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A1mkn-t- In this paper we developed a new neuro con- 
troller for robot manipulators. A simple dynamic neural 
network is used to estimate the unknown robot manipula- 
tors, then the direct linearization controller is derived via 
this neuro identifier. Because the approximation capability 
is limited, another robust sliding mode compensator is ad- 
dressed. Our main contributions are: first we give a bound 
for the identification error of the parallel neuro identifier; 
second we establish a bound for the tracking error of the 
hybrid controller. 

I. INTRODUCTION 
Recently many researchers manage to use modern ele- 

gant theories for robot control. Adaptive Control is a p o p  
ular and powerful approach to control systems with un- 
known parameters [17]. Sliding Mode Control [IS] consists 
a hypersurface switching surface which leads to the asymp 
totic trajectory convergence to this sliding surface. In spite 
of that this control is robust with respect to external dis- 
turbances, its implementation is never perfect because of 
”chattering effects” (state oscillation around sliding sur- 
face). Robust Feedback Control [3] is usually designed to 
guarantee the stability and some quality of control in the 
presence of parametric or unparametric uncertainties. Rc- 
bust Adaptive Control can be realized by the following 
two ways: by adding minimax control or saturation-type 
control to the existing adaptive control [15] or by chang- 
ing the adaptation law so there is a negative defined term 
(leakagelike adaptation) [lo]. Adaptive-Robust Control 
(see [I] and [l6]) estimates on-line the size of the uncer- 
tainties and uses these estimates in the tradii nal robust 
procedures [ 11. Unfortunately, the corresponding theoreti- 
cal study is still not completed. Optimal Control is applied 
to design a robust control for manipulators with some un- 
certainties [8]. 

Neural Networks (NN) control is a very effective tool to 
control the robot manipulator when we have no complete 
model information or, even, consider a controlled plant as 
” a black box” [7]. Neurocontrol is model-free, it is based on 
the NN model. To get a neuro model there exists two kinds 
of structure: serial-parallel model and parallel model [ll]. 
Serial-parallel model can ensure all the signals bounded if 
the plant is BIB0 stable for both multilayer perceptrons 
(MLP) [ll] and dynamic neural networks (DNN) [14], [5]. 

Most of published papers used the series-parallel model b e  
cause of its stability result. On the other hand, parallel 
model is very useful when deals with noisy systems, b e  
cause it avoids problems of bias caused by noise on the 
real system output [19]. If the identification model is to be 
used off-line, obviously the parallel model is more suitable. 
However parallel model lacks theoretical verification, it is 
difficult to enjoy its advantages. In [5] a high order par- 
allel NN can ensure that the identification error converges 
to zero, but they need the regressor vector is persistently 
exciting, for closed-loop control it is not reasonable. Neurc- 
control may be classified as indirect (identification-based) 
and direct control [4]. The direct neurocontrol of MLP 
[9] suffers from some problems, such as lack of knowledge 
of the plant Jacobian, local minima and requiring speci- 
fied training data pairs (off-line training). Many efforts 
are made to overcome these disadvantages. In [12] a on- 
line estimation of plant Jacobian is presented. A modi- 
fied continuous-time version of backpropagation algorithm 
is given in [6] which does not need off-line learning and 
plant Jacobia. These ”static” networks are based on the 
theory of function approximation which are sensitive to the 
training data. DNN can successfully overcome this disad- 
vantage as well as demonstrate workable behavior in the 
presence of unmodeled dynamics, because their structure 
incorporate feedback. The direct and indirect [14] neural 
adaptive controls use linear two-layer DNN. Because this 
DNN has a poor approximation capability, if the neurocon- 
trol is derived from this neuro identifier, the control results 
are not satisfied. In order to improve the identification 
results, a high-order DNN is proposed in [5], but the neu- 
rocontrol is not easy to realize because they use high-order 
multiply of control input. 

In this paper, a simple DNN similar as [14] is used to 
identify robot manipulator, instead of serial-parallel model 
we use parallel identification structure. This neuro identi- 
fier cannot give a good approximate accuracy. So our con- 
troller for the robot manipulator has two parts: a direct 
linearization neuro controller and a sliding mode compen- 
sator. The main contribution of this paper is connected 
with the extension of our previous results [13] in the fol- 
lowing directions: we consider parallel model of dynamic 
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neural network to identify the unknown robot manipulator, 
the new learning laws assure stability of the identification 
error; then a bound for the tracking error of robot manip- 
ulator is established. 

11. ROBOT MANIPULATOR DYNAMICS 

The dynamics of an n-link robot manipulator may be 
expressed in the Lagrange form [6] 

M (q) 4 +v (q, 4) 4 +G (q) + Fd (4) = 7 (1) 

where q consists of the joint variables, T is the generalized 
forces, M (q) is the intertia matrix, V q, q is centripetal- 

Coriolis matrix, G(q) is gravity vector, F d  q is the fric- 
tion vector. M (q) represents inertia matrix. A scheme 
of the two-link robot manipulator is shown in Fig.1. For 
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Fig. 1. A scheme of two-links manipulator 

the case of two links. the elements can be represented as 

T 
where xt = [Qi, 42,41, 421 = [XI, X 2 , 2 3 ,  241T 

f(zt,t) = [&,&,-M- ' (V4+G+Fd)]  , g(zt,t)u = 

The two-link manipulator system (2) has 4-dimension 
state and 2-dimension input. In order to design a suitable 
neuro controller, we define following auxiliary variable 

T 

[o, 0, M-l (d.1 T. 

(3) 
- q =Q +Aq 

where if E R2, A is positive defined diagonal matrix. The 
system can be rewritten as 

q= F(q, t )  + G(if, t ) ~  

where F and Gu are 2-dimension vector functions. Or we 
can even rewrite it as 

q= F'(q, t )  + G'(q, U, t )  (4) 

When we design a neurocontrol we do not need to trans- 
fer the original system (1) into the standard form (2) or 
(4). We give the form of (4) in order to illuminate the 
neuro identifier. Now we only assume the state outputs q 
is available. 

111. ADAPTIVE CONTROL VIA DYNAMIC NEURAL 
NETWORK 

In this section we derive a neuro controller for the robot 
dynamics in Section 11. This controller has two new con- 
tribution: first we use parallel dynamic NN to identify the 
manipulator, a robust learning algorithm is proposed. Sec- 
ond, a hybrid neuro controller is presented. We construct 
the following parallel dynamic neural network: 

2t= A2t + Wta(2t) + ( 5 )  

MI1 = ml (.9/4 -t i?/31 + m2 il! r2/4 + 12213 1112 COSQ2)where Zt E is the state of the neural network, ut E !JIn,  
Wt E ! J I n x n  is the weight of neural network. A E X n x n  is a 
stable matrix. The vector functions a(?&) is assumed to be 
n-dimensional with the elements increasing monotonically, 

+m2 (Il + 3/41, + 1112 cos q2) 
M12 = m2 (rz/4 + 1;/3 i- $11hCOSQ2)  + m& = M21 

M22 = m2 (r:/4 + Z:/3) + m& 

(6)  
ai 

1 + e-b,z, - ci' Ui(Xi) = 

-v, q2 sinq2 -vm sinq2 such as sigmoid functions 

Vm 41 sinq2 0 
Vm = ($mzllh + m~1112) , 

VI 41 +n1sign(41) 
v2 42 +~2sign(&) 

(q)  , = [ ( im1 + m2) gll cos q1 + imzgl2 cos (41 + qz) Remurk 1: This neural network does not contain any 
hidden layers. We use this simplified neural network be- 
cause we want to make the neuro controller more reliable. 
This model will cause more unmodeled dynamic, but we 
may compensation the modelling error. 

For the two-link manipulator n = 2. The robot manipu- 
lator to be control is given in (4), it can be presented as a 
DNN plus a modelling error, i..e. there exists weight W* 
such that the system (4) is complete described by 

p 2 d 2  1 cos (q1 + 472) 1 
1 Fd ( q )  = [ 

The robot dynamics have following standard properties 
M(q) is a positive symmetric matrix bounded by ml I < 

M(q) < m21. 
The norm of matrix V is bounded an known func- 

tion ' u b ( q ) .  ( 7) 

s= f (xt , t )  +g(zt,t)ut (2) W*LI,-'W*~ - < m;. (8) 

- Q= A?j + W*g(?j) + Ut + Af(?j, ut) 

where W* is bounded as So (1) can be rewritten as 
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Here A, and w are priory known matrices. 
Let define the identification error as, 

for any T E ( 0 , ~ )  the identification error At satisfies the 
following tracking performance 

(14) 
At := 2t - 4. (9) + s,' ll At llQo dt I v + COP 

CO = AFPAo + tr [@;K-'@O] 
Proqf: From (9) and (5) we have 

Because o(.) is chosen as sigmoid functions, the following 
general Lipschitz condition is fulfilled. 

AI: The .function n(.) satisfies 
At= AAt + @tn(2t) + WtZt - A f (q, ut). (15) 

?rh,Zt I ATD,At, Define Lyapunov function candidate as 

where iTt := o(Zt) - o@), A, and D, are known positive 
constants. 

From (4) and (5), if a bounded control input ut may 
stabilize the nonlinear system, the unmodeled dynamics So, calculating its derivative, we obtain 

[" -1 d -& = 2ATPAt  +tr W ,  K-lW, . (17) 
dt 

A f (q, ut) is bounded, we can assume that 
A2: There exists positive dejlned matrix A, such that 

As 

ATP At= ATPAA,+ATP (WtZt - A f (q, ut))+ A;P@tn(2t). 

Af'Ar Af := llAf I(*, 5 T 

where 

(A, R4) is controllable and the pair (Q,  Ra) is observable Using matrix inequality 1131 
and the local ,frequency condition fulfills, 

is the upper bound o,f the modeling error. 
It is well known that, if the matrix A is stable, the pair 

X'Y + (X'Y)' 5 X'A-lX + YTAY (18) 
T -1 - 

ATR-lA-Q 4 - R-'A1 [A R-lAIT ' which is valid for any X ,  y E Rnxk and for any positive 
(10) defined matrix 0 < A = A' E W x n .  

then the following matrix Riccati equation: The assumption A1 leads to 

(19) 
A ~ P + P A +  PRP+Q=O (11) 2A:PW'Zt 5 ATPW*A,'WtPAt 

I AT ( P W P  + D,) A,, 
has a positive solution. So we can introduce following as- 
sumption: From A2 

A3: For a given matrix A. there exists a strictly positive defined matrix QO such that the matrix Riccati equation -2ATPAf 5 A;PATIPAt+AfTAfAf  5 A : P I I ; ~ P A ~ + ~ ,  

(11) with the matrices R and Q given by we obtain: 
- 

R := W + A y 1 ,  Q := QO +D,, P +  D, + +go) A, 

has a positive solution. 
This conditions is easily fulfilled if we select A as diag- 

onal matrix. The next theorem presents stable learning 
procedure of the parallel DNN. 

lator (4) and parallel neural network (5) whose weights are 
adjusted as 

Use A3 

[-' -1 Theorem 1: Let us consider the unknown robot manipu- 
, - 

Vt< ArPWtn(Zt)+tr W t  K-lWt -ATQoAt+T. (20) 

If . -  
Wt=Wt= -stKPa(Zt)AT (12) 

Amin ( Q o )  ' 
according to (12),(20) becomes where st = 

W', K is a positive define matrix, P is the solution of the 
matrix Riccati equation given by (11). Assuming also that 
the assumptions Al-A3 hold, we conclude that the weight 
and identification error are bounded, i.e., 

1 if IlAtll > d - W  , Ft := wt - 
. 

V t 5  -ATQoAt + 7 5 -Amin (Qo) llAt / I 2  +si 5 0. (21) 

If 

(22) At, Wt E L, (13) 
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Wt is constant matrix and from (22) llAtll is also bounded, 
so V is bounded. (13) is realized. Integrating (21) from 0 
up to T yields 

the two-link manipulator, if the control input is provided 
by 

ut = U1.t + U2.t 

J O  

Remark 2: The updating law (12) is similar with the 
series-parallel structure [14], the differences are series- 
parallel structure uses g(?j) and parallel structure uses 

lowing Lyapunov equation 

where p is a solution of the L~~~~~~~ equation ATP, + 
p , ~  = - Q ~ ,  the tracking 

~ ( 2 ~ ) ;  In series-parallel structure P is the solution of fol- A,* = q - x *  

is bounded. 
Pr0o.f: From (23) and (26) we have PA + A T P  = -Q. 

. *  
in parallel structure P is the solution of a matrix Riccati A = AA* + Wt.(Zt) + Ut + dt - ~p +AX*. (30) 
equation (1 1). 

Remark 3: The updating rates fi; := K P  can be 
achieved by a special selection of the gain matrices K, the 
solution of matrix Riccati equation (11) does not influence 
the updating law. 

Remark 4: If we have no any unmodeled dynamic (A f = 
0), we obtain ;ii = 0 and, hence, from (14) the globally 
asymptotic stability is guaranteed, i.e., 

limsup - 

As cp (x*, t )  , x* and Wt(r(Zt) are available, we can select ut 
as (27) where u1,t is direct linearization control (28). So 

. *  
A = AA* + ~ 2 , t  + dt. (31) 

The Sliding Mode technique can be applied to compensate 
dt. Let us define Lyapunov-like function as 

l T  V, = A,*PcA,*, P, = PT > 0 (32) 
IIAllQ, dt = 0, 

from which we directly obtain IlAtII -+ 0. 
where P is a solution of the Lyapunov equation ATPc + 
P,A = -Qc. Using (31) whose time derivative is 

T-CO T 

t -+m 
From (7), we know that the nonlinear system (4) may be . 

Vt= A,* (ATPc + PCA) Af + 2A,*TPcU2,t + 2AZTPcdt. 
(33) 

modeled as 

According to sliding mode technique, we may select u2,t as Q= Aq + Wt a( Zt ) +ut + A f (V, ut) + W* C( q) - WtC( 5% ) (23) 

U2,t = -kP;'sign (A;), k > 0 (34) Using the assumptions A1 and A2, from theorem 1 we 
have Af(q,Ut) + W*C(q) - Wtg(%) is bounded. (23) can 
be rewritten as 

where k is positive constant, 

Substitute (34) into (33) 
where 

dt = Af(q,ut) + W*c(q) - WtC(%) (25) = -A,*TQcAf - 2k I[A,*II + 2A:Pcdt 

is bounded 

the robot manipulator system (4) to track a optimal trajec- 
tory x* E !J?' which is assumed to be smooth enough. This If We select k is big enough such that 
trajectory is regarded as a solution of a nonlinear reference 
model: k > Amax (Pc>J 

I -La (QC) llA,*Il2 - 2k IlA,*II + 2 h m  (pc) IlA,*II lldtll 
Based on the neural network identifier (5), we will force = -Amax (Qc) IlAf1I2 - 2 llA,*ll (k - Amax (Pc) lldtll) 

x* = cp (x*, t )  
(26) where 2 is upper bound of /Idt 11 ( 2 = sup l ldtl l), then vt< 0. 

with a fixed initial condition. If the trajectory has points 
of discontinuity in some fixed moments, we can use any 
approximating trajectory which is smooth. In the case of t-oo 

regulation problem cp (z*, t )  = 0, z*(O) = c, c is constant. 
Theorem 2: Let the desired trajectory be given by (as), 

the weights of the parallel DNN ( 5 )  is tuned by (12). For 

so 
lim A,* = 0. 

Because the sliding mode control uz,t is inserted in the 
closed-loop system, chattering occur in the control input 
which may excite unmodeled high-frequency dynamics. To 
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eliminate chattering, the following boundary layer compen- 
sator can be used 

(35) 
-kP;'sign (A:,,,) A:,t 2 S 

u2,i = -kP;lA:,,/S lA&l < S 

where u2,t = [u2,1, . . . U Z , ~ ]  , S is small enough positive con- 
stant. The above boundary layer controller offers a con- 
tinuous approximation to the discontinuous sliding mode 
control law inside the boundary layer and guarantees the 
output tracking error within any neighborhood of the origin 
121 * rn Fig. 2. Identification for q1 

Remark 5: Theorem 1 assures Wt is bounded. So ul,t 
in (28) is bounded. From (35) we know u2,t is bounded. 
So the hybrid control input is bounded. Although we use 
the sliding mode control [18], we can avoid the "chatter- 
ing effects" because our hybrid control has two part, the 
main part u1,t is derived from neuro identifier, and ug,t uses 
boundary layer compensator to eliminate the chattering. 

Remark 6: Compare (5) and (26) 

' . *  
2 - z = A ( 2  - z*) + Wtg(2t) + Ut - ~p + AX*. 

If we select ut = ul,t 

. . *  
2 - z  = A ( ~ - z * )  

Because A is stable, lim ( 2  - z*) = 0. u1,t is used to make 
neuro identifier (5) follow the reference model (26). Be- 
cause the neuro identifier (5) cannot follow the robot dy- 
namic (4) exactly, so u2,t is used to compensate the model- 
ing error in order to make the robot (4) follow the reference 
model (26). 

IV. SIMULATION RESULTS 
We take the robot parameters as in [6], we also include 

friction in ( l ) ,  i.e. ZI = Z2 = 27-1 = 27-2 = lm, ml = 0.8kg, 
m2 = 2.3kg, v l  = v2 = 0.4, k l  = k2 = 0.8, g = 9.81. The 
initial conditions are 4 (0) = [& (O) ,& (O)] = [O,O], q(0) = 
[q1(0), q2(0)] = [3.14,0.6]. We assume the parameters in (4) 
are unknown, only the position and the velocity of q are 
available. The neural network used for identification is as 
(5), where Zt = [g~ ,&i]~ ,  A =diag[-2, -21 , 

t-oo 

. 

1 
(1 +e-25) 2 

- -  2 
a(x) = 

Fig. 3. Identification for 

ut = T, use (5) to identify the two-link robot. The updating 
laws are same as (12). we select K P  =diag[lO, lo ] ,  ?j = 
Amin (Qo) = 1. The results are shown in Fig.2 and Fig.3. 
There exists identification errors because we use second 
order neural network to model the dynamic of two links 
robot, there are unmodelled dynamics. 

Then we apply the hybrid neurocontrol to the two-link 
manipulator. For compensation a standard PD control is 
give as in (36). The result appears in Fig.4 and Fig.5 
and is unsatisfactory. If we use parallel DNN, we select 
A =diag[l, 11, so the control input is 

The initial conditions for the neural network are 20 = 

[O,OIT,  W O ) =  [ ; ; 1. 
First we check the identification ability of parallel DNN, 

because the open-loop system is unstable, first we use a PD 
control as 

5 10 15 
7 = - 1 0 ( q - q * ) - 5  (36) 

where the reference inputs are q; ( t )  = sint, &(t) = cost, 
q ; ( O )  =q ; (O)  =O.Soin(26)cp(q;,t) = [-cost,sintIT. Let 

31 26 
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Fig. 8. Representative weightd cqtimate 
Fig. 5. Control inpnt of PD 

I 
5 10 15 

Fig. 6. R.esponse of nenrocontrol 

where 6 = 0.1, At = q - q*. The neurocontrol presented 
in this paper are shown in Fig.6 and Fig.7.No initial train- 
ing or learning phase was need. It is very clear that the 
addition of DNN makes a significant improvement in the 
tracking performance. 

V. CONCLUSION 
A dynamic neural network was developed for the two- 

link robot manipulator. First we use the parallel DNN to 
identify the dynamic of robot, then a direct linearization 
controller is applied base based on this neuro identifier. Be- 
cause of the modelling error, a sliding mode compensator 
is presented. In this paper we proof that both of identifi- 
cation error and tracking error axe bounded. 
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