip/ft and wDW = 0.20

kip/ft across the structure to determine the shear and

bending moment diagrams for Problem 9.1. Instructor

to assign structure(s).

9.8 Use the results from Problems 9.4–9.7 to combine

these load for the strength I limit state. Use only the

maximum dead-load factors, γ DC = 1.25, γ DW =
1.50. Assume a live-load distribution factor of mg =
0.6 lanes/girder.

9.9 Use the permit vehicle shown below to determine

the critical live-load shears, moments, and reactions

for the structures in Problem 9.1. Instructor to assign

structures and POIs.

9.10 Use the design truck (with a 14-ft rear-axle spacing),

design tandem, and design lane to illustrate the critical

placement (show loads on influence line diagram)

for the critical shear, moment, and reactions. Use the

results from Problem 9.3. Instructor to assign struc-

tures and POIs.

9.11 Use a structural analysis program to determine the

load effects for the design truck (with a 14-ft rear-axle

spacing), design tandem, and design lane. See Prob-

lem 9.10. Compute the critical shear, moment, and

reactions. Instructor to assign structures and POIs.

9.12 Use a structural analysis program to determine the load

effects for a dead load of wDC = 1.0 kip/ft and wDW =
0.20 kip/ft across the structure. Determine the shear and

bending moment diagrams. See Problem 9.10. Instruc-

tor to assign structure(s).
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9.13 Use the results from Problems 9.10–9.12 to combine

these load for the strength I limit state. Use only the

maximum dead-load factors, γ DC = 1.25, γ DW =
1.50. Assume a live-load distribution factor of mg =
0.6 lanes/girder.

9.14 Use an automated bridge analysis program, for

example, QCON or BT Beam, and repeat Problem 9.8.

9.15 Use an automated bridge analysis program, for

example, QCON or BT Beam, and repeat Problem
9.13.

9.16 Use a flexible rod to illustrate the influence lines for the

reactions at A, B, and C. Use the rod to draw the shape

of the influence line. Compare with numerical values

provided in the following table. Use Problem 9.10.

Location A B C

100 1.0000 0.0000 0.0000

104 0.5160 0.5680 −0.0840

105 0.4063 0.6875 −0.0938

110 = 200 0.0000 1.0000 0.0000

205 −0.0938 0.6875 0.4063

206 −0.0840 0.5680 0.5160

210 = 300 0.0000 0.0000 1.0000

Source : AISC (1986).

18 in.

4 ft

2 ft

4 ft 4 ft 4 ft

32 ft

Floor Beams @ 40 ft

4 ft 4 ft 4 ft

18 in.

8 in.
Stringers
L = 40 ft
Simple Span

Griders
L = 160 ft
Simple Span

2 ft

Multiply the coefficients provided by the span length

for one span. Instructor note : Stringer–floorbeam–

girder bridges show an excellent system that may be
used to explain load path issues; however, few new

systems are designed today. Many systems exist within

the inventory and are load rated in today’s engineering

practice. Also, there is no discussion of this type of

system in this book; the instructor will have to provide

the necessary procedures and/or example.
9.17 For the stringer–floorbeam–girder system shown,

determine the shear and moment diagrams in the

floorbeam and the girders for the self-weight (DC)

(0.150 kcf normal wt. concrete) and DW of 30 psf.

9.18 Use the design truck with a 14-ft rear-axle spacing
to determine the critical (most positive and negative)

shear, moment, and reactions at the points of interest

for Problem 9.17. Multiple presence factors and sin-

gle and multiple loaded lanes should be considered.

Instructor to assign POIs.
9.19 Use the design lane to determine the critical (most pos-

itive and negative) shear and moment at the points of

interest for Problem 9.17. Instructor to assign struc-

tures and POIs. Multiple presence factors and single

and multiple loaded lanes should be considered.

9.20 Use the results from Problems 9.17–9.19 to combine
these loads for the strength I limit state. Use only the

maximum dead-load factors, γ DC = 1.25, γ DW = 1.50,

and γ LL = 1.75.



CHAPTER 10

System Analysis—Introduction

10.1 INTRODUCTION

To design a complicated system such as a bridge, it is nec-
essary to break the system into smaller, more manageable
subsystems that are comprised of components. Subsystems
include the superstructure, substructure, and foundation,
while the components include beams, columns, deck slab,
barrier system, cross frames, diaphragms, bearings, piers,
footing, piles, and caps. The forces and deformations (load
effects) within the components are necessary to determine
the required size and material characteristics. It is traditional
and implicit in the AASHTO Specification that design be
performed on a component basis. Therefore, the engineer re-
quires procedures to determine the response of the structural
system and ultimately its components.
In general, the distribution of the loads throughout the

bridge requires equilibrium, compatibility, and that constitu-
tive relationships (material properties) be maintained. These
three requirements form the basis for all structural analysis,
regardless of the level of complexity. Equilibrium requires
that the applied forces, internal actions, and external reac-
tions be statically in balance. Compatibility means that the
deformations are internally consistent throughout the system
(without gaps or discontinuities) and are consistent with the
boundary conditions. Finally, the material properties, such
as stiffness, must be properly characterized. Typically, the
assumptions that are made regarding these three aspects of
analysis determine the complexity and the applicability of
the analysis model.
For example, consider the simply supported wide-flange

beam subjected to uniform load shown in Figure 10.1. The
beam is clearly a three-dimensional system because it has
spatial dimension in all directions, but in mechanics of

Fig. 10.1 Simple beam.

deformable bodies we learned that this system could be
modeled by the familiar one-dimensional (1D) equation:

d4y

dx4
= w (x)

EI (x)
(10.1)

Several important assumptions were used in the develop-
ment of Eq. 10.1. First, the material is assumed to behave
linear elastically. Second, the strain (and stress) due to flex-
ural bending is assumed to be linear. Third, the loads are
concentrically applied such that the section does not torque,
and finally, the beam is proportioned and laterally braced so
that instability (buckling) does not occur.
Although these assumptions are conventional and yield re-

sults comparable to laboratory results, often these conditions
do not truly exist. First, for example, due to localized effects,
some yielding may occur under reasonable service loads.
Residual stresses from rolling result in some yielding at load
levels below the predicted yield. Fortunately, these local
effects do not significantly affect the global system response
under service loads. Second, the bending stress profile is
slightly nonlinear principally due to the load (stress) applied
to the top of the beam and the reactions that create vertical
normal stresses and strains that, due to Poisson’s effect,
also create additional horizontal stress. This effect is usually
small. Third, concentric loading is difficult to achieve if
the load is applied directly to the beam, but, if the beam is
part of a slab system, then this assumption is perhaps more
realistic. Finally, and importantly, Eq. 10.1 does not consider
the local or global instability of the beam. It may be argued
that other assumptions are also applicable, but a discussion
of these suffices for the purpose intended here.
The purpose for discussing such a seemingly simple system

is to illustrate the importance of the modeling assumptions,
and their relevance to the real system. It is the engineer’s
responsibility to understand the assumptions and their ap-
plicability to the system under study. When the assumptions
do not adequately reflect the behavior of the real system, the
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162 10 SYSTEM ANALYSIS—INTRODUCTION

engineer must be confident in the bounds of the error induced
and the consequences of the error. Clearly, it is impossible
to exactly predict the response of any structural system, but
predictions can be of acceptable accuracy. The consequences
of inaccuracies are a function of the mode of failure. These
phenomena are elaborated in detail later.
The application of equilibrium, compatibility, and mate-

rial response, in conjunction with the assumptions, consti-
tutes the mathematical model for analysis. In the case of the
simple beam, Eq. 10.1, with the appropriate boundary condi-
tions, is the mathematical model. In other cases, the mathe-
matical model might be a governing differential equation for
a beam column or perhaps a thin plate, or it may be the inte-
gral form of a differential equation expressed as an energy or
variational principle.Whatever the mathematical model may
be, the basis for the model and the behavior it describes must
be understood.
In structural mechanics courses, numerous procedures

are presented to use the mathematical model represented
by Eq. 10.1 to predict structural response. For example,
direct integration, conjugate beam analogy, moment–area,
slope–deflection, and moment distribution are all well-
established methods. All of these methods either directly or
indirectly involve the mathematical model represented by
Eq. 10.1.
The method used to solve the mathematical model is

termed the numerical model . Its selection depends on many
factors including availability, ease of application, accu-
racy, computational efficiency, and the structural response
required. In theory, numerical models based on the same
mathematical model should yield the same response. In
practice, this is generally true for simple one-dimensional
elements such as beams, columns, and trusses. Where finite
elements are used to represent a continuum in two or three
dimensions (2 or 3D), features such as element types, mesh
characteristics, and numerical integration, complicate the
comparisons. This does not mean that several solutions
exist to the same problem, but rather solutions should be
comparable though not exactly identical, even though the
mathematical models are the same.
Finally, the engineer should realize that even the simplest

of systems are often mathematically intractable from a rig-
orous closed-form approach. It is rather easy to entirely for-
mulate a mathematical model for a particular bridge, but its
solution is usually nontrivial and must be determined with
approximate numerical methods such as with the finite-strip
or finite-element methods. It is important to realize that ap-
proximations exist in both the mathematical and numerical
models.
The process is illustrated in Figure 10.2. At the top of the

diagram is the real system as either conceptualized or as built.
To formulate a mathematical model, the engineer must ac-
cept some simplifying assumptions that result in a governing
equation(s) or formulation. Next, the engineer must translate
the characteristics of the real system into the variables of the

mathematical model. This includes definition of loads, mate-
rial and cross-sectional properties and boundary conditions.
Likely, the engineer relies on more simplification here. The
numerical model is solved. Here some numerical approxi-
mation is typically involved. The results are then interpreted,
checked, and used for component design.
Should the component properties vary significantly as a re-

sult of the design, then the numerical model should be altered
and the revised results should be determined. Throughout the
process, the engineer must be aware of the limitations and
assumptions implicit in the analysis and should take precau-
tions to ensure that the assumptions are not violated or that
the consequences of the violations are understood and are
acceptable.
Many parameters are difficult to estimate and in such cases,

the extreme conditions can be used to form an envelope of
load effects to be used for design. For example, if a partic-
ular cross-sectional property is difficult to estimate due to
complications such as composite action, concrete cracking,
and creep effects, the engineer could model the section using
the upper and lower bounds and study the sensitivity of the
procedure to the unknown parameters. Such modeling pro-
vides information about the importance of the uncertainty of
parameters in the structural response.

10.2 SAFETY OF METHODS

As previously stated, it is important for the engineer to un-
derstand the limitations of the mathematical and numerical
models and the inaccuracies involved. As models are esti-
mates of the actual behavior, it is important to clearly un-
derstand the design limit states and their relationship to the
modes and consequences of failure. This finding is discussed
in the sections that follow.

10.2.1 Equilibrium for Safe Design

An essential objective in any analysis is to establish a set of
forces that satisfies equilibriumbetween internal actions and
the applied loads at every point. The importance of equilib-
rium cannot be overstated and is elaborated below.
Most of the analytical models described in this book are

based on linear response, that is, the load effect is propor-
tional to the load applied. Conversely, the resistance models
used by AASHTO (and most other structural design specifi-
cations) implicitly assume nonlinear material response at the
strength limit state. For example, the nominal flexural capac-
ity of a braced compact steel section is Mn = FyZ , and the
flexural capacity of a reinforced concrete section involves
the Whitney stress block where fc = 0.85f

′
c , and the steel

stress is equal to the yield stress, and so on. Clearly, an in-
consistency exists. The analysis is based on linear behavior
and the resistance calculations are based on nonlinear behav-
ior. The rationale for this is founded in the system behav-
ior at and beyond yielding and is based in plasticity theory.
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(a) (b)

(c)

Fig. 10.2 Relationship of modeling to design.

The rationale is best explained by restating the lower bound
theorem (Neal, 1977; Horne, 1971):

A load computed on the basis of an equilibriummoment dis-
tribution in which the moments are nowhere greater than
Mp is less than or equal to the true plastic limit load.

Although stated in terms of bending moment, the theorem
is valid for any type of action and/or stress. The essential
requirements of the theorem are:

� Calculated internal actions and applied forces should
be in equilibrium everywhere.

� Materials and the section/member behavior must be
ductile; that is, the material must be able to yield
without fracture or instability (buckling).

In simpler terms, the theorem means that if a design is
based on an analysis that is in equilibrium with the applied

load and the structure behaves in a ductile manner, then the
ultimate failure loadwillmeet or exceed the design load.This
is one of themost important theorems in structuralmechanics
and is extremely relevant to design practice .
This theorem offers wonderful assurance! How does it

work? Consider the two beams shown in Figures 10.3(a) and
10.3(c). The beams are assumed to be designed such that any
section can develop its full plastic moment capacity, which
isMp = FyZ , and for the sake of simplicity it is assumed that
the beam behaves elastic-plastic, that is, the moment that
causes first yielding is the same as the plastic capacity (these
two differ by about 10–15% for steel wide-flange sections).
The uniform load is applied monotonically to the simple
beam of Figure 10.3(a) and the moment diagram is shown
in Figure 10.3(b). When the moment at midspan reaches the
capacity Mp = wuL

2/8, a plastic hinge develops. This hinge
creates a loss in bending rigidity that results in mechanism
and collapse occurs.
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Fig. 10.3 (a) Uniformly loaded simple beam, (b) moment diagram, (c) uniformly loaded fixed–fixed beam, (d) moment diagram, and
(e) free-body diagram.

Now consider the beam shown in Figure 10.3(c) and
its associated linear elastic moment diagram shown in
Figure 10.3(d). The load is again applied monotonically
up to the level where hinges form at the supports (negative
moment). A loss in bending rigidity results, and now the
system becomes a simple beam with the plastic moment
applied at the ends. Because the beam has not reached a
mechanism, more load may be applied. A mechanism is
finally reached when a hinge forms in the interior portion
of the span (positive moment). This behavior illustrates re-
distribution of internal actions. Now assume the two beams
have the same capacityMp in positive and negative bending.
For the simple beam, equate the capacities to the maximum
moment at midspan yielding

Mp = wL2

8

w(simple beam) = 8Mp

L2

Use a similar procedure for the fixed–fixed beam to equate
the capacity to the maximum elastic moment at the support
yielding

Mp = wL2

12

w(fixed–fixed beam) = 12Mp

L2

A free-body diagram for the fixed–fixed beam is shown in
Figure 10.3(e) for the state after the moment has reached the
plastic moment capacity at the end. By equating the capac-
ity Mp at midspan to the moment required by balancing the
moment at the left support, one obtains

Mmidspan = Mp + w

(
L

2

) (
L

4

)
= Mp

w = 16Mp

L2

Consider the relevance of this example to analysis and de-
sign. Suppose that the system is a fixed–fixed beam but the
engineer designed for the simple beam moment. The design
would have an additional capacity of 12

8 = 1.5 against initial
yielding due to the neglected continuity moments and addi-
tional reserve against total collapse of 16

8 = 2.0 considering
redistribution of internal actions.
Even though the elastic moment diagram is used, the

design is safe (but quite likely unnecessarily conservative).
Now consider the more likely case where the engineer de-
signs per the fixed–fixed elastic moment diagram shown in
Figure 10.3(c). Here the additional reserve against collapse
is 16

12 = 1.33. Note these factors should not be confused
with the load factors of Tables 5.1 and 5.2 as these would
be included in the elastic moment diagrams for the design.
The AASHTO Specification allows the engineer to consider
inelastic redistribution of internal actions in various articles.
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Because the amount of redistribution is related to the duc-
tility of the component that is material and cross-section
dependent, most of these provisions are outlined in the
resistance articles of the specification.
The static or lower bound theorem implies that as long as

equilibrium is maintained in the analytical procedures and
adequate ductility is available, then the exact distribution of
internal actions is not required. It is inevitable that the anal-
ysis and subsequent design overestimate the load effect in
some locations while underestimating the effect in others. If
the strength demands in the real structure are larger than the
available resistance, yielding occurs and the actions redis-
tribute to a location where the demands are less, and hence,
more capacity exists to carry the redistributed actions. The
requirement of ductility and equilibriumensures that redistri-
bution occurs and that the system has the necessary capacity
to carry the redistributed actions.
In summary, it is not required that the calculated system of

forces be exact predictions of the forces that exist in the real
structure (this is not possible anyway). It is only necessary
that the calculated system of forces satisfy equilibriumat ev-
ery point. This requirement provides at least one load path.
As illustrated for the fixed–fixed beam, redistribution of in-
ternal actions may also occur in statically redundant systems.
As previously stated, in practice it is impossible to exactly
predict the system of forces that exists in the real system, and
therefore, the lower bound theorem provides a useful safety
net for the strength limit state.
In the case where instability (buckling) may occur prior

to reaching the plastic capacity, the static or lower bound
theorem does not apply. If instability occurs prior to com-
plete redistribution, then equilibrium of the redistributed ac-
tions cannot be achieved and the structure may fail in an
abrupt and dangerous manner.

10.2.2 Stress Reversal and Residual Stress

In Section 10.2.1, the ultimate strength behavior was intro-
duced, and it was assumed that the cross section achieved
the full plastic moment capacity. Note we did not mention
how the section reaches this state or what happens when the
section is yielded and then unloaded. Both of these issues
are important to understanding the behavior and design limit
states for ductile materials.
Consider the cantilever beam shown in Figure 10.4(a),

which has the cross section shown in Figure 10.4(b) with
reference points of interest o , p , q , and r . Point o is lo-
cated at the neutral axis, p is slightly above the o , r is
located at the top, and q is midway between p and r . The
section has residual stresses that are in self-equilibrium [see
Fig. 10.4(c)]. In general, residual stresses come from the
manufacturing process, construction process, temperature
effects, intentional prestressing, creep, shrinkage, and so on.
The beam is deflected at B and the load is measured. The

product of the measured load and beam length is the mo-
ment atA , which is shown in themoment–curvature diagram

illustrated in Figure 10.4(d). As the tip deflection increases,
the moment increases with curvature and all points remain
below the yield stress up to state a . Further increase causes
initial yielding in the outer fibers and the yielding progresses
toward the neutral axis until the section is in a fully plas-
tic state. Figures 10.4(e)–10.4(j) illustrate the elastic-plastic
stress–strain curve for the material, the state of stress and
strain of the cross-section points, and the section stress pro-
files. For example, at state b , points p , q , and r are all at the
yield stress and the stress profile is uniform.
What happened to the residual stresses when progressing

from point a to b ? Because the section is initially stressed,
the curvature at which yielding occurs and the rate at
which the section reaches its full plastic capacity is affected,
but the ultimate capacity is not. This is an important aspect
of structural design, as many residual stresses exist in a
structure due to numerous reasons, some listed above. Al-
though such stresses may affect service level behavior and/or
stability, they do not affect the capacity of ductile elements .
Upon load removal, the moment–curvature follows b-c-d

in Figure 10.4(d). If reloaded in the initial direction, then the
moment–curvature follows d-c-b ′. The curved portion of the
line is different from the o-a-b because the residual stresses
have been removed. The curved portion must exist because
the section yields incrementally with the outer fibers first and
then progresses inward. Now start at state b and unload to c
where the stress at r is zero. As illustrated in Figure 10.4(g),
the change in stress is Fy, hence the change in moment re-
quired is My. Note the stress near o is still at yield because
the point o is at the neutral axis and does not strain upon load
removal. Points p and q have stresses that are proportionally
less. Continue load removal until state d is achieved. Here all
the load is removed and the structure is in self-equilibrium.
The stresses are illustrated in Figure 10.4(h). Reverse the
load by deflecting the beam upward at the tip until the yield-
ing occurs at r . Because the stress at r was zero at state c , the
change in moment required to produce a yield stress is again
My [see Fig. 10.4(i)]. Further increases cause the section to
reach its full plastic state at f shown in Figure 10.4(j). Note
the nonlinear shape of the curve is again different because
the initial stresses at state e are again different.
In summary, the initial or residual stresses do not af-

fect the ultimate (ductile) capacity, but they do affect the
load–deflection characteristics in the postyield region.

10.2.3 Repetitive Overloads

As the vehicular loading of a bridge is repetitive, the pos-
sibilities of repeated loads that are above the service level
are likely and their effects should be understood. In Section
10.2.2, the lower bound theorem is introduced for a single-
load application that exceeds the yield strength of the beam
at localized points. Consider the uniformly loaded prismatic
beam shown in Figure 10.5(a) with the moment–curvature
relationship shown in Figure 10.5(c). The uniform loading



166 10 SYSTEM ANALYSIS—INTRODUCTION

Fig. 10.4 (a) Cantilever beam, (b) cross section, (c) residual stresses, and (d) moment–curvature diagram. (e) State at a , (f) state at b ,
(g) state at c , and (h) state at d . (i) State at e , and (j) state at f .

shown in Figure 10.5(a) is spatially invariant and the magni-
tude is cycled.
Assume the load is applied slowly to a level where the mo-

ment at A and C exceeds the plastic moment, a hinge forms
at A , and the section has yielded at B but just before the
section is fully plastic at B [see Fig. 10.5(b)]. The resulting
moment diagram is shown in Figure 10.5(d). Now the load
is removed and the structure responds (unloads) elastically.
The change in moment is the elastic moment diagram illus-
trated in Figure 10.5(e). The moment in the unloaded state is
determined by superposing the inelastic (loading) and elas-
tic (unloading)moment diagrams [Fig. 10.5(f)] and is termed
the residual moment. The deflected shape of the beam is il-
lustrated in Figure 10.5(g) where both the inelastic rotations
at the beam ends and the elastic deflection due to the residual
moments are shown.

To examine the effect of cyclic loads, consider the beam
shown inFigure 10.6(a). The plastic collapse load for a single
concentrated load is shown in Figure 10.6(b) and is used for
reference. The loadsW 1 andW 2 are applied independently.
First, W 1 is increased to a level such that hinges form

at A and B but not to a level such that the hinge forms at
D [Fig. 10.6(c)], which means that segment CD remains
elastic and restrains collapse. Now remove load W 1 and the
structure responses elastically, and residual moment and
deflection remain. The residual deflection is illustrated in
Figure 10.6(d).
Next, apply W 2 to a level such that hinges form at C and

D and segment AC remains elastic. The deflected shape is
also illustrated in Figure 10.6(d). It is important to note that a
complete mechanism has not formed but the deflections have
increased. Now if the load cycle is repeated, the deflections
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Fig. 10.4 (Continued )

may continue to increase, and the resultant effect is a progres-
sive buildupof permanent deflections just as though the beam
is deforming in the plastic collapsemechanism [Fig. 10.6(e)].
This limit state is termed incremental collapse .
The residual moments and associated deflections can be

determined by incrementally applying the loads as described
and performing the analysis for each load step. Although a
viable method, it tends to be tedious and is limited to simple
structures and loads. A bridge system is much more com-
plex than the beam previously described. The bridge must
resist moving loads and the incremental approach must in-
clude the complexity of load position and movement, which
greatly complicates the analysis.
The important issue is that the repeated loads that cause in-

cremental collapse are less than the static collapse loads. The
load above which incremental collapse occurs is termed the
shakedown load . If the load is below the shakedown load but
above the load that causes inelastic action, then the structure
experiences inelastic deformation in local areas. However,
after a few load cycles, the structurebehaves elastically under
further loading. If the load exceeds the shakedown load (but
is less than the plastic collapse load), then incremental col-
lapse occurs. Finally, if the load exceeds the plastic collapse
load, the structure collapses. This discussion is summarized
in Table 10.1.

Table 10.1 Summary of Inelastic Behavior

Minimum Load Maximum Loada Result

0 Yield Elastic behavior
Yield Shakedown Localized inelastic

behavior initially
Elastic behavior

after shakedown
Shakedown Plastic collapse Incremental collapse
Plastic collapse N/A Collapse

aNot applicable = N/A.

Two theorems have been developed to determine the
shakedown load: the lower and upper bound theorems.
These theorems help to relate the elastic behavior to the
inelastic behavior so complex systems can be analyzed
without an incremental load analysis. The theorems are
stated without proof. The interested reader is referred to the
extensive references by Horne (1971) and Neal (1977).
The magnitude of variable repeated loading on a structure

may be defined by a common load factor λ, where Mmax
andMmin represent the maximum and minimum elastic mo-
ments, λMmax and λMmin represent the moments for load
level λ, and λsMmax and λsMmin represent shakedown mo-
ments (Horne, 1971).

Lower Bound Shakedown Theorem The lower bound
shakedown limit is given by a load factor λ for which
residual moment m satisfies the inequalities:

m + λMmax ≤ Mp

m + λMmin ≥ −Mp

λ(Mmax − Mmin) ≤ 2My (10.2)

The residual moment m does not necessarily have to be
the exact residual moment field determined from incremental
analysis but may be any self-equilibratingmoment field. The
third inequality is imposed to avoid an alternating plasticity
failure where the material is yielded in tension and compres-
sion. Such a condition is unlikely in a bridge structure be-
cause the total change in moment at any point is far less than
twice the yield moment.
The residual moment m could be set to zero, and the

theorem simply implies that shakedown can be achieved if
the moment is less than the plastic moment and the moment
range is less than twice the yieldmoment. The former is sim-
ilar to the ultimate strength limit state. The latter is seldom
a problem with practical bridge structures (Horne, 1971).

Upper Bound Shakedown Theorem The upper bound
shakedown load is determined by assuming an incremental
collapse mechanism with hinges at locations j with rotations
θ j associated with the elastic moments Mmax and Mmin.
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Fig. 10.5 (a) Uniformly loaded fixed–fixed beam, (b) collapsemechanism, (c) moment–curvature diagram, (d) moment diagram at collapse,
(e) elastic (unloading) moment diagram, (f) residual moment diagram, and (g) residual displacement.

Fig. 10.6 (a) Fixed–fixed beam, (b) collapse mechanism, (c) hinges at A and B , (d) hinges at C and D , and (e) incremental collapse.
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The directions of the hinge rotations are consistent with the
moments (Horne, 1971):

λshakedown

∑

j

{
Mj max or Mj min

}
θj =

∑

j

Mpj

∣∣θj

∣∣

(10.3)
The elastic moment (Mjmax or Mjmin) used is the one that

causes curvature in the same sense as the hinge rotation.

Example 10.1 Determine the yield, shakedown, and plas-
tic collapse load for a moving concentrated load on the pris-
matic beam shown in Figure 10.7(a). Compare the shake-
down load with the plastic collapse load and the initial yield
load for the load at midspan. Assume that Mp = My, that is,
neglect the spread of plasticity.
The elastic moment envelope is illustrated in Figure

10.7(b). The elastic envelopes may be established using any
method appropriate for the solution of a fixed–fixed beam

Fig. 10.7 (a) Fixed–fixed beamwith moving load, (b) elastic mo-
ment envelope, (c) assumed incremental collapse mechanism, and
(d) free-body diagram.

subjected to a concentrated load. The envelope values repre-
sent the elastic moments Mmax and Mmin. Use Eq. 10.3 and
themechanism shown in Figure 10.7(c) to obtain shakedown
load.

λshakedown

[
4

27
WL (θ + θ) + 1

8
WL (2θ)

]
= Mp(4θ)

λshakedown = 432

59

Mp

WL
= 7.32

Mp

WL

To determine the plastic capacity, use the free-body dia-
gram shown in Figure 10.7(d) to balance the moment about
B . The result is

λplasticW

2

(
L

2

)
= 2Mp

λplastic = 8Mp

WL

Note that the shakedown load is approximately 92% of
the plastic collapse load. The initial yield load is determined
by equating the maximum elastic moment to My = Mp. The
result is

λelastic = 27

4

Mp

WL
= 6.75

Mp

WL

A comparison of the results is given in Table 10.2.
In summary, it is important to understand that plastic limit

collapse may not be the most critical strength limit state, but
rather incremental collapse should be considered. It has been
demonstrated that plastic deformation occurs at load levels
below the traditional plastic collapse for repeated loads.
Some procedures outlined in the AASHTO Specification
implicitlypermit inelastic action and assume that shakedown
occurs. Such procedures are discussed in later sections.

10.2.4 Fatigue and Serviceability

The static or lower bound theorem relates to the ultimate
strength limit state. However, repetitive truck loads create
fatigue stresses that may lead to brittle fracture under service
level loads. Because the loads creating this situation are
at the service level and because the failure mode is often
brittle, little opportunity exists for load redistribution, hence
the lower bound theorem does not apply. Thus, the only

Table 10.2 Example 10.1 Summary

Load Level Load Factor (λ)
λ

λelastic

Elastic 6.75
Mp

WL
1.00

Shakedown 7.32
Mp

WL
1.08

Plastic 8.00
Mp

WL
1.19
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way to estimate the internal live-load actions accurately and
safely is to properly model the relative stiffness of all com-
ponents and their connections. This aspect of the analysis
and subsequent design is one characteristic that differenti-
ates bridge engineers from their architectural counterparts.
The building structural engineer is typically not concerned
with a large number of repetitive loads at or near service
load levels.
Service or working conditions can be the most difficult

to model because bridges and the ground supporting them
experience long-term deformation due to creep, shrinkage,
settlement, and temperature change. The long-term material
properties and deformations are difficult to estimate and can
cause the calculated load effects to vary widely. It is best to
try to bound the model parameters involved with an analysis
and design for the envelope of extreme effects. Service limit
states are important and should be carefully considered (with
AASHTO LRFD the service limit states often control design
for steel and prestressed concrete).
A significant portion of a bridgemanager’s budget is spent

for repair and retrofit operations. This effect is because the
severe environment, including heavy loads, fluctuating tem-
perature, and deicing chemicals cause serviceability prob-
lems that could ultimately develop into strength problems.

10.3 SUMMARY

This chapter includes numerous topics related to the struc-
tural analysis of bridge systems. It is intended to provide a

broad-based perspective for analysis. It is important to under-
stand the concepts involved with the plastic and shakedown
limits and how they relate to the AASHTO design speci-
fication, which is primarily based on elastic analysis. The
lower bound theorem is one of the most important theorems
in structural engineering. It permits the engineer to use lin-
ear analysis methods that are clearly inconsistent with many
of the specification resistance methods for the strength limit
state. This inconsistency is seldomexplored at the undergrad-
uate level, but is nevertheless very important for understand-
ing the fundamental basis for much of what is assumed in
design computations.
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PROBLEM

10.1 Repeat Example 10.1 for a prismatic beam that is
clamped at the left end and pinned at the right end.



CHAPTER 11

System Analysis—Gravity Loads

Most methods of analysis described in this chapter are based
on three aspects of analysis: equilibrium, compatibility,
and material properties, which are assumed to be linear
elastic. The exceptions are statically determinate systems.
The objective of these methods is to estimate the load effects
based on the relative stiffness of the various components.
The methods described vary from simplistic (beam line)
to rigorous (finite strip or finite element). Equilibrium is
implicit in all methods, and most methods attempt to achieve
realistic estimates of the service-level behavior. Typically
the materials are assumed to behave linearly; these methods
will not reflect the behavior after yielding occurs. As out-
lined earlier, the lower bound theorem prescribes that such
analyses yield a conservative distribution of actions upon
which to base strength design and, hopefully, a reasonable
distributionof actions uponwhich to base service and fatigue
limit states.
In this chapter, the one method that extends beyond yield

is the yield-line analysis method for slabs. Here it is instruc-
tive to revisit some of the earlier presented concepts involved
with plastic hinging and the ultimate limit state. This again
reinforces differences between linear and nonlinear consid-
erations and their relationship to the lower bound theorem.
The discussion of specific analysis methods begins with

the most common bridge types, the slab and slab–girder
bridges. The discussion of these bridge types includes the
most practical analytical procedures. As many books have
been written on most of these procedures, for example,
grillage, finite element, and finite strip methods, the scope
must be restricted and is limited to address the basic features
of each method and to address issues that are particularly
relevant to the bridge engineer. Example problems are given
to illustrate particular behavior or techniques.
As in the previous chapter, the examples provide guidance

for the analysis and design for the bridges presented in the
resistance chapters. The reader is assumed to have the pre-
requisite knowledge of matrix structural analysis and/or the

finite-element method. If this is not the case, many topics
that are based on statics and/or the AASHTO Specification
provision could be read in detail. Other topics such as gril-
lage, finite-element, and finite-stripanalysis can be read with
regard to observation of behavior rather than understanding
the details of the analysis.
The discussion of slab and slab–girder bridges is followed

by an abbreviated address of box systems. Many of the is-
sues involved with the analysis of box systems are the same
as slab–girder systems. Such issues are not reiterated, and
the discussion is focused on the behavioral aspects that are
particular to box systems.

11.1 SLAB–GIRDER BRIDGES

The slab and slab–girder bridges are the most common types
of bridge in the United States. A few of these bridges are
illustrated in Chapter 4. These are made of several types and
combinations of materials. Several examples are listed in
Table 11.1.
A schematic illustrationof a slab–girder bridge is shown in

Figure 11.1(a). The principal function of the slab is to pro-
vide the roadway surface and to transmit the applied loads
to the girders. This load path is illustrated in Figure 11.1(b).
The load causes the slab–girder system to displace as shown
in Figure 11.1(c). If linear behavior is assumed, the load to
each girder is related to its displacement. As expected, the
girder near the location of the load application carries more
load than those away from the applied load. Compare the
deflection of the girders in Figure 11.1(c). Equilibrium re-
quires that the summation of the load carried by all the girders
equals the total applied load. The load carried by each girder
is a function of the relative stiffness of the components that
comprise the slab–girder system. The two principal compo-
nents are the slab and the girders; other components include
cross frames, diaphragms, and bearings. Only the slab and
girder are considered here as the other components affect the
behavior to a lesser extent.
The effect of relative stiffness is illustrated by consider-

ing the two slab–girder systems shown in Figures 11.1(d)

Table 11.1 Examples of Slab–Girder Bridgesa

Girder Material Slab Material

Steel CIP concrete
Steel Precast concrete
Steel Steel
Steel Wood
CIP concrete CIP concrete
Precast concrete CIP concrete
Precast concrete Precast concrete
Wood Wood

aCast in place = CIP.
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(a) (b)

(c)

Heavily Loaded Grider,
Poor Distribution

Griders are More Uniformly Loaded

(d)

(e)

P

P

P

P

Fig. 11.1 (a) Slab–girder bridge, (b) load transfer (boldface lines indicate larger actions), (c) deflected cross section, (d) transversely flexible,
and (e) transversely stiff.

and 11.1(e). The system shown in Figure 11.1(d) has a slab
that is relatively flexible compared to the girder. Note the
largest deflection is in the girder under the load and the other
girder deflections are relatively small. Now consider the sys-
tem shown in Figure 11.1(e) where the slab is stiffer than the
previous case. Note the load (deflection) is distributed to the
girders more evenly, therefore the load to each girder is less
than shown in Figure 11.1(d).
The purpose of structural analysis is to determine the

distribution of internal actions throughout the structure. Any
method that is used should represent the relative stiffness
of the slab and the girders. As outlined in the previous
sections, the importance of accuracy of the analysis depends
on the limit state considered and ductility available for the

redistribution of actions after initial yielding. To illustrate,
consider the simply supported slab–girder bridge shown in
Figure 11.2(a). Assume the girders have adequate ductility
for plastic analysis. Because of the simply supported con-
figuration, this structure might traditionally be considered
nonredundant, that is, one that does not have an alternative
load path. Now assume the girder under the load yields and
stiffness decreases. Any additional load is then carried by the
neighboring girders. If the load continues to increase, then
the neighboring girders also yield, and additional load is
carried by the nonyielded girders. If the slab has the capacity
to transmit the additional load, then this process continues
until all girders have reached their plastic capacities and
a mechanism occurs in every girder. The ultimate load is
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Fig. 11.2 (a) Slab–girder bridge, (b) beam-linemodel, and (c) flat-plate model (2D). (d) 3Dmodel, (e) plane frame model (2D), and (f) space
frame model (2.5D).

obviously greater than the load that causes first yield. Note
that this is predicted by the lower bound theorem described
in Section 10.2.1. The shakedown theorems also apply.
Sowhy should the engineer perform a complicated analysis

to distribute the load to the girders? There are two principal
reasons: (1) The failure mode may not be ductile, such as
in a fatigue-related fracture or instability, and (2) the limit
state under considerationmay be related to serviceability and
service-level loads. Both reasons are important, and, there-
fore, it is traditional to model the system as linear elastic to
obtain reasonable distributionof internal actions for strength,
service, and fatigue limit states.
As the lower bound theorem may also apply, this approach

is likely conservative and gives reasonable results for the
strength limit states. In the case of the evaluation of an
existing bridge where repair, retrofit, and/or posting is
involved, it may be reasonable to use a linear elastic analysis

for service load limit states and consider the nonlinear
behavior for the strength limit states. Such a refinement
could significantly influence the rehabilitation strategy or
posting load.
Several methods for linear elastic analysis are described

in the sections that follow, as they are used in engineering
practice, and may be used for estimating the load effects for
all limit states.

Behavior, Structural Idealization, and Modeling Again
consider the slab–girder system shown in Figure 11.2(a).
The spatial dimensionality is a primary modeling assump-
tion. The system may be modeled as a 1-, 1.5-, 2-, 2.5-,
or 3-dimensional system. The 1D system is shown in
Figure 11.2(b). This system is a beam and may be modeled
as such. Obviously, this is a simple model and is attractive
for design. The primary issue is how the load is distributed to
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the girder, which is traditionally done by using empirically
determined distribution factors to transform the 3D system
to a 1D system. In short, the vehicle load (or load effect)
from the beam analysis is multiplied by a factor that is a
function of the relative stiffness of the slab–girder system.
This transforms the beam load effect to the estimated load
effect in the system. Herein this procedure is called the
beam-line (or girder-line) method because only one girder
is considered as opposed to modeling the entire bridge as a
single beam.
A 2D system is shown in Figure 11.2(c). This system elim-

inates the vertical dimension. What results is a system that
is usually modeled with thin-plate theory for the deck com-
binedwith standard beam theory for the girders. The girder is
brought into the plane of the deck (or plate) and supports are
considered at the slab level. The eccentricity of both may be
considered and included. The in-plane effects are usually ne-
glected. Another type of 2D system is the plane frame shown
in Figure 11.2(e). Often the loads are distributed to the frame
by distribution factors using the beam-linemethod. The anal-
ysis is performed on the plane frame.
In the 1.5D system, the distribution factors are established

by a 2D system, but the girder actions are established using a
1D system. This procedure is done because several computer
programs exist for beam-line analysis and designs that are
1D, but the designer wishes to use a refined procedure for
the determination of the distribution factors rather than that
using the empirically based methods.
A 3D system is shown in Figure 11.2(d). Here the full

dimensionality is maintained. Components such as cross

frames, diaphragms, and so on are often included. This
model is the most refined and requires the most designer
time and computer resources to perform. It is often justified
for the analysis of highly skewed bridges, curved bridges, or
a combination thereof.
The 2.5D system typically uses a single-girder line in com-

binationwith other components and subsystems. Such a sys-
tem is shown in Figure 11.2(f) where a curved box girder
and its piers are modeled with space frame elements. Such
systems are often used in the western states in high seismic
regions.
All of these methods are viable and have their place in

engineering practice. It is not always appropriate, practical,
or desirable to use the most refined method available. The
complexity of the system, the load effects sought, the reason
for the analysis, whether it be for design or evaluation, all
are important considerations in the selection of the model-
ing procedures. Additionally,modeling a complex bridge for
various construction stages is sometimes more critical than
the bridge in its final state. The previous discussion is sum-
marized in Table 11.2.

Beam-Line Method
Distribution Factor Method—Concepts. As previously
described, the spatial dimensionality of the system can be re-
duced by using a distributionfactor. This factor is established
by analyzing the system with a refined method to establish
the actions in the girders. For this discussion, bending mo-
ment is used for illustration but shear could also be used.
The maximum moment at a critical location is determined

Table 11.2 Spatial Modeling

Spatial Dimensionality Mathematical Model Numerical Model (Examples) Figures

1 Beam theory Stiffness (displacement) method 11.2(b)
Flexibility (force) method
Consistent deformations
Slope deflection
Moment distribution

2 Thin-plate theory Grillage 11.2(c), 11.2(e)
Beam theory Finite strip

Finite element
Harmonic analysis
Classical plate solutions

3 Theory of elasticity Grillage 11.2(d)
Thin-plate theory Finite strip
Beam theory Finite element

Classical solutions
1.5 Thin-plate theory Grillage Not shown

Beam theory Finite strip
Finite element
Harmonic analysis
Classical plate solutions

2.5 Beam theory Finite element 11.2(f)
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with an analytical or numerical method and is denoted as
M refined. Next, the same load is applied to a single girder and a
1D beam analysis is performed. The resultingmaximummo-
ment is denoted as M beam. The distribution factor is defined
as

g = Mrefined

Mbeam

In the case of a 1.5D analysis, this factor is used to convert
the load effects established in the beam-line analysis to the
estimated results of the entire system. For example, analyze
the beam line for the live load and then multiply by the dis-
tribution factor g to obtain the estimated load effect in the
system.
Alternatively, many analyses can be performed for numer-

ous bridges, and the effects of the relative stiffness of the
various components, geometry effects, and load configura-
tion may be studied. The results of these analyses are then
used to establish empirically based formulas that contain the
system parameters as variables. These formulas can then be
used by designers to estimate the distribution factorswithout
performing the refined analysis. Certainly, some compromise
may be made in accuracy, but this method generally gives
good results. The AASHTO distribution factors are based on
this concept and are presented in Table 11.3 where they are
discussed in more detail.

Background. The AASHTO Specification has employed
distribution factor methods for many years. In the most com-
mon case, the distribution factor was where S is the girder
spacing (ft), and D is a constant depending on bridge type,
the number of lanes loaded, and g may be thought of as the
number of lanes carried per girder:

g = S

D

For example, for a concrete slab on a steel girderD = 11.0
was used for cases where two or more vehicles are present.
Obviously, this is a simplistic formula and easy to apply,
but as expected, it does not always provide good estimates
of the girder load in the full system. It has been shown by
Zokaie et al. (1991) and Nowak (1993) that this formulation
underestimates the load effects with close girder spacing and
overestimates with wider spacing. To refine this approach,
research was conducted to develop formulas that are based
on more parameters and provide a better estimate of the true
system response. This work was performed under NCHRP
Project 12–26 (Zokaie et al., 1991) and provides the basis for
the distribution factors presented in AASHTO [A4.6.2.2].*

AASHTOSpecification—DistributionFactors. The dis-
tribution factors may be used for bridges with fairly regular

*The article number in AASHTO (2010) LRFD Bridge Specifications
are enclosed in brackets and preceded by the letter A if specifications and
by the letter C if commentary.

geometry. As stated in AASHTO [A4.6.2.2], the method is
limited to systems with:

� Constant cross section.
� Number of beams is four or more.
� Beams are parallel and have approximately the same

stiffness.
� Roadway part of the cantilever overhang does not ex-

ceed 3.0 ft (910 mm).
� Plan curvature is small [A4.6.1.2].
� Cross section is consistent with the sections shown in

Table 4.1.

The provisions for load distribution factors are contained
in several AASHTO articles and only a few are discussed
here. These articles represent some of the most important
provisions in Section 4 of the AASHTO Specification, and
because of the many algebraically complex equations, these
are not presented in the body of this discussion. For the sake
of brevity, the most common bridge types—the slab and
slab–girder bridge—are discussed here in detail. The analy-
sis of other common types is discussed later. The distribution
factors for slab–girder bridges are given in Table 11.3:

where

S = girder spacing (ft)
L = span length (ft)
ts = slab thickness (in.)
Kg = longitudinal stiffness parameter (in.4)
Kg = n

(
Ig + e2gA

)
, where

n = modular ratio (E girder/E deck)
Ig = moment of inertia of the girder (in.4)
eg = girder eccentricity, which is the distance from the

girder centroid to the middle centroid of the slab (in.)
A = girder area (in.2)
de = distance from the center of the exterior beam and the

inside edge of the curb or barrier (in.)
θ = angle between the centerline of the support and a line

normal to the roadway centerline

The lever rule is a method of analysis. It involves a statical
distribution of load based on the assumption that each deck
panel is simply supported over the girder, except at the exte-
rior girder that is continuouswith the cantilever. Because the
load distribution to any girder other than one directly next
to the point of load application is neglected, the lever rule is
typically a conservative method of analysis.
The equations in Table 11.3 were developed by Zokaie

et al. (1991). Here investigators performed hundreds of anal-
yses on bridges of different types, geometrics, and stiffness.
Many of these structures were actual bridges that were taken
from the inventories nationwide.Various computer programs
were used for analysis and compared to experimental results.
The programs that yielded the most accurate results were
selected for further analysis in developing the AASHTO
formulas.
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Fig. 11.3 Parametric studies (after Zokaie et al., 1991).

The database of actual bridges was used to determine “an
average bridge” for each type. Within each type, the para-
metric studies were made to establish the distribution factor
equations. Example results for the slab–girder bridge type
are shown in Figure 11.3. Note that the most sensitive pa-
rameter (greatest slope) for this type of bridge is the girder
spacing. This observation is consistent with the traditional
AASHTO distribution factor of S /5.5 ft (for a wheel line or
one-half lane). In fact, the division of the slope of this line,
which is approximately 1.25, into the average girder spacing
from the database, which is 7.5 ft yieldsD = 6.0, or approx-
imately the value of D = 5.5 used by AASHTO for many
years. It is important to note that the span length and girder
stiffness affect the load distributionbut to a lesser extent. This
effect is reflected in the equations presented in Table 11.3.
Unlike the previous AASHTO equations, the parametric

properties of the bridge were used to develop prediction
models based on a power law. Each parameter was assumed
to be independent of others in its effect on the distribution
model. Although this is probably not strictly true, the result-
ing equations seem to work well. The results of Table 11.3
are compared to finite-element analysis (more rigorous and
assumed to be more accurate) in Figure 11.4. The letters a–j
reference AASHTO beam type (A4.6.2.2.2).
In Figure 11.4(a), the rigorous analyses are compared

to the old AASHTO procedures [g = (S/D )], and in
Figure 11.4(b), the rigorous analyses are compared to the
equations of Table 11.3. Notice the great variability in the
former and the decrease variability of the latter. Hence,
the additional terms are necessary to better predict the sys-
tem response. Traditionally, AASHTO has based analysis
on the wheel line or half the axle weight. In the present
specification, the analysis is assumed to be based on the
entire vehicle weight. Thus, if one compares the distribution
factors historically used by AASHTO to those presently
used, then the traditional factors must be divided by 2, or the
present factor must be multiplied by 2.

Moment Distribution Ratios for Beam and Slab Bridges 
Database of 304 Bidges—Multiple Lane Loading

Moment Distribution Ratios for Beam and Slab Bridges 
Database of 304 Bidges—Multiple Lane Loading
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Fig. 11.4 Comparison of AASHTO distribution factor with rigor-
ous analysis (after Zokaie et al., 1991).

The single design lane formulas were developed with a sin-
gle design truck, and the multilane loaded formulas were de-
veloped with two or more trucks. Therefore, themost critical
situation for two, three, or more vehicles was used in the de-
velopment. The multiple presence factors given in Table 8.6
were included in the analytical results upon which the for-
mulas are based. Thus, the multiple presence factors are not
to be used in conjunctionwith the factors given in Table 11.3,
but rather themultiplepresence is implicitly included in these
factors.
The development of the present AASHTO (2010) distri-

bution factors was based on simply supported bridges. The
investigators also studied systems to quantify the effect of
continuity. Given the relative insensitivity of girder stiffness
to the distribution factors (see Fig. 11.3), it is expected
that continuity does not significantly affect the distribution
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factors. Zokaie et al. (1991) determined that the effect of
continuity was between 1.00 and 1.10 for most systems and
suggested associated adjustments. The specification writers
chose to eliminate this refinement because:

� Correction factors dealing with 5% adjustments were
thought to imply misleading levels of accuracy in an
approximate method.

� Analysis carried out on a large number of contin-
uous beam–slab type of bridges indicates that the
distribution coefficients (factors) for negative mo-
ment exceed those obtained for positive moment by
approximately 10%. On the other hand, it had been
observed that stresses at or near internal bearings are
reduced due to the fanning of the reaction force. This
reduction is about the same magnitude as the increase
in distribution factors; hence the two tend to cancel.

Note as a practical consideration the equations provided in
Table 11.3 are a function of cross section. Hence, in a de-
sign scenario, the cross section must be estimated prior to
determining the live-load effects. This approach is similar
to dead-load estimates prior to section proportioning. To aid
the engineer, estimates provided in A4.6.2.2.1 in a table are
repeated in Table 11.4.

Example 11.1 The slab–girder bridge illustrated in
Figure 11.5(a) with a simply supported span of 35 ft (10 688
mm) is used in this example and several others that follow.
Model the entire bridge as a single beam to determine the
support reactions, shears, and bending moments for one and
two lanes loaded using the AASHTO design truck.
A free-body diagram is shown in Figure 11.5(b) with the

design truck positioned near the critical location for flexural
bending moment. Although this position does not yield the
absolute maximum moment, which is 361.2 ft kips (498.7
kN m) (see Example 9.10), it is close to the critical location,

and this position facilitates analysis in later examples. The
resulting moment diagram is shown in Figure 11.5(c).
Note the maximum moment is 358.4 ft kips (493.2 kN m)
for one-lane loaded, which is within 1% of the absolute
maximum moment. This value is doubled for two trucks
positioned on the bridge giving a maximum of 716.8 ft kips
(986.4 kN m).
These values are used repeatedly throughout several

examples that follow. The critical section for design is at the
location of the maximum statical moment. This location is
also used in several examples that follow.
A free-body diagram is shown in Figure 11.5(d) with the

design truck positioned for maximum shear/reaction force.
The resulting maximum is 52.8 kips (238.3 kN) for one lane
loaded and 105.6 kips (476.6 kN) for two loaded lanes. See
Figure 11.5(e). These values are also used in the examples
that follow.

Example 11.2 Determine the AASHTO distribution fac-
tors for bridge shown in Figure 11.5(a).
A girder section is illustrated in Figure 11.6 [see AISC

(2003) for girder properties]. The system dimensions and
properties are as follows:

Girder spacing, S = 8 ft (2438 mm)
Span length, L = 35 ft (10 668 mm)
Deck thickness, ts = 8 in. (203 mm)
Deck modulus of elasticity, Ec = 3600 ksi (24.82 GPa)
Girder modulus of elasticity, Es = 29 000 ksi (200.0 GPa)
Modular ratio, n = Es/Ec = 29,000/3600= 8.05; use 8
Girder area, Ag = 31.7 in.2 (20,500 mm2)
Girder moment of inertia, Ig = 4470 in.4 (1860 × 106 mm4)
Girder eccentricity, for example, = ts/2 + d /2 = 8/2 +
29.83/2 = 18.92 in. (480 mm)

Stiffness parameter, Kg = n
(
Ig + e2gAg

) = 8 [4470 +(
18.922

)
(31.7)

] = 126,500 in.4 (52.6 × 109 mm4)
de = 3.25 ft (cantilever) – 1.25 ft (barrier)= 2.0 ft (610 mm)

Table 11.4 Constant Values Table 11.3 (per A4.6.2.2.2, A4.6.2.2.3)

Simplified Value
AASHTO Beam Types

Equation Parameters AASHTO Table Reference a e k f, g, i, j
(

Kg

12.0Lt3s

)0.1

4.6.2.2.2b-1 1.02 1.05 1.09

(
Kg

12.0Lt3s

)0.25

4.6.2.2.2e-1 1.03 1.07 1.15

(
12.0Lt3s

Kg

)0.3

4.6.2.2.3c-1 0.97 0.93 0.85

I

J
4.6.2.2.2b-1, 4.6.2.2.3a-1 0.54

(
d

b

)
+ 0.16
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Fig. 11.5 (a) Cross section of a slab–girder bridge, (b) free-body diagram—load for near-critical flexural moment, and (c) moment diagram.
(d) Free-body diagram—load for near-critical shear/reactions, and (e) shear diagram.

Fig. 11.6 Girder cross section.

The AASHTO distribution factors for moments are deter-
mined using rows A and B of Table 11.3.
The distribution factor for moment in the interior girder

for one lane loaded is (Note the multiple presence factor m
is included in the equations so this is denotedmg where m is
included.)

mgSI
moment = 0.06+

(
S

14

)0.4(
S

L

)0.3( Kg

12Lt3s

)0.1

= 0.06+
(

8

14

)0.4( 8

35

)0.3
[

126, 500

12 (35)
(
83

)
]0.1

= 0.55 lane/girder

The distribution factor for moment in the interior girder for
multiple lanes loaded is

mgMI
moment = 0.075+

(
S

9.5

)0.6(
S

L

)0.2( Kg

12Lt3s

)0.1

= 0.075 +
(

8

9.5

)0.6( 8

35

)0.2
[

126, 500

12 (35)
(
83

)
]0.1

= 0.71 lane/girder

The distribution factor formoment in the exterior girder for
multiple lanes loaded requires an adjustment factor:

e = 0.77 + de

9.1
≥ 1.0

= 0.77 + 2

9.1
= 0.99 ∴ use e = 1.0

The adjustment factor for moment is multiplied by the fac-
tor for the interior girder and the result is

mgME
moment = e

(
mgMI

moment

) = 1.00 (0.71)

= 0.71 lane/girder

For the distribution factor for the exterior girder with
one loaded lane, use the lever rule; this is done in the next
example and the result is

mgSE
moment = 0.75 lane/girder

For the distribution factor for shear, rows C and D in
Table 11.3 are used. The distribution factor for the interior
girder with one lane loaded is

mgSI
shear = 0.36 + S

25
= 0.36+ 8

25
= 0.68 lane/girder
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Table 11.5 AASHTO Distribution Factor Method Results

Girder
Location

Number
of

Lanes
Loaded

Moment
(ft kips)

Moment
Distribution

Factor
(mg )

Girder
Moment
(ft kips)

Simple
Beam

Reaction
(kips)

Shear
Distribution

Factor
(mg )

Girder
Shear
(kips)

Exterior 1 358.4 0.625 × 1.2 = 0.75 268.7 52.8 0.75 39.6
Exterior 2 358.4 0.71 254.3 52.8 0.65 34.3
Interior 1 358.4 0.55 197.1 52.8 0.68 35.9
Interior 2 358.4 0.71 254.3 52.8 0.81 42.8

Similarly, the factor for shear with multiple lanes loaded is

mgMI
shear = 0.2 + S

12
−

(
S

35

)2

= 0.2 + 8

12
−

(
8

35

)2

= 0.81 lane/girder

The adjustment for shear in the exterior girder is given in
row D of Table 11.3. The calculation is

e = 0.6 + de

10
= 0.6 + 2

10
= 0.80

The adjustment is multiplied by the interior distribution
factor, the result is

mgME
shear = e

(
mgMI

shear

) = 0.80 (0.81) = 0.65 lane/girder

The lever rule is used for the exterior girder loaded with
one design truck. The details are addressed in the follow-
ing example. The result ismgSI

shear or moment = 0.625 times 1.2
(multiplepresence factor)= 0.75 for both shear and moment.
The AASHTO results are summarized in Table 11.5.

Example 11.3 Use the lever method to determine the dis-
tribution factors for the bridge shown in Figure 11.5(a).

Exterior Girder
Consider Figure 11.7. The deck is assumed to be simply sup-
ported by each girder except over the exterior girder where
the cantilever is continuous. Considering truck 1, the reac-
tion at A (exterior girder load) is established by balancing
the moment about B :

RA (8) =
(

P

2

)
(8) +

(
P

2

)
(2)

which reduces to

RA =
(

P

2

)
+

(
P

2

) (
2

8

)
= 0.625P

The fraction of the truck weight P that is carried by the
exterior girder is 0.625. The multiple presence factor of 1.2
(see Table 8.6) is applicable for the one-lane loaded case.
Thus, the girder distribution factors are

mgSE
shear or moment = (1.2) (0.625) = 0.75 lane/girder

Fig. 11.7 Free-body diagram—lever rule method.

and

mgME
shear or moment = (1.0) (0.625) = 0.625 lane/girder

This factor is “statically” the same for one and two lanes
loaded because the wheel loads from the adjacent truck (2)
cannot be distributed to the exterior girder. Because all the
wheels lie inside the first interior girder, the effect of their
load cannot be transmitted across the assumed hinge. As il-
lustrated, the difference is due to themultiple presence factor.

Interior Girder
The distribution factor for the interior girder subjected to two
or more loaded lanes is established by considering trucks 2
and 3, each of weightP , positionedwith axles on deck panels
BC and CD , as shown in Figure 11.7. Equilibrium requires
that the reaction at C is

Rc =
(
2

8

) (
P

2

)
+

(
P

2

)
+

(
P

2

)(
4

8

)
+

(
P

2

)
(0)

= 0.875P

and the distribution factor (multiple presence factor = 1.0) is

mgMI
shear or moment = (1.0) (0.875) = 0.875 lane/girder
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Table 11.6 Lever Rule Results

Girder
Location

Number
of

Lanes
Loaded

Moment
(ft kips)

Moment
Distribution

Factor
(mg )

Girder
Moment
(ft kips)

Simple
Beam

Reaction
(kips)

Shear
Distribution

Factor
(mg )

Girder
Shear
(kips)

Exterior 1 358.4 0.75 268.7 52.8 0.75 39.6
Exterior 2 358.4 0.625 223.9 52.8 0.625 33.0
Interior 1 358.4 0.75 268.7 52.8 0.75 39.6
Interior 2 358.4 0.875 313.4 52.8 0.875 46.2

Only truck 2 is considered for the case of one loaded lane
on an interior girder. This truck has one wheel line directly
over girder 3 and one wheel line 6 ft from the girder. By stat-
ics, the girder reaction at C is

Rc =
(

P

2

)
+

(
2

8

) (
P

2

)
= 0.625P

and the distribution factor is

mgSI
shear or moment = (1.2) (0.625)

= 0.75 lane/girder

The distribution factors for shear and moment are the same
under the pinned panel assumption. The lever rule results
are summarized in Table 11.6. The format for the table is
consistently used in the remaining examples in this chapter,
which permits the ready comparison of results from the var-
ious methods of analysis.

GrillageMethod Because the AASHTO and lever rule dis-
tribution factors are approximate, the engineer may wish to
perform a more rigorous and accurate analysis. The advan-
tages of more rigorous analysis include:

� The simplifying factors/assumptions that are made in
the development of distribution factors for beam-line
methods may be obviated.

� The variability of uncertain structural parameters may
be studied for their effect on the system response. For
example, continuity,material properties, cracking, non-
prismatic effects, and support movements may be of
interest.

� More rigorous models are developed in the design
process and can be used in the rating of permit (over-
weight) vehicles and determining a more accurate
overload strength.

One of the best mathematical models for the deck is the
thin plate that may be modeled with the biharmonic equation
(Timoshenko and Woinowsky-Kreiger, 1959; Ugural, 1981):

∇4w = ∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
= p (x)

D
(11.1)

Where
w = vertical translation
x = transverse coordinate
y = longitudinal coordinate
p = vertical load
D = plate rigidity, equal to

D = Et3

12
(
1 − ν2

)

Where
ν = Poisson’s ratio
t = plate thickness
E = modulus of elasticity

Equation 11.1 is for an isotropic (same properties in all
directions) slab. Other forms are available for plates that ex-
hibit significant orthotropy due to different reinforcement in
the transverse and longitudinal directions (Timoshenko and
Woinowsky-Kreiger, 1959; Ugural 1981). The development
of Eq. 11.1 is based on several key assumptions: The mate-
rial behaves linearly elastically, the strain profile is linear, the
plate is isotropic, the vertical stresses due to the applied load
are neglected, and the deformations are small relative to the
dimensions of the plate.
Closed-form solutions to Eq. 11.1 are limited to cases that

are based on simplified boundary conditions and loads. Even
fewer solutions are available for girder-supported systems.
Thus, approximate techniques or numerical models are used
for the solution of Eq. 11.1; the most common methods in-
clude grillage, finite-element, and finite-strip methods.
To gain a better understanding of the development and

limitations of Eq. 11.1, the reader is referred to common
references on the analysis of plates (Timoshenko and
Woinowsky-Kreiger, 1959; Ugural, 1981). Due to the focus
and scope of this work, it suffices here to take an abbreviated
and applied approach.
Consider the first term of Eq. 11.1 and neglect the trans-

verse terms. Then Eq. 11.1 becomes

∂4w

∂x4
= p (x)

D
(11.2)

which is the same as Eq. 10.1, the mathematical model for
a beam. Now neglect only the middle term, and Eq. 11.1
becomes

∇4w = ∂4w

∂x4
+ ∂4w

∂y4
= p (x)

D
(11.3)
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Fig. 11.8 (a) Grillage model, (b) crossing with translational continuity, (c) crossing with translational and rotational continuity, and
(d) degrees of freedom in grillage (plane grid) modeling.

which is the mathematical model for a plate system that
has no torsional stiffness or associated torsional actions. In
a practical sense such systems do not exist and are merely
mathematical models of a system where torsion exists but
is neglected as well as the stiffening effect due to Poisson’s
effect. This type of system would be similar to modeling
a plate with a series of crossing beams where one element
sits on top of the other as shown in Figures 11.8(a) and
11.8(b). Note that at the intersection of the beams the only
interaction force between the elements is a vertical force.
This type of connection excessively simplifies the model
of the deck, which is a continuum. In the continuum, a
flexural rotation in one direction causes torsional rotation in
an orthogonal direction. Consider the grillage joint shown in
Figure 11.8(c). Here the joint is continuous for rotation in all
directions, that is, the displacements of the joint is defined
with the three displacements (degrees of freedom) shown in
Figure 11.8(d), which includes vertical translation and two
rotations. This type of joint, in combination with elements
that have both flexural and torsional stiffness, is more like
the continuum and, therefore, models it more accurately.
This type of numerical model is called a grillage.
Grillagemodels became popular in the early 1960swith the

advancement of the digital computer. As the methodologies
for the stiffness analysis (or displacement method) of frames
were well known, researchers looked for convenient ways to

model continua with frame elements. The grillage model is
such a technique.
Ideally the element stiffnesses in the grillagemodel would

be such that when the continuumdeck is subjected to a series
of loads, the displacement of the continuum and the gril-
lage are identical. In reality, the grillage can only approxi-
mate the behavior of the continuum described by Eq. 11.1.
The reason for this difference is twofold: (1) The displace-
ment in the grillage tends to be more irregular (bumpy) than
the continuum, and (2) the moment in the grillage is a func-
tion of the curvature along the beam. In the plate, the mo-
ment is a function of the curvatures in two orthogonal direc-
tions due to Poisson’s effect. Fortunately, these effects are
small and the grillage method has been shown to be a viable
method of analysis, especially for determining load effects to
the girders.
Some advocates of the finite-element and stripmethods are

quick to discount the grillage method because it is nonrig-
orous. But remember that such methods are used to obtain
reasonable distribution of internal actions while accounting
for equilibrium (recall the lower bound theorem discussed
earlier). Both advocates and critics have valid points and a
few of these are listed below:

� Grillages can be used with any program that has plane
grid or space frame capabilities.
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� Results are easily interpreted and equilibrium is eas-
ily checked by free-body diagrams of the elements and
system as a whole.

� Most all engineers are familiar with the analysis of
frames.

The disadvantages are several:

� Method is nonrigorous and does not exactly converge
to the exact solution of the mathematical model.

� To obtain good solutions, the method requires experi-
ence and judgment. The mesh design and refinement
can be somewhat of an art form. (One could say this
about any analysis method, however.)

� The assignment of the cross-sectional properties
requires some discretion.

Hambly (1991) offers an excellent and comprehensive ref-
erence on modeling with grillages. The engineer interested
in performing a grillage is encouraged to obtain this refer-
ence. Some of Hambly’s suggestions regarding the design of
meshes are paraphrased below:

� Consider how the designer wants the bridge to behave
and place beam elements along lines of strength/
stiffness, for example, parallel to girders, along edge
beams and barriers, and along lines of prestress.

� The total number of elements can vary widely. It can be
one element in the longitudinal direction if the bridge
is narrow (compared to its width) and behaves similarly
to a beam, or it can be modeled with elements for the
girders and other elements for the deck for wide decks
where the system is dominated by the behavior of the
deck. Elements need not be spaced closer than two to
three times the slab thickness.

� The spacing of the transverse elements should be suf-
ficiently small to distribute the effect of concentrated
wheel loads and reactions. In the vicinity of such loads,
the spacing can be decreased for improved results.

The element cross-sectional properties are usually based
on the gross or uncracked section and are calculated on
a per unit length basis. These properties are multiplied
by the center-to-center spacing of the elements to obtain
the element properties, herein called the tributary length.
Two properties are required for the grillage model: flexural
moment of inertia and the torsional constant. The moment
of inertia is the familiar second moment of area, which is
equal to

ideck = bt3

12
(11.4)

The torsional constant for a grillage element is

jdeck = bt3

6
= 2ideck (11.5)

The moment of inertia I girder for a beam element is deter-
mined in the usual way and its eccentricity eg (for a compos-
ite beam) is accounted by

I = Igirder + e2gAgirder (11.6)

For noncomposite systems, eg is zero, and the beam is as-
sumed to be at the middle surface of the deck.
For open sections that are comprised of thin rectangular

shapes such as a wide flange or plate girder, the torsional
constant is approximated by

J =
∑

all rectangles

bt3

3
(11.7)

where b is the long side and t is the narrower side (b > 5t ).
For open steel shapes, the torsional constant is usually small
relative to the other parameters and has little affect on the
response. For rectangular shapes that are not thin, the approx-
imation is

J = 3b3t3

10
(
b2 + t2

) (11.8)

The use of these properties is illustrated in the following
example. For closed sections, such as box girders, see refer-
ences on advanced mechanics for procedures to compute the
torsional constant. For such sections, the torsional stiffness
is significant and should be included.

Example 11.4 Use the grillage method to determine the
end shear (reactions) and maximum bending moments
in the girders in Figure 11.5(a), which is illustrated in
Example 11.1. In addition, determine the distribution factors
for moment and shear for girders for one and two lanes
loaded.
The slab–girder bridge is discretized by a grillage model

with the two meshes shown in Figures 11.9(a) and 11.9(b).
The section properties are calculated below.
Girder Properties

Es = 29000 ksi (200.0 GPa)

Ag = 31.7 in.2(20453 mm2)

d = 29.83 in. (4536 mm)

eg =
(

ts

2

)
+

(
d

2

)
=

(
8

2

)
+

(
29.83

2

)

= 18.92 in. (481 mm)

Ig = 4470 in.4 (noncomposite girder)

= 1.860 × 109 mm4

Jg = 4.99 in.4 (noncomposite girder)

= 2.077 × 106 mm4

Ig = (composite girder) = Ig + e2gAg

= 4470 + 18.922(31.7 )

= 15810 in.4 (steel)

= 6.58 × 109 mm4
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Fig. 11.9 (a) Coarsemesh—grillage and (b) fine mesh—grillage. (c) Fixed–fixed beamwith wheel load (equivalent joint loads), and (d) load
positioned between elements. (e) Translation of coarse mesh—load case 1. (f) Shear diagram—load case 1 and (g) moment diagram—load
case 1.
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Deck Properties

Ec = 3600 ksi (24.82 GPa)

ts = 8 in. (203 mm)

v = 0.15

is = 1
12 (12)(8

3) = 512 in.4(per ft)

= 700000 mm4 (per mm)

js = 1
6 (12)(8

3) = 1024 in.4(per ft)

= 1400000 mm4 (per mm)

Element Properties

The elements that model the girders have the same properties
as indicated above. Note that only the moment of inertia and
the torsional constant are required in the grillage. The ele-
ment properties for the deck are a function of the mesh size.
For the coarse mesh in Figure 11.9(a), the elements oriented
in the transverse (x direction) are positioned at 7 ft (2134
mm) center to center. Therefore, the properties assigned to
these elements are

Is = is (tributary length) = 512 in.4/ft (7 ft)

= 3584 in.4 (transverse) = 1.49 × 109 mm4

Js = js (tributary length) = 1024 in.4/ft (7 ft)

= 7168 in.4 (transverse) = 2.98 × 109 mm4

The properties for the portion of the deck above the girders
(at 8-ft centers) are

Is = is (tributary length) = 512 in.4/ft (8 ft)

= 4096 in.4 (longitudinal) = 1.70 × 109 mm4

Js = js (tributary length) = 1024 in.4/ft (8 ft)

= 8192 in.4 (longitudinal) = 3.41 × 109 mm4

For the fine mesh, the tributary width of the deck elements
oriented in the transverse and longitudinal directions are 3.5
ft (1067 mm) and 4.0 ft (1219 mm), respectively. The asso-
ciated element properties are

Is = is (tributary length) = 512(3.5)

= 1792 in.4 (transverse)

= 746 × 106 mm4

Js = js (tributary length) = 1024(3.5)

= 3584 in.4 (transverse)

= 1.49 × 109 mm4

and
Is = is (tributary length) = 512(4)

= 2048 in.4 (longitudinal)

= 852× 106 mm4

Js = js (tributary length) = 1024(4)

= 4096 in.4 (longitudinal)

= 1.70 × 109 mm4

For the girder element properties, the associated properties
of the beam and the slab contributions are added. The steel
girder is transformed to concrete using the modular ratio of
n = 8. The result for the fine mesh is

Ig = Ig (composite beam)n + Is

= 15, 810(8) + 2048 = 128, 500 in.4

= 52.1 × 109 mm4

Jg = Jg (composite beam)n + Js

= 4.99(8) + 4096 = 4136 in.4

= 1.72 × 109 mm4

The support boundary conditions are assumed to be re-
strained against translation in all directions at the girder ends.
Although some torsional restraint may be present, it is dif-
ficult to estimate. By comparing the analysis of the system
with both ends torsionally restrained and without, this ef-
fect was observed to be small and the torsionallyunrestrained
case is reported.
Eight load cases were used and are described below.

1. The design truck is positioned for near-critical max-
imum midspan moment and end shear in exterior
girder (1) for one-lane loaded [see Figs. 11.9(a) and
11.9(b)].

2. Case 1 is repeated for two lanes loaded [see
Fig. 11.9(b)].

3. The design truck is positioned for near-critical max-
imum midspan moment in the interior girder (3) for
one lane loaded [see Fig. 11.9(b)].

4. Case 3 is repeated for two lanes loaded [see
Fig. 11.9(b)].

5–8. Cases 1–4 are repeated with the design vehicles
moved so that the rear 32-kip (145-kN) axle is near
the support to create critical shears and reactions.

Because some of the concentrated wheel loads lie between
nodes, their statical equivalence must be determined. For
example, the load that lies between nodes 13 and 14 in the
coarse mesh is illustrated in Figure 11.9(a). The statical
equivalent actions are determined from the end actions
associated with this load applied on a fixed-end beam as
shown in Figure 11.9(c). The negative, or opposite, actions
are applied to the grillage. The applied joint loads for the
coarse mesh are illustrated in Table 11.7 for load case 1.
The nodal loads for the other load cases and for the fine

mesh are established in a similar manner. It is common to
neglect the joint load moments and assign the loads based
on a simple beam distribution; hence the moments are not
included.
Although all the loads have been assigned to a node, the

distribution of the load is not correct and may lead to er-
rors. The effect of the applied moments decreases with finer
meshing. Thus, the finer mesh not only reduces the errors in
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Table 11.7 Nodal Loads—Coarse Mesh

Load Case 1: Exterior Girder—One Lane Loaded

Node Load, Py (kips) Moment, Mz (ft kips)

13 −18.5 −6
14 −13.5 18
25 −18.5 −6
26 −13.5 18
Sum −64

the stiffness model but also reduces the unnecessary errors
due to modeling the load. If the load is applied directly to el-
ements as member loads, then the algorithm inherent in the
software should correctly determine the joint load forces and
moments.
The software should correctly superimpose the fixed-end

actions with the actions from the analysis of the released
(joint-loaded) system to yield the correct final action ac-
counting for the effect of the load applied directly to the
member. If the load is applied within a grillage panel, then
the statical equivalence becomes more difficult, as loads
must be assigned to all of these nodes (this was conveniently
and purposefully avoided in this example). The easiest
approach in this case is to add another grillage line under the
load.
If this is not viable, then the load may be assigned by using

the subgrillage A-B-C-D shown in Figure 11.9(d). Next as-
sign subgrillage end actions to the main grillage element HG
and proceed as previously illustrated. The main difference is
that the torquemust also be considered. An alternative to this
tedious approach is to refine the mesh to a point where the
simple beam nodal load assignments are viable because the
fixed-end torsion and bending moment are relatively small.
Refinement is recommended.

Analysis Results

The translations for load case 1 for the coarse mesh are shown
in Figure 11.9(e). Note that the translations are greater near
the point of load application and the supports are restraining
the translations as expected. The shear and moment diagrams
for load case 1 for the fine mesh are shown in Figures 11.9(f)
and 11.9(g).
Tables 11.8 and 11.9 summarize the maximum midspan

moments and end reactions (maximum shears) for the
four load cases. The simple beam actions are given for
this position (see Example 11.1) and are illustrated in
Figures 11.5(c) and 11.5(e). The associated actions are
illustrated in Figures 11.9(f) and 11.9(g). The distribution
factors are also given in the tables. The critical distribution
factors are highlighted in bold in Tables 11.8 and 11.9.
These distribution factors are compared with the AASHTO
factors in addition to those derived from the finite-element
and finite-strip methods in later examples.

The critical values for flexural moment (using the fine
mesh) are highlighted in Table 11.8. The critical moment
for the exterior girder with one lane loaded is 1.2 (multiple
presence) × 221.2 ft kips = 265.4 ft kips with a distribution
factor of mgSE

moment = 1.2 × 0.62 = 0.74, and the exterior
girder moment for two lanes loaded is 1.0 × 232.8 =
232.8 ft kips with a distribution factor of mgME

moment = 0.65.
The maximum interior girder moments are 1.2 × 157.4 =
188.8 ft kips

(
mgSI

moment = 0.53
)
and 1.0 × 258.8 = 258.8

ft kips
(
mgME

moment = 0.72
)
for one and two lanes loaded,

respectively. Note the coarse mesh yields approximately the
same results as the fine mesh, hence convergence is deemed
acceptable. The total moment at the critical section is 358.4
ft kips for one lane loaded and 716.8 ft kips for two lanes
loaded. Note the summation of moments at the bottom of
each load case. The differences are due to the presence of
the nominal deck elements located between the girders.
These elements are not shown in the table. Because of their
low stiffness, they attract a small amount of load that causes
the slight difference between the sum of girder moments
and the statical moment. Inclusion of these elements in the
summation eliminates this discrepancy. The distribution
factors do not sum to 1.0 (one lane loaded) or 2.0 (two lanes
loaded) for the same reason. Small differences between the
reported values and these values are due to rounding.
The critical reaction/shears are highlighted in Table 11.9.

The multiple presence factors (Table 8.6) are used to ad-
just the actions from analysis. The maximum reaction for
the exterior girder with one lane loaded is 1.2 × 34.4 =
41.4 kips

(
mgSE

shear = 0.78
)
and 1.0 × 33.4 = 33.4 kips(

mgSE
shear = 0.63

)
with two lanes loaded.

For the interior girder the reactions are 1.2 × 30.4 = 36.5
kips

(
mgSI

shear = 0.69
)
and 1.0 × 46.0 kips

(
mgME

shear = 0.87
)

for one and two lanes loaded, respectively. The summation
of the end reactions is equal (within rounding) to maximum
system reaction of 52.8 (one lane) and 105.6 (two lanes). The
nominal longitudinaldeck elements in the finemesh were not
supported at the end; hence the total load must be distributed
to the girders at the ends and the reactions check as expected.
The result of these analyzes are compared to those from

other methods in a later example. The results presented in
Tables 11.8 and 11.9 are summarized in Table 11.10. This
tabular format is consistent with that used previously and
permits ready comparison of the results from the various
methods.

Finite-Element Method The finite-element method is one
of the most general and powerful numerical methods. It has
the capability to model many different mathematical models
and to combine these models as necessary. For example,
finite-element procedures are available to model Eq. 10.1 for
the girders and Eq. 11.1 for the deck, and combine the two
models into one that simultaneously satisfies both equations
and the associated boundary conditions. Like the grillage
method, the most common finite-element models are based
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Table 11.8 Summary of Moments—Grillage Analysis

Beam Max. Max.
Analysis Moment Moment

Load Moment (ft kips) Distribution (ft kips) Distribution
Casea Girder (ft kips) (Coarse Mesh) Factor (mg ) (Fine Mesh) Factor (mg )

1 1 358.4 202.5 0.57 221.2b 0.62
1 2 358.4 123.2 0.34 116.7 0.33
1 3 358.4 37.4 0.10 18.5 0.05
1 4 358.4 0.0 0.00 −4.5 −0.01
1 5 358.4 −3.8 −0.01 −3.0 −0.01
1 6 358.4 −0.6 0.00 0.0 0.00

Sum Total moment 358.7 1.00 348.9 0.98
= 358.4

2 1 358.4 236.2 0.66 232.8 0.65
2 2 358.4 257.5 0.72 240.6 0.67
2 3 358.4 182.3 0.51 183.2 0.51
2 4 358.4 49.2 0.14 46.4 0.13
2 5 358.4 −2.3 −0.01 −1.6 0.00
2 6 358.4 −6.3 −0.02 −5.4 −0.02

Sum Total moment 716.7 2.00 695.0 1.94
= 2(358.4)

= 716.8
3 1 358.4 36.7 0.10 19.7 0.06
3 2 358.4 148.1 0.41 123.9 0.35
3 3 358.4 132.3 0.37 157.4 0.44
3 4 358.4 45.5 0.13 48.8 0.14
3 5 358.4 1.2 0.00 1.4 0.00
3 6 358.4 −5.3 −0.01 −5.2 −0.01

Sum Total moment 358.5 1.00 346.0 0.98
= 358.4

4 1 358.4 26.4 0.07 11.8 0.03
4 2 358.4 167.6 0.47 141.6 0.40
4 3 358.4 255.1 0.72 258.8 0.72
4 4 358.4 203.7 0.57 204.3 0.57
4 5 358.4 69.0 0.19 75.4 0.21
4 6 358.4 4.9 0.01 −6.6 0.02

Sum Total moment 716.9 2.03 685.2 1.95
= 2(358.4)
= 716.8

aLoad cases: (1) One lane loaded for the maximum exterior girder actions (girder 1). (2) Two lanes loaded for the maximum exterior girder
actions (girder 1). (3) One lane loaded for the maximum interior girder actions (girder 3). (4) Two lanes loaded for the maximum interior
girder actions (girder 3).
bCritical values are in bold.

on a stiffness (or displacement approach), that is, a system
of equilibrium equations is established and solved for the
displacements at the degrees of freedom.
The scope of this method seems unending with many

texts and reference books, research papers, and computer
programs to address and use it. Here, only the surface is
scratched and the reader is strongly encouraged to gain
more information by formal and/or self-study. The method

is easily used and abused. With software it is easy to gen-
erate thousands of equations and still have an inappropriate
model. The discussion herein is a brief overview of the
finite-element method as related to the engineering of
slab–girder bridges, and it is assumed that the reader has
had a course and/or experience with the method.
The finite-element formulation is commonly used in two

ways: 2D and 3D models. The 2D model is the simplest and
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Table 11.9 Summary of Reactions—Grillage Analysis

Beam Max. Max.
Analysis Reactions, Reactions,

Load Reaction kips Distribution (Fine Mesh) Distribution
Casea Girder (kips) (Coarse Mesh) Factor (mg ) (kips) Factor (mg )

5 1 52.8 30.3 0.57 34.4b 0.65
5 2 52.8 19.8 0.38 19.3 0.37
5 3 52.8 3.2 0.06 −0.4 −0.01
5 4 52.8 −0.1 −0.00 −0.4 −0.01
5 5 52.8 −0.3 −0.01 −0.2 −0.00
5 6 52.8 −0.0 −0.00 0.1 0.00

Sum 52.8c 52.9 1.00 52.8 1.00

6 1 52.8 32.8 0.62 33.4 0.63
6 2 52.8 41.2 0.78 39.0 0.74
6 3 52.8 29.1 0.55 31.7 0.60
6 4 52.8 3.2 0.06 2.3 0.04
6 5 52.8 −0.3 −0.01 −0.4 −0.01
6 6 52.8 −0.4 −0.01 −0.4 −0.01

Sum 105.6c 105.6 1.99 105.6 1.99

7 1 52.8 2.3 0.04 0.5 0.01
7 2 52.8 26.3 0.50 19.9 0.38
7 3 52.8 21.0 0.40 30.4 0.58
7 4 52.8 3.7 0.07 2.6 0.05
7 5 52.8 −0.1 −0.00 −0.2 −0.00
7 6 52.8 −0.4 −0.01 −0.4 −0.01

Sum 52.8b 52.8 1.00 52.8 1.01

8 1 52.8 1.9 0.04 0.1 0.00
8 2 52.8 24.2 0.46 19.5 0.37
8 3 52.8 40.7 0.77 46.0 0.87
8 4 52.8 32.5 0.62 33.3 0.63
8 5 52.8 6.6 0.13 8.2 0.16
8 6 52.8 −0.3 −0.01 −1.3 −0.02

Sum 105.6c 105.6 2.01 105.6 2.01

aLoad cases: (5) One lane loaded for the maximum exterior girder actions (girder 1). (6) Two lanes loaded for the maximum exterior girder
actions (girder 1). (7) One lane loaded for the maximum interior girder actions (girder 3). (8) Two lanes loaded for the maximum interior
girder actions (girder 3).
bCritical values are in bold.
cBeam reaction for entire bridge.

Table 11.10 Grillage Method Summary—Fine Mesh

Girder
Location

Number
of Lanes
Loaded

Moment
(ft kips)

Distribution
Factor
(mg )

Reactions
(kips)

Distribution
Factor
(mg )

Exterior 1 265.2 0.74 41.2 0.78
Exterior 2 232.8 0.65 33.4 0.63
Interior 1 190.0 0.53 37.0 0.69
Interior 2 258.8 0.72 46.0 0.87



190 11 SYSTEM ANALYSIS—GRAVITY LOADS

Fig. 11.10 (a) Example of shell element and (b) example of space
frame element.

involves fewer degrees of freedom. Here plate elements
that usually contain 3 degrees of freedom per node are
used to model the deck on the basis of the mathematical
model described by Eq. 11.1. The girders are modeled with
grillage or plane grid elements with 3 degrees of freedom
per node. Examples of these elements with 6 degrees of
freedom are illustrated in Figures 11.10(a) and 11.10(b).
The girder properties may be based on Eqs. 11.6–11.8. The
deck properties typically include the flexural rigidities in
orthogonal directions or the deck thickness and material
properties upon which the rigidities can be based. The nodal
loads and/or element loads are determined in the usual
manner.
Because many different elements are available with

differing number of degrees of freedom and response char-
acteristics, it is difficult to provide general guidance mesh
characteristics, other than those usually addressed in stan-
dard references. It is important to suggest that at least two
meshes be studied to obtain some knowledge of the conver-
gence characteristics. If the response changes significantly
with refinement, a third (or fourth) mesh should be studied.
Because of the importance of maintaining equilibrium,

the analytical results should be checked for global equilib-
rium. It is easy to mistakenly apply the loads in the wrong

direction or in the wrong location. It is strongly suggested
that global equilibrium be checked by hand. We have caught
numerous errors in input files and in computer code by this
simple check. If the program being used does not have a
way to obtain reactions, then perhaps the stiff boundary
spring elements can be used at the supports and the element
forces are the reactions. If the program does not produce
reactions, or they cannot be deduced from the element
forces, then the use of another program that does is recom-
mended. In short, no matter how complex the model, always
check statics.
This simple check ensures that ductile elements designed

on the basis of the analysis provides at least one viable load
path and likely an opportunityfor redistributionshould yield-
ing occur. A statics check is necessary for any method of
analysis.
As an alternative to the 2D model, the bridge may be

modeled as a 3D system. Here Eq. 11.1 is used to mathe-
matically model the out-of-plane behavior of the deck, and
the in-plane effects are modeled using a similar fourth-order
partial differential equation (Timoshenko and Goodier,
1970). In-plane effects arise from the bending of the system,
which produces compression in the deck and tension in the
girder under the influence of positive bending moments. The
in- and out-of-plane effects are combined into one element,
commonly called a shell element. A typical shell element is
shown in Figure 11.10(a) where in- and out-of-plane degrees
of freedom are illustrated. Typically, the in- and out-of-plane
effects are considered uncoupled, which results in a linear
formulation.
The girders are usually modeled with space frame ele-

ments that have 6 degrees of freedom per node, the same
as the shell element. The girder eccentricity (composite
girder) is modeled by placing the elements at the centroidal
axis of the girder, which creates many additional degrees
of freedom. To avoid additional computational effort, the
degrees of freedom at the girders may be related to the
degrees of freedom of the plate by assuming that a rigid
linkage exists between these two points. This linkage can
be easily accommodated in the element formulation for the
space frame element. This capability is typically included in
commercial software and is denoted by several terms: rigid
links, element offset, slave–master relationship, and element
eccentricities.
An alternative approach is to use the additional degrees

of freedom at the girder level but to declare these nodes to
be slaves to the deck nodes directly above. A last alterna-
tive is to be lazy in the refinement of the model and just
include the girder nodes, which produces a larger model, but,
of course, one can complain (boast) how large the model is
and how long it takes to execute. Realistically, with today’s
ever increasing computational power, a direct and brute force
approach is acceptable. The important issue is that the en-
gineer understands the methods used, their limitations, and
their application to the problem under consideration.
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Fig. 11.11 (a) Finite-element coarse mesh and (b) finite-element fine mesh.

Example 11.5 Use the finite-element method to determine
the end shear (reactions) and midspan flexural bending
moments in the girders in Figure 11.5(a) as illustrated in
Example 11.1. In addition, determine the distribution factors
for moment and shear in girders for one and two lanes
loaded.
The system is discretized with the 2D meshes shown in

Figures 11.11(a) and 11.11(b). The girder properties are the
same as in Example 11.4 with the exception that the deck
properties are not added as before because the deck is mod-
eled with the shell element as shown in Figure 11.10(a). Here
the in-plane effects are neglected and the plate bending por-
tion is retained. The deck rigidities are calculated internal to
the finite-element programon the basis of t = 8 in. (203 mm)
and E = 3600 ksi (24,800 MPa), and ν = 0.15. The girder
properties and nodal loads are calculated as in the previous
example.
The maximum moments and reactions are summarized in

Table 11.11. A table similar to Tables 11.8 and 11.9 could
be developed and the results would be quite similar. For the
sake of brevity, such tables are not shown and only the max-
imum actions are reported. The multiplication indicates the
application of the multiple presence factors.

Finite-StripMethod The finite-stripmethod is a derivative
of the finite-element method. The mathematical models
described previously are the usual basis for analysis so that
converged finite-element and finite-strip models should
yield the same “exact” solutions. The finite-strip method
employs strips to discretize the continuum as shown in
Figure 11.12(a). A strip is an element that runs the entire
length of the deck. With the typical polynomial shape func-
tion used in the finite-element method, this type of mesh
would be unacceptable. However, the finite-strip method
uses a special shape function that considers the boundary
conditions at the ends to be simply supported. This condition
permits the use of a Fourier sine series for the displacement
in the longitudinal direction while a third-order polynomial
is used in the transverse direction. A typical lower order
shape function is

w (x, y) =
r∑

m=1

fm (x)Ym

=
r∑

m=1

(
Am + Bmx + Cmx2 + Dmx3) sin

(mπy

L

)

(11.9)
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Table 11.11 Finite-Element Results, Critical Actionsa

Girder
Location

Number
of Lanes
Loaded

Moment
(ft kips)

Distribution
Factor (mg )

Reactions
(kips)

Distribution
Factor (mg )

Exterior 1 (1.2)(206.0) = 247.2 0.68 (1.2)(31.4) = 37.7 0.71
(1.2)(196.9) = 236.3 0.66 (1.2)(29.8) = 35.8 0.68

Exterior 2 (1.0)(220.8) = 220.8 0.62 (1.0)(30.6) = 30.6 0.58
(1.0)(219.4) = 219.4 0.61 (1.0)(30.4) = 30.4 0.58

Interior 1 (1.2)(154.9) = 186.9 0.52 (1.2)(30.2) = 36.2 0.69
(1.2)(154.8) = 185.8 0.52 (1.2)(30.2) = 36.2 0.69

Interior 2 (1.0)(258.8) = 258.8 0.72 (1.0)(44.2) = 44.2 0.84
(1.0)(249.0) = 249.0 0.69 (1.0)(44.9) = 44.9 0.85

aCoarse mesh on first line, fine mesh on the second line.

Fig. 11.12 (a) Example of a finite-strip model and (b) finite-strip element.

Where

fm(x) = third-order polynomial with coefficients Am , Bm ,
Cm, and Dm

Ym = sine function
L = span length
y = longitudinal coordinate
m = series index that has a maximum value of r

It is important to note that the polynomial function is the
same one typically used in standard beam elements and may
be rewritten in terms of the 4 degrees of freedom at the strip
edges [see Fig. 11.12(b)]. The degrees of freedom include
two translations and two rotations per harmonic considered
(value of m). The total number of degrees of freedom is the
number of nodal lines times 2; for example, if 50 strips are
usedwith 50 terms, the total number of unknowns is 51(nodal
lines)× 2(unknownsper nodal line)× 50(terms)= 5100(un-
knowns). The mathematics of the element formulation in-
volves a procedure similar to the finite-element method. For
example, the element stiffness matrix involves

[S] =
∫

vol
[B]T [D] [B] {δ} dV (11.10)

whereB contains the curvatures or generalized strain,D con-
tains the plate rigidities, and δ contains the 4 degrees of free-
dom. Equation 11.10 is presented to remind the reader that
differentiation and integration are involved with the element
formulation.
An important feature of the finite-strip method is its effi-

ciency. When the shape function in Eq. 11.9 is twice differ-
entiated to obtain curvatures, the polynomial function may
change but the sine function remains a sine function. Upon
substitution into the strainmatrixB in Eq. 11.10, the summa-
tions remain. A term-by-term expansion of the series in com-
bination with necessary matrix multiplication yields terms
with the following integrals:

I =
∫ L

0
sin

(mπy

L

)
sin

(nπy

L

)
dy

I = L

2
when m = n

I = 0 when m �= n (11.11)

This integration is zero when the terms in the series are
not the same (termed orthogonality). This important feature
causes all terms where n is not equal to m to be zero, which
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permits the programmer to consider each term separately,
and completely uncouples the equations to be solved. For
example, if 50 strips are used with 50 terms, then the total
number of degrees of freedom is 5100, as before, but this size
system is never assembled or solved. Instead, the system is
solved for one term at a time or 51(nodal lines)× 2 degrees of
freedom per nodal line, which results in 102 degrees of free-
dom per mode. Thus, this system is solved repetitively for
the 50 modes and the results are appropriately superimposed.
Hence, a very small problem (the same as a continuous beam
with 51 nodes) is solved numerous times. This approach is
vastly more efficient than considering the full 5100 degrees
of freedom in one solution. A typical finite-strip model runs
in about 10% of the time as a finite-element model with a
similar number of degrees of freedom using solvers that ac-
count for the small bandwidth and symmetry of the stiffness
matrix.
A brief treatise of the finite-stripmethod is provided in this

section, and the main objective is to introduce the reader to
the rationale for its use. Complete details are presented in
books by Cheung (1976) and Loo and Cusens (1978).
Although elegant in its simplicity and efficiency, the

finite-strip method has lost favor to the finite-element
method because the latter is less restrictive and current
computers can solve tens of thousands of equation simulta-
neous in a short time and on the desktop at little cost. Some
legacy bridge codes have finite-strip models as the basis of
analysis.

Example 11.6 Use the finite-stripmethod to determine the
end shear (reactions) and midspan flexural bendingmoments
in the girders in Figure 11.5(a) as illustrated in Example 11.1.
In addition, determine the distribution factors for moment
and shear in girders for one and two lanes loaded.
The system is modeled with 20 uniform strips and 100

terms. Studies showed that this discretization is adequate for
slab–girder systems (Finch and Puckett, 1992). A large num-
ber of terms is required to accurately determine the shear
forces near the concentrated forces and girder ends. If only
flexural effects are required near midspan, then only about 10
terms are required. The girder, deck properties, and load po-
sitioningare the same as in the previous example. The results
are summarized in Table 11.12.

Example 11.7 Compare the results from the AASHTO,
lever, grillage, finite-element, and finite-strip methods.
Tables 11.5, 11.6, and 11.10–11.12 have been combined
for comparison of the methods, and the results are given in
Tables 11.13 and 11.14 for moment and shear, respectively.
Recall that the basis for the AASHTO multilanes loaded

formulas includes the possibilityof three ormore lanes being
loaded and creating a situation more critical than the two-
lane case. Therefore, the AASHTO values are influenced by
this and are generally, but not always, slightly higher than
the two-lane numerical results. Most values compare within
10% except the lever method, which tends to be conservative
for moment distribution factors; however, it is typically quite

Table 11.12 Finite-Strip Results

Girder
Location

Number
of Lanes
Loaded

Moment
(ft kips)

Distribution
Factor (mg )

Reactions
(kips)

Distribution
Factor (mg )

Exterior 1 (1.2)(204.3) = 245.2 0.68 (1.2)(29.6) = 35.5 0.67
Exterior 2 (1.0)(218.6) = 218.6 0.61 (1.0)(30.6) = 30.6 0.58
Interior 1 (1.2)(154.1) = 184.9 0.52 (1.2)(26.4) = 31.7 0.60
Interior 2 (1.0)(250.8) = 250.8 0.70 (1.0)(41.7) = 41.7 0.79

Table 11.13 Summary of Analysis Methods—Moment (ft kips)

Girder

Number
of Lanes
Loaded AASHTO Lever Grillage

Finite
Element

Finite
Strip

Exterior 1 268.8 268.8 265.2 236.3 245.2
0.75 0.75 0.74 0.66 0.68

Exterior 2 254.5 224.0 232.3 219.4 218.6
0.71 0.625 0.65 0.61 0.61

Interior 1 197.1 268.8 190.0 185.8 184.9
0.55 0.75 0.53 0.52 0.52

Interior 2 254.5 313.6 258.8 249.0 250.8
0.71 0.875 0.72 0.69 0.70
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Table 11.14 Summary of Analysis Methods—Reactions (kips)

Girder

Number
of Lanes
Loaded AASHTO Lever Grillage

Finite
Element

Finite
Strip

Exterior 1 39.6 39.6 41.2 35.8 35.5
0.75 0.75 0.78 0.68 0.67

Exterior 2 34.3 33.0 33.4 30.4 30.6
0.65 0.625 0.63 0.58 0.58

Interior 1 35.9 39.6 37.0 36.2 31.7
0.68 0.75 0.70 0.69 0.60

Interior 2 42.8 46.2 46.0 44.9 41.7
0.81 0.875 0.87 0.85 0.79

close to other methods for shear and reactions because of the
localized behavior of loads applied near the supports.

11.2 SLAB BRIDGES

The slab bridge is another common bridge type frequently
used for short spans, usually less than 50 ft (15,240 mm).
The slab bridge does not have any girders, and, therefore,
the load must be carried principally by flexure in the lon-
gitudinal direction. A simplistic approach (perhaps valid for
the ultimate strength limit states) is to divide the total stat-
ical moment by the bridge width to achieve a moment per
unit width for design. This type of analysis is valid by the
lower bound theorem for consideration of the strength limit
state assuming adequate transverse strength and ductility is
available.
The results of this procedure are most certainly underesti-

mates of the localized moments near the application of the
load under linear elastic conditions, that is, service and fa-
tigue limits states. Hence, it is necessary to determine the
moments under service conditions. The moments are deter-
mined by establishing the width of the bridge that is assigned
to carry one vehicle, or in other words the structuralwidth per
design lane. The width for one lane loaded is [A4.6.2.3]

ES = 10.00+ 5.0
√

L1W1 (11.12a-US)

ES = 250+ 0.42
√

L1W1 (11.12a-SI)

and the width for multilanes loaded is

EM = 84.00+ 1.44
√

L1W1 ≤
√

W

NL

(11.12b-US)

EM = 2100+ 0.12
√

L1W1 ≤ W

NL

(11.12b-SI)

Where

E S or M = structural width per design lane [in. (mm)], for
single and multiple lanes loaded

L 1 = modified span length taken equal to the lesser of
the actual span or 60.0 ft (18,000 mm)

W 1 = modified edge-to-edge width of bridge taken
equal to the lesser of the actual width or 60.0 ft
(18,000 mm) for multilane loading, or 30 ft (9000
mm) for single-lane loading

W = physical edge-to-edge width of the bridge [ft
(mm)]

NL = number of design lanes [A3.6.1.1.1]

The adjustment for skew is

r = 1.05 − 0.25 tan θ ≤ 1.00 (11.12c)

where θ is the skew angle defined previously in Table 11.3.
Note that skew reduces the longitudinal bending moment.

Example 11.8 Determine the slab width that is assigned to
a vehicle (design lane) for the bridge described in Example
11.1 [see Fig. 11.5(a)] without the girders. Use a 20-in. (508-
mm) deck thickness. Assume three design lanes are possible.
By using Eq. 11.12(a) for one lane loaded, the width is

ES = 10.00+ 5.0
√

L1W1 = 10.00 + 5.0
√

(35) (30)

= 172 in./lane = 14.3 ft/lane

and by using Eq. 11.12(b) for multiple lanes loaded, the
width is

EM = 84.00 + 1.44
√

L1W1 = 84.00 + 1.44
√

(35) (44)

= 140.5 in./lane

= 11.7 ft/lane ≤ W

NL

= 44

3
= 14.7 ft/lane

∴ EM = 11.7 ft/lane

The bending moment is determined for a design lane that
is divided by the width E to determine the moment per unit
length for design.
From the simple-beam analysis given in Example 11.1, the

maximum bending moment for one lane is 358.4 ft kips. Us-
ing this moment, the moments per foot are

MS
LL = Mbeam

ES
= 358.4 ft kips/lane

14.3 ft/lane
= 25.0 ft kips/ft
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and

MM
LL = Mbeam

EM
= 358.4 ft kips/lane

11.7 ft/lane
= 30.6 ft kips/ft

Because the slab bridge may be properly modeled by
Eq. 11.1, all the methods described earlier may be used. To
illustrate, brief examples of the grillage and finite-element
methods are given below. Most of the modeling details
remain the same as previously presented. The girders are
obviously omitted and the loading is the same as the previous
examples. Shear is not typically critical with the slab bridge,
and this limit state need not be considered [A4.6.2.3].
Zokaie et al. (1991) reexamined this long-time AASHTO
provision and confirmed the validity of this approach. Only
flexural bending moment is presented.

Example 11.9 Use the grillage method to model the slab
bridge described in Example 11.8. Use the fine mesh used
in Example 11.4 and consider two lanes loaded for bending
moment. The deck may be modeled as an isotropic plate.
All the deck section propertiesare proportional to the thick-

ness cubed. Hence, for the 20-in. (508-mm) slab, the prop-
erties determined in Example 11.4 are multiplied by (20/8)3

= 2.53 = 15.625. The distribution of internal actions is not a
function of the actual thickness but rather the relative rigidi-
ties in the transverse and longitudinal directions. Because
isotropy is assumed in this example, any uniform thickness
may be used for determining the actions. The displacements
are proportional to the actual stiffness (thickness cubed as
noted above).
The loads are positioned as shown in Figure 11.13(a). The

moments in the grillage elements are divided by the tributary
width associated with each longitudinal element, 4.0 ft. The
momentsMy (beamlike) are illustrated in Figure11.13(b) and
are summarized in Table 11.15.
The critical values (in bold) are 20.56 ft kips/ft with an as-

sociated width of 358.4/20.56 = 17.4 ft. The total moment
across the critical section is the summation of the grillage
moments.
Equilibriumdictates that thismoment be 2 lanes× 358.4 ft

kips= 716.8 ft kips, which is the summation of the moments
in the grillage elements at the critical section, validatingequi-
librium. The AASHTO value is 30.6 ft kips/ft for two lanes
loaded, which is approximately 50% greater than the max-
imum grillage value of 20.56 ft kips/ft. This difference is
discussed in more detail later with reference to one or more
loaded lanes.

Example 11.10 Use the finite-element method to model
the slab bridge described in Example 11.8. Use the fine
mesh used in Example 11.5 and consider two and three lanes
loaded for maximum bending moment. The deck may be
modeled as an isotropic plate.
The deck thickness is increased to 20 in. (508 mm),

and the girders are removed from the model presented

in Example 11.5. The nodal loads are the same as in the
previous example.
The moments that cause flexural stress in the longitudinal

direction are illustrated in Table 11.16 and Figure 11.13(b).
Contour plots of the flexural moments are illustrated in
Figure 11.13(c). Note the values in Table 11.16 are the
contour values for the bridge at the dashed line. As expected,
the longitudinal moments are significantly greater than the
transverse moments. These figures are provided to give the
reader a sense of the distribution of internal actions in a
two-way system that is traditionally modeled as a one-way
system, that is, as a beam.
The maximum moment in the finite-element method is

20.54 ft kips/ft and is associated with a width of 358.4/20.54
= 17.4 ft. These values compare well with the grillage
moment of 20.56 ft kips/ft and the associate width of 17.4 ft.
The finite-element moments are reported at the nodes along
the critical moment section for the entire system. Therefore,
the total moment at the section reported is 713.1 ft kips and
is slightly less than the total statical moment of 2 × 358.4 =
716.8 ft kips for two loaded lanes.
Note that the width per lane is used only if a beam-line

analysis is required, that is, a 1.5D analysis where the load
distribution is developed by a numerical model and the de-
sign is based on analysis of a beam. Alternatively, the entire
design could be based on themathematical/numerical model.
Note: The other load cases are also required for the design.
Both the grillage and finite-element methods do not com-

pare well with the AASHTO value of 30.6 ft kips/ft. Re-
call the AASHTOmultilane formulas implicitly include two,
three, or more lanes loaded. Because this bridge has a curb-
to-curb width of 44 ft, likely three 10-ft design lanes should
be considered for design and is considered below.
Why is it important to initially present the two-lane loaded

case rather than the three-lane case for the refined methods?
There are three reasons: (1) to highlight the assumptions
included in the AASHTO distribution formulas, (2) to illus-
trate that the two-lane load does not always givemost critical
results, and (3) if the results from an analytical approach
differ significantly (more than 15%) from the AASHTO
value, then the differences should be understood and justi-
fied. Zokaie et al. (1991) presented numerous histograms
similar to Figure 11.4 where the results of the simplified
AASHTO formulas are within 15% of results based on
more rigorous methods. This result suggests that significant
deviation should be carefully investigated.
The two-lane loaded finite-element model is modified to

include an additional vehicle placed adjacent to the others
and located near the edge of the deck [see Fig. 11.13(a)].
The results are given in Table 11.17 and are plotted in
Figure 11.13(b).
Note that the moment of 34.08 ft kips and the associ-

ated distribution width of 10.5 ft are critical. AASHTO
[A3.6.1.1.2] provides a multiple presence factor of 0.85 for
bridges with three design lanes (see Table 8.6). Hence, the
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(a)

(b)

(c)

Fig. 11.13 (a) Truck positions and (b) longitudinal moment diagram. (c) Longitudinal moment contour.
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Table 11.15 Analysis Results for the GrillageModel at the Critical Section (Two Lanes Loaded)

Element

1
Edge
of

deck

2 3 4 5 6 7 8 9 10 11
Edge
of

deck Totala

Moment (ft kips) 58.65 62.46 69.57 75.05 82.26b 81.46 72.30 65.04 55.65 48.91 45.46 716.81
Tributary length
(ft)

4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 44.0

Moment (ft
kips/ft)

14.66 15.62 17.39 18.76 20.56 20.37 18.08 16.26 13.91 12.23 11.37 N/A

Statical moment
(ft kips)

358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 N/A

Width per lane
(ft)

24.4 22.9 20.6 19.1 17.4 17.6 19.8 22.0 25.8 29.3 31.5 N/A

aNot applicable = N/A.
bCritical values are in bold.

Table 11.16 Analysis Results for the Finite-Element Model near the Critical Section (Two Lanes Loaded)

Tenth Point
Across Section

1
Edge
of

deck

2 3 4 5 6 7 8 9 10 11
Edge
of

deck Totala

Moment (ft kips/ft)
(fine mesh)

14.43 14.73 18.05 17.89 20.54b 20.24 18.29 15.46 12.78 11.37 11.06 N/A

Element width (ft) 2.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 2.2 44.0
Moment (ft kips per
element)

31.7 64.8 79.4 78.7 90.4 89.1 80.5 68.0 56.2 50.0 24.3 713.1

Statical moment
(ft kips)

358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4

Width per lane (ft) 24.8 24.3 19.9 20.0 17.4 17.7 19.6 23.2 28.0 31.5 32.4 N/A

aNot applicable = N/A.
bCritical values are in bold.

Table 11.17 Analysis Results for the Finite-Element Model near the Critical Section (Three Lanes Loaded)

Tenth Point
Across Section

1
Edge
of

deck

2 3 4 5 6 7 8 9 10 11
Edge
of

deck Totala

Moment (ft kips/ft)
(fine mesh)

16.45 16.82 20.64 21.16 24.80 25.87 25.72 25.30 27.75 30.59 34.08b N/A

Tributary width (ft) 2.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 2.2 44.0
Tributary moment
(ft kips)

36.2 74.0 90.8 93.1 109.1 113.8 113.1 111.3 122.1 134.6 75.0 1073.1

Statical moment
(ft kips)

358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4 358.4

Width per lane (ft) 21.8 21.3 17.4 16.9 14.5 13.9 13.9 14.2 12.9 11.7 10.5 N/A

aNot applicable = N/A.
bCritical values are in bold.
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moment of 34.08 ft kips is multiplied by 0.85 yielding a crit-
ical value of (0.85)(34.08)= 29.0 ft kips, and the associated
distribution width is 12.4 ft. These values compare reason-
ably well with the AASHTO values of 30.6 ft kips and 11.7
ft. On the basis of the preceding analysis, it is likely that
the AASHTO equation for distributionwidth is governed by
three lanes loaded for this bridge width.

11.3 SLABS IN SLAB–GIRDER BRIDGES

The slab design may be accomplished by three methods: (1)
the analytical strip method approach, (2) the empirical ap-
proach, and (3) the yield-linemethod. The analytical method
requires a linear elastic analysis upon which to proportion
the slab to satisfy the strength and service limit states. The
empirical approach requires that the designer satisfy a few
simple rules regarding the deck thickness and reinforcement
details, and limit states are assumed to be automatically sat-
isfied without further design validations. The empirical ap-
proach is elaborated in more detail in the following chapters
on design. The third method is the yield-line method and is
based on inelastic yielding of the deck and, therefore, is ap-
propriate for the strength and extreme-event limit states. All
three methods may be used to proportion the slab. All three
methods yield different designs that are generally viable and
reasonable. In this section, the strip method is first outlined
with a discussion of the AASHTO provisions and an illus-
trative example. A brief discussion of the yield-line method
follows also reinforced with an example. Perhaps the use of
the yield-line approach is for agencies that load rate decks
and need to increase the load rating for the strength limit
state. The empirical approach is used for design and is out-
lined in Chapter 16 on concrete.

Linear Elastic Method A deck slab may be considered as
a one-way slab system because its aspect ratio (panel length
divided by the panel width) is large. For example, a typical
panel width (girder spacing) is 8–11 ft (2400–3600 mm) and
a typical girder length from30 to 200 ft (9100 to 61,000mm).
The associated aspect ratios vary from 3.75 to 10. Deck pan-
els with an aspect ratio of 1.5 or larger may be considered

one-way systems [A4.6.2.1.4]. Such systems are assumed to
carry the load effects in the short-panel direction, that is, in a
beamlike manner. Assuming the load is carried to the girder
by one-way action, then the primary issue is the width of
strip (slab width) used in the analysis and subsequent design.
Guidance is provided in AASHTO [A4.6.2], Approximate
Methods.
The strip width SW [in. (mm)] for a CIP section is

M+ : SW+ = 26.0 + 6.6S (11.13a-US)

M+ : SW+ = 660 + 0.55S (11.13a-SI)

M− : SW− = 48.0 + 3.0S (11.13b-US)

M− : SW− = 1220 + 0.25S (11.13b-SI)

Overhang SWOverhang = 45 + 10.0X (11.13c-US)

Overhang SWOverhang = 1140 + 0.833X (11.13c-SI)

where S is the girder spacing [ft (mm)], and X is the distance
from the load point to the support [ft (mm)].
Strip widths for other deck systems are given in AASHTO

[Table A4.6.2.1.3-1]. A model of the strip on top of the sup-
porting girders is shown in Figure 11.14(a). A design truck
is shown positioned for near-critical positive moment. The
slab–girder system displaces as shown in Figure 11.14(b).
This displacement may be considered as the superposition
of the displacements associated with the local load effects
[Fig. 11.14(c)] and the global load effects [Fig. 11.14(d)].
The global effects consist of bending of the strip due to the
displacement of the girders. Here a small change in load posi-
tion does not significantly affect these displacements; hence
this is a global effect.
The local effect is principally attributed to the bending of

the strip due to the application of the wheel loads on this
strip. A small movement, for example, one foot transversely,
significantlyaffects the local response. For decks, usually the
local effect is significantly greater than the global effect. The
global effects may be neglected and the stripmay be analyzed
with classical beam theory assuming that the girders provide
rigid support [A4.6.2.1.5]. Because the lower bound theorem
is applicable and because this distribution of internal actions
accounts for equilibrium, the strip method yields adequate

Fig. 11.14 (a) Idealized design strip, (b) transverse section under load, (c) rigid girder model, and (d) displacement due to girder translation.
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strength and should, in general, yield a reasonable distribu-
tion of reinforcement. To account for the stiffening effect of
the support (girder) width, the design shears and moments
may be taken as critical at the face of the support for mono-
lithic construction and at one-quarter flange width for steel
girders [A4.6.2.1.5].
Sign convention for slabs: A positive slab moment cre-

ates compression on the top, and a negative moment creates
compression on the bottom. Where graphed, the moment is
plotted on the compression face.

Example 11.11 Determine the shear and moments re-
quired in the transverse direction for the slab shown in
Figure 11.15(a). The strip widths (SW) are [A4.6.2.1.3]

SW+ = 26.0 + 6.6S = 26.0 + 6.6 (8)

= 78.8 in. = 6.6 ft

and

SW− = 48.0+ 3.0S = 48.0 + 3.0 (8)

= 72.0 in. = 6.0 ft

The stripmodel of the slab consists of the continuous beam
shown in Figure 11.15(b). Here influence functions may be
used to position the design truck transverse for the most crit-
ical actions. Because this approach was taken earlier, an al-
ternative approach, moment distribution, is used here, but
any beam analysis method may be employed (based on Eq.
10.1). The near-critical truck position formoment in span BC
is shown in Figure 11.15(a). Although the beam has seven
spans including the cantilevers, itmay be simplified by termi-
nating the system at jointE with a fixed support and neglect-
ing the cantilever because it is not loaded and contributes no
rotational stiffness as shown in Figure 11.15(b). This simpli-
fication has little affect on the response. The analysis results
are shown in Table 11.18.

Fig. 11.15 (a) Cross section, (b) moment distribution model, (c) free-body diagram for BC, and (d) moment diagram for BC. (e) Transverse
beam, (f) position for moment 205, (g) position for moment 204, and (h) position for moment 300.
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Table 11.18 Moment Distribution Analysis

BC a CB CD DC DE ED

Stiffness 0 0.75 1.00 1.00 1.00 Fixed
Distribution factor N/A 0.429 0.571 0.5 0.5 0.0
Fixed-end moment 16 −16 18 −6 0 0
Adjustment −16
Carryover −8
Fixed-end moment −24 18 −6 0 0
Distribution 2.574 3.426 3.000 3.000 0.000
Carryover 1.500 1.713 1.500
Distribution −0.643 −0.857 −0.857 −0.857
Carryover −0.429 −0.429 −0.429
Distribution 0.184 0.245 0.215 0.215
TOTAL −21.9 21.9 −2.36 2.36 1.07

aNot applicable= N/A.

The most negative moment is approximately−21.9 ft kips
(nearest 0.1 ft kip). This end moment is used in the free-
body diagram shown in Figure 11.15(c) to determine the end
shears for element BC. The end-panel moment diagram is
shown in Figure 11.15(d). The critical moments are divided
by the strip width to obtain the moments per foot. The results
are

m+ = 21.0 ft kips

6.6 ft
= 3.18 ft kips/ft

and

m− = −21.9 ft kips

6 ft
= −3.65 ft kips/ft

The m+ and m− indicate moments at the middle of the
panel and over the girder, respectively. These moments may
be considered representative and used for the other panels as
well.
As an alternative to the moment distribution, the beam

model for transverse moments may be modeled with in-
fluence functions developed especially for slab analysis.
Such functions are described in AppendixAwhere influence
functions for four equal interior spans with length S and can-
tilever span with length L. This configuration is illustrated
in Figure 11.15(e). The influence functions for moment at
205, 204, and 300 are shown in Figures 11.15(f)–11.15(h).
The near-critical load positions are also illustrated in these
figures. The calculation of the beam moments are based on
Eq. 9.1 and are given below. The influence ordinates are
from Table A.1 in Appendix A.

M205 = 16 (0.1998) (8) + 16

(−0.0317 − 0.0381

2

)
(8)

M205 = 16 (0.1998) (8) + 16 (−0.0349) (8) = 21.1 ft kips

M+
205 = 21.1 ft kips

6.6 ft
= 3.20 ft kips/ft

M204 = 16 (0.2040) (8) + 16

(−0.0155 − 0.0254

2

)
(8)

M204 = 16 (0.2040) (8) + 16 (−0.0205) (8) = 23.5 ft kips

M+
204 = 23.5 ft kips

6.6 ft
= 3.56 ft kips/ft

M300 = 16 (−0.1029) (8) + 16

(−0.0789− 0.0761

2

)
(8)

M300 = 16(−0.1029) (8)+16 (−0.0775) (8)

= −23.09 ft kips

m−
300 = −23.09 ft kips

6 ft
= −3.85 ft kips/ft

Note that the moment at 205 is essentially the same as the
moment distribution results. Repositioning the load slightly
to the left, at the 204, the panel moment is increased to 23.5
ft kips (3.56 ft kips/ft). The negative moment remains essen-
tially the same. The critical panel moments are m+ = 3.56 ft
kips/ft and m− = −3.85 ft kips/ft. These moments are com-
pared with the rigorousmethods in the example that follows.
Note that for design these moments are adjusted for multiple
presence, dynamic load allowance, and load factors.
In Appendix B of AASHTO Section 4, deck moments are

tabulated for these computations and thereby eliminate the
need for routine transverse deck analysis. The AASHTO val-
ues for positive and negative moments are 5.69 and 6.48 ft
kips/ft, respectively. These values include the multiple pres-
ence factorm = 1.2 and the dynamic load allowance of 0.33.
Therefore, the associated unmodified values for positive and
negative moments are 3.56 and 4.06 ft kips/ft, respectively.
These values compare well with the computed values.
The cantilever moment is typically controlled by the crash

load that must be resisted to take a load from a truck im-
pact on a barrier or rail into the deck and superstructure. See
[A13.4.1].
The grillage, finite-element, and finite-strip methods may

be used to model the deck actions. The procedures outlined
earlier in this chapter are generally applicable. The joint
loads must be positioned transversely in the most critical
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Fig. 11.16 (a) Cross section, (b) grillage moment diagram near midspan, and (c) grillage moment diagram near support.

Table 11.19 Finite-Element and AASHTO Moments (ft kips/ft) (Transverse Moments Only)

AASHTO Strip Method Grillage Finite Strip Finite Element

m+ @ Support Transverse 3.56 3.29 4.84 4.45
Longitudinal 3.10 5.21 4.05

m− @ Support Transverse −3.85 −3.15 −3.28 −1.26
m+ @Midspan Transverse 3.56 3.67 4.38 4.26

Longitudinal 2.60 5.78 3.63
m− @Midspan Transverse −3.85 −1.61 −2.18 −0.31

position. The longitudinal positioning affects the response
of the system, and to illustrate, two positions are used in
the following example. The first is near the support and the
second is at midspan. The results from each are compared
with the AASHTO strip method.

Example 11.12 Use the grillage, finite-element, and
finite-strip methods to determine the moments in the first
interior panel of the system shown in Figure 11.5(a). Posi-
tion the design truck axle at 3.5 ft from the support and at
midspan with the wheel positioned transversely as shown in
Figure 11.16(a).
The fine meshes for the grillage, finite-element, and

finite-strip methods are used as in Examples 11.4–11.6.
The equivalent joint loads are determined for the truck
position described, and the resulting moments are given in
Table 11.19. To obtain the moment from the grillage model

the element moment must be divided by the associated tribu-
tary length. The resulting flexural bendingmoment diagrams
for the load positioned at midspan and near the support are
shown in Figures 11.16(b) and 11.16(c), respectively. The
transverse moment per unit length (lower case) at midpanel
is

m+
transverse = 12.84 ft kips

3.5 ft
= 3.67 ft kips/ft

m+
longitudinal = 10.41 ft kips

4 ft
= 2.60 ft kips/ft

and transverse moment over the girder is

m−
transverse = −5.65 ft kips

3.5 ft
= −1.61 ft kips/ft

The slab moments near the girder support are

m+
transverse = 11.52 ft kips

3.5 ft
= 3.29 ft kips/ft
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m+
longitudinal = 12.38 ft kips

4 ft
= 3.10 ft kips/ft

and

m−
transverse = −11.03 ft kips

3.5 ft
= −3.15 ft kips/ft

The finite-element analysis gives results directly in terms
of moment per foot, and therefore no intermediate calcula-
tions are required and the results are presented inTable 11.19.
The moments from the AASHTO stripmethod are also given
for comparison.

The grillage, finite-element, and finite-strip methods in-
clude both the local and the global load effects. Note that
a significant difference exists between these results that have
not been exhibited in the previous examples. Also note that
the grillagemethod gives results that are in better agreement
with theAASHTOmoments. It is also interesting to compare
the moments in the transverse and longitudinal directions.
For example, at midspan of the grillage, the ratio of the posi-
tive transverse to longitudinalmoment is 3.67/2.60= 1.4 and
near the support the ratio is 3.29/3.10= 1.06. The same ratios
for the finite-stripmethod are 4.38/5.78= 0.76 and 4.84/5.21
= 0.93 at the midspan and near-support values, respectively.
This result indicates that the rigorous analysis gives sig-

nificant longitudinal moments, that is, moments that are
considered small in the AASHTO strip method. Near the
support, the behavior is affected by the boundary conditions,
that is, the support assumptions at the end of the bridge. In
this example, the deck is assumed to be supported across
the full width (deck and girders). This boundary condi-
tion creates significant longitudinal stiffness that attracts
the longitudinal moment, which is equal to or exceeds
the transverse moment. If only the girders are supported, the
transverse moments increase by about 50% and significantly
exceed the AASHTO values. The longitudinalmoments also
decrease significantly.
The finite-stripmoments are higher than all othermoments

because the positive moments were taken directly under the
concentrated load, in an area where the curvature is increased
locally due to the presence of the load (frequently called dish-
ing). This effect decreases rapidly away from the load to val-
ues that are similar to the grillage and AASHTO values.
The finite-element values are similar to the finite-strip val-

ues when the values directly under the load are considered.
Themomentswere significantly lower (∼one-half) at the ele-
ment centroids located approximately 2.5 ft (760 mm) away
from the load position. Finally, it should be noted that the
AASHTO strip method overestimates the negative moment
over the girders in the middle of the longitudinal span be-
cause of the assumption that the girders do not translate. The
results are better near the support where the girder translation
is small.
The differences and difficulties that arise in modeling the

deck with the various methods are particularly noteworthy.

What if only one method was used with one mesh? How
would the engineer know if the answers are correct? Further,
is the maximum moment directly under the load the proper
moment for design or should the actions be spread over a
larger area? What effect does modeling the wheel load as a
patch rather than a concentrated load have? How is the patch
load properly modeled in the grillage, finite-strip, and finite-
element models? Is a flat plate (or shell) element appropriate
to represent the ultimate limit state where significant arching
action has been observed in experimental research?
The answers to these questions are best established by

studying the system under consideration. These questions
and many others are beyond the scope of this chapter, but
it suffices to note that there are many important issues that
must be addressed to properly model the localized effects in
structures. The best way to answer the many questions that
arise in modeling is to modify the model and to observe the
changes. Such modifications should likely include the use
of 3D continuum elements and patch loads.
Modeling local effects takes judgment, skill, and usually

significant time. Modeling for local load effects is more
difficult than modeling the global response, for example,
determining distribution factors. Again place analysis in
perspective. The lower bound theorem requires that the
one-load path be established for safe design, which makes
the AASHTO method viable because the load is distributed
transversely and nominal “distribution” steel is used in the
longitudinal direction (see Chapter 16). The remaining limit
states are associated with service loads such as cracking and
fatigue, and, if these can be assured by means other than
rigorous analysis, then so much the better. More information
on this topic is given in Chapter 14.
In summary, the distribution of internal actions in a bridge

deck is complex and not easily modeled. The AASHTO
method seems to give reasonable results for this example,
and, as shown in the subsequent design of this deck, the
AASHTO moments result in a reasonable distribution of
reinforcement.
The ultimate limit state can be modeled with the yield-line

method. This method can be used to gain additional insight
into the behavior of deck systems under ultimate loading
conditions.

Yield-Line Analysis The yield-line method is a procedure
where the slab is assumed to behave inelastically and ex-
hibits adequate ductility to sustain the applied load until
the slab reaches a plastic collapse mechanism. Because the
reinforcement proportioning required by AASHTO gives
underreinforced or ductile systems, this assumption is realis-
tic. The slab is assumed to collapse at a certain ultimate load
through a system of plastic hinges called yield lines. The
yield lines form a pattern in the slab creating the mechanism.
Two methods are available for determining the ultimate
load by the yield-line method: the equilibrium approach
and the energy approach. The energy approach is described
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here because it is perhaps the simplest to implement. The
energy approach is an upper bound approach, which means
that the ultimate load established with the method is either
equal to or greater than the actual load (i.e., nonconserva-
tive). If the exact mechanism or yield-line pattern is used
in the energy approach, then the solution is theoretically
exact.
Practically, the yield pattern can be reasonably estimated

and the solution is also reasonable for analysis. Patterns may
be selected by trial or a systematic approach may be used.
Frequently, the yield-line pattern can be determined in terms
of a few (sometimes one) characteristic dimensions. These
dimensions may be used in a general manner to establish the
ultimate load, and then the load is minimized with respect to
the characteristic dimensions to obtaining the lowest value.
Simple differentiation is usually required.
The fundamentals and the primary assumptions of the

yield-line theory are as follows (Ghali et al., 2010):

� In the mechanism, the bending moment per unit length
along all yield lines is constant and equal to themoment
capacity of the section.

� The slab parts (area between yield lines) rotate as rigid
bodies along the supported edges.

� The elastic deformations are considered small relative
to the deformation occurring in the yield lines.

� The yield lines on the sides of two adjacent slab parts
pass through the point of intersection of their axes of
rotation.

� The load is conservatively modeled with a concentrated
load.

� Other failure modes do not occur first, for example,
punching shear.

Consider the reinforcement layout shown inFigure 11.17(a)
and the free-body diagram shown in Figure 11.17(b). The
positive flexural capacities in the two directions are mt and
mL. Here the axis labels t and L are introduced for the trans-
verse and longitudinal directions, usually associated with a

bridge. In general, the orthogonal directions align with the
reinforcement. Assume a yield line crosses the slab at an an-
gle α relative to the direction of reinforcement as shown in
Figure 11.17(a). Equilibrium requires that

ma = mL cos2 α + mt sin2 α

mtwist = (mL − mt ) sin α cos α (11.14)

If the slab is isotopically reinforced, thenmt =mL =m and
Eq. 11.14 simplifies to

mα = m (cos2 α + sin2 α) = m

mtwist = 0 (11.15)

Therefore, for isotropic reinforcement, the flexural capac-
ity is independent of the angle of the yield line and may be
uniformly assigned the value of the capacity in the direction
associated with the reinforcement.
Virtual work may be used to equate the energy associated

with the internal yielding along the yield lines and the ex-
ternal work of the applied loads. Consider the slab segment
shown in Figure 11.18 where a yield line is positioned at an
angle to the axis of rotation of the slab segment. By definition
of work, the internal energy for yield line i is the dot product

Fig. 11.18 Slab part.
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Fig. 11.17 (a) Deck reinforcement layout and (b) free-body diagram.
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of the yield-line moment and the rotation, or mathematically
stated

Ui =
∫

mi
• θi dL = miLi

(
cos αi

)
θi (11.16a)

and the total system energy is

U =
NL∑

i=1

miLi

(
cos αi

)
θi (11.16b)

where NL is the number of yield lines in the system and θ i is
the associated rotation.
The total system energy is the summation of the contribu-

tions from all the slab segments. It is perhaps simpler to think
of the dot product as the projection of moment on the axes
of rotation times the virtual rotation. To facilitate this, both
moment and rotation may be divided into orthogonal com-
ponents (usually associated with the system geometry), and
the dot product becomes

Uint =
NL∑

i=1

(
miLi

)
• θi =

NL∑

i=1

Mti θti +
NL∑

i=1

MLiθLi

(11.17)
where Mti and MLi are the components of miLi and θ ti and
θLi are the components of θ .
The virtual external work for uniform and concentrated

loads is

Wext =
∫

pw dA +
∑

Piwi (11.18)

where p is the distributed load, w is the virtual translation
field, and wi is the translation at concentrated load Pi.
In the examples that follow, a typical slab on a slab–girder

bridge is studied with the yield-line method. This method
is illustrated for a concentrated load applied in the middle
portion of the bridge, near the end of the bridge, and on the
cantilever. Several of the important features of themethod are
illustrated in this analysis. The methodology is similar for a
patch load; however, the algebra becomes more complex.

Example 11.13 Determine the required moments
due to the concentrated loads positioned as shown in
Figure 11.19(a) in combination with uniformly distributed
loads.
The assumed yield-line patterns are also illustrated in

Figure 11.19(a). The girder spacing is S , the cantilever
overhang isH , and G is the wheel spacing (gage), usually 6
ft (1800 mm), or the spacing between the wheels of adjacent
trucks, usually 4 ft (1200 mm). First, consider the load posi-
tioned in the center of a panel near midspan as illustrated by
point A in Figure 11.19(a).
Because the system is axisymmetric, the load is distributed

evenly to all sectors (dα). The analysis may be performed on
the sector as shown in Figure 11.19(b), and the total energy is
determined by integration around the circular path. By using

Eq. 11.17, the internal work associated with yield-line rota-
tion is

Uint = Uperimeter + Uradial fans =
2π∫

0

m
′
θr dα +

2π∫

0

mθr dα

where α is the orientation of the radial yield line, θ is the vir-
tual rotation at the ring of the yield-linepattern,m is the pos-
itive moment capacity for the orientation α, and m ′ is the
negative moment capacity for the orientationα. The moment
capacity for a general orientation α is given in Eq. 11.14. By
using Eq. 11.15, the internal strain energy becomes

Uint = Uperimeter + Uradial fans

=
2π∫

0

(
m

′
L cos2α + m

′
t sin2 α

)
θr dα

+
2π∫

0

(
mL cos2 β + mt sin2β

)
θr dβ

where β is the compliment of α. Note that

2π∫

0

sin2 α dα =
2π∫

0

cos2 α dα = π

U int simplifies to

Uint = Uperimeter + Uradial fans

=
(
m

′
L + m

′
t

)
πrθ + (

mL + mt

)
πrθ

The energies for the perimeter and the fans are kept sep-
arate to facilitate further manipulation. The virtual rotation
and translation δ at the load are related by

δ = θr

The external virtualwork due to the concentrated loadP , in
combination with a uniform loads q , is established by using
Eq. 11.18, resulting in

Wext = Pδ + q

(
πr2

3

)
δ = Pr θ + q

(
πr2

3

)
rθ

Equate the external work and internal energy, which gives

π
(
m

′
L + m

′
t

)
+ π

(
mL + mt

) = P + qπr2

3
(11.19)

The moment summations may be thought of as double the
average moment capacity, or

m
′ = 1

2

(
m

′
L + m

′
t

)

and
m = 1

2

(
mL + mt

)
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Fig. 11.19 Yield-line patterns: (a) axle positions and (b) sector (part). Yield lines for axles: (c) plan view and (d) elevation view.

Substitution of the average moments into Eq. 11.19 results
in

m
′ + m = P

2π
+ qr2

6
(11.20)

The average capacities m and m ′ are used for convenience
in subsequent calculations. For a comparison with the elastic
analysis to be presented later, neglect the uniform load and
assume that the positive and negative capacities are equal, the
required moment capacity is

m = m
′ = P

4π
(11.21)

Now consider the load positioned near the edge of the slab
at point B as shown in Figure 11.19(a), where the yield-line
pattern is also shown. Note that due to symmetry, the length
of the yield lines in this system constitute one-half the
length of the previous system (point A ). Thus, the internal
energy is one-half of that given for the yield-line pattern
for point A (Eq. 11.19), the associated uniform load is
also one-half of the previous value, but the concentrated
load is full value, and the required moment is doubled

(Eq. 11.20) giving

(
m

′ + m
)

= P

π
+ qr2

6
(11.22)

Next consider the two loads positioned at point C as
illustrated in Figures 11.19(a) and 11.19(c). The internal
energy is

Uint = Uradial fan + Ustraight

= 2πrθ
(
m

′ + m
)

+ 2Gδ

r

(
m

′
L + mL

)

The work due to the two concentrated loads plus the
uniform load is

Wext = 2Pδ + qrδ
(πr

3
+ G

)

Again, equating the internal and external energies, one
obtains

P + qr

2

(πr

3
+ G

)
= π

(
m

′ + m
)

+ G

r

(
m

′
L + mL

)

(11.22)
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Now consider the load at point D in Figure 11.19(a). The
only difference between the analysis of this position and that
of point C is that the moment capacity associated with the
straight lines is now the capacity of the transverse reinforce-
ment. Equation 11.22 becomes

P + qr

2

(πr

3
+ G

)
= π

(
m

′ + m
)

+ G

r

(
m

′
t + mt

)

(11.23)
Note that as G goes to zero, Eqs. 11.22 and 11.23 reduce

to Eq. 11.22, as expected. These equations may be used
to estimate the ultimate strength of slabs designed with
the AASHTO procedures. It is interesting to compare the
moments based on the yield-line analysis to those based on
the elastic methods.

Example 11.14 Determine the moments required for a
wheel load of the AASHTO design truck [P = 16 kips
(72.5 kN)] position in the interior panel. Compare these
moments to those obtained from the AASHTO strip- and
finite-element methods. By neglecting the uniform load,
Eq. 11.20 can be used to determine the required moment

m
′ + m = P

2π
+ (q = 0) r2

6
= 16

2π
= 2.55 ft kips/ft

If we assume that the positive and negative moment capac-
ities are the same, the required capacity is

m = m
′ = 1.27 ft kips/ft

From Table 11.19 the AASHTO stripmethod moments are
m+ = 3.56 andm− = −3.85 ft kips/ft, and the finite-element
transverse moments arem+ = 4.26 andm− =−0.31 ft kips/ft
near midspan and m+ = 4.45 and m− = −1.26 ft kips/ft near
the support. Thus, the elastic distribution is quite different
from the inelastic, which is consistent with test results where
slabs typically test at aminimumeight times the service-level
loads (16 kips).
In summary, several methods have been described for pro-

portioning the moment and reinforcement in a bridge deck.
The AASHTO strip method is permitted by the specification
and offers a simple method for all limit states. In light of
the lower bound theorem, this is a conservative method. The
yield-line method uses inelastic analysis techniques and is
pertinent only to the strength and extreme limit states. Other
methods are required in conjunction with this to ensure ser-
viceability. Finally, the empirical design method is not an an-
alytical approach, but rather a set of rules upon which to pro-
portion the deck. The discussion of this method is presented
in following chapters.

11.4 BOX-GIRDER BRIDGES

Behavior, Structural Idealization, and Modeling The
box-girder bridge is a common structural form in both steel
and concrete. The multicell box girder may be thought of

Fig. 11.20 (a) Two-cell box section, (b) multicell box section, and
(c) spread box section.

as a slab–girder bridge with a bottom slab that encloses the
section [see Fig. 11.20(a)]. This closure creates a “closed
section” that is torsionally much stiffer than its open coun-
terpart. This characteristic makes the box girder ideal for
bridges that have significant torsion induced by horizontal
curvature resulting from roadway alignments. For example,
the box-girder bridge is often used for tightly spaced in-
terchanges that require curved alignments because of its
torsional resistance and fine aesthetic qualities.
Box systems are built in a wide variety of configurations,

most are illustrated in Table 4.1. Examples include closed
steel or precast boxes with a cast-in-place (CIP) deck (b),
open steel or precast boxes with CIP deck (c), CIP multicell
box (d), precast boxes with shear keys (f), and transversely
posttensioned precast (g). These systems can be separated
into three primary categories of box systems: single and
double cell [Fig. 11.20(a)], multicell [three or more cells,
Fig. 11.20(b)], and spread box systems [the boxes noncon-
tiguous, Fig. 11.20(c)]. As expected, the behavior of these
systems is distinctly different within each category and the
design concern varies widely depending on construction
methods. Due to the large number of systems and construc-
tion methods, selected systems are described with limited
detail here.
The single- and two-cell box systems are usually narrow

compared to the span and behave similar to a beam and are
often modeled with space frame elements. Such systems are
designed for the critical combinations of bending moment,
shear, and torsion created due to global effects and the local
effect of the vehicle applied directly to the deck. As stated in
Chapter 8, global means the load effect is due to the global
system response such as the deflection, moment, or shear of
a main girder. Local effects are the actions and displacements
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Fig. 11.21 (a) Eccentric loading, (b) global flexural deformation, (c) global torsional deformation, (d) local transverse bending deformation,
and (e) distortional transverse deformation due to global displacements.

that result from loads directly applied to (or in the local area
of) the component being designed. Recall that if a small spa-
tial variation in the live-load placement causes a large change
in load effect, then it is considered local.
The various displacement modes for a two-cell box-girder

cross section are illustrated in Figures 11.21(a)–11.21(e).
Here the total displacement is decomposed into four compo-
nents: global bending, global torsion, local flexure, and local
distortion due to global displacements. The global bending
is due to the girder behaving as a single beam, that is, the
strain profile is assumed to be linear, and there is no twisting
or distortion, that is, the section shape remains unaltered
[Fig. 11.21(b)]. The global torsional rotation is illustrated in
Figure 11.21(c). As in the bending mode, the section shape
remains unaltered by the load and the section is twisted due
to eccentrically applied loads. The local bending mode is
shown in Figure 11.21(d). Here the loads create out-of-plane
bending in the deck. Because the girder webs are continuous
with the slab, the webs and the bottom slab also bend.
The intersection of elements (physical joints) rotate, but do
not translate, in this mode. Finally, the distortion mode is
illustrated in Figure 11.21(e). The slab and webs flex due to
the translation and rotation of the physical joints, that is, the
displacements shown in Figure 11.21(b) plus those shown
in Figure 11.21(c). Superpose all of these modes to establish
the system response.
There are numerous analytical methods available for the

analysis of box-girder systems, ranging from the rigorous
and complex to the simplistic and direct. The selection of the
method depends on the response sought and its use. The box

system may be modeled with finite elements, finite strips,
and beams. All approaches are viable and the one selected de-
pends on several factors including: the number of cells, the
geometry (width/length, skew, diaphragms, cross bracing),
construction method, type of box system (single, multi, or
spread boxes), and, of course, the reason for and application
of the results.
In general, the one- and two-cell box systems have spans

that are much greater than their section widths and can be
modeled as beams, usually with space frame elements. The
beam is modeled so that the global flexural and torsional re-
sponses are considered. These actions are then used with the
resistance provisions in the usual manner. For the case of
steel boxes, theweb thicknesses tend to be thin and local stiff-
eners are required. The local bending effects are modeled by
considering the box as a frame in the transverse direction, and
obtaining reasonable distribution of shear and bending mo-
ments (due to the out-of-planedeformations). Thismodel can
be based on the distribution width outlined in, for example,
Eq. 11.13.
The distortional deformation is modeled by imposing the

resulting beam displacements at the joints of the transverse
frame (plane frame), which creates bending of the deck
and web elements. The results of the local bending and dis-
tortional deformation are superposed to establish the local
out-of-plane actions.
As with the single- and two-cell system, multicell (three or

more) box systems can be modeled with the finite-element
and finite-strip methods. Both formulations can simultane-
ously model the in- and out-of-plane load effects associated
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with global and local behavior. Finite-element method
is certainly the most common rigorous methods used in
engineering practice. The principle difference between the
slab–girder and the multicell box bridge is that the box
section has significantly more torsional stiffness.

Beam-Line Methods The AASHTO Specification has
equations for distribution factors for multicell box beams.
These are applied in a fashion similar to the slab–girder
systems and are summarized in Table 11.20.
Other box systems, such as spread box beams and shear-

keyed systems have similar formulas but due to space
limitations are not presented. These formulas are given in
AASHTO [A4.6.2.2]. An example is given to illustrate the
use of the AASHTO formulas for a multicell system.

Example 11.15 Determine the distribution factors for one
and multilanes loaded for the concrete cast-in-place box sys-
tem shown in Figure 11.22. The bridge has no skew.
The AASHTO distribution factors are used as in the previ-

ous example with slab–girder bridges. The factors for one-,
two-, and three-lane loadings are established for the interior
and exterior girder moments and shears. Each case is con-
sidered separately. Table 11.20 is used exclusively for all
calculations. Note that the multiple presence factors are in-
cluded.
Interior girder moment for one lane loaded:

mgSI
moment =

(
1.75 + S

3.6

)(
1

L

)0.35( 1

Nc

)0.45

=
(
1.75 + 13

3.6

) (
1

100

)0.35(1

3

)0.45

= 0.65 lane/web

Interior girder moment for multiple lanes loaded:

mgMI
moment =

(
13

NC

)0.3 (
S

5.8

) (
1

L

)0.25

=
(
13

3

)0.3 (
13

5.8

) (
1

100

)0.25

= 1.10 lanes/web

Exterior girder moment for one lane and multiple lanes
loaded:

We = 1
2S + overhang = 1

2 (13) + 3.75 = 10.25 ft

mg
(S or M)E
moment = We

14
= 10.25

14
= 0.73 lane/web

Interior girder shear for one lane loaded:

mgSI
shear =

(
S

9.5 ft

)0.6(
d

12L

)0.1

=
(

13

9.5 ft

)0.6[
(6.66) (12)

(12) (100)

]0.1

= 0.92 lane/web

Interior girder shear for multiple lanes loaded:

mgMI
shear =

(
S

7.3 ft

)0.9(
d

12L

)0.1

=
(

13

7.3 ft

)0.9[
(12) (6.66)

(12) (100)

]0.1

= 1.28 lanes/web

Exterior girder shear for one lane loaded: The lever rule
is used for this calculation. Refer to the free-body diagram
illustrated in Figure 11.22(d). Balance the moment about B
to determine the reaction RA:

∑
MB = 0

P

2
(7.5) + P

2
(13.5) − RA(13) = 0

RA = 0.81P

gSE
shear = 0.81

mgSE
shear = 1.2(0.81) = 0.97 lane/web

Exterior girder shear for two lanes loaded: The interior dis-
tribution factor is used with an adjustment factor based on the
overhang length:

mgME
shear = e

(
mgMI

shear

) = (0.84) (1.28) = 1.08 lanes/web

where
e = 0.64 + de

12.5
= 0.84

The AASHTO distribution factors are compared with
those based on a finite-element analysis in the next section.
The application of these factors is similar to that of the
slab–girder bridge. Details regarding the application are
presented in Chapter 13.

Finite-Element Method The box-girder bridge may be
modeled with the finite-element method by using shell ele-
ments. These elements must have the capability to properly
model the in-plane and out-of-plane effects. One of the
principal characteristics of the box girder is shear lag. This
phenomenon is the decrease in stress (flange force) with
increased distance away from the web. The mesh must be
sufficiently fine to model this effect. A mesh that is too
coarse tends to spread the flange force over a larger length,
therefore decreasing the peak forces. Another important
characteristic is the proper modeling of the diaphragms and
support conditions.
The diaphragms are transverse walls periodically located

within the span and at regions of concentrated load such as
supports. The diaphragms tend to stiffen the section torsion-
ally and reduce the distortional deformation, which produces
a stiffer structure with improved load distribution character-
istics. Because the supports are typically located at a signif-
icant distance below the neutral axis, the bearing stiffness is
important in the modeling. For example, the bottom flange
force can change significantly if the support conditions are
changed from pin–roller to pin–pin.
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Fig. 11.22 (a) Box section, (b) dimensions, (c) span and supports, and (d) free-body diagram.

Finally, because the box section has significant torsional
stiffness, the effects of skew can also be significant and must
be carefully considered. For example, it is possible for an ec-
centrically loaded box-girder web to lift completely off its
bearing seat. This effect can greatly increase the reactions
and associated shear forces in the area of the support. Such
forces can create cracks and damage bearings. A simply sup-
ported three-cell box girder is modeled in the example below.

Example 11.16 For the bridge illustrated in Figure 11.22,
use the finite-element method to determine the distribution
factors for the bending moment at midspan.
The system was modeled with the two meshes shown in

Figures 11.23(a) and 11.23(b). Bothmeshes produced essen-
tially the same results; hence convergence was achieved for
the parameters under study. The load effect of each web was

based on the longitudinal force per unit length, f , at the bot-
tom. This quantity is readily available from the analysis. The
sum of the forces for all the webs is divided by the number of
lanes loaded. This ratio is then divided into the force in each
girder. The distribution factor for girder i may be mathemat-
ically expressed as

g = fi∑

No. girders

fi/No. lanes loaded
(11.24)

where fi is the load effect in the girder web i.
The flexural bending moment for the entire web could be

used as in the slab–girder bridge, but this quantity is not read-
ily available. To determine the moment, the force per unit
length must be numerically integrated over the web depth,
that is,M = ∫

fy dy. If the end supportsare not restrained and,
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Fig. 11.23 (a) Coarse mesh and (b) fine mesh.

therefore, do not induce a net axial force in the section, then
the force per length is nominally proportional to the moment.
The loads are positioned for the maximum flexural effect in
the exterior and interior webs for one, two, and three lanes
loaded. For shear/reactions, the loads were positioned for the
maximum reaction and the distribution factors were deter-
mined by Eq. 11.911.24. The distributionfactors based on the
finite-element methods are shown in Table 11.21. The results
from the AASHTO distribution formulas are also shown for
comparison.
Note that there are significant differences between the

AASHTO formulas and finite-element results. In general,
the finite-element model exhibits better load distribution
than the AASHTO values (less conservative). Recall that the
AASHTO values are empirically determined based solely
on statistical observation. Therefore, it is difficult to explain

the differences for this particular structure. It is interesting
to note that unlike the slab–girder and slab bridges, the
analytical results can vary significantly from the AASHTO
method, and perhaps this highlights the need for rigorous
analysis of more complex systems.
Again, note that the comparison of the distribution factors

does not suggest that the only reason to perform a rigorous
analysis is to establish the distribution factors. Because
the finite-element-based actions are available directly, the
designer may wish to proportion the bridge based on these
actions. Other load cases must be included and the envelope
of combined actions is used for design.

11.5 CLOSING REMARKS

This chapter includes numerous topics related to the struc-
tural analysis of bridge systems. It is intended to provide
a broad-based perspective for analysis. It is important to
understand the concepts and how they relate to the AASHTO
design specification. It is also important to understand the
development and usage of the AASHTO distribution factors,
the meaning of one and multiple lanes loaded and compar-
isons and modeling techniques associated with advanced
methods such as grillage, finite-element, and finite-strip
methods. Examples were presented to address the elastic
and inelastic analysis of deck systems. Here it is important
to note the variation in results of these methods that are
sensitive to local effects.
It is unlikely that this chapter is comprehensive on any one

topic but provides a useful introduction and the background
necessary for more rigorous analysis of bridges. In present
U.S. bridge engineering practice, rigorous analysis is typi-
cally reserved for more complex geometries involving skew
and curvature combined with the need for better analysis to
model construction of these systems. Rigorous analysis is
perhaps underutilized for the analysis and load rating for ex-
isting bridge where changes in the live-load distribution can
yield significant economic savings associated with posting,
retrofit, and satisfying operational demands for permit loads.
Additional study is recommended in NCHRP Report 592

(Puckett et al., 2007). This report outlines many aspects of
live-load distribution, including a comprehensive literature

Table 11.21 Distribution Factors Based on the Finite-Element Method

Girder
Location

Lanes
Loaded

Finite-Element
Moment

Distribution
Factor (mg )

AASHTO
Moment

Distribution
Factor (mg )

Finite-Element
Shear or Reaction

Distribution
Factor (mg )

AASHTO Shear
or Reaction
Distribution
Factor (mg )

Exterior 1 0.53(1.2) = 0.64 0.73 0.72(1.2) = 0.86 0.97
Exterior 2 0.85(1.0) = 0.85 0.73 0.84(1.0) = 0.84 1.08
Exterior 3 1.00(0.85) = 0.85 0.73 1.34(0.85) = 1.14 1.08
Interior 1 0.38(1.2) = 0.46 0.65 0.71(1.2) = 0.85 0.92
Interior 2 0.62(1.0) = 0.62 1.10 1.21(1.0) = 1.21 1.28
Interior 3 0.80(0.85) = 0.68 1.10 1.22(0.85) = 1.04 1.28



PROBLEMS 213

review, comparison of various simplified to rigorous meth-
ods, international specifications, effect of skew, live-load po-
sitioning, and many other topics. The report addresses a new
simplified live-load distribution method and the various ap-
pendices contain information regarding a host of topics.
A comprehensive guide is available for the analysis of

steel bridges. Many of the concepts provided therein are
generally applicable to other bridge types and materials
(AASHTO/NSBA, 2011). A brief treatment is also available
in a chapter by Puckett and Coletti (2011) in the National
Steel Bridge Alliance design manual.
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PROBLEMS
These problems reference the plans for the bridge over the
Little Laramie River. See Wiley’s website for a pdf. This
bridge is a single-span, four-girder bridge that has clean

details; its interpretation is straightforward for the student.
These plans are used with permission.
Typically, determine the shear at the end of the bridge

(100) and moment at midspan (105). Your instructor may
require other points of interest.
This bridge is used again for problems in the chapters on

steel bridges, so the instructor can couple assignments here
with future assignments on steel.
Note: The arithmetic can be simplified by using a 100-ft

span rather than the 95′–63/4′′ span bearing to bearing,
which is the actual analysis span length.

11.1 Determine the dead loads per length of girder for the
interior girders for the girder self weigh (add 10%
for cross frames and miscellaneous), the slab weight,
the wearing surface weight, and the barrier weight
(equally distributed to all girders).

11.2 Repeat 11.1 for the exterior girder.
11.3 Determine the live-load actions for the design truck,

design tandem, and design lane for one lane (not dis-
tributed).

11.4 Use the lever rule to determine the live-load distribu-
tion factors for the interior girder for one and multiple
lanes loaded. Apply the appropriatemultiple presence
factor to each case.

11.5 Repeat Problem 11.4 for the exterior girder.
11.6 Use the live-load distribution factor equations

[A4.6.2] to determine the distribution factors for
an interior girder.

11.7 Repeat Problem 11.6 for an exterior girder.
11.8 Use the results from Problems 11.3 and 11.6 to deter-

mine the distributed live-load actions for the interior
girder.

11.9 Use the results from Problems 11.3 and 11.7 to deter-
mine the distributed live-load actions for the exterior
girder.

11.10 Use the results from Problems 11.1 and 11.8 to deter-
mine the total factored actions for the strength I limit
state for the interior girder.

11.11 Use the results from Problems 11.2 and 11.9 to deter-
mine the total factored actions for the strength I limit
state for the exterior girder.

11.12 Use the results from Problems 11.10 and 11.11 to
determine the critical shear and moments, that is,
compare the exterior and interior cases and use the
maximum.

11.13 Do a web search for “BTBEAM online” and access
this program. Use BTBEAM to work any and all of
Problems 11.8–11.12. Use the distribution factors
computed above for data into BTBEAM. The load
combination factors, eta as may be set to unity for
simplicity.

11.14 Use the cross section (dead-load and live-load distri-
bution factors) for the bridge over the Little Laramie
River for a three-span girder bridge. Span lengths are
100, 120, and 100 ft.



CHAPTER 12

System Analysis—Lateral,
Temperature, Shrinkage, and
Prestress Loads

12.1 LATERAL LOAD ANALYSIS

Aswith the gravity loads, the lateral loadsmust also be trans-
mitted to the ground, that is, a load path must be provided.
Lateral loads may be imposed from wind, water, ice floes,
and seismic events. The load due to ice floes and water is
principally a concern of the substructure designer. The sys-
tem analysis for wind loads is discussed in Section 12.1.1,
and the analysis for seismic loads is briefly introduced in
Section 12.1.2.

12.1.1 Wind Loads

The wind pressure is determined by the provisions in
AASHTO [A3.8], which are described in Chapter 8 (Wind
Forces). This uniform pressure is applied to the superstruc-
ture as shown in Figure 12.1(a). The load is split between
the upper and lower wind-resisting systems. If the deck and
girders are composite or are adequately joined to support
the wind forces, then the upper system is considered to be
a diaphragm where the deck behaves as a very stiff beam
being bent about the y–y axis as shown in Figure 12.1(a).
Note that this is a common and reasonable assumption given
that the moment of inertia of the deck about the y–y axis
is quite large. Wind on the upper system can be considered
transmitted to the bearings at the piers and the abutments
via the diaphragm acting as a deep beam. It is traditional to
distribute the wind load to the supporting elements on a trib-
utary area basis [see Fig. 12.1(c)]. If there are no piers, or if
the bearing supports at the piers do not offer lateral restraint,
then all the diaphragm loads must be transmitted to abutment
bearings, one-half to each. If the bearings restrain lateral

movement and the pier support is flexible (e.g., particularly
tall), then a refined model of the system might be warranted
to properly account for the relative stiffness of the piers,
the bearings, and the abutments. The in-plane deformation
of the deck may usually be neglected.
The wind load to the lower system is carried by the girder

in weak-axis bending [y–y in Fig. 12.1(b)]. Most of the
girder’s strength and stiffness in this direction are associated
with the flanges. Typically, the bottom flange is assumed to
carry the lower system load as shown in Figure 12.1(d). The
bottom flange is usually supported by intermediate bracing
provided by a cross frame [see Fig. 12.1(a)], steel diaphragm
element (transverse beams), or in the case of a concrete beam
a concrete diaphragm (transverse). These elements provide
the compression flange bracing required for lateral torsional
buckling while the concrete is being placed; compression
(bottom) flange bracing in the negative moment region; the
transverse elements also aid in the gravity load distribution,
to a minor extent; and finally, the bracing periodically
supports the bottom flange, which decreases the effective
span length for the wind loading.
The bracing forces are illustrated in Figure 12.1(d) where

the free-body diagram is shown with the associated approx-
imate moment diagram. In AASHTO [A4.6.2.7] an approx-
imate analysis is permitted, where the bracing receives load
on the basis of its tributary length. The moment may also
be approximated with WL2

B/10 [C4.6.2.7.1]. In place of the
approximate analysis, a more exact beam analysis may be
performed, but this refinement is seldom warranted. Once
the load is distributed into the bracing elements, it is trans-
mitted into the deck by the cross frames or by frame action
in the case of bracing. Once the load is distributed into the
diaphragm, it combines with the upper system loads that are
transmitted to the supports. If the deck is noncomposite or
the deck–girder connection is not strong enough to transmit
the load, then the path is assumed to be different. This case
is described later.
At the supports, the load path is designed so that the load

can be transmitted from the deck level into the bearings. The
cross-framing system must be designed to resist these loads.
The deck diaphragm loads may be uniformly distributed to
the top of each girder. Note that the end supports receive
the additional load from the bottom flange for the tributary
length between the first interior bracing and the support. This
load is shown as P end in Figure 12.1(e).
In the case of insufficient diaphragm action (or connectors

to the diaphragm), the upper system load must be transmitted
into the girder in weak-axis bending. The load distribution
mechanism is shown in Figure 12.1(f). This is an important
strength check for the construction stage prior to deck place-
ment . The girders translate together because they are coupled
by the transverse elements. The cross frames (or diaphragms)
are very stiff axially and may be considered rigid. This sys-
tem may be modeled as a plane frame, or more simply, the
load may be equally shared between all girders, and the load
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Fig. 12.1 (a) Bridge cross sectionwith wind and (b) girder cross section. (c) Plan view and (d) load to bottom flange. (e) Load to end external
bearing. (f) Girder flanges—load sharing, (g) moment diagram—exterior girder flange, (h) moment diagram—interior girder flange, and (i)
moment diagram—interior girder flange, uniform load.

effect of the wind directly applied to the exterior girder may
be superimposed.
The local and global effects are shown in Figures 12.1(g)

and 12.1(h) and 12.1(i), respectively. For longer spans, the
bracing is periodically spaced, and the global response is
more like a beam subjected to a uniform load. Approximat-
ing the distribution of the load as uniform, permits the global
analysis to be based on the analysis of a beam supported by
bearing supports. The load is then split equally between all
of the girders. Mathematically stated,

MTotal = MLocal +
MGlobal

No. of girders

This analysis is indeed approximate, but adequate duc-
tility should be available and the lower bound theorem
applies. The procedures described account for all the load
and, therefore, equilibrium can be maintained. The pro-
cedures also parallel those outlined in the commentary in
AASHTO [C4.6.2.7.1]. Similar procedures may be used for
box systems.

The procedures outlined herein do not, nor do those of
AASHTO, address long-span systems where the aeroelastic
wind effects are expected.
Finally, the engineer should check the lateral deflection un-

der some reasonable wind load to ensure that the system is
not too flexible during construction. The wind speed in this
case is left to the discretion of the engineer.

12.1.2 Seismic Load Analysis

The load path developed to resist lateral loads due to wind
is the same load path followed by the seismic loads. The
nature of the applied load is also similar. The wind loads
acting on the superstructure are uniformly distributed along
the length of the bridge and the seismic loads are propor-
tional to the distributed mass of the superstructure along its
length.What is different is the magnitude of the lateral loads
and the dependence of the seismic loads on the period of vi-
bration of various modes excited during an earthquake and
the degree of inelastic deformation, which tends to limit the
seismic forces.
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Fig. 12.1 (Continued ).

Because of the need to resist lateral wind loads in all bridge
systems, designers have already provided the components re-
quired to resist the seismic loads. In a typical superstructure
cross section, the bridge deck and longitudinal girders are
tied together with struts and bracing to form an integral unit
acting as a horizontal diaphragm. The horizontal diaphragm
action distributes the lateral loads to the restrained bearings
in each of the segments of the superstructure. A segment may
be a simply supported span or a portion of a multispan bridge
that is continuous between deck joints.
During an earthquake, a segment is assumed to maintain

its integrity, that is, the deck and girders move together as a
unit. In a bridge with multiple segments, they often get out
of phase with each other and may pound against one another
if gaps in the joints are not large enough. In general, the
deck and girders of the superstructure within a segment are
not damaged during a seismic event, unless they are pulled
off their supports at an abutment or internal hinge. Thus, an

analysis for seismic loads must provide not only the con-
nection force at the restrained supports, but also an estimate
of the displacements at unrestrained supports. Procedures
for determining these seismic forces and displacements are
discussed next.

Minimum Analysis Requirements The analysis should
be more rigorous for bridges with higher seismic risk and
greater importance. Also, more rigorous seismic analysis is
required if the geometry of a bridge is irregular. A regular
bridge does not have changes in stiffness or mass that exceed
25% from one segment to another along its length. A hor-
izontally curved bridge may be considered regular if the
subtended angle at the center of curvature, from one abut-
ment to another, is less than 60◦ and does not have an abrupt
change in stiffness or mass. Minimum analysis requirements
based on seismic zone, geometry, and importance are given
in Table 12.1.
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Table 12.1 Minimum Analysis Requirements for Seismic Effects

Multispan Bridges

Other Bridges Essential Bridges Critical Bridges

Seismic Zone Single-Span Bridges Regular Irregular Regular Irregular Regular Irregular

1 Nonea None None None None None None
2 None SM/ULb SM SM/UL MM MM MM
3 None SM/UL MMc MM MM MM TH
4 None SM/UL MM MM MM THd TH

aNone = no seismic analysis is required.
bSM/UL = single-mode or uniform-load elastic method.
cMM = multimode elastic method.
dTH = time–history method.
In AASHTO Table 4.7.4.3.1-1. From AASHTO LRFD Design Bridge Specification . Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission.

Single-span bridges do not require a seismic analysis re-
gardless of seismic zone. The minimum design connection
force for a single-span bridge is the product of the accelera-
tion coefficient and the tributary area as discussed in Chapter
8 (Minimum Seismic Design Connection Forces).
Bridges in seismic zone 1 do not require a seismic analysis.

The minimum design connection force for these bridges is
the tributary dead load multiplied by the coefficient given in
Table 8.17.
Either a single-mode or a multimode spectral analysis is

required for bridges in the other seismic zones depending
on their geometry and importance classification. The single-
modemethod is based on the first or fundamental mode of vi-
bration and is applied to both the longitudinal and transverse
directions of the bridge. The multimodemethod includes the
effects of all modes equal in number to at least three times
the number of spans in the model [A4.7.4.3.3].
A time–history analysis is required for critical bridges in

seismic zones 3 and 4. This analysis involves a step-by-step
integration of the equations of motion for a bridge structure
when it is subjected to ground accelerations that vary with
time. Historical records of the variation in acceleration, ve-
locity, and displacement due to ground shaking are referred
to as time histories, hence the name for the analysis method.
Careful attention must be paid to the modeling of the struc-
ture and the selection of the time step used. If elastic material
properties are used, the R factors of Tables 8.15 and 8.16 ap-
ply to the substructures and connection forces, respectively.
If inelastic material properties are used, all of the R factors

are 1.0 because the inelastic analysis accounts for the en-
ergy dissipation and redistribution of seismic forces and no
further modification is needed. Oftentimes, when selecting
a time–history for a specific bridge site, a historical record
may not be available for the soil profile that is present.
In this case, artificial time–histories are generated that in-
clude the magnitude, frequency content, and duration of the
ground shaking anticipated at the bridge site. A time–history

analysis requires considerable skill and judgment, and an
analyst experienced in inelastic, dynamic, numerical analysis
should be consulted.

Elastic Seismic Response Spectrum Both of the spectral
methods of analysis require that a seismic response spec-
trum be given for the bridge site. The purpose of a response
spectrum analysis is to change a problem in dynamics into
an equivalent problem in statics. The key to this method of
analysis is to construct an appropriate response spectrum
for a particular soil profile. A response spectrum can be de-
fined as a graphical representation of the maximum response
of single-degree-of-freedom elastic systems to earthquake
ground motions versus the periods or frequencies of the sys-
tem (Imbsen, 1981). The response spectrum is actually a
summary of a whole series of time–history analysis.
A response spectrum is generated by completing the steps

illustrated in Figure 12.2. The single-degree-of-freedom
(SDOF) system is shown as an inverted pendulum oscillator
that could represent the lumped mass of a bridge superstruc-
ture supported on columns or piers. The undamped natural
period of vibration(s) of the SDOF system is given by

T = 2π

√
m

k
(12.1)

where
m = mass of the system = W/g
W = contributing dead load for the structure (kips)
g = acceleration of gravity = 386.4 in./s2

k = stiffness of structure supporting the mass
(kips/in.)

When damping is introduced into the system, it is usually
expressed as a ratio of critical damping given by

ξ = c

cc

(12.2)
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Fig. 12.2 (a) Time–history record of ground acceleration applied to a damped single-degree-of-freedom system. (b) Time–history record
of structure response and (c) maximum responses of single-degree-of-freedom systems.(from Imbsen, 1981).

where
c = coefficient of viscous damping
cc = critical damping coefficient, minimum amount of

damping required to prevent a structure from
oscillating = 4πm /T

It can be shown that the period of vibration of a damped
structure TD is related to the undamped period T by

TD = T
√
1 − ξ 2

(12.3)

where ξ is the ratio of actual damping to critical damping,
Eq. 12.2.
In an actual structure, damping due to internal friction

of the material and relative moment at connections seldom
exceeds 20% of critical damping. Substitution of this value
into Eq. 12.3 increases the undamped period of vibration
by only 2%. In practice, this difference is neglected and the

damped period of vibration is assumed to be equal to the
undamped period.
In Figure 12.2(a), a time–history record of ground accel-

eration is shown below three SDOF systems with identical
mass and damping, but with different structural stiffness to
give three different periods of vibration. The acceleration re-
sponse from an elastic step-by-step time–history analysis of
the second SDOF system is shown in Figure 12.2(b), and
the maximum response is indicated. This procedure is re-
peated for a large number of SDOF systems with different
stiffnesses until the maximum response is determined for a
whole spectrum of periods of vibration. A response spec-
trum for acceleration is plotted in Figure 12.2(c) and gives
a graphical representation of the variation of maximum re-
sponse with period of vibration. For design purposes, a curve
is drawn through the average of the maximum response to
give the elastic response spectrum shown by the smooth line
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in Figure 12.2(c). This response spectrum was developed for
a single earthquake under one set of soil conditions. When a
response spectrum is used for design purposes, it is usually
based on more than one earthquake and includes the effects
of different soil conditions.

Seismic Design Response Spectra It is well known that
local geologic and soil conditions influence the intensity of
ground shaking and the potential for damage during an earth-
quake. The 1985 earthquake in Mexico is an example of how
the soils overlying a rock formation can modify the rock mo-
tions dramatically. The epicenter of the earthquake was near
the west coast of Mexico, not far from Acapulco. However,
most of the damage was done some distance away inMexico
City. The difference in the ground shaking at the two sites
was directly attributable to their soil profile. Acapulco is
quite rocky with thin overlying soil, whileMexico City is sit-
ting on an old lake bed overlain with deep alluvial deposits.
When the earthquake struck, Acapulco took a few hard
shots of short duration that caused only moderate damage.
In contrast, the alluvial deposits under Mexico City shook
like a bowl of gelatin for some time and extensive damage
occurred. The response spectra characterizing these two sites
are obviously different, and these differences due to soil
conditions are recognized in the response spectra developed
for the seismic analysis of bridges.
To describe the characteristics of response spectra for

different soil profiles statistical studies of a number of accel-
erometer records have been conducted. These studies defined
soil profiles similar to those in Table 8.13 as a reasonable
way to differentiate the characteristics of surface response.
For each of the accelerometer records within a particular
soil profile, an elastic response spectrum was developed as
previously illustrated in Figure 12.2. An average response
spectrum was obtained from the individual response system
at different sites with the same soil profile but subjected to
different earthquakes. This procedure was repeated for the
four soil profiles that had been defined. The results of the
study by Seed et al. (1976), which included the analysis of
over 100 accelerometer records, are given in Figure 12.3.
The elastic response spectra in this figure were developed for
5% of critical damping, and the accelerations have been nor-
malized with respect to the maximum ground acceleration.
The shape of the average spectra in Figure 12.3 first as-

cends, levels off, and then decreases as the period of vibration
increases. As the soil profile becomes more flexible, the pe-
riod at which decay begins is delayed, so that at larger periods
the softer soils have larger accelerations than the stiffer soils.
These variations in acceleration with period and soil type are
expressed in AASHTO [A3.10.6] by an elastic seismic re-
sponse coefficient C sm defined as

Csm = 1.2AS

T
2/3
m

≤ 2.5A (12.4)

Fig. 12.3 Average acceleration spectra for different site condi-
tions. Normalized with respect to maximum ground acceleration.
(From Seed et al., 1976.)

where
Tm = period of vibration of m th mode (s)
A = acceleration coefficient from Figure 8.23
S = site coefficient from Table 8.14

The seismic response coefficient is a modified acceleration
coefficient that is multiplied times the effective weight of the
structure to obtain an equivalent lateral force to be applied to
the structure. Because C sm is based on an elastic response,
the member forces resisting the equivalent lateral force used
in design are divided by the appropriate R factors given in
Tables 8.15 and 8.16.
The shape of the seismic response spectra defined by Eq.

12.4 does not have an ascending branch but simply levels off
at 2.5A . This characteristic can be seen in Figure 12.4 in the
plot of C sm, normalized with respect to the acceleration co-
efficient A , for different soil profiles versus the period of vi-
bration. For soil profile types III and IV, the maximum value
of 2.5A is overly conservative, as can be seen in Figure 12.3,
so that in areas where A ≥ 0.10, C sm need not exceed 2.0A
(Fig. 12.4). Also, for soil profiles III and IV, for short periods
an ascending branch is defined as (for modes other than the
first mode) [A3.10.6.2]

Csm = A
(
0.8 + 4.0Tm

) ≤ 2.0A (12.5)

For intermediate periods, 0.3 s ≤ Tm ≤ 4.0 s, a characteris-
tic of earthquake response spectra is that the average velocity
spectrum for larger earthquakes of magnitudes 6.5 or greater
is approximately horizontal. This characteristic implies that
C sm should decrease as 1/Tm. However, because of the con-
cern for high ductility requirements in bridges with longer
periods, it was decided to reduce C sm at a slower rate of
1/T

2/3
m . For bridges with long periods (Tm > 4.0 s), the av-

erage displacement spectrum of large earthquakes becomes
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Fig. 12.4 Design response spectra for various soil profiles. Nor-
malized with respect to acceleration coefficient A . [AASHTO Fig.
C3.10.6.1-1]. (From AASHTO LRFD Bridge Design Specifica-
tions , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by
permission.)

horizontal. This implies that C sm should decay as 1/T 2
m and

Eq. 12.4 becomes [A3.10.6.2]

Csm = 3AS

T
4/3
m

Tm ≥ 4.0 s (12.6)

12.2 TEMPERATURE, SHRINKAGE,
AND PRESTRESS

12.2.1 General

The effects of temperature, shrinkage, and prestress are
treated in a similar manner. All of these create a state where
the structure is prestrained prior to the application of gravity
and/or lateral loads. The effects of these loads will likely not
exceed any strength limit state, but these loads can certainly
be of concern regarding serviceability. As discussed earlier
in this chapter, for ductile systems, prestrains and prestress
are eliminated when the ultimate limit states are reached (see
Section 10.2.2). Therefore, the combination of these is typ-
ically not of concern for the ultimate limit state. They may
be of concern regarding the determination of the load that
creates first yield, deformation of the structure for the design
of bearings and joints, and other service-level phenomena.
Because the stiffness-based methods are frequently used in

the analysis of bridge systems, the discussion of prestraining
is limited to these methods. The finite-element analysis of
the system subjected to prestrain is similar to the stiffness
method, andmost finite-element textbooks address this issue.
The force or flexibility method is a viable technique but is
seldom used in contemporary computer codes and, therefore,
is not addressed.
The general procedure for the analysis of frame elements

subjected to prestraining effect is illustrated in Figure 12.5.

Fig. 12.5 (a) Girder subjected to prestrain, (b) restrained system
subjected to prestrain, and (c) equivalent joint loads.

The structure subjected to the effects of temperature and
prestressing forces is shown in Figure 12.5(a). Each element
in the system may be separated from the structure as illus-
trated in Figure 12.5(b). Here the joints are locked against
rotation and translationwith restraining actions located at the
end of the element. The opposite (negative) of the restraining
actions are applied on the joint-loaded structure, and the
analysis proceeds in the same manner as with any other
joint-load effect.
The displacements from the joint-loaded system [Fig.

12.5(c)] are the displacements in the entire prestrained
system. However, the actions from the joint-loaded system
must be superposed with the actions from the restrained
system to achieve the actions in the entire system. Again,
the main difference between the analysis for effects of pre-
strain/prestress and the analysis for directly applied load is
the analysis of the restrained system. In the sections that fol-
low, the effects of prestressing forces and temperature effects
are discussed. The effects of shrinkage may be determined
similar to temperature effects and is not explicitly included.

12.2.2 Prestressing

The element loads for various tendon paths are tabulated and
available to aid in determining equivalent element loads that
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are subsequently used in establishing the restraining actions.
The equivalent element loads for several commonly used ten-
don configurations are illustrated and are found in textbooks
on advanced analysis; for example, see Ghali et al. (2010).
These loads may be applied just as one would apply any
other loads.

12.2.3 Temperature Effects

Most bridges experience daily and seasonal temperature
variations causingmaterial to shortenwith decreased temper-
atures and lengthen with increased temperatures. It has been
observed that these temperature fluctuations can be sepa-
rated into two components: a uniform change and a gradient.
The uniform change is the effect due to the entire bridge
changing temperature by the same amount. The temperature
gradient is created when the top portion of the bridge gains
more heat due to direct radiation than the bottom. Because
the strains are proportional to the temperature change, a
nonuniform temperature strain is introduced. In this section,
the axial strain and curvature formulas are presented for the
effect of temperature. These formulas are given in discrete
form. The formulas may be implemented in stiffness and
flexibility formulations. An example is presented to illustrate
the usage of the formulas.

Aashto Temperature Specifications Uniform tempera-
ture increases and temperature gradients are outlined in
AASHTO [A3.12.2 and A3.12.3]. The uniform change
is prescribed is Table 8.21 and the temperature gradient
is defined in Table 8.27 and Figures 8.23 and 8.24. The
temperature change creates a strain of

ε = α (�T )

where α is the coefficient of thermal expansion and �T is
the temperature change.
This strain may be used to determine a change in length by

the familiar equation

�L = εL = α (�T ) L

where L is the length of the component, and the stress in a
constrained system of

σ = α (�T ) E

The response of a structure to the AASHTO multilinear
temperature gradient is more complex than its uniform
counterpart and can be divided into two effects: (1) gradient-
induced axial strain and (2) gradient-induced curvature. The
axial strain is described first.

Temperature-Gradient-Induced Axial Strain The axial
strain ε due to the temperature gradient is (Ghali et al., 2010)

ε = α

A

∫
T (y) dA (12.7)

where
α = coefficient of thermal expansion

T (y) = gradient temperature as shown in Figure 8.30
y = distance from the neutral axis

dA = differential cross-sectional area

The integration is over the entire cross section. If the coef-
ficient of thermal expansion is the same for all cross-section
materials, standard transformed section analysis may be used
to establish the cross-sectional properties. For practical pur-
poses, steel and concrete may be assumed to have the same
expansion coefficients.
By discretization of the cross section into elements, Eq.

12.7 simplifies this to a discrete summation. Consider the
single element shown in Figure 12.6. Although the element
shown is rectangular, the element shape is arbitrary. The ele-
ment’s elastic centroidal axis is located at a distance ȳi , and
y is the location of the differential area element dA . The area
of the element and second moment of area are denoted by Ai
and Ii, respectively. Note that yi = y − ȳi . The temperature
at location y is

T (y) = Tai +
�Ti

di

yi = Tai +
�Ti

di

(
y − ȳi

)
(12.8)

where T ai is the temperature at the element centroid, �Ti is
the temperature difference from the bottom of the element to
the top, and di is the depth of the element.
Substitution of Eq. 12.8 into Eq. 12.7 yields

ε = α

A

∑ ∫ [
Tai +

�Ti

di

(
y − ȳi

)]
dAi (12.9)

where the summation is over all elements in the cross section
and the integration is over the domain of the discrete element.
Integration of each term in Eq. 12.9 yields

ε = α

A

∑ [
Tai

∫
dAi + �Ti

di

∫
y dAi − �Ti ȳi

di

∫
dAi

]

(12.10)
Substitution of Ai = ∫

dAi and ȳiAi = ∫
y dAi in Eq. 12

yields

ε = α

A

∑ [
TaiAi + �Ti

di

ȳiAi − �Ti

di

ȳiAi

]
(12.11)

Fig. 12.6 Cross section with discrete element. Example cross
section.
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Note the second and third terms sum to zero, and Eq. 12.11
simplifies to

ε = α

A

∑
TaiAi (12.12)

Equation 12.12 is the discrete form of Eq. 12.7, which
is given in AASHTO [A4.6.6]. Note that only areas of the
cross section with gradient temperature contribute to the
summation.

Temperature-Gradient-Induced Curvature Temperature-
induced curvature is the second deformation that must be
considered. The curvature ψ due to the gradient temperature
is (Ghali et al., 2010)

ψ = α

I

∫
T (y) y dA (12.13)

where I is the second moment of area of the entire cross
section about the elastic centroidal axis.
Substitutionof Eq. 12.8 intoEq. 12.13 and expansion yield

ψ = α

I

∑ [
Tai

∫
yi dAi + �Ti

di

∫ (
y2 − ȳiy

)
dAi

]

(12.14)
where the summation is over all elements in the cross section
and the integration is over the domain of the discrete element.
Performing the required integration in Eq. 12 yields

ψ = α

I

∑ [
Tai ȳiAi + �Ti

di

Ii − �Ti

di

ȳ2
i Ai

]
(12.15)

The parallel axis theorem is used to relate the cross-section
properties in Eq. 12.15, that is,

Ii = Īi + ȳ2
i Ai (12.16)

which can be rearranged as

Īi = Ii − ȳ2
i Ai (12.17)

The combination of Eq. 12.17 with Eq. 12.15 yields

ψ = α

I

∑ [
TaiȳiAi + �Ti

di

Īi

]
(12.18)

which is the discrete form of the integral equation given in
Eq. 12.13 and in AASHTO [C4.6.6].

Using Strain and Curvature Formulas The axial strain
and curvature may be used in both flexibility and stiffness
formulations for frame elements. In the former, ε may be
used in place of P/AE , and ψ may be used in place of M/EI
in traditional displacement calculations. The flexibility
method requires the analysis of the released statically deter-
mine and stable system. The analysis of the released system
is conceptually straightforward, but this is not the case
for the multilinear temperature distribution. Although the
distribution does not create external reactions, it does create

internal self-equilibriating stresses. These stresses must be
superimposed with actions created from the redundants. The
complete details are presented elsewhere (Ghali et al., 2010).
In the stiffness method, the fixed-end actions for a pris-

matic frame element may be calculated as

N = EAε (12.19)

M = EIψ (12.20)
where N is the axial force (constant with respect to length),
M is the flexural bending moment (again constant), and E is
Young’s modulus.
These actionsmay be used to determine the equivalent joint

loads in the usual manner, and the resulting displacements
may be used to recover the actions in the joint-loaded sys-
tems. These actions must be superimposed with the actions
(usually stresses in this case) in the restrained (fixed) system.
The temperature-related stresses in the restrained system, not
the fixed-end actions in Eqs. 12.19 and 12.20, must be used
because the temperature gradient is not constant across the
section. This complication forces algorithmmodifications in
stiffness codes because the fixed-end actions do not superim-
pose directly with the actions of the joint-loaded structure in
the usual manner. The following example provides guidance
on this issue.

Example 12.1 The transformed composite cross section
shown in Figure 12.7(a) is subjected to the temperature

Fig. 12.7 (a) Temperature stress distribution and (b) simple span
girder.
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gradients associated with zone 1 (Table 8.22) for a plain
concrete surface. This temperature variation is also shown
in Figure 12.7(a). The dimensions of the cross section were
selected for ease of computation and illustration rather than
based on typical proportions. A modular ratio of 8 is used.
The cross section is used in the simple beam shown in
Figure 12.7(b).
The beam subjected to the temperature change has been

divided into two sections labeled 1 and 2 in Figure 12.7(a).
The cross sections and material properties are listed in

Table 12.2 with reference to the labeled sections. All other
areas of the cross section do not have a temperature gradient
and therefore are not included in the summations. These
section and material properties are used to calculate the axial
strain, curvature, fixed-end axial force, and flexural bending
moment.
By using Eqs. 12.12 and 12.19, the gradient-induced axial

strain and fixed-end axial force are

ε = (6.5 × 10−6/80)[34(40) + 7(40)] = 133× 10−6

N = 29, 000(80) (133 × 10−6) = 309 kips

Table 12.2 Cross-section Properties

Reference Reference Total
Properties Section 1 Section 2 Sectiona

Ai (in.
2) 40 40 80

ȳi (in.) 16 12 42
Īi (in.

4) 53.3 53.3 57,450
α 6.5 × 10–6 6.5 × 10–6 6.5 × 10–6

E (ksi) 29,000 (n = 8) 29,000 (n = 8) 29,000
Tai (

◦F) 34 7 N/A
�Ti (

◦F) 40 14 N/A

aNot applicable = N/A.

By using Eqs. 12.18 and 12.20, the curvature and fixed-end
flexural moments are calculated below.

ψ = (6.5 × 10−6/57, 450)[34(16)(40) + (40/4)(53.3)

+ 7(12)(40) + (14/4)(53.3)] = 2.9 × 10−6 in.−1

M = 29, 000(57, 450)(2.9 × 10−6) = 4853 in. kips

= 404.4 ft kips

Fig. 12.8 (a) Cross section, (b) restrained system, (c) unrestrained system (bending), (d) unrestrained system (axial), and (e) total stress.
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The restrained temperature stresses are determined by
σ = α(�T)E . The restrained stress in the top of the
section is

σ = 6.5 × 10−6 (54) (29 000) = 10.2 ksi

and the stress in the bottom is zero because �T is zero as
shown in Figure 12.8(b). Themoment is constant in the joint-
loaded system and the associated flexural stress distribution
is shown in Figure 12.8(c). The axial force in the unrestrained
(joint-loaded)system is also constant and the associated axial
stress is shown in Figure 12.8(d). Superimposing the stresses
in the restrained and joint-loadedsystems gives the stress dis-
tribution shown in Figure 12.8(e).
Note, the external support reactions are zero, but the inter-

nal stresses are not. The net internal force in each section is
zero, that is, there is no axial force nor flexural moment. The
equivalent joint loads shown at the top of Figure 12.8(c) are
used to calculate the displacements (0.00175 rad, −0.00175
rad, 0.087 in.) referenced in Figure 12.8(a).

Summary of Temperature Effects The AASHTO (2010)
LRFDBridgeDesign Specification requires that a prescribed
temperature gradient be used to model temperature effects in
girders. The prescribed multilinear gradients are used to de-
velop a method involving discrete summations that are used
to determine the axial strain and curvature. These formulas
may be implemented into stiffness and flexibility programs.
An example is used to illustrate the usage of the formulas pre-
sented. The temperature load case is used for the design of
joints and bearings. For strength considerations, the temper-
ature load cases are optional and are sometimes of concern
with deep box-girder systems.

12.2.4 Shrinkage and Creep

Concrete creep and shrinkageare difficult to separate as these
two effects occur simultaneously in the structural system.

The load effect may be estimated by an analysis similar to the
procedure previously described for temperature effects. The
temperature strain α(�T) may be replaced with a shrinkage
or creep strain. The strain profile is obviously different than
that produced by a temperature gradient, but the appropriate
strain profile may be used in a similar manner.

12.3 CLOSING REMARKS

The analysis and design for lateral loads typically requires
a system analysis. For some bridges, the lateral load effects
are relatively small, and most of the attention is on the sub-
structure. Such cases are demonstrated in several examples
provided in later chapters. In other cases, lateral loads dom-
inate the design considerations, e.g., bridges in high seismic
regions. Complete discussion of the analysis and design in
high seismic regionsmust be deferred to other references and
is beyond the scope of this book.
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CHAPTER 13

Reinforced Concrete Material
Response and Properties

13.1 INTRODUCTION

Concrete is a versatile building material. It can be shaped
to conform to almost any alignment and profile. Bridge su-
perstructures built of reinforced and prestressed concrete can
be unique one-of-a-kind structures formed and constructed
at the job site, or they can be look-alike precast girders and
box beams manufactured in a nearby plant. The raw mate-
rials of concrete—cement, fine aggregate, coarse aggregate,
and water—are found in most areas of the world. In many
countries without a well-developed steel industry, reinforced
concrete is naturally the preferred building material. How-
ever, even in North America with its highly developed steel
industry, bridges built of concrete are very competitive.
Concrete bridges can be designed to satisfy almost any ge-

ometric alignment from straight to curved to doubly curved
as long as the clear spans are not too large. Cast-in-place
(CIP) concrete box girders are especially suited to curved
alignment because of their superior torsional resistance and
the ability to keep the cross section constant as it follows
the curves. With the use of posttensioning, clear spans of
150 ft (45 m) are common. When the alignment is relatively
straight, precast prestressed girders can be utilized for mul-
tispan bridges, especially if continuity is developed for live
load. For relatively short spans, say less than 40 ft (12 m),
flat slab bridges are often economical. Cast-in-place girders
monolithicwith the deck slab (T-beams) can be used for clear
spans up to about 65 ft (20 m), longer if continuity exists.
Some designers do not like the underside appearance of the
multiple ribs, but if the bridge is over a small waterway rather
than a traveled roadway, there is less objection.
For smaller spans, CIP and precast culverts are a main-

stay.Approximately one-sixth (100,000) culverts with bridge
spans greater than 20 ft (6 m) are contained within the U.S.

bridge inventory. Culverts perform extremely well, exhibit
few service problems, and are economical because the foun-
dation requirements are minimal.
Cast-in-place concrete bridgesmay not be the first choice if

speed of construction is of primary importance.Also, if form-
work cannot be suitably supported, such as in a congested
urban setting where traffic must be maintained, the design of
special falsework to provide a construction platform may be
a disadvantage.
Longer span concrete bridges have been built using

match-cast and cable-supported segmental construction.
These structural systems require analysis and construction
techniques that are relatively sophisticated and are beyond
the scope of this book. In this chapter, short- to medium-span
bridges constructed of reinforced and prestressed concrete
are discussed.
After a review of the behavior of the materials in concrete

bridges in this chapter, the resistance of cross sections to
bending and shear is presented in Chapter 14. A relatively
detailed discussion of these two topics is given because
of the introduction in the AASHTO (1994) LRFD Bridge
Specification of a unified flexural theory for reinforced and
prestressed concrete beams and the modified compression
field theory for shear resistance. In the development of the
behavior models, the sign convention adopted for strains
and stresses is that tensile values are positive and compres-
sive values are negative. This sign convention results in
stress–strain curves for concrete that are drawn primarily in
the third quadrant instead of the familiar first quadrant.
It is not necessary to go through each detailed step of the

material response discussion. The information is given so
that a reader can trace the development of the provisions in
the specification. In the chapters that follow, a number of
example problems are given to illustrate the application of the
resistance equations that are derived. A concrete bridge deck
with a barrier wall is designed followed by design examples
of a solid slab, a T-beam, and a prestressed beam bridge.

13.2 REINFORCED AND PRESTRESSED
CONCRETEMATERIAL RESPONSE

To predict the response of a structural element subjected to
applied forces, three basic relationshipsmust be established:
(1) equilibrium of forces, (2) compatibility of strains, and
(3) constitutive laws representing the stress–strain behavior
of the materials in the element. For a two-dimensional (2D)
element without torsion that is subjected to bending by trans-
versely applied forces, there are three equilibrium equations
between the applied external forces and the three internal
resisting forces: moment, shear, and axial load. When the
external forces are applied, the cross section deforms and
internal longitudinal, transverse, and shear strains are devel-
oped. These internal strains must be compatible. Longitudi-
nal strains throughout the depth of a section are related to one
another through the familiar assumption that plane sections
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Fig. 13.1 Interrelationship between equilibrium, material behav-
ior, and compatibility.

before bending remain plane sections after bending. The lon-
gitudinal strains are related to the transverse, shear, and prin-
cipal strains through the relationships described in Mohr’s
circle of strain. The stress–strain relationships provide the
key link between the internal forces (which are integrations
over an area of the stresses) and the deformations of the cross
section. These interrelationships are shown schematically in
Figure 13.1 and are described in more specific terms in the
sections that follow.
On the left of Figure 13.1 is a simple model used in psy-

chology to illustrate that the manner in which individuals
or groups respond to certain stimuli depends on their psy-
chological makeup. In individuals, we often speak of one’s
constitution; in groups, the response depends on the con-
stituents; in concrete, it depends on constitutive laws. The
analogy to concrete elements may be imperfect, but the point
is that knowledge of the behavior of the material is essential
to predicting the concrete response of the element to external
loads.
Another point in regard to the relationships in Figure 13.1

is that they involve both deductive and inductive reasoning.
The equilibrium and compatibility equations are deductive
in that they are based on general principles of physics and
mechanics that are applied to specific cases. If the equations
are properly written, then they lead to a set of unique correct
answers. On the other hand, the constitutive equations are in-
ductive as they are based on specific observations fromwhich
expressions are written to represent general behavior. If the
trends exhibited by the data are not correctly interpreted or
an important parameter is overlooked, the predicted response
cannot be verified by experimental tests. As more experimen-
tal data become available, the constitutive equations change
and the predicted response improves. The AASHTO (2010)

Bridge Specification incorporates the current state of prac-
tice regarding material response; however, one should expect
that changes may occur in the constitutive equations in the
future as additional test data and/or new materials become
available.

13.3 CONSTITUENTS OF FRESH CONCRETE

Concrete is a conglomerate artificial stone. It is a mixture of
large and small particles held together by a cement paste that
hardens and will take the shape of the formwork in which it
is placed. The proportions of the coarse and fine aggregate,
Portland cement, andwater in themixture influence the prop-
erties of the hardened concrete. The design of concrete mixes
to meet specific requirements can be found in concrete mate-
rials textbooks (Troxell et al., 1968). In most cases a bridge
engineer will select a particular class of concrete from a se-
ries of predesigned mixes, usually on the basis of the desired
28-day compressive strength, f

′
c . A typical specification for

different classes of concrete is shown in Table 13.1.

� Class A concrete is generally used for all elements of
structures, except when another class is more appropri-
ate, and specifically for concrete exposed to salt water.

� Class B concrete is used in footings, pedestals, massive
pier shafts, and gravity walls.

� Class C concrete is used in thin sections, such as rein-
forced railings less than 4 in. (100 mm) thick and for
filler in steel grid floors and the like.

� Class P concrete is used when strengths in excess of
4.0 ksi (28MPa) are required. For prestressed concrete,
consideration should be given to limiting the nominal
aggregate size to 0.75 in. (20 mm).

� Class P (HPC), or high performance concrete, is used
when strengths in excess of 10.0 ksi (70 MPa) are
required.

� Class S concrete is used for concrete deposited under-
water in cofferdams to seal out water.

A few brief comments on the parameters in Table 13.1 and
their influence on the qualityof concrete selected are in order.
Air-entrained (AE) concrete improves durability when sub-
jected to freeze–thaw cycles and exposure to deicing salts.
This improvement is accomplished by adding a detergent or
vinsol resin to the mixture, which produces an even distribu-
tion of finely divided air bubbles. This even distribution of
pores in the concrete prevents large air voids from forming
and breaks down the capillary pathways from the surface to
the reinforcement.
The water–cement ratio (W/C) byweight is the singlemost

important strength parameter in concrete. The lower theW/C
ratio, the greater is the strength of themixture. Obviously, in-
creasing the cement content increases the strength for a given
amount of water in the mixture. For each class of concrete, a
minimumamount of cement in poundsper cubic yard (pcy) is
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Table 13.1 Concrete Mix Characteristics by Class

Class of
Concrete

Minimum
Cement

Content, pcy
(kg/m3)

Maximum
Water/Cement
Ratio, lb/lb
(kg/kg)

Air Content
Range (%)

Coarse Aggregate per
AASHTO M43 (ASTM D 448)
Square Size of Openings, in.

(mm)

28-Day
Compressive
Strength, ksi

(MPa)

A 611 (362) 0.49 — 1.0 to No. 4 (25–4.75) 4.0 (28)
A(AE) 611 (362) 0.45 6.0 ± 1.5 1.0 to No. 4 (25–4.75) 4.0 (28)
B 517 (307) 0.58 — 2.0 to No. 3 and No. 3 2.4 (17)

to No. 4 (50–25)
B(AE) 517 (307) 0.55 5.0 ± 1.5 2.0 to No. 3 and No. 3 2.4 (17)

to No. 4 (25–4.75)
C 658 (390) 0.49 — 0.5 to No. 4 (12.5–4.75) 4.0 (28)
C(AE) 658 (390) 0.45 7.0 ± 1.5 0.5 to No. 4 (12.5–4.75) 4.0 (28)
P 564 (334) 0.49 As specified 1.0 to No. 4 or 0.75 to No. 4 As specified
P(HPC) elsewhere (25–4.75 or 19–4.75) elsewhere
S 658 (390) 0.58 — 1.0 to No. 4 (25–4.75) —

Lightweight 564 (334) As specified
in the contract
in the contract documents

AASHTO Table C5.4.2.1-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission.

specified. By increasing the cement above these minimums,
it is possible to increase the water content and still obtain the
same W/C ratio. This increase of water content may not be
desirable because excess water, which is not needed for the
chemical reactionwith the cement and for wetting the surface
of the aggregate, eventually evaporates and causes excessive
shrinkage and less durable concrete. As a result, AASHTO
[A5.4.2.1]* places an upper limit on the denominator of the
W/C ratio to limit the water content of the mixture. The sum
of Portland cement and other cementitiousmaterials shall not
exceed 800 pcy, except for class P (HPC) concrete where
the sum of Portland cement and other cementitious materials
shall not exceed 1000 pcy.
To obtain quality concrete that is durable and strong, it

is necessary to limit the water content, which may produce
problems in workability and placement of the mixture in the
forms. To increase workability of the concrete mix without
increasing the water content, chemical additives have been
developed. These admixtures are called high-range water
reducers (superplasticizers) and are effective in improving
both wet and hardened concrete properties. They must be
used with care, and the manufacturer’s directions must be
followed to avoid unwanted side effects such as accelerated
setting times. Laboratory testing should be performed to
establish both the wet and hardened concrete properties
using aggregates representative of the construction mix.

*The article number in the AASHTO (2010) LRFD Bridge Specifica-
tions are enclosed in brackets and preceded by the letter A if specifications
and by the letter C if commentary.

In recent years, very high strength concretes with com-
pressive strengths approaching 30 ksi (200 MPa) have been
developed in laboratory samples. The key to obtaining these
high strengths is the same as for obtaining durable concrete
and that is having an optimum graded mixture so that all
of the gaps between particles are filled with extremely fine
material until in the limit no voids exist. In the past, atten-
tion has been given to providing a well-graded mixture of
coarse and fine aggregate so that the spaces between themax-
imum aggregate size would be filled with smaller particles
of gravel or crushed stone, which in turn would have their
spaces filled with fine aggregate or sand. Filling the spaces
between the fine aggregate would be the powderlike Port-
land cement particles that, when reacted with water, bonded
the whole conglomerate together. In very high strength con-
cretes, a finer cementitious material is introduced to fill the
gaps between the Portland cement particles. These finely di-
vided mineral particles are typically pozzolans, fly ash, or
silica fume. They can replace some of the Portland cement in
satisfying the minimum cement content and must be added
to the weight of the Portland cement in the denominator of
the W/C ratio.

High-Performance Concrete With 28-day compressive
strengths above 10 ksi (70 MPa), high-performance con-
cretes are gaining a presence within bridge superstructures
and providing span options not previously available to con-
crete. To fully utilize high-performance concretes, research
is required so that the provisions of future AASHTO LRFD
Specifications can be extended to concrete compressive
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strengths greater than 10 ksi. To meet that need, the National
Cooperative Highway Research Program (NCHRP) has
sponsored three projects to conduct research and to develop
recommendations for revisions to the AASHTO LRFD
Specifications. These projects are reported in Hawkins and
Kuchma (2007) Ramirez and Russell (2008), and Rizkalla
et al. (2007) and are briefly described below.
The objective of Project 12–56 (Hawkins and Kuchma,

2007) was to extend the shear design provisions to concrete
compressive strengths greater than 10 ksi (70MPa). Specific
topics include the contribution of high-strength concrete to
shear resistance, maximum and minimum transverse rein-
forcement limits, and bond issues related to shear.
The objective of Project 12–60 (Ramirez Russell, 2008)

was to develop revisions to the specifications for normal-
weight concrete having compressive strengths up to 18 ksi
(125 MPa) that relate to:

� Transfer and development length of prestressing
strands with diameters up to 0.62 in. (16 mm)

� Development and splice length in tension and compres-
sion of individual bars, bundled bars, and welded-wire
reinforcement, and development length of standard
hooks

The objective of Project 12–64 (Rizkalla et al., 2007) was
to develop revisions to the specifications to extend flexural
and compressive design provisions for reinforced and pre-
stressed concrete members to concrete strengths up to 18
ksi (125 MPa). Much of this work has been included in the
AASHTO LRFD Specifications (2010) that allow broader
use of high-performance concrete.

13.4 PROPERTIES OF HARDENED CONCRETE

The 28-day compressive strength f
′
c is the primary parame-

ter, which affects a number of the properties of hardened con-
crete such as tensile strength, shear strength, and modulus of
elasticity. A standard 6.0-in. diameter × 12.0-in. high (150-
mm × 300-mm) cylinder is placed in a testing machine and
loaded to a compressive failure to determine the value of f

′
c .

Note that this test is an unconfined compression test. When
concrete is placed in a column or beam with lateral or trans-
verse reinforcement, the concrete is in a state of triaxial or
confined stress. The confined concrete stress state increases
the peak compressive stress and themaximum strain over that
of the unconfined concrete. It is necessary to include this in-
crease in energy absorptionor toughnesswhen examining the
resistance of reinforced concrete cross sections.

13.4.1 Short-Term Properties of Concrete

Concrete properties determined from a testing program rep-
resent short-term response to loads because these tests are
usually completed in amatter ofminutes, in contrast to a time

period of months or even years over which load is applied to
concrete when it is placed in a structure. These short-term
properties are useful in assessing the quality of concrete and
the response to short-term loads such as vehicle live loads.
However, these properties must be modified when they are
used to predict the response due to sustained dead loads such
as self-weight of girders, deck slabs, and barrier rails.

Concrete Compressive Strength and Behavior In
AASHTO [A5.4.2.1] a minimum 28-day compressive
strength of 2.4 ksi (16 MPa) for all structural applications is
recommended and a maximum compressive strength of 10.0
ksi (70 MPa) unless additional laboratory testing is con-
ducted. Bridge decks should have a minimum compressive
strength of 4.0 ksi (28 MPa) to provide adequate durability.
When describing the behavior of concrete in compression,

a distinction has to be made between three possible stress
states: uniaxial, biaxial, and triaxial. Illustrations of these
three stress states are given in Figure 13.2. The uniaxial
stress state of Figure 13.2(a) is typical of the unconfined
standard cylinder test used to determine the 28-day com-
pressive strength of concrete. The biaxial stress state of
Figure 13.2(b) occurs in the reinforced webs of beams
subjected to shear, bending, and axial load. The triaxial state
of stress of Figure 13.2(c) illustrates the core of an axially
load column that is confined by lateral ties or spirals.
The behavior of concrete in uniaxial compression

[Fig. 13.2(a)] can be described by defining a relation-
ship between normal stress and strain. A simple relationship
for concrete strengths less than 6.0 ksi (40 MPa) is modeled
with a parabola as

fc = f
′
c

[
2

(
εc

ε
′
c

)
−

(
εc

ε
′
c

)2
]

(13.1)

where fc is the compressive stress corresponding to the com-
pressive strain εc, f

′
c is the peak stress from a cylinder test,

Fig. 13.2 Compressive stress states for concrete: (a) uniaxial,
(b) biaxial, and (c) triaxial.



PROPERTIES OF HARDENED CONCRETE 233

Fig. 13.3 Typical parabolic stress–strain curve for unconfined
concrete in uniaxial compression.

and ε
′
c is the strain corresponding to f

′
c . This relationship

is shown graphically in Figure 13.3. The sign convention
adopted is that compressive stresses and compressive strains
are negative values.
The modulus of elasticity given for concrete in AASHTO

[A5.4.2.4] is an estimate of the slope of a line from the origin
drawn through a point on the stress–strain curve at 0.4 f

′
c .

This secant modulus Ec (ksi) is shown in Figure 13.3 and is
given by the expression

Ec = 33, 000K1w
1.5
c

√
f

′
c (13.2)

where K 1 is a correction factor for source of aggregate to
be taken as 1.0 unless determined otherwise by a physical
test, wc is the unit weight of concrete in kips per cubic foot
(kcf), and f

′
c is the absolute value of the specified compres-

sive strength of concrete in kips per square inch (ksi). For
K 1 = 1.0, wc = 0.145 kcf and f

′
c = 4.0 ksi:

Ec = 33, 000 (1.0) (0.145)1.5
√

f
′
c

= 1820
√

f
′
c = 1820

√
4.0

= 3640 ksi

When the concrete is in a state of biaxial stress, the
strains in one direction affect the behavior in the other.
For example, the ordinates of the stress–strain curve for
principal compression f 2 in the web of a reinforced concrete
beam [Fig. 13.2(b)] are reduced when the perpendicular
principal stress f 1 is in tension. Vecchio and Collins (1986)
quantified this phenomenon and the result is a modification
of Eq. 13.1 as follows:

f2 = f2max

[
2

(
ε2

ε
′
c

)
−

(
ε2

ε
′
c

)2
]

(13.3)

Fig. 13.4 Comparison of uniaxial and biaxial stress–strain curves
for unconfined concrete in compression.

where f 2 is the principal compressive stress corresponding
to ε2 and f 2 max is a reduced peak stress given by

f2 max = f
′
c

0.8 + 170ε1
≤ f

′
c (13.4)

where ε1 is the average principal tensile strain of the cracked
concrete. These relationships are illustrated in Figure 13.4.
Hsu (1993) refers to this phenomenon as compression
softening and presents mathematical expressions that are
slightlydifferent than Eqs. 13.3 and 13.4 because he includes
both stress and strain softening (or reduction in peak values).
When cracking becomes severe, the average strain ε1 across
the cracks can become quite large and, in the limit, causes
the principal compressive stress f 2 to go to zero. A value of
ε1 = 0.004 results in a one-third reduction in f 2.
When the concrete within a beam or column is confined in

a triaxial state of stress by lateral ties or spirals [Fig. 13.2(c)],
the out-of-plane restraint provided by the reinforcement in-
creases the peak stress and peak strain above the unconfined
values. For confined concrete in compression, the limiting
ultimate strain is dramatically increased beyond the 0.003
value often used for unconfined concrete. This increased
strain on the descending branch of the stress–strain curve
adds ductility and toughness to the element and provides a
mechanism for dissipating energy without failure. As a result
the confinement of concrete within closely spaced lateral
ties or spirals is essential for elements located in seismic
regions in order to absorb energy and allow the deformation
necessary to reduce the earthquake loads.

Confined Concrete Compressive Strength and Behavior
Figure 13.5 shows a comparison of typical stress–strain
curves for confined and unconfined concrete in compression
for an axially loaded column. The unconfined concrete
is representative of the concrete in the shell outside of
the lateral reinforcement, which is lost due to spalling at
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ecu ecc eco

f ′co

f ′cc

Fig. 13.5 Comparison of unconfined and confined concrete
stress–strain curves in compression.

relatively low compressive strains. The confined concrete
exhibits a higher peak stress f

′
cc and a larger corresponding

strain εcc than the unconfined concrete strength f
′
co and its

corresponding strain εco.
One of the earliest studies to quantify the effect of lateral

confinement was byRichart et al. (1928) in which hydrostatic
fluid pressure was used to simulate the lateral confining pres-
sure fr. The model used to represent the strength of confined
concrete was similar to the Coulomb shear failure criterion
used for rock (and other geomaterials):

f
′
cc = f

′
co + k1fr (13.5)

where f
′
cc is the peak confined concrete stress, f

′
co is the

unconfined concrete strength, fr is the lateral confining pres-
sure, and k 1 is a coefficient that depends on the concrete mix
and the lateral pressure. From these tests, Richart et al. (1928)
determined that the average value of k 1 = 4. Setunge et al.
(1993) propose that a simple lower bound value of k 1 = 3 be
used for confined concrete of any strength below 15 ksi (120
MPa).
Richart et al. (1928) also suggested a simple relationship

for the strain εcc corresponding to f
′
cc as

εcc = εco

(
1+ k2

fr

f
′
co

)
(13.6)

where εco is the strain corresponding to f
′
co and k 2 = 5k 1.

Also, f
′
co is commonly taken equal to 0.85f

′
c to account for

the lower strength of the concrete placed in a column com-
pared to that in the control cylinder.
The lateral confining pressure fr in Eqs. 13.5 and 13.6,

produced indirectly by lateral reinforcement, needs to be
determined. Mander et al. (1988), following an approach
similar to Sheikh and Uzumeri (1980), derive expressions
for the effective lateral confining pressure f

′
r for both cir-

cular hoop and rectangular hoop reinforcement. Variables
considered are the spacing, area, and yield stress of the
hoops; the dimensions of the confined concrete core, and

the distribution of the longitudinal reinforcement around
the core perimeter. It is convenient to use f

′
cc on the area

of the concrete core A cc enclosed within centerlines of the
perimeter hoops. However, not all of this area is effectively
confined concrete, and fr must be adjusted by a confine-
ment effectiveness coefficient ke to give an effective lateral
confining pressure of

f
′
r = kefr (13.7)

in which
ke = Ae

Acc
(13.8)

where Ae is the area of effectively confined concrete,

Acc = Ac − Ast = Ac

(
1 − ρcc

)
(13.9)

where Ac is the area of the core enclosed by the centerlines
of the perimeter hoops or ties, A st is the total area of the lon-
gitudinal reinforcement, and

ρcc = Ast

Ac

(13.10)

Example 13.1 Determine the confinement effectiveness
coefficient ke for a circular column with spiral reinforcement
of diameter ds between bar centers if the arch action between
spirals with a clear vertical spacing of s ′ has an amplitude of
s ′/4 (see Fig. 13.6). Midway between the sprials, Ac is the
smallest with a diameter of ds – s′/4, that is,

Ae = π

4

(
ds − s

′

4

)2

= π

4
d2

s

(
1 − s

′

4ds

)2

= π

4
d2

s

⎡

⎣1 − s
′

2ds

+
(

s
′

4ds

)2
⎤

⎦

Neglecting the higher order term, which is much less than
one, yields

Ae ≈ π

4
d2

s

(
1 − s

′

2ds

)

and with Ac = πd2
s /4; Eqs. 13.8 and 13.9 yield

ke =
1 −

(
s

′
/2ds

)

1 − ρcc
≤ 1.0 (13.11)

(Note that the definition of ds for this model is different than
the outside diameter of the core dc often used in selecting
spiral reinforcement.)
The half-section of depth s is shown in Figure 13.7, which

is confined by a spiral with hoop tension at yield exerting a
uniform lateral pressure fr (tension shown is positive) on the
concrete core, the equilibrium of forces requires

2Aspfyh + frsds = 0 (13.12)
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Fig. 13.6 Effectively confined core for circular spirals. [Reproduced from J. B. Mander, M. J. N. Mander and R. Park (1988). Theoretical
Stress–Strain Model for Confined Concrete, Journal of Structural Engineering , ASCE, 14(8), pp. 1804–1826. With permission.]

Aspfyh Aspfyh

Fig. 13.7 Half-body diagrams at interface between spiral and con-
crete core.

where A sp is the area of the spiral, f yh is the yield strength of
the spiral, and s is the center-to-center spacing of the spiral.
Solve Eq. 13.12 for the lateral confining pressure

fr = −2Aspfyh

sds

= −1

2
ρsfyh (13.13)

where ρs is the ratio of the volume of transverse confining
steel to the volume of confined concrete core, that is,

ρs = Aspπds

(π/4) sd2
s

= 4Asp

sds

(13.14)

Mander et al. (1988) give expressions similar to Eqs.
13.11, 13.13, and 13.14 for circular hoops and rectangular
ties.

Example 13.2 Determine the peak confined concrete
stress f

′
cc and corresponding strain εcc for a 20-in.-diameter

column with 10 No. 9 longitudinal bars and No. 3 round
spirals at 2-in. pitch (Fig. 13.5). The material strengths are
f

′
c = −4.0 ksi and f yh = 60 ksi. Assume that εco = −0.002

and that the concrete cover is 1.5 in. Use the lower bound
value of k 1 = 3 and the corresponding value of k 2 = 15.

s = 2 in., s
′ = 2 − 0.375 = 1.625 in.

ds = 20 − 2 (1.5) − 2
(1
2

)
(0.375) = 16.63 in.

Ac = π

4

(
ds

)2 = π

4
(16.63)2 = 217.1 in.2

ρcc = Ast

Ac

= 10 (1.0)

217.1
= 0.0461

ρs = 4Asp

sds

= 4 (0.11)

2 (16.63)
= 0.0132

ke =
1 − s

′
2ds

1 − ρcc
=

1 − 1.625
2(16.63)

1− 0.0461
= 0.997

f
′
r = − 1

2 keρsfyh = − 1
2 (0.997) (0.0132) (60)

= −0.395 ksi = 0.395 ksi compression

f
′
cc = f

′
co + k1f

′
r = 0.85 (−4) + 3 (−0.395)

= −4.59 ksi = 4.59 ksi compression

εcc = εco

(
1 + k2

f
′
r

f
′
co

)
= −0.002

[
1 + 15

(−0.395

−3.40

)]

= −0.0055 = 0.0055 shortening

Again, note that the negative signs indicate compression.

Over the years, researchers developed stress–strain rela-
tionships for the response of confined concrete in compres-
sion that best fits their experimental data. Sheikh (1982) pre-
sented a comparison of seven models used by investigators
in different research laboratories. All but one of these mod-
els use different equations for the ascending and descending
branches of the stress–strain curve. The model considered
to best fit the experimental data was one he and a colleague
developed earlier (Sheikh and Uzumeri, 1980).
The stress–strain model proposed by Mander et al. (1988)

for monotonic compression loading up to first hoop frac-
ture is a single equation relating the longitudinalcompressive



236 13 REINFORCED CONCRETE MATERIAL RESPONSE AND PROPERTIES

stress fc as a function of the corresponding longitudinal com-
pressive strain εc:

fc (x) = f
′
ccrx

r − 1 + xr
(13.15)

where
x = εc

εcc
(13.16)

r = Ec

Ec − Esec
(13.17)

and the secant modulus of confined concrete at peak stress is

Esec = f
′
cc

εcc
(13.18)

This curve continues until the confined concrete strain
reaches an εcu value large enough to cause the first hoop or
spiral to fracture. Based on an energy balance approach and
test results, Mander et al. (1988) present an integral equation
that can be solved numerically for εcu.

Example 13.3 Determine the parameters and plot
the stress–strain curves for the confined and uncon-
fined concrete of the column section in Example 13.2
(Fig. 13.5). Assume concrete strain at the first hoop fracture
εcu = 8εcc = 8 (−0.0055) = −0.044.

Ec = 1820
√

f
′
c = 1820

√
4 = 3640 ksi

Esec = f
′
cc

εcc
= −4.59

−0.0055
= 835 ksi

r = Ec

Ec − Esec
= 3640

3640− 835
= 1.30

fc

(
εc

) = 1.30f
′
cc

(
εc/εcc

)

0.30 + (
εc/εcc

)1.30 0 ≤ εc ≤ 8εcc

This last expression for fc is Eq. 13.15 and has been used
to plot the curve shown in Figure 13.5.

From the above discussion, it is apparent that the behav-
ior of concrete in compression is different when it has re-
inforcement within and around the concrete than when it is
unreinforced . A corollary to this concrete behavior is that the
response in tension of reinforcement embedded in concrete is
different than the response of bare steel alone . The behavior
of the tension reinforcement is discussed later after a brief
discussion about the tensile behavior of concrete.

Concrete Tensile Strength and Behavior Concrete tensile
strength can be measured either directly or indirectly. A di-
rect tensile test [Fig. 13.8(a)] is preferred for determining the
cracking strength of concrete but requires special equipment.
Consequently, indirect tests, such as the modulus of rupture
test and the split cylinder test, are often used. These tests are
illustrated in Figure 13.8.
The modulus of rupture test [Fig. 13.8(b)] measures the

tensile strength of concrete in flexure with a plain concrete

fcr
Pcr

Mcrc
Pcra

2Pcr /L

Pcr

fsp

Fig. 13.8 Direct and indirect concrete tensile tests. (a) Direct tension test, (b) modulus of rupture test, and (c) split cylinder test.
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beam loaded as shown. The tensile stress through the depth
of the section is nonuniform and is maximum at the bottom
fibers. A flexural tensile stress is calculated from elementary
beam theory for the load that cracks (and fails) the beam.
This flexural tensile stress is called the modulus of rupture
fr. For normal weight concrete, AASHTO [A5.4.2.6] gives a
lower bound value for fr (ksi) when considering service load
cracking:

fr = 0.24
√

f
′
c (13.19a)

and an upper bound value when considering minimum
reinforcement

fr = 0.37
√

f
′
c (13.19b)

where f
′
c is the absolute value of the cylinder compressive

strength of concrete (ksi).
In the split cylinder test [Fig. 13.8(c)], a standard cylinder

is laid on its side and loaded with a uniformly distributed
line load. Nearly uniform tensile stresses are developed per-
pendicular to the compressive stresses produced by opposing
line loads. When the tensile stresses reach their maximum
strength, the cylinder splits in two along the loaded diame-
ter. A theory of elasticity solution (Timoshenko and Goodier,
1951) gives the splitting tensile stress f sp as

fsp = 2Pcr/L

πD
(13.20)

where P cr is the total load that splits the cylinder, L is the
length of the cylinder, and D is the diameter of the cylinder.
Both the modulus of rupture (fr) and the splitting stress

(f sp) overestimate the tensile cracking stress (f cr) deter-
mined by a direct tension test [Fig. 13.8(a)]. If they are
used, nonconservative evaluations of resistance to restrained
shrinkage and splitting in anchorage zones can result. In
these and other cases of direct tension, a more representative
value must be used. For normal weight concrete, Collins and
Mitchell (1991) and Hsu (1993) estimate the direct cracking
strength of concrete, f cr, as

fcr = 4 (0.0316)
√

f
′
c

= 0.13
√

f
′
c (13.21)

where f
′
c is the cylinder compressive strength (ksi). Note

1/
√
1000 = 0.0316 is a unit conversion constant to place f

′
c

in ksi rather than the more traditional psi units.
The direct tension stress–strain curve (Fig. 13.9) is as-

sumed to be linear up to the cracking stress f cr at the
same slope given by Ec in Eq. 13.2. After cracking and if
reinforcement is present, the tensile stress decreases but
does not go to zero. Aggregate interlock still exists and is
able to transfer tension across the crack. The direct tension
experiments by Gopalaratnam and Shah (1985), using a stiff
testing machine, demonstrate this behavior. This response is
important when predicting the tensile stress in longitudinal

fcr

fcr

fcr

Fig. 13.9 Average stress versus average strain for concrete in ten-
sion. [From Collins and Mitchell (1991). Reprinted by permission
of Prentice Hall, Upper Saddle River, NJ.]

reinforcement and the shear resistance of reinforced con-
crete beams. Collins and Mitchell (1991) give the following
expressions for the direct tension stress–strain curve shown
in Figure 13.9:

Ascending Branch
(
ε1 ≤ εcr = fcr/Ec

)

f1 = Ecε1 (13.22)

where ε1 is the average principal tensile strain in the concrete
and f 1 is the average principal tensile stress.

Descending Branch
(
ε1 > εcr

)

f1 = α1α2fcr

1 + √
500 ε1

(13.23)

where α1 is a factor accounting for bond characteristics of
reinforcement:

α1 = 1.0 for deformed reinforcing bars
α1 = 0.7 for plain bars, wires, or bonded strands
α1 = 0 for unbonded reinforcement

and α2 is a factor accounting for sustained or repeated
loading:

α2 = 1.0 for short-term monotonic loading
α2 = 0.7 for sustained and/or repeated loads

If no reinforcement is present, there is no descending
branch and the concrete tensile stress after cracking is
zero. However, if the concrete is bonded to reinforcement,
concrete tensile stresses do exist. Once again it is apparent
that the behavior of concrete with reinforcement is different
than that of plain concrete .
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13.4.2 Long-Term Properties of Concrete

At times it appears that concrete is more alive than it is dead.
If compressive loads are applied to concrete for a long pe-
riod of time, concrete creeps to get away from them. Con-
crete generally gains strength with age unless a deterioration
mechanism, such as that caused by the intrusion of the chlo-
ride ion occurs. Concrete typically shrinks and cracks. But
even this behavior can be reversed by immersing the concrete
in water and refilling the voids and closing the cracks. It ap-
pears that concrete never completely dries and there is always
some gelatinous material that has not hardened and provides
resiliency between the particles. These time-dependent prop-
erties of concrete are influenced by the conditions at time of
placement and the environment that surrounds it throughout
its service life. Prediction of the exact effect of all of the con-
ditions is difficult, but estimates can be made of the trends
and changes in behavior.

Compressive Strength of Aged Concrete If a concrete
bridge has been in service for a number of years and a
strength evaluation is required, the compressive strength of a
core sample is a good indication of the quality and durability
of the concrete in the bridge. The compressive strength can
be determined by nondestructive methods by first estimating
the modulus of elasticity and then back-calculating to find
the compressive strength. Another device measures the
rebound of a steel ball that has been calibrated against the
rebound on concrete of known compressive strength.
In general, the trend is that the compressive strength of con-

crete increases with age. However, to determine the magni-
tude of the increase, field investigations are extremely useful.

Shrinkage of Concrete [A5.4.2.3.3] Shrinkage of concrete
is a decrease in volume under constant temperature due to
loss of moisture after concrete has hardened. This time-
dependent volumetric change depends on the water content
of the fresh concrete, the type of cement and aggregate used,
the ambient conditions (temperature, humidity, and wind
velocity) at the time of placement, the curing procedure, the
amount of reinforcement, and the volume/surface area ratio.
In AASHTO [A5.4.2.3.3], an empirical equation based on
parametric studies by Tadros et al. (2003) is presented to
evaluate the shrinkage strain εsh based on the drying time,
the relative humidity, the concrete compressive strength, and
the volume/surface area ratio:

εsh = −kvskhskf ktd0.48 × 10−3 (13.24)

in which
kvs = 1.45 − 0.13

(
V

S

)
≥ 1.0

khs = 2.00 − 0.014H

kf = 5

1 + f
′
ci

ktd = t

61 − 4f
′
ci + t

Where
H = relative humidity (%). If humidity at the site is

unknown, an annual average value of H
depending on the geographic location may be
taken from Figure 13.10 [Fig. A5.4.2.3.3-1]

k vs = factor for the effect of the volume-to-surface
ratio of the component

k hs = humidity factor for shrinkage
kf = factor for the effect of concrete strength
k td = time development factor
t = maturity of concrete (days), defined as age of

concrete between time of loading for creep
calculations, or end of curing for shrinkage
calculations, and time being considered for
analysis of creep or shrinkage effects

V/S = volume-to-surface ratio
f

′
ci = specified compressive strength of concrete at

time of prestressing for pretensioned members
and at time of initial loading for nonprestressed
members. If concrete age at time of initial
loading is unknown at design time, f

′
ci may be

taken as 0.80 f
′
c .

Equation 13.24 is for concrete devoid of shrinkage-prone
aggregates and is proposed for both precast and cast-in-place
concrete components and for both accelerated curing and
moist curing conditions [C5.4.2.3.2]. Equation 13.24 as-
sumes that a reasonable estimate for the ultimate shrinkage
strain is 0.00048 in./in. Correction factors are applied to
this value to account for the various conditions affecting
shrinkage strain.
The volume-to-surface ratio (size) correction factor k vs ac-

counts for the effect that relatively thick members do not
dry as easily as thin members when exposed to ambient air.
Member size affects short-term creep and shrinkage more
than it does ultimate values (Tadros et al., 2003). Because ul-
timate values are of primary importance formost bridges, the
V/S ratio correction factor can be simplified when ultimate
prestress loss and final concrete bottom fiber stress are the
primary design values. The V/S ratio of the member may be
computed as the ratio of cross-sectional area to the perimeter
exposed to the environment. Most precast concrete stemmed
members have a V/S ratio of 3–4 in. The member size cor-
rection factor is normalized to a value of 1.0 for a V/S ratio
of 3.5 in. and the same expression is used for both shrinkage
and creep.
The relative humidity correction factor k hs accounts for the

effect that shrinkage is greater in dry climates than in wet
climates. The value of k hs is normalized to 1.0 at 70% aver-
age relative humidity and different expressions are used for
shrinkage strain and for the creep coefficient.
The concrete strength correction factor kf accounts for the

effect that shrinkage strain and creep are reduced for higher
strength concrete. The expression for kf is also the same for
both creep and shrinkage and is normalized to 1.0 when the
initial compressive strength at prestress transfer f

′
ci is 4.0 ksi.
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Fig. 13.10 Annual average ambient relative humidity in percent [AASHTO Fig. 5.4.2.3.3-1]. [From AASHTO LRFD Bridge Design Spec-
ifications . Copyright © 2010 by the American Association of State Highway and Transportation Officials, Washington, DC. Used by
permission.]

The value of 4.0 ksi was taken to be 80% of an assumed final
strength at service of 5.0 ksi (Tadros et al., 2003).
The time development correction factor k td accounts for

the effect of concrete strength on shrinkageand creep at times
other than when time approaches infinity. Higher strength
concretes produce accelerated shrinkage and creep at early
stages of a member’s life (Tadros et al., 2003). This behav-
ior is predicted by the formula for k td so it can be used for
estimating camber and prestress loss at the time of girder
erection. The same expression for k td is used for both shrink-
age and creep estimates and approaches a value of 1.0 as time
approaches infinity.
Large concrete members may undergo substantially less

shrinkage than that measured by laboratory testing of small
specimens of the same concrete. The constraining effects of
reinforcement and composite actions with other elements
of the bridge tend to reduce the dimensional changes in
some components [C5.4.2.3.3]. In spite of these limitations,
Eq. 13.24 does indicate the trend and relative magnitude of
the shrinkage strains, which are illustrated in Example 13.4.

Example13.4 Estimate the shrinkage strain in a 8-in.-thick
concrete bridge deck (f

′
c = 4.5 ksi) whose top and bottom

surfaces are exposed to drying conditions in an atmosphere
with 70% relative humidity. The volume/surface area ratio
for 1 in.2 of deck area is

V

S
= volume

surface area
= 8 (1) (1)

2 (1) (1)
= 4 in.

For t = 5 years (≈2000days) and f
′
ci = 0.8 f

′
c = 0.8(4.5)=

3.6 ksi

kvs = 1.45 − 0.13 (4) = 0.93 < 1.0, use kvs = 1.0

khs = 2.00 − 0.014 (70) = 1.02

kf = 5

1 + 3.6
= 1.09

ktd = t

61 − 4 (3.6) + t
= t

46.6+ t

Thus Eq. 13.24 gives

εsh = − (1.0) (1.02) (1.09)

(
t

46.6+ t

)
0.48 × 10−3

= −0.00053

(
2000

2046.6

)
= −0.00052

where the negative sign indicates shortening. The variation
of shrinkage strain with drying time for these conditions is
given in Table 13.2 and shown in Figure 13.11.
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Table 13.2 Variation of Shrinkage with Time
(Example 13.4)

Drying Time
(day)

Shrinkage Strain
εsh (in./in.)

28 −0.00020
100 −0.00036
365 −0.00047
1000 −0.00051
2000 −0.00052

S
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 e
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)

Fig. 13.11 Variation of shrinkage with time (Example 13.4).

At an early age of concrete, shrinkage strains are more
sensitive to surface exposure than when t is large. For
accurately estimating early deformations of such specialized
structures as segmentally constructed balanced cantilever
box girders, it may be necessary to resort to experimental
data or use the more detailed Eq. C5.4.2.3.2-2. Because
the empirical equation does not include all of the vari-
ables affecting shrinkage, the commentary in AASHTO
[C5.4.2.3.1] indicates that the results may be in error by
±50% and the actual shrinkage strains could be larger than
−0.0008 [C5.4.2.3.3]. Even if the values are not exact, the
trend shown in Figure 13.11 of increasing shrinkage strain at
a diminishing rate as drying time increases is correct. When
specific information is not available on the concrete and the
conditions under which it is placed, AASHTO [A5.4.2.3.1]
recommends values of shrinkage strain to be taken as
−0.0002 after 28 days and −0.0005 after one year of drying.
These values are comparable to those in Table 13.2.
A number of measures can be taken to control the amount

of shrinkage in concrete structures. One of the most effective
is to reduce thewater content in the concrete mixture because
it is the evaporation of the excess water that causes the shrink-
age. A designer can control the water content by specifying
both a maximum water/cement ratio and a maximum cement
content. Use of hard, dense aggregates with low absorption
results in less shrinkage because they require less moisture in
the concrete mixture to wet their surfaces. Another effective
method is to control the temperature in the concrete before

it hardens so that the starting volume for the beginning of
shrinkage has not been enlarged by elevated temperatures.
This temperature control can be done by using a low heat
of hydration cement and by cooling the materials in the con-
crete mixture. High outdoor temperatures during the summer
months need to be offset by shading the aggregate stockpiles
from the sun and by cooling the mixing water with crushed
ice. It has often been said by those in the northern climates
that the best concrete (fewest shrinkage cracks) is placed dur-
ing the winter months when kept sufficiently warm during
cure.

Creep of Concrete Creep of concrete is an increase in de-
formation with time when subjected to a constant load. In
a reinforced concrete beam, the deflection continues to in-
crease due to sustained loads. In reinforced concrete beam
columns, axial shortening and curvature increase under the
action of constant dead loads. Prestressed concrete beams
lose some of their precompression force because the con-
crete shortens and decreases the strand force and associated
prestress. The creep phenomenon in concrete influences the
selection and interaction of concrete elements and an under-
standing of its behavior is important.
Creep in concrete is associated with the change of strain

over time in the regions of beams and columns subjected to
sustained compressive stresses. This time-dependent change
in strains relies on the same factors that affect shrinkage
strains plus the magnitude and duration of the compressive
stresses, the age of the concrete when the sustained load is
applied, and the temperature of the concrete. Creep strain
εCR is determined by multiplying the instantaneous elastic
compressive strain due to permanent loads εci by a creep
coefficientψ , that is,

εCR
(
t, ti

) = ψ
(
t, ti

)
εci (13.25)

where t is the age of the concrete in days between time
of loading and time being considered for analysis of creep
effects, and ti is the age of the concrete in days when the
permanent load is applied. In AASHTO [A5.4.2.3.2], an
empirical equation based on Huo et al. (2001), Al-Omaishi
(2001), Tadros et al. (2003), and Collins and Mitchell (1991)
is given for the creep coefficient. It is expressed as

ψ
(
t, ti

) = 1.9kvskhckf ktdt
−0.118
i (13.26)

in which
khc = 1.56 − 0.008H

where k hc is the humidity factor for creep. If H is not known
for the site, a value can be taken from Figure 13.10. The H
factor may be higher than ambient for a water crossing due
to evaporation in the vicinity of the bridge.
Equation 13.26 for estimating the creep coefficient was de-

veloped in amanner similar to the shrinkage strain prediction
formula. The ultimate creep coefficient for standard condi-
tions is assumed to be 1.90. The standard conditions are the
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same as defined for shrinkage:H = 70%,V/S = 3.5 in.,f
′
ci =

4 ksi, loading age = 1 day for accelerated curing and 7 days
for moist curing, and loading duration = infinity. Variations
from these standard conditions require correction factors to
be calculated and applied to the value of 1.90 as shown in
Eq. 13.26.
The loading age correction factor t−0.118

i can be used for
both types of curing if ti = age of concrete (days) when load
is initially applied for accelerated curing and ti = age of con-
crete (days) when load is initially applied minus 6 days for
moist curing.

Example 13.5 Estimate the creep strain in the bridge
deck of Example 13.4 after one year if the compressive
stress due to sustained loads is 1.45 ksi, the 28-day com-
pressive strength is 4.5 ksi, and ti = 15 days. The modulus
of elasticity from Eq. 13.2 is

Ec = 1820
√

f
′
c = 1820

√
4.5 = 3860 ksi

and the initial compressive strain becomes

εci = fcu

Ec

= −1.45

3860
= −0.00038 (13.27)

For t− ti = 365 – 15 = 350 days, V/S = 4 in., H = 70%,
f

′
ci = 0.8, and, f

′
c = 3.6 ksi:

kvs = 1.45 − 0.13

(
V

S

)
= 1.45 − 0.13 (4)

= 0.93 < 1.0 use kvs = 1.0

khc = 1.56 − 0.008H = 1.56 − 0.008 (70) = 1.0

kf = 5

1 + 3.6
= 1.09

ktd = t

61− 4f
′
ci + t

= 350

61 − 4 (3.6) + 350
= 0.883

The creep coefficient is given by Eq. 13.26 as

ψ (365, 15) = 1.9 (1.0) (1.0) (1.09) (0.883) 15−0.118

= 1.33

Thus, the estimated creep strain after one year is
(Eq. 13.25)

εCR (365, 15) = 1.33 (−0.00038) = −0.00051

which is of the same order of magnitude as the shrinkage
strain. Again, this estimate could be in error by ±50%. For
the same conditions as this example, the variation of total
compressive strain with time after application of the sus-
tained load is shown in Figure 13.12. The total compressive
strain εc(t , ti) is the sum of the initial elastic strain plus the
creep strain and the rate of increase diminishes with time.
This total strain can be expressed as

εc

(
t, ti

) = εci + εCR
(
t, ti

) = [
1 + ψ

(
t, ti

)]
εci (13.28)
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Fig. 13.12 Variation of creep strain with time (Example 13.5).

For this example, the total compressive strain after one
year is

εc (365, 15) = (1 + 1.33) (−0.00038) = −0.00089

over two times the elastic value.

Creep strains can be reduced by the same measures taken to
reduce shrinkage strains, that is, by using low water content
in the concrete mixture and keeping the temperature rela-
tively low. Creep strain can also be reduced by using steel
reinforcement in the compression zone because the portion
of the compressive force it carries is not subject to creep.
By delaying the time at which permanent loads are applied,
creep strains are reduced because the more mature concrete
is drier and less resilient. This trend is reflected in Eq. 13.26,
where larger values of ti for a given age of concrete t result
in a reduction of the creep coefficient ψ (t , ti).
Finally, not all effects of creep deformation are harmful.

When differential settlements occur in a reinforced concrete
bridge, the creep property of concrete actually decreases the
stresses in the elements from those that would be predicted
by an elastic analysis.

Modulus of Elasticity for Permanent Loads To account
for the increase in strain due to creep under permanent
loads, a reduced long-term modulus of elasticity Ec ,LT can
be defined as

Ec,LT = fci[
1 + ψ

(
t, ti

)]
εci

= Eci

1 + ψ
(
t, ti

)

where E ci is the modulus of elasticity at time ti. Assuming
that E ci can be represented by the modulus of elasticity Ec
from Eq. 13.2, then

Ec,LT = Ec

1 + ψ
(
t, ti

) (13.29)

When transforming section properties of steel to equivalent
properties of concrete for service limit states, the modular
ratio n is used and is defined as

n = Es

Ec

(13.30)
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A long-term modular ratio nLT for use with permanent
loads can be similarly defined, assuming that steel does not
creep,

nLT = Es

Ec,LT
= n

[
1+ ψ

(
t, ti

)]
(13.31)

Example 13.6 For the conditions of Example 13.5, esti-
mate the long-term modular ratio using t = 5 years.
For t – ti = 5(365) – 15 = 1810 days,

ktd = 1810

61− 4 (3.6) + 1810
= 0.975

Thus,

ψ (1825, 15) = 1.9 (1.0) (1.0) (1.09) (0.975) 15−0.118

= 1.47

and
nLT = 2.47n

In evaluating designs based on service and fatigue limit
states, an effective modular ratio of 2n for permanent loads
and prestress is assumed [A5.7.1]. In AASHTO [A5.7.3.6.2],
which is applicable to the calculation of deflection and cam-
ber, the long-timedeflection is estimated as the instantaneous
deflection multiplied by the factor

3.0 − 1.2
A

′
S

AS

≥ 1.6 (13.32)

where A
′
S is the area of the compression reinforcement and

AS is the area of nonprestressed tension reinforcement. This
factor is essentially ψ (t , ti), and, if A

′
S = 0, Eq. 13.31 gives

a value of nLT = 4n . Based on the calculations made for the
creep coefficient, it is reasonable to use the following simple
expression for the modulus of elasticity for permanent loads:

Ec,LT = Ec

3
(13.33)

13.5 PROPERTIES OF STEEL REINFORCEMENT

Reinforced concrete is simply concrete with embedded re-
inforcement, usually steel bars or tendons. Reinforcement is
placed in structural members at locations where it will be
of the most benefit. It is usually thought of as resisting ten-
sion, but it is also used to resist compression. If shear in a
beam is the limit state that is being resisted, longitudinal and
transverse reinforcements are placed to resist diagonal ten-
sion forces.
The behavior of nonprestressed reinforcement is usually

characterized by the stress–strain curve for bare steel bars.
The behavior of prestressed steel tendons is known to be dif-
ferent for bonded and unbonded tendons, which suggests that
we should reconsider the behavior of nonprestressed rein-
forcement embedded in concrete.

Fig. 13.13 Stress–strain curves for bare steel reinforcement.
[From Holzer et al. (1975).]

13.5.1 Nonprestressed Steel Reinforcement

Typical stress–strain curves for bare steel reinforcement are
shown in Figure 13.13 for steel grades 40, 60, and 75. The
response of the bare steel can be broken into three parts, elas-
tic, plastic, and strain hardening. The elastic portion AB of
the curves respond in a similar straight-line manner with a
constant modulus of elasticity ES = 29,000 ksi (200 GPa)
up to a yield strain of εy = fy/ES. The plastic portion BC is
represented by a yield plateau at constant stress fy until the
onset of strain hardening. The length of the yield plateau is a
measure of ductility and it varies with the grade of steel. The
strain-hardening portion CDE begins at a strain of εh and
reaches maximum stress fu at a strain of εu before dropping
off slightly at a breaking strain of εb. The three portions of
the stress–strain curves for bare steel reinforcement can be
characterized symbolically as

Elastic Portion AB

fs = εsEs 0 ≤ εs ≤ εy (13.34)

Plastic Portion BC

fs = fy εy ≤ εs ≤ εh (13.35)

Strain–Hardening PortionCDE

fs = fy

[
1 + εs − εh

εu − εh

(
fu

fy

− 1

)
exp

(
1 − εs − εh

εu − εh

)]

εh ≤ εs ≤ εb (13.36)

Equation 13.36 and the nominal limiting values for stress
and strain in Table 13.3 are taken from Holzer et al. (1975).
The curves shown in Figure 13.13 are calibrated to pass
through the nominal yield stress values of the different steel
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Table 13.3 Nominal Limiting Values for Bare Steel Stress–Strain Curves

fy, ksi (MPa) fu, ksi (MPa) εy εh εu εb

40 (280) 80 (550) 0.00138 0.0230 0.140 0.200
60 (420) 106 (730) 0.00207 0.0060 0.087 0.136
75 (520) 130 (900) 0.00259 0.0027 0.073 0.115

Holzer et al. (1975).

grades. The actual values for the yield stress from tensile
tests average about 15% higher. The same relationship is
assumed to be valid for both tension and compression.
When steel bars are embedded in concrete, the behavior
is different than for the bare steel bars. The difference is
due to the fact that concrete has a finite, though small, ten-
sile strength, which was realized early in the development
of the mechanics of reinforced concrete as described by
Collins and Mitchell (1991). Concrete that adheres to the
reinforcement and is uncracked reduces the tensile strain
in the reinforcement. This phenomenon is called tension
stiffening .
An experimental investigation by Scott and Gill (1987)

confirmed the decrease in tensile strain in the reinforcement
between cracks in the concrete. To measure the strains in the
reinforcement without disturbing the bond characteristics on
the surface of the bars, they placed the strain gages inside
the bars. This internal placement of strain gages was done
by splitting a bar in half, machining out a channel, placing
strain gages and their lead wires, and then gluing the halves
back together. The instrumented bar was then encased in
concrete, except for a length at either end that could be
gripped in the jaws of a testing machine. Tensile loads
were then applied and the strains along the bar at 0.5-in.
(12.5-mm) increments were recorded. Figure 13.14 presents
the strains in one of their bars over the 39-in. (1000-mm)
long section at increasing levels of tensile load.
An approximate bare bar strain for a tensile load of 9.0 kips

is shown in Figure 13.14 by the horizontal dashed line. The
strain is approximate because the area of the bar (0.20 in.2)
used in the calculation should be reduced by the area of the
channel cut for placement of the gages. The actual bare bar
strain would be slightly higher and more closely average out
the peaks and valleys. Observations on the behavior remain
the same: (a) steel tensile strains increase at locations where
concrete is cracked and (b) steel tensile strains decrease be-
tween cracks because of the tensile capacity of the concrete
adhering to the bar.
To represent the behavior of reinforcement embedded

in concrete as shown in Figure 13.14, it is convenient to
define an average stress and average strain over a length
long enough to include at least one crack. The average
stress–strain behavior for concrete-stiffened mild steel
reinforcement is shown in Figure 13.15 and compared to
the response of a bare bar (which is indicative of the bar
response at a crack where the concrete contribution is lost).

Fig. 13.14 Variation of steel strain along the length of a ten-
sion specimen tested by Scott and Gill (1987). [From Collins and
Mitchell (1991). Reprinted by permission of Prentice Hall, Upper
Saddle River, NJ.]

Es

Fig. 13.15 Stress–strain curve for mild steel. [Reprinted with per-
mission from T. T. C. Hsu (1993). Unified Theory of Reinforced
Concrete, CRC Press, Boca Raton, FL. Copyright CRC Press, Boca
Raton, FL © 1993.]
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The tension stiffening effect of the concrete is greatest, as
would be expected, at low strains and tends to round off the
sharp knee of the elastic perfectly plastic behavior . This
tension stiffening effect results in the average steel stress
showing a reduced value of apparent yield stress f ∗

y and its
accompanying apparent yield strain ε∗

y. At higher strains,
the concrete contribution diminishes and the embedded bar
response follows the strain-hardening portion of the bare
steel curve.
Also shown by the dashed line in Figure 13.15 is a linear

approximation to the average stress–strain response of a mild
steel bar embedded in concrete. A derivation of this approx-
imation and a comparison with experimental data are given
in Hsu (1993). The equation for these two straight lines are
given by

Elastic Portion

fs = Esεs when fs ≤ f
′
y (13.37)

Postyield Portion

fs = (0.91 − 2B) fy + (0.02 + 0.25B) ESεS

when fs > f
′
y (13.38)

where

f
′
y = intersection stress level = (0.93 − 2B) fy (13.39)

B = 1

ρ

(
fcr

fy

)1.5

(13.40)

ρ = steel reinforcement ratio based on the net concrete
section

= As/(Ag – As)

f cr = tensile cracking strength of concrete, taken as
0.12

√
f

′
c (ksi)

fy = steel yield stress of bare bars (ksi)

Figure 13.16 compares thebilinear approximationof an av-
erage stress–strain curve (ρ = 0.01, f cr = 0.240 ksi, fy = 60
ksi) with a bare bar and test results by Tamai et al. (1987).
This figure illustrates what was stated earlier and shows how
the response in tension of reinforcement embedded in con-
crete is different than the response of bare steel alone .

13.5.2 Prestressing Steel

The most common prestressing steel is seven-wire strand,
which is available in stress-relieved strand and low-
relaxation strand. During manufacture of the strands,
high carbon steel rod is drawn through successively smaller
diameter dies, which tends to align the molecules in one di-
rection and increases the strength of the wire to over 250 ksi
(1700 MPa). Six wires are then wrapped around one central
wire in a helical manner to form a strand. The cold drawing
and twistingof the wires creates locked in or residual stresses

Fig. 13.16 Average stress–strain curves of mild steel: Theories
and tests. [Reprinted with permission from T. T. C. Hsu (1993).
Unified Theory of Reinforced Concrete , CRC Press, Boca Raton,
FL. Copyright CRC Press, Boca Raton, FL © 1993.]
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Fig. 13.17 Stress–strain response of seven-wire strand manufac-
tured by different processes. [After Collins and Mitchell (1991).
Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.]

in the strands. These residual stresses cause the stress–strain
response to be more rounded and to exhibit an apparently
lower yield stress. The apparent yield stress can be raised
by heating the strands to about 660◦F (350◦C) and allowing
them to cool slowly. This process is called stress relieving.
Further improvement in behavior by reducing the relaxation
of the strands is achieved by putting the strands into tension
during the heating and cooling process. This process is
called strain tempering and produces the low-relaxation
strands. Figure 13.17 compares the stress–strain response of
seven-wire strand manufactured by the different processes.
Low-relaxation strands are most commonly used and are
regarded as the standard type [C5.4.4.1].
High-strength deformed bars are also used for prestressing

steel. The deformations are often like raised screw threads
so that devices for posttensioning and anchoring bars can be
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Table 13.4 Properties of Prestressing Strand and Bar

Material Grade or Type Diameter (in.) Tensile Strength, f pu (ksi) Yield Strength, f py (ksi)

Strand 250 ksi
1

4
–0.6 250 85% of f pu except 90% of f pu for

low-relaxation strand

270 ksi
3

8
–0.6 270

Bar Type 1, plain
3

4
–1

3

8
150 85% of f pu

Type 2, deformed
5

8
–1

3

8
150 80% of f pu

In AASHTO Table 5.4.4.1-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission.

attached to their ends. The ultimate tensile strength of the
bars is about 150 ksi (1000 MPa).
A typical specification for the properties of the prestressing

strand and bar is given in Table 13.4. Recommended val-
ues for modulus of elasticity, Ep, for prestressing steels are
28,500 ksi (197 GPa) for strands and 30,000 ksi (207 GPa)
for bars [A5.4.4.2].
The stress–strain curves for the bare prestressing

strand shown in Figure 13.17 have been determined by
a Ramberg–Osgood function to give a smooth transition
between two straight lines representing elastic and plastic be-
havior. Constants are chosen so that the curves pass through
a strain of 0.01 when the yield strengths of Table 13.4 are
reached. Collins and Mitchell (1991) give the following
expression for low-relaxation strands with

fpu = 270 ksi (1860 MPa)

fps = Epεps

⎧
⎪⎨

⎪⎩
0.025 + 0.975

[
1 + (

118εps
)10]0.10

⎫
⎪⎬

⎪⎭
≤ fpu

(13.41)

while for stress-relieved strands with f pu = 270 ksi (1860
MPa)

fps = Epεps

⎧
⎪⎨

⎪⎩
0.03+ 0.97

[
1+ (

121εps
)6]0.167

⎫
⎪⎬

⎪⎭
≤ fpu

(13.42)
and for untreated strands with f pu = 240 ksi (1655 MPa)

fps = Epεps

⎧
⎪⎨

⎪⎩
0.03 + 1

[
1 + (

106εps
)2]0.5

⎫
⎪⎬

⎪⎭
≤ fpu (13.43)

These curves are based on the minimum specified
strengths. The actual stress–strain curves of typical strands
probably have higher yield strengths and can be above those
shown in Figure 13.17.

A tendon can be either a single strand or bar, or it can be a
group of strands or bars. When the tendons are bonded to the
concrete, the change in strain of the prestressing steel is equal
to the change in strain of the concrete. This condition exists
in pretensioned beams where the concrete is cast around the
tendons and in posttensioned beams where the tendons are
pressure grouted after they are prestressed. At the time the
concrete or grout is placed, the prestressing tendon has been
stretched and has a difference in strain of�εpe when the two
materials are bonded together. The strain in the prestressing
tendon εps can be determined at any stage of loading from
the strain in the surrounding concrete εcp as

εps = εcp + �εpe (13.44)

where εcp is the concrete strain at the same location as the
prestressing tendon, and �εpe is

�εpe = εpe − εce (13.45)

where εpe is the strain corresponding to the effective stress in
the prestressing steel after losses f pe expressed as

εpe = fpe

Ep

(13.46)

and εce is the strain in the concrete at the location of the pre-
stressing tendon resulting from the effective prestress. If the
tendon is located along the centrodial axis, then

εpe = εce = Apsfpe

EcAc

(13.47)

whereA ps is the prestressing steel area and Ac is the concrete
area. This strain is always small and is usually ignored (Loov,
1988) so that �εpe is approximately equal to

�εpe ≈ fpe

Ep

In the case of an unbonded tendon, slip results between the
tendon and the surroundingconcrete and the strain in the ten-
don becomes uniform over the distance between anchorage
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points. The total change in length of the tendon must now
equal the total change in length of the concrete over this dis-
tance, that is,

εps = ε̄cp + �εpe (13.48)

where ε̄cp is the average strain of the concrete at the loca-
tion of the prestressing tendon, averaged over the distance
between anchorages of the unbonded tendon.
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PROBLEMS

13.1 In what ways does concrete respond differently in
compression to loads when wrapped with steel than
when no steel is present?

13.1 In what ways does steel respond differently in tension
to loads when wrapped in concrete than when no con-
crete is present?

13.3 Determine the peak confined concrete stress f
′
cc and

corresponding strain εcc for a 24-in. diameter column
with 10 No. 11 longitudinal bars and No. 4 round spi-
rals at 3-in. pitch. The material strengths are f

′
c =

−5.0 ksi and f yh = 60 ksi. Assume that εco = −0.002
and that the concrete cover is 1.5 in. Use the lower
bound value of k 1 = 3 and the corresponding value of
k 2 = 15.

13.4 Determine the parameters and plot the stress–strain
curves for the unconfined and confined concrete of
the column section in Problem 13.3. Assume concrete
strain at first hoop fracture εcu = 8εcc.

13.5 Describe the compression softening phenomenon that
occurs when concrete is subjected to a biaxial state of
stress.

13.6 Why are two values given in the specifications for the
modulus of rupture of concrete?

13.7 Use Eqs. 13.22 and 13.23 to plot the average stress
versus average strain curve for concrete in tension.
Use f

′
c = 6 ksi and Eq. 13.21 for f cr. Assume α1 =

α2 = 1.0.
13.8 What similarities do the time-dependent responses of

shrinkage and creep in concrete have? Differences?
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13.9 Estimate the shrinkage strain in a 7.5-in. thick con-
crete bridge deck (f

′
c = 6.0 ksi) whose top and bottom

surfaces are exposed to drying conditions in an atmo-
sphere with 60% relative humidity. Plot the variation
of shrinkage strain with drying time for these condi-
tions. Use t = 28, 90, 365, 1000, and 2000 days.

13.10 Estimate the creep strain in the bridge deck of Prob-
lem 13.9 after one year if the elastic compressive
stress due to sustained loads is 1.55 ksi, the 28-day
compressive strength is 6.0 ksi, and ti = 15 days. Plot

the variation of creep strain with time under load for
these conditions. Use t = 28, 90, 365, 1000, and 2000
days.

13.11 Describe the tension stiffening effect of concrete on
the stress–strain behavior of reinforcement embedded
in concrete.

13.12 Plot the stress–strain response of seven-wire
low-relaxation prestressing strands using the
Ramberg–Osgood Eq. 13.41. Use f pu = 270 ksi
and Ep = 28,500 ksi.



CHAPTER 14

Behavior of Reinforced Concrete
Members

14.1 LIMIT STATES

Reinforced concrete bridges must be designed so that their
performance under load does not go beyond the limit states
prescribed by AASHTO. These limit states are applicable at
all stages in the life of a bridge and include service, fatigue,
strength, and extreme event limit states. The condition that
must be met for each of these limit states is that the fac-
tored resistance is greater than the effect of the factored load
combinations, or simply, supply must exceed demand. The
general inequality that must be satisfied for each limit state
can be expressed as

φRn ≥
∑

ηiγi Qi (14.1)

where φ is a statistically based resistance factor for the
limit state being examined; Rn is the nominal resistance;
ηi is a load multiplier relating to ductility, redundancy, and
operational importance; γi is a statistically based load factor
applied to the force effects as defined for each limit state
in Table 5.1; and Qi is a force effect. The various factors
in Eq. 14.1 are discussed more fully in Chapter 5 and are
repeated here for convenience.

14.1.1 Service Limit State

Service limit states relate to bridge performance. Actions to
be considered are cracking, deformations, and stresses for
concrete and prestressing tendons under regular service con-
ditions.Because the provisions for service limit states are not
derived statistically, but rather are based on experience and
engineering judgment, the resistance factors φ and load fac-
tors γi are usually taken as unity. There are some exceptions
for vehicle live loads and wind loads as shown in Table 5.1.

Control of Flexural Cracking in Beams [A5.7.3.4]* The
width of flexural cracks in reinforced concrete beams, where
the tensile stress is greater than 80% of the modulus of
rupture, is controlled by limiting the spacings in the rein-
forcement under service loads over the region of maximum
concrete tension:

s ≤ 700γe

βsfs

− 2dc (14.2)

where
βs = 1 + dc

0.7
(
h − dc

)

γe = exposure factor
= 1.00 for class 1 exposure condition
= 0.75 for class 2 exposure condition

dc = depth of concrete cover from extreme tension
fiber to center of closest flexural reinforcement
(in.)

fs = tensile stress in reinforcement at the service
limit state (ksi)

h = overall thickness or depth of the component
(in.)

Class 1 exposure condition applies when cracks can be tol-
erated due to reduced concerns of appearance and/or cor-
rosion. Class 1 exposure is calibrated to a crack width of
0.017 in. Class 2 exposure condition applies to transverse
design of segmental concrete box girders for any loads prior
to attaining full nominal concrete strength and when there
is increased concern of appearance and/or corrosion. Deck
slabs are excluded from this requirement.
The exposure factor γe is directly proportional to the crack

width and can be adjusted as shown in Table 14.1 to obtain a
desired crack width [C5.7.3.4]. The βs factor is a geometric
relationship between the crack width at the tension face and
the crack width at the reinforcement level. It provides unifor-
mity of application for flexural member depths ranging from
thin slabs to deep pier caps.
An effectiveway to satisfyEq. 14.2 is to use several smaller

bars at moderate spacing rather than a few larger bars of
equivalent area. This procedure distributes the reinforcement
over the region of maximum concrete tension and provides
good crack control. The minimum and maximum spacing
of reinforcement shall also comply with the provisions of
AASHTO articles [A5.10.3.1] and [A5.10.3.2].
To guard against excessive spacing of bars when flanges

of T-beams and box girders are in tension, the flexural ten-
sion reinforcement is to be distributed over the lesser of the
effective flange width or a width equal to one-tenth of the
span. If the effective flangewidth exceeds one-tenth the span,
additional longitudinal reinforcement, with area not less than
0.4% of the excess slab area, is to be provided in the outer
portions of the flange.

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-
tions are enclosed in brackets and preceded by the letter A if a specification
article and by the letter C if commentary.
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Table 14.1 Exposure Factor γe

Exposure Condition γe Crack Width (in.)

Moderate, class 1 1.0 0.017
Severe, class 2 0.75 0.013
Aggressive 0.5 0.0085

From AASHTO [A5.7.3.4, C5.7.3.4]. From AASHTO LRFD Bridge
Design Specifications . Copyright © 2010 by the American Associ-
ation of State Highway and Transportation Officials, Washington,
DC. Used by permission.

For relatively deep flexural members, reinforcement
should also be distributed in the vertical faces in the tension
region to control cracking in the web. If the web depth
exceeds 3.0 ft (900 mm), longitudinal skin reinforcement is
to be uniformly distributed over a height of d /2 nearest the
tensile reinforcement. The area of skin reinforcement Ask in
square inches per foot (in.2/ft) of height required on each
side face is

Ask ≥ 0.012
(
dt − 3.0

) ≤ As + Aps

4
(14.3)

where dt is the distance from the extreme compression fiber
to the centroid of the extreme tensile steel element, As is
the area of the nonprestressed steel, and Aps is the area of
the prestressing tendons. The maximum spacing of the skin
reinforcement is not to exceed either de/6 or 12.0 in.

Deformations Service load deformations may cause dete-
rioration of wearing surfaces and local cracking in concrete
slabs. Vertical deflections and vibrations due tomoving vehi-
cle loads can cause motorists concern. To limit these effects,
optional deflection criteria are suggested [A2.5.2.6.2] as

� Vehicular load, general: span length/800
� Vehicular load on cantilever arms: span length/300

where the vehicle load includes the impact factor IM and the
multiple presence factor m .
When calculating the vehicular deflection, it should be

taken as the larger of that resulting from the design truck
alone or that resulting from 25% of the design truck taken
together with the design lane load [A3.6.1.3.2]. All of the

design lanes should be loaded and all of the girders may be
assumed to deflect equally in supporting the load. This state-
ment is equivalent to a deflection distribution factor g equal
to the number of lanes divided by the number of girders.
Calculated deflections of bridges have been difficult to

verify in the field because of additional stiffness provided
by railings, sidewalks, and median barriers not usually
considered in the calculations. Therefore, it seems rea-
sonable to estimate the instantaneous deflection using the
elastic modulus for concrete Ec from Eq. 13.2 and the gross
moment of inertia Ig [A5.7.3.6.2]. This estimate is much
simpler, and probably just as reliable, as using the effective
moment of inertia Ie based on a value between Ig and the
cracked moment of inertia I cr. It also makes the calculation
of the long-term deflection more tractable because it can
be taken as simply 4.0 times the instantaneous deflection
[A5.7.3.6.2].

Stress Limitations for Concrete Service limit states still
apply in the design of reinforced concrete members that have
prestressing tendons that precompress the section so that con-
crete stresses fc can be determined from elastic uncracked
section properties and the familiar equation

fc = − P

Ag

± Pey

Ig

∓ My

Ig

(14.4)

where P is the prestressing force, Ag is the cross-sectional
area, e is the eccentricity of the prestressing force, M is the
moment due to applied loads, y is the distance from the cen-
troid of the section to the fiber, and Ig is themoment of inertia
of the section. If the member is a composite construction, it
is necessary to separate the moment M into the moment due
to loads on the girderMg and themoment due to loads on the
composite sectionMc, because the y and I values are differ-
ent, that is,

fc = − P

Ag

± Pey

Ig

∓ Mgy

Ig

∓ Mcyc

Ic

(14.5)

where the plus and minus signs for the stresses at the top
and bottom fibers must be consistent with the chosen sign
convention where tension is positive. (Often positive is used
for compression in concrete; however, in this book a consis-
tent approach is used for all materials.) These linear elastic
concrete stress distributions are shown in Figure 14.1.
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Fig. 14.1 Linear-elastic concrete stress distributions in composite prestressed beams.
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Limits on the concrete stresses are given in Tables 14.2
and 14.3 for two load stages: (1) prestress transfer
stage—immediately after transfer of the prestressing tendon
tensile force to the concrete but prior to the time-dependent
losses due to creep and shrinkage, and (2) service load
stage—after allowance for all prestress losses. The concrete
compressive strength at time of initial loading f

′
ci, the 28-day

concrete compressive strength f
′
c , and the resulting stress

limits are all in kips per square inch (ksi). A precompressed
tensile zone is a region that was compressed by the prestress-
ing tendons but has gone into tension when subjected to
dead- and live-load moments. The stress limits in the tables
are for members with prestressed reinforcement only and do
not include those for segmentally constructed bridges. The
compressive and tensile stress limits for temporary stresses
before losses are prescribed in [A5.9.4.1.1] and [A5.9.4.1.2],
respectively.

The reduction factor φw in Table 14.3 shall be taken as
1.0 when the web and flange slenderness ratios, calculated
according to [A5.7.4.7.1], are not greater than 15. When
either the web or flange slenderness ratio is greater than
15, the reduction factor φw shall be calculated according to
[A5.7.4.7.2].
For the components that include both prestressed and non-

prestressed reinforcement (often called partially prestressed
because only a part of the reinforcement is prestressed), the
compressive stress limits are those given in Tables 14.2 and
14.3, but because cracking is permitted, the tensile stress is
given in [A5.7.3.4], where fs is to be interpreted as the change
in stress after decompression.

Stress Limitations for Prestressing Tendons The tendon
stress, due to prestress operations or at service limit states,
shall not exceed the values as specified by AASHTO in

Table 14.2 Stress Limits for Concrete for Temporary Stresses before Losses—Fully Prestressed Components

Compressive Stresses
Pretensioned components 0.60f

′
ci (ksi)

Posttensioned components 0.60f
′
ci (ksi)

Tensile Stresses
Precompressed tensile zone without bonded reinforcement N/Aa

Other tensile zones without bonded reinforcement 0.0948
√

f
′
ci ≤ 0.2 (ksi)

Tensile zones with bonded reinforcement sufficient to resist the tension force in the concrete
computed assuming an uncracked section, where reinforcement is proportioned using a
stress of 0.5fy not to exceed 30 ksi

0.24
√

f
′
ci (ksi)

Handling stresses in prestressed piles 0.158
√

f
′
ci (ksi)

aNot applicable = N/A.
From AASHTO [A5.9.4.1]. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission.

Table 14.3 Stress Limits for Concrete at Service Limit State after Losses—Fully Prestressed Components

Compressive Stresses—load combination service I or fatigue I
Due to the sum of effective prestress and permanent loads 0.45f

′
c (ksi)

Due to live load (fatigue I) and one-half the sum of effective prestress and permanent loads 0.40f
′
c (ksi)

Due to sum of effective prestress, permanent loads, and transient loads (service I) and during
shippng and handling

0.60φw f
′
c (ksi)

Tensile Stresses—load combination service III
Precompressed tensile zone bridges, assuming uncracked sections

Components with bonded prestressing tendons or reinforcement that are not subjected to worse
than moderate corrosion conditions

0.19
√

f
′
c (ksi)

Components with bonded prestressing tendons or reinforcement that are subjected to severe
corrosive conditions

0.0948
√

f
′
c (ksi)

Components with unbonded prestressing tendons No tension
Other tensile zone stresses are limited by those given for the prestress transfer stage in Table 14.2.

From AASHTO [A5.9.4.2]. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission.
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Table 14.4 Stress Limits for Prestressing Tendons

Tendon Type

Stress Relieved Deformed
Strand and Plain Low-Relaxation High-Strength

Condition High-Strength Bars Strand Bars

Pretensioning
Immediately prior to transfer (fpbt) 0.70 fpu 0.75 fpu —
At service limit state after all losses (fpe) 0.80 fpy 0.80 fpy 0.80 fpy

Posttensioning
Prior to seating—short-term fpbt may be allowed 0.90 fpy 0.90 fpy 0.90 fpy
At anchorages and couplers immediately after anchor set 0.70 fpu 0.70 fpu 0.70 fpu
Elsewhere along length of member away from anchorages

and couplers immediately after anchor set
0.70 fpu 0.74 fpu 0.70 fpu

At service limit state after losses (fpe) 0.80 fpy 0.80 fpy 0.80 fpy

From AASHTO Table 5.9.3-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of
State Highway and Transportation Officials, Washington, DC. Used by permission.

Table 14.4 or as recommended by the manufacturer of the
tendons and anchorages. The tensile strength f pu and yield
strength f py for prestressing strand and bar can be taken
from Table 13.4.

14.1.2 Fatigue Limit State

Fatigue is a characteristic of a material in which damage
accumulates under repeated loadings so that failure occurs
at a stress level less than the static strength. In the case of
highway bridges, the repeated loading that causes fatigue is
the trucks that pass over them. An indicator of the fatigue
damage potential is the stress range ff of the fluctuating
stresses produced by the moving trucks. A second indicator
is the number of times the stress range is repeated during the
expected life of the bridge. In general, the higher the ratio of
the stress range to the static strength, the fewer the number
of loading cycles required to cause fatigue failure.
For fatigue considerations, concrete members shall satisfy:

γ (�f ) ≤ (�F)TH (14.6a)

where
γ = load factor specified in Table 5.1 for the

fatigue I load combination
�f = force effect, live-load stress range due to

the passage of the fatigue load as
specified in A3.6.1.4 (ksi)

(�F )TH = constant-amplitude fatigue threshold, as
specified in [A5.5.3.2], [A5.5.3.3], or
[A5.5.3.4] as appropriate

In calculating the fatigue stress range �f , the fatigue
loading described in Chapter 8 is used. This loading consists
of a special fatigue truck with constant axle spacing of
30 ft between the 32-kip axles, applied to one lane of traffic
without multiple presence, and with an impact factor IM of

15% [A3.6.1.4]. The fatigue load combination (fatigue II)
of Table 5.1 has a load factor of 0.75 applied to the fatigue
truck, all other load factors are zero. Elastic-cracked section
properties are used to calculate �f , except when gross
section properties can be used for members with prestress
where the sum of the stresses due to unfactored permanent
loads and prestress plus 1.5 times the unfactored fatigue
load (fatigue I) does not exceed a tensile stress of 0.095

√
f

′
c

[A5.5.3.1].
For reinforced concrete components, AASHTO [A5.5.3]

does not include the number of cycles of repeated loading
as a parameter in determining the fatigue strength. What is
implied is that the values given for the limits on the stress
range are low enough so that they can be considered as rep-
resentative of infinite fatigue life. Background on the devel-
opment of fatigue stress limits for concrete, reinforcing bars,
and prestressing strands can be found in the report by ACI
Committee 215 (1992), which summarizes over 100 refer-
ences on analytical, experimental, and statistical studies of
fatigue in reinforced concrete. In their report, which serves
as the basis for the discussion that follows, the fatigue stress
limits appear to have been developed for 2–10millioncycles.

Fatigue of Plain Concrete When plain concrete beams
are subjected to repetitive stresses that are less then the
static strength, accumulated damage due to progressive
internal microcracking eventually results in a fatigue failure.
If the repetitive stress level is decreased, the number of
cycles to failure N increases. This effect is shown by the
S–N curves in Figure 14.2, where the ordinate is the ratio
of the maximum stress Smax to the static strength and the
abscissa is the number of cycles to failure N , plotted on a
logarithmic scale. For the case of plain concrete beams, Smax
is the tensile stress calculated at the extreme fiber assuming
an uncracked section and the static strength is the rupture
modulus stress fr.
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Fig. 14.2 Fatigue strength of plain concrete beams. [ACI Com-
mittee 215 (1992). Used with permission of American Concrete
Institute.]

The curves a and c in Figure 14.2 were obtained from tests
in which the stress range between a maximum stress and a
minimum stress were equal to 75 and 15% of the maximum
stress, respectively. It can be observed that an increase of the
stress range results in a decreased fatigue strength for a given
number of cycles. Curves b and d indicate the amount of
scatter in the test data. Curve b corresponds to an 80%chance
of failure while curve d represents a 5% chance of failure.
Curves a and c are averages representing 50% probability
of failure.
The S–N curves for concrete in Figure 14.2 are nearly lin-

ear from 100 cycles to 10 million cycles and have not flat-
tened out at the higher number of cycles to failure. It appears
that concrete does not exhibit a limiting value of stress below
which the fatigue life is infinite. Thus, any statement on the
fatigue strength of concrete must be given with reference to
the number of cycles to failure. ACI Committee 215 (1992)
concludes that the fatigue strength of concrete for the life of
10 million cycles of load and a probability of failure of 50%,
regardless of whether the specimen is loaded in compres-
sion, tension, or flexure, is approximately 55% of the static
strength.
In AASHTO [A5.5.3.1], the limiting tensile stress in

flexure due to the sum of unfactored permanent loads and
prestress, and 1.5 times the fatigue load before the section
is considered as cracked is 0.095

√
f

′
c , which is 40% of the

static strength fr = 0.24
√

f
′
c . This live load is associated

with fatigue I limit state where the load is the maximum
expected during the service life.
Further, because the stress range is typically the differ-

ence between a minimum stress due to permanent load
and a maximum stress due to permanent load plus the
transitory fatigue load, the limits on the compressive stress
in Table 14.3 should keep the stress range within 0.40f

′
c .

However, in this case, one-half of the permanent and pre-
stressed load effects are used. Both of these limitations are

comparable to the recommendations of ACI Committee 215
(1992) for the fatigue strength of concrete.

Fatigue of Reinforcing Bars Observations of deformed
reinforcing bars subjected to repeated loads indicate that
fatigue cracks start at the base of a transverse deformation
where a stress concentration exists. With repeated load
cycles, the crack grows until the cross-sectional area is
reduced and the bar fails in tension. The higher the stress
range Sr of the repeated load, the fewer the number of cycles
N before the reinforcing bar fails.
Results of experimental tests on straight deformed rein-

forcing bars are shown by the Sr–N curves in Figure 14.3.
These curves were generated by bars whose size varied from
#5 to #11. The curves begin to flatten out at about 1 mil-
lion cycles, indicating that reinforcing bars may have a stress
endurance limit below which the fatigue life will be infinite.
The stress range Sr is the difference between the maximum

stress Smax and theminimum stress Smin of the repeating load
cycles. The higher the minimum stress level, the higher the
average tensile stress in the reinforcing bar and the lower the
fatigue strength.
The stress concentrations produced at the base of a

deformation or at the intersection of deformations can also
be produced by bending and welding of the reinforcing
bars. Investigations reported by ACI Committee 215 (1992)
indicate the fatigue strength of bars bent through an angle
of 45◦ to be about 50% that of straight bars and the fatigue
strength of bars with stirrups attached by tack welding to be
about 67% that of bars with stirrups attached by tie wires.
In AASHTO [A5.5.3.2], minimum stress fmin is consid-

ered in setting a limit on the constant-amplitude fatigue
threshold, (�F )TH, for straight reinforcement and welded
wire reinforcement without a cross weld in the high-stress
region, that is,

(�F)TH = 24− 0.33fmin (14.6b)

Fig. 14.3 Stress range versus fatigue life for reinforcing bars. [ACI
Committee 215 (1992). Used with permission of American Con-
crete Institute.]
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where fmin is the minimum live-load stress resulting from
the fatigue I load combination, combined with the more
severe stress from either the permanent loads or the per-
manent loads, shrinkage, and creep-induced external loads,
and tension is positive and compression is negative (ksi)
[A5.5.3.2].
The fluctuating live-load fatigue tensile stresses are in

addition to any stress that exists in the reinforcement due
to permanent loads. If the stress fmin is tensile, the average
combined stress is higher and the fatigue resistance of the
reinforcement is lower. If the stress fmin is compressive, the
fatigue resistance increases.
In the case of a single-span girder, the minimum stress

produced by the fatigue truck is zero. Assuming the
minimum stress produced by dead loads is 15 ksi, the
constant-amplitude fatigue threshold (�F )TH is 19 ksi. This
value compares well with a lower bound to the curves in
Figure 14.3 for 1–10 million cycles to failure.
As recommended by ACI Committee 215 (1992),

Eq. 14.6b should be reduced by 50% for bent bars or
bars to which auxiliary reinforcement has been tack welded.
As a practical matter, primary reinforcement should not be
bent in regions of high stress range and tack welding should
be avoided.

Fatigue of Prestressing Tendons If the precompression
due to prestressing is sufficient so that the concrete cross
section remains uncracked or cracks at or below the tensile
stresses associated with service III, then fatigue of prestress-
ing tendons is seldom a problem. In this case, AASHTO
[A5.5.3.1] states that fatigue of fully prestressed sections
need not be checked. Effectively this eliminates the need
for this check. Similarly, the fatigue check is not required in
deck slab or reinforced concrete box culverts.
However, designs are allowed that result in cracked

sections beyond service loads (see Table 14.3) and it
becomes necessary to consider fatigue. The AASHTO
[A5.5.3.1] states that fatigue shall be considered when the
compressive stress due to permanent loads and prestress
is less than twice the maximum tensile live-load stress
resulting from the fatigue truck. This load is associated with
fatigue I limit state. A load factor of 1.5 is specified on the
live-load force effect for the fatigue truck [C5.5.3.1].
Fatigue tests have been conducted on individual pre-

stressing wires and on seven-wire strand, which are well
documented in the literature cited by ACI Committee 215
(1992). However, the critical component that determines the
fatigue strength of prestressing tendons is their anchorage.
Even though the anchorages can develop the static strength
of prestressing tendons, they develop less than 70% of
the fatigue strength. Bending at an anchorage can cause
high local stresses not seen by a direct tensile pull of a
prestressing tendon.
The Sr–N curves shown in Figure 14.4 are for proprietary

anchorages for strand and multiple wire tendons. Similar

Fig. 14.4 Stress range versus fatigue life for strand and multiple
wire anchorages [ACI Committee 215 (1992). Used with permis-
sion of American Concrete Institute.]

curves are also given by ACI Committee 215 (1992) for
anchorages of bars. From Figure 14.4, an endurance limit
for the anchorages occurs at about 2 million cycles to failure
(arrows indicate specimens for which failure did not occur).
A lower bound for the stress range is about 0.07f pu, which
for f pu = 270 ksi translates to Sr = 19 ksi.
Bending of the prestressing tendons also occurs when it is

held down at discrete points throughout its length. Fatigue
failures can initiate when neighboring wires rub together
or against plastic and metal ducts. This fretting fatigue
can occur in both bonded and unbonded posttensioning
systems.
The constant-amplitude fatigue threshold, (�F )TH, given

for prestressing tendons [A5.5.3.3], varies with the radius of
curvature of the tendon and shall not exceed

� 18.0 ksi for radii of curvature in excess of 30.0 ft
� 10.0 ksi for radii of curvature not exceeding 12.0 ft

The sharper the curvature is, the lower the fatigue strength
(stress range). A linear interpolation may be used for radii
between 12 and 30 ft. There is no distinctionbetween bonded
and unbonded tendons. This lack of distinction differs from
ACI Committee 215 (1992), which considers the anchorages
of unbonded tendons to be more vulnerable to fatigue and
recommends a reduced stress range comparable to the 10 ksi
for the sharper curvature.
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Table 14.5 Constant-Amplitude Fatigue Threshold
of Splices

Type of Splice

(�F )TH
for Greater Than
1,000,000 Cycles

Grout-filled sleeve, with or without
epoxy-coated bar

18 ksi

Cold-swaged coupling sleeves without
threaded ends and with or without
epoxy-coated bar; intergrally forged
coupler with upset NC threads; steel
sleeve with a wedge; one-piece
taper-threaded coupler; and single
V-groove direct butt weld

12 ksi

All other types of splices 4 ksi

From AASHTO [A5.5.3.4]. From AASHTO LRFD Bridge Design
Specifications , Copyright © 2010 by the American Association of
State Highway and Transportation Officials, Washington, DC. Used
by permission.

Fatigue of Welded orMechanical Splices of Reinforcement
For welded or mechanical connections that are subject to
repetitive loads, the constant-amplitude fatigue threshold,
(�F )TH, shall be as given in Table 14.5 [A5.5.3.4].
Review of the available fatigue and static test data indicates

that any splice that develops 125% of the yield stress of the
bar will sustain 1million cycles of a 4-ksi constant-amplitude
stress range [C5.5.3.4]. This lower limit agrees well with the
limit of 4.5 ksi for category E from the provisions for fatigue
of structural steel weldments [Table A6.6.1.2.5-3].
Where the total cycles of loading are less than one mil-

lion, (�F )TH in Table 14.5 may be increase by the quantity
24(6-logN ) ksi to a total not greater than the value given by
Eq. 14.6b. Higher values of (�F )TH up to the value given
by Eq. 14.6b may be used if justified by fatigue test data on
splices that are the same as those that will be placed in service
[A5.5.3.4].

14.1.3 Strength Limit State

A strength limit state is one that is governed by the static
strength of the materials in a given cross section. There
are five different strength load combinations specified in
Table 5.1. For a particular component of a bridge structure,
only one or maybe two of these load combinations need
to be investigated. The differences in the strength load
combinations are associated mainly with the load factors
applied to the live load. A smaller live-load factor is used
for a permit vehicle and in the presence of wind, which is
logical. The load combination that produces the maximum
load effect is then compared to the strength or resistance
provided by the cross section of a member.
In calculating the resistance to a particular factored

load effect, such as axial load, bending, shear, or torsion,
the uncertainties are represented by an understrength or

resistance factor φ. The φ factor is multiplied times the
calculated nominal resistance Rn, and the adequacy of the
design is then determined by whether or not the inequality
expressed by Eq. 14.1 is satisfied.
In the case of a reinforced concrete member there are

uncertainties in the quality of the materials, cross-sectional
dimensions, placement of reinforcement, and equations used
to calculate the resistance.
Some modes of failure can be predicted with greater

accuracy than others and the consequence of their occur-
rence is less costly. For example, beams in flexure are
usually designed as underreinforced so that failure is precip-
itated by gradual yielding of the tensile reinforcement while
columns in compression may fail suddenly without warning.
A shear failure mode is less understood and is a combination
of a tension and compression failure mode. Therefore, its
φ factor should be somewhere between that of a beam in
flexure and a column in compression. The consequence of a
column failure is more serious than that of a beam because
when a column fails it will bring down a number of beams;
therefore, its margin of safety should be greater. All of these
considerations, and others, are reflected in the resistance
factors specified [A5.5.4.2] and presented in Table 14.6.
Sections are compression-controlled when the net tensile

strain εt in the extreme tension steel reaches the strain cor-
responding to its specific yield strength fy just as the con-
crete reaches its assumed ultimate strain of−0.003 (balanced
strain conditions). For Grade 60 reinforcement, and for all
prestressed reinforcement, the compression controlled strain
limit may be set at 0.002 [A5.7.2.1].

Table 14.6 Resistance Factors for Conventional
Construction

Strength Limit State φ Factor

For tension-controlled reinforced concrete
sections

0.90

For tension-controlled prestressed concrete
sections

1.00

For shear and torsion
Normal weight concrete 0.90
Lightweight concrete 0.70

For compression-controlled sections with spirals
or ties, except for seismic zones 2, 3, and 4

0.75

For bearing on concrete 0.70
For compression in strut-and-tie models 0.70
For compression in anchorage zones
Normal-weight concrete 0.80
Lightweight concrete 0.65

For tension in steel in anchorage zones 1.00
For resistance during pile driving 1.00

From AASHTO [A5.5.4.2.1]. From AASHTO LRFD Bridge Design
Specifications , Copyright © 2010 by the American Association of
State Highway and Transportation Officials, Washington, DC. Used
by permission.
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Sections are tension controlled when the net tension strain
εt in the extreme tension steel is equal to or greater than
0.005 just as the concrete reaches its assumed ultimate strain
of −0.003. Flexural members are usually tension controlled
with sufficient net tension strain to provide ample warning of
failure with excessive deflection and cracking [C5.7.2.1].
The resistance factor for sections that are between

compression-controlled and tension-controlled cases are
determined based upon a transition between the two factors
of 0.75 and 1. The basis for the interpolation is the curvature
of the section at failure. Assuming that the ultimate concrete
strain is 0.003, then the curvature is also proportional to the
maximum tensile strain. The tensile strain and curvature are
a function of the depth of the neutral axis relative to the
effective section depth. This ratio (curvature) is used as a
basis to transition from a compression-controlled section to
a tension-controlled one as prescribed in [A5.5.4.2.1]. The
associated equations are shown in Figure 14.5. Although
computationally complex for the development of an axial
force–moment interaction relationship, it provides a rational
basis for the transition.
Note that for a typical underreinforced beam, the steel

strain will be greater than 0.005 and φ is equal to 0.9.
Alternatively, if c /d ≤ 0.375 (a /d ≤ 0.375β1), then φ is
equal to 0.9 or 1.0.
For beams with or without tension that are a mixture of

nonprestressed and prestressed reinforcement, for tension-
controlled sections, the φ factor depends on the partial pre-
stressing ratio (PPR) and is given by

φ = 0.90 + 0.10PPR (14.7)

in which

PPR = Apsfpy

Apsfpy + Asfy

(14.8)

where Aps is the area of prestressing steel, f py is the yield
strength of prestressing steel, As is area of nonprestressed
tensile reinforcement, and fy is the yield strength of the
reinforcing bars.
No guidance is provided in AASHTO regarding partially

prestressed sections with steel strains less than 0.005. How-
ever, a weighted average φ seems reasonable; alternatively
use the nonprestressed value.

14.1.4 Extreme Event Limit State

Extreme event limit states are unique occurrences with
return periods in excess of the design life of the bridge.
Earthquakes, ice loads, vehicle collisions, and vessel col-
lisions are considered to be extreme events and are to be
used one at a time. However, these events may be combined
with a major flood (recurrence interval >100 years but
<500 years) or with the effects of scour of a major flood,
as shown in Table 5.1. For example, it is possible that
scour from a major flood may have reduced support for
foundation components when the design earthquake occurs
or when ice floes are colliding with a bridge during a major
flood.
The resistance factors φ for an extreme event limit state

are to be taken as unity. This choice of φ may result in exces-
sive distress and structural damage, but the bridge structure
should survive and not collapse.
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Fig. 14.5 Variation of φ with net tensile strain εt and dt /c for Grade 60 reinforcement and for prestressing steel in AASHTO [C5.5.4.2.1].
(From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State Highway and Transportation
Officials, Washington, DC. Used by permission.)



FLEXURAL STRENGTH OF REINFORCED CONCRETE MEMBERS 257

14.2 FLEXURAL STRENGTH OF REINFORCED
CONCRETEMEMBERS

The AASHTO (2010) bridge specifications present unified
design provisions that apply to concrete members rein-
forced with a combination of conventional steel bars and
prestressing strands. Such members are often called partially
prestressed. The expressions developed are also applicable
to conventional reinforced and prestressed concrete when
one reinforcement or the other is not present. Background
for the development of these provisions is located in Loov
(1988) and Naaman (1992).

14.2.1 Depth to Neutral Axis for Beams
with Bonded Tendons

Consider the flanged cross section of a reinforced con-
crete beam shown in Figure 14.6 and the accompanying
linear strain diagram. For bonded tendons, the compatibility
condition gives the strain in the surrounding concrete as

εcp = −εcu
dp − c

c
= −εcu

(
dp

c
− 1

)
(14.9)

where εcu is the limiting strain at the extreme compression
fiber, dp is the distance from the extreme compression fiber
to the centroid of the prestressing tendons, and c is the dis-
tance from the extreme compression fiber to the neutral axis.
Again, tensile strains are considered positive and compres-
sive strains are negative.
From Eq. 13.44, the strain in the prestressing tendon

becomes

εps = −εcu

(
dp

c
− 1

)
+ �εpe (14.10)

where �εpe is approximately equal to f pe/Ep and remains
essentially constant throughout the life of the member
(Collins and Mitchell, 1991). At the strength limit state,
AASHTO [A5.7.2.1] defines εcu = −0.003 if the concrete
is unconfined. For confined concrete, εcu can be an order
of magnitude greater than for unconfined concrete (Mander

Fig. 14.6 Strains in a reinforced concrete beam. [Reproducedwith
permission from R. E. Loov (1988).]

Fig. 14.7 Forces in a reinforced concrete beam.

et al., 1988).With both�εpe and εcu being constants depend-
ing on the prestressing operation and the lateral confining
pressure, respectively, the strain in the prestressing tendon
εps and the corresponding stress f ps is a function only of the
ratio c /dp.
Equilibrium of the forces in Figure 14.7 can be used

to determine the depth of the neutral axis c . However, this
requires the determination of f ps that is a function of the ratio
c /dp. Such an equation has been proposed by Loov (1988),
endorsed by Naaman (1992), and adopted by AASHTO
[A5.7.3.1.1] as

fps = fpu

(
1 − k

c

dp

)
(14.11)

k = 2

(
1.04 − fpy

fpu

)
(14.12)

For low-relaxation strands with f pu = 270 ksi, Table 13.4
gives f py/f pu = 0.90, which results in k = 0.28. By using
Ep = 28,500 ksi, neglecting εce, and assuming that εcu =
−0.003 and f pe = 0.80(0.70) f pu = 0.56f pu, Eqs. 14.10 and
14.11 become

εps = 0.003
dp

c
+ 0.0023 (14.10a)

fps = 270

(
1 − 0.28

c

dp

)
(14.11a)

Substituting values of c /dp from 0.05 to 0.50 into Eq.
14.10a and 14.11a, the approximate stress–strain curve has
been generated and compared to theRamberg–Osgood curve
of Eq. 13.41 in Figure 14.8. Also shown on Figure 14.8 is
the 0.2% offset strain often used to determine the yield point
of rounded stress–strain curves and its intersection with
f py = 0.9f pu. The agreement with both curves is very good.
When evaluating the compressive forces in the concrete, it

is convenient to use an equivalent rectangular stress block. In
AASHTO [A5.7.2.2], the following familiar provisions for
the stress block factors have been adopted:

� Uniform concrete compressive stress of 0.85f
′
c

� Depth of rectangular stress block a = β1c
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Fig. 14.8 Comparison of stress–strain curves for 270-ksi low-relaxation prestressing strands. [Reproducedwith permission from R. E. Loov
(1988).]

Here,

β1 = 0.85 for f
′
c ≤ 4.0 ksi

β1 = 0.65 for f
′
c ≥ 8.0 ksi

β1 = 0.85 − 0.05
(
f

′
c − 4.0

)
for 4.0 ksi ≤ f

′
c ≤ 8.0 ksi

(14.13)

Note that in Eq. 14.13 and in the derivations that follow,
the compressive stresses f

′
c and f

′
y are taken as their absolute

values.
Equilibrium of the forces in the beam of Figure 14.7

requires that the total nominal compressive force equals the
total nominal tensile force, that is,

Cn = Tn (14.14)

in which

Cn = Cw + Cf + Cs (14.14a)

Tn = Apsfps + Asfy (14.14b)

where
Cw = concrete compressive force in the web
Cf = concrete compressive force in the flange
Cs = compressive force in the nonprestressed steel
Aps = area of prestressing steel
f ps = average stress in prestressing steel at nominal

bending resistance of member as given by
Eq. 14.11

As = area of nonprestressed tension reinforcement
fy = specified minimum yield strength of tension

reinforcement

The concrete compressive force in the web Cw is over the
cross-hatched area in Figure 14.7 of width equal to the web

width bw that extends through the flange to the top fibers. It
is equal to

Cw = 0.85f
′
cabw = 0.85β1f

′
ccbw (14.15a)

which can be thought of as an average stress in the concrete
of 0.85β1f

′
c over the area cbw. Using stress block over the

portion of the concrete in the flange,

Cf = 0.85f
′
c

(
b − bw

)
hf (14.15b)

The compressive force in the compression steel Cs, assum-
ing that its compressive strain ε

′
s in Figure 14.6 is greater than

or equal to the yield strain ε
′
y , is

Cs = A
′
sf

′
y (14.16)

where A
′
s is the area of the compression reinforcement and

f
′
y is the absolute value of specified yield strength of the

compression reinforcement. The assumption of yielding of
the compression steel can be checked by calculating ε

′
s from

similar strain triangles in Figure 14.6 and comparing to ε
′
y =

f
′
y/Es , that is,

ε
′
s = εcu

c − d
′
s

c
= εcu

(
1 − d

′
s

c

)
(14.17)

where d
′
s is the distance from the extreme compression fiber

to the centroid of the compression reinforcement.
Substitute f ps from Eq. 14.11 into Eq. 14.14b and the total

tensile force becomes

Tn = Apsfpu

(
1 − k

c

dp

)
+ Asfy (14.18)
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By substitutingthe compressive forces fromEqs. 14.15 and
14.16 into Eq. 14.14a, the total compressive force becomes

Cn = 0.85β1f
′
c cbw + 0.85f

′
c

(
b − bw

)
hf + A

′
sf

′
y

(14.19)
Equate the total tensile and compressive forces, and solve

for c to give

c = Apsfpu + Asfy − A
′
sf

′
y − 0.85f

′
c

(
b − bw

)
hf

0.85β1f
′
cbw + kApsfpu/dp

≥ hf

(14.20)
If c is less than h

′
f , the neutral axis is in the flange and

c should be recalculated with bw = b in Eq. 14.20. This
expression for c is completely general and can be used for
prestressed beams without reinforcing bars (As = A

′
s = 0)

and for reinforced concrete beams without prestressing steel
(Aps = 0).
Equation 14.20 assumes that the compression reinforce-

ment A
′
s has yielded. If it has not yielded, the stress in the

compression steel is calculated from f
′
s = ε

′
sEs , where ε

′
s is

determined from Eq. 14.17. This expression for f
′
s replaces

the value of f
′
y in Eq. 14.20 and results in a quadratic

equation for determining c . As an alternative, one can sim-
ply and safely neglect the contribution of the compression
steel when it has not yielded and set A

′
s = 0 in Eq. 14.20.

14.2.2 Depth to Neutral Axis for Beams with
Unbonded Tendons

When the tendons are not bonded, strain compatibility with
the surrounding concrete cannot be used to determine the
strain and the stress in the prestressing tendon. Instead the to-
tal change in length of the tendon between anchorage points
must be determined by an overall structural system analysis.
Over the years, a number of researchers have proposed

equations for the prediction of the stress in unbonded ten-
dons at ultimate. The work discussed herein is based on
the research of MacGregor (1989) as presented by Roberts-
Wollman et al. (2005). MacGregor developed the equation
for predicting the unbonded tendon stress at ultimate that is
currently in AASHTO [A5.7.3.1.2].
The structural system at ultimate is modeled as a series

of rigid members connected by discrete plastic hinges at
various locations over supports and near midspan to form
a collapse mechanism. The simplest collapse mechanism
is a single span structure with a straight tendon anchored
at the ends and a plastic hinge at midspan (Fig. 14.9). This
model is used to illustrate the various parameters. All tendon
elongation δ is assumed to occur as the hinge opens and is
defined as

δ = zpθ (14.21)

where θ is angle of rotation at the hinge and zp is the dis-
tance from the neutral axis to the tendon. The tendon strain
increase is

�εps = δ

L
= zpθ

L
=

(
dps − c

)
θ

L
(14.22)

Fig. 14.9 Failure mechanism for a simple-span structure. [From
Roberts-Wollmann et al. (2005). Usedwith permission of American
Concrete Institute.]

where L is the length of the tendon between anchorages, d ps
is the depth from the compression face to the centroid of the
prestressing tendon, and c is the depth from the compression
face to the neutral axis (Fig. 14.9). Small strains are assumed
so the span length L and tendon length are considered equal.
The angle θ can be defined as the integral of the curvature

φ(x) over the length of the plastic hinge Lp:

θ =
Lp∫

0

φ (x) dx

If the curvature is assumed constant, the integral can be
approximated as

θ = Lpφ = Lp

εcu

c

where εcu is the ultimate strain in the concrete (Fig. 14.6).
Equation 14.22 becomes

�εps = Lp

c
εcu

(
dps − c

L

)
= ψεcu

(
dps − c

L

)

whereψ = Lp/c . Assuming the tendon remains in the elastic
range,

�fps = Eps�εps = Epsψεcu

(
dps − c

L

)
(14.23)

Based on physical tests by others and observations byMac-
Gregor (1989), a value ofψ = 10.5was recommended. Using
E ps = 28,500 ksi and εcu = 0.003, Eq. 14.23 becomes

�fps = (28,500) (10.5) (0.003)

(
dps − c

L

)

= 900

(
dps − c

L

)
ksi (14.24)

MacGregor (1989) further developed the equation to
predict tendon stress increases in structures continuous over
interior supports. Consider the two collapse mechanisms for
the three-span structure with anchorages at the ends shown
in Figure 14.10. In Figure 14.10(a), a collapse mechanism
results when one hinge forms at the interior support and a
second at midspan. In Figure 14.10(b), a collapse mecha-
nism results when hinges form at the two interior supports
and a third at midspan. MacGregor recognized from his tests
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Fig. 14.10 Collapse mechanism for continuous structures. [From
Roberts-Wollmann et al. (2005). Usedwith permission of American
Concrete Institute].

that the rotation at a support hinge is only 1
2 of the rotation

at a midspan hinge. Equation 14.21 shows that elongation
varies directly with θ so that the total tendon elongation is

δtotal = δmidspan

(
1 + N

2

)

where N is the number of support hinges required to form a
flexural collapse mechanism that are crossed by the tendon
between points of discrete bonding or anchoring, and δmidspan
is the elongation for a simple-span tendon.
For the simple-span case in Figure 14.9, N = 0. As shown

in Figure 14.10, if the critical span is an end span, N = 1; if it
is an interior span, N = 2.MacGregor presented his equation
in the following form:

fps = fpe + 900

(
dps − cy

�e

)
ksi (14.25)

where f ps is the stress (ksi) in the tendon at ultimate, f pe is
the effective prestress (ksi) in the tendon after all losses, cy
(in.) indicates that the depth to the neutral axis is calculated
assuming all mild and prestressed reinforcing steel crossing
the hinge opening is at yield, and

�e = L

(1 + N/2)
= 2L

2 + N
= 2�i

2 + N

where �i is the length of tendon between anchorages (in.).
Equation 14.25 is the equation given for determining the
average stress in unbonded prestressing steel in AASHTO
[A5.7.3.1.2].
Following the same procedure as for the bonded tendon

in establishing force equilibrium, the expression for the dis-
tance from the extreme compression fiber to the neutral axis
for an unbonded tendon is

c = Apsfps + Asfy − A
′
sf

′
y − 0.85f

′
c

(
b − bw

)
hf

0.85β1f
′
cbw

≥ hf

(14.26)
where f ps is determined from Eq. 14.25. If c is less than
hf, the neutral axis is in the flange and c should be recal-
culated with bw = b in Eq. 14.26. If the strain in the com-
pression reinforcement calculated by Eq. 14.17 is less than
the yield strain ε

′
y, f

′
y in Eq. 14.26 should be replaced by f

′
s

as described previously for Eq. 14.20.

Substitution of Eq. 14.25 into Eq. 14.26 results in a
quadratic equation for c . Alternatively, an iterative method
can be used starting with a first trial value for the unbonded
tendon stress of [C5.7.3.1.2]

fps = fpe + 15 ksi (14.27)

in Eq. 14.26.With c known, f ps is calculated from Eq. 14.25,
compared with the previous trial, and a new value chosen.
These steps are repeated until convergence within an accept-
able tolerance is attained.

14.2.3 Nominal Flexural Strength

With c and f ps known for either bonded or unbonded ten-
dons, it is a simple matter to determine the nominal flexural
strength Mn for a reinforced concrete beam section. If we
refer to Figure 14.7 and balance the moments about Cw, to
obtain

Mn = Apsfps

(
dp − a

2

)
+ Asfy

(
ds − a

2

)
+ Cs

(a

2
− d

′
s

)

+ Cf

(
a

2
− hf

2

)

where a = β1c and c is not less than the compression flange
thickness hf. Substitutionof Eqs. 14.15b and 14.16 forCf and
Cs results in

Mn = Apsfps

(
dp − a

2

)
+ Asfy

(
ds − a

2

)
+ A

′
sf

′
y

(a

2
− d

′
s

)

+ 0.85f
′
c

(
b − bw

)
hf

(
a

2
− hf

2

)
(14.28)

If the depth to the neutral axis from the extreme compres-
sion fiber c is less than the compression flange thickness
hf, or if the beam has no compression flange, the nominal
flexural strengthMn for the beam section is calculated from
Eq. 14.28 with bw set equal to b .

Example 14.1 For the beam cross section in Figure 14.11,
determine the distance from the extreme compression fiber to
the netural axis c , the average stress in the prestressing steel
f ps, and the nominal moment strengthMn for (a) bonded ten-
dons and (b) unbonded tendons. Use normal weight concrete
with f

′
c = 6 ksi, Grade 60 mild steel reinforcement, and 0.5

in., 270 ksi low-relaxation prestressing tendons. The beam is
uniformly loaded with a single-span length of 35 ft.

1. Material Properties

β1 = 0.85 − 0.05
(
f

′
c − 4

)
= 0.85− 0.05 (6 − 4)

= 0.75

Ec = 1820
√

f
′
c = 1820

√
6 = 4458 ksi

εcu = −0.003

fy = |f ′
y | = 60 ksi

Es = 29,000 ksi
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Fig. 14.11 Beam cross section used in Example 14.1.

εy =
∣∣∣ε

′
y

∣∣∣ = fy

Es

= 60

29,000
= 0.00207

fpy = 0.9fpu = 0.9 (270) = 243 ksi

k = 2

(
1.04 − fpy

fpu

)
= 2 (1.04 − 0.9) = 0.28

Assume
fpe = 0.6 fpu = 162 ksi

Ep = 28,500 ksi

2. Section Properties

b = 18 in., bw = 6 in., h = 40 in., hf = 5 in.

d
′
s = 2 + 0.75/2 = 2.38 in.

ds = h − (2 + 1.0/2) = 40− 2.5 = 37.5 in.

dp = h − 4 = 36 in.

As = 3.93 in.2, A
′
s = 0.88 in.2

Aps = 10 (0.153) = 1.53 in.2

3. Depth to Neutral Axis and Stress in Prestressing
Steel
Bonded Case [A5.7.3.1.1]. From Eq. 14.20

c = Apsfpu + Asfy − A
′
sf

′
y − 0.85f

′
c

(
b − bw

)
hf

0.85β1f
′
cbw + (

kApsfpu/dp

)

=
1.53(270) + 3.93(60) − 0.88(60)

−0.85(6)(18 − 6)(5)

0.85(0.75)(6)(6) + 0.28(1.53)(270)/36
= 11.1 in. > hf = 5 in., neutral axis in web

From Eq. 14.17

ε
′
s = εcu

(
1− d

′
s

c

)
= −0.003

(
1− 2.38

11.1

)

= −0.00236

|ε′
s| = 0.00236 > |ε′

y | = 0.00207

∴ compression steel has yielded

From Eq. 14.11

fps = fpu

(
1 − k

c

dp

)

fps = 270

(
1 − 0.28

11.1

36

)
= 247 ksi

Unbonded Case [A5.7.3.1.2]. From Eq. 14.25

fps = fpe + 900

(
dps − cy

�e

)
ksi

N = Ns = 0, �i = 35 ft = 420 in.,

�e = 2�i

2 + Ns

= �i = 420 in.

First Iteration : Assume fps = fpe + 15.0 = 162 + 15 =
177 ksi [C5.7.3.1.2]
From Eq. 14.26

c = Apsfps + Asfy − A
′
sf

′
y − 0.85f

′
c

(
b − bw

)
hf

0.85β1f
′
cbw

≥ hf

=
1.53(177) + 3.93(60) − 0.88(60)

−0.85(6)(18 − 6)5

0.85(0.75)(6)(6)
= 6.44 in. > hf = 5 in., neutral axis in web.

From Eq. 14.25

fps = 162 + 900

(
36− 6.44

420

)
= 225 ksi < fpy

= 243 ksi

Second Iteration : Assume f ps = 225 ksi

c =
1.53(225) + 3.93(60) − 0.88(60)

−0.85(6)(18 − 6)5

0.85(0.75)(6)(6)
= 9.66 in.

fps = 162 + 900

(
36 − 9.66

420

)
= 218 ksi

Third Iteration : Assume f ps = 218 ksi

c =
1.53(218) + 3.93(60) − 0.88(60)

−0.85(6)(18 − 6)5

0.85(0.75)(6)(6)
= 9.17 in.
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fps = 162 + 900

(
36− 9.17

420

)
= 219 ksi,

converged c = 9.17 in.

From Eq. 14.17

ε
′
s = εcu

(
1 − d

′
s

c

)
= −0.003

(
1 − 2.38

9.17

)

= −0.00222

|ε′
s| = 0.00222 > |ε′

y| = 0.00207

∴ compression steel has yielded.

4. Nominal Flexural Strength [A5.7.3.2.2]
Bonded Case

a = β1c = 0.75 (11.1) = 8.33 in.

From Eq. 14.28

Mn = Apsfps

(
dp − a

2

)
+ Asfy

(
ds − a

2

)

+ A
′
s

∣∣∣f
′
y

∣∣∣
(a

2
− d

′
s

)

+ 0.85f
′
c

(
b − bw

)
hf

(
a

2
− hf

2

)

Mn = 1.53 (240)

(
36 − 8.83

2

)

+ 3.93 (60)

(
37.5 − 8.83

2

)

+ 0.88 (60)

(
8.83

2
− 2.38

)

+ 0.85 (6) (18 − 6) 5

(
8.83

2
− 5

2

)

Mn = 20495 k-in. = 1708 k-ft

Unbonded Case

a = β1 c = 0.75 (9.17) = 6.88 in.

From Eq. 14.28

Mn = 1.53 (214)

(
36 − 6.88

2

)

+ 3.93 (60)

(
37.5− 6.88

2

)

+ 0.88 (60)

(
6.88

2
− 2.38

)

+ 0.85 (6) (18 − 6) 5

(
6.88

2
− 5

2

)

Mn = 19296 k-in. = 1608 k-ft

For the unbonded case, with the same reinforcement
as the bonded case, the nominal flexural strength is
approximately 6% less than that of the bonded case.

14.2.4 Ductility, Maximum Tensile Reinforcement,
and Resistance Factor Adjustment

Ductility in reinforced concrete beams is an important fac-
tor in their design because it allows large deflections and
rotations to occur without collapse of the beam. Ductility
also allows redistribution of load and bending moments in
multibeam deck systems and in continuous beams. It is also
important in seismic design for dissipation of energy under
hysteretic loadings.
A ductility index μ, defined as the ratio of the limit state

curvature ψu to the yield curvature ψy,

μ = ψu

ψy

(14.29)

has been used as a measure of the amount of ductility avail-
able in a beam. An idealized bilinear moment–curvature
relationship for a reinforced concrete beam is shown in
Figure 14.12, where the elastic and plastic flexural stiff-
nesses Ke and Kp can be determined from the two points
(ψy, My) and (ψu, Mu). At the flexural limit state, the
curvature ψu can be determined from the strain diagram in
Figure 14.6 as

ψu = εcu

c
(14.30)

where εcu is the limit strain at the extreme compression fiber
and c is the distance from the extreme compression fiber to
the neutral axis. The yield curvature ψy is determined by
dividing the yield moment My, often expressed as a frac-
tion of Mu, by the flexural stiffness EI for the transformed
elastic-cracked section. In design, a beam is considered to
have sufficient ductility if the value of the ductility indexμ is
not less than a specified value. The larger the ductility index,
the greater the available curvature capacity, and the larger the
deformations in the member before collapse occurs.
A better measure of ductility, as explained by Skogman

et al. (1988), is the rotational capacity of the member
developed at a plastic hinge. A simply supported beam
with a single concentrated load at midspan is shown in

Fig. 14.12 Bilinear moment–curvature relationship.
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K

Fig. 14.13 Idealized curvature diagram at flexural limit state:
(a) limit state load, (b) moment diagram, and (c) curvature diagram.

Figure 14.13. The moment diagram is a triangle and the
curvature diagram at the limit state is developed from the
moment–curvature relationship shown in Figure 14.12.
The sharp peak in the plastic portion of the curvature dia-
gram is not realistic because when hinging begins it spreads
out due to cracking of the concrete and yielding of the steel.
Sawyer (1964) recommended that the spread in plasticity
extend a distance of one-half the effective depth d at each
moment concentration. The elastic contribution to the cur-
vature diagram is small compared to the plastic curvature
and can be neglected. From moment–area principles, the
approximate plastic rotation θp in the hinge is the area of
the simplified curvature diagram in Figure 14.13(c). Using
the relationship in Eq. 14.30, the ductility measure becomes

θp = ψud = εcu
d

c
(14.31)

From Eq. 14.31 it is clear that ductility can be improved
by increasing the limit strain εcu or by decreasing the depth
to the neutral axis c . As shown in Figure 13.5, confining the
concrete with sprials or lateral ties can substantially increase
εcu. The neutral axis depth c depends on the total compres-
sive force, which, in turn, must be balanced by the total

tensile force. Therefore, c can be decreased by increasing
the concrete compressive strength f

′
c , by increasing the area

of the compression reinforcement A
′
s , or by decreasing the

tensile steel areas Aps and As . The effect of these parameters
on c can also be observed in Eq. 14.20.
In previous editions of the bridge specifications, the

ductility control for reinforced concrete was to limit the
compressive force subject to a brittle failure by specifying a
maximum tensile steel reinforcement ratio ρmax as 0.75 of
the balanced steel ratio ρb, that is,

ρ = As

bd
≥ ρmax = 0.75ρb (14.32)

where ρ is the tensile reinforcement ratio and ρb is the
reinforcement ratio that produces balanced strain conditions.
The balanced strain conditions require that the concrete
strain εc is at εcu when the steel strain εs reaches εy. By
equating the balanced tensile and compressive forces in a
rectangular singly reinforced concrete beam, and by using
similar strain triangles, the balanced steel ratio becomes

ρb = Asb

bd
= 0.85β1f

′
c

fy

∣∣εcu
∣∣

∣∣εcu
∣∣ + εy

(14.33)

where Asb is the balanced tensile steel area. Introducing the
mechanical reinforcement index ω as

ω = ρ
fy

f
′
c

(14.34)

Multiply both sides of Eq. 14.32 by fy/f
′
c and substitute

Eq. 14.33 to get

ω ≤ 0.64β1

∣∣εcu
∣∣

∣∣εcu
∣∣ + εy

(14.35)

Substituting εcu = −0.003, εy = 0.002 yields

ω ≤ 0.38β1 (14.36)

A similar limitation was also placed on the prestressed
mechanical reinforcement index ωp in previous editions of
the bridge specifications as

ωp = Apsfps

bdpf
′
c

≤ 0.36β1 (14.37)

The disadvantage of using tensile reinforcement ratios
to control brittle compression failures is that they must be
constantly modified, sometimes in a confusing manner, to
accommodate changes in the compressive force caused by
the addition of flanges, compression reinforcement, and
combinations of nonprestressed and prestressed tensile
reinforcement. A better approach is to control the brittle
concrete compressive force by setting limits on the distance
c from the extreme compressive fiber to the neutral axis.
Consider the left-hand side of Eq. 14.36 defined by Eq. 14.34
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and substitute the compressive force in the concrete for the
tensile force in the steel, so that

ω = As

bds

fy

f
′
c

= 0.85f
′
cβ1cb

bdsf
′
c

= 0.85β1
c

ds

(14.38)

where ds is the distance from the extreme compression fiber
to the centroid of the nonprestressed tensile reinforcement.
Similarly, for Eq. 14.37

ωp = Apsfps

bdpf
′
c

= 0.85f
′
cβ1cb

bdpf
′
c

= 0.85β1
c

dp

(14.39)

where dp is the distance from the extreme compression fiber
to the centroid of the prestressing tendons. Thus, putting lim-
its on the neutral axis depth is the same as putting limits on
the tensile reinforcement, only it can be much simpler. Fur-
ther , by limiting the maximum value for the ratio c/d , this
assures a minimum ductility in the member as measured by
the rotational capacity at the limit state of Eq . 14.31.
All that remains is to decide on a common limiting value

on the right-hand sides of Eqs. 14.36 and 14.37 and a uni-
fied definition for the effective depth to the tensile reinforce-
ment. These topics have been presented by Skogman et al.
(1988) and discussed by Naaman et al. (1990). In AASHTO
[A5.7.3.3.1] (2004), the recommendations proposed by Naa-
man (1992) that the right-hand sides of Eqs. 14.36 and 14.37
be 0.36β1 and that the effective depth from the extreme com-
pression fiber to the centroid of the tensile force in the tensile
reinforcement be defined as

de = Apsfpsdp + Asfyds

Apsfps + Asfy

(14.40)

where f ps is calculated by either Eq. 14.11 or Eq. 14.25 or in a
preliminary design can be assumed to be f py. Finally, the duc-
tility and maximum tensile reinforcement criterion became

0.85β1
c

de

≤ 0.36β1

or simply [C5.7.3.3.1]

c

de

≤ 0.42 (14.41)

The primary limitation to the approach based on 0.75ρb is
that it does not address the overreinforced case typical for
columns, nor does it provide a smooth transition between
a ductile flexural failure mode and the less ductile column
primarily in compression. As previously discussed and
illustrated in Figure 14.5, the resistance factor is adjusted to
provide this transition based on whether the cross section is
tension controlled or compression controlled.
For the criterion represented by Eq. 14.41, the strain at

the centroid of the tension steel is εs = 0.003(0.58)/0.42
= 0.00414. In the current provisions [A5.7.2.1] based on
the work by Mast (1992), the net tensile strain limit at the
centroid of the extreme tension reinforcement dt was chosen
to be 0.005 for tension-controlled sections. This single value

applies to all types of steel (prestressed and nonprestressed)
and assures sufficient ductility to provide ample warning of
failure with excessive deflection and cracking [C5.7.2.1].
Henceforth, the traditional ductility check is not required
in AASHTO (2010) and is replaced by adjustments in the
resistance factor φ. A limit on tension-controlled sections
that have sufficient ductility can be expressed as c /dt ≤
0.003/(0.003 + 0.005) = 0.375 (a /dt ≤ 0.375β1) in which
case φ is equal to 0.9 or 1.0.

Example 14.2 Determine the steel strain and the associ-
ated resistance factor for the beam in Figure 14.11 with the
properties given in Example 14.1.
Bonded Case

c = 11.1 in. fps = 247 ksi dt = 37.5 in.

εs = 0.003
(
dt − c

)

c
= 0.003 (37.5 − 11.1)

11.1
= 0.0071

εs ≥ 0.005 φ = 0.9 or 1.0

To refine the computation for the partially prestressed
section, a weighted resistance factor between 0.9 and 1.0
could be computed. For tension controls, this simplifies to
(Eq. 14.7)

φ = 0.90 + 0.10 (PPR) = 0.90 + 0.10 (0.61) = 0.96

where (Eq. 14.8)

PPR = Apsfpy

Apsfpy + Asfy

= 1.53 (243)

1.53 (243) + 3.93 (60)
= 0.61

Unbonded Case

c = 9.17 in. fps = 214 ksi dt = 37.5 in.

εs = 0.003 (37.5− 9.17)

9.17
= 0.0093

εs ≥ 0.005 φ = 0.9 or 1.0

Refinement based upon the prestressing ratio

PPR = Apsfpy

Apsfpy + Asfy

= 1.53 (243)

1.53 (243) + 3.93 (60)
= 0.61

φ = 0.90 + 0.10 (PPR) = 0.90 + 0.10 (0.61) = 0.96

14.2.5 Minimum Tensile Reinforcement

Minimum tensile reinforcement is required to guard against
a possible sudden tensile failure. This sudden tensile failure
could occur if the moment strength provided by the tensile
reinforcement is less than the cracking moment strength of
the gross concrete section. To account for the possibility that
the moment resistance Mn provided by nonprestressed and
prestress tensile reinforcement may be understrength while
the moment resistance M cr based on the concrete tensile
strength may be overstrength, AASHTO [A5.7.3.3.2] gives
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the criteria that the amount of prestressed and nonprestressed
tensile reinforcement shall be adequate to develop a factored
flexural resistance Mr = φMn at least equal to the lesser of:

� 1.2 times the cracking moment Mcr determined on the
basis of elastic stress distribution, that is,

φMn ≥ 1.2Mcr (14.42)

or
� 1.33 times the factored moment required by the appli-

cable strength load combination, that is,

φMn ≥ 1.33Mu (14.43)

in whichMcr may be taken as

Mcr = Sc

(
fr + fcpe

) − Mdnc

(
Sc

Snc
− 1

)
≥ Scfr

(14.44)

where
fr = modulus of rupture of the concrete given by

Eq. 13.19b [A5.4.2.6] (ksi)
fcpe = compressive stress in concrete due to

effective prestress forces only (after
allowance for all prestress losses) at extreme
fiber of section where tensile stress is caused
by externally applied loads (ksi)

Mdnc = total unfactored dead-load moment acting on
the monolithic or noncomposite section (k-ft)

Sc = section modulus for the extreme fiber of the
composite section where tensile stress is
caused by externally applied loads (in.3)

Snc = section modulus for the extreme fiber of the
monolithic or noncomposite section where
tensile stress is caused by externally applied
loads (in.3)

Where the beams are designed for the monolithic or non-
composite section to resist all loads, substitute Snc for Sc in
Eq. 14.44 for the calculation ofMcr.
Some concrete components have relatively large cross

sections required by considerations other than strength,
for example, pier caps that are oversized or footings with
large dimensions. These large cross-section components
have large cracking moments and Eq. 14.42 may require
reinforcement considerably larger than what is required for
strength. To avoid providing excessive reinforcement where
it is not needed for strength, Eq. 14.43 provides a limit on
the overstrength required.

14.2.6 Loss of Prestress

After a reinforced concrete member is precompressed by pre-
stressing tendons, a decrease in stress occurs that reduces the
effectiveness of the prestress force. In early applications of
the prestressing concept using mild steel bars, the prestress
losses were two-thirds of the prestress force and prestressing

was not effective. It took the development of high-strength
steel wire with prestress losses of about one-seventh the pre-
stress force to make the prestressing concept work (Collins
and Mitchell, 1991).
Estimating prestress losses is a complex process. The

losses are affected by material factors such as mix design,
curing procedure, concrete strength, and strand relaxation
properties and by environmental factors such as temperature,
humidity, and service exposure conditions. In spite of the
difficulties, it is important to have a reasonably accurate
estimate of prestress losses. If prestress losses are underesti-
mated, the actual precompression force may be smaller than
that required to prevent tensile stresses from being exceeded
at the bottom fibers of the girder under full service load. If
prestress losses are overestimated, a higher than necessary
prestress must be provided.
To address the need of more accurate estimates of prestress

losses and the impact of high-strength concrete (8 ksi ≤
f

′
c ≤ 15 ksi), research has been conducted to evaluate the

AASHTO provisions and to make recommendations for
estimating prestress losses. The discussion given herein is
based on the work of Tadros et al. (2003), which presents
the background and literature review used in developing the
provisions in AASHTO [A5.9.5].
A schematic showing the changes in strand (tendon) steel

stress is given in Figure 14.14. Some of the prestress losses
occur almost instantaneously while others take years before
they finally stabilize. Immediate prestress losses are due
to slip of the tendons in the anchorages �fpA plus friction
between a tendon and its conduit �fpF (AB ), and elastic
compression (shortening) of the concrete �fpES (CD ).
Long-time prestress losses �fpLT are due to the sum of
shrinkage of concrete �fpSR, creep of concrete �fpCR, and
relaxation of the prestressing tendon �fpR(DE + FG +
HK ). Prestress loss is considered a positive quantity. There
are also elastic gains shown in Figure 14.14 when the deck
concrete is placed (EF ) and when superimposed dead load
(GH ) and live load (IJ ) are added. Elastic gain is considered
a negative quantity in the total loss value.

Total Loss of Prestress [A5.9.5.1] The total prestress loss
�fpT is the accumulation of the losses that occur at the differ-
ent load stages throughout the life of the member. The total
prestress losses depend on the method used to apply the pre-
stress force.

For Pretensioned Members

�fpT = �fpES + �fpLT (14.45)

For Posttensioned Members

�fpT = �fpA + �fpF + �fpES + �fpLT (14.46)

The prestress losses indicated by the terms in Eqs. 14.45
and 14.46 are discussed in the sections that follow. The
expressions developed to calculate the prestress losses
should be considered as estimates of the magnitudes of
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Fig. 14.14 Stress versus time in the strands in a pretensioned concrete girder. [Reproduced with permission from Tadros et al., (2003).]

the different quantities. Too many variables are associated
with the prestressing operation, the placing and curing of
the concrete, and the service environment to make accu-
rate calculations. However, the expressions are sufficiently
accurate for designing members with prestressing tendons
and estimating their strength.

Anchorage Set Loss [A5.9.5.2.1] In posttensioned con-
struction not all of the stress developed by the jacking force
is transferred to themember because the tendons slip slightly
as the wedges or other mechanical devices seat themselves
in the anchorage. The anchorage slip or set �A is assumed
to produce an average strain over the length of a tendon L ,
which results in an anchorage set loss of

�fpA = �A

L
Ep (14.47)

where Ep is the modulus of elasticity of the prestressing ten-
don. The range of �A varies from 0.0625 to 0.375 in. with a
value of 0.25 in. often assumed. For long tendons the anchor-
age set loss is relatively small, but for short tendons it could
become significant [C5.9.5.2.1].
The loss across stressing hardware and anchorage devices

has been measured from 2 to 6% (Roberts, 1993) of the force
indicated by the ram pressure times the calibrated ram area.
The loss varies depending on the ram and anchor. An initial
value of 3% is recommended [C5.9.5.1].

Friction Loss [A5.9.5.2.2] In posttensionedmembers, fric-
tion develops between the tendons and the ducts in which
they are placed. If the tendon profile is curved or draped, the
ducts are placed in the member to follow the profile. When
the tendons are tensioned after the concrete has hardened,
they tend to straighten out and develop friction along thewall
of the duct. This friction loss is referred to as the curvature
effect. Even if the tendon profile is straight, the duct place-
ment may vary from side to side or up and down and again
friction is developed between the tendon and the duct wall.
This friction loss is referred to as the wobble effect.

Consider the posttensioned member in Figure 14.15(a)
with a curved tendon having an angle change α over a length
x from the jacking end. A differential element of length of
the curved tendon is shown in Figure 14.15(b) with tensile
forces P1 and P2 that differ by the friction component dP1
developed by the normal force N , that is,

P1 − P2 = dP1 = μN

where μ is the coefficient of friction between the tendon and
the duct due to the curvature effect. Assuming P1 and P2 are
nearly equal and that dα is a small angle, the normal force N
can be determined from the force polygon of Figure 14.15(c)
as P1 dα so that

dP1 = μP1 dα

Wobble friction losses over the tendon length dx are
expressed as KP1 dx , where K is the coefficient of friction

Fig. 14.15 Curvature friction loss (after Nawy, 2009): (a) tendon
profile, (b) differential length element, and (c) force polygon.
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between the tendon and the surrounding concrete due to the
wobble effect. Thus, the total friction loss over length dx
becomes

dP1 = μP1 dα + KP1 dx

or
dP1
P1

= μ dα + K dx (14.48)

The change in tendon force between two points A and B is
given by integrating both sides of Eq. 14.48, that is,

∫ PA

PB

dP1

P1
= μ

∫ α

0
dα + K

∫ x

0
dx

which results in

logePA − logePB = μα + Kx

or
loge

PB

PA

= −μα − Kx

By taking the antilogarithm of both sides and multiplying
by PA we get

PB = PAe−(μα+Kx)

By dividing both sides by the area of the prestressing ten-
don and subtracting from the stress at A , the change in stress
between two points x distance apart can be expressed as

fA − fB = fA − fAe−(μα+Kx)

or
�fpF = fpj

[
1 − e−(μα+Kx)

]
(14.49)

where �f pF is the prestress loss due to friction and f pj is the
stress in the tendon at the jacking end of the member.
A conservative approximation to the friction loss is ob-

tained if it is assumed that P1 in Eq. 14.48 is constant over
the length x , so that the integration yields

�P1 ≈ P1 (μα + Kx)

or in terms of stresses

�fpF ≈ fpj (μα + Kx) (14.50)

This approximation is comparable to using only the first
two terms of the series expansion for the exponential in
Eq. 14.49. The approximation should be sufficiently accu-
rate because the quantity in parenthesis is only a fraction
of unity.

The friction coefficients μ and K depend on the type
of tendons, the rigidity of the sheathing, and the form of
construction. Design values for these coefficients are given
in AASHTO [Table A5.9.5.2.2b-1] and are reproduced in
Table 14.7. It is important to know the characteristics of
the posttensioning system that is to be used to reasonably
estimate friction losses.

Elastic Shortening Loss [A5.9.5.2.3] When the strands at
the ends of a pretensionedmember are cut, the prestress force
is transferred to and produces compression in the concrete.
The compressive force on the concrete causes the member to
shorten.Compatibilityof the strains in the concrete and in the
tendon results in a reduction in the elongation of the tendon
and an accompanying loss of prestress. Equating the strain in
the tendon due to the change in prestress �f pES and the strain
in the concrete due to the concrete stress at the centroid of the
tendon f cgp yields

�fpES

Ep

= fcgp

Eci

Solve for the prestress loss due to elastic shortening of the
concrete in a pretensioned member to give

�fpES = Ep

Eci
fcgp (14.51)

where E ci is the modulus of elasticity of concrete at transfer
of the prestressing force.
If the centroid of the prestressing force is below the cen-

troid of the concrete member, the member is lifted upward at
transfer and the self-weight of the member is activated. The
elastic concrete stress at the centroid of the tendon is then
given by the first three terms of Eq. 14.5 with y = em:

fcgp = − Pi

Ag

−
(
Piem

)
em

Ig

+ Mgem

Ig

(14.52)

where Pi is the prestressing force at transfer. The third term
gives the elastic gain due to the applied girder weight. These
linear elastic concrete stresses are shown in Figure 14.1.
The force Pi will be slightly less than the transfer force

based on the transfer stresses given in Table 14.4 because
these stresses will be reduced by the elastic shortening of

Table 14.7 Friction Coefficients for Posttensioning Tendons

Type of Steel Type of Duct K μ

Wire or strand Rigid and semirigid galvanized metal sheathing 0.0002 0.15–0.25
Polyethylene 0.0002 0.23
Rigid steel pipe deviators for external tendons 0.0002 0.25

High-strength bars Galvanized metal sheathing 0.0002 0.30

From AASHTO Table 5.9.5.2.2b-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association
of State Highway and Transportation Officials, Washington, DC. Used by permission.
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the concrete. Thus, for low-relaxation strand, Pi can be
expressed as

Pi = Aps

(
fpi − �fpES

)
(14.53)

where fpi = fpbt = tendon stress immediately prior to trans-
fer. Realizing that Pi is changed a relatively small amount,
AASHTO [A5.9.5.2.3a] allowsPi to be based on an assumed
prestressing tendon stress of 0.90fpbt = 0.675fpu for low-
relaxation strands and the analysis iterated until acceptable
accuracy is achieved [C5.9.5.2.3a].
To avoid iteration,�f pES can be determined by substitution

of Eqs. 14.52 and 14.53 intoEq. 14.51with elastic shortening
as a positive quantity and elastic gain as negative to give

�fpES = Ep

Eci

[
Aps

(
fpbt − �fpES

)

Ag

+Aps

(
fpbt − �fpES

)
e2m

Ig

− Mgem

Ig

]

and solving for the loss due to elastic shortening in preten-
sioned members [C5.9.5.2.3a]:

�fpES = Apsfpbt
(
Ig + e2mAg

) − emMgAg

Aps

(
Ig + e2mAg

) + Eci

Ep

(
AgIg

) (14.54)

where
Aps = area of prestressing steel (in.2)
Ag = gross area of concrete section (in.2)
E ci = modulus of elasticity of concrete at transfer

(ksi)
Ep = modulus of elasticity of prestressing tendons

(ksi)
em = average prestressing steel eccentricity at

midspan (ksi)
f pbt = stress in prestressing steel immediately prior

to transfer as specified in Table 14.4 (ksi)
Ig = moment of inertia of the gross concrete

section (in.4)
Mg = midspan moment due to member self-weight

(kip-in.)

In the case of a posttensioned member, there is no loss
of prestress due to elastic shortening if all the tendons are
tensioned simultaneously. No loss occurs because the post-
tensioning force compensates for the elastic shortening as the
jacking operation progresses. If the tendons are tensioned se-
quentially, the first tendon anchored experiences a loss due
to elastic shortening given by Eq. 14.51 for a pretensioned
member.
Each subsequent tendon that is posttensioned experiences

a fraction of the pretensioned loss, with the last tendon
anchored without loss. The average posttensioned loss is
one-half of the pretensioned loss if the last tendon also
had a loss. Because the last tendon anchored does not have

a loss, the loss of prestress due to elastic shortening for
posttensioned members is given by [A5.9.5.2.3b]

�fpES = N − 1

2N

Ep

Eci
fcgp (14.55)

where N is the number of identical prestressing tendons and
fcgp is the sum of concrete stresses at the center of gravity
of prestressing tendons due to the prestressing force after
jacking and the self-weight of the member at the sections of
maximum moment (ksi).
Values for fcgp may be calculated using a steel stress

reduced below the initial value by a margin (unspecified)
dependent on elastic shortening, relaxation, and friction
effects. If relaxation and friction effects are neglected, the
loss due to elastic shortening in posttensioned members ,
other than slab systems, may be determined by an equation
developed in a manner similar to Eq. 14.54 [C5.9.5.2.3b]:

�fpES = N − 1

2N

⎡

⎣Apsfpbt
(
Ig + e2mAg

) − emMgAg

Aps

(
Ig + e2mAg

) + Eci
Ep

(
AgIg

)

⎤

⎦

(14.56)
For posttensioned structures with bonded tendons, �fpES

may be calculated at the center section of the span or, for
continuous construction at the section of maximummoment.
For posttensioned structures with unbonded tendons, �fpES
may be calculated using the eccentricity of the prestressing
steel averaged along the length of the member. For slab sys-
tems, the value of�fpES may be taken as 25%of that obtained
from Eq. 14.56 [C5.9.5.2.3b].

ApproximateEstimateofTime-Dependent Losses [A5.9.5.3]
It is not always necessary to make detailed calculations for
the time-dependent long-term prestress losses �fpLT due
to creep of concrete, shrinkage of concrete, and relaxation
of steel if the designs are routine and the conditions are
average. The creep and shrinkage properties of concrete are
discussed in Section 13.4.2. Relaxation of the prestressing
tendons is a time-dependent loss of prestress that occurs
when the tendon is held at constant strain.
For standard precast, pretensionedmembers subject to nor-

mal loading and environmental conditions, where

� Members are made from normal-weight concrete.
� The concrete is either steam or moist cured.
� Prestressing is by bars or strands with normal and low-

relaxation properties.
� Average exposure conditions and temperatures charac-

terize the site.

The long-term prestress loss, �f pLT, due to creep of con-
crete, shrinkage of concrete, and relaxation of steel shall be
estimated using

�fpLT = 10.0
fpiAps

Ag

γhγst + 12.0γhγst + �fpR (14.57)
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in which

γh = 1.7 − 0.01H γst =
5

1 + f
′
ci

where
fpi = prestressing steel stress immediately prior to

transfer (ksi)
H = average annual ambient relative humidity

(%) [A5.4.2.3.2]
γh = correction factor for relative humidity of the

ambient air
γst = correction factor for specified concrete

strength at time of prestress transfer to the
concrete member

�fpR = estimate of relaxation loss taken as 2.5 ksi
for low-relaxation strand, 10.0 ksi for
stress-relieved strand, and in accordance
with manufacturers recommendation for
other types of strand (ksi)

The relative humidity correction factor γ h is the same for
both creep and shrinkage and is normalized to 1.0 when the
average relative humidity is 70%. Lower values of humidity
increase the long-term prestress loss due to creep and shrink-
age. For example, in most of Arizona the average humidity
is 40% (Fig. 13.10) and γh is 1.3.
The concrete strength correction factor γst is also the same

for both creep and shrinkage and is normalized to 1.0 when
the initial compressive strength at prestress transfer f

′
ci is 4.0

ksi. The value of 4.0 ksi was taken to be 80% of an assumed
final strength at service of 5.0 ksi (Tadros et al., 2003). The
specified concrete strength is an indirect measure of the qual-
ity of the concrete. Generally, the higher strength concrete
has sounder aggregate and lower water content and, there-
fore, has lower long-term prestress loss. For example, if the

specified compressive strength at prestress transfer f
′
ci is 6.0

ksi, then γ st is 0.714.
The first term in Eq. 14.57 corresponds to creep losses, the

second term to shrinkage losses, and the third to relaxation
losses. The terms in Eq. 14.57 were derived as approx-
imations of the terms in the refined method for a wide
range of standard precast prestressed concrete I-beams,
box beams, inverted T-beams, and voided slabs [C5.9.5.3].
They were calibrated with full-scale test results and with
the results of the refined method and found to give con-
servative results (Al-Omaishi, 2001; Tadros et al., 2003).
The approximate method should not be used for members
of uncommon shapes, level of prestressing, or construction
staging [C5.9.5.3].

Lump-Sum Estimate of Time-Dependent Losses For
members stressed after attaining a compressive strength of
3.5 ksi, other than thosemade with composite slabs, previous
editions of AASHTO also provided approximate lump-sum
estimates of the time-dependent prestress losses, which are
duplicated in Table 14.8. The losses given in Table 14.8
cover shrinkage and creep in concrete and relaxation of the
prestressing tendon. The instantaneous elastic shortening
�f pES must be added to these time-dependent losses to
obtain the total prestress loss per Eqs. 14.45 and 14.46.
Although not part of the present specification, Table 14.8

provides a reasonable check on the value computed by
Eq. 14.57 and/or the refined methods for losses provided in
Appendix D. The refined methods are not presented in the
body to keep the chapter focused on the larger issues, not
to imply that they are not important. In fact, in many cases,
the refined methods are required by AASHTO without the
option for the simplified estimate provided in [A5.9.5.3] and
Eq. 14.57.

Table 14.8 Time-Dependent Prestress Losses in ksi (Previous AASHTO Editions)

Type of Beam
Section Level

For Wires and Strands with
fpu = 235, 250, or 270 ksi

For Bars with fpu = 145
or 160 ksi

Rectangular beams and solid
slabs

Upper bound
Average

29.0 + 4.0 PPR (−6.0)a26.0
+ 4.0 PPR (−6.0)a

19.0 + 6.0 PPR

Box girder Upper bound
Average

21.0 + 4.0 PPR (−4.0)a19.0
+ 4.0 PPR (−4.0)a

15.0

Single T , double T , hollow
core, and voided slab

Upper bound
39.0

(
1.0 − 0.15

f
′
c − 6.0

6.0

)

+6.0 PPR (−8.0)a

31.0

(
1.0 − 0.15

f
′
c − 6.0

6.0

)

+6.0 PPR

Average
33.0

(
1.0 − 0.15

f
′
c − 6.0

6.0

)

+6.0 PPR (−8.0)a

aValues in parentheses are subtractions for low-relaxation strands.
From AASHTO Table 5.9.5.3-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2004 by the American Association of
State Highway and Transportation Officials, Washington, DC. Used by Permission.
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The values in Table 14.8 are limited to prestressed and
partially prestressed, nonsegmental, posttensioned mem-
bers, and pretensioned members made with normal-weight
concrete under standard construction procedures and sub-
jected to average exposure conditions. For members made
with structural lightweight concrete, the values given in
Table 14.8 shall be increased by 5.0 ksi.
The PPR used in Table 14.8 is defined in Eq. 14.8 and is

repeated here:

PPR = Apsfpy

Apsfpy + Asfy

In the case of wires and strands, both an upper bound
estimate and an average estimate are given. A reasonable
approach during preliminary design would be to use the up-
per bound estimate when evaluating the flexural strength and
the average estimate when calculating service load effects.
According to Zia et al. (1979), overestimation of prestress
losses can be almost as detrimental as underestimation since
the former can result in excessive camber and horizontal
movement. This applies to prestressing applications based
upon any loss methods.

14.3 SHEAR STRENGTH OF REINFORCED
CONCRETE MEMBERS

Reinforced concrete members subjected to loads perpendic-
ular to their axis must resist shear forces as well as flexural
and axial forces. The shear force resistancemechanism is dif-
ferent for deep beams than for slender beams. The AASHTO
Specifications [A5.8.1.1] direct a designer to use the strut-
and-tie model [A5.6.3] whenever the distance from the point
of zero shear to the face of a support is less than twice the
effective depth of thebeam, orwhen a load that causes at least
one-half (one-third in the case of segmental box girders) of
the shear at a support is within twice the effective depth. For a
beam with deep-beam proportions, plane sections no longer
remain plane and a better representation of the load-carrying
mechanism at the ultimate strength limit state is with the con-
crete compression struts and steel tension ties as shown in
Figure 14.16.
The proportions of typical bridge girders are slender so

that plane sections before loading remain plane after loading,
and engineering beam theory can be used to describe the
relationships between stresses, strains, cross-sectional prop-
erties, and the applied forces. Reinforced concrete girders
are usually designed for a flexural failure mode at locations
of maximum moment. However, this flexural capacity can-
not be developed if a premature shear failure occurs due
to inadequate web dimensions and web reinforcement. To
evaluate the shear resistance of typical bridge girders, the
sectional design model of AASHTO [A5.8.3] is used. This
model satisfies force equilibrium and strain compatibility
and utilizes experimentally determined stress–strain curves

Fig. 14.16 Strut-and-tie model for a deep beam: (a) flow of forces,
(b) endview, and (c) trussmodel [AASHTOFig. C5.6.3.2-1]. [From
AASHTO LRFD Bridge Design Specifications . Copyright © 2010
by the American Association of State Highway and Transportation
Officials, Washington, DC. Used by permission.]

for reinforcement and diagonally cracked concrete. Back-
ground and details of the sectional model are provided in
Vecchio and Collins (1986, 1988) and the books by Collins
and Mitchell (1991) and Hsu (1993).
The nominal shear strength Vn for the sectional design

model can be expressed as

Vn = Vc + Vs + Vp (14.58)

where Vc is the nominal shear strength of the concrete, Vs is
the nominal shear strength of the web reinforcement, and Vp
is the nominal shear strength provided by the vertical com-
ponent of any inclined prestress force. In Eq. 14.58, Vp can
be determined from the geometry of the tendon profile and
effective prestress while Vc and Vs are determined by satis-
fying equilibrium and compatibility of a diagonally cracked
reinforced concrete web. The development of expressions for
Vc andVs based on a variable-angle trussmodel and themod-
ified compression field theory are given in the sections that
follow.
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14.3.1 Variable-Angle Truss Model

The variable-angle truss model is presented to provide a
connection to the past and to introduce a model that satisfies
equilibrium. The truss analogy model is one of the earli-
est analytical explanations of shear in reinforced concrete
beams. According to Collins and Mitchell (1991), it is over
100 years old since it was described by Ritter in 1899 and
elaborated by Mörsch in 1902 (Mörsch, 1908).
An example of a variable-angle truss model of a uniformly

loaded beam is given in Figure 14.17(a). It is similar to one
in Hsu (1993). The dotted lines represent concrete compres-
sion struts for the top chord and diagonalweb members of the
truss. The solid lines represent steel tension ties for the bot-
tom chord and vertical web members. The bottom chord steel
area is the longitudinal reinforcement selected to resist flex-
ure and the vertical web members are the stirrups at spacing
s required to resist shear.
The top chord concrete compression zone balances the bot-

tom chord tensile steel, and the two make up the couple that
resists the moment due to the applied load. The diagonal
concrete compressive struts are at an angle θ with the lon-
gitudinal axis of the beam and run from the top of a stirrup to
the bottomchord. The diagonal struts fan out at the centerline
and at the supports to provide a load path for the bottom and
top of each stirrup. The fanning of the diagonals also results
in a midspan chord force that matches the one obtained by
dividing the conventional beam moment by the lever arm dv.
In defining the lever arm dv used in shear calculations, the

location of the centroid of the tensile force is known a pri-
ori but not that of the compressive force. To assist the de-
signer, AASHTO [A5.8.2.9] defines dv as the effective shear
depth taken as the distance, measured perpendicular to the
neutral axis, between the resultants of the tensile and com-
pressive forces due to flexure, but it need not be taken less
than the greater of 0.9de or 0.72h . The effective depth de
from the extreme compression fiber to the centroid of the
tensile force is given by Eq. 14.40 and h is the overall depth
of the member.
It is not necessary in design to include every stirrup and

diagonal strut when constructing a truss model for concrete
beams. Stirrup forces can be grouped together in one vertical
member over some tributary length of the beam to give the
simplified truss design model of Figure 14.17(b). Obviously,
there is more than one way to configure the design truss. For
this example, the beam has been divided into six panels, each
with a panel load ofwL /6. Choosing the effective shear depth
dv = L /9, then tan θ = 2

3 . The bar forces in the members of
the truss can then be determined using free-body diagrams
such as the one in Figure 14.17(c).
The variation in the stirrup force and the tensile bar force

is shown in Figure 14.17(d). Because of the discrete nature
of the truss panels, these force diagrams are like stair steps.
The staggered stirrup force diagram is always below the con-
ventional shear force diagram for a uniformly loaded beam.
The staggered tensile bar force diagram is always above the

Fig. 14.17 Trussmodel for a uniformly loaded beam: (a) variable-
angle truss model, (b) simplified strut-and-tie design model, (c)
free-body diagram for section a–a , and (d) staggered diagrams
for truss bar forces. [Reprinted with permission from T. T. C. Hsu
(1993). Unified Theory of Reinforced Concrete , CRC Press, Boca
Raton, FL. Copyright CRC Press, Boca Raton, FL © 1993.]

tensile bar force diagram derived from a conventional mo-
ment diagram divided by the lever arm dv. If the staggered
compressive bar force in the top chord had also been shown,
it would be below the compressive bar force derived from
the conventional moment. This variation can be explained by
looking at equilibriumof joints at the top and bottom chords.
The presence of compression from the diagonal strut reduces
the tension required in a vertical stirrup, reduces the com-
pression in the top chord, and increases the tension in the
bottom chord.
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Fig. 14.18 Equilibrium conditions for variable-angle truss: (a) diagonally cracked web, (b) cross section, and (c) tension in web reinforce-
ment. [After Collins and Mitchell (1991). Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.]

To derive an expression for the shear force carried by a stir-
rup in the variable-angle truss, consider the equilibrium con-
ditions in Figure 14.18 for a section of the web in pure shear
(M = 0). The balance of vertical forces in Figure 14.18(a)
results in

V = f2bvdv cos θ sin θ

or
f2 = V

bvdv cos θ sin θ
(14.59)

where f 2 is the principal compressive stress in the web and
bv is the minimum web width within the depth dv. From the
force polygon, tan θ = V /Nv and

Nv = V cot θ (14.60)

where Nv is the tensile force in the longitudinal direction
required to balance the shear force V on the section. This ten-
sile forceNv is assumed to be divided equally between the top
and bottomchords of the trussmodel, adding to the tension in
the bottom and subtracting from the compression in the top.
The additional tensile force 0.5V cot θ is shown added to the
tensile force M /dv in the right half of Figure 14.17(d). The
resulting dotted line is a good approximation to a smoothed
representation of the staggered tensile bar forces.
A bottom chord joint with a tributary length equal to the

stirrup spacing s is shown in Figure 14.18(c). The balance of
the vertical force in the stirrup with the vertical component
of the diagonal compressive force applied over the stirrup
spacing s results in

Avfv = f2sbv sin θ sin θ

where Av is the total area of the stirrup legs resisting shear
and fv is the tensile stress in the stirrup. Substitution of f 2
from Eq. 14.59 yields

Avfv = Vsbv sin θ sin θ

bvdv cos θ sin θ
= Vs

dv
tan θ

V = Avfvdv

s
cot θ (14.61)

It is not possible to obtain a closed-form solution for the
shear capacity V from the three equilibriumequations—Eqs.
14.59–14.61—because they contain four unknowns: θ , fv,
Nv, and f 2. One design strategy is to assume θ = 45◦ and
a value for fv, such as a fraction of fy for strength design. In
either case, Eq. 14.61 gives a shear capacity of a reinforced
concrete beam that depends on the tensile stress in the stir-
rups and the orientation of the principal compressive stress
in the concrete. The model does not include any contribu-
tion of the tensile strength in the concrete . In other words,
by using a variable-angle truss model only the contribution
of Vs in Eq. 14.58 is included. The contribution from the ten-
sile strength of the concrete Vc is considered to be zero.
In summary, the variable-angle truss model clearly shows

by Eq. 14.60 that a transverse shear force on a cross section
results in an axial force that increases the tension in the lon-
gitudinal reinforcement. However, it has two shortcomings:
It cannot predict the orientation of the principal stresses and
it ignores the contribution of the concrete tensile strength.
Both of these shortcomings are overcome by the modified
compression field theory , where strain compatibility gives a
fourth condition permitting a rational solution.

14.3.2 Modified Compression Field Theory

In the design of the relatively thin webs of steel plate girders,
the web panels between transverse stiffeners subjected to
shearing stresses are considered to support tensile stresses
only because the compression diagonal is assumed to have
buckled. The postbuckling strength of the plate girder webs
depends on the orientation of the principal tensile stress,
stiffener spacing, girder depth, web thickness, and yield
strength of the material. A tension field theory has been
developed to determine the relationships between these
parameters and to predict the shear strength of plate girder
webs. See Chapter 19 for details.
In the webs of reinforced concrete beams subjected to

shearing stresses, an analogous behavior occurs, except the
tension diagonal cracks, and the compression diagonal is
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the dominant support in the web. Instead of a tension field
theory, a compression field theory has been developed to
explain the behavior of reinforced concrete beams subjected
to shear.
Originally, the compression field theory assumed that once

web cracking occurred, the principal tensile stress vanished.
The theory was later modified to include the principal tensile
stress and to give a more realistic description of the shear
failure mechanism. Hence the term “modified” compression
field theory (MCFT).

Stress Considerations Figure 14.19 illustrates pure shear
stress fields in the web of a reinforced concrete beam
before and after cracking. A Mohr stress circle for the
concrete is also shown for each of the cases. Before cracking
[Fig. 14.19(a)], the reinforced concrete web is assumed to be
homogeneous and Mohr’s circle of stress is about the origin
with radius v and 2θ = 90◦. After cracking [Fig. 14.19(b)],
the web reinforcement carries the tensile stresses and the
concrete struts carry the compressive stresses. As a result,
the orientation of the principal stresses changes to an angle
θ less than 45◦. If the concrete tensile strength is not ignored

Fig. 14.19 Stress fields in web of a reinforced concrete beam sub-
jected to pure shear: (a) Before cracking, f 1 = f 2 = v , θ = 45◦, (b)
compressionfield theory, f 1 = 0, θ < 45◦, and (c)modified compres-
sion field theory, f 1 	= 0, θ <45◦. [After Collins andMitchell (1991).
Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.]

and carries part of the tensile force, the stress state of the
modified compression field theory [Fig. 14.19(c)] is used to
describe the behavior.
The Mohr stress circle for the concrete compression strut

of Figure 14.19(c) is more fully explained in Figure 14.20.
A reinforced concrete element subjected to pure shear has a
Mohr stress circle of radius v about the origin [Fig. 14.20(a)].
Interaction within the element develops compression in the
concrete struts [Fig. 14.20(b)] and tension in the steel
reinforcement [Fig. 14.20(c)]. The concrete portion of the
element is assumed to carry all of the shear, along with
the compression, which results in the Mohr stress circles
of Figures 14.19(c) and 14.20(b). The angle 2θ rotates,
depending on the relative values of shear and compression,
even though the comparable angle of the reinforced concrete
element remains fixed at 90◦.
There is no stress circle for the steel reinforcement because

its shear resistance (dowel action) is ignored. The tensile
stresses f ∗

s and f ∗
v are psuedoconcrete tensile stresses, or

smeared steel tensile stresses , that are equivalent to the
tensile forces in the reinforcement. The use of superposition
and diagrams in Figures 14.20(b) and 14.20(c) yields

f ∗
s bvsx = fsAs

f ∗
s = As

bvsx

fs = ρxfs (14.62)

and

f ∗
v bvs = fvAv

f ∗
v = Av

bvs
fv = ρvfv (14.63)

where sx is the vertical spacing of longitudinal reinforcement
including skin reinforcement, and s is the horizontal spacing
of stirrups:

ρx = As

bvsx

= longitudinal reinforcement ratio (14.64)

ρv = Av

bvs
= transverse reinforcement ratio (14.65)

The stresses between the concrete and reinforcement may
be dissimilar after cracking because of different material
moduli, but the strains are not. Fortunately, the condition
of strain compatibility provides the additional relation-
ships, coupled with the equilibrium equations, to uniquely
determine the angle θ and the shear strength of a reinforced
concrete member. This unique determination can be done
by considering the web of a reinforced concrete beam to
behave like a membrane element with in-plane shearing and
normal stresses and strains that can be analyzed using Mohr
stress and strain circles.

Strain Considerations Before writing the equilibrium
equations for the modified compression field theory, the
compatibility conditions based on a Mohr strain circle are
developed. Consider the cracked reinforced concrete web
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Fig. 14.20 Reinforced concrete element subjected to pure shear: (a) reinforced concrete, (b) concrete struts, and (c) reinforcement. [Reprinted
with permission from T. T. C. Hsu (1993). Unified Theory of ReinforcedConcrete , CRC Press, Boca Raton, FL. Copyright CRC Press, Boca
Raton, FL © 1993.]

element in Figure 14.21(a), which is subjected to a biaxial
state of stress and has strain gages placed to record average
strains in the longitudinal εx, transverse εt, and 45◦

ε45
directions. The strain gages are assumed to be long enough
so that the average strain is over more than one crack. The
definition of normal strains [Fig. 14.21(b)] is an elongation
per unit length while shearing strains [Fig. 14.21(c)] are
defined as the change in angle γ from an original right angle.
Because of the assumed symmetry in the material properties,
this angle is split equally between the two sides originally
at right angles. The direction of the shearing strains cor-
responds to the direction assumed for positive shearing
stresses in Figure 14.20.
A Mohr strain circle [Fig. 14.21(d)] can be constructed if

three strains at a point and their orientation to each other are
known. The three given average strains are εx, εt, and ε45.
The relationships between these strains and the principal av-
erage strains ε1 and ε2 and the angle θ , which defines the
inclination of the compression struts, are required.
In deriving the compatibility conditions, consider the top

one-half of the Mohr strain circle in Figure 14.21(e) to be
completely in the first quadrant, that is, all the strain quan-
tities are positive (the γ /2 axis is to the left of the figure).
[With all of the strains assumed to be positive, the derivation
is straightforward and does not require intuition as to which
quantities are positive and which are negative. (The positive
and negative signs should now take care of themselves.)]

First, the center of the circle can be found by taking the
average of εx and εt or the average of ε1 and ε2, that is,

εx + εt

2
= ε1 + ε2

2

so that the principal tensile strain is

ε1 = εx + εt − ε2 (14.66)

By using a diameter of unity in Figure 14.21(e), the radius
is one-half, and the vertical line segment AE is

AE = 1
2 sin 2θ = sin θ cos θ

By recalling sin2 θ + cos2 θ = 1, the line segment ED is
given by

ED = 1
2 cos 2θ + 1

2

= 1
2

(
cos2θ − sin2θ

)+ 1
2

(
cos2θ + sin2θ

) = cos2θ

so that the line segment BE becomes

BE = 1 − cos2θ = sin2θ

From these relationships and similar triangles, the follow-
ing three compatibility equations can be written:

εx − ε2 = (
ε1 − ε2

)
sin2θ (14.67)

εt − ε2 = (
ε1 − ε2

)
cos2θ (14.68)

γxt = 2
(
ε1 − ε2

)
sin θ cos θ (14.69)
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Fig. 14.21 Compatibility conditions for a cracked web element:
(a) average strains in a cracked web element, (b) normal strains,
(c) shearing strains, (d) Mohr strain circle, and (e) geometric rela-
tions. [Reprinted with permission from T. T. C. Hsu (1993).Unified
Theory of ReinforcedConcrete ,CRC Press, Boca Raton, FL. Copy-
right CRC Press, Boca Raton, FL © 1993.]

Division of Eq. 14.67 by Eq. 14.68 results in an expression
that does not contain ε1, that is,

tan2θ = εx − ε2

εt − ε2
(14.70)

The relative magnitudes of the principal strains ε1 and ε2
shown in Figure 14.21(d), with ε1 being an order of magni-
tude greater than ε2, are to be expected because the average
tensile strain ε1 is across cracks that offer significantly less
resistance than the direct compression in the concrete struts.
Equilibrium conditions for the modified compression field

theory are determined by considering the free-body diagrams
in Figure 14.22. The cracked reinforced concrete web shown
in Figure 14.22(a) is the same as the one in Figure 14.18(a)

Fig. 14.22 Equilibrium conditions for modified compression field
theory: (a) cracked reinforced concrete web, (b) cross section,
(c) tension in web reinforcement, and (d) Mohr stress circle for con-
crete. [After Collins and Mitchell (1991). Reprinted by permission
of Prentice Hall, Upper Saddle River, NJ.]

except for the addition of the average principal tensile stress
f 1 in the concrete. The actual tensile stress distribution in
the concrete struts is shown with a peak value within the
strut, which then goes to zero at a crack. The constitutive
laws developed for concrete in tension in cracked webs
(Fig. 13.9) are based on stresses and strains measured over
a finite length, and therefore the values for f 1 and ε1 should
be considered as average values over this length.
Equilibrium of vertical forces in Figure 14.22(a) results in

V = f2bvdv cos θ sin θ + f1bvdv sin θ cos θ

from which the principal compressive stress f 2 can be
expressed as

f2 = v

sin θ cos θ
− f1 (14.71)

where v is the average shear stress,

v = V

bvdv
(14.72)

In Eq. 14.71, f 2 is assumed to be a compressive stress in
the direction shown in Figures 14.22(a) and 14.22(c).

Equilibrium Considerations Equilibrium of the vertical
forces in Figure 14.22(c) results in

Avfv = f2sbv sin
2θ − f1sbv cos

2θ
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Substitution of Eq. 14.71 for f 2, Eq. 14.72 for v , and rear-
ranging terms gives

V = f1bvdv cot θ + Avfvdv

s
cot θ (14.73)

which represents the sum of the contributions to the shear
resistance from the concrete Vc and the web reinforce-
ment tensile stresses Vs. By comparing Eq . 14.61 with Eq .
14.73, the modified compression field theory provides the
concrete tensile stress shear resistance missing from the
variable-angle truss model .
Equilibrium of the longitudinal forces in Figure 14.22(a)

results in

Nv = f2bvfv cos
2θ − f1bvdvsin

2θ

Substitution for f 2 from Eq. 14.71 and combination of
terms gives

Nv = (
v cot θ − f1

)
bvdv (14.74)

If no axial load is present on the member, Nv must be
resisted by the longitudinal reinforcement, that is,

Nv = Asxfsx + Apxfpx

where Asx is the total area of longitudinal nonprestressed
reinforcement, Apx is the total area of longitudinal prestress-
ing tendons, and fsx and fpx are the “smeared stresses”
averaged over the area bvdv in the longitudinal non-
prestressed reinforcement and longitudinal prestressing
tendons, respectively. Equating the above two expressions
for Nv and dividing by bvdv results in

ρsxfsx + ρpxfpx = v cot θ − f1

where

ρsx = Asx

bvdv
= nonprestressed reinforced ratio (14.75)

ρpx = Apx

bvdv
= prestressed reinforcement ratio (14.76)

Constitutive Considerations With the strain compatibility
conditions and stress equilibrium requirements written, only
the constitutive relations linking together the stresses and
strains remain to complete the definition of the modified
compression field theory. The stress–strain relations for
concrete in compression (Fig. 13.4), concrete in tension
(Fig. 13.9), nonprestressed reinforcement (Fig. 13.15), and
prestressing reinforcement (Fig. 13.17) were presented
earlier and are summarized in Figure 14.23 for convenience.
A few comments on the four stress–strain curves in

Figure 14.23 are appropriate. The importance of compres-
sion softening of concrete [Fig . 14.23(a) ] due to tension
cracking in the perpendicular direction cannot be overem-
phasized . The discovery (1972) and quantification (1981)
of this phenomenon was called by Hsu (1993) “the major
breakthrough in understanding the shear and torsion problem
in reinforced concrete.”

Fig. 14.23 Constitutive relations for membrane elements: (a) con-
crete in compression, (b) concrete in tension, (c) nonprestressed
steel, and (d) prestressing tendon. [Reprinted with permission from
T. T. C. Hsu (1993). Unified Theory of Reinforced Concrete , CRC
Press, Boca Raton, FL. Copyright CRC Press, Boca Raton, FL ©
1993.]

Prior to this discovery, the compression response of con-
crete obtained primarily from uniaxial tests on concrete
cylinders and the predictions of shear strength based on the
truss model consistently overestimated the tested response.
The current relationships given in Eqs. 13.3 and 13.4 are
based on relatively thin (3 in.) membrane elements with one
layer of reinforcement (Vecchio and Collins, 1986). Addi-
tional tests (Adebar and Collins, 1994) were conducted on
thicker (12 in.) elements with two layers of reinforcement.
The effect of confinement provided by through-the-thickness
reinforcement may change the compression relationships.
The average stress–strain response for a reinforced con-

crete web in tension is shown in Figure 14.23(b). The
curve shown is an enlargement of the upper right-hand
corner (first quadrant) of Figure 14.23(a). The concrete
modulus of elasticity Ec is the same in both figures but is
distorted in Figure 14.23(b) because the stress scale has been
expanded while the strain has not. The maximum principal
tensile strain ε1 is of the same order of magnitude as the
maximum principal compressive strain ε2, even though the
tensile stresses are not. Expressions for the ascending and
descending branches are given in Eqs. 13.22 and 13.23.
As shown in Figure 14.23(c), the stress–strain response of

a reinforcing bar embedded in concrete is different than that
of a bare bar. The embedded bar is stiffened by the concrete
surrounding it and does not exhibit a flat yield plateau. At
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strains beyond the yield strain of the bare bar, an embed-
ded bar develops stresses that are lower than those in a bare
bar. A bilinear approximation to the average stress–strain
response of a mild steel bar embedded in concrete is given
by Eqs. 13.37 and 13.38.
A typical stress–strain curve for a bare prestressing tendon

is shown in Figure 14.23(d). Expression for low-relaxation
and stress-relieved strands are given by Eqs. 13.41 and 13.42,
respectively. For bonded and unbonded prestressing strands,
approximate expressions for the prestressing stress fps are
given by Eqs. 14.11 and 14.25, respectively.
In the development of the concrete tensile response shown

in Figure 14.23(b), two conditions have been implied:
(1) average stresses and average strains across more than
one crack have been used and (2) the cracks are not so
wide that shear cannot be transferred across them. The first
condition has been emphasized more than once, but the
second condition requires further explanation.

Behavior at the Cracks A diagonally cracked beam web is
shown in Figure 14.24(a) with a diagram of the actual tensile
stress variation and the average principal stress f1 related to
a principal tensile strain ε1 taken over a finite gage length.

For the cracked web the average principal tensile strain ε1 is
due mostly to the opening of the cracks because the elastic
tensile strain is relatively small, that is,

ε1 ≈ w

Smθ

(14.77)

where w is the crack width and Smθ is the mean spacing of
the diagonal cracks. If the crack width w becomes too large,
it will not be possible to transfer shear across the crack by the
aggregate interlockmechanism shown in the detail at a crack.
In other words, if the cracks are toowide, shear failure occurs
by slipping along the crack surface.
The aggregate interlock mechanism is modeled in the

definitive work by Walraven (1981). It is based on a statis-
tical analysis of the contact areas and the wedging action
that occurs between irregular crack faces. At a crack, local
shear stresses vci are developed, which enable tensile forces
to be transmitted across the crack. Experimental pushoff
tests on externally restrained specimens were conducted
and they verified the analytical model. The variables in the
tests were concrete strength, maximum aggregate size, total
aggregate volume per unit volume of concrete, external
restraint stiffness, and initial crack width. In fitting the
experimental results to the theoretical model, the best results

Fig. 14.24 Transmitting tensile forces across a crack: (a) beam web cracked by shear, (b) average stresses between cracks, and (c) local
stresses at a crack. [After Collins and Mitchell (1991). Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.]
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were obtained with a coefficient of friction of 0.4 and a
matrix yielding strength that is a function of the square root
of the concrete compressive strength. By using Walraven’s
experimental data, Vecchio and Collins (1986) derived a
relationship between shear transmitted across a crack and the
concrete compressive strength. Their expression was further
simplified by Collins and Mitchell (1991) who dropped the
effect of local compressive stresses across the crack and
recommended that the limiting value of vci be taken as

vci ≤ 0.0683
√

f
′
c

0.3 + 24w/
(
amax + 0.63

) (14.78)

where w is the crack width (in.), amax is the maximum aggre-
gate size (in.), and f

′
c is concrete compressive strength (ksi).

By limiting the shear stress on the crack vci to the value of
Eq. 14.78, crack slipping failures should not occur.

Combined Equilibrium, Compatibility, and Constitutive
Models The average stresses on section 1–1 in Figure
14.24(a) within a concrete compressive strut that were
used in developing the equilibrium Eqs. 14.71, 14.73, and
14.74 are repeated in Figure 14.24(b). The stresses in the
transverse and longitudinal reinforcement are also average
stresses because the stiffening effect of a bar embedded in
concrete shown in Figure 14.23(c) applies. At a crack along
section 2–2 in Figures 14.24(a) and 14.24(c), the concrete
tensile stress vanishes, the aggregate interlock mechanism is
active, wedging action occurs that strains the reinforcement,
and (as in Fig. 13.14) the reinforcement stress increases until
it reaches its yield strength.
Both sets of stresses in Figures 14.24(b) and 14.24(c) must

be in equilibrium with the same vertical shear force V . This
vertical equilibrium can be stated as

Avfv
dv cot θ

s
+ f1

bvdv

sin θ
cos θ

= Avfv
dv cot θ

s
+ vci

bvdv

sin θ
sin θ

and solving for the average principal tensile stress, we have

f1 ≤ vci tan θ + Av

bv s

(
fy − fv

)
(14.79)

where f1 is limited by the value of vci in Eq. 14.78.
The two sets of stresses in Figures 14.24(b) and 14.24(c)

must also result in the same horizontal force, that is,

Nv + f1
bvdv

sin θ
sin θ = Ny + vci

bvdv

sin θ
cos θ

Substitution for vci from Eq. 14.79 and rearrangement of
terms yields

Ny = Nv + f1bvdv +
[
f1 − Av

bvs

(
fy − fv

)]
bvdv cot2θ

(14.80)

in which

Ny = Asxfy + Apxfps (14.81)

Nv = Asxfsx + Apxfpx (14.82)

where Asx is the total area of longitudinal nonprestressed
reinforcement, Apx is the total area of longitudinal prestress-
ing tendons, fy is the yield stress of the bare nonprestressed
reinforcement, fps is the stress in the prestressing tendon
from Eq. 14.11, and fsx and fpx are the smeared stresses
averaged over the area bvdv in the embedded longitudinal
nonprestressed reinforcement and prestressing tendons,
respectively. Equation 14.80 is a second limitation on f 1 that
states that if the longitudinal reinforcement begins to yield
at a crack, the maximum principal concrete tensile stress f 1
has been reached and cannot exceed

f1 ≤ Ny − Nv

bvdv
sin2θ + Av

bvs

(
fy − fv

)
cos2θ

which can be written in terms of stresses as

f1 ≤ [
ρsx

(
fy − fsx

) + ρpx

(
fps − fpx

)]
sin2θ

+ ρv
(
fy − fv

)
cos2θ (14.83)

where the reinforcement ratios ρsx, ρpx, and ρv are defined
in Eqs. 14.75, 14.76, and 14.65, respectively.
The response of a reinforced concrete beam subjected to

shear forces can now be determined from the relationships
discussed above. In Collins and Mitchell (1991), a 17-step
procedure is outlined that addresses the calculations and
checks necessary to determine V of Eq. 14.73 as a function
of the principal tensile strain ε1. Similarly, Hsu (1993)
presents a flowchart and an example problem illustrating the
solution procedure for generating the shearing stress–strain
curve.
Unfortunately, these solution procedures are cumbersome,

and for practical design applications, design aids are needed
to reduce the effort. These aids have been developed by
Collins and Mitchell (1991) and are available in AASHTO
[A5.8.3.4.2]. They are discussed in Section 14.3.3.
The computer program Response-2000 is also available

as an aid to calculating the strength and ductility of a
reinforced concrete cross section subject to shear, moment,
and axial load. The program uses a sectional analysis and
was developed at the University of Toronto by E. C. Bentz
(2000) in a project supervised by M. P. Collins. Response-
2000 can be downloaded at no charge, along with a manual
and sample input, from the website www.ecf.utoronto.ca/
∼bentz/home.shtml.

14.3.3 Shear Design Using Modified Compression
Field Theory

Returning to the basic expression for nominal shear resis-
tance given by Eq. 14.58, recall

Vn − Vp = Vc + Vs (14.84)
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Substitution of the shear resistance from the concrete and
web reinforcement determined by the modified compression
field theory (Eq. 14.73) gives

Vn − Vp = f1bvdv cot θ + Avfvdv

s
cot θ (14.85)

Assuming that fv = fy when the limit state is reached, the
combination of Eqs. 14.78 and 14.80 yields an upper bound
for the average principal tensile stress

f1 ≤ vci tan θ ≤ 2.16 (0.0316)
√

f
′
c

0.3 + 24w/
(
amax + 0.63

) tan θ (14.86)

and Eq. 14.85 may be written as

Vn − Vp = (0.0316) β

√
f

′
cbvdv + Avfvdv

s
cot θ (14.87)

where

β ≤ 2.16

0.3 + 24w/
(
amax + 0.63

) (14.88)

The nominal shear resistance expression in AASHTO
[A5.8.3.3] is given by

Vn − Vp = (0.0316) β

√
f

′
cbvdv

+ Avfvdv

s
(cot θ + cot α) sin α (14.89)

where α is the angle of inclination of transverse reinforce-
ment. If α = 90◦, Eq. 14.89 becomes Eq. 14.87. The constant
1/

√
100 = 0.0316 is necessary to keep β in familiar terms

while using f
′
c in ksi per the AASHTO LRFD convention.

Now the crack width w can be expressed as the product of
the average principal tensile strain ε1 and the mean spacing
of the diagonal cracks Smθ to yield

w = ε1Smθ (14.90)

Simplification To simplify the calculations, Collins and
Mitchell (1991) assume that the crack spacing Smθ is 12 in.
[C5.8.3.4.2] and that the maximum aggregate size amax is
0.75 in. This results in an upper bound for β of

β ≤ 2.16

0.3 + 200ε1
(14.91)

In addition to the limitation imposed on f 1 in Eq. 14.86
by the shear stress on a diagonal crack, f 1 is also assumed to
follow the constitutive relationship shown in Figure 14.23(b)
and given by Eq. 13.23 with fcr = 4 (0.0316)

√
f

′
c , that is,

f1 = α1α2 (4) (0.0316)
√

f
′
c

1 + √
500ε1

(14.92)

Substitute this expression into Eq. 14.85 and relate it to
Eq. 14.87 to give

β = α1α2 (4) cot θ

1 + √
500ε1

assuming the tension stiffening or bond factors α1α2 are
equal to unity, a second relationship for β that depends on
the average principal tensile strain ε1 is

β = 4 cot θ

1 + √
500ε1

(14.93)

At this point it is informative to compare the modified
compression field theory Eq. 14.87 with the traditional
expression for shear strength. From AASHTO (2002)
standard specifications, the nominal shear strength for
nonprestressed beams is (for inch-pound units)

Vn = 2
√

f
′
cbwd + Avfyd

s
(14.94)

By comparing this result with Eq. 14.87, and realizing that
bw = bv and d is nearly equal to dv, the two expressions will
give the same results if θ = 45◦ and β = 2. A simplification
of Eq. 14.89 using θ = 45◦ and β = 2 is also allowed for
nonprestressed concrete sections not subjected to axial ten-
sion and containing at least the minimum amount specified
for transverse reinforcement [A5.8.3.4.1]. It is interesting to
note that the associated average principal tensile strain ε1 is
0.002 for this case; this is approximately equal to the yield
strain εy = 0.00207 for Grade 60 steel.

Longitudinal Strain Thus, the improvements introduced
by themodified compression field theory in Eq. 14.87 are the
ability to consider a variable orientation θ and a change in
magnitude β of the principal tensile stress across a cracked
compression web. The orientation and magnitude are not
fixed but vary according to the relative magnitude of the
local shear stress and longitudinal strain.
In both Eqs. 14.91 and 14.93, an increase in tensile strain-

ing (represented by the average principal tensile strain ε1)
decreases β and the shear that can be resisted by the con-
crete tensile stresses. To determine this important parameter
ε1, the modified compression field theory uses the compat-
ibility conditions of a Mohr strain circle developed in Eqs.
14.66–14.70. Substitution of Eq. 14.70 into Eq. 14.66 yields

ε1 = εx + (
εx − ε2

)
cot2θ (14.95)

which shows that ε1 depends on the longitudinal tensile strain
εx, the principal compressive strain ε2, and the orientation of
the principal strains (or stresses) θ .
The principal compressive strain ε2 can be obtained from

the constitutive relationship shown in Figure 14.23(a) and
given by Eq. 13.3. Set the strain ε

′
c at peak compressive stress

f
′
c to −0.002, and solve the resulting quadratic equation

to get

ε2 = −0.002

(
1 −

√

1 − f2

f2max

)
(14.96)

where f2 max is the important reduced peak stress given by
Eq. 13.4, that is,

f2max = f
′
c

0.8 + 170ε1
(14.97)
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which decreases as the tensile straining increases. Now the
principal compressive stress f 2 is relatively large compared
to the principal tensile stress f 1 as shown in Figure 14.23(a).
Therefore, f 2 can reasonably and conservatively be estimated
from Eq. 14.71 as

f2 ≈ v

sin θ cos θ
(14.98)

where the nominal shear stress on the concrete v includes
the reduction provided by the vertical component Vp of an
inclined prestressing tendon, that is,

v = Vn − Vp

bvdv
(14.99)

Substitution of Vn = Vu/φ into Eq. 14.99 and including the
absolute value sign to properly consider the effects due to
Vu and Vp [C5.8.3.4.2] gives the average shear stress on the
concrete as [A5.8.2.9]

vu =
∣∣Vu − φVp

∣∣

φbvdv
(14.100)

Substitution of Eqs. 14.97 and 14.98 into Eq. 14.96 and
then substitution of that result into Eq. 14.95 gives

ε1 = εx +
[
εx + 0.002

(
1−

√
1 − vu

f
′
c

0.8 + 170ε1
sin θ cos θ

)]
cot2θ

(14.101)
which can be solved for ε1 once θ , vu/f

′
c , and εx are known.

Longitudinal Steel Demand Before calculating the longi-
tudinal strain εx in the web on the flexural tension side of the
member, the relationships between some previously defined
terms need to be clarified. This clarification can be done
by substituting and rearranging some previously developed
equilibrium equations and seeing which terms are the same
and cancel out and which terms are different and remain.
First, consider Eq. 14.74, which expresses longitudinal
equilibrium in Figure 14.22(a), written as

Nv = (
v cot θ − f1

)
bvdv = V cot θ − f1bvdv (14.102)

where Nv is the total axial force due to all of the longitu-
dinal reinforcement on the overall cross section, prestressed
and nonprestressed, multiplied by smeared stresses averaged
over the area bvdv. Second, consider Eq. 14.80, which ex-
presses longitudinal equilibrium in Figure 14.24(b), written
with fv = fy as

Ny ≥ Nv + f1bvdv + f1bvdv cot
2θ (14.103)

where Ny is the total axial force due to all of the longitudi-
nal reinforcement on the overall cross section, prestressed
and nonprestressed, multiplied by the prestressing tendon
stress and the yield stress of the base reinforcement, respec-
tively. Substitution of Eq. 14.102 into Eq. 14.103 and using
Eq. 14.81 to express Ny, we get

Asxfy + Apxfps ≥ V cot θ + f1bvdv cot
2 θ (14.104)

Next, substitution of Eq. 14.73, which expresses vertical
equilibrium in Figure 14.22(c), into Eq. 14.104 yields

Asxfy + Apxfps ≥ 2f1bvdv cot
2 θ + Avfydv

s
cot2θ

= (
2Vc + Vs

)
cot θ (14.105)

where

Vc = f1bvdv cot θ = (0.0316) β

√
f

′
cbvdv (14.106)

and

Vs = Avfydv

s
cot θ (14.107)

Because the majority of the longitudinal reinforcement is
on the flexural tension side of a member, Eq. 14.105 can be
written in terms of the more familiar tensile steel areas As
and Aps by assuming that the shear depth dv has been divided
by 2 to yield

Asfy + Apsfps ≥ (
Vc + 0.5Vs

)
cot θ (14.108)

However, from Eq. 14.84,

Vc + 0.5Vs = Vn − 0.5Vs − Vp

so that the longitudinal tensile force requirement caused by
shear becomes

Asfy + Apsfps ≥
(

Vu

φv
− 0.5Vs − Vp

)
cot θ (14.109)

Thus, after all the manipulations with the previously
developed equilibrium equations, it comes down to the
requirement expressed in Eq. 14.109 that additional lon-
gitudinal tensile force must be developed to resist the
longitudinal force caused by shear . This phenomenon was
observed early in the study of shear resistance using truss
analogies (see Fig. 14.17) where the presence of shear force
was shown to add to the tensile chord force and subtract
from the compressive chord force. Unfortunately, this con-
cept was not included when the shear design procedures
were originally developed. This omission can be a serious
shortcoming, especially in regions of high shear force (and
low moment demand).
In addition to the shear requirement given in Eq. 14.109,

the longitudinal tensile reinforcement must also resist the
tensile force produced by any applied moment Mu and axial
load Nu as shown in Figure 14.25. This consideration leads
to the following requirement for the longitudinal tensile
reinforcement as given in AASHTO [A5.8.3.5]:

Asfy + Apsfps ≥
∣∣Mu

∣∣
dvφf

+ 0.5
Nu

φa

+
(∣∣∣∣

Vu

φv
− Vp

∣∣∣∣ − 0.5Vs

)
cot θ

(14.110)

where φf, φa, and φv are the resistance factors from
Table 14.6 for flexure, axial load, and shear, respectively.
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Fig. 14.25 Longitudinal strain and forces due to moment and tension: (a) cross section, (b) strains and forces due to moment Mu, and (c)
strains and forces due to tension Nu. [After Collins and Mitchell (1991). Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.]

Return now to the parameter εx, which is used to measure
the stiffness of the section when it is subjected to moment,
axial load, and shear. If εx is small, the web deformations
are small and the concrete shear strength Vc is high. If εx
is larger, the deformations are larger and Vc decreases. The
strain εx is the average longitudinal strain in the web, and
it can be reasonably estimated as one-half of the strain at
the level of the flexural tensile reinforcement as shown in
Figure 14.25. The longitudinal tensile force of Eq. 14.110
divided by a weighted stiffness quantity 2(EsAs + EpA ps)
where As is the area of nonprestressed steel on the flexu-
ral tension side of the member at the section as shown in
Figure 14.25(a), Aps is the area of prestressing steel on the
flexural tension side of the member, and considering the pre-
compression forceApsf po, results in the following expression
given in AASHTO [A5.8.3.4.2]:

εx =
(∣∣Mu

∣∣ /dv
)+ 0.5Nu + 0.5

∣∣Vu − Vp

∣∣ cot θ − Apsfpo

2
(
EsAs + EpAps

)

(14.111)
where fpo is a parameter taken as the modulus of elasticity
of prestressing strands multiplied by the locked-in difference
in strain between the prestressing tendons and the surround-
ing concrete. For the usual levels of prestressing, a value for
fpo of 0.7fpu will be appropriate for both pretensioned and
posttensioned members. Notice that the expression involv-
ing Vs and the φ factors are not included. The initial value
for εx should not be taken greater than 0.001. The constant
“2” assumes εc is small compared to εt so that εx is one half
of εt [C5.8.3.4.2].
If Eq. 14.111 gives a negative value for εx because of a rel-

atively large precompression force, then the concrete area Ac
on the flexural tension side [Fig. 14.25(a)] participates and
increases the longitudinal stiffness. In that case the denomi-
nator of Eq. 14.111 should be changed to 2(EcAc + EsAs +
EpA ps).

When a designer is preparing shear envelopes and moment
envelopes for combined force effects, the extreme values
for shear and moment at a particular location do not usually
come from the same position of live load. The moment
envelope values for Mu and Vu can be conservatively used
when calculating εx. It is not necessary to calculate Mu
for the same live-load position as was used in determining
the maximum value of Vu (or vice versa). Some software
stores and uses the coincident actions and this is certainly
acceptable.
Clearly, MCFT predicts that the presence of moment

affects the shear resistance; the converse is true as well.
Therefore, there is an interaction curve (Fig. 14.26) asso-
ciated with the section resistance. The MCFT illustrates
the behavior with respect to the longitudinal strain. The
load effect is represented with the small circle. If this
shear–moment combination is inside the interation curve,
it meets the limit state. If outside the interaction curve, it is
under the capacity required. Response-2000 cited previously
creates these types of plots.

Shear Resistance—Specifications MCFT was introduced
into the First Edition of AASHTO LRFD Specifications
(1994). Although is it an elegant and consistent theory
based upon first principles, its use was perceived by some
to be too complex for typical design. The AASHTO Sub-
committee on Bridges and Structures in combination with
several research studies simplified the method to avoid
the iteration required for the determination of β and θ

terms. In the Standard Specifications (2002), there are two
primary methods for estimating shear resistance, and those
were separate methods for prestressed concrete and con-
ventional reinforced concrete. There were adjustments for
light aggregate, compression or tension forces, and level of
prestress precompression. These methods are, in part, used,
as alternative methods within LRFD.
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Fig. 14.26 Typical shear–moment interaction diagram [AASHTO
Fig. CB5.2-6]. [From AASHTO LRFD Bridge Design Specifica-
tions . Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by
permission.]

All methods use Eq. 14.58 that combine the effects
shear resisted by the concrete, steel, and longitudinal stress
positioned at an angle to the section, for example, harped
prestress strands. These methods vary in the approach to
estimate the resistance associated with each of these three
mechanisms.
In the 2010 Specifications, there are three complementary

methods:

� Method 1: Simplified Procedure for Nonprestressed
Sections [A5.8.3.4.1]

� Method 2: General Procedure for Shear Resistance
[A5.8.3.4.2 and AASHTO Appendix B5]

� Method 3: Simplified Procedures for Prestressed and
Nonprestressed Sections [A5.8.3.4.3]

Method 1 parallels the approach traditionally used by
assuming that the crack angle θ is 45◦ and that the concrete
shear term β is 2.0 [A5.8.3.4.1]. This is a fit to empirical
data and details are presented in most texts on reinforced
concrete design. Method 1 is demonstrated by example later.
This is similar to the standard approach used for decades in
the Standard Specifications (2002).
Method 2 has two forms: a simplified version that is pro-

vided in the body of the Specifications [A5.8.3.4.2] that is
founded upon the MCFT presented in the previous section;
however, some simplying features were added that are stated
to be the “statistically equivalent” to the full theory. The
MCFT is presented in its complete form above and this may

be used via AASHTO and is provided in Appendix B of
Section 5. This method contains the assumptions that are
presented above. Clearly, many of these assumptions could
be relaxed by returning to the original work.
Method 3 is based upon modifying procedures for pre-

stressed concrete shear resistance provided in the Standard
Specifications (2002) as modified by Hawkins et al. (2005)
as outlined in NCHRP Report 549. This method may be
used for both prestressed and nonprestressed section and is
consistent with ACI Committee 318 (2011).
These methods are outlined below and the example that

follows uses these methods for illustration. The most general
and rigorous is theMCFTMethod 2 based upon the complete
theory. This is addressed first followed by the other methods.

Shear Resistance—Method 2: MCFT Appendix B Given
applied forces, vu calculated from Eq. 14.100, an estimated
value of θ , and εx calculated from Eq. 14.111, ε1 can be
determined by Eq. 14.101. With ε1 known, β can be de-
termined from Eqs. 14.91 and 14.93 and a value selected.
Then the concrete shear strength Vc can be calculated from
Eq. 14.106, the required web reinforcement strength Vs
from Eq. 14.84, and the required stirrup spacing s from
Eq. 14.107. Thus, for an estimated value of θ , the required
amount of web reinforcement to resist given force effects
can be calculated directly.
To determine whether the estimated θ results in the

minimum amount of web reinforcement, a designer must
try a series of values for θ until the optimum is found .
This possibly lengthy procedure has been shortened by
the development of design aids, in the form of tables, for
selecting θ and β. The tables originally appeared in Collins
and Mitchell (1991) and have been expanded to include
negative values of εx. The values of θ and β for sections with
transverse reinforcement are given in Table 14.9 [Appendix
B5 in AASHTO].
When developing the values in Table 14.9, Collins and

Mitchell (1991) were guided by the limitations that the prin-
cipal compressive stress in the concrete f 2 did not exceed
f2 max and that the strain in the web reinforcement εv was
at least 0.002, that is, fv = fy. In cases of low relative shear
stress vu/f

′
c , the optimum value for θ is obtained when β is

at its maximum, even though εv < 0.002. Other exceptions
exist and are attributed to engineering judgment acquired
through use of the proposed provisions in trial designs.
When using Table 14.9, the values of θ and β in a particular

cell of the table can be applied over a range of values. For
example, θ = 34.4◦ and β = 2.26 can be used provided εx
is not greater than 0.75 × 10–3 and vu/f

′
c is not greater than

0.125. Linear interpolation between values given in the table
may be used but is not recommended for hand calculations
[C5.8.3.4.2] and is likely not warranted given the inherent
level of accuracy. Additionally, a table similar to Table 14.9
for sections without transverse reinforcement is provided in
Appendix 5B.
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Table 14.9 Values of θ and β for Sections with Transverse Reinforcement

εx × 1000

≤ −0.20 ≤ −0.10 ≤ −0.05 ≤ 0 ≤ 0.125 ≤ 0.25 ≤ 0.50 ≤ 0.75 ≤ 1.00
vu
f

′
c

≤ 0.075 22.3 20.4 21.0 21.8 24.3 26.6 30.5 33.7 36.4
6.32 4.75 4.10 3.75 3.24 2.94 2.59 2.38 2.23

≤ 0.100 18.1 20.4 21.4 22.5 24.9 27.1 30.8 34.0 36.7
3.79 3.38 3.24 3.14 2.91 2.75 2.50 2.32 2.18

≤ 0.125 19.9 21.9 22.8 23.7 25.9 27.9 31.4 34.4 37.0
3.18 2.99 2.94 2.87 2.74 2.62 2.42 2.26 2.13

≤ 0.150 21.6 23.3 24.2 25.0 26.9 28.8 32.1 34.9 37.3
2.88 2.79 2.78 2.72 2.60 2.52 2.36 2.21 2.08

≤ 0.175 23.2 24.7 25.5 26.2 28.0 29.7 32.7 35.2 36.8
2.73 2.66 2.65 2.60 2.52 2.44 2.28 2.14 1.96

≤ 0.200 24.7 26.1 26.7 27.4 29.0 30.6 32.8 34.5 36.1
2.63 2.59 2.52 2.51 2.43 2.37 2.14 1.94 1.79

≤ 0.225 26.1 27.3 27.9 28.5 30.0 30.8 32.3 34.0 35.7
2.53 2.45 2.42 2.40 2.34 2.14 1.86 1.73 1.64

≤ 0.250 27.5 28.6 29.1 29.7 30.6 31.3 32.8 34.3 35.8
2.39 2.39 2.33 2.33 2.12 1.93 1.70 1.58 1.50

From AASHTO Table B5.2-1. From AASHTO LRFDBridge Design Specifications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission.

The shear design of members with web reinforcement
using the modified compression field theory consists of the
following steps (Collins and Mitchell, 1991):

Step 1 Determine the factored shear Vu and moment Mu
envelopes due to the strength I limit state. Values
are usually determined at the tenth points of each
span. Interpolations can easily be made for values
at critical sections such as a distance dv from the
face of a support. In the derivation of the modified
compression field theory, dv is defined as the lever
arm between the resultant compressive force and
the resultant tensile force in flexure. The definition
in AASHTO [A5.8.2.9] adds that dv need not be
less than 0.9de or 0.72h , where de is the distance
from the extreme compression fiber to the centroid
of the tensile reinforcement and h is the overall
depth of the member.

Step 2 Calculate the nominal shear stress vu from Eq.
14.100 and divide by the concrete strength f

′
c to

obtain the shear stress ratio vu/f
′
c . If this ratio is

higher than 0.25, a larger cross section must be
chosen.

Step 3 Estimate a value of θ , say 30◦, and calculate
the longitudinal strain εx from Eq. 14.111. For a
prestressed beam f po is a parameter taken as the
modulus of elasticity of prestressing strandsmulti-
plied by the locked-in difference in strain between
the prestressing tendons and the surrounding
concrete. For the usual levels of prestressing,
a value for fpo of 0.7fpu will be appropriate for
both pretensioned and posttensioned members. If

the section is within the transfer length, then an
effective value of fpo should be determined.

Step 4 Use the calculated values of vu/f
′
c and εx to de-

termine θ from Table 14.9 and compare with the
value estimated in step 3. If different, recalculate
εx and repeat step 4 until the estimated value of
θ agrees with the value from Table 14.9. When it
does, select β from the bottom half of the cell in
Table 14.9.

Step 5 Calculate the required web reinforcement strength
Vs from Eqs. 14.84 and 14.106 to give

Vs = Vu

φu

− Vp − 0.0316β
√

f
′
cbvdv (14.112)

Step 6 Calculate the required spacing of stirrups from
Eq. 14.107 as

s ≤ Avfydv

Vs

cot θ (14.113)

This spacing must not exceed the value limited
by the minimum transverse reinforcement of
AASHTO [A5.8.2.5], that is,

s ≤ Avfy

0.0316
√

f
′
cbv

(14.114)

Again, 0.0316 is for units. It must also satisfy
the maximum spacing requirements of AASHTO
[A5.8.2.7]:
� If vu < 0.125 f

′
c , then s ≤ 0.8dv ≤ 24.0 in.

(14.115)
� If vu ≥ 0.125 f

′
c , then s ≤ 0.4dv ≤ 12.0 in.

(14.116)
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Step 7 Check the adequacy of the longitudinal reinforce-
ment using Eq. 14.111. If the inequality is not sat-
isfied, either add more longitudinal reinforcement
or increase the amount of stirrups. Appendix 5B
further outlines several limitations and checks on
the procedure. These are [Appendix B5.2]:
• Mu shall be taken as positive quantities and Mu
shall not be taken less than (Vu − Vp)dv.

• In calculating As and Aps the area of bars or
tendons, which are terminated less than their
development length from the section under
consideration, shall be reduced in proportion to
their lack of full development.

• The value of εx calculated from Eqs. 14.111
(with compression term as appropriate) should
not be taken as less than −0.20 × 10−3.

• For sections closer than dv to the face of the sup-
port, the value of εx calculated at dv from the
face of the support may be used in evaluating β

and θ .
• If the axial tension is large enough to crack the
flexural compression face of the section, the re-
sulting increase in εx shall be taken into account.
In lieu of more accurate calculations, the value
calculated from Eq. 14.111 should be doubled.

• It is permissible to determine β and θ from
Table 14.9 using a value of εx that is greater
than that calculated from Eqs. 14.111; however,
εx shall not be taken greater than 3.0 × 10−3.

Example 14.3 Use Method 2 Appendix B (MCFT) to
determine the required spacing of No. 3 U-shaped stirrups
for the nonprestressed T-beam of Figure 14.27 at a positive
moment location where Vu = 157 kips andMu = 220 kip ft.
Use f

′
c = 4.5 ksi and fy = 60 ksi.

Step 1: Given Vu = 157 kips andMu = 220 kip ft:

As = 3.12 in.2 bv = 16 in. b = 80 in.

Fig. 14.27 Determination of stirrup spacing (Example 14.3).

Assume NA (i.e., neutral axis) is in flange:

a = Asfy

0.85f ′
cb

= 3.12 (60)

0.85 (4.5) (80)

= 0.61 in. < hf = 8 in. OK

dv = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

de − a/2 = (40 − 2.7) − 0.61/2

= 37.0 in., governs

0.9de = 0.9 (37.3) = 33.6 in.

0.72h = 0.72 (40) = 28.8 in.

Step 2: Calculate vu/f
′
c :

Vp = 0 φv = 0.9

Equation 14.100:

vu =
∣∣Vu

∣∣
φvbvdv

= 157

0.9 (16) (37.0)
= 0.295 ksi

vu
f

′
c

= 0.295

4.5
= 0.066 ≤ 0.25 OK

Step 3: Calculate εx from Eq. 14.111. Nu = 0. Aps = 0.
Estimate

θ = 40◦ cot θ = 1.192

εx =
∣∣Mu

∣∣ /dv + 0.5
∣∣Vu

∣∣ cot θ

2EsAs

= 220 (12) /37.0+ 0.5 (157) 1.192

2 (29,000× 3.12)
= 0.91 × 10−3

Step 4: Determine θ and β from Table 14.9 (interpolate or
use higher value). θ = 35.4◦, cot θ = 1.407:

εx = 220 (12) /37.0+ 0.5 (157) 1.407

2 (29,000 × 3.12)

= 1.0 × 10−3

The next iteration gives 36.4◦, which converges:

Use θ = 36.4◦
β = 2.23

Step 5: Calculate the required Vs from Eq. 14.112:

Vs =
∣∣Vu

∣∣
φv

− 0.0316β
√

f
′
cbvdv

= 157

0.9
− 0.0316 (2.23)

√
4.5 (16) 37.0

= 174.4− 88.5 = 85.9 kips

Step 6: Calculate the required stirrup spacing from Eqs.
14.113–14.116 using Av = 0.22 in.2:

s ≤ Avfydv

Vs

cot θ = 0.22 (60) (37.0)

85.9
(1.356) = 7.7 in.

s ≤ Avfy

0.0316
√

f
′
cbv

= 0.22 (60)

0.0316
√
4.5(16)

= 12.3 in.
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vu < 0.125f
′
c = 0.125 (4.5) = 0.563 ksi

s ≤ 0.8dv = 0.8 (37.0) = 29.6 or 24 in.

The stirrup spacing of s = 7.7 in. controls (use 7 in.).
Step 7: Check the additional demand on the longitudinal
reinforcement caused by shear as given by Eq. 14.110:

Vs = 7.7

7
(85.9) = 94.5kips

Asfy ≥
∣∣Mu

∣∣
dvφf

+
(∣∣Vu

∣∣
φu

− 0.5Vs

)
cot θ

3.12 (60) ?
220 × 12

37.0 (0.9)
+

(
157

0.9
− 94.5

2

)
1.356

187.2 kips ≤ 79.2 + (174.4 − 47.2) 1.356

= 252 kips, No good

Stirrup strength Vs needed to satisfy the inequality

Vs ≥ 2

[∣∣Vu

∣∣
φv

−
(

Asfy −
∣∣Mu

∣∣
dvφf

)
tan θ

]

≥ 2
[
174.4− (187.2− 79.2) tan 36.4◦]

= 189.6 kips

requires the stirrup spacing to be

s ≤ 0.22 (60) 37.0

189.6
(1.356) = 3.5 in.

which is likely not cost effective. It is better to simply
increase As to satisfy the inequality, that is,

As ≥ 252

fy

= 252

60
= 4.2 in.2

and Use 2 No. 11′s plus 1 No. 10 As = 4.39 in.2

No. 3 U-stirrups at 7 in.

Note thatMCFTprovides an alternative regardingwhether
to increase longitudinal and/or transverse steel. This flexi-
bility is a benefit that can be illustrated by taking the stirrup
spacing as 5 in.
Equation 14.107

Vs = Avfydv

s
cot θ = 0.22 (60) (37.0)

5.0
1.356

= 132.5 kips

and As are required to satisfy the inequality from Eq. 14.110:

As =
[ ∣∣Mu

∣∣
dvφf

+
(∣∣Vu

∣∣
φu

− 0.5Vs

)
cot θ

]/
fy

=
[
220 (12)

37 (0.9)
+

(
157

0.9
− 132.5

2

)
1.356

]/
60

= 79.3+ 146.7

60
= 3.77 in.2

Use 3 No.10’s As = 3.79 in.2

No. 3 U-stirrups at 5 in.

Shear Resistance—Method 2: MCFT [A5.8.3.4.2] The
MCFT method prescribed in [A5.8.3.4.2] is essentially
the same as outlined in the previous section. The primary
difference is that equations are available for the coefficient
β and crack angle θ and the table does not need to be used.
This facilitates computation by hand or by spreadsheets or
other tools. These equations are

β = 4.8

1 + 750εs

(14.117)

θ = 29 + 3500εs (14.118)

where εs is the tensile strain at the centroid of the reinforce-
ment:

εs =
(∣∣Mu

∣∣ /dv
) + 0.5Nu + ∣∣Vu − Vp

∣∣ − Apsfpo(
EsAs + EpAps

)

(14.119)
Note that the strain at the reinforcement level εs is assumed

to be twice the average strain εx at middepth. Also, to avoid
a trial-and-error iteration process, 0.5 cot θ is taken as 1.0
[C5.8.3.4.2, CB5.2]. Compare Eqs. 14.111 and 14.119.
The tension steel demand must satisfy the same require-

ments as outlined previously:

Asfy + Apsfps ≥
∣∣Mu

∣∣
dvφf

+ 0.5
Nu

φα

+
(∣∣∣∣

Vu

φv
− Vp

∣∣∣∣ − 0.5Vs

)
cot θ

(14.120)

Example 14.4 UseMethod 2: General Procedure for Shear
Resistance [A5.8.3.4.2] to rework Example 14.3. Determine
the required spacing of No. 3 U-shaped stirrups for the non-
prestressed T-beam of Figure 14.27 at a positive moment
location where Vu = 157 kips and Mu = 220 kip ft. Use f

′
c

= 4.5 ksi and fy = 60 ksi.

Step 1: Given Vu = 157 kips and Mu = 220 kip ft,

As = 3.12 in.2 bv = 16 in. b = 80 in.

Assume NA is in flange:

a = Asfy

0.85f ′
c b

= 3.12 (60)

0.85 (4.5) (80)

= 0.61 in. < hf = 8 in. OK

dv = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

de − a/2 = (40 − 2.7) − 0.61/2

= 37.0 in., governs

0.9de = 0.9 (37.3) = 33.6 in.

0.72h = 0.72 (40) = 28.8 in.

Step 2: Calculate vu/f
′
c :

Vp = 0 φv = 0.9
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Equation 14.100

vu =
∣∣Vu

∣∣
φvbvdv

= 157

0.9 (16) (37.0)
= 0.295 ksi

vu
f

′
c

= 0.295

4.5
= 0.066 ≤ 0.25 OK

Step 3: Calculate εs from Eq. 14.119. Nu = 0. Aps = 0:

εs =
∣∣Mu

∣∣ /dv + ∣∣Vu

∣∣
EsAs

= 220 × 12/37.0 + (157)

(29,000× 3.12)

= 2.52 × 10−3

Step 4: Determine θ and β from Eqs 14.117 and 14.118:

β = 4.8

1 + 750εs

= 4.8

1 + 750 (0.00252)
= 1.66

θ = 29 + 3500εs = 29 + 3500 (0.00252) = 37.8

Step 5: Calculate Vs from Eq. 14.112:

Vs =
∣∣Vu

∣∣
φv

− 0.0316β
√

f
′
cbvdv

= 157

0.9
− 0.0316 (1.66)

√
4.5 (16) 37.0

= 174.4 − 65.9 = 108.5 kips

Step 6: Calculate the required stirrup spacing from Eqs.
14.113–14.116 using Av = 0.22 in.2:

s ≤ Avfydv

Vs

cot θ = 0.22(60)(37.0)

108.5
(cot 37.8) = 5.8 in.

≤ Avfy

0.0316
√

f
′
cbv

= 0.22 (60)

0.0316
√
4.5 (16)

= 12.3 in.

vu < 0.125f
′
c = 0.125 (4.5) = 0.563 ksi

s ≤ 0.8dv = 0.8 (37.0) = 29.6 or 24 in.

The stirrup spacing of s = 5.8 in. controls (use 5 in.).
Step 7: Check the additional demand on the longitudinal

reinforcement caused by shear as given by Eq. 14.110:

Vs = 5.8

5.0
(108.5) = 125.9kips

Asfy ≥
∣∣Mu

∣∣
dvφf

+
(∣∣Vu

∣∣
φu

− 0.5Vs

)
cot θ

3.12 (60) ?
220 (12)

37.0 (0.9)
+

(
157

0.9
− 125.9

2

)
cot 37.8

187.2 kips ≤ 79.2 + (174.4 − 63.0) 1.289

= 222.8 kips No good

The spacing can be decreased or the longitudinal steel
increased. See previous example for alternatives. Here, the
longitudinal steel will be increased.

As ≥ 222.8

fy

= 222.8

60
= 3.71 in.2

and Use 3 No. 10s As = 3.79 in.2

No. 3 U-stirrups at 5 in.

Shear Resistance—Method 1: Simplified Method
[A5.8.3.4.1] This method is similar to the simple methods
used in ACI Committee 318 and used in traditional rein-
forced concrete textbooks. It is limited to nonprestressed
methods and may be used with or without transverse
reinforcement. The method simply uses:

β = 2

θ = 45◦

Vp = 0.0

Therefore,
Vn = Vc + Vs

where

Vc = 0.0316β
√

f
′
cbvdv

Vs = Avfydv

s

Example 14.5 Use Method 1: Simplified Procedure for
Nonprestressed Sections [A5.8.3.4.1] to rework Example
14.3. Determine the required spacing of No. 3 U-shaped
stirrups for the nonprestressed T-beam of Figure 14.27 at a
positive moment location where Vu = 157 kips and Mu =
220 kip ft. Use f

′
c = 4.5 ksi and fy = 60 ksi.

Step 1: Given Vu = 157 kips andMu = 220 kip ft,

As = 3.12 in.2 bv = 16 in. b = 80 in.

Assume NA is in flange:

a = Asfy

0.85f ′
cb

= 3.12 (60)

0.85 (4.5) (80)

= 0.61 in. < hf = 8 in. OK

dv = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

de − a/2 = (40 − 2.7) − 0.61/2

= 37.0 in., governs

0.9de = 0.9 (37.3) = 33.6 in.

0.72h = 0.72 (40) = 28.8 in.

Vp = 0 φv = 0.9

Step 2: Calculate shear strength of the concrete Vc:
Equation 14.106

Vc = 0.0316β
√

f
′
cbvdv

= 0.0316 (2)
√
4.5 (16) (37) = 79.4 kips

Step 3: Calculate the required Vs:

Vs = Vu

φv
− Vc = 157

0.9
− 79.4 = 95.0 kips

Step 4: Calculate the required spacing s from Eqs. 14.113–
14.116 using Av = 0.22 in.2:

s ≤ Avfydv

Vs

= (0.22) (60) (37.0)

95.0
= 5.14 in.
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s ≤ Avfy

0.0316
√

f
′
cbv

= 0.22 (60)

0.0316
√
4.5 (16)

= 12.3 in.

Equation 14.100

vu =
∣∣Vu − φVp

∣∣

φbvdv
= 157 − 0

0.9 (16) (37)
= 0.295 ksi

< 0.125f
′
c = 0.125 (4.5) = 0.563 ksi

s ≤ 0.8dv = 0.8 (37.0) = 29.6 or 24 in.

The stirrup spacing of s = 5.14 in. controls (use 5 in.).
Step 5: Check the longitudinal reinforcement As:

Asfy ≥ Mu

dvφf

+
[∣∣Vu

∣∣
φv

− Vs

2

]
cot (θ)

Vs = Avfydv

s
= 0.22 (60) (37.0)

5
= 97.7 kips

3.12 (60) ≥ 220 (12)

37 (0.9)
+

[ |157|
0.9

− 97.7

2

]
(1)

187.2 ≤ 79.3 + 125.6 = 204.9 kips No good

Step 6: Change stirrup spacing or increase longitudinal rein-
forcement, try the latter:

As ≥

Mu

dvφf

+
(∣∣Vu

∣∣
φv

− Vs

2

)
cot θ

fy

≥
220 (12)

37 (0.9)
+

( |157|
0.9

− 97.7

2

)
(1.0)

60
≥ 3.42 in.2

Step 7: Select reinforcement:Use 2 No. 10’s + 1 No. 9
(As = 3.54 in.2) and No. 3 U-stirrups at 5 in.

Shear Resistance—Method 3: Simplified [A5.8.3.4.3]
This method is similar to the computation of the shear
resistance for prestressed concrete section in the Standard
Specification (2002). Hawkins et al. (2005) provides the
development. There are differences, and, importantly, this
method can be applied to prestressed and nonprestressed
concrete sections. Two shear resistances are computed:

Vci = nominal shear resistance provided by concrete when
inclined cracking results from combined shear and
moment (kip), and

Vcw = nominal shear resistance provided by concrete when
inclined cracking results from excessive principal tensions
in web (kip)

The resistance assigned to the concrete is the minimum of
these values:

Vc = min
[
Vci, Vcw

]

where

Vci = 0.02
√

f
′
cbvdv + ViMcre

Mmax
≥ 0.06

√
f

′
cbvdv (14.121)

Vcw =
(
0.06

√
f

′
c + 0.30fpc

)
bvdv + Vp

where

Mcre is the moment causing flexural cracking at
section due to externally applied loads (kip-in.)

Mmax is the maximum factored moment at section
due to externally applied loads (kip-in.),

Mcre shall be determined as

Mcre = Sc

[
fr + fcpe − Mdnc

Snc

]

where
fr = modulus of rupture (ksi) = 0.20

√
f

′
c

[A5.4.2.6]
fcpe = compressive stress in concrete due to

effective prestress forces only (after
allowance for all prestress losses) at extreme
fiber of section where tensile stress is
caused by externally applied loads (ksi)

Mdnc = total unfactored dead-load moment acting
on the monolithic or noncomposite section
(kip-in.)

Sc = section modulus for the extreme fiber of the
composite section where tensile stress is
caused by externally applied loads (in.3)

Snc = section modulus for the extreme fiber of the
monolithic or noncomposite section where
tensile stress is caused by externally applied
loads (in.3)

In Eq. 14.121, Mmax and Vi shall be determined from the
load combination causing maximum moment at the section.
For the resistance assigned to the steel transverse reinforce-

ment, the equations are the same as the MCFT (and standard
specifications):

Vs = Avfydv

s
cot θ

IfVci ≤ Vcw, then cot θ = 1.0

If Vci > Vcw, then cot θ = 1.0 + 3

(
fpc√
f

′
c

)
≤ 1.8

(14.122)

This provides that if the section strength is controlled by web
shear cracking, then the angle is assumed to be 45◦. If flex-
ural shear cracking controls, then the angle is a function of
the level of prestressing at the section centriod but limited to
approximately 30◦.

Example 14.6 Use Method 3: Simplified Procedure for
Prestressed and Nonprestressed Sections [A5.8.3.4.3] to
rework Example 14.3. Determine the required spacing of
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No. 3 U-shaped stirrups for the nonprestressed T-beam of
Figure 14.27 at a positive moment location where Vu = 157
kips and Mu = 220 kip ft. Use f

′
c = 4.5 ksi and fy = 60 ksi.

For this problem, assume that the maximum shear and
moment occur at the same location. The section properties
are I = 106,888 in.4 and Sbottom = 3943 in.3.

Step 1: Given Vu = 157 kips andMu = 220 kip ft,

As = 3.12 in.2 bv = 16 in. b = 80 in.

Assume NA is in flange:

a = Asfy

0.85f ′
c b

= 3.12 (60)

0.85 (4.5) (80)

= 0.61 in. < hf = 8 in. OK

dv = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

de − a/2 = (40− 2.7) − 0.61/2

= 37.0 in., governs

0.9de = 0.9 (37.3) = 33.6 in.

0.72h = 0.72 (40) = 28.8 in.

Step 2: Determine the cracking moment Mcre:

fr = 0.20
√

f
′
c = 0.42 ksi

Mcre = Sc

[
fr + fcpe − Mdnc

Snc

]

Mcre = (3943) [(0.42) + 0 + 0] = 1656 kip-in.

Step 3: Determine the shear resistance assigned to the con-
crete:

Vci = 0.02
√

f
′
cbvdv + ViMcre

Mmax
≥ 0.06

√
f

′
cbvdv

Vci = 0.02
√
4.5 (16) (37.0) + 157 (1656)

220 (12)

= 123.6 ≥ 0.06
√

f
′
c bvdv = 75.3 kips

Vcw =
(
0.06

√
f

′
c + 0.30fpc

)
bvdv + Vp

Vcw =
[
0.06

√
4.5 + 0.30 (0)

]
(16) (37.0) + 0

= 75.3 kips

Vc = min
[
Vci, Vcw

] = min [123.6, 75.3] = 75.3 kips

Step 4:Determine the shear resistance required by the trans-
verse steel:

Vs = Vu

φv
− Vc = 157

0.9
− 75.3 = 99.1 kips

Step 5: Determine the stirrup spacing, s , from Eqs. 14.113–
14.116 using Av = 0.22 in.2

Equation 14.122 with f pc = 0, then cot θ = 1.0:

s ≤ Avfydv

Vs

cot θ = 0.22 (60) (37.0)

99.1
(1.0) = 4.93 in.

≤ Avfy

0.0316
√

f
′
cbv

= 0.22 (60)

0.0316
√
4.5 (16)

= 12.3 in.

Equation 14.100

vu =
∣∣Vu − φVp

∣∣

φbvdv
= 157− 0

0.9 (16) (37)
= 0.295 ksi

vu < 0.125f
′
c = 0.125 (4.5) = 0.563 ksi

s ≤ 0.8dv = 0.8 (37.0) = 29.6 or 24 in.

The stirrup spacing of s = 4.93 in. controls (use 5 in.).
Step 6: Check the longitudinal reinforcement As:

Asfy ≥ Mu

dvφf

+
[∣∣Vu

∣∣
φv

− Vs

2

]
cot θ

Vs ≤ Avfydv

s
cot θ = 0.22 (60) (37.0)

5
(1.0) = 97.7 kips

3.12 (60) ≥ 220 (12)

37 (0.9)
+

[ |157|
0.9

− 97.7

2

]
(1.0)

187.2 ≤ 79.3 + 125.6 = 204.9 kips No good

Step 7: Change stirrup spacing or increase longitudinal rein-
forcement, try the latter.

As ≥

Mu

dvφf

+
(∣∣Vu

∣∣
φv

− Vs

2

)
cot θ

fy

≥
220 (12)

37 (0.9)
+

( |157|
0.9

− 97.7

2

)
(1.0)

60
≥ 3.42 in.2

Step 8: Select reinforcementUse 2 No. 10’s + 1 No. 9 (As =
3.54 in.2) and No. 3 U-stirrups at 5 in.

The shear resistance designs are compared in Table 14.10
for equal stirrup spacings of 5 in. It is interesting to note that
the simplified methods 1 and 3 give the same results and so
do the two MCFT methods.

Table 14.10 Comparison of Procedures for Determining Shear Resistance

Procedure AASHTO Reference Longitudinal Steel Spacing of Stirrups

Method 1 Simplified A5.8.3.4.1 2 No. 10 + 1 No. 9 S = 5 in.
Method 2 MCFT A5.8.3.4.2 3 No. 10 S = 5 in.
Method 2 MCFT Appendix 5B 3 No. 10 S = 5 in.
Method 3 Simplified A5.8.3.4.3 2 No. 10 + 1 No. 9 S = 5 in.
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14.4 CLOSING REMARKS

This chapter, in addition to Chapter 13, outlines some of the
most fundamental behavior in reinforced and prestressed
concrete beams. The behavior includes material properties,
properties associated with their application in the compo-
nent, that is, tension softening, compression field theory,
and its modified version. There is a significant amount of
information that was not presented and the interested reader
may find supplementary materials in books on concrete
behavior, papers, and reports. NCHRP reports on these
topics are highly recommended and in many cases provide
the link between the behavior, experimental work, modeling,
and the specifications. Note that the specification may not
end up as recommended by the researcher, but rather might
be adjusted by the committee in charge of that article and
adopted by AASHTO.
There are numerous prestress concrete loss models, and

the primary AASHTO LRFD models are present in the body
of this chapter and in an appendix for refined methods. Due
to limited space and scope, this book does not address pre-
stressed concrete beams that are made continous for live load.
The design practices for these bridges vary among agencies
and the reader/designer is referred to the owner’s methods.
Finally, the focus here is on girder elements. Substructure
components such as pier caps and columns are not explic-
itly addressed. Similarly foundation elements such as piles,
drilled shafts, and caps are not addressed. The principles pre-
sented here apply in many cases, but not all. The strut-and-tie
method should be reviewed for its application in lieu of sec-
tional analysis. The details can be found in agency design
manuals and elsewhere.
In summary, the topics of concrete behavior and design

(and associated literature) are voluminous. The information
presented here is a start.
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PROBLEMS

14.1 Rework Example 14.1 with a change in the flange
width b to 48 in. (instead of 18 in.) for the beam cross
section in Figure 14.11.

14.2 Determine the steel strain and the associated resis-
tance factor for the beam in Problem 14.1 with the
properties given inExample 14.1 for (a) a bonded case
and (b) an unbonded case.

14.3 Why are there two requirements for minimum ten-
sile reinforcement in AASHTO [A5.7.3.3.2]? In what
cases would 1.2Mcr be greater than 1.33Mu?

14.4 Give examples of design situations where it is impor-
tant to have reasonably accurate estimates of prestress
loss in prestressing strands.

14.5 What are some of the consequences, both good and
bad, of not estimating prestress loss with reasonable
accuracy?

14.6 Give examples of loading stages where prestress gain,
rather than prestress loss, can occur.

14.7 In what design situations does AASHTO [A5.6.3]
recommend that a strut-and-tie model be used to
represent the load-carrying mechanism in reinforced
concrete members?

14.8 The variable-angle truss model has been used for
years to explain shear in reinforced concrete beams.
In spite of its shortcomings, one of its positive fea-
tures is the prediction of increased tension in the
longitudinal reinforcement produced by a transverse
shear force. How has this feature been incorpo-
rated into the shear design provisions of AASHTO
[A5.8.3.5]?

14.9 What is the difference between compression field
theory and modified compression field theory for
predicting shear strength of reinforced concrete
members?

14.10 Apply the computer program Response-2000 to
Example 14.3. The latest version of Response-2000
can be downloaded without charge from the website:
www.ecf.utoronto.ca/∼Bentz/home.shtml.



CHAPTER 15

Concrete Barrier Strength
and Deck Design

15.1 CONCRETE BARRIER STRENGTH

The purpose of a concrete barrier, in the event of a collision
by a vehicle, is to redirect the vehicle in a controlledmanner.
The vehicle shall not overturn or rebound across traffic lanes.
The barrier shall have sufficient strength to survive the initial
impact of the collision and to remain effective in redirecting
the vehicle.
To meet the design criteria, the barrier must satisfy both

geometric and strength requirements. The geometric condi-
tionswill influence the redirection of the vehicle andwhether
it will be controlled or not. This control must be provided
for the complete mix of traffic from the largest trucks to the
smallest automobiles. Geometric shapes and profiles of bar-
riers that can control collisions have been developed over the
years and have been proven by crash testing. Any variation
from the proven geometry may involve risk and is not recom-
mended. A typical solid concrete barrier cross section with
sloping face on the traffic side is shown in Figure 15.1, that
is, the critical value.
The strength requirements for barriers depend on the truck

volume and speed of the traffic anticipated for the bridge. For
given traffic conditions, a performance level for the barrier
can be selected and the collision forces defined [A13.7.2]*.
The design forces and their location relative to the bridge
deck are given for six test levels in Table 8.5. The concrete
barrier in Figure 15.1 has a height sufficient for test level
TL-4.

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-
tions are enclosed in breackets and precededby the letter A if a specification
article and by the letter C if commentary.

Fig. 15.1 Concrete barrier.

15.1.1 Strength of Uniform Thickness Barrier Wall

The lateral load-carrying capacity of a uniform thickness
solid concrete barrier was analyzed by Hirsh (1978). The
expressions developed for the strength of the barrier are
based on the formation of yield lines at the limit state. The
assumed yield line pattern caused by a truck collision that
produces a force Ft that is distributed over a length Lt is
shown in Figure 15.2.
The fundamentals of yield-line analysis are given in

Section 11.3. Essentially, for an assumed yield-line pattern
that is consistent with the geometry and boundary conditions
of a wall or slab, a solution is obtained by equating the
external virtual work due to the applied loads to the internal
virtual work done by the resisting moments along the yield
lines. The applied load determined by this method is either
equal to or greater than the actual load, that is, it is noncon-
servative. Therefore, it is important to minimize the load for
a particular yield-line pattern. In the case of the yield-line
pattern shown in Figure 15.2, the angle of the inclined yield
lines can be expressed in terms of the critical length Lc. The

Lc

Lt

Ft

H

d

Fig. 15.2 Yield-line pattern for barrier wall. (After Hirsh, 1978.)
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Fig. 15.3 External virtual work by distributed load. (After Cal-
loway, 1993.)

applied force Ft is minimized with respect to Lc to get the
least value of this upper bound solution.

External Virtual Work by Applied Loads The original
and deformed positions of the top of the wall are shown
in Figure 15.3. The shaded area represents the integral of
the deformations through which the uniformly distributed
load wt = Ft/Lt acts. For a virtual displacement δ, the
displacement x is

x = Lc − Lt

Lc

δ (15.1)

and the shaded area becomes

Area = 1

2
(δ + x) Lt = δ

2

(
1 + Lc − Lt

Lc

)
Lt

= δ
Lt

Lc

(
Lc − Lt

2

)
(15.2)

so that the external virtual workW done by wt is

W = wt (area) = Ft

Lt

δ
Lt

Lc

(
Lc − Lt

2

)

= Ft

δ

Lc

(
Lc − Lt

2

)
(15.3)

Internal Virtual Work along Yield Lines The internal vir-
tual work along the yield lines is the sum of the products of
the yield moments and the rotations through which they act.
The segments of the wall are assumed to be rigid so that all
of the rotation is concentrated at the yield lines. At the top of
the wall (Fig. 15.4), the rotation θ of the wall segments for
small deformations is

θ ≈ tan θ = 2δ

Lc

(15.4)

The barrier can be analyzed by separating it into a beam
at the top and a uniform thickness wall below. At the limit
state, the top beam will develop plastic moments Mb equal
to its nominal bending strength Mn and form a mechanism
as shown in Figure 15.4. Assuming that the negative and

Fig. 15.4 Plastic hingemechanismfor top beam. (After Calloway,
1993.)

positive plastic moment strengths are equal, the internal vir-
tual work Ub done by the top beam is

Ub = 4Mbθ = 8Mbδ

Lc

(15.5)

The wall portion of the barrier will generally be reinforced
with steel in both the horizontal and vertical directions.
The horizontal reinforcement in the wall develops moment
resistance Mw about a vertical axis. The vertical reinforce-
ment in the wall develops a cantilever moment resistance
Mc per unit length about a horizontal axis. These two
components of moment will combine to develop a moment
resistance Mα about the inclined yield line as shown in
Figure 15.5. When determining the internal virtual work
along inclined yield lines, it is simpler to use the projections
of moment on and rotation about the vertical and horizontal
axes.
Assume that the positive and negative bending resistance

Mw about the vertical axis are equal, and use θ as the projec-
tion on the horizontal plane of the rotation about the inclined

Fig. 15.5 Internal virtual work by barrier wall. (After Calloway,
1993.)
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yield line. The internal virtualworkUw done by the wall mo-
ment Mw is then

Uw = 4Mwθ = 8Mwδ

Lc

(15.6)

The projection on the vertical plane of the rotation about
the inclined yield line is δ/H , and the internal virtual work
Uc done by the cantilever moment McLc is

Uc = McLcδ

H
(15.7)

Nominal Railing Resistance to Transverse Load Rw
Equate the external virtual work W to the internal virtual
work U to give

W = Ub + Uw + Uc

If we substitute Eqs. 15.3 and 15.5–15.7 to get

Ft

Lc

(
Lc − Lt

2

)
δ = 8Mbδ

Lc

+ 8Mwδ

Lc

+ McLcδ

H

and solve for the transverse vehicle impact force Ft:

Ft = 8Mb

Lc − Lt

2

+ 8Mw

Lc − Lt

2

+ McL
2
c

H
(
Lc − Lt

2

) (15.8)

This expression depends on the critical length Lc that de-
termines the inclination of α of the negative moment yield
lines in the wall. The value for Lc that minimizes Ft can be
determined by differentiatingEq. 15.8 with respect to Lc and
setting the result equal to zero, that is,

dFt

dLc

= 0 (15.9)

This minimization results in a quadratic equation that can
be solved explicitly to give

Lc = Lt

2
+

√(
Lt

2

)2

+ 8H
(
Mb + Mw

)

Mc

(15.10)

When this value ofLc is used inEq. 15.8, then theminimum
value for Ft results, and the result is denoted as Rw, that is,

min Fi = Rw (15.11)

where Rw is the nominal railing resistance to transverse load.
By rearranging Eq. 15.8, Rw is [AA13.3.1]

Rw = 2

2Lc − Lt

(
8Mb + 8Mw + McL

2
c

H

)
(15.12)

where
Ft = transverse force specified in Table 8.5

assumed to be acting at top of a concrete wall
(kip)

H = height of wall (ft)

Lc = critical length of yield-line failure pattern
given by Eq. 15.10 (ft)

Lt = longitudinal length of distribution of impact
force Ft specified in Table 8.5 (ft)

Rw = total nominal transverse resistance of the
railing (kip)

Mb = additional flexural resistance of beam in
addition toMw, if any, at top of wall (kip-ft)

Mc = flexural resistance of cantilevered wall about
an axis parallel to the longitudinal axis of the
bridge (kip-ft/ft)

Mw = flexural resistance of the wall about its
vertical axis (kip-ft)

15.1.2 Strength of Variable Thickness Barrier Wall

Most of the concrete barrier walls have sloping faces, as
shown in Figure 15.1, and are not of uniform thickness.
Calloway (1993) investigated the yield-line approach ap-
plied to barrier walls of changing thickness. Equations were
developed for Rw based on continuously varying moment
resistances whose product with rotation was integrated over
the height of the wall to obtain the internal virtual work.
The results of this more “exact” approach were compared
to those obtained from the Hirsh equations (Eqs. 15.10 and
15.12) using various methods for calculating Mw and Mc.
The recommended procedure is to use the Hirsh equations
with average values for Mw and Mc. In the cases examined
by Calloway, the Rw calculated by using average values
was 4% less (conservative) than the more “exact” approach.
This procedure is illustrated in the deck overhang design of
Example E15.1.

15.1.3 Crash Testing of Barriers

It should be emphasized that a railing system and its con-
nection to the deck shall be approved only after they have
been shown to be satisfactory through crash testing for the
desired test level [A13.7.3.1]. If minor modifications have
been made to a previously tested railing system that does not
affect its strength, it can be used without further crash test-
ing. However, any new system must be verified by full-scale
crash testing. Clearly, the steel detailing of the barrier to the
deck and the cantilever overhang strength is important for the
transfer of the crash load into the deck diaphragm.

15.2 CONCRETE DECK DESIGN

Problem Statement Example E15.1 Use the approximate
method of analysis [A4.6.2.1] to design the deck of the re-
inforced concrete T-beam bridge section of Figure E15.1-1
for an HL-93 live load and a TL-4 test-level concrete barrier
(Fig. 15.1). The T-beams supporting the deck are 8 ft on cen-
ters and have a stem width of 14 in. The deck overhangs the
exterior T-beam approximately 0.4 of the distance between
T-beams. Allow for sacrificial wear of 0.5 in. of concrete
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Fig. E15.1-1 Concrete deck design example.

surface and for a future wearing surface of 3.0-in.-thick bitu-
minous overlay. The barrier concrete strength is 4.0 ksi, area
is 307 in2, the associated weight is 0.32 kip/ft, and the cen-
ter of gravity is located at 5 in. from the exterior face. Class
2 exposure should be used for the service limit associated
with cracking. Use f

′
c = 4.5 ksi, fy = 60 ksi, and compare

the selected reinforcement with that obtained by the empiri-
cal method [A9.7.2].

A. Deck Thickness The minimum thickness for concrete
deck slabs is 7 in. [A9.7.1.1]. Traditional minimum
depths of slabs are based on the deck span length S
(ft) to control deflection to give for continuous deck
slabs with main reinforcement parallel to traffic [Table
A2.5.2.6.3-1]:

hmin = S + 10

30
= 8 + 10

30
= 0.6 ft = 7.2 in. > 7 in.

Use hs = 7.5 in. for the structural thickness of the deck.
By adding the 0.5-in. allowance for the sacrificial sur-
face, the dead weight of the deck slab is based on h =
8.0 in. Because the portion of the deck that overhangs
the exterior girder must be designed for a collision load
on the barrier, its thickness has been increased to ho =
9.0 in.

B. Weights of Components [TableA3.5.1-1]Unitweight of
reinforced concrete is taken as 0.150 kcf [C3.5.1]. For a
1.0-ft width of a transverse strip

Barrier

Pb = 0.150 kcf × 307 in.2/144 = 0.320 kip/ft

Future wearing surface

wDW = 0.140 kcf × 3.0 in./12 = 0.035 ksf

Slab 8.0 in. thick

ws = 0.150 kcf × 8.0 in./12 = 0.100 ksf

Cantilever overhang 9.0 in. thick

wo = 0.150 kcf × 9.0 in./12 = 0.113 ksf

C. Bending Moment Force Effects—General An ap-
proximate analysis of strips perpendicular to girders is
considered acceptable [A9.6.1]. The extreme positive
moment in any deck panel between girders shall be

taken to apply to all positive moment regions. Sim-
ilarly, the extreme negative moment over any girder
shall be taken to apply to all negative moment regions
[A4.6.2.1.1]. The strips shall be treated as continuous
beams with span lengths equal to the center-to-center
distance between girders. The girders shall be assumed
to be rigid [A4.6.2.1.6].
For ease in applying load factors, the bending mo-

ments are determined separately for the deck slab,
overhang, barrier, future wearing surface, and vehicle
live load.

1. Deck Slab

h = 8.0 in. ws = 0.100 ksf S = 8.0 ft

FEM = ±wsS
2

12
= ±0.100(8.0)2

12
= 0.533 kip-ft/ft

Placement of the deck slab dead load and results
of a moment distribution analysis for negative and
positive moments in a 1-ft-wide strip is given in
Figure E15.1-2.
A deck analysis design aid based on influence

lines is given in Table A.1 of Appendix A. For a
uniform load, the tabulated areas are multiplied by S
for shears and by S 2 for moments.

R200 = ws (net area w/o cantilever)S
= 0.100(0.3928)8 = 0.314 kip/ft

Fig. E15.1-2 Moment distribution for deck slab dead load.
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M204 = ws(net area w/o cantilever)S2

= 0.100(0.0772)82 = 0.494 kip-ft/ft

M300 = ws(net area w/o cantilever)S2

= 0.100(−0.1071)82 = −0.685 kip-ft/ft

Comparing the results from the design aid with
those from moment distribution shows good agree-
ment. In determining the remainder of the bending
moment force effects, the design aid of Table A.1 is
used.

2. Overhang The parameters are ho = 9.0 in., wo =
0.113 ksf, and L = 3.25 ft. Placement of the overhang
dead load is shown in Figure E15.1-3. By using the
design aid of Table A.1 in Appendix A, the reaction
on the exterior T-beam and the bending moments are

R200 = wo(net area cantilever)L

= 0.113

(
1.0 + 0.635

3.25

8.0

)
3.25

= 0.462 kip/ft

M200 = wo(net area cantilever)L
2

= 0.113(−0.5000)3.252 = −0.597 kip-ft/ft

M204 = wo(net area cantilever)L
2

= 0.113(−0.2460)3.252 = −0.294 kip-ft/ft

M300 = wo(net area cantilever)L
2

= 0.113(0.1350)3.252 = 0.161 kip-ft/ft

3. Barrier The parameters are Pb = 0.320 kip/ft and
L = 3.25 – 0.42 = 2.83 ft. Placement of the cen-
ter of gravity of the barrier dead load is shown in
Figure E15.1-4. By using the design aid of Table A.1
for the concentrated barrier load, the intensity of the

Fig. E15.1-3 Overhang dead-load placement.

Fig. E15.1-4 Barrier dead-load placement.

load is multiplied by the influence line ordinate for
shears and reactions. For bending moments, the in-
fluence line ordinate is multiplied by the cantilever
length L .

R200 = Pb(influence line ordinate)

= 0.320

(
1.0 + 1.270

2.83

8.0

)

= 0.464 kip/ft

M200 = Pb(influence line ordinate)L

= 0.320(−1.0000)(2.83)

= −0.906 kip-ft/ft

M204 = Pb(influence line ordinate)L

= 0.320(−0.4920)(2.83) = −0.446 kip-ft/ft

M300 = Pb(influence line ordinate)L

= 0.320(0.2700)(2.83) = 0.245 kip-ft/ft

4. Future Wearing Surface (FWS) FWS = wDW =
0.035 ksf. The 3 in. of bituminous overlay is placed
curb to curb as shown in Figure E15.1-5. The length
of the loaded cantilever is reduced by the base width
of the barrier to give L = 3.25 – 1.25 = 2.0 ft. Using
the design aid of Table A.1 gives

R200 = wDW[(net area cantilever) L

+ (net area w/o cantilever)S]

= 0.035

[(
1.0 + 0.635

2.0

8.0

)
2.0 + (0.3928) 8.0

]

= 0.191 kip/ft

M200 = wDW(net area cantilever)L2

= 0.035(−0.5000)(2.0)2 = −0.070 kip-ft/ft

M204 = wDW[(net area cantilever)L2

+ (net area w/o cantilever)S2]

= 0.035[(−0.2460)2.02 + (0.0772)8.02]

= 0.138 kip-ft/ft

M300 = wDW[(net area cantilever)L2

+ (net area w/o cantilever)S2]

= 0.035[(0.135)2.02 + (−0.1071)8.02]

= −0.221 kip-ft/ft

Fig. E15.1-5 Future wearing surface dead-load placement.



296 15 CONCRETE BARRIER STRENGTH AND DECK DESIGN

D. Vehicular Live Load—General Where decks are de-
signed using the approximate strip method [A4.6.2.1],
the strips are transverse and shall be designed for the
32.0-kip axle of the design truck [A3.6.1.3.3]. Wheel
loads on an axle are assumed to be equal and spaced
6.0 ft apart [Fig. A3.6.1.2.2-1]. The design truck shall be
positioned transversely to produce maximum force ef-
fects such that the center of any wheel load is not closer
than 1.0 ft from the face of the curb for the design of the
deck overhang and 2.0 ft from the edge of the 12.0-ft-
wide design lane for the design of all other components
[A3.6.1.3.1].
The width of equivalent interior transverse strips (in.)

over which thewheel loads can be considered distributed
longitudinally in CIP concrete decks is given as [Table
A4.6.2.1.3-1]

� Overhang, 45.0 + 10.0X
� Positive moment, 26.0 + 6.6S
� Negative moment, 48.0 + 3.0S

where X (ft) is the distance from the wheel load to the
centerline of support and S (ft) is the spacing of the T-
beams. For our example, X is 1.0 ft (see Fig. E15.1-6)
and S is 8.0 ft.
Tire contact area [A3.6.1.2.5] shall be assumed as a

rectangle with width of 20.0 in. and length of 10.0 in.
with the 20.0-in. dimension in the transverse direction
as shown in Figure E15.1-6.
When calculating the force effects, wheel loads may

be modeled as concentrated loads or as patch loads
distributed transversely over a length along the deck
span of 20.0 in. plus the slab depth [A4.6.2.1.6]. This
distributed model is shown in Figure E15.1-6 and
represents a 1 : 1 spreading of the tire loading to mid-
depth of the beam. For our example, length of patch

Fig. E15.1-6 Distribution of wheel load on overhang.

loading = 20.0 + 7.5 = 27.5 in. If the spans are short,
the calculated bending moments in the deck using the
patch loading can be significantly lower than those
using the concentrated load. In this design example,
force effects are calculated conservatively by using
concentrated wheel loads.
The number of design lanes NL to be considered

across a transverse strip is the integer value of the clear
roadway width divided by 12.0 ft [A3.6.1.1.1]. For our
example,

NL = INT

(
44.0

12.0

)
= 3

The multiple presence factor m is 1.2 for one loaded
lane, 1.0 for two loaded lanes, and 0.85 for three loaded
lanes. (If only one lane is loaded, we must consider
the probability that this single truck can be heavier
than each of the trucks traveling in parallel lanes
[A3.6.1.1.2].)

1. Overhang Negative Live-Load Moment The critical
placement of a single wheel load is shown in Figure
E15.1-6. The equivalent width of a transverse strip is
45.0+ 10.0X = 45.0+ 10.0(1.0)= 55.0 in.= 4.58 ft
and m = 1.2. Therefore,

M200 = −1.2 (16.0) (1.0)

4.58
= −4.19 kip-ft/ft

The above moment can be reduced if the concrete
barrier is structurally continuous and becomes effec-
tive in distributing the wheel loads in the overhang
[A3.6.1.3.4]. However, as we shall see later, the over-
hang negative moment caused by horizontal forces
from a vehicle collision [A13.7.2] is greater than the
moment produced by live load.

2. Maximum Positive Live-Load Moment For repeating
equal spans, the maximum positive bending mo-
ment occurs near the 0.4 point of the first interior
span, that is, at location 204. In Figure E15.1-7,
the placement of wheel loads is given for one and
two loaded lanes. For both cases, the equivalent
width of a transverse strip is 26.0 + 6.6S = 26.0 +
6.6(8.0) = 78.8 in.= 6.57 ft. Using the influence line
ordinates from Table A.1, the exterior girder reaction
and positive bending moment with one loaded lane
(m = 1.2) are

R200 = 1.2(0.5100 − 0.0510)
16.0

6.57
= 1.34 kip/ft

M204 = 1.2(0.2040 − 0.0204)(8.0)
16.0

6.57
= 4.29 kip-ft/ft
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Fig. E15.1-7 Live-load placement for maximum positive mo-
ment: (a) one loaded lane, m = 1.2 and (b) two loaded lanes,
m = 1.0.

and for two loaded lanes (m = 1.0)

R200 = 1.0(0.5100 − 0.0510

+ 0.0214− 0.0041)
16.0

6.57
= 1.16 kips/ft

M204 = 1.0(0.2040 − 0.0204

+ 0.0086− 0.0017)(8.0)
16.0

6.57
= 3.71 kip-ft/ft

Thus, the one loaded lane case governs.
3. Maximum Interior Negative Live-Load Moment

The critical placement of live load for maximum
negative moment is at the first interior deck sup-
port with one loaded lane (m = 1.2) as shown in
Figure E15.1-8. The equivalent transverse strip width
is 48.0 + 3.0S = 48.0 + 3.0(8.0) = 72.0 in. = 6.0 ft.
Using influence line ordinates from Table A.1, the
bending moment at location 300 becomes

M300 = 1.2 (−0.1010− 0.0782) (8.0)
16.0

6.0
= −4.59 kip-ft/ft

Fig. E15.1-8 Live-load placement for maximum negative
moment.

Fig. E15.1-9 Live-load placement for maximum reaction at exte-
rior girder.

Note that the small increase due to a second truck
is less than the 20% (m = 1.0) required to control.
Therefore, only the one lane case is investigated.

4. Maximum Live-Load Reaction on Exterior Girder
The exterior wheel load is placed 1.0 ft from the curb
or 1.0 ft from the centerline of the support as shown
in Figure E15.1-9. The width of the transverse strip
is conservatively taken as the one for the overhang.
Using influence line ordinates from Table A.1,

R200 = 1.2 (1.1588+ 0.2739)
16.0

4.58
= 6.01 kips/ft

E. Strength Limit State Each component and connection
of the deck shall satisfy the basic design equation
[A1.3.2.1]

�ηiγiQi ≤ φRn (A1.3.2.1-1)

in which:
For loads for which a maximum value of γ i is appro-

priate
ηi = ηDηRηI ≥ 0.95 (A1.3.2.1-2)

For loads for which a minimum value of γ i is appro-
priate

ηi = 1.0

ηDηRηI

≤ 1.0 (A1.3.2.1-3)

For the strength limit state

ηD = 1.00 for conventional design and details
complying with AASHTO (2010) [A1.3.3]

ηR = 1.00 for conventional levels of redundancy
[A1.3.4]

η1 = 1.00 for typical bridges [A1.3.5]

For these values of ηD, ηR, and ηI, the load mod-
ifier ηi = 1.00(1.00) (1.00) = 1.00 for all load
cases and the strength I limit state can be written as
[Tables 3.4.1-1]

�iηiγiQi = 1.00γpDC + 1.00γpDW

+ 1.00 (1.75) (LL + IM)

The factor for permanent loads γ p is taken at its max-
imum value if the force effects are additive and at its
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minimum value if it subtracts from the dominant force
effect [Table A3.4.1-2]. The dead-load DW is for the fu-
turewearing surface andDC represents all the other dead
loads.
The dynamic load allowance IM [A3.6.2.1] is 33%

of the live-load force effect. Factoring out the com-
mon 1.00 load modifier, the combined force effects
become

R200 = 1.00[1.25(0.314 + 0.462+ 0.464)

+ 1.50(0.191)] + 1.75(1.33)(6.01)]

= 15.83 kips/ft

M200 = 1.00[1.25(−0.597 − 0.906) + 1.50(−0.070)

+ 1.75(1.33)(−4.19)] = −11.74 kip-ft/ft

M204 = 1.00[1.25(0.494) + 0.9(−0.294 − 0.446)

+ 1.50(0.138) + 1.75(1.33)(4.29)]

= 10.14 kip-ft/ft

M300 = 1.00[1.25(−0.685) + 0.9(0.161 + 0.245)

+ 1.50(−0.221) + 1.75(1.33)(−4.59)]

= −11.51 kip-ft/ft

The two negative bending moments are nearly equal,
which confirms choosing the length of the overhang as
0.4S . For selection of reinforcement, these moments
can be reduced to their value at the face of the support
[A4.6.2.1.6]. The T-beam stem width is 14.0 in., so
the design sections are 7.0 in. on either side of the
support centerline used in the analysis. The critical
negative moment section is at the interior face of the
exterior support as shown in the free-body diagram of
Figure E15.1-10.
The values for the loads in Figure E15.1-10 are for a

1.0-ft-wide strip. The concentrated wheel load is for one
loaded lane, that is, W = 1.2(16.0)/4.58 = 4.19 kips/ft.
In calculating the moment effect, the loads are kept sep-
arate so that correct R 200 values are used.

Fig. E15.1-10 Reduced negative moment at face of support.

1. Deck Slab

Ms = − 1
2wsx

2 + R200x

= − 1
2 (0.100)

( 7
12

)2 + 0.314
( 7
12

)

= 0.166 kip-ft/ft

2. Overhang

Mo = −woL

(
L

2
+ x

)
+ R200x

= −0.113(3.25)
( 3.25

2 + 7
12

) + 0.462
( 7
12

)

= −0.541 kip-ft/ft

3. Barrier

Mb = −Pb

(
L + x − 5

12

) + R200x

= −0.320
(
46
12 − 5

12

) + 0.464
(
7
12

)

= −0.823 kip-ft/ft

4. Future Wearing Surface

MDW = − 1
2wDW

(
L + x − 15

12

)2 + R200x

= − 1
2 (0.035)

( 46
12 − 15

12

)2 + 0.191
( 7
12

)

= −0.005 kip-ft/ft

5. Live Load

MLL = −W
(
19
12

) + R200x

= −4.19
(
19
12

) + 6.01
(
7
12

)

= −3.128 kip-ft/ft

6. Strength I Limit State

M200.73 = 1.00[0.9(0.166)+1.25(−0.541 − 0.823)

+ 1.50(−0.005) + 1.75(1.33)(−3.128)]

= −8.84 kip-ft/ft

This negative bending design moment represents
a significant reduction from the value at M 200 =
−11.74 kip-ft/ft. Because the extreme negative mo-
ment over any girder applies to all negative moment
regions [A4.6.2.1.1], the extra effort required to
calculate the reduced value is justified. Note that the
moment at the outside face is smaller and can be
calculated to be −5.52 kip-ft/ft.

F. Selection of Reinforcement—General The mate-
rial strengths are f

′
c = 4.5 ksi and fy = 60 ksi. Use

epoxy-coated reinforcement in the deck and barrier.
The effective concrete depths for positive and negative

bending is different because of different cover require-
ments (see Fig. E15.1-11).

Concrete Cover [Table A5.12.3-1]

Deck surfaces subject to wear 2.5 in.
Bottom of CIP slabs 1.0 in.
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0.5 in. 2.5 in. Clear

1 in. Clear

8 in.d p
os

d n
eg

Fig. E15.1-11 Effective concrete depths for deck slabs.

Assuming a No. 5 bar, db = 0.625 in., Ab = 0.31 in.2

dpos = 8.0 − 0.5 − 1.0 − 0.625/2

= 6.19 in.

dneg = 8.0 − 2.5 − 0.625/2

= 5.19 in.

A simplified expression for the required area of steel
can be developed by neglecting the compressive rein-
forcement in the resisting moment to give [A5.7.3.2]

φMn = φAsfy

(
d − a

2

)
(E15.1-1)

where
a = Asfy

0.85 f
′
c b

(E15.1-2)

Assuming that the lever arm (d – a /2) is independent
of As, replace it by jd and solve for an approximate As
required to resist φMn =Mu.

As ≈ Mu/φ

fy (jd)
(E15.1-3)

Further, substitute fy = 60 ksi, φ = 0.9 [A5.5.4.2.1],
and assume that for lightly reinforced sections j ≈ 0.92,
a trial steel area becomes

trial As(in.)
2 ≈ Mu (kip-ft)

4d (in.)
(E15.1-4)

Because it is an approximate expression, it is necessary
to verify the moment capacity of the selected reinforce-
ment.
The resistance factor may be between φf = 0.75 and

φf = 0.90 depending upon the steel strain at the fail-
ure state [A5.5.4.2.1]. This replaces the ductility require-
ment prescribed in previous specification. In equation
format [A5.5.4.2.1] requires

0.75 ≤ φ = 0.65 + 0.15

(
dt

c
− 1

)
≤ 0.9 (E15.1-5)

where c is the neutral axis depth and dt is the depth
of the tension reinforcement. When the steel strain is
greater than or equal to 0.005, then φ is equal to 0.9.
See Figure 14.5. An alternative check is c/dt ≤ 0.375
(a/dt ≤ 0.375β1); then φ = 0.90.

Minimum reinforcement [A5.7.3.3.2] for flexural
components is satisfied if φMn = Mu is at least equal to
the lesser of

� 1.2 times the cracking moment M cr
� 1.33 times the factored moment required by the

applicable strength load combination of [Table
A3.4.1]

Where beams or slabs are designed for a noncomposite
section to resist all loads

Mcr = Sncfr (E15.1-6)

where
S nc = section modulus for the extreme fiber of

the noncomposite section where tensile
stress is caused by external loads (in.3)

fr = modulus of rupture of concrete (ksi)
[A5.4.2.6]

For normal-weight concrete

fr (ksi) = 0.37
√

f
′
c (E15.1-7)

Maximum spacing of primary reinforcement [A5.10
.3.2] for slabs is 1.5 times the thickness of the mem-
ber or 18.0 in. By using the structural slab thickness
of 7.5 in.,

smax = 1.5 (7.5) = 11.25 in.

1. Positive Moment Reinforcement

pos Mu = M204 = 10.14 kips/ft

MinimumMu depends onM cr = S nc fr

Snc = 1
6bh2 = 1

6 (12)(8.0)
2 = 128 in.3

fr = 0.37
√

f
′
c = 0.37

√
4.5 = 0.785 ksi

min Mu lessor of 1.2Mcr = 1.2(128)(0.785)/12

= 10.05 kip-ft/ft

or 1.33Mu = 1.33(10.14) = 13.5 kip-ft/ft

therefore,

pos Mu = 10.14 kip-ft/ft dpos = 6.19 in.

trial As ≈ Mu

4d
= 10.14

4 (6.19)
= 0.41 in.2/ft

FromAppendix B, Table B.4, try No. 5 at 9 in., pro-
vided As = 0.41 in.2/ft:

a = Asfy

0.85f ′
c b

= 0.41 (60)

0.85 (4.5) (12)
= 0.536 in.
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Check ductility.

a ≤ 0.375β1d = 0.375 (0.825) (6.19) = 1.92 in.,

φ = 0.9

Check moment strength

φMn = φAsfy

(
d − a

2

)

= 0.9(0.41)(60)

(
6.19 − 0.54

2

)/
12

= 10.92 kip-ft/ft > 10.14 kip-ft/ft OK

For transverse bottom bars,

Use No. 5 at 9 in. As = 0.41 in.2/ft

2. Negative Moment Reinforcement

neg
∣∣Mu

∣∣ = ∣∣M200.73

∣∣ = 8.84 kip-ft/ft

dneg = 5.19 in.

min Mu lessor of 1.2Mcr = 1.2 (128) (0.785) /12

= 10.05 kip-ft/ft

or 1.33
∣∣Mu

∣∣ = 1.33(8.84) = 11.6 kip-ft/ft

therefore,

neg
∣∣Mu

∣∣ = 10.05 kip-ft/ft

trial As ≈ 10.05

4 (5.19)
= 0.48 in.2/ft

From Table B.4, try No. 5 at 7.5 in., provided As =
0.49 in.2/ft:

a = 0.49 (60)

0.85 (4.5) (12)
= 0.64 in.

a ≤ 0.375β1d = 0.375 (0.825) (5.19) = 1.60 in.,

φ = 0.9

Check moment strength

φMn = 0.9(0.49)(60)

(
5.19 − 0.64

2

)/
12

= 10.74 kip-ft/ft > 10.05 kip-ft/ft OK

For transverse top bars,

Use No. 5 at 7.5 in. As = 0.49 in.2/ft

3. Distribution Reinforcement Secondary reinforce-
ment is placed in the bottom of the slab to distribute
wheel loads in the longitudinal direction of the
bridge to the primary reinforcement in the trans-
verse direction. The required area is a percentage
of the primary positive moment reinforcement.

For primary reinforcement perpendicular to traffic
[A9.7.3.2]

Percentage = min

(
220
√

Se

, 67%

)

where Se is the effective span length (ft) [A9.7.2.3].
For monolithic T-beams, Se is the distance face to
face of stems, that is, Se = 8.0 − 14

12 = 6.83 ft, and

Percentage = min

(
220√
6.83

= 84%, 67%

)
,

Use 67%

Distribution As = 0.67(pos As) = 0.67(0.41)

= 0.27 in.2/ft

For longitudinal bottom bars,

Use No. 4 at 8 in., As = 0.29 in.2/ft

4. Shrinkage and Temperature Reinforcement The min-
imumamount of reinforcement in each direction shall
be [A5.10.8]

0.11 ≤ 1.3bh

2 (b + h) fy

≤ As (temp) ≤ 0.60

Substitution gives,

temp As ≥ 1.3 (12) (8)

2 (12 + 8) (60)
= 0.052 in./ft Use 0.11 in./ft

The primary and secondary reinforcement selected
provide more than this amount; however, for mem-
bers greater than 6.0 in. in thickness, the shrinkage
and temperature reinforcement is to be distributed
equally on both faces. The maximum spacing of
this reinforcement is 3.0 times the slab thickness or
18.0 in. For the top face longitudinal bars,

1
2 (temp As) = 0.09 in.2/ft

Use No. 4 at 18 in., provided As = 0.13 in.2/ft

G. Control of Cracking—General Cracking is controlled
by limiting the spacing in the reinforcement under ser-
vice loads [A5.7.3.4]:

s ≤ 700γe

βsfs

− 2dc

where
βs = 1 + dc

0.7(h−dc)

γ e = exposure factor
= 1.00 for class 1 exposure condition
= 0.75 for class 2 exposure condition
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dc = depth of concrete cover from extreme
tension fiber to center of closest flexural
reinforcement (in.)

fs = tensile stress in reinforcement at the
service limit state (ksi)

h = overall thickness or depth of the
component (in.)

Service I limit state applies to the investigation of
cracking in reinforced concrete structures [A3.4.1]. In
the service I limit state, the load modifier ηi is 1.0 and
the load factors for dead and live loads are 1.0. Recall
IM = 1.33. Therefore, the moment used to calculate the
tensile stress in the reinforcement is

M = MDC + MDW + 1.33MLL

The calculation of service load tensile stress in the
reinforcement is based on transformed elastic, cracked
section properties [A5.7.1]. The modular ratio n =
Es/Ec transforms the steel reinforcement into equivalent
concrete. The modulus of elasticity Es of steel bars is
29,000 ksi [A5.4.3.2]. The modulus of elasticity Ec of
concrete is given by [A5.4.2.4]

Ec = 33, 000K1w
1.5
c

√
f

′
c

where

K1 = correction factor for source of aggregate

wc = unit weight of concrete (kcf)

For normal-weight concrete and K 1 = 1.0

Ec = 1820
√

f
′
c

so that
Ec = 1820

√
4.5 = 3860 ksi

and

η = 29, 000

3860
= 7.5 Use n = 7

1. Check of Positive Moment Reinforcement Service I
positive moment at location 204 is

M204 = MDC + MDW + 1.33MLL

= (0.494 − 0.294− 0.446) + 0.138

+ 1.33(4.29)

= 5.60 kip-ft/ft

The calculation of the transformed section prop-
erties is based on a 1.0-ft-wide doubly reinforced
section as shown in Figure E15.1-12. Because of its
relatively large cover, the top steel is assumed to be

Fig. E15.1-12 Positive moment cracked section.

on the tensile side of the neutral axis. The sum of
statical moments about the neutral axis yields

0.5bx2 = nA
′
s

(
d

′ − x
)

+ nAs (d − x)

0.5 (12) x2 = 7 (0.49) (2.31 − x)

+ 7 (0.41) (6.19 − x)

x2 + 1.05x − 4.28 = 0

Solve x = 1.61 in., which is less than 2.31 in., so
the assumption is correct. The moment of inertia of
the transformed cracked section is

Icr = bx3

3
+ nA

′
s

(
d

′ − x
)2 + nAs(d − x)2

= 12(1.61)3

3
+ 7(0.49)(2.31 − 1.61)2

+ 7(0.41)(6.19 − 1.61)2

= 78.58 in.4/ft

and the tensile stress in the bottom steel becomes

fs = n

(
My

Icr

)
= 7

[
5.60 (12) (6.19 − 1.61)

78.58

]

= 27.4 ksi

(The tensile stress was also calculated using a
singly reinforced section and was found to be 28.8
ksi. The contribution of the top bars is small and can
be safely neglected.)
The positive moment tensile reinforcement of No.

5 bars at 9 in. on center is located 1.31 in. from the
extreme tension fiber. Therefore,

dc = 1.31 in.

and
βs = 1 + 1.31

0.7 (8.0 − 1.31)
= 1.28

For class 2 exposure conditions, γ e = 0.75 so that

smax = 700 (0.75)

1.28 (27.4)
− 2(1.31)

= 12.3 in. > 9.0 in. OK Use No. 5 at 9 in.
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Fig. E15.1-13 Negative moment cracked section.

2. Check of Negative Moment Reinforcement Service I
negative moment at location 200.73 is

M200.73 = MDC + MDW + 1.33MLL

= (0.166 − 0.541 − 0.823) + (−0.005)

+ 1.33(−3.128)

= −5.36 kip-ft/ft

The cross section for negative moment is shown
in Figure E15.1-13 with compression in the bottom.
This time x is assumed greater than d ′ = 1.31 in.,
so that the bottom steel is in compression. Balancing
statical moments about the neutral axis gives

0.5bx2 + (n − 1)A
′
s

(
x − d

′) = nAs (d − x)

0.5 (12) x2 + (6) (0.41) (x − 1.31)

= 7 (0.49) (5.19 − x)

x2 + 0.982x − 3.503 = 0

Solve x = 1.44 in., which is greater than 1.31 in.,
so the assumption is correct. The moment of inertia
of the transformed cracked section becomes

Icr = 1
3 (12) (1.44)3 + 6 (0.41) (1.44 − 1.31)2

+ 7 (0.49) (5.19 − 1.44)2 = 60.2 in.4/ft

and the tensile stress in the top steel is

fs = 7
(e) 5.36 (12) (5.19 − 1.44)

60.2
= 28.0 ksi

(The tensile stress was calculated to be 27.9 ksi by
using a singly reinforced section. There really is no
need to do a doubly reinforced beam analysis.)
The negative moment tensile reinforcement of No.

5 bars at 7.5 in. on centers is located 2.31 in. from the
tension face. Therefore, dc = 2.31 in., and

βs = 1 + 2.31

0.7 (8.0 − 2.31)
= 1.58

For class 2 exposure conditions, γ e = 0.75

smax = 700 (0.75)

1.58 (28.0)
− 2 (2.31)

= 7.3 in. ≈ s = 7.5 in.

For class 1 exposure conditions, γ e = 1.00

smax = 700 (1.00)

1.58 (28.0)
− 2(2.31)

= 11.20 in. > s = 7.5 in.

Use No. 5 at 7.5 in.

H. Fatigue Limit State Fatigue need not be investigated for
concrete decks in multigirder applications [A9.5.3].

I. Traditional Design for Interior Spans The design
sketch in Figure E15.1-14 summarizes the arrangement
of the transverse and longitudinal reinforcement in four
layers for the interior spans of the deck. The exterior
span and deck overhang have special requirements that
must be dealt with separately.

J. Empirical Design of Concrete Deck Slabs Research
has shown that the primary structural action of concrete
decks is not flexure but internal arching. The arching
creates an internal compressive dome. Only a minimum
amount of isotropic reinforcement is required for local
flexural resistance and global arching effects [C9.7.2.1].

1. Design Conditions [A9.7.2.4] Design depth sub-
tracts the loss due to wear, h = 7.5 in. The following
conditions must be satisfied:
� Diaphragms are used at lines of support, YES
� Supporting components are made of steel and/or

concrete, YES
� The deck is of uniform depth, YES
� The deck is fully CIP and water cured, YES

Fig. E15.1-14 Traditional design of interior deck spans.
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� 6.0 < Se/h = 82/7.5 = 10.9 < 18.0, OK
� Core depth = 8.0 – 2.5 – 1.0 = 4.5 in. > 4 in.,

OK
� Effective length [A9.7.2.3] = 82

12 = 6.83 ft <

13.5 ft, OK
� Minimum slab depth = 7.0 in. < 7.5 in., OK
� Overhang = 39.0 in. > 5h = 5 × 7.5 = 37.7 in.,

OK
� f

′
c = 4.5 ksi > 4.0 ksi, OK

� Deck must be made composite with girder, YES

2. Reinforcement Requirements [A9.7.2.5]

� Four layers of isotropic reinforcement, fy ≥ 60
ksi

� Outer layers placed in direction of effective
length

� Bottom layers: min As = 0.27 in.2/ft, No. 5 at
14 in.

� Top layers: min As = 0.18 in.2/ft, No. 4 at 13 in.
� Max spacing = 18.0 in.
� Straight bars only, hooks allowed, no truss bars
� Lap splices and mechanical splices permitted
� Overhang designed for [A9.7.2.2 andA3.6.1.3.4]:

� Wheel loads using equivalent strip method if
barrier discontinuous

� Equivalent line loads if barrier continuous
� Collision loads using yield line failuremech-

anism [A.A13.2]

3. Empirical Design Summary With the empirical
design approach analysis is not require. When the
design conditions have been met, the minimum
reinforcement in all four layers is predetermined.

The design sketch in Figure E15.1-15 summarizes
the reinforcement arrangement for the interior deck
spans.

K. Comparison of Reinforcement Quantities The weight
of reinforcement for the traditional and empirical de-
sign methods are compared in Table E15.1-1 for a 1.0-
ft-wide by 40-ft-long transverse strip. Significant sav-
ings, in this case 67% of the traditionally designed rein-
forcement, can bemade by adopting the empirical design
method.

L. Deck Overhang Design Neither the traditional method
nor the empirical method for the design of deck slabs
includes the design of the deck overhang. The design
loads for the deck overhang [A9.7.1.5 and A3.6.1.3.4]
are applied to a free-body diagram of a cantilever that is
independent of the deck spans. The resulting overhang
design can then be incorporated into either the traditional
or empirical design by anchoring the overhang reinforce-
ment into the first deck span.
Two limit states must be investigated: strength I

[A13.6.1] and extreme event II [A13.6.2]. The strength
limit state considers vertical gravity forces and it seldom
governs, unless the cantilever span is very long. The
extreme event limit state considers horizontal forces
caused by collision of a vehicle with the barrier. [These
forces are given in Appendix A of Section 13 of the
AASHTO (2010) LRFD Bridge Specifications; refer-
ence to articles here is preceded by the letters AA.] The
extreme event limit state usually governs the design of
the deck overhang.

1. Strength I Limit State The design negative bending
moment is taken at the exterior face of the support
shown in Figure E15.1-6 for the loads given in

Fig. E15.1-15 Empirical design of interior deck spans.

Table E15.1-1 Comparison of Reinforcement Quantitiesa

Transverse Longitudinal Totals

Design Method Top Bottom Top Bottom (lb) (psf)

Traditional No. 5 at 7.5 in. No. 5 at 9 in. No. 4 at 18 in. No. 4 at 8 in.
Weight (lb) 66.8 55.6 17.8 40.1 180.3 4.51
Empirical No. 4 at 13 in. No. 5 at 14 in. No. 4 at 13 in. No. 5 at 14 in.
Weight (lb) 24.7 35.8 24.7 35.8 121.0 3.03

aArea = 1 ft × 40 ft.
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Figure E15.1-10. Because the overhang has a single
load path, it is a nonredundant member so that ηR =
1.05 [A1.3.4] and, for all load cases ηi = ηDηRηI =
(1.00)(1.05)(1.00) = 1.05.
The individual cantilever bending moments for a

1-ft-wide design strip are

Mb = −Pb (39.0 − 7.0 − 5.0) /12

= −0.320(27.0/12)

= −0.720 kip-ft/ft

Mo = −wo(39.0 − 7.0)2/2/122

= −0.113(32.0)2/2/144

= −0.402 kip-ft/ft

MDW = −wDW(39.0 − 7.0 − 15.0)2/2/122

= −0.035(17.0)2/2/144

= −0.035 kip-ft/ft

MLL = −W(19.0 − 14.0)/12 = −4.19(5.0)/12

= −1.746 kip-ft/ft

The factored design moment at location 108.2
(exterior face) becomes for the common value of
ηi = η

M108.2 = η[1.25MDC+1.50MDW+1.75(1.33MLL)]

= 1.05[1.25(−0.720 − 0.402) + 1.50(−0.035)

+ 1.75 × 1.33 (−1.746)]

= −5.79 kip-ft/ft

When compared to the previously determined neg-
ative bending moment at the centerline of the support
(M 200 = −11.74 kip-ft/ft), the reduction in negative
bending to the face of the support is significant. This
reduced negative bending moment is not critical in
the design of the overhang.

2. Extreme Event II Limit State The forces to be trans-
mitted to the deck overhang due to a vehicular colli-
sion with the concrete barrier are determined from a
strength analysis of the barrier. In this example, the
loads applied to the barrier are for test level TL-4,
which is suitable for [A13.7.2] high-speed highways,
freeways, expressways, and interstate highways with
a mixture of trucks and heavy vehicles .
The minimum edge thickness of the deck overhang

is 8.0 in. [A13.7.3.1.2] and the minimum height
of barrier for TL-4 is 32.0 in. [A13.7.3.2]. The de-
sign forces for TL-4 that must be resisted by the
barrier and its connection to the deck are given in
Table E15.1-2 [Table AA13.2-1]† and illustrated in
Figure E15.1-16. The transverse and longitudinal
forces are distributed over a length of barrier of 3.5 ft.

†Reference to articles in Appendix A of AASHTO Section 13 are pre-
ceded by the letters AA.

Table E15.1-2 Design Forces for a TL-4 Barrier

Direction Force (kip) Length (ft)

Transverse 54.0 3.5
Longitudinal 18.0 3.5
Vertical 18.0 18.0

Fig. E15.1-16 Loading and yield-line pattern for concrete barrier.

This length represents the approximate diameter of
a truck tire, which is in contact with the wall at
time of impact. The vertical force distribution length
represents the contact length of a truck lying on top
of the barrier after a collision. The design philosophy
is that if any failures are to occur they should be in
the barrier, which can be readily repaired, rather than
in the deck overhang. The procedure is to calculate
the barrier strength and then to design the deck’s
overhang so that it is stronger. When calculating the
resistance to extreme event limit states, the resistance
factors φ are taken as 1.0 [A1.3.2.1] and the vehicle
collision load factor is 1.0 [Tables A3.4.1-1 and
A13.6.2].

M. Concrete Barrier Strength All traffic railing systems
shall be proven satisfactory through crash testing for a
desired test level [A13.7.3.1]. If a previously tested sys-
tem is used with only minor modifications that do not
change its performance, additional crash testing is not
required [A13.7.3.1.1]. The concrete barrier and its con-
nection to the deck overhang shown in Figure E15.1-17
is similar to the profile and reinforcement arrangement
of traffic barrier type T5 analyzed by Hirsch (1978) and
tested by Buth et al. (1990).
As developed by a yield-line approach in Section11.3,

the following expressions [AA13.3.1] can be used to
check the strength of the concrete barrier away from an
end or joint and to determine the magnitude of the loads
that must be transferred to the deck overhang. From
Eqs. 15.12 and 15.10:

Rw =
(

2

2Lc − Lt

) (
8Mb + 8Mw + McL

2
c

H

)

(E15.1-8)
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Fig. E15.1-17 Concrete barrier and connection to deck overhang.

Lc = Lt

2
+

√(
Lt

2

)2

+ 8H
(
Mb + Mw

)

Mc

(E15.1-9)

where
H = height of wall (ft)
Lc = critical length of yield-line failure pattern

(ft)
Lt = longitudinal distribution length of impact

force (ft)
Mb = additional flexural resistance of beam, if

any, at top of wall (kip-ft)

Mc = flexural resistance of wall about an axis
parallel to the longitudinal axis of the
bridge (kip-ft/ft)

Mw = flexural resistance of wall about vertical
axis (kip-ft)

Rw = nominal railing resistance to transverse
load (kips)

For the barrier wall in Figure E15.1-17, Mb = 0 and
H = 34.0/12 = 2.83 ft.
1. Flexural Resistance of Wall about Vertical Axis, Mw

The moment strength about the vertical axis is based
on the horizontal reinforcement in the wall. Both the
positive and negative moment strengths must be de-
termined because the yield-line mechanism develops
both types (Fig. E15.1-16). The thickness of the bar-
rier wall varies, and it is convenient to divide it for
calculation purposes into three segments as shown in
Figure E15.1-18.
Neglecting the contribution of compressive re-

inforcement, the positive and negative bending
strengths of segment I are approximately equal and
calculated as

(
f

′
c = 4 ksi, fy = 60 ksi

)

As = 2 −No. 3
′
s = 2 (0.11) = 0.22 in.2

davg = 3.0 + 2.75 + 1.375

2
= 3.56 in.

a = Asfy

0.85f ′
c b

= 0.22 (60)

0.85 (4) (21.0)
= 0.185 in.

φMn1
= φAsfy

(
d − a

2

)

= 1.0(0.22)(60) (3.56 − 0.185/2) /12

= 3.81 kip-ft

For segment II, the moment strengths are slight-
ly different. Considering the moment positive

6 in.

Fig. E15.1-18 Approximate location of horizontal reinforcement in barrier wall: (a) segment I, (b) segment II, and (c) segment III.
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if it produces tension on the straight face, we
have

As = 1 − No.3 = 0.11 in.2

dpos = 3.25 + 3.50 = 6.75 in.

a = 0.11 (60)

0.85 (4) (10.0)
= 0.194 in.

φMnpos
= 1.0 (0.11) (60)

(
6.75 − 0.194

2

)/
12

= 3.66 kip-ft

dneg = 2.75 + 3.25 = 6.0 in.

φMnneg
= 1.0 (0.11) (60)

(
6.0 − 0.194

2

)/
12

= 3.25 kip-ft

and the average value is

φMnII
=

φMnpos
+ φMnneg

2
= 3.45 kip-ft

For segment III, the positive and negative bending
strengths are equal and

As = 1 − No.3 = 0.11 in.2

d = 9.50 + 2.75 = 12.25 in.

a = 0.11 (60)

0.85 (4) (3.0)
= 0.647 in.

φMnIII
= 1.0 (0.11) (60)

(
12.25 − 0.647

2

)/
12

= 6.56 kip-ft

The total moment strength of the wall about the
vertical axis is the sum of the strengths in the three
segments:

Mw = φMnI
+ φMnII

+ φMnIII

= 3.81 + 3.45 + 6.56 = 13.82 kip-ft

It is interesting to compare this value of Mw with
one determined by simply considering the wall to
have uniform thickness and the same area as the
actual wall, that is,

have = cross-sectional area

height of wall
= 307

34.0
= 9.03 in.

dave = 9.03 − 2.75 = 6.28 in.

As = 4 − No.3
′
s = 4 (0.11) = 0.44 in.2

a = 0.44 (60)

0.85 (4) (34.0)
= 0.228 in.

Mw = φMn = φAsfy

(
d − a

2

)

= 1.0 (0.44) (60)

(
6.28 − 0.228

2

)/
12

Mw = 13.56 kip-ft

This value is acceptably close to that calculated pre-
viously and is calculated with a lot less effort.

2. Flexural Resistance of Wall about an Axis Parallel to
the Longitudinal Axis of the Bridge, Mc The bending
strength about the horizontal axis is determined from
the vertical reinforcement in the wall. The yield lines
that cross the vertical reinforcement (Fig. E15.1-16)
produce only tension in the sloping face of the wall,
so that only thenegative bendingstrength need be cal-
culated.
The depth to the vertical reinforcement increases

from bottom to top of the wall, therefore, the moment
strength also increases from bottom to top. For ver-
tical bars in the barrier, try No. 4 bars at 6 in. (As =
0.39 in.2/ft). For segment I, the average wall thick-
ness is 7 in. and the moment strength for a 1-ft-wide
strip about the horizontal axis becomes

d = 7.0 − 2.0 − 0.25 = 4.75 in.

a = Asfy

0.85f ′
cb

= 0.39 (60)

0.85 (4) (12)
= 0.574 in.

McI
= φAsfy

(
d − a

2

)

= 1.0 (0.39) (60)

(
4.75 − 0.574

2

)/
12

= 8.70 kip-ft/ft

At the bottomof the wall the vertical reinforcement
at the wider spread is not anchored into the deck over-
hang. Only the hairpin dowel at a narrower spread
is anchored. The bending strength about the horizon-
tal axis for segments II and III may increase slightly
where the vertical bars overlap, but it is reasonable to
assume it is constant and determined by the hairpin
dowel. The effective depth for the tension leg of the
hairpin dowel is (Fig. E15.1-17)

d = 2.0 + 0.50 + 6.0 + 0.25 = 8.75 in.

and

McII+III
= 1.0 (0.39) (60)

(
8.75 − 0.574

2

)/
12

= 16.50 kip-ft/ft

A weighted average for the moment strength about
the horizontal axis is given by

Mc = McI
(21.0) + McII+III

(10.0 + 3.0)

34.0

= 8.70 (21.0) + 16.50 (13.0)

34.0
Mc = 11.68 kip-ft/ft

3. Critical Length of Yield-LineFailure Pattern, LcWith
the moment strengths determined and Lt = 3.5 ft,
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Eq. E15.1-9 yields

Lc = Lt

2
+

√(
Lt

2

)2

+ 8H
(
Mb + Mw

)

Mc

= 3.5

2
+

√(
3.5

2

)2

+ 8 (2.83) (0 + 13.56)

11.68

Lc = 7.17 ft

4. NominalResistance to Transverse Load, Rw FromEq.
E15.1-8, we have

Rw =
(

2

2Lc − Lt

) (
8Mb + 8Mw + McL

2
c

H

)

= 2

2 (7.17) − 3.5

[
0 + 8 (13.56) + 11.68(7.17)2

2.83

]

= 59.1 kips > Ft = 54.0 kips OK

5. Shear Transfer between Barrier and Deck The
nominal resistance Rw must be transferred across a
cold joint by shear friction. Free-body diagrams of

the forces transferred from the barrier to the deck
overhang are shown in Figure E15.1-19.
Assuming that Rw spreads out at a 1 : 1 slope from

Lc, the shear force at the base of the wall from the
vehicle collision VCT, which becomes the tensile
force T per unit of length in the overhang, is given
by [AA13.4.2]

T = VCT = Rw

Lc + 2H
(E15.1-10)

T = 59.1

7.17 + 2 (2.83)
= 4.61 kips/ft

The nominal shear resistance Vn of the interface
plane is given by [A5.8.4.1]

Vn = min
{[

cAcv + μ
(
Avffy + Pc

)]
,

K1f
′
cAcv, K2Acv

}
(E15.1-11)

where
A cv = shear contact area = 15(12)

= 180 in.2/ft

H
 =

 3
4 

in
.

9 
in

.

5 in.

7 in.39 in. − 7 in. = 32 in.

Rw

Pb = 0.320 kips
ft

PC

PC

VCT

MCT

MCT

V

M

T

VCT

No. 4 @ 6 in.

15 in.

1.5 in.

ldh

Clean
Surface

CL T-Beam

Fig. E15.1-19 Force transfer between barrier and deck.
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A vf = dowel area across shear plane =
0.39 in.2/ft

c = cohesion factor [A5.8.4.2] = 0.075
ksi

f
′
c = of weaker concrete = 4 ksi
fy = yield strength of reinforcement =

60 ksi
Pc = permanent compressive force = Pb

= 0.320 kips/ft
μ = friction factor [A5.8.4.2] = 0.6.
K 1 = fraction of concrete strength

available to resist interface shear,
as specified in [A5.8.4.3] = 0.2.

K 2 = limit interface shear resistance
factor [A5.8.4.3] = 0.8 ksi

The factors c, μ, K 1, and K 2 are for normal-weight
concrete placed against hardened concrete clean
and free of laitance but not intentionally roughened.
Therefore, for a 1-ft-wide design strip

Vn ≤ K1f
′
cAcv = 0.2(4)(180) = 144 kips/ft

≤ K2Acv = 0.8(180) = 144 kips/ft

≤ cAcv + μ(Avffy + Pc)

= 0.075(180) + 0.6[0.39(60) + 0.320]

= 13.5+ 14.23 = 27.73 kips/ft

Vn = 27.73 kips/ft > VCT = T

= 4.61 kips/ft OK

where VCT is the shear force produced by a truck col-
lision.
In the above calculations, only one leg of the

hairpin is considered as a dowel because only one
leg is anchored in the overhang. The minimum
cross-sectional area of dowels across the shear plane
is [A5.8.4.4]

Avf ≥ 0.05bv
fy

(E15.1-12a)

where

bv = width of interface (in.)

Avf ≥ 0.05 (15.0)

60
(12)

= 0.15 in.2/ft

Avf ≥ steel necessary to carry
1.33Vui

φ

= 1.33 (4.65)

0.9
= 6.9kips (E15.1-12b)

The first term in Eq. E15.1-11 cA cv = 13.5 kips
which indicates that the minimum area may be zero
by this provision. Therefore, the minimum area is
satisfied by the No. 4 bars at 6 in. (As = 0.39 in.2/ft).

The basic development length 
hb for a hooked bar
with fy = 60 ksi is given by [A5.11.2.4.1]


hb = 38db√
f

′
c

(E15.1-13)

and shall not be less than 8db or 6.0 in. For a No. 4
bar, db = 0.5 in. and


hb = 38 (0.50)√
4.5

= 8.96 in.

which is greater than 8(0.50) = 4 in. and 6.0 in. The
modification factors of 0.8 for adequate cover and 1.2
for epoxy-coated bars [A5.11.2.4.2] apply, so that the
development length 
dh is changed to


dh = 0.8 (1.2) 
hb = 0.96 (8.96) = 8.6 in.

The available development length (Fig. E15.1-19)
is 9.0 – 1.5 = 7.5 in., which is not adequate, unless
the required area is reduced to

As required = (
As provided

) (
7.5

8.6

)

= 0.39
7.5

8.6
= 0.34 in.2/ft

By using this area to recalculateMc, Lc, and Rw, we
get

a = 0.34 (60)

0.85 (4) (12)
= 0.50 in.

McI
= 1.0 (0.34) (60)

(
4.75 − 0.50

2

)/
12

= 7.65 kip-ft/ft

McII+III
= 1.0 (0.34) (60)

(
8.75 − 0.50

2

)/
12

= 14.45 kip-ft/ft

Mc = 7.65 (21.0) + 14.45 (13.0)

34.0
= 10.25 kip-ft/ft

Lc = 3.5

2
+

√(
3.5

2

)2

+ 8 (2.83) (13.56)

10.25

= 7.50 ft

Rw = 2

2 (7.50) − 3.5

[
8 (13.56)+10.25(7.50)2

2.83

]

= 54.3 kips

Rw = 54.3 kips > 54.0 kips OK

The standard 90◦ hookwith an extension of 12db +
4db = 16 (0.50) = 8.0 in. at the free end of the bar is
adequate [C5.11.2.4.1].
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6. Top Reinforcement in Deck Overhang The top rein-
forcement must resist the negative bending moment
over the exterior beam due to the collision and the
dead load of the overhang. Based on the strength
of the 90◦ hooks, the collision moment M CT (Fig.
E15.1-19) distributed over a wall length of (Lc +
2H ) is

MCT = − RwH

Lc + 2H
= − 54.3 (2.83)

7.50 + 2 (2.83)

= −11.7 kip-ft/ft

The dead-loadmoments were calculated previously
for strength I so that for the extreme event II limit
state, we have

Mu = η[1.25MDC + 1.50MDW + MCT]

= 1.0[1.25(−0.720 − 0.402)

+ 1.50(−0.035) − 11.7]

= −13.2 kip-ft/ft

Alternating a No. 3 bar with the No. 5 top bar at
7.5 in. on centers, the negative moment strength be-
comes

As = 0.18 + 0.49 = 0.67 in.2/ft

d = 9.0 − 2.5 − 0.625/2 = 6.19 in.

a = 0.67 (60)

0.85 (4.5) (12)
= 0.88 in.

φMn = 1.0 (0.67) (60)

(
6.19 − 0.88

2

)/
12

= 19.3 kip-ft/ft

This moment strength is reduced because of the ax-
ial tension force T = Rw/(Lc + 2H ):

T = 54.3

7.50 + 2 (2.83)
= 4.13 kips/ft

By assuming the interaction curve between mo-
ment and axial tension is a straight line
(Fig. E15.1-20)

Pu

φPn

+ Mu

φMn

≤ 1.0

and solving forMu, we get

Mu ≤ φMn

(
1.0 − Pu

φPn

)
(E15.1-14)

where Pu = T and φPn = φA st fy. The total longitudi-
nal reinforcementA st in the overhang is the combined
area of the top and bottom bars:

Ast = No. 3 at 7.5 in., No. 5 at 7.5 in.,

No. 5 at 9 in.

= 0.18 + 0.49 + 0.41 = 1.08 in.2/ft

φPn = 1.0 (1.08) (60) = 64.8 kips/ft

Fig. E15.1-20 Idealized interaction diagram for reinforced con-
crete members with combined bending and axial load.

so that

Mu ≤ 19.3

(
1.0 − 4.13

64.8

)
= 18.1 kip-ft/ft

The extreme event II design moment Mu = 13.4
kip-ft/ft < 18.1 kip-ft/ft, so for the top reinforcement
of the overhang

Use alternating (No. 3 and No. 5) at 7.5 in.

The top reinforcement must resist M CT = 11.7
kip-ft/ft directly below the barrier. Therefore, the
free ends of the No. 3 and No. 5 bars must terminate
in standard 180◦ hooks. The development length 
dh
for a standard hook is [A5.11.2.4.1]


dh = 
hb • modification factors

The modification factors of 0.8 for adequate cover
and 1.2 for epoxy-coated bars [A5.11.2.4.2] apply
and the ratio of (As required)/(As provided) can be
approximated by the ratio of (Mu required)/(φMn
provided). Thus, the required development length for
a No. 5 bar with φ = 1.0 and


hb = 38db√
f

′
c

= 38 (0.625)√
4.5

= 11.2 in.


dh = 11.2 (0.8) (1.2)

(
11.7

18.1

)
= 6.95 in.

The development length available (Fig. E15.1-17)
for the hook in the overhang before reaching the ver-
tical leg of the hairpin dowel is

Available 
dh = 0.625 + 6.0 + 0.3125

= 6.94 in. ≈ 6.95 in. Close, OK
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and the connection between the barrier and the over-
hang shown in Figure E15.1-17 is satisfactory.

7. Length of the Additional Deck Overhang Bars The
additional No. 3 bars placed in the top of the deck
overhang must extend beyond the centerline of the
exterior T-beam into the first interior deck span. To
determine the length of this extension, it is neces-
sary to find the distance where theoretically the No. 3
bars are no longer required. This theoretical distance
occurs when the collision plus dead-load moments
equal the negative moment strength of the continuing
No. 5 bars at 7.5 in. This negative moment strength
in the deck slab (d = 5.19 in.) was previously deter-
mined as −10.7 kip-ft/ft with φ = 0.9. For the ex-
treme event limit state, φ = 1.0 and the negative mo-
ment strength increases to −11.9 kip-ft/ft.
Assuming a carryover factor of 0.5 and no further

distribution, the collisionmoment diagram in the first
interior deck span is shown in Figure E15.1-21. At a
distance x from the centerline of the exterior T-beam,
the collision moment is approximately

MCT (x) = −11.7
(
1 − x

5.33

)

The dead-load moments can be calculated as before
from the loadings in Figure E15.1-10.

Barrier − 0.320
(
34
12 + x

) + 0.464x

Overhang − (0.113) (3.25) (3.25/2 + x) + 0.462x

Deck slab − (
0.100x2/2

) + 0.314x

Future wearing surface is conservative to neglect

The distance x is found by equating the moment
strength of−11.9 kip-ft/ft to the extreme event II load
combination, that is,

−11.7 = Mu (x) = �ηiγiQi

= 1.0
[
1.25MDC (x) + MCT (x)

]

Solve the resulting quadratic, x = 0.59 ft, say 7 in.

5.33 ft

8.0 ft

200200

CL
300300

CL

xx

IPIP

−11.7 kips−ft
ft

+5.85 kips−ft
ft

−11.7(1 − x
5.33

)

Fig. E15.1-21 Approximate moment diagram for collision forces
in first interior deck span.

To account for the uncertainties in the theoretical
calculation, an additional length must be added to the
length x before the bar can be cut off. This length
is the larger of 12db = 12(0.375) = 4.5 in., 0.0625
× span length = 0.625(96)=6.0 in., and the effective
depth d= 5.19 in.; 6 in. controls [A5.11.1.3]. This to-
tal length of 7+ 6= 13 in. beyond the centerlinemust
be compared to the development length from the face
of the support and the larger length selected.
The basic tension development length 
db for a No.

3 bar is the larger of [A5.11.2.1.1]:


db = 1.25
Abfy√

f
′
c

= 1.25
0.11 (60)√

4.5
= 3.9 in.

but not less than

0.4dbfy = 0.4 (0.375) (60) = 9.0 in. Controls

The modification factor for epoxy-coated bars
[A5.11.2.1.2] = 1.2. So that the development length

d = 9.0(1.2) = 10.8 in.
The distance from the centerline of the 14-in.-wide

T-beam to the end of the development length is 10.8
+ 7.0 = 17.8 in., which is greater than the 13 in.
calculated from the moment requirement. The length
determination of the additional No. 3 bars in the deck
overhang is summarized in Figure E15.1-22. Also
per [5.11.1.2.3], at least one-third of the tension steel
must extend beyond the point of inflection, because
the No. 5 bars extend and the No. 3 bars terminate,
this is satisfied.

N. Closing Remarks This example is general in most re-
spects for application to decks supported by different

x = 7 in. 6 in.

14.5 in.

No. 3 @ 7.5 in.

ld = 10.8 in.

2.5 in. Clr.

7 in.

CL

39 in. 18 in.

Fig. E15.1-22 Length of additional bars in deck overhang (other
reinforcement not shown).
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longitudinal girders. However, the effective span length
must be adjusted for the different girder flange config-
urations. Several examples in this book use the same
bridge cross section for the deck geometry, so the design
is not repeated.
Designers are encouraged to use the empirical design

procedure. The savings in design effort and reinforce-
ment can be appreciable. Obviously, the details for
the additional bars (Fig. E15.1-22) in the top of the
deck overhang will be different for the empirical design
than the traditional design. Many owners have standard
details for the cantilever, barrier attachment, and deck
reinforcement. This eliminates the need for detailed
design.
The test level TL-4 chosen for the concrete barrier in

this example may have to be increased for some traffic
environments. This choice of test level is another deci-
sion that must be made when the design criteria for a
project are being established.
Finally, the deck reinforcement in skewed regions is

increased due to higher flexural (and torsional) actions
in the deck. In the case of the empirical design method
the steel is doubled [A9.7.1.2 and A9.7.2.5].
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PROBLEMS

15.1 Obtain the profile dimensions and reinforcement pat-
tern for the concrete barrier used by the DOT in your
locality. Use yield-line analysis to determine if its lat-
eral load strength is adequate to meet the requirements
of test load TL-4. Calculate the lateral load strength
considering (a) a uniform thickness barrier wall and
(b) a variable thickness barrier wall.

15.2 In Figure E15.1-1, the girder spacing is changed to 4 at
10 ft (five girders) and the overhang changes to 4 ft. The
barrier base width remains at 1.25 ft. The curb-to-curb
roadway width becomes 45.5 ft. Assume that the sup-
porting girders have a stem width of 14 in., allowance
for sacrificial wear is 0.5 in., and the futurewearing sur-
face is a 3-in. thick asphalt overlay. Use f

′
c = 4.5 ksi,

fy = 60 ksi to determine the deck thickness and, if the
design conditions are met, the reinforcement required
for the interior spans by the empirical method.

15.3 For the conditions of Problem 15.2, select the thick-
ness and reinforcement for the deck overhang required
to resist the collision force caused by test level TL-4
under extreme event II limit state. Assume the concrete
barrier is the one shown in Figure 15.1.



CHAPTER 16

Concrete Design Examples

Three typical concrete superstructure designs are given. The
first example is the design of a concrete deck followed by
design examples of solid slab, T-beam, and prestressed girder
bridges.
Table 5.1 describes the notation used to indicate locations

of critical sections for moments and shears. This notation is
used throughout the example problems.
References to the AASHTO LRFD Specifications (2010)

are enclosed in brackets and denoted by the letter A fol-
lowed by the article number, for example, [A4.6.2.1.3].
If a commentary is cited, the article number is preceded
by the letter C. Figures and tables that are referenced are
also enclosed in brackets to distinguish them from figures
and tables in the text, for example, [Fig. A3.6.1.2.2-1] and
[Table A4.6.2.1.3-1].
Appendix B includes tables that may be helpful to a de-

signer when selecting bars sizes and prestressing tendons.
These are referenced by the letter B followed by a number
and are not enclosed in brackets. The design examples may
be reviewed in any order.
The design examples generally follow the outline of Ap-

pendixA—Basic Steps for Concrete Bridges given at the end
of Section 5 of the AASHTO (2010) LRFD Bridge Specifi-
cations. Care has been taken in preparing these examples,
but they should not be considered as fully complete in every
detail. Each designer must take the responsibility for under-
standing and correctly applying the provisions of the speci-
fications. Additionally, the AASHTO LRFD Bridge Design
Specifications will be altered each year by addendums that
define interim versions. The computations outlined herein
are based on the 2010 Specifications and may not be current
with the most recent interim.

16.1 SOLID SLAB BRIDGE DESIGN

Problem Statement Example E.16.1 Design the simply
supported solid slab bridge of Figure E16.1-1 with a span

HW

FWS

Fig. E16.1-1 Solid slab bridge design example: (a) elevation,
(b) plan, and (c) section.

length of 35 ft center to center of bearings for an HL-93 live
load. The roadway width is 44 ft curb to curb. Allow for a
future wearing surface of 3-in.-thick bituminous overlay.
A 15-in.-wide barrier weighing 0.32 k/ft is assumed to be
carried by the edge strip. Use f

′
c = 4.5 ksi and fy = 60 ksi.

Follow the slab bridge outline in Appendix A5.4 and the
beam and girder bridge outline in Section 5, Appendix A5.3
of the AASHTO (2010) LRFD Bridge Specifications. Use
exposure class 2 for crack control.

A. Check Minimum Recommended Depth [Table A2.5.2
.6.3-1]

hmin = 1.2 (S + 10)

30
= 1.2 (35 + 10)

30
(12) = 21.6 in.

Use h = 22 in.

B. Determine Live-Load Strip Width [A4.6.2.3] Slab
bridges are typically designed using a “unit” section
width. This width could be an inch, millimeter, foot,
or meter. In the United State\, it is customary to use
a 1-ft section. The analysis of the permanent loads
is straightforward for a design strip as area loads are
typically available in load per square foot. However, the
live load must be distributed to width of the slab called
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the live-load strip width. Division of this width into the
load effect associated with one lane provides the load
per unit width (per foot.). In effect the inverse of this
strip width is the distribution factor to the 1-ft section.
It is often misunderstood that this procedure is similar
to that of a beam line. Moreover, if a standard beam-line
program (e.g., BTBeam) is used, then the distribution
factor is mg = 1/E , where E is the strip width.
Similar to beam line analysis, differences exist between

the load distributionon the exterior (or edge) and interior
portions of the slab. Below, separate analyses are per-
formed for exterior and interior strips, and, as with beam
lines, the exterior strip should have a strength that meets
or exceeds the interior strip.

Span = 35 ft, primarily in the direction parallel

to traffic

Span > 15 ft, therefore the longitudinal strip method

for slab-type bridges applies [A4.6.2.1.2]

1. One Lane Loaded Multiple presence factor included
[C4.6.2.3]

E = equivalent width (in.)

E = 10.0 + 5.0
√

L1W1

where

L1 = modified span length

= min

[
35 ft
60 ft

= 35 ft

W1 = modified edge-to-edge width

= min

[
46.5 ft
30 ft

= 30 ft

E = 10.0 + 5.0
√

(35) (30) = 172 in. = 14.33 ft

2. Multiple Lanes Loaded

E = 84.0 + 1.44
√

L1W1 ≤ 12.0W

NL

where L 1 = 35 ft.

W1 = min

[
46.5 ft
60 ft

= 46.5 ft

W = actual edge-to-edge width = 46.5 ft

NL = number of design lanes [A3.6.1.1.1]

= INT
( w

12.0

)

where w = clear roadway width = 44.0 ft

NL = INT

(
44.0

12.0

)
= 3

E = 84.0 + 1.44
√

(35) (46.5) = 142 in.

≤ 12.0 (46.5) /3 = 186 in.

Use E = 142 in. = 11.83 ft

Fig. E16.1-2 Live-load placement for maximum shear force:
(a) truck, (b) lane, and (c) tandem.

C. Applicability of Live Load for Decks and Deck Systems
Slab-type bridges shall be designed for all of the vehicu-
lar live loads specified in AASHTO [A3.6.1.2], including
the lane load [A3.6.1.3.3].
1. Maximum Shear Force—Axle Loads (Fig. E16.1-2)

Truck [A3.6.1.2.2]:

V Tr
A = 32 (1.0 + 0.60) + 8 (0.20) = 52.8 kips

Lane [A3.6.1.2.4]:

V Ln
A = 0.64 (35.0) /2 = 11.2 kips

Tandem [A3.6.1.2.3]:

V Ta
A = 25

(
1 + 35 − 4

35

)
= 47.1 kips Not critical

Impact factor = 1 + IM/100,

where IM = 33% [A3.6.2.1]

Impact factor = 1.33, not applied to design lane load

VLL+IM = 52.8 (1.33) + 11.2 = 81.4 kips

2. Maximum Bending Moment at Midspan—Axle Loads
(Fig. E16.1-3)
Truck:

MTr
c = 32 (8.75 + 1.75) + 8 (1.75) = 350 kip-ft

Lane:

MLn
c = 0.64 (8.75) (35) /2 = 98.0 kip-ft
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Fig. E16.1-3 Live-load placement for maximum bending moment: (a) truck, (b) lane, and (c) tandem.

Tandem:

MTa
c = 25 (8.75) (1 + 13.5/17.5)

= 387.5 kip-ft Governs

MLL+IM = 387.5 (1.33) + 98.0 = 613.4 kip-ft

D. Select Resistance Factors (Table 14.6) [A5.5.4.2.1]

Strength Limit State φ

Flexure and tension 0.90
Shear and torsion 0.90
Axial compression 0.75
Bearing on concrete 0.70
Compression in strut-and-tie models 0.70

E. Select Load Modifiers [A1.3.2.1]

Strength Service Fatigue

1. Ductility, ηD 1.0 1.0 1.0 [A1.3.3]
2. Redundancy, ηR 1.0 1.0 1.0 [A1.3.4]
3. Importance, ηI 1.0 N/Aa N/A [A1.3.5]

ηi = ηDηRηI 1.0 1.0 1.0

aN/A = not applicable.

F. Select ApplicableLoadCombinations (Table 5.1) [Table
A3.4.1-1]
Strength I Limit State η = ηi = 1.0

U = 1.0[1.25DC + 1.50DW + 1.75(LL + IM)

+ 1.0FR + γTGTG]

Service I Limit State

U = 1.0 (DC +DW) + 1.0 (LL + IM)

+ 0.3 (WS + WL) + 1.0FR

Fatigue I Limit State

U = 1.5 (LL + IM)

G. Calculate Live-Load Force Effects
1. Interior Strip Shear and moment per lane are given

in Section 16.1, Parts C.1 and C.2. Shear and mo-
ment per 1.0-ft width of strip is critical for multiple
lanes loaded because one-lane live-load strip width =
14.33 ft > 11.83 ft:

VLL+IM = 81.4/11.83 = 6.88 kip/ft

MLL+IM = 613.4/11.83 = 51.9 kip-ft/ft

2. Edge Strip [A4.6.2.1.4]

Longitudinal edges strip width for a line of wheels

= distance from edge to face of barrier + 12.0 in.

+ (strip width) /4 ≤ (strip width) /2 or 72.0 in.

= 15.0 + 12.0 + 142.0/4 = 62.5 in. < 71.0 in.

Use 62.5 in.

For one line of wheels and a tributary portion of the
10-ft-wide design lane load (Fig. E16.1-4), the shear
and moment per foot width of strip are

VLL+IM = [0.5 (52.8) (1.33) + 11.2 (12.0 + 35.5)

/120.0
]
/ (62.5/12)

= 7.59 kips/ft

MLL+IM = [0.5 (387.5) (1.33) + 98.0 (12.0 + 35.5)

/120.0
]
/ (62.5/12)

= 56.9 kip-ft/ft

For one line of wheels taken as one half the actions
of the axled vehicle, the shear and moment are

VLL+IM = 0.5 (81.4) / (62.5/12)

= 7.81 kips/ft

MLL+IM = 0.5 (613.4) / (62.5/12)

= 58.9 kip-ft/ft
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15 in. 12 in.

Wheel Lines

Lane Load

72 in. max

22 in.

(142) = 35.5 in.1 
4

Fig. E16.1-4 Live-load placement for edge strip shear and
moment.

H. Calculate Force Effects from Other Loads
1. Interior Strip, 1.0 ft Wide

DC:
ρconc = 0.150 kcf

wDC = 0.150(22.0/12) = 0.275 ksf

VDC = 0.5(0.275)(35) = 4.81 kips/ft

MDC = wDCL2/8 = 0.275(35)2/8 = 42.1 kip-ft/ft

DW: Bituminous wearing surface, 3.0 in. thick

ρDW = 0.14 kcf [Table A3.5.1-1]

wDW = 0.14(3.0/12) = 0.035 ksf

VDW = 0.5(0.035)(35) = 0.613 kips/ft

MDW = 0.035(35)2/8 = 5.36 kip-ft/ft

2. Edge Strip, 1.0-ft Wide, Barrier = 0.320 kips/ft
Some owners distributed the barrier weight across
the entire slab so that it is assumed to be equally
shared. Others assume barrier load spread over width
of live-load edge strip of 62.5 in. = 5.21 ft:
DC:

wDC = 0.275 + 0.320/5.21 = 0.336 ksf

VDC = 0.5(0.336)(35) = 5.89 kips/ft

MDC = 0.336(35)2/8 = 51.45 kip-ft/ft

DW:

wDW = 0.035 (62.5 − 15.0) /62.5 = 0.025 ksf

VDW = 0.5(0.025)(35) = 0.438 kips/ft

MDW = 0.025(35)2/8 = 3.83 kip-ft/ft

I. Investigate Service Limit State
1. Durability [Table A5.12.3-1]

Cover for unprotectedmain reinforcing steel deck sur-
face subject to tire wear: 2.5 in.

Bottom of CIP slabs: 1.0 in.
Effective depth for No. 8 bars:

d = 22.0 − 1.0 − 1.0/2 = 20.5 in.

ηD = ηR = ηI = 1.0, therefore ηi = η = 1.0 [A1.3]

a. Moment—Interior Strip

Minterior = �ηiγiQi

= 1.0[1.0MDC + 1.0MDW + 1.0MLL+IM]

= 1.0[42.1 + 5.36 + 51.9]

= 99.36 kip-ft/ft

Trial reinforcement:

As ≈ M

fsjd

Assume j = 0.875 and fs = 0.6fy = 36 ksi

As ≈ 99.36× 12

36 (0.875) (20.5)
= 1.85 in.2/ft

Try No. 9 bars at 6 in. (As = 2.00 in.2/ft) (Table B.4)

Revised d = 22.0 − 1.0 − 1
2 (1.128)

= 20.4 in. OK

b. Moment—Edge Strip

Medge = �ηiγiQi = 1.0(51.45 + 3.83 + 58.9)

= 114.2 kip-ft/ft

Trial reinforcement:

As ≈ M

fsjd
= 114.2 × 12

36 (0.875) (20.4)
= 2.13 in.2/ft

Try No. 9 bars at 5 in. (As = 2.40 in.2/ft).
2. Control of Cracking [A5.7.3.4] Flexural cracking is

controlled by limiting the bar spacing in the reinforce-
ment closest to the tension face under service load
stress fs:

s ≤ 700γe

βsfs

− 2dc

in which

βs = 1 + dc

0.7
(
h − dc

)

γe = exposure factor

= 1.00 for class 1 exposure condition

= 0.75 for class 2 exposure condition

dc = concrete cover measured from extreme

tension fiber to center of closest flexural

reinforcement
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a. Interior Strip Checking tensile stress in concrete
against fr [A5.4.2.6, A5.7.3.4]

Minterior = 99.36 kip-ft/ft

fc = M
1
6bh2

= 99.36 × 12
1
6 (12) (22)2

= 1.23 ksi

0.8fr = 0.8

(
0.24

√
f

′
c

)
= 0.8 (0.24)

√
4.5

= 0.41 ksi

fc > 0.8fr, section is assumed cracked

Elastic-cracked section with No. 9 at 6 in. (As =
2.00 in.2/ft) [A5.7.1] (Fig. E16.1-5)

n = Es

Ec

= 7.0, from deck design

nAs = 7.0 (2.00) = 14.0 in.2/ft

Location of neutral axis:

1
2bx2 = nAs (d − x)

1
2 (12) x2 = (14.0) (20.4 − x)

solving, x = 5.83 in.
Moment of inertia of cracked section:

Icr = 1
3bx3 + nAs(d − x)2

= 1
3 (12)(5.83)

3 + (14.0)(20.4− 5.83)2

= 3765 in.4/ft

Steel stress:
fs

n
= M (d − x)

Icr
= 99.36 (20.4 − 5.83) 12

3765

= 4.61 ksi

fs = 7 (4.61) = 32.3 ksi

fs ≤ 0.6fy = 0.6 (60) = 36 ksi

For dc = 1.56 in., γe = 0.75 (class 2 exposure)

βs = 1 + 1.56

0.7 (20.4)
= 1.11

s ≤ 700 (0.75)

1.11 (32.3)
− 2 (1.56) = 11.5 in.

Use No. 9 at 6 in. for interior strip for other limit
state checks.

nAs

Fig. E16.1-5 Elastic-cracked section.

b. Edge Strip

Medge = 114.2 kip-ft/ft

Try No. 9 at 5 in., As = 2.40 in.2/ft

nAs = 7 (2.40) = 16.8 in.2/ft

Location of neutral axis (Fig. E16.1-5):

1
2 (12)

(
x2
) = (16.8) (20.4 − x)

Solving x = 6.29 in.
Moment of inertia of cracked section:

Icr = 1
3 (12) (6.29)3 + 16.8(20.4 − 6.29)2

= 4338 in.4/ft

Steel stress:

fs

n
= 114.2 (20.4 − 6.29) 12

4338
= 4.46 ksi

fs = 7 (4.46) = 31.2 ksi < 36 ksi

Checking spacing of No. 9 at 5 in., for dc =
1.56 in., γe = 0.75, and βs = 1.11.

s ≤ 700 (0.75)

1.11 (31.2)
− 2 (1.56) = 12.0 in.

Use No. 9 at 5 in. for edge strip.
3. Deformations [A5.7.3.6]
a. Dead-Load Camber [A5.7.3.6.2]:

wDC = (0.275) (46.5) + 2 (0.320)

= 13.43 kips/ft

wDW = (0.035)(44.0) = 1.54 kips/ft

wDL = wDC + wDW = 14.97 kips/ft

MDL = 1
8wDLL

2 = (14.97) (35)2

8
= 2292 kip-ft

By using Ie:

�DL = 5wDLL
4

384EcIe

Ie =
(

Mcr

Ma

)3

Ig +
[
1 −

(
Mcr

Ma

)3
]

Icr

Mcr = fr

Ig

yt

fr = 0.24
√
4.5 = 0.509 ksi

Ig = 1
12 (46.5 × 12) (22)3 = 495 × 103 in.4

Mcr = 0.509
495× 103

(12) (22/2)
= 1910 kip-ft

(
Mcr

Ma

)3

=
(
1910

2292

)3

= 0.579
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Icr = (3765) (46.5) = 175× 103 in.4

Ie = (0.579)(495 × 103)

+ (1 − 0.579)(175 × 103)

= 360× 103 in.4

�DL = 5 (14.97) (35)4(12)3

384 (3860)
(
360× 103

)

= 0.36 in. instantaneous

Long-time deflection factor for A
′
s = 0 is equal to

3 − 1.2

(
A

′
s

As

)
= 3.0

Camber = (3.0) (0.36)

= 1.08 in. upward (likely round to 1 in.)

By using Ig [A5.7.3.6.2]:

�DL = (0.36)

(
360× 103

495× 103

)
= 0.26 in.

Longtime deflection factor = 4.0

Camber = (4.0) (0.26) = 1.05 in. upward

comparable to the value based on Ie.
b. Live-Load Deflection (Optional) [A2.5.2.6.2]:

�allow
LL+IM = span

800
= 35× 12

800
= 0.53 in.

If the owner invokes the optional live-load deflec-
tion criteria, the deflection should be the larger of
that resulting from the design truck alone or design
lane load plus 25% truck load [A3.6.1.3.2]. When
design truck alone, it should be placed so that the
distance between its resultant and the nearest wheel
is bisected by the span centerline. All design lanes
should be loaded [A2.5.2.6.2] (Fig. E16.1-6):

NL = 3, m = 0.85
∑

PLL+IM = 1.33 (32 × 3) (0.85)

= 108.5 kips

Fig. E16.1-6 Design truck placement for maximum deflection in
span.

The value of Ie changes with the magnitude of
the applied moment Ma. The moment associated
with the live-load deflection includes the dead-load
moment plus the truck moment from Section 16.1,
Part C.2:

MDC+DW+LL+IM = 2292+ 3 (0.85) (350) (1.33)

= 3479 kip-ft

so that

Ie =
(
1910

3479

)3

(495 × 103)

+
[
1 −

(
1910

3479

)3
]

(175 × 103)

= 228× 103 in.4

EcIe = (3860)
(
228 × 103

)

= 880× 106 kip-in.2

From case 8, AISC (2001) Manual (see
Fig. E16.1-7),

�x (x < a) = Pbx

6EIL

(
L2 − b2 − x2

)

Assuming maximum deflection is under wheel
load closest to the centerline, �x = �C.
First load: P = 108.5 kips, a = 29.17 ft, b =

5.83 ft, x = 15.17 ft (from right end):

�x = (108.5) (5.83) (15.17)

6
(
880× 106

)
(35)

× [(35)2 − (5.83)2 − (15.17)2] × 123

= 0.086 in.

Second load: P = 108.5 kips, a = x = 19.83 ft,
b = 15.17 ft:

�x = (108.5) (15.17) (19.83)

6
(
880× 106

)
(35)

× [(35)2 − (15.17)2 − (19.83)2] × 123

= 0.184 in.

Fig. E16.1-7 Concentrated load placement for calculation of
deflection.



SOLID SLAB BRIDGE DESIGN 319

Third load: P = 27.1 kips, a = 33.83 ft,
b = 1.17 ft, x = 19.83 ft:

�x = (27.1) (1.17) (19.83)

6
(
880 × 106

)
(35)

× [(35)2 − (1.17)2 − (19.83)2] × 123

= 0.005 in.

�LL+IM =
∑

�x = 0.28 in. < 0.53 in. OK

Design lane load:

w = 1.33 (0.64) (3) (0.85) = 2.17 kips/ft

MC ≈ 1

8
wL2 = (2.17) (35)2

8
= 332 kip-ft

�lane
C = 5

48

MCL2

EcIe

= 5 (332) (35)2

48
(
880 × 106

) × 123

= 0.083 in.

25% truck = 1
4 (0.28) = 0.07 in.

�LL+IM = 0.15 in., not critical

The live-load deflection estimate of 0.28 in. is con-
servative because Ie was based on themaximummo-
ment at midspan rather than an average Ie over the
entire span. Also, the additional stiffness provided by
the concrete barriers (which can be significant) has
been neglected, as well as the compression reinforce-
ment in the top of the slab. Finally, bridges typically
deflect less under live load than calculations predict.

4. Concrete Stresses [A5.9.4.3] No prestressing, does
not apply.

5. Fatigue [A5.5.3] The fatigue I limit state is used to
check reinforcement fatigue.

U = 1.5 (LL + IM) (Table 3.1) [Table A3.4.1-1]

IM = 15% [A3.6.2.1]

Fatigue load shall be one design truck with 30-ft
axle spacing [A3.6.1.4.1]. Because of the large rear
axle spacing, the maximum moment results when
the two front axles are on the bridge. As shown in
Figure E16.1-8, the two axle loads are placed on the
bridge so that the distance between the resultant of
the axle loads on the bridge and the nearest axle is

Fig. E16.1-8 Fatigue truck placement for maximum bending
moment.

divided equally by the centerline of the span (Case 42,
AISC Manual, 2001). The multiple presence factor
for one loaded lane includes multiple presence (m
= 1.2) that must be removed from the strip width
[A3.6.1.1.2]. From Figure E16.1-8,

RB = (32 + 8)

(
4.9 + 11.2

35

)
= 18.4 kips

MC = (18.4) (16.1) = 296 kip-ft
∑

ηiγiQi = 1.0 (1.5) (296) (1.15)

= 511 kip-ft/lane

a. Tensile Live-Load Stresses
One loaded lane, E = 14.33 ft,

MLL+IM = 511

14.33 (1.2)
= 29.7 kip-ft/ft

fs

n
= (29.7) (12) (20.4 − 5.83)

3765
= 1.38 ksi

And the maximum steel stress due to the fatigue
truck is

fs = 7 (1.38) = 9.66 ksi

b. Reinforcing Bars [A5.5.3.2]
Maximum stress range ff must be less than

(Eq. 14.6b):

(�F)TH ≤ 21 − 0.33fmin + 8 (r/h)

The dead-load moment for an interior strip is

MDL = MDC + MDW = 42.1 + 5.36

= 47.46 kip-ft

Using properties of a cracked section, the steel
stress due to permanent loads is

fs,DL = n
MDL (d − x)

Icr

= 7

[
47.46 × 12 (20.4 − 5.83)

3765

]
= 15.4 ksi

Because the bridge is treated as a simple beam,
the minimum live-load stress is zero. The minimum
stress fmin is the minimum live-load stress combined
with the stress from the permanent loads

fmin = 0 + 15.4 = 15.4 ksi

The maximum stress fmax is the maximum live-
load stress combined with the stress from the per-
manent loads:

fmax = 9.66 + 15.4 = 25.1 ksi

The stress range ff = fmax – fmin = 25.1 – 15.4 =
9.7 ksi. The limit for the stress range with r /h = 0.3
is

(�F)TH = 21 − 0.33 (15.4) + 8 (0.3)

= 18.3 ksi > ff = 9.7 ksi OK
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J. Investigate Strength Limit State
1. Flexure [A5.7.3.2] Rectangular stress distribution

[A5.7.2.2]

β1 = 0.85 − 0.05 (4.5 − 4.0) = 0.825

a. Interior Strip
Equation 7.73 with A ps = 0, b = bw, A

′
s = 0. Try

As = No. 9 at 6 in. = 2.00 in.2/ft from service limit
state.

c = Asfy

0.85f ′
c β1 b

= (2.00) (60)

0.85 (4.5) (0.825) (12)

= 3.17 in.

a = β1 c = (0.825) (3.17) = 2.61 in.

ds = 22 − 1.0 − 1
2 (1.128) = 20.4 in.

Equation 7.76 with A ps = 0, b = bw,A
′
s = 0, As =

2.00 in.2/ft

Mn = Asfy

(
ds − a

2

)

= 2.00 (60)

(
20.4 − 2.61

2

)/
12

= 191 kip-ft/ft

The resistance factor is determined based upon
the curvature (or strain at the tension steel) per
[A5.5.4.2.1]

εs =
(

ds − c

c

)
(0.003)

=
(
20.4 − 3.17

3.17

)
(0.003) = 0.016

εs ≥ 0.005

φ = 0.90

Because the steel strain is large, the section ductil-
ity is large and the φ is for flexure.

Factored resistance = φMn = 0.9 (191)

= 172 kip-ft/ft

Minimum reinforcement [A5.7.3.3.2] shall be
adequate to develop Mu = φMn at least equal to
the lessor of 1.2M cr or 1.33Mu = 1.33(172) =
229 kip-ft/ft.

Mcr = Sncfr

Snc = bh2/6 = 12(22)2/6 = 968 in.3/ft

fr = 0.37
√

f
′
c = 0.37

√
4.5

= 0.785 ksi [A5.4.2.6]

1.2Mcr = 1.2 (968) (0.785)
/
12

= 76.0 kip-ft/ft

controls minimum reinforcement

Strenth I: ηi = η = 1.0

Mu =
∑

ηiγiQi

= 1.0
(
1.25MDC + 1.5MDW + 1.75MLL+IM

)

Mu = η
∑

γiQi

= 1.0 [1.25 (42.1) + 1.50 (5.36) + 1.75 (51.9)]

Mu = 151.5 kip-ft/ft < φMn

= 172 kip-ft/ft OK

Service limit state governs. Use No. 9 at 6 in. for
interior strip.

b. Edge Strip Try As = No. 9 at 5 in., As = 2.40 in.2/ft
from service limit state:

c = Asfy

0.85f ′
cβ1b

= (2.40) (60)

0.85 (4.5) (0.825) (12)
= 3.80 in.

a = β1c = (0.825) (3.80) = 3.14 in.

The resistance factor is determined based upon
the curvature (or strain at the tension steel) per
[A5.5.4.2.1]:

εs =
(

ds − c

c

)
(0.003)

=
(
20.4 − 3.80

3.80

)
(0.003) = 0.013

εs ≥ 0.005

φ = 0.90

φMn = 0.9 (2.40) (60)

(
20.4 − 3.14

2

)/
12

= 203 kip-ft/ft

Minimum reinforcement [A5.7.3.3.2]:

Mu ≥ 1.2Mcr = 76.0 kip-ft/ft

Strength I: ηi = η = 1.0

Mu = η
∑

γiQi

= 1.0 [1.25 (51.45)+1.50 (3.83)+1.75 (56.9)]

Mu = 169.6 kip-ft/ft <φMn

=203 kip-ft/ft OK

Service limit state governs. Use No. 9 at 5 in. for
edge strip.

2. Shear [A5.14.4.1] Slab bridges designed for mo-
ment in conformance with AASHTO [A4.6.2.3] may
be considered satisfactory for shear. If longitudinal
tubes are placed in the slab to create voids and
reduce the cross section, the shear resistance must be
checked.
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K. Distribution Reinforcement [A5.14.4.1] The amount
of bottom transverse reinforcement may be taken as a per-
centage of the main reinforcement required for positive
moment as

100√
L

≤ 50%

100√
35

= 16.9%

a. Interior Strip
Positive moment reinforcement = No. 9 at 6 in.,

As = 2.00 in.2/ft

Transverse reinforcement = 0.169 (2.00)

= 0.34in.2/ft

Try No. 5 at 10 in. transverse bottom bars, As =
0.37 in.2/ft.

b. Edge Strip
Positive moment reinforcement = No. 9 at 5 in.

As = 2.40 in.2/ft

Transverse reinforcement = 0.169 (2.40)

= 0.41 in.2/ft

Use No. 5 at 9 in., transverse bottom bars, As =
0.41 in.2/ft.
For ease of placement, use No. 5 at 9 in. across the

entire width of the bridge.
L. Shrinkage and Temperature Reinforcement Area of

reinforcement in each direction [A5.10.8.2]

Temp As ≥ 1.3bh

2 (b + h) fy

=
[

1.3 (12) (22)

2 (12 + 22) (60)

]

= 0.084

0.11 ≤ Temp As ≤ 0.60

F.W.S

No. 4 Long

No. 9, Long
No. 4 @ 10 in., Trans.

No. 5 @ 9 in., Trans.

Fig. E16.1-9 Design sketch for solid slab bridge: (a) transverse
half-section and (b) reinforcement half-section.

Temp As = 0.11 in.2

ft controls

Top layer As = 1
2 (0.11)

= 0.055 in.2/ft in each direction

smax ≤ 3h = 3 (22) = 66 in. or 18.0 in.

Use No. 4 at 18 in., transverse and longitudinal top bars,
As = 0.13 in.2/ft. (No. 4 bars were selected to provide
more stiffness during construction for walking and con-
crete placement; No. 3 bar could have been used to satisfy
[A5.10.8.2].

M. Design Sketch The design of the solid slab bridge is
summarized in the half-section of Figure E16.1-9.

16.2 T-BEAMBRIDGE DESIGN

Problem Statement Example E16.2 Design a reinforced
concrete T-beam bridge for a 44-ft-wide roadway and three-
spans of 35 ft–42 ft–35 ft with a skew of 30◦ as shown in
Figure E16.2-1 Use the concrete deck of Figures E15.1-14
and E15.1-17 previously designed for an HL-93 live load, a
bituminous overlay, and a 8-ft spacing of girders in Example
Problem 16.1. Use f

′
c = 4.5 ksi, fy = 60 ksi, and follow

HW

Fig. E16.2-1 T-beam bridge design example: (a) elevation,
(b) plan, and (c) section.
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the outlineof AASHTO (2010)LRFDBridge Specifications,
Section 5, Appendix A5.3.

A. Develop General Section The bridge is to carry inter-
state traffic over a normally small stream that is subject to
high water flows during the rainy season (Fig. E16.2-1).

B. Develop Typical Section and Design Basis
1. Top Flange Thickness [A5.14.1.5.1a]

� As determined in Section 9 [A9.7.1.1]

Minimum depth of concrete deck = 7 in.

From deck design,

structural thickness = 7.5 in. OK

� Maximum clear span = 20 (7.5/12) = 12.5 ft >
8 ft – (bw/12) OK

2. Bottom Flange Thickness (not applicable to T-beam)
3. Web Thickness [A5.14.1.5.1c and C5.14.1.5.1c]

� Minimum of 8 in. without prestressing ducts
� Minimum concrete cover for main bars, exterior

2.0 in. [A5.12.3]
� Three No. 11 bars in one row require a beam width

of [A5.10.3.1.1]

bmin ≈ 2 (2.0) + 3db + 2
(
1.5db

)

= 4.0 + 6 (1.410) = 12.5 in.

� To give a little extra room for bars, try bw = 14 in.
4. Structure Depth (Table 3.1) [Table A2.5.2.6.3-1]

� Minimum depth continuous spans = 0.065L

hmin = 0.065 (42 × 12)

= 33 in., try h = 40 in.

5. Reinforcement Limits
� Deck overhang: at least 1

3 of bottom layer of trans-
verse reinforcement [A5.14.1.5.2a].

� Minimum reinforcement: Shall be adequate to
develop the lesser of φMn >1.2M cr or φMn ≥
1.33 times the factored moment required for the
strength I limit state [A5.7.3.3.2].

Mcr = Sncfr

fr = 0.37
√

f
′
c = 0.37

√
4.5

= 0.785 ksi [A5.4.2.6]

� Crack control: Cracking is controlled by limiting
the spacing s in the reinforcement under service
loads [A5.7.3.4]

s ≤ 700γe

βsfs

− 2dc

in which
βs = 1 + dc

0.7
(
h − dc

)

Fig. E16.2-2 Trial section for T-beam bridge.

� Flanges in tension at the service limit state: Ten-
sion reinforcement shall be distributed over the
lesser of the effective flange width or a width
equal to 1

10 of the average of the adjacent spans
[A4.6.2.6, A5.7.3.4].

� Longitudinal skin reinforcement required if web
depth > 3.0 ft [A5.7.3.4].

� Shrinkage and temperature reinforcement [A5.10
.8.2]

Temp As ≥ 1.3bh

2 (b + h) fy

=
[

1.3 (12) (22)

2 (12 + 22) (60)

]

= 0.084

0.11 ≤ Temp As ≤ 0.60

6. Effective Flange Widths [A4.6.2.6.1]

� Effective span length for continuous spans =
distance between points of permanent load
inflections.

� Interior beams:

bi ≤ average spacing of adjacent beams

� Exterior beams:

be ≤ width of overhang + 1
2bi

7. Identify Strut and Tie Areas, if any not applicable.
The trial section for the T-beam bridge is shown in
Figure E16.2-2.

C. Design Conventionally Reinforced Concrete Deck
The reinforced concrete deck for this bridge is designed
in Section 16.1. The design sketches for the deck are
given in Figures E15.1-14 and E12.1-17.

D. Select Resistance Factors (Table 14.6) [A5.5.4.2]

1. Strength Limit State φ [A5.5.4.2.1]
Flexure and tension 0.90
Shear and torsion 0.90
Axial compression 0.75
Bearing 0.70

2. Nonstrength Limit States 1.0 [A1.3.2.1]
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E. Select Load Modifiers [A1.3.2.1]

Strength Service Fatigue

Ductility, ηD 1.0 1.0 1.0 [A1.3.3]
Redundancy, ηR 1.0 1.0 1.0 [A1.3.4]
Importance, ηI 1.0 N/A N/A [A1.3.5]
ηi = ηDηRηI 1.0 1.0 1.0

F. Select Applicable Load Combinations (Table 5.1)
[Table A3.4.1-1]
Strength I Limit State: ηi = η = 1.0

U = η(1.25DC + 1.50DW + 1.75(LL + IM)

+ 1.0(WA + FR) + · · ·)
Service I Limit State:

U = 1.0(DC + DW) + 1.0(LL + IM) + 1.0WA

+ 0.3(WS +WL) + · · ·
Fatigue Limit State:

U = 0.75 (LL + IM)

G. Calculate Live-Load Force Effects
1. Select Number of Lanes [A3.6.1.1.1]

NL = INT
( w

12.0

)
= INT

(
44.0

12.0

)
= 3

2. Multiple Presence (Table 8.6) [A3.6.1.1.2]

No. of Loaded Lanes m

1 1.20
2 1.00
3 0.85

3. Dynamic Load Allowance (Table 8.7) [A3.6.2.1]
Not applied to the design lane load.

Component IM (%)

Deck joints 75
Fatigue 15
All other 33

4. Distribution Factors for Moment [A4.6.2.2.2] Ap-
plicability [A4.6.2.2.1]: constant deck width, at least
four parallel beams of nearly same stiffness, roadway
part of overhang (Fig E16.2-3), de = 3.25 – 1.25 =
2.0 ft < 3.0 ft OK.
Cross-section type (e) (Table 4.1) [Table A4.6.2

.2.1-1]

No.of beams Nb = 6 ts = 7.5 in.

S = 8 ft L1 = L3 = 35 ft L2 = 42 ft

de

Fig. E16.2-3 Roadway part of overhang, de.

a. Interior Beams with Concrete Decks (Table 11.5)
[A4.6.2.2.2b and Table A4.6.2.2.2b-1] (note that
[Table A4.6.2.2.1-2] estimates could be used as
well):

For preliminary design

(
Kg

12Lt3s

)0.1 or 0.25

= 1.0 and
I

J
= 1.0

One design lane loaded: range of applicability
satisfied

mgSI
M = 0.06+

(
S

14

)0.4(
S

L

)0.3( Kg

12Lt3s

)0.1

mg = girder distribution factor with

multiple presence factor included

SI = single lane loaded, interior

M = moment

Two or more design lanes loaded

mgMI
M = 0.075 +

(
S

9.5

)0.6(
S

L

)0.2( Kg

12Lt3s

)0.1

MI = multiple lanes loaded, interior

M = moment

Distribution
Factor L 1 = 35 ft L ave = 38.5 ft L 2 = 42 ft

mgSI
M 0.573 0.559 0.546

mgMI
M 0.746 0.734 0.722

For interior girders, distribution factors are gov-
erned by multiple lanes loaded.
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Fig. E16.2-4 Definition of level rule.

b. Exterior Beams (Table 11.5) [A4.6.2.2.2d and
Table A4.6.2.2.2d-1]
One design lane loaded—lever rule, m = 1.2

(Fig. E16.2-4)

R = 0.5P

(
8.0 + 2.0

8.0

)
= 0.625P

gSE
M = 0.625 SE = single lane, exterior

mgSE
M = 1.2 (0.625) = 0.750 governs

Two or more design lanes loaded, de = 2.0 ft

mgME
M = emgMI

M

ME = multiple lanes loaded, exterior

where

e = 0.77 + de

9.1
= 0.77 + 2.0

9.1
= 0.99 < 1.0

Use e = 1.0. Therefore,

mgME
M = mgMI

M = 0.746, 0.734, 0.722

For exterior girders, the critical distribution
factor is by the lever rule with one lane loaded =
0.750.

c. Skewed Bridges (Table 11.3) [A4.6.2.2.2e]
Reduction of live-load distribution factors for
moment in longitudinal beam on skewed supports
is permitted. S = 8 ft, θ = 30◦.

rskew = 1 − c1(tan θ)1.5 = 1 − 0.4387c1

where

c1 = 0.25

(
Kg

12Lt3s

)0.25(
S

L

)0.5

[Table A4.6.2.2.2e-1]

Range of applicability is satisfied.

Reduction
Factor L 1 = 35 ft L ave = 38.5 ft L 2 = 42 ft

c1 0.120 0.114 0.109
r skew 0.948 0.950 0.952

Fig. E16.2-5 Live-load placement for maximum positive moment
in exterior span.

d. Distributed Live-Load Moments

MLL+IM = mgr

[(
MTr or MTa

) (
1 + IM

100

)
+ MLn

]

Location 104 (Fig. E16.2-5) For relatively short
spans, design tandem governs positive moment
(see Table 9.8a). Influence line coefficients are
from Table 9.4.

MTa = 25 (0.20700+0.15732) 35 = 318.8 kip-ft

MLn = 0.64 (0.10214) (35)2 = 80.1 kip-ft

Interior girders:

MLL+IM = 0.746 (0.948) [318.8 (1.33) + 80.1]

= 356.5 kip-ft

Exterior girders:

MLL+IM = 0.750 (0.948) [318.8 (1.33) + 80.1]

= 358.4 kip-ft

Location 200 (Fig. E16.2-6) For negative mo-
ment at support, a single truck governs with
the second axle spacing extended to 30 ft (see
Table 9.8a). The distribution factors are based on
the average length of span 1 and span 2.

MTr = [32(−0.09429 − 0.10271)

+ 8(−0.05902)]35

= −237.2 kip-ft

Fig. E16.2-6 Live-load placement formaximumnegativemoment
at interior support.
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Fig. E16.2-7 Live-load placement for maximum positive moment
in interior span.

MLn = 0.64 (−0.13853) (35)2

= −108.6 kip-ft

1.33MTr + MLn = 1.33 (−237.2) − 108.6

= −424.1 kip-ft

Interior girders:

MLL+IM = 0.734 (0.950) (−424.1)

= −295.7 kip-ft

Exterior girders:

MLL+IM = 0.750 (0.950) (−424.1)

= −302.2 kip-ft

Location 205 (Fig E16.2-7) Tandem governs
(see Table 9.8a)

MTa = 25 (0.20357+ 0.150224) 35

= 309.6 kip-ft

MLn = 0.64 (0.10286) (35)2

= 80.6 kip-ft

1.33MTa + MLn = 1.33 (309.6) + 80.6

= 492.4 kip-ft

Interior girders:

MLL+IM = 0.722 (0.952) (492.4) = 338.5 kip-ft

Exterior girders:

MLL+IM = 0.750 (0.952) (492.4) = 351.6 kip-ft

5. Distribution Factors for Shear [A4.6.2.2.3] Cross-
section type (e) (Table 4.1) [Table A4.6.2.2.1-1], S =
8 ft, mg is independent of span length.
a. InteriorBeams (Table 11.3) [A4.6.2.2.3a and Table

A4.6.2.2.3a-1]

mgSI
V = 0.36 + S

25
= 0.36 + 8

25
= 0.680

mgMI
V = 0.2+ S

12
−
(

S

35

)2

= 0.2+ 8

12
−
(

8

35

)2

= 0.814, governs

V = shear

b. Exterior Beams (Table 11.3) [A4.6.2.2.3b and
Table A4.6.2.2.3b-1]

Lever rule mgSE
V = 0.750 governs

mgME
V = emgMI

V

where

e = 0.6 + de

10
= 0.6 + 2.0

10
= 0.80

mgME
V = 0.80 (0.814) = 0.651

c. Skewed Bridges (Table 11.3) [A4.6.2.2.3c and
Table A4.6.2.2.3c-1] All beams treated like
beam at obtuse corner.

θ = 30◦
(
12Lt3s

Kg

)
= 1.0

rskew = 1.0 + 0.20

(
12Lt3s

Kg

)0.3

tan θ

= 1.0 + 0.20(1.0)0.3 (0.577) = 1.115

d. Distributed Live-Load Shears

VLL+IM = mgr
[(

VTr or VTa

)
1.33 + VLn

]

Location 100 (Fig. E16.2-8) Truck governs (see
Table 9.8b).

VTr = 32 (1.0+0.51750)+8 (0.12929)

= 49.6 kips

VLn = 0.64 (0.45536) 35 = 10.2 kips

1.33VTr + VLn = 1.33 (49.6) + 10.2 = 76.2 kips

Interior girders:

VLL+IM = 0.814 (1.115) (76.2)

= 69.1 kips

Exterior girders:

VLL+IM = 0.750 (1.115) (76.2)

= 63.7 kips

Fig. E16.2-8 Live-load placement for maximum shear at exterior
support.
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Fig. E16.2-9 Live-load placement for maximum shear to left of
interior support.

Location 110 (Fig. E16.2-9) Truck governs (see
Table 9.8b).

VTr = 32 (−1.0 − 0.69429) + 8 (−0.24714)

= −56.2 kips

VLn = 0.64 (−0.63853) 35

= −14.3 kips

1.33VTr + VLn = 1.33 (−56.2) − 14.3

= −89.0 kips

Interior girders:

VLL+IM = 0.814 (1.115) (−89.0) = −80.8 kips

Exterior girders:

VLL+IM = 0.750 (1.115) (−89.0) = −74.5 kips

Location 200 (Fig. E16.2-10)Truck governs (see
Table 9.8b).

VTr = 32 (1.0 + 0.69367) + 8 (0.30633)

= 56.6 kips

VLn = 0.64 (0.66510) 35 = 14.9 kips

1.33VTr + VLn = 1.33 (56.6) + 14.9 = 90.2 kips

Interior girders:

VLL+IM = 0.814 (1.115) (90.2) = 81.8 kips

Exterior girders:

VLL+IM = 0.750 (1.115) (90.2) = 75.4 kips

Fig. E16.2-10 Live-load placement for maximum shear to right
of interior support.

Fig. E16.2-11 Live-load placement for maximum reaction at
interior support.

6. Reactions to Substructure [A3.6.1.3.1] The follow-
ing reactions are per design lane without any distribu-
tion factors. The lanes shall be positioned transversely
to produce extreme force effects.
Location 100

R100 = V100 = 1.33VTr + VLn

= 76.2 kips/lane

Location 200 (Fig. E16.2-11)

R200 = 1.33 [32 (1.0 + 0.69367+ 0.10106)

+8 (0.69429+ 0.10000)] + 14.3 + 14.9

= 114.0 kips/lane

H. Calculate Force Effects from Other Loads Analysis
for a uniformly distributed load w (Fig. E16.2-12). See
Table 9.4 for coefficients and Fig. E16.2-13.
Moments

M104 = w (0.07129) (35)2 = 87.33w kip-ft

M200 = w (−0.12179) (35)2 = −149.2w kip-ft

M205 = w (0.05821) (35)2 = 71.3w kip-ft

Fig. E16.2-12 Uniformly distributed dead load, w.

Fig. E16.2-13 Cross section with effective flange widths.
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Shears

V100 = w (0.37821) (35) = 13.24w kips

V110 = w (−0.62179) (35) = −21.76w kips

V200 = w (0.60000) (35) = 21.0w kips

1. Interior Girders

DC: Slab (0.150) (8.0/12) 8 = 0.800 kips/ft

Girder stem (0.150) (14) (40 − 8) /122 = 0.467

wDC = 1.267 kips/ft

DW : FWS wDW = (0.140) (3.0/12) 8

= 0.280kips/ft

By multiplying the general expressions for uni-
form loads by the values of the interior girder
uniform loads, the unfactored moments and shears
are generated in Table E16.2-1.

2. Exterior Girders By using deck design results for
reaction on exterior girder from Section 16.1, Part C:

DC Deck slab 0.314 kips/ft

Overhang 0.462

Barrier 0.464

Girder stem 0.459 = 0.150× 7[(40 − 9)

+ (40 − 8)]/122

wDC = 1.699 kips/ft

DW : FWS wDW = 0.191 kips/ft

By multiplying the generic expressions for uni-
form loads by the values of the exterior girder
uniform loads, the unfactored moments and shears in
Table E16.2-2 are generated.

I. Investigate Service Limit State
1–3. Prestress Girders Not applicable.

4. Investigate Durability [C5.12.1] It is assumed
that concrete materials and construction proce-
dures provide adequate concrete cover, nonreactive
aggregates, thorough consolidation, adequate ce-
ment content, low water/cement ratio, thorough
curing, and air-entrained concrete.
Concrete Cover for Unprotected Main Reinforc-

ing Steel [Table 5.12.3-1]

Exposure to deicing salts 2.5 in.

Exterior other than above 2.0 in.

Bottom of CIP slabs, up to No.11 1.0 in.

⎫
⎪⎬

⎪⎭

cover to ties
and stirrups
0.5 in. less

Effective Depth—assume No. 10, db = 1.270 in.
Positive Bending

dpos = (40 − 0.5) −
(
2.0 + 1.270

2

)
= 36.9 in.

Negative Bending

dneg = 40 −
(
2.5 + 1.270

2

)
= 36.9 in.

5. Crack Control [A5.7.3.4] Flexural cracking is
controlled by limiting the spacing s in the rein-
forcement closest to the tension face under service
load stress fs:

s ≤ 700γe

βsfs

− 2dc

in which

βs = 1 + dc

0.7
(
h − dc

)

Table E16.2-1 Interior Girder Unfactored Moments and Shears

Moments (kip-ft) Shears (kips)

Load Type w (k/ft) M104 M200 M205 V100 V110 V200

DC 1.267 110.6 −189.0 90.3 16.8 −27.6 26.6
DW 0.280 24.5 −41.8 20.0 3.7 −6.1 5.9
LL + IM N/A 356.5 −295.7 338.5 69.1 −80.8 81.8

Table E16.2-2 Exterior Girder Unfactored Moments and Shearsa

Moments (kip-ft) Shears (kips)

Load Type w (k/ft) M104 M200 M205 V100 V110 V200

DC 1.699 148.4 −253.5 121.1 22.5 −37.0 35.7
DW 0.191 16.7 −28.5 13.6 2.5 −4.2 4.0
LL + IM N/A 358.4 −302.2 351.6 63.7 −74.5 75.4

aInterior girder has larger shears. Exterior girder has larger moments.
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Fig. E16.2-14 Spacing of reinforcement in stem of T-beam.

γe = exposure factor

= 1.00 for class 1 exposure condition

= 0.75 for class 2 exposure condition

dc = concrete cover measured from extreme

tension fiber to center of closest

flexural reinforcement (Fig. E16.2-14)

a. Effective Flange Width [A4.6.2.6.1] (Fig.
E16.2-15).
Positive BendingM 104

bi ≤ S = 8 × 12 = 96 in.

be − 1
2bi ≤ overhang = 39.0 in. governs

be = 39.0 + 1
2 (79.5) = 78.8 in.

Use bi = 96 in., be = 79 in.
b. Positive Bending Reinforcement—Exterior

Girder (Table 5.1) [Table A3.4.1-1] Service I
limit state, ηi = 1.0, gravity load factors = 1.0,
moments from Table E16.2-2:

M104 =
∑

ηiγiQi

= MDC + MDW + mgrMLL+IM

= (148.4 + 16.7 + 358.4)

= 523.5 kip-ft

Fig. E16.2-16 Bar spacing in the reinforcement closest to the ten-
sion face.

f
′
c = 4.5 ksi fy = 60 ksi

dpos = 36.9 in.

Assume j = 0.875 and fs = 0.6fy = 36 ksi:

As ≈ M

fsjd
= 523.5 × 12

36× 0.875 × 36.9

= 5.40 in.2

Try six No. 9 bars, provided As = 6.00 in.2

(Table B.3).
Minimum beam widthmust consider bend di-

ameter of tie [Table A5.10.2.3-1].
For No. 4 stirrupand No. 9 bar (Fig. E16.2-16)

Inside radius = 2ds > 1
2db

2 (0.5) = 1.0 in. > 1
2 (1.128) = 0.564 in.

Center of No. 9 bar will be away from vertical
leg of stirrup a distance of 2ds = 1.0 in.

bmin = 2
(
1.50 + 3ds

)+ 2db + 2
(
1.5db

)

= 2 (1.50 + 3 × 0.5) + 5 (1.128)

= 11.64 in.

Fig. E16.2-15 Elastic-cracked transformed positive moment section at location 104.
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Three No. 9 bars will fit in one layer of bw =
14 in.

ys = 1.5 + 0.5 + 1.128 + 1
2 (1.128)

= 3.69 in.

dpos = (40 − 0.5) − 3.69 = 35.8 in.

Elastic-cracked transformed section analysis
required to check crack control [A5.7.3.4].

n = Es

Ec

= 7 from solid-slab bridge design

b = be = 79 in.

Assume NA (neutral axis) in flange (Fig.
E16.2-15):

x = −nAs

b
+
√(

nAs

b

)2

+ 2nAsd

b

= −7(6.0)

79
+
√(

7×6.0

79

)2

+ 2(7)(6.0)(35.8)

79

= 5.66 in. < hf = 7.5 in.

The neutral axis lies in flange; therefore, as-
sumption OK.
The actual bar spacing must be compared to

the maximum bar spacing allowed for crack
control (Fig. E16.2-16). Actual s = [14 –
2(1.50 + 3 × 0.5]/2 = 4.0 in.

s ≤ 700γe

βsfs

− 2dc dc = 1.5+0.5+1.128/2

= 2.56 in.

γe = 0.75 (class 2 exposure)

βs = 1 + dc

0.7
(
h − dc

)

= 1 + 2.56

0.7 (39.5 − 2.56)
= 1.099

Icr = 1
3bx3 + nAs(d − x)2

= 1
3 (79) (5.66)3 + 7 (6.0) (35.8 − 5.66)2

= 42,928 in.4

fs = nM (d − x)

Icr

= 7 (523.5 × 12) (35.8 − 5.66)

42,928
= 30.9 ksi

s ≤ 700 (0.75)

1.099 (30.9)
− 2 (2.56)

= 10.4 in. > s = 4.0 in.

Six No. 9 bottom bars OK for crack control.
c. Negative Bending Reinforcement—Exterior

Girder Service I limit state, ηi = 1.0, gravity

load factors = 1.0, moments from Table
E16.2-2.

M200 =
∑

ηiγiQi

= MDC + MDW + mgrMLL+IM

= (−253.5 − 28.5 − 302.2)

= −584.2 kip-ft

dneg = 36.9 in.

Assume j = 0.875 and fs = 36 ksi

As ≈ M

fsjd
= 584.2 × 12

36× 0.875 × 36.9
= 6.03 in.2

Try nine No. 8 bars, provided As = 7.07 in.2

(Table B.3).
Tension reinforcement in flange distributed

over the lesser of: effective flange width or
one-tenth span [A5.7.3.4].
Effective flange width be for an exterior girder

[A4.6.2.6.1]

be = 79.0 in.
1
10 average span = 1

10 (38.5 × 12)

= 46.2 in. governs

Effective flange width be is greater than one-
tenth span, additional reinforcement is required
in outer portions of the flange.

Additional As > 0.004 (excess slab area)

> 0.004 (8.0) (52.8 − 46.2) = 0.21 in.2

Two No. 4 bars additional reinforcement, ad-
ditional As = 0.40 in.2 (Fig. E16.2-17).
Spacing of nine No. 8 bars = 46.2/8 spaces =

5.8 in. Calculation of maximum allowable bar

Fig. E16.2-17 Elastic-cracked transformed negative moment
section at location 200.
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spacing depends on service load tension
stress fs.
Revised d neg for No. 8 bars belowNo. 4 trans-

verse slab top bars

dneg = 40 − 2.5 − 0.5 − 1.0

2
= 36.5 in.

b = bw = 14 in.

Neglecting No. 4 longitudinal slab bottom
bars

nAs

b
= 7 (7.07)

14
= 3.54 in.

2nAsd

b
= 2 (3.54) 36.5 = 258.4 in.2

x = −3.54 +
√
3.542 + 258.4 = 12.9 in.

Icr = 1
3 (14)(12.9)

3+7(7.07)(36.5−12.9)2

= 37,582 in.4

fs = nM (d − x)

Icr

= 7 (584.2 × 12) (36.5 − 12.9)

37,582
= 30.8 ksi

dc = 2.5 + 0.5 + 1.0/2 = 3.5 in.

h = 40 in. γe = 0.75

βs = 1 + dc

0.7
(
h − dc

)

= 1 + 3.5

0.7 (40− 3.5)
= 1.137

s ≤ 700γe

βsfs

− 2dc

= 700 (0.75)

1.137× 30.8
− 2 × 3.5

= 8.0 in. > s = 5.8 in.

Nine No. 8 top bars OK for crack control.
6. Investigate Fatigue Fatigue I Limit State

(Table 5.1) [Table A3.4.1-1]

Uf =
∑

ηiγiQi = 1.5 (LL + IM)

Fatigue Load
� One design truck with constant spacing of 30 ft

between 32-kip axles [A3.6.1.4].
� Dynamic load allowance: IM= 15% [A3.6.2.1].
� Distribution factor for one traffic lane shall be

used [A3.6.1.4.3b].
� Multiple presence factor of 1.2 shall be re-

moved [C3.6.1.1.2].
a. Determination of Need to Consider Fa-

tigue [A5.5.3.1] Prestressed beams may
be precompressed, but for the continuous
T-beam without prestress, there will be

regions, sometimes in the bottom of the
beam, sometimes in the top of the beam,
where the permanent loads do not produce
compressive stress. In these regions, such
as locations 104 and 200, fatigue must be
considered.

b. Allowable Fatigue Stress Range ff in Rein-
forcement [A5.5.3.2]

ff ≤ 21 − 0.33fmin + 8
( r

h

)
, ksi

where
fmin = algebraic minimum stress

level from fatigue load given
above, positive if tension

r
h

= ratio of base radius to height
of rolled-on transverse
deformations if the actual
value is not known, 0.3 may
be used

c. Location 104 (Fig. E16.2-18) [C3.6.1.1.2]
Exterior Girder—Distribution Factor

gSE
M r = mgSE

M

r

m
= 0.750 (0.948)

1.2
= 0.593 [C3.6.1.1.2]

Fatigue load moment for maximum ten-
sion in reinforcement. Fatigue I limit state
is used. Influence line ordinates taken from
Table 9.4.

pos Mu = 32 (0.20700) 35

+ 8 (0.05171) 35

= 246.3 kip-ft

pos M104 = 1.5
[
gSE

M rMu (1 + IM)
]

= 1.5 [(0.593) (246.3) (1.15)]

= 252.0 kip-ft

Fatigue load moment for maximum com-
pression in reinforcement (Fig. E16.2-19):

neg MLL = [32 (−0.04135 + 0.00574)

+ 8 (0.00966)]35

= −37.2 kip-ft

Fig. E16.2-18 Fatigue truck placement for maximum tension in
positive moment reinforcement.
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Fig. E16.2-19 Fatigue truck placement for maximum compres-
sion in positive moment reinforcement.

neg M104 = 1.5 [0.593 (−37.2) (1.15)]

= −38.0 kip-ft

The fatigue load moment varies from
−38.0 to 252.0 kipft. The moment from
dead load for an exterior girder is given in
Table E16.2-2 as

MDL = MDC + MDW = 148.4 + 16.7

= 165.1 kip-ft

The combined moment at location 104
due to permanent loads plus the fatigue
truck is always positive and never produces
compression in the bottom flexural steel.
Therefore, the maximum and minimum
fatigue stresses are calculated using positive
moment cracked section properties. The
maximum fatigue stress is

fmax = n
(
MDL + MFTrmax

)
(d − x)

Icr

= 7 (165.1 + 252) (12) (35.8 − 5.66)

42,928
= 24.6 ksi

The minimum fatigue stress is

fmin = n
(
MDL + MFTrmin

)
(d − x)

Icr

= 7 (165.1 − 38.0) 12 (35.8 − 5.66)

42,928
= 7.50 ksi

and the stress range ff for fatigue at location
104 becomes

ff = fmax − fmin = 24.6 − 7.50

= 17.1 ksi

The limit for the stress range is

21 − 0.33fmin + 8
( r

h

)

= 21 − 0.33 (7.50) + 8 (0.3)

= 20.9 ksi > 17.1 ksi OK

d. Location 200 Based on previous calcu-
lations, the moments due to LL + IM at
location 200 are less than those at location
104. Therefore, by inspection, the fatigue
stresses are not critical.

7. Calculate Deflection and Camber (Table 5.1)
[Table A3.4.1-1] Service I limit state, ηi = 1.0,
gravity load factors = 1.0

U =
∑

ηiγiQi = DC + DW + (LL + IM)

a. Live-Load Deflection Criteria (optional)
[A2.5.2.6.2]
� Distributionfactor for deflection [C2.5.2.6.2]

mg = m
NL

NB

= 0.85
3

6
= 0.425

NL = No. design lanesn NB = No. of
beams [A3.6.1.1.2]:

� A right cross sectionmay be used for skewed
bridges.

� Use one design truck or lane load plus 25%
design truck [A3.6.1.3.2].

� Live-load deflection limit, first span [A2.5
.2.6.2]:

�allow = span

800
= 35× 12

800
= 0.53 in.

b. Section Properties at Location 104 Trans-
formed cracked section from Section 16.2,
Part I.5b:

dpos = 35.8 in. x = 5.66 in.

Icr = 42,928 in.4

Gross or uncracked section (Fig. E16.2-20)

Ag = 79 (7.5) + 14 (32) = 592.5 + 448

Ag = 1040.5 in.2

ȳ = 592.5 (32 + 3.75) + 448 (16)

1040.5
= 27.25 in.

Fig. E16.2-20 Uncracked or gross section.
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Fig. E16.2-21 Live-load placement for deflection at location 104.

Ig = 1
12 (79) (7.5)3 + 592.5(12.25 − 3.75)2

+ 1
12 (14) (32)3 + 448(27.25 − 16)2

= 140,515 in.4

c. Estimated Live-Load Deflection at Location
104 Assume deflection is maximum where
moment is maximum (Fig. E16.2-21):

M104 = 25 (0.20700+ 0.15732) 35

= 318.8 kip-ft

Coefficients from Table 5.4.

M200 = 25 (−0.08250− 0.09240) 35

= −153.0 kip-ft

Total moment at 104,

Ma = MDC + MDW + mgMLL (1 + IM)

= 148.4 + 16.7+ 0.425 (318.8) (1.33)

= 345.3 kip-ft

Effective moment of inertia [A5.7.3.6.2]

f
′
c = 4.5 ksi

Ec = 1820
√

f
′
c = 1820

√
4.5

= 3860 ksi [C5.4.2.4]

fr = 0.24
√

f
′
c = 0.24

√
4.5

= 0.509 ksi [5.4.2.6]

Mcr = fr

Ig

yt

= 0.509
140,515

27.25
/12

= 218.8 kip-ft

Ie =
(

Mcr

Ma

)3

Ig +
[
1 −

(
Mcr

Ma

)3
]

Icr ≤ I
g

′

(
Mcr

Ma

)3

=
(
218.8

345.3

)3

= 0.254

Ie = (0.254)(140,515)+(1−0.254) (42,928)

= 67,715 in.4

Fig. E16.2-22 Deflection estimate by superposition.

EI = EcIe = (3860) (67,715)

= 261.4× 106 kip-in.2

Calculate deflection at location 104 by con-
sidering first span as a simple beam with an end
moment and use superposition (Fig. E16.2-22).
Deflections for a design truck are (Eq. 5.19)

y1 = L2

6EI

[
Mij

(
2ξ −3ξ 2+ξ 3)− Mji

(
ξ − ξ 3)]

ξ = x

L

Mij = 0 Mji = M200 = −153.0 kip-ft

L = 35 ft = 420 in. ξ = 0.4

y1 = (420)2

6
(
261.4 × 106

)

× [− (−153.0 × 12)
(
0.4 − 0.43

)]

= 0.069 in. ↑ (upward)

y2 = �x (x < a) = Pbx

6EIL

(
L2 − b2 − x2)

[AISC Manual (2001) , Case 8]

For P = 25 kips, x = 0.4L = 168 in., b 2 =
0.6L = 252 in.

y2 = 25 (252) (168)

6
(
261.4 × 106

)
(420)

× (
4202 − 2522 − 1682

)

= 0.136 in. ↓ (downward)

For P = 25 kips, x = 0.4L, a3 = 0.5143(420)
= 216 in., b 3 = L – a3 = 204 in.

y3 = 25 (204) (168)

6
(
261.4 × 106

)
(420)

× (
4202 − 2042 − 1682

)

= 0.139 in. ↓ (downward)
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Estimated LL + IM Deflection at 104 With
three lanes of traffic supported on six girders,
each girder carries only a half-lane load. Includ-
ing impact and the multiple presence factor, the
estimated live-load deflection is

�LL+IM
104 = mg

(−y1 + y2 + y3
)
(1 + IM)

= 0.85 (0.5) (−0.069 + 0.136 + 0.139) (1.33)

= 0.12 in. < �allow = 0.53 in. OK

d. Dead-Load Camber [A5.7.3.6.2] The dead
loads taken from Tables E16.2-1 and E16.2-2
are

Dead
Loads

Interior
Girder

Exterior
Girder

wDC 1.267 kips/ft 1.699 kips/ft
wDW 0.280 0.191
wDL 1.547 kips/ft 1.890 kips/ft

Unit Load Analysis (Fig. E16.2-23)
DeflectionEquations Simple beam at distance

x from left end, uniform load:

�x = wx

24EI

(
L3 − 2Lx2 + x3)

�centerline = 5

384

wL4

EI

[AISC Manual (2001), Case 1]

Simple beam at ξ = x /L from i end, due to
end moments:

y = L2

6EI

[
Mij

(
2ξ −3ξ 2+ ξ 3

)−Mji

(
ξ −ξ 3

)]
ξ

= x

L

Flexural Rigidity EI for Longtime Deflections
The instantaneous deflection is multiplied by a
creep factor λ to give a longtime deflection:

�LT = λ�i

Fig. E16.2-23 Unit uniformly distributed load analysis.

so that

�camber = �i + �LT = (1 + λ)�i

If instantaneous deflection is based on Ig,
λ = 4.0 [A 5.7.3.6.2]
If instantaneous deflection is based on Ie,

λ = 3.0 − 1.2

(
A

′
S

AS

)
≥ 1.6

Location 104, x = 0.4L = 168 in.

w = 1.0 kips/ft (unit load)

Mij = 0 Mji = −149.2 kip-ft

�i = 1.0 (168/12)

24 × 261.4 × 106

× [
(420)3 − 2 (420) (168)2 + (168)3

]

− (420)2

6 × 261.4 × 106

× [− (−149.2 × 12)
(
0.4 − 0.43

)]

�i = 0.123 − 0.068

= 0.055 in. ↓ (downward)

Using As = six No. 9 bars = 6.0 in.2, A
′
s =

two No. 8 bars = 1.57 in.2

λ = 3.0 − 1.2
1.57

6.0
= 2.69

Exterior girder, we = 1.890 kips/ft

�camber = 1.890 (1 + 2.69) (0.055) = 0.38 in.
(
wi = 1.547 kips/ft

) = 0.31 in.,
say 0.35 in. average

Location 205 Assume same EI as at 104:

w = 1.0 kips/ft (unit load)

Mij = −Mji = 149.2 kip-ft

x = 0.5L L = 42 × 12 = 504 in.

�i = 5

384

1.0(504)4/12

261.4× 106
− (504)2

6 × 261.4 × 106[
149.2 × 12

(
1 − 3

4 + 1
8 + 1

2 − 1
8

)]

= 0.268− 0.217

= 0.051 in. ↓ (downward)

By using λ = 2.69 and we = 1.890 kips/ft

�camber = 1.890 (1 + 2.69) (0.051) = 0.36 in.
(
wi = 1.547 kips/ft

) = 0.29 in.,
say 0.33 in. average

Dead-Load Deflection Diagram—All Girders
(Fig. E16.2-24) Upward camber should be
placed in the formwork to offset the estimated
longtime dead-load deflection. The dead-load
deflections are summarized in Figure E16.2-24.
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Fig. E16.2-24 Dead-load deflection diagram—all girders.

J. Investigate Strength Limit State The previous calcu-
lations for the service limit state considered only a few
critical sections at locations 104, 200, and 205 to verify
the adequacy of the trial section given in Figure E16.2-2.
Before proceedingwith the strength design of the girders,
it is necessary to construct the factored moment and shear
envelopes from values calculated at the tenth points of the
spans. The procedure for generating the live-load values
is given in Chapter 9 and summarized in Tables 9.8a and
9.8b for spans of 35, 42, and 35 ft.
The strength I limit state can be expressed as

ηi = η = 1.0

U = 1.0[1.25DC+ 1.50DW

+ 1.75(mgr)LL(1 + IM)] (E16.2-1)

With the use of permanent loads given in
Tables E16.2-1 and E16.2-2, the critical live-load
moments and shears from Tables 9.8a and 9.8b, and
live-load distribution factors (mgr) determined earlier,
the envelope values for moment and shear are generated

for interior and exterior girders. Using Eq. E16.2-
1, the envelope values are generated and given in
Tables E16.2-3 and E16.2-4 in the columns with the fac-
tored values of moment and shear. The envelope values
for moment and shear are plotted in Figure E16.2-25.
Notice the closeness of the curves for the interior and
exterior girders. One design will suffice for both.
1. Flexure

a b. Prestressed Beams Not applicable.
c. Factored Flexural Resistance [A5.7.3.2, Table

A3.4.1-1] Exterior girder has slightly larger
moment.

Mu =
∑

ηiγiMi

= 1.0
(
1.25MDC + 1.50MDW + 1.75MLL+IM

)

Location 104 Computation of the factored moment
requires the unfactored values for moment from
Table E16.2-2:

M104 = 1.0[1.25 (148.4)+1.50 (16.7)+1.75 (358.4)]

= 837.8 kip-ft

This number is the same as the value of 837.8 kip-ft
found in Table E16.2-3.
Check resistance provided by bars selected for crack

control (Fig. E16.2-26). Assume a < ts = 7.5 in.

a = Asfy

0.85f ′
cbe

= 6.0 (60)

0.85 (4.5) (79)

= 1.19 in. [A5.7.3.2.2]

Table E16.2-3 Moment Envelope for Three-Span Continuous T-Beam 35–42–35 ft (kip-ft)

Positive Moment Negative Moment

Location

Unit
Uniform
Load

Critical
LL + IM

Factored
Int. Girder

Factored
Ext. Girder

Critical
LL + IM

Factored
Int. Girder

Factored
Ext. Girder

100 0.00 0.0 0.0 0.0 0.0 0.0 0.0
101 40.21 225.2 359.3 377.1 −29.7 44.3 59.9
102 68.16 374.5 600.1 630.3 −59.3 64.2 90.3
103 83.87 468.1 747.4 784.6 −89.0 59.4 91.2
104 87.32 504.2 799.0 837.8 −118.6 30.3 62.6
105 78.53 495.8 771.0 806.2 −148.3 −23.6 4.4
106 57.49 449.5 671.5 697.8 −178.0 −102.0 −83.4
107 24.19 359.0 492.8 505.0 −207.6 −204.9 −200.5
108 −21.35 232.5 245.0 237.8 −237.3 −332.4 −347.3
109 −79.15 94.5 −41.6 −73.2 −279.6 −499.8 −539.4
110 −149.19 75.8 −205.1 −265.3 −422.9 −815.0 −886.9
200 −149.19 75.8 −205.1 −265.3 −422.9 −815.0 −886.9
201 −69.81 106.0 −8.7 −36.4 −245.7 −439.7 −474.6
202 −8.07 258.3 303.5 301.9 −196.5 −256.0 −264.5
203 36.03 389.9 554.7 572.0 −180.1 −147.6 −137.7
204 62.49 470.3 707.3 735.8 −177.8 −91.8 −71.1
205 71.31 492.8 752.8 785.0 −175.5 −71.3 −47.0
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Table E16.2-4 Shear Envelope for Three-Span Continuous T-Beam 35–42–35 ft (kips)

Positive Shear Negative Shear

Location

Unit
Uniform
Load

Critical
LL + IM

Factored
Int. Girder

Factored
Ext. Girder

Critical
LL + IM

Factored
Int. Girder

Factored
Ext. Girder

100 13.24 76.2 147.6 143.4 −9.4 15.1 20.2
101 9.74 63.4 120.2 116.3 −9.6 7.8 11.5
102 6.24 51.8 94.8 90.8 −14.0 −4.6 −2.4
103 2.74 42.5 73.0 68.8 −22.8 −22.3 −21.8
104 −0.76 33.7 52.0 47.5 −31.6 −40.1 −41.2
105 −4.26 25.7 32.3 27.3 −40.3 −57.7 −60.5
106 −7.76 18.4 13.7 8.2 −48.8 −75.1 −79.6
107 −11.26 12.1 −3.3 −9.4 −57.8 −93.1 −99.2
108 −14.76 6.6 −19.1 −25.9 −68.4 −113.0 −120.9
109 −18.26 2.9 −32.0 −39.8 −78.7 −132.6 −142.1
110 −21.76 2.2 −40.1 −49.2 −89.0 −152.2 −163.4
200 21.00 90.2 185.3 182.6 −8.4 31.8 40.1
201 16.80 78.5 158.3 155.4 −8.5 23.3 29.9
202 12.60 66.2 130.4 127.3 −9.9 13.2 18.0
203 8.40 53.9 102.4 99.1 −17.0 −3.9 −1.0
204 4.20 43.4 77.3 73.6 −25.1 −22.2 −21.2
205 0.00 34.0 54.0 49.8 −34.0 −41.5 −42.4

All compression is in flange.
a ≤ 0.375β1 d = 0.375 (0.825) (35.8) = 11.1 in.,

φ = 0.9

φMn = φAsfy

(
d − a

2

)

= 0.9 (6.0) (60)

(
35.8− 1.19

2

)/
12

φMn = 934.5 kip-ft > Mu = 837.8 kip-ft OK

Use six No. 9 bottom bars.
Location 200 Computation of the factored moment

requires the unfactored values for moment from
Table E16.2-2

M200 = 1.0[1.25(−253.5) + 1.50(−28.5)

+ 1.75(−302.2)]

= −888.5 kip-ft

This number is comparable to the value of −886.9
kip-ft found in Table E16.2-3. Check resistance pro-
vided by bars selected for crack control (Fig. E16.2-
27). Neglecting compression reinforcement

a = 7.07 (60)

0.85 (4.5) (14)
= 7.92 in.

a ≤ 0.375β1d = 0.375 (0.825) (36.4)

= 11.3 in., φ = 0.9

φMn = 0.9 (7.07) (60)

(
36.4 − 7.92

2

)/
12

φMn = 906.1 kip-ft > Mu = 888.5 kip-ft OK

Use nine No. 8, top bars.

d. Limits for Reinforcement

β1 = 0.85 − 0.05 (4.5 − 4.0)

= 0.825 [A5.7.2.2]

Minimum reinforcement such that

φMn ≥ 1.2Mcr [A5.7.3.3.2]

Gross section properties ȳ = 27.25 in., h − ȳ =
12.25 in., Ig = 140,515 in.4

fr = 0.37
√

f
′
c

= 0.37
√
4.5

= 0.785 ksi

Location 104

Mcr = fr Ig

ȳ
= 0.785 (140,515)

27.25
/12

= 337 kip-ft

φMn = 934.5 kip-ft > 1.2Mcr

= 1.2 (337)

= 405 kip-ft OK

Location 200

Mcr = frIg

h − ȳ
= 0.785 (140,515)

(12.25)
/12

= 750 kip-ft

φMn = 906 kip-ft > 1.2Mcr = 1.2 (750)

= 900 kip-ft OK
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Fig. E16.2-25 Envelopes of factored moments and shears at tenth points for T-beams.

Fig. E16.2-26 Positive moment design section. Fig. E16.2-27 Negative moment design section.
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2. Shear (Assuming No Torsional Moment)
a. General Requirements

� Transverse reinforcement shall be provided
where [A5.8.2.4]

Vu ≥ 0.5φ
(
Vc + Vp

)
φ = φv = 0.9

where
Vu = factored shear force (kips)
Vc = nominal shear resistance of

concrete (kips)
Vp = component of prestressing force

in the direction of the shear force
(kips)

� Minimum transverse reinforcement [A5.8.2.5]

Av ≥ 0.0316
√

f
′
c

bvs

fy

where Av = area of transverse reinforcement
within distance s (in.2)

bv = effective width of web adjusted
for the presence of ducts (in.)
[A5.8.2.9]

s = spacing of transverse
reinforcement (in.)

fy = yield strength of transverse
reinforcement (ksi)

� Maximum spacing of transverse reinforcement
[A5.8.2.7]

If vu < 0.125 f
′
c , then smax = 0.8dv ≤ 24 in.

If vu ≥ 0.125 f
′
c , then smax = 0.4dv ≤ 12 in.

where
vu = shear stress (ksi)

|Vu−φVp |
φbvdv

[A5.8.2.9]
bv = minimum web width, measured

parallel to the neutral axis,
between the resultants of the
tensile and compressive forces
due to flexure, modified for the
presence of ducts (in.)

dv = effective shear depth taken as the
distance, measured
perpendicular to the neutral axis,
between the resultants of the
tensile and compressive forces
due to flexure it need not be
taken less than the greater of
0.9de or 0.72h (in.)

b. Sectional Design Model [A5.8.3]
� Based on equilibriumof forces and compatibil-

ity of strains (Collins and Mitchell, 1991).
� Where the reaction force produces compres-

sion at a support, the critical section for shear
shall be taken as the larger of 0.5dv cot θ or

Fig. E16.2-28 Shear sectional design model.

dv from the internal face of the bearing (see
Fig. E16.2-28) [A5.8.3.2].
Nominal Shear Resistance Vn [A5.8.3.3]

� Shall be the lesser of

Vn = Vc + Vs + Vp

Vn = 0.25f
′
cbvdv + Vp

� Nominal concrete shear resistance

Vc = 0.0316β
√

f
′
cbvdv

where β is the factor indicating ability of
diagonally cracked concrete to transmit ten-
sion [A5.8.3.4] (traditional value of β = 2.0)
[A5.8.3.4.1].

� Nominal transverse reinforcement shear resis-
tance

Vs = Avfydv (cot θ + cot α) sin α

s

for vertical stirrups α = 90◦ [C5.8.3.3]

Vs = Avfydv cot θ

s

where θ is the angle of inclination of diago-
nal compressive stresses [A5.8.3.4] (traditional
value of θ = 45◦, cot θ = 1.0) [A5.8.3.4.1].
Determination of β and θ Use [A5.8.3.4.2]

to determine β and θ . These tables depend on
the following parameters for nonprestressed
beams without axial load:

� Nominal shear stress in the concrete:

vu = Vu

φbvdv

� Tensile strain in the longitudinal reinforcement
for sections with transverse reinforcement:

εs =
∣∣Mu

∣∣ /dv + 0.5
∣∣Vu

∣∣ cot θ

EsAs

Longitudinal Reinforcement [A5.8.3.5]
Shear causes tension in the longitudinal rein-
forcement that must be added to that caused by
flexure. Thus,

Asfy ≥
∣∣Mu

∣∣
φf dv

+
(∣∣Vu

∣∣
φv

− 0.5Vs

)
cot θ
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If this equation is not satisfied, either the ten-
sile reinforcement As must be increased or the
stirrups must be placed closer together to in-
creases Vs.
The procedure outlined in Section 14.3.3

for the shear design of members with web
reinforcement is illustrated for a section at
a distance dv from an interior support. The
factored Vu and moment Mu envelopes
for the strength I limit state are plotted
in Figure E16.2-25 from the values in
Tables E16.2-3 and E16.2-4.

Step 1. Determine Vu andMu at a distance dv from an inte-
rior support at location 200 + dv [A5.8.2.7]. From
Figure E16.2-27

As = nine No. 8 = 7.07 in.2

bv = 14 in. bw = 14 in.

a = Asfy

0.85f ′
cbw

= (7.07) (60)

0.85 (4.5) (14)
= 7.92 in.

d = de = ds = (40− 0.5) −
(
2.5 + 1.0

2

)

= 36.5 in.

dv = max

⎧
⎨

⎩

d − a/2 = 36.5 − 7.92/2= 32.5 in.
0.9de = 0.9 (36.5)= 32.9 in., governs

0.72h = 0.72 (40) = 28.8 in.

Distance from support as a percentage of the span

dv

L2
= 32.9

42 × 12
= 0.0653

Interpolating from Tables E16.2-3 and E16.2-4 or
the factored shear and moment at location 200.653
for an interior girder:

V200.653 = 185.3 − 0.653 (185.3 − 158.3)

= 167.7 kips

M200.653 = −815.0 + 0.653 (815− 439.7)

= −569.9 kip-ft

These values are used to calculate the strain
εs on the flexural tension side of the member
[A5.8.3.4.2]. They are both extreme values at the
section and have been determined from different
positions of the live load. It is conservative to
take the highest value of Mu at the section, rather
than a moment coincident with Vu. Moreover, if
coincident actions are used, the maximum moment
with coincident shear should be checked as well.

Step 2. Calculate the shear stress ratio vu/f
′
c .

vu =
∣∣Vu

∣∣
φbvdv

= 167.7

0.9 (14) (32.9)
= 0.405 ksi

so that
vu
f

′
c

= 0.405

4.5
= 0.0899

Step 3. Estimate an initial value for θ and calculate εs from
Eq. 14.130.
Try θ = 35◦, cot θ = 1.428, Es = 29,000 ksi:

εs =
(∣∣Mu

∣∣ /dv
)+ 0.5

∣∣Vu

∣∣ cot θ

EsAs

=
569.9×12

32.9 + 0.5 (167.7) (1.428)

(29,000) (7.07)

= 1.60 × 10−3

β = 4.8

1 + 750εs

= 4.8

1 + 750 (0.00160)
= 2.18

θ = 29+ 3500εs

= 29+ 3500 (0.00160) = 34.5

Close enough, use 34.5◦

Calculate the required web reinforcement
strength Vs:

Vs =
∣∣Vu

∣∣
φv

− 0.0316β
√

f
′
cbvdv

= 167.7

0.9
− 0.0316 (2.18)

√
4.5 (14) (32.9)

= 119.0 kips

Step 4. Calculate the required spacing of stirrups:

No. 4 U-stirrups, Av = 2 (0.20) = 0.40 in.2

s ≤ Avfydv

Vs

cot θ = 0.40 (60) (32.9)

119.0
(1.455)

= 9.65 in.

≤ Avfy

0.0316
√

f
′
c bv

= 0.40 (60)

0.0316
√
4.5 (14)

= 25.6 in.

vu = 0.405 ksi < 0.125f
′
c = 0.125 (4.5)

= 0.563 ksi

s ≤ 0.8dv = 0.8 (32.9) = 26.3 in. or 24 in.

Try s = 9 in.
Step 5. Check the adequacy of the longitudinal reinforce-

ment:

Asfy ≥
∣∣Mu

∣∣
dvφf

+
(∣∣Vu

∣∣
φv

− 0.5Vs

)
cot θ

Vs = Avfydv cot θ

s

= 0.40 (60) (32.9)

9.0
(1.455)

= 127.7 kips
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Fig. E16.2-29 Stirrup spacing for T-beam.

Table E16.2-5 Summary of Stirrup Spacing for T-Beam

Location vu/f
′
c θ Strain εx (in./in.) β s Req’d (in.) s Prov’d (in.)

100 + dv 0.0624 31.6 0.000587 2.52 24 21
101 0.0602 32.1 0.000627 2.48 24 21
102 0.0475 34.1 0.000789 2.36 24 21
103 0.0366 35.1 0.000881 2.30 22 21
104 0.0261 35.2 0.000888 2.30 24 21
105 0.0303 35.4 0.000912 2.28 21 21
106 0.0399 34.8 0.000848 2.32 24 21
107 0.0497 33.2 0.000712 2.41 24 21
108 0.0649 31.2 0.000553 2.55 23 21
109 0.0763 33.6 0.000741 2.38 14 12
110 – dv 0.0788 34.4 0.000809 2.34 12 12
200 + dv 0.0900 34.5 0.000806 2.31 10 9
201 0.0850 33.0 0.000689 2.40 12 12
202 0.0653 31.8 0.000599 2.51 22 21
203 0.0513 33.8 0.000763 2.37 24 21
204 0.0387 34.8 0.000852 2.32 24 21
205 0.0271 34.8 0.000849 2.32 24 21

7.07 (60) ≥ 569.9 × 12

32.9 (0.9)

+
[
167.7

0.9
−0.5(127.7)

]
(1.455)

424.2 kips ≥ 409.2 kips OK

The above procedure is repeated for each of
the tenth points. The results are summarized in
Table E16.2-5 and plotted in Figure E16.2-29.
Stirrup spacings are then selected to have values

less than the calculated spacings. Starting at the
left end and proceeding to midspan of the T-beam,
the spacings are 1 at 12 in., 15 at 21 in., 5 at 12 in.,
10 at 9 in., 4 at 12 in., and 7 at 21 in. The selected
stirrup spacings are shown by the solid line in
Figure E16.2-29. This completes the design of the
T-beam bridge example. Tasks remaining include
the determination of cut-off points for the main
flexural reinforcement, anchorage requirements
for the stirrups, and side reinforcement in the
beam stems.
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16.3 PRESTRESSED GIRDER BRIDGE

Problem Statement Example 16.3 Design the simply
supported pretensioned prestressed concrete girder bridge of
Figure E16.3-1 with a span length of 100 ft center to center
of bearings for an HL-93 live load. The roadway width is
44 ft curb to curb. Allow for a future wearing surface of
3-in.-thick bituminous overlay and use the concrete deck
design of Example Problem 16.1 (f

′
c = 4.5 ksi). Follow

the beam and girder bridge outline in Section 5, Appendix
A5.3 of the AASHTO (2010) LRFD Bridge Specifications.
Use f

′
ci = 6 ksi, f

′
c = 8 ksi, fy = 60 ksi, and 270 ksi,

low-relaxation 0.5-in., seven-wire strands. The barrier is
15 in. wide and weighs 0.32 kips/ft. The owner requires this
load to be assigned to the exterior girder.

A. Develop General Section The bridge is to carry inter-
state traffic in Virginia over a single-track railroad with
minimum vertical clearance of 23 ft 4 in. (Fig. E16.3-1).

B. Develop Typical Section Use a precast pretensioned
AASHTO-PCI bulb tee girder made composite with the
deck (Fig. E16.3-2).

FWS

Fig. E16.3-1 Prestressed concrete girder bridge design example:
(a) elevation, (b) plan, and (c) section.

Fig. E16.3-2 Precast pretensionedAASHTO–PCI bulb tee girder
BT54. Ag = 659 in.2.

1. Minimum Thickness [A5.14.1.2.2]

Top flange ≥ 2.0 in. OK

Web ≥ 5.0 in. OK

Bottom flange ≥ 5.0 in. OK

2. Minimum Depth (includes deck thickness) [A2.5
.2.6.3]

hmin = 0.045L = 0.045 (100× 12)

= 54 in. < h = 54 + 7.5

= 61.5 in. OK

3. Effective Flange Widths [A4.6.2.6.1]
Effective span length = 100 × 12 = 1200 in.

Interior girders

bi ≤ center-to-center spacing of girders = 96 in.

Exterior girders

be − bi

2
≤ width of overhang = 39 in.

be = 96

2
+ 39 = 87 in.

C. Design Conventionally Reinforced Concrete Deck
The design section for negative moments in the deck
slab is at one-third the flange width, but not more than
15 in., from the centerline of the support for precast con-
crete beams [A4.6.2.1.6]. One-third of the flange width
bf /3 = 42

3 = 14 in. is less than 15 in.; therefore, the crit-
ical distance is 14 in. from the centerline of the support.
The deck design in Section 16.1, Part E, is for a

monolithic T-beam girder and the design section is at
the face of the girder or 7 in. from the centerline of the
support (Fig. E16.1-10). The design negative moment
for the composite deck, and resulting reinforcement, can
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be reduced by using the 14-in. distance rather than 7 in.
By following the procedures in Section 16.1, Parts E
and F.2, the top reinforcement at an interior support is
reduced from No. 5 bars at 7.5 in. to No. 5 bars at 10 in.
(Fig. E16.1-14).
The deck overhang design remains the same as for the

T-beam (Fig. E16.1-17). It is governed by the truck colli-
sion and providing sufficientmoment capacity to develop
the strength of the barrier. The changes in the total design
moment are small when the gravity loads are included at
different distances from the centerline of the support.The
dominant effect is the collisionmoment at the free end of
the overhang and that remains the same, so the overhang
design remains the same.

D. Select Resistance Factors (Table 14.6) [A5.5.4.2]

1. Strength Limit State φ [A5.5.4.2.1]
Flexure and tension 1.00
Shear and torsion 0.90
Compression in anchorage zones 0.80

2. Nonstrength Limit States 1.00 [A1.3.2.1]

E. Select Load Modifiers [A1.3.2.1]

Strength Service Fatigue

Ductility, ηD 1.0 1.0 1.0 [A1.3.3]
Redundancy, ηR 1.0 1.0 1.0 [A1.3.4]
Importance, ηI 1.0 N/A N/A [A1.3.5]
ηi = ηDηRηI 1.0 1.0 1.0

F. Select ApplicableLoadCombinations (Table 5.1) [Table
A3.4.1-1]
Strength I Limit State

ηi = η = 1.0

U = η [1.25DC+ 1.50DW + 1.75 (LL + IM) + 1.0FR]

Service I Limit State

U = 1.0(DC +DW) + 1.0(LL + IM)

+ 0.3(WS + WL) + 1.0FR

Fatigue I Limit State

U = 1.5 (LL + IM)

Service III Limit State

U = 1.0(DC + DW) + 0.80(LL + IM)

+ 1.0WA + 1.0FR

G. Calculate Live-Load Force Effects
1. Select Number of Lanes [A3.6.1.1.1]:

NL = INT
( w
12

)
= INT

(
44

12

)
= 3

2. Multiple Presence Factor (Table 8.6) [A3.6.1.1.2]:

No. of Loaded Lanes m

1 1.20
2 1.00
3 0.85

3. Dynamic Load Allowance (Table 8.7) [A3.6.2.1] Not
applied to the design lane load.

Component IM (%)

Deck joints 75
Fatigue 15
All other 33

4. Distribution Factors for Moment [A4.6.2.2.2]:
Cross-Section Type (k ) (Table 3.1) [Table A4.6.2
.2.1-1]

Beam 8.0 − ksi concrete

Deck 4.5 − ksi concrete

}

nc =modular ratio between beam and deck materials

=
√
8.0

4.5
= 1.333

Stiffness factor, Kg (see Fig. E16.3-8 for additional
cross section properties).

eg = 26.37 + 2.0 + 7.5

2
= 32.1 in.

Kg = nc

(
Ig + Ae2g

)

= 1.333
[
268,077+ (659) (32.1)2

]

Kg = 1.263 × 106 in.4

Kg

12Lt3s
= 1.263 × 106

12 (100) (7.5)3
= 2.494

S = 8.0 ft L = 100 ft

a. Interior Beams with Concrete Decks (Table 11.3)
[A4.6.2.2.2b and Table A4.6.2.2.2b-1]
One Design Lane Loaded

mgSI
M = 0.06 +

(
S

14

)0.4(
S

L

)0.3
(

Kg

12Lt3S

)0.1

mgSI
M = 0.06 +

(
8.0

14

)0.4( 8.0

100

)0.3

(2.494)0.1

= 0.47

Two or More Design Lanes Loaded

mgMI
M = 0.075+

(
S

9.5

)0.6(
S

L

)0.2
(

Kg

12Lt3S

)0.1
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Fig. E16.3-3 Definition of lever rule for an exterior girder.

mgMI
M = 0.075 +

(
8.0

9.5

)0.6( 8.0

100

)0.2

(2.494)0.1

= 0.67 governs

b. Exterior Beams with Concrete Decks (Table 11.3)
[A4.6.2.2.2d and Table A4.6.2.2.2d-1]
One Design Lane Loaded—Lever Rule

(Fig. E16.3-3)

R = P

2

(
24 + 96

96

)
= 0.625P

gSE
M = 0.625

mgSE
M = 1.2 (0.625) = 0.75 governs

Two or More Design Lanes Loaded

de = (39 − 15)
/
12 = 2.0 ft

e = 0.77 + de

9.1
= 0.77 + 2.0

9.1
= 0.990 < 1.0

Use e = 1.0

mgME
M = emgMI

M = 0.67

5. Distribution Factors for Shear [A4.6.2.2.3] Cross-
Section Type (k ) (Table 3.1) [Table A4.6.2.2.1-1]
a. InteriorBeams (Table 11.3) [A4.6.2.2.3a and Table

A4.6.2.2.3a-1]
One Design Lane Loaded

mgSI
V = 0.36 + S

25
= 0.36+ 8.0

25
= 0.68

Two or More Design Lanes Loaded

mgMI
V = 0.2 + S

12
−
(

S

35

)2.0

mgMI
V = 0.2 + 8.0

12
−
(
8.0

35

)2.0

= 0.81 governs

b. Exterior Beams (Table 11.3) [A4.6.2.2.3b and
Table A4.6.2.2.3b-1]
One Design Lane Loaded—Lever Rule
(Fig. E16.3-3):

mgSE
V = 0.75 governs

Two or More Design Lanes Loaded

de = 2.0 ft

e = 0.6 + de

10
= 0.6 + 2.0

10
= 0.800 Use e = 1.0

mgME
V = emgMI

V = (1.0) (0.81) = 0.81

6. Calculation of Shears and Moments Due to Live
Loads The shears and moments at tenth points
along the span are next. Calculations are shown
below for locations 100, 101, and 105 only. Concen-
trated loads are multiplied by influence line ordinates.
Uniform loads are multiplied by the area under the
influence line. As discussed in Chapter 9, the influ-
ence functions are straight lines for simple spans.
Shears and moments at the other locations are found
in a similar manner. Results of these calculations are
summarized in Tables E16.3-3 and E16.3-4.
Location 100 (Fig. E16.3-4)

Truck

V Tr
100 = 32

(
1 + 86

100

)
+ 8

(
72

100

)
= 65.28 kips

MTr
100 = 0

Lane
V Ln
100 = 0.64 (0.5 × 100) = 32 kips

MLn
100 = 0

Location 101 (Fig. E16.3-5):
Truck

V Tr
101 = RA = 32

(
90 + 76

100

)
+ 8

(
62

100

)

= 58.08 kips

MTr
101 = 10 × 90

100

[
32

(
1 + 76

90

)
+ 8

(
62

90

)]

= 580.8 kip-ft

Fig. E16.3-4 Live-load placement at location 100.
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Fig. E16.3-5 Live-load placement at location 101: (a) truck,
(b) tandem, (c) lane-shear, and (d) lane-moment.

Tandem

V Ta
101 = 25

(
90 + 86

100

)
= 44.0 kips

MTa
101 = 10 × 90

100
(25)

(
1 + 86

90

)
= 440.0 kip-ft

Lane

V Ln
101 = 0.64 (0.9) (90)

2
= 25.92 kips

MLn
101 = 1

2wab = 1
20.64 (10) (90) = 288 kip-ft

Location 105 (Fig. E16.3-6):
Truck

V Tr
105 = 32

(
50 + 36

100

)
+ 8

(
22

100

)
= 29.28 kips

MTr
105 = (50) (50)

100

[
32

(
1 + 36

50

)
+ 8

(
36

50

)]

= 1520 kip-ft

Tandem

V Ta
105 = 25

(
50 + 46

100

)
= 24.0 kips

MTa
105 = 24.0 (50) = 1200 kip-ft

Fig. E16.3-6 Live-load placement at location 105: (a) truck-shear
and moment, (b) tandem, (c) lane-shear, and (d) lane-moment.

Lane

V Ln
105 = 0.64 (0.5) (50)

2
= 8.0 kips

MLn
105 = 1

8wL2 = 1
80.64

(
1002

) = 800 kip-ft

H. Calculate Force Effects from Other Loads
1. Interior Girders

DC Weight of concrete = 0.150 kcf

Slab (0.150)
(
8
12

)
(8) = 0.800 kips/ft

2.0-in. haunch (0.150) (2.0/12) (42.0/12) = 0.088 kips/ft

Girder (0.150)
(
659/122

) = 0.686 kips/ft

= 1.574 kips/ft

Estimate diaphragm size 12.0 in. thick, 36.0 in. deep

Diaphragms at 1
3 points (0.150) (1.0) (3.0)

(
8.0 − 6

12

)

= 3.38 kips

DW 3.0-in. bituminous paving = 0.140 (3.0/12) (8)

= 0.280 kips/ft

2. Exterior Girders

DCI Overhang 0.150(9.0/12)(39.0/12) = 0.366 kips/ft

Slab 0.150(9.0/12)(8/2) = 0.400 kips/ft

Girder+ Haunch = 0.744 kips/ft

= 1.540 kips/ft
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Fig. E16.3-7 Uniform dead and diaphragm loads.

Diaphragms at 1
3points 3.38/2 = 1.69 kips

DC2:Barrier = 0.320kips/ft

DW3.0-in.bituminous paving

= 0.140(3.0/12)(39 − 15+ 48)/12 = 0.210kips/ft

(DC2 and DW act on the composite section)

From Figure E16.3-7, shears and moments due
to a unit uniform load are found at tenth points
(Table E16.3-1), where

Vx = w

(
L

2
− x

)
= wL (0.5 − ξ ) ξ = x

L

Mx = w

2
x (L − x) = 0.5wL2 (ξ − ξ 2)

From Figure E16.3-7, shears and moments due to
the diaphragms for interior girders are found at tenth
points (Table E16.3-2). Values for exterior girders are
one-half the values for interior girders.

3. Summary of Force Effects
a. Interior Girders (Table E16.3-3)

mgM = 0.67 mgV = 0.81

IMTR = 33% IMLN = 0

wg = 0.686 kips/ft

DC1 = 1.574 kips/ft Diaphragm = 3.38 kips

DW = 0.280 kips/ft

b. Exterior Girders (Table E16.3-4)

mgM = 0.75 mgV = 0.75

IMTR = 33% IMLN = 0

DC1 = 1.540 kips/ft Diaphragm = 1.69 kips

DC2 = 0.320 kips/ft DW = 0.210 kips/ft

I. Investigate Service Limit State
1. Stress Limits for Prestressing Tendons (Table 14.4)

[A5.9.3]:

fpu = 270 ksi, low-relaxation 0.5-in.,

seven-wire strands

A = 0.153 in.2 (Table B.2)

Ep = 28,500 ksi [A5.4.4.2]

Pretensioning [Table A5.9.3-1]
Immediately prior to transfer

fpbt = 0.75fpu = 0.75 (270) = 203 ksi

fpy = 0.9fpu = 0.9 (270)

= 243 ksi (Table 13.4) [Table A5.4.4.1-1]

At service limit state after all losses

fpe = 0.80fpy = 0.80 (243) = 194 ksi

2. Stress Limits for Concrete (Tables 14.2 and 14.3)
[A5.9.4]:

f
′
c = 8 ksi, 28-day compressive strength

f
′
ci = 0.75f

′
c = 6 ksi compressive strength at time

of initial prestressing

Temporary stresses before losses—fully prestressed
components:
Compressive stresses f ci = 0.6 f

′
ci = 0.6(6) = 3.6

ksi [A5.9.4.1.1]

Table E16.3-1 Shears and Moments for w = 1.0 kips/ft

ξ = 0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5

Vx (kips) 50 40 30 20 10 0
Mx (kip-ft) 0 450 800 1050 1200 1250

Table E16.3-2 Shears and Moments Due to Diaphragm, Interior Girders

ξ = 0 ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4 ξ = 0.5

Vx (kips) 3.38 3.38 3.38 3.38 0 0
Mx (kip-ft) 0 33.8 67.6 101.4 112.7 112.7
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Table E16.3-3 Summary of Force Effects for Interior Girder

Distance from Support

Force Effect Load Type 0 0.1L 0.2L 0.3L 0.4L 0.5L

Ms (kip-ft) Service I loads
Girder self-weight 0 309 549 720 823 858
DC1 (incl. diaph.) on girder alone 0 742 1327 1754 2001 2080

Vs (kips) DW on composite section 0 126 224 294 336 350
mgM (LL + IM) 0 712 1252 1620 1818 1893
DC1 (incl. diaph.) on girder alone 82.1 66.3 50.6 34.9 15.7 0

Mu (kip-ft) DW on composite section 14.0 11.2 8.4 5.6 2.8 0
mgV (LL + IM) 96.7 84.0 71.8 60.1 48.9 38.2
Strength I loads
η[1.25DC +
1.50DW +

Vu (kips) 1.75(LL + IM)] 0 2362 4185 5469 6187 6438
η[1.25DC +
1.50DW +
1.75(LL + IM)] 292.9 246.7 201.4 157.1 109.4 66.9

Table E16.3-4 Summary of Force Effects for Exterior Girder

Distance from Support

Force Effect Load Type 0 0.1L 0.2L 0.3L 0.4L 0.5L

Ms (kip-ft) Service I loads
Girder self-weight 0 309 549 720 823 858
DC1 (incl. diaph.) on girder alone 0 710 1266 1668 1904 1981
DC2 (barrier) on composite section 0 144 256 336 384 400

Vs (kips) DW on composite section 0 95 168 221 252 263
mgM (LL + IM) 0 795 1399 1811 2032 2116
DC1 (incl. diaph.) on girder alone 78.7 63.3 47.9 32.5 15.4 0
DC2 (barrier) on composite section 16.0 12.8 9.6 6.4 3.2 0

Mu (kip-ft) DW on composite section 10.5 8.4 6.3 4.2 2.1 0
mgV (LL + IM) 89.1 77.4 66.1 55.3 45.0 35.2
Strength I loads
η[1.25DC +
1.50DW +

Vu (kips) 1.75(LL + IM)] 0 2601 4603 6005 6794 7074
η[1.25DC +
1.50DW +
1.75(LL + IM)] 290.1 243.1 197.0 151.7 105.2 61.6

Tensile stresses [Table A5.9.4.1.2-1]

Without bonded reinforcement fti = 0.0948
√

f
′
ci =

0.0948
√
6.0 = 0.232 ksi > 0.2 ksi (use 0.2 ksi)

With bonded reinforcement fti = 0.24
√

f
′
ci =

0.24
√
6.0 = 0.588 ksi

Stresses at service limit state after losses—fullypre-
stressed components [A5.9.4.2]:

Compressive stresses fc = 0.45f
′
c

= 0.45 (8.0) = 3.6 ksi Service I

Tensile stresses ft = 0.19
√

f
′
c

= 0.19
√
8.0 = 0.537 ksi Service III

Modulus of Elasticity [C5.4.2.4]

Eci = 1820
√

f
′
ci = 1820

√
6.0 = 4458 ksi

Ec = 1820
√

f
′
c = 1820

√
8.0 = 5148 ksi

3. Preliminary Choices of Prestressing Tendons Con-
trolled either by the concrete stress limits at service
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ytc = 21.47 in.
ylc = 11.97 in.

ytg = 26.37 in.

ybc = 42.03 in.

ybt = 27.63 in.

Fig. E16.3-8 Composite section properties.

loads or by the sectional strength under factored
loads. For the final load condition, the composite
cross-section properties are needed. To transform the
CIP deck into equivalent girder concrete, the modular
ratio is taken as nc = √

4.5/8.0 = 0.75.
If we assume for convenience that the haunch depth

is 2.0 in. and use the effective flangewidth of 87 in. for
an exterior girder, the composite section dimensions
are shown in Figure E16.3-8.
Section properties for the girder are as follows (PCI,

2003):

Ag = 659 in.2

Ig = 268,077 in.4

Stg = Ig

ytg
= 268,077

26.37

= 10,166 in.3

Sbg = Ig

ybg
= 268,077

27.63

= 9702 in.3

Section properties for the composite girder are cal-
culated below. The distance to the neutral axis from
the top of the deck is

ytc = (489.4)(3.75)+(63.0)(8.5)+(659)(9.5+26.37)

489.4 + 63.0+ 659
= 21.47 in.

Ic = (268,077) + (659) (26.37− 11.97)2

+ (31.5) (2.0)3

12
+ (63.0) (21.47 − 8.5)2

+ (65.25) (7.5)3

12
+ (489.4) (21.47 − 3.75)2

= 571.9 × 103 in.4

Stc = Ic

ytc
= 571.9× 103

21.47

= 26,636 in.3 (top of deck)

Sic = Ic

yic
= 571.9× 103

11.97

= 47,776 in.3 (top of girder)

Sbc = Ic

ybc
= 571.9× 103

42.03

= 13,606 in.3 (bottom of girder)

Preliminary Analysis—Exterior Girder at Midspan
Theminimumvalue of prestress forceFf to ensure that
the tension in the bottom fiber of the beam at midspan
does not exceed the limit of 0.537 ksi in the com-
posite section under final service conditions can be
expressed as (Eq. 14.4)

fbg = −Ff

Ag

− Ff eg

Sbg
+ Mdg + Mds

Sbg
+ Mda + ML

Sbc

≤ 0.537 ksi

where
M dg = moment due to self-weight of girder =

858 kip-ft
M ds = moment due to dead load of wet

concrete + diaphragm = 1981 – 858 =
1123 kip-ft

M da = moment due to additional dead load
after concrete hardens = 663 kip-ft

ML = moment due to live load + impact
(service III) = 0.8(2116) = 1693 kip-ft

eg = distance from center of gravity of
girder to centroid of pretensioned
strands

= 27.63 – 5.4 = 22.23 in. (estimate
ȳps = 0.1 hg = 5.4 in.)
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Equate the computed estimated tensile stress to the
limit stress to determine the prestress force,

fbg = − Ff

659
− Ff (22.23)

9702
+ 1981× 12

9702

+ (663 + 1693) 12

13,606
≤ 0.537 ksi

= − [(
1.517 × 10−3)+ (

2.291× 10−3)]Ff

+ 2.450+ 2.078

≤ 0.537
(
3.808 × 10−3)Ff ≥ 3.991

Ff ≥ 3.991

3.808× 10−3
= 1048 kips

Assuming stress in strands after all losses is
0.6f pu = 0.6(270) = 162 ksi,

Aps ≥ Ff

0.6fpu
= 1048

162
= 6.47 in.2

From Collins and Mitchell (1991), in order to sat-
isfy strength requirements (strength I), the following
approximate expression can be used:

φMn = φ
(
0.95fpuAps + fyAs

)
(0.9h) ≥ Mu

where
φ = 1.0

PPR = 1.0 (prestress ratio) [A5.5.4.2.1]
h = overall depth of composite section =

63.5 in.
Mu = strength I factored moment = 7074

kip-ft

Aps ≥ Mu

φ0.95fpu (0.9h)
= 7074× 12

1.0 (0.95) (270) (0.9) (63.5)

A ps ≥ 5.79 in.2 < 6.47 in.2, strength limit is not likely
critical.

Number of 0.5-in. strands (A strand = 0.153 in.2) =
6.47/0.153 = 42.3.

Try forty-four 0.5-in. strands; A ps = 44(0.153) =
6.73 in.2 (Fig. E16.3-9).

Fig. E16.3-9 Strand patterns at (a) midspan and (b) support.

(Note : Other strand patterns were tried. Only the final
iteration is given here.)

At Midspan At End Section

N Y Ny N y Ny

12 2 24 12 2 24
12 4 48 12 4 48
8 6 48 6 6 36
4 8 32 2 8 16
8 14 112 12 47 564
44 264 44 688

ȳm = 264

44
= 6.0 in.

em = 27.63− 6.0 = 21.63 in.

ȳend = 688

44
= 15.64 in.

eend = 27.63− 15.64 = 11.99 in.

4. Evaluate Prestress Losses [A5.9.5]

�fpT = �fpES + �fpLT [A5.9.5.1]

where
�f pT = total loss (ksi)

�f pES = sum of all losses due to elastic
shortening at the time of application of
prestress (ksi)

�f pLT = losses due to long-term shrinkage and
creep of concrete and relaxation of the
steel (ksi)

a. Elastic Shortening, �f pES (Eq. 14.48) [A5.9.5
.2.3a]

�fpES = Ep

Eci
fcgp

where
E p = 28,500 ksi
E ci = 1820

√
6.0 = 4458 ksi

f cgp = sum of concrete stresses at center of
gravity of A ps due to Fi immediately
after transfer and M dg at midspan

For purposes of estimating f cgp, the prestressing
force immediately after transfer may be assumed
to be equal to 0.9 of the force just before transfer.

fpi = 0.9fbt = 0.9
(
0.75fpu

)

= 0.675 (270)

= 182.3 ksi

Fi = fpiAps

= 182.3 (6.73)

= 1227 kips
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The assumed value for f pi is corrected after
�f pES is determined. To avoid iteration, the
alternative equation [C5.9.5.2.3a-1] is used:

�fpES = Apsfpi
(
Ig + e2mAg

)− emMgAg

Aps

(
Ig + e2mAg

)+ AgIgEci
Es

�fpES =
6.73(182.3)

(
268,077+21.632×659

)

−21.63 (858× 12 × 659)

6.73
(
268,077 + 21.632 × 659

)

+659 (268,077) 4458
28,500

= 17.8 ksi

b. Approximate Estimate of Time-Dependent Losses
�f pLT [A5.9.5.3]
For standard precast, pretensionedmembers sub-

ject to normal loading and environmental condi-
tions, where
� Members are made from normal-weight con-

crete.
� The concrete is either steam or moist cured.
� Prestressing is bars or strands with normal and

low-relaxation properties.
� Average exposure conditions and temperatures

characterize the site.
The long-term prestress loss,�f pLT, due to creep

of concrete, shrinkage of concrete, and relaxation
of steel may be estimated using

�fpLT = 10.0
fpiAps

Ag

γhγst + 12.0γhγst + �fpR

in which

γh = 1.7 − 0.01H

γst =
5

1 + f
′
ci

where
f pi = prestressing steel stress immediately

prior to transfer (ksi)
H = average annual ambient relative

humidity (%) [A5.4.2.3.2]
γ h = correction factor for humidity
γ st = correction factor for specified

concrete strength at time of
prestress transfer

�f pR = estimate of relaxation loss taken as
2.5 ksi for low-relaxation strand

For Virginia,H = 70% [Fig. A5.4.2.3.3], so that

γh = 1.7 − 0.01 (70) = 1.0

γst = 5

1 + 6.0
= 0.714

fpi = 0.75fpu = 0.75 (270) = 203 ksi

�fpLT = 10.0
203 (6.73)

659
(1.0) (0.714)

+ 12 (1.0) (0.714) + 2.5

= 14.8 + 8.6 + 2.5 = 25.9 ksi

c. Total Losses (Eq. 7.93):

�fpT = (initial losses) + (long-term losses)

= �fpES + �fpLT = 17.8+ 25.9

= 43.7 ksi

5. Calculate Girder Stresses at Transfer

fpi = 0.75fpu − �fpES

= 0.75 (270) − 17.8 = 185 ksi

Fi = fpiAps = 185 (6.73) = 1245 kips

em = 21.63 in. eend = 11.99 in.

At midspan, the tensile stress at the top of the
girder is

fti = − Fi

Ag

+ Fiem

Stg
− Mdg

Stg

= −1245

659
+ (1245) (21.63)

10,166
− 858 (12)

10,166
= −0.253 ksi < 0.537 ksi OK

Again, negative denotes compression.
At midspan, the compressive stresses are checked at

the bottom of the girder

fbi = − Fi

Ag

− Fiem

Sbg
+ Mdg

Sbg

= −1245

659
− (1245) (21.63)

9702
+ 858 (12)

9702
= −3.58 ksi > fci = −3.60 ksi OK

At the beam end, self-weight moments are zero and
tension is possible at the top.

fti = − Fi

Ag

+ Fieend

Stg

= −1245

659
+ (1245) (11.99)

10,166
= −0.42 ksi < 0.537 ksi OK

And the compression is checked at the bottom,

fbi = −1245

659
− 1245 (11.99)

9702
= −3.43 ksi > −3.60 ksi OK

In this case, the entire section remains in compres-
sion at transfer.
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6. Girder Stresses after Total Losses Use the total loss
estimates to determine the final prestress force,

fpf = 0.75fpu − �fpT = 0.75 (270) − 43.7

= 158.8 ksi

Ff = 158.8 (6.73) = 1069 kips

At Midspan

ftf = −Ff

Ag

+ Ff em

Stg
− Mdg − Mds

Stg
− Mda + ML

Sic

(Top of girder)

= −1069

659
+ (1069) (21.63)

10,166
− (1981) 12

10,166

− (663 + 2116) 12

47,776
Service I

= −2.38 ksi > −3.60 ksi OK

fbf = −Ff

Ag

− Ff em

Sbg
+ Mdg + Mds

Sbg
+ Mda + ML

Sbc

(Bottom of girder)

fbf = −1069

659
− (1069) (21.63)

9702
+ (1981) 12

9702

+ (663 + 0.8 × 2116) 12

13,606
Service III

= 0.523 ksi < 0.537 ksi OK

ftc = −Mda + ML

Stc
(Top of deck)

ftc = −(663+ 2116) 12

26,636

= −1.25 ksi > −0.45f
′
c = −3.60 ksi OK

Forty-four 0.5-in. low-relaxation strands satisfy ser-
vice limit state.

7. Check Fatigue Limit State [A5.5.3]
a. Live-Load Moment Due to Fatigue Truck (FTr) at

Midspan (Fig. E16.3-10)

RA = 32

(
20 + 50

100

)
+ 8

(
64

100

)
= 27.52 kips

MFTr
105 = [(27.52) (50) − (8) (14)] = 1264 kip-ft

Exterior girder distribution factor for moment—
remove 1.2 multiple presence for fatigue:

gSE
M = 0.75

1.2
= 0.625

Distributed moment including IM = 15%:

Mfatigue-I = 1.5 (0.625) (1264) (1.15)

= 1363 kip-ft

Fig. E16.3-10 Fatigue truck placement for maximumpositivemo-
ment at midspan.

b. Dead-Load Moments at Midspan

Exterior girder (Table E16.3-4)

Noncomposite MDC1 = 1981 kip-ft

Composite MDC2 + MDW = (400 + 263)

= 663 kip-ft

If section is in compression under DL and fatigue
I load, fatigue does not need to be investigated
[A5.5.3.1]. Concrete stress at the bottom fiber is

fb = −Ff

Ag

− Ff em

Sbg
+ MDC1

Sbg

+ MDC2 + MDW + Mfatigue-I

Sbc

= −1069

659
− (1069) (21.63)

9702
+ 1981 (12)

9702

+ [663 + 1363] 12

13,606
= 0.231 ksi, tension;

therefore, fatigue shall be considered

Section Properties : Cracked section properties
used [A5.5.3.1] if the sum of stresses in concrete
at bottom fiber due to unfactored permanent loads
and prestress plusM fatigue-I exceeds

0.095
√

f
′
c = 0.095

√
8 = 0.269 ksi

fb = −1069

659
− (1069) (21.63)

9702
+ 1981 (12)

9702

+ [663+ 1363] 12

13,606
= 0.232 ksi < 0.269 ksi; therefore, use of

gross section properties is okay
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Ig = 268,077 in.4 ybg = 27.63 in.

Ic = 571,880 in.4 ybc = 42.03 in.

ȳm = 6.0 in.

Eccentricity of prestress tendon in girder

epg = 27.63 − 6.0 = 21.63 in.

Eccentricity of prestress tendon in composite
section

epc = 42.03 − 6.0 = 36.03 in.

Concrete stress at center of gravity of prestress
tendons due to permanent load and prestress:

f DL+PS
cgp = −Ff

Ag

− Ff emepg

Ig

+ MDC1epg

Ig

+
(
MDC2 + MDW

)
epc

Ic

= −1069

659
− 1069 (21.63) (21.63)

268,077

+ 1981 × 12 (21.63)

268,077

+ (663× 12) (36.03)

571,880
= −1.068 ksi

Concrete stress at center of gravity of prestress
tendons due to fatigue moment is

f
fatigue
ccp = Mfatigueepc

Ic

= (1363) (12) (36.03)

571,880
= 1.03 ksi

The maximum stress in the tendon due to perma-
nent loads and prestress plus fatigue load is

fmax = Ep

Ec

(
f DL+PS
cgp + f

fatigue
ccp,max

)

= 28,500

5148
(−1.068 + 1.03)

= −0.21 ksi

The minimum stress in the tendon due to perma-
nent loads and prestress plus fatigue load is

fmin = Ep

Ec

(
f DL+PS
cgp + f

fatigue
ccp,min

)

= 28,500

5148
(−1.068 + 0.0)

= −5.91 ksi

cg of Girder

Fig. E16.3-11 Profile of center of gravity of tendons.

The fatigue stress range ff is

ff = fmax − fmin = −0.21 − (−5.91)

= 5.70 ksi

Stress range in prestressing tendons shall not ex-
ceed (Table 14.5) [A5.5.3.3]
� 18 ksi for radii of curvature greater than 30 ft
� 10 ksi for radii of curvature less than 12 ft
Harped Tendons (Fig. E16.3-11)

eend = 11.99 in. e0.33L = em = 21.63 in.

At hold-down point, the radius of curvature de-
pends on the hold-downdevice and could be small;
therefore assume R < 12 ft:

ff = 5.70 ksi < 10 ksi OK

Tendons satisfy fatigue limit state.
8. Calculate Deflection and Camber

a. Immediate Deflection Due to Live Load and Im-
pact (Fig. E16.3-12)

�x (x < a) = Pbx

6EIL

(
L2 − b2 − x2)

b = L − a

�x

(
x = L

2

)
= PL3

48EI

Use EI for f
′
c = 8 ksi and composite section

Ec = 5148 ksi Ic = 571,880 in.4

EcIc = 2.944× 109 kip-in.2

P 1 = 8 kips, x = 50 ft, a = 64 ft, b = 36 ft

Fig. E16.3-12 Live-load placement for deflection at midspan.
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�x1
= (8) (36) (50)

6 (EI) (100)

(
1002 − 362 − 502

)
123

= 0.2573× 109

EI

= 0.2573× 109

2.944 × 109
= 0.087 in.

P 2 = 32 kips, x = a = b = 50 ft

�x2
= (32) (100)3123

48EI
= 1.152 × 109

EI

= 1.152 × 109

2.944 × 109
= 0.391 in.

P 3 = 32 kips, x = 50 ft, a = 64 ft, b = 36 ft

�x3
= 32

8 �x1
= 4 (0.087) = 0.348 in.

Total deflection due to truck:

�Tr
105 = 0.087 + 0.391 + 0.348 = 0.826 in.

Deflection mg = m
NL

NG

= 0.85
3

6

= 0.425, IM = 33%

�L+I
105 = 0.425 (0.826) (1.33)

= 0.47 in. ↓ (downward)

= 0.47 in. ≤ L

800
= 100 × 12

800
= 1.50 in. OK

b. Long-Term Deflections (Collins and Mitchell,
1991) Loads on exterior girder from Section
16.3, Part H.2.
� Elastic deflections due to girder self-weight at

release of prestress

Eci = 4458 ksi Ig = 268,077 in.4

EciIg = 1.195 × 109 kip-in.2

�gi = 5

384

wL4

EI
= 5

384

(0.686) (100)4123

1.195 × 109

= 1.29 in. ↓ (downward)

� Elastic camber due to prestress at time of
release for double harping point with βL =
0.333L (Collins and Mitchell, 1991):

�pi =
[
em

8
− β2

6

(
em − ee

)] FiL
2

EI

=
[
21.63

8
− (0.333)2

6
(21.63 − 11.99)

]

× (1245) (100)2122

1.195 × 109

= 3.79 in. ↑ (upward)

At release, net upward deflection:

3.79 − 1.29 = 2.50 in. ↑ (upward)

� Elastic deflection due to deck and diaphragms
on exterior girder:

DC1 − wg = 1.540 − 0.686 = 0.854 kips/ft

Diaphragm = 1.69 kips

Ec = 5148 ksi EcIg

= 1.380 × 109 kip-in.2

b = L

3
= 33.33 ft

�DC = 5

384

wL4

EI
+ Pb

24EI

(
3L2 − 4b2

)

= 5

348

(0.854) (100)4123

1.380 × 109

+ (1.69) (33.33)

24
(
1.380 × 109

)

× [
3(100)2 − 4(33.33)2

]
123

= 1.392 + 0.196

= 1.59 in. ↓ (downward)

� Elastic deflection due to additional dead load
acting on composite section:

DW + barrier = 0.210+ 0.320

= 0.530 kips/ft

�c = 5

384

wL4

EI
= 5

384

(0.530) (100)4123

2.944 × 109

= 0.764 in. ↓ (downward)

Note the full barrier load is applied to the exterior
girder. Many designers distribute this load equally
to all girders.
Long-Term Deflections The calculated elastic

deflections increase with time due to creep in the
concrete. To approximate the creep effect, multi-
pliers applied to the elastic deflections have been
proposed. For example, AASHTO [A5.7.3.6.2]
states that the long-time deflection may be taken
as the instantaneous deflection multiplied by 4.0 if
the instantaneous deflection is based on the gross
section properties of the girder.
Additional multipliers have been developed to

account for creep at different stages of loading and
for changing section properties. Using the multi-
pliers in Table E16.3-5 (PCI, 2003) to approximate
the creep effect, the net upward deflection at the
time the deck is placed is

�1 = 1.80 (3.79) − 1.85 (1.29)

= 4.44 in. ↑ (upward)

The multipliers in Table E16.3-5 were developed
for precast prestressed concrete members and give
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Table E16.3-5 Suggested Multipliers Used as Guide in Estimating Long-Time Cambers and Deflections for Totally
Precast Concrete Members

Without
Composite
Topping

With
Composite
Topping

At erection
1. Deflection (downward) component—apply to the elastic deflection due to the member weight

at release of prestress
1.85 1.85

2. Camber (upward) component—apply to the elastic camber due to prestress at the time of
release of prestress

1.80 1.80

Final
3. Deflection (downward) component—apply to the elastic deflection due to the member weight

at release of prestress
2.70 2.40

4. Camber (upward) component—apply to the elastic camber due to prestress at the time of
release of prestress

2.45 2.20

5. Deflection (downward)—apply to elastic deflection due to superimposed dead load only 3.00 3.00
6. Deflection (downward)—apply to elastic deflection caused by the composite topping 2.30

In PCI Table 4.6.2. From PCI Design Handbook: Precast and Prestressed Concrete, 4th ed., Copyright © 1992 by the Precast/Prestressed
Concrete Institute, Chicago, IL.

reasonable estimates for camber based on the gross
section properties of the precast girder prior to the
placement of a cast-in-place concrete deck.
After the cast-in-place deck hardens, the stiff-

ness of the section increases considerably and
the creep strains due to prestressing, girder self-
weight, and dead load of the deck are restrained.
Also, differential creep and shrinkage between the
precast and cast-in-place concretes can produce
significant changes in member deformation. As
a result, the multipliers in Table E16.3-5 for esti-
mating long-term final deflections should not be
used for bridge beams with structurally composite
cast-in-place decks (PCI, 2003).
To estimate the final long-term deflections,

it is necessary to establish the time-dependent
concrete material behavior of the modulus of
elasticity, the shrinkage strain (Eq.13.24), and
the creep strain (Eqs. 13.25 and 13.26) as well as
the time-dependent relaxation of the prestressing
steel. For a series of time steps, computations are
made for the section properties, the initial strains,
and the changes in strains due to shrinkage, creep,
and relaxation. The final long-term deflections
are obtained by integrating over the time steps
the change in deflections calculated for each time
step. Computer programs are usually utilized to
perform the calculations. A sample calculation for
one time step is given in the PCI Bridge Design
Manual (2003) based on the method presented by
Dilger (1982).
A final note on long-term deflections for pre-

stressed concrete beams is that AASHTO does

not require that the final deflection be checked.
The reason for a designer to compute the final
deflection is to ensure that the structure does not
have excessive sag or upward deflection.

J. Investigate Strength Limit State
1. Flexure

a. Stress in Prestressing Steel-Bonded Tendons
(Eq. 14.11) [A5.7.3.1.1]

fps = fpu

(
1 − k

c

dp

)

where (Eq. 14.12)

k = 2

(
1.04 − fpy

fpu

)

= 2 (1.04 − 0.9) = 0.28

By using the nontransformed section for plastic
behavior (Fig. E16.3-8)

b = 87.0 in.

dp = (54 + 2 + 7.5) − 6.0 = 57.5 in.

f
′
c = 8 ksi

As = A
′
s = 0 Aps = 6.73 in.3

β1 = 0.85 − (0.05) (8 − 4) = 0.65

Assume rectangular section behavior and check
if depth of compression stress block is less than ts:

c = Apsfpu

0.85f ′
cβ1bw + kAps

(
fpu/dp

)



PRESTRESSED GIRDER BRIDGE 353

With bw = b = 65.25 in.

c = (6.73) (270)

0.85(8)(0.65)(87.0)+0.28(6.73)(270/57.5)
= 4.62 in. < ts = 7.5 in. Assumption is valid

fps = 270

[
1 − 0.28

(
4.62

57.5

)]
= 264 ksi

Tp = Apsfps = 6.73 (264) = 1776 kips

b. Factored Flexural Resistance—Flanged Sections
[A5.7.3.2.2]

a = β1c = 0.65 (4.62) = 3.00 in.

εs = 0.003

(
dp − c

c

)

= 0.003

(
57.5 − 4.62

4.62

)
= 0.034

εs ≥ 0.005

φ = 1.0

from Eq. 14.28

φMn = φ[Apsfps

(
dp − a

2

)
+ Asfy

(
ds − a

2

)

= 1.0

[
6.73 (262)

(
57.5 − 3.00

2

)]/
12

φMn = 8228 kip-ft > Mu

= 7074 kip-ft (Table E16.3-5) OK

c. Limits for Reinforcement [A5.7.3.3]
� Minimum reinforcement [A5.7.3.3.2]

At any section, the amount of prestressed and
nonprestressed tensile reinforcement shall
be adequate to develop a factored flexural
resistance Mr at least equal to the lesser of:

� 1.2 times the cracking momentM cr determined
on the basis of elastic stress distributionand the
modulus of rupture fr of concrete, or

� 1.33 times the factoredmoment required by the
applicable strength load combination.
Checking at midspan: The cracking moment

may be taken as [Eq. A5.7.3.3.2-1]

Mcr = Sc

(
fr + fcpe

)− Mdnc

(
Sc

Snc
− 1

)

≥ Scfr

where
f cpe = compressive stress in concrete

due to effective prestress forces
only (after allowance for all
prestress losses) at extreme fiber
of section where tensile stress is
caused by externally applied
loads

= −Ff

Ag
− Ff em

Sbg

= − 1069
659 − 1069(21.63)

9702 = −3.98 ksi
fr = modulus of rupture

= 0.37
√

f
′
c = 0.37

√
8 = 1.05

ksi [A5.4.2.6] (use upper value)
M dnc = total unfactored dead-load

moment acting on the
noncomposite section

=Mg +M DC1 = 1981 kip-ft
Sc = section modulus for the extreme

fiber of the composite section
where tensile stress is caused by
externally applied loads = S bc =
13,606 in.3

Snc = section modulus for the extreme
fiber of the noncomposite
section where tensile stress is
caused by externally applied
loads = S bg = 9702 in.3

Mcr = 13,606 (1.05 + 3.98)

12

− 1981

(
13,606

9702
− 1

)

= 4906 kip-ft

1.2Mcr = 1.2 (4906) = 5887 kip-ft

At midspan, the factoredmoment required by
strength I load combination is

Mu = 7074 kip-ft (Table E16.3-5) , so that

1.33Mu = 1.33 (7074) = 9408 kip-ft

Since 1.2M cr < 1.33Mu, the 1.2M cr require-
ment controls.

Mr = φMu = 8157 kip-ft > 1.2Mcr

= 5887 kip-ft OK

Forty-four 0.5-in. low-relaxation strands sat-
isfy strength limit state.

2. Shear [A5.8]
a. General The nominal shear resistance Vn shall be

the lesser of [A5.8.3.3]

Vn = Vc + Vs + Vp

Vn = 0.25f
′
cbvdv + Vp

in which the nominal concrete shear resistance is

Vc = 0.0316β
√

f
′
cbvdv

and the nominal transverse reinforcement shear
resistance is

Vs = Avfydv (cot θ + cot α) sin α

s
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Vs = Avfydv cot θ

s

for vertical stirrups α = 90◦ [C5.8.3.3]

where
bv = minimum web width, measured

parallel to the neutral axis, between
the resultants of the tensile and
compressive forces due to flexure,
modified for the presence of ducts
(in.)

dv = effective shear depth taken as the
distance, measured perpendicular to
the neutral axis, between the
resultants of the tensile and
compressive forces due to flexure; it
need not be taken less than the
greater of 0.9de or 0.72h (in.)

s = spacing of stirrups (in.)
β = factor indicating ability of

diagonally cracked concrete to
transmit tension [A5.8.3.4]
(traditional value of β = 2.0)
[A5.8.3.4.1]

θ = angle of inclination of diagonal
compressive stresses [A5.8.3.4]
(traditional value of θ = 45◦, cot θ
= 1.0) [A5.8.3.4.1]

Av = area of shear reinforcement within a
distance s (in.2)

Vp = component in the direction of the
applied shear of the effective
prestressing force; positive if
resisting the applied shear force
(kips)

φv = 0.9 [A5.5.4.2.1] ηi = η = 1.0

At midspan:

de = h − ȳm = 63.5 − 6.0 = 57.5 in.

dv = de − a

2

dv ≥ max

{
0.9de = 0.9 (57.5) = 51.8 in.
0.72h = 0.72 (63.5) = 45.7 in.

a = β1c = (0.65) (4.62) = 3.00 in.

dv = 57.5 − 3.00

2
= 56.0 in. [A5.8.2.7]

At the end of the beam:

de = h − ȳend = 63.5 − 15.64 = 47.86 in.

dv ≥ max

⎧
⎨

⎩

0.9de = 0.9 (47.86) = 43.1 in.
0.72h = 0.72 (63.5) = 45.7 in.
de − a

2 = 47.86 − 3.00
2 = 46.4 in., governs

bv = minimum web width within dv = 6.0 in.

Fig. E16.3-13 Harped tendon profile.

b. Prestress Contribution to Shear Resistance
Vp = vertical component of prestressing force
The center of gravity of 12 harped strands at end

of beam = 54 – 7 = 47 in. from bottom of girder
The center of gravity of 12 harped strands at

midspan = 11.67 in. (Fig. E16.3-13)

ψ = tan−1 47.0− 11.67

400
= 5.05◦

Ff = 1069 kips

Vp = 12
44Ff sin ψ = 12

44 (1069) sin 5.05

= 25.66 kips

c. Design for Shear The location of the critical
section for shear is the greater of dv = 46.4 in. or
0.5dv cot θ from the internal face of the support
[A5.8.3.2]. Assuming θ ≤ 25◦,

0.5dv cot θ ≤ 0.5 (46.4) (2.145) = 49.8 in.

If the width of the bearing was known, the dis-
tance to the critical section from the face of the
support could be increased. In this case, the crit-
ical section is conservatively taken at 48 in. from
the centerline of the support.
Calculations are shown below for 48 in. from

the support (Fig. E16.3-14) and location 101. The
same procedure is used for the remaining tenth
points with final results given in Table E16.3-6.

dcritical = 48 in. = 4 ft

ξ = dcritical

L

= 4

100
= 0.04

For a unit load, w = 1.0 kip/ft

Vx = wL (0.5 − ξ ) = 100w (0.5 − 0.04)

= 46w kips

Mx = 0.5wL2
(
ξ − ξ 2

)

= 0.5w(100)2
(
0.04 − 0.042

)

= 192w kip-ft
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Fig. E16.3-14 Live-load placement for maximum shear and mo-
ment at location 100.4.

Exterior girders dead loads are previously
presented:

DC1 = 1.540 kips/ft

DC2 = 0.320 kips/ft

DW = 0.210 kips/ft

DIAPH = 1.69 kips

IM = 0.33

V Tr
100.4 =

[
32

(
96 + 82

100

)
+ 8

(
68

100

)]

= 62.4 kips

MTr
100.4 = 4 (62.4) = 249.6 kip-ft

V Ln
100.4 = 1

2 (0.64)
(
96
100

)
(96) = 29.5 kips

MLn
100.4 = 1

2 (0.64) (4) (96) = 122.9 kip-ft

Vu = η[1.25DC+1.50DW+1.75 (LL+ IM)]

= 1.0{1.25[(1.540 + 0.320)(46) + 1.69]

+ 1.50[(0.210)(46)]

+ 1.75(0.750)[(62.4)(1.33) + 29.5]}
= 271.2 kips

Mu = 1.0{1.25[(1.540 + 0.320)(192)

+ 1.69(4.0)] + 1.50[(0.210)(192)]

+1.75(0.750)[(249.6)(1.33)+(122.9)]}
= 1112 kip-ft

Determination of β and θ at critical section loca-
tion 100.4:
de = dp = 63.5 − 15.64+ 48

400 (21.62 − 11.99)

= 49.0 in.

dv = de − a

2
= 49.0 − 3.00

2
= 47.5 in.

From Eq. 14.111 [A5.8.3.4.2]:

f
′
c (girder) = 8 ksi

vu =
∣∣Vu − φVp

∣∣

φbvdv

=
[
(271.2)−0.9 (25.66)

0.9 (6.0) (47.5)

]
= 0.967 ksi

vu
f

′
c

= 0.967

8
= 0.120 < 0.125

Therefore,

smax = min

{
0.8dv = 0.8 (47.5) = 38.0 in.
24 in. governs

Table E16.3-6 Summary of Shear Design

Location

100.4 101 102 103 104 105

Vu (kips) 271.2 243.1 197.0 151.7 105.2 61.6
Mu (kip-ft) 1112 2601 4603 6005 6794 7074
Vp (kips) 25.66 25.66 25.66 25.66 0 0
dv (in.) 47.5 49.3 51.7 54.6 55.5 55.5
vu/f

′
c 0.120 0.103 0.0779 0.0546 0.0439 0.0257

θ (deg) 20.5 21 22 29 33 34
εx × 103 −0.161 −0.0879 0.0243 0.424 0.724 0.789
β 3.17 3.28 3.59 2.70 2.40 2.36
Vc (kips) 80.7 86.7 99.5 79.0 71.5 70.3
Required Vs (kips) 195.0 157.8 93.8 63.9 45.4 −1.8
Required s (in.) 15.6 19.5 32.7 37.0 45.2 ∞
Check A ps f ps = 1763 kips ≥ 679 1047 1389 1490 1583 1570
Provided s (in.) 12 18 24 24 24 24

φ f = 1.0, φv = 0.9 stirrup spacings 1 at 6 in., 10 at 12 in., 7 at 18 in., 14 at 24 in. No. 4 U-shaped stirrups each end.
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For illustration, use the “long method” of Ap-
pendix B5 with iteration of the shear parameters
[A5.8.2.7]
First Iteration
Assume θ = 25◦, f po ≈ 0.7f pu = 0.7(270)= 189

ksi [A5.8.3.4.2]. From Eq. 14.122 [A5.8.3.4.2]

εx =

∣∣Mu

∣∣ /dv + 0.5Nu

+0.5
∣∣Vu − Vp

∣∣ cot θ − Apsfpo

2
(
EsAs + EpAps

)

=
(1112× 12)/47.5

+0.5(271.2−25.66)2.145−(6.73) (189)

2 (28,500) (6.73)

= −0.00189 (compression)

Because εx is negative, it shall be reduced by the
factor [A5.8.3.4.2]

Fε = EsAs + EpAps

EcAc + EsAs + EpAps
= EpAps

EcAc + EpAps

where Ac is the area of concrete on flexural tension
side of member defined as concrete below h /2 of
member [Fig. A5.8.3.4.2-1]:

h = 54+ 2 + 7.5 = 63.5 in.
h

2
= 63.5

2
= 31.75 in.

Ac = (6) (26) + 2
(
1
2

)
(4.5) (10)

+ (6) (31.75− 6.0) (Fig. E16.3-2)

= 355.5 in.2

Ec = 5148 ksi

Fε = (28,500) (6.73)

(5148) (355.5) + (28,500) (6.73)
= 0.0949

εx = (−0.00189) (0.0949)

= −0.179 × 10−3

Using vu/f
′
c = 0.120 and εx with [Table

A5.8.3.4.2-1] ⇒ θ = 20◦:

cot θ = 2.747

Second Iteration
θ = 20◦

εx =

1112×12
47.5 + 0.5 (271.2− 25.66) (2.747)

− (6.73) (189)

2 (28,500) (6.73)

= −0.00169

Feεx = 0.0949 (−0.00169)

= −0.161 × 10−3

[Table A5.8.3.4.2-1] ⇒ θ = 20.5◦ converged,

Use cot θ = 2.675β = 3.17

Vc = 0.0316β
√

f
′
cbvdv

= 0.0316 (3.17)
√
8 (6) (47.5) = 80.7 kips

Check if

Vu ≥ 0.5φ
(
Vc + Vp

)

= 0.5 (0.9) (80.7 + 25.66) = 47.9 kips

Vu = 271.2 kips > 47.9 kips,

transverse reinforcement

is required

Required

Vs = Vu

φ
− Vc − Vp

= 271.2

0.9
− 80.7 − 25.66

= 195.0 kips

Spacing of No. 4 U stirrups, (Eq. 14.113)

ds = 0.5 in. Av = 2 (0.20) = 0.40 in.2

s ≤ Avfydv cot θ

Vs

= (0.40) (60) (47.5) (2.675)

195.0
= 15.6 in.

s ≤ 15.6 in. < smax = 24 in.

Check Longitudinal Reinforcement (Eq. 7.14.110)
[A5.8.3.5]

Asfy + Apsfps ≥
∣∣Mu

∣∣
dvφf

+ 0.5
Nu

φa

+
(∣∣∣∣

Vu

φv
−Vp

∣∣∣∣−0.5Vs

)
cot θ

Try s = 12 in.

Provided Vs = 195.0

(
15.6

12

)
= 253.5 kips

(6.73) (262) ≥ 1112× 12

(47.5) (1.0)

+
[
271.2

0.9
−25.66−0.5 (253.5)

]

× 2.675

1763 kips > 679 kips OK

Use s = 12-in.No. 4 U stirrups at location 100.4.
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d. Location 101

Vu = 243.1 kips

Mu = 2601 kip-ft (Table E16.3-5)

de = 63.5 − 15.64 + 120

400
(21.63 − 11.99)

= 50.75 in.

dv = max

⎧
⎪⎪⎨

⎪⎪⎩

de − a
2 = 50.75 − 3.00

2= 49.3 in. governs
0.9de = 0.9 (50.75) = 45.7 in.
0.72h = 0.72 (63.5) = 45.7 in.

dv = 49.3 in.

vu =
∣∣Vu − φVp

∣∣

φbvdv

= 243.1− 0.9 (25.66)

0.9 (6) (49.3)
= 0.826 ksi

vu
f

′
c

= 0.826

8
= 0.103 < 0.125;

therefore, smax = 24 in.

First Iteration
Assume θ = 21◦, cot θ = 2.605, and f po = 189

ksi.

εx =

2601×12
49.3 + 0.5 (243.1− 25.66)
×2.605− (6.73) (189)

2 [(5148) (355.5) + (28,500) (6.73)]

= −0.0879 × 10−3 (compression)

[Table A5.8.3.4.2-1] ⇒ θ = 21◦
, converged

β = 3.28

Vc = 0.0316β
√

f
′
c bvdv

= 0.0316 (3.28)
√
8 (6) (49.3) = 86.7 kips

Requires

Vs = Vu

φ
− Vc − Vp

= 243.1

0.9
− 86.7 − 25.66 = 157.8 kips

s ≤ (0.40) (60) (49.3) (2.605)

157.8
= 19.5 in. < smax = 24 in.

For s = 18 in.

Vs = 157.8

(
19.5

18

)
= 171.0 kips

Check Longitudinal Reinforcement

(6.73) (262) ≥ 2601× 12

(49.3) (1.0)

+
(
243.1

0.9
−25.66−0.5 (171.0)

)

× 2.605

1763 kips ≥ 1047 kips OK

Use s = 18-in. No. 4 U stirrups at location 101.
e. Summary of Shear Design (Table E16.3-6)
f. Horizontal Shear [A5.8.4] At interface between

two concretes cast at different times the nominal
shear resistance shall be taken as

Vnh = cAcv + μ
(
Avffy + Pc

)

≤ min

{≤ K1f
′
cAcv

≤ K2Acv

where
A cv = area of concrete engaged in shear

transfer
= (42 in.)(1 in.) = 42 in.2/in.

A vf = area of shear reinforcement crossing
the shear plane (in.2)

= 2(0.20) = 0.40 in.2 (2 legs)
fy = yield strength of reinforcement =

60 ksi
f

′
c = compressive strength of weaker

concrete = 4.5 ksi
For normal-weight concrete intentionally rough-

ened [A5.8.4.2]

c = cohesion factor = 0.28 ksi

μ = friction factor = 1.0

K1 = 0.3

K2 = 1.8

Pc = permanent net compressive force

normal to shear plane

= overhang + slab + haunch + barrier

= 0.366 + 0.400+ 0.088 + 0.320

= 1.174 kips/ft

= 0.098 kips/in.

Provided

Vnh = 0.28 (42) + 1.0

[(
0.40

s

)
(60) + 0.098

]

= 11.9 + 24

s
kips/in.

s = spacing of shear reinforcement, in.

Vnh ≤ min

⎧
⎨

⎩

K1f
′
cAcv = 0.3 (4.5) (42)

= 56.7kips/in. governs
K2Acv = 1.8 (42) = 75.6 kips/in.

φv Vnh ≥ ηVuh

where
V uh = horizontal shear due to barrier, FWS

and LL + IM
= Vu

dv
[Eq. C5.8.4.1-1]
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Vu = factored shear force due to
superimposed load on composite
section

Vu = 1.25DC2 + 1.50DW + 1.75(LL +
IM)

dv = = de − a
2 = 49.0− 3.00

2 = 47.5 in.

Assume the critical section for horizontal shear
is at the same location as the critical section for
vertical shear.
At Location 100.4 Interpolating between loca-

tions 100 and 101 (Table E16.3-4)

Vu = 1.25 (14.7) + 1.50 (9.7) + 1.75 (84.4)

= 180.6 kips

Vuh = 180.6

47.5
= 3.80 kips/in.

Required

Vnh = Vuh

φ
= 3.80

0.9
= 4.22 kips/in. < 33.6 kips/in. OK

Equating required V nh to the provided V nh

4.22 = 11.9 + 24

s

s ≤ 0, no steel is required

Minimum shear reinforcement

Avf ≥ 0.05bv
fy

= 0.05 (42)

60

= 0.035 in.2/in.
[
Eq. A5.8.4.4-1

]

Shear reinforcement provided near support to re-
sist vertical shear are No. 4 U-shaped stirrups at
12 in. Provided

Avf = 0.40

12
= 0.033 in.2/in. < required minimum Avf

= 0.035 in.2/in.

The minimum requirement of Avf may be waived
if Vn/A cv is less than 0.210 ksi:

Vn

Acv
= 4.22

42
= 0.101 ksi OK

OK to waive minimum requirement.
Use s = 12 in. at location 100.4. By inspection,

horizontal shear does not govern stirrupspacing for
any of the remaining locations.

g. Check Details
Anchorage Zone [A5.10.10]

The bursting resistance provided by transverse
reinforcement at the service limit state shall be
taken as [A5.10.10.1]

Pr = fsAs

where
fs = stress in steel not exceeding 20 ksi
As = total area of transverse

reinforcement within h /4 of end of
beam

h = depth of precast beam = 54 in.
The resistance Pr shall not be less than 4% of the

prestressing force before transfer

Fpbt = fpbtAps

= (0.75 × 270) (6.73) = 1363 kips

Pr = Asfs ≥ 0.04Fpbt

= 0.04 (1363) = 54.5 kips

As ≥ 54.5/20 = 2.73 in.2

Within
h

4
= 54

4
= 13.5 in.

Number of No. 5 U stirrups required:

2.73

2 (0.31)
= 4.4

Use five No. 5 U stirrups, 1 at 2 in. and 4 at 3 in.
from end of beam.
Confinement Reinforcement : [A5.10.10.2]
For a distance of 1.5h = 1.5(54) = 81 in. from

the end of the beam, reinforcement not less than
No. 3 bars at 6 in. shall be placed to confine the
prestressing steel in the bottom flange.
Use 14 No. 3 at 6 in. shaped to enclose the

strands.

cg Strands

Fig. E16.3-15 Design sketch for prestressed girder.
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K. Design Sketch The design of the prestressed concrete
girder is summarized in Figure E16.3-15. The design uti-
lized the AASHTO–PCI bulb tee girder, f

′
c = 8 ksi, and

f
′
ci = 6 ksi. The prestressing steel consists of forty-four

270-ksi, low-relaxation 0.5-in. seven-wire strands.
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CHAPTER 17

Steel Bridges

17.1 INTRODUCTION

Steel bridges have a long and proud history. Their role in
the expansion of the railway system in the United States can-
not be overestimated. The development of the long-span truss
bridgewas in response to the need of railroads to cross water-
ways and ravines without interruption. Fortunately, analysis
methods for trusses (particularly graphical statics) had been
developed at the same time the steel industry was produc-
ing plates and cross sections of dependable strength. The two
techniques came together and resulted in a figurative explo-
sion of steel truss bridges as the railroads pushed westward.
Steel truss bridges continue to be built today, for example,

the Greater New Orleans Bridge No. 2 of Figure 4.6. How-
ever, with advances in methods of analysis and steelmaking
technology, the sizes, shapes, and forms of steel bridges are
almost unlimited. We now have steel bridges of many types:
arches (tied and otherwise), plate girders (haunched and uni-
form depth), box girders (curved and straight), rolled beams
(composite and noncomposite), and cable-stayed and sus-
pension systems. More complete descriptions of these var-
ious bridge types are given in Chapter 4.
Emphasis in this book is on short- (up to 50 ft or 15m) to

medium- (up to 200 ft or 60m) span bridges. For these span
lengths, steel girder bridges are a logical choice: compos-
ite rolled beams, perhaps with cover plates, for the shorter
spans and composite plate girders for the longer spans. These
steel girder bridges are readily adapted to different terrain
and alignment and can be erected in a relatively short time
with minimum interruption of traffic.
Steel bridge material properties are described in this

chapter. In the chapters that follow limit states are pre-
sented and resistance considerations are discussed. The last
chapter concludes with design examples of rolled-beam and
plate-girder bridges.

17.2 MATERIAL PROPERTIES

As discussed at the beginning of Chapter 13, shown in
Figure 13.1, the material–stress–strain response is the es-
sential element relating forces and deformations. At one
time, there was basically a simple stress–strain curve that
described the behavior of structural steel; this is no longer
true because additional steels have been developed to meet
specific needs such as improved strength, better toughness,
corrosion resistance, and ease of fabrication.
Before presenting the stress–strain curves of the various

steels, it is important to understand what causes the curves to
differ from one another. The different properties are a result
of a combination of chemical composition and the physical
treatment of the steel (Dowling et al., 1992). In addition to
knowledge of the stress–strain behavior, a steel bridge de-
signer must also understand how fatigue and fracture resis-
tance are affected by the selection of material, member sizes,
and weld details. These topics are discussed in this section
along with a brief description of the manufacturing process.
In comparing the properties of different steels, the terms

strength (yield and tensile), ductility, hardness, and tough-
ness are used. These terms are defined below:

Yield strength is the stress at which an increase in strain oc-
curs without an increase in stress.

Tensile strength is the maximum stress reached in a tensile
test.

Ductility is an index of the ability of the material to with-
stand inelastic deformations without fracture and can be
expressed as a ratio of elongation at fracture to the elon-
gation at first yield.

Hardness refers to the resistance to surface indentation from
a standard indenter.

Toughness is the ability of a material to absorb energy with-
out fracture.

17.2.1 Steelmaking Process: Traditional

The typical raw materials for making steel are iron ore, coke,
limestone, and chemical additives. These are the basic con-
stituents and the chemical admixtures that produce custom-
designed products for specific applications, much like the
process used for making concrete. However, in the case of
steelmaking, it is possible to better control the process and
produce a more uniformly predictable finished product.
The raw materials are placed in a ceramic-lined blast fur-

nace and external heat is applied. The coke provides addi-
tional heat and carbon for reducing the iron ore to metallic
iron. The limestone acts as a flux that combines with the im-
purities and accumulates on top of the liquid iron where it
can be readily removed as fluid slag. The molten iron is peri-
odically removed from the bottom of the furnace through tap
holes into transfer ladles. The ladles then transfer the liquid
metal to the steelmaking area.
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Steel is an alloy. It is produced by combining the molten
ironwith other elements to give specific properties for differ-
ent applications. Depending on the steel manufacturer, this
can be done in a basic oxygen furnace, an open-hearth fur-
nace, or an electric-arc furnace. At this point, the molten iron
from the blast furnace is combined with steel scrap and vari-
ous fluxes. Oxygen is blown into the molten metal to convert
the iron into steel by oxidation. The various fluxes are often
other elements added to combine with the impurities and re-
duce the sulfur and phosphorus contents. The steel produced
flows out a tap hole and into a ladle.
The ladle is used to transport the liquid steel to either

ingot molds or a continuous casting machine. While the
steel is in the ladle, its chemical composition is checked and
adjustments to the alloying elements are made as required.
Because of the importance of these alloying elements in
classifying structural steels, their effect on the behavior and
characteristics of carbon and alloy steels are summarized
in Table 17.1.

Aluminum and silicon are identified as deoxidizers or
“killers” of molten steel. They stop the production of carbon
monoxide and other gases that are expelled from the molten
metal as it solidifies. Killed steel products are less porous
and exhibit a higher degree of uniformity than nonkilled
steel products.
Carbon is the principal strengthening element in steel.

However, it has a downside as increased amounts of carbon
cause a decrease in ductility, toughness, and weldability.
Chromium and copper both increase the atmospheric cor-
rosion resistance and are used in weathering steels. When
exposed to the atmosphere, they build up a tight protective
oxide film that tends to resist further corrosion. Sulfur is
generally considered an undesirable element except where
machinability is important. It adversely affects surface qual-
ity and decreases ductility, toughness, and weldability. Man-
ganese can control the harmful effects of sulfur by combining
to form manganese sulfides. It also increases the hardness
and strength of steels, but to a lesser extent than does carbon.

Table 17.1 Effects of Alloying Elements

Elements Effects

Aluminum (Al) Deoxidizes or “kills” molten steel.
Refines grain size; increases strength and toughness.

Boron (B) Small amounts (0.0005%) increase hardenability in quenched-and-tempered steels.
Used only in aluminum-killed steels.
Most effective at low carbon levels.

Calcium (Ca) Controls shape of nonmetallic inclusions.
Carbon (C) Principal hardening element in steel.

Increases strength and hardness.
Decreases ductility, toughness, and weldability.
Moderate tendency to segregate.

Chromium (Cr) Increases strength and atmospheric corrosion resistance.
Copper (Cu) Increases atmospheric corrosion resistance.
Manganese (Mn) Increases strength.

Controls harmful effects of sulfur.
Molybdenum (Mo) Increases high-temperature tensile and creep strength.
Niobium (Nb) Increases toughness and strength.
Nickel (Ni) Increases strength and toughness.
Nitrogen (N) Increases strength and hardness.

Decreases ductility and toughness.
Phosphorus (P) Increases strength and hardness.

Decreases ductility and toughness.
Increases atmospheric corrosion resistance.
Strong tendency to segregate.

Silicon (Si) Deoxidizes or “kills” molten steel.
Sulfur (S) Considered undesirable except for machinability.

Decreases ductility, toughness, and weldability.
Adversely affects surface quality.
Strong tendency to segregate.

Titanium (Ti) Increases creep and rupture strength and hardness.
Vanadium (V) and Columbium (Nb) Small additions increase strength.

Brockenbrough and Barsom (1992).



MATERIAL PROPERTIES 365

17.2.2 Steelmaking Process: Mini Mills

Mini mills are smaller steel mills that use recycled steel in
electric-arc furnaces as the primary heat source. Because the
material source is recycled scrap or other iron sources, the
coke-making operation is eliminated. The downstream pro-
cessing can include: casting, hot or cold rolling, wire draw-
ing, and pickling. This is accomplished by the continuous
casting process that eliminates the ingot by casting directly
into the target product. Mini mills produce a smaller range
of products usually for a local area. This process is expanded
for larger scale production, for example, Nucor and others
that use recycled steel.

17.2.3 Steelmaking Process: Environmental
Considerations

As sustainable building material, steel is among the best. It
is the most recycled material in the world. Approximately
96% of the beams and plates used for structural steel were
producted from recycled materials. Reinforcment bar is
about 60%. For each pound of steel that is recycled 5400
Btu of energy are conserved because of the elimination of
the iron producing steps outlined above and the use of new
technologies that are more energy efficient and environmen-
tally friendly with respect to emission gases as well. For
example, see Recycled-steel.org or Nucor.com. Also search
“steel recycled” for numerous sources including stories,
real-time recycling data, and new steel/iron production
methods within the United States and developing countries.
Without further expansion because of space, the steel

industry has made significant changes in processes and
products and is now among the “greenest” industries in the
construction/manufacturing area.

17.2.4 Production of Finished Products

The liquid steel from the ladle is placed in ingot molds or a
continuous casting machine. Steel placed in the ingot molds
solidifies as it cools. It then goes into a second process where
the ingot is hot-worked into slabs (up to 9 in. thick × 60 in.
wide), blooms (up to 12 in. × 12 in.), and billets (up to 5 in.
× 5 in.) (230mm × 1520mm, 300mm × 300mm, 125mm
× 125mm, respectively).
In the continuous casting process, gravity is utilized to

directly form slabs, blooms, and billets from a reservoir of
liquid steel as shown in Figure 17.1.
The slabs are reheated and squeezed between sets of

horizontal rolls in a plate mill to reduce the thickness and
produce finished plate products. The longitudinal edges are
often flame-cut online to provide the desired plate width.
After passing through leveling rolls, the plates are sheared
to length. Heat treating can be done online or offline.
The blooms are reheated and passed sequentially through

a series of roll stands in a structural mill to produce wide-
flange sections, I-beams, channels, angles, tees, and zees.
There are four stages of roll stands, each withmultiple passes

Fig. 17.1 Section schematic of a continuous caster (Brocken-
brough and Barsom, 1992). [From Constructional Steel Design: An
InternationalGuide, P. J. Dowling, J. E. Harding, andR. Bjorhovde,
eds., Copyright © 1992 by Elsevier Science Ltd (nowChapman and
Hall, Andover, England), with permission.]

that are used to reduce the bloom to a finished product. They
are a breakdown, a roughing, an intermediate, and finishing
stands. Each stand has horizontal and vertical rolls, and in
some cases edge rolls, to reduce the cross section progres-
sively to its final shape. The structural section is cut to length,
set aside to cool, and straightened by pulling or rolling.

17.2.5 Residual Stresses

Stresses that exist in a component without any applied exter-
nal forces are called residual stresses. These forces affect the
strength of members in tension, compression, and bending
and can be induced by thermal, mechanical, or metallurgical
processes. Thermally induced residual stresses are caused by
nonuniform cooling. In general, tensile residual stresses de-
velop in the metal that cools last. Associated compressive
stresses are also introduced, and these stresses in combina-
tion create a balance of internal forces keeping the section in
equilibrium.
Mechanically induced residual stresses are caused by

nonuniform plastic deformations when a component is
stretched or compressed under restraint. This nonuniform
deformation can occur when a component is mechanically
straightened after cooling or mechanically curved by a series
of rollers.
Metallurgically induced residual stresses are caused by

a change in the microstructure of the steel from fermite–
pearlite to martensite (Brockenbrough and Barsom, 1992).
This new material is stronger and harder than the original
steel, but it is less ductile. The change to martensite results
in a 4% increase in volume when the surface is heated to
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about 900◦C and then cooled rapidly. If the volume change
due to the transformation to marteniste is restrained, the
residual stress is compressive. The tensile residual stresses
induced by thermal cut edges can be partially compensated
by the compressive stresses produced by the transformation.
When cross sections are fabricated by welding, complex

three-dimensional (3D) residual stresses are induced by
all three processes. Heating and cooling effects take place,
metallurgical changes can occur, and deformation is often
restrained. High tensile residual stresses of approximately
60 ksi (∼400MPa) can be developed at a weld (Bjorhovde,
1992).
In general, rolled edges of plates and shapes are under

compressive residual stress while thermally cut edges are in
tension. These stresses are balanced by equivalent stresses
of opposite sign elsewhere in the member. For welded
members, tensile residual stresses develop near the weld and
equilibrating compressive stresses elsewhere. Figure 17.2
presents simplified qualitative illustrations of the global
distribution of residual stresses in as-received and welded
hot-rolled steel members (Brockenbrough and Barsom,

(b)

Fig. 17.2 Schematic illustration of residual stresses in as-rolled
and fabricated structural components (Brockenbrough and Barsom,
1992). (a) Hot-rolled shape, (b) welded box section, (c) plate with
rolled edges, (d) plate with flame-cut edges, and (e) beamfabricated
from flame-cut plates. [From Constructional Steel Design: An In-
ternational Guide, P. J. Dowling, J. E. Harding, and R. Bjorhovde,
eds., Copyright© 1992 by Elsevier ScienceLtd (nowChapmanand
Hall, Andover, England), with permission.]

1992). Note that the stresses represented in Figure 17.2 are
lengthwise or longitudinal stresses.

17.2.6 Heat Treatments

Improved properties of steel can be obtained by various heat
treatments. There are slow cooling heat treatments and rapid
cooling heat treatments. Slow cooling treatments are anneal-
ing, normalizing, and stress relieving. They consist of heat-
ing the steel to a given temperature, holding for a proper
time at that temperature, followed by slow cooling in air. The
temperature to which the steel is heated determines the type
of treatment. The slow cooling treatments improve ductility
and fracture toughness, reduce hardness, and relieve residual
stresses.
Rapid cooling heat treatments are indicated for the bridge

steels in the AASHTO (2010) LRFD Bridge Specifications.
The process is called quenching-and-tempering and consists
of heating the steel to about 900◦C, holding the temperature
for a period of time, then rapid cooling by quenching in a
bath of oil or water. After quenching, the steel is tempered by
reheating to about 900◦F (500◦C), holding that temperature,
then slowly cooling. Quenching-and-tempering changes
the microstructure of the steel and increases its strength,
hardness, and toughness.

17.2.7 Classification of Structural Steels

Mechanical properties of typical structural steels are de-
picted by the four stress–strain curves shown in Figure 17.3.
Each of these curves represents a structural steel with spe-
cific composition to meet a particular need. Their behavior

Fig. 17.3 Typical stress–strain curves for structural steels. (From
R. L. Brockenbrough and B. G. Johnston, USS Steel Design Man-
ual, Copyright © 1981 by R. L. Brockenbrough & Assoc, Inc.,
Pittsburgh, PA, with permission.)
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differs from one another except for small strains near the
origin. These four different steels can be identified by their
chemical composition and heat treatment as (a) structural
carbon steel (Grade 36/250) (ksi/MPa), (b) high-strength
low-alloy steel (Grade 50/345), (c) quenched-and-tempered
low-alloy steel (Grade 70/485), and (d) high-yield strength,
quenched-and-tempered alloy steel (Grade 100/690). The
minimum mechanical properties of these steels are given in
Table 17.2.
A unified standard specification for bridge steel is given in

ASTM (1995)with the designationA709/A709M-94a(M in-
dicates metric and 94a is the year of last revision). Six grades
of steel are available in four yield strength levels as shown in
Table 17.2 and Figure 17.3. Steel grades with the suffix W
indicate weathering steels that provide a substantially bet-
ter atmospheric corrosion resistance than typical carbon steel

and can be used unpainted for many applications, and the
prefix HPS indicates high-performance steel.
All of the steels in Table 17.2. can be welded, but not by the

same welding process. Each steel grade has specific welding
requirements that must be followed.
In Figure 17.3, the number in parentheses identifying the

four yield strength levels is the ASTM designation of the
steel with similar tensile strength and elongation properties
as the A709/A709M steel. These numbers are given because
they are familiar to designers of steel buildings and other
structures. The most significant difference between these
steels and the A709/A709M steels is that the A709/A709M
steels are specifically for bridges and must meet supplemen-
tary requirements for toughness testing. These requirements
vary for nonfracture critical and fracture-critical members.
This concept is discussed in Section 17.2.6.

Table 17.2-US MinimumMechanical Properties of Structural Steel by Shape, Strength, and Thickness

AASHTO designation M270 A709 M270 M270 M270 Grade M270 Grade M270 Grades
Grade 36 Grade 50 Grade 50S Grade 50W HPS 50W HPS 70W 100/100W

Equivalent ASTM A709 A709 A709 A709 A709 Grade A709 Grade A709 Grades
designation Grade 36 Grade 50 Grade 50S Grade 50W HPS 50W HPS 70W 100/100W

Thickness of plates Up to Up to Up to Up to Up to Up to Up to Over
(in.) 4 incl. 4 incl. 4 incl. 4 incl. 4 incl. 4 incl. 2.5 incl. 2.5–4 incl.

Shapes All groups All groups All groups All groups N/Aa N/A N/A N/A
Minimum tensile
strength, Fu, (ksi)

58 65 65 70 70 90 110 100

Minimum yield point or
minimum yield
strength, Fy, (ksi)

36 50 50 50 50 70 100 90

In AASHTO Table 6.4.1-1. From AASHTO LRFD Bridge Design Specifications, Copyright © 2010 by the American Association of State
Highway and Transportation Officials. Used by permission.
aNot applicable = N/A.

Table 17.2-SI MinimumMechanical Properties of Structural Steel by Shape, Strength, and Thickness

AASHTO M270 M270 M270 M270 M270 Grade M270 Grade M270 Grades
designation Grade 250 Grade 345 Grade 345S Grade 345W HPS 345W HPS 485W 690/690W

Equivalent ASTM A709M A709M A709M A709M A709M Grade A709M Grade A709M Grades
designation Grade 250 Grade 345 Grade 345S Grade 345W HPS 345W HPS 345W 690/690W

Thickness of plates Up to Up to Up to Up to Up to Up to Up to Over
(mm) 100 incl. 100 incl. 100 incl. 100 incl. 100 incl. 100 incl. 65 incl. 65–100 incl.

Shapes All groups All groups All groups All groups N/Aa N/A N/A N/A
Minimum tensile
strength, Fu,
(MPa)

400 450 450 450 485 585 760 690

Minimum yield
point or minimum
yield strength, Fy,
(MPa)

250 345 345 345 345 485 690 620

In AASHTO Table 6.4.1-1. From AASHTO LRFD Bridge Design Specifications, Copyright © 2010 by the American Association of State
Highway and Transportation Officials. Used by permission.
aNot applicable = N/A.
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Table 17.3 Chemical Requirements for Bridge Steels: Heat Analysis, Percenta

High-Strength, Heat-Treated
Alloy Steel

Carbon Low-Alloy Heat-Treated
Steel High-Strength Steel Low-Alloy
Grade Grade Grade Steel Grade Grade
36/250 50/345 50/345W Grade 100/690 100/690W

Element Shapes Type 2 Type A 70/485 Type C Type F

Boron 0.001–0.005 0.0005–0.006
Carbon 0.26 max 0.23 max 0.19 max 0.19 max 0.12–0.20 0.10–0.20
Chromium 0.40–0.65 0.40–0.70 0.40–0.65
Copper 0.20min 0.20min 0.25–0.40 0.20–0.40 0.15–0.50
Manganese 1.35 max 0.80–1.25 0.80–1.35 1.10–1.50 0.60–1.00
Molybdenum 0.15–0.30 0.40–0.60
Nickel 0.40 max 0.50 max 0.70–1.00
Phosphorus 0.04 max 0.04 max 0.04 max 0.035 max 0.035 max 0.035 max
Silicon 0.40 max 0.40 max 0.30–0.65 0.20–0.65 0.15–0.30 0.15–0.35
Sulfur 0.05 max 0.05 max 0.05 max 0.04 max 0.035 max 0.035 max
Vanadium 0.01–0.15 0.02–0.10 0.02–0.10 0.03–0.08

From ASTM (1995).
aWhere a blank appears in this table there is no requirement.

As discussed previously, steel is an alloy and its principal
component is iron. The chemical composition of the steel
grades in Table 17.2 is given in Table 17.3. One component
of all the structural steels is carbon, which, as indicated in
Table 17.1, increases strength and hardness but reduces duc-
tility, toughness, and weldability. Other alloying elements
are added to offset the negative effects and to custom design
a structural steel for a particular application. Consequently,
more than one type of steel is given in A709M for each yield
strength level to cover the proprietary steels produced by dif-
ferent manufacturers. In general, low-alloysteel has less than
1.5% total alloy elements while alloy steels have a larger
percentage.
A comparison of the chemical composition of bridge

steels in Table 17.3 with the effects of the alloying ele-
ments in Table 17.1 shows the following relationships.
Boron is added to the quenched-and-tempered alloy steel
to increase hardenability. Carbon content decreases in the
higher strength steels and manganese, molybdenum, and
vanadium are added to provide the increase in strength.
Chromium, copper, and nickel are found in the weathering
steels and contribute to their improved atmospheric corro-
sion resistance. Phosphorus helps strength, hardness, and
corrosion but decreases ductility and toughness so its content
is limited. Sulfur is considered undesirable so its maximum
percentage is severely limited. Silicon is the deoxidizing
agent that kills the molten steel and produces more uniform
properties.
Two properties of all grades of structural steels are as-

sumed to be constant: the modulus of elasticity ES of 29,000
ksi (200GPa) and the coefficient of thermal expansion of

6.5 × 10–6 in./in./◦F (11.7 × 10–6 mm/mm/◦C) [A6.4.1].*
A brief discussion of the properties associated with each
of the four levels of yield strength is given below (Brock-
enbrough and Johnston, 1981). To aid in the comparison
between the different steels, the initial portions of their
stress–strain curves and time-dependent corrosion curves
are given in Figures 17.4 and 17.5, respectively.

Structural Carbon Steel The name is somewhat mis-
leading because all structural steels contain carbon. When
reference is made to carbon steel, the technical definition
is usually implied. The criteria for designation as carbon
steel are (AISI, 1985): (1) No minimum content is specified
for chromium, cobalt, columbium, molybdenum, nickel,
titanium, tungsten, vanadium, or zirconium or any other
element added to obtain a desired alloying effect; (2) the
specified minimum of copper does not exceed 0.40%; or
(3) the specified maximum for any of the following is not
exceeded: manganese 1.65%, silicon 0.60%, and copper
0.60%. In other words, a producer can use whatever scrap
steel or junked automobiles are available to put in the furnace
as long as the minimummechanical properties of Table 17.2
are met. No exotic or fancy ingredients are necessary to
make it strong. As a result, engineers often refer to it as
mild steel.
One of the main characteristics of structural carbon steel is

a well-defined yield point [Fy = 36 ksi (250MPa)] followed

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-
tions are enclosed in brackets and preceded by the letter A if specifications
and by C if commentary.
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Fig. 17.4 Typical initial stress–strain curves for structural steels.
(From R. L. Brockenbrough and B. G. Johnston,USS Steel Design
Manual, Copyright © 1981 by R. L. Brockenbrough& Assoc, Inc.,
Pittsburgh, PA, with permission.)

Fig. 17.5 Corrosion curves for several steels in an industrial at-
mosphere. (From R. L. Brockenbrough and B. G. Johnston, USS
Steel Design Manual, Copyright © 1981 by R. L. Brockenbrough
& Assoc, Inc., Pittsburgh, PA, with permission.)

by a generous yield plateau in the plastic range. This behavior
is shown in Figure 17.4 and indicates significant ductility,
which allows redistributionof local stresses without fracture.
This property makes carbon steel especially well suited for
connections.
Carbon steels are weldable and available as plates, bars,

and structural shapes. They are intended for service at atmo-
spheric temperature. The corrosion rate in Figure 17.5 for
copper-bearing carbon steel (0.20% minimum, Table 17.3)
is about one-half that of plain carbon steel.

High-Strength Low-Alloy Steel These steels have con-
trolled chemical compositions to develop yield and tensile
strengths greater than carbon steel, but with alloying addi-
tions smaller than those for alloy steels (Brockenbrough,
1992). The higher yield strength of Fy = 50 ksi (345MPa)
is achieved in the hot-rolled condition rather than through
heat treatment. As a result, they exhibit a well-defined yield
point and excellent ductility as shown in Figure 17.4.
High-strength low-alloy steels are weldable and available

as plates, bars, and structural shapes. These alloys also
have superior atmospheric corrosion resistance as shown in
Figure 17.5. Because of their desirable properties, Grade
50/345 steels are often the first choice of designers of small-
to medium-span bridges.

Heat-Treated Low-Alloy Steel High-strength low-alloy
steels can be heat treated to obtain higher yield strengths
of Fy = 70 ksi (485MPa). The chemical composition for
Grades 50/345W and 70/485W in Table 17.3 are nearly the
same. The quenching-and-tempering heat treatment changes
the microstructure of the steel and increases its strength,
hardness, and toughness.
The heat treatment removes the well-defined yield point

from the high-strength steels as shown in Figure 17.4. There
is a more gradual transition from elastic to inelastic behavior.
The yield strength for these steels is usually determined by
the 0.5% extension under load (EUL) definition or the 0.2%
offset definition.
The heat-treated low-alloysteels areweldable but are avail-

able only in plates. Their atmospheric corrosion resistance is
similar to that of high-strength low-alloy steels.

High-Strength Heat-Treated Alloy Steel Alloy steels
are those with chemical compositions that are not in the
high-strength low-alloy classification (see Table 17.3). The
quenching-and-tempering heat treatment is similar to that
for the low-alloy steels, but the different composition of
alloying elements develops higher strength of Fy = 100 ksi
(690MPa) and greater toughness at low temperature.
An atmospheric corrosion curve for the alloy steels (Grade

100/690) is given in Figure 17.5 and shows the best corrosion
resistance of the four groups of steels.
Again the yield strength is determined by the 0.5%

EUL definition or the 0.2% offset definition shown in
Figure 17.4. By observing the complete stress–strain curves
in Figure 17.3, note the heat-treated steels reach their peak
tensile strength and decrease rapidly at lower strains than the
untreated steels. This lower ductility may cause problems in
some structural applications and caution must be exercised
when heat-treated steels are used.
The high-strengthheat-treated alloy steels are weldable but

are available only in structural steel plates for bridges.
Strength, weldability, toughness, ductility, corrosion

resistance, and formability are important performance char-
acteristics. High-performance steel (HPS) has an optimized
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balance of these properties to give maximum performance
in bridge structures. The main two differences compared to
conventional Grade 50 steels are improved weldability and
toughness. Corrosion resistance and ductility are nearly the
same as conventional Grade 50W. The fatigue resistance is
the same as well.
Lane and co-workers (1997) summarize the importance

HPS and its increased weldability and the difficulties with
conventional steels:

Conventional 485-MP (50 ksi) steels typically require
preheating of plates, control of temperature between weld
passes, controlled handling of welding consumables, pre-
cisely controlled energy input, and postweld heat treatment
in some cases. When all of these operations are performed
correctly, it is usually possible to produce high-quality welds
in conventional high-strength steel. Difficulties can arise,
however, when one or more of these operations deviate from
prescribed procedures. Minor differences in procedure and
quality control are the norm for bridge construction, where
many different fabricators in different parts of the country
work under different climates and conditions. The result
is that conventional high-strength steels have experienced
a higher percentage of weld problems compared to lower
strength steels. Another disadvantage is that these controls,
particularly the control of temperature, add significantly to
the cost and time required for welding. The goal in develop-
ing HPS grades is to provide a steel that is forgiving enough
to be welded under a variety of conditions without requiring
excessive weld-process controls that increase costs.

The minimum specifications for toughness required by a
steel is set by AASHTO. For fracture-critical members in
the most severe climate (zone III), AASHTO currently re-
quires a minimum Charpy V-notch (CVN) energy of 35 ft-lb
at −10◦F [A6.6.2].
Experimental toughness values reported by Barsom (1996)

from the first heat of HPS-70W ranged from a minimum of
about 120 ft-lb to a maximum of 240 ft-lb at −10◦F. This far
exceeds the current AASHTO minimum requirements and
provides a significant resistance to brittle fracture. This en-
ergy absorption provides added confidence to enable design-
ers to use the full strength of this steel. Figure 17.6 illustrates
the increased toughness of HPS.
Note that the brittle-ductile transition of HPS occurs at a

much lower temperature than conventional Grade 50W steel.
This means that HPS 70W (HPS 485W) remains fully ductile
at lower temperatures where conventional Grade 50W steel
begins to show brittle behavior. Although the fatigue per-
formance is not improved with HPS, once a crack initiates
its propagation in cold temperatures, it is slowed or perhaps
mitigated because of the increased toughness. This increased
tolerance can be the difference between catching a crack dur-
ing inspection and a catastrophic brittle collapse.

Fig. 17.6 Fracture toughness comparison. (After Hamby et al.,
2002.)

Nebraska DOT was the first to use HPS 70W in the con-
struction of the Snyder Bridge—a welded plate girder steel
bridge. The bridge was opened to traffic in October 1997.
The intent was to use this first HPS 70W bridge to gain ex-
perience on the HPS fabrication process. The original design
utilized conventional grade 50W steel, and the designer just
replaced the grade 50W steel with HPS 70W steel of equal
size—not an economical design. The fabricators concluded
no significant changes were needed in the HPS fabrication
process.
Since that first bridge, numerous agencies have built HPS

bridges and they are becoming common place in U.S. bridge
engineering practice. The cost comparisons with more con-
ventional design can be significant.
In a research project, Barker and Schrage (2000) illus-

trated that savings in weight and cost can be substantial; see
Tables 17.4 and 17.5. Here a bridge in the Missouri DOT
inventory was designed to a design ratio of nearly one in all
cases. These data illustrate that the use of fewer girder lines
results in lower cost, which is typical of all materials and,
second, that HPS hybrid design is the most economical.
A wealth of HPS literature is available in the trade and

research literature. Other examples include work by Aziz-
inamini et al. (2004), Dexter et al. (2004), and Wasserman
(2003) that might be of interest to the bridge designer.

17.2.8 Effects of Repeated Stress (Fatigue)

When designing bridge structures in steel, a designer must be
aware of the effect of repeated stresses. Vehicles passing any
given location are repeated time and time again. On a heavily
traveled interstate highway with a typical mix of trucks in
the traffic, the number of maximum stress repetitions can be
millions in a year.
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Table 17.4 Bridge Design Alternatives: Summary

Steel Weight Tonnes (Tons)
Design Girder Total Additional
Alternative Lines Diaphragms Stiffeners 45W (50W) HPS Total

9 Girder 9 120 38 326.6 0 326.6
345W(50W) (360.1) (0) (360.1)
7 Girder 7 90 46 310.5 0 310.5
345W(50W) (342.3) (0) (342.3)
9 Girder HPS 9 120 4 13.2 264.6 277.8

(14.6) (291.7) (306.3)
8 Girder HPS 8 105 2 13.0 259.7 272.7

(14.3) (286.3) (300.6)
7 Girder HPS 7 90 2 12.9 257.7 270.6

(14.2) (284.1) (298.3)
7 Girder Hybrid 7 90 28 182.7 94.0 276.7

(201.4) (103.6) (305.0)

After Barker and Schrage (2000).

Table 17.5 Bridge Design Alternatives: Summary of Cost Savings

Current HPS Mat. Costs Projected HPS Mat. Costs

% Cost Savings
over 9
Girder

% Cost Savings
over 7
Girder

% Cost Savings
over 9
Girder

% Cost Savings
over 7
Girder

Design Alternative 345W(50W) 345W (50W) 345W(50W) 345W(50W)

9 Girder 345W(50W) Base −9.3% Base −9.3%
7 Girder 345W(50W) 8.5% Base 8.5% Base
9 Girder HPS −9.7% −20.0% −0.5% −9.9%
8 Girder HPS −2.6% −12.2% 6.4% −2.4%
7 Girder HPS 0.4% −8.9% 9.4% 0.9%
7 Girder Hybrid 18.6% 11.0% 21.9% 14.6%

After Barker and Schrage (2000).

These repeated stresses are produced by service loads, and
the maximum stresses in the base metal of the chosen cross
section are less than the strength of the material. However,
if there is a stress raiser due to a discontinuity in metallurgy
or geometry in the base metal, the stress at the discontinuity
can easily double or triple the stress calculated from the ser-
vice loads. Even though this high stress is intermittent, if it is
repeated many times, damage accumulates, cracks form, and
fracture of the member can result.
This failure mechanism, which consists of the forma-

tion and growth of cracks under the action of repeated
stresses, each of which is insufficient by itself to cause
failure, is called fatigue (Gurney, 1992). The metal just gets
“tired” of being subjected to moderate-level stresses again
and again. Hence, fatigue is a good word to describe this
phenomenon.

Determination of Fatigue Strength Fatigue strength is
not a material constant like yield strength or modulus of
elasticity. It is dependent on the particular joint configuration
involved and can realistically only be determined experimen-
tally. Because most of the stress concentration problems due
to discontinuities in geometry and metallurgy are associated
with welded connections, most of the testing for fatigue
strength has been done on welded joint configurations.
The procedure followed for each welded connection is to

subject a series of identical specimens to a stress range S that
is less than the yield stress of the base metal and to repeat
that stress range for N cycles until the connection fails. As
the stress range is reduced, the number of cycles to failure
increases. The results of the tests are usually plotted as log S
versus log N graphs. A typical S–N curve for a welded joint
is shown in Figure 17.7. At any point on the curve, the stress
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log (Cycles to Failure, N )

Fig. 17.7 Typical S–N curve for welded joints.

Fig. 17.8 Fatigue strength compared to static strength (Gurney,
1992). [From Constructional Steel Design: An InternationalGuide,
P. J. Dowling, J. E. Harding, and R. Bjorhovde, eds., Copyright ©
1992 by Elsevier Science Ltd (now Chapman and Hall, Andover,
England), with permission.]

value is the fatigue strength and the number of cycles is the
fatigue life at that level of stress.
Notice that when the stress range is reduced to a par-

ticular value, an unlimited number of stress cycles can be
applied without causing failure. This limiting stress is called
the fatigue limit or endurance limit.

Influence of Strength of the Base Material The fatigue
strength of unwelded components increases with the tensile
strength of the base material. This fatigue strength is shown
in Figure 17.8 for both solid round and notched specimens.

However, if high-strength steel is used in welded compo-
nents, no apparent increase in the fatigue strength is apparent.
The explanation for the difference in behavior is that in the

unwelded material cracks must first be formed before they
can propagate and cause failure, while in the welded joint
small cracks already exist and all they need to do is propa-
gate. Rate of crack propagation does not vary significantly
with tensile strength; therefore, fatigue strength of welded
joints is independent of the steel from which they are fabri-
cated (Gurney, 1992).

Influence of Residual Stresses In general, welded joints
are not stress relieved, so it is reasonable to assume that
residual stresses σ r exist somewhere in the connection.
If a stress cycle with range S is applied, the actual stress
range moves from σ r to σ r ± S, and the nominal stress
range is S. Therefore, it is possible to express the fatigue
behavior of a welded joint in terms of stress range alone
without knowing the actual maximum and minimum values.
In the AASHTO (2010) LRFD Bridge Specifications, load-
induced fatigue considerations are expressed in terms of
stress range; residual stresses are not considered [A6.6.1.2].

Closing Remarks on Fatigue Fatigue is the most common
cause of structural steel failure, which is caused by not con-
sidering this failure mode at the design stage. Good design
requires careful assessment. Adequate attention to joint se-
lection and detailing and knowledge of service load require-
ments can minimize the risk of failure, while ignorance or
neglect of these factors can be catastrophic (Gurney, 1992).

17.2.9 Brittle Fracture Considerations

A bridge designer must understand the conditions that cause
brittle fractures to occur in structural steel. Brittle fractures
are to be avoided because they are nonductile and can
occur at relatively low stresses. When certain conditions are
present, cracks can propagate rapidly and sudden failure of
a member can result.
One of the causes of a brittle fracture is a triaxial tension

stress state that can be present at a notch in an element or
a restrained discontinuity in a welded connection. When a
ductile failure occurs, shear along slip planes is allowed to
develop. This sliding between planes of the material can
be seen in the necking down of the cross section during a
standard tensile coupon test. The movement along the slip
planes produces the observed yield plateau and an increase in
deformation that characterizes a ductile failure. In looking
at a cross section after failure, it is possible to distinguish
the crystalline appearance of the brittle fracture area from
the fibrous appearance of the shear plane area and its char-
acteristic shear lip. The greater the percentage of shear area
on the cross section, the greater the ductility.
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In the uniaxial tension test, there is no lateral constraint to
prevent the development of the shear slip planes. However,
stress concentrations at a notch or stresses developed due to
cooling of a restrained discontinuousweld can produce a tri-
axial tension state of stress in which shear cannot develop.
When an impact load produces additional tensile stresses,
often on the tension side caused by bending, a sudden brittle
fracture may occur.
Another cause of brittle fracture is a low-temperature

environment. Structural steels may exhibit ductile behavior
at temperatures above 32◦F (0◦C) but change to brittle
fracture when the temperature drops. A number of tests have
been developed to measure the relative susceptibility of
steel to brittle fracture with temperature. One of these is the
Charpy V-notch impact test. This test consists of a simple
beam specimen with a standard size V-notch at midspan that
is fractured by a blow from a swinging pendulum as shown
in Figure 17.9. The amount of energy required to fracture
the specimen is determined by the difference in height of
the pendulum before and after striking the small beam. The
fracture energy can be correlated to the percent of the cross
section that fails by shear. A higher energy is associated
with the greater the percentage of shear failure. A typical

Fig. 17.9 Charpy V-notch impact test. (After Barsom, 1992.)
[From Constructional Steel Design: An International Guide, P. J.
Dowling, J. E. Harding, and R. Bjorhovde, eds., Copyright ©
1992 by Elsevier Science Ltd (now Chapman and Hall, Andover,
England), with permission.]

Fig. 17.10 Transition from ductile to brittle behavior for low-
carbon steel.

plot of the results of a Charpy V-notch test with variation in
temperature is given in Figure 17.10.
As illustrated in Figure 17.10, the energy absorbed dur-

ing fracture decreases gradually as temperature is reduced
until it drops dramatically at some transition temperature.
The temperature at which the specimen exhibits little duc-
tility is called the nil ductility transformation (NDT) tem-
perature. The NDT temperature can be determined from the
CharpyV-notch test as the temperature at a specified level of
absorbed energy or the temperature at which a given percent-
age of the cross section fails in shear. The AASHTO (2010)
LRFDBridge Specifications giveminimum absorbed energy
values to predict the fracture toughness of bridge steels under
different temperature conditions [A6.6.2].
Welded connections must be detailed to avoid triaxial

tensile stresses and the potential for brittle fracture. An
example is the welded connection of intermediate stiffeners
to the web of plate girders. In times past, intermediate
stiffeners were full height and were often welded to both the
compression and tension flanges. If the stiffener is welded
to the tension flange as shown in Figure 17.11(a), restrained
cooling of welds in three directions develops triaxial tensile
stresses in the web. Often a notchlike stress raiser is present
in the welded connection due to material flaws, cut-outs,
undercuts, or arc strikes. If principal tensile stresses due
to weld residual stresses, notch stress concentrations, and
flexural tension in three principal directions reach the same
value, then shear stresses vanish and a brittle fracture results.
If these conditions in the welded connection are accompa-

nied by a drop in temperature, the energy required to initiate
a brittle fracture drops significantly (Fig. 17.10) and the frac-
ture can occur prematurely. Such web fractures occurred at
the welded attachment of intermediate stiffeners to the ten-
sion flange of the LaFayette Street Bridge during a cold win-
ter in St. Paul, Minnesota. After the investigation of the web



374 17 STEEL BRIDGES

Fig. 17.11 Welded connections between an intermediate stiffener and the tension flange of a plate girder: (a) improper detail (no cope and
intersecting welds) and (b) recommended detail for stiffeners not connected to cross frames.

fractures in the LaFayette Street Bridge, welding of interme-
diate stiffeners to tension flanges was no longer allowed (or
permitted with a cope).
For stiffeners attached to cross frames and diaphragms,

welds shall be provided on both flanges in order to avoid
distortion-induced fatigue in the web. As a result, the current
specifications [A6.10.11.1.1] require that the stiffener be
stopped short of the tension flange [Fig. 17.11(b)] or coped,
so that they cannot be inadvertently attached.

17.3 SUMMARY

The structural performance of steel bridges is strongly
dependent upon material selection and connection details.
Unlike steel buildings, bridges are subjected to years of re-
peated heavy loads that can create fatigue cracks that could
lead to collapse. All welds and associated processes require
careful attention.
Again, unlikebuildings, steel bridges are subjected to envi-

ronmental conditions that change temperature to levels that
could cause brittle fracture. Environmental influences further
subject steel to de-icing chemicals that can cause corrosion
leading to an effective loss in cross section. Often such corro-
sion can be seen near deck expansion joints that leak or deck
drains that are designed poorly.
Steel bridges are often used today for longer spans and

curved alignment associated with “fly-over” ramps where
other bridge types are more difficult to construct or lack
economy.
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PROBLEM
This problem references the plans for the bridge over the Lit-
tle Laramie River. SeeWiley’s web site for a pdf. This bridge
is a single-span, four-girder bridge that has clean details; its
interpretation is straightforward for the student. These plans
are used with permission.

17.1 For the bridge over the Little Laramie River, make a
table with all the different types of steels used in this
bridge and the general location, for example, bolts.



CHAPTER 18

Limit States and General
Requirements

18.1 LIMIT STATES

Structural steel bridges must be designed so that their per-
formance under load does not go beyond the limit states
prescribed by the AASHTO (2010) Bridge Specifications.
These limit states are applicable at all stages in the life of
a bridge and include service, fatigue and fracture, strength,
and extreme event limit states. The condition that must be
met for each limit state is that the factored resistance is
greater than the effect of the factored load combinations,
which can be expressed as

φRn ≥
∑

ηiγiQi (18.1)

where φ is a statistically based resistance factor for the
limit state being examined; Rn is the nominal resistance;
ηi is a load multiplier relating to ductility, redundancy, and
operational importance; γ i is a statistically based load factor
applied to the force effects as defined for each limit state
in Table 5.1; and Qi is a load effect. The various factors in
Eq. 18.1 are discussed more fully in Chapter 5.

18.1.1 Service Limit State

Service limit states relate to the performance of a bridge sub-
jected to the forces appliedwhen it is put into service. In steel
structures, limitations are placed on deflections and inelas-
tic deformations under service loads. By limitingdeflections,
adequate stiffness is provided and vibration is reduced to an
acceptable level. By controlling local yielding, permanent
inelastic deformations are avoided and rideability is assumed
to be improved [A6.10.4].*

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-
tions are enclosed in brackets and preceded by the letter A if a specification
article and by the letter C if commentary.

Because the provisions for service limit state are based on
experience and engineering judgment, rather than calibrated
statistically, the resistance factor φ, the load modifier ηi,
and the load factors γ i in Eq. 18.1 are taken as unity. One
exception is the possibilityof an overloaded vehicle that may
produce excessive local stresses. For this case, the service II
limit state in Table 5.1 with a vehicle live load factor of 1.30
is used.

Deflection Limit Deflection limitations are optional. If
required by an owner, the deflection limit can be taken as
the span/800 for vehicular loads or other limit specified by
the owner [A2.5.2.6]. In calculating deflections, assump-
tions are made on load distribution to the girders, flexural
stiffness of the girders in participation with the bridge deck,
and stiffness contributions of attachments such as railings
and concrete barriers. In general, more stiffness exists in a
bridge system than is usually implied by typical engineering
calculations. As a result, deflection calculations (as with all
other calculations) are estimates. When this uncertainty is
coupled with the subjective criteria of what constitutes an
annoying vibration (or other reasons to limit deflection), the
establishment of deflection limitations is not encouraged
by the AASHTO Specifications. Most owners, however,
require deflection limits in order to provide an acceptable
stiffness that likely improves overall system performance.
For example, deck durability may be indirectly improved by
overall system stiffness.

Inelastic Deformation Limit Inelastic deformation limita-
tions are mandatory. Local yielding under service II loads
is not permitted [A6.10.4]. This local yielding is addressed
by Eq. 18.1 for a strength limit state when the maximum
force effects are determined by an elastic analysis. However,
if inelastic moment redistribution follows an elastic analysis
[A6.10.4.2], the concept of plastic hinging is introduced and
the stresses must be checked. In this case, flange stresses in
positive and negative bending shall not exceed [A6.10.4.2]:

� For steel top flanges of composite sections

ff ≤ 0.95RhFyf (18.2a)

� For steel bottom flanges of composite sections

ff + fl

2
≤ 0.95RhFyf (18.2b)

� For both steel flanges of noncomposite sections

ff + fl

2
≤ 0.80RhFyf (18.3)

whereRh is the flange-stress reduction factor for hybrid gird-
ers [A6.10.1.10.1], ff is the elastic flange stress caused by
the service II loading (ksi, MPa), fl is the elastic flange lat-
eral bending stress (ksi, MPa) and F yf is the yield stress of
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the flange (ksi, MPa). For the case of a girder with the same
steel in the web and flanges, Rh = 1.0.
Equation 18.2 (or Eq. 18.3) prevents the development

of permanent deformation due to localized yielding of the
flanges under an occasional service overload. The flange
lateral bending (FLB) stresses are due to the bending of the
bottom flange out of the plane of the girder. Such stresses
arise from formwork bracing on exterior girders, forces
from cross frames in skewed bridges, and forces that arise
from curved aligments. The FLB computation is described
in A6.10.6.1. Rigorous 3D analysis is suggested for com-
plex bridges to determine these stresses. Herein, simplified
approaches are taken for estimate the FLB. These methods
are described later.

18.1.2 Fatigue and Fracture Limit State

Design for the fatigue limit state involves limiting the
live-load stress range produced by the fatigue truck to a
value suitable for the number of stress range repetitions
expected over the life of the bridge. Design for the fracture
limit state involves the selection of steel that has adequate
fracture toughness (measured by Charpy V-notch test) for
the expected temperature range [A6.10.5].

Load-Induced and Distortion-Induced Fatigue Load-
induced fatigue can occur when live load produces a
repetitive net tensile stress at a connection detail.When cross
frames or diaphragms are connected to girder webs through
connection plates that restrict movement, distortion-induced
fatigue can occur. Distortion-induced fatigue is important in
many cases; however, the following discussion is only for
load-induced fatigue.
As discussed previously, fatigue life is determined by

the tensile stress range in the connection detail. By using
the stress range as the governing criteria, the values of the
maximum and minimum tensile stresses need not be known.
Residual stresses are implicitly considered in the determina-
tion of the fatigue resistance values. Permanent load effects
need not be considered in the stress range computation
[A6.6.1].
The tensile stress range is determined by considering place-

ment of the fatigue truck live load in different spans of a
bridge. If the bridge is a simple span, there is only a max-
imum tensile live-load stress; the minimum live-load stress
is zero. In calculating these stresses, a linear elastic analysis
is used.
In some regions along the span of a girder, the compres-

sive stresses due to unfactored permanent loads (e.g., dead
loads) are greater than the tensile live-load stresses due to
the fatigue truck with its load factor taken from Table 5.1.
However, before fatigue can be ignored in these regions, the
compressive stress must be at least twice the tensile stress
because the heaviest truck expected to cross the bridge is ap-
proximately twice the fatigue truck used in calculating the
tensile live-load stress [A6.6.1.2.1].

Two fatigue limit states shall be checked [A3.4.1,
Table 5.1]:

I—Fatigue limit state associated with infinite load-induced
fatigue life, which reflects load levels expected often
enough to propagate a crack.

II—Fatigue limit state associated with finite fatigue life,
which reflects that load levels representative of the
effective stress range of the truck population with respect
to a small number of stress range cycles and to their
cumulative effects.

Fatigue Design Criteria Using Eq. 18.1 in terms of
fatigue load and fatigue resistance, each connection detail
must satisfy

φ(�F)n ≥ ηγ (�f ) (18.4)

where (�F )n is the nominal fatigue resistance (ksi,MPa) and
(�f ) is the live-load stress range due to the fatigue truck (ksi,
MPa). For the fatigue limit state φ = 1.0 and η = 1.0, so that
Eq. 18.4 becomes

(�F)n = (�F)TH ≥ γfatigue–I (�f ) (18.5a)

(�F)n = f (number of cycles) ≥ γfatigue–II (�f ) (18.5b)

where γ are the load factors in Table 5.1 for the fatigue limit
states, (�F) TH is the infinite fatigue life resistance (thresh-
old) (18.5a), and f (number of cycle) is the finite fatigue life
resistance (18.5b).
For a bridge that is expected to experience a small number

of cycles in the 75-year design life, the finite fatigue limit
is appropriate and Eq. 18.5b is used. For typical bridges, the
infinite fatigue limit is used as per Eq. 18.5a. The number
of cycles where these two equations are equal provides the
“break point” of small number of cycles. Table 18.1 provides
these values.

Table 18.1 75-Year (ADTT)SL Equivalent to Infinite Life
[A6.6.1.2.3-2]

Detail Category
75-Year (ADTT)SL Equivalent to
Infinite Life (trucks per day)

A 530
B 860
B′ 1035
C 1290
C′ 745
D 1875
E 3530
E′ 6485

From AASHTO Table 6.6.1.2.3-2. From AASHTO LRFD Bridge
Design Specifications , Copyright © 2010 by the American Asso-
ciation of State Highway and Transportation Officials, Washington,
DC. Used by permission.
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Fatigue Load As discussed in Chapter 8, the fatigue vehi-
cle is a single design truck with a front axle spacing of 14 ft
(4300mm), a rear axle spacing of 30 ft (9000mm), a dynamic
load allowance of 15%, and a load factor of 0.75 or 1.5.
For finite fatigue life (fatigue II), resistance depends on the

number of accumulated stress-range cycles and therefore the
frequency of application of the fatigue load. This frequency
shall be taken as the single-lane average daily truck traffic,
ADTTSL [A3.6.1.4.2]. Unless a traffic survey has been con-
ducted, the single-lane value can be estimated from the aver-
age daily truck traffic (ADTT) by

ADTTSL = p × ADTT (18.6)

where p is the fraction of multiple lanes of truck traffic in
a single lane taken from Table 8.3. If only the average daily
traffic ADT is known, the ADTT can be determined by mul-
tiplying by the fraction of trucks in the traffic (Table 8.4). An
upper bound on the total number of cars and trucks is about
20,000 vehicles per lane per day and can be used to estimate
ADT.
The number N of stress-range cycles to be considered are

those due to the trucks anticipated to cross the bridge in
the most heavily traveled lane during its design life. For a
75-year design life, this is expressed as [A6.6.1.2.5]

N = (365) (75) n
(
ADTTSL

)
(18.7)

where n is the number of stress-range cycles per truck pas-
sage taken from Table 18.2. The values of n greater than 1.0
indicate additional cycles due to a truck passing over mul-
tiple areas of significant influence. For example, a negative
moment region of a two-span bridge experiences significant
stress due to loads in adjacent spans, that is, two cycles per

Table 18.2 Cycles per Truck Passage, n

Span Length

Longitudinal Members
> 40 ft

(12 000mm)
≤ 40 ft

(12 000mm)

Simple-span girders 1.0 2.0
Continuous girders
1. Near interior support 1.5 2.0
2. Elsewhere 1.0 2.0

Cantilever girders 5.0
Trusses 1.0

Spacing

> 20 ft
(6000mm)

≤ 20 ft
(6000mm)

Transverse members 1.0 2.0

In AASHTO Table 6.6.1.2.5-2. From AASHTO LRFD Bridge
Design Specifications , Copyright © 2010 by the American Asso-
ciation of State Highway and Transportation Officials, Washington,
DC. Used by permission.

truck crossing. Agencies have ADTT data for major routes,
and the percentage of trucks can vary significantly from the
specification values. For example, a cross-country interstate
route in a lightly populated area can be 50% trucks or higher.
For the infinite life fatigue limit state (fatigue I), the num-

ber of cycles need not be estimated, but rather the load ef-
fect is compared to the threshold value or constant amplitude
fatigue limit. See Table 18.1 for limits.

Example 18.1 Estimate the number of stress-range cycles
N to be considered in the fatigue design of a two-lane, 35-ft
(10,670-mm) simple span bridge that carries interstate traffic
in one direction.Use an ADT of 20,000 vehicles per lane per
day.
Table 8.4 gives 0.20 as the fraction of trucks in interstate

traffic, so that

ADTT = 0.20 (2) (20,000) = 8000 trucks/day

Table 8.3 gives 0.85 as the fraction of truck traffic in a sin-
gle lane when two lanes are available to trucks, thus Eq. 18.6
yields

ADTTSL = 0.85 (8000) = 6800 trucks/day

Table 18.2 gives n = 2.0 as the cycles per truck passage
and Eq. 18.7 results in

N =
(
365

day

yr

)
(75yr)

(
2.0

cycle

truck

) (
6800

trucks

day

)

= 372 × 106 cycles

Because of the large number of cycles per day, fatigue limit
state II will likely be used, infinite fatigue life is the design
criterion, and the number of cycles does not matter.

Detail Categories Components and details susceptible
to load-induced fatigue are grouped into eight categories
according to their fatigue resistance [A6.6.1.2.3]. The cate-
gories are assigned letter grades with A being the best and
E′ the worst. The A and B detail categories are for plain
members and well-prepared welded connections in builtup
members without attachments, usually with the weld axis
in the direction of the applied stress. The D and E detail
categories are assigned to fillet-welded attachments and
groove-welded attachments without adequate transition
radius or with unequal plate thicknesses. Category C can
apply to welding of attachments by providing a transition
radius greater than 6 in. (150mm) and proper grinding of the
weld. The requirements for the various detail categories are
summarized in Table 18.3.

Fatigue Resistance As shown in the typical S–N curve of
Figure 17.7, fatigue resistance is divided into two types of
behavior: one that gives infinite life and the other a finite life.
If all the tensile stress range (load effect) is below the fatigue
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Table 18.3 Detail Categories for Load-Induced Fatigue

Description

1.1 Base metal, except
noncoated weathering steel,
with rolled or cleaned surfaces.
Flame-cut edges with surface
roughness value of 1,000 μ-in
or less, but without re-entrant
corners.

A 24 Away from all
welds or
structural

connections

Away from all
welds or
structural

connections

At any external
edge

In the base
metal at the re-
entrant corner

of the weld
access hole

In the net
section

originating at
the side of the

hole

16

10

10

7

250 × 108

120 × 108

44 × 108

44 × 108

22 × 108

B

C

C

D

1.2 Noncoated weathering steel
base metal with rolled or
cleaned surfaces designed and
detailed in accordance with
FHWA (1989). Flame-cut edges
with surface roughness value of
1,000 μ-in. or less, but without
re-entrant corners.

1.3 Member with re-entrant
corners at copes, cuts, block-
outs or other geometrical
discontinuities made to the
requirements of AASHTO/AWS
D1.5, except weld access holes.

1.4 Rolled cross sections with
weld access holes made to the
requirements of AASHTO/AWS
D1.5, Article 3.2.4.

1.5 Open holes in members
(Brown et al.., 2007).

Category

Constant
A

(ksi3)
Potential Crack
Initiation Point Illustrative Examples

Threshold
(ΔF )TH

ksi

Section 1—Plain Material away from Any Welding

2.1 Base metal at the gross
section of high-strength bolted
joints designed as slip-critical
connections with pre-tensioned
high-strength bolts installed in
holes drilled full size or
subpunched and reamed to size—
e.g., bolted flange and web
splices and bolted stiffeners.
(Note: see Condition 2.3 for bolt
holes punched full size.)

B 16 Through the
gross section
near the hole

120 × 108

Section 2—Connected Material in Mechanically Fastened Joints
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Table 18.3 (Continued )

Description Category

Constant
A

(ksi3)
Potential Crack
Initiation Point Illustrative Examples

Threshold
(ΔF )TH

ksi

or CJP
or CJP

16

7

16

4.5

From surface or
internal

discontinuities
in the weld

away from the
end of the weld

In the net
section

originating at
the side of the

hole

In the net
section

originating at
the side of the
hole or through

the gross
section near the

hole, as
applicable

In the net
section

originating at
the side of the

hole

B

D

E

B

2.2 Base metal at the net section
of high-strength bolted joints
designed as bearing-type
connections, but fabricated and
installed to all requirements for
slip-critical connections with
pre-tensioned high strength
bolts installed in holes drilled
full size or subpunched and
reamed to size. (Note: see
Condition 2.3 for bolt holes
punched full size.)

2.3 Base metal at the net section
of all bolted connections in hot
dipped galvanized members
(Huhn and Valtinat, 2004); base
metal at the appropriate section
defined in Condition 2.1 or 2.2,
as applicable, of high-strength
bolted joints with pretensioned
bolts installed in holes punched
full size (Brown et al., 2007),
and base metal at the net section
of other mechanically fastened
joints, except for eyebars and
pin plates; e.g., joints using
ASTM A307 bolts or non
pretensioned high strength bolts.

2.4 Base metal at the net section
of eyebar heads or pin plates
(Note: for base metal in the
shank of eyebar or through the
gross section of pin plates, see
Condition 1.1 or 1.2, as
applicable).

3.1 Base metal and weld metal
in members without attachments
built-up of plates or shapes
connected by continuous
longitudinal complete joint
penetration groove welds back-
gouged and welded from the
second side, or by continuous
fillet welds parallel to the
direction of applied stress.

120 × 108

11 × 108

120 × 108

22 × 108

Section 3—Welded Joints Joining Components of Built-Up Members

3.2 Base metal and weld metal in
members without attachments
built-up of plates or shapes
connected by continuous
longitudinal complete joint
penetration groove welds with
backing bars not removed, or by
continuous partial joint
penetration groove welds parallel
to the direction of applied stress.

B' 61 × 108 12 From surface or
internal

discontinuities
in the weld,

including weld
attaching

backing bars

(continued overleaf )
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Table 18.3 (Continued )

Description Category

Constant
A

(ksi3)
Potential Crack
Initiation Point Illustrative Examples

Threshold
(ΔF )TH

ksi

3.3 Base metal and weld metal
at the termination of
longitudinal welds at weld
access holes made to the
requirements of AASHTO/AWS
D1.5, Article 3.2.4 in built-up
members. (Note: does not
include the flange butt splice).

3.4 Base metal and weld metal
in partial length welded cover
plates connected by continuous
fillet welds parallel to the
direction of applied stress.

3.5 Base metal at the
termination of partial length
welded cover plates having
square or tapered ends that are
narrower than the flange, with
or without welds across the
ends, or cover plates that are
wider than the flange with welds
across the ends:

22 × 108 7 From the weld
termination into

the web or
flange

From surface or
internal

discontinuities
in the weld

away from the
end of the weld

In the flange at
the toe of the
end weld or in

the flange at the
termination of

the longitudinal
weld or in the
edge of the
flange with
wide cover

plates

In the flange at
the termination

of the
longitudinal

weld

120 × 108 16

11 × 108

3.9 × 108

4.5

2.6

120 × 108 16

D

B

E

E'

E'

B3.6 Base metal at the
termination of partial length
welded cover plates with slip-
critical bolted end connections
satisfying the requirements of
Article 6.10.12.2.3.

End of Weld
(One Bolt Space)

End Weld Present
w/ or w/o End Weld

3.7 Base metal at the
termination of partial length
welded cover plates that are
wider than the flange and
without welds across the ends.

4.1 Base metal at the toe of
transverse stiffener-to-flange
fillet welds and transverse
stiffener-to-web fillet welds.
(Note: includes similar welds
on bearing stiffeners and
connection plates).

C′ 12

2.6 In the edge of
the flange at the
end of the cover

plate weld

Initiating from
the geometrical
discontinuity at
the toe of the

fillet weld
extending into
the base metal

3.9 × 108

44 × 108

No End Weld

TYP

Section 4—Welded Stiffener Connections

Flange thickness ≤ 0.8 in

Flange thickness > 0.8 in.
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Table 18.3 (Continued )

Description Category

Constant
A

(ksi3)
Potential Crack
Initiation Point Illustrative Examples

Threshold
(ΔF )TH

ksi

4.2 Base metal and weld metal
in longitudinal web or
longitudinal box-flange
stiffeners connected
by continuous fillet welds
parallel to the direction of
applied stress.

4.3 Base metal at the
termination of longitudinal
stiffener-to-web or longitudinal
stiffener-to-box flange welds:

With the stiffener attached by
fillet welds and with no
transition radius provided at the
termination:

Stiffener thickness < 1.0 in.

Stiffener thickness ≥ 1.0 in.

R ≥ 24 in.

24 in. > R ≥ 6 in.

B

E

B

E′

16

2.6

4.5

16 From the
surface or

internal
discontinuities

in the weld
away from the
end of the weld

In the primary
member at the
end of the weld
at the weld toe

In the primary
member near
the point of

tangency of the
radius

10

4.5

7

C

D

E

6 in. > R ≥ 2 in.

6 in. > R

With the stiffener attached by
welds and with a transition
radius R provided at the
termination with the weld
termination ground smooth:

120 × 108

11 × 108

3.9 × 108

120 × 108

44 × 108

11 × 108

22 × 108

Web or
Flange

Web or
Flange

Grind
Smooth

R
Stiffener

w/o Transition Radius

w/Transition Radius

StiffenerFillet, CJB or PJP

B 16

From internal
discontinuties

in the filler
metal or along

the fusion
boundary or at
the start of the

transition

12B′

Section 5—Welded Joints Transverse to the Direction of Primary Stress

5.1 Base metal and weld metal in
or adjacent to complete joint
penetration groove welded butt
splices, with weld soundness
established by NDT and with
welds ground smooth and flush
parallel to the direction of stress.
Transitions in thickness or width
shall be made on a slope no
greater than 1:2.5 (see also
Figure 6.13.6.2-1).

Fy < 100 ksi

Fy ≥ 100 ksi

120 × 108

61 × 108

CJP & Ground
Smooth

CJP & Ground
Smooth

CJP & Ground
Smooth

CJP &
Ground
Smooth

(continued overleaf )
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Table 18.3 (Continued )

Description Category

Constant
A

(ksi3)
Potential Crack
Initiation Point Illustrative Examples

Threshold
(ΔF )TH

ksi

From internal
discontinuties

in the filler
metal or 

discontinuities
along the fusion

boundary

From the
surface

discontinuity at
the toe of the

weld extending
into the base

metal or along
the fusion
boundary

16

10

B

C

5.2 Base metal and weld metal in
or adjacent to complete joint
penetration groove welded butt
splices, with weld soundness
established by NDT and with
welds ground parallel to the
direction of stress at transitions
in width made on a radius of not
less than 2 ft with the point of
tangency at the end of the groove
weld (see also Figure 6.13.6.2-1).

5.3 Base metal and weld metal in
or adjacent to the toe of complete
joint penetration groove welded T
or corner joints, or in complete
joint penetration groove welded
butt splices, with or without
transitions in thinkness having
slope no greater than 1:2.5 when
weld reinforcement is not
removed (Note: cracking in the
flange of the 'T' may occur due to
out-of-plane bending stresses
induced by the stem).

120 × 108

44 × 108
CJP

CJP W/ Weld
Reinf. in Place

CJP & Ground
Smooth

R ≥ 2.0 ft

5.4 Base metal and weld metal
at details where loaded
discontinuous plate elements
are connected with a pair of fillet
welds or partial joint penetration
groove welds on opposite sides
of the plate normal to the
direction of primary stress.

6.1 Base metal in a
longitudinally loaded component
at a transversely loaded detail
(e.g. a lateral connection plate)
attached by a weld parallel to
the direction of primary stress
and incorporating a transition
radius R with the weld
termination ground smooth.

Near point of
tangency of the

radius at the
edge of the

longitudinally
loaded

component

Section 6 — Transversely Loaded Welded Attachment

Initiating from
the geometrical
discontinuity at

the toe of the weld
extending into the

base metal or,
initiating at the

weld root subject
to tension

extending up and
then out through

the weld

R ≥ 24 in.

24 in. > R ≥ 6 in. 
6 in. > R ≥ 2 in. 
2 in. > R

(Note: Condition 6.2, 6.3 or 6.4,
as applicable, shall also be
checked.)

44 × 108 10

120 × 108

44 × 108

22 × 108

11 × 108

16B

C

D

E

10

7

4.5

CJP, PJP or Fillet

CJP, PJP or
Fillet

R

R

C as
adjusted

in Eq.
6.6.1.2.5-4

≥
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Table 18.3 (Continued )

Description Category

Constant
A

(ksi3)
Potential Crack
Initiation Point Illustrative Examples

Threshold
(ΔF )TH

ksi

Near points of
tangency of the
radius or in the
weld or at the

fusion boundary
of the

longitudinally
loaded

component or
the transversely

loaded
attachment

At the toe of the
weld either along
the edge of the
longitudinally

loaded
component or

the transversely
loaded

attachment

At the toe of the
weld along the

edge of the
thinner plate

In the weld
termination of
small radius

weld transitions

At the toe of the
weld along the

edge of the
thinner plate

6.2 Base metal in a transversely
loaded detail (e.g. a lateral
connection plate) attached to a
longitudinally loaded component of
equal thickness by a complete joint
penetration groove weld parallel to
the direction of primary stress and
incorporating a transition radius R,
with weld soundness established by
NDT and with the weld termination
ground smooth:

With the weld reinforcement
removed:

With the weld reinforcement not
removed:

(Note: Condition 6.1shall also be
checked.)

6.3 Base metal in a transversely
loaded detail (e.g. a lateral
connection plate) attached to a
longitudinally loaded component
of unequal thickness by a complete
joint penetration groove weld
parallel to the direction of primary
strees and incorporating a weld
transition radius R, with weld
soundness established by NDT and
with the weld termination ground
smooth:

With the weld reinforcement removed:

For any weld trasition radius with
the weld reinforcement not
removed:

(Note: Condition 6.1 shall also be
checked.)

R ≥ 24 in.

R ≥ 24 in.

R < 2 in.

R ≥ 2 in.

24 in. > R ≥ 6 in.

24 in. > R ≥ 6 in.

C

B 120 × 108

44 × 108

22 × 108

11 × 108

44 × 108

44 × 108

22 × 108

11 × 108

22 × 108

11 × 108

11 × 108

D

E

C

C

D

E

D

E

E

10

16

7

45

10

10

7

4.5

7

4.5

4.5

6 in. > R ≥ 2 in.

6 in. > R ≥ 2 in.

2 in. > R

2 in. > R

Weld Reinforcement Not Removed

Weld Reinforcement Removed

t1

t2

CJP

R

CJP

CJP

t

R

Weld Reinf. Removed
Weld Reinf. Not

Removed

R

t

t

(continued overleaf )
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Table 18.3 (Continued )

Description Category

Constant
A

(ksi3)
Potential Crack
Initiation Point Illustrative Examples

Threshold
(ΔF )TH

ksi

Fillet or PJP
on Both Sides

R

6.4 Base metal in a transversely
loaded detail (e.g. a lateral
connection plate) attached to a
longitudinally loaded component
by a fillet weld or a partial joint
penetration groove weld, with the
weld parallel to the direction of
primary stress 

(Note: Condition 6.1 shall also
be checked)

See
Condition

5.4

Section 7—Longitudinally Loaded Welded Attachments

In the primary
member at the
end of the weld
at the weld toe

At the toe of the
weld in the base

metal

Section 8—Miscellaneous

E'

E'

E

D

CL < 2 in.

2 in. ≤ L ≤ 12t or 4 in. 

L > 12t or 4 in. 

t < 1.0 in. 

t ≥ 1.0 in.

C

3.9 × 108

44 × 108

44 × 108

22 × 108

11 × 108

3.9 × 108

N/A

N/AD' 7

10

2.6

4.5

7

10

At the root of
the threads

extending into
the tensile
stress area

8.1 Base metal at stud-type
shear connectors attached by
fillet or automatic stud welding

8.2 Nonpretensioned
high-strength bolts, common
bolts, threaded anchor rods and
hanger rods with cut, ground or
rolled threads. Use the stress
range acting on the tensile stress
area due to live load plus prying
action when applicable.

(Fatigue II) Finite Life

(Fatigue I) Infinite Life

7.1 Base metal in a longitudinally
loaded component at a detail
with a length L in the direction of
the primary stress and a
thickness t attached by groove
or fillet welds parallel or
transverse to the direction of
primary stress where the detail
incorporates no transition radius: 

L

L

L
t

t

t

L

t

t

L

L

From AASHTO Table 6.6.1.2.3-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of
State Highway and Transportation Officials, Washington DC. Used by permission.
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limit or threshold stress, additional loading cycles will not
propagate fatigue cracks and the connection detail will have
a long (infinite) life. If just a “few” trucks pass that create
adequate stress ranges to exceed the threshold value, this can
invalidate the threshold and the fatigue curve just continues
to decrease with the number of cycles. Fatigue I attempts to
avoid this situationwhere some heavier truckwill not exceed
twice the threshold value. Fischer suggested 1 : 10000 passes
not exceed twice the threshold value (Fischer, 1967).
This general concept of fatigue resistance is expressed for

specific conditions by the following [A6.6.1.2.5]:

For fatigue load I combination and infinite fatigue life

(�F)n = (�F)TH (18.8a)

and for fatigue load II combination and finite life

(�F)n =
(

A

N

)1/3

(18.8b)

where (�F )n is the nominal fatigue resistance (ksi, MPa),
A is a detail category constant taken from Table 18.4
(ksi, MPa)3, N is the number of stress-range cycles from
Eq. 18.7, and (�F )TH is the constant-amplitude fatigue
threshold stress taken from Table 18.4 (ksi, MPa).
The S–N curves for all of the detail categories are repre-

sented in Eq. 18.8. These are plotted in Figure 18.1 by taking
the values fromTable 18.4 forA and (�F )TH. In the finite life
portion of the S–N curves, the effect of changes in the stress
range on the number of cycles to failure can be observed by
solving Eq. 18.8b for N to yield

N = A

(�F)3n
(18.9)

Table 18.4-US Detail Category Constant, A , and Fatigue
Thresholds

Detail Category
Constant,

A Times 1011 (ksi)3
Fatigue

Threshold (ksi)

A 250.0 24.0
B 120.0 16.0
B′ 61.0 12.0
C 44.0 10.0
C′ 44.0 12.0
D 22.0 7.0
E 11.0 4.5
E′ 3.9 2.6
A164 (A325M) bolts
in axial tension

17.1 31.0

M253 (A490M) bolts
in axial tension

31.5 38.0

From AASHTO Tables 6.6.1.2.5-1 and 6.6.1.2.5-3. From AASHTO
LRFD Bridge Design Specifications , Copyright © 2010 by the
American Association of State Highway and Transportation Offi-
cials, Washington, DC. Used by permission.

Table 18.4-SI Detail Category Constant, A , and Fatigue
Thresholds

Detail Category

Constant,
A Times 1011

(MPa)3

Fatigue
Threshold
(MPa)

A 82.0 165
B 39.3 110
B′ 20.0 82.7
C 14.4 69.0
C′ 14.4 82.7
D 7.21 48.3
E 3.61 31.0
E′ 1.28 17.9
A164 (A325M) bolts
in axial tension

5.61 214

M253 (A490M) bolts
in axial tension

10.3 262

From AASHTO Tables 6.6.1.2.5-1 and 6.6.1.2.5-3. From AASHTO
LRFD Bridge Design Specifications , Copyright © 2010 by the
American Association of State Highway and Transportation Offi-
cials, Washington, DC. Used by permission.
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Fig. 18.1 Stress range versus number of cycles [AASHTO Fig.
C6.6.1.2.5-1]. [From AASHTO LRFD Bridge Design Specifica-
tions , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by
permission.]

Therefore, if the stress range is cut in half, the number
of cycles to failure is increased by a multiple of 8. Simi-
larly, if the stress range is doubled, the life of the detail is
divided by 8.

Fracture Toughness Requirements Material in compo-
nents and connections subjected to tensile stresses due to the
strength I limit state of Table 5.1 must satisfy supplemental
impact requirements [A6.6.2]. As discussed in Section
17.2.7 on brittle fracture considerations, these supplemental
impact requirements relate to minimum energy absorbed
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Table 18.5-US Temperature Zone Designations for
Charpy V-Notch Requirements

Minimum Service Temperature Temperature Zone

0◦F and above 1
−1 to −30◦F 2
−31 to −60◦F 3

FromAASHTOTable 6.6.2-1. From AASHTO LRFDBridgeDesign
Specifications , Copyright © 2010 by the American Association of
State Highway and Transportation Officials, Washington, DC. Used
by permission.

in a Charpy V-notch test at a specified temperature. The
minimum service temperature at a bridge site determines the
temperature zone (see Table 18.5) for the Charpy V-notch
requirements.
A fracture-critical member (FCM) is defined as a member

with tensile stress whose failure is expected to cause the col-
lapse of the bridge. The material in an FCM must exhibit

Table 18.5-SI Temperature Zone Designations for
Charpy V-Notch Requirements

Minimum Service Temperature Temperature Zone

−18◦C and above 1
−19 to −34◦C 2
−35 to −51◦C 3

FromAASHTOTable 6.6.2-1. From AASHTOLRFDBridgeDesign
Specifications , Copyright © 2010 by the American Association of
State Highway and Transportation Officials, Washington, DC. Used
by permission.

greater toughness and an ability to absorb more energy with-
out fracture than a non-fracture-critical member. The Charpy
V-notch fracture toughness requirements for welded compo-
nents are given in Table 18.6 for different plate thicknesses
and temperature zones. The FCM values for absorbed energy
are approximately 50% greater than for non-FCM values at
the same temperature.

Table 18.6-US Charpy V-Notch Fracture Toughness Requirements for Welded Components

Material Fracture Critical Nonfracture Critical

Thickness Zone 2 Zone 3 Zone 2 Zone 3
Grade (in.) (ft-lb @ ◦F) (ft-lb @ ◦F) (ft-lb@ ◦F) (ft-lb @ ◦F)

Min. Test
Value Energy

(ft-lbs)

36 t ≤ 4 20 25 @ 40 25 @ 10 15 @ 40 15 @ 10
36/50W/50S t ≤ 2 20 25 @ 40 25 @ 10 15 @ 40 15 @ 10

2 < t ≤ 4 24 30 @ 40 30 @ 10 20 @ 40 20 @ 10
HPS 50W t ≤ 4 24 30 @ 10 30 @ 10 20 @ 10 20 @ 10
HPS 70W t ≤ 4 28 35 @ −10 35 @ −10 25 @ −10 25 @ −10
100/100W t ≤ 2.5 28 35 @ 0 35 @ −30 25 @ 0 25 @ −30

2.5 < t ≤ 4 36 45 @ 0 Not permitted 35 @ 0 35 @ −30

From AASHTO Table 6.6.2-2. From AASHTO LRFD BridgeDesign Specifications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission.

Table 18.6-SI Charpy V-Notch Fracture Toughness Requirements for Welded Components

Fracture Critical

Min. Test
Value Energy Zone 2 Zone 3

(N m) (N m @ ◦C) (N m @ ◦C)

Material Nonfracture Critical

Thickness Zone 2 Zone 3
Grade (mm) (N m @ ◦C) (N m@ ◦C)

250 t ≤ 100 27 34 @ 4 34 @ −12 20 @ 4 20 @ −12
345/345W/345S t ≤ 50 27 34 @ 4 34 @ −12 20 @ 4 20 @ −12

50 < t ≤ 100 33 41 @ 4 41 @ −12 27 @ 4 27 @ −12
HPS 345W t ≤ 100 33 41 @ −12 41 @ −12 27 @ −12 27 @ −12
HPS 485W t ≤ 100 38 48 @ −23 48 @ −23 34 @ −23 34 @ −23
690/690W t ≤ 65 38 48 @ −1 48 @ −18 34 @ −18 34 @ −34

65 < t ≤ 100 49 68 @ −18 Not permitted 48 @ −18 48 @ −34

From AASHTO Table 6.6.2-2. From AASHTO LRFD BridgeDesign Specifications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission (added Min. Test Value to 2004 Table for SI).
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18.1.3 Strength Limit States

A strength limit state is governed by the static strength of
the materials or the stability of a given cross section. There
are five different strength–load combinations specified in
Table 5.1. The differences in the strength–load combinations
are associated mainly with the load factors applied to the
live load; for example, a smaller live-load factor is used
for a permit vehicle and in the presence of wind. The load
combination that produces the maximum load effect is
determined and then compared to the resistance or strength
provided by the member.
When calculating the resistance for a particular factored

load effect such as tension, compression, bending, or shear,
the uncertainties are represented by an understrength or
resistance factor φ. The φ factor is multiplied times the
calculated nominal resistance Rn, and the adequacy of the
design is then determined by whether or not the inequality
of Eq. 18.1 is satisfied. The requirements for the strength
limit state are generally outlined in the AASHTO LRFD
Specifications [A6.10.6] and details are outlined for positive
flexure [A6.10.7], negative flexure [A6.10.8], and shear

[A6.10.9]. Requirements for shear connectors, stiffeners,
and cover plates are provided in the specifications [A6.10.10,
A6.10.11, and A6.10.12, respectively].
In the case of structural steel members, uncertainties

exist in the material properties, cross-sectional dimensions,
fabrication tolerances, workmanship, and the equations used
to calculate the resistance. The consequences of failure are
also included in the φ factor. As a result, larger reductions in
strength are applied to columns than beams and to connec-
tions in general. All of these considerations are reflected in
the strength limit state resistance factors given in Table 18.7
[A6.5.4.2].

18.1.4 Extreme Event Limit State

Extreme event limit states are unique occurrences with
return periods in excess of the design life of the bridge.
Earthquakes, ice loads, vehicle, and vessel collisions are
considered to be extreme events and are to be used one at
a time as shown in Table 5.1. However, these events can
be combined with a major flood (recurrence interval > 100
years but < 500 years) or with the effects of scour of a major
flood. For example, it is possible that ice floes are colliding

Table 18.7 Resistance Factors for the Strength Limit States

Description of Mode Resistance Factor

Flexure φf = 1.00
Shear φv = 1.00
Axial compression, steel only φc = 0.90
Axial compression, composite φc = 0.90
Tension, fracture in net section φu = 0.80
Tension, yielding in gross section φy = 0.95
Bearing on pins, in reamed, drilled, or bolted holes and milled surfaces φb = 1.00
Bolts bearing on material φbb = 0.80
Shear connectors φsc = 0.85
A325 and A490 bolts in tension φt = 0.80
A307 bolts in tension φt = 0.80
A307 bolts in shear φs = 0.65
A325 and A490 bolts in shear φs = 0.80
Block shear φbs = 0.80
Weld metal in complete penetration welds:
Shear on effective area φe1 = 0.85
Tension or compression normal to effective area φ = base metal φ

Tension or compression parallel to axis of the weld φ = base metal φ

Weld metal in partial penetration welds:
Shear parallel to axis of weld φe2 = 0.80
Tension or compression parallel to axis of weld φ = base metal φ

Tension compression normal to the effective area φ = base metal φ

Tension normal to the effective area φel = 0.80
Weld metal in fillet welds:
Tension or compression parallel to axis of the weld φ = base metal φ

Shear in throat of weld metal φe2 = 0.80

From [A6.5.4.2]. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Asso-
ciation of State Highway and Transportation Officials, Washington, DC. Used by permission.
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with a bridge during a spring flood, or that scour from a
major flood has reduced support for foundation components
when the design earthquake occurs.
All resistance factors φ for an extreme event limit state are

to be taken as unity, except for bolts. For bolts, the φ factor
at the extreme event limit state shall be taken for the bearing
mode of failure in Table 18.7 [A6.5.4.2].

18.2 GENERAL DESIGN REQUIREMENTS

Basic dimension and detail requirements are given in the
AASHTO (2010) LRFD Bridge Specifications. Because
these requirements can influence the design as much as load
effects, a brief summary of them is given in this section.

18.2.1 Effective Length of Span

The effective span length shall be taken as the center-to-
center distance between bearings or supports [A6.7.1].

18.2.2 Dead-Load Camber

Steel structures should be cambered during fabrication to
compensate for dead-load deflection and vertical curves
associated with the alignment of the roadway [A6.7.2].

18.2.3 Minimum Thickness of Steel

In general, thickness of structural steel shall not be less than
0.3125 in. (8mm) [A6.7.3], which includes the thickness of
bracingmembers, cross frames, and all types of gusset plates.
The exceptions are webs of rolled beams or channels and of
closed ribs in orthotropic decks, which need be only 0.25 in.
(7mm) thick. If exposure to severe corrosion conditions is
anticipated, unless a protective system is provided, an addi-
tional thickness of sacrificial metal shall be specified.

18.2.4 Diaphragms and Cross Frames

Diaphragms and cross frames are transverse bridge compo-
nents that connect adjacent longitudinal beams or girders as
shown in Figure 18.2. Diaphragms can be channels or beams
and provide a flexural transverse connector. Cross frames are
usually composed of angles and provide a truss framework
transverse connector.
The function of these transverse connectors is threefold:

(1) transfer of lateral wind loads to the deck and from the
deck to the bearings, (2) provide stability of the beam or
girder flanges during erection and placement of the deck, and
(3) distribute the vertical dead load and live load to the lon-
gitudinal beams or girders [A6.7.4.1].
By transferring the wind loads on the superstructure up

into the deck, the large stiffness of the deck in the horizontal
plane carries the wind loads to the supports. At the supports,

Fig. 18.2 Typical transverse diaphragm, cross frame, and lateral
bracing.

diaphragms or cross frames must then transfer the wind loads
down from the deck to the bearings. Typically the frames at
the supports are heavier than the intermediates in order to
carry the larger force.
To be effective, the diaphragms and cross frames shall be

as deep as possible. They shall be at least half the beam depth
for rolled sections and 0.75 times the depth for plate girders
[A6.7.4.2]. Intermediate diaphragms and cross frames shall
be proportioned to resist the wind forces on the tributary area
between lateral connections. However, end diaphragms and
cross frames shall be proportioned to transmit all the accu-
mulated wind forces to the bearings.
A rational analysis is required to determine the lateral

forces in the diaphragms or cross frames. Fewer transverse
connectors are preferred because their attachment details are
prone to fatigue [C6.7.4.1].

18.2.5 Lateral Bracing

The function of lateral bracing is similar to that of the
diaphragms and cross frames in transferring wind loads and
providing stability, except that it acts in a horizontal plane
instead of a vertical plane (Fig. 18.2). All stages of construc-
tion shall be investigated [A6.7.5.1]. Where required, lateral
bracing should be placed as near the horizontal plane of the
flange being braced as possible. In the first stage of compos-
ite construction, the girder must support the wet concrete,
associated formwork, and construction loads. It is ques-
tionable whether the formwork adequately supports the top
flange in the positive moment region, and hence the unsup-
ported length associated with the cross frames in this region
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must be investigated in addition to the unsupported lengths
in the negative moment region for all construction stages.
Once the concrete has hardened (stage 2 and subsequent

stages), the top flange is adequately braced and the unsup-
ported region of concern is in the negative moment region
near the supports. Where pattern placements of concrete are
used in longer bridges, the various stages and the associated
unbraced lengthmust be considered in the analysis and resis-
tance computations. In some cases, the girder is subjected to
the most critical load effects during transportation and con-
struction. Lastly, wind during construction should also be
investigated. Inadequate bracing during construction has led
to construction failures resulting in loss of life and significant
financial resources.
Because of the favorable aspects of spreading the cross

frames as far as possible, some of the more recent designs
are requiring the constructor to place carefully designed tem-
porary cross frames inside of the permanent ones to shorten
unbraced lengths during construction. The temporary frames
are then removed once the concrete has hardened and the top
flange is adequately supported. This additional lateral sup-
port can eliminate fatigue-pronedetails associated with cross
frame and transverse stiffeners.
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PROBLEMS

18.1 What is the optional live-load deflection limit for the
midspan translation for a girder that spans 100 ft?

18.2 What does the service II limit attempt to address/avoid?
18.3 What is the difference between load-induced and

distortion-induced fatigue?
18.4 Draw a typical S –N curve and label the finite-life and

infinite-life regions.
18.5 Estimate the number of stress-range cyclesN to be con-

sidered in the fatigue design of a two-lane, 30-ft simple
span bridge that carries interstate traffic in one direc-
tion. Use an ADT of 10,000 vehicles per lane per day.
State any assumptions.

18.6 Why are lateral bracing or diagphragms used? Provide
a list.



CHAPTER 19

Steel Component Resistance

19.1 TENSILEMEMBERS

Tension members occur in the cross frames and lateral brac-
ing of the girder bridge system shown in Figure 18.2 and are
also present in truss bridges and tied-arch bridges. The cables
and hangers of suspension and cable-stayed bridges are also
tension members.
It is important to know how a tensionmember is to be used

because it focuses attention on how it is to be connected to
othermembers of the structure (Taylor, 1992). In general, it is
the connection details that govern the resistance of a tension
member and should be considered first.

19.1.1 Types of Connections

Two types of connections for tension members are con-
sidered: bolted and welded. A simple bolted connection
between two plates is shown in Figure 19.1. Obviously, the
bolt holes reduce the cross-sectional area of the member. A
bolt hole also produces stress concentrations at the edge of
the hole that can be three times the uniform stress at some
distance from the hole (Fig. 19.1). The stress concentrations
that exist while the material is elastic are reduced at higher
load levels due to plasticity (Taylor, 1992).
A simple welded connection between two plates is shown

in Figure 19.2. For the welded connection, the cross-
sectional area of the member is not reduced. However, the
stress in the plate is concentrated adjacent to the weld and is
only uniform at some distance from the connection.
These stress concentrations adjacent to localized end con-

nections are due to a phenomenon called shear lag . In the
region near the hole or near the weld, shear stresses develop
that cause the tensile stresses away from the hole or weld to
lag behind the higher values at the edge.

19.1.2 Tensile Resistance—Specifications

The results of typical tensile tests on bridge steels are shown
by the stress–strain curves of Figure 17.4. After the yield-
point stress Fy is reached, plastic behavior begins. The stress
remains relatively constant until strain hardening causes the
stress to increase again before decreasing and eventually
failing. The peak value of stress shown for each steel in
Figure 17.3 is defined as the tensile strength Fu of the steel.
Numerical values for Fy and Fu are given in Table 17.2 for
the various bridge steels.
When the tensile load on an end connection increases,

the highest stressed point on the critical section yields first.
This point could occur at a stress concentration as shown
in Figures 19.1 and 19.2 or it could occur where the tensile
residual stresses (Fig. 17.2) are high. Once a portion of the
critical section begins to yield and the load is increased

Fig. 19.1 Local stress concentration and shear lag at a bolt hole.

Fig. 19.2 Local stress concentration and shear lag at a welded
connection.
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further, a plastic redistribution of the stresses occurs. The
useful tensile load-carrying limit is reached when the entire
cross section becomes plastic.
The tensile resistance of an axially loaded member is gov-

erned by the lesser of [A6.8.2.1]* :

� The resistance to general yielding of the gross cross
section

� The resistance to rupture on a reduced cross section at
the end connection

The factored resistance to yielding is given by

Pr = φyPny = φyFyAg (19.1)

where φy is the resistance factor for yielding of tensionmem-
bers taken from Table 18.7, Pny is the nominal tensile resis-
tance for yielding in the gross section (kip, N), Fy is the yield
strength (ksi, MPa), and Ag is the gross cross-sectional area
of the member (in.2, mm2).
The factored resistance to rupture is given by

Pr = φuPnu = φuFuAe (19.2)

where φu is the resistance factor for fracture of tension mem-
bers taken from Table 18.7, Pnu is the nominal tensile resis-
tance for fracture in the net section (kip, N), Fu is the tensile
strength (ksi, MPa), and Ae is the effective net area of the
member (in.2, mm2). For bolted connections, the effective
net area is

Ae = UA n (19.3)

where An is the net area of the member (in.2, mm2) and U
is the reduction factor to account for shear lag. For welded
connections, the effective net area is

Ae = UA g (19.4)

The reduction factor U does not apply when checking
yielding on the gross section because yielding tends to
equalize the nonuniform tensile stresses caused over the
cross section by shear lag [C6.8.2.1]. The resistance factor
for fracture φu is smaller than the resistance factor for
yielding φy because of the possibility of a brittle fracture in
the strain-hardening range of the stress–strain curve.

Reduction Factor U [A6.8.2.2] When all the elements of
a component (flanges, web, legs, and stem) are connected
by splice or gusset plates so that force effects are transmit-
ted uniformly, U = 1.0. If only a portion of the elements
are connected (e.g., one leg of a single angle), the connected
elements are stressed more than the unconnected ones. In the
case of a partial connection, stresses are nonuniform, shear
lag occurs, and U < 1.0.

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-
tions are enclosed in brackets and preceded by the letter A if a specification
article and by the letter C if commentary.

X

X

X

+

Fig. 19.3 Determination of x . (From William T. Segui, LRFD
Steel Design , Copyright © 2003 by PWS Publishing Company,
Boston, MA, with permission.)

For partial bolted connections, Munse and Chesson (1963)
observed that a decrease in joint length L (Fig. 19.1)
increases the shear lag effect. They proposed the following
approximate expression for the reduction factor:

U = 1 −
( x

L

)
(19.5)

Ane = UA gn (19.6)

where x is the distance from the centroid of the connected
area of the component to the shear plane of the connection,
Ane is the net area of the connected elements, Agn is the net
area of the rolled shape outside the connected length, and U
is the shear lag reduction factor. If a member has two sym-
metrically located planes of connection, x is measured from
the centroid of the nearest one-half of the area. Illustrations
of the distance x are given in Figure 19.3.
The reduction factor formula, values, and lower bounds are

provided in AASHTOTable A6.8.2.2-1 [A6.8.2.2] for differ-
ent types of cross sections and connection types.
For welded connections with longitudinal welds along

some but not all of the connected elements (Fig. 19.2), the
strength is controlled by the weld strength.

Example 19.1 Determine the net effective area and the
factored tensile resistance of a single angle L 6 × 4 × 1

2
tension member welded to a gusset plate as shown in
Figure 19.4. Use Grade 36 structural steel.

Solution
Because only one leg of the angle is connected, the net area
must be reduced by the factor U . Using Table A6.8.2.2-1,
Case 4, with L = 8 in. and W = 6 in.

L = 8
6W = 1.33W U = 0.75

and from Eq. 19.4 with Ag = 4.75 in.2

Ae = UA g = 0.75 (4.75) = 3.56 in.2
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L 6 × 4 × 1
2

Fig. 19.4 Single-angle tension member welded to a gusset plate.

The factored resistance to yielding is calculated from
Eq. 19.1 with φy = 0.95 (Table 18.7) and Fy = 36 ksi
(Table 17.2) to give

φyPnu = φyFyAg = 0.95 (36) (4.75) = 162.5 kips

The factored resistance to rupture is calculated from
Eq. 19.2 with φu = 0.80 (Table 18.7) and Fu = 58 ksi
(Table 17.2) to give

φuPnu = φuFuAe = 0.80 (58) (3.56) = 165.2 kips

Answer The factored tensile resistance is governed by
yielding of the gross section away from the connection and
is equal to 162.5 kips.

Net Area [A6.8.3] The net area An of a tension member
is the sum of the products of thickness t and the smallest
net width wn of each element. If the connection is made
with bolts, the maximum net area is with all of the bolts
in a single line (Fig. 19.1). Sometimes space limitations
require that more than one line be used. The reduction in
cross-sectional area is minimized if a staggered bolt pattern
is used (Fig. 19.5). The net width is determined for each
chain of holes extending across the member along any
transverse, diagonal, or zigzag line. All conceivable failure
paths should be considered and the one corresponding
to the smallest wn should be used. The net width for a
chain of holes is computed by subtracting from the gross
width of the element the sum of the widths of all holes and

Fig. 19.5 Staggered bolt pattern.

adding the quantity s2/4g for each inclined line in the chain,
that is,

wn = wg −
∑

d +
∑ s2

4g
(19.7)

where wg is the gross width of the element (in., mm), d is
the nominal diameter of the bolt (in., mm) plus 0.125 in.
(3.2mm), s is the pitch of any two consecutive holes (in.,
mm), and g is the gage of the same two holes (Fig. 19.5).

Example 19.2 Determine the net effective area and the
factored tensile resistance of a single angle L 6 × 4 × 1

2 ten-
sionmember bolted to a gusset plate as shown in Figure 19.6.
The holes are for 7

8 -in.-diameter bolts. Use Grade 36 struc-
tural steel.

Solution
The gross width of the cross section is the sum of the legs
minus the thickness [A6.8.3]:

wg = 6+ 4 − 1
2 = 9.5 in.

The effective hole diameter is d = 7
8 + 1

8 = 1 in.
Using Eq. 19.7, the net width on line abcd is

wn = 9.5 − 2 (1) + (1.375)2

4 (2.375)
= 7.70 in.

and on line abe

wn = 9.5 − 1 (1) = 8.5 in.

The first case controls, so that

An = twn = 0.5 (7.70) = 3.85 in.2

Because only one leg of the cross section is connected, the
net area must be reduced by the factorU . From the properties
table in AISC (2005), the distance from the centroid to the
outside face of the leg of the angle is x = 0.987 in. Using
Eq. 19.5 with L = 3(2.75) = 8.25 in.

U = 1 − x

L
= 1 − 0.987

8.25
= 0.88 > 0.85

L 6 × 4 × 1
2

Fig. 19.6 Single-angle tension member bolted to a gusset plate.
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Table 19.1 Maximum Slenderness Ratios for Tension
Members

Tension Member max (L/r)

Main members
Subject to stress reversals 140
Not subject to stress reversals 200

Bracing members 240

and from Eq. 19.3

Ae = UA n = 0.88 (3.85) = 3.39 in.2

The factored resistance to yielding is the same as in
Example 19.1:

φyPny = φyFyAg = 0.95 (36) (4.75) = 162.5 kips

The factored resistance to rupture is calculated from
Eq. 19.2 to give

φuPuy = φuFuAe = 0.80 (58) (3.39) = 157 kips

Answer The factored tensile resistance is governed by
rupture on the net section and is equal to 157 kips.

Limiting Slendernes Ratio [A6.8.4] Slenderness require-
ments are usually associated with compression members.
However, it is good practice also to limit the slenderness of
tension members. If the axial load in a tension member is
removed and small transverse loads are applied, undesirable
vibrations or deflections might occur (Segui, 2003). The
slenderness requirements are given in terms of L/r , where L
is the member length and r is the least radius of gyration of
the cross-sectional area.
Slenderness requirements for tension members other than

rods, eyebars, cables, and plates are given in Table 19.1
[A6.8.4].

19.1.3 Strength of Connections for Tension Members

Strength calculations for welded and bolted connections are
not given in this book. The reader is referred to standard steel
design textbooks and manuals that cover this topic in depth.
Examples of textbooks are Gaylord et al. (1992) and Segui
(2003). Also see Detailing for Steel Construction (AISC,
2002).

19.2 COMPRESSION MEMBERS

Compression members are structural elements that are sub-
jected only to axial compressive forces that are applied along
the longitudinal axis of the member and produce uniform
stress over the cross section. This uniform stress is an ideal-
ized condition as there is always some eccentricity between
the centroid of the section and the applied load. The resulting

bending moments are usually small and of secondary impor-
tance. The most common type of compression member is a
column . If calculated bending moments exist, due to con-
tinuity or transverse loads, they cannot be ignored and the
member must be considered as a beam column . Compression
members exist in trusses, cross frames, and lateral bracing
systems where the eccentricity is small and the secondary
bending can be reasonably ignored.
Compression members made of open shapes such as wide

flange beam, plate girders, and angles are susceptible to three
types of buckling:

� Global member instability (Euler buckling)
� Local bucklingof cross-section element (flange orweb)
� Torsonal buckling

The focus in this section will be primarily on global
buckling

19.2.1 Column Stability—Behavior

In structural steel, column cross sections are often slender
and other limit states are reached before the material yields.
These other limit states are associated with inelastic and slen-
der member buckling. They include lateral buckling, local
buckling, and lateral-torsional buckling of the compression
member. Each of the limit states must be incorporated in the
design rules developed to select compression members.
The starting point for studying the buckling phenomenon

is an idealized perfectly straight elastic column with pin
ends. As the axial compressive load on the column increases,
the column remains straight and shortens elastically until
the critical load Pcr is reached. The critical load is defined as
the lowest axial compressive load for which a small lateral
displacement causes the column to bow laterally and seek
a new equilibrium position. This definition of critical load
is depicted schematically in the load–deflection curves of
Figure 19.7.
In Figure 19.7, the point at which the behavior changes is

the bifurcation point . The load–deflection curve is vertical
until this point is reached, and then the midheight of the
column moves right or left depending on the direction of
the lateral disturbance. Once the lateral deflection becomes
nonzero, a buckling failure occurs and small deflection
theory predicts that no further increase in the axial load is
possible. If large deflection theory is used, additional stress
resultants are developed and the load–deflection response
follows the dashed line in Figure 19.7.
The small deflection theory solution to the buckling prob-

lem was published by Euler in 1759. He showed that the
critical buckling load Pcr is given as

Pcr = π2EI

L2
(19.8)

where E is the modulus of elasticity of the material, I is
the moment of inertia of the column cross section about the
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P = Pcr

P < Pcr

P > Pcr

P = Pcr

P = Pcr

P = Pcr = PE

Fig. 19.7 Load–deflections curves for elastic columns
(Bjorhovde, 1992). [From Constructional Steel Design: An Inter-
national Guide , P. J. Dowling, J. E. Harding, and R. Bjorhovde,
eds., Copyright © 1992 by Elsevier Science Ltd (now Chapman
and Hall, Andover, England), with permission.]

centroidal axis perpendicular to the plane of buckling, and
L is the pin-ended column length. This expression is well
known in mechanics and its derivation is not repeated here.
Equation 19.8 can also be expressed as a critical buckling

stress σcr by dividing both sides by the gross area of the cross
section Ag to give

σcr = Pcr

A
= π2

(
EI /Ag

)

L2

By using the definition of the radius of gyration r of the
section as I = Ar2 and rewriting the above equation, we get

σcr = π2E

(L/r)2
(19.9)

whereL /r is commonly referred to as the slenderness ratio of
the column. Given axisymmetric boundary conditions, buck-
ling occurs about the centroidal axiswith the least moment of
inertia I (Eq. 19.8) or the least radius of gyration r (Eq. 19.9).
Sometimes the critical centroidal axis is inclined, as in the
case of a single-angle compression member. In any event, the
maximum slenderness ratiomust be found because it governs
the critical stress.
The idealized critical buckling stress given in Eq. 19.9 is

influenced by three major parameters: end restraint, residual
stresses, and initial crookedness. The first depends on how
themember is connected and the last two on how it was man-
ufactured. These parameters are discussed in the following
sections.

Effective Length of Columns The buckling problem
solved by Euler was for an idealized column without any
moment restraint at its ends. For a column of length L whose

Fig. 19.8 End restraint and effective length of columns:
(a) pinned-pinned, (b) fixed-fixed, (c) fixed-pinned, (d) fixed-free,
and (e) pinned-free (Bjorhovde, 1992). [From Constructional Steel
Design: An International Guide , P. J. Dowling, J. E. Harding, and
R. Bjorhovde, eds., Copyright© 1992 by Elsevier ScienceLtd (now
Chapman and Hall, Andover, England), with permission.]

ends do not move laterally (nor sidesway), end restraint pro-
vided by connections to other members causes the location
of the points of zero moment to move away from the ends of
the column. The distance between the points of zero moment
is the effective pinned-pinned column length KL , where in
this case K < 1. If the end restraint is either pinned or fixed,
typical values of K for the no-sidesway case are shown in
the first three deformed shapes of Figure 19.8.
If the ends of a column move laterally with respect to one

another, the effective column length KL can be large with K
considerably greater than 1. This behavior is shown in the
last two deformed shapes of Figure 19.8 with one end free
and the other end either fixed or pinned.
In general, the critical buckling stress for a column with

effective length KL can be obtained by rewriting Eq. 19.9 as

σcr = π2E

(KL/r)2
(19.10)

where K is the effective length factor.
Actual column end conditions are going to be some-

where between pinned and fixed depending on the stiffness
provided by the end connections. For bolted or welded
connections at both ends of a compression member in which
sidesway is prevented, K may be taken as 0.75 [A4.6.2.5].
Therefore, the effective length of the compression members
in cross frames and lateral bracing can be taken as 0.75L ,
where L is the laterally unsupported length of the member.

Residual Stresses Residual stresses are discussed previ-
ously. In general, they are caused by nonuniform cooling
of the elements in a component during the manufacturing
or fabrication process. The basic principle of residual stress
can be summarized as follows: The fibers that cool first end
up in residual compression; those that cool last have residual
tension (Bjorhovde, 1992).
The magnitude of the residual stresses can be almost equal

to the yield stress of the material. Additional applied axial
compressive stress can cause considerable yielding in the
cross section at load levels below that predicted by FyAg.
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src + sa  ≤ Fy

src + sa  ≥ Fy

s
a 

+
 s

rc

Fig. 19.9 (a) Residual stress, (b) applied compressive stress, and
(c) combined residual and applied stress (Bjorhovde, 1992). [From
Constructional Steel Design: An International Guide , P. J. Dowl-
ing, J. E. Harding, and R. Bjorhovde, eds., Copyright © 1992 by
Elsevier Science Ltd (now Chapman and Hall, Andover, England),
with permission.]

This combined stress is shown schematically in Figure 19.9,
where σrc is the compressive residual stress, σrt is the tensile
residual stress, and σa is the additional applied axial com-
pressive stress. The outer portions of the element have gone
plastic while the inner portion remains elastic.

Initial Crookedness Residual stresses develop in an ele-
ment along its length, and each cross section is assumed to
have a stress distributionsimilar to that shown in Figure 19.9.
This uniform distribution of stress along the length of the
element occurs only if the cooling process is uniform. What
usually happens is that a member coming off the rolling line
in a steel mill is cut to length and then set aside to cool. Other
members are placed along side it on the cooling bed and will
influence the rate of cooling.
If a hot member is on one side and a warm member is

on the other side, the cooling is nonuniform across the
section. Further, the cut ends cool faster than the sections at
midlength and the cooling is nonuniform along the length
of the member. After the member cools, the nonuniform
residual stress distribution causes the member to bow, bend,
and even twist. If the member is used as a column, it can
no longer be assumed to be perfectly straight, but must be
considered to have initial crookedness.

Fig. 19.10 Statistical variation of initial crookedness (Bjorhovde,
1992). [From ConstructionalSteelDesign: An InternationalGuide ,
P. J. Dowling, J. E. Harding, and R. Bjorhovde, eds., Copyright ©
1992 by Elsevier Science Ltd (now Chapman and Hall, Andover,
England), with permission.]

A column with initial crookedness introduces bending
moments when axial loads are applied. Part of the resistance
of the column is used to carry these bending moments and
a reduced resistance is available to support the axial load.
Therefore, the imperfect column exhibits a load-carrying
capacity that is less than that of the ideal column.
The amount of initial crookedness in wide-flange shapes

is shown in Figure 19.10 as a fraction of the member length.
The mean value of the random eccentricity e1 is L /1500with
a maximum value of about L /1000 (Bjorhovde, 1992).

19.2.2 Inelastic Buckling—Behavior

The Euler buckling load of Eq. 19.8 was derived assuming
elastic material behavior. For long, slender columns this
assumption is reasonable because buckling occurs at a
relatively low level and the stresses produced are below the
yield strength of the material. However, for short, stubby
columns buckling loads are higher and yielding of portions
of the cross section occurs.
For short columns, not all portions of the cross section

reach yield simultaneously because the locations with
compressive residual stresses yield first as illustrated in
Figure 19.9. Therefore, as the axial compressive load in-
creases the portion of the cross section that remains, elastic
decreases until the entire cross section becomes plastic.
The transition from elastic to plastic behavior is gradual as
demonstrated by the stress–strain curve in Figure 19.11 for
a stub column. This stress–strain behavior is different from
the relatively abrupt change from elastic to plastic usually
observed in a bar or coupon test of structural steel (Fig. 17.4).
The stub column stress–strain curve of Figure 19.11 devi-

ates from elastic behavior at the proportional limit σ prop and
gradually changes to plastic behavior when Fy is reached.
The modulus of elasticity E represents elastic behavior until
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Fig. 19.11 Stub column stress–strain curve (Bjorhovde, 1992).
[From Constructional Steel Design: An International Guide , P. J.
Dowling, J. E. Harding, and R. Bjorhovde, eds., Copyright © 1992
by Elsevier Science Ltd (now Chapman and Hall, Andover, Eng-
land), with permission.]

the sum of the compressive applied and maximum residual
stress in Figure 19.9 equals the yield stress, that is,

σa + σrc = Fy

or
σprop = Fy − σrc (19.11)

In the transition between elastic and plastic behavior, the
rate of change of stress over strain is represented by the tan-
gent modulus ET as shown in Figure 19.11. This region of
the curve where the cross section is a mixture of elastic and
plastic stresses is called inelastic . The inelastic or tangent
modulus column buckling load is defined by substituting ET
for E in Eq. 19.10 to yield

σT = π2ET

(KL /r)2
(19.12)

A combined Euler (elastic) and tangent modulus (inelastic)
column buckling curve is shown in Figure 19.12. The tran-
sition point that defines the change from elastic to inelastic
behavior is the proportional limit stress σ prop of Eq. 19.11
and the corresponding slenderness ratio (KL /r)prop.

19.2.3 Compressive Resistance—Specifications

The short or stub column resistance to axial load is at max-
imum when no buckling occurs and the entire gross cross-
sectional area Ag is at the yield stress Fy. The fully plastic
yield load Py is the maximum axial load the column can sup-
port and can be used to normalize the column curves so that
they are independent of structural steel grade. The axial yield
load is

Py = AgFy (19.13)

Po = QPy = QAgFy (19.14)

where Q is a factor that adjusts the resistance downward if
the cross sections contain slender elements subject to local
buckling. See [A6.9.4.1] for guidance on the application
of Q . Here, the focus will be global (member) buckling of
shapes with compact elements and Q = 1.0.

scr

Fig. 19.12 Combined tangent modulus and Euler column curves
(Bjorhovde, 1992). [FromConstructionalSteel Design:An Interna-
tional Guide , P. J. Dowling, J. E. Harding, and R. Bjorhovde, eds.,
Copyright© 1992by Elsevier ScienceLtd (nowChapmanandHall,
Andover, England), with permission.]

For long columns, the critical elastic buckling load
Pcr = Pe is obtained by multiplying Eq. 19.10 by Ag to give
[A6.9.4.1.2]

Pe = π2EA g

(KL /r)2
(19.15)

Dividing Eq. 19.15 by Eq. 19.14, the normalized elastic
column equation with Q = 1.0 is

Pe

Po

=
(

π

KL /r

)2
(

E

Fy

)
(19.16)

It is convenient to define a slenderness term λc where

λ2
c =

(
Pe

Po

)−1

=
(
KL

πr

)2Fy

E
(19.17)

The normalized plateau and Euler column curve are shown
as the top curves in Figure 19.13. The inelastic transition
curve due to residual stresses is also shown. The column
curve that includes the additional reduction in buckling
load caused by initial crookedness is the bottom curve in
Figure 19.13. This bottom curve is the column strength
curve given in the specifications.
The column strength curve represents a combination of

inelastic and elastic behavior. Inelastic buckling occurs for
intermediate length columns fromλc = 0 toλc =λprop, where
λprop is the slenderness term for an Euler critical stress equal
to the proportional limit σ prop (Eq. 19.18). Elastic buckling
occurs for long columns with λc greater than λprop. Sub-
stitution of Eq. 19.11 and these definitions into Eq. 19.16
results in

Fy − σrc

Fy

Ag

Ag

= 1

λ2
prop
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Fig. 19.13 Normalized column curves with imperfection effects
(Bjorhovde, 1992). [From ConstructionalSteelDesign: An Interna-
tional Guide , P. J. Dowling, J. E. Harding, and R. Bjorhovde, eds.,
Copyright© 1992 by Elsevier ScienceLtd (nowChapmanandHall,
Andover, England), with permission.]

or

λ2
prop = 1

1 − σrc

Fy

(19.18)

The value for λprop depends on how large the residual
compressive stress σ rc is relative to the yield stress Fy.
For example, if Fy = 50 ksi (345MPa) and σ rc = 28 ksi
(190MPa), then Eq. 19.17 gives

λ2
prop = 1

1 − 28
50

= 2.27 ≈ 2.25

and λprop = 1.5. The larger the residual stress the larger the
slenderness term at which the transition to elastic buckling
occurs. Nearly all of the columns designed in practice
behave as inelastic intermediate-length columns. Seldom are
columns slender enough to behave as elastic long columns
that buckle at the Euler critical load.
The transition point between inelastic buckling and elastic

buckling or between intermediate-length columns and long
columns is specified as λ = 2.25. For long columns (λ ≥
2.25), the nominal column strength Pn is given by

Pn = 0.88FyAg

λc

(19.19)

which is the Euler critical buckling load of Eq. 19.15
reduced by a factor of 0.88 to account for initial crookedness
of L /1500 [C6.9.4.1].
For intermediate-length columns (λ < 2.25), the nominal

column strength Pn is determined from a tangent modulus
curve that provides a smooth transition between Pn = Py
and the Euler buckling curve. The formula for the transition
curve is

Pn = 0.66λc FyAg (19.20)

Nominal Compressive Resistance [A6.9.4.1] The curves
representing Eqs. 19.19, 19.20, and 19.21 are plotted in
Figure 19.14.

Fig. 19.14 Column design curves.

In lieu of the column slenderness parameter λc, AASHTO
uses the ratio Pe/Po (and its inverse) directly. So the column
resistance equations become
If Pe/Po ≥ 0.44, then

Pn = 0.658(Po/Pe)Po (19.21a)

If Pe/Po < 0.44, then

Pn = 0.877Pe (19.21b)

The final step in determining the compressive resistance of
Pr of columns is to multiply the nominal resistance Pn by the
resistance factor for compression φc taken from Table 18.7,
that is,

Pr = φcPn (19.21c)

LimitingWidth/Thickness Ratios [A6.9.4.2] Compressive
strength of columns of intermediate length is based on the
tangent modulus curve obtained from tests of stub columns.
A typical stress–strain curve for a stub column is given in
Figure 19.11. Because the stub column is relatively short, it
does not exhibit flexural buckling. However, it could expe-
rience local buckling with a subsequent decrease in load if
the width/thickness ratio of the column elements is too high.
Therefore, the slenderness is limited so that the yield stress
can be achieved without buckling:

b

t
≤ k

√
E

Fy

(19.22)

where k is the plate buckling coefficient taken from
Table 19.2, b is the width of the plate described in Table 19.2
(in., mm), and t is the plate thickness (in., mm). The require-
ments given in Table 19.2 for plates supported along one
edge and plates supported along two edges are illustrated in
Figure 19.15.
Elements that do not satisfy Eq. 19.22 have an associ-

ated strength that is estimated by the factor Q outlined in
A6.9.4.1.1. Here, compactness is assumed and Q = 1.0.

Limiting Slenderness Ratio [A6.9.3] If a column is too
slender, it has little strength and is not economical and
is susceptible to buckling and perhaps sudden collapse
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Table 19.2 LimitingWidth–Thickness Ratios

Plates Supported along One Edge k b

Flanges and projecting legs of plates 0.56 • Half-flange width of I-sections
• Full-flange width of channels
• Distance between free edge and first line of bolts or welds in
plates

• Full width of an outstanding leg for pairs of angles in
continuous contact

Stems of rolled tees 0.75 • Full depth of tee
Other projecting elements 0.45 • Full width of outstanding leg for single-angle strut or

double-angle strut with separator
• Full projecting width for others

Plates Supported along Two Edge k b

Box flanges and cover plates 1.40 • Clear distance between webs minus inside corner radius on
each side for box flanges

• Distance between lines of welds or bolts for flange cover
plates

Webs and other plate elements 1.49 • Clear distance between flanges minus fillet radii for webs of
rolled beams

• Clear distance between edge supports for all others
Perforated cover plates 1.86 • Clear distance between edge supports

AASHTO Table 6.9.4.2-1. From AASHTO LRFD Bridge Design Specifications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by permission.

depending on the importance of the member and the system.
The recommended limit for main members is (KL /r) ≤
120 and for bracing member it is (KL /r) ≤ 140. From a
practical perspective such slender members are not typi-
cally used in today’s designs. An exception is the use of
“counters” or tension-only members found in older trusses
that are designed to buckle and shed their load to adjacent
tension members. Such members were used in small- to
medium-span trusses built in the 1900s.

Example 19.3 Calculate the design compressive strength
Pr = φcPn of a W 14 × 74 column with a length of 240 in.
and pinned ends. Use Grade 50 structural steel.

Properties

From AISC (2005), Ag = 21.8 in.2, d = 14.17 in., tw =
0.45 in., bf = 10.07 in., tf = 0.785 in., hc/tw = 25.3, rx =
60.4 in., and ry = 2.48 in.

Solution
Slenderness Ratio

max
KL

r
= 1.0 (240)

2.48
= 96.8 < 120 OK

Width

Thickness
:

bf

2tf
= 10.07

2 (0.785)
= 6.4 < k

√
E

Fy

= 0.56

√
29,000

50
= 13.5 OK

hc

tw
= 25.3 < k

√
E

Fy

= 1.49

√
29,000

50
= 35.9 OK

Therefore, the section is compact and Q = 1.0.
Column Slenderness Term

Pe

Po

= π2
(

1
KL/r

)2
(

E

Fy

)
= π2

(
1

96.8

)2 (29000
50

)

= 0.611 ≥ 0.44

Intermediate Length Column

Po = QFyAg = (1.0) (50) (21.8) = 1090 kips

Pn = 0.66(Po/Pe)Po = (0.658)1/0.611 (1090) = 549 kips

Note that Pe/Po is for the region check but Po/Pe (inverse)
is used in the strength equation.

Answer Design compressive strength= φcPn = 0.90(549)
= 495 kips.

19.2.4 Connections for Compression Members

Strength calculations for welded and bolted connections are
not given in this book. The reader is referred to standard steel
design textbooks and manuals that cover this topic in depth.
Examples of textbooks are Gaylord et al. (1992) and Segui
(2003). Detailing for Steel Construction (AISC, 2002) also
provides guidance.
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Fig. 19.15 Limiting width–thickness ratios (after Segui, 2003).
(From William T. Segui, LRFD Steel Design , Copyright © 2003 by
PWS Publishing Company, Boston, MA, with permission.)

19.3 I-SECTIONS IN FLEXURE

I-sections in flexure are structural members that carry trans-
verse loads perpendicular to their longitudinal axis primarily
in a combination of bending and shear. Axial loads are usu-
ally small in most bridge girder applications and are often
neglected. If axial loads are significant, then the cross section
should be considered as a beam column . If the transverse load
is eccentric to the shear center of the cross section, then com-
bined bending and torsion must be considered. The discus-
sion that follows is limited to the basic behavior and design
of rolled or fabricated straight steel I-sections that are sym-
metrical about a vertical axis in the plane of the web and are
primarily in flexure and shear. The approach is unified for
curved girders; see White and Grubb (2005).
All types of I-section flexural members must generally sat-

isfy [A6.10.1]:

� Cross-section proportions to avoid local buckling and
to provide ease in handling [A6.10.2]

� Constructibility requirements [A6.10.3]
� Service limit states [A6.10.4]

� Fatigue and fracture limit states [A6.10.5]
� Strength limit states [A6.10.6]

These items are listed in the preferred order for compu-
tational checks. With the AASHTO (2010) LRFD Bridge
Specifications for steel bridges, construction and service
limits often control the design. Fatigue and strength limit
states are typically satisfied and do not control the design.

19.3.1 General

The resistance of I-sections in flexure is largely dependent
on the degree of stability provided, either locally or in a
global manner. If the section is stable at high loads, then the
I-section can develop a bending resistance beyond the first
yield moment My to the full plastic moment resistance Mp.
If stability is limited by either local or global buckling, then
the bending resistance is less than Mp and if the buckling is
significant, less thanMy.

Plastic Moment Mp Consider the doubly symmetric
I-section of Figure 19.16(a) that is subjected to pure bending

Fig. 19.16 Progressive yielding in flexure: (a) simple beam with
twin concentrated loads, (b) first yield at extreme fibers, (c) partially
plastic and partially elastic, and (d) fully plastic.
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at midspan by two equal concentrated loads. Assume sta-
bility is provided and the steel stress–strain curve is elastic
perfectly plastic. As the loads increase, plane sections re-
main plane, and the strains increase until the extreme fibers
of the section reach εy = Fy/E [Fig. 19.16(b)]. The bending
moment at which the first fibers reach yield is defined as the
yield moment My.
Further increase of the loads causes the strains and rota-

tions to increase and more of the fibers in the cross section
to yield [Fig. 19.16(c)]. The limiting case is when the strains
caused by the loads are so large that the entire cross section
can be considered at the yield stress Fy [Fig. 19.16(d)].When
this occurs, the section is fully plastic and the corresponding
bending moment is defined as the plastic moment Mp.
Any attempt to further increase the loads only results in

increased deformations without any increase in moment
resistance. This limit of moment can be seen in the idealized
moment–curvature curve in Figure 19.17. Curvature ψ is
defined as the rate of change of strain or simply the slope of
the strain diagram, that is,

ψ = εc

c
(19.23)

where εc is the strain at a distance c from the neutral axis.
The moment–curvature relation of Figure 19.17 has three

parts: elastic, inelastic, and plastic. The inelastic part pro-
vides a smooth transition between elastic to plastic behavior
as more of the fibers in the cross section yield. The length of
the plastic response ψp relative to the elastic curvature ψy is
a measure of ductility of the section.

Moment Redistribution When the plastic moment Mp is
reached at a cross section, additional rotation occurs at the
section and a hinge resisting constant moment Mp forms.
When this plastic hinge forms in a statically determinate
structure, such as the simple beam of Figure 19.16, a collapse
mechanism is formed.
However, if a plastic hinge forms in a statically inde-

terminate structure, collapse does not occur and additional
load-carrying capacity remains. This increase in load is illus-
trated with the propped cantilever beam of Figure 19.18(a)
that is subjected to a gradually increasing concentrated load

Fig. 19.17 Idealized moment–curvature response.

Fig. 19.18 Moment redistribution in a propped cantilever: (a) elas-
tic moments, (b) first yield moments, and (c) collapse mechanism
moments.

at midspan. The limit of elastic behavior is when the load
causes the moment at the fixed end of the beam to reachMy.
This limiting load Py produces moments that are consistent
with an elastic analysis as shown in Figure 19.18(b).
Further increase in the load causes a plastic hinge to form

at the fixed end. However, the structure will not collapse
because a mechanism has not been formed. The beam with
one fixed end has now become a simple beam with a known
moment Mp at one end. A mechanism does not form until a
second plastic hinge develops at the second highest moment
location under the concentrated load. This condition is
shown in Figure 19.18(c). This behavior for moving loads is
described in detail in Chapter 10.
By assuming that My = 0.9Mp, the ratio of the collapse

load Pcp to the yield load Py is

Pcp

Py

= 6Mp/L

16
3

(
0.9Mp

)
/L

= 1.25

For this example, there is an approximate 25% increase
in resistance to load beyond the load calculated by elastic
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analysis. However, for this to take place, rotation capacity
had to exist in the plastic hinge at the fixed end so that
moment redistribution could occur.
Another way to show that moment redistribution has taken

place when plastic hinges form is to compare the ratio of pos-
itive moment to negative moment. For the elastic moment
diagram in Figure 19.18(b), the ratio is

(
Mpos

Mneg

)

e

=
5
32PL
3
16PL

= 0.833

while for the moment diagram at collapse [Fig. 19.18(c)]
(

Mpos

Mneg

)

cp

= Mp

Mp

= 1.0

Obviously, the moments have been redistributed.
An extensive procedure is outlined in the AASHTO (2010)

LRFD Bridge Design Specifications in Section 6, Appendix
B. Here optional simplified and rigorous procedures are out-
lined and explained in the commentary. More details are not
presented here.

Composite Considerations Sections are classified as com-
posite or noncomposite . A composite section is one where a
properly designed shear connection exists between the con-
crete deck and the steel beam (Fig. 19.19). A section where
the concrete deck is not connected to the steel beam is consid-
ered as a noncomposite section . During construction prior to
and during concrete hardening, the steel section is noncom-
posite and must be checked against the deck dead load and
construction loads such as equipment concrete screed and
associated rails.
When the shear connection exists, the deck and beam act

together to provide resistance to bendingmoment. In regions
of positive moment, the concrete deck is in compression

Fig. 19.19 Composite section.

and the increase in flexural resistance can be significant.
In regions of negative moment, the concrete deck is in
tension and its tensile reinforcement adds to the flexural
resistance of the steel beam. Additionally, well-distributed
reinforcement enhances the effective stiffness of the con-
crete (tension stiffening, see Section 14.3.2). The flexural
resistance of the composite section is further increased be-
cause the connection of the concrete deck to the steel beam
provides continuous lateral support for its compression
flange and prevents lateral-torsional buckling for positive
moment. However, for negative moment (bottom flange in
compression), the section is susceptible to lateral movement
and buckling. In this case, the bracing is provided by the
bearings and cross frames.
Because of these advantages, the AASHTO (2010) LRFD

Bridge Specification recommends that, wherever technically
feasible, structures should be made composite for the entire
length of the bridge [A6.10.1.1]. “Noncomposite sections are
not recommended, but are permitted” [C6.10.1.2].

Stiffness Properties [A6.10.1.3] In the analysis of flexu-
ral members for loads applied to a noncomposite section,
only the stiffness properties of the steel beam should be used.
In the analysis of flexural members for loads applied to a
composite section, the transformed area of concrete used in
calculating the stiffness properties shall be based on a modu-
lar ratio of n (Table 19.3) [A6.10.1.1b] for transient loads and
3n for permanent loads. Themodular ratio of 3n is to account
for the larger increase in strain due to the creep of concrete
under permanent loads. The concrete creep tends to trans-
fer long-term stresses from the concrete to the steel, effec-
tively increasing the relative stiffness of the steel. The multi-
plier on n accounts for this increase. The stiffness of the full
composite section may be used over the entire bridge length,
including regions of negative bending.This constant stiffness
is reasonable, as well as convenient; field tests of continuous
composite bridges have shown there is considerable compos-
ite action in the negative bending regions [C6.10.1.1.1].

Table 19.3 Ratio of Modulus of Elasticity of Steel to
That of Concrete, Normal Weight Concrete

f
′
c (ksi) n

2.4 ≤ f
′
c < 2.9 10

2.9 ≤ f
′
c < 3.6 9

3.6 ≤ f
′
c < 4.6 8

4.6 ≤ f
′
c < 6.0 7

6.0 ≤ f
′
c 6

From [C6.10.1.1.1b]. From AASHTO LRFD Bridge Design Speci-
fications , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by
permission.
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19.3.2 Yield Moment and Plastic Moment

The bending moment capacity of I-sections depends primar-
ily on the compressive force capacity of the compression
flange. If the compression flange is continuously laterally
supported and the web has stocky proportions, no buckling
of the compression flange occurs and the cross section
develops its full plastic moment, that is, Mn = Mp. Cross
sections that satisfy the restrictions for lateral support and
width/thickness ratios for flanges and web are called com-
pact sections . These sections exhibit fully plastic behavior
and their moment–curvature response is similar to the top
curve in Figure 19.20.
If the compressed flange is laterally supported at intervals

large enough to permit the compression flange to buckle
locally, but not globally, then the compression flange
behaves like an inelastic column. The section of the inelastic
column is T-shaped and part of it reaches the yield stress
and part of it does not. These cross sections are intermediate
between plastic and elastic behavior and are called noncom-
pact sections . They can develop the yield moment My but
have limited plastic response as shown in the middle curve
of Figure 19.20.
If the compression flange is laterally unsupported at inter-

vals large enough to permit lateral-torsional buckling, then
the compression flange behaves as an elastic column whose
capacity is an Euler-like critical buckling load reduced by
the effect of torsion. The buckling of these sections with
relatively high-compression flange slenderness ratio occurs
before the yield moment My can be reached and are called
slender sections . The slender sections behavior is shown by
the bottom curve in Figure 19.20. The slender sections do
not use materials effectively and most designers avoid them
by providing sufficient lateral support.

Yield Moment of a Composite Section The yield moment
My is the moment that causes first yielding in either flange
of the steel section. Because the cross section behaves elas-
tically until first yielding, superposition of moments is valid.

Fig. 19.20 Response of three beam classes.

Fig. 19.21 Flexural stresses at first yield.

Therefore, My is the sum of the moment applied separately
on the steel section, the short-term composite section, and
the long-term composite section [A6.10.1.1 and A6.10.4.2].
The three stages of loading on a composite section are

shown for a positive bendingmoment region in Figure 19.21.
The moment due to factored permanent loads on the steel
section before the concrete reaches 75% of its 28-day
compressive strength is MD1, and it is resisted by the non-
composite section modulus SNC. The moment due to the
remainder of the factored permanent loads (wearing surface,
concrete barrier) is MD2, and it is resisted by the long-term
composite section modulus SLT. The additional moment
required to cause yielding in one of the steel flanges is MAD.
This moment is due to factored live load and is resisted by
the short-term composite section modulus SST. The moment
MAD can be solved from the equation

Fy = MD1

SNC
+ MD2

SLT
+ MAD

SST
(19.24)

and the yield moment My calculated from

My = MD1 + MD2 + MAD (19.25)

Again, these moments are factored. Details are presented
in Section 6, Appendix D6.2.2, and an example is presented
next.

Example 19.4 Determine the yield moment My for the
composite girder cross section in Figure 19.22 subjected to
factored positivemomentsMD1 = 900 kip-ft andMD2 = 300
kip-ft. Use f

′
c = 4 ksi for the concrete deck slab and Grade

50 structural steel for the girder.

Properties

The noncomposite, short-term, and long-term section prop-
erties are calculated in Tables 19.4–19.6. The modular ratio
of n = 8 is taken from Table 19.3 for f

′
c = 4 ksi. The trans-

formed effective width of the slab is be dividedby n for short-
term properties and by 3n , to account for creep, for long-term
properties. The centroid of the section at each stage is calcu-
lated from the top of the steel beam, and then the parallel axis
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Fig. 19.22 Example 19.4. Composite positive moment section.

Table 19.4 Noncomposite Section Properties

A y Ay A(y − ȳ)2 I 0
Component (in.) (in.2) (in.) (in.3) (in.4) (in.4)

Top flange
0.625× 8 5.0 61.313 306.6 5864 ∼0
Web
0.625× 60 37.5 31.0 1162.5 581 11,250
Bottom flange
1× 12 12.0 0.5 6.0 8469 1.00

Sum 54.5 1475.1 14,914 11,251
I = 14,914+ 11,251
= 26,165 in.4

Table 19.5 Short-Term Section Properties, n = 8

A y Ay A(y − ȳ)2 I 0
Component (in.) (in.2) (in.) (in.3) (in.4) (in.4)

Slab
[90/(n = 8)× 8] 90.0 66.625 5,996.25 20,036 480
Top flange
0.625× 8 5.0 61.313 306.6 462 ∼0
Web
0.625× 60 37.5 31.0 1,162.5 16,075 11,250
Bottom flange
1× 12 12.0 0.50 6.0 31,463 1.00

Sum 144.5 7,471.6 68,036 11,731
I = 68,036+ 11,731
= 79,767 in.4

Table 19.6 Long-Term Section Properties, 3n = 24

A y Ay A(y − ȳ)2 I 0
Component (in.) (in.2) (in.) (in.3) (in.4) (in.4)

Slab
[90/(n = 24)× 8] 30.0 66.625 1,998.75 19,530 160
Top flange
0.625× 8 5.0 62.313 306.6 2,041 ∼0
Web
0.625× 60 37.5 31.0 1,162.50 3,833 11,250
Bottom flange
1× 12 12.0 0.50 6.0 19,790 1.00

Sum 84.5 3,473.8 45,194 11,411
I = 45,194+ 11,411
= 56,605 in.4

theorem is used to get the moment of inertia of the compo-
nents about this centroid:

ȳNC = 1475.1

54.5
= 27.1 in. from bottom

St
NC = 26,165

61.625− 27.1
= 757 in.3 top

Sb
NC = 26,165

27.1
= 967 in.3 bottom

ȳST = 7471.6

144.5
= 51.7 in. bottom

St
ST = 79,767

70.625− 51.7
= 4216 in.3 top of deck

St
ST = 79,767

61.625− 51.7
= 8041 in.3 top of steel

ȳLT = 3473.8

84.5
= 41.1 in. from bottom

St
LT = 56,605

70.625− 41.1
= 1918 in.3 top of deck

St
LT = 56,605

61.625− 41.1
= 2758 in.3 top of steel

Sb
LT = 56,605

41.1
= 1377 in.3 to bottom

Solution
The stress at the bottomof the girder reaches yield first. From
Eq. 19.24,

Fy = MD1

SNC
+ MD2

SLT
+ MAD

SST

50 = 900 (12)

967
+ 300 (12)

1377
+ MAD

1543

MAD = 1543 (50 − 11.2 − 2.6) = 55,883 in. kips

MAD = 4657 ft kips
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Answer From Eqs. 19.24 and 19.25, the yield moment is

My = MD1 + MD2 + MAD

My = 900 + 300 + 4657 = 5857 ft kips

Yield Moment of a Noncomposite Section For a noncom-
posite section, the section moduli in Eq. 19.24 are all equal
to SNC and the yield moment My is

My = FySNC (19.26)

Plastic Neutral Axis of a Composite Section The first step
in determining the plastic moment strength of a composite
section is to locate the neutral axis of the plastic forces. The
plastic forces in the steel portions of the cross section is the
product of the area of the flanges, web, and reinforcement
times their appropriate yield strengths. The plastic forces
in the concrete portions of the cross section, which are in
compression, are based on the equivalent rectangular stress
block with uniform stress of 0.85 f

′
c . Concrete in tension is

neglected.
The location of the plastic neutral axis (PNA) is obtained

by equating the plastic forces in compression to the plastic
forces in tension. If it is not obvious, it may be necessary to
assume a location of the PNA and then to prove or disprove
the assumption by summing plastic forces. If the assumed
location does not satisfy equilibrium, then a revised expres-
sion is solved to determine the correct location of the PNA.

Example 19.5 Determine the location of the plastic neu-
tral axis for the composite cross section of Example 19.4
subjected to positive moment bending. Use f

′
c = 4 ksi for

the concrete and Fy = 50 ksi for the steel. Neglect the plastic
forces in the longitudinal reinforcement of the deck slab.

Plastic Forces
The general dimensions and plastic forces are shown in
Figure 19.23.

Fig. 19.23 Example 19.5. Plastic forces for composite positive
moment section.

� Slab

Ps = 0.85f
′
cbets = 0.85 (4) (90) (8) = 2448 kips

� Top flange

Pc = Fybctc = 50 (8) (0.625) = 250 kips

� Web

Pw = FyDtw = 50 (60) (0.625) = 1875 kips

� Bottom flange

Pt = Fybt tt = 50 (12) (1) = 600 kips

Solution
The PNA lies in the top flange because

Ps + Pc > Pw + Pt

2448+ 250 > 1875 + 600

2698 > 2475

Only a portion of the top flange is required to balance the
plastic forces in the steel beam. Balancing compression and
tensile forces yields

2448+ 50 (8)
(
Ȳ
) = 2475 + 400

(
0.625 − Ȳ

)

so that the PNA is located a distance Ȳ from the top of the
top flange:

Ȳ = 0.346 in.

Answer By substitutingthe values from above, the tension
and compression force equal about 2586 kips and the plastic
neutral axis is

PNA depth = 8 + 1 + 0.346 = 9.346 in. from top of deck

In a region of negative bending moment where shear
connectors develop composite action, the reinforcement in
a concrete deck slab can be considered effective in resisting
bending moments. In contrast to the positive moment region
where their lever arms are small and their contribution is
dominated by the concrete deck, the contribution of the
reinforcement in the negative moment region can make a
difference.

Example 19.6 Determine the location of the plastic neu-
tral axis for the composite cross section of Figure 19.24when
subjected to negative bending moment. Use f

′
c = 4 ksi and

Fy = 50 ksi. Consider the plastic forces in the longitudinal
reinforcement of the deck slab to be provided by two layers
with nine No. 4 bars (As = 0.20 in.2/bar) in the top layer and
seven No. 5 bars (As = 0.31 in.2/bar) in the bottom layer. Use
fy = 60 ksi.

Plastic Forces
The general dimensions and plastic forces are shown
in Figure 19.24. The concrete slab is in tension and is
considered to be noneffective, that is, Ps = 0.
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Fig. 19.24 Example 19.6. Plastic forces for composite negative
moment section.

� Top reinforcement

Prt = Artfy = 9 (0.20) (60) = 108 kips

� Bottom reinforcement

Prb = Arbfy = 7 (0.31) (60) = 130 kips

� Top flange

Pt = Fybt tt = 50 (16) (1.25) = 1000 kips

� Web

Pw = FyDtw = 50 (60) (0.625) = 1875 kips

� Bottom flange

Pc = Fybctc = 50 (16) (1.25) = 1000 kips

Solution
By inspection, the PNA lies in the web because

Pc + Pw > Pt + Prb + Prt

1000 + 1875 > 1000+ 130+ 108

2875 > 1238

The plastic force in the web must be divided into tension
and compression plastic forces to obtain equilibrium, that is,

Pc + Pw

(
1− Ȳ

D

)
= Pw

(
Ȳ

D

)
+ Pt + Prb + Prt

where Ȳ is the distance from the top of the web to the PNA.
Solving for Ȳ , we get

Ȳ = D

2

(
Pc + Pw − Pt − Prb − Prt

Pw

)

Answer By substituting the values from above

Ȳ = 60

2

(1000+ 1875− 1000 − 108 − 130)

1875
= 26.2 in. (of web in tension)

Plastic Neutral Axis of a Noncomposite Section For a
noncomposite section, there is no contribution from the deck
slab and the PNA is determined above with Prb = Prt = 0.
If the steel beam section is symmetric with equal top and
bottom flanges, then Pc = Pt and Ȳ = D/2.

Plastic Moment of a Composite Section The plastic
moment Mp is the sum of the moments of the plastic forces
about the PNA. It can best be described by examples. Global
and local buckling is assumed to be prevented so that plastic
forces can be developed. Details on the plastic moment
computations are located in AASHTO [Section 6, Appendix
D6.1].

Example 19.7 Determine the positive plastic moment
for the composite cross section of Example 19.5 shown
in Figure 19.23. The plastic forces were calculated in
Example 19.5 and Ȳ was determined to be 9.346 in. from
the top of the slab.

Moment Arms
The moment arms about the PNA for each of the plas-
tic forces can be found from the dimensions given in
Figure 19.23.

� Slab in compression

ds = 9.346 − 8
2 = 5.346 in.

� Top flange in compression

dtop flange comp = 0.346

2
= 0.173 in.

� Top flange in tension

dtop flange tension = 0.625 − 0.346

2
= 0.279

2
= 0.140 in.

� Web in tension

dweb in tension = 30 + 0.279 = 30.279 in.

� Tension flange

dbottom flange in tension = 0.279 + 60+ 0.5 = 60.779 in.

Solution
The sum of the moments of the plastic forces about the PNA
is the plastic moment:

Mp =
∑

elements

∣∣Felement

(
delements

)∣∣ (19.27)
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Answer By substituting the values from above:

Element Force, kips
Lever
arm, in.

Element
Contribution,

in. kips

Deck (slab) 0.85(4)(90)(8)
= 2448 (c)

5.346 13,087

Top flange in
compression

50(8)(0.346)
= 138.4 (c)

0.173 23.9

Top flange in
tension

50(8)(0.279)
= 111.6 (t)

0.140 15.6

Web in tension 50(60)(0.625)
= 1875 (t)

30.279 56,773

Bottom flange in
tension

50(12)(1)
= 600 (t)

60.779 36,467

Total ∼0 100,367 =
8864ft kips

(c) indicates compression, and (t) indicates tension.

Note that the yield moment for this section is 5867 ft kips
and theplasticmoment is 8864 ft kips. This illustrates the sig-
nificant capacity of the composite section after the first yield.
The ratio of these moments is 1.51, which is also termed a
shape factor.

Example 19.8 Determine the negative plastic moment
for the composite cross section of Example 19.6 shown
in Figure 19.24. The plastic forces were calculated in
Example 19.6; Ȳ was determined to be 26.2 in. from the top
of the web.

Moment Arms
The moment arms about the PNA for each of the plas-
tic forces can be found from the dimensions given in
Figure 19.24.

� Top reinforcement (in tension)

drt = web depth + top flange thickness + haunch

+ deck thickness − top cover − one-half bar

= 26.2 + 1.25 + 1 + 8 − 2.5 − 0.25 = 33.7 in.

� Bottom reinforcement (in tension)

drb = web depth + top flange thickness + haunch

+ bottom cover + one-half bar

= 26.2 + 1.25 + 1 + 2.0 + 0.313 = 30.76 in.

� Top flange (in tension)

dt = PNA+ 1
2 flange

= 26.2+ 1.25
2 = 26.83 in.

� Web (in tension)

dwt = PNA

2
= 26.2

2
= 13.1 in.

� Web (in compression)

dwc = 1
2 (web − PNA)

= 1
2 (60 − 26.2) = 16.9 in.

� Bottom flange (in compression)

dc = web − PNA + 1
2 flange

= 60− 26.2 + 1.25
2 = 34.43 in.

Solution
The plastic moment is the sum of the moments of the plastic
forces about the PNA:

Mp =
∑

elements

∣∣Felement

(
delements

)∣∣ (19.28)

Answer By substituting the values from above:

Element Force, kips
Lever
arm, in.

Element
Contribution,

in. kips

Top rebar in
tension

60(9)(0.2)
= 108 (t)

33.70 3640

Bottom rebar in
tension

60(7)(0.31)
= 130 (t)

30.76 3999

Top flange in
tension

50(16)(1.25)
= 1000 (t)

26.83 26,830

Web in tension 50(26.2)(0.625)
= 818.8 (t)

13.10 10,726

Web in
compression

50(60–26.2)(0.625)
= 1056.3 (c)

16.90 17,846

Bottom flange in
compression

50(16)(1.25)
= 1000 (c)

34.42 34,420

Total ∼0 97,461 =
8122 ft kips

(c) indicates compression, and (t) indicates tension.

Mp = 97,461 in. kips = 8122 ft kips

Plastic Moment of a Noncomposite Section If no shear
connectors exist between the concrete deck and the steel
cross section, the concrete slab and its reinforcement do
not contribute to the section properties for the computation
of resistance (stresses or forces). However, it should be
considered in the modeling of the stiffness of the beam in
the structural analysis of continuous structures.
Consider the cross section of Figure 19.24 to be noncom-

posite. Then Prt = Prb = 0 and Ȳ = D/2, and the plastic
moment is

Mp = Pt

(
D

2
+ tt

2

)
+ Pw

(
D

4

)
+ Pc

(
D

2
+ tc

2

)
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Element Force, kips
Lever
arm, in.

Element
Contribution,

in. kips

Top flange in
tension

50(16)(1.25)
= 1000 (t)

30 + 1.25/2
= 30.625

30,625

Web in tension 50(30)(0.625)
= 937.5 (t)

15 14,062.5

Web in
compression

50(30)(0.625)
= 937.5 (c)

15 14,062.5

Bottom flange in
compression

50(16)(1.25)
= 1000 (c)

30 + 1.25/2
= 30.625

30,625

Total 0 89,375 =
7448 ft kips

(c) indicates compression, and (t) indicates tension.

Depth of Web in Compression When evaluating the slen-
derness of a web as a measure of its stability, the depth of the
web in compression is important. In a noncomposite cross
section with a doubly symmetric steel beam, one-half of the
web depth D is in compression. For unsymmetric noncom-
posite cross sections and composite cross sections, the depth
of web in compression will not be D /2 and varies with the
direction of bending in continuous girders.
When stresses due to unfactored loads remain in the elastic

range, the depth of the web in compression Dc shall be the
depth over which the algebraic sum of stresses due to the
dead-load Dc1 on the steel section plus the dead-load Dc2
and live-load LL + IM on the short-term composite section
are compressive [Section 6, Appendix D6.3.1].

Example 19.9 Determine the depth of web in compression
Dc for the cross section of Figure 19.22 whose elastic prop-
erties were calculated in Example 19.4. The cross section is
subjected to factored positive moments MD1 = 900 ft kips,
MD2 = 300 ft kips, andM LL+IM = 1200 ft kips.

Solution
The stress at the top of the steel for the given moments and
section properties is (see Fig. 19.22)

ft = MD1

St
NC

+ MD2

St
LT

+ MLL+IM

St
ST

= 900 (12)

736
+ 300 (12)

2758
+ 1200 (12)

8037
= 14.7 + 1.3 + 1.8 = 17.8 ksi (compression)

fb = MD1

Sb
NC

+ MD2

Sb
LT

+ MLL+IM

Sb
ST

= 900 (12)

967
+ 300 (12)

1377
+ 1200 (12)

1543
= 11.2 + 2.6 + 9.3 = 23.1 ksi (tension)

Answer Using the proportion of the section in compres-
sion and subtracting the thickness of the compression flange
with d = 60 + 0.625 + 1.00 = 61.625 in.

Dc = d
ft

ft + fb

− tc = 61.625
17.8

17.8 + 23.1
− 0.625

= 26.2 in.

The depth of web in compression at plastic moment
Dcp is usually determined once the PNA is located. In
Example 19.5, positive bending moment is applied and the
PNA is located in the top flange. The entire web is in tension
and Dcp = 0.
In Example 19.6, the cross section is subjected to negative

bendingmoment and the PNA is located 26.2 in. from the top
of the web. The bottomportion of the web is in compression,
so that

Dcp = D − Ȳ = 60− 26.2 = 33.8 in.

AASHTO Eq. D6.3.1-1 takes the same approach.

Hybrid Strength Reduction—Behavior A hybrid section
has different strength steel in the flanges and/or the web.
Typically, higher strength materials are used for the tension
flanges where buckling is of no concern and lower strength
materials are used for the web and compression flange. Also,
note that the compression flange is functionally replaced by
the composite deck after the concrete hardens. Therefore, a
common hybrid section containsGrade 70 steel in the tension
flange and Grade 50 for the web and compression flanges.
Consider the location where the Grade 50 steel in the web

is welded to the Grade 70 steel of a tension flange; here the
flexural strain is the same and themodulus of elasticity of the
two materials is the same as well. Therefore prior to yield,
the stress at this location is the same for the web and flange.
Under increased load, the web yields prior to the flange and
exhibits a constant (yield) stress with depth. This behavior is
simply quantified by performing a strain compatibility anal-
ysis at ultimate considering the web yielding (rationale anal-
ysis). However, the AASHTO specifications simplifies this
analysis by requiring that the strength of the hybrid section
be computed, initially, by neglecting this effect, that is, using
the elastic section properties, S , and the flange yield stress.
The solid line in Figure 19.25 represents the “true” stress

with thematerials in a portion of the web yielded and the dot-
ted line illustrates the assumed stress neglecting the yielding.

Fig. 19.25 Stress profile after web yield in a hybrid section.
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This computation, without some adjustment, overestimates
the section resistance; therefore, a factor is used to scale the
resistance downward. This factor is referred to as the hybrid
reduction factor.

Hybrid Strength Reduction—Specifications The hybrid
reduction is only applicable for nonhomogeneous sections.
The reduction factor is [A6.10.1.10.1]

Rh = 12+ β
(
3ρ − ρ3

)

12 + 2β
(19.29)

where
β = 2Dw tw

Afn
(19.30)

where ρ is the smaller of Fyw/fn and 1.0;Afn is the sum of the
flange area and the area of any cover plates on the side of the
neutral axis corresponding to Dn. For composite section in
negative flexure, the area of the longitudinal reinforcement
may be included in calculating Afn for the top flange; Dn is
the larger of the distance from the elastic neutral axis of the
cross section to the inside of the face of the flange where
yielding occurs (in.). For sections where the neutral axis is at
the middepth of the web, Dn is the distance from the neutral
axis to the inside of the neutral axis where yielding occurs
first. For sections where yielding occurs first in the flange, a
cover plate or longitudinal reinforcement on the side of the
neutral axis corresponding toDn, fn is the largest of the spec-
ified minimum yield strengths of each component included
in the calculation of Afn (ksi). Otherwise, fn is the largest of
the elastic stresses in the flange, cover plate, or longitudinal
reinforcement on the side of the neutral axis corresponding
to Dn at first yield on the opposite side of the neutral axis.
This “simplification” makes a direct rationale method

of assuming a linear strain profile and equating compres-
sive and tensile forces to obtain neutral axis, and finally,
summing moments to obtain the section flexural resistance
appear not only logical but straightforward as well. Simply
put, Figure 19.25 may be used in the usual manner similar
to computation of plastic moment capacity.

19.3.3 Stability Related to Flexural Resistance

For the development of the plastic moment resistance Mp
adequate stability must be provided. If global or local buck-
ling occurs, Mp cannot be reached.
Global buckling can occur if the compression flange of

a section in flexure is not laterally supported. A laterally
unsupported compression flange behaves similar to a col-
umn and tends to buckle out-of-plane between points of
lateral support. However, because the compression flange is
part of a beam cross section with a tension zone that keeps
the opposite flange in line, the cross section twists when it
moves laterally. This behavior is shown in Figure 19.26 and
is referred to as lateral-torsional buckling (LTB) .
Local buckling can occur if the width–thickness ratio

(slenderness) of elements in compression becomes too

Fig. 19.26 Isometric of lateral torsional buckling (Nethercot,
1992). [FromConstructionalSteel Design:An InternationalGuide ,
P. J. Dowling, J. E. Harding, and R. Bjorhovde, eds., Copyright ©
1992 by Elsevier Science Ltd (now Chapman and Hall, Andover,
England), with permission.]

large. Limitations on these ratios are similar to those given
for columns in Figure 19.15. If the buckling occurs in the
compression flange, it is called flange local buckling (FLB) .
If it occurs in the compression portion of the web, it is called
web local buckling (WLB) . Illustrations of local buckling are
shown in the photographs of Figure 19.27 of a full-scale test
to failure of a roof beam. Flange local buckling can be seen
in the top flange of the overall view (Fig. 19.27). A closeup
of the compression region of the beam (Fig. 19.28) shows
the buckled flange and measurement of the out-of-plane
web deformation indicating web local buckling has also
occurred.

Classification of Sections and Elements within Cross
Sections (Flanges and Web) Cross-sectional shapes are
classified as compact, noncompact , or slender depending
on the width–thickness ratios of their compression elements
and bracing requirements. A compact section is one that can
develop a fully plastic moment Mp before lateral torsional
buckling or local buckling of its flange or web occurs. A
noncompact section is one that can develop a moment equal
to or greater thanMy, but less thanMp, before local buckling
of any of its compression elements occurs. A slender section
is one whose compression elements are so slender that
buckling occurs locally before the moment reaches My. A
comparison of the moment–curvature response of these
shapes in Figure 19.20 illustrates the differences in their
behavior.
As discussed previously, another classification is hybrid

where a girder is comprised of two steel strengths. This is
also termed nonhomogeneous. Hybrid girders pose special
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Fig. 19.27 Local buckling of flange. (Courtesy of Structures/Materials Laboratory, Virginia Tech.)

Fig. 19.28 Local buckling of web. (Courtesy of Structures/Materials Laboratory, Virginia Tech.)

problems as two materials of different strengths are located
next to the other within the cross section; here one yields at a
different curvature than the other. This is explained in more
detail next.

General Stability Treatment in the AASHTO Specification
The stability of I-sections related to flexural and shear

behavior and performance is related to local and global
buckling, yielding, and the relationship between the two
modes of failure. Figure 19.29 illustrates modeling of nearly
all compression behavior in the AASHTO LRFD Specifi-
cation [A6.10.8.2]. A slenderness ratio of a flange, web,
or beam is expressed in terms of a dimensionless ratio that
is a characteristic width divided by length. For example,
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Fig. 19.29 Typical behavior for slenderness effects. [Figure
C6.10.8.2.1-1]. (From AASHTO LRFD Bridge Design Specifica-
tions , Copyright © 2010 by the American Association of State
Highway and Transportation Officials, Washington, DC. Used by
permission.)

the familiar (kl /r) for columns is one ratio. Another is the
width-to-thickness ratio (bf /2tf) and the web slenderness
ratio (D /tw) is yet another. Depending upon the slenderness,
the component may yield if it is “stocky” or buckle if it is
very slender. Sections between experience inelastic behavior
or some of both. As discussed in the section on columns, the
specification-based behavioral models include a combina-
tion of theoretical formulation with some empirical results
included to address issues such as out-of-plumbness and
residual stresses.
Referring to Figure 19.29, in the region where the slend-

ness ratio λ is less than λp (anchor point 1), the component
is assumed to be able to support the yield stress and is con-
sidered compact. In the region where the slendness ratio λ

is greater than λr (anchor point 2), the componenet is con-
sidered slender and elastic buckling controls strength. In the
region between these two regions, that is, λp < λ < λr, the
component behaves inelastically and the behavior ismodeled
with a linear interpolation between the two anchor points.
TheAASHTOLRFD specifications [C6.10.8.2.1] followthis
model for most compression behavior in steel.

Local Buckling In addition to resisting shear forces, the
web has the function of supporting the flanges far enough
apart so that bending is resisted effectively. When an I-
section is subjected to bending, two failure mechanisms or
limit states can occur in the web. The web can buckle as a
vertical column that carries the compressive force that keeps
the flanges apart or the web can buckle as a plate due to
horizontal in-plane bending stresses. Both of these failure
mechanisms require limitations on the slenderness of the
web. Shear failure mechanisms are considered separately
and are discussed later. Similarly, the web can buckle due
to bending stresses as well as the flange. All behavior is
similar yet requires separate discussion because of unique

characteristics associated with the boundary conditions
and/or the stress fields present for each element.

Web Vertical Buckling—Behavior When bending occurs
in an I-section, curvature produces compressive stresses
between the flanges and the web of the cross section. These
compressive stresses are a result of the vertical component
of the flange force as shown schematically for a doubly
symmetric I-section in Figure 19.30. To develop the yield
moment of the cross section requires that the compression
flange reach its yield stress Fyc before the web buckles. If
the web is too slender, it buckles as a column, which causes
the compression flange to lose its lateral support, and it
buckles vertically into the web before the yield moment is
reached.
Vertical buckling of the flange into the web can be shown

by considering the elemental length of web dx along the
axis of the beam in Figure 19.31. It is subjected to an axial
compressive stress fwc from the vertical component of the
compression flange force Pc. From Figure 19.30, the ver-
tical component is Pc dφ, which for a doubly symmetrical
I-section

dφ = 2εfc
D

dx (19.31)

where εfc is the strain in the compression flange and D is
the web depth. The axial compressive stress in the web then
becomes

fwc = Pc dφ

tw dx
= 2Afcfcεfc

Dtw
(19.32)

where Afc is the area of the compression flange and fc is
the stress in the compression flange. Equation 19.32 can be
written in terms of the cross-sectional area of the web Aw =
Dtw as

fwc = 2Afc

Aw
fcεfc (19.33)

Thus, the vertical compressive stress in the web is propor-
tional to the ratio of flange area to web area in the cross

Fig. 19.30 Web compression due to curvature. (After Basler and
Thürlimann, 1961.)
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Fig. 19.31 Vertical buckling of the web.

section, the compressive stress in the flange, and the com-
pressive strain in the flange. The strain εfc is not simply fc/E ,
but must also include the effect of residual stress fr in the
flange (Fig. 19.9), that is,

εfc = fc + fr

E

so that Eq. 19.33 becomes

fwc = 2Afc

EAw
fc

(
fc + fr

)
(19.34)

and a relationship between the compressive stress in the web
and the compressive stress in the flange is determined.
By assuming the element in Figure 19.31 is from a long

plate that is simply supported along the top and bottomedges,
the critical elastic buckling or Euler load is

Pcr = π2EI

D2
(19.35)

for which themoment of inertia I for the element plate length
dx is

I = t 2wdx

12
(
1 − μ2

) (19.36)

where Poisson’s ratio μ takes into account the stiffening
effect of the two-dimensional (2D) action of the web plate.
The critical buckling stress Fcr is obtained by dividing
Eq. 19.35 by the elemental area tw dx to yield

Fcr = π2Et3wdx

12
(
1 − μ2

)
D2tw dx

= π2E

12
(
1 − μ2

)
(

tw

D

)2

(19.37)
To prevent vertical buckling of the web, the stress in the

web must be less than the critical buckling stress, that is,

fwc < Fcr (19.38)

Substitution of Eqs. 19.34 and 19.37 into Eq. 19.38 gives

2Afc

EAw
fc

(
fc + fr

)
<

π2E

12
(
1 − μ2

)
(

tw

D

)2

Solving for the web slenderness ratio D /tw results in
(

D

tw

)2

<
Aw

Afc

π2E2

24
(
1 − μ2

) 1

fc

(
fc + fr

) (19.39)

To develop the yield moment My in the symmetric
I-section, it is required that the compressive stress in the
flange fc reach the yield stress f yc before the web buckles
vertically. Assume a minimum value of 0.5 for Aw/Afc and
a maximum value of 0.5Fyc for fr; then a minimum upper
limit on the web slenderness ratio can be estimated from
Eq. 19.39:

D

tw
<

√
0.5π2E2

24
(
1 − 0.32

)
F 2
yc (1.5)

= 0.388
E

Fyc
(19.40)

where Poisson’s ratio for steel has been taken as 0.3.
Equation 19.40 is not rigorous in its derivation because of
the assumptions about Aw/Afc and fr, but it can be useful
as an approximate measure of web slenderness to avoid
vertical buckling of the flange into the web. For example, if
E = 29,000 ksi and Fyc = 36 ksi, then Eq. 19.40 requires
that D /tw be less than 310. For Fyc = 50 ksi, D /tw should
be less than 225, and for Fyc = 70 ksi, D /tw should be less
than 160. Often, 70-ksi steels are used for tension flanges.
Additional failure modes and handling requirements restrict
the web slenderness to be less than 150 [A6.10.2.1]; there-
fore vertical web buckling should not be critical. This value
is used in the Specifications.

Web Vertical Buckling—Specifications Vertical web
buckling is not addressed directly in the AASHTO LRFD
Specifications. The general limits on web slenderness
(transversely stiffened sections) of

D

tw
≤ 150 (19.41)

And for longitudinally stiffened sections

D

tw
≤ 300 (19.42)

address this for Fcy less than 85 ksi. Research has indicated
that the effect is small on the overall strength [see C10.2.1.1].

Web Bend Buckling—Behavior Because bending pro-
duces compressive stresses over a part of the web, buck-
ling out of the plane of the web can occur as shown in
Figure 19.32. The elastic critical buckling stress is given by
a generalization of Eq. 19.37, that is,

Fcr = kπ2E

12
(
1− μ2

)
(

tw

D

)2

(19.43)

where k is the buckling coefficient that depends on the
boundary conditions of the four edges, the aspect ratio
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Fig. 19.32 Bending buckling of the web.

(Eq. 19.35) of the plate, and the distribution of the in-plane
stresses. For all four edges simply supported and an aspect
ratio greater than 1, Timoshenko and Gere (1969) give the
values of k for the different stress distributions shown in
Figure 19.32.
Using a Poisson ratio of 0.3, Eq. 19.43 becomes

Fcr = 0.9kE
(
D/tw

)2 (19.44)

where

k = π2

(
Dc/D

)2 ≈ 9
(
Dc/D

)2

The solution for the web slenderness ratio yields in
Eq. 19.43 (

D

tw

)2

= kπ2

12
(
1 − μ2

) E

Fcr

For the I-section to reach the yield moment before the web
buckles, the critical buckling stress Fcr must be greater than
Fyc. Therefore, settingμ = 0.3, the web slenderness require-
ment for developing the yield moment becomes

D

tw
≤
√

k (0.904)E

Fyc
= 0.95

√
k

√
E

Fyc
(19.45)

For the pure bending case of Figure 19.32, k = 23.9.

D

tw
≤ 0.95

√
23.9

√
E

Fyc
= 4.64

√
E

Fyc
(19.46)

Comparisons with experimental tests indicate that Eq.
19.46 is too conservative because it neglects the postbuckling
strength of the web.

Web Bend Buckling—Specifications The AASHTO
(2010) LRFD Bridge Specifications give slightly different
expressions for defining the web slenderness ratio that
separates elastic and inelastic buckling. To generalize the
left side of Eq. 19.45 for unsymmetric I-sections, the depth
of the web in compression Dc, defined in Figure 19.22 and
calculated in Example 19.9, replaces D /2 for the symmetric
case to yield

D

tw
= 2Dc

tw
(19.47)

The right side of Eq. 19.45 for unsymmetric I-sectionsmay
bemodified for the case of a stress in the compression flange
fc less than the yield stress Fyc. Further, to approximate the
postbuckling strength and the effect of longitudinal stiffen-
ers, the value for k is effectively taken as 50 and 150 for
webs without and with longitudinal stiffeners, respectively.
TheAASHTO expressions are [TableA6.10.5.3.1-1 (2010)]:

� Without longitudinal stiffeners

2Dc

tw
≤ 6.77

√
E

fc

(19.48-2004)

2D

tw
≤ 150 (19.48-2010)

� With longitudinal stiffeners

2Dc

tw
≤ 11.63

√
E

fc

(19.49-2004)

2D

tw
≤ 300 (19.49-2010)

The typical compression flange is Grade 50 and the 2010
AASHTO LRFD specifications simplify the fc term (a load
effect) to the max fc, which is Fcy (material property). This
obviates the need for strength to be a function of the load
effects and significantly simplies computations. This is one
of many simplifications achived with the 2005 Interims.

Web Buckling Load Shedding—Behavior When an I-
section is noncompact, the nominal flexural resistance based
on the nominal flexural stress Fn is given by [A6.10.7.2.2]

Fn = RbRhFyf (19.50)

where Rb is the load shedding factor, Rh is the hybrid fac-
tor, and Fyf is the yield strength of the flange. When the
flange and web have the same yield strength, Rh = 1.0. A
hybrid girder has a lower strength material in the web than
the flange.
Load shedding occurs when the web buckles prior to

yielding of the compression flange. Part of the web transfers
its load to the flange, which creates an apparent decrease in
strength as the computation of the section properties does
not include this effect. So, the elastic properties are used
with the yield strength, but the computation is modified to
decrease the strength by a factor (load shedding) to account
for this web buckling.
The load shedding factor Rb provides a transition for

inelastic sections with web slenderness properties between
λp and λr (Fig. 19.33). From analytical and experimental
studies conducted by Basler and Thürlimann (1961), the
transition was given by

Mu

My

= 1 − C
(
λ − λ0

)
(19.51)
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Fig. 19.33 Flexural resistance of I-sections versus slenderness
ratio.

in which C is the slope of the line between λp and λr, and
λ0 is the value of λ when Mu/My = 1. The constant C was
expressed as

C = Aw /Af

1200 + 300Aw /Af

(19.52)

Web Buckling Load Shedding—Specifications The
AASHTO (2010) LRFD Bridge Specifications use the same
form as Eqs. 19.51 and 19.52 for Rb [A6.10.1.10.2], that is,

Rb = 1 −
(

awc

1200+ 300awc

) (
2Dc

tw
− λrw

)
≤ 1.0

(19.53)
in which

awc = 2Dctw

tfcbfc

and

λrw = 5.7

√
E

Fcy

If the web meets
D

tw
≤ λrw

then load shedding of the web is assumed to not occur and

Rb = 1.0

Additional requirements are outlined in AASHTO
[A6.10.1.10.2] for web stiffened with longitudinal stiffeners.
Due to space, these are not discussed here.

Compression Flange Local Buckling—Behavior Be-
cause of the postbuckling strength due to increased strain
capacity of the web, an I-section does not fail in flexure
when the web-buckling load is reached. However, it fails in
flexure when one of the framing members on the edges of a
web panel fails. If one of the flanges or transverse stiffeners

should fail, then the web displacements are unrestrained,
the web could no longer resist its portion of the bending
moment, and the I-section then fails.
In a doubly symmetric I-section subjected to bending, the

compression flange fails first in local or global buckling.
Therefore, the bracing and proportioning of the compression
flange are important in determining the flexural resistance
of I-sections. To evaluate the buckling strength of the
compression flange, it is considered as an isolated column.
Consider the connection between the web and the flange:

One-half of the compression flange can be modeled as a long
uniformly compressed plate (Fig. 19.34) with one longitudi-
nal edge free and the other simply supported. Usually, the
plate is long compared to its width, and the boundary condi-
tions on the loaded edges are not significant and the buckling
coefficient is k = 0.425 for uniform compression (Maquoi,
1992).
To develop the plastic moment Mp resistance in the

I-section, the critical buckling stress Fcr must exceed the
yield stress Fyc of the compression flange. In a similar
manner to the development of Eq. 19.40, the limit for the
compression flange slenderness becomes

bf

2tf
≤ 0.95

√
Ek

Fyc
(19.54)

For an ideally perfect plate, k = 0.425 and the slenderness
limit can be written as

bf

2tf
≤ 0.62β

√
E

Fyc
(19.55)

where β is a factor that accounts for both geometrical
imperfections and residual stresses in the compression
flange (Maquoi, 1992).
If the compression flange is too slender, elastic local buck-

ling occurs prior to yielding. To ensure that some inelas-
tic behavior takes place in the flange, the AASHTO (2010)
LRFD Bridge Specifications provide a method to compute

Fig. 19.34 Model of half a compression flange.
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the moment resistance for noncompact and slender flanges
[Section 6, Appendix A6.3.2]:

bf

2tf
≤ 1.38

√
E

fc

√
2Dc/tw

(19.56)

where fc is the stress in the compression flange due to fac-
tored loading. Equation 19.56 is dependent on the web slen-
derness ratio 2Dc/tw because it can vary between the values
given by Eqs. 19.48 and 19.49 for noncompact sections.
As the web slenderness increases, the simply supported

longitudinal edge in Figure 19.34 loses some of its verti-
cal and transverse restraint. The effect of web slenderness on
buckling of the compression flange can be shown by rewrit-
ing Eq. 19.56 as

bf

2tf
≤ Cf

√
E

fc
(19.57)

in which
Cf = 1.38

4

√
2Dc

tw

(19.58)

where Cf is a compression flange slenderness factor that
varies with 2Dc/tw as shown in Figure 19.35. The value of
Cf is comparable to the constant in Eq. 19.56 for compact
sections. In fact, if 2Dc/tw = 170, they are the same. For
values of 2Dc/tw > 170, the upper limit on bf /2tf decreases
until at 2Dc/tw = 300, and

(
bf

2tf

)

300

= 0.332

√
E

fc

(19.59)

Compression Flange Local Buckling Specifications
The AASHTO (2010) LRFD Bridge Specifications take
β ≈ 0.61, and the compact section compression flange
slenderness requirement becomes [A6.10.8.2.2]

λf = bf

2tf
≤ λpf = 0.38

√
E

Fyc
(19.60)

Fig. 19.35 Compression flange slenderness factor as a function of
web slenderness.

If the steel I-section is composite with a concrete deck in a
region of positive bending moment, the compression flange
is fully supported throughout its length and the slenderness
requirement does not apply.
Reference again to Figure 19.29 and the now familiar plot

showing three types of behavior, the slenderness parameter
λ for the compression flange is

λf = bf

2tf
(19.61)

and the values at the transition anchor points are

λpf = 0.38

√
E

Fyc
(19.62)

and

λrf = 0.56

√
E

Fyr

Fyr = min
(
0.7Fyc, Fyw

) ≥ 0.5Fyc (19.63)

If λf ≤ λpf, then the compression flange is compact and

Fnc = RbRhFyc (19.64)

and the plastic moment resistance Mp is based on Fyc and
plastic section properties. If λ ≥ λp, then the compression
flange is noncompact and the two anchor points are used to
establish the compression flange strength:

Fnc =
[
1 −

(
1 − Fyr

RhFyc

)(
λf − λpf

λrf − λpf

)]
RbRhFyc

(19.65)

Lateral Torsion Buckling Behavior Previous sections on
web slenderness and compression flange slenderness were
concerned with local buckling of the compression region in
I-sections subjected to bending. The problem of global buck-
ling of the compression region as a column between brace
points must also be addressed. As described by the stability
limit state and illustrated in Figure 19.26, an unbraced com-
pression flange moves laterally and twists in a mode known
as lateral torsional buckling (LTB).
If the compression flange is braced at sufficiently close

intervals (less than Lp), the compression flange material can
yield before it buckles and the plastic moment Mp may be
reached if other compactness requirements are also met.
If the distance between bracing points is greater than the
inelastic buckling limit Lr, the compression flange buckles
elastically at a reduced moment capacity. This behavior can
once again be shown by the generic resistance–slenderness
relationship of Figure 19.29 with the slenderness parameter
given by

λ = Lb

rt

(19.66)

where Lb is the distance between lateral brace points and rt
is the minimum radius of gyration of the compression flange
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Fig. 19.36 Flexural resistance of I-sections versus unbraced
length of compression flange.

plus one-third of the web in compression taken about the ver-
tical axis in the plane of the web.
Because the unbraced length Lb is the primary concern

in the design of I-sections for flexure, it is taken as the
independent parameter rather than the slenderness ratio
Lb/rt in determining the moment resistance. Figure 19.29
is, therefore, redrawn as Figure 19.36 with Lb replacing λ.
The same three characteristic regions remain: plastic (no
buckling), inelastic lateral-torsional buckling, and elastic
lateral-torsional buckling.
For Lb less than Lp in Figure 19.36, the compression flange

is considered laterally supported and the moment resistance
Mn is constant. The value of Mn depends on the classifica-
tion of the cross section. If the cross section is classified as
compact , the value of Mn is Mp. If the cross section is non-
compact or slender , then the value of Mn is less than Mp.
The dashed horizontal line on Figure 19.36 indicates a typi-
cal value ofMn for a section that is not compact.
For Lb > Lr, the compression flange fails by elastic LTB.

This failure mode has a classical stability solution (Timo-
shenko and Gere, 1969) in which the moment resistance is
the square root of the sumof the squares of two contributions:
torsional buckling (St. Venant torsion) and lateral buckling
(warping torsion), that is,

M2
n = M2

n,v + M2
n,w (19.67)

where Mn ,v is the St. Venant torsional resistance and Mn ,w
is the warping contribution. For the case of constant bend-
ing between brace points, Gaylord et al. (1992) derive the
following expressions:

M2
n,v = π2

L2
b

EI yGJ (19.68)

M2
n,w = π4

L4
b

EI yECw (19.69)

Fig. 19.37 (a) St. Venant torsion and (b) warping torsion in lateral
buckling.

where Iy is the moment of inertia of the steel section about
the vertical axis in the plane of the web, G is the shear mod-
ulus of elasticity, J is the St. Venant torsional stiffness con-
stant, and Cw is the warping constant. When an I-section
is short and stocky [Fig. 19.37(a)], pure torsional strength
(St. Venant’s torsion) dominates. When the section is tall and
thin [Fig. 19.37(b)], warping torsional strength dominates.
Substitution of Eqs. 19.68 and 19.69 into Eq. 19.67

and along with approximations for Iy and Cw (see below)
results in

Mn = πECb

Lb

√
(
2Iyc

)
(0.385) J + π2

L2
b

(
2Iyc

) d2

2

(
Iyc
)

= πECb

Iyc

Lb

√√√√0.77

(
J

Iyc

)
+ π2

(
d

Lb

)2

≤ My

(19.70)

For Lb between Lp and Lr, the compression flange fails
by inelastic LTB. Because of its complexity, the inelastic
behavior is usually approximated from observations of
experimental results. A straight-line estimate of the inelastic
lateral-torsional buckling resistance is often used between
the values at Lp and Lr.
The bending moment field within the unbraced region

affects the LTB. A uniform bending moment is most critical
and is the basis for the elastic buckling equation. A spacially
variant moment field (presence of shear) is less critical and
a region that changes between positive and negative moment
(contains the point of contraflexure) is even stronger. The
moment gradient factor Cb accounts for the nonuniform
moment field. This factor is outlined in a later section.
Finally, a requirement of the elastic buckling equation is

that the section proportions meet [A6.10.2.2]:

0.1 ≤ Iyc

Iyt
≤ 10 (19.71)
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where I yc and I yt are the moment of inertia of the compres-
sion and tension flanges of the steel section about the vertical
axis in the plane of the web. If the member proportions are
not within the limits given, the formulas for lateral-torsional
buckling used in AASHTO (2010) LRFD Bridge Specifica-
tions are not valid.
If the unbraced length is greater than the Lr

Lb > Lr = πrt

√
E

Fyc
(19.72)

then the cross section behaves elastically and has a nominal
resisting moment (horizontal dashed line in Fig. 19.36) less
than or equal toMy [A6.10.8.2.3].
If the web is relatively stocky, or if a longitudinal stiffener

is provided, bend buckling of the web cannot occur and both
the pure torsion and warping torsion resistances in Eq. 19.70
can be included in calculating Mn. Some simplification to
Eq. 19.70 occurs if it is assumed that the I-section is dou-
bly symmetric and the moment of inertia of the steel section
about theweak axis Iy, neglecting the contributionof theweb,
is

Iy ≈ Iyc + Iyt = 2Iyc (19.73)

Also, the shear modulus G can be written for Poisson’s
ratio μ = 0.3 as

G = E

2 (1 + μ)
= E

2 (1 + 0.3)
= 0.385E (19.74)

and the warping constant Cw for a webless I-section becomes
(Kitipornchai and Trahair, 1980)

Ctw ≈ Iyc

(
d

2

)2

+ Iyt

(
d

2

)2

= d2

2
Iyc (19.75)

where d is the depth of the steel section. Substitution of Eqs.
19.73–19.75 gives Eq. 19.70 and factoring out the common
terms results in

Mn = πECb

Lb

√
(
2Iyc

)
(0.385) J + π2

L2
b

(
2Iyc

) d2

2

(
Iyc
)

= πECb

Iyc

Lb

√√√√0.77

(
J

Iyc

)
+ π2

(
d

Lb

)2

≤ My

(19.76)

which is valid as long as

2Dc

tw
≤ 5.7

√
E

Fyc
(19.77)

and

Lb > Lp = 1.0rt

√
E

Fyc
(19.78)

Even though Eq. 19.76was derived for a doubly symmetric
I-section (I yc/I yt = 1.0), it can be used for a singly symmet-
ric I-section that satisfies Eq. 19.77. For I-sections composed

of narrow rectangular elements, the St. Venant torsional stiff-
ness constant J can be approximated by

J = Dt 3w

3
+
∑ bf t3f

3
(19.79)

In the development of Eq. 19.76, the hybrid factor Rh was
taken as 1.0, that is, the material in the flanges and web have
the same yield strength.
For I-sections with webs more slender than the limit of

Eq. 19.77 or without longitudinal stiffeners, cross-sectional
distortion is possible and the St. Venant torsional stiffness
can be neglected [C6.10.8.2.3]. Setting J = 0 in Eq. 19.76,
the elastic LTB moment for Lb > Lr becomes

Mn = π2ECb

Iycd

L2
b

≤ My (19.80a)

Fcn = CbRbπ
2E

(
Lb

rt

)2
(19.80b)

Reintroducing the load shedding factor Rb of Eq. 19.53
and defining Lr as the unbraced length at whichMn = 0.5My
(anchor point), then Eq. 19.80 becomes

Mn = CbRb

(
0.5My

) (
Lr/Lb

)2 ≤ RbMy (19.81)

for which
My = FycSxc (19.82)

where Fyc is the yield strength of the compression flange
and S xc is the section modulus about the horizontal axis of
the I-section at the compression flange. Inserting Eq. 19.82
into Eq. 19.81, multiplying by Rb, equating to the modified
Eq. 19.81, and solving for Lr gives

Lr =
√
2π2Iycd

Sxc

E

Fyc
(19.83a)

which may be conservatively approximated by [C6.10.8.2.3]

Lr = πrt

√
E

Fyc
(19.83b)

For values of Lb between Lp and Lr a straight-line anchor
points between Mn = My and Mn = 0.5My is given by

Mn = CbRbMy

(
1 − 0.5

Lb − Lp

Lr − Lp

)
≤ RbMy (19.84a)

which in terms of stress is

Fcn =
(
1 − 0.5

Lb − Lp

Lr − Lp

)
CbRbRhFcy ≤ RbRhFyc

(19.84b)
Because the moment gradient factor Cb can be greater than

1.0 (Eq. 19.92), the elastic upper limit ofMn is given on the
right side of Eq. 19.84 as RbRhMy.
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Lateral Torsion Buckling—Specifications [A6.10.8.2.3]
For unbraced lengths less than Lp the section is compact and
the LTB compression strength is

Fnc = RbRhFyc (19.85)

where

Lb < Lp = 1.0rt

√
E

Fyc
(19.86)

If the unbraced length is greater than that required for com-
pactness but not elastic, then, if Lr ≥ Lb ≥ Lp, where

Lr = πrt

√
E

Fyc
(19.87)

then the compression flange is noncompact and the anchor-
point interpolation is used to establish the compress flange
strength,

Fnc = Cb

[
1 −

(
1 − Fyr

RhFyc

)(
L − Lp

Lr − Lp

)]

× RbRhFyc ≤ RbRhFyc (19.88)

where

Fyr = min
[
0.7Fyc, Fyw

] ≥ 0.5Fyc (19.89)

If the unbraced length is greater than that required for
inelastic buckling and the buckling is elastic and if Lb ≥ Lr,
then

Fnc = Fcr ≤ RbRhFyc (19.90)

where

Fcr = CbRbπ
2E

(
Lb/rt

)2 (19.91)

Moment Gradient Correction Factor Cb Equations 19.68
and 19.69 were derived for constant (uniform) moment
between brace points. This worst-case scenario is overly
conservative for the general case of varying applied mo-
ment over the unbraced length. To account for I-sections
with both variable depth and variable moment (anywhere
shear is present), the force in the compression flange at the
brace points is used to measure the effect of the moment
gradient. The expression for the correction factor is given as
[A6.10.8.2.3]

Cb = 1.75 − 1.05

(
f1

f2

)
+ 0.3

(
f1

f2

)2

≤ 2.3 (19.92)

where f 1 is the stress in the compression flange at the brace
point with the smaller force due to factored loading and f 2 is
the stress in the compression flange at the brace point with
the larger force due to factored loading.
An I-section with moments M 1 and M 2 with associ-

ated flange stresses f 1 and f 2 at the brace points is shown
in Figure 19.38. The moment diagram (stress variation)
between the brace points is given in Figure 19.38(a) and

Fig. 19.38 (a) Moment gradient between brace points, (b) com-
pression flange forces corresponding to f 1 and f 2, (c) compression
flange forces when f 1 = 0, and (d) compression flange forces when
f 1 = −0.46f 2.

the compression flange corresponding to f 1 and f 2 in
Figure 19.38(b). If f 1 = f 2, Eq. 19.92 gives Cb = 1.0. As
the compression flange stress f 1 decreases, the LTB strength
increases. If f 1 = 0 [Fig. 19.38(c)], then Cb = 1.75. If f 1
goes into tension, Cb continues to increase until it reaches
its maximum value of 2.3 at f 1 = −0.46f 2 [Fig. 19.38(d)].
Many of the articles in the AASHTO LRFD Specifica-

tions were taken directly or indirectly from specifications
that address primarily stationary loads (e.g., AISC), and
these articles are sometimes difficult to use for bridges.
Theoretically, the values for the compression flanges forces
should be those forces that are coincident with the forces
that cause the critical load effect of the section of interest.
The coincident actions are actions at other sections when
the cross section of interest is loaded for critical effect. Such
actions or the load effects such as flange forces are not easily
computed. The AASHTO LRFD Specifications address
this issue by permitting the use of the moment envelope to
estimate coincident actions in many such cases.
Another complicating feature of the moment gradient

effect is where a point of contraflexure occurs in a com-
posite section in the “unbraced” length, for example, with
a negative moment transitioning to a positive before a
brace point is encountered. See the extensive commentary
where moment gradient factor issues are discussed. The
commentary continues for several pages and is recom-
mended regarding details of unbraced length and LTB issues
[C6.10.8.2.3].
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Noncomposite Elastic I-Section Specifications [A6.10.8]
For noncomposite I-sections, the compactness requirements
are the same as for composite sections in negative flexure
[A6.10.6.3 and A6.10.8], when the unbraced length Lb
exceeds the noncompact (inelastic) section requirement
[A6.10.8.2.3]

Composite Noncompact Sections For composite I-
sections in negative flexure with Lb greater than the value
of Eq. 19.86 but less than the value of Eq. 19.87, then the
nominal flexural resistance is based on the nominal flexural
stress of the compression flange and Eq. 19.88:

fc ≤ Fnc(LTB) (19.93)

Limited Redistribution—Behavior If the positivemoment
region sustains plastic hinging, moments attempt to redis-
tribute to other areas of the girder, most likely the negative
moment region. If the negative moment does not have suffi-
cient strength and ductility to sustain the increased moment,
then the negative moment region could fail. Typically,
economical design gives a negative moment section that is
noncompact and discretely braced. Hence if the section is
noncompact, then full plastic moment is limited to a lesser
value to avoid this situation.

Limited Redistribution—Specification [A6.10.7.2] For
composite sections in negative flexure with Lb less than or
equal to the value given by Eq. 19.86, the nominal flexural
resistance is equal to the plastic moment, that is,

Mn = Mp (19.94)

For continuous spans with compact positive bend-
ing sections and noncompact interior negative moment
sections, the nominal positive flexural resistance is limited
to [A6.10.7.2]

Mn = 1.3RhMy (19.95)

This limits the shape factor for the compact positive
bending section to 1.3. This is necessary in continuous spans
because excessive yielding in the positive moment region
can redistribute moments to the negative moment region
that are greater than those predicted by an elastic analysis
[C6.10.7.1.2]. The negative moment section may not be able
to carry the redistributed moment in a ductile, fully plastic
manner.
Section A6.10.7.1.2 further outlines equations that inter-

polate between My and Mp depending upon the neutral axis
depth. These equations, along with those in the Appendix 6B
likely better represent that ultimate behavior. A detailed de-
scription of these is beyond the scope of this book and the
reader is referred to extensive commentary of AASHTO and
the cited references therein.
Philosphically, sharping the “design pencil” to this degree

is likely unnecessary. However, for the engineer evaluating
the strength of an existing structure for load rating, the
expanded approach could be helpful.

Ductility of Composite Compact Sections Behavior For
compact composite sections in positive flexure, a limitation
is imposed on the depth of the composite section in com-
pression to ensure that the tension flange of a steel section
reaches strain hardening before the concrete slab crushes
[C6.10.7.3]. The higher the neutral axis is the greater the
curvature at failure and the more ductility exhibited by
the section. Figure 19.39 illustrates the strain profile for
crushing concrete (0.003) and yield in a Grade 36 bottom
flange. Consistent with concrete, the level of the neutral axis
is to be higher than 0.42 times the section depth.

Ductility of Composite Compact Sections Specifications
[A6.10.7.3] The ductility requirements for steel composite
sections are outlined in [A6.10.7.3]. In summary,

Dcp ≤ 0.42Dtotal (19.96)

19.3.4 Limit States

I-sections in flexure must be designed to resist the load com-
binations for the strength, service, and fatigue limit states of
Table 5.1. Often the most critical state of the bridge is dur-
ing construction when the girders are braced only with cross
frames prior to deck construction and hardening.

Constructibility Checks [A6.10.3] During construction,
adequate strength shall be provided under factored loads
of [A3.4.2], nominal yielding should be prevented as well
as postbuckling behavior. The yielding associated with the
hybrid reduction factor is permitted. The flexural strength
is checked considering the unbraced lengths encountered
during construction, assuming that the deck does not provide
restraint to the top flange. Cross-frame locations are critical
in establishing the LTB strength of the girder. The AASHTO
Specifications for Section 6.10 are summarized in several
flowcharts for each limit state. The constructibility limit
state [6.10.3] is illustrated in Figure 19.40.

Service Limit State [A6.10.4] The service II load com-
bination of Table 5.1 shall apply. This load combination is

Fig. 19.39 Strain-hardening depth to neutral axis.
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Fig. 19.40 Flowchart for LRFD 6.10.3—Constructibility. (After AASHTO, 2010.)

intended to control yielding of steel structures and to prevent
objectionable permanent deflections that would impair
rideability [C6.10.4.2]. When checking the flange stresses,
moment redistribution may be considered if the section in
the negative moment region is compact. Flange stresses in
positive and negative bending for composite sections shall

not exceed

ff + fl

2
≤ 0.95RhFyf (19.97)

where the lateral bending stress fl is zero in the top flange
and is considered in the bottom flange.
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For noncomposite sections

ff + fl

2
≤ 0.80RhFyf (19.98)

where ff is the elastic flange stress caused by the factored
loading, fl is the flange lateral bending stress at the section
under consideration due to service II loads, Rh is the hybrid
flange stress reduction factor [A6.10.1.10] (for a homoge-
neous section, Rh = 1.0), and Fyf is the yield stress of the
flange.
Lateral flange bending is due to a bending moment in the

flange [about beam’s minor (weak) axis]. This load effect is

due to the 3D system effects in skewed, curved, and skew-
curved bridges for gravity loads. Lateral flange bending
is also due to lateral load applied directly to the girders
from wind, construction shoring, and the like. The spec-
ification addresses the resistance of the combined major-
and minor-axis bending by considering the compression
flange as a beam column. The load effects are addressed
with a refined analysis and/or with simplified procedures
outlined in [A4.6.1.2.4b] (gravity loads) and [A6.10.3] for
construction loads.
AASHTO does not have shear checks for the service II

limit state. The details for the service II limit state are pro-
vided in Figure 19.41.

6.10.4

Check elastic
deformation

requirements of
Article 2.5.2.6
as applicable

Optionally,
Straight I-girder bridge & Continuous-
Span member satisfying Article B.6.2:

Redistribute moments from interior
pier sections?

No

Yes

Calculate moment redistribution
using optional Appendix B

Composite
Section

Yes

YesNo

in top steel flange
6.10.4.2.2-1

in bottom steel flange
6.10.4.2.2-2

Shored
Construction No & (+) flexure Yes

No

End

6.10.4.2.2-4

Concrete
compressive

stress ≤ 0.6f 'c fc ≤ Fcrw

fc ≤ Fcrw

ff ≤ 0.95RhFyf

6.10.2.1.1-1

6.10.4.2.2-4

6.10.4.2.2-4in both steel flanges
6.10.4.2.2-3

≤ 150D
tw

≤ 0.80RhFyf
f
 

2
ff +

≤ 0.95RhFyf
f
 

2
ff +

Fig. 19.41 Flowchart for LRFD 6.10.4—Service II. (After AASHTO, 2010.)
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Fatigue Limit State [A6.10.5] The fatigue limit state for I-
section is addressed by four failure modes. First, the details
associated with weldsmust be checked. Reference the earlier
discussion on fatigue details, fatigue categories, and fatigue
life required.Shear connectors requirewelds to the top flange
and therefore are susceptible to fatigue. The shear live-load
range is used for this check. This check is best illustrated by
example and two are provided in the composite girder design
examples in the next chapter (E20.2 and E20.3) [A6.6.1].
Fracture toughness requirements are checked per tempera-
ture requirement and steels specified [A6.6.2]. Finally, the
web should not buckle under the unfactored service perma-
nent loads and the factored load for fatigue I.
This eliminates out-of-plane distortions due to service-

level traffic [A6.10.5.3]:

Vu = Vcr (19.99)

where Vu is the shear in the web due to unfactored permanent
loads plus factored at fatigue limit state I, andVcr is the shear-
buckling resistance determined by shear provisions, which
are discussed later [A6.10.9.3.3].
For shear connectors, the live-load shear range is used.

The details for the fatigue and fracture states are provided in
Figure 19.42.

Strength Limit State [A6.10.6] The strength limit state is
addressed by checking flexural resistance and shear resis-
tance. Because of the many permutations of compactness of
various local elements (web and flange), LTB, hybrid factors,
and load shedding, the AASHTO specifications are a com-
plex web of checks and paths. The discussion above outlines
the behavioral consideration and references the specification
equations/articles. A short summary follows:
For compact sections, the factored flexural resistance is in

terms of moments
Mr = φf Mn (19.100)

where φf is the resistance factor for flexure, and Mn = Mp is
the nominal resistance specified for a compact section.
For noncompact sections, the factored flexural resistance

is defined in terms of stress:

Fr = φf Fn (19.101)

where Fn is the nominal resistance specified for a noncom-
pact section.

The factored shear resistance Vr shall be taken as

Vr = φvVn (19.102)

where φv is the resistance factor for shear and Vn is the nom-
inal shear resistance specified for unstiffened and stiffened
webs. Other elements such as transverse and bearing stiffen-
ers must also be checked. The details for the strength limit
state are provided in Figures 19.43–19.46.

19.3.5 Summary of I-Sections in Flexure

The behavior of I-sections in flexure is complex in details
and yet simple in concept. The details are complex because
of themany different conditions forwhich requirementsmust
be established. Both composite and noncomposite sections
subjected to positive and negative flexure must be considered
for the three classes of shapes: compact, noncompact, and
slender.
The concept is straightforward because all of the limit

states follow the same pattern—web slenderness, compres-
sion flange slenderness, or compression flange bracing—
these three failure modes are identified: no buckling, inelas-
tic buckling, and elastic buckling. The numerous formulas
describe the behavior and define the anchor points for the
three segments that represent the design requirements.

19.3.6 Closing Remarks on I-Sections in Flexure

When rolled steel shapes are used as beams, the web and
flange slenderness requirements do not have to be checked
because all of the webs satisfy the compact section criterion.
Further, if Grade 36 steel is used, all but theW 150× 22 sat-
isfy the flange slenderness criterion for a compact section.
If Grade 50 steel is used, six of the 253W-shapes listed in
AISC (2005) do not satisfy the flange slenderness criterion
for a compact section. Therefore, local buckling is seldom a
problem with rolled steel shapes; and, when they are used,
the emphasis is on providing adequate lateral support for the
compression flange to prevent global buckling.
Plate girders are seldom economically proportioned as

compact in the negative moment region. Recent trends
using Grade 70 HPS has led to a renewal of hybrid girders.
Additionally, more agencies try to use unstiffened sections
with a thicker web in order to save labor costs. The next
major topic is the design of girders for shear and bearing
where stiffener considerations are elaborated.

Vw ≤ Vcr

Fig. 19.42 Flowchart for LRFD 6.10.5—fatigue and fracture. (After AASHTO, 2010.)
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Fig. 19.43 Flowchart for LRFD 6.10.6—strength limit state. (After AASHTO, 2010.)
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Fig. 19.44 Flowchart for LRFD 6.10.6—composite sections in positive flexure. (After AASHTO, 2010.)
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Fig. 19.45 Flowchart for LRFD 6.10.6—Composite sections in negative flexure and noncomposite sections. (After AASHTO, 2010.)

19.4 SHEAR RESISTANCE OF I-SECTIONS

When the web of an I-section is subjected to in-plane shear
forces that are progressively increasing, small deflection
beam theory can be used to predict the shear strength until
the critical buckling load is reached. If the web is stiffened,
additional postbuckling shear strength due to tension field
action is present until web yielding occurs. Using the nota-
tion in Basler (1961), the nominal shear resistance Vn can be
expressed as

Vn = Vτ + Vσ (19.103)

where Vτ is the beam action shear resistance and Vσ is the
tension field action shear resistance.

19.4.1 Beam Action Shear Resistance

A stress block at the neutral axis of a web of an I-section is
shown in Figure 19.47(a). Because the flexural stresses are
zero, the stress block is in a state of pure shear. AMohr circle
of stress [Fig. 19.47(b)] indicates principal stresses σ 1 and
σ 2 that are equal to the shearing stress τ . These principal
stresses are oriented at 45◦ from the horizontal. When using
beam theory, it is usually assumed that the shear force V is
resisted by the area of the web of an I-section shape, and
maximum shear stress is close to the average,

τ = V

Dtw
(19.104)

where D is the web depth and tw is the web thickness.
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Fig. 19.46 Flowchart for LRFD 6.10.6 (continued)—Composite sections in negative flexure and noncomposite sections. (After AASHTO,
2010.)
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Fig. 19.47 Beam action states of stress: (a) stress block at neutral
axis and (b) Mohr circle of stress.

If no buckling occurs, the shear stress can reach its
yield strength τ y and the full plastic shear force Vp can be
developed. Substitution of these values into Eq. 19.104 and
rearranging,

Vp = τyDtw (19.105)

The shear yield strength τ y cannot be determined by it-
self but is dependent on the shear failure criteria assumed.
By using the Mises shear failure criterion, the shear yield
strength is related to the tensile yield strength of the web σ y
by

τy = σy√
3

≈ 0.58σy (19.106)

If buckling occurs, the critical shear buckling stress τ cr for
a rectangular panel (Fig. 19.48) is given by

τcr = k
π2E

12
(
1 − μ2

)
(

tw

D

)2

(19.107)

in which

k = 5.0 + 5.0
(
d0/D

)2 (19.108)

where d 0 is the distance between transverse stiffeners.

Fig. 19.48 Definition of aspect ratio α.

By assuming that shear is carried in a beamlike manner
up to τ cr and then remains constant, we can express Vτ as a
linear fraction of Vp, that is,

Vτ = τcr

τy

Vp (19.109)

19.4.2 Tension Field Action Shear Resistance

Tension Field Action Behavior When a rectangular web
panel subjected to shear is supported on four edges, tension
field action (TFA) on the diagonal can develop. The web
panel of an I-section (Fig. 19.48) has two edges that are at
flanges and two edges that are at transverse stiffeners. These
two pairs of boundaries are very different. The flanges are
relatively flexible in the vertical direction and cannot resist
stresses from a tension field in the web. On the other hand,
the transverse stiffeners can serve as compression struts to
balance the tension stress field. As a result, the web area
adjacent to the junction with the flanges is not effective and
the trusslike load-carrying mechanism of Figure 19.49 can
be assumed. In this truss analogy, the flanges are the chords,
the transverse stiffeners are compression struts, and the web
is a tension diagonal.
The edges of the effective tension field in Figure 19.49 are

assumed to run through the corners of the panel. The tension
field width s depends on the inclination from the horizontal
θ of the tensile stresses σ t and is equal to

s = D cos θ − d0 sin θ (19.110)

The development of this tension field has been observed
in numerous laboratory tests. An example of one from
Lehigh University is shown in Figure 19.50. At early stages
of loading the shear in the web is carried by beam action
until the compressive principal stress σ 2 of Figure 19.47(b)
reaches its critical stress and the compression diagonal of
the panel buckles. At this point, no additional compressive
stress can be carried, but the tensile stresses σ t in the tension
diagonal continue to increase until they reach the yield

Fig. 19.49 Tension field action.
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Fig. 19.50 Thin-web girder after testing. (Photo courtesy of John Fisher, ATLSS Engineering Research Center, Lehigh University.)

stress σ y = Fyw of the web material. The stiffened I-section
in Figure 19.50 shows the buckled web, the postbuckling
behavior of the tension field, and the trusslike appearance of
the failure mechanism.
The contribution to the shear force Vσ from the tension

field action �Vσ is the vertical component of the diagonal
tensile force (Fig. 19.49), that is,

�Vσ = σtstw sin θ (19.111)

To determine the inclination θ of the tension field, assume
that when σ t = σ y the orientation of the tension field is such
that �Vσ is a maximum. This condition can be expressed as

d

dθ

(
�Vσ

) = d

dθ

(
σystw sin θ

) = 0

Substitute Eq. 19.110 for s :

σytw

[
d

dθ

(
D cos θ sin θ − d0 sin

2θ
)] = 0

which reduces to

D tan2θ + 2d0 tan θ − D = 0

Solve for tan θ :

tan θ =
−2d0 +

√
4d2

0 + 4D2

2D
=
√
1 + α2 − α (19.112)

where α is the aspect ratio of the web panel d 0/D . Use
trigonometric identities to obtain

cos θ = (tan2θ +1
)−1/2 =

[
2
√
1+α2

(√
1+α2 −α

)]−1/2

(19.113)

and

sin θ = (
cot2θ + 1

)−1/2 =
(
1

2
− α

2
√
1 + α2

)1/2

(19.114)
Consider equilibrium of the free-body ABDC in Figure

19.51 taken below the neutral axis of the web and between
the middle of the web panels on either side of a transverse
stiffener. By assuming a doubly symmetric I-section, the
components of the partial tension field force on the vertical
sections AC and BD are Vσ /2 vertically and Fw horizontally
in the directions shown in Figure 19.51. On the horizontal

Fig. 19.51 Free-body diagram of tension field action.
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section AB , the tension field stresses σ t are inclined at an
angle θ and act on a projected area twd 0 sin θ . Equilibrium
in the vertical direction gives the axial load in the stiffener
Fs as

Fs = σt twd0 sin θ sin θ = σt tw (α D) sin2θ

Substitution of Eq. 19.114 gives

Fs = σt twD

(
α

2
− α2

2
√
1 + α2

)
(19.115)

Equilibrium in the horizontal direction gives the change in
the flange force �Ff as

�Ff = σt tw (α D) sin θ cos θ

Substitution of Eqs. 19.113 and 19.114 into the above
expression for �Ff gives

�Ff = σt twD
α

2
√
1 + α2

(19.116)

Balance of the moments about point E results in

1

2
Vσ

(
d0
)− �Ff

(
D

2

)
= 0

Vσ = �Ff
D

d0
= �Ff

α

So that the shear force contribution of TFA Vσ becomes

Vσ = σt twD
1

2
√
1 + α2

(19.117)

With the use of Eqs. 19.105 and 19.106, Vσ can be written
in terms of Vp as

Vσ =
√
3

2

σt

σy

1√
1 + α2

Vp (19.118)

19.4.3 Combined Shear Resistance

Substituting Eqs. 19.109 and 19.118 into Eq. 19.103, the
expression for the combined nominal shear resistance of the
web of an I-section is

Vn = Vp

[
τcr

τy

+
√
3

2

σt

σy

1√
1 + α2

]
(19.119)

where the first term in brackets is due to beam action and
the second term is due to TFA. These two actions should not
be thought of as two separately occurring phenomena where
first one is observed and later the other becomes dominant.
Instead they occur together and interact to give the combined
shear resistance of Eq. 19.119.
Basler (1961) develops a simple relation for the ratio σ t/σ y

in Eq. 19.119 based on two assumptions. The first assump-
tion is that the state of stress anywhere between pure shear
and pure tension can be approximated by a straight linewhen
using theMises yield criterion.The second assumption is that
θ is equal to the limiting case of 45◦. By using these two
assumptions, substitution into the stress equation represent-
ing the Mises yield criterion results in

σt

σy

= 1− τcr

τy

(19.120)

Basler (1961) conducted a numerical work comparing
the nominal shear resistance of Eq. 19.119 with that using
the approximation of Eq. 19.120 where the difference was
demonstrated to be less than 10% for values of α between
zero and infinity. Substituting Eq. 19.120 into Eq. 19.119,
the combined nominal shear resistance of the web becomes

Vn = Vp

[
τcr

τy

+
√
3

2

1 − (
τcr/τy

)
√
1 + α2

]
(19.121)

CombinedShear Specifications [A6.10.9] In theAASHTO
(2010) LRFD Bridge Specifications, Eq. 19.121 appears as
[A6.10.9.3]

Vn = Vp

⎡

⎢⎣C + 0.87 (1 − C)√
1 + (

d0/D
)2

⎤

⎥⎦ (19.122)

for which

C = τcr

τy

(19.123)

α = d0

D
(19.124)

Vp = 0.58FywDtw (19.125)

Because τ cr is a function of panel slenderness, so is C .
Table 19.7 provides the ratioC for plastic, inelastic, and elas-
tic behavior.

Table 19.7 Ratio of Shear Buckling Stress to Shear Yield Strength [A6.10.9.3]

No Buckling Inelastic Buckling Elastic Buckling

Web slenderness
D

tw
≤ 1.12

√
Ek

Fyw

D

tw
≤ 1.40

√
Ek

Fyw

D

tw
> 1.40

√
Ek

Fyw

C = τcr

τy

C = 1.0 C = 1.12

D/tw

√
Ek

Fyw
C = 1.57

(
D/tw

)2
Ek

Fyw
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Fig. 19.52 Flowchart for shear design of I-sections. (After
AASHTO, 2010.)

The exception to the above is if the section along the entire
panel does not satisfy

2Dtw

bfctfc + bfttft
≤ 2.5

Then

Vn = Vp

⎡
⎢⎣C + 0.87 (1 − C)√

1 + (
d0/D

)2 + d0/D

⎤
⎥⎦ (19.126)

The flowchart for the design of I-sections for shear is pro-
vided in Fig. 19.52.

19.4.4 Shear Resistance of Unstiffened Webs

Unstiffened Web Behavior and Specifications The nom-
inal shear resistance of unstiffened webs of I-sections can
be determined from Eq. 19.122 by setting d 0 equal to infin-
ity, that is, only the beam action resistance remains and the
shear-buckling coefficient is k = 5:

Vn = Vcr = CV p = 0.58CFywDtw (19.127)

where no additional strength is available due to postbuckling
behavior.
Note that with D /tw = 150, d 0 is 3D , which is the maxi-

mum stiffener spacing for an interior panel. In order to avoid
postbuckling behavior in the end panel where the tension
field is not anchored, the end panel stiffener should be spaced
at less than d 0 ≤ 1.5D [A6.10.9.3.3].

Example 19.10 Determine the web shear strength of the I-
section of Example 19.6 shown in Figure 19.24 if the spacing
of transverse stiffeners is 80 in. for an interiorweb panel. The
yield strength of the web Fyw is 50 ksi.

Solution

Vn = Vp

⎡
⎢⎣C + 0.87 (1 − C)√

1 + (d0/D
)2

⎤
⎥⎦

α = d0

D
= 80

60
= 1.33

and

Vp = 0.58FywDtw

= 0.58 (50) (60) (0.625) = 1087.5 kips

The calculation of k from Eq. 19.108 is

k = 5.0 + 5.0

α2
= 5.0 + 5.0

(1.33)2
= 7.81

so that

1.40

√
Ek

Fyw
= 1.40

√
(29,000) (7.81)

50
= 94

and
D

tw
= 60

0.625
= 96 > 1.40

√
Ek

Fyw
= 94

Thus,

C = 1.57
(
D/tw

)2
Ek

Fyw
= 1.57

(96)2
(29,000) (7.81)

50
= 0.77

and

Vn = 1087.5

[
0.77 + 0.87 (1 − 0.77)√

1 + 1.333

]

= 1087.5 (0.89) = 968 kips

Answer The factored web shear strength is

Vr = φvVn = 1.0 (968) = 968 kips

where φv is taken from Table 18.7.

19.5 SHEAR CONNECTORS

To develop the full flexural strength of a composite member,
horizontal shear must be resisted at the interface between the
steel section and the concrete deck slab. To resist the hor-
izontal shear at the interface, connectors are welded to the
top flange of the steel section that are embedded in the deck
slab when the concrete is placed. These shear connectors
come in various types: headed studs, channels, spirals, in-
clined stirrups, and bent bars. Only the welded headed studs
(Fig. 19.53) are discussed in this section.
In simple-span composite bridges, shear connectors shall

be provided throughout the length of the span [A6.10.10.1].
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Fig. 19.53 Forces acting on a shear connector in a solid slab.

In continuous composite bridges, shear connectors are often
provided throughout the length of the bridge. Placing shear
connectors in the negative moment regions prevents the sud-
den transition from composite to noncomposite section and
assists in maintaining flexural compatibility throughout the
length of the bridge (Slutter and Fisher, 1967).
The larger diameter head of the stud shear connector

enables it to resist uplift as well as horizontal slip. Cal-
culations are not made to check the uplift resistance.
Experimental tests (Ollgaard et al., 1971) indicate failure
modes associated with shearing of the stud or failure of the
concrete (Fig. 19.53). The headed studs did not pull out of
the concrete and can be considered adequate to resist uplift.
Data from experimental tests are used to develop empir-

ical formulas for resistance of welded headed studs. Tests
have shown that to develop the full capacity of the connector,
the height of the stud must be at least four times the diame-
ter of its shank. Therefore, this condition becomes a design
requirement [A6.10.10.1.1].
Two limit states must be considered when determining the

resistance of stud shear connectors: fatigue and strength. The
fatigue limit state is examined at stress levels in the elas-
tic range. The strength limit state depends on plastic behav-
ior and the redistribution of horizontal shear forces among
connectors.

19.5.1 Fatigue Limit State for Stud Connectors

Studs in Fatigue—Behavior In the experimental tests
conducted by Slutter and Fisher (1967), the shear stress
range was found to be the governing factor affecting the
fatigue life of shear connectors. Concrete strength, concrete
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Fig. 19.54 Comparison of regression curve with test data for stud
shear connectors (Slutter and Fisher, 1967).

age, orientation of connectors, size effect, and minimum
stress did not significantly influence the fatigue strength.
As a result, the fatigue resistance of stud connectors can
be expressed by the relationship between allowable shear
stress range Sr and the number of load cycles to failure N .
The log–log plot of the S–N data for both 3

4 -in. and
7
8 -in.

diameter studs is given in Figure 19.54. The shear stress
was calculated as the average stress on the nominal diameter
of the stud. The mean curve resulting from a regression
analysis is given by (Slutter and Fisher, 1967)

Sr = 1065N−0.19 (19.128-SI)

Sr = 153N−0.19 (19.128-US)

where Sr is the shear stress range in ksi (MPa) and N is the
number of loading cycles given by Eq. 18.7.
The data fits nicely within the 90% confidence limits

shown in Figure 19.54. No endurance limit was found
within 10 million cycles of loading.

FatigueResistence of Studs—Specifications InAASHTO
(2010) LRFD Bridge Specifications, the shear stress range
Sr (ksi) becomes an allowable shear force Zr (kips) for a
specific life of N loading cycles by multiplying Sr by the
cross-sectional area of the stud, that is, the finite-life fatigue
resistance is

Zr = π

4
d2Sr = (

120N−0.19) d2 (19.129)

where d is the nominal diameter of the stud connector in
inches.
The AASHTO (2010) LRFD Bridge Specifications repre-

sent Eq. 19.129 in a different format, which approximates
Eq. 19.129 as [A6.10.10.2]

Zr (finite life) = αd2 (19.130a)

for which

α = 34.5 − 4.28 logN (19.130b)

however, where the projected 75-year single-lane average
daily truck traffic (ADTT)SL is greater than or equal to 960
trucks per day, the fatigue I limit state (γ fatigue I = 1.50) shall
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Table 19.8 Comparison of α with Regression Equation

N 34.5–4.28 log N, ksi 153 N−0.19, ksi

2 × 104 16.1 18.3
1 × 105 13.1 13.5
5 × 105 10.1 9.9
2 × 106 7.5 7.6
6 × 106 5.5 6.2

be used, the resistance shall be based upon the Zr (kips)
(infinite life) represented the resistance plateau commonly
observed in the test data:

Zr (infinite life) = 5.5d2 (19.131)

The finite-life resistance Eq. 19.130 is used to estimate the
resistance and the limit state is fatigue II (γ fatigue II = 0.75).
However, the use of Eq. 19.131 is typical because of the usual
large number of truck crossings per day.
Values for α are compared in Table 19.8 with those for the

quantity in parenthesis in Eq. 19.128 over the test data range
of N . (This variable α is not the same or related to the shear
panel aspect ratio used in the previous section.) The expres-
sion for α in Eq. 19.130b is a reasonable approximation.
Equations 19.130 and 19.131 can be used to determine the

fatigue shear resistance of a single stud connector with diam-
eter d for a specified life N or infinite life (independent of
number of cycles, i.e., a large number). The spacing or pitch
of these connectors along the length of the bridge depends on
how many connectors n are at a transverse section and how
large the shear force range V sr (kips) due to the fatigue truck
is at the section of interest.
Because fatigue is critical under repetitions of working

loads, the design criteria are based on elastic conditions. If
complete composite interaction is assumed, the horizontal
shear per unit of length vh (kip/in.) can be obtained from the
familiar elastic relationship

vh = VsrQ

I
(19.132)

where Q (in.3) is the first moment of the transformed deck
area about the neutral axis of the short-term composite
section and I (in.4) is the moment of inertia of the short-term
composite section. The shear force per unit length that can
be resisted by n connectors at a cross section with a distance
p (in.) between groups (Fig. 19.53) is

vh = nZr

p
(19.133)

The combination ofEqs. 19.132 and 19.133 yields thepitch
p in inches as

p = nZrI

VsrQ
(19.134)

The center-to-center pitch of shear connectors shall not
exceed 24 in. and shall not be less than six stud diameters
[A6.10.10.1.2].

Stud shear connectors shall not be closer than four stud
diameters center-to-center transverse to the longitudinal
axis of the supporting member. The clear distance between
the edge of the top flange of the steel section and the edge
of the nearest shear connector shall not be less than 1 in.
[A6.10.10.1.3].
The clear depth of cover over the tops of the shear connec-

tors should not be less than 2 in. In regions where the haunch
between the top of the steel section and the bottom of the
deck is large, the shear connectors should penetrate at least
2 in. into the deck [A6.10.10.1.4].

19.5.2 Strength Limit State for Stud Connectors

Stud Connector Strength—Behavior Experimental tests
were conducted by Ollgaard et al. (1971) to determine the
shear strength of stud connectors embedded in solid concrete
slabs. Variables considered in the experiments were the stud
diameter, number of stud connectors per slab, type of aggre-
gate in the concrete (lightweight and normal weight), and the
concrete properties. Four concrete propertieswere evaluated:
compressive strength, split cylinder tensile strength,modulus
of elasticity, and density.
Two failuremodes were observed. Either the studs sheared

off the steel beam and remained embedded in the concrete
slab or the concrete failed and the connectors were pulled
out of the slab together with a wedge of concrete. Sometimes
both of these failure modes were observed in the same test.
An examination of the data indicated that the nominal

shear strength of a stud connector Qn is proportional to its
cross-sectional area Asc. Multiple regression analyses of the
concrete variables indicate that the concrete compressive
strength f

′
c and modulus of elasticity Ec are the dominant

properties in determining connector shear strength. The
empirical expression for the concrete modulus of elasticity
(Eq. 13.2) includes the concrete density wc and, therefore,
the effect of the aggregate normal type, that is, for wc =
0.145 ksi

Ec = 1820
√

f
′
c (13.2)

where f
′
c is the concrete compressive strength (ksi). Includ-

ing the split cylinder tensile strength in the regression analy-
ses did not significantly improve the correlation with the test
results and it was dropped from the final prediction equation.

Stud Connector—Specifications After rounding off the
exponents from the regression analysis to convenient design
values, the prediction equation for the nominal shear resis-
tance Qn (kips) for a single shear stud connector embedded
in a solid concrete slab is [A6.10.10.4.3]

Qn = 0.5Asc

√
f

′
cEc ≤ AscFu (19.135)

where Asc is the cross-sectional area of a stud shear connec-
tor (in.2), f

′
c is the specified 28-day concrete-compressive

strength (ksi), Ec is the concrete modulus of elasticity (ksi),
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Fig. 19.55 Comparison of connector strength with concrete strength and modulus of elasticity (Ollgaard et al., 1971).

and Fu is the specified minimum tensile strength of a stud
shear connector (ksi). The upper bound on the nominal stud
shear strength is taken as its ultimate tensile force.
When Eq. 19.135 is compared with the test data from

which it was derived (Fig. 19.55), it provides a reasonable
estimate to the nominal strength of a stud shear connector.
The factored resistance of one shear connector Qr must take
into account the uncertainty in the ability of Eq. 19.135
to predict the resistance at the strength limit state, that is
[A6.10.10.4.1],

Qr = φscQn (19.136)

where φsc is the resistance factor for shear connectors taken
from Table 18.7 as 0.85.

Number of Shear Connectors Required If sufficient shear
connectors are provided, the maximum possible flexural
strength of a composite section can be developed. The
shear connectors placed between a point of zero moment
and a point of maximum positive moment must resist the
compression force in the slab at the location of maximum
moment. This resistance is illustrated by the free-body
diagrams at the bottom of Figure 19.56 for two different
loading conditions. From either of these free-body diagrams,
equilibrium requires that

nsQr = Vh

or
ns = Vh

Qr

(19.137)

where ns is the total number of shear connectors between
the points of zero and maximum positive moment, Vh is the

nominal horizontal shear force at the interface that must be
resisted, and Qr is the factored resistance of a single shear
connector as given by Eqs. 19.135 and 19.136.

Spacing of the Shear Connectors Spacing of the shear
connectors along the length Ls needs to be examined. For
the concentrated loading of Figure 19.56(a), the vertical
shear force is constant. Therefore, the horizontal shear
per unit of length calculated from the elastic relationship of
Eq. 19.132 is constant and spacing becomes uniform. For the
uniformly distributed loading of Figure 19.56(b), the elastic

Fig. 19.56 Total number of shear connectors required: (a) concen-
trated loading and (b) uniformly distributed loading.
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horizontal shear per unit of length is variable and indicates
that the connectors be closer together near the support than
near midspan. These are the conditions predicted by elastic
theory. At the strength limit state, conditions are different
if ductile behavior permits redistribution of the horizontal
shear forces.
To test the hypothesis that stud shear connectors have

sufficient ductility to redistribute horizontal shear forces at
the strength limit state, Slutter and Driscoll (1965) tested
three uniformly loaded simple composite beams with dif-
ferent connector spacings. They designed the beams with
about 90% of the connectors required by Eq. 19.137 so that
the connectors would control the flexural resistance. The
normalized moment versus deflection response for the three
beams is shown in Figure 19.57. Considerable ductility is
observed and for all practical purposes the response is the
same for the three beams. The conclusion is that spacing
of the shear connectors along the length of the beam is not
critical and can be taken as uniform [C6.10.10.4.2].

Nominal Horizontal Shear Force Vh At the flexural
strength limit state of a composite, the two stress distribu-
tions in Figure 19.58 are possible. A haunch is shown to
indicate a gap where the shear connectors must transfer the
horizontal shear from the concrete slab to the steel section.
For the first case, the plastic neutral axis is in the slab and

the compressive force C is less than the full strength of the
slab. However, equilibrium requires that C equal the tensile
force in the steel section, so that

C = Vh = FywDtw + Fytbt tt + Fycbctc (19.138)

where Vh is the nominal horizontal shear force shown in
Figure 19.56; Fyw, F yt, and Fyc are the yield strengths of the
web, tension flange, and compression flange; D and tw are
the depth and thickness of the web; bt, tt and bc, tc are the

Fig. 19.57 Experimental moment–deflection curves. [Repro-
duced from R. G. Slutter and G. C. Driscoll (1965). “Flexural
Strength of Steel-Concrete Composite Beams,” Journal of Struc-
tural Division , ASCE, 91(ST2), pp. 71–99. With permission.]

Fig. 19.58 Nominal horizontal shear force: (a) PNA in slab and
(b) PNA in steel.

width and thickness of the tension and compression flanges.
For the homogeneous steel sections, this simplifies to

Vh = FyAs (19.139)

where Fy is the yield strength (ksi) and As is the total area
(in.2) of the steel section.
For the second case, the plastic neutral axis is in the steel

section and the compressive force C = Vh is the full strength
of the slab given by

Vh = 0.85f
′
cbts (19.140)

where f
′
c is the 28-day compressive strength of the concrete

(ksi), b is the effective width of the slab (in.), and ts is the
slab thickness (in.).
Techniques for locating the plastic neutral axis in pos-

itive moment regions were illustrated in Example 19.5
and Figure 19.23. In calculating Vh, this procedure can
be bypassed by simply selecting the smaller value of Vh
obtained from Eqs. 19.139 and 19.140.

Continuous Composite Sections When negative moment
regions in continuous beams are made composite, the nom-
inal horizontal shear force Vh to be transferred between the
point of zero moment and maximum moment at an interior
support shall be

Vh = ArFyr (19.141)

where Ar is the total area of longitudinal reinforcement
(in.2) over the interior support within the effective slab
width and Fyr is the yield strength (ksi) of the longitudinal
reinforcement. Figure 19.24 shows the forces acting on a
composite section in a negative moment region. The number
of shear connectors required for this region is determined by
Eq. 19.141.

Example 19.11 Design stud shear connectors for the pos-
itive moment composite section of Example 19.4 shown in
Figure 19.22. Assume that the shear range Vsr for the fatigue
loading is nearly constant and equal to 60 kips in the positive
moment region. Use 3

4 -in.-diameter studs 4 in. high, Fu = 58
ksi for the studs, f

′
c = 4 ksi for the concrete deck, and Grade

50 for the steel beam.
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General
The haunch depth is 1 in., so the connectors project 4 – 1 =
3 in. into the concrete deck. This projection is greater than the
minimum of 2 in. The ratio of stud height to stud diameter is
[A6.10.10.1.1]

h

d
= 4

0.75
= 5.33 > 4 OK

The minimum center-to-center transverse spacing of studs
is four stud diameters and the minimum clear edge distance
is 1 in. The minimum top flange width for three 3

4 -in. studs
side by side is

bf,min = 2 (1) + 3
(
3
4

)+ 2 (4)
(
3
4

) = 10.25 in.

which is less than the 12 in. provided. Therefore, use three 3
4 -

in. stud connectors at each transverse section. [A6.10.10.1.3]

Fatigue Limit State

The center-to-center pitch of shear connectors in the longi-
tudinal direction shall not exceed 24 in. and shall not be less
than six stud diameters (6 × 0.75 = 4.5 in. [A6.10.10.1.2].
The pitch is controlled by the fatigue strength of the studs

as given by Eq. 19.134:

p = nZrI

VsrQ

where I and Q are elastic properties of the short-term com-
posite section and from Eq. 19.130a [A6.10.10.1.2]

Zr = αd2

for which Eq. 19.130b gives

α = 34.5 − 4.28 logN

In Example 18.1, the number of cycles N was estimated for
a 75-year life of a rural interstate bridge as 372× 106 cycles.
This value forN is definitely larger than that associated with
the limit of 960 trucks per day. Therefore, the design criterion
is for fatigue I limit state and infinite fatigue life.
The resistance per stud is (Eq. 19.131)

Zr = 5.5d2 = 5.5(0.75)2 = 3.09 kips

The values of I and Q for the short-term composite section
are taken from Table 19.5 as

I = 79,767 in.4

Q = Ay = (90)

(
66.625− 7471.6

144.5

)
= 1343 in.3

For three stud connectors at a transverse section and
γ fatigue IV sr = 1.50(60 kips)= 90 kips, the pitch is calculated
as

p = nZrI

VsrQ
= 3 (3.09) 79,767

90 × 1343
= 6.12 in.

This pitch is between the limits of 4.5 and 24 in. given
earlier. By assuming that the distance from the maximum

positive moment to the point of zero moment is 40 ft =
480 in. and that Vsr is relatively unchanged, the total number
of 3

4 -in. stud connectors over this distance is

n = 3

(
480

6

)
= 240 connectors

Strength Limit State

The total number of shear connectors required to satisfy
the strength limit state between the maximum positive mo-
ment and the point of zero moment is given by substituting
Eq. 19.136 into Eq. 19.137:

ns = Vh

Qr

= Vh

φscQn

where φsc = 0.85, Qn is given by Eq. 19.135, and Vh is
given by either Eq. 19.139 or Eq. 19.140. From Eq. 19.135
[A6.10.10.4]

Qn = 0.5Asc

√
f

′
cEc ≤ AscFu

For 3
4 -in. stud connectors

Asc = π

4
(0.75)2 = 0.44 in.2

and for f
′
c = 4 ksi, Eq. 13.2 yields

Ec = 1820
√

f
′
c = 1820

√
4 = 3640 ksi

so that

Qn = 0.5 (0.44)
√
4 (3640) = 26.5 kips

which is greater than the upper bound of

AscFu = 0.44 (58) = 25.5 kips

Therefore, Qn = 25.5 kips.
The nominal horizontal shear force is the lesser of the val-

ues given by Eq. 19.139 or Eq. 19.140. From Eq. 19.139with
As taken from Table 19.5

Vh = FyAs = 50 (144.5) = 7225 kips

From Eq. 19.140 with b = 90 in. and ts = 8 in. taken from
Figure 19.22

Vh = 0.85f
′
cbts = 0.85 (4) (90) (8) = 2448 kips

Therefore, Vh = 2448 kips and the total number of connec-
tors required in the distance from maximum moment to zero
moment is

ns = Vh

φscQn

= 2448

0.85 (25.5)
= 113 connectors

= 113 (2) = 226 (both sides)

Answer The required number of shear connectors is
governed by the fatigue I limit state (as it often is). For the
assumptions made in this example, the 3

4 -in. diameter stud
connectors placed in groups of three are spaced at a pitch of
6 in. throughout the positive moment region.
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19.6 STIFFENERS

Webs of standard rolled sections have proportions such
that they can reach the bending yield stress and the shear
yield stress without buckling. These proportions are not
the case with many built-up plate girder and box sections
and to prevent buckling their webs must be stiffened. Both
transverse and longitudinal stiffeners can be used to im-
prove the strength of webs. In general, transverse stiffeners
increase the resistance to shear while longitudinal stiffeners
increase the resistance to flexural buckling of the web. The
requirements for selecting the sizes of these stiffeners are
discussed in the following sections.

19.6.1 Transverse Intermediate Stiffeners

Transverse intermediate stiffeners do not prevent shear buck-
ling of web panels, but they do define the boundaries of the
web panels within which the buckling occurs. These stiff-
eners serve as anchors for the tension field forces so that
postbuckling shear resistance can develop (Fig. 19.50). The
design of transverse intermediate stiffeners includes consid-
eration of slenderness, stiffness, and strength.

Slenderness Behavior When selecting the thickness and
width of a transverse intermediate stiffener (Fig. 19.59), the
slenderness of projecting elements must be limited to pre-
vent local buckling. For projecting elements in compression,
Eq. 19.22 yields

bt

tp
≤ k

√
E

Fys
(19.142)

where bt is the width of the projecting stiffener element, tp is
the thickness of the projecting element, k is the plate buck-
ling coefficient taken from Table 19.2, and Fys is the yield
strength of the stiffener. For plates supported along one edge,
Table 19.2 gives k = 0.45 for projecting elements not a part
of rolled shapes.
Other design rules are more empirical, but are neverthe-

less important for the satisfactory performance of transverse
intermediate stiffeners. These are the width of the stiffener bt
must not be less than 2 in. plus one-thirtieth of the depth d of
the steel section and not less than one-fourth of the full-width

Fig. 19.59 Transverse intermediate stiffener.

bf of the steel flange. Further, the slenderness ratio bt/tp must
be less than 16 [A6.10.11.1.2].

Specification Requirements [A6.10.11.1] All of these
slenderness requirements for transverse intermediate stiff-
eners are summarized by two expressions in the AASHTO
(2010) LRFD Bridge Specifications as limits on the width
bt of each projecting stiffener element [A6.10.11.1.2]:

2 + d

30
≤ bt (19.143)

and
0.25bf ≤ bt ≤ 16tp (19.144)

Transverse Intermediate Stiffener Behavior (Stiffness)
Transverse intermediate stiffeners define the vertical bound-
aries of the web panel. They must have sufficient stiffness
so that they remain relatively straight and permit the web to
develop its postbuckling strength.
A theoretical relationship can be developed by considering

the relative stiffness between a transverse intermediate stiff-
ener and a web plate. This relationship employs the nondi-
mensional parameter (Bleich, 1952)

γt = (EI )stiffener
(EI )web

for which

(EI )web = ED t3w

12
(
1 − μ2

)

so that

γt = 12
(
1 − μ2

)
It

Dt3w
(19.145)

where μ is Poisson’s ratio,D is the web depth, tw is the web
thickness, and It is the moment of inertia of the transverse
intermediate stiffener taken about the edge in contact with
the web for single stiffeners and about the midthickness of
the web for stiffener pairs. With μ = 0.3, Eq. 19.145 can be
rearranged to give

It = Dt3w

10.92
γt (19.146)

For a web without longitudinal stiffeners, the value of γ t to
ensure that the critical shear buckling stress τ cr is sustained
is approximately (Maquoi, 1992)

γt = mt

(
21

α
− 15α

)
≥ 6 (19.147)

where α is the aspect ratio d 0/D and mt is a magnification
factor that allows for postbuckling behavior and the detri-
mental effect of imperfections. Taking mt = 1.3 and then
substituting Eq. 19.147 into Eq. 19.146,

It = 2.5Dt3w

(
1

α
− 0.7α

)
≥ 0.55Dt3w (19.148)

Transverse Intermediate Stiffener Specifications (Stiff-
ness) [A6.10.11.1] The AASHTO (2010) LRFD Bridge
Specifications give the requirement for the moment of inertia
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of any transverse stiffener by two equations [A6.10.11.1.3]:

It ≥ It1 = min
[
do, D

]
t3wJ (19.149)

where

J = 2.5

(
D

d0

)2

− 2.0 ≥ 0.5 (19.150)

where d 0 is the spacing of transverse intermediate stiffeners
and D is the web depth (Fig. 19.59). The transverse stiffener
moment of inertia must also be greater than

It ≥ It1 = D4

40
ρ1.3

t

[
Fyw

E

]1.5
(19.151a)

where

ρt = min

[
Fyw

Fcrs
, 1.0

]
(19.151b)

and Fcrs is the local buckling stress for the stiffeners,

Fcrs = 0.31E
(
bt/tp

)2 ≤ Fys (19.151c)

Equation 19.151 was developed by Kim et al. (2007). They
determined that the transverse stiffness is critical to develop
the full tension field action and restrain the lateral translation
of the web. The axial strength requirements (Eq. 19.115) do
not control given practical dimensions. Strength is however
necessary, but the area requirement for the transverse stiff-
ener is no longer in the specifications. C6.10.11 explains this
in more detail.

Example 19.12 Select a one-sided transverse intermediate
stiffener for the I-section used in Example 19.11 and shown
in Figure 19.60. Use Grade 36 structural steel for the stiff-
ener. The steel in the web is Grade 50. Assume Vu = 440
kips at the section.

Slenderness [A6.10.11.1.2]
The size of the stiffener is selected to meet slenderness
requirements and then checked for stiffness (and strength,
which is implied in the Specifications). From Eqs. 19.143
and 19.144, the width of the projecting element of the
stiffener must satisfy

bt ≥ 0.25bf = 0.25 (8) = 2 in.

Fig. 19.60 One-sided transverse stiffener. Example 19.12.

and the thickness of the projecting element must satisfy

tp ≥ bt

16
= 4

16
= 0.25 in.

The minimum thickness of steel elements is 5
16 in.

[A6.7.3], so try a 7
8 × 4.5 in. transverse intermediate

stiffener (Fig. 19.60).
From Eq. 19.143, the width bt of the stiffener must also

satisfy

bt ≤ 0.48tp

√
E

Fys
= 0.48 (0.875)

√
29,000

36
= 11.9 in. OK

and

bt ≥ 2 + d

30
= 2 + 60+ 1.00 + 0.625

30
= 4.08 in. OK

Stiffness [A6.10.11.1.3]
Themoment of inertia of the one-sided stiffener is to be taken
about the edge in contact with the web. For a rectangular
plate, the moment of inertia taken about its base is

It = 1
3 tpb3t = 1

3 (0.875) (4.5)3 = 26.6 in.4

From Eqs. 19.149 and 19.150, the moment of inertia must
satisfy

It ≥ It1 = min
[
d0, D

]
t3wJ

where

J = 2.5

(
D

d0

)2

− 2.0 ≥ 0.5

There are no longitudinal stiffeners, so thatD = 60 in. From
Example 19.11, d 0 = 80 in. and tw = 0.3125 in. Hence,

J = 2.5

(
60

80

)2

− 2.0 = −0.59 ≥ 0.5 Use J = 0.5

Therefore,

It1 = min
[
d0, D

]
t3wJ = min [80,60] (0.625)3 (0.5)

= 7.32 in.4

which is satisfied by the 7
8 -in. × 4.5-in. stiffener. The trans-

verse stiffener moment of inertia must also satisfy

It ≥ It2 = D4

40
ρ1.3

t

[
Fyw

E

]1.5

where

ρt = min

[
Fyw

Fcrs
, 1.0

]
= min

[
50

36
, 1.0

]
= 1.0

Therefore,

Fcrs = 0.31E
(
bt/tp

)2 − 0.31 (29,000)

(4.5/0.875)2
= 340 ≤ Fys = 36 ksi

and

It2 = 604

40
(1)1.3

[
50

29000

]1.5
= 23.2 in.4

It ≥ It2
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Because the actual value is greater than required, the require-
ment is satisfied.
Answer Use a one-sided transverse intermediate stiffener
with a thickness of tp = 7

8 in. and a width bt = 4.5 in.

19.6.2 Bearing Stiffeners

Bearing stiffeners are transverse stiffeners placed at loca-
tions of support reactions and other concentrated loads. The
concentrated loads are transferred through the flanges and
supported by bearing on the ends of the stiffeners. The bear-
ing stiffeners are connected to the web and provide a verti-
cal boundary for anchoring shear forces from tension field
action.

Rolled Beam Shapes Bearing stiffeners are required
on webs of rolled beams at points of concentrated forces
whenever the factored shear force Vu exceeds [A6.10.9.2.1]

Vu > 0.75φb Vn (19.152)

where φb is the resistance factor for bearing taken from
Table 18.7 and Vn is the nominal shear resistance determined
in Section 19.4.

Slenderness Bearing stiffeners are designed as compres-
sion members to resist the vertical concentrated forces. They
are usually comprised of one or more pairs of rectangu-
lar plates placed symmetrically on either side of the web
(Fig. 19.61). They extend the full depth of the web and are
as close as practical to the outer edges of the flanges. The
projecting elements of the bearing stiffener must satisfy the
slenderness requirements of [A6.10.11.2.2]

bt

tp
≤ 0.48

√
E

Fys
(19.153)

Fig. 19.61 Bearing stiffener cross sections.

where bt is the width of the projecting stiffener element, tp is
the thickness of the projecting element, and Fys is the yield
strength of the stiffener.

Bearing Resistance The ends of bearing stiffeners are to be
milled for a tight fit against the flange fromwhich it receives
its reaction, the bottom flange at supports and the top flange
for interior concentrated loads. If they are not milled, they
are to be attached to the loaded flange by a full-penetration
groove weld [A6.10.11.2.1].
The effective bearing area is less than the gross area of the

stiffener because the end of the stiffener must be notched to
clear the fillet weld between the flange and the web (Section
A–A , Fig. 19.61). The bearing resistance is based on this re-
duced bearing area and the yield strength Fys of the stiffener
to give [A6.10.11.2.3]

(
Rsb

)
r

= φb

(
Rsb

)
n

(19.154a)
(
Rsb

)
n

= 1.4ApnFys (19.154b)

where (Rsb)r is the factored bearing resistance, φb is the bear-
ing resistance factor taken from Table 18.7, Apn is the net
area of the projecting elements of the stiffener, and 1.4 is an
empirical adjustment. AISC (2005) uses 1.8 here, but they
have a difference resistance factor. The 1.4 reflects this dif-
ference so that result is the same as AISC [C6.10.11.2.3].

Axial Resistance The bearing stiffeners plus a portion of
the web combine to act as a column to resist an axial com-
pressive force (Section B–B, Fig. 19.61). The effective area
of the column section is taken as the area of all stiffener
elements, plus a centrally located strip of web extending not
more than 9tw on each side of the outer projecting elements
of the stiffener group [A6.10.11.2.4b].
Because the bearing stiffeners fit tightly against the

flanges, rotational restraint is provided at the ends and
the effective pin-ended column length KL can be taken as
0.75D , where D is the web depth [A6.10.11.2.4a]. The
moment of inertia of the column section used in the calcu-
lation of the radius of gyration is taken about the centerline
of the web. Designers often conservatively ignore the con-
tribution of the web when calculating the moment of inertia
and simply take the sum of the moments of inertia of the
stiffeners about their edge in contact with the web.
The factored axial resistance Pr is calculated from

Pr = φcPn (19.155)

where φc is the resistance factor for compression taken from
Table 18.7 and Pn is the nominal compressive resistance de-
termined in Section 19.2.

Example 19.13 Select bearing stiffeners for the I-section
used in Example 19.12 and shown in Figure 19.62 to support
a factored concentrated reaction Ru = 900 kips. Use Grade
36 structural steel for the stiffener.
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Fig. 19.62 Bearing stiffener Example 19.13.

Slenderness
Selecting the width bt of the bearing stiffener as 7 in. to sup-
port as much of the 16-in. flange width as practical, the min-
imum thickness for tp is obtained from Eq. 19.153:

bt

tp
≤ 0.48

√
E

Fys
= 0.48

√
29,000

36
= 13.6

tp ≥ bt

13.6
= 7

13.6
= 0.51 in.

Try a 5
8 -in. × 7-in. bearing stiffener element.

Bearing Resistance

The required area of all the bearing stiffener elements can be
calculated from Eq. 19.154 for (Rsb)r = 900 kips, φb = 1.0
(milled surface), and Fys = 36 ksi:

(
Rsb

)
r

= φb 1.4ApnFys = (1.0) (1.4) Apn (36)

Apn = 900

1.4 (36)
= 17.9 in.2

By using two pairs of 5
8 -in.× 7-in. stiffener elements on ei-

ther side of the web (Fig. 19.62), and allowing 2.5 in. to clear
the web to flange fillet weld, the provided bearing area is

4 (0.625) (7 − 2.5) = 11.25 in.2 +web contribution

> 17.9 in.2 OK

Try a bearing stiffener composed of four 5
8 -in. × 7-in.

elements placed in pairs on either side of the web. (Note that
the 45◦ notch with 4tw sides prevents the development of the

unwanted triaxial tensile stress in the welds at the junction
of the web, stiffener, and flange.)

Axial Resistance
By spacing the pairs of stiffeners 8 in. apart as shown in
Figure 19.62, the effective area of the column cross section is

A = 4As + tw
(
18tw + 8

)

A = 4 (0.625) (7) + 0.625 (11.25 + 8) = 29.5 in.2

and the moment of inertia of the stiffener elements about the
centerline of the web is

I = 4I0 + 4Agy2

= 4

[
1

12
(0.625) (7)3

]
+ 4 (0.625) (7)

(
7

2
+ 0.625

2

)2

= 326 in.4

so that the radius of gyration for the column cross section
becomes

r =
√

I

A
=
√

326

29.5
= 3.3 in.

Therefore,

KL

r
= 0.75D

r
= 0.75 (60)

3.3
= 13.5 < 120 OK

and Eq. 19.16 gives

Pe

Po

=
(

π

KL/r

)2
(

E

Fy

)
=
( π

13.5

)2 (29000
36

)

= 43.6 ≈ 0.44

so that the nominal column strength is given by Eq. 19.21a:

Pn = 0.658(Po/Pe)FyAg = (0.658)1/43.6 (36) (29.5)

= 1052 kips

that is essentially 100% of yield strength. The factored axial
resistance is calculated from Eq. 19.21a with φc = 0.90:

Pr = φcPn = 0.90 (1052) = 947 kips > 900 kips OK

Answer Use a bearing stiffener composed of two pairs
of 5

8 -in. × 7-in. stiffener elements arranged as shown in
Figure 19.62.
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PROBLEMS
These problems reference the plans for the bridge over the
Little Laramie River. See Wiley’s website for a pdf. This
bridge is a single-span, four-girder bridge that has clean

details; its interpretation is straightforward for the student.
These plans are used with permission.
Note: The arithmetic can be simplified by using a 100-ft span
rather than the 95′–6 3/4

′′ span (bearing-to-bearing span,
which is the actual analysis span length .

19.1 The intermediate cross frame contains diagonal steel
angles L3 × 3 × 5

16 . Determine the tensile resistance
of this member. Note that bolts are used on the center-
of-bay gusset (see half-section—intermediate cross
frame).

19.2 The intermediate cross frame contains diagonal
steel angles L3 × 3 × 5

16 . Determine the compres-
sion resistance of this member. Note that bolts are
used on the center-of-bay gusset (see half-section—
intermediate cross frame).

19.3 The intermediate cross frame contains diagonal steel
angles L31/2 × 31/2 × 5

16 . Determine the tensile resis-
tance of this member. Note that bolts are used on the
center-of-bay gusset (see half-section—intermediate
cross frame).

19.4 The intermediate cross frame contains a bottom steel
angle L 1/2 × 31/2 × 5

16 . Determine the compression re-
sistance of this member. Note that bolts are used on the
center-of-bay gusset (see half-section—intermediate
cross frame).

19.5 For the midspan section and interior girder, determine:
a. The noncomposite section properties
b. The composite section properties for live loads
c. The composite section properties for sustained loads
d. The plasticmoment resistance for the noncomposite

section
e. The plastic moment resistance for the composite

section
Use an effective width of 92 in.

19.6 Near the end of the bridge, determine the shear resis-
tance. Although there are stiffeners at the bearing and
cross frames, this is considered an unstiffened girder,
that is, d 0 is about 25 ft.

19.7 How many shear groups of connectors (each side of
midspan) are required to develop the full plastic mo-
ment capacity at midspan.

19.8 This bridge has an “integral” abutment. Under what
load conditions are the bearing stiffeners important?

19.9 Repeat 19.5 for the exterior girder.



CHAPTER 20

Steel Design Examples

20.1 NONCOMPOSITE ROLLED STEEL
BEAM BRIDGE

Problem Statement Example 20.1 Design the simple-span
noncomposite rolled steel beam bridge of Figure E20.1-1
with 35-ft span for an HL-93 live load. Roadway width is
44 ft curb to curb. Allow for a future wearing surface of
3-in.-thick bituminous overlay. Use f

′
c = 4 ksi and M270

Grade 50W steel. The steel is assumed not to be coated,
therefore, the fatigue detail at midspan is category B. The
barrier is 15 in.wide and weighs 0.5 k/ft and may be assigned
to the exterior girders. Consider the outline of AASHTO
(2010) LRFD Bridge Specifications, Section 6, Appendix C.

A. Develop General Section The bridge is to carry inter-
state traffic over a normally small stream that is subject to
high water flows during the rainy season (Fig. E20.1-1).
1. Roadway Width (Highway Specified) Roadway

width is 44-ft curb to curb.
2. Span Arrangements [A2.3.2]* [A2.5.4] [A2.5.5]

[A2.6] Simple span, 35 ft.
3. Select Bridge Type A noncomposite steel plate I-

girder is selected for this bridge.
B. Develop Typical Section

1. I-Girder
a. Composite or Noncomposite Section [A6.10.1.1]

This bridge is noncomposite, does not have shear
connectors, and the shear strength should follow
[A.6.10.10]. Noncomposite design is discouraged by
the AASHTO LRFD Bridge Design Specifications,
however, this example is provided in order to begin
a comprehensive example with a simple bridge. This
same span configuration is repeated for a composite
bridge in the next example.

*The article numbers in the AASHTO (2010) LRFD Bridge Specifica-
tions are enclosed in brackets and preceded by the letter A if a specification
article and by the letter C if commentary.

Fig. E20.1-1 Noncomposite rolled steel beam bridge design
example: (a) general elevation, (b) plan view, and (c) cross section.

b. Nonhybrid [A6.10.1.3] This cross section is a
rolled beam and the same material properties are
used throughout the cross section. The section is
nonhybrid.

c. Variable WebDepth [A6.10.1.4] The section depth
is prismatic and variable-depth provisions are not ap-
plicable.

C. Design Conventionally Reinforced Concrete Deck
The deck was designed in Example Problem 16.1.

D. Select Resistance Factor

1. Strength Limit State φ [A6.5.4.2]
Flexure 1.00
Shear 1.00

2. Nonstrength Limit States 1.00 [A1.3.2.1]

E. Select Load Modifiers For simplicity in this example,
these factors are set to unity, and ηi = η.

Strength Service Fatigue
1. Ductility, ηD [A1.3.3] 1.0 1.0 1.0
2. Redundancy, ηR [A1.3.4] 1.0 1.0 1.0
3. Importance, ηI [A1.3.5] 1.0 N/A N/A
η = ηDηRηI [A1.3.2.1] 1.0 1.0 1.0
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F. Select Load Combination and Load Factors
1. Strength I Limit State

U = η [1.25DC+ 1.50DW + 1.75 (LL + IM)

+ 1.0FR + γTGTG
]

2. Service I Limit State

U = η [1.0 (DC + DW) + 1.0 (LL + IM)

+ 0.3 (WS + WL) + 1.0FR]

3. Service II Limit State

U = η [1.0 (DC +DW) + 1.3 (LL + IM)]

4. Fatigue I and II, and Fracture Limit State

Ufatigue I = η [1.5 (LL + IM)]

Ufatigue II = η [0.75 (LL + IM)]

5. Construction State Strength I

U = η[1.25 (DC) + 1.75 (Construction live loads

plus 1.5 IM)]

G. Calculate Live-Load Force Effects
1. Select Live Loads [A3.6.1] and Number of Lanes

[A3.6.1.1.1] Select Number of Lanes [A3.6.1.1.1]:

NL = INT
( w
12

)
= INT

(
44

12

)
= 3

2. Multiple Presence [A3.6.1.1.2] (Table 8.6)

No. of Loaded Lanes M
1 1.20
2 1.00
3 0.85

3. Dynamic Load Allowance [A3.6.2] (Table 8.7)

Component IM (%)
Deck joints 75
Fatigue 15
All other 33
Not applied to the design lane load.

4. Distribution Factor for Moment [A4.6.2.2.2] As-
sume for preliminary design, Kg/12Lt3s = 1.0. This
should be conservative for a noncomposite beam and
this value is checked later.

a. Interior Beams [A4.6.2.2.2b] (Table 6.5) One de-
sign lane loaded:

mgSIM = 0.06 +
(

S

14

)0.4(
S

L

)0.3( Kg

12Lt3s

)0.1

mgSIM = 0.06 +
(

8

14

)0.4( 8

35

)0.3

(1.0)0.1 = 0.573

Fig. E20.1-2 Lever rule for the determination of distribution fac-
tor for moment in exterior bean, one lane loaded.

Two or more design lanes loaded:

mgMI
M = 0.075 +

(
S

9.5

)0.6(
S

L

)0.2( Kg

12Lt3s

)0.1

mgMI
M = 0.075 +

(
8

9.5

)0.6( 8

35

)0.2

(1.0)0.1

= 0.746 governs

b. Exterior Beams [A4.6.2.2.2d] (Table 11.3) [Table
A4.62.2.2d-1] One design lane loaded—lever rule
(Fig. E20.1-2):

R = P

2

(
2 + 8

8

)
= 0.625P

gSE
M = 0.625

mgSEM = 1.2 (0.625) = 0.75 governs

Two or more design lanes loaded:

de = 3.25− 1.25 = 2 ft

e = 0.77+ de

9.1
= 0.77 + 2

9.1
= 0.99

mgME
M = e • mgMI

M = 0.743

The rigid method of [A4.6.2.2.2] requires stiff
diagraphms or cross frame that affects the transverse
stiffness. Here we assume end diaphragms and oth-
ers at one-quarter point. This is not significant for
this case and [A4.6.2.2.2] rigid method is neglected.
If computed, it yields a slightly higher distribution
factor for the exterior girder.

c. Skewed Bridge [A4.6.2.2.2e] This is a straight
bridge and no adjustment is required for skew.
Live-Load Moments (See Figs. E20.1-3 and

E20.1-4)

MLL+IM = mg

[(
MTruck or MTanderm

) (
1 + IM

100

)

+ MLane

]
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Fig. E20.1-3 Truck, tandem, and lane load placement for maxi-
mum moment at location 105.

Fig. E20.1-4 Fatigue truck placement for maximum moment.

MTruck = 32 (8.75) + (32 + 8) (1.75) = 350 k ft

MTandem = 25 (8.75 + 6.75) = 387.5 k ft governs

MFatigue = 32 (8.75) + 8 (1.75) = 294 k ft
(used later)

The absolute moment due to the tandem actually
occurs under the wheel closest to the resultant when
the center of gravityof thewheels on the span and the
critical wheel are equidistant from the centerline of
the span. For this span, the absolute maximum mo-
ment is 388 k ft. However, the value of 387.5 k ft
is used because the moments due to other loads are
maximum at the centerline and thus can be added to
the tandem load moment:

MLane = 0.64(35)2

8
= 98.0 k ft

Interior Beams

MLL+IM = 0.743 [387.5 (1.33) + 98.0]

= 455.7 k ft

MFatigue+IM = (0.573/1.2) [294 (1.15)]

= 161.4 k ft (used later)

Exterior Beams

mLL+IM = 0.75 [387.5 (1.33) + 98.0]

= 460.0 k ft

MFatigue+IM = (0.75/1.2) [294 (1.15)]

= 211.3 k ft (used later)

5. Distribution Factor for Shear [A4.6.2.2.3] Use
cross-section type (a) (Table 4.1).

a. Interior Beams [A4.6.2.2.2a] One design lane
loaded (Table 11.3) [Table 4.6.2.2.3a-1]:

mgSIV = 0.36+ S

25

= 0.36+ 8

25
= 0.68

Two design lanes loaded:

mgMI
V = 0.2 + S

12
−

(
S

L

)2.0

mgMI
V = 0.2 + 8

12
−

(
8

35

)2.0

= 0.81 governs

b. Exterior Beams [A4.6.2.2.2b] One design lane
loaded—lever rule (Table 11.3) [Table A4.6.2.2.3b-
1] (Fig. E20.1-2):

mgSEV = 0.75 governs

Two or more design lanes loaded:

de = 2 ft

e = 0.6 + de

10
= 0.6 + 2

10
= 0.80

mgME
V = e • mgMI

V = (0.80) (0.81) = 0.65

Again, the rigid method is not used.
Distributed live-load shears (Fig. E20.1-5):

VLL+IM = mg

[(
VTruck or VTandem

)(
1 + IM

100

)

+ VLane

]

VTruck = 32 (1 + 0.60) + 8 (0.20)

= 52.8 kips governs

VTandem = 25 (1 + 0.886) = 47.1 kips

VLane = 0.64 (35)

2
= 11.2 kips

VFatigue = 32 (1) + 8 (0.6) = 36.8 kips

(used later)
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Fig. E20.1-5 Truck, tandem, and lane load placement for maxi-
mum shear at location 100.

Interior Beams

VLL+IM = 0.81 [52.8 (1.33) + 11.2] = 66.0 kips

VFatigue+IM = (0.68/1.2) [36.8 (1.15)]

= 24.0 kips (used later)

Exterior Beams

VLL+IM = 0.75 [52.8 (1.33) + 11.2] = 61.1 kips

VFatigue+IM = (0.75/1.2) [36.8 (1.15)] = 26.5 kips

(used later)

c. Skewed Bridge [A4.6.2.2.2c] Again, this is a
straight bridge and no adjustment is necessary for
skew.

6. Stiffness [A6.10.1.5] Loads are applied to the bare
steel noncomposite section.

7. Wind Effects [A4.6.2.7] The wind pressure on su-
perstructure is 50 psf= 0.050 ksf. This load is applied
to girders, deck, and barriers. The diaphragm design
uses these loads.

8. Reactions to Substructure [A3.6] The following re-
actions are per design lane without any distribution
factors:

R100 = V100 = 1.33VTruck + VLane

= 1.33 (52.8) + 11.2 = 81.4 kips/lane

H. Calculate Force Effects from Other Loads Analysis
for a uniformly distributed load w (Fig. E20.1-6):

Mmax = M105 = wL 2

8
= w(35)2

8
= 153.1× w kip ft

Fig. E20.1-6 Uniform distributed load.

Table E20.1-1 Interior Girder Unfactored Moments
and Shears

w Moment (k ft) Shear (kips)
Load Type (k/ft) M105 V100

DC 0.90 137.8 15.75
DW 0.28 42.9 4.90
LL + IM

(distributed)
N/A 455.7 66.0

(Fatigue + IM)
(distributed)

N/A 161.4 24.0

Vmax = V100 = wL

2

= w (35)

2
= 17.5 × w kips

Assume a beam weight of 0.10 k/ft:
1. Interior Girders

DC Deck slab (0.15)
( 8
12

)
(8) = 0.80 k/ft

Girder = 0.10 k/ft

wDC = 0.90 k/ft

DW 75-mm bituminous paving = (0.140)(3/12)(8)

wDW = 0.28 k/ft

Unfactored moments and shears for an interior
girder are summarized in Table E20.1-1.

2. Exterior Girders The barrier weight is assigned to
the exterior girder for this example:

DC Deck slab = (0.15)
(
8
12

) (
3.25 + 8

2

)

= 0.72 k/ft

Barrier = 0.50 k/ft

Girder = 0.10 k/ft

wDC = 1.33 k/ft

DW 3-in. bituminous paving

wDW = (0.14)
( 3
12

) (
2 + 8

2

)

= 0.21 k/ft

Unfactored moments and shears for an exterior
girder are summarized in Table E20.1-2.
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Table E20.1-2 Exterior Girder Unfactored Moments
and Shears

w Moment (k ft) Shear (kips)
Load Type (k/ft) M105 V100

DC 1.33 203.7 23.3
DW 0.21 32.20 3.68
(LL + IM)
(distributed)

N/A 460.0 61.1

(Fatigue + IM)
(distributed)

N/A 211.3 26.5

I. Design Required Sections Flexural design.
1. Factored Loads
a. Interior Beam

Factored Shear and Moment

UStrength I = η [1.25DC + 1.50DW

+ 1.75 (LL + IM)]

Vu = 1.0 [1.25 (15.75) + 1.50 (4.9)

+ 1.75 (66)]

= 142.5 kips (strength I)

Mu = 1.0 [1.25 (137.8) + 1.50 (42.9)

+ 1.75 (455.7)]

= 1034.1 k ft (strength I)

UService II = η [1.0DC + 1.0DW + 1.30 (LL + IM)]

Vu = 1.0 [1.0 (15.75) + 1.0 (4.9) + 1.3 (66)]

= 106.5 kips (service II)

Mu = 1.0 [1.0 (137.8) + 1.0 (42.9)

+ 1.3 (455.7)]

= 773.1 k ft (service II)

UFatigue I = η
[
1.5 (Range of (LL + IM))

]

UFatigue II = η
[
0.75 (Range of (LL + IM))

]

Dead loads are considered in some fatigue compu-
tations and not in others. Details are provided later.
Critical values are in boldface.

Vu = 1.0 [1.5 (24)]

= 36 kips (fatigue I)

Vu = 1.0 [0.75 (24)]

= 18 kips (fatigue II)

Mu = 1.0 [1.5 (161.4)]

= 242.1 k ft (fatigue I)

= 1.0 [0.75 (161.4)]

= 121.1 k ft (fatigue II)

UConstruction = η [1.25DC]

Vu = 1.0 [1.25 (15.75)]

= 19.7 kips (construction)

Mu = 1.0 [1.25 (137.8)]

= 172.3 k ft (construction)

b. Exterior Beam
Factored Shear and Moment

UStrength I = η [1.25DC + 1.50DW

+ 1.75 (LL + IM)]

Vu = 1.0 [1.25 (23.3) + 1.50 (3.68)

+ 1.75 (61.1)]

= 141.6 kips (strength I)

Mu = 1.0 [1.25 (203.7) + 1.50 (32.2)

+ 1.75 (460.0)]

= 1107.9 k ft (strength I)

UService II = η [1.0DC+ 1.0DW + 1.30 (LL + IM)]

Vu = 1.0 [1.0 (23.3)+1.0(3.68)+1.3(61.1)]

= 106.4 kips (service II)

Mu = 1.0 [1.0 (203.7) + 1.0 (32.2)

+ 1.3 (460.0)]

= 833.9 k ft (strength II)

UFatigue I = η [1.5 (LL + IM)]

UFatigue II = η [0.75 (LL + IM)]

Dead loads are considered in some fatigue compu-
tations and not in others. Details are provided later.

Vu = 1.0 [1.5 (26.5)]

= 39.8 kips (fatigue I)

Vu = 1.0 [0.75 (26.5)]

= 19.9 kips (fatigue II)

Mu = 1.0 [1.5 (211.3)]

= 317.0 k ft (fatigue I)

Mu = 1.0 [0.75 (211.3)]

= 158.5 k ft (fatigue II)

UConstruction = η [1.25DC]

Vu = 1.0 [1.25 (23.3)]

= 29.1 kips (construction)

Mu = 1.0 [1.25 (203.7)]

= 254.6 k ft (construction)

2. Trial Section

φf Mn ≥ Mu φf = 1.0 Mn = Mp = ZFy

ZFy ≥ Mu

Assume that the compression flange is fully braced
and section is compact:

Req’d Z ≥ Mu

Fy

= 1107.9 (12)

50
= 265.9 in.3
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Try W30 × 90, Z = 283 in.3, S = 245 in.3,

I = 3620 in.4 bf = 10.400 in. tf = 0.610 in.

tw = 0.470 d = 29.53 in. wg = 0.090 k/ft

Lateral bracing of the compression flange is later
addressed.
Cross-Section Proportion Limits [A6.10.2] For

most rolled sections, this one included, only bracing is
an issue regarding the proportions and compactness.
All checks are illustrated later for completeness. Plate
girders should be completely checked for proportion
limits.

D

tw
≤ 150

29.53 − 2 (0.61)

0.47
= 60.3 ≤ 150 OK

This is conservative for the wide-flange section, as
expected. For flange stability,

bf

2tf
≤ 12

10.4

2 (0.61)
= 8.52 ≤ 12 OK

and

bf ≥ D

6

10.4 ≥ 29.53

6
= 4.92 OK

tf ≥ 1.1 tw

0.61 ≥ 1.1 (0.47) = 0.52 OK

And for handling

0.1 ≤ Icompression flange

Itension flange
≤ 1

0.1 ≤ 1.0 ≤ 1 OK

a. Composite Section Stresses [A6.10.1.1.1] Com-
posite stresses and stage construction is not of
concern for this noncomposite bridge.

b. Flange Stresses and Member Bending Moments
[A6.10.1.6] Lateral torsional buckling is consid-
ered below. The lateral flange bending is considered
small for this example.

c. Fundamental Section Properties [AASHTO Appen-
dices D6.1, D6.2, D6.3] The fundamental section
properties are shown above.

d. Constructibility [A6.10.3]
(1) General [A2.5.3] [A6.10.3.1] The re-

sistance of the girders during construction is
checked. Note that the unbraced length is impor-
tant when checking lateral torsion buckling under
the load of wet concrete.

(2) Flexure [A6.10.3.2] [A6.10.1.8] [A6.10.1.9]
[A6.10.1.10.1] [A6.10.8.2] [A6.3.3—optional]
Lateral support for compression flange is not
available when fresh concrete is being placed
[A6.10.3.2.1 and A6.10.8.2]:

Lp = 1.0rt

√
E

Fyc

= 1.0 (2.56)

√
29,000

50
= 61.7 in.

Lr = πrt

√
E

Fyc
= π (61.7) = 193.7 in.

Try bracing at one-quarter points, Lb = 8.75 ft
= 105 in. As Lb is between Lp and Lr, the resis-
tance is [A10.8.2.3], the interpolation is between
these two achor points. Cb is conservatively con-
sidered 1.0 and could be refined as necessary. No
significant construction live load is anticipated.

Fnc = Cb

[
1 −

(
1 − Fyr

RhFyc

)(
Lb − Lp

Lr − Lp

)]

× RbRhFyc ≤ RbRhFyc

= 1.0

[
1−

(
1 − 0.7Fyc

1.0Fyc

)(
105− 61.7

193.7 − 61.7

)]

× (1.0) (1.0) (50) ≤ 50

= 45.1 ksi

M = 1.25 (DC) = 1.25 (203.7) = 254.6 k ft

fc = M

S
= 254.6 (12)

245
= 12.5 ksi ≤ 45 ksi OK

The quarter-point cross framing is considered in
the wind bracing design later.
(3) Shear [A6.10.3.3] The shear resistance

is computed and then used for constructability,
strength I, and fatigue limit states.

Vu ≤ φVcr = φCV p = φC (0.58) FyDtw

where
Vu = maximum shear force due to

unfactored permanent load and
twice the fatigue loading
[A6.10.5.3]

V cr = critical buckling resistance
C = shear buckling coefficient
Vp = plastic shear resistance

For a wide-flange section this should not be an
issue but the computations are provided for com-
pleteness.
Shear resistance of unstiffened web is applica-

ble [C6.10.9.2]. For the wide flange, the shear
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resistance should be the plastic shear resistance.
The computations illustrate that this resistance is
slightly within the inelastic range:

D = d − 2tf = 29.54 − 2 (0.61)

= 28.32 in.
D

tw
= 28.32

0.47
= 60.2

1.12

√
Ek

Fyw
= 1.12

√
29000 (5)

50
= 60.3

D

tw
≤ 60.3

C = 10

Vp = 1.0 (0.58) (50) (29.53) (0.47)

= 402 kips

Vu ≤ φVcr = φCVp = (1.0) (1.0) (402)

= 402 kips

= 29.1 ≤ 402 kips

Normally a rolledwide flange has the full plastic
shear resistance.
(4) Deck Placement [A6.10.3.4] This deck is

a noncomposite section and because the span is
short, placement is at the same time. This article
is not applicable.
(5) Dead-Load Placement [A6.10.3.5] Deck

placement is not patterned or staged. This article
is not applicable.

e. Service Limit State [A6.5.2] [A6.10.4]
(1) Elastic Deformations [A6.10.4.1]

(a) Optional Live-Load Deflection [A2.5.2
.6.2] Optional Deflection Control [A2.5
.2.6.2]

Allowable service load deflection ≤ 1
800 span

= 35 (12)

800
= 0.53 in.

From [A3.6.1.3.2], deflection is taken as the
larger of that:
� Resulting from the design truck alone
� Resulting from 25% of the design truck

taken together with the design lane load
The distribution factor for deflection may

be taken as the number of lanes divided by
the number of beams [C2.5.2.6.2] because all
design lanes should be loaded, and all support-
ing components should be assumed to deflect
equally:

mgdeflection = m

(
No.lanes

No.beams

)
= 0.85

(
3

6

)

= 0.43

Fig. E20.1-7 Truck placement for maximum deflection.

Fig. E20.1-8 General placement of point load P .

Fig. E20.1-9 Point load P at center of the span.

(i) Deflection resulting from design truck
alone (Fig. E20.1-7):

P1 = P2 = 0.43 (32)

(
1 + IM

100

)

= 0.43 (32) (1.33)

= 18.3 kips

P3 = 0.43 (8) (1.33)

= 4.58 kips

The deflection at any point, �x, due to a
point load P can be found from AISC Man-
ual (2005) (Fig. E20.1-8) for x ≤ a :

�x = Pbx

6EIL

(
L2 − b2 − x2)

The maximum deflection (located at the
center) of a simply supported span, due to a
concentrated load at the center of the span,
can be found from AISC Manual (2010)
(Fig. E20.1-9):

�CL = PL3

48EI
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Fig. E20.1-10 Uniform lane load on the span.

�CLTruck = (
�P1

+ �P2

) + �P3

= (18.3+ 45.8) (42) (420/2)

6 (29,000) (3620) (420)

× [
(420)2 − (42)2 − (420/2)2

]

+ 18.3(420)3

48 (29,000) (3620)
= 0.0995+ 0.269 = 0.37 in.

(ii) Deflection resulting from 25% of de-
sign truck together with the design lane load:

�CL25%Truck = 0.25 (0.37) = 0.092 in.

The deflection due to lane load can
be found from AISC Manual (2005)
(Fig. E20.1-10):

�max = 5wL4

384EI

�CL Lane = 5 (0.43) (0.64/12) (420)4

384 (29,000) (3620)
= 0.089 in.

�CL = �CL25%Truck + �CL Lane

= 0.0922 + 0.089 = 0.18 in.

∴ �CL Truck = 0.37 in. controls

�CL = 0.37 in. < �all

= 0.5 in. OK

(b) Optional Criteria for Span-to-DepthRatio
[A6.10.4.2.1] From [A2.5.2.6.3], the owner
may choose to invoke a requirement for mini-
mum section depth based upon a span-to-depth
ratio. Per AASHTO [Table E20.2-5.2.6.3-1],
the depth of the steel portion of a composite
steel beam is 0.033L (L /30) for simple spans,
or

Min depth = (12) (35) /30 = 14 in.

The trial design section easily meets this op-
tional requirement.
(2) Permanent Deformations [A6.10.4.2] This

limit state is checked to prevent permanent deflec-
tion that would impair rideability. Lateral bending

stresses are considered small, that is, fl = 0.0. For
both flanges of noncomposite sections:

ff + fl

2
≤ 0.80RhFyf

Rh = 1.0 for homogeneous sections

[A6.10.5.4.1a]

Fyf = 50 ksi

The maximum service II moment, which occurs
at location 105 in the exterior beam is

M = 833.9 k ft

ff = M

Sx

= 833.9 (12)

245
= 40.8 ksi

= 40.8 ksi ≈ 0.8 (1.0) (50) = 40 ksi close

At this juncture, the engineer makes a decision
that this is close enough, increases the cross
section size, or adds a cover plate. The latter is
likely the most expensive solution because of
the additional welding. Also note that the live-
load distribution factor assumption (Kg term) is
conservative and the self-weight of the beam is
slightly conservative as well. We continue with
this section and discuss this near the end of this
example.

(a) General [A6.10.4.2.1]
(b) Flexure [A6.10.4.2.2] [Appendix B—

optional] [A6.10.1.9] [A6.10.1.10.1]
f. Fatigue and Fracture Limit State [A6.6.1.2]

[A6.10.5]
(1) Fatigue [A6.10.5.1] [A6.6.1] Allowable fa-

tigue stress range depends on load cycles and
connection details. Fracture depends onmaterial
grade and temperature.

(a) Stress Cycles Assuming a rural inter-
state highway with 20,000 vehicles per lane
per day,

Fraction of trucks in traffic = 0.20 (Table 4.4)

[Table C3.6.1.4.2-1]

ADTT = 0.20×ADT

= 0.20(20000)(2 lanes)

= 8000 trucks/day

p = 0.85 (Table 4.3)

[Table A3.6.1.4.2-1]

ADTTSL = p × ADTT = 0.85 (8000)

= 6800 trucks/day

(b) Allowable Fatigue Stress Range—
Category A Per A6.10.6.1.2.3, as the number
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of trucks is more than 530 per day, the fatigue
I limit state (γ fatigue I = 1.5) shall be used
and the resistance shall be based upon the
infinite fatigue life. Assuming that the girder
is weathering steel that is not coated, the
fatigue category is B (Table A6.6.1.2.3-1
Case 1.2 or Table 18.3):

(�F)n = (�F)TH = 16 ksi (fatigueI)

(c) Dynamic load allowance for fatigue is
IM = 15%.
M LL+IM is maximum in the exterior girder,

no multiple presence (live-load range only):

Mfatigue I = 1.5 (211.3) = 317 k ft

f = M

S
= 317 (12)

245
= 15.5 ksi≤ 16 ksi

Infinite fatigue life isOK

Because infinite fatigue life is met, then the
finite fatigue life check is not applicable.

(2) Fracture [A6.10.5.2] [A6.6.2] The steel spec-
ified meets fracture requirements for this non-
fracture-critical system.

(3) Special Fatigue Requirements for Webs
[A6.10.5.3] The shear force due the fa-
tigue truck is determined with the use of the
fatigue truck (exterior girder governs and no
multiple presence) [A3.6.1.1.2]). Here dead
load is considered with 1.5 × fatigue the load.

Vu = mg fatigue+IM

(
1.5Vfatigue+IM

)+VDC +VDW

= 66.7 kips

66.7 kips ≤ 402 kips OK

g. Strength Limit State [A6.5.4] [A6.10.6]
(1) Composite Sections in Positive Flexure

[A6.10.6.2.2] [A6.10.7] This article is not
applicable.
(2) Composite Sections in Negative Flexure

[A6.10.6.2.3] [A6.10.8] [Appendix A—optional]
[AppendixB—optional] [D6.4—optional] This
article is not applicable.
(3) Net Section [A6.10.1.8] This article is not

applicable. No splices are required.
(4) Flange-Strength Reduction Factors [A6.10

.1.10] [A6.10.2.1] is satisfied and therefore there
are not reductions per [A6.10.1.10] required.

3. Shear Design
a. General [A6.10.9.1] [A6.10.9.2] The section is a

wide flange, and shear resistance should be at the
plastic shear capacity. No transverse stiffeners are re-
quired; the computation is for an unstiffened section.
The shear resistance was previously computed as

Vu ≤ φVcr = φCVp = (1.0) (1.0) (402) = 402 kips

Vu = 142.5 kips ≤ Vr = 402 kips OK

J. Dimension and Detail Requirements
1. Material Thickness Material Thickness [A6.7.3]

Bracing and cross frames shall not be less than
0.3125 in. thickness. Web thickness of rolled beams
shall not be less than 0.25 in.

tw = 0.47 in. > 0.25 in. OK

2. Diaphragms and Cross Frames [A6.7.4] See com-
putation below.

3. Lateral Support of Compression Flange Prior to Cur-
ing of Deck
� Transfer of wind load on exterior girder to all gird-

ers
� Distribution of vertical dead and live loads applied

to the structure
� Stability of the bottom flange for all loads when it

is in compression
For straight I-sections, cross frames shall be at least

half the beam depth.
a. Intermediate Diaphragms (Fig. E20.1-11) Try

C15 × 33.9 intermediate diaphragms at one-quarter
points, for As = 9.96 in.2, ry = 0.904 in., and Lb =
35/4 = 8.75 ft = 105 in.
The wind load acting on the bottom half of the

beam goes to the bottom flange and is

wBot = γ PDd

2
= 1.4 (0.050) (30/12)

2
= 0.0875 k/ft

PwBot = wBotLb = (0.0875) (8.75) (1/2)

= 0.38 kips

The remainingwind load is transmitted to the abut-
ment region by the deck diaphragm. The end reaction
must be transferred to the bearings equally by all six
girders. The resultant force is FuD .

PwTop =
[
1.4 (0.050) (30 + 8 + 34)

(
1

12

)]

×
[

(32 − 87.5) /2

6 girders

]

= 0.81 kips

FuD = PwBot + PwTop = 0.38 + 0.81 = 1.19 kips

Fig. E20.1-11 Wind load acting on exterior elevation.
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The axial resistance is [A6.9.3, A6.9.4]
kL

ry

= 1.0 (96)

0.904
= 106 < 140

Pe = π2EA g
(
KL

ry

)2
= π2 (29000)(9.96)

(106)2

= 253.7 kips

Po = QFyAg = 1.0 (50) (9.96) = 498.0 kips

Pn = 0.658Po/PeFyAs = 0.6581.96 (498.0)

= 219 kips

Pr = φcPn = 0.9 (220) = 198 kips >> PwBot

= 0.38 kips OK

b. End Diaphragms Must adequately transmit all the
forces to the bearings:

Pr = 198 kips >> FuD = 1.19 kips OK

Use the same section as intermediate diaphragm.
This component is overdesigned, however, the 15-
in. deep section facilitates simple connection to the
girders.
Use C15× 33.9, M270 Grade 50W, for all

diaphragms.
Lateral Bracing [A6.7.5] Lateral bracing shall be

provided at quarter points.
Use same section as diaphragms.
Use C15 × 33.9, M270 Grade 50W, for all lateral

braces.
K. Dead-Load Camber

Exterior Beam

wD = wDC + wDW = 1.33 + 0.21 = 1.54 k/ft

Interior Beam

wD = 0.9 + 0.28 = 1.18 k/ft

�CL = 5

384

(
wDL4

)

EI
= 5

384

(1.54/12)(420)4

(29,000)(3620)
= 0.50 in.

Use 0.5-in. camber on all beams. Alternatively, some
agencies thicken the CIP deck in the middle by 0.5 in. to
account for the dead-load deflection rather than camber-
ing rolled sections.

L. Check AssumptionsMade in Design Nearly all the re-
quirements are satisfied, using a W30× 90. This beam
has a self-weight of 0.090 k/ft; thus, our assumed beam
weight of 0.10 k/ft is conservative. Also, for preliminary
design, the value for

[
Kg/12Lt3s

]0.1
was taken as 1.0 in

calculating the distribution factors for moment. The ac-
tual value is calculated below.

Kg = n
(
I + Ae2g

)

n = Es

Ec

= 29,000

1820
√
4

= 7.98 Use 8

I = 3620 in.4

Fig. E20.1-12 Design sketch of noncomposite rolled steel girder.

Because section is noncomposite eg = 0:

Kg = 8 (3620) = 28,960 in.4

Kg

12Lt3s
= 28,960

(12) (35) (8)3
= 0.13

(
Kg

12Lt3s

)0.1

= 0.82

Recompute the distribution factors:

mgSIM = 0.06 +
(

S

14

)0.4(
S

L

)0.3( Kg

12Lt3s

)0.1

mgSIM = 0.06 +
(

8

14

)0.4( 8

35

)0.3

(0.82) = 0.48

Two design lanes loaded:

mgMI
M = 0.075 +

(
S

9.5

)0.6(
S

L

)0.2( Kg

12Lt3s

)0.1

mgMI
M = 0.075 +

(
8

9.5

)0.6( 8

35

)0.2

(0.82)

= 0.626 governs

This demonstrates that the live loads calculated in the
preliminary design are about 18% higher than actual,
which is conservative (interior girder only). However,
the distribution factor is not applied to the dead load so
that when the live- and dead-load effects are combined,
the preliminary design loads are less conservative, which
is more acceptable. Also, the exterior girder does not
have this factor, so the distribution factors are unchanged
with the better estimate of the longitudinal to transverse
stiffness (so-called Kg term). The Kg term equal to 1.0 is
closer for composite beams as will be illustrated below.

M. Design Sketch The design of the noncomposite, sim-
ple span, rolled steel beam bridge is summarized in
Figure E20.1-12.

20.2 COMPOSITE ROLLED STEEL
BEAM BRIDGE

Design the simple-span composite rolled steel beam bridge
of Figure E20.2-1 with 35-ft span for an HL-93 live load.
Roadway width is 44 ft curb to curb. Allow for a future wear-
ing surface of 3-in.-thick bituminous overlay. Use f

′
c = 4 ksi
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Fig. E20.2-1 Composite rolled steel beambridge design example:
(a) general elevation, (b) plan view, and (c) cross section.

and M270 Grade 50W steel. For this example, the barrier
weight will be assigned equally to each girder.

A-G. Same as Example Problem 20.1
H. Calculate Force Effects from Other Loads

D1 = dead load of structural components and their
attachments, acting on the noncomposite
section (DC)

D2 = future wearing surface (DW)

D3 = barriers that have a cross sectional area of
300 in.2 = 2.08 ft2, and weight of
0.32 k/ft (DC).

A 2-in. × 12-in. average concrete haunch at each
girder is used to account for camber and unshored
construction.A 1-in. depth is assumed for resistance
computations due to variabilities and flange embed-
ment. Assume a beam weight of 0.10 k/ft.

For a uniformly distributed load w on the simple
span,

M105 = (
1
8

)
(35)2w = 153.1w

V100 = 17.5w

1. Interior Girders

D1 Deck slab (0.15)
( 8
12

)
(8) = 0.80 k/ft

Girder = 0.10 k/ft

Haunch (2) (12) (0.150) /144 = 0.025 k/ft

w I
D1 = 0.93 k/ft

D2 3-in. bituminous paving w I
D2 = ( 3

12

)
(0.14) (8)

= 0.28 k/ft

D3 Barriers, one-sixth share w I
D3 = 2 (0.32 k/ft)

6
= 0.11 k/ft

Table E20.2-1 summarizes the unfactored mo-
ments and shears at critical sections for interior
girders. The values for LL+ IMwere determined
in the previous example.

2. Exterior Girders

D1 Deck slab (0.15)
(
8
12

) (
3.25 + 8

2

) = 0.73 k/ft

Girder = 0.10 k/ft

Haunch = 0.025 k/ft

wE
D1 = 0.86 k/ft

D2 3-in. bituminous paving wE
D2 = (0.14)

(
3
12

)

× (
3.25 + 8

2

)

= 0.25 k/ft

D3 Barriers, one-sixth share wE
D3 = 0.11 k/ft

Table E20.2-2 summarizes the unfactored mo-
ments and shears at critical sections for exterior
girders. The values for LL+ IMwere determined
in the previous example.

Table E20.2-1 Interior Girder Unfactored Moments
and Shearsa

w Moment (k ft) Shear (kips)
Load Type (k/ft) M105 V100

D1 (DC) 0.93 142.4 16.3
D2 (DW) 0.28 42.9 4.9
D3 (DC) 0.11 16.8 1.9
LL + IM
(distributed)

N/A 458.8 66.1

Fatigue + IM
(distributed)

N/A 161.4 24.0

aCritical values are in boldface.
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Table E20.2-2 Exterior Girder Unfactored Moments
and Shearsa

w Moment (k ft) Shear (kips)
Load Type (k/ft) M105 V100

D1 (DC) 0.86 131.7 15.1
D2 (DW) 0.25 38.3 4.4
D3 (DC) 0.11 16.8 1.9
LL + IM N/A 467.4 61.0
Fatigue + IM

(distributed)
N/A 211.3 26.5

aCritical values are in boldface.

Factored Load Effects
a. Interior Beam—Factored Shear and Moment

Strength I U = η[1.25D1 + 1.50D2 + 1.25D3

+ 1.75 (LL + IM)]

VStrength I = 1.0[1.25 (16.3) + 1.50 (4.9)

+ 1.25 (1.9) + 1.75 (66.1)]

= 145.8 kips (strength I)

MStrength I = 1.0[1.25 (142.4) + 1.50 (42.9)

+ 1.25 (16.8) + 1.75 (458.8)]

= 1066.3 k ft (strength I)

Fatigue I U = η [1.5 (LL + IM)]

Fatigue II U = η [0.75 (LL + IM)]

VFatigue I = 1.0 [1.5 (24.0)]

= 36.0 kips (fatigue I)

VFatigue II = 1.0 [0.75 (24.0)]

= 18.0 kips (fatigue II)

MFatigue I = 1.0 [1.5 (161.4)]

= 242.1 k ft (fatigueI)

MFatigue II = 1.0 [0.75 (161.4)]

= 121.1 k ft (fatigueII)

Service II U = η[1.0D1 + 1.0D2+ 1.0D3

+ 1.30 (LL + IM)]

VService II = 1.0[1.0 (16.3) + 1.0 (4.9)

+ 1.0 (1.9) + 1.3 (66.0)]

= 108 . 9 kips (service II)

MService II = 1.0[1.0 (142.4) + 1.0 (42.6)

+ 1.0 (16.8) + 1.3 (458.8)]

= 798 . 2 k ft (service II)
Construction U = η [1.25D1]

VConstruction = 1.0 [1.25 (16.3)]

= 20 . 4 kips (construction)

MConstruction = 1.0 [1.25 (142.4)]

= 178 . 0 k ft (construction)

b. Exterior Beam—Factored Shear and Moment

VStrength I = 1.0[1.25 (15.1) + 1.50 (4.4)

+ 1.25 (1.9) + 1.75 (61)]

= 134.6 kips (strength I)

MStrength I = 1.0[1.25 (131.7) + 1.50 (38.3)

+ 1.25 (16.8) + 1.75 (467.4)]

= 1061.0 k ft (strength I)

VFatigue I = 1.0 [1.5 (26.5)]

= 39.8 kip (fatigueI)

VFatigue II = 1.0 [0.75 (26.5)]

= 19.9 kip (fatigueI)

MFatigue I = 1.0 [1.5 (211.3)]

= 317.0 k ft (fatigueI)

MFatigue II = 1.0 [0.75 (211.3)]

= 158.5 k ft (fatigueII)

VService II = 1.0[1.0 (15.1) + 1.0 (4.4)

+ 1.0 (1.9) + 1.3 (61)]

= 100.7 kip (service II)

MService II = 1.0[1.0 (131.7) + 1.0 (38.3)

+ 1.0 (16.8) + 1.3 (467.4)]

= 794.4 k ft (service II)

VConstruction = 1.0 [1.25 (15.1)]

= 18.9 kips (construction)

MConstruction = 1.0 [1.25 (131.7)]

= 164.6 k ft (construction)

Critical values are in boldface.
I. Design Required Sections
1. Flexural Design
a. Composite Section Stresses [A6.10.1.1.1]

The composite cross-section properties com-
puted below include the bare steel, composite
deck for long-term loading, and composite deck
for short-term loading.

b. Flange Stresses and Member Bending Mo-
ments [A6.10.1.6] Because this is a straight
(nonskewed) bridge, the lateral bending effects
are considered to be minimal and the lateral
bending stress fl is considered here as zero:

fl = 0.0

c. Fundamental Section Properties
(1) Consider Loading and Concrete Place-

ment Sequence [A6.10.5.1.1a]

Case 1 Weight of girder and slab (D1). Sup-
ported by steel girder alone.
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Case 2 Superimposed dead load (FWS,
curbs, and railings) (D2 and D3). Sup-
ported by long-term composite section.

Case 3 Live load plus impact (LL +
IM). Supported by short-term composite
section.

(2) Determine Effective Flange Width
[A4.6.2.6] For interior girders the effective
flange width is the tributary width:

bi = 8 ft = 96 in.

For exterior girders the effective flange
width is

be = bi

2
+ 39 = 96

2
+ 39 = 88 in.

(3) Modular Ratio [A6.10.5.1.1b] For

f
′
c = 4 ksi n = 8

(4) Trial Section Properties At this point
in the design, analysis indicates that strength
I moment and shear are critical in the interior
girder and fatiguemoment and shear are criti-
cal in the exterior girder. The effective widths
are nearly the same. For the trial check, use
Mu = 1066.3 k ft,Vu = 145.8 kips, for fatigue
limit I including dead loads,M fatigue = 345.3
k ft, and V fatigue = 41.3 kips. For fatigue limit
I for live-load range only, M fatigue = 317.0 k
ft, and V fatigue = 39.8 kips. The trial section
properties are based upon the interior girder
effective slab width of 96 in.

(a) Steel Section at Midspan Try W24
× 68. Properties of W24 × 68 are taken
fromAISC (2010).The calculations for the
steel section properties are summarized be-
low and are shown in Figure E20.2-2

Ix = 1830 in.4 Iy = 70.4 in.4

A = 20.1 in.2

Zx = 177 in.3 Sx = 154 in.3

bf = 8.965 in. tf = 0.585 in.

tw = 0.415 in.

d = 23.73 in.

(b) Composite Section, n = 8, at
Midspan Figure E20.2-3 shows the com-
posite section with a haunch of 1 in., a net
slab thickness (without 0.5 in. sacrificial
wearing surface) of 7.5 in., and an effec-
tive width of 96 in. The composite section

Fig. E20.2-2 Noncomposite steel section at midspan.

Fig. E20.2-3 Composite steel section at midspan.

properties calculations are summarized in
Table E20.2-3. See Fig. E20.2-3.

ȳ =
∑

Ay
∑

A
= 2802

110.1

= 25.5 in.

yt = 23.73+ 1 + 7.5 − 25.4

= 6.83 in.

Ix = 4533+ 2252 = 6785 in.4

St = 6785

6.78
= 1001 in.3

Sb = 6785

25.5
= 266 in.3
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Table E20.2-3 Short-Term Composite Section Properties, n = 8, bi = 94 in

Component A y Ay |y − ȳ| A(y − ȳ)2 I0

Concrete (bi × ts/n )
a 7.5(96)/8 = 90.0 1 + 7.5

2
+ 23.73 = 28.48 2563 2.98 799 422

Steel 20.1 11.87 239 13.6 3734 1830∑
110.1 2802 4533 2252

aThe parameter bi is used because interior girders control the moment design. As an aside, computations are not very sensitive to this width.

Table E20.2-4 Long-Term Composite Section Properties, 3n = 24, bi = 94 in

Component A y Ay |y − ȳ| A(y − ȳ)2 I0

Concrete(bi × ts/3n )
a 7.5(96)/24 = 30.0 1 + 7.5

2
+ 23.73 = 28.48 854.4 6.68 1339 141

Steel 20.1 11.87 239 9.93 1982 1830∑
50.1 1093 3293 1971

aThe parameter bi is used because interior girders control the moment design.

(c) Composite Section, 3n = 24, at
Midspan The composite section proper-
ties calculations, reduced for the effect of
creep in the concrete slab, are summarized
in Table E20.2-4.

ȳ =
∑

Ay
∑

A
= 1093

50.1
= 21.8 in.

yt = 10.4 in.

Ix = 3321+ 1971 = 5292 in.4

St = 5292

10.4
= 509 in.3

Sb = 5292

21.8
= 243 in.3

(5) Member Proportions [A6.10.1.1]

D

tw
≤ 150

23.73− 2 (0.585)

0.415
= 22.56

0.415
= 54 ≤ 150 OK

This is conservative for the wide-flange
section, as expected. For flange stability,

bf

2tf
≤ 12

8.965

2 (0.415)
= 10.8 ≤ 12 OK

And

bf ≥ D

6

8.965 ≥ 22.56

6
= 3.76 OK

tf ≥ 1.1 tw

0.585 ≥ 1.1 (0.415) = 0.46 OK

And for handling

0.1 ≤ Icompression flange

Itension flange
≤ 1

0.1 ≤ 1.0 ≤ 1 OK

All the general proportions are met for this
wide flange as expected.

d. Constructibility [A6.10.3]
(1) General [A2.5.3] [A6.10.3.1] The

resistance of the girders during construction
is checked. Note that the unbraced length is
important for lateral torsion buckling under
the load of wet concrete. Nominal yielding
or postbuckling behavior is not permitted
during construction.

(a) Local Buckling [A6.10.3.2] The
wide flange trial section will not have local
buckling issues.
(b) Flexure [A6.10.3.2] [A6.10.8.2]

Lateral support for compression flange is
not available when fresh concrete is being
placed and should be checked to ensure
that bracing is adequate.
Compression flange bracing [A6.10.8]

fbu + 1
3fl ≤ φf Fnc

where
Fnc = RbRhFyc

and is computed per [A6.10.8.2].
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For the rolled beam [A.6.10.8.2.2], local
buckling resistance is satisfied. The lateral
torsional buckling resistance [A6.10.8.2.3]
is dependent upon the unbraced length.
The two anchor points associated with the
inelastic buckling Lp and elastic buckling
Lr, are

Lp ≤ 1.0 rt

√
E

Fyc

and

Lr ≤ πrt

√
E

Fyc

where
rt = minimum radius of gyration

of the compression flange of
the steel section (without
one-third of the web in
compression) taken about
the vertical axis

rt = bfc√
12

(
1 + 1

3
Dc

bfc

tw
tfc

)

rt = 8.965√
12

(
1 + 1

3

(
22.56/2
8.965

) (
0.415
0.585

))

= 2.58 in.

Therefore,

Lp ≤ 1.0 (2.58)

√
29,000

50
= 62 in.

and

Lr ≤ π (2.58)

√
29,000

50
= 195 in.

Provide braces for the compression
flange at quarter points so that

Lb = (35) (12)

4
= 105 in.

These braces need not be permanent
because the composite slab provides
compression flange bracing once it is
cured.
Nominal flexural resistance:

Fnc = (LTB factor)RbRhFyc

Rh = 1.0 for homogeneous

sections [A6.10.1.10.1]

Therefore, for Rb = 1.0:

Fnc = Cb

[
1 −

(
1 − Fyr

RhFyc

)

×
(

Lb − Lp

Lr − Lp

)]
RbRhFyc

= 1.0

[
1 −

(
1 − 0.7Fy

1.0Fyc

)

×
(
105 − 62

195 − 62

)]
(1.0) (1.0) Fyc

= 0.90Fyc = 45.1 ksi

≤ 50 ksi OK

Compare the resistance to the load effect
under construction:

M105 = 1.0 (1.25) (142.5) = 178 k ft

fbu = 178(12)

154
13.9 ksi ≤ 45.1 ksi OK

(2) Shear [A6.10.10.3] This article does
not apply to sections with unstiffened webs
because the shear force is limited to the shear
yield or shear buckling force at the strength
limit state. Per [A6.10.3.3], the shear resis-
tance is

Vu ≤ φvVcr = CVp

C = 1.0

φvVcr = 1.0 (0.58) (50) (23.73) (0.415)

= 286 kips

Vu = 1.25 (20.4)

= 25.5 kips ≤ 286 kips OK

(3) Deck Placement [A6.10.3.4] This
deck is a composite section and because the
span is short, placement is at the same time
and pattern dead load need not be considered.
(4) Dead-Load Placement [A6.10.3.5]

Deck placement is considered in the compu-
tation of the cross-section properties.

e. Service Limit State [A6.5.2] [A6.10.4]
(1) Elastic Deformations [A6.10.4.1]

(a) Optional Live-Load Deflection
[A2.5.2.6.2] Optional Deflection Con-
trol [A2.5.2.6.2]
This requirement was met in Example

Problem20.1. The only difference between
this example and Example 20.1 is the mo-
ment of inertia, I , of the section for which
I is equal to 3620 in.4. In this example, I is
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equal to 6785 in.4, determined previously.
Because I is greater than I in Example
Problem 20.1, the deflections are less, and
the optional deflection control requirement
is met.
(b) Optional Criteria for Span-to-Depth

Ratio [A2.5.2.6.3] The optional span-to-
depth ratio of 0.033L for the bare steel and
0.040L for the total section is computed as

0.033L = 0.033 (35) (12)

= 13.9 in. ≤ 23.73 in. OK

0.040L = 0.040 (35) (12)

= 16.8 in. ≤ 32.23 in. OK

These minimum depths are easily met,
which is consistent with the deflection
computation.
(2) Permanent Deformations [A6.10.4.2]

For tension flanges of composite sections

ff + fl

2
≤ 0.95RhFyf = 0.95 (1.0) (50)

= 47.5 ksi

where
ff = elastic flange stress caused by

the factored loading
fl = elastic flange stress caused by

lateral bending that is assumed
to be zero here

The maximum service II moment, which
occurs near location 105 in the interior beam,
is due to unfactored dead loads D1, D2,
and D3, and factored live load, 1.3(LL +
IM) taken from Table E20.2-1. The stresses
calculated from these moments are given in
Table E20.2-5.

max ff = 40.9 ksi < 47.5 ksi OK

f. Fatigue and Fracture Limit State [A6.5.3]
[A6.10.5]

(1) Fatigue [A6.10.5.1] [A6.6.1] From
Example Problem 20.1,

(�F)n = (�F)TH

= 16 ksi

From Example Problem 20.1,

Mfatigue = 317.0 k ft

f = M

Sb

= 317.0 (12)

266

= 14.3 ksi < 16 ksi OK

where Sb is the section modulus for the
short-term composite section, calculated
previously.
(2) Fracture [A6.10.5.2] [A6.6.2] The

steel specified meets fracture requirements
for this non-fracture-critical system.
(3) Special Fatigue Requirements forWebs

[A6.10.5.3] The shear force due the fa-
tigue truck is determined with the use of
Figure E20.1-6 (interior girder governs and
no multiple presence) [A3.6.1.1.2])

Vu = mgfatigue 1.5Vfatigue + VDC + VDW

= 1.5 (26.5) + 15.1 + 1.9 + 4.4

= 61.1kips

61.1 kips ≤ 286 kips OK

g. Strength Limit State [A6.5.4] [A6.10.6]

Composite Sections in Positive Flexure
[A6.10.6.2.2] [A6.10.7] The positive
moment sections may be considered compact
composite if the following are satisfied:

� The specified minimum yield strength of
the flange does not exceed 70 ksi.

� The web satisfies [A6.10.2.1.1]; see pre-
vious computation.

2Dcp

tw
≤ 3.76

√
E

Fy

= 90.6

Table E20.2-5 Stresses in Bottom Flange of Steel Beam Due to Service II Moments

MD1 MD2 MD3 Sb Steel Sb Composite Stress
Load (k ft) (k ft) (k ft) 1.3MLL+IM (in.3) (in.3) (ksi)

D1 142.4 154 11.1
D2 42.9 243 2.1
D3 16.8 243 0.8
LL + IM 596.4 266 26.9
Total 40.9
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Table E20.2-6 Shear Range for Fatigue Loading and
Required Shear Connector Spacing

Unfactored Unfactored Factored
Maximum Maximum Shear
Positive Negative Range Pitch

Location Shear (kips)a Shear (kips) (kips) (in.)

100 26.5 0 39.6 6
101 23.6 −2.4 39.05 5.9
102 20.7 −4.6 38.0 6.1
103 17.9 −7.0 37.5 6.4
104 15.0 −9.2 36.2 6.4
105 12.1 −12.1 36.2 6.4

aDistributed with IM included.

As shown below, the depth of the plastic neu-
tral axis is in the deck, therefore, no portion
of the web is in compression and the last pro-
vision is satisfied.
The A steel = 20.1 in.2 and the yield stress is
50 ksi, therefore, the steel tensile capacity is
1005 kips. If the deck is completely in com-
pression, then the force would be

C = 0.85
(
f

′
c

)
bets

= 0.85 (4) (96) (7.5)

= 2448 kips ≥ 1005 kips

Therefore, the neutral axis lies within the
deck:

C = 0.85
(
f

′
c

)
bea

= 0.85 (4) (96) (a)

= 326.4a = 1005 kips

a = 3.08 in.

The lever arm between the compression and
tension force is

Lever = (23.73+1 + 7.5) − 23.73

2
− 3.08

2
= 18.8 in.

and the flexural capacity is

φmMn = 1.0 (1005) (18.8) = 18894 k in.

= 1575 k ft

Mu ≤ φmMn

Mu = 1066.3 k ft ≤ 1575 k ft OK

The ductility requirement of [A6.10.7.3] is

Dp ≤ 0.42D

3.15 ≤ 0.42 (32.23) = 13.5 OK

2. Shear Design
a. General [A6.10.9.1] The section is a wide

flange and shear resistance should be at the
plastic shear capacity. No transverse stiffen-
ers are required; the computations are for an
unstiffened section. The shear resistance was
previously computed as

Vu ≤ φVcr = φCVp

= (1.0) (1.0) (286)

= 286 kips

Vu = 145.8 kips ≤ Vr = 286 kips OK

The details of the resistance computation are
illustrated above.

3. Shear Connectors [A6.10.10] Shear connec-
tors must be provided throughout the length of
the span for simple-span composite bridges.

a. Use 3
4 -in. diameter studs, 4 in. high. The ratio of

height to diameter is

4

0.75
= 5.33 > 4 OK[A6.10.10.1.1]

1. Transverse spacing [A6.10.10.1.3]: The
center-to-center spacing of the connectors
cannot be closer than 4 stud diameters, or
3 in. The clear distance between the edge of
the top flange and the edge of the nearest
connector must be at least 1 in.

2. Cover and Penetration [A6.10.10.1.4]: Pen-
etration into the deck should be at least 2 in.
Clear cover should be at least 2.5 in.

b. General [A6.10.10.1] No computations are
necessary for this article.

c. Fatigue Resistance [A6.10.10.2] Fatigue re-
sistance for the shear connectors is controlled
by the infinite life criterion as the number of cy-
cles is larger than 960 trucks per day; therefore
the resistance per stud is

Zr = 5.5d2 = 5.5
(
0.752

) = 3.1 kips

p = nZrI

VsrQ

I = moment of inertia of short-term

composite section

= 6785 in.4

n = 3 shear connectors in a cross section

Q = first moment of the transformed area

about the neural axis of the

short-term composite section

=
(

yb − d

2

)
Asteel
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=
(
25.5 − 23.73

2

)
(20.1)

= 274 in.3

Vsr = shear force range under LL + IM

determined for the fatigue

limit state

Shear ranges at tenth points, with required
pitches, are located in Table E20.2-6. The shear
range is computed by finding the difference in
the positive and negative shears at that point due
to the fatigue truck, multiplied by the dynamic
load allowance for fatigue (1.15), the maximum
distribution factor for one design lane loaded
without multiple presence (0.765/1.2) for the
exterior beam, and by the load factor for the
fatigue limit state I (1.5). Values are symmetric
about the center of the bridge, location 105.
An example calculation of the pitch is per-

formed below, for the shear range at location
101:

Vsr = [23.6 − (−2.4)] (1.5) = 39.0 kips

p = (3) (3.1) (6785)

39.0 (272)
= 5.9 in.

6ds = 4.5 in. < p < 24 in. OK

Because the required pitch from Table E20.2-
6 does not vary much between tenth points, use
a pitch of 6 in. along the entire span. The minor
difference between 5.9 in. and 6 in. is neglected.

d. Special Requirements for Point of Permanent
Load Contraflexure [A6.10.10.3] This article
is not applicable for a simple-span beam.

e. Strength Limit State [A6.10.10.4]
Strength Limit State [A6.10.10.10.4.3]

Qr = φscQn

φsc = 0.85

Qn = 0.5Asc

√
f

′
cEc ≤ AscFu

Asc = π

4
(0.75)2 = 0.44 in.2

Ec = 1820
√

f
′
c = 1820

√
4 = 3640 ksi

Qn = 0.5 (0.44)
√
4 (3640) = 26.5 kips

AscFu = (0.44) (60) = 26.4 kips use 26.5 kips

Qn = 26.5 kips

Qr = 0.85 (26.5) = 22.5 kips

Between sections of maximum positive mo-
ment and points of zero moment, the number of
shear connectors required is

n = Vh

Qr

for which

Vh = min

{
0.85f

′
cbts = 0.85 (4) (96) (7.5) = 2448 kips

AsFy = (20.1) (50) = 1005 kips

Therefore use a nominal horizontal shear
force, Vh, of 1005 kips:

n = Vh

Qf

= 1005

22.5
= 44.7

Therefore a minimum of 45 shear connectors
are required at the strength limit state in half
the span (or 15 groups of 3). This requirement
is more than satisfied by the 6-in. pitch of the
three shear connector group required for fatigue
resistance.

J. Dimension and Detail Requirements
1. Material Thickness [A6.7.3] Bracing and cross

frames shall not be less than 0.3125 in. thickness.
Web thickness of rolled beams shall not be less
than 0.25 in.

tw = 0.47 in. > 0.25 in. OK

2. Bolted Connections [A6.13.2] Bolts are not ad-
dressed in this example.

3. Diaphragms and Cross Frames [A6.7.4] Di-
aphragms were designed for the noncomposite
bridge of Example Problem 20.1. The same di-
aphragms are adequate for this bridge. Use C15
× 33.9, M270 Grade 50W for all diaphragms.

4. Lateral Support of Compression Flange Prior
to Curing of the Deck Lateral bracing shall
be provided at quarter points, as determined in
the previous example. Use the same section as
diaphragms, C15× 33.9, M270 Grade 50W. The
two braces other than the brace at midspan may
be removed after the concrete cures.

K. Dead-Load Camber The centerline deflection due
to a uniform load on a simply support span is

�CL = 5

384

(
wD/12

)
L4

EI

= 5

384

(
wD/12

)
(420)4

29,000I

= 1164
wD

I

By substituting the dead loads from Tables E20.2-
1 and E20.2-2, and using the I values determined
previously for long-term loads, the centerline deflec-
tions are calculated in Tables E20.2-7 and E20.2-8.
Use a 3

4 -in. camber on all beams.
L. Check Assumptions Made in Design Nearly all

the requirements are satisfied, using a W24 × 68.
This beam has a self-weight of 0.068 k/ft; thus,
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Table E20.2-7 Exterior Beam Deflection Due to Dead
Loads

Load Type Load, w (k/ft) I (in.4) �CL (in.)

D1 0.86 1830 0.55
D2 0.25 5292 0.06
D3 0.11 6785 0.02

Total 0.63

Table E20.2-8 Interior Beam Deflection Due to Dead
Loads

Load Type Load, w (k/ft) I (in.4) �CL (in.)

D1 0.93 1830 0.59
D2 0.28 5292 0.06
D3 0.11 6785 0.02

Total 0.67

our assumed beam weight of 0.10 k/ft is conser-
vative. Also, for preliminary design, the value for[
Kg/12Lt3s

]0.1
was taken as 1.0 in calculating the

distribution factors for moment. The actual value is
calculated below.

Kg = n
(
I + Ae2g

)

n = Es

Ec

= 29,000

1820
√
4

= 7.98 use 8

I = 1830 in.4

eg =
(

d

2
+ th + ts

2

)

eg = 23.73

2
+ 1 + 7.5

2
= 16.6 in.

Kg = 8
[
(1830) + (20.1)

(
16.62

)]

= 58,950 in.4

Kg

12Lt3s
= 58,950

12 (35)
(
7.53

) = 0.33

(
Kg

12Lt3s

)0.1

= 0.90

Recompute the distribution factors:

mgSI
M = 0.06 +

(
S

14

)0.4(
S

L

)0.3( Kg

12Lt3s

)0.1

= 0.06 +
(

8

14

)0.4( 8

35

)0.3

(0.90)

= 0.52

Fig. E20.2-4 Design sketch of composited rolled steel girder.

Two design lanes loaded:

mgMI
M = 0.075+

(
S

9.5

)0.6(
S

L

)0.2( Kg

12Lt3s

)0.1

= 0.075+
(

8

9.5

)0.6 (
8

35

)0.2

(0.90)

= 0.68 governs

This demonstrates that the live loads calculated in
the preliminary design are about 12% higher than
actual, which is conservative (interior girder only).
However, the distribution factor is not applied to the
dead load so that when the live- and dead-load ef-
fects are combined, the preliminary design loads are
less conservative, which ismore acceptable. Also the
exterior girder does not have this factor, so the distri-
bution factors are unchanged with the better estimate
of the longitudinal to transverse stiffness (so-called
Kg term).

M. Design Sketch The design of the composite,
simple-span, rolled steel beam bridge is summarized
in Figure E20.2-4.

20.3 MULTIPLE-SPAN COMPOSITE STEEL
PLATE GIRDER BEAM BRIDGE

Problem Statement Example 20.3 Design the continuous
steel plate girder bridge of Figure E20.3-1 with 100, 120, and
100-ft spans for an HL-93 live load. Roadway width is 44 ft
curb to curb and carries an interstate highway. Allow for a
futurewearing surface of 3-in.-thickbituminous overlay. Use
f

′
c = 4 ksi and M270 Grade 50W steel (50 ksi).
Note that the computer program BT-Beam was used to

generate the actions. The sample computations are presented
to illustrate the hand and computer computations. The com-
puter results are slightly different due to a refined live-load
positioning as compared to the hand-based critical position
estimates.

A. Develop General Section
1. Roadway Width (Highway Specified) The general

elevation and plan of the three-span continuous steel
plate girder bridge is shown in Figure E20.3-1. The
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Fig. E20.3-1 Steel plate girder bridge design example: (a) general
elevation, (b) plan view, and (c) cross section.

bridge will carry two lanes of urban interstate traffic
over a secondary road.

2. Span Arrangements [A2.3.2] [A2.5.4] [A2.5.5]
[A2.6]

3. Select Bridge Type A composite steel plate girder is
selected. The concrete acts compositely in the positive
moment region and the reinforcement acts compos-
itely in the negative moment region.

B. Develop Typical Section A section of the bridge is
shown in Figure E20.3-1(c). Six equally spaced girders
are composite with the 8-in.-thick concrete deck. The
flanges and web of the plate girder are of the same
material, so that Rh = 1.0.

C. Design Reinforced Concrete Deck Use same design as
in Example Problem 20.1.

D. Select Resistance Factors [A6.5.4.2]
1. For flexure φf = 1.00
2. For shear φv = 1.00
3. For axial compression φc = 0.90
4. For shear connectors φsc = 0.85

E. Select Load Modifiers The welded plate girder is
considered to be ductile. The multiple girders and con-
tinuity of the bridge provide redundancy. The bridge
cross section is ductile and redundant. In this example,
we consider these adjustments. Additionally, because
the bridge supports an interstate highway, we consider it

“important” as well. This combination yields a net load
modifier of 0.95, which demonstrates its application. (In
previous examples, the load modifer of unity was used.)

Strength
Service,
Fatigue

1. Ductility ηD 0.95 1.0 [A1.3.3]
2. Redundancy ηR 0.95 1.0 [A1.3.4]
3. Importance ηI 1.05 1.0 [A1.3.5]

η = ηDηRηI 0.95 1.0

F. Determine Combinations and Factors Load factors
are outlined as used throughout this example.

G. Calculate Live-Load Force Effects
1. Select Live Loads [A3.6.1] and Number of Lanes

[A3.6.1.1.1]

NL = INT
( w
12

)

= INT

(
44

12

)
= 3 lanes

2. Multiple Presence [A3.6.1.1.2] (Table 8.6)

No. Loaded Lanes Multiple Presence Factor

1 1.20
2 1.00
3 0.85

3. Dynamic Load Allowance [A3.6.2] (Table 8.7) [Table
A3.6.2.1-1]

Impact = 33%

Fatigue and fracture = 15%

4. Distribution Factor for Moment [A4.6.2.2.2]
a. Interior Beams [A4.6.2.2.2b] (Table 11.3) Check

that design parameters are within the range of ap-
plicability.

3.5 ft ≤ (S = 8 ft) ≤ 240 ft

20 ft ≤ (L = 120 ft or 100 ft) ≤ 240 ft

4.5 int ≤ (
ts = 8

) ≤ 12 in.

Nb = 6 > 4

Therefore, the design parameters are within range,
and the approximate method is applicable for con-
crete deck on steel beams cross section. (Note: The
following properties are based on ts = 8 in. A more
conservative approach is to use a deck thickness re-
duced by the sacrificial wear thickness to give ts = 8
− 0.5 = 7.5 in.) This approach was illustrated in the
last example.
After initially designing the superstructure this

value was determined to be 1.02 and 1.03 for
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the positive and negative moment regions. Per
A4.6.2.2.1-2 the Kg is estimated to be 1.02, which is
used throughout this example.

mgSIM = 0.06+
(

S

14

)0.4(
S

L

)0.3( Kg

12Lt3s

)0.1

mgMI
M = 0.075+

(
S

9

)0.6(
S

L

)0.2( Kg

12Lt3s

)0.1

L = 100 ft, positive flexure

mgSIM = 0.06+
(

8

14

)0.4( 8

100

)0.3

(1.02)

= 0.45

mgMI
M = 0.075+

(
8

9

)0.6( 8

100

)0.2

(1.02)

= 0.65

L ave = 110 ft, negative flexure

mgSIM = 0.06+
(
8

9

)0.4( 8

110

)0.3

(1.02)

= 0.44

mgMI
M = 0.075+

(
8

9

)0.6( 8

110

)0.2

(1.02)

= 0.64

L = 120 ft, positive flexure

mgSIM = 0.06+
(
8

9

)0.4( 8

120

)0.3

(1.02)

= 0.42

mgMI
M = 0.075+

(
8

9

)0.6( 8

120

)0.2

(1.02)

= 0.64

Two or more lanes loaded controls. Because there
is little difference between the maximum values, use
a distribution factor of 0.65 for moment for all inte-
rior girders. Similarly, use 0.45 for all interior girders
with one loaded lane and 0.45/1.2= 0.38 for interior
girders flexural stress check due to fatigue.

b. Exterior Beams [A4.6.2.2.2d] (Table 11.3) [Table
A4.62.2.2d-1] One design lane loaded. Use the
lever rule to determine mgSEM , where m = 1.2, from
Figure E20.3-2.

∑
Mhinge = 0

R = 0.5P

(
8 + 2

8

)

= 0.625P

mgSEM = 1.2 (0.625) = 0.75

Fig. E20.3-2 Lever rule for determination of distribution factor
for moment in exterior beam, one lane loaded.

Two or more design lanes loaded:

mgME
M = e • mgMI

M

e = 0.77 + de

9.1
≥ 1.0

de = 39 − 15 = 24 in. = 2 ft

e = 0.77 + 2

9.1
= 0.99 < 1.0 ∴ use 1.0

mgME
M = (1.0) (0.625) = 0.625

Use distribution factor of 0.762 for moment for all
exterior girders. The rigidmethod of [A4.6.2.2.2] re-
quires stiff diagraphms or cross frame that affects
the transverse stiffness. Here the rigid method is not
used.

c. Skewed Bridge [A4.6.2.2.2e] This is a straight
bridge and no adjustment is required for skew.

5. Distribution Factor for Shear [A4.6.2.2.3]
a. Interior Beams [A4.6.2.2.2a] Check that design

parameters are within the range of applicability:

3.5ft ≤ (S = 8 ft) ≤ 16ft

20ft ≤ (L = 120ft and 120ft) ≤ 240 ft

4.5 in. ≤ (
ts = 8 in.

) ≤ 12 in.

Nb = 6 > 4

Therefore, the approximate method is applicable
for concrete deck on steel beam cross sections.

mgSIV = 0.36 + S

25

= 0.36 + 8

25
= 0.68

mgMI
V = 0.2 + S

12
−

(
S

35

)2.0

= 0.2 + 8

12
−

(
8

35

)2.0

= 0.81

Use distribution factor of 0.81 for shear for interior
girders.
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b. Exterior Beams [A4.6.2.2.2b] For one design lane
loaded, use the lever rule as before, therefore,

mgSEV = 0.75

For two or more design lanes loaded,

mgME
V = e •mgMI

V

e = 0.6 + de

10
= 0.6 + 2

10
= 0.80

mgME
V = 0.800 (0.81) = 0.65

Use a distribution factor of 0.75 for shear for exte-
rior girders and 0.68/1.2 = 0.57 for interior girders
fatigue-related shear checks.

c. Skewed Bridge [A4.6.2.2.2c] This is a straight
bridge and no adjustment is necessary for skew.
Example Live-Load Computations

MLL+IM = mg

[(
MTruck or MTandem

)(
1 + IM

100

)

+ MLane

]

VLL+IM = mg

[(
VTruck or VTandem

) (
1 + IM

100

)]

+ VLane

]

a. Location 205 (Maximum moment at midspan in
exterior girder) Influence line has the general
shape shown in Figure E20.3-3 and ordinates
are taken from Table 9.4. The placement of
truck, tandem, and lane live loads are shown in
Figures E20.3-4–E20.3-6.

MTruck = [32 (0.13823+ 0.20357)

+ 8 (0.13823)] (100)

= 1204.3 k ft

MTandem = [25 (0.20357+ 0.18504)] (100)

= 971.5k ft

MLane = 0.64 (0.10286) (100)2 = 658.3 k ft

MLL+IM = (0.75) [1204.3 (1.33) + 658.3]

= 1695 k ft

which compares well with the BT-Beam result,
1703 k ft.

b. Location 205 (Shear at midspan in interior girder)
Influence line has the general shape shown in
Figure E20.3-7 and ordinates are taken from
Table 9.4. The placement of truck, tandem, and
lane live loads are shown in Figures E20.3-8–
E20.3-10.

VTruck = [32 (0.5 + 0.36044) + 8 (0.2275)]

= 29.4 kips

Fig. E20.3-3 Influence line for maximum moment at location
205.

Fig. E20.3-4 Truck placement for maximum moment at location
205.

Fig. E20.3-5 Tandem placement for maximum moment at loca-
tion 205.

Fig. E20.3-6 Lane load placement for maximummoment at loca-
tion 205.

Fig. E20.3-7 Influence line for shear at location 205.

Fig. E20.3-8 Truck placement for maximum shear at location
205.
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Fig. E20.3-9 Tandem placement for maximum shear at location
205.

Fig. E20.3-10 Lane load placement for maximum shear at loca-
tion 205.

VTandem = [25 (0.5 + 0.46106)]

= 24.0 kips

VLane = 0.64 (0.06510+ 0.13650) (100)

= 12.9 kips

VLL+IM = (0.81) [29.4 (1.33) + 12.9]

= 42.1 kips

c. Location 200 (Truck Train in negative moment re-
gion) [A3.6.1.3.1] Influence line ordinates and
areas are taken from Table 9.4.
The truck train is applicable in the negative mo-

ment regions and for the reactions at the interior
supports of continuous superstructures. The truck
train (Fig. E20.3-11) is composed of 90% of the
effect of two design trucks spaced a minimum of
50 ft between the rear axle of one and the front

axle of the other, combined with 90% of the de-
sign lane loading.The spacing between the32-kip
axles on each truck is taken as 14 ft. The lane load
is placed on spans 1 and 2 for maximum negative
moment at location 200 (Fig. E20.3-12). Note that
the impact factor of 33% is only applied to the
combined truck load.

Area span 1 = (0.06138) (100)2 = 613.8ft2

Area span 2 = (0.07714) (100)2 = 771.4ft2

MLane = (0.64) (613.8+ 771.4)

= 886.5 k ft

Mtrain = 0.9
(
1.33MTr

) + 0.9MLn

= 0.9 (1.33) (1367)

+ 0.9 (886.5) = 2435 k ft

which compares well with the BT-Beam result,
2420 k ft.

6. Stiffness [A6.10.1.5] The beam stiffness is modeled
as prismatic and the same moment of inertia is used
for the entire cross section. The specification recom-
mends this approach; however, traditionally, some de-
signers change the moment of interia in the negative
moment region to model concrete cracking and in-
clude only the bare steel and reinforcement.Whatever
stiffness model is used, the designer must be consis-
tent throughout the design. See the discussion of the
lower-bound theorem in Chapter 10.

7. WindEffects [A4.6.2.7] Wind effects are considered
later in this example.

8. Reactions to Substructure [A3.6] Reactions to the
substructure do not include the distribution factor.
Because the substructure is not considered here, the
undistributed reactions are not provided.

Fig. E20.3-11 Truck train placement for maximum moment at location 200.

Fig. E20.3-12 Lane load placement for maximum moment at location 200.
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H. Calculate Force Effects from Other Loads
1. Interior Girders Three separate dead loads must be

calculated. The first is the dead load of the structural
components and their attachments, D1, acting on the
noncomposite section. The second type of dead load is
D2, which represents the future wearing surface. The
third load, D3, is caused by the barriers, where each
has a cross-sectional area of 306 in2. For this design
it was assumed that the barrier loads were distributed
equally among the interior and exterior girders. The
initial cross section consists of a 7

16 -in. × 60-in. web
and 11

4 × 16-in. 11
4 = 1.25 in. top and bottom flanges.

The decimal equivalents are used in the computations:
1 1
4 = 1.25 in. and 7

16 = 0.4375 in. The girder spacing
is 96 in., and a 2-in. × 12-in. concrete haunch at each
girder is used to accommodate camber and unshored
construction. The density of the concrete and steel are
taken as 0.15 and 0.49 k/ft3, respectively. The density
of the 3-in. bituminous future wearing surface (FWS)
is taken as 0.14 k/ft3.

D1

Slab 0.15 (8) (96) /144 = 0.80 k/ft

Haunch 0.15 (12) (2) /144 = 0.025 k/ft

Web 0.49 (60) (0.4275) /144 = 0.089 k/ft

Flanges 2 (0.49) (12) (1.25) /144 = 0.136 k/ft

w I
D1 = 1.05 k/ft

D2 3-in. bituminous overlay

w I
D2 = 0.14 (3) (93) /144 = 0.28 k/ft

D3 Barriers, one-sixth share

W I
D3 = 2 (306) (0.15)

6 (144)
= 0.106 k/ft

2. Exterior Girders The loads for the exterior girders
are based on tributary areas. This approach gives
smaller loads on an exterior girder than from a con-
sideration of the deck as a continuous beam with
an overhang and finding the reaction at the exterior
support.

D1

Slab 0.15 [(9 × 40) + (8 × 48)] /144 = 0.78 k/ft

Haunch 0.15 (12) (2) /144 = 0.025 k/ft

Web 0.49 (60) (0.4375) /144 = 0.089 k/ft

Flanges 2 (0.49) (16) (1.25) /144 = 0.136 k/ft

wE
D1 = 1.03 k/ft

D2 3-in.bituminous overlay

wE
D2 = 0.14 (3) [48 + 40 − 15] = 0.071 k/ft

D3 Barriers, one-sixth share

wE
D3 = 2 (306) (0.15)

6 (144)
= 0.106 k/ft

3. Analysis of Uniformly Distributed Load w
(Fig. E20.3-13)

a. Moments

M104 = 0.07129w(100)2

= −712.9w k ft (BT-Beam: 717.7w k ft)

M200 = −0.12179w(100)2

= −1217.9w k ft (BT-Beam: −1205.7w k ft)

M205 = 0.05821w(100)2

= 582.1w k ft (BT-Beam: 593.3w k ft)

b. Shears

V100 = 0.37821w (100) = 37.821w kips

(BT-Beam: 37.94w kips)

V110 = −0.62179w (100) = −62.179w kips

(BT-Beam: − 62.06w kips)

V200 = 0.6000w (100) = 60.0w kips

(BT-Beam: 60.0w kips)

By substituting the values determined for dead
load into the BT-Beam equations for moments and
shears, the values at critical locations are generated
in Table E20.3-1. The LL + IM values listed in
Table E20.3-1 include the girder distribution factors
as previously illustrated.

c. Effective Span Length The effective span length is
defined as the distance between points of permanent
load inflection for continuous spans:
Span 1 (Fig. E20.3-14)

M = 0 = 37.821x − 1
2 (1.0) x2

x = Leff = 75.64 ft

Fig. E20.3-13 Uniformly distributed load.
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Table E20.3-1 Moments and Shears at Typical Critical Locations

Moments (k ft)a Shears (kips)bValue
Load Type (k/ft) M104 M200 M205 V100 V110 V200

Uniform 1.0 717.7 −1205.7 594.3 37.9 −62.1 60.0
Truck/tandem/train 1238.1 −1369 1208.9 −63.7 −67.7 67.6
Lane 654.8 −877.7 663.2 −29.2 −40.8 42.52

INTERIOR GIRDER

D1I 1.05 753.6 −1266.0 624.0 39.8 −65.2 63.0
D2I 0.28 201.0 −337.6 166.9 10.6 −17.4 16.8
D3I 0.106 76.1 −129.8 63.0 4.02 −6.58 6.36
mgIM or V 0.65 0.65 0.65 0.81 0.81 0.81
Live Load with distribution and IM 1496 1579(0.9) = 1421 1476 92.2 −106.0 107.3
Strength I Interior 3749 5042 3499 220 −286 284

EXTERIOR GIRDER

D1E 1.03 739.2 −1241.9 612.1 39.0 −63.9 63.6
D2E 0.071 50.96 −85.6 42.4 2.69 −12.6 12.4
D3E 0.106 76.1 −127.8 63.0 4.02 −6.58 6.36
mgEM or V 0.75 0.75 0.75 0.65 0.65 0.65
Live Load with distribution and IM 1726 2024(0.9) = 1822 1703 74.0 85.1 86.1
Strength I Exterior 3900d 4772 3684 187 242 228
Strength I Controlling 3900 4772 3684 220 286 284
BT Beamc 3910 −4776 3694 220 −286 284

aExterior girders govern for moments.
bInterior girders govern for shears.
cSee Table E20.3-2 and Table E20.3-3.
dBold values are controlling .

Fig. E20.3-14 Uniform load inflection point for span 1.

Span 2 (Fig. E20.3-15)

M = 0 = 60x − 1
2 (1.0) x2 − 1217.9

x = 25.88,94.12 ft

Leff = 94.12− 25.88 = 68.24

Points of inflection are points where zero moment
occurs. The points of inflection due to dead load are
important because at these locations the flange plate
transitions are used.

d. Maximum Dead-Load Moment The maximum
moment occurs where the shear is equal to zero
(Fig. E20.3-16):

M = (37.82)2 − (37.82)2

2
(1.0) = 715.2 k ft

Fig. E20.3-15 Uniform load inflection point for span 2.

Fig. E20.3-16 Maximum moment due to uniform load in span 1.

The shears and moments, due to dead and live
loads, at the tenth points are calculated. The proce-
dures are the same as those illustrated for the critical
locations, only with different placement of the live
load. The results are summarized in Tables E20.3-2
and E20.3-3 for the strength I limit state. The second
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Table E20.3-2 Moment Envelope for 100-, 120-, and 100-ft Plate Girder (k ft)a

Positive Moment Negative Moment

Location

Unit
Dead
Load

Truck or
Tandem Lane

Strength I
Int. Gir.

Strength I
Ext. Gir.

Truck or
Tandem Lane

Strength I
Int. Gir.

Strength I
Ext. Gir.

100 0 0 0 0.00 0.00 0 0 0.00 0.00
101 329.43 549.03 259.71 1653.39 1712.03 −72 −48.88 0.00 0.00
102 558.85 926.13 455.42 2813.34 2914.12 −143.99 −97.75 0.00 0.00
103 688.28 1142.82 587.12 3496.42 3625.39 −215.99 −146.62 0.00 0.00
104 717.71 1238.07 654.83 3758.62 3910.44 −287.98 −195.5 0.00 0.00
105 647.14 1213.89 658.55 3602.85 3772.63 −359.98 −244.38 −29.95 −244.76
106 476.57 1092.28 598.26 3060.73 3248.45 −431.98 −293.26 −384.33 −598.25
107 206.01 860.44 473.98 2113.86 2316.67 −503.99 −342.14 −854.83 −1053.26
108 −164.55 546.17 285.71 902.63 1094.94 −623.56b −391.02 −1541.93 −1681.38
109 −635.11 225.21 136.5 0.00 0.00 −874.39b −542.97 −2784.36 −2835.37
110 −1205.67 176.98 106.07 0.00 0.00 −1368.79b −877.7 −4760.31 −4776.31
200 −1205.67 176.98 106.07 0.00 0.00 −1368.79b −877.7 −4760.31 −4776.31
201 −557.67 265.53 111.31 0.00 13.02 −816.56b −468.22 −2499.65 −2552.87
202 −53.67 635.55 256.63 1128.42 1319.46 −488.46b −290.97 −1104.75 −1242.83
203 306.33 956 478.9 2434.24 2626.73 −401.14 −282.85 −526.45 −706.94
204 522.33 1153.37 617.14 3249.98 3439.64 −318.55 −282.85 −156.92 −350.72
205 594.33 1208.86 663.22 3507.10 3693.53 −235.97 −282.85 0.00 −140.68

aValue computed with BT-Beam (web search “btbeam online” to find this application).
bTruck train with trucks spaced 58 ft apart governs.

Table E20.3-3 Shear Envelope for 100-, 120-, and 100-ft Plate Girder (kips)

Positive Shear Negative Shear

Location

Unit
Dead
Load

Truck or
Tandem Lane

Strength I
Int. Gir.

Strength I
Ext. Gir.

Truck or
Tandem Lane

Strength I
Int. Gir.

Strength I
Ext. Gir.

100 37.94 63.71 29.17 220.60 197.04 −7.2 −4.89 0.00 0.00
101 27.94 54.9 23.17 179.04 160.46 −7.2 −5.29 0.00 0.00
102 17.94 46.31 17.96 138.91 125.20 −11.13 −6.47 −7.81 −8.31
103 7.94 38.02 13.52 100.38 91.43 −18.28 −8.44 −34.88 −32.78
104 −2.06 30.15 9.84 64.87 60.19 −26.84 −11.16 −66.74 −61.41
105 −12.06 22.81 6.88 36.11 34.16 −35.08 −14.6 −103.84 −93.85
106 −22.06 16.09 4.6 9.40 10.03 −42.88 −18.71 −141.08 126.43
107 −32.06 10.11 2.94 0.00 0.00 −50.15 −23.46 −178.20 158.90
108 −42.06 5.75 1.85 0.00 0.00 −56.77 −28.76 −214.92 191.00
109 −52.06 2.32 1.25 0.00 0.00 −62.65 −34.56 −250.97 222.47
110 −62.06 1.77 1.06 0.00 0.00 −67.67 −40.78 −286.05 253.05
200 60 67.59 42.52 284.62 252.12 −6.88 −4.13 0.00
201 48 61.41 35.13 242.33 215.24 −6.88 −4.41 0.00 0.00
202 36 54.18 28.36 199.01 177.42 −7.44 −5.32 0.00 0.00
203 24 46.24 22.34 155.41 139.33 −13.74 −6.98 −6.14 0.00
204 12 37.9 17.15 112.24 101.64 −21.33 −9.47 −37.02 −7.13
205 0 29.49 12.86 70.13 64.94 −29.49 −12.86 −70.13 −35.00
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Fig. E20.3-17 Moment and shear envelopes for three-span plate girder.

column in these tables provides either the moment or
the shear at each tenth point due to a unit distributed
load. These are multiplied by the actual distributed
load given in Table E20.3-1, combined with ap-
propriate load factors, and added to the product of
the distribution factor times the factored live load
plus impact. This sum is then multiplied by the load
modifier η and tabulated as η [sum]. The shear and
moment envelopes are plotted in Figure E20.3-17.
Fatigue Load Example Computations Positive

shear @ 100 (Fig. E20.3-18)

V100 = 32 (1.0 + 0.63297) + 8 (0.47038)

= 56.0 kips

Negative shear @ 100 (Fig. E20.3-19)

V100 = 8 (−0.09675) + 32 (−0.10337− 0.07194)

= −6.38 kips

Positive shear @ 104 (Fig. E20.3-20)

V104 = 32 (0.51750+ 0.21234) + 8 (0.09864)

= 24.1 kips

Negative shear @ 104 (Fig. E20.3-21)

V104 = 32 [−0.12431 − (1 − 0.51750)]

= −19.4 kips
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Fig. E20.3-18 Fatigue truck placement for maximum positive shear at location 100.

Fig. E20.3-19 Fatigue truck placement for maximum negative
shear at location 100.

Fig. E20.3-20 Fatigue truck placement for maximum positive
shear at location 104.

Fig. E20.3-21 Fatigue truck placement for maximum negative
shear at location 104.

Positive shear @ 110 (Fig. E20.3-22)

V110 = 8 (0.02192) + 32 (0.02571 + 0.01828)

= 1.58 kips

Negative shear @ 110 (Fig. E20.3-23)

V110 = 8 (−0.65034) + 32 (−0.78766− 1.0)

= −62.4 kips

Fig. E20.3-22 Fatigue truck placement for maximum positive
shear at location 110.

Fig. E20.3-23 Fatigue truck placement for maximum negative
shear at location 110.

Fig. E20.3-24 Fatigue truck placement for maximum positive
shear at location 200.

Positive shear @ 200 (Fig. E20.3-24)

V200 = 32 (1.0 + 0.78375) + 8 (0.653185)

= 62.3 kips

Negative shear @ 200 (Fig. E20.3-25)

V200 = 32 (−0.10 − 0.07109) + 8 (−0.039585)

= −5.79 kips
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Fig. E20.3-25 Fatigue truck placement for maximum negative
shear at location 200.

Fig. E20.3-26 Fatigue truck placement for maximum positive
shear at location 205.

Fig. E20.3-27 Fatigue truck placement for maximum negative
shear at location 205.

Positive shear @ 205 (Fig. E20.3-26)

V205 = 32 (0.5 + 0.21625) + 8 (0.10121)

= 23.7 kips

Negative shear @ 205 (Fig. E20.3-27)

V205 = 8 (−0.10121) + 32 (−0.21625− 0.5)

= −23.7 kips

Positive moment @ 100

M100 = 0 k ft

Negative moment @ 100

M100 = 0 k ft

Positive moment @ 104 (Fig. E20.3-28)

M104 = [32 (0.207 + 0.08494) + 8 (0.130652)] 100

= 1039 k ft

Negative moment @ 104 (Fig. E20.3-29)

M104 = [32 (−0.037105− 0.0383025)

+8 (−0.029213)] 100

= −264 k ft

Fig. E20.3-28 Fatigue truck placement for maximum positive
moment at location 104.

Fig. E20.3-29 Fatigue truck placement for maximum negative
moment at location 104.

Fig. E20.3-30 Fatigue truck placement for maximum positive
moment at location 110.

Positive moment @ 110 (Fig. E20.3-30)

M110 = [32 (0.02571+ 0.01828)

+8 (0.02191)] 100

= 158 k ft

Negative moment @ 110 (Fig. E20.3-31)

M110 = [32 (−0.0957525− 0.092765)

+8 (−0.073028)] 100

= −667 k ft

Positive moment @ 200 same as M 110
Negative moment @ 200 same as M 110

Fig. E20.3-31 Fatigue truck placement for maximum
negative moment at location 110.
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Fig. E20.3-32 Fatigue truck placement for maximumpositivemo-
ment at location 205.

Fig. E20.3-33 Fatigue truck placement for maximum negative
moment at location 205.

Positive moment @ 205 (Fig. E20.3-32)

M205 = [32 (0.20357+ 0.078645)

+8 (0.138035)] 100

= 1014 k ft

Negative moment @ 205 (Fig. E20.3-33)

M205 = [8 (−0.029208)

+32 (−0.03429 − 0.02437)] 100

= −211 k ft

The maximum flexural fatigue stress in the web
at location 200 is calculated in Table E20.3-8.
Maximum negative moment is −667 k ft from
Table E20.3-4. The factored fatigue moments are
given in Table E20.3-5.

Critical LL + IM (IM = 0.15) = −767 k ft

LL + IM (with DF = 0.65) = −498 k ft

LL + IM (with LF = 0.75) = −374 k ft

Table E20.3-4 Unfactored Shear and Moment Due to
Fatigue Loads at Critical Pointsa

Shear (kips) V100 V104 V110 V200 V205

Positive 56.0 24.1 1.58 62.3 23.7
Negative −6.38 −19.4 −62.4 −5.79 −23.7

Moment (k-ft) M100 M104 M110 M200 M205

Positive 0 1039 158 158 1014
Negative 0 −264 −667 −667 −211

aIM = 1.15, Fatigue II γ = 0.75 and Fatigue I γ = 1.5 are applied
later.

For checking fatigue in web, the moment for fa-
tigue limit I is used [A6.10.4.2],

−1241.8− 85.6 − 127.8− 242 = 1697 k ft

MD1,MD2, andMD3 in Table E20.3-8 are the mo-
ments at location 200 due to unfactored dead loads
on the exterior girder, from Table E20.3-1. The max-
imum calculated stress of 18.0 ksi is less than the
allowable flexural fatigue stress of 226.1MPa calcu-
lated earlier; therefore, the section is adequate.

I. Design Required Sections The bridge is composite in
both the positive and negative moment regions and con-
tinuous throughout. Homogeneous sections are used and
the depth of the web is constant. Only one flange plate
transition is used. Longitudinal stiffeners are not used.
Minimum thickness of steel is 0.3175 in. [A6.7.3]. The
optional minimum depth requirement of [A2.5.2.6.3] is

Min depth steel = 0.027L = 0.027 (120) (12)

= 38.9 in.

and

Min depth total composite section = 0.032L (120) (12)

= 46.1 in.

The design girder depth of 62.5 in. exceeds the min-
imums provided. The plate girder is initially designed
for flexural requirements. The lateral bending stress Fl
is considered to be small and is neglected.
1. Flexural Section Properties for Negative Moment

The negative moment region is designed first to set
the overall controlling proportions for the girder
section. Following this step, the section is designed
for maximum positive moment. An initial section is
chosen based on similar designs. The final section for
both the negative and positive moment regions is de-
termined by iterations. Although a number of sections
are investigated, only the final design of the section is
illustrated herein. As stated before, the cross section
for the maximum negative moment region consists
of a 0.4375-in. × 60-in. web and 1.25-in. × 16-in.
top and bottom flanges. Cross-sectional properties
are computed for the steel girder alone and for the
composite section. In the negative moment regions of
continuous spans, the composite section is composed
of the steel girder and the longitudinal reinforcement
within an effective width of the slab. The concrete
is neglected because it is considered cracked under
tensile stress. At the interior support, stresses are
checked at the top and bottom of the steel girder and
in the reinforcing bars using factored moments. The
steel girder alone resists moment due to D1. The
composite section resists the moments due to D2,
D3, and LL + IM.
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Table E20.3-5 Factored Moments for Fatigue Limit State for Exterior Girder

Positive Moment (k-ft) Negative Moment (k-ft)

Location
LL+ IM

w /IM= 0.15
LL+ IM

w /DF= 0.65
LL+ IM

w /LF= 0.75
LL+ IM
w /LF= 1.5

LL+ IM
w /IM= 0.15

LL+ IM
w /DF= 0.65

LL+ IM
w /LF= 0.75

LL+ IM
w /LF= 1.50

100 0 0 0 0 0 0 0 0
104 1195 777 551 1102 −230 −150 −113 −226
110 182 118 90 180 −767 −499 −374 −748
205 1166 759 569 1138 −247 −161 −121 −242

a. Sequence of Loading Consider the sequence of
loading as specified in AASHTO [A6.10.1.1.1]. This
article states that at any location on the composite
section the elastic stress due to the applied loads
shall be the sum of the stresses caused by the loads
applied separately to:
(1) Steel girder
(2) Short-term composite section (use n = Es/Ec)
(3) Long-term composite section (use 3n = 3Es/Ec

to account for concrete creep)
(4) For computation of flexural concrete deck

stresses in the negative moment region, that is,
tensile stresses, use the short-term section (use
n = Es/Ec)

Permanent load that is applied before the slab
reaches 75% of f

′
c shall be carried by the steel girder

alone. Any permanent load and live load applied
after the slab reaches 75% of f

′
c shall be carried by

the composite section.
b. Effective Flange Width Determine the effective

flange width specified in AASHTO [A4.6.2.6]. For
interior girders the effective flange width is the
tributary width.
Therefore bi = 96 in.
For exterior girders the effective flange width may

be taken as one half the effective width of the adja-
cent interior girder, plus the overhang:

be = bi/2+ 39 = 96/2 + 39 = 135 in

c. Section Properties Calculate the section properties
for the steel girder alone and the composite section.
Figure E20.3-34 illustrates the dimensions of the
section. From Table E20.3-6 the following section
properties are calculated for the steel section alone:

yc =
∑

Ay∑
A

= 0

INA = I −
(
yc ×

∑
Ay

)

= 45397 in.4

ytop of steel = D

2
+ tf − yc

= 60

2
+ 1.25 − 0

= 31.25 in.

ybottom of steel = D

2
+ tf + yc

= 60

2
+ 1.25 + 0

= 31.25 in.

Dc = D

2
= 60

2
= 30 in.

Stop of steel = INA

yt

= 45397

31.25
= 1453 in.3

Sbottom of steel = INA

yb

= 45397

31.25
= 1453 in.3

Fig. E20.3-34 Negative moment composite section.
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Table E20.3-6 Steel Section Properties (Negative Flexure)a

Component A (in.2) y (in.) Ay Ay2 I0 (in.
4) I (in.4)

Top flange 20.00 30.625 612.5 18 758 2.60 18 761
1.25 in. × 16 in.

Web 26.25 0 0 0 7875 7875
0.4375 in. × 60 in.

Bottom flange 20.00 −30.625 −612.5 18 758 2.60 18 761
1.25 in. × 16 in.

Total 66.25 0 45 397

ay is the distance from the neutral axis of the web to the neutral axis of the component.

Table E20.3-7 Composite Section Properties (Negative Flexure)

Component A (in.2) y (in.) Ay Ay2 I0 (in.
4) I (in.4)

Top flange 20.00 30.625 612.5 18 758 2.60 18 761
1.25 in. × 16 in.

Web 26.25 0 0 0 7875 7875
0.4375 in. × 60 in.

Bottom flange 20.00 −30.625 −612.5 18 758 2.60 18 761
1.25 in. × 16 in.

Top reinforcement 1.8 37.25 67.05 2498 2498
(9 No. 4’s)

Bottom reinforcement 2.17 34.25 74.32 2546 2546
(7 No. 5’s)

Total 70.22 141.4 50 441

From Table E20.3-7 the following section prop-
erties were calculated for the composite section in
negative flexure:

yc =
∑

Ay
∑

A
= 141.4

70.22
= 2.00 in.

INA = I −
(
yc ×

∑
Ay

)

= 50441− 2.0 (141.4)

= 50153 in.4

ytop reinf. = D

2
+ tf + haunch + cover − yc

ytop reinf. = 60
2 + 1.25 + 1.0 + 5.0 − 2.0

= 35.25 in.

ybottom reinf. = 60
2 + 1.25 + 1.0 + 1.31 − 2.0

= 31.56 in.

Stop reinf. = INA

yrt
= 50153

35.25
= 1423 in.3

Sbottom reinf. = INA

yrb
= 50153

31.56
= 1589 in.3

ytop of steel = D

2
+ tf − yc = 60

2
+ 1.25 − 2.0

= 29.25 in.

ybottom of steel = D

2
+ tf + yc

= 60

2
+ 1.25 + 2.0

= 33.35 in.

Stop of steel = INA

yt

= 1161861

29.25
= 1715 in.3

Sbottom of steel = INA

yb

= 50153

33.25
= 1508 in.3

Cross-Section Proportion Limits [A6.10.2]
Check the member proportions [A6.10.2.1]. This
article states that the web shall be proportioned to
meet the following requirement:

D

t
≤ 150

60

0.4375
= 137 OK

And [A6.10.2.2] states that the flanges shall meet

bf

2tf
≤ 12

16

2 (1.25)
= 6.4 ≤ 12 OK
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bf ≥ D

6
16 ≥ 60

6 = 10 OK

tf ≥ 1.1tw
1.25 ≥ 1.1 (0.4375) = 0.48 OK

0.1 ≤ Iyc

Iyt
≤ 10

0.1 ≤ 1 ≤ 10 OK

where
I yt = moment of inertia of the tension

flange of the steel section about the
vertical axis in the plane of the web
(in.)

I yc = moment of inertia of the compression
flange of the steel section about the
vertical axis in the plane of the web
(in.4)

I yt = 1
12 (1.25) (16)3 = 426.7 in.4

I yc = 1
12 (1.25) (16)3 = 426.7 in.4

I yt = I yc
Iyc

Iyt
= 1.0; therefore the section is adequate

Compactness requirements use the depth on web
in compression for the plastic case. For sections in
negative flexure, where the plastic neutral axis is in
the web:

Dcp = D

2AwFyw

(
FytAt +FywAw +FyrAr −FycAc

)

where
Aw = area of web (in.2)
At = area of tension flange (in.2)
Ar = area of longitudinal reinforcement in

the section (in.2)
Ac = area of compression flange (in.2)
F yt = minimum yield strength of tension

flange (ksi)
F yw = minimum yield strength of web (ksi)
F yr = minimum yield strength of

longitudinal reinforcement (ksi)
F yc = minimum yield strength of

compression flange (ksi)

For all other sections in negative flexure, D cp shall
be taken as equal toD . Find the location of the plas-
tic neutral axis usingAASHTO (2010) LRFDBridge
Specifications, Appendix D of Section 6. The dia-
grams in Figure E20.3-35 illustrate the dimensions
of the section and the plastic forces. The diagrams
are taken from Section 6, Appendix D of AASHTO
(2010) LRFD Bridge Specifications.

Fig. E20.3-35 Plastic neutral axis for negative moment section.

Plastic Forces

Top reinforcement Prt = FyrArt = (60) (1.80)

= 108.0 kips

Bottom reinforcement Prb = FyrArb = (60) (2.17)

= 130.2 kips

Tension flange = Pt = Fytbt tt = (50) (16) (1.25)

= 1000 kips

Compression flange = Pc = Fycbttc

= (50) (16) (1.25)

= 1000 kips

Web = Pw = FywDtw = (50) (60) (0.4375)

= 1312.5 kips

Plastic Neutal Axis: C = T

Check if PNA is in the web:

Pc + Pw ≥ Pt + Prb + Prt

1000 + 1312.5 = 2313 ≥ 1000 + 130.2 + 108.0

= 1238

Therefore the PNA is in the web.

Dcp = 60

2 (1312.5)
(1000+ 1312.5+ 108.0

+ 130.2 − 1000)

= 35.4 in

Compactness is checked with [A6.10.6.2.3], Com-
posite Sections in Negative Flexure:

2Dcp

tw
= 2 (35.4)

0.4375
= 162

5.7

√
E

Fyc
= 5.7

√
29,000

50
= 137

Since 162 > 137, the web is noncompact as
expected and [A6.10.8] for noncompact sections
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should be used. The flange local buckling criteria
per [A6.10.8.2.2–3&4]:

λf = bf

2tf
= 16

2 (1.25)
= 6.4

λpf = 0.38

√
E

Fyc
= 0.38

√
29000

50
= 9.2

λf ≤ λpf

Therefore, the flange is compact and the flexural
resistance is

Fnc(FLB) = RbRhFyc

which is a function of the unbraced lengths.
The two anchor points associated with the inelastic

lateral torsional buckling,Lp, and elastic bucklingLr,
are [A6.10.8.2.3]

Lp ≤ 1.0rt

√
E

Fyc
and Lr ≤ πrt

√
E

Fyc

where
rt = minimum radius of gyration of the

compression flange of the steel
section (without one-third of the web
in compression) taken about the
vertical axis:

rt = bfc√
12

(
1 + 1

3

Dc

bfc

tw

tfc

)

= 16√

12

[
1 + 1

3

(
30 + 2

16

)(
0.4375

1.25

)]

= 4.16 in.

Therefore,

Lp ≤ 1.0 (4.16)

√
29000

50
= 100 in.

and

Lr ≤ π (4.16)

√
29000

50
= 315 in.

Preliminarily, check brace spacing for the com-
pression flange assumed to be Lr or less:

Lb = 315 in.

This is a fairly long spacing, however, the ac-
tual will likely be less to align with intermediate
stiffeners.
Nominal flexural resistance [A6.10.8.2.3]:

Fnc(LTB) = RbRhFyc

Rh = 1.0

for homogeneous sections [A6.10.5.4.1a] and Cb is
conservatively assumed to be 1.0 and may be refined
if necessary:

Fcr = CbRbπ
2E

(
Lb/rt

)2

= 1.0 (1.0)
(
π2

)
(29000)

(315/4.16)2

= 49.9 ksi, say 50 ksi

Fnc(LTB) = Fcr ≤ RbRhFyc = 1.0 (1.0) (50)

= 50 ksi

This stress is used for the compression flange in
the negative moment region for constructibility and
for strength I.
Various other stresses are computed in Tables

E20.3-8–E20.3-10. These stresses are used in
subsequent computations.

2. Flexural Section Properties for Positive Flexure For
the positive moment region, a steel section consisting
of a 0.625-in.× 12-in. top flange, 0.4375-in.× 60-in.
web, and 1-in. × 16-in. bottom flange is used. As
stated earlier, the cross section of the web remained
constant. The top flange is smaller than the bottom
flange due to the additional strength provided by the
concrete. Section properties are computed for the
steel section alone, the short-term composite section

Table E20.3-8 Maximum Flexural Fatigue Stress in the Web for Negative Flexure at
Location 200

MD1 MD2 MD3 MLL+IM Sb Steel Sb Composite Stress
Load (k ft) (k ft) (k ft) (k ft) (in.3) (in.3) (ksi)

D1 1241.9 1453 10.25
D2 85.6 1508 0.68
D3 127.8 1508 1.02
LL + IM 748 1508 5.95
Total 17.9

η = 1.0 17.9
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Table E20.3-9 Stress in Top of Steel Girder (Tension) for Negative Flexure Due to Factored Loading

MD1 MD2 MD3 MMLL+IM St Steel St Composite Stress
Load (k ft) (k ft) (k ft) (k ft) (in.3) (in.3) (ksi)

D1 1.25(1241.9)= 1552 1453 12.82
D2 1.5(85.6)= 128.4 1715 0.90
D3 1.25(127.8)= 159.8 1715 1.12
LL + IM 1.75(1822)= 3189 1715 22.3
Total 37.2

η = 0.95 35.3

Table E20.3-10 Stress in Bottom of Steel Girder (Compression) for Negative Flexure Due to Factored Loading
(Strength I) Interior Girder

MD1 MD2 MD3 MLL+IM Sb Steel Sb Composite Stress
Load (k ft) (k ft) (k ft) (k ft) (in.3) (in.3) (ksi)

D1 1.25(1241.9)= 1552 1453 12.82
D2 1.5(85.6)= 128,4 1508 1.02
D3 1.25(127,8)= 159.8 1508 1.27
LL + IM 1.75(1822)= 3189 1508 25.37

Total 40.5
η = 0.95 38.5

withn equal to 8, and the long-termcomposite section
with 3n equal to 24, where n is the modular ratio. The
composite section in positive flexure consists of the
steel section and a transformed area of an effective
width of concrete slab [A6.10.1.1.1.1b]. For normal
weight concrete, the modular ratio n for 25MPa ≤
f

′
c ≤ 32MPa is taken as 8, where f

′
c is the 28-day

compressive strength of the concrete [A6.10.5.1.1b].
Stresses are computed at the top and bottom of the
steel girder and in the concrete using factored mo-
ments. The steel girder alone resists moments due
to D1. The short-term composite section resists mo-
ments due to LL + IM, and the long-term composite
section resists moments due to D2 and D3. The
sequence of loading and the effective flange width are
identical to that determined for the negative moment
region previously, respectively. The moments for the
exterior girders control the positive moment region
also. Therefore, the effective width used is be equal
to 96 in.

a. Section Properties Calculate the section properties
for the steel girder alone and the short-termand long-
term composite sections. Figure E20.3-36 illustrates
the dimensions of the section. From Table E20.3-11
the followingsection properties are calculated for the
steel section alone:

yc =
∑

Ay
∑

A
= −260.2

49.75
= −5.24 in.

Fig. E20.3-36 Composite section for positive moment.

INA = I −
(
yc ×

∑
Ay

)

= 29650− (5.24) (260.7)

= 28,284 in.4

ytop of steel = D

2
+ tf − yc

= 60

2
+ 0.625 + 5.24

= 35.87 in.

ybottom of steel = D

2
+ tf + yc = 60

2
+ 1 − 5.24

= 25.88 in.

Stop of steel = INA

yt

= 28284

35.81
= 789 in.3

Sbottom of steel = INA

yb

= 28284

25.82
= 1095 in.3
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Table E20.3-11 Steel Section Properties (Positive Flexure)

Component A (in.2) y (in.) Ay Ay2 I0 (in.
4) I (in.4)

Top flange 7.5 30.31 227.3 6,890 0.24 6,890
0.625 in. × 12 in.

Web 7.5 0 0 0 7,875 7,875
0.4375 in. × 60 in.

Bottom flange 26.25 −30.5 −488.0 14,884 520 833 14,885
1 in. × 16 in. 16.00 1.33

Total 49.75 −260.2 29,650

Table E20.3-12 Short-Term Composite Section Properties, n = 8 (Positive Flexure)

Component A (in.) y (in.) Ay Ay2 I0 (in.
4) I (in.4)

Top flange 7.50 30.31 227.3 6,890 0.24 6,890
0.625 in. × 12 in.

Web 26.25 0 0 0 7,875 7,875
0.4375 in. × 60 in.

Bottom flange 16.00 −30.5 −488.0 14,884 1.33 14,885
1 in. × 16 in.

Concrete 96.00 35.63 3,420 12,1871 512 122,383
be × ts/n

Total 145.8 3160 152,033

From Table E20.3-12, the following section prop-
erties are calculated for the short-term composite
section, where n = 8, be = 96 in., and ts = 8 in.:

yc =
∑

Ay
∑

A
= 3160

145.8
= 21.7 in.

INA = I −
(
yc ×

∑
Ay

)

= 152,033− (21.7) (3160)

= 83,461 in.4

ytop of steel = D

2
+ tf − yc = 60

2
+ 0.625− 21.7

= 8.93 in.

ybottom of steel = D

2
+ tf + yc = 60

2
+ 1 + 21.7

= 52.7 in.

Stop of steel = INA

yt

= 83,461

8.93
= 9346 in.3

Dc = 60

2
+ 5.24 = 35.5 in

Sbottom of steel = INA

yb

= 83,461

52.7
= 1584 in.3

ytop of concrete = D

2
+ tf + haunch + ts − yc

ytop of concrete = 60
2 + 0.625+ 1 + 8 − 21.7

= 17.93 in.

Stop of concrete = INA

ytc
= 83461

17.93
= 4653 in.3

From Table E20.3-13 the following section prop-
erties are calculated for the long-term composite
section, where 3n = 24:

yc =
∑

Ay
∑

A
= 879.3

81.75
= 10.75 in.

INA = I −
(
yc ×

∑
Ay

)

= 70,445 − (10.75) (879.3)

= 60,992 in.4

ytop of steel = D

2
+ tf −yc

= 60

2
+0.625−10.75

= 19.88 in.

ybottom of steel = D

2
+ tf + yc

= 60

2
+ 1.0 + 10.75

= 41.75 in.

Stop of steel = INA

yt

= 60,992

19.88
= 3068 in.3

Sbottom of steel = INA

yb

= 60,992

41.75
= 1461 in.3
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Table E20.3-13 Long-Term Composite Section Properties, 3n = 24 (Positive Flexure)

Component A (in.2) y (in.) Ay Ay2 I0 (in.
4) I (in.4)

Top flange 7.50 31.31 227.3 6,890 0.24 6,890
0.625 in. × 12 in.

Web 26.25 0 0 0 7,875 7,875
0.4375 in. × 60 in.

Bottom flange 16.00 −30.50 −488.0 14,884 1.33 14,885
1 in. × 16 in.

Concrete 32.00 35.63 1,140 40,624 170.7 40,795
be × ts/3n

Total 81.75 879.3 70,445

b. Member Proportions Check the member pro-
portions [A6.10.2.1]. This article states that the
web shall be proportioned to meet the following
requirement:

D

t
≤ 150

60

0.4375
= 137 OK

And [A6.10.2.2] states that the flanges shall meet

bf

2tf
≤ 12

12

2 (0.625)
= 9.6 ≤ 12 OK

bf ≥ D

6
12 ≥ 60

6 = 10 OK

tf ≥ 1.1 tw

0.625 ≥ 1.1 (.4375) = 0.48 OK

0.1 ≤ Iyc

Iyt
≤ 10

where
I yt = moment of inertia of tension flange of

steel section about vertical axis in
plane of the web (in.)

I yc = moment of inertia of compression
flange of steel section about vertical
axis in plane of the web (in.4)

Iyc = 1
12 (0.625) (12)3 = 90 in.4

Iyt = 1
12 (1) (16)3 = 341 in.4

Iyc

Iyt
= 0.26

0.1 ≤ 0.26 ≤ 10 OK

c. Composite Section Stresses for Positive Moment
[A6.10.1.1.1] The factored stresses are com-
puted for the fatigue and strength I limit states in
Tables E20.3-14–E20.3-16.
FromAASHTO [A6.10.5.1.4b] for sections in pos-

itive flexure, where the plastic neutral axis is in the
web:

Dcp = D

2

(
FytAt −FycAc −0.85f

′
cAs −FyrAr

FywAw
+1

)

For all other sections in positive flexure, D cp shall
be taken equal to 0 and the web slenderness require-
ment is considered satisfied.
Find the location of the plastic neutral axis using

AASHTO (2010) LRFD Appendix D of Section 6.
Figure E20.3-37 illustrates the dimensions of the

Table E20.3-14 Maximum Flexural Fatigue Stress in the Web for Positive
Flexure, Interior Girder

MD1 MD2 MD3 MLL+IM St Steel St Composite Stress
Load (k ft) (k ft) (k ft) (k ft) (in.3) (in.3) (ksi)

D1 739.2 789 11.24
D2 50.96 3068 0.20
D3 76.1 3068 0.30
LL + IM 1102 9346 1.41

Total 13.2
η = 1.0 13.2
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Table E20.3-15 Stress in Top of Exterior Steel Girder (Compression) for
Positive Flexure Due to Factored Loading, Strength I

MD1 MD2 MD3 MLL+IM St Steel St Composite Stress
Load (k ft) (k ft) (k ft) (k ft) (in.3) (in.3) (ksi)

D1 924 789 14.05
D2 76.44 3068 0.30
D3 95.1 3068 0.37
LL + IM 3021 9346 3.88

Total 18.6
η = 0.95 17.7

Table E20.3-16 Stress in Bottom of Exterior Steel Girder (Tension) for Positive
Flexure Due to Factored Loading, Strength I

MD1 MD2 MD3 MLL+IM Sb Steel Sb Composite Stress
Load (k ft) (k ft) (k ft) (k ft) (in.3) (in.3) (ksi)

D1 924 1095 10.13
D2 76.44294 1461 0.63
D3 95.1 1461 0.78
LL + IM 3021 1584 22.89

Total 34.4
η = 0.95 32.7

Fig. E20.3-37 Plastic neutral axis for positive moment section.

section and the plastic forces. The diagrams are
taken from Section 6 Appendix D of Section 6 of
AASHTO (2010).
Plastic Forces

Top reinforcement Prt = FyrArt = (60) (9) (0.20)

= 108 kips

Concrete slab Ps = 0.85f
′
cabe = 0.85 (4) (96) a

= 326.4a (kips)

Bottom reinforcement Prb = FyrArb

= (60) (7) (0.31)

= 130.2 kips

Tension flange = Pt = Fytbt tt = (50) (16) (1)

= 800 kips

Compression flange = Pc = Fycbctc

= (50) (12) (0.625)

= 375.0 kips

Web = Pw = FywDtw = (50) (60) (0.4375)

= 1312.5 kips

Plastic Neutral Axis (PNA): C = T
Assume plastic neutral axis is in the slab below

bottom reinforcement:

108.0 + 326.4a + 130.2 = 800+ 1312.5+ 375

Therefore a = 6.89 in.:

c = a

β1
= 6.89

0.85
= 8.11 in. > 6 in. OK

Ps = (0.85) (4) (96) (6.89) = 2249kips

The plastic neutral axis is in the slab below the bot-
tom reinforcement; therefore D cp is equal to zero.
The web slenderness requirement is satisfied.
Calculate Mp:

ȳ = c = 8.11 in.

Mp =
(

ȳPs

ts

) (
ȳ

2

)
+ (

Prtdrt + Pcdc + Pwdw

+Ptdt + Prbdrb
)
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where
d rt = distance from PNA to centroid of top

reinforcement
d rt = 8.11 − 3 = 5.11 in.
d rb = distance from PNA to centroid of

bottom reinforcement
d rb = 8.11 − 6 = 2.11 in.
dw = distance from PNA to centroid of web
dw = 60/2 + 0.625 + 1.0 + 8 − 8.11

= 31.5 in.
dt = distance from PNA to centroid of

tension flange
dt = 1.0/2 + 60 + 0.625 + 1.0 + 8.0

− 8.11 = 62.0 in.
dc = distance from PNA to centroid of

compression flange
dc = 0.625/2 + 1.0 + 8.0 − 8.11

= 1.20 in.

Mp =
[

(8.11) (2249)

8

] (
8.11

2

)
= 9245k ft

+
⎡

⎣
(108) (5.11) + (375) (1.2)
+ (1213) (31.5) + (800) (62.0)
+ (130.2) (2.11)

⎤

⎦

Mp = 89090 k in. = 7420 k ft > 3910 k ft m
from Table E20.3-2 (at kips location
104)

Refer to Section 6 Appendix D in AASHTO
(2005), the yield moment of a composite section is
calculated below.
First calculate the additional stress required to

cause yielding in the tension flange:

fAD = Fy − (
fD1 + fD2 + fD3

)

where
Fy = minimum yield strength of the

tension flange
fD1 = stress caused by the permanent

load before the concrete attains
75% of its 28-day strength applied
to the steel section alone,
calculated in Table E20.3-16.

fD2, fD3 = stresses obtained from applying
the remaining permanent loads to
the long-term composite section,
calculated in Table E20.3-16.

fAD = 50 − (10.13 + 0.63 + 0.78) = 38.46 ksi

which corresponds to an additional moment:

MAD = fAD × SST

where
S ST = section modulus for the short-term

composite section, where n = 8

MAD = (38.46)(1584)= 60,920 k in.
= 5077 k ft

My = MD1 + MD2 + MD3 + MAD

where MD1, MD2, and MD3 are factored moments
from Table E20.3-16 at location 104:

My = 924+ 76.44+ 95.1 + 5077

= 6172 k ft

Mn = 1.3RhMy

= 1.3 (1.0) (6172)

= 8024 k ft

Mn ≥ Mp = 7420 k ft

Therefore

Mn = 7420 k ft

Mr = φf Mn

= 1.0 (7420) = 7420 k ft

Mr > Mu = 3910 k ft

at location 104 from Table E20.3-1, therefore, the
section provides adequate flexural strength.

d. Positive Flexure Ductility The next step is to check
the ductility requirement for compact composite
sections in positive flexure [A6.10.5.2.2b]. The
purpose of this requirement is to make sure that the
tension flange of the steel section will reach strain
hardening before the concrete in the slab crushes.
This article only applies if the moment due to the
factored loads results in a flange stress that exceeds
the yield strength of the flange. If the stress due
to the moments does not exceed the yield strength,
then the section is considered adequate. The reason
being that there will not be enough strain in the steel
at or below the yield strength for crushing of the
concrete to occur in the slab. From Table E20.3-16 it
is shown that the flange stress in the tension flange
is 32.7 ksi, which is less than the yield strength of
the flange, 50 ksi, therefore the section is adequate.
The previous check illustrated was unnecessary.
Compute the noncomposite strength considering

compression flange slenderness and lateral torsion
buckling . The bracing is assumed to be placed at
one-quarter points and the middle span is checked.
This span has the largest stresses and unbraced
lengths for positive flexure. Again the trial section
has 0.625-in.× 12-in. top flange, 0.4375-in.× 60-in.
web, and 1-in.× 16-in. bottom flange. For positive
moment during construction, check the nominal
yield stress:

fbu + fl ≤ φf RhFyc = 50 ksi

fbu ≤ φf Fnc
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The flange local buckling stress is next checked
[A6.10.8.2.2]:

λf = bfc

2tfc
= 12

2 (0.625)
= 9.6

λfp = 0.38

√
E

Fcy
= 9.1

λf ≥ λfp

Therefore, the compression flange is slightly non-
compact:

Fyr = min
(
0.7Fyc, Fyw

) ≥ 0.5Fyc

= min (35, 50) ≥ 25ksi

= 35 ksi

Slenderness must be checked:

λfp = 0.56

√
E

Fcy
= 13.5

And the noncomposite flange local buckling resis-
tance is

Fnc(FLB) =
[
1 −

(
1 − Fyr

RhFyc

) (
λf − λpf

λrf − λpf

)]

× RbRhFyc

=
[
1 −

(
1 − 35

50

) (
9.6 − 9.1

13.5 − 9.1

)]

× (1.0) (1.0) (50)

= (0.97) (50) = 48.2 ksi

The lateral torsional buckling stress is next
checked, beginning with the computation of the
radius of gyration of the compression flange.

rt = bfc√

12

[
1 + 1

3

(
Dc

bfc

) (
tw

ttf

)]

= 16
√
12

[
1 + 1

3

(
32

16

) (
0.4375

1.25

)] = 4.16 in.

The anchor points for LTB are

Lp = 1.0rt

√
E

Fyc

Lp = 1.0 (4.16)

√
29000

50
= 100 in.

Lr = πLp = 315 in.

The unbraced length is assumed to be Lb = 24 ft
= 288 in, which is greater than the inelastic limit,

therefore, the elastic LTB is applicable.

Fcr = CbRbπ
2E

(
Lb/rt

)2

= 1.0 (1.0)
(
π2

)
(29000)

(288/4.16)2
= 59.7 ksi

The flange local and lateral torsional buckling
stresses are compared and the minimum controls,
therefore,

Fnc = min
[
Fnc(FLB), Fnc(LTB)

]

= min [48.2, 59.7] = 48.2 ksi

Later this is used to compare to the stresses that
occur during construction.

3. Transition Points Transition points from the
sections in positive moment regions to the sections
in negative moment regions shall be located at the
dead-load inflection points. These locations are cho-
sen because composite action is not considered to
be developed. The permanent-load inflection points
were determined when the effective lengths were
calculated previously. Going from left to the right
of the bridge, inflection points exist at the following
locations:

x = 75.6 ft 125.9 ft 192.1 ft 244.4 ft

The web size is a constant throughout the bridge.
Only the flange size changes at the inflection points.

4. Constructibility [A6.10.3]
a. General [A2.5.3] [A6.10.3.2.3] The resistance of

the girders during construction is checked. Note
that the unbraced length is important for lateral
torsion buckling under the load of wet concrete.
From previous computations, the Fnc(LTB) = 50 ksi
for the negative moment region and 48.3 ksi in the
positive moment region.
Assuming small construction live loads, the unfac-

tored and factored stress under 1.25(DC) are 12.82
ksi and 14.05 ksi for negative and positive moment
regions, respectively. See Table E20.3-9. Significant
capacity exists for additional live loads. The bracing
at one-quarter points is adequate for construction.
Later wind loads are checked.
Also during construction buckling is not permit-

ted in the web. Therefore, bend buckling must be
checked per [A6.10.3.2.1].

fbu ≤ φf Fcrw

where

Fcrw = 0.9Ek
(
D/tw

)2
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and

k = 9
(
Dc/D

)2 = 9

(32/60)2
= 31.6

Fcrw = 0.9 (29000) (31.6)

(60/0.4375)2
= 43.9 ksi

The factored stress during placement of the con-
crete deck, assuming live loads are small, is

fbu = 14.05 ≤ 43.9 ksi OK

Similarly for negative moment the factored stress
is 91.7, which is less than 43.9 ksi as well. See
Table E20.3-9.

b. Flexure [A6.10.8.2] Lateral support for compres-
sion flange is not available when fresh concrete is
being placed [A6.10.3.2.1 and A6.10.8.2].

c. Shear [A6.10.3.3] The shear resistance is com-
puted as the buckling resistance under construction
loads in addition to nominal yield. For the latter,

12.82 ≤ 50 ksi OK

14.05 ≤ 50 ksi OK

The longitudinaldeck stress could also be checked,
however, minimum reinforcement is provided in this
area and this check is not necessary. Finally, to en-
sure that the web does not buckle,

φVn ≤ φVcr

Critical locations are checked below. The buckling
to plastic shear ratios,C , are computed in the section
on strength I shear located later in this example. See
Table E20.3-1.

Location
Demand,
Vu, kN

Buckling
to Yield
Ratio, C

Plastic
Shear

Resistance,
Vp, kN

φVn =
φCVp,
kN Check

100 1.25(39.8)= 49.8 0.295 761 224 OK
110 1.25(65.2)= 81.5 0.485 761 369 OK
200 1.25(63)= 78.8 0.442 761 336 OK

The shear resistance is sufficient to support con-
struction dead load with a significant additional
capacity.

d. Deck Placement [A6.10.3.4 and A6.10.3.5] Be-
cause the bridge length is relatively short, concrete
placement can be achieved in one day. This article
is not applicable.

5. Service Limit State [A6.5.2] [A6.10.4]
a. Elastic Deformations [A6.10.4.1]

(1) Optional Live-Load Deflection [A2.5.2.6.2]
The deflection control is optional and depends
upon the owner’s specification regarding the

limits. Here, the deflection limit of span/800 is
computed as

�live load limit = L/800

= 120 (12) /800

= 1.8 in

The distribution factor for deflection is based
upon uniform distribution,

mgdeflection = 0.85

(
3 lanes

6 girders

)

= 0.43

The live load used is themaximum of the deflec-
tion due to the
� Design truck
� Deflection resulting from 25% of design truck

together with the design lane load
Use the stage three moment of inertia of 83,

461 in.4 for the entire girder length. Modeling the
bridge with BT-Beam as a prismatic beam, the
design truck creates a deflection at the 204 of
0.425 × 106 ft (for EI = 1) and 0.45 in. with the
gross M and EI properties. Using a distribution
factor of 0.50 lanes per girder gives 0.23 in. Using
the deflection of 25% of the design truck and
design lane gives 0.25(0.23) + 0.28 = 0.33 in.
Both are far below the limit.
(2) Optional Criteria for Span-to-Depth Ratio

[A2.5.2.6.3] Previously in this example, the
optional span-to-depth ratio of 0.033L for the
noncomposite steel and 0.040L for the total
section is used to size the section. This check is
shown again for completeness with respect to the
service I deflection check and is computed as

0.033L = 0.033 (120) (12)

= 47.5 in. ≤ 61.625 in. OK

0.040L = 0.040 (120) (12)

= 57.6 in. ≤ 70.625 in. OK

b. Permanent Deformations [A6.10.4.2]
(1) Flexure [A6.10.4.2.2] [Appendix B—

optional] [A6.10.1.9] [A6.10.1.10.1] The ser-
vice limit stresses are outlined in [A6.10.4] and
computed in Table E20.3-8. For the trial negative
moment section [A6.10.4.2.2-3]:

ff + fl

2
≤ 0.8RhFyf = 40 ksi

ff = 1.0 (10.25) + 1.0 (0.68) + 1.0 (1.02)

+ 1.3 (14.5)

ff = 30.8 ≤ 40 ksi OK
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Similarly the positive moment section is
checked using [A6.10.4.2.2] [Table E20.3-14]:

ff + fl

2
≤ 0.95RhFyf = 47.5 ksi

ff = 1.0 (11.24) + 1.0 (0.20) + 1.0 (0.30)

+ 1.3 (1.41)

ff = 13.6 ≤ 48.5 ksi OK

6. Fatigue and Fracture Limit State [A6.5.3] [A6.10.5]
a. Fatigue [A6.10.5.1] [A6.6.1] Allowable fatigue

stress range depends on load cycles and connection
details. Fracture depends on material grade and
temperature.
Stress Cycles Assuming a rural interstate high-

way with 20,000 vehicles per lane per day,

Fraction of trucks in traffic = 0.20 (Table 4.4)

[Table C3.6.1.4.2-1]

ADTT = 0.20 ×ADT

= 0.20 (20000) (2 lanes)

= 8000 trucks/day

p = 0.85 (Table 4.3) [Table A3.6.1.4.2-1]

ADTTSL = p × ADTT = 0.85 (8000)

= 6800 trucks/day

The critical fatigue detail for a flange in tension
is the location where the transverse stiffener is fillet
welded to the flange. Using detail 4.1 in Table 18.3
where the category is C′. The 6800 far exceeds the
745 trucks per day for finite life. Therefore, the
infinite-life resistance is used.

(�F)TH = 12 ksi

The Maximum Stress Range [C6.6.1.2.5] The
maximum stress range is computed using fatigue I
limit state:

U = 1.5 (LL + IM)

Dynamic load allowance for fatigue is IM = 15%.
M LL+IM is maximum in the exterior girder, no mul-
tiple presence (live-load range only):
From Tables E20.3-8 and E20.3-14, the fatigue

live-load stresses are

fLL+IM = 5.95 and 1.41 ksi

for positive and negative moments, respectively. The
opposite sense action is not included herein as it is
not readily available; however, it will be significantly
smaller than the primary actions/stresses and these
stresses are much less than the 12-ksi limit. Fatigue
limit state is satisfied for welds near the stiffeners.

b. Fracture [A6.10.5.2] [A6.6.2] The steel specified
meets fracture requirements for this non-fracture-
critical system.

c. Special Fatigue Requirements for Webs [A6.10.5.3]
The shear force due the fatigue truck is determined
with the use of Figure E20.1-6 (exterior girder gov-
erns and no multiple presence) [A3.6.1.1.2]. Here
dead load is included with the live load. Finally,
the web should not buckle under routine (fatigue I)
loads. From Tables E20.3-1 and E20.3-4, the load
effects are

Vu = 1.0 (65.2) + 1.0 (17.4) + 1.0 (6.58)

+ 1.5 (0.75)
(

1
1.2

)
(62.4)

= 369 kips

At the interior support (110), the resistance is

φVcr = 714 kN

Therefore, the resistance is sufficient to avoid web
buckling under dead load with fatigue live load.

7. Strength Limit State [A6.5.4] [A6.10.6]
a. CompositeSections in PositiveFlexure [A6.10.6.2.2]

[A6.10.7] For positive moment regions, the non-
compact negative moment region, the resistance is
limited to

φMn = φf 1.3RhMy

where φMn is computed as 7420 k ft previously. The
factored strength I flexural moment at 104 is

Mu = 3910 ≤ 7420 k ft OK

b. Composite Sections in Negative Flexure [A6.10.6
.2.3] [A6.10.8] [Appendix A—optional] [Appendix
B—optional] [D6.4—optional] The negative
moment must satisfy flange local buckling and
lateral torsion buckling. The resistance computed
previously is 48.2 ksi, which was controlled by
FLB. The load effects from Table E20.3-10 is 38.5
ksi. Therefore, the section is fine. In the resistance
computation the moment gradient term was conser-
vatively taken as Cb = 1.0, so a refinement should
indicate that the section is sufficient.

8. Shear Design In general, the factored shear resis-
tance of a girder, Vr, is taken as follows:

Vr = φvVn

where
Vn = nominal shear resistance for stiffened

web
φv = resistance factor for shear = 1.0

a. Stiffened Web Interior web panels of homoge-
neous girders without longitudinal stiffeners and
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with a transverse stiffener spacing not exceeding 3D
are considered stiffened:

3D = 3 (60) = 180 in.

The nominal resistance of stiffened webs is given
in AASHTO [A6.10.9.1].

(1) Handling Requirements For web pan-
els without longitudinal stiffeners, transverse
stiffeners are required if [A6.10.2.1]

D

tw
≤ 150

60

0.4375
= 137

Therefore, transverse stiffeners are not required
for handling; however, this example demonstrates
the design of transverse stiffeners as if they were
required.
Maximum spacing of the transverse stiffeners is

d0 ≤ D

[
260(

D/tw
)
]2

= 60

(
260

137

)2

= 215 in.

(2) Homogeneous Sections The requirements
for homogeneous sections are in AASHTO
[A6.10.7.3.3]. The purpose of this section is to
determine the maximum spacing of the stiffen-
ers while maintaining adequate shear strength
within the panel. Three separate sections must be
examined:
1. End panels
2. Interior panels for the composite section in the

positive moment region
3. Interior panels for the noncomposite section

in the negative moment region
From analysis, the interior girders receive the

largest shear force values (Table E20.3-1).
b. End Panels Tension field action in end panels is not

permitted. The nominal shear resistance of an end
panel is confined to either the shear yield or shear
buckling force.

Vn = CVp

for which

Vp = 0.58FywDtw

= 0.58 (50) (60) (0.4375)

= 761 kips

where
C = ratio of shear buckling stress to shear

yield strength
k = shear buckling coefficient

The ratio, C , is determined [A6.10.9] as follows:
If

D

tw
< 1.12

√
Ek

Fyw

then
C = 1.0

If

1.12

√
Ek

Fyw
≤ D

tw
≤ 1.40

√
Ek

Fyw

then

C = 1.12
D

tw

√
Ek

Fyw

If
D

tw
> 1.40

√
Ek

Fyw

then

C = 1.57
(
D/tw

)2

(
Ek

Fyw

)
≤ 0.8

for which
k = 5 + 5

(
d0/D

)2

For the end panels Vu equals 220 kips at location
100, taken from Table E20.3-3. Assume

D

tw
> 1.40

√
Ek

Fyw

therefore,

C = 1.57
(
D/tw

)2

(
Ek

Fyw

)

Vn = 1.57
(
D/tw

)2

(
Ek

Fyw

)
Vp

Solving for k in the equation above

kmin = VnFyw

1.57VpE

(
D

tw

)2

use

Vn = Vu

φ
= 200

1.0
= 220 kips

kmin = (220) (50)

1.57 (761) (29000)

(
60

0.4375

)2

= 5.97

k = 5 + 5
(
d0/D

)2

therefore, maximum d 0 = 228 in.
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Checking assumption on D /tw for d 0 = 60 in:

k = 5 + 5

(60/60)2
= 10

1.40

√
Ek

Fyw
= 1.40

√
(29000) 10

50
= 107

D

tw
= 60

0.4375
= 137 > 107 assumption OK

Place stiffeners 60 in apart (d 0 = D ):

C = 0.48

φVn = φCVp = 369 kips ≥ 220 kips OK

c. Interior Panels of Compact Sections For this de-
sign, this section applies to the positive moment re-
gion only. The region considered shall be the effec-
tive lengths for the uniformunit load. These effective
lengths were determined previously. First, consider
the 100-ft span. The nominal shear resistance from
[A6.10.9] is

Vn = Vp

⎡

⎢⎣C + 0.87 (1 − C)√
1 + (

d0/D
)2

⎤

⎥⎦

Vp = 0.58FywDtw = 761 kips

where
Vn = nominal shear resistance (kips)
Vp = plastic shear force (kN) = 761 kips
φf = resistance factor for flexure = 1.0
D = web depth (in.)
d 0 = stiffener spacing (in.)
C = ratio of shear buckling stress to shear

yield strength

Calculate the minimum spacing for the panels for
the compact section using the maximum shear val-
ues. For the 100-ft span the compact section exists
for the first 75.64 ft of the bridge. For design, the
length of compact section is taken as 75 ft. Because
the first interior stiffener is 60 in. from the end of
the bridge and the second is 60 in. from the first and
stiffeners are spaced equally across the remaining
compact length.
The second stiffener is 120 in. from the end of the

bridge, which corresponds to location 101. From
Table E20.3-3,

Vu = 179 kips at 10 ft from the ends of the bridge

Assume
D

tw
> 1.40

√
Ek

Fyw

therefore

C = 1.57
(
D/tw

)2

(
Ek

Fyw

)

Try six equal spacings of 130 in. over a length of
6(130) = 780 in = 65 ft:

k = 5 + 5

(130/60)2
= 6.07

1.40

√
(29000) (6.07)

50
= 83 <

D

tw

= 150 assumption OK

so that

C = 1.57

(60/0.4375)2

[
(29000) (6.07)

50

]
= 0.295

Vn = 1.0 (761)

⎡

⎢⎣0.295 + 0.87 (1 − 0.295)√
1 + (130/60)2

⎤

⎥⎦

= 420 kips

φvVn = 1.0 (420) = 420 kips > Vu

= 179 kips OK

Space transverse intermediate stiffeners at 130 in.
(d 0 = 2.16D ) from x = 120 in.= 10 ft to x = 900 in.
= 75 ft along the 100-ft span.
Consider the 120-ft span for which a compact

section exists from points x = 125.9 ft to x =
192.1 ft along the bridge. Therefore space trans-
verse intermediate stiffeners equally along the 70-ft
distance, therefore

Vn = Vp

⎡

⎢⎣C + 0.87 (1 − C)√
1 + (

d0/D
)2

⎤

⎥⎦

At x = 125.9 ft, using values from Table E20.3-3,

Vu = −170 − 139

136 − 124
(125.9− 124) + 179

= 174 kips

Assume
D

tw
> 1.40

√
Ek

Fyw

therefore

C = 1.57
(
D/tw

)2

(
Ek

Fyw

)

Try eight stiffener spacings of 130 in. over a length
of 8(105) = 840 in. = 70 ft (d 0 = 1.70D ):

k = 5 + 5

(105/60)2
= 6.6

1.40

√
(29000) (6.6)

50
= 87 <

D

tw

= 137 assumption OK
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C = 1.57

(60/0.4375)2

(
(29000) (6.6)

50

)
= 0.320

Vn = (761)

⎡
⎢⎣0.320+ 0.87 (1 − 0.320)√

1 + (105/60)2

⎤
⎥⎦

= 467 kips

φv Vn = 1.0 (467) = 467 kips > Vu

= 174 kips OK

Space transverse intermediate stiffeners at 105 in.
from x = 125 to 195 ft.

d. Interior Panels of Noncompact Sections This
section applies to the negative moment region
only. The region considered shall be the effective
lengths for the uniform unit load. These effective
lengths were determined previously. The noncom-
pact section exists between x = 75 ft to x = 125 ft.
Therefore, there is 25 ft on the 100-ft span and 25 ft
on the 120-ft span from the bearing stiffener over
the support to the assumed inflection point. The
nominal shear resistance is taken as

Vn = Vp

⎡
⎢⎣C + 0.87 (1 − C)√

1 + (
d0/D

)2

⎤
⎥⎦

Vp = 0.58FywDtw = 0.58 (50) (60) (0.4375)

= 761 kips

where C is the ratio of shear buckling stress to the
shear yield strength.
The stiffener spacing along the 100-ft span is de-

termined first. A spacing of 60 in (d 0 = 1.0D ) is
used for all stiffeners. The spacing is checked for
adequacy below. The maximum shear in the panel
from x = 75 ft to x = 100 ft is Vu = 286 kips from
Table E20.3-3.
Assume

D

tw
> 1.40

√
Dk

Fyw

Therefore,

C = 1.57
(
D/tw

)2

(
Ek

Fyw

)

k = 5 + 5

(60/60)2
= 10

1.40

√
(29000) (0.4375)

50
= 107 <

D

tw

= 137 assumption OK

C = 1.57

(60/0.4375)2

[
(29000) (0.4375)

50

]

= 0.485

Vn = (761)

⎡
⎢⎣0.485+ 0.87 (1 − 0.485)√

1 + (60/60)2

⎤
⎥⎦

= 610 kips

φvVn = 1.0 (610) = 610 kips > Vu

= 286 kips OK

Space transverse intermediate stiffeners at 60 in.
from x = 75 ft to x = 100 ft along the 100-ft span.
Determine stiffener spacing along the 120-ft span.

Space stiffeners equally along the 25-ft length from
x = 100–125 ft. The maximum shear in this panel is
at x = 100 ft, Vu = 284 kips from Table E20.3-3.
Assume

D

tw
> 1.40

√
Ek

Fyw

Therefore,

C = 1.57
(
D/tw

)2

(
Ek

Fyw

)

Try four stiffener spacings of 75 in. over a length
of 4(75 in.) = 300 in. (d 0 = 1.25D ):

k = 5 + 5

(75/60)2
= 8.2

1.40

√
(29000) (8.2)

50
= 96.5 <

D

tw
= 137 OK

C = 1.57

(60/0.4375)2

[
(29000) (8.2)

50

]
= 0.442

Vn = (761)

⎡

⎢⎣0.422 + 0.87 (1 − 0.422)
√
1 + (75/60)2

⎤

⎥⎦

= 576 kips

φvVn = 1.0 (576) = 576 kips > Vu

= 284 kips OK

Space transverse intermediate stiffeners at 75 in.
from x = 101–125 ft along the 120-ft span.

9. Transverse Intermediate Stiffener Design The
LRFD specifications for stiffener design are located
in AASHTO [A6.10.11]. Transverse intermediate
stiffeners are composed of plates welded to either
one or both sides of the web depending on the ad-
ditional shear resistance the web needs. Transverse
intermediate stiffeners used as connecting elements
for diaphragms must extend the full depth of the
web. If the stiffeners are not to be used as connecting
elements, they must be welded against the compres-
sion flange but may not be welded to the tension
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flange. The allowable distance between the end of
the stiffener and the tension flange is between 4tw
and 6tw. Therefore, either cut or cope the transverse
stiffeners 4tw or 1.75 in. from the tension flange.
For this design, M270 Grade 50W steel is used for

the stiffeners. In locations where diaphragms are to be
used, a stiffener is used on each side of the web as a
connecting element. For the other locations a single
plate will be welded to one side of the web only. The
stiffeners are designed as columns made up of either
one or two plates and a centrally located strip of web.
For web in which the slenderness [A6.10.11.1.1]

D

tw
≤ 2.5

√
E

Fyw

D

tw
= 60

0.4375
≤ 2.5

√
29000

50
= 60.2

137 ≥ 60.2

Only [A6.10.11.1.2] must be checked. How-
ever, this is not the case for our slender web and
[A6.10.11.1.2, A6.10.11.1.3, and A6.10.11.1.4].

a. Single-Plate Transverse Stiffeners Single-plate
transverse intermediate stiffenes are used at loca-
tions where there are no connecting elements. They
shall be designed based on the maximum shear
for the positive and negative moment regions. This
use of maximum shear is a conservative approach.
The fact that the stiffeners will have more than
the required strength in some areas is negligible
because the amount of steel saved by changing them
would be small. The stiffener size chosen is 7

8 in. ×
5.5 in. for both regions. The following requirements
demonstrate the adequacy of this section. ( 78 in. =
0.875 in.).

b. Projecting Width The projecting width require-
ment is checked to prevent local buckling of the
transverse stiffeners. The width of each projecting
stiffener must meet the following requirements
[A6.10.11.1.2]:

2 + d

30
≤ bt

and
16.0tp ≥ bt ≥ 0.25bf

where
d = steel section depth (in.)
tp = thickness of projecting element (in.)

F ys = minimum yield strength of stiffener
(ksi)

bf = full width of steel flange (in.)

For the positive moment regions:

d = 60 + 0.625 + 1.0

= 61.625 in.

tp = 0.875 in.

Fys = 50 ksi

bf = 12 in. (compression flange)

2 + 61.625

30
= 4.1 in. ≤ bt = 12 in.

and

16.0 (0.875) = 14 in. ≥ (
bt = 5.5 in.

) ≥ 0.25 (4)

= 3 in. OK

For the negative moment regions:

d = 60 + 1.25 + 1.25 = 62.5 in.

tp = 0.875 in.

Fys = 50 ksi

bf = 16 in.

2 + 62.5

30
= 4.1 in. ≤ bt = 5.5 in.

and

16 (0.875) = 14 in. ≥ (
bt = 5.5 in.

) ≥ 0.25 (16)

= 4 in. OK

c. Moment of Inertia The moment of inertia of
all transverse stiffeners must meet the following
requirements [A6.10.11.1.3]:

It1 ≥ min
[
d0, D

]
t3wJ

for which

J = 2.5

(
Dp

d0

)2

− 2.0 ≥ 0.5

where
I t1 = moment of inertia of transverse

stiffener taken about the edge in
contact with the web for single
stiffeners and about the midthickness
of the web for stiffener pairs (in.4)

d 0 = transverse stiffener spacing (in.)
Dp = web depth for webs without

longitudinal stiffeners (in.)

The transverse stiffener moment of inertia must
also be greater than

It2 ≥ D4

40
ρ1.3

t

[
Fyw

E

]1.5

where

ρt = min

[
Fyw

Fcrs
, 1.0

]
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Fig. E20.3-38 Single-plate transverse intermediate stiffener.

and Fcrs is the local buckling stress for the stiffeners,

Fcrs = 0.31E
(
bt/tp

)2 ≤ Fys

For the positive moment regions use d 0 equal to
130 in. and for the negative moment regions use d 0
equal to 75 in.
The moment of inertia for a single stiffener,

0.875 in. × 5.5 in., is shown in Figure E20.3-38:

I = I0 + Ad2

= (0.875) (5.5)3

12
+ (0.875) (5.5) (2.75)2

= 48.5 in.4

For positive moment regions:

J = 2.5

(
60

130

)2

− 2.0

= −1.47 < 0.5

Therefore, use

J = 0.5

It = 48.5 ≥ It1 = min (60,130) (0.4375)3 (0.5)

= 2.5 in.4

It ≥ It1 OK

The first moment of inertia criterion is met. For the
second criterion, the critical buckling stress is high,
so Fcrs is controlled by yielding and ρt is unity:

Fcrs = 0.31E
(
bt/tp

)2 = 0.31 (29000)

(5.5/0.4375)2
= 227 ≤ Fys

= 50 ksi

ρt = min

[
Fyw

Fcrs
, 1.0

]
= 1.0

It2 ≥ 604

40
(1)1.3

[
50

29000

]1.5
= 23.2 in.2

It = 48.5 ≥ It2 = 23.2 OK

For negative moment regions:

J = 2.5

(
60

75

)2

− 2.0

= −0.40 < 0.5

Therefore, use

J = 0.5

It1 = 5.4 ≥ (75) (0.4375)3 (0.5)

= 3.14 in.4

I ≥ It1 OK

From the previous computation

It = 48.5 ≥ It2 = 23.2 OK

Therefore, both criteria are met.
10. Double-Plate Transverse Stiffener Design Double-

plate transverse intermediate stiffeners are used at
locations where connecting elements such as di-
aphragms are used. For this design, they shall be
based on the maximum shear for the positive and
negative moment regions, respectively. This approach
is conservative. The fact that the stiffeners have more
than the required strength in some areas is negligible
because the amount of steel saved by changing them
would be small. A pair of stiffeners, 0.5 in. × 4 in. is
chosen for both regions. The following requirements
demonstrate the adequacy.

a. Projecting Width The projecting width require-
ment is checked to prevent local buckling of the
transverse stiffeners. The width of each projecting
stiffener must meet the following requirements
[A6.10.11.1.2]:

2 + d

30
≤ bt

and
16.0tp ≥ bt ≥ 0.25bf

For the positive moment regions

d = 60 + 0.625 + 1.0

= 61.625 in.

tp = 0.5 in.

Fys = 50 ksi

bf = 12 in.

2 + 61.625

30
= 4.1 in. ≈ bt = 4 in.

and

16.0 (0.5) = 8 in. ≥ bt = 4 in. ≥ 0.25 (12)

= 3 in. OK
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For the negative moment regions

d = 60 + 0.625 + 1.0 = 61.625 in.

tp = 0.5 in.

Fys = 50 ksi

bf = 16 in.

2 + 61.625

30
= 4.1 in. ≈ bt = 4 in.

and

16.0 (0.5) = 8 in. ≥ bt = 4 in. ≥ 0.25 (12)

= 3 in. OK

b. Moment of Inertia The moment of inertia for a pair
of stiffeners, 0.5 in. × 4 in., taken about the middle
of the web, is shown in Figure E20.3-39.

I = I0 + Ad2

= 2 (0.5) (4)3

12
+ 2 (0.5) (4) (2.22)2

= 25.0 in.4

which meets both inertia requirements.
11. Bearing Stiffeners

a. Bearing Stiffeners at Abutments The requirements
for bearing stiffeners are taken from the LRFD Spec-
ifications [A6.10.11.2]. Bearing stiffeners shall be
placed on the webs of plate girders at all bearing
locations and at locations of concentrated loads.
The purpose of bearing stiffeners is to transmit the

full bearing force from the factored loads. They con-
sist of one or more plates welded to each side of the
web and extend the full length of the web. It is also
desirable to extend them to the outer edges of the
flanges. At the abutments the bearing stiffeners cho-
sen consist of one 0.875-in.× 6-in. plate on each side
of the web. The following requirements demonstrate
the adequacy of this section.

Fig. E20.3-39 Double-plate transverse intermediate stiffener.

(1) Projecting Width To prevent local buck-
ling of the bearing stiffener plates, the width
of each projecting element has to satisfy the
following [A6.10.11.2.2]:

bt ≤ 0.48tp

√
E

Fys

= 6 in. ≤ 0.48 (0.875)

√
29000

50
= 10.1 in. OK

(2) Bearing Resistance To get the bearing
stiffener tight against the flanges, a portion in
the corner must be clipped. This clipping of the
stiffener is so the fillet welding of the flange and
web plates can be done. By clipping the stiffener,
the bearing area of the stiffener is reduced (see
Fig. E20.3-40). When determining the bearing re-
sistance, this reduced bearing area must be used.
The factored bearing resistance is calculated
below [A6.10.11.2.3]:

Br = φb (1.4)ApnFys

where
A pn = contact area of stiffener on the

flange
= 2(6 − 1.5)(0.875) = 7.88 in.2

Br = 1.0(1.4)(7.88)(50)= 551 kips
= 551 kips > Ru = 220 kips OK

The value for Ru, which is equal to the reaction
at the abutments, is taken from Table E20.3-3 at
location 100 (interior girder controls).
(3) Axial Resistance of Bearing Stiffeners

The axial resistance of bearing stiffeners is de-
termined from AASHTO [A6.10.11.2.4]. The
factored axial resistance Pr for components in
compression is taken as [A6.9.2.1]

Pr = φcPn

Fig. E20.3-40 Bearing stiffener at abutment.
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where
φc = resistance factor for compression

= 0.9
Pn = nominal compressive resistance

(kN)

To calculate the nominal compressive resis-
tance, the section properties are to be determined.
The radius of gyration is computed about the
center of the web and the effective length is
considered to be 0.75D , where D is the web
depth. The reason the effective length is reduced
is because of the end restraint provided by the
flanges against column buckling.
(4) Effective Section For stiffeners welded

to the web (Fig. E20.3-41), the effective column
section consists of the 0.875-in. × 6-in. stiffeners
[A6.10.11.2.4b].
The radius of gyration, rs, is computed from the

values in Table E20.3-17.

I = I0 + Ad2

= 108.8+ 31.5 = 140.3in.4

rs =
√

I

A
=

√
140.3

10.5
= 3.65 in.

(5) Slenderness The limiting width-to-
thickness ratio for axial compression must be
checked [A6.9.4.2]. The limiting value is as
follows:

b

t
≤ k

√
E

Fy

Fig. E20.3-41 Section of bearing stiffener at abutment.

Table E20.3-17 Effective Section for Bearing Stiffeners
over the Abutments

Part A y Ay Ay2 I0

Stiffener 5.25 3.22 16.90 54.4 15.75
Stiffener 5.25 −3.22 −16.90 54.4 15.75
Total 10.50 108.8 31.50

where
k = plate buckling coefficient from

Table 19.2 = 0.45
b = width of plate as specified in

Table 19.2 = 6 in.
t = plate thickness = 0.875 in.

b

t
= 6

0.875
= 6.86 ≤ 0.45

√
29000

50
= 10.8 OK

(6) Nominal Compressive Resistance The
nominal compressive resistance is taken from
AASHTO [A6.9.4.1] because the stiffeners are
noncomposite members. The value of Pn is
determined as follows:

Po = QFyAg = 1.0 (50) (10.5) = 525 kips

Pe = π2EAg
(

KL

rs

)2
= π2 (29000) (10.5)

(
0.75 (60)

3.65

)2

= 19770 kips

Pn = 0.658Po/PeFysAg

= 0.658525/19,770 (50) (10.5) = 519 kips

Pr = φPn = 0.9 (519) = 467 kips

Pr ≥ Vu = 197 kips OK

where
As = gross cross-sectional area (in.2)
K = effective length factor = 0.75
L = unbraced length (in.)
rs = radius of gyration about the plane

of buckling (in.)

Therefore, stiffeners are adequate.
For the bearing stiffeners at abutments, use a

pair of plates, 0.875 in. × 6 in.
b. Bearing Stiffeners at the Interior Supports The

requirements that were specified for the bearing
stiffeners at the abutments apply also to this section.
At the interior supports the bearing stiffeners con-
sist of two 0.875-in.× 6-in. plates on each side
of the web. The two plates are spaced 6 in. apart
to allow for welding. The following requirements
demonstrate the adequacy of this section.

(1) Projecting Width To prevent local buck-
ling of the bearing stiffener plates, the width
of each projecting element has to satisfy the
following [A6.10.11.2.2]:

bt ≤ 0.48tp

√
E

Fys

= 6 in. ≤ 0.48 (0.875)

√
29000

50
= 10.1 in. OK
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(2) Bearing Resistance The factored bearing
resistance is calculated below (see Fig. E20.3-40)
[A6.10.11.2.3]:

Br = φb (1.4) ApnFys

Apn = 4 (6 − 1.5) (0.875) = 15.75 in.2

Br = (1.0) (1.4) (15.75) (50)

= 1100kips > Ru = 441 kips OK

The value for Ru, which is equal to the reaction
at either interior support (Fig. E20.3-42) is de-
termine from BT-Beam and is controlled by the
design truck train loading. Alternatively the two
shears may be conservatively added (V 110 and
V 200) from Table E20.3-3 (interior girder con-
trols). This is a very conservative approximation
because maximum values for shear due to the
design truck are used.
(3) Axial Resistance of Bearing Stiffeners

For components in compression, Pr is taken as
[A6.9.2.1]

Pr = φcPn

The effective unbraced length is 0.75D =
0.75(60) = 45 in.
(4) Effective Section The effective section cri-

teria is found in AASHTO [A6.10.11.2.4b]. For
stiffeners welded to the web, the effective column
section consists of the stiffeners plus a centrally
located strip of web extending 9tw to each side of
the stiffeners as shown in Figure E20.3-43. The
spacing of the stiffeners is 6 in.

Fig. E20.3-42 Reaction at interior support.

Fig. E20.3-43 Section of bearing stiffener at interior support.

Table E20.3-18 Effective Section for Bearing Stiffeners
Over the Interior Supports

Part A y Ay Ay2 I0

Web 6.07 0 0 0 0.10
Stiffener 5.25 3.32 16.9 54.4 15.75
Stiffener 5.25 3.32 16.9 54.4 15.75
Stiffener 5.25 −3.32 −16.9 54.4 15.75
Stiffener 5.25 −3.32 −16.9 54.4 15.75
Total 20.07 217.6 63.0

The radius of gyration rs is computed from the
values in Table E20.3-18.

I = I0 + Ad2 = 63.0 + 217.6 = 280.6 in.4

rs =
√

I

A
=

√
280.6

20.07
= 3.74 in.

(5) Slenderness The limiting width-to-
thickness ratio for axial compression must be
checked [A6.9.4.2]. The limiting value is as
follows:

b

t
≤ k

√
E

Fy

b

t
= 6

0.875
= 6.8 < 0.45

√
29000

50
= 10.8 OK

(6) Nominal Compressive Resistance The
nominal compressive resistance is taken from
AASHTO [A6.9.4.1] because the stiffeners are
noncomposite members. The value of Pn is
determined as follows:

Po = QFyAg = 1.0 (50) (27.0) = 1350 kips

Pe = π2EAg
(

KL

rs

)2
= π2 (29000) (27.0)

(
0.75 (60)

3.74

)2

= 53,360 kips

Pn = 0.658Po/PeFysAg

= 0.6581350/53,360 (50) (27.0) = 1335 kips

Pr = φPn = 0.9 (1335) = 1200 kips

Pr ≥ Ru = 441kips OK

For the bearing stiffeners at the supports, use
two pairs of stiffener plates, 0.875 in. × 6 in.
A summary of the stiffener design is shown in
Figure E20.3-44.

12. Shear Connectors
a. General Design of shear connectors is specified

in AASHTO [A6.10.10.4]. Stud shear connectors
are to be provided at the interface between the
concrete slab and the steel section. The purpose
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Fig. E20.3-44 Summary of stiffener design.

of the connectors is to resist the interface shear.
In continuous composite bridges, shear connectors
are recommended throughout the length of the
bridge including negative moment regions. Before
designing, the designer must consider some general
information including types of shear connectors,
pitch, transverse spacing, cover, and penetration.

(1) Types of Shear Connectors The two pri-
mary types of connectors used are the stud and
channel shear connectors. The connectors should
be chosen so that the entire surface of the connec-
tor is in contact with the concrete so that it may re-
sist horizontal or vertical movements between the
concrete and the steel section. For this design, stud
shear connectors are used to provide a composite
section. The ratio of the height-to-stud diameter
is to be greater than 4.0. [A6.10.10.1.1]. Consider
0.75-in. diameter studs, 4-in. high, for this design:

4

0.75
= 5.33 > 4 OK

(2) Transverse Spacing Transverse spacing of
the shear connectors is discussed in AASHTO
[A6.10.10.1.3]. Shear connectors are placed trans-
versely along the top flange of the steel section.
The center-to-center spacing of the connectors
cannot be closer than four stud diameters, or 3 in.
The clear distance between the edge of the top
flange and the edge of the nearest connector must
be at least 1 in.
(3) Cover and Penetration Cover and penetra-

tion requirements are inAASHTO [A6.10.10.1.4].
Shear connectors should penetrate at least 2 in.
into the concrete deck. Also, the clear cover over
the tops of the connectors should be at least 2 in.
Consider a height of 4 in. for the shear studs.

b. Fatigue Resistance Consider the fatigue resis-
tance of shear connectors in composite sections
[A6.10.10.1.2]. When exact data are not provided
the ADTT is determined using a fraction of the
average daily traffic volume. The average daily

traffic includes cars and trucks. Using the recom-
mendations of AASHTO [C3.6.1.4.2], the ADT
can be considered to be 20,000 vehicles per lane
per day. The ADTT is determined by applying the
appropriate fraction from Table 8.4 to the ADT.
By assuming urban interstate traffic, the fraction of
trucks is 15%.

(ADTT)SL = 0.85 (0.15) (20000) (2 lanes)

= 5100 trucks/day

The number of trucks significantly exceeds the
960 trucks per day for the finite-life fatigue design.
Therefore, the infinite fatigue-life criterion is used.
The stud resistance is

Zr (infinite life) = 5.5d2 = 5.5(0.75)2 = 3.1 kips

The pitch of the shear connectors is specified in
AASHTO [A6.10.10.1.2]. The pitch is to be deter-
mined to satisfy the fatigue limit state. Furthermore,
the resulting number of shear connectors must not
be less than the number required for the strength
limit state. The minimum center-to-center pitch of
the shear connectors is determined as follows:

p = nZrI

VsrQ

where
p = pitch of shear connectors along the

longitudinal axis (in.)
n = number of shear connectors in a cross

section
I = moment of inertia of the short-term

composite section (in.4)
Q = first moment of the transformed area

about the neutral axis of the
short-term composite section (in.3)

Vsr = shear force range under LL + IM
determined for the fatigue limit state

Zr = shear fatigue resistance of an
individual shear connector

ds = shear stud diameter (in)

and
6ds = 4 in. ≤ p ≤ 24 in.

For the short-term composite section, the moment
of inertia is 83,461 in.4. The first moment of the
transformed area about the neutral axis for the
short-term composite section is determined from
Figure E20.3-45:

Q = Ay = (8) (12) (17.93 − 4) = 1337 in.3

For this design three shear connectors are used in
a cross section as shown in Figure E20.3-46:

Stud spacing = 4 in. > 4 (0.75) = 3 in.

Clear distance = 1.625 in. ≥ 1 in.
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Fig. E20.3-45 Composite section properties.

Therefore, the transverse spacing requirements
[A6.10.10.1.3] are satisfied. The required shear con-
nector pitch is computed at the tenth points along
the spans using the shear range for the fatigue truck.
The shear range Vsr is the maximum difference in
shear at a specific point. It is computed by finding
the difference in the positive and negative shears
at that point due to the fatigue truck, multiplied by
the dynamic load allowance for fatigue (1.15), the
maximum distribution factor for one design lane

Fig. E20.3-46 Group of three shear connectors.

loaded without multiple presence (0.75/1.2 for the
exterior girder), and by the load factor for the fatigue
I limit state (1.5). The shear range and the pitch at
the tenth points are tabulated in Table E20.3-19.
The values in the pitch column are the maximum
allowable spacing at a particular location. The
required spacing is plotted on Figure E20.3-47.
The spacing to be used is determined from this
graph. An example calculation of the pitch is per-
formed below, for the shear range at the end of the
bridge.

Table E20.3-19 Shear Range for Fatigue Loading and Maximum Shear Connector Spacing

Unfactored
Max. Pos.
Shear
(kips)

Unfactored
Max. Neg.
Shear
(kips)

Shear Range
(kips)

(Includes
distribution,
IM, and

γ fatigue I = 1.5)
Pitch
(in.)

Location

Sta (ft)

100 0 56.04 −6.67 67.4 8.6
101 10 47.52 −6.67 56.0 10.4
102 20 39.29 −8.51 49.5 11.7
103 30 31.47 −13.33 46.4 12.5
104 40 24.16 −19.42 45.1 12.9
105 50 17.47 −27.45 46.5 12.5
106 60 11.64 −35.55 48.9 11.9
107 70 7.6 −43.2 52.6 11.0
108 80 4.42 −50.3 56.1 24a

109 90 1.61 −56.75 60.4 24a

110 100 1.61 −62.43 66.4 24a

200 100 62.33 −6.28 71.0 24a

201 112 55.57 −6.28 64.0 24a

202 124 48.01 −6.28 56.2 24
203 136 39.97 −9.78 51.5 11.3
204 148 31.77 −16.21 49.7 11.7
205 160 23.75 −23.75 49.2 11.8

aThe maximum shear stud spacing is 24 in. This spacing is used in negative moment regions, assumed to be between the dead-load inflection
points at 75 and 124 ft.



MULTIPLE-SPAN COMPOSITE STEEL PLATE GIRDER BEAM BRIDGE 495

Fig. E20.3-47 Summary of shear connector spacings.

The shear is computed using fatigue limit state
I and an example computation for the end of the
bridge is

Vsr fatigue I = (56.04 + 6.67) (1.15)

(
0.75

1.2

)

= 67.6 kips

p = 3 (3.1) (83461)

(67.6) (1337)
= 8.6 in.

c. Strength Limit State The strength limit state
for shear connectors is taken from AASHTO
[A6.10.7.4.4]. The factored shear resistance of an
individual shear connector is as follows:

Qr = φscQn

where
Qn = nominal resistance of a shear

connector (kips)
φsc = resistance factor for shear connectors

= 0.85

Qn = 0.5Asc

√
f

′
cEc ≤ AscFu

where
A sc = shear connector cross-sectional area

(in.2)
Ec = modulus of elasticity of concrete

(ksi)
Fu = minimum tensile strength of a stud

shear connector

Fu = 58 ksi [A6.4.4]

Asc = π

4
(0.75)2 = 0.44 in.2

Ec = 1820
√

f
′
c = 1820

√
4 = 3600 ksi

Qn = 0.5 (0.44)
√
30 (3600) = 26.4 kips

AscFu = (0.44) (58)

= 125.5 kips > 26.4 kips

Use Qn = 25.4 kips

Therefore

Qr = (0.85) (25.5) = 21.7 kips

The number of shear connectors required depends
on the section. Between sections of maximum
positive moment and points of 0 moment to either
side, the number of shear connectors required is as
follows:

n = Vh

Qr

for which the nominal horizontal shear force is the
lesser of the following:

Vh = 0.85f
′
c bts

or
Vh = FywDtw + Fytbt tt + Fycbctc

where
Vh = nominal horizontal shear force
b = effective slab width = 96 in.
D = web depth = 60 in.
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ts = slab thickness = 8 in.
bc = width of compression flange = 12 in.
bt = width of tension flange = 16 in.
tc = thickness of compression

flange = 0.625 in.
tt = thickness of tension flange = 1.0 in.
Fy = minimum yield strengths of the

respective sections = 50 ksi

Vh = min

⎧
⎨

⎩

0.85 (4) (96) (8) = 2611 kips
[50 (60) (0.4375) + 50 (16) (1)
+50 (12) (0.625)] = 2488 kips

Vh = 2488 kips

Therefore, use a nominal horizontal shear force Vh
of 10,178 kN and the required number of shear con-
nectors for this region is calculated below:

n = 2488

21.7
= 115

Therefore a minimum of 115 shear connectors are
required between points of maximum positive mo-
ment and points of zero moment. From examination
of Figure E20.3-47, the number of shear connectors
required by the fatigue limit state exceeds the amount
required from the strength limit state.
For composite sections that are continuous, the

horizontal shear force between the centerline of a
support and points of zero moment is determined
by the reinforcement in the slab. The following
calculation determines the horizontal shear force:

Vh = ArFyr

where
Ar = total area of longitudinal

reinforcement in the effective width
over the interior support
(in.2) = 1.80 + 2.17 = 3.97 in.2

Fyr = minimum yield strength of the
longitudinal reinforcement = 60 ksi

Vh = (3.91)(60)= 238 kips

Therefore the number of shear connectors required
in this region is

n = 238

21.7
= 11

Eleven studs are required between the interior pier
and the points of zero moment. The 24-in.maximum
allowable spacing provides considerably more than
this number of connectors. Therefore, use the shear
connector spacing specified on Figure E20.3-47.

J. Dimension and Detail Requirements
1. Diaphragms and Cross Frames [A6.7.4] In this

section, intermediate and end cross frames are de-
signed. The framing plan is shown on Figure E20.3-
48. Cross frames serve three primary purposes:
i. Lateral support of the compression flange during

placement of the deck
ii. Transfer of wind load on the exterior girder to all

girders
iii. Lateral distribution of wheel load

The requirements for cross-frame design are lo-
cated in AASHTO [A6.7.4]. The end cross frames
must transmit all the lateral forces to the bearings. All
the cross frames must satisfy acceptable slenderness
requirements.

a. Cross-Frame Spacing The cross frame spac-
ings were conservatively estimated and checked
for lateral torsional bucking. The assumed initial
spacing were 25 and 30 ft for the end and middle
spans, respectively. Here frames are aligned with
the stiffeners keeping the spacing less than that
initially assumed. See Figure E20.3-48 where the
maximum unbraced bottom flange length is 21 ft
8 in. = 21.67 ft.

Fig. E20.3-48 Cross-frame locations.



MULTIPLE-SPAN COMPOSITE STEEL PLATE GIRDER BEAM BRIDGE 497

b. Wind Load The wind load acts primarily on the
exterior girders. In bridgeswith composite decks, the
wind force acting on the upper half of the girder,
deck, barrier, and vehicle is assumed to be transmit-
ted directly to the deck. These forces are transferred
to the supports through the deck acting as a horizon-
tal diaphragm. The wind force acting on the lower
half of the girder is transmitted directly to the bottom
flange. For this design the wind force, W , is applied
to the bottom flange only because the top flange acts
compositely with the deck. The wind force is calcu-
lated as

W = γ pBd

2
where

W = wind force per unit length applied to
the flange

pB = base horizontal wind pressure (ksf)
pB = 0.050 ksf [A3.8.1.2]
d = depth of the member (ft)
γ = load factor for the particular group

loading combination from Table 5.1
[Table A3.4.1-1], for this case
strength III applies = 1.4

Consider the negative moment region first since it
provides a larger value for d . The calculated wind
load is conservative for the positive moment region.

d = 60+ 2 (1.25) = 62.5 in. = 5.10 ft

therefore

W = 1.4 (0.050) (5.1)

2
= 0.18 k/ft

The assumed load path taken by these forces is as
follows:
i. The forces in the bottom flange are transmitted to

points where cross frames exist.
ii. The cross frames transfer the forces into the deck.
iii. The forces acting on the top half of the girder, deck,

barriers, and vehicles are transmitted directly into
the deck.

iv. The deck acts as a diaphragm transmitting the
forces to the supports.
This load path is very conservative.
For this load path the maximum moment in the

flange due to the wind load is as follows:

Mw = WL2
b

10

where Lb = bracing point spacing
Using the maximum unbraced length for the

positive moment region of 21.67 ft is conservative.
Therefore the maximum lateral moment in the

flange of the exterior girder due to the factored
loading is

Mw = (0.18) (21.67)2

10
= 8.5 k ft

The section modulus for the flange is

Sf = 1
6 (1.25) (16)2 = 53.3 in.3

and the maximum bending stress in the flange is

fl = Mw

Sf

= 8.5 (12)

53.5
= 1.9 ksi

which is a very small stress and any interaction with
gravity loads can be neglected.
The maximum horizontal wind force applied to

each brace point is also determined using maximum
spacing. Therefore, the values are conservative in
most sections of the bridge.

Pw = WL b = (0.18) (21.67) = 3.9 kips

The cross frames must be designed to transfer all
the lateral forces to the bearings. Figure E20.3-49
illustrates the transmittal of forces. As stated before,
the forces acting on the deck, barrier, and upper
half of the girder, F 1, are directly transmitted into
the deck. These forces are transferred to all of the
girders. The forces acting on the bottom half of the
girder, F 2, are transferred to the bottom flange.
The wind force, W , was previously calculated for

the bottom flange to be 0.180 k/ft. This force is re-
ferred to as F 2 in Figure E20.3-49. F 1 is calculated
as

FL = 1.4 (0.050) (8.71) − 0.180 = 0.43 k/ft

c. Intermediate Cross Frames The intermediate
cross frames are designed using X-bracing along
with a strut across the bottom flanges as shown in
Figure E20.3-50. Single angles, Grade 50W steel,

Fig. E20.3-49 Wind load acting on bridge exterior.
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Fig. E20.3-50 Typical intermediate cross frame.

are used for the braces. For the cross braces acting in
tension, 3 × 3 × 5

16 angles are used (Ag = 1.78 in.2

and rz = 0.583 in.). For the compression strut, a 4
× 4 × 5

16 angle is used (Ag = 2.40 in.2 and rz =
0.781 in.). These sections are considered as practical
minimums. Section properties are given in AISC
(2005).
The maximum force on the bottom flange at the

brace point is

Pwb = 0.180 (21.67) = 3.9 kips

In order to find forces acting in the cross brace
and the compression strut, the section is treated like
a truss with tension diagonals only (counters) and
solved using statics. From this analysis it is deter-
mined that the cross braces should be designed for a
tensile force of 4.5 kips, using 30◦ as themember ori-
entation. The strut across the bottom flanges should
be designed for a compressive force of 3.9 kips.
Check the 3 × 3 × 5

16 cross brace for tensile resis-
tance [A6.8.2]:

Pr = φyPny = φyFyAg = (0.95) (50) (1.78)

= 85 kips

The tensile force in the cross brace is only 4.5 kips.
Therefore, the cross brace has adequate strength.
Check the limiting slenderness ratio of the cross

brace for tension members [A6.8.4]. For bracing
members the limiting slenderness ratio is

L

r
≤ 240

where
L = unbraced length of the cross brace (in.)
r = minimum radius of gyration of the

cross brace (in.)

L

r
= 96/cos (30)

0.583
= 190 ≤ 240

Therefore use 3 × 3 × 5
16 angles for the interme-

diate cross braces.

Check the 4 × 4 × 5
16 strut for compressive resis-

tance [A6.9.2.1].
Example computations for the compression ele-

ment are provided in Chapter 19 and are not repeated
here. From AISC (2005):

Pr = φcPn = 49.6 kips

For KL = (0.75)(8) = 7 ft
Therefore the 4 × 4 × 5

16 strut is adequate for the
intermediate cross frames.

d. Cross Frames over Supports The cross frames over
the supports are designed using X-bracing along
with a strut across the bottom flanges as shown in
Figure E20.3-51. Single angles, M270 Grade 50W
steel, are used for the braces. The sections used for
the intermediate cross frames are also used for these
sections. For the cross braces acting in tension, 3 ×
3 × 5

16 angles are used. For compression strut, a 4
× 4 × 5

16 angle is used.
The intermediate cross frames, through their ten-

sion diagonals, transfer the wind load between sup-
ports into the deck diaphragm. At the supports, the
cross frames transfer the total tributary wind load in
the deck diaphragm down to the bearings.
The force taken from the deck diaphragm by each

cross frame at the supports is approximately

Pframe =
(
F1 + F2

)
Lave

5 frames
= (0.43+ 0.180) 110

5
= 12.8 kips

The force on the bottom flange of each girder that
must be transmitted through the bearings to the sup-
port is approximately

Pgirder =
(
F1 + F2

)
Lave

6 girders
= (0.43 + 0.180) 110

6
= 10.6 kips

In order to find the forces acting in the cross brace
and the compression strut, the section is treated like
a truss with counters and solved using statics. From

Fig. E20.3-51 Typical cross frame over supports.
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this analysis, it is determined that the cross braces
need to be designed for a tensile force of 12.2 kips.
The strut across the bottom flanges needs to be de-
signed for a compressive force of 12.8 kips. Because
the forces above are less than the capacities of the
members of the intermediate cross frames, and the
same members are used, the chosen members are ad-
equate. Therefore, use 3× 3× 5

16 angles for the cross
bracing, and a 4 × 4 × 5

16 strut for the cross frames
over the supports.

e. Cross Frames over Abutments The cross frames
over the abutments are designed using an inverted
V-bracing (K-bracing) along with a diaphragm
across the top flange and a strut across the bottom
flange as shown in Figure E20.3-52. Single angles,
M 270 Grade 50W steel, are used for the braces. For
the cross braces acting in tension, 3 × 3 × 5

16 angles
are used. For the compression diaphragm across the
top flange a W12 × 40 is used to provide additional
stiffness at the discontinuous end of the bridge. For
the strut across the bottom flange, a 4 × 4 × 5

16
angle is used.
Because the tributarywind load length for the abut-

ments is 50 ft, the forces taken by the cross frames
and girders can be determined from the values at the
support as

Pframe = 50
110 (12.8) = 5.82 kips

Pgirder = 50
110 (10.6) = 4.82 kips

In order to find the forces acting in the cross
brace and the compression diaphragm, the section
is treated like a truss with counters and solved using
statics. From this analysis it is determined that the
cross bracing carries 5.57 kips and the strut across
the bottom flanges carries 5.82 kips. Both of these
loads are less than the capacities of the members.
The diaphragm across the top flanges should be
designed for a compressive force of 5.82 kips.
Check the W12 × 40 diaphragm for compressive

resistance [A6.9.2.1]. From AISC (2005) for KL =
8 ft:

Pr = φcPn = 439 kips

This is much more than required, therefore use
W12 × 40 diaphragm for the cross frames over the
abutments.

Fig. E20.3-52 Typical cross frame at abutments.

Fig. E20.3-53 Cross section of plate girder bridge showing gird-
ers and cross frames.

K. Design Sketch The design of the steel plate girder
bridge is shown in Figure E20.3-53. Because the many
details cannot be provided in a single drawing, the
reader is referred to the figures already provided. For the
cross section of the plate girder and slab, refer back to
Figures E20.3-18 and E20.3-36. For stiffener spacing,
refer to Figure E20.3-44. For shear stud pitch, refer back
to Figure E20.3-47. For cross-frame locations, refer to
Figure E20.3-48, and for cross-frame design, refer to
Figures E20.3-50–E20.3-53.
The engineer must also design welds, splices, and

bolted connections. These topics were not covered in
this example because of lack of space.
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APPENDIX A

Influence Functions
for Deck Analysis

Throughout the book, several examples require the analysis
of the deck for uniform and concentrated (line) loads. To
facilitate analysis, influence functions were developed for
a deck with five interior bays and two cantilevers. The
widths (S ) of the interior bays are assumed to be the same

and the cantilevers are assumed to be of length (L ). The
required ordinates and areas are given in Table A.1. The
notes at the bottom of the table describe its use. Examples
are given in Chapters 9 and 14 to illustrate analysis using
this table.

Table A.1 Influence Functions for Deck Analysisa

Location M 200 M 204 M 205 M 300 R 200
b

C 100 −1.0000 −0.4920 −0.3650 0.2700 1 + 1.270L/S
A 101 −0.9000 −0.4428 −0.3285 0.2430 1 + 1.143L/S
N 102 −0.8000 −0.3936 −0.2920 0.2160 1 + 1.016L/S
T 103 −0.7000 −0.3444 −0.2555 0.1890 1 + 0.889L/S
I 104 −0.6000 −0.2952 −0.2190 0.1620 1 + 0.762L/S
L 105 −0.5000 −0.2460 −0.1825 0.1350 1 + 0.635L/S
E 106 −0.4000 −0.1968 −0.1460 0.1080 1 + 0.508L/S
V 107 −0.3000 −0.1476 −0.1095 0.0810 1 + 0.381L/S
E 108 −0.2000 −0.0984 −0.0730 0.0540 1 + 0.254L/S
R 109 −0.1000 −0.0492 −0.0365 0.0270 1 + 0.127L/S

110 or 200 0.0000 0.0000 0.0000 0.0000 1.0000

201 0.0000 0.0494 0.0367 −0.0265 0.8735
202 0.0000 0.0994 0.0743 −0.0514 0.7486
203 0.0000 0.1508 0.1134 −0.0731 0.6269
204 0.0000 0.2040 0.1150 −0.0900 0.5100
205 0.0000 0.1598 0.1998 −0.1004 0.3996
206 0.0000 0.1189 0.1486 −0.1029 0.2971
207 0.0000 0.0818 0.1022 −0.0954 0.2044
208 0.0000 0.0491 0.0614 −0.0771 0.1229
209 0.0000 0.0217 0.0271 −0.0458 0.0542

210 or 300 0.0000 0.0000 0.0000 0.0000 0.0000

(continued overleaf )
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Table A.1 (Continued )

Location M 200 M 204 M 205 M 300 R 200
b

301 0.0000 −0.0155 −0.0194 −0.0387 0.0387
302 0.0000 −0.0254 −0.0317 −0.0634 −0.0634
303 0.0000 −0.0305 −0.0381 −0.0761 −0.0761
304 0.0000 −0.0315 −0.0394 −0.0789 −0.0789
305 0.0000 −0.0295 −0.0368 −0.0737 −0.0737
306 0.0000 −0.0250 −0.0313 −0.0626 −0.0626
307 0.0000 −0.0191 −0.0238 −0.0476 −0.0476
308 0.0000 −0.0123 −0.0154 −0.0309 −0.0309
309 0.0000 −0.0057 −0.0072 −0.0143 −0.0143

310 or 400 0.0000 0.0000 0.0000 0.0000 0.0000

401 0.0000 0.0042 0.0052 0.0104 0.0104
402 0.0000 0.0069 0.0086 0.0171 0.0171
403 0.0000 0.0083 0.0103 0.0206 0.0206
404 0.0000 0.0086 0.0107 0.0214 0.0214
405 0.0000 0.0080 0.0100 0.0201 0.0201
406 0.0000 0.0069 0.0086 0.0171 0.0171
407 0.0000 0.0053 0.0066 0.0131 0.0131
408 0.0000 0.0034 0.0043 0.0086 0.0086
409 0.0000 0.0016 0.0020 0.0040 0.0040

410 or 500 0.0000 0.0000 0.0000 0.0000 0.0000

501 0.0000 −0.0012 −0.0015 −0.0031 −0.0031
502 0.0000 −0.0021 −0.0026 −0.0051 −0.0051
503 0.0000 −0.0026 −0.0032 −0.0064 −0.0064
504 0.0000 −0.0027 −0.0034 −0.0069 −0.0069
505 0.0000 −0.0027 −0.0033 −0.0067 −0.0067
506 0.0000 −0.0024 −0.0030 −0.0060 −0.0060
507 0.0000 −0.0020 −0.0024 −0.0049 −0.0049
508 0.0000 −0.0014 −0.0017 −0.0034 −0.0034
509 0.0000 −0.0007 −0.0009 −0.0018 −0.0018
510 0.0000 0.0000 0.0000 0.0000 0.0000

Area + (w/o cantilever)c 0.0000 0.0986 0.0982 0.0134 0.4464
Area − (w/o cantilever)c 0.0000 −0.0214 −0.0268 −0.1205 −0.0536
Area Net (w/o cantilever)c 0.0000 0.0772 0.0714 −0.1071 0.3928

Area + (cantilever)d 0.0000 0.0000 0.0000 0.1350 1.0 + 0.635L/S
Area − (cantilever)d −0.5000 −0.2460 −0.1825 0.0000 0.0000
Area Net − (cantilever)d −0.5000 −0.2460 −0.1825 0.1350 1.0 + 0.635L/S

aMultiply coefficients by the span length where the load is applied, that is, L on cantilever and S in the other spans.
bDo not multiply by the cantilever span length; use formulas or values given.
cMultiply moment area coefficient by S2, reaction area coefficient by S.
dMultiply moment area coefficient by L2, reaction area coefficient by L.



APPENDIX B

Transverse Deck Moments
Per AASHTO Appendix A4

Table B.1 may be used in determining the design moments.
This table is the same as AASHTO A4-1. The follow-
ing assumptions, limitations and observations were used
(AASHTO 2010):

• Moments are calculated using the equivalent strip
method.

• Concrete slabs are supported on parallel girders.
• Multiple presence factors and the dynamic load al-
lowance are included.

• See Article 4.6.2.1.6 for the distance between the centers
of the girders to the location of the design sections for
negative moments.

• Interpolation between the listed values may be used for
distances other than those listed in Table B.1.

• Moments are applicable for decks supported on at least
three girders and having a width of not less than 14.0 ft
between the centerlines of the exterior girders.

• Moments represent the upper bound for interior regions
and for any specific girder spacing were taken as the
maximum value calculated using different number of
girders.

• For each spacing and number of girders, the following
two cases of overhang width were considered:

a. Minimum total overhang width of 21.0 in. measured
from the center of the exterior girder

b. Maximum total overhang width equal to the smaller
of 0.625 times the girder spacing and 6.0 ft

• A railing system width of 21.0 in. was used to determine
the clear overhang width.

• Moments do not apply to the deck overhangs and the ad-
jacent regions of the deck that need to be designed taking
into account the provisions of Article A13.4.1 (vehicle
crash for extreme limit state).

• Two 25-kip axles of the tandem, placed at 4.0 ft from
each other, produced maximum effects under each of the
tires approximately equal to the effect of the 32-kip truck
axle.

• Tandem produces a larger total moment, but this
moment is spread over a larger width. It was con-
cluded that repeating calculations with a different strip
width for the tandem would not result in a significant
difference.

Table B.1 Maximum Live-LoadMoments per Unit Width, kip-ft/ft (including multiple presence and dynamic load
allowance)

M−

S M + Distance from CL of Girder to Design Section for Negative Moment

ft. in. 0 in. 3 in. 6 in. 9 in. 12 in. 18 in. 24 in.

4′ −0′′ 4.68 2.68 2.07 1.74 1.6 1.5 1.34 1.25
4′ −3′′ 4.66 2.73 2.25 1.95 1.74 1.57 1.33 1.2
4′ −6′′ 4.63 3 2.58 2.19 1.9 1.65 1.32 1.18
4′ −9′′ 4.64 3.38 2.9 2.43 2.07 1.74 1.29 1.2
5′ −0′′ 4.65 3.74 3.2 2.66 2.24 1.83 1.26 1.12
5′ −3′′ 4.67 4.06 3.47 2.89 2.41 1.95 1.28 0.98
5′ −6′′ 4.71 4.36 3.73 3.11 2.58 2.07 1.3 0.99
5′ −9′′ 4.77 4.63 3.97 3.31 2.73 2.19 1.32 1.02
6′ −0′′ 4.83 4.88 4.19 3.5 2.88 2.31 1.39 1.07
6′ −3′′ 4.91 5.1 4.39 3.68 3.02 2.42 1.45 1.13
6′ −6′′ 5 5.31 4.57 3.84 3.15 2.53 1.5 1.2
6′ −9′′ 5.1 5.5 4.74 3.99 3.27 2.64 1.58 1.28

(continued overleaf )
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Table B.1 (Continued )

M−

S M + Distance from CL of Girder to Design Section for Negative Moment

ft. in. 0 in. 3 in. 6 in. 9 in. 12 in. 18 in. 24 in.

7′ −0′′ 5.21 5.98 5.17 4.36 3.56 2.84 1.63 1.37
7′ −3′′ 5.32 6.13 5.31 4.49 3.68 2.96 1.65 1.51
7′ −6′′ 5.44 6.26 5.43 4.61 3.78 3.15 1.88 1.72
7′ −9′′ 5.56 6.38 5.54 4.71 3.88 3.3 2.21 1.94
8′ −0′′ 5.69 6.48 5.65 4.81 3.98 3.43 2.49 2.16
8′ −3′′ 5.83 6.58 5.74 4.9 4.06 3.53 2.74 2.37
8′ −6′′ 5.99 6.66 5.82 4.98 4.14 3.61 2.96 2.58
8′ −9′′ 6.14 6.74 5.9 5.06 4.22 3.67 3.15 2.79
9′ −0′′ 6.29 6.81 5.97 5.13 4.28 3.71 3.31 3
9′ −3′′ 6.44 6.87 6.03 5.19 4.4 3.82 3.47 3.2
9′ −6′′ 6.59 7.15 6.31 5.46 4.66 4.04 3.68 3.39
9′ −9′′ 6.74 7.51 6.65 5.8 4.94 4.21 3.89 3.58

10′ −0′′ 6.89 7.85 6.99 6.13 5.26 4.41 4.09 3.77
10′ −3′′ 7.03 8.19 7.32 6.45 5.58 4.71 4.29 3.96
10′ −6′′ 7.17 8.52 7.64 6.77 5.89 5.02 4.48 4.15
10′ −9′′ 7.32 8.83 7.95 7.08 6.2 5.32 4.68 4.34
11′ −0′′ 7.46 9.14 8.26 7.38 6.5 5.62 4.86 4.52
11′ −3′′ 7.6 9.44 8.55 7.67 6.79 5.91 5.04 4.7
11′ −6′′ 7.74 9.72 8.84 7.96 7.07 6.19 5.22 4.87
11′ −9′′ 7.88 10.01 9.12 8.24 7.36 6.47 5.4 5.05
12′ −0′′ 8.01 10.28 9.4 8.51 7.63 6.74 5.56 5.21
12′ −3′′ 8.15 10.55 9.67 8.78 7.9 7.02 5.75 5.38
12′ −6′′ 8.28 10.81 9.93 9.04 8.16 7.28 5.97 5.54
12′ −9′′ 8.41 11.06 10.18 9.3 8.42 7.54 6.18 5.7
13′ −0′′ 8.54 11.31 10.43 9.55 8.67 7.79 6.38 5.86
13′ −3′′ 8.66 11.55 10.67 9.8 8.92 8.04 6.59 6.01
13′ −6′′ 8.78 11.79 10.91 10.03 9.16 8.28 6.79 6.16
13′ −9′′ 8.9 12.02 11.14 10.27 9.4 8.52 6.99 6.3
14′ −0′′ 9.02 12.24 11.37 10.5 9.63 8.76 7.18 6.45
14′ −3′′ 9.14 12.46 11.59 10.72 9.85 8.99 7.38 6.58
14′ −6′′ 9.25 12.67 11.81 10.94 10.08 9.21 7.57 6.72
14′ −9′′ 9.36 12.88 12.02 11.16 10.3 9.44 7.76 6.86
15′ −0′′ 9.47 13.09 12.23 11.37 10.51 9.65 7.94 7.02



APPENDIX C

Metal Reinforcement Information

Table C.1 Standard U.S. reinforcing bars

Designation Nominal Nominal Unit
Number Diameter (in.) Area (in.2) Weight (lb/ft)

2 0.250 0.05 0.167
3 0.375 0.11 0.376
4 0.500 0.20 0.668
5 0.625 0.31 1.043
6 0.750 0.44 1.502
7 0.875 0.60 2.044
8 1.000 0.79 2.670
9 1.128 1.00 3.400
10 1.270 1.27 4.303
11 1.410 1.56 5.313
14 1.693 2.25 7.650
18 2.257 4.00 13.600

Table C.2 Standard U.S. prestressing tendons

Nominal Nominal Weight
Tendon Type Grade f pu ksi Diameter (in.) Area (in.2) (lb/ft)

Seven-wire strand 270 0.375 0.085 0.29
270 0.500 0.153 0.52
270 0.600 0.216 0.74

Prestressing wire 0.192 0.0289 0.098
250 0.196 0.0302 0.100
240 0.250 0.0491 0.170
235 0.276 0.0598 0.200

Prestressing bars (plain) 160 0.750 0.442 1.50
160 0.875 0.601 2.04
160 1.000 0.785 2.67
160 1.125 0.994 3.38
160 1.250 1.227 4.17

Prestressing bars (deformed) 157 0.625 0.28 0.98
150 1.000 0.85 3.01
150 1.250 1.25 4.39
150 1.375 1.58 5.56
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Table C.3 Cross-sectional area (in.2) of combinations of U.S. bars of the same size

Bar NumberNumber
of Bars 3 4 5 6 7 8 9 10 11 14 18

1 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56 2.25 4.00
2 0.22 0.39 0.61 0.88 1.20 1.57 2.00 2.54 3.12 4.50 8.00
3 0.33 0.58 0.91 1.32 1.80 2.35 3.00 3.79 4.68 6.75 12.00
4 0.44 0.78 1.23 1.77 2.41 3.14 4.00 5.06 6.25 9.00 16.00
5 0.55 0.98 1.53 2.21 3.01 3.93 5.00 6.33 7.81 11.25 20.00
6 0.66 1.18 1.84 2.65 3.61 4.71 6.00 7.59 9.37 13.50 24.00
7 0.77 1.37 2.15 3.09 4.21 5.50 7.00 8.86 10.94 15.75 28.00
8 0.88 1.57 2.45 3.53 4.81 6.28 8.00 10.12 12.48 18.00 32.00
9 0.99 1.77 2.76 3.98 5.41 7.07 9.00 11.39 14.06 20.25 36.00
10 1.10 1.96 3.07 4.42 6.01 7.85 10.00 12.66 15.62 22.50 40.00
11 1.21 2.16 3.37 4.84 6.61 8.64 11.00 13.92 17.19 24.75 44.00
12 1.32 2.36 3.68 5.30 7.22 9.43 12.00 15.19 18.75 27.00 48.00

Table C.4 Cross-sectional area per foot width (in.2/ft) of U.S. bars of the same size

Bar NumberBar
Spacing (in.) 3 4 5 6 7 8 9 10 11

3.0 0.44 0.78 1.23 1.77 2.40 3.14 4.00 5.06 6.25
3.5 0.38 0.67 1.05 1.51 2.06 2.69 3.43 4.34 5.36
4.0 0.33 0.59 0.92 1.32 1.80 2.36 3.00 3.80 4.68
4.5 0.29 0.52 0.82 1.18 1.60 2.09 2.67 3.37 4.17
5.0 0.26 0.47 0.74 1.06 1.44 1.88 2.40 3.04 3.75
5.5 0.24 0.43 0.67 0.96 1.31 1.71 2.18 2.76 3.41
6.0 0.22 0.39 0.61 0.88 1.20 1.57 2.00 2.53 3.12
6.5 0.20 0.36 0.57 0.82 1.11 1.45 1.85 2.34 2.89
7.0 0.19 0.34 0.53 0.76 1.03 1.35 1.71 2.17 2.68
7.5 0.18 0.31 0.49 0.71 0.96 1.26 1.60 2.02 2.50
8.0 0.17 0.29 0.46 0.66 0.90 1.18 1.50 1.89 2.34
9.0 0.15 0.26 0.41 0.59 0.80 1.05 1.33 1.69 2.08

10.0 0.13 0.24 0.37 0.53 0.72 0.94 1.20 1.52 1.87
12.0 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56
15.0 0.09 0.16 0.25 0.35 0.48 0.63 0.80 1.02 1.25
18.0 0.07 0.13 0.21 0.29 0.40 0.53 0.67 0.85 1.04



APPENDIX D

Refined Estimate of
Time-Dependent Losses

This appendix is based upon [A5.9.5.4] and is detailed and
of interest to those practicing prestressed concrete design or
studying these systems. AASHTO (2010) is used as the basis
for this appendix .
When members have unusual dimensions, level of pre-

stressing, construction staging, or concrete constituent
materials, a refined method of analysis or computer time-
step methods shall be used. For nonsegmental prestressed
members, estimates of losses due to each time-dependent
source, such as creep, shrinkage, or relaxation, can lead to
a better estimate of total losses compared with the values
obtained by the approximate methods.
For segmental construction and posttensioned spliced pre-

cast girders, other than during preliminary design, prestress
losses shall be determined by the time-step method, includ-
ing consideration of the time-dependent construction stages
and schedule shown in the contract documents. For compo-
nents with combined pretensioning and posttensioning, and
where posttensioning is applied in more than one stage, the
effects of subsequent prestressing on the creep loss for pre-
vious prestressing shall be considered [A5.9.5.4.1].
In the refined analysis, the long-term loss �f pLT is the sum

of the individual losses due to creep, shrinkage, and relax-
ation that occur separately before and after placement of deck
concrete. This relationship is expressed as

�fpLT = (
�fpSR + �fpCR + �fpR1

)
id

+ (
�fpSD + �fpCD + �fpR2 − �fpSS

)
df

(D.1)

where
�f pSR = prestress loss due to shrinkage of girder

concrete between transfer and deck
placement (ksi)

�f pCR = prestress loss due to creep of girder
concrete between transfer and deck
placement (ksi)

�f pR1 = prestress loss due to relaxation of
prestressing strands between transfer and
deck placement (ksi)

�f pR2 = prestress loss due to relaxation of
prestressing strands in composite section
after deck placement (ksi)

�f pSD = prestress loss due to shrinkage of girder
concrete after deck placement (ksi)

�f pCD = prestress loss due to creep of girder
concrete after deck placement (ksi)

�f pSS = prestress gain due to shrinkage of deck
composite section (ksi)

(�f pSR + �f pCR + �f pR1)id = sum of
time-dependent
prestress losses
between transfer
and deck
placement (ksi)

(�f pSD + �f pCD + �f pR2 − �f pSS)df = sum of
time-dependent
prestress losses
after deck
placement (ksi)

Each of these individual time-dependent losses can be
identified on the stress vs. time schematic of Figure 14.13.
The estimates of the individual losses are based on research

published in Tadros et al. (2003). The approach additionally
accounts for interaction between the precast and the cast-in-
place concrete components of a composite member and for
variability of creep and shrinkage properties of concrete by
linking the loss formulas to the creep and shrinkage predic-
tion formulas of Eqs. 13.24–13.26 [C5.9.5.4.1].

Shrinkage Loss of Girder Concrete Between Transfer and
Deck Placement [A5.9.5.4.2a] Shrinkage of concrete is a
time-dependent loss that is influenced by the curing method
used, the volume-to-surface ratioV /S of themember, thewa-
ter content of the concrete mix, the strength of the concrete
at transfer, and the ambient relative humidity H . The total
long-time shrinkage strain can range from 0.4 × 10–3 in./in.
to 0.8 × 10–3 in./in. over the life of a member with about
90% occurring in the first year (see Fig. 13.11).
The shortening of the concrete due to shrinkage strain con-

verts to a tensile prestress loss in the tendonswhenmultiplied
by Ep, so that the prestress loss due to shrinkage of the girder
concrete between time of transfer to deck placement �f pSR
shall be determined as [A5.9.5.4.2a]

�fpSR = εbidEpKid (D.2)

in which

Kid = 1

1 + Ep

Eci

Aps
Ag

(
1 + Age2pg

Ig

) [
1 + 0.7ψb

(
tf , ti

)] (D.3)
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where
εbid = concrete shrinkage strain of girder

between the time of transfer and deck
placement per Eq. 14.7

K id = transformed section coefficient that
accounts for time-dependent interaction
between concrete and bonded steel in the
section being considered for time period
between transfer and deck placement

epg = eccentricity of strands with respect to
centroid of girder (in.)

ψb(tf, ti) = girder creep coefficient at final time
due to loading introduced at transfer per
Eq. 13.26

tf = final age (days)
ti = age at transfer (days)

The term K id includes an “age-adjusted” effective mod-
ulus of elasticity to transform the section. By using the
age-adjusted effective modulus of elasticity, elastic and
creep strains can be combined and treated as if they were
elastic deformations. The ratio of creep strain at time tf to the
elastic strain caused by the load applied at time of transfer is
the girder creep coefficient ψb(tf, ti). For constant sustained
stress f ci, the elastic-plus-creep strain is equal to

[
1 + ψb

(
tf , ti

)] fci

Eci
= fci

E
′
ci

where E
′
ci is an effective modulus of elasticity used to calcu-

late the combined elastic-plus-creep strain for constant stress
given by

E
′
ci = Eci

1 + ψb

(
tf , ti

)

If the concrete stress varies with time, the elastic-plus-
creep strain becomes

[
1 + χψb

(
tf , ti

)] fci

Eci
= fci

E
′′
ci

where E
′′
ci is the age-adjusted effective modulus of elastic-

ity of concrete for variable stress-inducing effects, such as
prestress loss, defined as

E
′′
ci = Eci

1 + χψb

(
tf , ti

)

andχ is the aging coefficient that accounts for concrete stress
variability with time that ranges between 0.6 and 0.8 for pre-
cast prestressed concrete members and taken as 0.7 (Dilger,
1982). Because shrinkage is stress independent, the total con-
crete strain is

εci = εsh + fci

E
′′
ci

Equating the change in strain in the prestressing steel �εp
and the change in strain in concrete at the centroid of the

prestressing steel �εc between the time of transfer and deck
placement due to a change in the prestress force �Pp gives

�εp = �εc

�Pp

ApsEp

= εbid −
(

�Pp

E
′′
ciAg

+ �Pp

E
′′
ci

e2pg

Ig

)

Multiplication of the above equation by Ep and combina-
tion of terms gives

�Pp

Aps

[
1 + EpAps

E
′′
ciAg

(
1 + Age

2
pg

Ig

)]
= εbidEp

Substituting the definition of E
′′
ci and the value of 0.7 for

χ , the prestress loss due to shrinkage of girder concrete
between the time of transfer and deck placement becomes
[A5.9.5.4.2a]

�fpSR = �Pp

Aps

= εbidEp

1 + Ep

Eci

Aps
Ag

(
1 + Age2pg

Ig

)[
1 + 0.7ψb

(
tf , ti

)]

= εbidEpKid

Creep Loss of Girder Concrete Between Transfer and Deck
Placement [A5.9.5.4.2b] Creep of concrete is a time-
dependent phenomenon in which deformation increases
under constant stress due primarily to the viscous flow of
the hydrated cement paste. Creep depends on the age of the
concrete, the type of cement, the stiffness of the aggregate,
the proportions of the concrete mixture, and the method
of curing. The additional long-time concrete strains due to
creep can be more than double the initial strain eci at the
time load is applied.
The prestress loss due to creep of girder concrete between

time of transfer and deck placement �f pCR shall be deter-
mined by [A5.9.5.4.2b]

�fpCR = Ep

Eci
fcgpψb

(
td, ti

)
Kid (D.4)

where
ψb(td, ti) = girder creep coefficient at time of deck

placement due to loading introduced at
transfer per Eq. 13.26

td = age at deck placement

At any time, the creep strain in the concrete can be related
to the initial elastic strain by the creep coefficient. The con-
crete creep strain at the centroid of the prestressing steel for
the time period between transfer and deck placement is

εpc = fcgp

Eci
ψb

(
td, ti

)
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Equating the change in strain in the prestressing steel �εp
and the change in strain in concrete at the centroid of the
prestressing steel �εpc between the time of transfer and
deck placement due to a change in the prestress force
�Pp gives

�εp = �εpc

�Pp

ApsEp

= fcgp

Eci
ψb

(
td, ti

) −
(

�Pp

E
′′
ciAg

+ �Pp

E
′′
ci

e2pg

Ig

)

Substituting the definition ofE
′′
ci and the value of 0.7 for χ

gives

�Pp

Aps Ep

= fcgp

Eci
ψb

(
td, ti

) −
(

�Pp

Eci Ag

+ �Pp

Eci

e2pg

Ig

)

× [
1 + 0.7ψb

(
tf , ti

)]

Multiplication of the above equation by Ep and combina-
tion of terms gives

�Pp

Aps

{
1 + EpAps

EciAg

(
1 + Age

2
pg

Ig

)
[
1 + 0.7ψb

(
tf , ti

)]
}

= Ep

Eci
fcgpψb

(
td, ti

)

so that the prestress loss due to creep of girder concrete
between the time of transfer and deck placement becomes
[A5.9.5.4.2b]

�fpCR = �Pp

Aps
= Ep

Eci
fcgpψb

(
td, ti

)
Kid

Relaxation Loss of Prestressing Strands Between Transfer
and Deck Placement [A5.9.5.4.2c] Relaxation of the pre-
stressing tendons is a time-dependent loss of prestress that
occurs when the tendon is held at constant strain. The total
relaxation loss �f pR is separated into two components

�fpR = �fpR1 + �fpR2 (D.5)

where �f pR1 is the relaxation loss between time of transfer
of the prestressing force and deck placement and �f pR2 is
the relaxation loss after deck placement.
The prestress loss due to relaxation of prestressing strands

between time of transfer and deck placement �f pR1 shall be
determined as [A5.9.5.4.2c]

�fpR1 = fpt

KL

(
fpt

fpy
− 0.55

)
(D.6)

where
f pt = stress in prestressing strands immediately

after transfer, taken not less than 0.55f py
in Eq. D.6

KL = 30 for low-relaxation strands and 7 for other
prestressing steel, unless more accurate
manufacturer’s data are available

Equation D.6 is appropriate for normal temperature
ranges only. Relaxation losses increase with increasing
temperatures [C5.9.5.4.2c].
If a strand is stressed and then held at a constant strain, the

stress decreases with time. The decrease in stress is called
intrinsic (part of its essential nature) relaxation loss. Strands
commonly used in practice are low-relaxation strands. As a
result, the relaxation prestress loss is relatively small: of the
order of 1.8–4.0 ksi (Tadros et al., 2003) and the relaxation
loss �f pR1 may be assumed as 1.2 ksi for low-relaxation
strands.
Tests by Magura et al. (1964) showed that the intrinsic re-

laxation varied in approximately linear manner with the log
of the time t under stress. Based on their tests, Magura et al.
(1964) recommended the following expression for the intrin-
sic relaxation of stress-relieved strands:

Li = fpt

10
log t

(
fpt

fpy
− 0.55

)

where f pt is the stress in prestressing strands immediately af-
ter transfer and t is the time under load in hours. This expres-
sion has become the standard of practice in many references.
A modified version of the above equation is obtained by the
substitution of t (days) = td − ti and the constant K

′
L to give

Li = fpt

K
′
L

log 24td
log 24ti

(
fpt

fpy
− 0.55

)

where K
′
L is 45 for low-relaxation strands and 10 for stress-

relieved strands.
The relaxation loss from time of transfer to deck placement

was further refined by Tadros et al. (2003) using the intrinsic
relaxation loss Li, the reduction factor ϕi due to creep and
shrinkage of concrete, and the factor K id to give

�fpR1 = φiLiKid

where

φi = 1 − 3
(
�fpSH + �fpCR

)

fpt

which results in [C5.9.5.4.2c]

�fpR1 =
[
1 − 3

(
�fpSH + �fpCR

)

fpt

]

×
[

fpt

K
′
L

log 24td
log 24ti

(
fpt

fpy
− 0.55

)]
Kid

Equation D.6 is an approximation of the above formula
with the following typical values assumed: ti = 0.75 day,
td = 120 days, φi = 0.67, and K id = 0.8.
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Shrinkage Loss of Girder Concrete in the Composite
Section After Deck Placement [A5.9.5.4.3a] The pre-
stress loss due to shrinkage of girder concrete between time
of deck placement and final time �f pSD shall be determined
as [A5.9.5.4.3a]

�fpSD = εbdfEpKdf (D.7)

in which

Kdf = 1

1 + Ep

Eci

Aps
Ac

(
1 + Ace

2
pc

Ic

) [
1 + 0.7ψb

(
tf , ti

)]

(D.8)
where

εbdf = shrinkage strain of girder between time of deck
placement and final time per Eq. 13.24

K df = transformed section coefficient that accounts
for time-dependent interaction between
concrete and bonded steel in the section being
considered for time period between deck
placement and final time

epc = eccentricity of strands with respect to centroid
of composite section (in.)

Ac = area of section calculated using the net
composite concrete section properties of the
girder and the deck and the deck-to-girder
modular ratio (in.2)

Ic = moment of inertia of section calculated using
the net composite concrete section properties
of the girder and the deck and the
deck-to-girder modular ratio at service (in.4)

Equating the change in strain in the prestressing steel �εp
and the change in strain in concrete at the centroid of the
prestressing steel �εc between the time of deck placement
and final time due to a change in the prestress force �Pp
gives

�εp = �εc

�Pp

ApsEp

= εbdf −
(

�Pp

E
′′
ciAc

+ �Pp

E
′′
ci

e2pc

Ic

)

Multiplication of the above equation by Ep and combina-
tion of terms gives

�Pp

Aps

[
1 + EpAps

E
′′
ciAc

(
1 + Ace

2
pc

Ic

)]
= εbdfEp

Substituting the definition of E
′′
ci and the value of 0.7 for

χ , the prestress loss due to shrinkage of girder concrete be-
tween the time of deck placement and final time becomes
[A5.9.5.4.3a]

�fpSD = �Pp

Aps

= εbdfEp

1 + Ep

Eci

Aps
Ac

(
1 + Ace

2
pc

Ic

) [
1 + 0.7ψb

(
tf , ti

)]

= εbdfEpKdf

Creep Loss of Girder Concrete in the Composite Section
AfterDeck Placement [A5.9.5.4.3b] The prestress loss due
to creep of girder concrete between time of deck placement
and final time �f pCD shall be determined as [A5.9.5.4.3b]

�fpCD = Ep

Eci
fcgp

[
ψb

(
tf , ti

) − ψb

(
td, ti

)]
Kdf

+Ep

Eci
�fcdψb

(
tf , td

)
Kdf ≥ 0.0 (D.9)

where
�f cd = change in concrete stress at centroid of

prestressing strands due to long-term
losses between transfer and deck
placement, combined with deck weight
and superimposed loads (ksi)

ψb(tf, td) = girder creep coefficient at final time
due to loading at deck placement per
Eq. 13.26

The “≥0.0” in Eq. D.9 is needed because a negative value
could result in some cases of partial prestressing, but �f pCD
should not be taken as less than 0.0 [C5.9.5.4.3b].
The prestress loss due to the creep of girder concrete in the

composite section is caused by two sources: (1) the initial
prestressing force and the girder self-weight and (2) the deck
self-weight and superimposed dead loads. The creep strain
in the concrete at the centroid of the prestressing steel due to
the first set of forces can be related to the difference in the
elastic strains at final time and at time of deck placement by
using the appropriate creep coefficients, that is,

εpc1 = fcgp

Eci

[
ψb

(
tf , ti

) − ψb

(
td, ti

)]

Equating the change in strain in the prestressing steel �εp
and the change in strain in concrete at the centroid of the
prestressing steel �εpc1 between the time of deck place-
ment and final time due to a change in the prestress force
�Pp gives

�εp = �εpc1

�Pp

ApsEp

= fcgp

Eci

[
ψb

(
tf , ti

) − ψb

(
td, ti

)]

−
(

�Pp

E
′′
ciAc

+ �Pp

E
′′
ci

e2pc

Ic

)

Substituting the definition of E
′′
ci and the value of 0.7 for χ

gives

�Pp

ApsEp

= fcgp

Eci

[
ψb

(
tf , ti

) − ψb

(
td, ti

)]

−
(

�Pp

EciAc

+ �Pp

Eci

e2pc

Ic

)
[
1 + 0.7ψb

(
tf , ti

)]
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Multiplication of the above equation by Ep and combina-
tion of terms gives

�Pp

Aps

{
1 + EpAps

EciAc

(
1 + Ace

2
pc

Ic

)
[
1 + 0.7ψb

(
tf , ti

)]
}

= Ep

Eci
fcgp

[
ψb

(
tf , ti

) − ψb

(
td, ti

)]

so that the prestress loss due to creep of girder concrete in
the composite section between the time of deck placement
and final time caused by initial prestressing and girder self-
weight becomes

�fpCR1 = �Pp

Aps

= Ep

Eci
fcgp

[
ψb

(
tf , ti

) − ψb

(
td, ti

)]
Kdf

The change in creep strain in the concrete at the centroid of
the prestressing steel due to the second set of forces can be
related to the change in the elastic strains due to long-term
losses between transfer and deck placement combined with
deck weight on noncomposite section, and superimposed
weight on composite section, that is,

�εp = �εpc2

�Pp

ApsEp

= �fcd

Eci
ψb

(
tf , td

) −
(

�Pp

E
′′
ciAc

+ �Pp

E
′′
ci

e2pc

Ic

)

Substitutionof the definition ofE
′′
ci and the value of 0.7 for

χ gives

�Pp

ApsEp

= �fcd

Eci
ψb

(
tf , td

)

−
(

�Pp

EciAc

+ �Pp

Eci

e2pc

Ic

)
[
1 + 0.7ψb

(
tf , ti

)]

Multiplication of the above equation by Ep and combina-
tion of terms gives

�Pp

Aps

{
1 + EpAps

EciAc

(
1 + Ace

2
pc

Ic

)
[
1 + 0.7ψb

(
tf , ti

)]
}

= Ep

Eci
�fcdψb

(
tf , td

)

so that the prestress loss due to creep of girder concrete in
the composite section between the time of deck placement
and final time caused by deck weight and superimposed dead
loads becomes

�fpCR2 = �Pp

Aps
= Ep

Eci
�fcdψb

(
tf , td

)
Kdf

The combined prestress loss due to creep of girder concrete
in the composite section between the time of deck placement

and final time is [A5.9.5.4.3b]

�fpCR = �fpCD1 + �fpCD2

= Ep

Eci
fcgp

[
ψb

(
tf , ti

) − ψb

(
td, ti

)]
Kdf

+ Ep

Eci
�fcdψb

(
tf , td

)
Kdf

Relaxation Loss of Prestressing Strands After Deck Place-
ment [A5.9.5.4.3c] The prestress loss due to relaxation of
prestressing strands in composite section between time of
deck placement and final time �f pR2 shall be determined as
[A5.9.5.4.3c]

�fpR2 = �fpR1 (D.10)

Research indicates that about one-half of the losses due
to relaxation occur before deck placement; therefore, the
losses after deck placement are equal to the prior losses
[C5.9.5.4.3c].

Shrinkage Gain of Deck Concrete in Composite Section
After Deck Placement [A5.9.5.4.3d] The prestress gain
due to shrinkage of deck composite section �f pSS shall be
determined as [A5.9.5.4.3d]

�fpSS = Ep

Eci
�fcdfKdf

[
1 + 0.7ψb

(
tf , td

)]
(D.11)

in which

�fcdf = εddfAdEcd[
1 + 0.7ψd

(
tf , td

)]
(

1

Ac

+ epced

Ic

)
(D.12)

where
�f cdf = change in concrete stress at centroid of

prestressing strands due to shrinkage of
deck concrete (ksi)

eddf = shrinkage strain of deck concrete
between placement and final time per
Eq. 13.24

Ad = area of deck concrete (in.2)
E cd = modulus of elasticity of deck concrete

(ksi)
ed = eccentricity of deck with respect to the

transformed net composite section, taken
negative in common construction (in.)

ψd(tf, td) = creep coefficient of deck concrete at
final time due to loading introduced
shortly after deck placement (i.e.,
overlays, barriers, etc.) per Eq. 13.26

Deck shrinkageabove the centroid of the composite section
commonly creates prestress gain in the prestressing steel lo-
cated below the centroid because the deck concrete shrinks
more and creeps less than the precast girder concrete.
The shrinkage strain of deck concrete between time of deck

placement and final time εddf is determined by Eq. 13.24.
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The shrinkage strain is related to an elastic-plus-creep stress
through the age-adjusted effective modulus of the deck con-
crete, which gives

fddf = εddfE
′′
cd = εddfEci

1 + χψd

(
tf , td

)

Multiplication of the stress by the area of deck concrete Ad
gives a horizontal force P sd in the deck due to shrinkage of
deck concrete of

Psd = εddfAdEcd

1 + χψd

(
tf , td

)

The change in the concrete stress at the centroid of the
prestressing strands due to shrinkage of the deck concrete
becomes

�fcdf = Psd

Ac

+ Psded

Ic

epc

Substitution of P sd and the value of 0.7 for χ gives

�fcdf = εddfAdEcd

1 + 0.7ψd

(
tf , td

)
(

1

Ac

+ epced

Ic

)

and through an age-adjusted effective modulus of the girder
concrete, the stress produces a change in the concrete strain
at the centroid of the prestressing steel of

�εcdf = �fcdf

E
′′
c2

= �fcdf

Ec

[
1 + χψb

(
tf , td

)]

Equating the change in strain in the prestressing steel �εp
and the change in strain in concrete at the centroid of the
prestressing steel �εc between the time of deck placement
and final time due to a change in the prestress force �Pp
gives

�εp = �εc

�Pp

ApsEp

= �fcdf

Ec

[
1 + χψb

(
tf , td

)] −
(

�Pp

E
′′
ciAc

+ �Pp

E
′′
ci

e2pc

Ic

)

Substitution of the definition of E
′′
ci and the value of 0.7 for

χ gives

�Pp

ApsEp

= �fcdf

Ec

[
1 + 0.7ψb

(
tf , td

)]

−
(

�Pp

EciAc

+ �Pp

Eci

e2pc

Ic

)
[
1 + 0.7ψb

(
tf , ti

)]

Multiplication of the above equation by Ep and combina-
tion of terms gives

�Pp

Aps

{
1 + EpAps

EciAc

(
1 + Ace

2
pc

Ic

)
[
1 + 0.7ψb

(
tf , ti

)]
}

= Ep

Ec

�fcdf
[
1 + 0.7ψb

(
tf , td

)]

so that the prestress gain due to shrinkage of the deck
concrete in the composite section between the time of deck
placement and final time becomes [A5.9.5.4.3d]

�fpSS = �Pp

Aps
= Ep

Ec

�fcdfKdf

[
1 + 0.7ψb

(
tf , td

)]
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APPENDIX F

Live-Load Distribution—
Rigid Method

The live-load distribution factor method for moment to the
exterior girders is provided in [A4.6.2.2.d]. Unlike the other
equations and methods for other actions and locations of
analysis, this article specifies the so-called rigid method .
Here the bridge cross section is assumed to be rigid as
illustrated in Figure F.1. It is possible under this assumption
that the distribution factor could be greater than that based
upon lever rule or formulas.
This appendix demonstrates the rigid method computation

without undue distraction from the other more commonly
used methods. The AASHTO requirements for the rigid
method are outlined in [C4.6.2.2.2d-1], which is summa-
rized below. The procedure parallels that commonly used
for load distribution to piles topped with a rigid cap, to bolts
in a group connected with a stiff plate, or shear walls joined
by a rigid floor diaphragm in a building:

R =
(

NL

Nb

)
+

Xext

∑

trucks

et

∑

Nb

x2
i

where:
R = reaction to the exterior girder
Nb = number of beams/girders in the bridge cross

section

NL = number of lanes loaded
xi = location of beam i in the cross section
et = location of truck/lane in the cross section

X ext = location of the exterior girder of interest

Consider one loaded lane positioned to the left side of the
bridge:

gSE
moment =

(
NL

Nb

)
+

Xext

∑

trucks

et

∑

Nb

x2
i

=
(
1

6

)
+ 20 (17)

2
(
42 + 122 + 202

)

= 0.470

The multiple presence factor is m = 1.2, therefore

mgSE
moment = 1.2 (0.470) = 0.564

Note the formulavalue fromExample 6.2 is 0.55 lanes/girder.
Thus, the rigid method controls, slightly over the formula in
this case.
Next consider two trucks positioned to the left side of the

bridge. The rigid method distribution factor is

gME
moment =

(
NL

Nb

)
+

Xext

∑

trucks

et

∑

Nb

x2
i

=
(
2

6

)
+ 20 (17 + 9)

2
(
42 + 122 + 202

)

= 0.780

The multiple presence factor for two lanes loaded is m =
1.0, therefore

mgSE
moment = 1.0 (0.780) = 0.780

The formula method of Example 6.2 for multiple lanes
loaded is 0.71. The addition of a third truck combined with
the multiple presence factor of m = 0.85 will not control
over the two-lane case. The rigid method controls slightly
over the formula in this case.
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2'-0" 6'-0"

8'-0"

2'-0" 6'-0"

8'-0" 4'-0"3'-3"

6'-0"

20'-0"

Fig. F.1 (a) Slab–girder bridge cross section (same as Example 6.2).
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310
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309–310
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429
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Bridge engineering, 3–30
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specifications, 17–18
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Brooklyn Bridge, New York, 8, 9, 11, 45,

61, 68
BT Beam-LRFD Analysis, 154
Buckling, 398–399
global, 411
lateral torsional, 411, 417–420
local, 411–417
compression flange, 416–417
web bend buckling, 414–415
web buckling load shedding, 415–416
web vertical buckling, 413–414

Burr, Theodore, 4

Cable-stayed bridges:
for extra-large spans, 71–72
with main structure above deck line, 61,

63–64
span lengths for, 67

CAD (computer-aided drafting), 33
Calibration of LRFD code, 89–94
for fitting with ASD, 93–94
using reliability theory, 89–93

Caltrans, 113–114
Camber:
composite rolled steel beam bridge design

problem, 460, 461
noncomposite rolled steel beam bridge design

problem, 452

prestressed concrete girder bridge design
problem, 350–352

steel bridges, 390
T-beam bridge design problem, 331–333

Canyon Padre Bridge, Flagstaff, Arizona, 12
Carbon structural steel, 368–369
Casey, Edward, 12
Cast-in-place (CIP) concrete:
box girders, 229
bridges, 229
posttensioned concrete box girder bridges,

70, 71
reinforced concrete box girder bridges, 70

Cedar Creek Bridge, Elgin, Kansas, 13
Centrifugal forces, gravity loads from, 112–113
Charettes, 55
Chenoweth, Lemuel, 4
Cincinnati Suspension Bridge, Ohio, 8, 9
Coefficient of variation, 85
Collision loads, 129
Colorado Street Bridge, Pasadena, California, 12
Columns, 396
compressive resistance, 399–401
stability of, 396–398

Combined shear resistance (I-sections), 431–432
Compatibility, 161, 229–230
Composite rolled steel beam bridges:
design problem, 452–461
checking assumptions, 460–461
dead-load camber, 460, 461
design sketch, 461
dimensions and details requirements, 460
flexural design, 454–459
force effects from non-live loads, 453–454
shear connectors, 459–460
shear design, 459

for medium spans, 70
Composite sections, 404
defined, 404
ductility of, 421
noncompact, 42
plastic moment of, 408–409
plastic neutral axis of, 407–408
yield moment of, 405–407

Composite steel bridges:
box girder, 70–71
plate girder:
multiple-span, bridge design problem,

462–499
for small and medium spans, 70–71

Compression field theory, 273
Compression flange:
local buckling, 416–417
requirements for specifications, 417
section requirement for, 416–417
slenderness specifications, 417

Compression members:
defined, 396
steel bridges, 396–401
column stability behavior, 396–398
compressive resistance, 399–401
connections for, 401
inelastic buckling behavior, 398–399

Compression softening (concrete), 233, 276
Compressive resistance (steel bridges), 399–401
Compressive strength:
of aged concrete, 238
of confined hardened concrete, 233–236
of hardened concrete, 232–242
testing, 7
of very-high-strength concrete, 231

Computer-aided drafting (CAD), 33
Computer modeling, aesthetics with, 56–59
Concentrated loads:
axle, 17
influence functions for statically determinate

beams, 134–136
Concentric loading, 161
Conceptual design stage, 35
Concrete, 229
classes of, 230
compression softening of, 276
creep in, 129, 225, 508–511
fatigue of, 252–253
fresh, 230–232
hardened, 232–242

compressive strength and behavior,
232–233

concrete tensile strength and behavior,
236–237

confined concrete compressive strength and
behavior, 233–236

long-term properties of, 238–242
modulus of elasticity for, 241–242
short-term properties of, 232–237

high-performance, 231–232
modulus of elasticity for, 233
shrinkage in, 225
stress limitations for, 250–251
stress limits for, 344–345
very-high-strength, 231
water/cement ratio, 230–231

Concrete arch bridges, 71
Concrete barrier strength, 291–293
concrete deck design problem, 304–311

critical length of yield line failure pattern,
306–307

flexural resistance of wall
about axis parallel to longitudinal axis of

bridge, 306
about vertical axis, 305–306

length of additional deck overhang bars,
310

nominal resistance to transverse load, 307
shear transfer between barrier and deck,

307–308
top reinforcement in deck overhang,

309–310
crash testing of, 293
for uniform thickness barrier wall, 291–293

external virtual work by applied loads, 292
internal virtual work along yield lines,

292–293
nominal railing resistance to transverse

load, 293
for variable thickness barrier wall, 293

Concrete bridges, 229–359
box girder, 64–67
concrete barrier strength, 291–293

crash testing of, 293
for uniform thickness barrier wall, 291–293
for variable thickness barrier wall, 293

design problems, 293–311
concrete deck, 293–311
prestressed girder bridge, 340–359
solid slab bridge, 313–321
T-beam bridge, 321–339

flexural strength of reinforced concrete
members, 257–270

depth to neutral axis for beams with bonded
tendons, 257–259

depth to neutral axis for beams with
unbonded tendons, 259–260
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ductility, maximum tensile reinforcement,
and resistance factor adjustment,
262–264

loss of prestress, 265–270
minimum tensile reinforcement, 264–265
nominal flexural strength, 260–262

fresh concrete constituents, 230–232
hardened concrete properties, 232–242
long-term, 238–242
short-term, 232–237

limit states, 249–252
extreme event limit state, 256
fatigue limit state, 252–255
service limit state, 249–252
strength limit state, 255–256

for long spans, 71
for medium spans, 70
reinforced and prestressed concrete material

response, 229–230
reinforced concrete, 12–13
shear strength of reinforced concrete

members, 270–288
modified compression field theory,

272–278
shear design using modified compression

field theory, 278–288
variable-angle truss model, 271–272

for small spans, 69–70
steel-reinforced concrete properties, 242–246
nonprestressed steel reinforcement,

242–244
prestressing steel, 244–246

Concrete deck design problem, 293–311
bending moment force effects, 294–295
barrier, 295
deck slab, 294–295
future wearing surface, 295
overhang, 295

concrete barrier strength, 304–311
critical length of yield line failure pattern,

306–307
flexural resistance of wall
about axis parallel to longitudinal axis of

bridge, 306
about vertical axis, 305–306

length of additional deck overhang bars,
310

nominal resistance to transverse load, 307
shear transfer between barrier and deck,

307–308
top reinforcement in deck overhang,

309–310
cracking control, 300–302
deck overhang design, 303–304
extreme event limit state, 304
strength limit state, 303–304

deck thickness, 294
empirical design of deck slabs, 302–303
design conditions, 302–303
reinforcement requirements, 303

fatigue limit state, 302
reinforcement quantifies, comparison of, 303
reinforcement selection, 298–300
distribution reinforcement, 300
negative moment reinforcement, 300
positive moment reinforcement, 299–300
shrinkage and temperature reinforcement,

300
strength limit state, 297–298
barrier, 298
deck slab, 298

future wearing surface, 298
live load, 298
overhang, 298
strength I limit state, 298

traditional design for interior spans, 302
vehicular live load, 296–297

maximum interior negative live-load
moment, 297

maximum live-load reaction on exterior
girder, 297

maximum positive live-load moment,
296–297

overhang negative live-load moment, 296
weights of components, 294

Construction:
failure of bridges during, 30
as type selection criterion, 68

Contrast, in aesthetic design, 44–46
Cooper, Theodore, 17
Cooper series loading, 17, 18
Covell, Vernon R., 13
Cracking control:
in concrete bridges, 249–250
concrete deck design problem, 300–302
solid slab bridge design problem, 316–317
T-beam bridge design problem, 327–330

Crash testing (concrete barriers), 293
Creative design stage, 35
Creep, 129, 225, 240–241
deformations due to, 129
girder concrete between transfer and deck

placement, 508–511
in system analysis, 225

Critical load placement, 149
Cross frames:
multiple-span composite steel plate girder

beam bridge design problem, 496–499
steel bridges, 390

Culverts:
precast, 229
for small spans, 69

Curvature:
in flexibility and stiffness formulations,

223–225
temperature-gradient-induced, 223

Cyclic loads, 166–167
Cypress Viaduct, California, 25–26

Data gathering design stage, 35
Dead load:
of earth fills, 102
of structural components and nonstructural

attachments, 101–102
of wearing surface, 102

Dead-load camber:
composite rolled steel beam bridge design

problem, 460, 461
noncomposite rolled steel beam bridge design

problem, 452
Deck:
gravity loads, 107–109
multiple-span composite steel plate girder

beam bridge design problem, 462
noncomposite rolled steel beam bridge design

problem, 443
prestressed concrete girder bridge design

problem, 340–341
thickness of, in concrete deck design problem,

294
transverse deck moments, 503–504

Deck analysis, influence functions for, 501–502

Deck overhang:
concrete deck design problem, 303–304
bending moment force effects, 295
extreme event limit state, 304
length of additional overhang bars, 310
strength limit state, 303–304
top reinforcement in, 309–310

design loads, 108
for medium- and short-span bridges, 49–50

Deck slabs:
bending moment force effects, 294–295
empirical design of, 302–303
design conditions, 302–303
reinforcement requirements, 303

Deductive reasoning, 34
Deflection:
prestressed concrete girder bridge design

problem, 350–352
steel bridges, 377
T-beam bridge design problem, 331–333

Deformations:
concrete bridges, 250
forces due to, 127–129
from creep and shrinkage, 129
from settlement, 129
from temperature, 127–129

solid slab bridge design problem, 317–319
steel bridges, 377–378

Delafield, Richard, 10
De Miranda, F., 35–36
Density, 102
Department of Transportation in California

(Caltrans), 113–114
Department of Transportation of Pennsylvania

(PennDOT), 113
Depth to neutral axis (reinforced concrete):
for beams with bonded tendons, 257–259
for beams with unbonded tendons, 259–260

Description of design, 33
Design-bid-build model, 68
Design-build, 68
Designer sign conventions, 133
Design lanes, 103
Design lane load, influence functions for,

150–152
Design loads, 103–106
deck overhangs, 108
lane, 150–152
tandem, 103–105, 150, 151–152
traffic barrier, 108–109
truck, 103–106, 149–154
vehicular, 103–106

Design of bridges , 75–97
calibration of LRFD code, 89–94
for fitting with ASD, 93–94
using reliability theory, 89–93

geometric design, 95–97
goals of, 75
historic procedures for, 75–77
justification stage of, 75
limit states in, 75, 77–82
basic design expression for, 77
ductility factor, 77–78
extreme event limit state, 81–82
fatigue and fracture limit state, 80–81
load combinations and load factors, 79–80
load designation, 78–79
operational importance factor, 78
redundancy factor, 78
service limit state, 79–80
strength limit state, 81
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Design of bridges (continued)
modeling in, 162, 163
probabilistic, 83–88
bias factor, 85
coefficient of variation, 85
frequency distribution and mean value, 83
levels of, 83
probability density functions, 84–85
probability of failure, 86
safety index, 86–88
standard deviation, 83–84

safety in, 75
structural design process, 33–36
description and justification in, 33–34
input to, 34
model of, 33
and regulation, 34–35

Design problems:
composite rolled steel beam bridge,

452–461
concrete bridges, 293–311
concrete deck, 293–311
multiple-span composite steel plate girder

beam bridge, 461–499
noncomposite rolled steel beam bridge,

443–452
prestressed girder bridge, 340–359
solid slab bridge, 313–321
steel bridges, 443–499
T-beam, bridge, 321–339

Design vehicular loads, 103–106
Diaphragms:
multiple-span composite steel plate girder

beam bridge design problem, 496–499
steel bridges, 390

Distributed loads, 136, 161
Distribution factors:
for moment:
multiple-span composite steel plate girder

beam problem, 462–463
noncomposite rolled steel beam bridge

design problem, 444–445
prestressed concrete girder bridge design

problem, 341–342
T-beam bridge design problem, 323–325

for shear:
multiple-span composite steel plate girder

beam problem, 463–465
noncomposite rolled steel beam bridge

design problem, 445–446
prestressed concrete girder bridge design

problem, 342
T-beam bridge design problem, 325–326

slab-girder systems, 173–178
Distribution reinforcement, in solid slab bridge

design problem, 321
DLA, see Dynamic load allowance
Dominance, in aesthetic design, 44
Double-intersection Pratt truss, 7
Double-plate transverse stiffener design,

489–490
Downdrag, 102
Drag coefficient, 116
Drip groove, 50
Duality:
for medium- and short-span bridges, 47–49
unresolved, 47

Ductility:
of composite sections, 421
in limit states, 77–78
in reinforced concrete, 262–264

steel, 363
and stress, 165–167

Dunlap’s Creek bridge, Brownsville,
Pennsylvania, 10

Durability:
solid slab bridge design problem, 316
T-beam bridge design problem, 327

Dynamic horizontal ice forces, 125–126
Dynamic load allowance (DLA):
defined, 109
multiple-span composite steel plate girder

beam bridge design problem, 462
noncomposite rolled steel beam bridge design

problem, 444
prestressed concrete girder bridge design

problem, 341
T-beam bridge design problem, 323

Dynamic load effect, 109–112
global, 111
impact factor parameters, 110–111
studies of, 109–110

Eads, James B., 10–11
Eads Bridge, St. Louis, Missouri, 10–11
Earthquake failures:
Cypress Viaduct, California, 25–26
and extreme event limit state, 81
I-5 and I-210 interchange, San Fernando,

California, 19–21
and operational importance factor, 78

Earth surcharge load, 102
East Huntington Bridge, Huntington, West

Virginia, 45, 61
Economics, in selection of bridge type, 67–68
Eden Park Bridge, Cincinnati, Ohio, 12
Effective strength of ice, 122–123
Einstein, Albert, 35
Elastic seismic response spectrum, 218–220
Elastic shortening, loss of prestressing from

(concrete), 267–268
Ellet, Charles, 9
Elliot, A. L., 51
Elmira Bridge Company, 13
Empirical approach, in gravity load analysis,

198
End moments, Muller-Breslau principle for,

145–146
Equilibrium, 161
and compatibility/material response, 229–230
for safe design, 162–165

Erection, as type selection criterion, 68
Erie Canal bridge, Utica, New York, 7
Esthetics in Concrete Bridge Design (Watson

and Hurd), 36
Euclid, 38
Exclusion vehicles, in live-load model,

104–106
Expansion joints, maintenance problem with,

51–52
Experience, judgment and, 34
Extra large (long) span bridges, 71–72
Extreme event limit state, 81–82
concrete bridges, 256
concrete deck design problem, 304
steel bridges, 389–390

Factored loads, in noncomposite rolled steel
beam bridge design problem, 447

Failure of bridges, 18–30
during construction, 30
Cypress Viaduct, California, 25–26

defined, 86
I-5 and I-210 interchange, San Fernando,

California, 19–21
I-35W Bridge, Minneapolis, Minnesota,

26–30
Mianus River Bridge, Greenwich,

Connecticut, 22–23
prior to specifications, 17
probability of, 86
Schoharie Creek Bridge, Amsterdam,

New York, 24–25
Silver Bridge, Point Pleasant, West Virginia,

18–19
Sunshine Skyway, Tampa Bay, Florida,

21–22
Fatigue:
defined, 252
and safety of analysis methods, 169–170
solid slab bridge design problem, 319
steel, 370–372
T-beam bridge design problem, 330–331

Fatigue and fracture limit state, 80–81
composite rolled steel beam bridge design

problem, 458
multiple-span composite steel plate girder

beam bridge design problem, 484
steel bridges, 378–388

detail categories, 379
fatigue design criteria, 378
fatigue load, 379
fatigue resistance, 379, 387
fracture toughness requirements,

387–388
load-induced fatigue, 378, 380–386

Fatigue limit state:
concrete bridges, 252–255

fatigue of plain concrete, 252–253
fatigue of prestressing tendons, 254
fatigue of reinforcing bars, 253–254
fatigue of welded or mechanical splices of

reinforcement, 255
concrete deck design problem, 302
I-sections in flexure, 421–423
prestressed concrete girder bridge design

problem, 349–350
steel bridge shear connectors, 433–434
stud connectors (steel bridges), 433–434
T-beam bridge design problem, 330–331

Fatigue loads, 106–107, 379
Federal Aid Highway Act of 1968, 18
Fernandez-Ordóñez, J. A., 44
FIGG Engineering Group, 55
Finite-element analysis:
box-girder bridges, 208, 211–212
slab bridges, 195, 197, 198
slab-girder bridges, 187–192
slabs, 201–202

Finite-strip analysis:
slab-girder bridges, 191–194
slabs, 201–202

Finley, James, 8
First-order second-moment (FOSM) method, 83,

89–91
Flexibility:
and axial strain, 223–225
and curvature, 223–225

Flexural resistance of wall, in concrete deck
design problem:

about axis parallel to longitudinal axis of
bridge, 306

about vertical axis, 305–306
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Flexural section properties, in multiple-span
composite steel plate girder beam bridge
design problem:

for negative moment, 472–477
for positive flexure, 476–482

Flexural strength (reinforced concrete members),
257–270

depth to neutral axis for beams with bonded
tendons, 257–259

depth to neutral axis for beams with unbonded
tendons, 259–260

ductility, maximum tensile reinforcement, and
resistance factor adjustment, 262–264

loss of prestress, 265–270
minimum tensile reinforcement, 264–265
nominal flexural strength, 260–262

Flexure:
concrete bridges, 249–250
prestressed concrete girder bridge design

problem, 352–353
steel bridge I-sections, 402–428
composite and noncomposite sections,

404
depth of web in compression, 410
hybrid strength reduction, 410–411
limit states, 421–428
moment redistribution, 403–404
plastic moment, 402–403, 405, 408–409
plastic neutral axis, 407–408
stability related to flexural resistance,

411–421
stiffness properties, 404
yield moment, 405–407

T-beam bridge design problem, 334–335
Flooding failure, 24–25
Fluid forces, 114–118
water, 118
wind, 116–118

Forces:
braking, 113
centrifugal, 112–113
due to deformations, 127–129
from creep and shrinkage, 129
from settlement, 129
from temperature, 127–129

fluid, 114–118
ice, 122–127
rail collision, 129
vehicle collision, 129
vessel collision, 22, 81–82, 101, 129
water, 118
wind, 116–118

Fort Morgan Bridge, Colorado, 13
Fort Sumner Railroad Bridge, New Mexico, 14
FOSM (first-order second-moment) method, 83,

89–91
Fracture critical, 81
Frankford Avenue Bridge, Pennypack Creek, 4
Franklin Institute of Philadelphia, 7
Freezing degree days, 124
Frequency distribution, 83
Fresh concrete constituents, 230–232
Freyssinet, Eugene, 13
Friction loss of prestress, 266–267
Function:
in aesthetic design, 37–38
in selection of bridge type, 67

General Theory of Bridge Construction
(Herman Haupt), 7

Genessee Road Bridge, Colorado, 48

Geometric design, 95–97
interchanges, 96–97
roadway widths, 95–96
vertical clearances, 96

George Washington Bridge, New York, 9, 10
George Westinghouse Memorial Bridge, North

Versailles, Pennsylvania, 12–13
Girders:
and proportion, 39
span/depth ratio for, 49–50

Girder bridges, 13–14
cantilever span, suspended span, cantilever

span systems, 78
limit states for, 75
for long spans, 71
with main structure coinciding with deck line,

64–67
for medium spans, 70–71
span lengths for, 67

Global buckling (steel bridges), 411
Global load dynamic effects, 111
Golden Gate Bridge, San Francisco, California,

8–10, 14
Golden ratio/proportion/section/ number, 38
Gottemoeller, F., 36
Grant, A., 44
Gravity loads, 101–114
analysis of, 171–212

for box-girder bridges, 206–212
for slab bridges, 194–198
for slab-girder bridges, 171–194
for slabs in slab-girder bridges, 198–206

braking forces, 113
centrifugal forces, 112–113
deck and railing loads, 107–109
defined, 101
design lanes, 103
dynamic effects, 109–112
fatigue loads, 106–107
multiple presence, 109
pedestrian loads, 107
permanent, 101–102
permit vehicles, 113–114
transient, 102–114
vehicular design loads, 103–106

Greater New Orleans Through-Truss Bridge, 64
Grillage analysis:
slab bridges, 195–196
slab-girder bridges, 182–189
slabs, 201–202

Hardened concrete properties, 232–242
compressive strength of aged concrete, 238
creep of concrete, 240–241
long-term, 238–242

compressive strength of aged concrete, 238
creep of concrete, 240–241
modulus of elasticity for permanent loads,

241–242
shrinkage of concrete, 238–240

short-term, 232–237
compressive strength and behavior,

232–233
concrete tensile strength and behavior,

236–237
confined concrete compressive strength and

behavior, 233–236
shrinkage of concrete, 238–240, 507–508,

510–512
Hardness, steel, 363
Harmony, in aesthetic design, 41–43

Haupt, Herman, 7
Heat-treated low-alloy steel, 369
Heat treatments (steel), 366
Hell Gate Bridge, New York, 11
High-performance concrete, 231–232
High-strength heat-treated alloy steel, 369–371
High-strength low-alloy steel, 369
Hildenbrand, Wilhelm, 9
Hilton, Charles, 17
HL-93, 103
Holston River Bridge, Tennessee, 55
Hoover Dam Bypass, Arizona-Nevada, 38
Horizontal ice forces:
dynamic, 125–126
static, 127

Howe, William, 6
Howe truss, 6
H series loading (AASHO), 17
Hybrid sections (steel bridges), 410–412

I-5 and I-210 interchange, San Fernando,
California, 19–21

I-15 West Lilac Road overpass, California, 43
I-35W Bridge, Minneapolis, Minnesota,

26–30
I-82 Hinzerling Road undercrossing, Prosser,

Washington, 44, 46, 47
I-90 Cedar Falls Road overpass, King County,

Washington, 48
I-beam girder bridges, 64–67
Ice forces, 122–127
dynamic horizontal, 125–126
effective strength of ice, 122–123
field measurement of, 123–124
snow loads on superstructure, 127
static horizontal, 127
thickness of ice, 124–125
vertical, 127

Ice load, extreme event limit state and, 81–82
Imposed support deformations, 129
Incremental collapse, 167, 168
Inductive reasoning, 34
Inelastic buckling (steel bridges), 398–399
Influence functions (lines), 133–157
AASHTO vehicle loads, 149–156
for deck analysis, 501–502
defined, 133–134
influence surfaces, 156–157
integration of, 142–143
Muller-Breslau principle, 137–139
Betti’s theorem, 137
qualitative influence functions, 139
theory of, 138

normalized, 147–149
relationship between, 143–145
for statically determinate beams, 134–137
concentrated loads, 134–136
uniform loads, 136–137

for statically indeterminate beams, 139–147
automation by matrix structural analysis,

146–147
integration of influence functions,

142–143
Muller-Breslau principle for end moments,

145–146
relationship between influence functions,

143–145
Influence surfaces, 156–157
Integral abutments, 51–52, 55–58
Integral piers, 51
Interchanges, in geometric design, 96–97
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I-sections (steel bridges), 424, 427–432
beam action shear resistance, 427, 429
combined shear resistance, 431–432
in flexure, 402–428
composite and noncomposite sections, 404
depth of web in compression, 410
hybrid strength reduction, 410–411
limit states, 421–428
moment redistribution, 403–404
plastic moment, 402–403, 405, 408–409
plastic neutral axis, 407–408
stability related to flexural resistance,

411–421
stiffness properties, 404
yield moment, 405–407

shear resistance of, 424, 427–432
beam action shear resistance, 427, 429
combined shear resistance, 431–432
tension field action shear resistance,

429–431
for unstiffened webs, 432

tension field action shear resistance, 429–431
for unstiffened webs, 432

Jacob’s Creek bridge, Uniontown, Pennsylvania,
8

James J. Hill Stone Arch Bridge, Minneapolis,
Minnesota, 4

Jaminet, Alphonse, 11
Jointless bridges, medium- and short-span,

51–52, 55–58
Judgment, experience and, 34
Justification of design, 34, 75

Key Bridge, Washington, DC, 12
Keystone Bridge Works, 7
Knight’s Key Bridge, Florida, 14

Lancaster, S. C., 12
Lane loads, design, 150–152
Lateral bracing (steel bridges), 390–391
Lateral loads, 114–127
analysis of, 215–221
seismic loads, 216–221
wind loads, 215–217

fluid forces, 114–118
ice forces, 122–127
seismic loads, 118–122
water forces, 118
wind forces, 116–118

Lateral torsional buckling (LTB), 411, 417–420
Lattice truss, 5–6
Lee Roy Selmon Crosstown Expressway, Tampa

Florida, 56, 57
Legal issues, in selection of bridge type, 68–69
Leonard P. Zakim Bunker Hill Memorial Bridge,

Boston, Massachusetts, 44
Leonhardt, F., 35, 47
Lever rule, 175
Light, in aesthetic design, 44, 46–47
Limit states, 75, 77–82
basic design expression for, 77
concrete bridges, 249–256
extreme event limit state, 256
fatigue limit state, 252–255
service limit state, 249–252
strength limit state, 255–256

ductility factor, 77–78
extreme event limit state, 81–82
fatigue and fracture limit state, 80–81

I-sections in flexure, 421–428
fatigue limit state, 424
service limit state, 421–423
strength limit state, 424

load combinations and load factors, 79–80
load designation, 78–79
operational importance factor, 78
redundancy factor, 78
service limit state, 79–80
steel bridges, 377–390
extreme event limit state, 389–390
fatigue and fracture limit state, 378–388
I-sections in flexure, 421–428
service limit state, 377–378
strength limit state, 389

strength limit state, 81
Linear elastic method, for gravity load analysis,

198–199
Linear material response, 162–163
Linn Cove Viaduct, North Carolina, 42, 43
Live loads:
concrete deck design problem, 298
multiple-span composite steel plate girder

beam bridge design problem, 462–465
distribution factor for moment, 462–463
distribution factor for shear, 463–465
dynamic load allowance, 462
multiple presence, 462
number of lanes, 462
reactions to substructure, 465
stiffness, 465
wind effects, 465

noncomposite rolled steel beam bridge design
problem, 444–446

distribution factor for moment, 444–445
distribution factor for shear, 445–446
dynamic load allowance, 444
multiple presence, 444
reactions to substructure, 446
stiffness, 446
wind effects, 446

prestressed concrete girder bridge design
problem, 341–343

distribution factors for moment, 341–342
distribution factors for shear, 342
dynamic load allowance, 341
multiple presence factor, 341
shears and moments due to live loads,

342–343
rigid method with, 515–516
solid slab bridge design problem, 314–316
T-beam bridge design problem, 323–327
distribution factors for moment, 323–325
distribution factors for shear, 325–326
dynamic load allowance, 323
multiple presence, 323
number of lanes, 323
reactions to substucture, 326

Live-load model, 104–106
Live-load strip width (solid slab bridge design

problem), 313–314
multiple lanes loaded, 314
one lane loaded, 314

Loads, 101–130
blast loading, 129–130
collision, 129
designations for, 78–79
forces due to deformations, 127–129
from creep and shrinkage, 129
from settlement, 129
from temperature, 127–129

gravity, 101–114
braking forces, 113
centrifugal forces, 112–113
deck and railing loads, 107–109
design lanes, 103
dynamic effects, 109–112
fatigue loads, 106–107
multiple presence, 109
pedestrian loads, 107
permanent, 101–102
permit vehicles, 113–114
transient, 102–114
vehicular design loads, 103–106

lateral, 114–127
fluid forces, 114–118
ice forces, 122–127
seismic loads, 118–122
water forces, 118
wind forces, 116–118

permanent, 101
seismic:

analysis of, 216–221
combination of seismic forces, 121–122
lateral loads from, 118–122
minimum seismic design connection forces,

120–121
seismic design procedure, 119–120

transient, 101
variability of, 76

Load and resistance factor design (LRFD),
17–18, 77

advantages and disadvantages of, 77
calibration of LRFD code, 89–94

for fitting with ASD, 93–94
using reliability theory, 89–93

Load combinations:
load factors for, 79–80
noncomposite rolled steel beam bridge design

problem, 444
prestressed concrete girder bridge design

problem, 341
service limit state, 79–80
solid slab bridge design problem, 315
strength limit state, 81
T-beam bridge design problem, 323
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noncomposite rolled steel beam bridge design
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Load factor design, 17
Load modifiers:
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beam bridge design problem, 462
noncomposite rolled steel beam bridge design

problem, 443
prestressed concrete girder bridge design
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solid slab bridge design problem, 315
T-beam bridge design problem, 323

Local buckling (steel bridges), 411–417
compression flange, 416–417
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web buckling load shedding, 415–416
web vertical buckling, 413–414

Locked-in erection stresses, 102
Lognormal probability density functions, 84–85
Loma Prieta earthquake, 25–26
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Noncomposite rolled steel beam bridge design
problem (continued)
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load combination, 444
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shear design, 451
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variable-angle truss model, 271–272
stress-strain response for, 276–277
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and safety of methods, 165–167
steel bridges, 365–366

Resistance, typical statistics for, 85
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noncomposite rolled steel beam bridge design
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prestressed concrete girder bridge design
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solid slab bridge design problem, 315
T-beam bridge design problem, 322
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dead-load camber, 460, 461
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force effects from non-live loads,

453–454
for medium spans, 70
shear connectors, 459–460
shear design, 459

noncomposite, 443–452
checking assumptions, 452
dead-load camber, 452
deck, 443
design sketch, 452
dimensions and details, 451–452
factored loads, 447
force effects from non-live loads, 446–447
general section, 443
live-load force effects, 444–446
load combination, 444
load factors, 444
load modifiers, 443
resistance factor, 443
shear design, 451
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and equilibrium, 162–165
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Seismic design response spectra, 220–221
Seismic loads:
analysis of, 216–221
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minimum requirements for, 217–218
seismic design response spectra, 220–221

combination of seismic forces, 121–122
lateral loads from, 118–122
minimum seismic design connection forces,

120–121
seismic design procedure, 119–120

Seismic performance zones, 121
Serviceability, safety of analysis and, 169–170
Service limit state, 79–80
composite rolled steel beam bridge design

problem, 457–458
concrete bridges, 249–252

control of flexural cracking in beams,
249–250

deformations, 250
stress limitations for concrete, 250–251
stress limitations for prestressing tendons,

251–252
I-sections in flexure, 421–423
load combinations for, 79–80
multiple-span composite steel plate girder

beam bridge design problem, 483–484
prestressed concrete girder bridge design

problem, 344–352
choices of prestressing tendons, 345–347
deflection and camber, 350–352
fatigue limit state, 349–350
girder stresses after total losses, 349
girder stresses at transfer, 348
prestress loss evaluation, 347–348
stress limits for concrete, 344–345
stress limits for prestressing tendons, 344

solid slab bridge design problem, 316–319
cracking control, 316–317
deformations, 317–319
durability, 316
fatigue, 319

steel bridges, 377–378
T-beam bridge design problem, 327–333

crack control, 327–330
deflection and camber, 331–333
durability, 327
fatigue, 330–331

Settlement, deformations due to, 129
Seven Mile Bridge, Florida, 14
Shadow, in aesthetic design, 44, 46–47
Shakedown load, 167–169
Shear:
concrete deck design problem, 307–308
prestressed concrete girder bridge design

problem, 342–343, 352–358
steel bridges, 433–437

fatigue limit state for, 433–434
strength limit state for, 434–437

T-beam bridge design problem, 337–339
Shear connectors:
composite rolled steel beam bridge design

problem, 459–460
multiple-span composite steel plate girder

beam bridge design problem, 492–496
Shear design:
composite rolled steel beam bridge design

problem, 459
multiple-span composite steel plate girder

beam bridge design problem, 484–487

noncomposite rolled steel beam bridge design
problem, 451

using modified compression field theory,
278–288

Method 1, 286–287
Method 2, 282–286
Method 3, 287–288

Shear diagrams, sign conventions for, 133
Shear resistance of I-sections, 424, 427–432
beam action shear resistance, 427, 429
combined shear resistance, 431–432
tension field action shear resistance, 429–431
for unstiffened webs, 432

Shear strength (reinforced concrete members),
270–288

modified compression field theory, 272–278
shear design using modified compression field

theory, 278–288
variable-angle truss model, 271–272

Shepperd’s Dell Bridge, Latourell, Oregon, 12
Short-span bridges, 47–55
abutments, 51–55
deck overhangs, 49–50
girder bridges, 13
girder span/depth ratio, 49–50
integral abutments and jointless bridges,

51–52, 55–58
piers, 50–53
resolution of duality, 47–49
span lengths for, 69–70

Shrinkage:
analyzing effects of, 221, 225
of concrete, 225, 238–240, 507–508, 510–512
deformations due to, 129
solid slab bridge design problem, 321

Sign conventions, 133
for moment diagrams, 133, 144
for shear diagrams, 133
for slabs, 199
for strains and stresses, 229

Silver Bridge, Point Pleasant, West Virginia,
18–19, 78, 81

Single-degree-of-freedom (SDOF) systems,
218–220

Single-load paths, 78
Slabs (slab-girder bridges), gravity load analysis,

198–206
analytical strip method, 198–202
empirical approach, 198
linear elastic method, 198–199
yield-line analysis, 202–206

Slab bridges:
gravity load analysis, 194–198
for small spans, 69
solid slab bridge design problem, 313–321
design sketch, 321
distribution reinforcement, 321
force effects from other loads, 316
live-load force effects, 315, 316
live load for decks and deck systems,

314–315
live-load strip width, 313–314
load combinations, 315
load modifiers, 315
minimum recommended depth, 313
resistance factors, 315
service limit state, 316–319
shrinkage and temperature reinforcement,

321
strength limit state, 320

span lengths for, 67
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Slab-girder bridges, gravity load analysis,
171–194

beam-line method, 174–182
behavior, structural idealization, and

modeling, 173–174
finite-element method, 187–192
finite-strip method, 191–194
grillage method, 182–189

Slenderness ratio:
columns, 397
tensile members, 396

Smart Road Bridge, Blacksburg, Virginia, 38,
56, 58

Smeared steel tensile stresses, 273
Smith, Andrew H., 11
Snow loads on superstructure, 127
Soil profiles, 120
Solar radiation zones, 128
Solid slab bridge design problem, 313–321
design sketch, 321
distribution reinforcement, 321
force effects from other loads, 316
live-load force effects, 315, 316
live load for decks and deck systems,

314–315
live-load strip width, 313–314
multiple lanes loaded, 314
one lane loaded, 314

load combinations, 315
load modifiers, 315
minimum recommended depth, 313
resistance factors, 315
service limit state, 316–319
cracking control, 316–317
deformations, 317–319
durability, 316
fatigue, 319

shrinkage and temperature reinforcement,
321

strength limit state, 320
Span/depth ratio (girders), 49–50
Span lengths, 66, 67
bridge types for, 69–72
extra large span bridges, 71
long-span bridges, 71–72
long-span wooden bridges, 4–5
medium-span bridges, 70–71
ratios for, 149
small-span bridges, 69–70
steel bridges, 390

Span point notation, 139–140
Specifications, 17–18
calibrating, 89
evolution of, 75–77
influence of bridge failures on, 18–30
LRFD Bridge Design Specifications, 18
Standard Specifications for Highway Bridges,

18
Spring Street Bridge, Chippewa Falls,

Wisconsin, 13
Stagnation pressure, 115–116
Standard deviation, 83–84
Standard Specifications for Highway Bridges

(AASHTO), 18
Standard Specifications for Highway Bridges

and Incidental Structures (AASHO), 17
Starrucca Viaduct, Lanesboro, Pennsylvania, 4
Statically determinate beams, influence

functions for, 134–137
concentrated loads, 134–136
uniform loads, 136–137

Statically indeterminate beams, influence
functions for, 139–147

automation by matrix structural analysis,
146–147

integration of influence functions, 142–143
Muller-Breslau principle for end moments,

145–146
relationship between influence functions,

143–145
Static horizontal ice forces, 127
Steel:
heat treatments of, 366
structural, 366–371
carbon steel, 368–369
chemical composition of, 368
classification of, 366–371
heat-treated low-alloy, 369
high-strength heat-treated alloy, 369–371
high-strength low-alloy, 369
mechanical properties of, 366–368

tensile strength, 363, 393
Steel bridges, 363–499
arch, 71
box girder, 64–67
compression members, 396–401
column stability behavior, 396–398
compressive resistance, 399–401
connections for, 401
inelastic buckling behavior, 398–399

design problems, 443–499
composite rolled steel beam bridge,

452–461
multiple-span composite steel plate girder

beam bridge, 461–499
noncomposite rolled steel beam bridge,

443–452
general design requirements, 390–391
I-sections in flexure, 402–428
composite and noncomposite sections, 404
depth of web in compression, 410
hybrid strength reduction, 410–411
limit states, 421–428
moment redistribution, 403–404
plastic moment, 402–403, 405, 408–409
plastic neutral axis, 407–408
stability related to flexural resistance,

411–421
stiffness properties, 404
yield moment, 405–407

limit states, 377–390
extreme event limit state, 389–390
fatigue and fracture limit state, 378–388
service limit state, 377–378
strength limit state, 389

for long spans, 71–72
material properties, 363–374
brittle fracture, 372–373
classification of structural steels, 366–371
heat treatments, 366
production of finished products, 365
repeated stress (fatigue) effects, 370–372
residual stresses, 365–366
steel-making processes, 363–365

for medium spans, 70–71
plate girder, 64–67
shear connectors (stud connectors), 433–437
fatigue limit state for, 433–434
strength limit state for, 434–437

shear resistance of I-sections, 427–432
beam action shear resistance, 427, 429
combined shear resistance, 431–432

tension field action shear resistance,
429–431

for unstiffened webs, 432
for small spans, 70
stiffeners, 438–441

bearing stiffeners, 440–441
transverse intermediate stiffeners, 438–440

tensile members, 393–396
strength of connections, 396
tensile resistance, 393–396
types of connections for, 393

truss, 71, 72
Steel-making processes, 363–365
Steel-reinforced concrete properties, 242–246
nonprestressed steel reinforcement, 242–244
prestressing steel, 244–246

Stiffeners:
bearing:

multiple-span composite steel plate girder
beam bridge design problem, 490–493

steel bridges, 440–441
multiple-span composite steel plate girder

beam bridge design problem:
bearing stiffeners, 490–493
double-plate transverse stiffener design,

489–490
transverse intermediate stiffener design,

487–489
transverse intermediate stiffeners, 487–489

steel bridges, 438–441
bearing stiffeners, 440–441
transverse intermediate stiffeners, 438–440

for webs, 438–441
bearing stiffeners, 440–441
transverse intermediate stiffeners, 438–440

Stiffening, tension, 243
Stiffness:
and axial strain, 223–225
and curvature, 223–225
multiple-span composite steel plate girder

beam bridge design problem, 465
noncomposite rolled steel beam bridge design

problem, 446
steel bridge I-sections, 404

Stone arch bridges, 3–4
Strain:
axial:

in flexibility and stiffness formulations,
223–225

temperature-gradient-induced, 222–223
Mohr strain circle, 274–275
reinforced concrete stress-strain response,

276–277
sign conventions for, 229

Strength limit state, 81
composite rolled steel beam bridge design

problem, 458–459
concrete bridges, 255–256
concrete deck design problem, 297–298

barrier, 298
deck overhang design, 303–304
deck slab, 298
future wearing surface, 298
live load, 298
overhang, 298
strength I limit state, 298

ductility factor, 77–78
I-sections in flexure, 424
multiple-span composite steel plate girder

beam bridge design problem, 484
operational importance factor for, 78
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prestressed concrete girder bridge design
problem, 352–358

flexure, 352–353
shear, 353–358

redundancy factor for, 78
solid slab bridge design problem, 320
steel bridges, 389
steel bridge shear connectors, 434–437
T-beam bridge design problem, 334–339
flexure, 334–335
shear, 337–339

Stress(es):
allowable stress design, 17
calibration with ASD criteria, 93–94
evolution of specifications, 75–76
shortcomings of, 76–77
and variability of loads, 76

bending stress profile, 161
and ductility, 165–167
locked-in erection stresses, 102
modified compression field theory, 276–278
repeated, for steel bridges, 370–372
residual stresses, 365–366
columns, 397–398
from rolling, 161
and safety of methods, 165–167

sign conventions for, 229
smeared steel tensile stresses, 273
steel bridges:
repeated stress (fatigue) effects, 370–372
residual stresses, 365–366

working stress design, 17
Stress limits:
for concrete, 250–251, 344–345
for prestressing tendons, 251–252, 344

Stress relieving, 244
Stress reversal, safety of methods and, 165–167
Strip method (gravity load analysis), 198–202
Structural analysis, 146–147
Structural design process, 33–36
description and justification in, 33–34
input to, 34
model of, 33
and regulation, 34–35
stages of, 35–36

Structural steels:
carbon steel, 368–369
chemical composition of, 368
classification of, 366–371
heat-treated low-alloy, 369
high-strength heat-treated alloy, 369–371
high-strength low-alloy, 369
mechanical properties of, 366–368
minimum thickness of, 390

Subsurface conditions, 67
Subsystems of bridges, 161
Sunshine Skyway, Tampa Bay, Florida, 21–22
Superstructure:
continuity of, 39–41
deformations due to temperature change,

127–129
piers integral with, 51
snow loads on, 127

Suspension bridges, 8–10
for extra-large (long) spans, 71
failure of:
Silver Bridge, Point Pleasant, West

Virginia, 18–19
Tacoma Narrows Bridge, 9, 117–118
Wheeling Suspension Bridge, West

Virginia, 8–9

with main structure above deck line, 61,
63–64

span lengths for, 67
Symmetry, 147
System analysis, 161–213
assumptions in, 161–162
creep, 225
gravity load, 171–212

for box-girder bridges, 206–212
for slab bridges, 194–198
for slab-girder bridges, 171–194
for slabs in slab-girder bridges, 198–206

lateral load, 215–221
seismic load analysis, 216–221
wind loads, 215–217

mathematical models for, 162–163
numerical models for, 162–163
prestress effects, 221–222
safety of methods used in, 162–170

and equilibrium, 162–165
fatigue and serviceability, 169–170
repetitive overloads, 165–169
stress reversal and residual stress, 165–167

shrinkage effects, 221, 225
temperature effects, 221–225

AASHTO temperature specifications, 222
temperature-gradient-induced axial strain,

222–223
temperature-gradient-induced curvature,

223
using strain and curvature formulas,

223–225

Tacoma Narrows Bridge, 9, 10, 117–118
Taft Bridge, Washington, DC, 12
Tandem loads:
design, 103–106
influence functions, 150, 151–152

Taylor, D. O., 12
T-beam bridges:
design problem, 321–339

fatigue limit state, 330–331
force effects from non-live loads, 326–327
general section, 321, 322
live-load force effects, 323–327

distribution factors for moment, 323–325
distribution factors for shear, 325–326
dynamic load allowance, 323

multiple presence, 323
number of lanes, 323
reactions to substructure, 326

load combinations, 323
load modifiers, 323
reinforced concrete deck, 322
resistance factors, 322
service limit state, 327–333

crack control, 327–330
deflection and camber, 331–333
durability, 327
fatigue, 330–331

strength limit state, 334–339
flexure, 334–335
shear, 337–339

typical section and design basis, 322
girder, 64–67
for small spans, 69–70

Temperature:
analyzing effects of, 221–225

AASHTO temperature specifications, 222
temperature-gradient-induced axial strain,

222–223

temperature-gradient-induced curvature,
223

using strain and curvature formulas,
223–225

deformations due to, 127–129
Temperature-gradient-induced axial strain,

222–223
Temperature-gradient-induced curvature, 223
Temperature reinforcement, in solid slab bridge

design problem, 321
Temperature specifications, 222
Tensile (tension) members:
net area, 395
slenderness requirements, 396
steel bridges, 393–396
strength of connections, 396
tensile resistance, 393–396
types of connections for, 393

Tensile reinforcement (concrete):
maximum, 263–264
minimum, 264–265

Tensile strength:
hardened concrete, 236–237
steel, 363, 393
testing, 7

Tension field action, 6
Tension field action shear resistance, 429–431
Tension field theory, 272
Tension stiffening, 243
Texture, in aesthetic design, 44–46
Thickness of ice, 124–125
3D finite-element model, 190
Through-truss bridges, 61, 63–64
Tied-arch design, 10
Time-dependent prestress losses (concrete):
approximate estimate of, 268–269
lump-sum estimate of, 269–270
refined estimate, 507–512

Total loss of prestressing (concrete), 265–266
Toughness, steel, 363
Town, Ithiel, 4, 5
Traffic barrier system design loads, 108–109
Traffic lanes, 103
Transient loads, 78–79, 101
gravity, 101, 102–114
lateral, 101

Transition points, in multiple-span composite
steel plate girder beam bridge design
problem, 482

Transportation Research Board (TRB), 103
Transportation systems, bridges in, 3
Transverse deck moments, 503–504
Transverse intermediate stiffeners:
multiple-span composite steel plate girder

beam bridge design problem, 487–489
steel bridges, 438–440

Transverse intermediate stiffeners:
steel bridges:
slenderness, 438
stiffness, 438–439

TRB (Transportation Research Board), 103
Truck loads, 18
design, 103–106
fatigue limit state for, 80–81
influence functions, 149–154

Truck train loads, 17
Trusses :
arch, 4–5
bowstring arch, 7
Howe, 6
lattice, 5–6
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Trusses (continued)
metal truss bridges, 6–7
multiple king-post, 6
Pratt, 6–7
for suspension bridges, 9
variable-angle truss model, 271–272
for wooden bridges, 4–6

Truss-arched bridges, 61–62
Truss bridges:
for long spans, 71, 72
with main structure above deck line, 61,

63–64
span lengths for, 67

TS & L (type, size, and location) report, 66
Tunkhannock Creek Viaduct, Nicholson,

Pennsylvania, 12, 44
Turner, C. A. P., 12
2D finite-element model, 188, 190
Type, size, and location (TS & L) report, 66
“Typical Specifications for the Fabrication and

Erection of Steel Highway Bridges”
(USDA), 18

Uniform loads:
influence functions for statically determinate

beams, 136–137
multiple-span composite steel plate girder

beam bridge design problem, 466–473
repetitive overloads, 165–167

U.S. Army Corps of Engineers, 10
U.S. Department of Agriculture, Office of Public

Roads, 18
Unresolved duality, 47
Unstiffened webs, shear resistance for, 432
Upper bound theorem, 167, 169

Variability of loads, 76
Variable-angle truss model, 271–272
Variation, coefficient of, 85

Vehicle collisions:
concrete barrier strength, 291–293
crash testing of, 293
for uniform thickness barrier wall, 291–293
for variable thickness barrier wall, 293

and extreme event limit state, 81–82
Vehicle collision forces, 129
Vehicle loads:
AASHTO, 103–108, 149–156
design fatigue load, 106–107
design lane load, 103–106, 150–152
design tandem load, 103–106, 150,

151–152
design truck load, 103–106, 149–154

concrete deck design problem, 296–297
maximum interior negative live-load

moment, 297
maximum live-load reaction on exterior

girder, 297
maximum positive live-load moment,

296–297
overhang negative live-load moment, 296

design gravity loads, 103–106
fatigue limit state for live loads, 80–81
live loads, fatigue limit state for, 80–81
repetitive overloads, 165–169

Velocity profile, 116–117
Verrazano-Narrows Bridge, New York, 9
Vertical clearances, in geometric design, 96
Vertical ice forces, 127
Very-high-strength concrete, 231
Vessel collision forces, 22, 81–82, 101, 129
Von Emperger, Fritz, 12

Waddell and Harrington, 12
Walnut Lane Bridge, Philadelphia, Pennsylvania,

13
Washington Bridge, New York, 10
Water forces, lateral loads from, 118

Web (Internet) resources, for aesthetics, 56, 59
Webs (steel bridge I-sections):
cross-sectional shape classifications, 411–412
depth of, in compression, 410
stiffeners for, 438–441

bearing stiffeners, 440–441
transverse intermediate stiffeners, 438–440

unstiffened, 432
Weigh-in-motion (WIM) studies, 104
Welded splices of reinforcement, fatigue of, 255
Wernwag, Lewis, 4
Wheeler, Walter, 12
Wheeling Suspension Bridge, West Virginia,

8–9
Whipple, Squire, 7
Wide-flange beam girder bridges, 64–67
Widths, roadway, in geometric design, 95–96
William Sallers and Company, 7
Williamsburg Bridge, New York, 9–10
WIM (weigh-in-motion) studies, 104
Wind forces:
lateral loads from, 116–118, 215–217
multiple-span composite steel plate girder

beam bridge design problem, 465
noncomposite rolled steel beam bridge design

problem, 446
Wobble effect, 266–267
Wood bridges, 4–6
creep in, 129
for small spans, 69

Working stress design, 17
A Work on Bridge Building (Squire Whipple), 7
Wyeth, Nathan C., 12

Yield, 161
Yield-line analysis, 202–206
Yield-line failure pattern, 306–307
Yield moment, 405–407
Yield strength, steel, 363


