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Abstract—This paper studies fault-tolerant control (FTC)
designs based on nonsingular terminal sliding-mode control
(NTSMC) and nonsingular fast terminal sliding-mode control
(NFTSMC). The proposed active FTC laws are shown to be able
to achieve fault-tolerant objectives and maintain stabilization
performance even when some of the actuators fail to operate.
In comparison to existing sliding mode control (SMC) fault-
tolerant designs, the proposed schemes not only can retain the
advantages of traditional SMC, including fast response, easy
implementation and robustness to disturbances/uncertainties, but
also make the system states reach the control objective point in
a finite amount of time. Moreover, they also resolve the potential
singularity phenomena in traditional terminal and faster terminal
sliding-mode control designs; meanwhile, the proposed NFTSMC
fault-tolerant scheme also possesses the benefit of faster state
convergence speed of NFTSMC. Finally, the proposed analytical
results are also applied to the attitude control of a spacecraft.
Simulation results demonstrate the benefits of the proposed
schemes.

Index Terms—Fault detection, fault-tolerant control (FTC),
nonsingular fast terminal sliding-mode control (NFTSMC), non-
singular terminal sliding-mode control (NTSMC), nonlinear sys-
tems, sliding mode control (SMC).

I. INTRODUCTION

With the rapid development of advanced technologies and
complex industrial systems, it is necessary to maintain ever
increasing requirements for reliability and safety of control
systems. The issues concerning fault-tolerant control (FTC)
are thus widely discussed and applied in various areas (see,
e.g., [1]-[44], and the references therein). It is worth noting that
the Fault Detection and Diagnosis (FDD) (e.g., see [5], [8]-
[9], [12]-[18], [23]-[26], [31], [35]-[38], [42]-[44]) module is a
cornerstone of an FTC control scheme [9], [12]. The module
should be able to provide: 1) Fault Detection and Isolation
(FDI); or 2) Fault Detection, Isolation and Estimation, which
is referred to as an FDD module. The performance of the
overall FTC scheme mainly depends on the performance
of this FDD (or FDI) module. The effect of the detection
delay and gyroscopic effect on the performance of the overall
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FTC scheme are also discussed and explored [23]-[26]. Some
researchers studied the FDD module and the overall FTC in the
presence of different kinds of faults, e.g., sinusoidal fault [5],
[8], [12], [23]-[26]. Ossmann and Varga [37]-[38] discussed
the Detection and Identification of loss of efficiency (LOE)
faults in flight actuators. Moreover, the dynamic disturbances
can mask small faults. Therefore, the size of the fault [12]
will be discussed in FDD (or FDI). Persis and Isidori [1]
presented the theoretical development of FDI with disturbance
decoupling by means of the nonlinear geometric approach.
Baldi et al. [43] discussed the application and development of
such theory in the case of FDI with aerodynamic disturbance
decoupling for satellite reaction wheels.

The main objective of FTC is to design an appropriate
control law such that the closed-loop system can tolerate some
faults in specific control components and maintain the whole
system stability with acceptable performance. In some critical
system, e.g., spacecraft, the actuator faults may make the
overall performance deteriorate severely and become unstable
and, thus, may terminate the control mission. This is also why
researchers and scholars are continuously interested in devel-
oping the reliable control with fault-tolerant methodologies for
spacecraft missions. With the aim of tackling these challenges,
the main goal of this study is to develop proper FTC laws that
possess the advantages of high control precision, robustness
and rapid response, even in the presence of actuator failures,
such that the control mission of the system can be maintained.

Traditional sliding mode control (SMC) has been widely
applied in nonlinear systems [23]-[26], [45]-[51] because of
its benefits, including fast response, easy implementation, and
robustness to disturbances/uncertainties. Recently, Liang et al.
[2], [4], [10] applied the SMC techniques to the FTC design
for spacecraft attitude stabilization control. In their application,
the T-S fuzzy systems are also incorporated to the nonlinear
systems so that the online computational burden, which has
been widely discussed in [49], can be reduced. In general,
the system under traditional SMC design has only asymptotic
stable performance. To enhance the asymptotic convergence
to a finite-time state convergence, Zak [52]-[53] first proposed
the so-called terminal sliding-mode control (TSMC) [53]. In
comparison to traditional SMC, one nonlinear term is added
to the sliding surface TSMC to improve the convergence
performance. By suitably designing the parameters of TSMC,
the system states can reach the control objective point on
the sliding surface in a finite amount of time. Therefore,
TSMC not only has the advantages of rapid response and
robustness, but also offers the benefit of finite-time conver-
gence. However, it was reported that common TSMC design
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suffers a singular problem, and the control magnitude may
become unbounded whenever the state reaches zero. This
potential drawback has been resolved by so-called nonsingular
terminal sliding-mode control (NTSMC) [55]. More recently,
by utilizing new-type sliding surface design, some researchers
have extended the results of NTSMC to the new-type NTSMC
with faster convergence time [58]-[65], i.e., nonsingular fast
terminal sliding-mode control (NFTSMC). The NFTSMC not
only retains the advantages of NTSMC, but also provides
a faster state convergence than that of NTSMC. In light of
the remarkable importance and advantages mentioned above,
this paper will investigate FTC design by using NTSMC and
NFTSMC, respectively.

The organization of this paper is as follows. Section II
states the problem formulation and main goal of this paper.
Section III describes the FTC design by using NTSMC and
NFTSMC, respectively. The analytical results are then applied
to the attitude control of a spacecraft in Section IV. Finally,
Section V gives the conclusions.

II. PROBLEM STATEMENT

Consider a class of second-order nonlinear control systems

ẋ1 = x2 (1)
ẋ2 = f(x) +G(x)u+ d (2)

where x1 = (x1, . . . , xn)
T ∈ IRn , x2 = (xn+1, . . . , x2n)

T ∈
IRn and x = (x1,x2)

T represent the system states, u =
(u1, . . . , um)T ∈ IRm with m ≥ n are the control inputs,
d = (d1, . . . , dn)

T ∈ IRn represent the possible model uncer-
tainties and/or disturbances, f(x) ∈ IRn and G(x) ∈ IRn×m

are smooth functions with f(0) = 0, and (·)T denotes the
transpose of a vector or a matrix.

In this study, we assume that the actuators’ faults have
been successfully detected and diagnosed by a suitable FDD
scheme. From the FDD information, the overall actuators can
be divided into two groups, H and F , in which we assume
that all of the actuators in H are healthy, while those in F
experience faults. Thus, System (1)-(2) can be rewritten as

ẋ1 = x2 (3)
ẋ2 = f(x) +GH(x)uH +GF (x)uF + d (4)

where G(x) = (GH(x)
...GF (x)) and u = (uT

H
...uT

F )
T . In the

rest of this paper, we assume that uH ∈ IRk , uF ∈ IRm−k ,
and m ≥ k ≥ n. For the succeeding FTC law design, we
impose the following assumptions:

Assumption 1: For any system state x ∈ IR2n , the matrix
GH(x) ∈ IRn×k has full row rank, i.e., rank(GH(x)) = n.

Note that Assumption 1 implies that there exist sufficient
healthy actuators to perform the fault-tolerant control task. In
addition, we assume that the control inputs in the set of F are
diagnosed as

uF = ûF +∆uF (5)

where ûF and ∆uF represent the estimated value and esti-
mated error of the faulty actuator uF , respectively. Therefore,

System (3)-(4) can be described as

ẋ1 = x2 (6)
ẋ2 = f(x) +GH(x)uH +GF (x) (ûF +∆uF ) + d. (7)

Based on System (6)-(7), an appropriate uH will be organized
so that the states of the closed-loop system converge to the
origin in a finite amount of time, even when the actuators in
F are detected and diagnosed as experiencing faults by an
FDD mechanism.

III. DESIGN OF FAULT-TOLERANT CONTROLLERS

A. Nonsingular Terminal Sliding-Mode Fault-Tolerant Con-
troller (NTSM-FTC) Design

Considering System (6)-(7), in this section we will employ
the NTSMC technique to design the FTC law so that the
closed-loop system trajectory can reach the origin in a finite
amount of time. According to the concepts of NTSMC, we
design the sliding surface of NTSMC as

s = x1 + β−1sigp/q(x2) = 0 (8)

where s = (s1, . . . , sn)
T ∈ IRn is the sliding vari-

able, β−1 = diag{β−1
1 , . . . , β−1

n } ∈ IRn×n is a positive
definite matrix, p and q are positive odd numbers satis-
fying the relation 1 < p/q < 2, and sigp/q(x2) :=

(|ẋ1|p/q sign(ẋ1), . . . , |ẋn|p/q sign(ẋn))T ∈ IRn . Then, the
time derivative of sliding variable s along the trajectories of
System (6)-(7) is

ṡ = x2 + β−1 p

q
sig(p/q)−1(x2) ·

[
f(x) +GH(x)uH

+ GF (x) · (ûF +∆uF ) + d
]

(9)

where

sig(p/q)−1(x2) :=diag
{
|ẋ1|(p/q)−1

,

. . . , |ẋn|(p/q)−1
}
∈ IRn×n .

It is worth noting from Eq. (9) that the estimated value ûF is
available from FDD information. Hence, the total uncertainties
take the form of GF (x)∆uF+d. Moreover, due to the success
of fault diagnosis, the estimation error ∆uF can be assumed to
be bounded. This can be described by the assumption below:

Assumption 2: There exists a nonnegative function
ρ(x, t) such that

∥GF (x)∆uF + d∥ ≤ ρ(x, t) for all x ∈ IR2n and t ∈ IR+.

Under Assumptions 1 and 2, we design the NTSMC-FTC law
as follows:

uH = uHeq + uHre (10)

uHeq = −G+
H(x)

[
f(x) + β

q

p
sig2−(p/q)(x2)

+GF (x)ûF

]
(11)

uHre = −
[
η + ρ(x, t)

]
·G+

H(x)sign(s) (12)
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where G+
H(x) = GT

H(x)
[
GH(x)GT

H(x)
]−1 ∈ IRk×n , η > 0,

β := (β−1)−1 ∈ IRn×n , ρ(x, t) is given by Assumption 2,
sign(s) = (sign(s1), . . . , sign(sn))T ∈ IRn , and

sig2−(p/q)(x2) :=
(
|ẋ1|2−(p/q) sign(ẋ1),

. . . , |ẋn|2−(p/q) sign(ẋn)
)T

∈ IRn .

Here, we summarize our main result in the following theorem.
Theorem 1: Suppose that System (1)-(2) experiences ac-

tuator faults at the control channel denoted by F with es-
timated value ûF and estimation error ∆uF given by Eq.
(5). Then, under Assumptions 1 and 2, and controller defined
by Eqs. (10)-(12), the system states of System (1)-(2) can
converge to the origin, i.e., the equilibrium point, in a finite
amount of time.

Proof: Denote (·)i as the (i, i) element of a matrix. From
Assumptions 1 and 2, Eqs. (9)-(12), and the fact that x2 =
(|ẋ1| sign(ẋ1), . . . , |ẋn| sign(ẋn))T , we have

sT ṡ = sT · β−1 p

q
sig(p/q)−1(x2)

{
GF (x)∆uF + d

−
[
η + ρ(x, t)

]
· sign(s)

}
≤

n∑
i=1

{(
β−1 p

q
sig(p/q)−1(x2)

)
i

·|si|·
∥∥∥GF (x)∆uF + d

∥∥∥
∞

−
[
η + ρ(x, t)

]
·
(
β−1 p

q
sig(p/q)−1(x2)

)
i

· |si|

}
≤ −η ·Π(x2) · ∥s∥ (13)

where

Π(x2) := inf
1≤i≤n

{(
β−1 p

q
sig(p/q)−1(x2)

)
i

}
. (14)

Then, from Ineq. (13) and the fact that x2 = 0 is not
an attractor [55], we can conclude that the sliding mode
can be reached in finite amount of time, i.e., s(t) = 0
for all t ≥ t0 + tr where t0 is the initial time and tr is
the time horizon of reaching phase. Next, when the sliding
mode is achieved, it can be found from Eq. (8) that the
reduced model takes the form ẋ1 = −β′sig

q
p (x1) for all

t ≥ t0 + tr, where β′ = diag{β
q
p

1 , . . . , β
q
p
n } and sig

q
p (x1) =

(|x1|q/p sign(x1), . . . , |xn|q/p sign(xn))T ∈ IRn ; moreover,
the largest finite time ts that is taken to force x1(t0 + tr)
to x1(t0 + tr + ts) = 0 is easily determined as

ts = max
1≤i≤n

{
p

(βi)
q
p (p− q)

|xi(t0 + tr)|(p−q)/p

}
. (15)

Once x1 = 0 is achieved, from Eq. (8) one can find that
x2 = 0 is also achieved. From the analysis given above, we
can conclude that the system state can converge to zero in a
finite amount of time, i.e., t0 + tr + ts. This completes the
proof.

B. Nonsingular Fast Terminal Sliding-Mode Fault-Tolerant
Controller (NFTSM-FTC) Design

In this section, the NFTSMC [61] will be employed to
design the FTC law. Following the idea of NFTSMC, we
introduce the sliding surface of NFTSMC as below:

s = x1 + α−1sigγ(x1) + β−1sigp/q(x2) = 0. (16)

where s ∈ IRn is the sliding variable, α−1 =
diag

{
α−1
1 , . . . , α−1

n

}
∈ IRn×n and β−1 =

diag
{
β−1
1 , . . . , β−1

n

}
∈ IRn×n are positive definite matrices,

respectively, p and q are positive odd numbers satisfying
the relation 1 < p/q < 2 and γ > p/q, sigp/q(x2) :=

(|ẋ1|p/q sign(ẋ1), . . . , |ẋn|p/q sign(ẋn))T ∈ IRn , and
sigγ(x1) := (|x1|γ sign(x1), . . . , |xn|γ sign(xn))T ∈ IRn . In
this case, the time derivative of sliding variable along the
trajectories of System (6)-(7) is

ṡ = x2 + α−1γsigγ−1(x1) · x2

+β−1 p

q
sig(p/q)−1(x2) ·

[
f(x) +GH(x)uH

+GF (x)(ûF +∆uF ) + d
]

(17)

where

sigγ−1(x1) :=diag
{
|x1|γ−1, . . . , |xn|γ−1

}
∈ IRn×n

sig(p/q)−1(x2) :=diag
{
|ẋ1|(p/q)−1

,

. . . , |ẋn|(p/q)−1
}
∈ IRn×n .

Again, the total uncertainties have the form of GF (x)∆uF +
d; thus, Assumption 2 is also imposed in this case because of
the success of fault diagnosed. Under Assumptions 1 and 2,
we design the NTSMC-FTC law as below:

uH = uHeq + uHre (18)

uHeq = −G+
H(x)

[
f(x) +GF (x)ûF + β

q

p
sig2−(p/q)(x2)

+ α−1γsigγ−1(x1) · β
q

p
sig2−(p/q)(x2)

]
(19)

uHre = −
[
η + ρ(x, t)

]
·G+

H(x)sign(s) (20)

where G+
H(x) = GT

H(x)
[
GH(x)GT

H(x)
]−1 ∈ IRk×n , η > 0,

β := (β−1)−1 ∈ IRn×n , ρ(x, t) is given by Assumption 2,
sign(s) = (sign(s1), . . . , sign(sn))T ∈ IRn and

sig2−(p/q)(x2) :=
(
|ẋ1|2−(p/q) sign(ẋ1),

. . . , |ẋn|2−(p/q) sign(ẋn)
)T

∈ IRn .

From the above design, we have the following result.
Theorem 2: Suppose that System (1)-(2) experiences ac-

tuator faults at the control channel denoted by F with es-
timated value ûF and estimation error ∆uF given by Eq.
(5). Then, under Assumptions 1 and 2, and controller defined
by Eqs. (18)-(20), the system states of System (1)-(2) can
converge to the origin, i.e., the equilibrium point, in a finite
amount of time.

Proof: The proof is similar to that of Theorem 1, except
that the largest finite time ts is taken to force x1(t0 + tr) to
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x1(t0 + tr + ts) having the value of (for details, please refer
to [61]):

ts = max
1≤i≤n

{
1

β
q/p
i

∫ |xi(t0+tr)|

0

1(
τ − α−1

i τγ
)q/p dτ

}
. (21)

Thus, as the result of Theorem 1, one can conclude that the
system state will converge to zero in a finite amount of time
t0 + tr + ts. The proof is completed.

Remark 1: In the NTSMC and NFTSMC design, the
selection of p, q, and γ should satisfy the rules 1 < p/q < 2
and γ > p/q. In general, the relative parameters in controller
design can be tuned by some adaptive methods [58], [61].

IV. SIMULATION AND DISCUSSION

Consider the following dynamics for satellite attitude sta-
bilization control from [2], [10], and [34] as described
in the same form as (1)-(2) with n = 3, in which
f(x) = [f1(x), f2(x), f3(x)]

T , x = (x1,x2)
T , x1 =

(x1, x2, x3)
T = (ϕ, θ, ψ)T , x2 = (x4, x5, x6)

T = (ϕ̇, θ̇, ψ̇)T ,
u = (u1, u2, u3, u4)

T , and d = [d1, d2, d3]
T . Here, ϕ, θ, and

ψ are Euler’s angles for x, y, z axes, respectively, u denote
actuators, providing the force torques by reaction wheels or
thrusters in four directions, and f(x) and G(x) are described
as below:

f1(x) = ω0x6cx3cx2 − ω0x5sx3sx2 +
Iy − Iz
Ix

[
x5x6

+ω0x5cx1sx3sx2 + ω0x5cx3sx1 + ω0x6cx3cx1

+
1

2
ω2
0s(2x3)c

2x1sx2 +
1

2
w2

0c
2x3s(2x1)

−ω0x6sx3sx2sx1 −
1

2
ω2
0s

2x2s
2x3s(2x1)

−1

2
ω2
0s(2x3)sx2s

2x1 −
3

2
ω2
0c

2x2s(2x1)

]
(22)

f2(x) = ω0x6sx3cx1 + ω0x4cx3sx1 + ω0x6cx3sx2sx1

+ω0x5sx3cx2sx1 + ω0x4sx3sx2cx1

+
Iz − Ix
Iy

[
x4x6 + ω0x4cx1sx3sx2

+ω0x4cx3sx1 − ω0x6sx3cx2

−1

2
ω2
0s(2x2)s

2x3cx1 −
1

2
w2

0cx2sx1s(2x3)

+
3

2
ω2
0s(2x2)cx1

]
(23)

f3(x) = ω0x4sx1sx3sx2 − ω0x6cx1cx3sx2

−ω0x5cx1sx3cx2 + ω0x6sx3sx1 − ω0x4cx3cx1

+
Ix − Iy
Iz

[
x4x5 + ω0x4cx3cx1

−ω0x4sx3sx2sx1 − ω0x5sx3cx2

−1

2
ω2
0s(2x3)cx2cx1 +

1

2
w2

0s
2x3sx1s(2x2)

−3

2
ω2
0s(2x2)sx1

]
(24)

G(x) =

 0.67 0.67 0.67 0.67
0.69 −0.69 −0.69 0.69
0.28 0.28 −0.28 −0.28

 . (25)

Here Ix, Iy , and Iz are the inertia with respect to the three
body coordinate axes, ω0 denotes the constant orbital rate,

and c and s denote the cos and sin functions, respectively.
Details of these parameters can be referred to [2]. Moreover,
we adopt an FDD mechanism from [2, Eq. (10) and Eq.
(11), p. 335] for active FTC mission. For completeness, we
briefly recall the mechanism as follows. The main idea of the
FDD mechanism is to decouple the control input through a
coordinate transformation so that any fault associated with a
channel can be diagnosed. Following this idea, the coordinate
transformation is chosen to have the form z1 = x1 and
z2 = Px2, where P := (g1, g2, g3)

−1 and gi denotes the
ith column of G(x). With the new state variables, Eq. (1) will
be transformed as

ż1 = P−1z2, ż2 = fnew(z) +Gnew(z)u+ Pd (26)

where

fnew(z) = P f(z1, P
−1z2) (27)

Gnew(z) = PG
(
z1, P

−1z2
)

=

 1 0 0 l1
0 1 0 l2
0 0 1 l3

 . (28)

Since every three columns taken out from G(x) are linearly
independent, all constants l1, l2, and l3 are nonzero. Based
on the transformed system (27), observer and the associated
residual signals γi are chosen as below:

ξ̇i = fnewi (z) + ui + liu4 + ki · (zi+3 − ξi) (29)
γi = zi+3 − ξi (30)

for 1 ≤ i ≤ 3, where ki > 0 for all 1 ≤ i ≤ 3 and
fnewi (z) represents the ith entry of fnew(z). It was shown in
[2] that the observer presented in Eqs. (29)-(30) can achieve
fault detection and diagnosis for any single actuator fault,
and estimate the output value of the faulty actuator, e.g., the
ith actuator, to be ui + ki · γi, where ui is the designed
output value of the ith actuator. With these settings, an alarm
will be triggered if the magnitude of the ith residual signal
ri from the observer is greater than a threshold set by the
designer. In this example, we assume that the actuator u2
fails to work at time t = 4 sec. In order to alleviate the
chattering phenomena in the presented FTC, we use the
saturation function to replace the original ideal switching
function with boundary layer to be ε = 0.002. Moreover, for
demonstration, the initial condition and disturbance are set as
x(0) = [0.8, 0.15,−1.2, 0.15,−1.2,−0.3]T and d = 0.05 ·
[sin(t), cos(2t), sin(3t)], respectively. The alarm threshold for
each actuator is chosen as 0.015. Other parameters are set
as follows: p = 9, q = 7, γ = 1.4, α = diag{1, 1, 1},
β = diag{1.2, 0.9, 0.8}, ρ(x, t) = ∥d∥∞ := supt ∥d∥, and
η = 1.

Simulation results are shown in Figs. 1-7. In this example,
we use three types of active FTC laws, including sliding-mode
FTC law (labeled SMC) (which can be referred to [2]) and
presented NTSMC-FTC (labeled NTSMC), and NFTMSC-
FTC laws (labeled NFTSMC). In this example, Figs. 1 and
2 show the time history of six system states, while Figs.
4 and 6, respectively, show the time history of the three
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sliding variables and the control inputs. From Figs. 1 (a)-
(c), we can see that the proposed FTC laws can still make
the closed-loop system achieve stabilization task under the
allowable disturbances and actuator fault; moreover, Figs. 2
(a)-(c) indicate that the angular speeds can also converge
to zero. Figure 3, a zoom in on Figs. 1 (a)-(c) and 2 (a)-
(c), clearly show that NFTSMC will result in faster state
convergence time in comparison with NTSMC and SMC. This
also demonstrates that NFTSMC possesses the characteristic
of fast state convergence speed after the closed-loop system is
in sliding mode. From Fig. 4, three FTC laws can make the
system states reach the sliding surface in a finite amount of
time. From Fig. 6, we can see that u2 fails at t = 4 sec and its
output value becomes 0; moreover, the value of the residual
signal γ2 reaches the threshold value 0.015, which results in
FDD triggering the alarm2 near t = 4 sec (as shown in Fig.
7). After the success of fault detection and diagnosis, the FTC
law is reconfigured so that the control mission is continuously
performed. This action corresponds to the jumping of control
inputs curves near t = 4 sec, as shown in Figs. 6 (a), (c)-(d).
From the simulation results, we can verify the effectiveness of
the proposed methods. It is worth noting that the time delay
of the FDD mechanism is included in this example. A more
detailed discussion concerning possible effects in FTC with
FDD, such as time delay effect, gyroscopic effect, and the
effect by different kinds of input forms, can be found in [5],
[8], [12], and [23]-[26].

V. CONCLUSION

In this study, new-type nonsingular terminal sliding-mode
fault-tolerant control (NTSM-FTC) and nonsingular fast ter-
minal sliding-mode fault-tolerant control (NFTSM-FTC) laws
have been presented for a set of second order nonlinear control
systems. It was shown that the closed-loop system can achieve
the stabilization mission even when some of the actuators fail
to operate while retaining the advantages of the traditional
sliding mode control (SMC) approach. Moreover, the system
states of the closed-loop system were shown to be able to
converge to the equivalent point in a finite amount of time;
meanwhile, the potential singularity phenomena that exist in
the both traditional terminal and faster terminal sliding-mode
designs are resolved. Through application to spacecraft attitude
control, the simulation results demonstrate the effectiveness of
the proposed schemes.
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Fig. 1. Time history of system states x1, x2, and x3.
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Fig. 6. Time history of the four control inputs.
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Fig. 7. (a) Residual signal r2; (b) Alarm signal alarm2.
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