1072

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.6, JUNE 2013

Workload-Based Software
Rejuvenation in Cloud Systems

Dario Bruneo, Member, IEEE, Salvatore Distefano, Francesco Longo,
Antonio Puliafito, Member, IEEE, and Marco Scarpa

Abstract—Cloud computing is a promising paradigm able to rationalize the use of hardware resources by means of virtualization.
Virtualization allows to instantiate one or more virtual machines (VMs) on top of a single physical machine managed by a virtual
machine monitor (VMM). Similarly to any other software, a VMM experiences aging and failures. Software rejuvenation is a proactive
fault management technique that involves terminating an application, cleaning up the system internal state, and restarting it to prevent
the occurrence of future failures. In this work, we propose a technique to model and evaluate the VMM aging process and to
investigate the optimal rejuvenation policy that maximizes the VMM availability under variable workload conditions. Starting from
dynamic reliability theory and adopting symbolic algebraic techniques, we investigate and compare existing time-based VMM
rejuvenation policies. We also propose a time-based policy that adapts the rejuvenation timer to the VMM workload condition improving
the system availability. The effectiveness of the proposed modeling technique is demonstrated through a numerical example based on

a case study taken from the literature.

Index Terms—Time-based rejuvenation, cloud computing, dynamic availability, phase type distributions, Kronecker algebra

1 INTRODUCTION

LOUD computing is the fastest growing field in ICT. It
meets computing demand steadily on the rise with
a supply of services modeled after public utilities, such
as energy and gas traditionally available at high fees, at much
lower costs, and according to a pay per use pricing schema [1].

The elastic behavior of cloud systems allows an increase
of resource availability, thus fitting the requirements of users
and their applications, and reducing costs. Cloud computing
offers to businesses a heavy outsourcing model for compu-
tational resources, where service availability, security,
and quality guarantees all become essential features [2],
[3]. Understanding these problems is one of the factors that
are going to steer the market in the coming years.

In particular, service availability is of primary importance
being one of the main requirements and, thus, affecting user
satisfaction. Research efforts have been devoted in recent
years to find the optimal infrastructure size and configura-
tion allowing to guarantee the desired availability level.
Hardware redundancy, fault tolerance, and recovery me-
chanisms are the techniques usually used in the cloud
context [4]. However, also the degradation over time of the
application performance (usually referred to as software
aging) may lead to low availability due to premature program
termination caused by (aging related) software bugs [5].

e D. Bruneo, F. Longo, A. Puliafito, and M. Scarpa are with the Dipartimento
di Ingegneria Civile, Informatica, Edile, Ambientale e Matematica applicata,
Universita di Messina, Contrada di Dio, S.Agata, 98166 Messina, Italy.
E-mail: {dbruneo, flongo, apuliafito, mscarpaj@unime.it.

e S. Distefano is with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy.
E-mail: salvatore.distefano@polimi.it.

Manuscript received 3 May 2011; revised 14 Nov. 2012; accepted 20 Jan.
2013; published online 14 Feb. 2013.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2011-05-0298.
Digital Object Identifier no. 10.1109/TC.2013.30.

0018-9340/13/$31.00 © 2013 IEEE

Software rejuvenation [6] is a cost effective technique for
dealing with software faults. It consists of a proactive fault
management technique aimed at cleaning up the system
internal state to prevent the occurrence of more severe
faults, such as crashes or software malfunctioning. Software
rejuvenation is a mature area and several works can be
found in the literature. Most of them focus on modeling
aspects [7], [8] trying to provide a model of the system and
to investigate the optimal time to rejuvenate. Another
approach is based on real measurements [9], [10], where
collected data are analyzed to estimate and characterize the
time to failure of a software system.

Cloud computing is defined as an infrastructure of
shared hardware and software resources, deeply rooted on
the premise of virtualization [11]. Such technique allows to
instantiate multiple virtual machines (VMs) on top of a
physical machine managed by the virtual machine monitor
(VMM). Since the effects of software degradation mainly
impact long-term running applications and services, atten-
tion has been put in the literature to the possibility of
applying rejuvenation to mitigate the effect of software
aging in the VMM. A first attempt to investigate VMM
failures can be found in [12]. In this context, understanding
the way the VMM ages and how this can influence the
service availability is extremely important. The fact that the
workload impacts on the system failure distribution is a
well-known result from the literature [13], [14]. With respect
to the VMM, the stress condition and consequently the
aging increase with the number of VMs being managed.
Such aspect becomes very relevant in cloud systems, where
the workload is highly variable.

Most of the techniques for modeling and assessing
software aging phenomena and rejuvenation policies im-
plement analytical approaches, specifying the problem in
terms of stochastic processes. The characterization of such
processes is driven by the need to incorporate the software

Published by the IEEE Computer Society

BRUNEO ET AL.: WORKLOAD-BASED SOFTWARE REJUVENATION IN CLOUD SYSTEMS

age into the model. This prevents the use of Markov models
and similar techniques that assume a “memory-less”
behavior. Nevertheless, Markov models are used to model
software aging whenever software age is approximated by
discretizing aging in phases or epochs. Regardless the
accuracy that can be reached, Markovian models do not
allow to represent some aspects and behaviors related to
specific software aging and rejuvenation processes.

A contribution of this work is a non-Markovian analytical
technique that allows to investigate time-based rejuvenation
strategies. Such technique is able to manage the intrinsic non-
Markovian nature of the software aging process as well as the
influence of the workload on the software behavior. More
specifically, we assume the VMM aging phenomenon is
characterized by an increasing failure rate (IFR) distribution
and depends on the number of VMs it is managing. Then, we
characterize the VMM time to failure through continuous
phase type (CPH) distributions. The system availability is,
thus, modeled by an expanded process that allows to keep
memory of the age reached by the VMM when the number of
hosted VMs changes according to the conservation of reliability
principle [15]. The expanded process is symbolically repre-
sented in terms of Kronecker algebra. This allows to formally
represent the workload-dependent system behavior in a way
that is intuitive and easily implementable in a software
tool. We also address the state-space explosion problem
affecting state-space models, especially when phase type
(PH) expansion techniques are used.

The main goal of time-based rejuvenation models is to
find an optimal rejuvenation timer that allows to minimize
some objective functions. Usually, the timer is set at system
start-up and it does not change with respect to the system
dynamics (e.g., system workload variations). We refer to
such kind of approach as fixed timer policy. Another
contribution of the present work is the specification of a
time-based policy adapting the rejuvenation timer to the
VMM conditions, taking into account its workload and age
(variable timer policy). The effectiveness of the proposed
modeling technique is demonstrated through a numerical
example based on a case study taken from the literature. It
shows how the proposed variable timer policy outperforms
the fixed one in terms of improved system availability also
varying the way failure rates are affected by the workload.

The remainder of the paper is organized as follows: We
first describe the cloud system under exam, as reported in
Section 2. Then, in Section 3, we deal with the rejuvenation
approach, characterizing related events and specifying the
policies we propose. We thereafter explain how to represent
the system through state-space models in Section 4 and
how to evaluate such a model through PH and Kronecker
algebra in Section 5. Section 6 operatively describes the
variable timer policy and the modeling technique through
an example taken from the literature, aiming at demonstrat-
ing the effectiveness of the proposed approach. Section 7
discusses the related work highlighting the contribution of
the proposed technique to the state of the art. Concluding
remarks and future work are dealt with in Section 8.

1073
(7 N\
[Interface]
(VMM]
Rejuvenation Failure
Manager Detector
Q 7

Fig. 1. A rejuvenation-enabled cloud node.

2 SYSTEM OVERVIEW

A cloud infrastructure is composed of network-connected
cloud nodes coordinated by a cloud management system. A
cloud node can be either a workstation or a multicore
system, a cluster, or also a data center, implementing a
stand-alone administrative domain with its management
system. To improve node availability, software rejuvenation
policies can be adopted.

Fig. 1 shows a rejuvenation-enabled cloud node config-
uration. A cloud node offers a virtualized environment
through a VMM on top of which one or more VMs can be
instantiated. The Interface is in charge of scheduling the user
requests (in terms of VMs) by loading prebuilt VM images
from the repository and registering them to the VMM. The
VMs can migrate between nodes to react to specific
conditions, e.g., workload bursts, energy saving, and service
level agreement (SLA) enforcement policies. The Interface,
therefore, manages the VM migration process by monitoring
the system workload, establishing connections among nodes,
and transferring and/or receiving the VMs. Once instan-
tiated, a VM starts its execution providing the user with an
isolated execution environment. As soon as the service is
completed, the VM instance is stopped, thus releasing the
corresponding resources.

The VMM is a long-term running software module
subjected to aging. For this reason, the VMM can fail giving
rise to critical effects on the running VMs, such as service
interruption and data loss. The VMM failure is detected by
the Failure Detector periodically inspecting the memory
usage and/or the response time. When a failure is detected,
the status of all the running VMs is saved (if possible) and
the VMM is repaired. As soon as the repair has been
performed, the VMs can be reactivated. We assume that
once repaired, the VMM age is reset.

To improve the node availability, a software rejuvenation
task can be triggered on the VMM by the Rejuvenation
Manager. In this case, the running VMs are suspended in a
safe way and the VMM is rebooted, thus resetting its aging
state. It has been shown that a proactive restart reduces
overall downtime [16]. In fact, the repair of a system could
require some manual operations with a higher complexity
than a simple restart. For example, log file inspection is
often required to restore the system status when it is
compromised due to runtime errors. Moreover, while the
failure event is unpredictable, rejuvenation is a planned task
and some countermeasures to reduce the quality of service
(QoS) degradation (e.g.,, VM live migration, data saving,
checkpointing) can be taken in advance. The comparison in
terms of timing between reparation and rejuvenation is

1074
System failure and repair
Unpredictable System
failure repaired
Human Failure System
intervention investigation reboot
S R L e bt —
. Vs) : t
Failure v Repair VMs
UP detection saving DOWN restart UP

System rejuvenation

Scheduled
rejuvenation
System

reboot
4{-.-}--4---}—
VMs VMs ¢

saving restart

upr DOWN UP

System
rejuvenated

Fig. 2. Timing comparison between system repair and rejuvenation.

shown in Fig. 2, where the up and down operational states
of the system are highlighted.

In the reminder of the paper, we focus on the aspects
related to the aging and failure of the VMM and to its
rejuvenation, thus neglecting the failure of other compo-
nents. We also assume that, in the case a failure has occurred
but it has not yet been detected, if a rejuvenation task is
triggered, the Rejuvenation Manager is not able to save the
VMs state and, as a consequence, the rejuvenation is aborted.

According to the above assumptions, the VMM can be
represented, from an operating point of view, by a finite
state machine (FSM) characterized by four states, as shown
in Fig. 3. Once started, the VMM is in the working state s,
where the VMM age increases and software bugs accumu-
late. When a failure event es occurs, the VMM enters the
nondetected failure state s,,4. In this state, the VMM is not able
to accomplish its work but the failure has yet to be detected.
After the failure is detected by the Failure Detection
module (detection event ey), the VMM enters the detected
failure state sqr and, as soon as the repair is performed by a
repairman (repair event e,,), the VMM is rebooted thus
restarting from scratch in state s,,. When a rejuvenation has
to be performed, the Rejuvenation Manager activates the
trigger event e, and the VMM enters the rejuvenation state
sp5. Then, it reboots the VMM through the resume event e,
reinitializing its age.

To analytically evaluate the behavior of the above
described system, the FSM of Fig. 3 has to be translated into
a stochastic process by adequately specifying the system
events. This characterization can be performed associating to
each event the cumulative distribution function (CDF) of its
firing time. Moreover, it is necessary to formally describe the
workload represented by the number of VMs running on the
VMM. Indicating with #V M (t), the VMs running at time ¢
and with N the maximum number of VMs that can
concurrently be instantiated, the discrete-valued stochastic
process {#VM(t)|t € R*} depends on both the VM arrival
process, represented by user requests, and the VM departure
process, taking into account the service time of each VM and
the migration tasks that the node Interface can schedule.

2.1 VMM Aging and Failure

With respect to system failures, we make the following
assumptions. The cloud node workload is highly variable
due to request bursts and migration tasks. To satisfy the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.6, JUNE 2013

working

non-detected

rejuvenation failure

detected
failure

Fig. 3. Operating states of a VMM.

user requests, also in terms of QoS, the VMM has to
implement different strategies to quickly instantiate, sus-
pend, and transfer VMs. Such strategies have a critical
impact on the VMM behavior, being strictly related to
memory management tasks (e.g., memory allocation/deal-
location). Thus, they interfere with the VMM software aging
process, and therefore, we assume the VMM failure time
distribution to be dependent on the VMM workload.
The VMM aging can also be affected by the VM workload
(e.g., due to interrupts and shared resource handling).
However, in this work, we assume the VMs to run similar
workloads, thus implying that the VMM aging is not
dependent on the VM behavior.

More formally, being t; the random variable represent-
ing the time instant a VMM failure occurs (event ey of
Fig. 3), its CDF depends on the workload stochastic process
#VM(t). To model such dependency, we identify a set of
failure time CDFs Fp = {F}(t) : 0 < i < N}, where

Fy(t) = Pritp <t | #VM(t) = i} (1)

is the CDF associated with a specific workload condition in
isolation, i.e., assuming a fixed number of running VMs.

On the contrary, the time needed by the Failure Detector
for detecting the failure does not depend on the number of
VMs managed by the VMM at the time the failure occurs
and then it can be modeled by a single CDF Fy(t)
associated with the detection event eg;.

Finally, let ¢,, be the random variable associated with the
time to repair (event e,,). We assume that a checkpoint
service periodically saves the VMM status by making a
dump of its memory on the disk. Since the status of all
the VMs being executed on top of the VMM at the time it
crashed has to be recovered from the checkpoint database,
event e,, can be characterized by the workload-dependent
CDF set F,,, = {F},(t) : 0 < i < N} with

Fl(t) = Prity, <t| #VM(t) =i}. (2)

3 VMM REJUVENATION

Time-based rejuvenation consists in setting a timer that
schedules the time instant when the rejuvenation task has to
be performed. Event e, is then characterized by the nature
of such a timer and its CDF strictly depends on the adopted
rejuvenation policy, as discussed in the following. On the
contrary, the resume event e,, represents the time needed to
carry out the VMM rejuvenation process. In this case,

BRUNEO ET AL.: WORKLOAD-BASED SOFTWARE REJUVENATION IN CLOUD SYSTEMS

because the status of the running VMs has to be saved and
recovered, we associate with such an event the workload-
dependent CDF set F,, = {F' (t) : 0 <i < N} with

Fl(t) = Pr{t., <t|#VM(t) =i}, (3)

where t,, indicates the random variable associated with the
resume event.

3.1 Fixed Timer Policy

The usually adopted software rejuvenation policy relies on
setting a time interval ¢ associated with a trigger event, the
e.r event of Fig. 3. According to this policy, when the VMM
starts, the timer firing time T is set to 6 and a local clock,
initially set to 0, starts to increment. When the local clock
reaches the 6 value, the rejuvenation is performed. Neither
the time interval ¢ nor the local clock is varied between two
consecutive rejuvenation events.

In terms of CDF, event e, is then characterized by the
following deterministic distribution:

R ={ 4154 ()

3.2 Variable Timer Policy

In this paper, we present a time-based rejuvenation policy
performing runtime adaptation of the rejuvenation timer
according to the VMM workload condition. Thus, we
propose to update the timer firing time with respect to the
system workload to take into account the aging conditions.
In this way, the rejuvenation task can be anticipated if the
system has been overloaded or deferred if the system has
not been intensively used.

Starting from a system reboot, the VMM evolution can be
characterized by a sequence of different workload condi-
tions, i.e.,, the number of running VMs, identified as
{L¥k=1,2,...}, where k is the sequence index and
0<LF<N. Following the sequence of workload changes,
the rejuvenation timer firing time, initially set to a value 7%,
is modified, thus, resulting in a sequence of different values
of the firing time {T" k=1,2,...} that represents the
runtime adaptation of the timer to the system workload.
To take into account the different aging phenomena
corresponding to the variable workload conditions, the
timer is updated according to a set of workload-dependent
time intervals {4;,0 <7 < N} that regulates the way the
firing time is adjusted when a workload variation occurs.
Such time intervals can be considered as the firing times at
which the timer should be set if the workload never changes
during a rejuvenation epoch, thus identifying a CDF set
Fr={F/(t): 0<i< N}, where

Fi(t) = Pr{t, <t|#VM(t) =i} == { 1 iftze O

If at a given time instant, corresponding to a value of the
timer local clock equal to ¢,, the workload changes reaching
condition L¥*! = j, then the timer firing time 7%*! has to be
set taking into account not only the new workload condition
(represented by the time interval ¢;) but also the degrada-
tion that the system has already experienced because the
last reboot. An estimation of such a degradation is the

1075
| rejuvenation
|

Lk+l |
#VM=j |
Workload Lk Lk+2 :
HUM=1 |- - ot - oo ‘_1
| NON
‘ \ 7\ ‘
| T}<+1,’ y
| |
Timer t t ﬂ_'_[]ki
| +2 T
} A
| | ‘_/’l
| | “
| | |
ole @ @
t t

?? a b te tr

Fig. 4. Graphical representation of the variable timer policy behavior.

fraction of the current timer firing time 7" already elapsed
because the last system reboot (¢, /T"”’). Then, the time
interval 6; has to be proportionally scaled of the quantity
(1 —t,/T") that represents the fraction of the time interval
that still need to be waited, under the new workload
condition, before the next rejuvenation occurs. More
formally, the new timer firing time 7% has to be set to

[t.’Iﬁ
TH = ¢, + (1 _ﬁ) - ;. (6)
Summarizing, assuming we know the set of time intervals
{6:,0 < i < N}, the variable timer policy acts as follows:

1. when the VMM is rebooted (in a generic workload
condition L' = i) the timer firing time T" is set to §;
and the local clock is set to 0;

2. each time the workload varies reaching a generic
workload condition L* = j (at a generic time t,) the
timer firing time 7" is set according to (6); and

3. when the local clock reaches the latest timer firing
time, the rejuvenation is performed.

Fig. 4 shows an example of how the variable timer policy
works. Let us assume that the system is in the workload
condition L* = i with a corresponding timer firing time T*.
At local clock t,, the workload changes to a new condition
LM = j with j > i. Accordingly, the timer firing time is
anticipated (being the new workload condition associated
with a higher degradation, ie., 6; > ;) to T =t, +
(1 —ta/T"') - 6;. Similarly, at local clock ¢, the workload
changes again to the old value i (L**? =) and the timer
firing time is deferred to T2 =t, + (1 —t,/T"") 6.
Finally, at local clock ¢, the firing time is reached and the
rejuvenation is performed. Notice that the value of 7%+
differs from that of 7" even if L¥*? = L*. This is due to the
fact that during the time interval [t,,t;] the system
experiences a higher degradation. Such result represents
the key aspect of the proposed policy, providing the cloud
node administrator with a more flexible mechanism to
schedule the rejuvenation task.

The variable timer policy behavior can be alternatively
described in an equivalent way by reversing the perspective.
Ata given workload changing point (from L* = ito L1 = j),
instead of keeping the value of the timer local clock and

1076

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.6, JUNE 2013

4i+1)

Fig. 5. State-space model of a VMM in case of exponential arrival process.

updating the timer firing time, we can equivalently fix the
firing time according to the workload condition, 7" = ¢,
and keep memory of the elapsed fraction of f1r1ng time by
updating the timer local clock from ¢, to ¢,

4 THE STATE-SPACE MODEL

Once the FSM events have been stochastically characterized,
a complete state-space model able to represent the rejuvena-
tion-enabled cloud node behavior can be derived. In such a
model, the workload variations have to be explicitly taken
into consideration. With respect to the workload process, we
make the following assumptions:

1. The VMM cannot accept a new VM or release an
already instantiated one (i.e., it cannot change its
workload condition) when it is failed or under
rejuvenation.

2. A maximum of N VMs can be concurrently executed
on top of the VMM.

3. Only one arrival or departure event can occur within
an infinitesimal time interval.

4. All the instantiated VMs have the same impact on
the VMM aging. In other words, it is not possible to
distinguish among the VMs.

5. VM times to arrival and departure are characterized
by memory-less CDFs, i.e., exponential distributions.

According to such assumptions, the workload process
can be represented as a birth-death process with N + 1
states and the complete state-space model of the VMM is
obtained by replicating the states of the FSM of Fig. 3,
generating the stochastic process shown in Fig. 5.

Such a stochastic process is composed of N + 1 sets of
states each representing the evolution of the VMM life cycle
loaded by a certain number of running VMs. Specifically,
s, s”, sl and 51 (with 0 < ¢ < N) represent the working,
rejuvenation, nondetected failure, and detected failure
states with ¢ VMs, respectively. Events e, and ey, represent
the arrival and departure of a VM. According to assump-
tion 1, events e, and eg, can be enabled only in states s!
Assumption 2 forces event e, to be disabled in state s
Moreover, event eg, is disabled in state sUT given that no
VMs are instantiated in that state. While the arrival event is
independent from the number of VM currently running, the
departure event depends on it. For these reasons, a single
CDF F,(t) is associated with event e,,, while a CDF set

ip = {Fj,(t) : 0 <i < N} is associated with event ey, with

Fy(t) =

’1177

Pritg, <t|#VM() =i}. (7)

According to assumption 5, such CDFs are exponential
distributions characterized by rates 7, and £, respectively.

Summarizing, the stochastic process of Fig. 5 is char-
acterized by:

e The CDFs F,,(t) and Fy(t) associated with events e,
and eq, respectively.

e The workload-dependent CDF sets Fgp, Fp, Frp
whose ith components (Fép(), F‘ ,(2), Fjp(t)) are
associated with events eqy, €, erp when they are
enabled in states s, and s/;.

e The rejuvenation trigger event CDF that, depend-
ing on the rejuvenation policy, can be a single CDF
F,(t) associated with events ¢, (fixed timer policy)
or a CDF set F;, whose ith component (F} (t)) is
associated with event e;, when it is enabled in

state s,; (variable timer policy).

For a complete characterization of the process, it is also
necessary to specify the stochastic rules (in terms of memory
policies) that govern the workload changing points. As
stated by assumption 3, a variation in the workload is only
allowed between two neighbor working states, e.g., between
states s! and si! or sifl. During such transitions, four
events are involved because they are concurrently enabled:
The arrival event e, the departure event ey, the failure
event e, and the trigger event e,,.

With respect to the first two, no memory conservation
policy is required thanks to assumption 5.

With respect to event ey, we have to consider the nature
of the underlying physical phenomenon, i.e., the VMM
aging. A reasonable assumption is to consider the reliability
level R(t) = Pr{ty >t} as an indicator of the system age.
Then, at workload changing points, such a quantity needs
to be preserved according to the conservation of reliability
principle [15]. To explain how such a principle can be
exploited, let us consider a simple example in which,
during the VMM lifetime, only a single workload change
occurs, e.g., at time instant ¢ the VMM workload switches
from #VM(E)=1i to #VM(E') =j, characterized by a
faster aging process (j > ¢). As shown in Fig. 6, the VMM
reliability function R(t) follows the reliability function of
the VMM in isolation R'(t) =1— F}(t) for 0 <t <t At
time instant ¢, the R(t) should start following the faster
aging process represented by R/(t) =1 — F}(t), and it is
necessary to keep memory of the reached level of reliability
7= R(). Therefore, in order R()= R(f"), we have to
evaluate the time instant ¢* corresponding to age T
according to Ri(t), t* = R"'(7). Then, the aging process
in the new condition follows a translation in time of R/(t),
i.e., Ri(t+ 1), where

BRUNEO ET AL.: WORKLOAD-BASED SOFTWARE REJUVENATION IN CLOUD SYSTEMS

R(t)

1

=l

A 7 i

Fig. 6. A graphical representation of the conservation of reliability
principle.

r=t—T=RT(R(®) -1 ®)

Similarly, the memory or age related to the trigger event
e;r has to be preserved according to the adopted time-based
rejuvenation policy, as described in Section 3. In the first
case, the memory is just the elapsed time, while in case of
variable timer it is the elapsed fraction of the firing time.

The resulting stochastic process is in general non-
Markovian and nonhomogeneous in time [4]. More com-
plex and powerful techniques than Markov chains or
Markov reward processes are needed to analyze this
process, such as Markov additive processes [17], semi-
Markov processes, and renewal theory [18]. In the following
section, we propose an analytic technique for the evaluation
of the model of Fig. 5 able to manage its complexity.

5 THE MODELING TECHNIQUE

The main characteristics of the proposed modeling techni-
que can be summarized as follows:

e The CDFs associated with the VMM events, under
different workload conditions, are represented by
CPHs, moving the problem toward the solution of
an expanded process [19].

e Kronecker algebra is used to implement the con-
servation of reliability principle and the variable
timer policy [20].

5.1 The PH Expanded Process

The use of PH distributions was initiated in 1975 by Neuts
[21], [22], who formally defined a PH distribution as the
distribution of the time until absorption in a finite state
Markov chain with a single absorbing state. Continuous time
Markov chains (CTMCs) are identified in case of continuous
time, and the corresponding PH distributions are referred
to as CPHs.

More specifically, let us consider a CTMC x with v
transient states and a single absorbing state (labeled
v+ 1), whose infinitesimal generator matrix G of dimen-
sions (v+ 1) x (v+1) is in the form:

- G|U

&= o
where G is a v x v matrix that describes the transient
behavior of the CTMC, and U is a v-dimension column

1077

wi
wa

U= | ws
Wy
(o7} (e asg Oy o= [] (y Q3 ... Oy }
(w12 +w1) w12 0 0 0
wa1 —(wa1 + waz + wa) w23 0 0
G = 0 w32 —(w32 + was +w3) wag 0
0 0 0 0 w1y —(W +wye-1))

Fig. 7. Example of CPH with its matrix representation.

vector grouping the transition rates to state v + 1. Moreover,
let us assume that the chain is started with an initial
probability vector w(0) = [, ,41] such that a,.q =1—
> i a;. We say that a random variable T is distributed
according to the CPH distribution with representation
(a,G) and order v if its CDF Fr(t) is the probability to
reach the absorbing state of x:

Frit)=1—a-e%".1,,t>0, (9)

where 1, is a v-dimensional column vector of 1s. An
example of CTMC representing a CPH distribution is
depicted in Fig. 7, with its matrix representation. In the
following, we show how CPH distributions can be
exploited to model the VMM events and specifically to
represent events ey and e, at workload variations.

For the sake of simplicity, let us assume that at time ¢
the workload varies from i to j VMs and that the failure
time CDF changes from Fj,(-) to Fj(-), accordingly. Due
to the reliability conservation principle, the F;l() has to
be shifted of the equivalent time 7, as explained in
Section 4. Assuming («;, G;) and (o, G;) be the (' and v/
order) representations of F},() and F;,(), at time ¢ such a
principle implies:

R(f) = R(t")
3
1= Fj(f) =1-Fj(f+7)
!

Gl 1, = a;- ¢S 1

(10)

@€ 3

where 1; (1;) is a column vector with v/ (/) elements all
equal to 1. Equation (10) translates the conservation of
reliability principle in terms of CPH. Notice that, for any
fixed %, there exists a unique 7 (dependent on t) for which
(10) holds. This is due to the fact that we are taking into
account continuous and strictly monotone reliability func-
tions, as also depicted in Fig. 6.

Once 7 is computed by using (8), we want to express the
equivalent time through a specific transformation matrix to
be exploited in the context of CPH domain. Hence, the
quantity a; - e% can be interpreted as the vector contain-
ing the probabilities to be in the transient phases of the
CPH representing F}(-) at time ¢. Thus, (10) states that,
when the VMM workload changes, the CPH representing
F}(-) has to be enabled with an initial probability vector
equal to a; - €G ("7 to preserve the reliability level in the
new state. Fig. 8 shows this fact assuming that at ¢ the CPH

(i, Gi) representing F}(-) is in the phase ¢’ and m:;f(f)

1078

mfﬁlj(ﬂ m;f;(f) ml,j’(t)

Fig. 8. Conservation of reliability principle at workload changing time.

with h = 1,...,1/ are the switching probabilities that satisfy
(10). It is 1mp0rtant to remark that m,}/(f) probabilities
depend on t because they set the approprlate level of
reliability at that time instant. Moreover, since at ¢ the
process needs to jump in at least one of the phases of the
CPH (¢, G;), the following relation holds:

§:wﬂa—1

The mHJ (f) probabilities to switch from all the phases of
(i, Gy) to the phases of (a;, G;) are collected in a v* x v/
stochastic matrix M f’(f) that we call memory matrix. A row
of M’ 1(f) stores the vector containing the probabilities to
sw1tch from the corresponding phase of the F7,(-) CPH to all
the phases of the F(-) CPH keeping memory of the
reliability level reached at time ¢.

A memory matrix that satisfies (10) can be computed by
solving the following equation:

(11)

a; - 4T M (D) = - €S (12)

In fact, by right-multiplying both sides of (12) by 1; and
by considering that MY;”(#) - 1; = 1; ((11) in matrix form)
we have

a; - St M}TJ(D 1= a8 g
Y (13)

G- (t+7) |]_].7

Q; - eGit

‘li=aj-e
i.e., the condition expressing the conservation of reliability
principle of (10).

The computation of memory matrix by (12) is not
straightforward in general, especially considering its time
dependency, but in some cases additional assumptions may
simplify it. Specifically, if the two CPHs are of the same
order v, they are enabled with identical initial probability
vectors, and the rates in the two CPHs are proportional, i.e.,

a; =« (14)

G]' =cC- Gi, (15)

the memory matrix M"Tj () can be computed from (12) as:
Hz@ — oGt Gy(t4T)
— G . ec-G,-(f+r) (16)
= Gile(t+n)—),

Equation (10) written under the assumptions (14) and
(15) becomes

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.6, JUNE 2013

;- ec~G,~(t+‘r) . 17_/’ (17)
which holds for each t. From (17), we have t =c- (f + 7),
thus c¢- (t+ 7) — t = 0 and (16) becomes

M7(f) = S0 =1, (18)

Equation (18) states that an identical matrix of
dimension v can be used as memory matrix under the
assumptions of (14) and (15).

The assumptions just introduced are valid for the class of
accelerated life models [17], where the relation FY(t) = F'(t/q])
holds between any generic couple of CDFs belonging to the
same class. In fact, if (o;,G;) is the CPH representing Fi(t),
we have Fi(t) = Fi(t/q)) = 1 — a;e®/4 . 1, i.e., the repre-
sentation of F7(t) is (a;,G,/q]), thus satisfying assumptions
(14) and (15), with ¢ = 4.

Similarly, it is necessary to keep memory of the elapsed
time when the variable timer policy introduced in Section 3
is used to manage the VMM rejuvenation timer. In
particular, as discussed in Section 3.2, if at a given instant
t, of the timer local clock the workload changes from i to j
VMs, the timer update policy is equivalent to fix the timer
firing time to ¢; and update the timer local clock to
t = tw%.

p (19)

We use a z-stage Erlang distribution with transition rates
equal to Z ;. to represent the timer CDF F/.() through CPH
dlstrlbutlons, because the Erlang distribution can well
approximate a deterministic behavior. We indicate such

CPH as (aj, E;), where a; = [10---0] and
0 —z/6; z/6; 0o ... 0
0 0 0 0 0 —z/¢;

According to such a representation, to update the timer
local clock at the workload changing time, the CPH
representing FY.(-) has to be enabled with an initial prob-
ability vector equal to «; - €. By applying (19), we have

E;t E;jt.5

a]. B — a]. e E,-t,

= e (20)

given that E; = E; 6’ and o; = q;.

Equation (20) shows that, to represent the variable
timer policy introduced in Section 3, at workload changing
time t, the probabilities to be in the phases of the CPH
corresponding to F}.(-) have to be equal to those of the
CPH corresponding to F.(-). In the proposed CPH model,
this can be expressed through an identical memory matrix
of dimension z, thus M, 7(t) = L.

5.2 Symbolic Representation

Let us consider a discrete-state discrete-event model, and let
S be the system state space and ¢ the ordered set of CPH
distributed system events. A well-known result is that the
stochastic process can be represented by an expanded
process [22]. Such a process is composed of ||.S|| macrostates
and it is characterized by a ||S|| x ||S]| block infinitesimal
generator matrix Q, where:

BRUNEO ET AL.: WORKLOAD-BASED SOFTWARE REJUVENATION IN CLOUD SYSTEMS

Qi = [—q12 Q12]

q21 —q21

Q=Q:9Q2

—(ri2+mr13) T2 713
Q= 0 —T23 723

r31 0 —ra

(@)

1079
X1
51
><D u1p1
U9
U= [uy] Uz P1
U2 U1 p2
X2
P1 —>{) U2p2
Uy p3
P2 —»@
U2 P3
Dps3 %@
” T=UxP
P=| p
p3

Fig. 9. Graphical representation of the semantic of operator @ (a) and ® (b).

e the generic diagonal block Q,,, (1 <n < |S]) is a
square matrix that describes the evolution of the
expanded process inside the macrostate related to
state n, depending on the possible events enabled in
such a state;

e the generic off-diagonal block Q,, (1 <n <]|S],
1 < m < ||S||) describes the transition from the macro-
state related to state n to the one related to state m,
depending on the events occurred in state n and on the
possible events that may still occur in state m.

The state-space expansion approach can be used to
represent the VMM model, assuming the system events are
associated with CPH distributions and a compact represen-
tation can be provided by Kronecker algebra [23]. Kronecker
algebra is based on two main operators [24]: The product
(®) and the sum (®). Given two rectangular matrices A and
B of dimensions m; x my and n; x ny, respectively, their
Kronecker product A®B is a matrix of dimensions
ming X manse. More specifically, it is a m; x mg block matrix
in which the generic block ¢, j has dimension n; x ny and is
given by a;; - B. On the other hand, if A and B are square
matrices of dimensions m x m and n x n, respectively, their
Kronecker sum A @ B is the matrix of dimensions mn x mn
writtetnas A®B=Ax®I,+1, ®B.

By exploiting Kronecker algebra, the CPH generator
matrix Q does not need to be generated and stored as a
whole, but can be symbolically represented through
Kronecker expressions (details on symbolic representation
of PH based models can be found in [19].) In particular, the
matrix Q blocks have the following form:

Qi = @ QZ7Qij: ® Q£~

1<e<]e] 1<e<]e]

(21)

In other words, the diagonal blocks are computed as
Kronecker sums (off-diagonal blocks are computed as
Kronecker products) of a series of matrices Q! and Q/,
each of which is associated with one of the system events
and depends on their enabling in the states under exam.

Operators @ and ® assume specific meanings. Let us
consider two CTMCs x; and x» with infinitesimal generator
matrices Q; and Q,. Q; ® Q, is usually interpreted as the
infinitesimal generator matrix of the CTMC that models

the concurrent evolution of x; and x.. Fig. 9a shows a
graphical representation of that. It is important to remark
that the resulting CTMC is composed of a set of states that
derives from the combination of all the states of the two
initial processes.

On the other hand, let us consider a CTMC y; with a
single absorbing state, and let U be the column vector that
contains the transition rates to such a state. Let us also
consider a CTMC x3, and let P be a matrix containing the
probabilities to enter into the x, states. Thus, U®P is
usually interpreted as the matrix containing the transition
rates to the expanded process resulting from the combina-
tion of the absorbing state of x; with all the states of xo.
Fig. 9b depicts such situation.

According to this interpretation and due to the fact that
in our model all the events are represented by CPH
distributions, we use the @ operator to describe the
evolution of all the events evolving into a particular state
of the VMM model (Q;; matrices of (21)) and the ® operator
to represent the transitions from a state to another
(Q;; matrices of (21)). Thus, the Qf matrices are the G of
the enabled events in state 7, whereas the ij are the U or the
a of the firing or enabling events, respectively, in the
transition from state i to state j. We point out that a negative
exponential distribution with rate A can always be con-
sidered as a CPH distribution with G = [-)], U = [}], and
a = [1]. As a consequence, from assumption 5 in Section 4,
events e, and eg, are characterized by Gg = [—7al,
UGT = [7(17‘]’ G:ip = [_gép]/ and U:Zp = [S;Ip]

Kronecker representation is suitable for applying the
conservation of reliability principle and the variable timer
policy when the events are implemented as CPH distribu-
tions. In fact, the memory matrix M’;J(t) stores the
probabilities to switch to the new CPH when a transition
from state ¢ to state j occurs keeping memory of the
reached reliability. Thus, M;”(t) is used in the Kronecker
product of (21) with the same meaning of the P of Fig. 9b.
Similar considerations can be done for the trigger event
for which matrix M,/ (¢) can be used. Regarding e, and
eqp events, the 1 x 1 matrix [1] can be used during state
transitions as a consequence of the memory-less property
of exponential distributions.

1080

TABLE 1
Kronecker Expressions for Matrix Blocks Related
to States in the ith set of the Model of Fig. 5

Matrix block | Kronecker expression |

Quiai Gy @[] [0]8 Gy, @ [0] @ [—7ar] ® [-€5,]
Quit1,4i+1 08 Ga @[] [0] & [0] & [0] & [0]
Quait2,4i+2 0] 0] Gy, ®[0] @ [0] @ [0] @ [0]
Quqi13,4i+3 0 46_9 g(_@l[?} O eG & [0}4 [91](-

o M7 T e [1]®[1}®MHl t)®
Qui,a(i-1) Q] ® [(1] ®) [€5,) —

- M} e e oM, T e
UidcH) | g(f]®] © [1
Qui,4i+1 Uy a1l ®[1]e 1] 1]
Quit1,4i42 NeUs®a, @111 [1]
Quit2,4i oy ®[1]e UL, ®a;, @11 ®[1]
Quiait3 15, 011U, ®a, ®[1] @ [1]
Quit3,4i o @@ [1]®a;, @ UL, @ 1] @ [1]

If an event is not enabled in state s;, it does not contribute
to the construction of the block Q;;, and therefore, a null
1 x 1 matrix [0] is used in the Kronecker sum of (21).
Similarly, when an event is not involved in a transition from
state s; to state s;, the 1 x 1 matrix [1] is used in the
Kronecker product of (21).

We are now able to write the infinitesimal generator
matrix Q of the expanded process derived from the model
described in Section 4. We report in Table 1 the blocks of
matrle where (aﬂ,Gﬂ) (a,Gar), (e, Gy, (o, G,), and
(al,,G.,) indicate the CPH representatlon of the F}(t),
Fu(t), F‘ (1), Fi(t), and F}(t) CDFs, respectively. More-
over, Uﬂ, Uy, UL, U, and U, are the gorresponding
firing rate column vectors. Fmally, 1 v Lt 1,1, and 1/,
are column vectors with all elements equal to 1 with
appropriate dimensions. Details on how to construct
matrix Q can be found in the Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TC.2013.30.

Notice that, in general, the matrix Q thus obtained is
time dependent. However, if the assumptions on the CPH
representations of events ef; and e, reported in Section 5.1
are satisfied, all the memory matrices are identical and the
expanded process is a CTMC.

6 MODEL EVALUATION

In this section, we study a cloud-enabled node as specified
in Section 2, managed according to the timer policies
described in Section 3. To do that it is necessary to
operationally explain how to implement the variable timer
policy, identifying the quantity to be optimized, and the
guidelines for its application. Then, we focus on how to use
the proposed modeling technique on a rejuvenation-
enabled cloud node with a variable timer policy. To this
specific purpose, a case study taken from the literature is
investigated through the WebSPN tool [25] implementing
the technique detailed in Section 5.

6.1 Optimal Rejuvenation Time

A time-based rejuvenation policy intends to identify the
optimal time to rejuvenate with respect to one or more

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.6, JUNE 2013

performance indices. The performance index we investi-
gate is the VMM availability A(t) that can be defined as:

A(t) = Pr{VMM is in state s, at time ¢}. (22)

More specifically, we focus on the steady-state VMM
availability A(co) = limy_., A(t).

In case of fixed timer policies, the optimal rejuvenation
time can be obtained by varying the time interval 6 € R" to
identify the value ¢* that maximizes the system availability:

8" = arg max A(o0). (23)

5

With regard to the variable timer policy, the optimal
rejuvenation time depends on the set {6,,0 <i< N}

Collecting the §; into the row vector A = [é &1 - - - Oy |, with
6; € R, we want to find the value A* = [§ 6} --- 6] that
maximizes the system availability:

A" = arg max A(o0). (24)

A

The maximization problem expressed by (24) isa N + 1
dimension problem. In case of complex system and/or
large N, such a problem becomes intractable; thus, to
simplify it, we intend to exploit a relationship among the
N + 1 variables, decreasing the number of unknowns. The
heuristic we propose takes inspiration from the proportion-
ality rule among the optimal rejuvenation time of a system
in isolation, i.e., a system where the workload is fixed
throughout a rejuvenation epoch. In particular, fixing the
system workload to ¢« VMs, we can define the correspond-
ing availability in isolation A’(t) as:

Al(t) = Pr{VMM is in state s, at time ¢ | #VM(t) = i}.
(25)

Then, it is possible to obtain N + 1 optimal time intervals
6; that maximize the availability in isolation by solving the
following N + 1 problems:

6; = arg max A’ (oo
b

), Vi:0<i<N. (26)

The proportionality rule of such optimal time intervals in
isolation can be obtained by choosing a value 6, as reference
and by defining the N + 1 vector K/ = [k} k] - - - k), |, where

H==,0<i

< N. (27)

k?"'l el

The obtained vector can then be used to compute the
proportionality rule among the elements of A as:

A=46 K, (28)

where §; is the reference value.
In this way, the problem expressed by (24) can be
reported to the following problem in a single variable ¢;:

A" = arg max A(c0)
A , (29)
subject to: A = 6; - K’.

In practical terms, to adopt a variable timer rejuvenation
policy three main steps have to be performed:

BRUNEO ET AL.: WORKLOAD-BASED SOFTWARE REJUVENATION IN CLOUD SYSTEMS

TABLE 2
Parameters Adopted for the Case Study Evaluation
L Value Mean
Parameter Description [h—'] | time [h]
o Weibull failure time 1000
scale parameter with ¢ =1
B Weibull failure time 1.3 923.577
shape parameter
I VMM repair rate with ¢ =1 2 0.5
n VMM detection rate 12 0.0833
o VMM resume rate with i = 1 30 0.0333
Y VM arrival rate 1 1
£ VM departure rate with ¢ =1 0.5 2
YD VM day arrival rate 1 1
YN VM night arrival rate 0.2 5
ODN . .
day-night ht-d t 0.0833 12
oND ay-night/night-day rate

1. Evaluation setup. Identification and characterization
of all the model parameters and CDFs (failure,
repair, and so on).

2. Inwestigation of the system in isolation. Computation of
the optimal rejuvenation time intervals in isolation
6; by analyzing the model with a fixed workload.
The final goal is obtaining the corresponding &/ by
(26)-(28).

3. Investigation of the variable workload configuration.
Analysis of the complete model for the computation
of the optimal time intervals 6} of (29).

6.2 Evaluation Setup

To properly set the system parameters, we refer to the work
reported in [16], where a case study aiming at specifying the
optimal timers for the software rejuvenation of both the
VMM, and the VMs are fully implemented and investi-
gated. Table 2 summarizes the parameters, we have
adopted in our evaluation considering the maximum
number of VMs is 4 (N = 4).

The most important difference between the parameters
used in [16] and the ones reported in Table 2 is related to the
VMM lifetime CDF. In [16], the aging process is modeled by
splitting it into two consecutive steps. The first step
represents the VMM transition from a fully operating state
to a degraded one. The second step models the VMM
failure from the degraded state. Both events are exponen-
tially distributed, thus characterizing the overall aging
process with a 2-stage hypoexponential CDF. Here, we can
generalize such an assumption by representing the aging
process through a generally distributed CDF, approximated
through a multistage CPH. In particular, because in the
reliability context one of the most used CDF is the Weibull
distribution, we choose a Weibull CDF to characterize the
failure event, fixing the parameters (o = 1,000 and 3 = 1.3)
to be in accordance with those used in [16]. In this way, the
CDF F}(t) is identified.

In the field of reliability and availability analysis, one of
the most widely used approach to simply represent work-
load dependent conditions in analytical terms is the
proportional hazard model (PHM) [26]. In a PHM, the effect
of the workload on the reliability is expressed in terms of a
multiplicative effect on the failure rate. In the specific case
of the system under analysis, assuming

1081

Fl
ST

fl
is the failure rate of the VMM on top of which one VM is
running, we can expresg,(P‘gh(e))fgllure rate of the VMM with
i >1VMs as Ny (t) = ——f— = (i) - \jy(t). Similarly, the
case in which no VMs are runmng can be characterized by
Ap(t) = d- Ay (t) with 0 < d < 1. In this way, we assume
that the distributions characterizing the VMM lifetime in
different workload conditions differ only for a parameter
¢(i) that depends on the workload. A relevant part of the
existing literature on such a topic uses this kind of PHM
[13], [14] to represent load sharing.

Therefore, being the CDFs belonging to the Fj set
Weibull distributions with rate [3/04(%)’371 and assuming
Bi = [, we can easily obtain that the PHM condition can be
expressed just in terms of the scale parameter as o; = (

To investigate the impact of different PHMs, in the
following, we consider three cases by varying the way the
failure rates are affected by the workload, i.e., by setting
function ¢(¢). In particular, we consider:

e Sublinear. The failure rates vary with the workload
according to ¢(i) = V/i.

e Linear. Failure rates linearly varying with the work-
load, i.e., ¢(i) = i.

e Superlinear. The failure rates vary with the workload

according to c(i) = i°.

If no VMs are instantiated (i = 0), we assume that the
VMM does not degrade, and therefore, it is only necessary
to keep memory of the age that was reached at the
workload changing point. In numerical terms, this means
that A, (t) = 0- A} (t), ie, d = 0.

Accordmg to [16], we consider the time to resume,
repair, and detect as exponentially distributed. However,
while the detect event does not depend on the workload
and its rate is 74 = 7, repair and resume rates are workload
dependent, i.e., s, = p1/i and pl, = p/i, respectively.

Finally, let us describe the parameters related to the
workload events. While the time between two departures
(event eg,) is characterized by an exponential distribution
with workload dependent rate ¢, =i-¢, two different
conditions are considered for the arrival event e,

e Poisson arrival process (PAP). We assume an expo-
nentially distributed interarrival time with rate
Yar = 7-

e Markov modulated poisson arrival process (MMPP). We
assume an MMPP that models a variation of the
workload due, for example, to the day-night cycle:
Two different arrival rates yp and ~y are considered
with vp > vn; the process switches between them
according to day-night/night-day rates opy and onp.

6.3 Investigating the System in Isolation

Aim of this section is to show how to obtain the optimal
rejuvenation time intervals §; corresponding to the system
with a fixed workload.

For each specific workload condition, the value of 8; can
be obtained by analyzing, through the proposed technique,
the submodel corresponding to the ith set of states in the
model of Fig. 5 with events e, and ey, disabled. In the

1082

TABLE 3
Optimal Rejuvenation Time Intervals and Proportionality
Coefficients Varying the Workload PHM

#VM
T 2 3 z
5 _ ;i |0l 3375 | 2585 212 200.5
o(i) = Vi —r T | 0765983 | 0655378 | 0594177
o(i) =i |9 [3375] 2005 1455 119
B kI T | 0594177 | 0.431034 | 0.352609
()= | [375] 119 623 40
an=e kL T | 0352609 | 0.184488 | 0.11851

following, the workload condition ¢ = 0 is not taken into
account because we assumed that the VMM does not age
when no VMs are running and the Rejuvenation Manager
is disabled.

Table 3 reports the VMM optimal rejuvenation time
intervals ¢; obtained by evaluating the steady-state avail-
ability A’(co) under different rejuvenation time intervals
and according to the considered PHMs. Considering
one VM as reference workload and consequently 6, as the
reference time interval, it is possible to characterize the
optimal time intervals as specified by (28). The values of
coefficients k! (see (27)) are also reported in the table.

6.4 Workload and Policy Impact Assessment

Once the k! coefficients of (27) have been obtained, to apply
the variable timer policy it is necessary to evaluate the
optimal rejuvenation timer of (29), by evaluating the model
of Fig. 5. More specifically, we have to evaluate the
expanded process obtained by expressing the VMM lifetime
distributions in terms of CPH as discussed in Section 5.

The specific PHM characterizing the VMM lifetime
distributions of the example in the different workload
conditions can be considered as an accelerated life model
by expressing the relationship among the lifetime distribu-
tions in terms of time and verifying that a ¢} exists such that
Fy(t) = F (). Thus, in case of Weibull CDF Fy(t) =
1= e @7, we have that

3
£

1—e @ =1- e_(m))

Fixed timer —s=— |

0.997} P e
3 Variable timer ----e--

0.9965

Steady-state Availability

0.996 : -
10 100 1000

Rejuvenation time interval [h]

(@)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.6, JUNE 2013

ie, ¢ = ﬁ As discussed in Section 5.1, thanks to such
property, in our experiments we computed the CPH (a;,G1)
representing Fj,(t) by exploiting the fitting algorithm
introduced in [27], and then we obtained the CPHs
representing F}l(t), withi=2,..., N, as (al,% Gy).

Due to the characteristics of such CPHs in our model, the
memory matrices algebraically representing the conserva-
tion of reliability principle among the lifetime distributions,
as well as those implementing the timer updating due to
workload condition variations, are always identical. As a
consequence the whole expanded state-space model corre-
sponding to the VMM rejuvenation is a CTMC.

In case of MMPP arrival process, assumption 5 of
Section 4 is not valid given that the alternation between
day and night needs to be adequately represented even if
the VMM is not in a working state. This kind of behavior
can be fully obtained by replicating the states of the model
in Fig. 5, thus obtaining the model described in Appendix B,
available in the online supplemental material.

The steady-state availability A(oco), obtained by evalu-
ating the model depicted in Fig. 5 varying the rejuvena-
tion timer in both the two arrival processes (PAP and
MMPP), is shown in Fig. 10. Each graph compares the
results of the two rejuvenation policies taken into account.
The trends, thus, obtained are quite similar. All of them
initially increase by increasing the timer till a maximum
value of the steady-state availability A™**(c0), and there-
fore slowly decrease to an asymptotic value. This value is
the steady-state availability A" (co) that is obtained by
only considering the repair and without any rejuvenation
policy. In the case of the variable timer rejuvenation
policy, the value reported in the z-axis is the time interval
6, corresponding to the #VM =1 workload condition.
The optimal value 6] can be used, in combination with the
values of k!, to compute the time intervals §; that can be
exploited during the implementation of the technique.

The graphs clearly highlight that in both cases the
steady-state availability with the variable timer rejuvena-
tion policy is higher than the fixed timer one, as numerically
confirmed by the values reported in Table 4. Table 4 also
shows the optimal time intervals and the maximum steady-
state availability in the sublinear and superlinear cases.

oo Fixed timer —»—
Variable timer ----g---
0.998 |
>
3 H
= /
< "‘
z H
< e
2 i
g]
B 09975
>
el
©
g H
® /
"ml 95 99 103 107 111 167 171 175 179 183
0.997 L ‘ ‘
10 100 1000

Rejuvenation time interval [h]

(b)

Fig. 10. Steady-state availability A(co) of the VMM varying the rejuvenation timer, assuming a PAP (a) and an MMPP (b) VM arrival process. For the
variable policy, the rejuvenation time interval reported in the z-axis is 6;. The magnified regions show the values of the time interval corresponding to

the maximum value of availability.

BRUNEO ET AL.: WORKLOAD-BASED SOFTWARE REJUVENATION IN CLOUD SYSTEMS

TABLE 4
Optimal Time Intervals and Steady-State
Availability Varying the System Configuration

configuration Optimal
time A™MA% (56) | AT (c0)

c(@) [arrival | timer int. [h]
i PAP Vlla}’i‘ae%e ig §:§§§£§ 0.997661
MMPP e e 107 —0oog7gr—| 0998748
i PAP Vggai%e }‘}2 §:§§§§§§ 0.996246
MMPP I ~7ariable | 105 | 0.998167 | 99762
o | P V%’i;azle z% §:§§%§§§ 0.990088
MMPP I~ riable 35 0995400] 0-994129

The reported time interval for the variable policy is 6;.

We can argue that, as expected, the value of A" (c0) in the
case of MMPP arrival process is always higher than the one
corresponding to the PAP. This is due to the fact that during
the night the system is underloaded, thus resulting in a
slower aging phenomenon. Moreover, it is possible to
quantify the effects on the availability due to the different
PHMs taken into consideration. In particular, such a value
decreases as the effect of the workload on the aging process
becomes more evident, ie., moving from c(i) = Vi to
c(i) = i*. Results in Table 4 also confirm that the variable
rejuvenation timer policy always outperforms the fixed
policy in all the analyzed working conditions, thus
demonstrating the usefulness of the proposed approach.
In fact, even very low increments in the availability reflect
on remarkable reductions in the downtime per year (tens of
minutes for availability increments in the order of 107%).
Given that the hourly cost of service downtime for IT
companies has been estimated in the order of thousand of
dollars' and also considering its negative impact on
business reputation, such gains in availability justify the
increase in system management complexity.

7 RELATED WORK

Software rejuvenation is a proactive technique that allows
to prevent the occurrence of software failures [6]. We can
distinguish between two main rejuvenation approaches:
model-based and measurement based. The model-based ap-
proach [7], [28], [8], [29], [30] focuses on analytical models
representing the system behavior to investigate the costs/
benefits associated with rejuvenation. Measurement-based
techniques [9], [10], [31] analyze data coming from real
systems to extract information on software execution
(e.g., analyzing memory or CPU usage) to characterize the
software aging process. Model-based rejuvenation has the
advantage to study the optimal rejuvenation parameters but
it needs to know the system lifetime distribution, while the
second one does not specify any assumption on the aging
process even if it obtains nonoptimal solutions. A first
attempt to bridge the gap between such two techniques is
provided in [7].

1. International Working Group on Cloud Computing Resiliency—
http://iwgcr.org.

1083

Another classification can be made with respect to the
final objective of the rejuvenation technique. One of the
most analyzed parameters is the time to rejuvenation to find
the optimal value that correspond to the minimum system
downtime. Such techniques are referred to as time-based
rejuvenation [7], [10]. On the other hand, techniques that
analyze the system behavior to predict the failure (e.g.,
using alarm thresholds) are categorized as prediction-based
rejuvenation [31], [32].

In [33], the authors demonstrate that the rate at which
software ages is not constant but depends on the time-
variable workload. They observe that the use of periodic
rejuvenation at constant time could not be the optimal
approach. Starting from such a work, we proposed the
timer variable policy with the final goal to optimize the
rejuvenation process with respect to the actual system
workload, overcoming the limits of periodic rejuvenation.

In [7], the authors propose a comprehensive model to
study the software rejuvenation of a UNIX operating system
taking into account also the system workload. They
combine the analytical and measurement-based techniques
by first collecting and analyzing data to study the influence
of the workload on the system resource depletion. Such
data are then used to model the failure distribution. Finally,
the workload-dependent failure distribution is introduced
in an availability model to investigate the optimal rejuvena-
tion time. With respect to this work, our approach allows to
represent the workload-dependent aging process directly in
the availability model, thus providing a better approxima-
tion. This choice affects the state-space size but its impact is
mitigated through the symbolic Kronecker-based represen-
tation, as discussed in Section 5. Furthermore, the modeling
technique we adopted does not introduce any restriction or
limitation in the lifetime CDF representation.

Moreover, in [34] a variable timer approach consisting in
delaying the rejuvenation if scheduled during a workload
peak, with the goal of optimizing service performance, is
considered. A similar approach is adopted in [30], where
variable timer policies, delaying the rejuvenation at timer
expiration if there are jobs awaiting to be processed in
queue, are specified, evaluating the system availability
through extended Petri nets. Thus, in such works, the timer
is constant and the system can just delay the rejuvenation at
its expiration, to serve the queued jobs with availability/
performance maximization purposes. Such technique is,
therefore, not able to anticipate the rejuvenation if the
workload and consequently the aging speed increases. The
variable time-based rejuvenation policy we propose effec-
tively adapts the timer to workload conditions, anticipating
or delaying the rejuvenation depending on the actual
software degradation.

More recently, the use of rejuvenation in cloud and
virtualized system has been proposed in the literature. In
[35] and [36], the use of VMs and of the related management
techniques (e.g., virtualization, checkpointing) is justified to
reduce the system downtime during the rejuvenation. VM
and VMM rejuvenations in cloud environments are in-
vestigated in [12] and [16] through the use of analytical
techniques. In [12], the authors highlight the need to
rejuvenate the VMs as well as the VMM, measuring the
advantages obtained in terms of system availability. In [16],

1084

three different rejuvenation schemes are proposed starting
from the concept that a VMM rejuvenation affects the
running VMs. According to these schemes, each time the
VMM is rejuvenated the running VMs can be suspended,
rebooted, or migrated.

The techniques above discussed [35], [36], [12], and [16],
even if very relevant, do not take into account the VMM
workload. To the best of our knowledge, this paper is the
first attempt to investigate the VMM rejuvenation also
considering the system workload, in terms of number of
running VMs. We think that such issue is very relevant in
cloud environments, where workloads are highly variable,
with peaks and bursts. As a consequence, such variations
assume strategic importance in designing optimal rejuvena-
tion strategies, e.g., due to SLA and QoS constraints.

8 CoONCLUSIONS AND FUTURE WORK

The main contribution of this work is twofold: On the one
hand an analytic technique that allows to represent any
generic failure and repair distributions, adequately model-
ing changes in the workload through the conservation of
reliability principle; on the other hand, a variable timer
rejuvenation policy aiming at optimizing the software
(VMM) availability in case of workload changes. The
obtained results show that the proposed variable timer
policy outperforms the fixed timer one, also considering
different impact of the workload on the aging process.

We are working to extend the proposed policy and
technique in several directions: 1) enriching the model to
consider performability metrics such as throughput and
service availability; 2) extending the technique also con-
sidering the VM impacts and related management and
migration policies.

REFERENCES

[1] L. Bittencourt, C. Senna, and E. Madeira, “Scheduling Service
Workflows for Cost Optimization in Hybrid Clouds,” Proc. Int’l
Conf. Network and Service Management, pp. 394-397, 2010.

[2] S. Pearson and A. Benameur, “Privacy, Security and Trust Issues
Arising from Cloud Computing,” Proc. IEEE second Int’l Conf.
Cloud Computing Technology and Science, pp. 693-702, 2010.

[3] R. Ghosh, K. Trivedi, V. Naik, and D.S. Kim, “End-to-End
Performability Analysis for Infrastructure-as-a-Service Cloud:
An Interacting Stochastic Models Approach,” Proc. IEEE 16th
Pacific Rim Int’l Symp. Dependable Computing, pp. 125-132, 2010.

[4] S. Distefano, F. Longo, and M. Scarpa, “Availability Assessment of
HA Standby Redundant Clusters,” Proc. IEEE 29th Symp. Reliable
Distributed Systems, pp. 265-274, 2010.

[S] M. Grottke and K.S. Trivedi, “Fighting Bugs: Remove, Retry,
Replicate, and Rejuvenate,” Computer, vol. 40, no. 2, pp. 107-109,
Feb. 2007.

[6] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
Rejuvenation: Analysis, Module and Applications,” Proc. 25th Int’l
Symp. Fault-Tolerant Computing (FTCS), pp. 381-390, 1995.

[7] K. Vaidyanathan and K.S. Trivedi, “A Comprehensive Model for
Software Rejuvenation,” IEEE Trans. Dependable and Secure
Computing, vol. 2, no. 2, pp. 124-137, Apr.-June 2005.

[8] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of
Software Rejuvenation Using Markov Regenerative Stochastic
Petri Net,” Proc. Sixth Int’l Symp. Software Reliability Eng., pp. 180-
187, 1995.

[9] K. Vaidyanathan and K. Trivedi, “A Measurement-Based
Model for Estimation of Resource Exhaustion in Operational
Software Systems,” Proc. 10th Int'l Symp. Software Reliability
Eng., pp. 84-93, 1999.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.6, JUNE 2013

[10] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, “A
Methodology for Detection and Estimation of Software Aging,”
Proc. Ninth Int’l Symp. Software Reliability Eng., pp. 283-292, 1998.

[11] P.Melland T. Grance, “The NIST Definition of Cloud Computing,”
Nat'l Inst. of Standards and Technology, vol. 53, no. 6, p. 50, 2011.

[12] A. Rezaei and M. Sharifi, “Rejuvenating High Available Virtua-
lized Systems,” Proc. Int’l Conf. Availability, Reliability, and Security,
pp. 289-294, 2010.

[13] P.H.Kvam and E.A. Pefia, “Estimating Load-Sharing Properties in
a Dynamic Reliability System,” . Am. Statistical Assoc., vol. 100,
no. 469, pp. 262-272, 2005.

[14] L. Huang and Q. Xu, “Lifetime Reliability for Load-Sharing
Redundant Systems with Arbitrary Failure Distributions,” IEEE
Trans. Reliability, vol. 59, no. 2, pp. 319-330, June 2010.

[15] D. Kececioglu, Reliability Engineering Handbook (Vol. 1 and 2).
Prentice-Hall, Inc., 1991.

[16] F. Machida, D. Kim, and K. Trivedi, “Modeling and Analysis of
Software Rejuvenation in a Server Virtualized System,” Proc. IEEE
Second Int’l Workshop Software Aging and Rejuvenation, pp. 1-6, 2010.

[17] M.S. Finkelstein, “Wearing-Out of Components in a Variable
Environment,” Reliability Eng. and System Safety, vol. 66, no. 3,
pp. 235-242, 1999.

[18] D.R. Cox, Renewal Theory. Methuen Ltd, 1967.

[19] F. Longo and M. Scarpa, “Applying Symbolic Techniques to the
Representation of Non-Markovian Models with Continuous ph
Distributions,” Proc. Sixth European Performance Eng. Workshop
Computer Performance Eng. (EPEW), pp. 44-58, 2009.

[20] S. Distefano, F. Longo, and M. Scarpa, “Symbolic Representation
Techniques in Dynamic Reliability Evaluation,” Proc. IEEE Int'l
Symp. High-Assurance Systems Eng., pp. 45-53, 2010.

[21] M. Neuts, “Probability Distributions of Phase Type,” Liber
Amicorum Professor Emeritus H. Florin, pp. 173-206, Louvain
Univ., 1975.

[22] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An
Algorithmic Approach. Johns Hopkins Univ. Press, 1981.

[23] M. Scarpa, “Non Markovian Stochastic Petri Nets with Concurrent
Generally Distributed Transtions,” PhD dissertation, Univ. of
Turin, 1999.

[24] R. Bellman, Introduction to Matrix Analysis, second ed. SIAM, 1997.

[25] A. Bobbio, A. Puliafito, M. Scarpa, and M. Telek, “Webspn: A
Web-Accessible Petri Net Tool,” Proc. Conf. Web-Based Modeling
and Simulation, 1998.

[26] D.R. Cox, “Regression Models and Life-Tables,” |. Royal Statistical
Soc. Series B (Methodological), vol. 34, no. 2, pp. 187-220, 1972.

[27] A. Bobbio, A. Horvath, and M. Telek, “PhFit: A General Phase-
Type Fitting Tool,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN), p. 543, 2002.

[28] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of
Preventive Maintenance in Transactions Based Software Systems,”
IEEE Trans. Computers, vol. 47, no. 1, pp. 96-107, Jan. 1998.

[29] K. Vaidyanathan, R.E. Harper, SW. Hunter, and K.S. Trivedi,
“Analysis and Implementation of Software Rejuvenation in
Cluster Systems,” ACM SIGMETRICS Performance Evaluation
Rev., vol. 29, pp. 62-71, June 2001.

[30] F. Salfner and K. Wolter, “Analysis of Service Availability for
Time-Triggered Rejuvenation Policies,” |. Systems and Software,
vol. 83, no. 9, pp. 1579-1590, 2010.

[31] V. Castelli R.E. Harper, P. Heidelberger, SW. Hunter, K.S.
Trivedi, K. Vaidyanathan, and W.P. Zeggert, “Proactive Manage-
ment of Software Aging,” IBM |. R&D, vol. 45, no. 2, pp. 311-332,
2001.

[32] L. Silva, H. Madeira, and J. Silva, “Software Aging and
Rejuvenation in a Soap-Based Server,” Proc. IEEE Fifth Int’l Symp.
Network Computing and Applications, pp. 56-65, 2006.

[33] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi, “Analysis of
Software Aging in a Web Server,” IEEE Trans. Reliability, vol. 55,
no. 3, pp. 411-420, Sept 2006.

[34] D. Wang, W. Xie, and K.S. Trivedi, “Performability Analysis of
Clustered Systems with Rejuvenation Under Varying Workload,”
Performance Evaluation, vol. 64, pp. 247-265, 2007.

[35] L.Silva,]. Alonso, and J. Torres, “Using Virtualization to Improve
Software Rejuvenation,” IEEE Trans. Computers, vol. 58, no. 11,
pp- 1525-1538, Nov. 2009.

[36] D.Simeonov and D.R. Avresky, “Proactive Software Rejuvenation
Based on Machine Learning Techniques,” Proc. First Int’l Conf.
Cloud Computing, pp. 186-200, 2010.

BRUNEO ET AL.: WORKLOAD-BASED SOFTWARE REJUVENATION IN CLOUD SYSTEMS

Dario Bruneo received the PhD degree in
advanced technologies for information engi-
neering from the University of Messina, ltaly,
in 2005. He is an assistant professor at the
Engineering Faculty of the University of Messi-
na. His scientific activity has been focused on
studying distributed systems, particularly with
regard to management techniques. His primary
research interests include grid and cloud
computing, sensor networks, QoS manage-

ment, and performance evaluation. He is a member of the IEEE.

Salvatore Distefano is an assistant professor at
Politecnico di Milano. His research interests
include performance evaluation, distributed
computing, software engineering, and reliability
techniques. He contributed to the development
of several tools such as WebSPN, ArgoPerfor-
mance, and GS3. He has been involved in
several national and international research
projects. He serves the editorial boards and
committees of several journals and conferences.

Francesco Longo received the PhD degree in
advanced technologies for information engineer-
ing from the University of Messina, Italy, in 2011.
He is now a postdoc researcher within the Vision
Cloud European Project. His primary research
interests include performance and reliability
evaluation of distributed systems (in particular
grid and cloud) with main attention to the use of
non-Markovian stochastic Petri nets.

1085

Antonio Puliafito is a full professor of computer
engineering at the University of Messina, ltaly.
His interests include parallel and distributed
systems, wireless technologies, and grid and
cloud computing. He is also interested in the
performance evaluation of such systems. He
currently acts as the main investigator of
the Italian PRIN2008 research project Cloud @-
Home, trying to combine cloud and volunteer
computing. He is a member of the IEEE.

Marco Scarpa received degree in computer
engineering from the University of Catania, Italy,
in 1994, and the PhD degree in computer science
in 2000, from the University of Turin, Italy. He is
currently an associate professor at the University
of Messina. His research interests include
performance and reliability modeling of distribu-
ted systems, phase type distributions, and soft-
ware performance evaluation techniques. He has
been involved in several research projects.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

