

Polygon Triangulation

1389-2

[Computational](#page-77-0)

Geometry

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Motivation: The Art Gallery Problem

Motivation:

The Art Gallery Problem

Motivation: The Art Gallery Problem

[Computational](#page-0-0) Geometry

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

- Simple polygon: Regions enclosed by a single closed polygonal chain that does not intersect itself.
- Question: How many cameras do we need to guard
- One solution: Decompose the polygon to parts which

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

- Simple polygon: Regions enclosed by a single closed polygonal chain that does not intersect itself.
- Question: How many cameras do we need to quard a simple polygon? Answer: Depends on the polygon.
- One solution: Decompose the polygon to parts which

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

4.0.3 ∋ » c ∋ s Þ QQ [Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

3 / 35

- Simple polygon: Regions enclosed by a single closed polygonal chain that does not intersect itself.
- Question: How many cameras do we need to quard a simple polygon? Answer: Depends on the polygon.
- One solution: Decompose the polygon to parts which are simple to guard.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces [Triangulating a Monotone](#page-66-0)

Polygon

- **o** diagonals:
- Triangulation: A decomposition of a polygon into

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.0.3 4 何 ▶ ∋ » $\leftarrow \equiv$ É QQ

- **·** diagonals:
- Triangulation: A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

- **·** diagonals:
- Triangulation: A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

- **·** diagonals:
- Triangulation: A decomposition of a polygon into triangles by a maximal set of non-intersecting diagonals.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

• Guarding after triangulation:

[Computational](#page-0-0) Geometry

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

• Guarding after triangulation:

[Computational](#page-0-0) Geometry

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

• Guarding after triangulation:

4.0.3 \leftarrow \oplus \rightarrow ← 重→ 4 로) É QQ

• Guarding after triangulation:

4 0 8 \leftarrow \oplus \rightarrow ← 重→ 4 동 > É QQ

• Guarding after triangulation:

Yazd Univ. **[Computational](#page-0-0) Geometry** [The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0) Computing** [triangulation](#page-28-0) [Partitioning a Polygon into](#page-28-0) Monotone Pieces [Triangulating a Monotone](#page-66-0) Polygon

4 0 8 \leftarrow \oplus \rightarrow ← 重→ 4 동 > É QQ

Questions:

- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.0.3 4 何 ▶ $\leftarrow \Rightarrow$ 4 로) Þ QQ

Questions:

- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles. **Proof.** By induction.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.0.3 4 何 ≯ c∋ » $\leftarrow \equiv$ Þ QQ

Questions:

- Does a triangulation always exist?
- How many triangles can there be in a triangulation?

Theorem 3.1

Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles. **Proof.** By induction.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces [Triangulating a Monotone](#page-66-0)

Polygon

- \bullet \mathcal{T}_P : A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in
- To find such a subset: find a 3-coloring of a
-
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces [Triangulating a Monotone](#page-66-0)

Polygon

4.0.3 4 何 ≯ イヨト $\leftarrow \equiv$ Þ QQ

- \bullet \mathcal{T}_P : A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in \mathcal{T}_P has at least one vertex in S, and place the cameras at vertices in S.
- To find such a subset: find a 3-coloring of a
- In a 3-coloring of \mathcal{T}_P , every triangle has a blue, a red,
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces [Triangulating a Monotone](#page-66-0)

Polygon

4.0.3 4 何 ≯ c∋ » $\leftarrow \equiv$ Þ QQ

- \bullet \mathcal{T}_P : A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in \mathcal{T}_P has at least one vertex in S, and place the cameras at vertices in S.
- To find such a subset: find a 3-coloring of a triangulated polygon.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

- \bullet \mathcal{T}_P : A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in \mathcal{T}_P has at least one vertex in S, and place the cameras at vertices in S.
- To find such a subset: find a 3-coloring of a triangulated polygon.
- In a 3-coloring of T_P , every triangle has a blue, a red, and a black vertex. Hence, if we place cameras at all red vertices, we have guarded the whole polygon.
- By choosing the smallest color class to place the

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.0.3 4 何 ≯ c∋ » $\leftarrow \equiv$ Þ QQ

- \bullet \mathcal{T}_P : A triangulation of a simple polygon P.
- Select $S \subseteq$ the vertices of P, such that any triangle in \mathcal{T}_P has at least one vertex in S, and place the cameras at vertices in S.
- To find such a subset: find a 3-coloring of a triangulated polygon.
- In a 3-coloring of T_P , every triangle has a blue, a red, and a black vertex. Hence, if we place cameras at all red vertices, we have guarded the whole polygon.
- By choosing the smallest color class to place the cameras, we can guard P using at most $\lfloor n/3 \rfloor$ cameras.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

4.0.3 4 何 ≯ c∋ » $\leftarrow \equiv$ Þ QQ [Partitioning a Polygon into](#page-28-0) Monotone Pieces

Does a 3-coloring always exist?

Dual graph:

- This graph $\mathcal{G}(\mathcal{T}_P)$ has a node for every triangle in \mathcal{T}_P .
- There is an arc between two nodes ν and μ if $t(\nu)$ and $t(\mu)$ share a diagonal.
- \bullet $\mathcal{G}(\mathcal{T}_P)$ is a tree.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.000 Þ QQ

Does a 3-coloring always exist?

For 3-coloring:

- Traverse the dual graph (DFS).
- Invariant: so far everything is nice.
- Start from any node of $G(\mathcal{T}_P)$; color the vertices.
- When we reach a node ν in G, coming from node μ . Only one vertex of $t(\nu)$ remains to be colored.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) Polygon

4.000 QQ

Theorem 3.2 (Art Gallery Theorem)

For a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are occasionally necessary and always sufficient to have every point in the polygon visible from at least one of the cameras.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.0.3 -5 c∋ » $\leftarrow \equiv$ É QQ

10 / 35

We will show:

How to compute a triangulation in $\mathcal{O}(n \log n)$ time.

Therefore:

Theorem 3.3

Let P be a simple polygon with n vertices. A set of $\lfloor n/3 \rfloor$ camera positions in P such that any point inside P is visible from at least one of the cameras can be computed in $\mathcal{O}(n \log n)$ time.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem

Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.0.3 4 何 ≯ c∋ » $\leftarrow \equiv$ Þ QQ

[Computational](#page-0-0) Geometry

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) Polygon

How can we compute a triangulation of a given polygon?

Triangulation algorithms

- A really naive algorithm: check all $\binom{n}{2}$ $\binom{n}{2}$ choices for a diagonal, each takes $\mathcal{O}(n)$ time. Time complexity: $\mathcal{O}(n^3)$.
- A better naive algorithm: find an ear in $\mathcal{O}(n)$ time, then recurse. Total time: $\mathcal{O}(n^2)$.
- First non-trivial algorithm: $\mathcal{O}(n \log n)$ (1978).
- A long series of papers and algorithms in 80s until Chazelle produced an optimal $\mathcal{O}(n)$ algorithm in 1991.
- Linear time algorithm insanely complicated; there are randomized, expected linear time that are more accessible.
- Here we present a $\mathcal{O}(n \log n)$ algorithm.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 QQ

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Algorithm Outline

Algorithm Outline

- **1** Partition polygon into monotone polygons.
- 2 Triangulate each monotone piece.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

-
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

4.0.3 4 何 ≯ c∋ » $\leftarrow \equiv$ Þ QQ [Partitioning a Polygon into](#page-28-0) Monotone Pieces

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.0.3 -5 ∋ » $\leftarrow \equiv$ É QQ

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

4.0.3 -5 c∋ » $\leftarrow \equiv$ É QQ

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

c∋ » $\leftarrow \equiv$ QQ

4.0.3 -5

É

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

 -5 c∋ » $\leftarrow \equiv$ QQ

4.0.3

É
ℓ -monotone polygon

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

4.0.3 -5 ∋ » $\leftarrow \equiv$ É

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

ℓ -monotone polygon

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

4.0.3 -5 c∋ » $\leftarrow \equiv$ É QQ [Partitioning a Polygon into](#page-28-0) Monotone Pieces

ℓ -monotone polygon

P is called monotone w. r. t. ℓ if $\forall \ell'$ perpendicular to ℓ the intersection of P with ℓ is connected (a line segment, a point, or empty).

Definition:

- A point p is below another point q if $p_y < q_y$ or $p_y = q_y$ and $p_x > q_x$.
- p is above q if $p_y > q_y$ or $p_y = q_y$ and $p_x < q_x$.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 $\left(\begin{array}{c} 1 \end{array} \right)$ 4 何 ▶ c∋ » c ∋ s Þ QQ [Partitioning a Polygon into](#page-28-0) Monotone Pieces

Yazd Univ.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

Lemma 3.4

 P is y -monotone if it has no split or merge vertices.

Proof. Assume P is not y-monotone.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Lemma 3.4

 P is y -monotone if it has no split or merge vertices.

Proof. Assume P is not y-monotone.

4.000

 ∞

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Lemma 3.4

 P is y -monotone if it has no split or merge vertices.

Proof. Assume P is not y-monotone.

P has b[e](#page-27-0)en partitioned into y -monotone pieces once we get rid of its split and merge vertices.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Removing split vertices:

- A sweep line algorithm. Events: all the points
-
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Removing split vertices:

- A sweep line algorithm. Events: all the points
- Goal: To add diagonals from each split vertex to a vertex lying above it.
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Removing split vertices:

- A sweep line algorithm. Events: all the points
- Goal: To add diagonals from each split vertex to a vertex lying above it.
- $heller(e_i)$: The lowest vertex above the sweep line s. t. the horizontal segment connecting the vertex to e_i lies inside P.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

4.000

Þ, Þ QQ [Partitioning a Polygon into](#page-28-0) Monotone Pieces

Removing merge vertices:

- **Connect each merge vertex to the highest vertex** below the sweep line in between e_i and e_k .
-
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Removing merge vertices:

- Connect each merge vertex to the highest vertex below the sweep line in between e_i and e_k .
- But we do not know the point.
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Removing merge vertices:

- Connect each merge vertex to the highest vertex below the sweep line in between e_i and e_k .
- But we do not know the point.
- When we reach a vertex v_m that replaces the helper of e_i , then this is the vertex we are looking for.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

∋ »

Þ

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

For this approach, we need to find the edge to the left of each vertex. To do that:

- \bullet We store the edges of P intersecting the sweep line in the leaves of a dynamic binary search tree T .
-
-
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

For this approach, we need to find the edge to the left of each vertex. To do that:

- \bullet We store the edges of P intersecting the sweep line in the leaves of a dynamic binary search tree \mathcal{T} .
- ² Because we are only interested in edges to the left of split and merge vertices we only need to store edges in T that have the interior of P to their right.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

For this approach, we need to find the edge to the left of each vertex. To do that:

- \bullet We store the edges of P intersecting the sweep line in the leaves of a dynamic binary search tree \mathcal{T} .
- ² Because we are only interested in edges to the left of split and merge vertices we only need to store edges in T that have the interior of P to their right.
- \bullet With each edge in τ we store its helper.
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

For this approach, we need to find the edge to the left of each vertex. To do that:

- \bullet We store the edges of P intersecting the sweep line in the leaves of a dynamic binary search tree \mathcal{T} .
- ² Because we are only interested in edges to the left of split and merge vertices we only need to store edges in T that have the interior of P to their right.
- \bullet With each edge in τ we store its helper.
- \bullet We store P in DCEL form and make changes such that it remains valid.

[Computational](#page-0-0) Geometry

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

- **Algorithm** MAKEMONOTONE*(P)*
- **Input:** A simple polygon Pstored in a doubly-connected edge list D.
- **Output:** A partitioning of Pinto monotone subpolygons, stored in D.
- 1. Construct a priority queue $\mathcal Q$ on the vertices of P, using their y -coordinates as priority. If two points have the same y -coordinate, the one with smaller x -coordinate has higher priority.
- 2. Initialize an empty binary search tree \mathcal{T} .
3. while \mathcal{O} is not empty
- 3. **while** Q is not empty
4. **Bemove the vert**
- Remove the vertex vi with the highest priority from Q.
- 5. Call the appropriate procedure to handle the vertex, depending on its type.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

4.0.3 4 何 ▶ c∋ » $\leftarrow \equiv$ Þ QQ [Partitioning a Polygon into](#page-28-0) Monotone Pieces

Algorithm HANDLESTARTVERTEX (v_i)

1. Insert ei in $\mathcal T$ and set $\mathit{heller}(e_i)$ to v_i .

4.0.3 4 @) \Rightarrow 41 4 로) É QQ

Algorithm HANDLEENDVERTEX (v_i)

- 1. **if** $\text{helper}(e_{i-1})$ is a merge vertex
- 2. **then** Insert the diagonal connecting v_i to $helper(e_{i-1})$ in \mathcal{D} .
- 3. Delete e_{i-1} from \mathcal{T} .

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Algorithm HANDLESPLITVERTEX (v_i)

- 1. Search in T to find the edge e_j directly left of v_i .
- 2. Insert the diagonal connecting v_i to $heller(e_j)$ in \mathcal{D} .
- **3.** helper $(e_j) \leftarrow v_i$.
- 4. Insert e_i in ${\cal T}$ and set ${helper}(e_i)$ to v_i

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Algorithm HANDLEMERGEVERTEX (v_i)

- 1. **if** $helper(e_{i-1})$ is a merge vertex
2. **then** lnsert the diag. v_i to $help$
- 2. **then** Insert the diag. v_i to ${helper}(e_{i-1})$ in D .
3. Delete e_{i-1} from T .
- 3. Delete e_{i-1} from \mathcal{T} .
4. Search in \mathcal{T} to find ϵ
- 4. Search in $\mathcal T$ to find e_j directly left of v_i .
5. **if** helper(e_i) is a merge vertex
- 5. **if** $helper(e_j)$ is a merge vertex
6. **then** lnsert the diag. v_i to he
- 6. **then** Insert the diag. v_i to $helper(e_j)$ in D.
7. $helper(e_i) \leftarrow v_i$.
- $helper(e_i) \leftarrow v_i.$

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Algorithm HANDLEREGULARVERTEX (v_i) 1. **if** the interior of Plies to the right of v_i
2. **then if** $helper(e_{i-1})$ is a merge vert 2. **then if** $helper(e_{i-1})$ is a merge vertex
3. **then** lnsert the diag. v_i to $help$ 3. **then** Insert the diag. *v_i* to $helper(e_{i-1})$ in D.
4. Delete e_{i-1} from T. Yazd Univ. 4. Delete e_{i-1} from \mathcal{T} .
5. Insert e_i in \mathcal{T} and se [Computational](#page-0-0) 5. Insert e_i in $\mathcal T$ and set $helper(e_i)$ to v_i .
6. **else** Search in $\mathcal T$ to find e_i directly left of v_i . **Geometry** 6. **else** Search in $\mathcal T$ to find e_j directly left of v_i .
7. **if** h elper(e_i) is a merge vertex 7. **if** $helper(e_j)$ is a merge vertex
8. **then** lnsert the diag. v_i to he [The Art Gallery](#page-1-0) 8. **then** Insert the diag. v_i to helper(e_j) in D.
9. $heller(e_i) \leftarrow v_i$ Problem v_5 $helper(e_i) \leftarrow v_i$ v_3 Guarding and **[Triangulations](#page-11-0)** v_4 e_4 e_5 eV e_3 **Computing** v_{6} e6 [triangulation](#page-28-0) $e₂$ [Partitioning a Polygon into](#page-28-0) $v₁$ v_7 Monotone Pieces $v₉$ v_2 [Triangulating a Monotone](#page-66-0) e7 ϵ_1 $v₈$ **Polygon** e_8 e_{15} eq e_{14} $\overline{v_{14}}$ v_{10} e_{13} v_{15} e_{10} \Box e_{11} v_{12} e_{12} v_{11} Þ, É QQ v_{13}

Algorithm MAKEMONOTONE adds a set of non-intersecting diagonals that partitions P into monotone subpolygons.

Proof. (For split vertices) (other cases are similar) • No intersection between $v_i v_m$ and edges of P.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

 -10.1 QQ

Algorithm MAKEMONOTONE adds a set of non-intersecting diagonals that partitions P into monotone subpolygons.

Proof. (For split vertices) (other cases are similar) • No intersection between $v_i v_m$ and edges of P.

• No intersection between $v_i v_m$ and previous edges.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

 -10.1 QQ

Algorithm MAKEMONOTONE adds a set of non-intersecting diagonals that partitions P into monotone subpolygons.

Proof. (For split vertices) (other cases are similar) • No intersection between $v_i v_m$ and edges of P.

• No intersection between $v_i v_m$ and previous edges.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

 -10.1 QQ

Algorithm MAKEMONOTONE adds a set of non-intersecting diagonals that partitions P into monotone subpolygons.

Proof. (For split vertices) (other cases are similar)

- No intersection between $v_i v_m$ and edges of P.
- No intersection between $v_i v_m$ and previous edges.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 -10.1

 QQ

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

Running time/ Space complexity

Running time:

- Constructing the priority queue $Q: \mathcal{O}(n)$ time.
- Initializing \mathcal{T} : $\mathcal{O}(1)$ time.
- To handle an event, we perform:
	- **1** one operation on Q: $\mathcal{O}(\log n)$ time.
	- 2 at most one query on \mathcal{T} : $\mathcal{O}(\log n)$ time.
	- 3 one insertion, and one deletion on \mathcal{T} : $\mathcal{O}(\log n)$ time.
	- \bullet we insert at most two diagonals into D: $\mathcal{O}(1)$ time.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 QQ

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Running time/ Space complexity

Running time:

- Constructing the priority queue $Q: \mathcal{O}(n)$ time.
- Initializing \mathcal{T} : $\mathcal{O}(1)$ time.
- To handle an event, we perform:
	- **1** one operation on Q: $\mathcal{O}(\log n)$ time.
	- 2 at most one query on \mathcal{T} : $\mathcal{O}(\log n)$ time.
	- 3 one insertion, and one deletion on \mathcal{T} : $\mathcal{O}(\log n)$ time.
	- \bullet we insert at most two diagonals into D: $\mathcal{O}(1)$ time.

Space Complexity:

The amount of storage used by the algorithm is clearly linear: every vertex is stored at most once in Q, and every edge is stored at most once in \mathcal{T} .

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 QQ

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Theorem 3.6

A simple polygon with n vertices can be partitioned into y-monotone polygons in $\mathcal{O}(n \log n)$ time with an algorithm that uses $\mathcal{O}(n)$ storage.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) Polygon

30 / 35

Triangulation Algorithm:

- **1** The algorithm handles the vertices in order of decreasing y-coordinate. (Left to right for points with same y -coordinate).
-
-
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 Ω

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Triangulation Algorithm:

- **1** The algorithm handles the vertices in order of decreasing y-coordinate. (Left to right for points with same y -coordinate).
- **2** The algorithm requires a stack S as auxiliary data structure. It keeps the points that handled but might need more diagonals.
-
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 Ω

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Triangulation Algorithm:

- **1** The algorithm handles the vertices in order of decreasing y-coordinate. (Left to right for points with same y -coordinate).
- **2** The algorithm requires a stack S as auxiliary data structure. It keeps the points that handled but might need more diagonals.
- ³ When we handle a vertex we add as many diagonals from this vertex to vertices on the stack as possible.
-

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 QQ

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

Triangulation Algorithm:

- **1** The algorithm handles the vertices in order of decreasing y-coordinate. (Left to right for points with same y -coordinate).
- **2** The algorithm requires a stack S as auxiliary data structure. It keeps the points that handled but might need more diagonals.
- **3** When we handle a vertex we add as many diagonals from this vertex to vertices on the stack as possible.
- 4 Algorithm invariant: the part of P that still needs to be triangulated, and lies above the last vertex that has been encountered so far, looks like a funnel turned upside down.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

つへへ

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) Polygon

4.0.3 \leftarrow \oplus \rightarrow ← 重→ 4 로) É 299
Triangulating a Monotone Polygon

32 / 35

Triangulating a Monotone Polygon

32 / 35

Triangulating a Monotone Polygon

Algorithm TRIANGULATEMONOTONEPOLYGON*(*P*)* **Input:** A strictly y-monotone polygon P stored in D. **Output:** A triangulation of P stored in D.
1 Merge the vertices on the left chain.

- Merge the vertices on the left chain and the vertices on the right chain of P into one sequence, sorted on decreasing y -coordinate. Let u_1, \ldots, u_n denote the sorted sequence.
- 2. Initialize an empty stack S, and push u_1 and u_2 onto it.
3. **for** $i \leftarrow 3$ **to** $n-1$

```
3. for j \leftarrow 3 to n-1<br>4. if u_i and th
```
- 4. **if** u_j and the vertex on top of S are on different chains 5. 5. **then** Pop all vertices from S.
6. **haddle Insert into D** a diagonal
- Insert into D a diagonal from u_i to each popped vertex, except the last one.
- 7. Push u_{j-1} and u_j onto S.
8. **else** Pop one vertex from S.
- 8. **else** Pop one vertex from S.
9. **Pop the other vertices for all that Pop the other vertices** for
- Pop the other vertices from S as long as the diagonals from u_i to them are inside P. Insert these diagonals into D . Push the last vertex that has been popped back onto S . 4.0.3
- 10. Push u_i onto S.
- 11. Add diagonals from u_n to all stack vertices except the first and the last one.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

 \leftarrow \oplus \rightarrow $\leftarrow \equiv$ 4 동 > É QQ [Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) Polygon

Polygon Triangulation

Theorem 3.8

A simple polygon with n vertices can be triangulated in $\mathcal{O}(n \log n)$ time with an algorithm that uses $O(n)$ storage.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

34 / 35

Polygon Triangulation

Theorem 3.8

A simple polygon with n vertices can be triangulated in $\mathcal{O}(n \log n)$ time with an algorithm that uses $O(n)$ storage.

Theorem 3.9

A planar subdivision with n vertices in total can be triangulated in $\mathcal{O}(n \log n)$ time with an algorithm that uses $\mathcal{O}(n)$ storage.

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) Polygon

[Computational](#page-0-0) **Geometry**

[The Art Gallery](#page-1-0) Problem Guarding and **[Triangulations](#page-11-0)**

Computing [triangulation](#page-28-0)

[Partitioning a Polygon into](#page-28-0) Monotone Pieces

[Triangulating a Monotone](#page-66-0) **Polygon**

不自主 ← 伊 ト ∢重す 4 로 되 ă 290

35 / 35

END.