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Preface to the Second Edition

This second edition contains two additional chapters dealing with binomial,
multinomial and Poisson models. If you have to analyze data sets where the
response variable is a count or the distribution of individuals in categories, you
will be interested in these chapters. Generalized linear models are usually used
for modeling these data. They assume that the expected response is linked
to a linear predictor through a one-to-one known transformation. We con-
sider extensions of these models by taking into account the cases where such
a linearizing transformation does not exist. We call these models generalized
nonlinear models. Although they do not fall strictly within the definition of
nonlinear regression models, the underlying principles and methods are very
similar. In Chapter 6 we consider binomial variables, and in Chapter 7 multi-
nomial and Poisson variables. It is fairly straightforward to extend the method
to other distributions such as exponential distribution or gamma distribution.

Maintaining the approach of the first edition, we start by presenting prac-
tical examples, and we describe the statistical problems posed by these ex-
amples, focusing on those that cannot be analyzed within the framework of
generalized linear models. We demonstrate how to solve these problems using
nls2. It should be noted that we do not review the statistical problems re-
lated to generalized linear models that have been discussed extensively in the
literature. Rather, we postulate that you have some practical experience with
data analysis using generalized linear models, and we base our demonstrations
on the link between the generalized nonlinear model and the heteroscedastic
nonlinear regression model dealt with in Chapter 3. For that purpose, the
estimation method based on the quasi-likelihood equations is introduced in
Section 3.3. The use of the nls2’s facilities for analyzing data modeled with
generalized nonlinear models is the main contribution of the second edition.

The modifications to Chapters 1 to 5 are minor except for the bootstrap
method. Indeed, we propose an extension of the bootstrap method to het-
eroscedastic models in Section 3.4, and we apply it to calculating prediction
and calibration confidence intervals.

XI



XII Preface to the Second Edition

Let us conclude this preface with the improvements made in nls2. The
software is now available under Linux and with R! as the host system, in
addition to the Unix/SPlus version. Moreover, a C/Fortran library, called
nls2C, allows the user to carry out estimation without any host system. And,
of course, all of the methods discussed in this edition are introduced in the
software.

! http://cran.r-project.org/



Preface to the First Edition

If you need to analyze a data set using a parametric nonlinear regression
model, if you are not familiar with statistics and software, and if you make
do with S-Plus, this book is for you. In each chapter we start by presenting
practical examples. We then describe the statistical problems posed by these
examples, and we demonstrate how to solve these problems. Finally, we apply
the proposed methods to the example data sets. You will not find any math-
ematical proofs here. Rather, we try, when possible, to explain the solutions
using intuitive arguments. This is really a cookbook.

Most of the methods proposed in the book are derived from classical non-
linear regression theory, but we have also made attempts to provide more
modern methods that have been proven to perform well in practice. Although
the theoretical grounds are not developed here, when appropriate we give
some technical background using a sans serif type style. You can skip these
passages if you are not interested in this information.

The first chapter introduces several examples from experiments in agron-
omy and biochemistry, to which we will return throughout the book. Each
example illustrates a different problem, and we show how to methodically
handle these problems using parametric nonlinear regression models. Because
the term parametric model means that all of the information in the experi-
ments is assumed to be contained in the parameters occurring in the model,
we first demonstrate, in Chapter 1, how to estimate the parameters. In Chap-
ter 2 we describe how to determine the accuracy of the estimators. Chapter 3
introduces some new examples and presents methods for handling nonlin-
ear regression models when the variances are heterogeneous with few or no
replications. In Chapter 4 we demonstrate methods for checking if the assump-
tions on which the statistical analysis is based are accurate, and we provide
methods for detecting and correcting any misspecification that might exist. In
Chapter 5 we describe how to calculate prediction and calibration confidence
intervals.

Because good software is necessary for handling nonlinear regression data,
we provide, at the end of each chapter, a step-by-step description of how to

XIIT



XIV  Preface to the First Edition

treat our examples using nls2 [BH94], the software we have used throughout
this book. nls2 is a software implemented as an extension of the statistical
system S-Plus, available at http://www.inra.fr/bia/J/AB/nls2/, and it offers
the capability of implementing all of the methods presented in this book.

Last but not least, we are grateful to Suzie Zweizig for a careful rereading of
our English. Thanks to her, we hope that you find this book readable!



1

Nonlinear Regression Model and Parameter
Estimation

In this chapter we describe five examples of experiments in agronomy and bio-
chemistry; each illustrates a different problem. Because all of the information
in the experiments is assumed to be contained in a set of parameters, we will
first describe, in this chapter, the parametric nonlinear regression model and
how to estimate the parameters of this model.!

1.1 Examples

1.1.1 Pasture Regrowth: Estimating a Growth Curve

In biology, the growth curve is of great interest. In this example (treated by
Ratkowsky [Rat83]), we observe the yield of pasture regrowth versus time
since the last grazing. The results are reported in Table 1.1 and Figure 1.1.
The following model is assumed: The yield at time z;, Y;, is written as Y; =
f(x;,0)+¢;, where f(z,0) describes the relationship between the yield and the
time x. The errors ¢; are centered random variables (E(e;) = 0). Because the
measurements are in different experimental units, the errors can be assumed to
be independent. Moreover, to complete the regression model, we will assume
that the variance of ¢; exists and equals o2

Table 1.1. Data of yield of pasture regrowth versus time (the units are not
mentioned)

Time after pasture‘ 9 ‘14 ‘ 21 ‘ 28 ‘ 42 ‘ 57 ‘ 63 ‘ 70 ‘ 79
Yield 8.93 [10.8 [18.59 [22.33 [39.35 [56.11 [61.73 [64.62 [67.08

1 We use this sans serif type style when we give technical background. You can skip
these passages if you are not interested in this information.



2 1 Nonlinear Regression Model and Parameter Estimation

yield *
60
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40 A *
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104 « *

20 40 60 80
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Figure 1.1. Pasture regrowth example: Observed responses versus time

The model under study is the following:

Var(e;) = 02, E(g;) =0 (1.1)

In this example, a possible choice for f is the Weibull model:
f(z,0) =01 — Osexp (—exp(f3 + b4 logx)) . (1.2)

Depending on the value of 84, f presents an inflection point or an expo-
nential increase; see Figure 1.2.

Generally, the choice of the function f depends on knowing the observed
biological phenomena. Nevertheless, in this example, Figure 1.1 indicates that
the response curve may present an inflection point, making the Weibull model
a good choice.

Obviously, it is important to choose the function f well. In this chapter
we will show how to estimate the parameters assuming that f is correct. In
Chapter 4 we will describe how to validate the choice of f.

1.1.2 Radioimmunological Assay of Cortisol: Estimating a
Calibration Curve

Because the amount of hormone contained in a preparation cannot be mea-
sured directly, a two-step process is necessary to estimate an unknown dose
of hormone. First we must establish a calibration curve, and then we invert
the calibration curve to find the dose of the hormone.

The calibration curve is estimated by using a radioimmunological assay
(or RIA). This assay is based on the fact that the hormone H and its marked
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Figure 1.2. Growth models described with the Weibull function defined in Equa-
tion (1.2)

isotope H* behave similarly with respect to their specific antibody A. Thus,
for fixed quantities of antibody [A] and radioactive hormone [H*], the quan-
tity of linked complex [AH*] decreases when the quantity of cold hormone [H]
increases. This property establishes a calibration curve. For known dilutions
of a purified hormone, the responses [AH*] are measured in terms of c.p.m.
(counts per minute). Because the relation between the quantity of linked com-
plex [AH*] and the dose of hormone H varies with the experimental conditions,
the calibration curve is evaluated for each assay.

Then, for a preparation containing an unknown quantity of the hormone H,
the response [AH*| is measured. The unknown dose is calculated by inverting
the calibration curve.

The data for the calibration curve of an RIA of cortisol are given in Ta-
ble 1.2 (data from the Laboratoire de Physiologie de la Lactation, INRA).
Figure 1.3 shows the observed responses as functions of the logarithm of the
dose, which is the usual transformation for the z-axis. In this experiment,
the response has been observed for the zero dose and the infinite dose. These
doses are represented in Figure 1.3 by the values —3 and +2, respectively.

The model generally used to describe the variations of the response Y ver-
sus the log-dose z is the Richards function (the generalized logistic function).
This model depends on five parameters: 62, the upper asymptote, is the re-
sponse for a null dose of hormone H; 61, the lower asymptote, is the response
for a theoretical infinite dose of H; the other three parameters describe the
shape of the decrease of the curve. The equation of the calibration curve is

0y — 6,
(1+ exp(05 + 042))%

f(x,0) =01 + (1.3)
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Table 1.2. Data for the calibration curve of an RIA of cortisol

Dose (ng/.1 ml) Response (c.p.m.)
0 2868 2785 2849 2805
0 2779 2588 2701 2752
0.02 2615 2651 2506 2498
0.04 2474 2573 2378 2494
0.06 2152 2307 2101 2216
0.08 2114 2052 2016 2030
0.1 1862 1935 1800 1871
0.2 1364 1412 1377 1304
0.4 910 919 855 875
0.6 702 701 689 696
0.8 586 596 561 562
1 501 495 478 493
1.5 392 358 399 394
2 330 351 343 333
4 250 261 244 242
00 131 135 134 133
I =
response | ¥ "
25001 *
* ¥ *
i **
*
15001 %
] ¥
¥
500 i "
* *
*
-3 -2 -1 0 1 2
log-dose

Figure 1.3. Cortisol example: Observed responses (in c¢.p.m.) versus the logarithms
in base 10 of the dose
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Once we describe the trend of the variations of Y versus z, we also have
to consider the errors e =Y — f(x,0). Looking carefully at Figure 1.3, we see
that the variability of Y depends on the level of the response. For each value
of z, with the response Y being observed with replications, the model can be
written in the following manner: Y;; = f(z;,6) + €;;, with j varying from 1
to m; (n; equals 8 or 4) and 4 from 1 to k (k = 15). For each value of ¢ the
empirical variance of the response can be calculated:

= L X (Y — Vi) }

1.4
with Vi, =L 3" v (14)

Table 1.3. Cortisol example: Mean and empirical variance of the response for each
value of the dose

Dose 0 0.02 0.04 0.06 0.08
Means: Y;, 2765.875 2567.5 2479.75 2194 2053
Variances: s7 6931 4460 4821 5916 1405
Dose 0.1 0.2 0.4 0.6 0.8
Means : Y; 1867  1364.25  889.75 697  576.25
Variances: s; 2288 1518 673 26 230
Dose 1 1.5 2 4 00
Means: Y;. 491.75  385.75 339.25 249.25 133.25
Variances: s; 72 263 69 55 2

Table 1.3 gives the values of sf and Y;,. Because the variance of the re-
sponse is clearly heterogeneous, it will be assumed that Var(e;;) = o?. The
model is the following:

Yij = f(x;,0) + ey } (1.5)
Var(g;;) = 0, E(g;5) =0 [~ '

where j = 1,...n;; ¢ = 1,...k; and the total number of observations equals
n = Zf:l n;. f is defined by Equation (1.3), and the ¢;; are independent
centered random variables. In this experiment, however, we can be even more
precise about the heteroscedasticity, that is, about the variations of o2, be-
cause the observations are counts that can safely be assumed to be distributed
as Poisson variables, for which variance equals expectation. A reasonable
model for the variance could be o2 = f(x;,6), which will be generalized to
02 = ®f(x;,0)", where 7 can be known or estimated (see Chapter 3).

The aim of this experiment is to estimate an unknown dose of hormone

using the calibration curve. Let u be the expected value of the response for a
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preparation where the dose of hormone D (or its logarithm X) is unknown;
then X is the inverse of f calculated in p (if p lies strictly between 6; and

92):

X:fil(:uﬂe)
1 1 0y — 04 } }

X = —<log |exp — lo — 1| —657. 1.6
94{ g[ Py log—p 3 (1.6)

This example will be studied in several places in this book. We will discuss
how to estimate the calibration curve and X in this chapter. The problem of
calculating the accuracy of the estimation of X will be treated in Chapter 2.
Methods for choosing the variance function and testing model specifications
will be proposed in Chapter 4. The calibration problem will be treated in
detail in Chapter 5. Finally, we show how these data can be fitted using a
Poisson nonlinear model in Chapter 7.

1.1.3 Antibodies Anticoronavirus Assayed by an ELISA Test:
Comparing Several Response Curves

This experiment uses an ELISA test to detect the presence of anticoronavirus
antibodies in the serum of calves and cows. It shows how we can estimate
the parameters of two curves together so that we can ultimately determine
if the curves are identical up to a horizontal shift. The complete description
of the experiment is presented in [HLV87]. Here we limit the problem to the
comparison of antibody levels in two serum samples taken in May and June
from one cow.

An ELISA test is a collection of observed optical densities, Y, for different
serum dilutions, say d. The results are reported in Table 1.4 and Figure 1.4.

Table 1.4. ELISA example: Observed values of Y for the sera taken in May and
June. Two values of the response are observed

dilution |Response (Optical Density)
d May June
1/30 | 1.909 1.956 | 1.886 1.880
1/90 | 1.856 1.876 | 1.853 1.870
1/270 | 1.838 1.841 | 1.747 1.772
1/810 | 1.579 1.584 | 1.424 1.406
1/2430 | 1.057 1.072 | 0.781 0.759
1/7290 | 0.566 0.561 | 0.377 0.376
1/21869 | 0.225 0.229 | 0.153 0.138
1/65609 | 0.072 0.114 | 0.053 0.058

Assuming that the sera are assayed under the same experimental condi-
tions, the problem is to quantify the differences (in terms of antibody level)
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Figure 1.4. ELISA example: Observed responses versus the logarithms of the
dilution, x = —log,, d

between the sera using their ELISA response curves. For that purpose, the
biological assay techniques described in [Fin78] can be used to estimate the
potency of one serum relative to another serum. The potency p is defined in
the following manner: One unit of serum taken in May is assumed to produce
the same response as p units of serum taken in June. This means that the two
sera must contain the same effective constituent, the antibody, and that all
other constituents are without effect on the response. Hence one preparation
behaves as a dilution of the other in an inert diluent.

Let FMaY(d) and F7'"¢(d) be the response functions for the sera taken in
May and June, respectively. If the assumptions defined earlier are fulfilled,
then the two regression functions must be related in the following manner:
FMay(d) — FJune(pd).

The relationship between the optical density Y and the logarithm of the
dilution = = log;,(1/d) is usually modeled by a sigmoidal curve: FMa (d) =
flx, M%) and FIwe(d) = f(z,67"¢), with

0y — 0,
1+ expls(z —04)

f(l‘,e) =0+

Thus, the estimation of p is based on an assumption of parallelism between
the two response curves:

fla,0M%) = f(z — B;67"), (1.7)

where § = logyo(1/p).
In this chapter we will estimate the parameters of the regression functions.
Obviously, one must also estimate 3. For that purpose, the two curves must
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be compared to see if they satisfy Equation (1.7). This procedure will be
demonstrated in Chapter 2.

1.1.4 Comparison of Immature and Mature Goat Ovocytes:
Comparing Parameters

This experiment comparing the responses of immature and mature goat ovo-
cytes to a hyperosmotic test demonstrates how we can estimate the param-
eters of two different data sets for the ultimate purpose of determining the
differences between these sets of parameters.

Cellular damage that results from exposure to low temperatures can be cir-
cumvented by the use of permeable organic solvents acting as cryoprotectants.
Cell water permeability is higher than cell cryoprotectant permeability. Thus,
when cells are exposed to these solvents, they lose water and shrink in response
to the variation of osmotic pressure created between the intra- and extracellu-
lar compartments. Then, as the compound permeates, water reenters the cell,
and the cell reexpands until the system reaches an osmotic equilibrium. The
results obtained using immature and ovulated (mature) ovocytes exposed to
propane-diol, a permeable compound, are presented in [LGR94].

The cell volume during equilibration is recorded at each time t. In or-
der to obtain water (P,) and propane-diol (Ps) permeabilities, the following
equations are used:

Vi) 1

Y ) + Vi) + V),

TR O+

G Py (’71 +727w —|—’Y3Vw> (1.8)
dVs

S
=P, Vs
dt <74 Y, >

The first equation expresses the cell volume V(¢) as a percentage of initial
isotonic cell volume Vj at any given time ¢ during equilibration; V,, is a known
parameter depending on the stage of the oocyte (mature or immature); V,,(t)
and V;(t) are the volumes of intracellular water and cryoprotectant, respec-
tively; and the parameters v are known. The data are reported in Table 1.5.

In this example, the variations of Y = V(¢)/V, versus the time ¢ are ap-

proximated by

(8 Pas P) = - (Val0) + Va0 + V),
where V,, and V; are the solutions of a system of ordinary differential equations
depending on P, and P;.

Our aim here is to estimate the parameters P, and Ps for both types of
ovocytes and to compare their values. We also are interested in the temporal
evolution of intracellular propane-diol penetration (Vi(t)), expressed as the
fraction of initial isotonic cell volume Vj.
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Table 1.5. Fraction of volume at time ¢ for two stages (mature and immature) of
ovocytes

Time Fraction of Cell Volume for Mature Ovocytes

0.5 0.6833 0.6870 0.7553 0.6012 0.6655 0.7630 0.7380
1 0.6275 0.5291 0.5837 0.5425 0.5775 0.6640 0.6022
1.5 0.6743 0.5890 0.5837 0.5713 0.6309 0.6960 0.6344
2 0.7290 0.6205 0.5912 0.5936 0.6932 0.7544 0.6849
2.5 0.7479 0.6532 0.6064 0.6164 0.7132 0.7717 0.7200
3 0.7672 0.6870 0.6376 0.6884 0.7494 0.8070 0.7569
4 0.7865 0.7219 0.6456 0.7747 0.8064 0.8342 0.8100
5 0.8265 0.7580 0.6782 0.8205 0.8554 0.8527 0.8424
7 0.8897 0.8346 0.8238 0.8680 0.8955 0.8621 0.8490
10 0.9250 0.9000 0.9622 0.9477 0.9321 0.8809 0.8725
12 0.9480 0.9290 1.0000 0.9700 0.9362 0.8905 0.8930
15 0.9820 0.9550 1.0000 1.0000 0.9784 0.9100 0.9242
20 1.0000 0.9800 1.0000 1.0000 1.0000 0.9592 0.9779
Time Fraction of Cell Volume for Immature Ovocytes

0.5 0.4536 0.4690 0.6622 0.621 0.513

1 0.4297 0.4552 0.5530 0.370  0.425

1.5 0.4876 0.4690 0.5530 0.400  0.450

2 0.5336 0.4760 0.5535 0.420 0.475

2.5 0.5536 0.4830 0.5881 0.460  0.500

3 0.5618 0.5047 0.6097 0.490 0.550

3.5 0.6065 0.5269 0.6319 0.520  0.600

4 0.6365 0.5421 0.6699 0.550  0.650

4.5 0.6990 0.5814 0.6935 0.570  0.700

5 0.7533 0.6225 0.7176 0.580  0.750

6.5 0.7823 0.6655 0.7422 0.630 0.790

8 0.8477 0.7105 0.7674 0.690  0.830

10 0.8966 0.8265 0.8464 0.750  0.880

12 0.9578 0.9105 0.9115 0.800 0.950

15 1.0000 0.9658 0.9404 0.900 1.000

20 1.0000 1.0000 0.9800 0.941  1.000

1.1.5 Isomerization: More than One Independent Variable

These data, given by Carr [Car60] and extensively treated by Bates and
Watts [BW8S], illustrate how to estimate parameters when there is more than
one variable.

The reaction rate of the catalytic isomerization of n-pentane to iso-pentane
depends on various factors such as the partial pressures of the needed products
(employed to speed up the reaction). The differential reaction rate is expressed
as grams of iso-pentane produced per gram of catalyst per hour, and the
instantaneous partial pressure of each component is measured. The data are
reproduced in Table 1.6.
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Table 1.6. Reaction rate of the catalytic isomerization of n-pentane to iso-pentane
versus the partial pressures of hydrogen, n-pentane, and iso-pentane

Partial Pressure of Reaction
Hydrogen | n-Pentane | Iso-Pentane | Rate
205.8 90.9 37.1 3.541
404.8 92.9 36.3 2.397
209.7 174.9 49.4 6.694
401.6 187.2 44.9 4.722
224.9 92.7 116.3 0.593
402.6 102.2 128.9 0.268
212.7 186.9 134.4 2.797
406.2 192.6 134.9 2.451
133.3 140.8 87.6 3.196
470.9 144.2 86.9 2.021
300.0 68.3 81.7 0.896
301.6 214.6 101.7 5.084
297.3 142.2 10.5 5.686
314.0 146.7 157.1 1.193
305.7 142.0 86.0 2.648
300.1 143.7 90.2 3.303
305.4 141.1 87.4 3.054
305.2 141.5 87.0 3.302
300.1 83.0 66.4 1.271
106.6 209.6 33.0 11.648
417.2 83.9 32.9 2.002
251.0 294.4 41.5 9.604
250.3 148.0 14.7 7.754
145.1 291.0 50.2 11.59

A common form of the model is the following:

0,05(P —1/1.632
f(a,0) = 102D = 1/1632)
1+02H+03P+94I

(1.9)

where z is a three-dimensional variate: = (H, P,I) where H, P, and I are
the partial pressures of hydrogen, n-pentane and iso-pentane, respectively.
In this example we will estimate the 6; in Chapter 2 we will calculate the
confidence intervals.

1.2 The Parametric Nonlinear Regression Model

We will use the following notation to define the parametric nonlinear regres-
sion model: n; replications of the response Y are observed for each value of
the independent variable x;; let Yy, for j = 1,...n;, be these observations.

The total number of observations is n = Zle n; and ¢ varies from 1 to k. In
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Example 1.1.1, n; equals 1 for all values of i, and k = n. In Example 1.1.5,
the variable z is of dimension three: x; is a vector of values taken by (H, P, I).

It is assumed that the true regression relationship between Y and =z is
the sum of a systematic part, described by a function p(z), and a random
part. Generally, the function p(z) is unknown and is approximated by a para-
metric function f, called the regression function, that depends on unknown
parameters 6:

0 is a vector of p parameters 61, 6, ...0,. The function f does not need to be
known explicitly; in Example 1.1.4, f is a function of the solution of differential
equations.

€ is a random error equal, by construction, to the discrepancy between
Y and f(z,0). Let o7 be the variance of €;;. The values of o7, or their vari-
ations as functions of x;, are unknown and must be approximated. In some
situations the difference in the variances, o; — 0;41, is small. Thus, there is
a high confidence in the approximate homogeneity of the variances, and we
can then assume that Var(e;;) = 0. In other cases, because of the nature of
the observed response or because of the aspect of the data on a graph, there
is evidence against the assumption of homogeneous errors. In these cases, the
true (unknown) variations of o2 are approximated by a function g called the
variance function such that Var(e;;) = g(x;, 02,60, 7). In most cases, g will be
assumed to depend on f; for example, g(z,02,0,7) = o2f(z,0)7, where T
is a set of parameters that can be assumed to be known or that have to be
estimated.

We simplify the necessary technical assumptions by assuming that each 6,, a =
1,...p, varies in the interior of an interval. The function f is assumed to be twice
continuously differentiable with respect to the parameters 6.

1.3 Estimation

Because the problem is to estimate the unknown vector 6, a natural solution
is to choose the value of 6 that minimizes the distances between the values of
f(z,0) and the observations of Y. For example, one can choose the value of ¢
that minimizes the sum of squares C(0) defined by

k  n;
CO) =" (Vi — f(z:,0)°. (1.10)

i=1 j=1

Let  be this value. 0 is the least squares estimator of 6. If we assume that
Var(g;;) = 02, an estimate of o2 is obtained as

o2 = Cff). (1.11)
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Under the assumptions stated in the preceding paragraph, 0 is also the solution of
the set of p equations:

ng

k
2 gefa (2:,0) Y (Yij = f(2:,6)) =0, (1.12)

for a =1,...p, where 9f/90, is the partial derivative of f with respect to 0,.

Because f is nonlinear in 8, no explicit solution can be calculated. Instead an iterative
procedure is needed.

The least squares estimator of 6 is also the maximum likelihood estimator in the case
of Gaussian observations. Recall the main features of the maximum likelihood method.
Let Y be a random variable distributed as a Gaussian variable with expectation f(z, )
and variance 2. The probability density of Y at point y is defined as follows:

- <_<y — f(z,0) )

2y
Z(y7w7970- )_ 20_2

1
V2mo?
We observe n = Zle n; independent Gaussian variables Yi;,5 =1,...n;,i=1,...k
with expectation E(Y;;) = f(x;,6) and variance Var(Y;;) = o*. The probability density
of the observations calculated in ;5,7 = 1,...n,¢4 = 1,...k is equal to the following

formula: .
H Hﬁ(yij,xi, 9, 0'2).

i=1j=1
The likelihood is a random variable defined as the probability density calculated in the
observations:

k n;
L(nh <. -7Yknk§9702) = HHZ(}/'LJ'>$'L>9702)'
i=1j=1
The mazimum likelihood estimators for 0 and o2 are those values that maximize the
likelihood, or equivalently, its logarithm:

k ng
V(0,0%) = ~ 5 log(2mo®) — o3 >3 (Vi — (i, 6)*.

i=1 j=1

It is clear that maximizing V (8, o) in @ is equivalent to minimizing C((8). The maximum
likelihood estimator of o will satisfy that the derivative of (0, 5%) with respect to o>
equals 0. Namely, we get the following:

ov n 1

B0z = 307 T 358010 =0
leads to Equation (1.11).

In the case of heterogeneous variances (Var(e;;) = o), it is natural to favor
observations with small variances by weighting the sum of squares. The o7 are
unknown, so they must be replaced by an estimate. If each n; is big enough,
say 4, as in Example 1.1.2, then 02 can be estimated by s?, the empirical

variance (see Equation (1.4)). The weighted sum of squares is
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wey =3y Y= S0 (1.13)

i=1 j=1

and the value of 0 that minimizes W (0) is the weighted least squares estimator
of 8. The problem of estimating the parameters in heteroscedastic models is
treated more generally in Chapter 3.

1.4 Applications

1.4.1 Pasture Regrowth: Parameter Estimation and Graph of
Observed and Adjusted Response Values

Model The regression function is

f(x,0) =01 — Oz exp (—exp(f3 + b4 1log x)) ,

and the variances are homogeneous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares C(6);
see Equation (1.10).

Results
Parameters ‘ Estimated Values
01 69.95
0 61.68
03 —9.209
04 2.378

~

The adjusted response curve, f(x,#), is shown in Figure 1.5.
It is defined by the following equation:

~

f(z,0) =69.95 — 61.68 exp (— exp(—9.209 + 2.378log )) .
1.4.2 Cortisol Assay: Parameter Estimation and Graph of

Observed and Adjusted Response Values

Model The regression function is

0y — 60,
(1+ exp(fs + 042))%

f(x,9)2t91+

and the variances are heterogeneous: Var(g;) = o7.

Method The parameters are estimated by minimizing the weighted sum of
squares W (0); see Equation (1.13).
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Figure 1.5. Pasture regrowth example: Graph of observed and adjusted response
values

Results
Parameters | Estimated Values
01 133.30
0 2759.8
03 3.0057
04 3.1497
05 0.64309

~

The adjusted response curve, f(x,#), is shown in Figure 1.6. It is defined
by the following equation:
~ 2759.8 — 133.3
f(x,0) =133.3 + 0.64309 *
(1 + exp(3.0057 + 3.1497x))

1.4.3 ELISA Test: Parameter Estimation and Graph of Observed
and Adjusted Curves for May and June

Model The regression function is

0y — 61
1+expfs(z —0y)’

f@,0) =0, +

and the variances are homogeneous: Var(g;) = o>.

Method The parameters are estimated by minimizing the sum of squares C(6);
see Equation (1.10).
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Figure 1.6. Cortisol assay example: Graph of observed and adjusted response
values

Results
Parameters | Estimated Values
oYY 0.04279
o5y 1.936
f51 2.568
)" 3.467
g{me 0.0581
gune 1.909
gune 2.836
ggune 3.251

The adjusted response curves for May and June are shown in Figure 1.7.

1.4.4 Ovocytes: Parameter Estimation and Graph of Observed and
Adjusted Volume of Mature and Immature Ovocytes in
Propane-Diol

Model The regression function is

F(t, Py, P) = Vi0<vw<t> VL) + V2,

where V,, and V; are solutions of Equation (1.8). The variances are homoge-

neous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares C(6);
see Equation (1.10).
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Figure 1.7. ELISA test example: Graph of observed and adjusted curves for May
and June

Results
Parameters | Estimated Values
Mature P, 0.0784
ovocytes P 0.00147
Immature P, 0.1093
ovocytes P 0.00097

The adjusted response curves for mature and immature ovocytes are shown
in Figure 1.8.

1.4.5 Isomerization: Parameter Estimation and Graph of Adjusted
versus Observed Values

Model The regression function is

_ 6165(P —1/1.632)
ﬂ%m_1+%H+%P+@F

where z is a three-dimensional variate, x = (H, P, I), and where the variances

are homogeneous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares C(6);
see Equation (1.10).
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Figure 1.8. Ovocytes example: Graph of observed and adjusted volume of mature
and immature ovocytes in propane-diol

Results
Parameters ‘ Estimated Values
01 35.9191
0 0.07086
03 0.03774
04 0.1672

~

Figure 1.9 shows the values of the adjusted response curve, f(x;, ), versus

~

the observations Y;. f(x,0) is defined by the following equation:

1.356(P — 1/1.632)

z.0) = .
F@.9) = 00718 1 0.038P 1 0.1671

1.5 Conclusion and References

For each example presented here, we chose a model for the response curve and
calculated an estimate of the parameters, but we still need to assess the accu-
racy of our estimates. Consider the RIA example: We were able to calculate
an estimate of X, the inverse of f calculated in a known value u; however, now
we need to calculate the accuracy of this estimate. For the ELISA data, we
estimated two response curves, but we are interested in testing the hypothesis
of parallelism between these curves. In Example 1.1.4, we wanted to calculate
confidence regions for the pair (P, Ps).

The next chapter describes the tools that help us answer these questions.
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Figure 1.9. Isomerization example: Graph of adjusted versus observed values

For more information, the interested reader can find a complete descrip-
tion of statistical and numerical methods in nonlinear regression models in
the book of G. Seber and C. Wild [SW89]. See also the book of H. Bunke and
O. Bunke [BB89] and the book of A. Gallant [Gal87]. These are strong in the-
ory and cover mainly the case of homogeneous variances. Users of econometrics
should be interested in the third one, which covers the field of multivariate
nonlinear regressions and dynamic nonlinear models. The books of S. Huet et
al. [HIM91] and R. Carroll and D. Ruppert [CR88] consider the case of het-
erogeneous variances. Response curves that are currently used in biological
frameworks are described in the books of D. Ratkowsky [Rat89], J. Lebreton
and C. Millier [LM82]. Other books are concerned with specific subjects, such
as the books of D. Bates and D. Watts [BW88] and D. Ratkowsky [Rat83]
about nonlinear curvatures, the book of G. Ross [Ros90] about parameter
transformations, and the book of V. Fedorov and P. Hackl [FH97] about op-
timal designs. The book of W. Venables and B. Ripley [VR94] shows how to
analyze data using S-Plus.

1.6 Using nls2

This section reproduces the commands and files used in this chapter to treat
the examples by using nls2. We assume that the user is familiar with S-Plus
and has access to the help files of nls2, which provide all of the necessary
information about syntax and possibilities.

The outputs are not reproduced; the main results are shown in the pre-
ceding part.
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Typographical Conventions We use the prompt $ for the operating system
commands and the prompt > for the S-Plus commands. Continuation lines
are indented.

Pasture Regrowth Example
Creating the Data

The experimental data (Table 1.1, page 1) are stored in a dataframe structure:

$ Splus
> pasture <- data.frame(
time=c(9, 14, 21, 28, 42, 57, 63, 70, 79),
yield= c(8.93, 10.8, 18.59, 22.33, 39.35,
56.11, 61.73, 64.62, 67.08))

Plot of the Observed Yield versus Time

We plot the observed values of yield versus time using the function pldnls2:

> library("nls2") # attach the nls2 library

> X11(0) # open a graphical device

> pldnls2(pasture, response.name="yield", X.name="time",
title = "Pasture regrowth example",
sub = "Observed response")

(See Figure 1.1, page 2.)
Description of the Model

The model defined in Section 1.4.1, page 13, is described using a symbolic
syntax in a file called pasture.modi:

resp yield;

varind time;

parresp pl, p2, p3, p4;

subroutine;

begin
yield=pl-p2*exp(-exp(p3+pd*log(time)));
end

Parameter Estimation

Parameters are estimated using the function nls2.

Before calling nls2, it is necessary to load the programs of the system
nls2 into the S-Plus session; this is done with the function loadnls2.

The arguments of n1s2 are the name of the dataframe, the name of the file
that describes the model, and information about the statistical context, which
includes the starting values of the parameters and possibly some other things,
as the user chooses. Here we include, for example, the maximum number of
iterations:
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A\

loadnls2() # load the programs
pasture.nll <- nls2(pasture, "pasture.modl",
list(theta.start= c(70, 60, 0, 1), max.iters=100))
# Print the estimated values of the parameters
cat( "Estimated values of the parameters:\n ")
print( pasture.nli$theta); cat( "\n\n")

Vv

vV V V

(Results are given in Section 1.4.1, page 13.)
Plot of the Observed and Fitted Yields versus Time

We plot the observed and fitted response values versus time using the function
plfit:

> plfit(pasture.nll, title = "Pasture regrowth example",
sub = "Observed and fitted response")

(See Figure 1.5, page 14.)

Cortisol Assay Example
Creating the Data

The experimental data (see Table 1.2, page 4) are stored in a dataframe. We
set the value of the zero dose to 0 and the value of the infinity dose to 10:

> corti <- data.frame(dose=c(
rep(0,8), rep(0.02,4), rep(0.04,4), rep(0.06,4),
rep(0.08,4) ,rep(0.1,4), rep(0.2,4), rep(0.4,4),

rep(0.6,4), rep(0.8,4), rep(1,4), rep(1.5,4),
rep(2,4), rep(4,4), rep(10,4)),
cpm=c (

2868,2785,2849,2805,2779,25688,2701,2752,
2615,2651,2506,2498,2474,2573,2378,2494,
2152,2307,2101,2216,2114,2052,2016,2030,
1862,1935,1800,1871,1364,1412,1377,1304,
910,919,855,875,702,701,689,696,
586,596,561,562,501,495,478,493,
392,358,399,394,330,351,343,333,
250,261,244,242,131,135,134, 133))

Plot of the Observed Responses versus the Logarithm of the Dose

We plot the observed responses versus the logarithm of the dose using the
graphical function plot of S-Plus:

> logdose<-c(rep(-3,8),logl0(corti$dose[9:60]) ,rep(2,4))
> plot(logdose,corti$cpm,xlab="1log-dose",ylab="response",
title="Cortisol example",sub="Observed cpm")

(See Figure 1.3, page 4.)
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Description of the Model

The model, defined in Section 1.4.2, page 13, is described in a file called
corti.modl.

The parameters minf and pinf, introduced by the key word pbisresp,
are the minimal and maximal values accepted for the dose. They do not need
to be estimated; they will be called second-level parameters:

resp cpm;
varind dose;
parresp n,d,a,b,g;
pbisresp minf,pinf;
subroutine;
begin
cpm= if dose <= minf then d else
if dose >= pinf then n else
n+(d-n)*exp (-gxlog(l+exp(a+b*loglO(dose))))
fi fi;
end

Parameter Estimation

The function nls2 is used to estimate the parameters. Its first argument is
the name of the dataframe, its second argument describes the model, and its
third contains the starting values of the parameters.

The second argument, which describes the model, includes the name of
the description file, the values of the second-level parameters, and information
about the variance (VI means “variance intrareplications”):

> corti.nli<-nls2(corti,
list(file="corti.mod1", gamf=c(0,10),vari.type="VI"),
c(3000,30,0,1,1))

> # Print the estimated values of the parameters

> cat( "Estimated values of the parameters:\n ")

> print( corti.nli$theta); cat( "\n\n")

(Results are given in Section 1.4.2, page 13.)
Plot of the 0Observed and Fitted Response Values

We plot the observed and fitted response values versus the logarithm of the
dose by using graphical functions of S-Plus:

> plot(logdose,corti$cpm,xlab="1log-dose",ylab="response",
title="Cortisol example",sub="Observed and fitted response")
> lines(unique(logdose),corti.nli$response)

(See Figure 1.6, page 15.)
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ELISA Test Example
Creating the Data

The experimental data (see Table 1.4, page 6) are stored in a dataframe. The
independent variable is equal to log; of the dilution. The curves are called m
for May and j for June:

> dilution <-rep(c(
rep(30,2), rep(90,2), rep(270,2), rep(810,2),
rep(2430,2), rep(7290,2), rep(21869,2), rep(65609,2)), 2)
> elisa <- data.frame(logd=loglO(dilution),
0D=c(1.909, 1.956, 1.856, 1.876, 1.838, 1.841, 1.579,
1.584, 1.057, 1.072, 0.566, 0.561, 0.225, 0.229,
0.072, 0.114, 1.886, 1.880, 1.853, 1.870, 1.747,
1.772, 1.424, 1.406, 0.781, 0.759, 0.377, 0.376,
0.153, 0.138, 0.053, 0.058),
curves=c(rep("m", 16), rep("j", 16)))

Plot of the Observed Responses versus the Logarithm of the Dilution

We plot the observed response values versus the logarithm of the dilution
using the function pldnls2:

> pldnls2(elisa,response.name="0D",X.names="logd")

(See Figure 1.4, page 7.)
Description of the Model

The model defined in Section 1.4.3, page 14, is described in a file called
elisa.modl:

resp 0D;

varind logd;

aux al;

parresp pl,p2,p3,p4;
subroutine;

begin

al= 1+exp(p3*(logd-p4d));
0D=p1+(p2-pl)/al;

end

Parameter Estimation

To estimate the parameters, we use the function nls2:

> elisa.nli<-nls2(elisa,"elisa.mod1",rep(c(2,0,1,0),2))
> cat( "Estimated values of the parameters:\n ")
> print( elisa.nli$theta); cat( "\n\n")

(Results are given in Section 1.4.3, page 14.)
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Plot of the Observed and Fitted Curves

We plot the observed and fitted response values using the function plfit:
> plfit(elisa.nll, title="ELISA assay")

(See Figure 1.7, page 16.)

Ovocytes Example
Creating the Data

The dataframe is created from the values of the time and the volumes of
ovocytes. The two curves are called m for mature ovocytes and i for immature
ovocytes (see Table 1.5, page 9):

> Times <- c( rep(0.5,7),rep(1,7),rep(1.5,7),rep(2,7),
rep(2.5,7) ,rep(3,7) ,rep(4,7) ,rep(5,7),
rep(7,7) ,rep(10,7) ,rep(12,7) ,rep(15,7) ,rep(20,7),
rep(0.5,5) ,rep(1,5) ,rep(1.5,5) ,rep(2,5),
rep(2.5,5) ,rep(3,5) ,rep(3.5,5), rep(4,5), rep(4.5,5),
rep(5,5), rep(6.5,5),rep(8,5), rep(10,5),rep(12,5),
rep(15,5) ,rep(20,5))

>V <- ¢ (0.6833, 0.6870, 0.7553, 0.6012, 0.6655, 0.7630, 0.7380,

0.6275, 0.5291, 0.5837, 0.5425, 0.5775, 0.6640, 0.6022,
0.6743, 0.5890, 0.5837, 0.5713, 0.6309, 0.6960, 0.6344,
0.7290, 0.6205, 0.5912, 0.5936, 0.6932, 0.7544, 0.6849,
0.7479, 0.6532, 0.6064, 0.6164, 0.7132, 0.7717, 0.7200,
0.7672, 0.6870, 0.6376, 0.6884, 0.7494, 0.8070, 0.7569,
0.7865, 0.7219, 0.6456, 0.7747, 0.8064, 0.8342, 0.8100,
0.8265, 0.7580, 0.6782, 0.8205, 0.8554, 0.8527, 0.8424,
0.8897, 0.8346, 0.8238, 0.8680, 0.8955, 0.8621, 0.8490,
0.9250, 0.9000, 0.9622, 0.9477, 0.9321, 0.8809, 0.8725,
0.9480, 0.9290, 1.0000, 0.9700, 0.9362, 0.8905, 0.8930,
0.9820, 0.9550, 1.0000, 1.0000, 0.9784, 0.9100, 0.9242,
1.0000, 0.9800, 1.0000, 1.0000, 1.0000, 0.9592, 0.9779,
0.4536, 0.4690, 0.6622, 0.6210, 0.5130,
0.4297, 0.4552, 0.5530, 0.3700, 0.4250,
0.4876, 0.4690, 0.5530, 0.4000, 0.4500,
0.5336, 0.4760, 0.5535, 0.4200, 0.4750,
0.5536, 0.4830, 0.5881, 0.4600, 0.5000,
0.5618, 0.5047, 0.6097, 0.4900, 0.5500,
0.6065, 0.5269, 0.6319, 0.5200, 0.6000,
0.6365, 0.5421, 0.6699, 0.5500, 0.6500,
0.6990, 0.5814, 0.6935, 0.5700, 0.7000,
0.7533, 0.6225, 0.7176, 0.5800, 0.7500,
0.7823, 0.6655, 0.7422, 0.6300, 0.7900,
0.8477, 0.7105, 0.7674, 0.6900, 0.8300,
0.8966, 0.8265, 0.8464, 0.7500, 0.8800,
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0.9578, 0.9105, 0.9115, 0.8000, 0.9500,
1.0000, 0.9658, 0.9404, 0.9000, 1.0000,
1.0000, 1.0000, 0.9800, 0.9410, 1.0000)
> ovo <- data.frame(T=Times,V, curves=c(rep("m", 91), rep("i", 80)))

Description of the Model

The model defined in Section 1.4.4, page 15, is described in a file called
ovo.modl. The known parameters are declared to be second-level parame-
ters, except for the parameter called ov, whose value depends on the curve.
The value of ov will be set by numerical equality constraints when calling
nls2:

resp V;

varind T;

parresp Pw, Ps, ov;

varint t;

valint T;

pbisresp mm, mv, mo, mme, mve, Vo, a, moe, moi, phi;
aux z1, z3, gl,g2,g3,g4,g5;

F Vw, Vs;

dF dVw, dVs;

subroutine;

begin

z1 = Vox(1-ov)*moi/1le+3;

23 = axphi*mv/mm ;

gl = -ax(mme/mve)* (moe+mo) /1e+3;
g2 = (mme/mve)*axzl;

g3 = (mme/mve)*z3;

g4 = (mm/mv)*a*mo/le+3;

gb = —axphi;

dVw = Puwx(gl + g2/Vw + g3%Vs/Vw);
dVs = Psx*(g4 + gb*Vs/Vw);

V = Vw[T]/Vo + Vs[T]/Vo + ov;
end

A C Program to Calculate the Model

The system nls2 includes the possibility of generating a C Program from
the formal description of the model. Once compiled and loaded into the S-
Plus session, this program is used by the function nls2 instead of the default
evaluation, that is, evaluation by syntaxical trees. Using C programs reduces
execution time and saves memory space. Here, because the model is especially
complicated, we use this option.

The operating system command analDer, provided with the system nls2,
generates a C routine in a file called ovo.modl.c:

$ analDer ovo.modil



1.6 Using nls2 25

The file is loaded into the S-Plus session using the function loadnls?2:

> loadnls2("ovo.modl.c")
Parameter Estimation

To estimate the parameters, the function nls2 is called with four arguments:
the name of the dataframe, a list that describes the model, ovo.mod1, the
starting values of the parameters, and a list that gives information about the
ordinary differential equation system, ovo.int.

ovo.modl includes the name of the description file, the values of the
second-level parameters, and a component called eq.theta, which contains
the values of the numerical equality constraints on the parameters. With
these constraints, we set the parameter ov to its known value. The value
NaN (NotANumber) means that no constraint is set on the corresponding pa-
rameter.

ovo.int includes the initial value of the integration variable, the number
of parameters in the system, and its initial values (a matrix with two rows,
one for each curve, and two columns, one for each equation of the system):

> ovo.mod1l<- # The list that describes the model
list(file="ovo.mod1",
gamf=c(76.09, 1.04, 1.62, 18,1,1.596e-6,6.604e-4,0.29,0.29,1),
eq.theta=c(NaN, NaN, 0.15, NaN, NaN, 0.065))
> ovo.int<- # The list that describes the integration context
list(start=0, nb.theta.odes=3,
cond.start=matrix(c(1.35660e-6, 0, 1.49226e-06, 0), ncol=2))
> ovo.nli<-nls2(ovo,
ovo.modl,
c(0.1, 0.01, 0.15, 0.1, 0.01, 0.065),
integ.ctx=ovo.int)
> cat( "Estimated values of the parameters:\n ")
> print( ovo.nli$theta); cat( "\n\n")

(Results are given in Section 1.4.4, page 15.)

Plot of the Results

We plot the observed and fitted response values using function plfit:
> plfit(ovo.nll, title="Ovocytes example")

(See Figure 1.8, page 17.)

Isomerization Example
Creating the Data

The dataframe includes three independent variables: H for hydrogen, P for n-
pentane, and I for iso-pentane. The response values are the observed rates, r
(see Table 1.6, page 10):
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> isomer <- data.frame(

H=c(205.8, 404.8, 209.7, 401.6, 224.9, 402.6, 212.7,
406.2, 133.3, 470.9, 300.0, 301.6, 297.3, 314.0,
305.7, 300.1, 305.4, 305.2, 300.1, 106.6, 417.2,
251.0, 250.3, 145.1),

P=c(90.9, 92.9, 174.9, 187.2, 92.7, 102.2, 186.9, 192.6,
140.8, 144.2, 68.3, 214.6, 142.2, 146.7, 142.0, 143.7,
141.1, 141.5, 83.0, 209.6, 83.9, 294.4, 148.0, 291.0),

I=c(37.1, 36.3, 49.4, 44.9, 116.3, 128.9, 134.4, 134.9,
87.6, 86.9, 81.7, 101.7, 10.5, 157.1, 86.0, 90.2, 87.4,
87.0, 66.4, 33.0, 32.9, 41.5, 14.7, 50.2),

r=c(3.541, 2.397, 6.694, 4.722, 0.593, 0.268, 2.797, 2.451,
3.196, 2.021, 0.896, 5.084, 5.686, 1.193, 2.648, 3.303,
3.054, 3.302, 1.271, 11.648, 2.002, 9.604, 7.754, 11.590))

Description of the Model

The model defined in Section 1.4.5, page 16, is described in a file called
isomer.modl1:

resp r;

varind H,P,TI;

aux al, a2;

parresp t1,t2,t3,t4;
subroutine;

begin

al= t1xt3*(P-I1/1.632);
a2= 1+t2xH+t3*P+t4x*I;
r=al/a2;

end

Parameter Estimation

To estimate the parameters, the function nls2 is called. Its arguments are
the name of the dataframe, the name of the file that describes the model, and
a list of information about the statistical context: the starting values of the
parameters and the requested maximal number of iterations:

A\

loadnls2() # load the programs

> isomer.nli<-nls2(isomer,"isomer.modl",
list(theta.start=c(10,1,1,1), max.iters=100))

> cat( "Estimated values of the parameters:\n ")

> print( isomer.nli$theta); cat( "\n\n")

(Results are given in Section 1.4.5, page 16.)
Plot of the Fitted Values versus the Observed Values

We plot the fitted values versus the observed values using the function plfit:
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> plfit(isomer.nll, wanted=1ist(0.F=T),
title="Isomerization example")

(See Figure 1.9, page 18.)






2

Accuracy of Estimators, Confidence Intervals
and Tests

To determine the accuracy of the estimates that we made in Chapter 1, we
demonstrate how to calculate confidence intervals and perform tests. The
specific concerns of each particular experiment are described herein. We then
introduce the methodology, first describing classical asymptotic procedures
and two asymptotic tests, the Wald test and the likelihood ratio test, and
then we present procedures and tests based on a resampling method, the
bootstrap. As before, we conclude the chapter by applying these methods to
the examples.

2.1 Examples

Let us assume that in Example 1.1.1 we are interested in the maximum yield,
01. We have calculated one estimate of 61, #; = 69.95; however, if we do an-
other experiment under the same experimental conditions, the observed values
of Y and the estimates of the parameters will be different. Thus, knowing one
estimate is not entirely satisfactory; we need to quantify its accuracy.

In Example 1.1.2, we calculated an estimate of the calibration curve. Sup-
pose we now want to estimate the dose of hormone D contained in a prepa-
ration that has the expected response y = 2000 c.p.m. To do this, we must
use Equation (1.6), replacing the parameters with their estimates. We find
X = —1.1033 and D = exp X log 10 = 0.3318 ng/.1 ml, but we now need to
calculate how much confidence we can place in this estimate.

Let us consider Example 1.1.3, in which we estimated two ELISA response
curves. Our concern in this experiment was to estimate the relative potency of
the two different sera. In order to do this, however, we must verify whether the
condition of parallelism, as expressed in Equation (1.7), is true. If it does exist
for all values of z, then the parameters satisfy that 9} = gjune, )1* — gJune,
05" = 93", In this case, § = 0}'® — 07" is the horizontal distance between
the two curves at the inflection point. To determine parallelism we will first
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test whether these relations between the parameters are true or, more exactly,
if they do not contradict the data. If the test does not reject the hypothesis of
parallelism, we will be able to estimate 3 and test if it is significantly different
from zero.

In Example 1.1.4 we were interested in comparing parameters P, and Ps.
Because water permeability in cells is higher than propane-diol permeability,
water flows out of the cells more rapidly than the propane-diol flows in, result-
ing in high cell shrinkage. Thus we are interested in the speed of intracellular
propane-diol penetration; the cryoprotectant must permeate the ovocytes in a
short time. To this end, we will compare the values of V; at times 77 = 1 mn,
T5 = 5 mn, and so on.

Using Example 1.1.5, we will compare different methods for calculating
confidence intervals for the parameters.

In sum, what we want to do in all of these examples is to determine if we
estimated the function of the parameters denoted A(6) accurately. In the first
example, A = 01, and in the second example, A = exp(X log 10), where X is

defined by
1 1 0y — 04 } }
X = —<log|exp—1lo — 1| —65;.
0, { g [ p 0 g 6 3

In the third example, if the hypothesis of parallelism is not rejected, we are

interested in A = 3 or A = exp —(. In the fourth example we are interested in
the pairs (P, Ps) for each curve, in A = V,(T}), and, in A = V,(T3).

2.2 Problem Formulation

The nonlinear regression model was defined in Section 1.2. Let 0 be the least
squares estimator of § when we have homogeneous variances, and let it be the
weighted least squares estimator of # when we have heterogeneous!
(see Section 1.3).

Let A be a function of the parameters and A an estimator of A: A = A(A).
In this chapter, we will describe how to calculate a confidence interval for A,
and how to do a test.

The function A must satisfy some regularity assumptions. It must be a continuous

variances

function of 6 with continuous partial derivatives with respect to 6.

2.3 Solutions

2.3.1 Classical Asymptotic Results

9 is a function of the Y;;, and when the number of observations tends to
infinity, its distribution is known: 6 —6 tends to 0, and the limiting distribution

1 See Chapter 3 for a complete treatment when the variance of errors is not con-
stant.



2.3 Solutions 31

of V 1 2( — 0) is a standard p-dimensional normal (Gaussian) distribution
N (0 I,) with expectation 0 and variance I,, where I, is the p x p identity
matrix and Vé\ is the estimated asymptotic covariance matriz of 9. Thus, for
sufficiently large n, the distribution of 0 may be approximated by the normal
distribution N (6, V7).

We need a result for A = )\(5) The limiting distribution (when n tends to
infinity) of
XA

S

will be a centered normal distribution, A/(0,1), where S is an estimate of the

standard error of \.

Notations and Formulas: f; is for f(w;,6). The p vector of derivatives of f with
respect to 6 calculated in z; is denoted by 0f;/90. The components of 9f;/00 are
[(8f/00.)(x:,0)], a=1,...p.

Let I'y be the p X p matrix defined as follows:

T =

11 n(’)fz <8f1>T
o2n ‘o0 \ o6 )’

i=1

Iy = —

where the exponent T' means that the vector is transposed. The elements (a,b) of Iy
are
1 1 3fz ofi

To.ab = " 50, 90,

i=1

Let Ap be the p X p matrix
;i@aﬁ (afi)T
n o 90 \ 99

Let ﬁ = f(ml,g) 8};/86’ be the vector with components 8f/80a(:vi,§), and I
and Ag be the matrices Iy and Ay, where the unknown parameters are replaced by
their estimators:

~\ T c -~ ~\ T
_ 11 (9f7, aﬂ _ l &8f1 ﬁfl
F9702n 89(30) ’ Ae*nZa?aé) 0 )

and 5% = C(/H\)/n G =57,
Vs is the estimate of Vjp, the p X p asymptotic covariance matrix of 6:

1
) = g2 o~ —= — 1
In the case Var(ei;) = 0°, V5= TILILG\ ,
Var(e;;) = 02, Vo= —AZ!
In the case Var(ei;) = o7, V5 nAe'

Because 6 — 0 is small, we get the limiting distribution of A by approximating /\((/9\) —A(0)
by a linear function of 6 — 0:
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(%)T(a—e) pgg(a —0.).

a=1

Thus (X— A)/S; is distributed, when n tends to infinity, as an N(0,1) (a Gaussian
centered variate with variance 1), where

o _ (O OX O
%o = (7) ZZ 20, 96, @D

and S = S/G\ is the asymptotic estimate of the standard error.

2.3.2 Asymptotic Confidence Intervals for A

If the distribution of 7' were known, say F(u) = Pr(j; < u), we would calculate
the a/2 and 1 — «/2 percentiles? of T, say u, U1_q /2. The interval

f: [/}\\—Ul_a/gg; X*Ua/gé\

would be a confidence interval for A, with level 1 —a. In this case, the coverage
probability of I, the probability that I covers A, would be 1 — a.

However, as we have seen in the preceding paragraph, we can only ap-
proximate, when n is sufficiently large, the distribution of 7. Thus we use
this approximation to calculate confidence intervals with coverage probability
close to 1 — a.

Let AV be a variate distributed as an A/(0, 1). Let v, be the o percentile of
N. From the result of Section 2.3.1, we can deduce a confidence interval for
A

Iv=[A =y apSX+v1ap8]. (2.2)

This interval is symmetric around \ for Vg = —Vi—q-

The probability that T is less than v, tends to a when n tends to infinity;
the probability for A to lie in Iy tends to 1 — a when n tends to infinity. We
say that In has asymptotic level 1 — .

Remarks

1. By analogy to the Gaussian linear regression case, in the nonlinear regres-
sion model with homogeneous variance, we define an alternative confidence
interval for A. In Equation (2.2), we replace v, with y/n/(n — p)t,, where
to is the a percentile of a Student variate with n — p degrees of freedom:

TT = [X - \/Tt1—a/2§5 A+ \/Ttl—aﬂg} : (2:3)
n—mp n—p

2 The « percentile of a variate with distribution function F is the value of u, say
Uq, such that F(uqa) =a and 0 < a < 1.
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fT has the same asymptotic level as T N, but fT is wider than I, » and its
coverage probability will be greater. Some studies [HJMSQ] have shown
that I7— has a coverage probability closer to 1 — a than 1, -

2. The intervals 1, » and IT are symmetric around . In some applications,
a part of the symmetric confidence interval might not coincide with the
set of variations of the parameter A. For example, consider A\ = exp 3 in
the pasture regrowth example. If the estimate of the standard error of )\
say S is bigger than )\/V1 /2, then the lower bound of IN is negative
even though A is strictly positive. In that case, it is easy to see that it
is more appropriate to calculate a confidence interval for 63 and then
to transform this interval taking the exponential of its limits to find a
confidence interval for A\. More generally, let S3 be the estimate of the
standard error of f3, and let g be a strictly increasing function of 3. If 63
lies in R R R

[93 — Vi_q/253;03 + V17a/253} ;

then A\ = g(f3) lies in

[9(53 - V17Q/2§3)§9(§3 + Vlfa/2§3):| .

2.3.3 Asymptotic Tests of A = A\g against A\ # A\g

Let A\g be a fixed value of A and let the hypothesis of interest be H: A = A,
against the alternative A: A # Aq.

Wald Test When H is true the limiting distribution of (A —Xg)/S is an
N(0,1). Thus, the limiting distribution of the test statistic

N 2
Sy = (A = o)
g2
is a x2 with one degree of freedom. Hypothesis H will be rejected for large
values of Sy, say Sw > C, where C' is chosen such that Pr(Z; < C) =1 —q,
where Z; is distributed as a x? with one degree of freedom.

This is the Wald test. When H is true, the probability for Sy to be greater
than C' (in other words, the probability that hypothesis H is rejected when
it should be accepted) tends to @ when n tends to infinity. We say that this
test has an asymptotic error of the first kind, equal to «. Assume now that
H is false. Then the power of the test defined as the probability for Sw to
be greater than C' (in other words, the probability to reject the hypothesis H
when H is false) tends to 1 when n tends to infinity. We say that this test is
consistent.
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Remark As in Section 2.3.2, homogeneous variances can be considered sepa-
rately; hypothesis H will be rejected if

-
"7Psy>C,
n

where C' is chosen such that Pr(Fi ,—, < C) = 1 — «, where F ,_, is dis-
tributed as a Fisher variable with one and n — p degrees of freedom.

Likelihood Ratio Test Another idea is to estimate the parameters under the
constraint A = Ao, say p; then to estimate them without the constraint, say
O; and then to compare the estimation criteria (1.10) C(fy) and C(64) in

the case of homogeneous variances. If H is true, the difference between C(0y)
and C(0,) will be small. Let

S, =nlog C(@\H) —nlog C(@A)

be the test statistic. When n tends to infinity, it can be shown that the limiting
distribution of Sy, is a x? with one degree of freedom. Hypothesis H will be
rejected when Sp, > C, where C' is chosen such that Pr(Z; < C)=1-—a.
This test based on &p, is called a likelihood ratio test. It has the same
asymptotic properties as the Wald test. Although the Wald test is easier to
calculate, some theoretical arguments favor the likelihood ratio test.

2.3.4 Asymptotic Tests of A0 = Ly against A0 # Ly

Let us return to Example 1.1.5 and assume that we want to test whether the
parameters 0o, 03, and 4 are identical. The hypothesis of interest is H: 6, =
03 = 0,, against the alternative that at least two of these parameters are
different. H can be written as A6 = 0, where A is the following 2 x 4 matrix:

().

The problems just defined can be solved by returning to the general case,
with € of dimension p. We aim to test the hypothesis H: A0 = Lj against
A: AB # Ly, where A is a ¢ X p matrix of rank ¢, ¢ < p, and L is a vector
of dimension q. The model defined by hypothesis H is a model nested in the
more general one defined by hypothesis A.

The Wald Test When H is true, the limiting distribution of
S' = (AVzAT) 1246 — L)

is a g-dimensional Gaussian variable with mean 0 and covariance matrix equal
to the ¢ x ¢ identity matrix. In these cases, the limiting distribution of the
test statistic Sw = Y_¢_, 82 is a x? with ¢ degrees of freedom. The Wald test
is defined by the rejection of H when Sw > C, where Pr(Z, < () =1—-«
and Z, is distributed as a x? with ¢ degrees of freedom.
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Remark In the case of homogeneous variances, the test is defined by the re-
jection of H when
n—pSw
noq
where C' is chosen such that Pr(Fj,—, < C) = 1 — «, where F ,,_, is dis-
tributed as a Fisher with ¢ and n — p degrees of freedom.

> C, (2.5)

The Likelihood Ratio Test Let é\H be the estimation of # under the constraint
A0 = Lo; then, in the case of homogeneous variances, the limiting distribution
of the test statistic St, = nlog C(fg) — nlog C(Aa) is a x? with ¢ degrees of
freedom. This result provides the likelihood ratio test.

Curve Comparison Let us return to Example 1.1.3, where we needed to com-
pare two curves. The hypothesis of interest is H: ) = gjune g2y — gJune,
01?:/[&}' = 03¢ against the alternative that at least one of these equalities is
false. We create a data set by joining the data observed in May and June. We
define the vector of parameters by joining #M* and #7U¢: Let

gMay
0= (eJune )

be the 2p vector of parameters for the two curves. Then hypothesis H can be
written as earlier A0 = 0, where A is the following 3 x 2p matrix:

1000-10 00
A=101000 -1 0 0. (2.6)
00100 0 —10

As before, we define a test using the statistic Sw or St..

2.3.5 Bootstrap Estimations

Resampling methods like the jackknife and the bootstrap are especially useful
for estimating the accuracy of an estimator. We observe Y7,Y5,...Y,; we
choose a parametric nonlinear regression model with parameters 6, and we
find an estimation procedure to estimate a function of 0, say /\( ). We get
X = /\(9) but we are interested in calculating the accuracy of h) or, more
generally, in knowing its distribution (or some characteristics of it). If we
were able to repeat the experiment under exactly the same conditions, we
would observe Y1, Y3, ... Y1, and in the same way as for A we would calculate
. We could repeat it again and calculate 2 with Y2, Y2, ... Y2 XI,Z\\Q, .
would be a sample of random variables distributed as . This sample would
approximate the distribution of A. In short, resampling methods are a way to
mimic the repetition of the experiment. R N

Bootstrap estimations are based on estimates A\* = A(6*) calculated from
artificial bootstrap samples (z;,Y}5), j =1,...,n;, i =1,...k, where
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~

The errors €7; are simulated in the following way: Let &;; = Yi; — f(zi, (/9\)
be the residuals, and let &;; = &;; — €., be the centered residuals, where &,
is the sample mean, and &, = Z” €ij/n. The set of f;, for j =1,...n;, and
i =1,...k is a random sample from the empirical distribution function based
on the & (n &;; are drawn with replacement, each with probability 1/n).
There are n™ such different samples.

o~

0* will be the value of 8 that minimizes

k n;
Cr(0) =3 3 (VG = [(i,0))*.
i=1 j=1
The bootstrap estimate of A is \* = )\(5*).

Let B be the number of bootstrap simulations. (A0 = A(6*?), b =
1,...,B) is a B sample of bootstrap estimates of A. The choice of B will
be discussed at the end of this section. The important result is that the dis-
tribution of A\*, estimated by the empirical® distribution function of the (A\*?,

b=1,...B), approximates the distribution of . Let
o
S5

~
*

Roughly speaking, the difference between the distribution functions of T and
T tends to 0 when the number of observations n is large; thus, we can use
the quantiles of T* instead of those of T to construct confidence intervals or
tests.

Let us emphasize that the bootstrap distribution for approximating the distribution
of T'is theoretically justified when n is large and is an alternative to the centered normal
distribution presented in Section 2.3.1. In real data sets, the number of observations is
fixed and may be small. No theoretical result is known about the superiority of one of
these approximations over the others.

Bootstrap Confidence Interval for A

Let (f*vb, b=1,...B) be a B sample of f*; T* is calculated in the same way

~

as T', replacing Y;; with Y;%. Let b, be the o percentile of the T*b (the way of

calculating b, is detailed in Section 2.4.1). It can be shown that Pr(T < b,)
tends to @ when n tends to infinity. This gives a bootstrap confidence interval
for A: R % o R

Ig = [A —bi_apS A — basS] . (2.7)

For large n and B, the coverage probability of Ip is close to 1 — .

3 Obviously, B must be large enough that the empirical distribution function is a
good approximation of the distribution of A*. If B = n", and if we draw all of
the possible samples, we get the exact distribution of \*.
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Bootstrap Estimation of the Accuracy ofX

The variance, and even the bias, of P\ may be infinite or undefined. Never-
theless, their estimates (using the asymptotic results of Section 2.3.2 or the
bootstrap) measure the localization and dispersion of the distribution of A.

Variance The bootstrap estimation of the variance is calculated using the em-
pirical variance of the B sample ()\*’b, b=1,...,B):

3‘*2_ ° 1 Ix,b  YTkye 2
_Zﬁ(xv —A»), (2.8)

where A** is the sample mean \** = Zszl :\\**b/B.

Bias As we noted in Section 2.3.2, the expectation of X, E(X), is close to A
when we have large values of n. In other words, the bias of A\, BIAS = E(A\)— A,
is close to 0. We can use the bootstrap sample to estimate this bias:

BIAS = A\** — \. (2.9)

Mean Square Error We can estimate the mean square error (MSE) in a similar
way: MSE = E(A—\)? = §2 4+ BIAS?, where 52 = E(A—E()\))? is the variance
of \; it is estimated by

MSE" = §*2 + BIAS".

Median Because it is always defined, the median error, the median of - A,

is of special interest. Its bootstrap estimate, M/E\D*, is the median of the B
values [A*0 — ).

Remarks

1. We have seen that the number of different bootstrap samples equals n™.
Obviously, we never choose for B a value that rapidly becomes unusable
(8% = 16,777,216 !). In practice, however, a moderate number usually
suffices: If B is around 50, we can estimate the accuracy characteristic,
and if B is around 200, we can calculate a confidence interval, for example.

2. Other resampling methods, like the jackknife, are available especially to
estimate the accuracy characteristics (see [Wu86] and [Bun90] for details).
These methods are less reliable than the bootstrap, however.

3. The bootstrap method in the case of heterogeneous variances is discussed
in Section 3.4.3.
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2.4 Applications

2.4.1 Pasture Regrowth: Calculation of a Confidence Interval for
the Maximum Yield

Model The regression function is
f(z,0) =01 — O3 exp (—exp(fs + 04 logx)) ,

and the variances are homogeneous: Var(g;) = o2.

Results
Parameters | Estimated Values | Asymptotic Covariance Matrix
01 69.95 3.09
) 61.68 3.87 6.66
03 —9.209 0.76 1.25 0.37
04 2.378 —0.22 —0.35 —0.09 0.027
o? 0.9306

The parameter of interest is A(6) = 6.

Calculation of Confidence Intervals with Asymptotic Level 95%, Using Results
of Section 2.3.2 | (d.f. is for degree of freedom):

3\\ ‘ § ‘ V0.975 ‘ f/\/ ‘ t0.975 (5 df) ‘ fT
69.95 [ 1.76 | 1.96 | [66.5,734] | 257  [[63.9,76.0]

d.f. is for degree of freedom

Calculation of Confidence Intervals with Asymptotic Level 95%, Using the
Bootstrap Method Table 2.1 gives the estimated values of f, f;, and the cen-
tered residuals ;. For two bootstrap simulations, the table gives the bootstrap
errors €}, the bootstrap observations Y;*, the bootstrap estimate of #;, and
the corresponding asymptotic variance SZ)\*'

B, the number of bootstrap simulations, equals 199. The histogram of the

f*’b, b=1,...B, is shown in Figure 2.1.

Calculation of the Percentiles of (f*’b, b=1,...B) We calculate the 0.025
and 0.975 percentiles of the T*b as follows: Let f*’(b)Abe the ordered values
of T%? so that 7% < T < < T7%0199, p is T*4) where ¢, is the
smallest integer such that g, /B is greater than or equal to &. When B = 199,
we find b04025 = T\*’(S) and b0_975 = f*’(195):

A ‘ S ‘ bo.o25 ‘50.975 ‘ Is
69.95 | 1.76 | —4.19 | 3.73 | [63.4, 77.3]

We will see in Section 2.6 that in practice we use the function quantile
of S-Plus.
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Table 2.1. Results for two bootstrap simulations

2.4 Applications

Figure 2.1. Pasture regrowth example: Histogram of (f*‘b, b=1,...

ﬁ gl 6:,1 Yi*,l 6:,2 Y;*,Q
9.411 —0.481| —0.481 8.93| —0.734 8.677
1147 —0.669 | —0.067 11.4| 0.025 11.49
16.30  2.284 | —0.734 1557 | —0.5 15.80
23.17 —0.843 0.025 2320 | —0.5 22.67
40.08 —0.734| —0.669 39.41 | —0.481 39.60
56.18  —0.067 2.284 58.46 | —0.669 55.51
60.74  0.986 0.025 60.77 | —0.843  59.9
64.59  0.025| —0.734 63.86 | —0.734 63.86
67.58  —0.5| 2284 69.86| 2284 69.86
01 = 69.95 07" =171.65 07% = 74.92
S =176 ng\*,l =1.91 S@\*J =1.59
-10 -5 0

Bootstrap Estimate of the Accuracy Characteristics:

BIAS”

| 5§+ |MSE" | MED

0.378 (0.5% of 61) | 2.30 | 5.42 | 69.78

B)

39

2.4.2 Cortisol Assay: Estimation of the Accuracy of the Estimated

Dose D

Model The regression function is

and the variances are heterogeneous: Var(e;) = o7

f(x,@):91+

Oy — 6,

(1+ exp(fs + 042))%

2
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Results
Estimates Asymptotic Covariance Matrix
01 133.30 0.727
0 2759.8 0.264 801
03 3.0057 —0.0137 —2.34 0.0338
0,4 3.1497 | —0.00723 —2.33 0.0241 0.01845
05 | 0.64309 0.00341 0.568 —0.00714 —0.00516 0.00152

The parameter of interest is D = A() = 10777 (0); see Equation (1.6),
with p = 2000.

Calculation of Confidence Intervals with Asymptotic Level 95%, Using Results
of Section 2.3.2

~ ~

D | S |wuors| In
0.0856 | 0.00175 | 1.96 | [0.0822, 0.0891]

We will discuss other methods for calculating the accuracy of Din Chap-
ter 5.

2.4.3 ELISA Test: Comparison of Curves

We want to test the parallelism of the response curves in order to estimate
the difference 8 = 6™ — J"¢. We can do this by testing hypothesis H:
A8 = 0 against the alternative A: A6 # 0, where A is the matrix defined by
Equation (2.6),

Model The regression function is
92 — 01
1+ expbs(z—0,)’

f(x,0) =6, +

and the variances are homogeneous: Var(g;) = o2.

Results

Estimated Values

911\/I‘dy eg/[ay eg/lay 92/[&}’ ei]une egune egune ezl]une
0.04279 1.936 2.568 3.467 0.0581 1.909 2.836 3.251

Asymptotic Covariance Matrix (x10%)

4.51
—1.01 1.81
15.2 —8.22 95.7
—-2.09 | -0.502 | —4.10 2.43

0 0 0 0 2.51

0 0 0 0 | —0.647 1.92

0 0 0 0 10.5 —8.74 106

0 0 0 0 —-1.05 | —0.727 | —0.988 1.83

52 = 0.0005602.
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Wald Test of H: A0 = 0 against A: AQ # 0 . See Section2.3.3.

The value of the Wald test is Sy = 4.53. This number must be compared
to 7.8, which is the 0.95 quantile of a x? with three degrees of freedom. The
hypothesis of parallelism is not rejected.

Because the variance of errors is constant, we can compare

n—pSw 32-—-87.38

= — =1.133
n q 32 3

to 3, which is the 0.95 quantile of a Fisher with 3 and 24 degrees of freedom.

Likelihood ratio tests See Section2.3.3.

The two first columns of Table 2.2 show the estimated parameters under
A and under the constraints defined by H and the corresponding values of the
sum of squares C.

Table 2.2. ELISA test example: Estimated parameters under hypothesis A, the
parallelism is not verified; hypothesis H, the curves are parallel; and the hypothesis
that =0

Under A | Under H | Under 8 =0
07 | 0.0428 0.0501 0.0504
05 | 1.936 1.924 1.926
05" | 2.568 2.688 2.635
0y | 3.467 3.470 3.356
07" | 0.058 0.0501 0.0504
g3une 1.909 1.924 1.926
g3une 2.836 2.688 2.635
giume | 3.251 3.247 3.356
c(0) | 0.0179 0.0206 0.183

The test statistic S;, = 32 * (log(0.0206) — log(0.0179)) equals 4.5. Thus,
hypothesis H is not rejected. R

The estimated value of 3 = 0" — #]™e is 3 = 0.223. We can carry out a
likelihood ratio test by comparing C (§H) with C’(@A@:O), which is the sum of
squares when the parameters are estimated under the constraint 3 = 0; see
the third column of Table 2.2. S, = 32 * (log(0.183) — log(0.0206)) = 69.9.
This number must be compared to 3.8, the 0.95 quantile of a x? with one
degree of freedom. The hypothesis § = 0 is rejected.

Conclusion of the Test In this experiment, we conclude that the potency p of
the serum taken in June relative to the serum taken in May is estimated by
p=10"% =0.59 and that p is significantly different from 1.

Calculation of a Confidence Interval for p The parameter of interest is p =
)\(9) _ 1094{““6’76}1‘1"”'
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Calculation of Confidence Intervals with Asymptotic Level 95%, Using Results
of Section 2.3.2 (d.f. is for degree of freedom):

~ ~

p ‘ S ‘ V0.975 Iy ‘ to.o75 (27 df-)‘ Ir
0.50 | 0.0192 | 1.96 | [0.561, 0.636] | 205 | [0.555, 0.642]

fT is not much different from fN because n — p is large, n/(n — p) is close to
1, and the difference between v, and t, is small.

Calculation of Confidence Intervals with Asymptotic Level 95%, Using the
Bootstrap Method The number of bootstrap simulations is B = 199. The
histogram of the T7*% b =1,... B, is shown in Figure 2.2.

40 q

30 A

20+

10 A

o - —

-3 -2 -1 0 1 2 3
Figure 2.2. ELISA test example: Histogram of (f*’b, b=1,...B)

The results follow:

~

p ‘ S ‘ bo.o25 ‘50.975 ‘ Ip
0.59 | 0.0192 | —2.61 | 2.17 [ [0.557 , 0.649]

In this example, the bootstrap shows that I, p is longer than 1 A but is nearly
equal to Ir. Moreover, the bootstrap estimation of the standard error of p
is §* = 0.0199. The differences between the methods are not very important
from a practical point of view.

2.4.4 Ovocytes: Calculation of Confidence Regions

Although this experiment tested several cryoprotectants in different experi-
mental conditions (with or without treatment, at several temperatures) and
yielded 15 curves to be estimated and compared, we present here the results
for only two curves. We compute two types of confidence regions: Confidence
ellipsoids and likelihood contours.
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Confidence Ellipsoids Let 6 be the pair (P, Ps). When the number of obser-
vations tends to infinity, the limiting distribution of

S'(6) = vg—l/?(éf 0)

is a standard two dimensional normal distribution N(0, I2), or the limiting
distribution of

Sw(®) =S¢+ SF

is a x? with two degrees of freedom. Let 7,(2) be the a percentile of a x? with
two degrees of freedom, and let Ry be the set of  such that Sw(0) < r1_,(2).
Rw is an ellipse that covers 6 with probability close to 1 — .

Likelihood Contours Constructing confidence ellipses is based on the limiting
distribution of # — 6. Another way to calculate confidence regions for 6 is to
consider the limiting distribution of the statistic

SL(0) = nlog C(0) — nlog C().

SL(0) is a x? with two degrees of freedom. Let Ry, be the set of 6 such that
Sn(0) < r1-4(2). Ry, is a region of the plane that covers  with probability
close to 1 — a.

Figure 2.3 illustrates the confidence ellipses and the likelihood contours
with level 95% for the parameters (P,, Ps) in Example 1.1.4. In this example,
the likelihood contours are close to the ellipses, but we will see that this is
not always the case. In fact, the discrepancy between these regions is related
to the discrepancy between the distribution of § — # and its approximation by
a centered Gaussian variable.

Remarks When p, the dimension of 0, is greater than 2, the confidence ellip-
soids for 6 are defined by the set of 6 such that Sw(6) < r1_o(p), where 74 (p)
is the a percentile of a x? with p degrees of freedom. Usually the sections of
the regions are drawn in two dimensions, and they give conditional informa-
tion. Consider the case p = 3. The sections of the confidence regions in the
plane (61, 05) are the sets of (01, 65) such that Sw(61,02,05) < r1_(3).

2.4.5 Isomerization: An Awkward Example

Model The regression function is

 0u05(P — 1/1.632)
J@ ) = T T 0,P 1 6T

and the variances are homogeneous: Var(g;) = o2.
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Confidence ellipses Likelihood contours
P P,
0.0016 1 0.0016 1
mature ature
ovocytes ovocytes
0.0014 A 0.0014 A
0.0012 1 0.0012 1
immature LTS immature -7
0.001 4 ovocytes e ) 0.001 4 ovocytes e >
o , ( o .
S /// \\\...,..w//
0.07 0.1 0.13 0.07 0.1 0.13
P, Py,

Figure 2.3. Ovocytes example: 95% confidence ellipses and likelihood contours
for the parameters (P, Ps)

Table 2.3. Isomerization example: Estimated parameters and standard errors,
normal confidence intervals

Estimates | Standard Errors (§) ‘ 95% Confidence Interval Ty

01 | 35.9193 7.49 [ 21.20 50.60]
62 | 0.0708583 0.163 [—0.249 0.391]
fs | 0.0377385 0.0913 [—0.141 0.217]
04 | 0.167166 0.379 [-0.577 0.911]
o? | 0.13477

Calculation of Confidence Intervals Using the Percentiles of a Gaussian Dis-
tribution for Each Parameter The estimated values of the parameters and
their standard errors and of the confidence intervals calculated using Equa-
tion (2.2) are given in Table 2.3.

The standard errors are so large for parameters 65, 3, and 64 that the value
0 is inside the confidence intervals. Obviously, the hypothesis 65 = 03 =60, =0
is meaningless. Figure 2.4 illustrates the discrepancy between the distribution
of § — 6 and its approximation by the distribution N(0,Vp). In this figure,
the sections of the confidence ellipsoids and likelihood contours in the plane
(01,02) clearly differ significantly in their appearance. Thus, we cannot use
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the percentiles of a Gaussian distribution to calculate the confidence intervals.
Instead, let us try the bootstrap method.

Confidence ellipses  Likelihood contours

0.4 A 92

-0.4 -

20 40 60 25 35 45
91 01
Figure 2.4. Isomerization example: The confidence ellipses and likelihood contours
for the parameters (61,62) are drawn at levels 90%, 95%, and 99%

Calculation of Confidence Intervals Using the Bootstrap Method B = 199
bootstrap simulations have been done to calculate another approximation of
the distribution of 6. Let R
7, =l fe
Sa
where 6, is the component a of 6 and §a is the estimation of the standard
error of ,. For each parameter, the bootstrap estimation of the distribution
of T, is shown in Figure 2.5. Note that the bootstrap distributions are very

far from the Gaussian distribution, except for the first parameter.

Bootstrap Estimations of Standard Error and Bias for Each Parameter Esti-
mator The results are Table 2.4. R

The bootstrap estimations of the standard errors, S* (see Equation (2.8)),
are of the same magnitude as §a. The bootstrap yields a high value of the
bias (see Equation (2.9)) for 61, but the bias is small for the other parameters.
The 0.025 and 0.975 percentiles of the f;b (fj is the bootstrap version of fa)
are calculated as in Section 2.4.1. They show the asymmetry of the estima-
tors’ distribution. By comparison, the 0.025 percentile of a Gaussian N (0, 1)
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0.15
0.3
0.0 0.0
-2 -1 0 1 2 -25 -15 -5 0
Histogram of 71 Histogram of 75
0.15 0.15
0.0 —= 0.0
-20 -10 0 -20 -10 -5 0
Histogram of T3 Histogram of T}
Figure 2.5. Isomerization example: Histogram of (T\*’b, b =1,...B) for each

parameter; the line is the probability density of an A(0, 1)

Table 2.4. Isomerization example: Bootstrap estimation of standard errors and
bias for the parameters 0; 2.5% and 97.5% percentiles of the bootstrap distribution
of T'; bootstrap confidence intervals for the 6

‘ S ‘ BIAS (% of bias) ‘ bo.o25 ‘ bo.o75 ‘ Ip
9, | 9.83 5.47 (15) T1.38 | 1.69 | [23.2 46.2 ]
9, | 0.133 0.002 (3) ~15.2 | 0.137 | [0.048 2.56]
63 | 0.080 0.002 (6) —16.4 | 0.151 | [0.024 1.54]
6, | 0.322 0.008 (5) ~15.4 | 0.144 | [0.112 6.05]

distribution is vg 975 = 1.96. The last column gives the bootstrap confidence
intervals (see Equation 2.7). For the three last parameters the lower bound
of the intervals is positive; this condition is more realistic than the negative
bounds obtained with Is. The confidence intervals are not symmetric around
the estimated values 6,,.

Calculation of Confidence Intervals Using a New Parameterization of the
Function f An alternative to the bootstrap is to find another parameteri-
zation of the function f(z, ) that reduces the discrepancy between the dis-
tribution of 7' and the approximation of T by a Gaussian distribution.

Model A new parameterization, suggested by several authors (see [BW88], for
example) is defined by considering a new set of parameters, say (51, 82, 05, 04)-
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These are obtained by eliminating the product 6,65 in Equation (1.9). The
model function is now defined by
B P—-1/1.632

B1+ foH + B3P + B4l

[z, B) (2.10)

and Var(g;) = o2

Table 2.5. Isomerization example with the new parameterization: Estimated pa-
rameters and standard errors; normal confidence intervals

‘ Estimates | Standard Errors (§) ‘ 95% Confidence Interval Iy

B | 0.73738 1.66 [-2.51 3.98]
B2| 0.052274 0.00418 [0.0441 0.0605]
B3| 0.027841 0.00581 [0.0164 0.0392]
Ba| 0.12331 0.0161 [0.0917 0.155]
o? | 0.13477

Parameter and Standard Error Estimations The results are given in Table 2.5.
The estimated accuracy of the parameters is reasonable, and the discrepancy
between confidence ellipses and likelihood contours for the pair (31, 82) is not
as big as for the pair (01, 62); see Figure 2.6.

Let us assume that we are interested in calculating confidence intervals for
the parameters 8. We want to calculate confidence intervals for each 6, using
the confidence regions calculated for §. In our example, the relations between
0 and (8 are easy to write:

0 = 1/537
02 = B2/ 1,
03 = B3/b1,
04 = B/ 1.

If B3 lies in the interval [0.0164,0.0392], then 6; lies in [25.5,60.8]; however,
we see that the same reasoning cannot be applied to 62, because 0 lies in
the confidence interval for (;. Thus, in this example, the calculation of a
confidence interval for the parameters 8,, a = 1,...p, is only possible for 6;.
Only the bootstrap method allows us to calculate confidence intervals for each
parameter.

2.4.6 Pasture Regrowth: Calculation of a Confidence Interval for
A =exp03

Let us return to our pasture regrowth example to illustrate how to calculate
a confidence interval that respects the constraint that parameter A\ must be
positive.
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Confidence ellipses  Likelihood contours

B2 / B2
0.06 1 0.06 1
0.05 1 0.05 1
0.04 1 0.04 1
-4 0 4 -1 1 3
B I

Figure 2.6. Isomerization example: The confidence ellipses and likelihood contours
for the parameters (31, 82) are drawn at levels 90%, 95%, and 99%

Model The regression function is
f(z,0) =01 — 03 exp (—exp(fs + 04 logx)),

and the variances are homogeneous: Var(g;) = o2.

Results
Parameters | Estimated Values |Asymptotic Covariance Matrix
01 69.95 3.09
6o 61.68 3.87  6.66
05 —9.209 076 1.25  0.37
04 2.378 —-0.22 —-0.35 —0.09 0.027
o2 0.9306

The parameter of interest is A(6) = exp 0s.

Calculation of Confidence Intervals with Asymptotic Level 95%, Using Results
of Section 2.3.2
2 ‘ S ‘ Y0.975 ‘ Iy
0.0001001 | 0.0000609 | 1.96 | [~.0000194, .000219]

It is immediately apparent that this confidence interval is unusable be-
cause A cannot be negative. The result would have been the same if we had
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estimated A by replacing the model function (1.1) with the following one:
f((E, 91, 02, )\, 04) = 91 — 92 exp(—)\x94).

Another way to calculate a confidence interval for A is to transform the
confidence interval calculated for 03. If 63 lies in [—-10.4 —8.01], then A = exp 65
lies in [0.0000303 , 0.000331]. By construction, this confidence interval is
adapted to the set of variation of A.

2.5 Conclusion

We have proposed several methods to estimate confidence intervals based
on approximating the distribution of A by either the Gaussian distribution
or the bootstrap distribution. In some cases (see Example 2.4.1), it is more
convenient to consider a monotone transformation of the parameter of interest
in place of the parameter itself, because the distribution of its estimator is
better approximated by a Gaussian distribution. In other cases, the bootstrap
method is more appropriate (see Example 2.4.5). The examples treated in this
chapter show that there is no rule to decide in advance which is the correct
method. Nevertheless, in each case, the final choice was based on the adequacy
of the result and the nature of the parameter of interest.

2.6 Using nls2

This section reproduces the commands and files used in this chapter to analyze
the examples using nls2. It is assumed that the commands introduced in
Section 1.6 have already been executed.

Pasture Regrowth Example: Confidence Interval for the Maximum
Yield

The results of estimation have been stored in the structure pasture.nll (see
Section 1.6, page 19). Now we want to calculate a confidence interval for the
maximum yield, the parameter 6.

Confidence Interval for A = 61 with Asymptotic Level 95%

We use the function confidence. This function calculates the confidence in-
terval I defined by Equation (2.2), page 32, and the confidence interval I+
defined by Equation (2.3), page 32. By default, the asymptotic level is 95%.

> pasture.conf.par <- confidence(pasture.nll)

We display the values of X, §, V0.975, fN, to.o75 (five degrees of freedom),
and I7:
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cat("Estimated value of lambda:", pasture.conf.par$psi[1],"\n" )

cat("Estimated value of S:",pasture.conf.par$std.error[1],"\n" )

cat("nu_(0.975):", gnorm(0.975),"\n" )

cat("Estimated value of In:",
pasture.conf.par$normal.conf.int[1,],"\n" )

> cat("t_(0.975, 5):", qt(0.975,5),"\n" )

> cat("Estimated value of It:",

pasture.conf.par$student.conf.int[1,],"\n" )

vV V V Vv

Confidence Interval for A = 01 Using Bootstrap with Asymptotic Level 95%

To calculate the confidence interval I defined by Equation (2.7), page 36,
we use the function bootstrap. Several methods of bootstrap simulation are
possible. Here, we choose residuals, which means that pseudoerrors are ran-
domly generated among the centered residuals.

To initialize the iterative process of bootstrap, nls2 must be called with
the option renls2. We also set the option control so that intermediary results
are not printed. Finally, we call the function delnls2 to destroy any internal
structures:

> pasture.nll <- nls2(pasture, "pasture.modl",
list(theta.start= c(70, 60, 0, 1), max.iters=100),
control=list(freq=0),
renls2=T)

> pasture.boot <- bootstrap(pasture.nll,
method="residuals",
n.loops=199)

> delnls2()

We calculate the values of f*’b, b =1,...199 (see Section 2.3.5) and
illustrate their distribution function by plotting them in a histogram (see
Figure 2.1, page 39):

> P1.B <- pasture.boot$pStar[,1]

> SE.P1.B <- sqrt(pasture.boot$var.pStar[,1])

> T.B <~ (P1.B-pasture.nli$theta[1])/SE.P1.B

> hist(T.B,nclass=12,
title="Pasture regrowth example",
sub="Histogram of bootstrap estimations for T")

We calculate the 0.0025 and 0.975 percentiles of the f*’b, bo.o25 and by 975
(see Section 2.4.1) using the function quantile of S-Plus, and we display the

values of /)\\, §, b0,025, b0.9757 and IB:

# Print the results:
cat("Estimated value of lambda:", pasture.nli$thetal1],"\n")
cat("Estimated value of S:",coef(pasture.nll)$std.error[1],"\n")
qu <- quantile(T.B,probs=c(0.975,0.025))
cat("b_(0.025):", qul[2],"\n" )

V V. V V VvV
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> cat("b_(0.975):", qul1]l,"\n" )

> cat("Estimated value of Ib:",
pasture.nli$thetal[1]+qu[2] *coef (pasture.nll)$std.error[1],
pasture.nli$thetal[1]+qul1] *coef (pasture.nll)$std.error[1],"\n")

Finally, we calculate the accuracy characteristics of the bootstrap estima-
tion: the bias (BIAS ; Equation (2.9)), the variance (S*; Equation (2.8)), the
mean square error (MSE ), and the median (MED ):

> cat("BIAS:" , (mean(P1.B)-pasture.nli$theta[1]),"\n" )
> cat("S:" ,sqrt(var(P1.B)),"\n" )
> cat("MSE:" ,

var (P1.B)+(mean(P1.B)-pasture.nli$thetal1])"2 ,"\n" )
> cat("MED:" ,median(P1.B) ,"\n" )

Note: The bootstrap method generates different numbers on each execu-
tion. Thus, results of these commands may vary slightly from those displayed
in Section 2.4.1, page 38.

Cortisol Assay Example: Confidence Interval for D

We calculated an estimate of the calibration curve (see Section 1.6, page 21)
in structure corti.nll, and now we want to calculate a confidence interval
for the estimation of the dose of hormone D contained in a preparation that
has the expected response p = 2000 c.p.m.

Confidence Interval for D

We describe the function D in a file called corti.D. The expected response p
is introduced by the key word pbispsi:

psi D;

ppsi n,d,a,b,g;
pbispsi mu;

aux X1, X2, X;
subroutine;

begin

X1 = log((d-n)/(mu-n));
X2 = exp(X1/g);

X = (log(X2-1)-a)/b;
D = 10*xX;

end

To calculate a confidence interval for D, we apply the confidence function.
Then we display the results of interest, D, S, vy.975, and In:

> loadnls2(psi="")
> corti.conf.D <- confidence(corti.nll,file="corti.D",pbispsi=2000)
> # Print the results:
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cat("Estimated value of D:", corti.conf.D$psi,"\n" )
cat("Estimated value of S:",corti.conf.D$std.error,"\n" )
cat("nu_(0.975):", gnorm(0.975),"\n" )

cat("Estimated value of In:",corti.conf.D$normal.conf.int,"\n" )

vV V V Vv

(The results are given in Section 2.4.2, page 39.)

ELISA Test Example: Comparison of Curves

The results of estimation have been stored in the structure elisa.nll (see
Section 1.6, page 22). Now we want to test the parallelism of the May and
June curves.

Wald Test with Asymptotic Level 95%

To test the parallelism of the response curves with a Wald test (see Sec-
tion 2.3.3), we use the function wald.
First we describe the functions to be tested in a file called elisa.wald:

psi d1,d2,d3;

ppsi pl_cl, p2_cl, p3_cl, pl_c2, p2_c2, p3_c2;
subroutine;

begin

di=pl_cl-pl_c2;

d2=p2_cl-p2_c2;

d3=p3_cl-p3_c2;

end

We apply the function wald and display the value of the statistic Sy and
the 0.95 quantile of a x? with three degrees of freedom from which it should
be compared:

elisa.wald <- wald(elisa.nll,file="elisa.wald")
# Print the results:

cat("SW:",elisa.wald$statistic,"\n" )

cat("X2(3):", qchisq(0.95, 3),"\n" )

vV V V VvV

Because the variances are homogeneous, we calculate the test statistic
defined in Equation (2.5), page 35:

> SF <- (elisa.wald$statistic*(32-8))/(32%3)
> cat("SF:", SF,"\n" )
> cat("F(3,24):", qf(0.95, 3,24), "\n" )
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Likelihood Ratio Tests

To test the parallelism of the curves by likelihood ratio tests (see Section 2.3.3),
we have to estimate the parameters under hypothesis A (the parallelism of the
curves is not verified), under hypothesis H (the curves are parallel), and under
the last hypothesis (the curves are identical).

Estimation under hypothesis A has already been calculated: A is the hy-
pothesis under which structure elisa.nll has been built.

Estimation under hypothesis H is done by setting equality constraints on
all of the parameters except for the last one. Equality constraints are given
with the option eqp.theta:

> elisa.nlH <- nls2(elisa,
list(file="elisa.modl", eqp.theta=c(1,2,3,4,1,2,3,5)),
rep(c(2,0,1,0),2))

Estimation under the last hypothesis is done by setting equality constraints
on all of the parameters:

> elisa.nlb <- nls2(elisa,
list(file="elisa.modl", eqp.theta=c(1,2,3,4,1,2,3,4)),
rep(c(2,0,1,0),2))

We display the estimated values of the parameters and the sums of squares
for the three hypothesis:

> cat("Estimated values of the parameters for the 3 hypothesis:\n")
> print(elisa.nli$theta)
> print(elisa.nlH$theta)
> print(elisa.nlb$theta)
> cat("Estimated sums of squares for the 3 hypothesis:\n",
elisa.nl1$rss, "\n", elisa.nlH$rss,"\n",
elisa.nlb$rss,"\n")

Now, we calculate the test statistic St, and display the 0.95 quantile of a
x? with one degree of freedom from which they should be compared.

We also print the estimated value of 3 = ()™ — g]ume):

> cat("Sl:",
32*%(log(elisa.nlH$rss) - log(elisa.nli$rss)),
32*%(log(elisa.nlb$rss) - log(elisa.nlH$rss)),"\n" )
> cat("X2(0.95,1):", qchisq(0.95,1),"\n" )
> cat("Estimated value of beta:",
elisa.nlH$theta["p4_c1"] - elisa.nlH$thetal["p4d_c2"],"\n" )

Confidence Interval for p with Asymptotic Level 95%

Now we want to calculate a confidence interval for a function of the parame-
une Ma;
ters: p = A(0) = 10003 =63
We describe p in a file called elisa.ro:
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psi ro;

ppsi p4_cl, p4_c2;
subroutine;

begin
ro=10**(p4_c2-p4_cl);
end

The function confidence is applied to the structure elisa.nlH, which
contains the results of estimation under hypothesis H (the curves are parallel).
We display the values of p , the standard error (§), v0.975 , IAN, to.ors (27
degrees of freedom), and IAT:

> elisa.ro <- confidence(elisa.nlH, file="elisa.ro")

> # Print the results:

> cat("Estimated value of rho:", elisa.ro$psi,"\n" )

> cat("Estimated value of S:",elisa.ro$std.error,"\n" )

> cat("nu_(0.975):", gnorm(0.975),"\n" )

> cat("Estimated value of In:",elisa.ro$normal.conf.int,"\n" )
> cat("t_(0.975, 27):", qt(0.975,27),"\n" )

> cat("Estimated value of It:",elisa.ro$student.conf.int,"\n" )

Confidence Interval for p Using Bootstrap with Asymptotic Level 95%

To calculate confidence intervals for p with bootstrap simulations (see Sec-
tion 2.3.5, page 35) we apply the function bootstrap.

To initialize the iterative bootstrap process, nls2 is first called with the
option renls2, and, finally, the function delnls2 cleans the internal struc-
tures:

> elisa.nlH <- nls2(elisa,
list(file="elisa.modl", eqp.theta=c(1,2,3,4,1,2,3,5)),
rep(c(2,0,1,0),2),
control=list(freq=0),
renls2=T)
> elisa.boot.ro <- bootstrap(elisa.nlH,method="residuals",
file="elisa.ro", n.loops=199)
> delnls2()

We display the values of p, §, bo.o25, bo.975, and fB:

> cat("Estimated value of rho:",elisa.ro$psi,"\n" )

> cat("Estimated value of S:", elisa.ro$std.error,"\n" )

> qu <- quantile((elisa.boot.ro$tStar,probs=c(0.975,0.025))

> cat("b_(0.025):", qul2],"\n" )

> cat("b_(0.975):", qul[1]l,"\n" )

> cat("Estimated value of Ib:", elisa.boot.ro$conf.int ,"\n" )

> cat("Bootstrap standard error:", sqrt(var(elisa.boot.ro$psiStar))

To illustrate the distribution function of f*, we plot a histogram of their
values (see Figure 2.2, page 42):
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> hist(elisa.boot.ro$tStar, nclass=9,
title="ELISA example",
sub="Histogram of bootstrap estimations for T")

Note: The bootstrap method generates different numbers on each execu-
tion. Thus, results of these commands may vary slightly from those displayed
in Section 2.4.3, page 40.

Ovocytes Example
Confidence Ellipsoids and Likelihood Contours for the Parameters (P, Ps)

The results of estimation by nls2 have been stored in the structure ovo.nl1
(see Section 1.6, page 25). We want to compare the parameters P, and Ps by
calculating confidence ellipsoids and likelihood contours in the space of these
parameters.

The functions ellips and iso are used. ellips returns what is necessary
to plot confidence ellipsoids, and iso returns what is necessary to define confi-
dence regions in a two-dimensional space of parameters. The plots themselves
are drawn by the graphical functions of S-Plus:

ovo.elll <- ellips(ovo.nll, axis=c("Pw_cl1","Ps_c1"))
ovo.ell2 <- ellips(ovo.nll, axis=c("Pw_c2","Ps_c2"))
ovo.isol <- iso(ovo.nll, axis=c("Pw_cl1","Ps_cl"))
ovo.iso2 <- iso(ovo.nll, axis=c("Pw_c2","Ps_c2"))
# Graphical functions of Splus
par (mfrow=c(1,2))
plot(x=c(.06,.13),y=c(0.0008,.0017) ,type="n",xlab="Puw",ylab="Ps")
contour(ovo.elll,levels=qchisq(0.95,2),add=T,labex=0)
contour(ovo.ell2,levels=qchisq(0.95,2) ,add=T,labex=0)
text(0.1,0.0015, "mature ovocytes")
text(0.08,0.001,"immature ovocytes")
title("Confidence ellipses")
plot(x=c(.06,.13),y=c(0.0008,.0017) ,type="n",xlab="Pw",ylab="Ps")
contour(ovo.isol,levels=qchisq(0.95,2),add=T,labex=0)
contour(ovo.iso2,levels=qchisq(0.95,2) ,add=T,labex=0)
text (0.095,0.0015, "mature ovocytes")
text(0.08,0.001,"immature ovocytes")
title("Likelihood contours")

VV V VYV VVVVVVVYVVYVYVYVYV

(See Figure 2.3, page 44.)

Isomerization Example

We have calculated one estimate of the parameters (see Section 1.6, page
26) in the structure isomer.nll, and now we want to calculate confidence
intervals for each parameter.
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Confidence Intervals for Each Parameter with Asymptotic Level 95%

We use the function confidence to calculate the confidence interval I, N de-
fined by Equation (2.2), page 32, for each parameter:

> isomer.conf.par <- confidence(isomer.nll)

__ We display the estimated values of the parameters, their standard errors
(S), and the confidence interval In:

> print(matrix(c(isomer.conf.par$psi,
isomer.conf.par$std.error,
isomer.conf.par$normal.conf.int[,"lower"],
isomer.conf.par$normal.conf.int [, "upper"]),
ncol=4,
dimnames=1ist (names(isomer.conf.par$psi),
c("parameters","std","lower bound","upper bound" ))))

(Results are shown Table 2.3, page 44.)
Confidence Regions for Parameters

We use the functions ellips and iso and the graphical functions of S-Plus
to plot confidence ellipsoids and likelihood contours in the space of the pa-
rameters (61, 02):

> isomer.ell <- ellips(isomer.nll, axis=c(1,2))

> isomer.cont <- iso(isomer.nll, axis=c(1,2),
bounds=matrix(c(25,50,0.03,0.11) ,nrow=2))

# Graphical functions of Splus

par (mfrow=c(1,2))

contour (isomer.ell,levels=qchisq(c(0.90,0.95,0.99),4),labex=0)

points(x=isomer.nli$thetal[l], y=isomer.nli$thetal2])

title("Confidence ellipses")

contour (isomer.cont,levels=qchisq(c(0.90,0.95,0.99),4),labex=0)

title("Likelihood contours")

points(x=isomer.nli$thetal1l], y=isomer.nli$thetal[2])

V V. V V V V V VvV

(See Figure 2.4, page 45.)
Calculation of Confidence Intervals Using Bootstrap

Confidence intervals using the bootstrap method (see Section 2.3.5, page 35)
are calculated using the function bootstrap.

Here, to reduce the execution time, which may be long because the model
must be calculated several times at each loop, we choose to evaluate by the
C program rather than by syntaxical trees (see the Ovocytes Example, Sec-
tion 1.6, page 24).

To generate the program that calculates the model, we type the operating
system command:
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$ analDer isomer.modl
We then load the program into our S-Plus session:
> loadnls2("isomer.modl.c")

To initialize the iterative bootstrap process, nls2 is first called with the
option renls2, and, finally, the function delnls2 cleans the internal struc-
tures:

> isomer.nll <- nls2(isomer,"isomer.modl", c(36,.07,.04,.2),
control=1list(freq=0), renls2=T)

> isomer.boot <- bootstrap(isomer.nll,
method="residuals", n.loops=199)

> delnls2()

Histograms of (f*’b, b=1,...199) for Fach Parameter

Histograms of T* for each parameter illustrate the boostrap estimation of
their distribution. Only the results corresponding to correct estimations, i.e.,
when isomer.boot$code=0, are taken into account:

> pStar_ isomer.boot$pStar[isomer.boot$code==0,]

> var.pStar_ isomer.boot$var.pStar[isomer.boot$code==0,]

> theta<-matrix(rep(isomer.nli$theta,isomer.boot$n.loops),
ncol=4, byrow=T)

> TT <-(pStar - theta)/ sqrt(var.pStar)
> par (mfrow=c(2,2))
> for (a in 1:4)
> o
> hist(TT[,a],probability=T,main="Isomerization example",
sub=paste ("Histogram of bootstrap estimations for T",a),xlab="")
> gx<-seq(from=min(TT[,al),to=max(TT[,al),length=75)

> 1lines(qgx,dnorm(qx))
> }

(See Figure 2.5, page 46.)

Bootstrap Estimations of Standard Error and Bias for Fach Parameter
Estimator

We calculate the accuracy characteristics of the bootstrap estimation and
display the values of the standard error (S*), the bias (BTKS*), the percentage
of bias, the 0.0025 and 0.975 percentiles (bg.g25 and bg 975), and the confidence
interval T, B:

SE.boot <- sqgrt(diag(var(pStar)))

bias.boot <- apply(pStar,2,mean)-isomer.nli$theta
Pbias.boot <- 100*bias.boot/isomer.nli$theta
b0.025.boot <- apply(TT,2,quantile,probs=0.025)

vV V V VvV
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A\

b0.975.boot <- apply(TT,2,quantile,probs=0.975)
> binf.boot <- isomer.nli$theta -
b0.975.boot*coef (isomer.nll)$std.error
> Dbsup.boot <- isomer.nll$theta -
b0.025.boot*coef (isomer.nll)$std.error
# Print the results:
print (matrix(c(SE.boot, bias.boot,Pbias.boot,
b0.025.boot,b0.975.boot,
binf.boot, bsup.boot), ncol=7,
dimnames=1list (names(isomer.nli$theta),
c("s","BIAS","%, of BIAS","b0.025","b0.975",
"lower bound","upper bound" ))))

vV Vv

Note: The bootstrap method generates different numbers on each execu-
tion. Thus, results of these commands may vary slightly from those displayed
in Section 2.4, page 46.

Confidence Intervals Using a New Parameterization of the Function f

A new parameterization of the regression function f is considered. The model
of Equation (2.10), page 47, is defined in a file called isomer.mod2:

resp r;

varind H,P,I;

aux al, a2;

parresp bl,b2,b3,b4;
subroutine;

begin

al= P - 1/1.632;

a2= bl + b2*H + b3*P + b4x*I;
r=al/a2;

end

Before calling nls2 to estimate the parameters, we have to call the func-
tion loadnls2. If we do not do this, the program isomer.modl.c, previously
loaded into the S-Plus session, will still be current. loadnls?2 is called without
any argument to reset the default action; the default is to calculate the model
by syntaxical trees:

> loadnls2(psi="")
> isomer.nl2<-nls2(isomer,"isomer.mod2",rep(1,4))

Confidence intervals are calculated using the function confidence.
__ We display the estimated values of the parameters, their standard errors
(S), and the 95% confidence interval In:

> isomer.conf.par2 <- confidence(isomer.nl2)

> print(matrix(c(isomer.conf.par2$psi,
isomer.conf.par2$std.error,
isomer.conf.par2$normal.conf.int[, "lower"],
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isomer.conf.par2$normal.conf.int[, "upper"]),
ncol=4,
dimnames=1ist (names(isomer.conf.par2$psi),
c("parameters","S",
"lower bound","upper bound" ))))

(Results are given in Table 2.5, page 47.)
Confidence Regions with the New Parameterization

We plot confidence ellipses and likelihood contours in the space of the param-
eters (01, B2) using the functions ellips and iso and graphical functions of
S-Plus:

isomer.ell2 <- ellips(isomer.nl2, axis=c(1,2))
isomer.iso2 <- iso(isomer.nl2, axis=c(1,2))
# Graphical functions of Splus

par (mfrow=c(1,2))

plot (x=c(-5,7) ,y=c(0.03,.07) ,type="n",xlab="b1",ylab="b2")

contour (isomer.ell2,levels=qchisq(c(0.90,0.95,0.99),4),
add=T,labex=0)

points(x=isomer.nl2$thetal[l], y=isomer.nl2$thetal2])

title("Confidence ellipses")

plot(x=c(-5,7),y=c(0.03,.07) ,type="n",xlab="bl",ylab="b2")

contour (isomer.iso2,levels=qchisq(c(0.90,0.95,0.99),4),
add=T,labex=0)

> title("Likelihood contours")

>
>
>
>
>
>

vV V V VvV

(See Figure 2.6, page 48.)

Pasture Regrowth Example: Confidence Interval for A\ = exp 03

Let us return to the pasture regrowth example to calculate a confidence in-
terval for A = exp fs.
We define the function A in a file called pasture.lambda:

psi lambda;

ppsi p3;
subroutine;
begin

lambda = exp(p3);
end

A confidence interval for \ is calculated using the confidence function.
We display the values of )\ S 1g.975, and IN

> loadnls2(psi="")
> pasture.conf.expP3 <- confidence(pasture.nll,
file="pasture.lambda")
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# Print the results:
cat("Estimated value of lambda:", pasture.conf.expP3$psi,"\n" )
cat("Estimated value of S:",pasture.conf.expP3$std.error,"\n" )
cat("nu_(0.975):", gnorm(0.975),"\n" )
cat("Estimated value of In for exp(p3):",
pasture.conf.expP3$normal.conf.int,"\n" )
> cat("Estimated value of In for p3:",
pasture.conf.par$normal.conf.int[3,],"\n" )
> cat("Exponential transformation of the preceding interval:",
exp(pasture.conf.par$normal.conf.int[3,]),"\n" )

V V. V V V

(Results for this example are given in Section 2.4.6, page 47.)
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Variance Estimation

In the radioimmunological assay of cortisol example, we introduced the neces-
sity of using nonlinear regression models with heterogeneous variances, and
we suggested the weighted least squares method for analyzing this particular
data set (see Sections 1.1.2, 1.3, and 2.4.2). This method, however, is not ad-
equate for every situation. Whereas the radioimmunological assay of cortisol
data provided many replications for each variance, some data sets only pro-
vide a few replications, and some provide none at all, as we will illustrate in
the examples herein.

Although one can feasibly use the weighted least squares method for few
replications, it is not the best option because the accuracy of the empirical
variance as an estimator of the true variance is rather bad: With four repli-
cations, the relative error is roughly 80%. The weighting by such inaccurate
estimators can be very misleading.

To handle these situations with few or no replications and to still account
for the heterogeneity of the variances, we present three alternative methods in
this chapter: The maximum likelihood, the quasi-likelihood, and the three-step
methods. All of these are based on a parametric modeling of the variance.

Other methods are also available to solve the estimation problem for non-
linear heteroscedastic regressions. For example, R.J. Carroll and D. Rup-
pert [CR88| propose to take into account heteroscedasticity and skewness
by transforming both the data and the regression function, and S.L. Beal
and L.B. Sheiner [BS88] describe and compare several estimation methods for
dealing with these models.

3.1 Examples

3.1.1 Growth of Winter Wheat Tillers: Few Replications

In [FM8S8], Faivre and Masle consider the growth of winter wheat, focusing
on the differences in the dry weights of the wheat tillers, or stems. Time is
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measured on a cumulative degree-days scale with a 0°C base temperature and
a point of origin determined by the physiological state of the plants. Plants
growing on randomly chosen small areas of about 0.15 m? are harvested each
week. Table 3.1 and Figure 3.1 document the tiller data, listing the means of
the dry weights of the tillers for plants harvested from the same area.

Table 3.1. Data for the growth of winter wheat tillers

Sum of Degree-Days Dry Matter Weight (mg)
(base 0°C)
405.65 113.386 90.500
498.75 161.600  207.650
567.25 309.514  246.743
618.30 460.686  422.936
681.45 1047.000 972.383 1072.022 1034.000
681.45 1169.767 1141.883  999.633 1266.290
681.45 868.662 1133.287
*
dry A £
weight ¥
10001 ¥
*
600
*
i *
*
*
2001 i
¥
400 450 500 550 600 650

degree-days

Figure 3.1. Observed dry weight of tillers on a degree-days time scale

The regression equation chosen to describe the increase in dry matter
with respect to the cumulative sum of temperatures is the simple exponential
function

f(z,0) =01exp(Oax). (3.1)
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Here, 05 is simply the relative growth rate. As exp(0) = 1, 6; could be in-
terpreted as the dry weight of the tillers at the origin; however, a precise
physiological interpretation of #; on this basis is risky.

Even though the design of the experiment is highly unbalanced, the vari-
ation of the variance of the dry weight with respect to the cumulative sum of
temperatures is obvious. Figure 3.2 shows that the intra-replications variances
vary with respect to the mean of the observations made at the same time.

Figure (a) Figure (b)
* *
120001
9 4
S log(s7)
8000 1 81
*
7 *
4000 1 .
i * 6
*
* *
I : : .
5 6 7
Vi log(Y%.)

Figure 3.2. Winter wheat tillers example: (a) the empirical variances, s7, versus
the mean for the tillers data Y;.; (b) the same data after the logarithm transformation

Although the relative position of the data point corresponding to the
fourth harvesting date is troublesome, we can represent the variance of the ob-
servations by an increasing function of the response function, o2 = o2 f(z, 6),

for example.

3.1.2 Solubility of Peptides in Trichloacetic Acid Solutions: No
Replications

In [CY92], Chabanet and Yvon describe an experiment designed to investi-
gate the precipitation mechanism of peptides. The percentage of solubility of
75 peptides, issued from the digestion of caseins, is related to their retention
time on a column of a reverse-phase high-performance liquid chromatography
device. The experiment is performed for various trichloacetic acid concentra-
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tions; in Table 3.2 and Figure 3.3 we present the data, henceforth called the
peptide data, for only one of these concentrations.

Table 3.2. RP-HPLC retention time and solubility of 75 peptides

Retention Time | % Solubility | Ret. Time | % Solubility | Ret. Time | % Solubility
3.6 100.0 3.6 100.0 6.7 99.0
11.2 105.0 20.0 100.0 21.5 84.0
24.5 100.0 29.2 99.0 38.4 88.0
40.4 48.0 49.8 35.0 59.6 0.0
64.2 0.0 68.1 0.0 2.7 0.0
40.8 50.0 52.7 2.0 57.7 0.0
59.1 0.0 61.7 0.0 65.7 0.0
28.3 104.0 33.0 89.0 40.0 56.0
44.5 10.0 47.0 0.0 63.1 0.0
31.6 91.0 40.1 32.0 52.4 2.0
57.5 4.0 23.8 100.0 29.1 85.0
30.0 95.0 31.7 100.0 23.1 95.0
42.7 85.0 46.8 95.0 16.8 101.0
24.0 100.0 31.1 107.0 32.3 84.0
34.0 92.0 34.7 94.0 36.3 97.0
39.3 95.0 42.0 0.0 44.4 51.0
45.0 0.0 46.2 70.0 49.0 63.0
52.1 1.0 55.4 0.0 56.7 0.0
53.0 0.0 0.0 82.0 3.1 102.0
4.2 100.0 7.1 100.0 9.0 95.0
10.6 106.0 13.0 93.0 14.2 107.0
15.5 98.0 38.3 92.0 43.5 48.0
45.9 90.0 47.5 65.0 48.9 34.0
55.6 8.0 57.0 0.0 59.2 1.0
60.9 0.0 34.3 100.0 51.5 0.0

The graph of the data presents the classical S shape, making the logistic
function the natural candidate for the regression model. Moreover, as per-
centages are considered, the asymptotes are, respectively, 0 and 100. Further,
it seems likely that these data have heterogeneous variances. No replications
are available to obtain estimates of the variance function for each value of the
independent variable; however, that the data are percentages suggests some
binomial sampling scheme behind the observed phenomena. Hence, we can
use a parabola to model the variance: When the peptide is fully nonsoluble,
its solubility can be assessed with great precision, while the variability of the
measure is maximum for intermediate solubilities. The proposed model is as

follows:
100

f(x79) = 1+ exp (92 (-13 - 91))

(3.2)
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Figure 3.3. Peptides example: Observed solubility of 75 peptides versus their
RP-HPLC retention time

and

0? = 0% + %7 f(x,0) [100 — f(2;,0)] = 0%g (x;,0,7). (3.3)

When z varies from 0 to +oo, f(x,6) decreases from 100 to 0, whereas
o%g (x;,0,7) equals 02 when f(x;,0) equals 0, then increases and decreases
and has a finite maximal value.

Actually, looking carefully at the data, it appears that the variability is
greater when the peptide is fully soluble than when it is nonsoluble. This
behavior is not taken into account by the preceding variance function, but
this example will be discussed again in Chapter 4.

3.2 Parametric Modeling of the Variance

Before we can estimate the variances, we must choose a variance function. In
some cases, this choice can be made on a more or less theoretical basis. But
more often, we have only qualitative indications: Either the variance of the
observations grows with their expectation, or the relation between the variance
of the observations and their expectation can be depicted by a parabola, for
example. In both cases, the choice of the model is based on the residuals inside
a restricted collection of possible models.

For an increasing variance, there are essentially two models. Either the
variance varies as a power of the response
02 =0%g(2:,0,7) = 0 f(2:,0)7,

7

(3.4)

or the variance varies as a linear function of the response



66 3 Variance Estimation
J? :U2g(xi,9,7) = ¢g? X+ 7f(zi,0)). (3.5)

For a variance function varying like a parabola, we generalize the model given
by Equation (3.3). Let ymin be the smallest value of the regression function
and ymax the biggest one. In general, ymin and ymax depend on 6. The model
is then

01-2 =029 (2,0,7) = 0> + %1 (Ymax + 72 — f(2:,0)) (f(24,0) — Ymin) - (3.6)

Note that we have to be careful using some of these models. A variance is
positive by definition, but the functions mentioned earlier can actually be
negative for some values of the independent variable x and the parameters.
Let us consider the variance model given by Equation (3.5) for example. Even
if the function f(x,#) is nonnegative for any value of x and 6, the function
0% (1 + 7f(z,0)) is negative when 7 < —1/f(x,0).

3.3 Estimation

3.3.1 Maximum Likelihood Estimation

The maximum likelihood method is widely known and is used in the field
of parametric inference. Statisticians like it because it behaves well in both
theory and practice.

Consider the nonlinear regression model

Y = f(zi,0) + e,
Var(e;) = 02g (2;,0,7), E(g;) = 0} ’ (3.7)

where the ¢; are assumed to be independent Gaussian random variables for i
varying from 1 to n. Note that the parameters § may enter both the regression
and variance functions, while the parameters 7 enter the variance function
only.

For ease of handling, we generally use the logarithm of the likelihood (log-
likelihood for short) instead of the likelihood itself. For the preceding het-
eroscedastic regression model, the log-likelihood is defined as follows:

n 2

2 __n 1 2 (Y — f(z4,0))
V(G,U,T)——§log27r—§§ IOgO' g(IZ,G,T)+W . (38)
For a given set of observations Y7, ...,Y},, the log-likelihood is a function of

the parameters. If p is the dimension of # and ¢ is the dimension of 7, the
model depends on p + ¢ + 1 parameters. The maximum hkehhood estimator
9 02,7 maximizes the log-likelihood. The values of 0 72,7 cannot be given
exph(:ltly7 they are obtained by numerical computation.

Following the calculations done in Section 1.3, let us show how the likelihood is
calculated. We observe n independent Gaussian variables Y;,i = 1,. .. n with expectation
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E(Y;) = f(z:,0) and variance Var(Y;) = o%g(x:,0,7). The probability density of the
observations calculated in y;,i = 1,...n, is equal to [\, £(yi,xi,0,0%,7), where the
function £ is defined as follows:

y,2,6,0%,7) = —— L)

. — -
2wo2g(z,0,T1) ( 20%g(x,0,7)

The likelihood function is thus defined by the following formula:

n
L(Y3,.. .,Yn;G,UQ,T) = Hﬁ(Yi,xi,G,az,T).

=1

3.3.2 Quasi-Likelihood Estimation

The maximum likelihood estimator defined earlier is based on the assumption
that the errors ¢; for ¢ varying from 1 to n are distributed as Gaussian vari-
ables. In some cases this assumption is not appropriate. For example, when
we observe counts or proportions, it is more appropriate to model the dis-
tribution of the errors &; with a Poisson or binomial distribution. Such data
will be considered in Chapters 6 and 7. In other situations we would satisfy
ourselves by considering the nonlinear regression (3.7) without any additional
assumption on the error distribution. For estimating the parameters, we can
use the quasi-likelihood method based on the knowledge of the regression and
variance functions only. We will distinguish two cases according to the para-
metric modeling of the variance function. More precisely, we first consider the
case where the parameter 7 is known and then the case where the parameter
7 is unknown and has to be estimated.

When the Parameter T s Known We assume that the variance of ¢; is pro-
portional to a known function g that depends on the independent variable x;
and on the unknown parameters . For example, consider the variance func-
tion defined in Equation (3.4) with 7 = 2. More generally we consider the
nonlinear regression model

Y; = f(xua) + &5,
Var(e;) = 029 (z;,0), E(g;) = 0} : (3.9)

where the ¢; are assumed to be independent random variables for ¢ varying
from 1 to n.
The quasi-likelihood equations are given by the formulas

" Of Y, — f(x;,0)
U — . S f =1.... 1
a(9> Z:1 aaa (x’L?e) g(xz70) 3 Or a b 7p7 (3 O)
where for each a =1,...,p,
af (21,0)

00,
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denotes the derivative of f with respect to 6, calculated in z; and 6.
The quasi-likelihood estimators of 6 and o2 denoted by g, and 332 1, are
defined as follows: R
Uslgr)=0fora=1,...,p

and
n

. 1 (Y; — f(i,001))
53, = Ly (i b))’
ni g(-rthL)

Note that if the variance of the observations is constant (g(z,6,7) = 1), the
quasi-likelihood estimator and the least squares estimator are the same; see
Equation (1.12).

When the Parameter T is Unknown Let us come back to the nonlinear regres-
sion model given by Equation (3.7). We have to estimate § with p components,
7 with ¢ components, and ¢2. The quasi-likelihood equations are given by the
formulas

U,(0,7) = inlggfl(xi,@)W, fora=1,...,p, (3.11)
Upts(0,7) = zzj; %(mi, 6,7) (¥ - f(:c;f()ii 57 ng(x,-,e,r)’ (3.12)

for b =1, ..., q. The quasi-likelihood estimators §QL7 Tor, and 822L satisfy
o i ST

and

O‘QLff

9 1 zn: (Y; — f/gfiaeQL))z.
N4 9(wi,0qL, QL)

Let us comment on the choice of the weighting function in the quasi-likelihood
equations. For the first p Equations (3.11), the weighting function is simply the variance
function. For the last ¢ equations, we choose the weighting function as the square of
the variance function. This choice is based on the following remark: The variance of
€2, where ¢ is a centered Gaussian random variable with variance o2, equals 26*. The
quasi-likelihood equations are defined as if the moments of order 4 of the variables ¢;,
say E(}), were equal to the moments of centered Gaussian variables.

We will compare the maximum likelihood method with the quasi-likelihood
method in Section 3.5.2. Note that if the e; are independent Gaussian variables
for ¢ varying from 1 to n, then the quasi-likelihood estimator and the maximum
likelihood estimator are not the same. Based on our own experience and the
research, we strongly encourage the user to adopt the maximum likelihood
approach if there is no particular reason to question the Gaussian assumption.
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3.3.3 Three-Step Estimation

For some cases, such as the model in Equation (3.7), the number of parame-
ters is large, making the direct numerical maximization of the log-likelihood
with respect to the complete set of parameters or the resolution of the set of
Equations (3.13) difficult. To overcome this difficulty, we can use the three-
step method. This method breaks down the estimation process into successive
easier-to-handle steps, as we describe when we estimate the parameters by
the quasi-likelihood method.

Step 1: Ordinary Least Squares Estimation of 0 A first estimator of 6 is
9o1s(1), which minimizes C(6) = Y7 | (V; — flx:,0))* (see Section 1.3).

Step 2: Estimation of T by the Quasi-Likelihood Method The value of the
parameter 6 is assumed to be known and is given by its estimation from the
preceding step, say fors(1)- Then we estimate 7 using the quasi-likelihood

method: T, (2) satisfies Up1s(0ors(1), Tor(z)) =0 for b=1,...,4q.
Step 3: Estimation of 0 by the Quasi-Likelihood Method Finally, we estimate

6 and o? using the quasi-likelihood method, assuming that the value of 7 is
known and equals Tgr,(2). More exactly, the estimator 0 3) is defined by

Ua(é\QL(Q)),?QL(Q)) =0 for a = 1, ...y P and

li (Y; — fl’z,QQL(s)))

O'
QLB3) =

= 9(w, 9QL(3), TQL(2))

This three-step estimation method has good properties: We can obtain
classical asymptotic results analogous to the ones described in Section 2.3.1.
Moreover, it is of particular interest if the user is faced with numerical diffi-
culties, as can happen if reasonable initial values of the parameters are not
easy to find.

In the second and third steps of the three-step alternative method, the
maximum likelihood method can be used in place of the quasi-likelihood
method.

3.4 Tests and Confidence Regions

3.4.1 The Wald Test

Each of the methods described in the preceding section has good properties:
We can obtain classical asymptotic results analogous to the ones described in
Section 2.3.1. As a consequence, for a continuous real function of the param-
eters (0,02, 7), we have the following results. Let 6,52, 7 be the estimates of
6,02, T obtained | by either of the methods that we consldered in the preceding
sectlon Denote A = )\(9 52,7) and A = \(0,02,7). Then A=A tends to 0 as n



70 3 Variance Estimation

tends to infinity. Moreover, there exists an asymptotic estimate S of the stan-
dard error of A such that the distribution of S™!(A — \) can be approximated
by a standard Gaussian distribution A(0,1). As in Section 2.3.3, we can test
hypothesis H: {\ = Ao}, against the alternative A: {\ # A}, using the Wald
statistic R

(A= 0)?

—

To this end, we use the following decision rule. We choose a risk level o, a < 1;
then we compute the critical value C such that Pr{Z; > C} = a, where Z;
is a random variable distributed as a x? with one degree of freedom; then we
compare Sw and C: If Sw > C, we reject hypothesis H; if Sw < C, we do
not reject it. This test has an asymptotic level a.

Sw =

Remarks

1. We have already seen various examples for A in a homoscedastic regression
model in Section 2.4. So we can easily imagine what type of function of
the parameters we can consider for inference in a heteroscedastic model,
taking into account that the variance parameters (0 and 7) also may
appear in such a function. A very simple example is provided by A = 7 in
the model given by Equation (3.3) when analyzing the peptide data.

2. We have presented the Wald test without distinguishing among the max-
imum likelihood method, the quasi-likelihood method, and the three-step
method because the computations are formally the same. Obviously, be-
cause all the methods are based on the fulfillment of distinct criteria, they
do not give the same numerical results for a given set of observations. See
Section 3.5.2 for an illustration.

3. We have developed the Wald test only for a real (scalar) function of the
parameters. This can be extended to r-dimensional functions of the pa-
rameters as in Section 2.3.4, where r is not greater than the total number
of parameters.

3.4.2 The Likelihood Ratio Test

In Section 2.3.3, the likelihood ratio test statistic Sy, was introduced for a
regression model with homogeneous variances, where the estimation method
is ordinary least squares. In that case, the computation of the statistic Sy
was a particular case application of the general inference methodology based
on the maximum likelihood principle. In this section, we describe how this
principle applies when we are faced with a heteroscedastic regression model.

In order to treat this point with some generality, let us introduce some
notation. We call ¢ the whole set of parameters ¢7 = (§7027T). We call ¢
the dimension of 7, so ¢ is of dimension p + ¢ + 1. For example, in the model
described by Equations (3.2) and (3.3) for the peptide data, p = 2, ¢ = 1, and
¢ = (61,02,02%,7)T is a four-dimensional vector. In a lot of situations, ¢ = 0,
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for example, if we describe the variance by o7 = o2 f(x;,0) as for the tiller
data or by 0? = o2 f(x;,0)? as for the cortisol data.

We now consider a rather general situation where hypothesis H is described
by a linear constraint on a subset of the whole set of parameters ¢. The
constraint is expressed as A¢ = Lo, where A is an r X (p + ¢ + 1) matrix
(r <p+gq+1)and Ly is a constant vector with dimension r. r is also assumed
to be the rank of the matrix A. Let (Eﬂ = (GH,’U\%{,%E) be the parameter
estimators for hypothesis H, which means that the constraint AqAﬁH = Ly is
fulfilled, whereas 6,52,7, the classical maximum likelihood estimators of the
parameters of model (3.7), are the parameter estimators for the unconstrained
alternative A. The likelihood ratio statistic is

L’n(Y17 AR 7Yn;§7 6.\2?7/:)
Ln(Yla ce »Yn;aH;a—\I%Ia?H) .

Sy, = —2log (3.14)

With our notations, this turns out to be

SL _ ZIO UHg x179H77—H)
52g(x,0,7)

Hypothesis H is rejected if Sy, > C, where C' is defined by
Pr{Z <C}=1-a.

Z, is distributed as a x? with r degrees of freedom, and « is the (asymptotic)
level of the test.

Remarks

1. The intuitive justification of this decision rule is clear. On the one hand,
if H is true, then both fy,5%,7u and 6,52, 7 are suitable estimators of
the model parameters: When the number of observations is large, they
are close to the true value of the parameters. Therefore, they take similar
values and the likelihood ratio is close to 1, or equivalently, its logarithm
is close to 0. On the other hand, if H is false, then 6y,5%,7n do not
estimate the true value of the parameters and are expected to have values
very different from 6,52, 7; thus Sp, has a value other than 0.

2. In Section 2.3.3, the test statistic Sy, is given by

St = nlog C(6u) — nlog C(6).

This is the particular form taken by Equation (3.14) in the homogeneous
variance situation. Note that for an unconstrained alternative, 65 = 6.

3.4.3 Bootstrap Estimations

Following the same idea as in the case of homogeneous variances, the boot-

strap estimation of A = \(,02,7) is based on estimates N = /\(9* %2, 7)

calculated from artificial bootstrap samples (z;, Y;*),s = 1,...,n, where
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Y = f(2;,0) + €.

The only work we have to do is to generate the errors (¢f,i = 1,...,n), such
that their distribution mimics the distribution of the (g;,4 = 1,...,n). There
are several ways to do that. For example, let (T;,i = 1,...,n) be an n sample

of variables independent of (Y7, ...,Y},), satisfying E(T;) = 0, E(T?) = 1, and
E(T?) = 1; and let & = Y; — f(x“é\) Then we take f = &;T;. This method
is called wild bootstrap. It is easy to find such variables (T;,i = 1,...,n). Let
us consider, for example, (Z1, ..., Z,) an n sample of Bernoulli variables with
parameter y = (5 + /5)/10. Then

1-— 1
T = 2\/5@ + +2*/5(1 _Z) (3.15)

is suitable. R
If (9,52, 7) is the maximum likelihood estimator of (#, o2, 7), then (6*,5*2,7*)
will be the value of (0,02, 7) that minimizes

V*(0,0% 1) =log L, (Y], ....Y,5,0,0% 7).

If (5, 62,7) is the quasi-likelihood estimator or the three-step estimator of
(0,0%, 7) then (9\*, *2,7*) will be the quasi-likelihood estimator or the three-
step estimator of (0,02, 7) obtained when the artificial observations (Y;*,i =
1,...,n) are used in place of the observations (Y;,i =1,...,n).

The bootstrap estimate of A is A\* = )\(9* o*2, 7)), and the procedures for
calculating a bootstrap confidence interval for A or estimating the accuracy of
A are similar to the procedures described in the case of homogeneous variances
(see Section 2.3.5).

The way the (7,4 =1,...,n) are simulated may look a little mysterious. Actually,
it can be shown that the moments of €] up to the order 3 are closed to the moments

of ;. More precisely, if E* denotes the expectation conditional on the observations
(Y1,...,Ys), we get

E*(ef) =0
B[] =2
E* ()] =&

These equations give a formal meaning to what we claimed: To generate the errors

(ef,i =1,...,n), such that their distribution mimics the distribution of the (g;,i =
1,...,n). More theoretical background may be found in Wu [Wu86] and Liu [Liu88].

3.4.4 Links Between Testing Procedures and Confidence Region
Computations

It is generally possible to compute a confidence region from a test procedure
and vice versa to perform a test using a confidence region. For example, go-
ing back to Section 2.3, we show how the confidence interval I given by
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Equation (2.2) and the Wald test relate to each other. Actually, both are ap-
plications of the same result: The limiting distribution of 7' = (/\ 2)/S is a
standard normal distribution A (0, 1).

We can easily build a test procedure for hypothesis H: {A = ¢} against
the alternative A: {\ # Ao}, from the confidence interval Iy. The decision
rule is simply to reject H if 1, n does not cover A\g and to not reject it if Ag
is covered by In. It is not difficult to see that this test procedure exactly
corresponds to the Wald test if we take the same asymptotic level a.

On the other hand, we can construct a confidence region for A by consid-
ering the set of all of the values, say £, of A such that the Wald test does not
reject the hypothesis {A = ¢}. We define this confidence region Iy as follows:

~ ~ 2
AV:{&<A—®,$2<C}.
Again, if C is such that Pr{Z1 < C’} =1-—aq, for Z; a x? random variable

with one degree of freedom, IW and I, v do coincide exactly.!
This duality between tests and confidence regions is quite general.

3.4.5 Confidence Regions

Let us consider the peptide data and assume that the heteroscedastic regres-
sion model given by Equations (3.2) and (3.3) is suitable. Suppose that we
want to compute a confidence interval for the parameter 6. This parameter
is linked to the maximal (in absolute value) slope of the logistic curve, which
is —256,. Thus it is representative of the variability of the peptide solubility
with respect to the retention time.

Let 61, 605,52,7 be the maximum likelihood estimators of the parameters.
Here, A\(0,02,7) = 5 and A\ = 6. S is given simply by the square root of the
second term of the diagonal of the matrix estimating the parameter estimates
covariance. A confidence interval for 6, based on the asymptotic distribution
of 05 is then just I

We recommend that you compute a confidence interval for 6, using the
maximum likelihood approach. This method is analogous to the profiling pro-
cedure described in [BW88]. To this end, we make use of the previously
mentioned duality between tests and confidence regions. Consider first the
test of hypothesis H: {6, = ¢}, against A: {6, # £}, for a given real positive
value £. According to the notation introduced in Section 3.4.2, hypothesis H
is described by the linear constraint

b1

02
(01o0) | 3| =¢.

T

! Recall that C is such that, for o < 1/2, V/C is the 1 — a/2 percentile of a standard
Gaussian N(0, 1) random variable.
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Here, p =2, ¢ = 1, and 7 = 1. The computation of the constrained estimators
011,024, 8%1, Ty is particularly simple in this case. We consider that 65 is no
longer an unknown parameter, but a known constant equal to £, and we maxi-
mize the likelihood with respect to 61,02, 7. To emphasize the dependency on
the value ¢, we adopt another notation, writing 6 ¢, 07, 7¢ for the estimators
obtained under the constraint fy = ¢. With this notation,

Ln(Yh e 7Yn;§17§27827?)
L,(Y1,...,Y;610,0,57,70)

S, = —2log

)

and the decision rule is to reject H if Sg, > C, with C' given by
Pr{Z; >C}=a

and Z; being distributed as a y? with one degree of freedom. We now deduce
a confidence region from this test procedure. Obviously, S, depends on £ and
we denote by Sp(¢) the value taken by Sp, for a given £. We can define as
a confidence region for s the set of all of the real ¢ such that Sp(¢) < C.
In other words, we consider as a confidence region for #; with asymptotic
confidence level 1 — « the set of all of the real values ¢ such that we do not
reject hypothesis H: {63 = ¢}, using a likelihood ratio test with asymptotic
level a.

Remarks

1. The confidence region {¢: S(¢) < C} cannot be translated into a more
explicit form. We use some numerical computations to obtain its end-
points.

2. This type of confidence region based on the log-likelihood ratio can easily
be generalized to any subset of the parameter vector ¢ or to any linear
function of the type A¢ = Ly, with A an r x p + ¢ + 1 matrix of rank r,
r<p+q+1, and Ly an r-dimensional vector.

3.5 Applications
3.5.1 Growth of Winter Wheat Tillers
Model The regression function is

f(z,0) = 01 exp (02 ),

and the variance function is Var(e;) = o2 f(z;, 0).

Method The parameters are estimated by maximizing the log-likelihood,
V (6,02, 7); see Equation (3.8).
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Results
Parameters ‘ Estimated Values ‘ Asymptotic Covariance Matrix
0, 1.14 0.24
0 0.01 —0.0003 4x1077
o? 13.32
dry A
weight

1000

400 450 500 550 600 650
degree-days

Figure 3.4. Weight of tillers example: Graph of observed and adjusted curve

-~

The adjusted response curve, f(z,6), is shown in Figure 3.4. A quick in-
spection of this graph shows that the regression model is not very well chosen.
It would be better to have a regression function with a more gradual increase
for low values of x. This can be achieved by elevating s to some power, that
is, by choosing

F(2,8) = 61 exp [(agm)"ﬁ] , (3.16)
where the variance function, as before, is Var(e;) = o2 f(z;, 0).
Results
Parameters ‘ Estimated Values ‘ Asymptotic Covariance Matrix

0, 79.13 702.2

02 0.0019 —0.0004 2x 1078

03 4.05 23.07 10-8 0.85

o? 7.30

Likelihood Ratiof Test of H: 83 = 1 against A: 03 # 1 Using Results of
Section 3.4.2 Figure 3.5 suggests that the regression model given by Equa-
tion (3.16) fits the tiller data better.
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dry A
weight
10001

400 450 500 550 600 650
degree-days

Figure 3.5. Weight of tillers example: Graph of observed and adjusted curves for
both the hypothesis H (dashed line) and the alternative A (solid line)

To validate this observation, we perform a likelihood ratio test. The hy-
pothesis to be tested is {#3 = 1}. In this case, the hypothesis is described by
model (3.1), and the alternative is described by model (3.16). So 91H = 1.14,
92H = 0.01, and 93H = 1; whereas 91 = 179.13, 92 = 00019 and 93 = 4.05.
The statistic Sy, is equal to 10.4. If Z; is distributed as a x? with one degree of
freedom, the critical value C such that Pr{Z; < C} = 0.95 is 3.84. Thus, us-
ing the likelihood ratio test with an asymptotic 5% level, we reject hypothesis
H.

Calculation of a Confidence Interval for 03 Using the Asymptotic Distribution
of 03 See Section 3.4.5.

53 ‘ S ‘ V0.975 ‘ f/\/

4.05[0.924 | 1.96 | [2.239, 5.861]

Calculation of a Confidence Interval for 03 Using the Log-Likelihood Ratio
See Section 3.4.5.

As mentioned earlier, the computation of a confidence interval based on the
log-likelihood ratio requires some extra calculations after we have performed
the estimation. Although these calculations are implemented in S-Plus, (see
Section 3.6), describing the necessary calculations as follows helps to under-
stand the method better:

1. Choose a reasonable set of possible values for 03. Here, (/9\3 is equal to 4.05,
and one estimate of its standard error S is equal to 0.924. We take 39
equispaced values t1,1ta,...,t39 with ¢t; = 1 and #39 = 7.10; the central
value t9g is just f3. Note that the choice of this series is quite arbitrary.
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We decided to explore the behavior of the log-likelihood ratio for values
of 63 roughly between 03 — 35 and 03 + 38.

2. For each value t;, for i = 1,...,39, fix 03 = t; and estimate the other
parameters under this constraint. Then compute the log-likelihood ratio
SL (tz) (obviously, SL(tQO) = 0)

3. Draw a picture of St,(¢) versus ¢. This is a useful step to check the regular-
ity of the log-likelihood and to provide a comprehensive look at the results
of the preceding step. On the same graph, draw the horizontal line corre-
sponding to the equation y = C'. The abscissa of the intersection points
between this line and the graph of the log-likelihood are the endpoints of
the confidence region based on the log-likelihood ratio.

10 1
S1(6)
8 -

Figure 3.6. Confidence intervals: Values of the log-likelihood ratio when the
parameter 03 varies (03 = £)

4. Determine the endpoints of the confidence region by linear interpolation.
Here the picture (see Figure 3.6) clearly shows that the region is an in-
terval. Let us consider the set of values Sp(t;), for i = 1,...,39 (see
Table 3.3). For a confidence interval with asymptotic level 0.95, choose
C such that Pr{Z; > C} = 0.05, for Z; a x? with one degree of free-
dom: C' = 3.8415. From Table 3.3, we deduce that the left endpoint of
the log-likelihood ratio-based confidence interval is between tg = 2.1237
and tg = 2.2842, because Sy, (ts) = 4.3269 and Sy, (t9) = 3.6335. A precise
enough value of the lower bound 53 inf Of the confidence interval is given
by linear interpolation and is 2.236. Similarly, the right endpoint, or upper
bound, 85, of the confidence interval is between t34 and ¢35 and is 6.428.

Let us summarize the results of this procedure:
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Table 3.3. Log-likelihood values

t So(®) t ] St t | Su(d)
1.0000 | 10.4256 || 3.0868 | 1.0491 || 5.1737 | 1.0856
1.1605 | 9.4496 || 3.2474 | 0.7203 || 5.3342 | 1.3781
1.3211 | 8.5016 || 3.4079 | 0.4550 || 5.4947 | 1.6940
1.4816 | 7.5856 || 3.5684 | 0.2523 || 5.6553 | 2.0302
1.6421 | 6.7060 || 3.7289 | 0.1104 || 5.8158 | 2.3835
1.8026 | 5.8669 || 3.8895 | 0.0272 || 5.9763 | 2.7513
1.9632 | 5.0726 || 4.0500 | 0.0000 || 6.1368 | 3.1308
2.1237 | 4.3269 | 4.2105 | 0.0256 || 6.2974 | 3.5198
2.2842 | 3.6335 | 4.3711 | 0.1006 || 6.4579 | 3.9162
2.4447 | 2.9957 || 4.5316 | 0.2214 || 6.6184 | 4.3180
2.6053 | 2.4164 || 4.6921 | 0.3841 || 6.7789 | 4.7236
27658 | 1.8078 | 4.8526 | 0.5849 || 6.9395 | 5.1315
2.9263 | 1.4417 | 5.0132 | 0.8200 || 7.1000 | 5.5403

Lo.os | Is
8415 | [2.236, 6.428]

53‘ § ‘X
4.05]0.924 | 3.

Comparing :fs with 7, > whose endpoints appear as vertical bars on the hori-
zontal dashed line of Figure 3.6, we observe that /s is larger and nonsymmetric
around 63. Obviously, the likelihood takes into account the regression func-
tion as it is, whereas using the Wald statistic we consider that the model is
almost a linear regression. Both confidence intervals are based on asymptotic
approximations, but for I this is even more drastic.

Calculation of a Confidence Interval for 03 Using the Bootstrap Method See
Section 3.4.3.

Table 3.4 gives the estimated values of f, the fz, and the residuals
g =Y — f(xy, ) for the model defined in Equation (3.16). For two boot-
strap simulations, the table gives the values of Z;, the bootstrap errors €7, the
bootstrap observations Y;*, the bootstrap estimate of 63, and the correspond-
ing asymptotic variance S’@;.

__ The number of bootstrap simulations B equals 199. The histogram of the

(I'**,b=1,...,B) is shown in Figure 3.7.

The 0.025 and 0.975 percentiles of the (f*’b, b=1,...,B) are calculated
and then the bootstrap confidence interval is calculated:

0 | S | booos | bo.ors | I
4.050.924 | —1.73 | 1.08 | [3.06, 5.65]

3.5.2 Solubility of Peptides in Trichloacetic Acid Solutions

Model The regression function is
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Table 3.4. Results for two bootstrap simulations

f/-; gl Z; 8:,1 }/i*,l Zi 6:,2 )/i*,Z
108.83 456 | 1| —2.80 106.01 1| —28| 106.01
108.83 —-18.30 | 1 11.00 120.15 | 1 11.0 | 120.15
165.16 —3.56 | 1 2.20 167.37 | 1 2.2 | 167.37
165.16 4250 | 1| —26.00 138.91 1| —26.0| 13891
273.24 36.30 | 1| —22.00 250.82 | 0| 59.0| 331.93
273.24 -26.50 | 1 16.00 289.62 | 1 16.0 | 289.62
458.50 219 | 1| —1.40 457.15 | 0 3.5 | 462.04
458.50 —35.60 | 1 22.00 48048 | 0| —58.0| 400.96

1070.60 —~23.60 | 1 15.00 | 1085.20 | 1 15.0 | 1085.20
1070.60 —98.20 | 1 61.00 | 113130 | 1 61.0 | 1131.30
1070.60 139 1| —086| 1069.80| 0 2.3 | 1072.90
1070.60 ~36.60 | 1 23.00 | 1093.30 | 1 23.0 | 1093.30
1070.60 99.10 | 1| —61.00| 1009.40 | 1| —61.0| 1009.40
1070.60 71.30 | 1| —44.00 | 1026.60 | 1| —44.0 | 1026.60
1070.60 —71.00 | 0| —110.00 955.76 | 1 44.0 | 1114.50
1070.60 196.00 | 1 | —120.00 949.70 | 1| —120.0 | 949.70
1070.60 |  —202.00 | 0 | —330.00 743.84 | 0| —330.0| 743.84
1070.60 62.70 | 1| —39.00 | 1031.90| 1| —39.0| 1031.90
05 = 4.05,5 = 0.924 | 65" =3.73, S5, | = 0.874| 037 = 3.80, 5, , = 0.941

100
1+ exp (O (x—06y))’
and the variance function is Var(e;) = o2 (1 + 7f(2:,0) (100 — f(x;,0))).

Method The parameters are estimated by maximizing the log-likelihood,
V(0,02 7); see Equation (3.8).

f(iC,@) =

Results
Parameters ‘ Estimated Values ‘ Asymptotic Covariance Matrix
01 43.93 0.3946
0 0.4332 —1.5x107% 0.0031
T 0.0245 —6.1x107° 0.0004 8.1 x107°
o? 26.79

o~

The adjusted response curve, f(x,8), is shown in Figure 3.8.

Likelihood Ratio Test of the Ezistence of a Constant Term in the Variance
Model In order to verify that a constant term in the variance is necessary to
correctly describe the variability of the data, we perform a test of hypothesis
H: {Var(e;) = o2 f(2;,0) (100 — f(x;,0))}. In order to make clear that this is
a hypothesis of the type A¢ = L, let us rewrite the variance model under A
as {Var(e;) = o7 + 03 f(x:,0) (100 — f(z;,6))}. In this notation, we express
hypothesis H as {U% = 0}. Between this alternative modeling of the variance
and the original one given by Equation (3.3), there is only a simple one-to-one
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Figure 3.7. Weight of tillers example: Histogram of (T\*’b, b=1,...B)
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Figure 3.8. Peptides example: Observed and adjusted solubilities of 75 peptides
versus their RP-HPLC retention time
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transformation: 0? = 02, 02 = o%7. The values of the estimates under this

assumption are §1H = 41.70 and §2H = 0.1305. The statistic Sy, is equal to
70.14. Because it is a highly unlikely value for a x? random variable with one
degree of freedom, hypothesis H must be rejected.

Figure 3.9 illustrates the observed solubilities, drawn together with the
adjusted one under hypothesis H (dashed line) and model (3.2) (solid line).
The second line is obviously a better fit.

1004 Ky *  x

solubility
80

60

40 A

20+

0 20 40 60

retention time
Figure 3.9. Peptides example: Observed and adjusted solubilities of 75 peptides
versus their RP-HPLC retention time for both hypothesis H (dashed line) and the
alternative A (solid line)

A discerning reader could have foreseen the result of this test. Indeed,
assuming that hypothesis H is fulfilled is equivalent to assuming that the ex-
treme measures (corresponding to f(x,0) = 0 or f(z,6) = 100) are performed
with perfect accuracy. Thus the estimation process gives these extreme mea-
sures a very high weight, whereas it barely takes the intermediate data into
account. The dashed curve in Figure 3.9, which corresponds to the peptide
data fit under hypothesis H, illustrates this fact.

Calculation of a Confidence Interval for 685 Using the Log-Likelihood Ratio
Using the same type of procedure that we used to compute a confidence
interval for A3 in Section 3.5.1, we obtain the following result:

a2 ‘ § ‘ X%,o.gs fS
0.433 ‘ 0.0557 ‘ 3.8415 ‘ [0.309, 0.670]
Calculation of a Confidence Interval for 65 Using the Wald Statistic, Based

on the Maximum Likelihood Estimator Standard calculations lead to the fol-
lowing result:
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o~

0, | S | voors Iv
0.433 [ 0.0557 | 1.96 | [0.324, 0.542]

Calculation of a Confidence Interval for 8 Using the Wald Statistic, Based on
the Three-Step Method We introduce, for the sake of comparison, the three-
step method for estimating the parameters, using an estimator other than the
maximum likelihood estimator. We choose ordinary least squares to estimate
f during the first step, modified least squares to estimate 8 during the second
step, and modified least squares to estimate € during the third step. We obtain
the following results:

Parameters ‘ Estimated Values ‘ Asymptotic Covariance Matrix

01 43.81 0.7427
02 0.233 5.8 x 1074 0.00101
T 0.0084
o? 27.56
* *
100 it
solubility *
% *
80
60 -
40 -
20 -
0 -
0 20 40 60

retention time

Figure 3.10. Peptides example: Observed and adjusted solubilities of 75 peptides
versus their RP-HPLC retention time for both the three-step method (dashed line)
and the maximum likelihood method (solid line)

Both estimated regression functions are shown in Figure 3.10.
We can also compute the confidence interval for 85 based on the results of
this estimation procedure:

52 ‘ § ‘Vo.975 ‘ f/’\f
0.233 [ 0.031 | 1.96 | [0.171, 0.295]

Actually, in this example, the results of both estimation methods disagree
to a large extent. As far as we trust our modeling of the phenomenon, the
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three-step method, using modified least squares methods at steps 2 and 3,
does not fit the data sufficiently well, as we can see from an examination
of Figure 3.10 and by comparing the value of the log-likelihood obtained by
both methods: The log-likelihood computed with the values of the three-step
estimators is —281.8, whereas the maximum log-likelihood is —288.7. This
strongly supports our advice: Use the maximum likelihood method as often
as you can!

3.6 Using nls2

This section reproduces the commands and files used in this chapter to treat
the examples using nls2.

Growth of Winter Wheat Tiller Example

The wheat tiller example is a new example, introduced in this chapter. First
we create the data frame to store the experimental data. Then we estimate
the parameters with two models, and, finally, we calculate confidence intervals
to compare them.

Creating the Data

The experimental data (see Table 3.1, page 62) are stored in a data frame
called tiller:

> DegreeDays <-c(
405.65, 405.65, 498.75, 498.75, 567.25, 567.25, 618.30,
618.30, 681.45, 681.45, 681.45, 681.45, 681.45, 681.45,
681.45, 681.45, 681.45, 681.45)
> DryWeight <-c(
113.386, 90.500, 161.600, 207.650, 309.514, 246.743,
460.686, 422.936, 1047.000, 972.383, 1072.022, 1034.000,
1169.767, 1141.883, 999.633, 1266.290, 868.662, 1133.287)
> tiller <- data.frame( DegreeDays, DryWeight)

Plot of the Observed Dry Weights on a Degree-Days Time Scale.

We plot the observed response values versus the degree-days scale using the
graphical function plot of S-Plus:

> plot(DegreeDays,DryWeight,xlab="degree days",ylab="dry weight",
main="Growth of winter wheat tillers example",
sub="0bserved response")

(See Figure 3.1, page 62.)
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Plot of the Empirical Variance Versus Mean

S-Plus functions are used to calculate empirical intrareplications variances,
and means. We plot the empirical variances versus the empirical means and
the same plot after the logarithm transformation:

> tiller.mean<-as.vector(
unlist(lapply(split(DryWeight,DegreeDays) ,mean)))

> tiller.var<-as.vector(
unlist(lapply(split(DryWeight,DegreeDays),var)))

> plot(tiller.mean, tiller.var, xlab="mean", ylab="var",
main="Growth of winter wheat tillers example",
sub="Empirical response variance versus response mean")

> plot(log(tiller.mean), log(tiller.var),
xlab="log(mean)", ylab="log(var)",
main="Growth of winter wheat tillers example",
sub="Log of empirical response variance\

versus log of response mean")

(See Figure 3.2, page 63.)
Parameter Estimation Under Hypothesis H

We describe the model of hypothesis H (the simple exponential function de-
fined in Section 3.5.1, page 74) in a file called tiller.exp.m2:

% Model simple exponential

yA with response variances proportional
% to response expectations
resp DryWeight;

varind DegreeDays;

var v;

parresp a,b;

subroutine;

begin

DryWeight= axexp(b*DegreeDays) ;
v = DryWeight;

end

To find reasonable starting values for the parameters, we make a linear
regression of log(dry weight) on degree-days using the function 1m in S-Plus.
Then we call n1s2. We display the estimated values of the parameters 5> and
the estimated asymptotic covariance matrix:

> tiller.lm <- 1lm(log(DryWeight) ~ DegreeDays)

> tiller.nl2 <- nls2(tiller, "tiller.exp.m2",
c(exp(tiller.1lm$coefficients[1]),tiller.1lm$coefficients[2]))

> # Print the results:

> cat( "Estimated values of the parameters:\n ")

> print(tiller.nl2$theta)
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> cat( "\nEstimated value of sigma2:\n ")

> print( tiller.nl2$sigma2)

> cat( "\nEstimated asymptotic covariance matrix: \n ")
> print(tiller.nl2$as.var); cat("\n\n")

We plot the observed and fitted response values versus the degree-days
scale:

> plot(DegreeDays,DryWeight,xlab="degree days",ylab="dry weight",
main="Growth of winter wheat tillers example",
sub="0bserved response")

> X<-seq(400,685,length=100)

> Y<-tiller.nl2$theta[1]*exp(tiller.nl2$theta[2] *X)

> lines(X,Y)

(See Figure 3.4, page 75.)
Parameter Estimation Under Hypothesis A

The second model to test is the double exponential function defined by Equa-
tion (3.16), page 75. We describe it in a file called tiller.exp.m7:

% Model double exponential

% with response variances proportional
YA to response expectations

resp DryWeight;

varind DegreeDays;

var v;

parresp a,b,g;

subroutine;

begin

DryWeight= axexp(exp(gxlog(DegreeDays*b)));
v = DryWeight;

end

The function nls2 is called to carry out the estimation. The values esti-
mated with the first model are assigned to the starting values of the param-
eters. Option max.iters increases the default maximal number of iterations,
so we can be sure that convergence will be reached:

> tiller.nl7 <- nls2(tiller, "tiller.exp.m7",
list(theta.start = c(tiller.nl2$theta, 1), max.iters=500))
# Print the results:
cat( "Estimated values of the parameters:\n ")
print(tiller.nl7$theta)
cat( "\nEstimated value of sigma2:\n ")
print( tiller.nl7$sigma2)
cat( "\nEstimated asymptotic covariance matrix: \n ")
print(tiller.nl7$as.var); cat("\n\n")

V V V V V Vv V
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Plots of the Fitted Curves

The observed responses, the responses fitted under hypothesis H (joined by a
dashed line), and the responses fitted under hypothesis A (joined by a solid
line) are plotted versus the degree-days scale:

> plot(DegreeDays,DryWeight,xlab="DegreeDays",ylab="dry weight",
main="Growth of winter wheat tillers example",
sub="0bserved response")

> X<-seq(400,685,1length=100)

> Y<-tiller.nl7$thetal1] *

exp((tiller.nl7$theta[2]*X)**tiller.nl7$theta[3])

lines(X,Y)

Z<-tiller.nl2$theta[1]*exp(tiller.nl2$theta[2] *X)

par (1ty=2)

lines (X,Z)

par (1ty=1)

V V. V V VvV

(See Figure 3.5, page 76.)
Likelihood Ratio Test of H: 05 = 1 against A: 03 # 1

To be sure that the second model fits the tiller data better, we test hypothesis
H: 3 = 1 against the alternative A: 65 # 1 using a likelihood ratio test. We
calculate and display the statistic Sy, (see Equation (3.14), page 71) and the
0.95 quantile of a x2 with one degree of freedom with which it should be
compared:

> cat( "S1:",
dim(tiller) [1] * (tiller.nl2$loglik - tiller.nl7$loglik),
"X2(0.95,1):", qchisq(0.95,1), "\n\n")

Confidence Interval for 03 Using the Asymptotic Distribution of 53

We calculate the confidence interval 1, ~ (see Equation (2.2), page 32, and
Section 3.4.5, page 73) using the function confidence. We display the values

of 53, S, V0.975, and [/\/Z

tiller.In <- confidence(tiller.nl7)

# Print the results:
cat ("Estimated value of theta_3:", tiller.nl7$thetal[3],"\n" )
cat("Estimated value of S:", sqrt(tiller.nl7$as.var[3, 3]),"\n" )
cat("nu_(0.975):", gqnorm(0.975),"\n" )
cat ("Estimated value of In:",tiller.In$normal.conf.int[3,],"\n" )

V V. V V Vv V
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Confidence Interval for 83 Using the Log-Likelihood Ratio

To calculate the confidence interval based on the log-likelihood ratio (see
Section 3.4.5, page 73, and Ig Sectlon 3.5.1, page 76) we use the function
conflike. We display the values of 03, S, X1.0.05, and Is:

cat ("Estimated value of theta_3:", tiller.nl7$thetal[3],"\n" )
cat("Estimated value of S:", sqrt(tiller.nl7$as.var[3, 3]),"\n" )
cat("X2(0.95,1):", qchisq(0.95, 1),"\n" )

cat("Estimated value of Is:",
conflike(tiller.nl7,parameter=3)$like.conf.int,"\n" )

vV V V VvV

(Results for this example are given in Section 3.5.1, page 74.)
The function conflike also allows us to carry out all of the steps of the
calculation shown page 76.

Confidence Interval for 83 Using the Bootstrap Method

To calculate the confidence interval I, p defined in Section (3.4.3), page 71,
we use the function bootstrap. Several methods of bootstrap simulations are
possible. Here, we choose wild.2, which means that pseudoerrors are obtained
by multiplying the residuals by the independent random variables T defined
at Equation (3.15), page 72.

To initialize the iterative process of bootstrap, nls2 must be called with
the option renls2. We also set the option control so that intermediary results
are not printed. Finally, we call the function delnls2 to destroy any internal
structures:

> tiller.nl7 <- nls2(tiller, "tiller.exp.m7",
list(theta.start = c(tiller.nl2$theta, 1), max.iters=500),
control=1list(freq=0), renls2=T)
> tiller.boot <- bootstrap( tiller.nl7, method="wild.2",
n.loops=500)
> delnls2()

We calculate the 2.5% and 97.5% quantiles of the f*’b, b=1,...500, using
the function quantile of S-Plus, and we display the values of 03, S, bg.025,
bo.9757 and IBZ

> tiller.Tg <- (tiller.boot$pStar[,3]-tiller.nl7$thetal3])/
sqrt(tiller.boot$var.pStar[,3])
> qu <- quantile(tiller.Tg,probs=c(0.975,0.025))
> tiller.IntBoot <- tiller.nl7$thetal3]
- qux*sqrt(tiller.nl7$as.var[3,3])
cat("Estimated value of theta_3:", tiller.nl7$thetal[3],"\n")
cat("Estimated value of S:", sqrt(tiller.nl7$as.var([3,3]),"\n")
cat("b_(0.025):", qul2],"\n" )
cat("b_(0.975):", qul1],"\n" )
cat ("Estimated value of Ib:",
tiller.nl7$theta[3] + qu[2]*sqrt(tiller.nl7$as.var[3,3],
tiller.nl7$theta[3] + qull]l*sqrt(tiller.nl7$as.var[3,3],"\n")

V V. V V VvV
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Solubility of Peptides Example

The solubility of peptides example is a new example, introduced in this chap-
ter. First we create a data frame to store the experimental data. Then we
estimate the parameters with several models, and, finally, we calculate confi-
dence intervals to compare them.

Creating the Data

The experimental data (see Table 3.2, page 64) are stored in a data frame
called pept.d:

> RetTime <-c(
3.6, 3.6, 6.7, 11.2, 20.0, 21.5,

24.5, 29.2, 38.4, 40.4, 49.8, 59.6,
64.2, 68.1, 72.7, 40.8, 52.7, 57.7,
59.1, 61.7, 65.7, 28.3, 33.0, 40.0,
44.5, 47.0, 63.1, 31.6, 40.1, 52.4,
57.5, 23.8, 29.1, 30.0, 31.7, 23.1,
42.7, 46.8, 16.8, 24.0, 31.1, 32.3,
34.0, 34.7, 36.3, 39.3, 42.0, 44.4,
45.0, 46.2, 49.0, 52.1, 55.4, 56.7,
53.0, 0.0, 3.1, 4.2, 7.1, 9.0, 10.86,

13.0, 14.2, 15.5, 38.3, 43.5, 45.9,
47.5, 48.9, 55.6, 57.0, 59.2, 60.9, 34.3, 51.5)
> solubility <-c(

100, 100, 99, 105, 100, 84, 100, 99, 88, 48, 35, 0,
o, o, 0, 50, 2, 0, 0, O, O, 104, 89, 56, 10, 0, O,
91, 32, 2, 4, 100, 85, 95, 100, 95, 85, 95, 101, 100,
107, 84, 92, 94, 97, 95, 0, 51, 0, 70, 63, 1, 0, O,
0, 82, 102, 100, 100, 95, 106, 93, 107, 98, 92, 48,

90, 65, 34, 8, 0, 1, 0, 100, 0)
> pept.d <- data.frame(RetTime , solubility)

Plot of the Observed Percentage of Solubility Versus the Retention Time

We plot the observed responses versus the retention time using the graphical
function pldnls2:

> pldnls2(pept.d, response.name="solubility", X.name="RetTime",
title="Solubility of peptides example",
sub="observed response")

(See Figure 3.3, page 65.)
Find Initial Values for the Regression Parameters

To find reasonable starting values for the parameters, we make a first esti-
mation using ordinary least squares estimators and assume constant variance.
This model is described in a file called pept.m1:
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% model pept.ml
resp solubility;
varind RetTime;

aux al;

parresp ed50, sl ;
subroutine ;

begin

al = 1 + exp (sl*(RetTime-ed50)) ;
solubility = 100. /al ;
end

We apply function nls2 to estimate the parameters:

> pept.nli<-nls2(pept.d, "pept.mi",
list(theta.start=c(1,1), max.iters=100))

Estimation under Hypothesis A

To see whether a constant term in the variance is necessary to describe cor-
rectly the variability of the data, we first try a variance model with a constant
term. We describe it in a file called pept.m3:

% model pept.m3

resp solubility;

varind RetTime;

var v;

aux al;

parresp ed50, sl ;

parvar h;

subroutine ;

begin

al = 1 + exp (sl*(RetTime-ed50)) ;
solubility = 100. /al ;

v= 1 + h*solubility*(100.-solubility) ;
end

We call n1s2 and display the results:

> pept.c3 <- list(theta.start=pept.nli$theta,
beta.start=0)

> pept.nl3<-nls2(pept.d, "pept.m3", stat.ctx= pept.c3)

> # Print the results

> cat("Summary of pept.nl3:\n")

> summary( pept.nl3)

We plot the observed and fitted responses versus the retention time using
the graphical function plfit. The option wanted specifies the requested plot;
the observed and fitted values are plotted against the independent variable:

> plfit(pept.nl3, wanted=list(X.0F=T),
title="Solubility of peptides example",
sub="0bserved and fitted response")
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(See Figure 3.8, page 80.)
Estimation under Hypothesis H

Now we try a variance model without a constant term. This model is described
in a file called pept.m2:

% model pept.m2
resp solubility;
varind RetTime;

var v;
aux al;

parresp edb0, sl ;
subroutine ;

begin

al = 1 + exp (slx(RetTime-ed50)) ;
solubility = 100. /al ;

v= solubility#*(100.-solubility) ;
end

The parameters of this model are estimated using the function nls2:
> pept.nl2<-nls2(pept.d, "pept.m2",pept.nli$theta)

Likelihood Ratio Test of the Existence of a Constant Term in the Variance
Model

We calculate and display the test statistic Sy, (see Equation (3.14), page 71)
and the 0.95 quantile of a x2 with one degree of freedom, with which Sy, should
be compared:

> cat( "S1:",
75 * (pept.nl2$loglik - pept.nl3$loglik),
"X2(0.95,1):", qchisq(0.95,1), "\n\n")

Plots of the Fitted Curves

The observed responses, the responses fitted under hypothesis H (joined by a
dashed line), and the responses fitted under hypothesis A (joined by a solid
line) are plotted versus the retention time:

> plot(RetTime,solubility,xlab="retention time",ylab="solubility",
main="Solubility of peptides example",
sub="0bserved and fitted response")
X<-seq(-1,75,length=100)
Y<-100/ (1+exp(pept .nl3$theta[2] * (X-pept.nl13$thetal1])))
lines(X,Y)
Z<-100/ (1+exp(pept.nl2$theta[2] * (X-pept .n12$thetal1])))
par (1ty=2)
lines (X,Z)
par (lty=1)

V V.V V V V vV

(See Figure 3.9, page 81.)
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Confidence Interval for 0 Using the Log-Likelihood Ratio

We calculate a confidence interval based on the log-likelihood ratio (see Sec-
tion 3.4.5, page 73, and Ig Section 3.5.1, page 76) using the function conflike.
We display the values of 65, S, X1,0.05, and Is:

> pept.conflike _ conflike(pept.nl3, parameter = 2)

> # Print the results

> cat("Estimated value of theta_2:", pept.nl3$thetal[2],"\n" )

> cat("Estimated value of S:", sqrt(pept.nl3$as.var[2, 2]),"\n" )

> cat("X2(0.95,1):", gchisq(0.95, 1),"\n" )

> cat("Estimated value of Is:", pept.conflike$like.conf.int,"\n" )
Confidence Interval for 85 Using the Wald Statistic, Based on the Mazimum
Likelihood Estimator

To calculate a confidence interval for fy using the Wald statistic (see Sec-
tion 3.4.4, page 72), we apply the function confidence. We display the values
of 92, S, V0.975, and IN:

> pept.conf_confidence(pept.nl3)

> # Print the results:

> cat("Estimated value of theta_2:",pept.conf$psil[2],"\n" )

> cat("Estimated value of S:", pept.conf$std.error[2],"\n" )

> cat("nu_(0.975):", gnorm(0.975),"\n" )

> cat("Estimated value of In:",pept.conf$normal.conf.int[2,], "\n" )
Confidence Interval for 65 Using the Wald Statistic, Based on the Three-Step
Alternate Method

The alternate method is included in the function nls2: Option method in-
troduces the three requested methods. They are as follows; OLST, ordinary
least square, to estimate the parameters #; MLSB, modified least square, to
estimate the parameters 3; and MLST, modified least square, to reestimate the
parameters 6.

We display the values of the parameters and the asymptotic covariance
matrix estimated at the last step:

> pept.nl8<-nls2(pept.d, "pept.m3", pept.c3,
method=c ("OLST", "MLSB", "MLST"))
> # Print the results
> cat("Estimated value of the parameters theta:\n")
> print(pept.nl8$step3$theta)
> cat("Estimated value of the parameters beta:\n",
pept.nl8$step3$betall], pept.nl8$step3$sigma2)
> cat("\nEstimated value of the asymptotic covariance matrix:\n")
> print(pept.nl8$step3$as.var[1:2, 1:2])
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Plots of the Results

The observed responses, the responses fitted by the three-step alternate
method (joined by a dashed line), and the responses fitted by the maximum
likelihood method (joined by a solid line) are plotted versus the retention
time:

> plot(RetTime,solubility,
xlab="retention time",ylab="solubility",
main="Solubility of peptides example",
sub="0bserved and fitted response")
X<-seq(-1,75,1length=100)
Y<-100/ (1+exp(pept.nl3$theta[2] * (X-pept.nl3$thetall])))
Z<-100/ (1+exp(pept .nl8$step3$theta[2] * (X-pept.nl12$thetall])))
lines(X,Y)
par (lty=2)
lines (X,Z)
par (1ty=1)

V V. V V V Vv V

(See Figure 3.10, page 82.)
Confidence Interval for 62 Based on Results of the Three-Step Method

Using the function confidence, we compute the confidence interval based on
the Wald statistic from the results of estimation by the alternate method. We
display the values of 02, S, v9.975, and I}/

pept.In <- confidence(pept.nl8)

# Print the results
cat("Estimated value of theta_2:",coef (pept.nl8)$thetal2],"\n" )
cat("Estimated value of S:", coef(pept.nl8)$std.error[2],"\n" )
cat("nu_(0.975):", gnorm(0.975),"\n" )
cat("Estimated value of In:",pept.In$normal.conf.int[2,],"\n" )

V V. V V Vv V

We display the log-likelihood values calculated by both methods to com-
pare them:

> cat("Loglikelihood values:",
- (pept.nl3%loglik*75/2), -(pept.nl8$step3$loglik*75/2),"\n" )

(Results for this example are given in Section 3.5.2, page 78.)
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Diagnostics of Model Misspecification

In Section 1.2, we denoted the true regression relationship between Y and x
by u(x), and we noted that p(z) is generally unknown, although in practice
it is approximated by a parametric function f(z,#). Because we use this f
to make some statistical inferences, however, we must be able to determine
whether our choice of f is accurate.

We can detect model misspecification by examining the data with the
results of the estimation. It is an iterative procedure. The goal is to check
if the assumptions on which the analysis is based are fairly accurate and to
detect and correct any existing model misspecification. For this purpose we
present two types of tools in this chapter: Graphics and tests. We apply each
of these to some of our previously cited examples.

4.1 Problem Formulation

Let us recall the assumptions: We observe (Yjj,2;), i =1,...k, j = 1,n;. We
consider the parametric functions f and g such that

Yij = f(@i,0) + &4,
Vare;; = g(z;,0%,0,7).

We assume that the errors ¢;; are independent for all (¢, 7).

Then we estimate the parameters. Before we describe how to detect mis-
specifications, let us give the list of assumptions that these procedures need
to check:

e The regression function f is correct. The true regression function p(x)
should satisfy p(x) = f(z,6) for one value of 6 in © and for all values of
x. If this condition exists, it implies that the errors are centered variables:
Ee;; = 0. If not, EY;; = u(z;) and Ee;; = p(z;)— f(x;, 0), which is different
from zero for at least some values of x;, i = 1,...n. In this latter case, the
classical asymptotic results stated in Section 2.3 are no longer valid.
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e The variance function is correct. The most frequent mistake made in
modeling the variance function is to assume that the variance of errors
is constant, Vare;; = 02, when, in actuality, heteroscedasticity exists,
Vare;; = o?. In that case, when the number of observations tends to
infinity, the variance of V.o 1/2 (@\— 0) is different from the identity matrix.

e The observations are independent. Suppose that we are interested in the
growth of some characteristic as a function of time. We observe the re-
sponse Y; at time ¢; for one individual, for ¢ = 1,...n. Generally, the rela-
tionship between the growth and the time, say f(¢,8), is a smooth function
of t. If, however, the t; are such that the ¢;,1 —t; are small with respect to
the variations of the growth, correlations exist between the variables Y;.
The observations thus are not independent, and the results of Section 2.3
cannot be applied, as we will see in Section 4.2.5.

4.2 Diagnostics of Model Misspecifications with
Graphics

Graphic of Fitted and Observed Values

If the Y; satisfy EY; = f(x;,60), then the fitted values f(xi,g) estimate the
expectation of the Y;. To detect a bad choice of the regression function, we
use either a plot of fitted f(z;,6) and observed Y; values versus z; or a plot of
fitted versus observed values. These graphics tools offer a simple way to look

simultaneously at data and fitted values.
Graphics of Residuals and Standardized Residuals
If the choice of the regression function is correct, then the

Eisz;j—f(xi,H), fOIizl,...k‘, ]zl,nl

are centered independent variables; and if Var g;; = o?, the standardized
errors v 0
- — f(z, . ‘
eij = #(z% fori=1,...k, j=1,...n;
o

are centered independent variables with variance equal to 1. In the same way,
if the variance function is 02 = g(x;, 02,6, 7), then the

eij:¢, fori=1,...k, j=1,...n;

g(mh U2a 9) T)
are centered independent variables with variance equal to 1. A natural idea is

to estimate the errors and standardized errors and then study their behavior.
The residuals

a‘j = Yij - f(xzvé\)
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and the standardized residuals

€jj = ————
or

are estimates of the errors and standardized errors. Model misspecification
usually is detected by examining the graphics of residuals. To detect a bad
choice of the regression or variance functions, we use the graphics of &;;, €;;,
~ ~ ~ 2 e N ~2 N~ _ .
€351, |eijl, &5, €;; versus @y, f(z:,0), or g(z;,0%,0,7). If n; = 1, the graphic
of &; versus £;_1 is convenient to detect some correlation between errors.

4.2.1 Pasture Regrowth Example: Estimation Using a
Concave-Shaped Curve and Plot for Diagnostics

Let us again consider the pasture regrowth example using a concave-shaped
curve for the function f in place of function (1.2).

Model The regression function is

0o + 6012
= — 4.1
fla0) = 2L, @)

and the variances are homogeneous: Var(g;) = 2.

Method The parameters are estimated by minimizing the sum of squares,
C(6); see Equation (1.10).

Results
Parameters ‘ Estimated Values
01 358.0
0> —1326.0
03 301.5
o? 6.802

Figure 4.1 shows that this regression function badly estimates the decreas-
ing speed; moreover, the estimated value of 81, 6; = 358 is not in accordance
with the expected value (the graphic of observed values suggests the presence
of an upper asymptote at a value of yield close to 70). Thus, we reject this
regression function.

4.2.2 Isomerization Example: Graphics for Diagnostic

Consider the graph of fitted versus observed values drawn in Figure 1.9. To
make this graph easier to read, one can plot the first diagonal and then su-
perimpose a curve joining the points after smoothing (see Figure 4.2).
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20 40 60 80

xr

Figure 4.1. Pasture regrowth example: Graph of observed and adjusted values of
the response after estimation using a concave-shaped curve

12 A

—— first diagonal
10 - ————smoothing scatter plot /*/,

10 12
Figure 4.2. Isomerization example: Graph of adjusted versus observed values

Model The regression function is

0,03(P — I/1.632)
0) —
f(x,0) 14+ 6H + 03P + 0,1’

where z is a three-dimensional variate, = (H, P,I), and the variances are

homogeneous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares,
C(6); see Equation (1.10).
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The plot shown in Figure 4.2 does not suggest any model misspecification:
The points are well distributed around the first diagonal, and the smoothed
scatter plot is close to the first diagonal.

Several plots of residuals are shown in Figure 4.3. None of these presents
a particular structure; thus, we have no reason to suspect a departure from
the hypotheses.

E3 * * *
*
0.6 X 0.6 1 N
g |x x * Bl *
*
0.01 x % N * . .
* % *
* ok *
* *i * * 0.9 * 1‘* N
29, .
-0.61 ¥ * * ok )':k
2 4 6 8 10 2 4 6 8 10
(a) fli,6) F(x:,8) (b)
* * * *
0.6 1 " " 0.6 1 .
g@ * * * a * * *
* *
0.01 % *  * 0.0 '** * * *
* *
* 1" % *
* * *k * *x R
0.6 . * 0.6 .
-0.6 0.0 0.6 5 10 15 20
(c) €1 i (d)

Figure 4.3. Isomerization example: Residual plots: (a) residuals versus the fitted
reaction rate; (b) absolute residuals versus the fitted reaction rate; (c) residuals
versus the preceding residual; and (d) residuals versus the residual order

4.2.3 Peptides Example: Graphics for Diagnostic

Let us consider the example described in Section 3.1.2, assuming a logistic
curve for the regression function (see Equation (3.2)) and a constant variance.
Model The regression function is

100
1+exp (02 (z —6y))’

f(xve) =
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and the variances are homogeneous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares,
C(0); see Equation (1.10).

Results
Parameters \ Estimated Values \ Estimated Standard Error
01 43.92 0.792
0y 0.2052 0.0316
o? 328.4

Figure 4.4 shows that the response is overestimated for fitted values lower
than 50 (see Figures 4.4(a) and (b)). The plot of absolute residuals versus
fitted values of the regression function shows that the variance of errors is
smaller for values of the response close to 0 or 100.

Let us consider the model defined in Section 3.1.2, taking into account the
heteroscedasticity using Equation (3.3).

Model The regression function is

100
00 = o) )

and the variances are heterogeneous:

g(m,a2, 0,7) = o + Usz(x,é)) [100 — f(z,0)]. (4.3)

Method The parameters are estimated by maximizing the log-likelihood,
V (0,02, 7); see Equation (3.8).

Results
Parameters ‘ Estimated Values ‘ Estimated Standard Error
01 43.93 0.628
0 0.4331 0.0557
Bl 0.02445 0.00897
o? 26.79

Figure 4.5 shows that the results of the estimation differ from the preced-
ing case when we assume homogeneous variances. The estimated values of the
response are in better accordance with the observed values; see Figures 4.5(a)
and (b). The estimated value of 5 is now equal to 0.4331, in place of 0.2052.
Thus, the estimation of the maximum of the slope has increased, and the
problem of overestimation for values of the response lower than 50 has dis-
appeared. The interpretation of Figure 4.5(c) showing the absolute values of
the standardized residuals versus the fitted responses is not as clear, however;
if the variance function were well modeled, the points of this graph would not
present any particular structure. We can only say that the structure of the
points is not as pronounced as when we assumed a constant variance. We will
return to this example in Section 4.4.
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Figure 4.4. Peptides example: Plots of fitted values and residuals: (a) observed
(*) and fitted (line) values of solubility versus retention time; (b) residuals versus
fitted values, the solid line is horizontal, passing through 0, and the dotted line is
a curve joining the points after smoothing; and (c) absolute residuals versus fitted
values, the dotted line is a curve joining the points after smoothing

4.2.4 Cortisol Assay Example: How to Choose the Variance
Function Using Replications

Figure 1.3 suggests that we can model the relationship between the response
and the log-dose using a symmetric sigmoidally shaped curve:

_ b2 — 01
f(@,0) =61+ 1+ exp(fs3 + 04)

This equation is similar to Equation (1.3) with 5 = 1. To illustrate a frequent
mistake, let us see what happens if we hypothesize that the variance is constant
rather than heteroscedastic.

Model The regression function is
02 — 0,
1+ exp(f3 + 042)°

f(x30>:91+
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Figure 4.5. Peptides example: Plots of fitted values and residuals taking into ac-
count heteroscedasticity: (a) observed and fitted values of solubility versus retention
time; (b) residuals versus fitted values, the solid line is horizontal, passing through
0 and the dotted line is a curve joining the points after smoothing; and (c) absolute
standardized residuals versus fitted values, the dotted line is a curve joining the
points after smoothing

and the variances are homogeneous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares,
C(0); see Equation (1.10).

Results
Parameters Estimated Values Estimated Standard Error
01 175.46 19.1
0> 2777.3 18.1
03 2.0125 0.065
04 2.6872 0.068
o? 3085
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Figure 4.6. Cortisol assay example: Plots of fitted values and residuals under the
hypothesis of a symmetric sigmoidally shaped regression function and of a constant

variance: (a) observed and fitted values of counts versus the log-dose; (b) residuals
versus fitted values; and (c) absolute residuals versus fitted values

The graph of absolute residuals versus fitted values of the response (Fig-
ure 4.6) clearly shows that the dispersion of the residuals varies with the values
of the fitted response. This suggests that Var e;; = 2.

In this example, the experimental design allows us to calculate the s?
(see Equation (1.4)), which estimates VarY;; independent of the estimated
regression function. Graphs of s7, or functions of s? versus Y;,, can be used to
choose the variance function g or to confirm the presence of heteroscedasticity,
as we see in Figure 4.7.

The graphs presented in Figure 4.7 show that the relation between s; and
Y;. is nearly linear (see Figure 4.7(b)), thereby suggesting that the variance
of the response could be assumed proportional to the squared response. It
follows that the function g(z;,02,0) = 02 f2(x;,0) is a good candidate for the
variance function. Another choice could be g(z;,02,0,7) = 0% f7 (;,0), where
T is a parameter to be estimated; see Chapter 3.



102 4 Diagnostics of Model Misspecification

* 3 £3 F
§2 ’ S
T / )ﬁ}(
6000 1 P! 701 e
, -
e ] A
4000 1 s 50 a
; v
- 301 3"
2000 1 S -~
e * ¥
*
- 10{ w7
500 1500 2500 500 1500 2500
(a) empirical means empirical means (b)
£
log s2 E
kT ok
7 *7 7
7
* V/
51 “
x BF
,
/ *
3 e
/
s
Ve
11 *
5.0 6.0 7.0 8.0
(c) log of empirical means

Figure 4.7. Cortisol assay example: Plots of empirical variances versus empirical
means; a curve joining the points after smoothing (broken line) is superimposed on
each plot: (a) empirical variances versus empirical means; (b) square root of the
empirical variances versus the empirical means; and (c¢) logarithm of the empirical
variances versus the logarithm of empirical means

Now, let us again estimate the parameters, this time under the assumption
VarY;; = o2 f%(z;,0).

Model The regression function is

0y — 601
1+ exp(03 + Oaz;)’

f(xi,0) =01+ (4.4)

and the variances are heterogeneous:
V&I‘(&ij) = 0'2f2(.72i, (9)

Method The parameters are estimated by maximizing the log-likelihood,
V (0,02, 7); see Equation (3.8).

Results
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Parameters | Estimated Values | Estimated Standard Error
01 137.15 2.64
0 2855.8 33.9
03 1.8543 0.021
04 2.3840 0.034
o? 0.001614

From the plots presented in Figure 4.8, we can see that the points on the
graph of absolute standardized residuals versus fitted values of the response
(Figure 4.8(c)) are nearly uniformly distributed. This confirms the choice of
the variance function. On the other hand, the plot of standardized residuals
shows that the response is overestimated for low values (between 500 and
1500) and underestimated between 1500 and 2500. This result suggests that
the maximum of decrease is closer to the upper asymptote, and it points us
to the generalized logistic model in Equation (1.3).

Model The regression function is
0y — 60

f(z4,0) =01 + -,
(14 exp(fs + 04;))"

and the variances are heterogeneous:
Var(e;;) = o2 f2(x;,0).

Method The parameters are estimated by maximizing the log-likelihood,
V (6,02, 7); see Equation (3.8).

Results
Parameters Estimated Values Estimated Standard Error

01 133.42 1.94
0 2758.7 26.3
03 3.2011 0.223
04 3.2619 0.159
05 0.6084 0.041
o? 0.0008689

The graphics presented in Figure 4.9 do not suggest any model misspeci-
fication.

4.2.5 Trajectory of Roots of Maize: How to Detect Correlations in
Errors

When correlations exist between the observations, the graphic of the residu-
als &; versus &;_1 is a good tool to detect this lack of independence. Let us
introduce a new example to illustrate this case.

The trajectory of roots is projected onto a vertical plane; the scientist
then draws this projection to create a data set by numerization [TP90]. The
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Figure 4.8. Cortisol assay example: Plots of fitted values and standardized residu-
als under the hypothesis of a symmetric sigmoidally shaped regression function and
heteroscedasticity: (a) observed and fitted values of counts versus the log-dose; (b)
standardized residuals versus fitted values, a curve joining the points after smooth-
ing (broken line) is superimposed; and (c) absolute standardized residuals versus
fitted values

variable Y is the distance between the root and the vertical axis running
through the foot of the plant, and x is the depth in the ground. The scientist
can pick up as many points as necessary to describe the trajectory of each
root, as shown in Figure 4.10.

A nonlinear regression model describes this phenomenon by modeling the
relation between Y and z with the function f(z,6) = 6,(1 — exp(—62x)).

Model The regression function is

f(z,0) = 01(1 — exp(—05z)),

and the variances are homogeneous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares,
C(6); see Equation (1.10).
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Figure 4.9. Cortisol assay example: Plots of fitted values and standardized resid-
uals under the hypothesis of an asymmetric sigmoidally shaped regression func-
tion and heteroscedasticity: (a) observed and fitted values of counts versus the log-
dose; (b) standardized residuals versus fitted values, a curve joining the points after
smoothing (broken line) is superimposed; and (c) absolute standardized residuals
versus fitted values

Results
Parameters ‘ Estimated Values
01 67.876
02 0.05848

Figure 4.10 clearly shows that the quantities Y; — f(z;,6) and Y; — f(z;, 6)
are not independent when 4 and j are close to each other. Moreover, the
points of the graph (see Figure 4.11(b)) of &; versus &;_; are distributed along
the first diagonal. This distribution suggests that the correlation between the
observations could be modeled by an autoregressive model: ¢, = peg;_1 +
n;, where p € [—1,1] is a parameter, generally unknown, and 7; for i =
1,...n are independent random variables with expectation 0 and variance
02. Models taking into account correlated observations are not treated in
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Figure 4.10. Trajectory of roots of maize: Distance versus depth
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Figure 4.11. Trajectory of roots of maize: (a) observed and adjusted values of
the response; and (b) residual versus preceding residual
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this book, but interested users will find several publications on that subject,
including Glasbey [Gla80] and White and Domowitz [WD84].

4.2.6 What Can We Say About the Experimental Design?

Obvious links exist between the choice of the regression function and the choice
of the experimental design, x1,xs,...x). For example, kK must be greater than
.

Consider again the cortisol example. Intuitively, we know that if we sup-
press the observations corresponding to a logarithm of the dose between —1
and 0, the parameters 63, 64, and 05 will not be estimated easily: The estimat-
ing procedure will not converge, the estimated standard error of the estimated
parameters will be very large with respect to their values, or the estimated
values of the parameters will be aberrant for the scientist.

In this case, one must verify if the values of z and the regression function
are in accord. For this purpose we use sensitivity functions to describe the
link between f and =x.

Let f(x,0) be the regression function, where 6 is the vector with p compo-
nents 6,, a = 1, ... p. The sensitivity function for parameter 6, is the derivative
of f with respect to 6,:

of

~ 9,

Consider that the value of x is fixed; thus, if the absolute value of ®,(x,6)
is small, the variations of f(z,0) are small when 6, varies. It follows that in
order to estimate 6, accurately, we must choose z such that the absolute value
of @,(x,0) is large.

Let us illustrate this procedure with a simulated data set.

Dy (x,0)

(z,0).

Data The data are simulated in the following way. Let u(x) = 1 — exp(—2x),
and let € be a centered normal variable with variance 25 x 10~%. The values of
x are chosen in the following way: x; = i/10 for i = 1,...10. The observations
Y; are defined as Y; = u(x;) + &;, where the €;, ¢ = 1,...10, are independent
variables with the same distribution as €.

x 0.1 0.2 0.3 0.4 0.5
Y | 0.1913 | 0.0737 | 0.2702 | 0.4270 | 0.2968
T 0.6 0.7 0.8 0.9 1.0
Y 0.4474 | 0.4941 | 0.5682 | 0.5630 | 0.6636

Model The regression function is

f(z,0) = 01(1 — exp(—6s1)),

and the variances are homogeneous: Var(g;) = o>.

Method The parameters are estimated by minimizing the sum of squares,
C(6); see Equation (1.10).
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Figure 4.12. Simulated example: First data set, graph of simulated data and
fitted values of the response

Results
Parameters ‘ Estimated Values ‘ Estimated Standard Errors
01 1.1007 0.49
0o 0.8654 0.54
o? 0.00418

The estimated standard errors are very large. Using Equation (2.3), we find
that the confidence interval for 61, with asymptotic level 95%, is [0.13;2.07],
and for 65 it is [—0.19;1.93]. The interval for 6, contains 0, which is an un-
acceptable value in this example.

Looking at Figure 4.12, we can posit that the estimates would be more
accurate with a wider interval of variations for z. To quantify this remark, let
us look at the plot of sensitivity functions.

The functions @, are defined as follows:

@1 (x,0) = 1 — exp(—bar),
Gy (x,0) = 012 exp(—0ax).

Generally, the value of 6 is unknown and the functions @, are calculated in 9
Figure 4.13 shows the plot of sensitivity functions &4 (z, 9) and Po(z, 0)
We see that median values of z, say between 0.5 and 2, contribute to the
estimation of fy with high accuracy, while greater values of x contribute to
the estimation of 6.
Now, let us see what happens with more appropriate values of x.

Data The data are now simulated in the following way. The values of x are cho-
sen in the interval [0.1; 4.6]. The observations Y; are defined as Y; = p(z;) +¢;,



4.2 Diagnostics of Model Misspecifications with Graphics 109

Figure 4.13. Simulated example: Graph of sensitivity functions calculated in 0
versus x

where the ¢;, © = 1,...10, are independent variables with the same distribu-
tion as €.

x 0.1 0.6 1.1 1.6 2.1

Y | 0.1913 | 0.3436 | 0.6782 | 0.8954 | 0.7809

x 2.6 3.1 3.6 4.1 4.6

Y | 0.9220 | 0.9457 | 0.9902 | 0.9530 | 1.0215

Model The regression function is

f(z,0) = 01(1 — exp(—6a1)),

and the variances are homogeneous: Var(g;) = 2.

Method The parameters are estimated by minimizing the sum of squares,
C(6); see Equation (1.10).

Results
Parameters ‘ Estimated Values ‘ Estimated Standard Errors
01 1.1006 0.04
02 0.9512 0.14

As expected, the estimated standard errors are smaller than they were
in the first data set. Comparing Figures 4.14 and 4.12 clearly shows that the
experimental design in the second data set allows us to estimate the asymptote
01 better.
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Figure 4.14. Simulated example: Second data set, graph of simulated data and
fitted value of the response

4.3 Diagnostics of Model Misspecifications with Tests

4.3.1 RIA of Cortisol: Comparison of Nested Models

In some situations it is easy to find possible alternatives to the regression
function or the variance function. For example, if we choose a symmetric
sigmoidally shaped curve for the cortisol data, it is reasonable to wonder if an
asymmetric curve would not be more appropriate.

Let us consider the models defined in Equations (4.4) and (4.5). If we
suspect an asymmetry of the curve, we can test hypothesis H: 5 = 1 against
the alternative A: 05 # 1. Let us apply a hkehhood ratio test. Let fu be
the estimator of 6§ under hypothesis H and & (xZ,HH) be the estimator
of Var(e;;). In the same way, let us define 8%]02 (24, 9A) as the estimator of
Var(g;;) under the alternative A. The test statistic

SL—ZlogaHf (i, 0n) ZlogoAf (i, 02)

=1 =1

equals 39, which must be compared to the 0.95 quantile of a x? with one degree
of freedom. The hypothesis of a symmetric regression function is rejected.

The following section presents a likelihood ratio test based on the com-
parison between the considered model and a bigger model defined when the
response is observed with replications.

4.3.2 Tests Using Replications

Let us return to the general nonlinear regression model with replications. We
assume that for each value of x, x;, ¢ = 1,...k, the number n; of observed
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values of the response is large, greater than 4 for example. We choose a re-
gression function, f, and carry out the estimation of the parameters. Let H
be the considered model:

Yij = f(xi,0) +€i;
Var(sij) = 0'27 E(Eij) =01"

§H is the estimation of € and 3%1 is the estimation of ¢2. Under H, we estimate
p + 1 parameters.

H can be considered as a model nested in a more general one, denoted by
A4, defined in the following way:

Yij = pi + €45
Var(eij) = 0’27 E(Eij) =0"

Now the parameters to be estimated are j1,...u, and o2, that is, k + 1
parameters. The presence of replications in each z; allows us to estimate p;
by the empirical mean Y;, and to build a goodness-of-fit test of hypothesis H
against the alternative A; as in Section 2.3.3 or 3.4.2. The test statistic

k
St =nlog C’(@H) - nloanisf

=1

is asymptotically distributed as a x? with k — p degrees of freedom.

If the test is not significant, we have no reason to reject the regression
function f.

By modifying A;, one may also test the hypothesis of homogeneous vari-
ances. Let As be defined by:

Yij = pi +¢ij
Var(e;;) = 02, E(gi;) =0 [~

Under the model Ay, we estimate 2k parameters. The p; are estimated by
empirical means, and the o2 are estimated by empirical variances, denoted by
s2. The test statistic

k

Sy, = nlogoy — Zni log s,
i—1

where 03 = C(aH)/n is asymptotically distributed as a y? with 2k —p — 1
degrees of freedom.

This test is easily extended to the case of heterogeneous variances under
the model H. Let the considered model H be the following:

Yij = f(2:,0) + €45
Var(e;j) = g(zi,02,0,7), E(e;5)=0/"
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Under H, we estimate p + ¢ + 1 parameters (p for 0, ¢ for 7, and 1 for o2).
The test statistic

k
S = Zm logaHg xHHH an logs

i=1

is asymptotically distributed as a x? with 2k — p — ¢ — 1 degrees of freedom.
We illustrate this method based on replications using the cortisol assay
example and the ovocytes example.

4.3.3 Cortisol Assay Example: Misspecification Tests Using
Replications

Let us consider again the model H, where the regression function is assumed
symmetric and the variance is assumed proportional to the squared expecta-
tion.

Model The regression function is defined by Equation (4.4), and the variances
are heterogeneous:
Var(e;;) = o f%(x;,0).

Method The parameters are estimated by maximizing the log-likelihood,
V (6,02, 7); see Equation (3.8).

Results We test the model H against the alternative A,. The test statistic St,
equals 50. This number must be compared to 37, the 0.95 quantile of a x2
with 25 (k = 15, and the number of parameters to be estimated is 5, 4 for 6,
and 1 for 02) degrees of freedom. Hypothesis H is rejected.

Let us see what happens if we take into account an asymmetry in the
regression function.

Model The regression function is defined by Equation (4.5), and the variances
are heterogeneous:

Var(aij) = O'2f2($i, 9)
Method The parameters are estimated by maximizing the log-likelihood,
V (6,02, 7); see Equation (3.8).

Results The test statistic S, equals 10.5, which must be compared to 36.4, the
0.95 quantile of a x? with 24 degrees of freedom. Hypothesis H is not rejected.
The analysis of graphics of residuals shown in Figure 4.8 is strengthened.

4.3.4 Ovocytes Example: Graphics of Residuals and
Misspecification Tests Using Replications

Let us return to the ovocytes example treated in Section 1.4.4. Let H be the
following model.
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Model The regression function is

F(t Pu, ) = Vi0<vw<t> VL) + Va),

where V,, and V; are solutions of Equation (1.8), and the variances are homo-

geneous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares,
C(0); see Equation (1.10).
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Figure 4.15. Ovocytes example: Plots of residuals: (a) residuals versus fitted

volume; and (b) absolute standardized residuals versus fitted volume

Results Figure 4.15 shows the plots of residuals. The plots do not show any
particular structure, except for a weak decrease of the absolute residuals when
plotted against fitted values of the regression function. This behavior seems
to be confirmed by the graph illustrating empirical variances versus empirical
means (see Figure 4.16). However, this graph also shows that the empirical
variances vary a lot.

Let us now look at the result of a misspecification test. The test statistic
of hypothesis H against Ay, S, equals 31, which must be compared to 71, the
value of the 0.95 quantile of a x? with 53 degrees of freedom (in that example,
k = 29). Thus there is no reason to reject the hypothesis of a constant variance.
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Figure 4.16. Ovocytes example: Graphs of empirical variances versus empirical
means; a curve joining the points after smoothing (broken line) is superimposed on
each plot

4.4 Numerical Troubles During the Estimation Process:
Peptides Example

In this section we tackle a tedious problem: What should we do when faced
with numerical problems during the estimation process? In nonlinear regres-
sion models, estimating the parameters needs an iterative numerical process. If
the parameters are estimated by the least squares method, the numerical pro-
cess minimizes the sum of squares C(#) in Equation (1.10); if the parameters
are estimated by maximizing the log-likelihood V' (0,2, 7) in Equation (3.8),
the numerical process minimizes —2V (6, 02, 7). Starting from some initial val-
ues for the parameters to be estimated, the program calculates the criterion
to minimize, and, using a specific algorithm (see, for example, [SW89]), it
looks for new values of the parameter for which the value of the criterion to
minimize is smaller. This procedure is stopped when a stopping criterion is
small enough.

Generally, the user does not intervene in this iterative estimation process,
because the methods used and their numerical options are automatically cho-
sen by the program. Nevertheless, the user must choose the initial values of
the parameters to start the iterative process.

All of the examples discussed in our book are treated using nls2; we did
not have numerical difficulties for any of them during the iterative process
for estimating the parameters. But as all users of nonlinear regression models
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know, numerical problems may appear, and, generally, the software’s output
is not informative enough to help and leaves the user puzzled.

Although it is difficult to list all of the reasons leading to a numerical
problem, following are some troubleshooting procedures:

1. Check the data set and the model.

2. Try to run the program with another set of initial values.

3. Change the method used to estimate the parameters. This suggestion
applies only in the case of heterogeneous variances when the parameters
are estimated by minimizing —2log V' (0,02, 7). If the iterative process
fails to converge, the user may run the program again, choosing another
estimator, like a three-step alternate least squares (see Section (3.3.3)).

4. Change the parameterization of the regression function or the variance
function. Sometimes, looking carefully at the behavior of the iterative
estimation process, it appears that the problem comes from the estimation
of one or two parameters. In some cases, the estimation process may run
better by changing the parameterization of the model. For example, the
following functions differ only in their parameterization:

f(x,0) = exp (62(x — 61));

f(z,a) = exp(aq + agz), with a3 = —6102 and ay = Os;
f(x,B3) = prexp fox, with 31 = exp(—6102) and [z = 0s;
f(x,v) = m1v3, with 71 = exp(—0162) and 2 = exp 0s.

5. Change the model. For example, we chose the Weibull model to represent
a sigmoidally shaped curve in the pasture regrowth example, but several
other models are available:

f1(z,0) = O1exp (02/(x + 63)) ;
fa(x,0) = 01 exp (— exp(b2 — O3x)) ;
fg(.T, 0) = 01 —+ 92/ (]. + exp(03 — 94()’])) .

A list of nonlinear regression models can be found in the book by
Ratkowsky [Rat89].

Let us illustrate some of these remarks with our peptides example by again
examining the choice of variance function. To take into account the fact that
the variability is greater when the peptide is fully soluble than when it is
nonsoluble, we propose to generalize Equation (4.3) to the following:

0? =0 +o*r f(zi,0) [100 + 75 — f(z:,0)] = g (Ii,o,O'Q,Tl,Tg) )

When zx equals 0, g (a?i, 0,0% 1, Tg) equals 02(1+ 1007, 73) and when x tends
to infinity, ¢ (zi, 0,02, 11, 7'2) tends to 2. Let us estimate the parameters with
this new model.
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Model The regression function is

100

1@ ) = e B e =)

and the variance function is

V&I‘(Ei) = 0'2(1 + Tlf(JCi7 0)(100 + T — f(xi, 9))) (46)
Method The parameters are estimated by maximizing the log-likelihood,
V (0,02, 7); see Equation (3.8).

Results We start the estimation process, using for initial parameter values, the
estimations of # and 71 calculated with the model defined by Equations (4.2)
and (4.3) and 7, = 0. We find the following results after 500 iterations of the
iterative process:

‘ Initial Values ‘ Estimated Values ‘ Estimated Standard Error

01 43.93 44.65 0.430

02 0.433 0.778 0.0393
T1 0.024 300898 106278
T2 0 0.138 0.0061

The estimation process did not converge because the variations of the
likelihood are very slow, even for very big variations of 7. Figure 4.17
shows the variations of V' versus the parameter values obtained at iterations
250,255, ...500. It appears that when 7 varies from 17,000 to 270,000, V'
varies from —247.8 to —247.3.

Let us try to run the estimation process with another model for the vari-
ance function defined as follows:

O-iQ = 02 exXp (T1f<xl76>(100 + 72— f(.’L'Z,e))) =49 ($i79702771772> .

This function is obviously different from the preceding polynomial vari-
ance function, but the curve is concave and looks like a bell-shaped curve.
Moreover, it is often preferable to model a variance function as a function of
the exponential function because the result is always positive. Let us see the
results with this new model.

Model The regression function is

100

T = e 0 (e 02))

and the variance function is
Var(e;) = o2 exp (11.f(z4,0)(100 + 15 — f(z4,0))). (4.7

Method The parameters are estimated by maximizing the log-likelihood,
V (9,02, 7); see Equation (3.8).
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Figure 4.17. Peptides example: Variations of the likelihood against the parame-
ters’ values during the estimation process. For each parameter to be estimated, the
values of the parameter at iterations 250, 255, ... 500 are reported on the horizontal
axis, the corresponding values of the log-likelihood are reported on the vertical axis

Results We start the estimation process using, for initial parameter values, the
estimations of § calculated with the model defined by Equations (4.2) and (4.3)
and 75 = 0. To choose the initial value for 71, we compare the maximum in f
of the function exp(71 (100 — f)), equal to exp 50?7y, to the maximum of the
function 1471 f(100— f), equal to 14+50%7;. Thus 71 = 5072 log(1+50% x0.024)
is a possible initial value for 7. We take 71 = 0.001.

Initial Values Estimated Values Estimated Standard Error
01 43.93 45.07 0.422
0 0.433 0.327 0.0223
s 0.001 0.0025 0.00018
To 0 10.45 1.41
o? 2.766

After 49 iterations, the estimation process did converge. Thus, in this par-

ticular case we were able to circumvent the numerical difficulty using another
variance function. The shape of this function is nearly similar to the shape of
the initial variance function defined by Equation (4.6). Let us conclude this
chapter by pursuing the discussion about the peptides example.
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4.5 Peptides Example: Concluded

Figure 4.18 presents the graph of fitted values, residuals, and standardized ab-
solute residuals when we use the exponential function to model the variations
of the variance. Figures 4.18(a) and (b) show that the response is overes-
timated on its set of variation. Looking at Figure 4.18(c), it appears that
the absolute standardized residuals versus fitted values do not present any
particular structure.
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Figure 4.18. Peptides example: Graphs of fitted values and residuals using the
exponential variance function: (a) observed and fitted values of the solubility versus
the retention time; (b) residuals versus fitted values, the solid line is the horizon-
tal line passing through 0, and the dotted line is a curve joining the points after
smoothing; and (c) absolute standardized residuals versus fitted values, the dotted
line is a curve joining the points after smoothing

Obviously, we cannot be satisfied with a bad estimation of the response
curve. This poor fit is due to the choice of variance function. Using model (4.7)
has two effects. The first is, as expected, to take into account the bigger vari-
ability of the data when the peptide is fully soluble than when it is nonsoluble.
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With model (4.3), the fitted variance when f = 0 or f = 100 equals 6% = 26.79
(see the results given in Section 4.2.3). With model (4.7), the fitted variance
when f = 0 is 62 = 2.77, while it is 52 exp(1007172) = 38.9 when f = 100.
The second effect is to increase considerably the fitted variances when the
response lies between 30 and 70, as shown in Figure 4.19. Thus, the weights
allowed for observations obtained for values of retention times between 40
and 50 are very low relative to the weights given for observations obtained for
values of retention times close to 0 and 60. This explains the overestimation
of the response.

60001

0 20 60 100 0 20 60 100
(a) f(w:,8) f(:,0) (b)
Figure 4.19. Peptides example: Squared residuals £2 versus adjusted regression
function f(z;,0). The superimposed lines represent the fitted variances g(x:, 0, 5>, 7)

o~

versus the f(z;,0): (a) variance function (4.3); and (b) (4.7).

4.6 Using nls2

This section reproduces the commands and files used in this chapter to analyze
the examples using nls2.

Pasture Regrowth Example: Parameter Estimation and Plotting
the Observed and Fitted Values of the Response

Parameter Estimation

In a file called pasture.mod2, we describe the model defined by Equation (4.1)
in Section 4.2.1, page 95:
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resp yield;

varind time;

parresp pl, p2, p3;

subroutine;

begin

yield=(p2 + plxtime)/(time+p3);
end

The parameters are estimated using the function nls2:

pasture.nl2<-nls2(pasture, "pasture.mod2",c(70,-2,20))
# Print the results

cat( "Estimated values of the parameters:\n ")

print( pasture.nl2$theta)

cat( "Estimated value of sigma2:\n ")

print( pasture.nl2$sigma2); cat( "\n\n")

V V. V V V V

Plotting the Observed and Fitted Values of the Response

To plot the observed and fitted responses versus the independent variable, we
use the function plfit (see Figure 4.1, page 96):

> plfit(pasture.nl2, title ="Pasture regrowth example",
sub = "Observed and adjusted response")

(Results for this example are given in Section 4.2.1, page 95.)

Isomerization Example: Graphics for Diagnostics

The results of the estimation procedure by nls2 have been stored in the
structure called isomer.nll (see Section 1.6, page 26).

Plotting the Fitted Values of the Response Against Its Observed Values

To plot the fitted values of the response against its observed values, we use
the function plfit:

e Option smooth means that the observed values are joined after smoothing.

e Option wanted specifies the graph requested, fitted values versus observed
values of the response.

e Option ask.modify allows us to type an S-Plus command before the graph
disappears from the screen. Here, we type the abline command to add
the first diagonal on the plot:

> plfit(isomer.nll, smooth=T, wanted=1list(0.F=T),
title="Isomerization example",
ask.modify=T)

> abline(0,1)

(See Figure 4.2, page 96.)
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Plotting the Residuals

The function plres is used to plot the residuals.
Option wanted specifies the graphs requested. Its values are:

e F.R: The residuals are plotted against the fitted values of the response.
R.R: The residuals are plotted against the immediately preceding residuals.
e TI.R: The residuals are plotted against their indexes.

Option absolute means that the absolute values of the residuals are added
on the graphs corresponding to F.R and I.R:

> plres(isomer.nll,
wanted=1ist (F.R=T, R.R=T, I.R=T),
absolute=T,
title="Isomerization example")

(See Figure 4.3, page 97.)

Solubility of Peptides Example: Graphics for Diagnostics

Plotting the Observed and Fitted Values of the Response When Variance is
Assumed to be Constant

The results of estimation with the model defined in Section 3.1.2 (logistic curve
for the regression function and constant variances) have been stored in the
structure pept.nll (see Section 3.6, page 89). Now we plot the observed and
fitted responses versus the retention time using the function plfit. Option
wanted specifies the graph requested. The observed and fitted values of the
response are plotted against the independent variable:

> plfit(pept.nll, wanted=list(X.0F=T),
title="Solubility of peptides example - constant variance",
sub="0bserved and fitted response")

(See Figure 4.4(a), page 99.)
Plotting the Residuals When Variance is Assumed to be Constant

Residuals and absolute residuals are plotted against the fitted values of the
response by using the function plres:

e Option wanted specifies the graph requested; the fitted values of the resid-
uals are plotted against the fitted values of the response.
Option absolute means that the absolute residuals are plotted.
Option smooth means that the observed values are joined after smoothing.
Option ask.modify allows us to type an S-Plus command before the graph
disappears from the screen. Here, we type the abline command to add a
horizontal line on the plot:
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> plres.nls2(pept.nll, wanted=1list(F.R=T),

absolute=T, smooth=T, ask.modify=T,

title="Solubility of peptides example - constant variance")
> abline(0,0)

(See Figures 4.4(b) and (c), page 99.)

Plotting the Observed and Fitted Values of the Response and the Residuals
When Variance is Assumed to be Heteroscedastic

In the same way, we draw plots from the structure pept.nl3, which contains
the results of estimation when the variance is assumed to be heteroscedastic
(see Section 3.6, page 89, and Equation (3.3), page 65).

> # Plot the observed and fitted values of the response

> # against the independent variable.

> plfit(pept.nl3, wanted=list(X.0F=T),
title="Solubility of peptides - non constant variance",
sub="0Observed and fitted response")

> # Plot the residuals

> plres.nls2(pept.nl3, wanted=1list(F.R=T),
absolute=T, st=T, smooth=T, ask.modify=T,
title="Solubility of peptides - non constant variance")

> abline(0,0)

(See Figure 4.5, page 100.)

Cortisol Assay Example: How to Choose the Variance Function
Using Replications

Estimation Using a Symmetric Sigmoidally Shaped Regression Curve and a
Constant Variance

We first estimate the parameters using the model defined in Section 4.2.4,
page 99 (symmetric regression curve and constant variance). When the pa-
rameter 05 is equal to 1, this model is similar to the model we described in
the file corti.modl (asymmetric regression curve and constant variance; see
Section 1.6, page 21). So, by setting a numerical equality constraint on the
fifth parameter, we can reuse the file corti.mod1 when calling nls2:

> corti.nl3<-nls2(corti,
list(file="corti.mod1",gamf=c(0,10), eq.theta=c(rep(NaN,4),1)),
c(corti.nli$thetal1:4],1))
# Print the main results

cat( "Estimated values of the parameters:\n ")

print(coef (corti.nl3))

cat( "Estimated value of sigma2:\n ")

print( corti.nl3$sigma2); cat( "\n\n")

vV V. V V VvV
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Plotting the Response Values and the Residuals When the Regression
Function is a Symmetric Sigmoidally Shaped Curve and the Variance is
Constant

We use the graphical functions of S-Plus to plot the observed and fitted values
of the response versus the log-dose. The observed values are joined by a line.
Then we plot the residuals and absolute residuals versus the fitted values of
the response using the function plres:

# Plot the observed and fitted values of the response
# against the log-dose
plot(logdose,corti$cpm,xlab="log-dose",ylab="response")
title(main="Cortisol example",
sub="0bserved and adjusted response")
lines(unique(logdose),corti.nl3$response)
# Plot the residuals
plres(corti.nl3,
wanted=1ist (F.R=T),
absolute=T,
title="Cortisol example")

>
>
>
>

vV V VvV

(See Figure 4.6, page 101.)

Plotting the Empirical Variances Versus the Empirical Means When the
Regression Function is a Symmetric Sigmoidally Shaped Curve and the
Variance is Constant

To plot the variances, we use the graphical function plvar. This function
offers many choices. Using option wanted, we specify the graphs requested:

e Y.S2 to plot the empirical variances against the empirical means,

e Y.S to plot the square roots of the empirical variances against the empirical
means, and

e logY.logS2 to plot the logarithms of the empirical variances against the
logarithms of the means.

Option smooth means that the observed values are joined after smoothing:

> plvar(corti.nl3,wanted=1ist(Y.S52=T,Y.S=T,logY.logS2=T),
smooth=T,
title="Cortisol example")

(See Figure 4.7, page 102.)

Estimation Using a Symmetric Sigmoidally Shaped Regression Curve and a
Heteroscedastic Variance

Now we study the model defined in Equation (4.4), page 102 (symmetric
sigmoidal regression curve and heteroscedastic variances).
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We describe it in a file called corti.mod6. Actually, corti.mod6 corre-
sponds to an asymmetric model but, by setting the fifth parameter g to 1,
it is equivalent to a symmetric one. By doing so, we will not have to create
another file when we study the asymmetric model:

% model CORTI

resp cpm;

var v;

varind dose;

parresp n,d,a,b,g;

pbisresp minf,pinf;

subroutine;

begin

cpm= if dose <= minf then d else
if dose >= pinf then n else
n+(d-n)*exp (-gxlog(l+exp(a+b*loglO(dose))))

fi fi;
V = Cpm**2;
end

We estimate the parameters using nls2, remembering to set a numerical
constraint on the last parameter:

> corti.nl6<-nls2(corti,

list(file= "corti.mod6",gamf=c(0,10), eq.theta=c(rep(NaN,4),1)),
c(corti.nli$thetal1:4],1))

# Print the main results

cat( "Estimated values of the parameters:\n ")

print(coef (corti.nl6))

cat( "Estimated value of sigma2:\n ")

print( corti.nl6é$sigma2); cat( "\n\n")

V V. V V VvV

Plotting the Observed and Fitted Values of the Response and the Residuals
When the Regression Function is a Symmetric Sigmoidally Shaped Curve
and the Variance is Heteroscedastic

We plot the observed and fitted values of the response using graphical func-
tions of S-Plus and the residuals using the function plres:

# Plot the observed and fitted values of the response
# against the log-dose
plot(logdose,corti$cpm,xlab="1log-dose",ylab="response")
title(main="Cortisol example",
sub="0Observed and adjusted response")
lines(unique(logdose) ,corti.nl6$response)
# Plot the residuals
plres(corti.nl6,
wanted=1ist (F.R=T),
absolute=T,st=T,smooth=T,
title="Cortisol example", ask.modify=T)
abline(0,0)

vV V V VvV

vV V V

\4
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(See Figure 4.8, page 104.)

Estimation Using an Asymmetric Sigmoidally Shaped Regression Curve and
a Heteroscedastic Variance

Finally, we study the last model defined in Equation (4.5), page 103 (asym-
metric sigmoidal regression curve and heteroscedastic variances). It is similar
to the previous one, where we suppress the constraint on the last parameter.
So, when calling nls2, we reuse the file corti.mod6:

> corti.nl7<-nls2(corti,
list(file="corti.mod6",gamf=c(0,10)),
corti.nlé$theta)

> # Print the main results

> cat( "Estimated values of the parameters:\n ")

> print(coef (corti.nl7))

> cat( "Estimated value of sigma2:\n ")

> print( corti.nl7$sigma2); cat( "\n\n")

Plotting the Observed and Fitted Values of the Response and the Residuals
When the Regression Function is an Asymmetric Sigmoidally Shaped Curve
and the Variance is Heteroscedastic

We plot the observed and fitted values of the response and the residuals:

> # Plot the observed and fitted values of the response
> # against the log-dose
> plot(logdose,corti$cpm,xlab="1log-dose",ylab="response")
> title(main="Cortisol example",

sub="0bserved and adjusted response")
lines(unique(logdose) ,corti.nl7$response)
plres(corti.nl7,

wanted=1ist (F.R=T),

absolute=T,st=T,smooth=T,

title="Cortisol example",ask.modify=T)
> abline(0,0)

vV Vv

(See Figure 4.9, page 105.)

Trajectory of Roots of Maize: How to Detect Correlations in
Errors

This is a new example, introduced in this chapter. We first create a data
frame to store the experimental data. Then we plot the observed values of the
response against the independent variable.
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Creating the Data

Experimental data are stored in a data frame called root:

> root_data.frame(depth = c(0, 0.687, 1.523, 1.981, 2.479,
3.535, 4.46, 5.506, 6.582, 7.519, 8.615, 9.591,
10.588, 11.604, 12.471, 13.507,
14.534, 15.45, 16.496, 17.443, 18.5, 19.516, 20.603,
21.53, 22.547, 23.514, 24.51, 25.606, 26.503, 27.579,
28.476, 29.512, 30.569, 31.675, 32.613, 33.539, 34.626,
35.563, 36.599, 37.636, 38.712, 40.068, 40.657,
41.445, 41.983, 42.94, 43.897, 44.934, 45.941, 46.948,
47.935, 48.982, 50.049, 50.996, 51.913, 52.95, 53.887,
54.904, 56.021, 57.028, 57.975, 59.002, 59.979, 61.046,
61.963, 63.079, 63.937, 65.113, 66.18, 66.958,
67.965, 68.942, 70.098, 70.985, 71.952, 72.849, 74.165,
75.082, 75.88, 77.007, 78.054, 78.174, 79.091, 80.128,
81.035, 82.032, 83.019, 84.185, 85.042, 86.089, 87.156,
88.023, 89.15, 89.997, 91.124, 92.829),
dist =
c(-0.009, 3.012, 6.064, 8.726, 10.102, 12.166, 19.076,
21.967, 23.882, 25.916, 27.143, 28.997, 31.101, 32.667,
34.691, 36.227, 37.643, 39.827, 41.951, 43.227, 44.105,
44 .584, 45.053, 45.691, 46.25, 47.038, 49.561, 51.077,
52.523, 55.005, 55.833, 56.432, 57.1, 57.749, 58.178,
58.966, 59.823, 61.708, 62.476, 62.945, 63.873, 63.763,
63.789, 63.889, 64.188, 64.348, 64.598, 64.628, 64.638,
64.678, 64.559, 64.47, 64.4, 64.271, 64.042, 63.943,
63.873, 63.844, 63.983, 64.253, 64.323, 64.333, 64.354,
64.643, 64.933, 65.122, 65.222, 65.372, 65.522, 65.523,
65.523, 65.533, 65.932, 66.361, 66.691, 67.04, 67.459,
67.549, 67.579, 67.59, 67.161, 65.825, 65.477, 65.886,
66.415, 66.844, 67.233, 67.901, 67.911, 68.251,
68.251, 68.241, 68.621, 68.92, 68.92, 68.383))

Plotting the Observed Responses Against the Independent Variable

To plot the observed responses versus the depth in the ground, we use the
graphical function pldnls2:

> pldnls2(root,response.name="dist",X.names="depth")

(See Figure 4.10, page 106.)
Parameter Estimation

We describe the next model defined in Section 4.2.5, page 104 in a file called
root.mod1:
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resp dist;

varind depth;

parresp b,g;

subroutine;

begin
dist=b*(1-exp(-gxdepth)) ;
end

To estimate the parameters, we use the function nls2:

> root.nl1<-nls2(root,"root.mod1",c(70,1))

> # Print the estimated values

> cat( "Estimated values of the parameters:\n ")
> print(root.nli$theta); cat( "\n\n")

Plotting the Observed and Fitted Values of the Response and the Residuals

We plot the observed and fitted responses versus the depth in the ground
using the function plfit. Option wanted specifies the graph requested: X.0F
means that observed and fitted values are plotted against the independent
variable. Then we plot the residuals using the function plres. Here, with
option wanted, we ask for the plot of the residuals versus the preceding residual
(see Figure 4.11, page 106):

> # Plot the observed and fitted values of the response
> # against the independent variable.
> plfit(root.nll,
wanted=1list (X.0F=T),
title="Trajectory of roots")
> # Plot the residuals
> plres(root.nll,
wanted=1ist (R.R=T),
title="Trajectory of roots")

(Results for this example are given in Section 4.2.5, page 103.)

Simulated Example
Creating the First Data Set

The way data are generated is fully explained in Section 4.2.6, page 107.

To generate the 10 values of €;, i = 1,...10, we use the S-Plus function
rnorm (random generation for the normal distribution, with given values of
means and standard deviations):

# x1<-seq(0.1,1.,length=10)

# exserr<-rnorm(10, mean=0, sd=.05)

# exswi<-data.frame(x=x1,

# y=1-exp(-x1)+exserr)
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Actually, we do not execute these commands because random generation
would not create the same data as shown herein. Instead, we create the data
frame explicitly:

> exswl <- data.frame(
x = ¢c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1),
y = ¢(0.1913, 0.0737, 0.2702, 0.4270, 0.2968, 0.4474,
0.4941, 0.5682, 0.5630, 0.6636))

Parameter Estimation with the First Data Set

We describe the model defined in Section 4.2.6, page 107 in a file called
sim.mod1:

resp y;
varind x;

parresp pl,p2;
subroutine;

begin

y=pl* (1-exp(-p2+*x));
end

The function nls2 is used to estimate the parameters:

sim.nli<-nls2(exswl,"sim.mod1",c(1,1))

# Print the main results
cat( "Estimated values of the parameters:\n ")
print(coef (sim.nl1))
cat( "Estimated value of sigma2:\n ")
print(sim.nl1$sigma2); cat( "\n\n")

V V. V V Vv V

We calculate the confidence intervals for the parameters:

> confsim <- confidence(sim.nl1)
> cat( "Confidence interval for the parameters:\n")
> print(confsim$normal.conf.int); cat( "\n\n")

Plotting the Generated and Fitted Values of the Response with the First
Data Set

We plot the generated and fitted values of the response versus x using the
function plfit:

> plfit(sim.nll, wanted=list(X.0F=T),title="Simulated example 1")

(See Figure 4.12, page 108.)
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Plotting Sensitivity Functions for the First Data Set

The sensitivity functions @; and @5 described herein are calculated in the
nls2.object for the values of x in the data set. We plot their values versus
x:

> matplot(exswil$x, sim.nli$d.resp,type="1",xlab="x",ylab="")
> legend(x=0.5,y=.3,legend=c("phil","phi2"),1ty=c(1,2))
> title(" Plot of sensitivity functions")

(See Figure 4.13, page 109.)
Creating the Second Data Set

Another data set is generated with more appropriate values of x:

# exsw2 <- data.frame(x=seq(0.1,4.6,length=10),
# y=1-exp(-x2)+exserr)

To consider the same data as shown earlier (see page 108), we do not
execute these commands but type the values explicitly:

> exsw2 <- data.frame(

c(0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 3.1, 3.6, 4.1, 4.6),

c(0.1913, 0.3436, 0.6782, 0.8954, 0.7809, 0.9220,
0.9457, 0.9902, 0.9530, 1.0215))

X
y

Parameter Estimation with the Second Data Set

The parameters are estimated using nls2:

> sim.nl2 <- nls2(exsw2,"sim.mod1",c(1,1))

> # Print the main results

> cat( "Estimated values of the parameters:\n ")

> print(coef(sim.nl2))

Plotting the Generated and Fitted Values of the Response with the Second
Data Set

We plot the generated and fitted values of the responses versus x using the
function plfit (see Figure 4.14, page 110):

> plfit(sim.nl2,
wanted=1list (X.0F=T),
title="Simulated example 2")

(Results for this example are given in Section 4.2.6, page 107.)
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Cortisol Assay Example: Misspecification Tests
Comparison of Nested Models

The test of hypothesis H against the alternative A defined on page 110 is done
by calculating the difference of the log-likelihoods stored in corti.nlé and
corti.nl7. We compare it to the 0.95 quantile of a x? with one degree of
freedom (see Section 4.3.1, page 110):

> 51 <- 64*(corti.nl6$loglik - corti.nl7$loglik)
> cat( "S1: ", 81, "X2(0.95,1): ",qchisq(0.95,1),"\n ")

Test When the Regression Function is Symmetric and the Variance
Proportional to the Squared Expectation

The results of estimation with the first model, H, defined in Section 4.3.3,
page 112 (the regression function is symmetric and the variance propor-
tional to the squared expectation), have been stored in the structure called
corti.nl6 (see page 123).

We test the model H against the alternative As (homogeneous variance)
by calculating the test statistic Sy,. We compare it to the 0.95 quantile of a
x? with 25 degrees of freedom (see Section 4.3.2, page 110):

> 81 <- sum(corti.nl6$replications*log(corti.nl6$variance))-
sum(corti.nl6$replications*log(corti.nl6$data.stat$sS2))
> k <- length(corti.nl6$replications) # number of observations
> cat( "S1:", S1,
"\nX2(0.95,25) :",qchisq(0.95, 2xk - 5),"\n\n" )

Test When the Regression Function is an Asymmetric Sigmoidally Shaped
Curve and the Variance Heteroscedastic

The results of the estimation when the regression function is an asymmetric
sigmoidally shaped curve and the variance heteroscedastic (the second model
defined in Section 4.3.3, page 112) have been stored in the structure corti.nl7
(see page 125).

We calculate the test statistic Sp, and compare it to the 0.95 quantile of a
x? with 24 degrees of freedom:

> 51 <- sum(corti.nl7$replications*log(corti.nl7$variance))-
sum(corti.nl7$replications*log(corti.nl7$data.stat$s2))
> cat( "S1:", S1,
"\nX2(0.95,24) :",qchisq(0.95, 2k - 6),"\n\n" )

(Results for this example are given in Section 4.3.3, page 112.)
Ovocytes Example: Graphic and Misspecification Tests Using
Replications

The results of the estimation for the model defined in Section 4.3.4 page 112,
have been stored in the structure ovo.nll (see page 25).
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Plotting the Residuals and the Variances

We use the function plres to plot the residuals and the absolute residuals
versus the fitted values of the response and the function plvar to plot the
empirical variances versus the empirical means:

> # Plot the residuals

> plres(ovo.nll, wanted=list(F.R=T), absolute=T,
title="Ovocytes example")

> # Plot the variances

> plvar(ovo.nll,wanted=1ist (Y.S2=T),smooth=T,
title="0Ovocytes example")

(See Figure 4.15, page 113, and Figure 4.16, page 114.)
Test

We calculate the test statistic S, and compare it to the 0.95 quantile of a y?2
with 53 degrees of freedom:

> n <- sum(ovo.nll$replications) # total number of replications
> k <- length(ovo.nll$replications) # number of observations
> S1 <- n*log(ovo.nll$sigma2) -
sum(ovo.nli$replications*log(ovo.nli$data.stat$s2))
> cat( "S1l:", S1,
"\nX2(0.95,53) :",qchisq(0.95, 2%k - 5),"\n\n" )

(Results for this example are given in Section 4.3.4, page 112.)

Solubility of Peptides Example: Numerical Troubles During the
Estimation Process

Estimation with the Model Defined by Equation (4.6)
The model defined by Equation (4.6) is described in a file called pept.m13:

% model pept.mi3

resp solubility;

varind RetTime;

var v;

aux al;

parresp ed50, sl ;

parvar hil, h2;

subroutine ;

begin

al = 1 + exp (slx(RetTime-ed50)) ;
solubility = 100. /al ;

v= 1 + hl*solubility*(100+h2-solubility);
end
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We estimate the parameters with this model. Here, to be able to draw
Figure 4.17, page 117 (variations of V versus the parameter values at iterations
250, 255, ...500), we must request that the results calculated thorough the
iterative process be saved. With the control argument, we request that the
estimated values of the parameters and the statistical criterion are saved after
every five iterations. Using the option wanted.print, we suppress the printing
of intermediary results:

> pept.ctx13<-list(theta.start=pept.nl3$theta,
beta.start=c(pept.nl3$beta,0) ,max.iters=500)

> pept.ctr13<-list(
freq=5,step.iters.sv=1,
wanted.iters.sv=list(iter=T,estim=T,stat.crit=T),
wanted.print=list(iter=F,stat.crit=F,stop.crit=F,

estim=F,fitted=F,num.res=F,sigma2=F))

> pept.nli13<-nls2(pept.d, "pept.m13", pept.ctxl3,control=pept.ctri3)

> # Print the result

> summary (pept.nl13)

The intermediary results are saved in the component iters.sv of the
returned structure. The last 50 elements contain the results obtained at it-
erations 250,255, ...,500. So we can draw Figure 4.17, page 117, using the
following commands:

> ind<-50:100

> par (mfrow=c(2,2))

> plot(pept.nli3$iters.sv$thetalind,1],
-75*pept.nli3$iters.svPstat.crit[ind]/2)

> plot(pept.nli3$iters.sv$thetalind,2],
-75%pept.nli3$iters.svstat.crit[ind]/2)

> plot(pept.nli3$iters.sv$betalind,1],
-75%pept.nli3$iters.svstat.crit[ind]l/2)

> plot(pept.nli3$iters.sv$betalind,2],
-75*pept.nli3$iters.svstat.crit[ind]/2)

Estimation with the Model Defined by Equation (4.7)
The model defined by Equation (4.7) is described in a file called pept.m14:

% model pept.mil4d

resp solubility;

varind RetTime;

var v;

aux al;

parresp ed50, sl ;
parvar hil, h2;
subroutine ;

begin

al = 1 + exp (slx(RetTime-ed50)) ;
solubility = 100. /al ;
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v= exp(hl*solubility*(100+h2-solubility));
end

We estimate the parameters with this model:

>

>
>
>

pept.ctx14<-list(theta.start=pept.nl3$theta,
beta.start=c(0.001,0) ,max.iters=500)

pept.nll4<-nls2(pept.d, "pept.mil4", pept.ctxl4d)

# Print the result

summary (pept.nl14)

Peptides FExample: Concluded

We draw plots from the structure pept.nl14 (see Figure 4.18, page 118):

>
>

A\

v

\4

# Plot the observed and fitted values of the response
# against the independent variable.
plfit(pept.nli4, wanted=1list(X.0F=T),
title="Solubility of peptides - exponential variance",
sub="0bserved and fitted response")
# Plot the residuals
plres.nls2(pept.nli14, wanted=1list(F.R=T),
smooth=T, ask.modify=T,
title="Solubility of peptides - exponential variance")
abline(0,0)
plres.nls2(pept.nlil4, wanted=1list(F.R=T),
absolute=T, st=T, smooth=T, ask.modify=T,
title="Solubility of peptides - exponential variance")

For both models, we plot the squared residuals versus the fitted values of
the regression function. We add a line to join the fitted values of the variances:

>
>

par (mfrow=c(1,2))
plot(range (pept.nlid$response),
range (c(pept.nlid$residuals**2,pept.nlid$variance)),
xlab="fitted responses", ylab="squared residuals")
title(main="Parabolic variance function")
points(rep(pept.nl3$response,pept.nl3$replications),
pept.nl3$residuals**2)
lines(sort(pept.nl3$response),
pept.nl3$variance [order (pept.nl3$response)],lty=1)
plot(range(pept.nli4$response),
range (c(pept.nli4$residuals**2,pept.nlid$variance)),
xlab="fitted responses", ylab="squared residuals")
title(main="Exponential variance function")
points(rep(pept.nli4$response,pept.nlid$replications),
pept.nll4$residuals**2)
lines(sort(pept.nlli4$response),
pept.nll4$variance [order(pept.nlid$response)],lty=1)

(See Figure 4.19, page 119.)
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Calibration and Prediction

In this chapter, we describe how to calculate prediction and calibration con-
fidence intervals. These intervals account for the double source of variability
that exists in this type of experiment: The variability of the response about its
mean and the uncertainty about the regression parameters. Here we provide
both bootstrap and asymptotic methods for the prediction and calibration
confidence intervals.

5.1 Examples

To illustrate the prediction problem, let us recall the pasture regrowth example
and assume that we are interested in predicting the yield yo at the time
zo = 50. We wish to obtain point and interval predictors for the response g,
which has not been observed.

In Example 1.1.2, we estimated the calibration curve of an RIA of cor-
tisol. The real interest of the assay experiment, however, lies in estimating
an unknown dose of hormone contained in a new preparation. For this new
preparation, we observe a response yg, and we want to draw inferences about
the true dose x( corresponding to the new value yo of the count. This is a
typical calibration problem.

To further illustrate the problem of calibration, let us introduce another
example from a bioassay described by Racine-Poon [RP88].

Bioassay on Nasturtium

The objective of this experiment is to determine the concentrations of an
agrochemical present in soil samples. To this end, bioassays are performed on
test plants, a type of cress called nasturtium.

In a first step, called the calibration experiment, six replicates Y;; of the
response are measured at seven predetermined concentrations x; of the soil
sample.



136 5 Calibration and Prediction

Table 5.1. Data from the calibration experiment on nasturtium

Concentration (g/ha) Weight (mg)
0.000 920 889 866 930 992 1017
0.025 919 878 882 854 851 850
0.075 870 825 953 834 810 875
0.250 880 834 795 837 834 810
0.750 693 690 722 738 563 591
2.000 429 395 435 412 273 257
4.000 200 244 209 225 128 221

Table 5.2. Observed weights corresponding to new soil samples from the field

New Experiment Weight (mg)
zo? 309 296 419

The response is the weight of the plant after three weeks’ growth, as shown
in Table 5.1.

In a second step, three replicates of the response at an unknown concen-
tration of interest xy are measured; they are listed in Table 5.2. We would like
to estimate xg.

Figure 5.1 shows the responses observed in the calibration experiment
as a function of the logarithm of the concentration. The 0 concentration is
represented in Figure 5.1 by the value —5. A logit-log model is used to describe

1000{ ¥ .
weight i z * *
800 # i
:
6001 x
400 i
oy
200-
*
-5 4 -3 2 -1 0 1

log concentration

Figure 5.1. Nasturtium example: Weights versus the log concentration
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the concentration response relationship:

f(a?,9>=91 if =0,
= 61/(1 + exp(6s + 031og(x))) if z >0,

where x is the concentration and f(x,8) is the expected weight of nasturtium
at concentration x.
The model under study is the following one:

Yi; = fxi,0) +ei;
Var(eij) = 0'2 ’ (51)
where j =1,...6; 4 =1,...7; and the ¢;; are independent centered random
variables.

5.2 Problem Formulation

In prediction or calibration experiments, we first observe a training or calibra-
tion data set, (z;, Yij), j=1,...,n;,n=>n,;, from which the response curve
(or calibration curve) and the variance structure are fitted. Let 0 be the least
squares estimator of # in the case of homogeneous variances (Var(e;;) = 02),
and let it be the maximum likelihood estimator in the case of heterogeneous
variances (see Chapter 3).

The real interest lies in the new pair (2, yo). In prediction problems, x
is given and we want to predict the associated response yo. The standard
estimate for yo is f(xg,0). In calibration problems, yo is observed but the
unknown value zo must be estimated. The usual estimate of x¢ is the set of
all = values for which f(zg,0) = yo. For f strictly increasing or decreasing, the
estimate will be a single value obtained by inverting the regression function:

Zo = " (y0.0).

5.3 Confidence Intervals

5.3.1 Prediction of a Response

Let us begin by discussing the problem of prediction with constant variances,
which will provide motivation for the more prevalent problem of calibration.

Given the value zg, the variance of the error made in predicting yo is
Var(yo — f(z0,0)). If homogeneous variances are assumed, we first obtain 6.
Then we estimate o2 by the residual sum of squares 52 and the variance of
f(zo,0) by S, as explained in Section 2.3.1. The required prediction interval

1S

~

In(x0) = | f(20,8) = 110273 [0, 0) +110ppS7{,  (52)
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where R R
S}%: o2 + 57 (5.3)

and v, is the a percentile of a variate distributed as an N(0,1). Under the
assumption that yy is a Gaussian variable, I, w(z0) has asymptotic level 1 — .
It is interesting to compare Equation (5.2) with Equation (2.2), taking A =
f(x0,0), because Equation (2.2) provides a confidence interval for the mean
f(zo,0) rather than for the response itself.

Remark If the size n of the calibration data set is large, the variance term is
dominated by 72, signifying that the uncertainty in predicting yo is mostly
due to its variability about its mean. The second term, 52 is the correction
for estimation of §. However, for moderate n, S? can be of the same order of

magnitude as 52.

Bootstrap Prediction Intervals

The bootstrap method described in Section 2.3.5 replaces the normal per-
centiles vy, V1_q/2 in Equation (5.2) by bootstrap percentiles using the boot-
strap distribution as a better approximation to the distribution of

~

Yo — f(xo,0)
7o)

As a result, we obtain more accurate prediction intervals.
Bootstrap prediction intervals are based on the quantiles of

I f(@o,6%)
- 1/27
se)
0*

f:

where 6* and 52* are bootstrap estimations of 8 and ¢? that are calculated
from bootstrap samples (mi, YZ’;), j=1,...,n;,1=1,... k, where

~

and

yS = f(.’[o,é\) +56

is the “new” bootstrap observation. Here (Efj, £4) is an independent bootstrap

sample of the errors of length n + 1. The method of generating the errors €7;
and ¢§ from the residuals &;; = Y;; — f(x5, 5) was detailed in Section 2.3.5.

Let B be the number of bootstrap simulations. (IA“*’”, b=1,...B)isa B
sample of T*. Let by be the o percentile of the T (the method of calculating
b, was detailed in Section 2.4.1). This gives a bootstrap prediction interval
for yo of the following form:
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Tp(w0) = [ £(20,8) = b1as287: F(20,8) = bayaS7 (5.4)

where :S’\fA is defined by Equation (5.3).

For large n and B the coverage probability of 1, B(x0) is close to 1 — a. In
practice, however, a value of B around 200 usually suffices.

Case of Heteroscedastic Variance

When the model under study is defined by Equation (3.7), then the preceding
results apply after slight modifications: The estimated variance of yo— f (2o, 0)
is S2=02g(w0,0,7) + S?, and the resampling scheme used for the bootstrap

method is described in Section 3.4.3.

5.3.2 Calibration with Constant Variances

To do a calibration procedure, suppose that we observe m replicates yo;, | =
1,...,m, of the response at an unknown xg and that we wish to obtain a
calibration interval for zo. Let g = >, yoi/m. We suppose that

Var(yg) = 0% = Var(Yi;).

A calibration interval can be constructed for zy by inverting Equation (5.2).
In other words, the confidence interval is the set of all x such that yo falls

in the corresponding prediction interval I(xzg). A calibration interval for z,
then, is

N N 82 N 1/2
INES {JE, |%—f(33,9)| Syla/Q{m+52} ’ (55)

where S2 is the estimation of the asymptotic variance of f (xo,é\) calculated
at i‘\o. =N

Like the confidence intervals constructed in Section 2.3.2, Jx has asymp-
totic level 1 — a: Its coverage probability should be close to 1 — a when both
the number of replications m and the size of the calibration data set n tend to
infinity. From our experience, however, Jy may have a covering probability
significantly different from the expected asymptotic level when n and m have
small values.

Bootstrap Calibration Intervals

Using the bootstrap method presented in Section 2.3.5, we can construct cali-
bration intervals that actually achieve the desired nominal level, even in small-
sample situations.
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The construction of bootstrap calibration intervals is based on the sim-
ulation of bootstrap samples of the training data (m“Yl’;), Jj = 1,...,ny
¢ =1,...k, and on bootstrap samples y;;, of the responses at x¢. The bootstrap
procedure is as follows:

o Let &;; be the n centered residuals:
Eij = Yy = (2, 0) = 0> (Vi = f(20))
,J

Jj=1,...,n4 1t =1,... k. n bootstrap errors ¢;; are drawn with replace-
ment from the £;;, each with probability 1/n. Then Y% = f(x, 5) +e7;. Let
0* and 52* denote the bootstrap estimates obtained from the bootstrap
sample (z;,Y}%).

e To resample the responses yq;, [ = 1,...,m, randomly choose m additional
bootstrap errors e from the €;; and compute the bootstrap responses at

Toasyy =To+er l=1,...,m. Let yo* = > 1" y&,/m.

The resampling scheme can be repeated B times. At each run, we compute

ka B f(f&é\*)

e
"= ~ 1/2°
{%52* JrSz*}
where 7o = f~ (7o, @\) and §* = S;. is calculated at the z value 7% =

1w, g*) As aresult, we obtain B values f*’b7 b=1,...B of the bootstrap
statistic. Let b, be the a percentile of the 7 (the method of calculating b,
was detailed in Section 2.4.1). This gives a bootstrap calibration interval for
xo of

jB = {LL’, ba/2§?§ Yo — f(xaé\) < blfa/ng} ) (56)

where S’\f is defined in Equation (5.3). If, for example, f is strictly increasing,
we can explicitly compute the bounds of the interval:

~

To = |£74 (9= bi-asaS7.0) 7 (08 bos2870)]

From the asymptotic theory, we know that the coverage probability of Js
is close to 1 — « for large n and B. In practice, with small sample sizes and
B around 200, for example, Jg has proved to behave reasonably well.

Likelihood Ratio Calibration Intervals

An alternative to bootstrap intervals is likelihood ratio intervals. These inter-
vals are based on likelihood ratio test statistics (see Section 2.3.3 ).
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Recall that 8 is the least squares estimator of 6, that is, it minimizes the

sum of squares
Z Z ij — xzv ))2 .

=1 j5=1

The idea is to compare C (5) with the value of the sum of squares when 6 is
estimated subject to a known value of xy. To define the confidence interval,
assume that xy is known and compute the value of the parameter 6 that
minimizes the sum of squares defined by

k  n m
=SS i f@0 0+ (o — f(wo,0))%
i=1 j=1 =1

Let 6 denote this value. With these notations, the distribution of the statistic

Sp=Mn+m) {1og5(§) — log < )+ i (yor — )}
=1

can be approximated by a x? with one degree of freedom. Equivalently, we
can compute the signed root of S, defined as

Ry (a0) = sign (76 — f(z0,0) ) v/St.

The limiting distribution of Ry, is an N(0,1) distribution. We can deduce a
confidence region for xy with asymptotic level 1 — a:

Jr = {#, Voo <Rp(z)<vi_ap}. (5.7)

We use some numerical computations to obtain the endpoints of J, R.
Like Jp, Jg has proved to perform well in practice. Its coverage probability
is close to the desired confidence level.

5.3.3 Calibration with Nonconstant Variances

We saw in Chapter 3 that, in the case of heterogeneous variances, the appro-
priate estimation method is the maximum likelihood method. Recall that the
log-likelihood based on observations Y;; is

log L, (Yn, . ,Yknk,e,O'Q,T) =
i S0 (Vi — f(xi.0))°

n 1
) log 27 — 3 ; n; log (a2g(xi, 0,7)) +

0—29(:6717 97 7_)

Adding to the log-likelihood the observations yq;, [ = 1,...,m, we obtain the
global log-likelihood corresponding to our calibration model
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V(0,0% 7,20) =log Ly, (Yi1, ..., Yin,,0,0%,7)

17 (yor — f(w0,6)°
2 a2g(x,0,7)

—% log 27 — % log (029(300,9,7')) -

Let 5, G2, T, Ty be the maximum likelihood estimators. A calibration interval
for z¢ based on the asymptotic distribution of 7o — f(zg, 6) is then just Jy.

We can also, and this is what we recommend, compute a calibration inter-
val based on the log-likelihood ratio (see Section 3.4.5). That is, we construct
an analogous calibration interval as J, r in the case of nonconstant variances.
Compute 6, 32, 7 that maximize V (6, 02, 7, z0) given a fixed value of z9. With
these notations, the distribution of the statistic

Ry (o) = sign (75 — f(x0.6)) x
{zv (5, 52,7, 353) _9v ((7, 527, x()) }1/2

can be approximated by an A(0,1) distribution. We can find a confidence
interval for xp with asymptotic level 1 — a:

:]\R = {.’,E, Vaj2 < RL(‘T) < Vl—a/2} . (58)

Alternatively, we can propose bootstrap calibration intervals using the
bootstrap resampling scheme presented in Section 3.4.3 combined with the
method of computing a bootstrap calibration interval presented in Sec-
tion 5.3.2.

5.4 Applications

5.4.1 Pasture Regrowth Example: Prediction of the Yield at Time
o = 50

Model The regression function used to analyze the pasture regrowth example
(see Section 1.1.1) is

f(z,0) =01 — Osexp (—exp(f3 + b4 logx)),

and the variances are homogeneous: Var(g;) = o>

Results The adjusted response curve is

~

F(2,8) = 69.95 — 61.68 exp (— exp(—9.209 + 2.378log 7)) .
Calculation of Prediction Intervals for yo with Asymptotic Level 95% (See
Equation (5.2))

~ ~2 | Q2 1/2 T
Yo ‘ {0 + 5 } ‘ 10.975 ‘ In(z0)
49.37 | 1.17 | 1.96 | [47.08,51.67]
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Calculation of Prediction Intervals for yo with Asymptotic Level 95%, Using
Bootstrap (See Equation (5.4))

The number of bootstrap simulations is B=199.
/2

1 -
%0 {32 + SZ} bo.025 ‘ bo.975 Ip(20)
1937 | 117 | —121 | 165 | [47.96,51.31]

In this example, the two methods yield the same results: The prediction
interval based on normal quantiles and the prediction interval based on boot-
strap quantiles are nearly the same. The bootstrap quantiles catch some asym-
metry of the distribution of 7', but this has little effect on the result due to the
small values of & and S. The numerical difference between the two intervals
is due mainly to the variability between bootstrap simulations.

5.4.2 Cortisol Assay Example

Model In Chapter 4, we concluded that a satisfying model to analyze the
cortisol assay data was based on an asymmetric sigmoidally shaped regression

function
Oy — 0y

(1 + exp(fs + 042))"

with heteroscedastic variances Var(e;;) = o2 f2(z;,6).

f(2,0) =61 +

Method The parameters are estimated by maximizing the log-likelihood; see
Section 3.3.

Results The maximum likelihood estimators of the parameters are:

Parameters Estimated Values
01 133.42
(2 2758.7
03 3.2011
04 3.2619
(5 0.6084
o? 0.0008689

The calibration curve describes the relationship between the dose d = 107
and the expected response:
f (d 5) - 2758.7 - 1334
") (14 exp(3.2011 + 3.2619 log;,(d)))0-6084

The parameter of interest is the unknown dose of hormone d corresponding
to the responses obtained from the following new experiment:

New Experiment Response (c.p.m.)
d? 2144 2187 2325 2330

Because we have nonconstant variances, we compute a likelihood ratio cali-
bration interval and apply the results of Section 5.3.3 with x¢ = d.
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Calculation of a Calibration Interval for d, with Asymptotic Level 95% (See
Equation (5.8))

i T
0.0574 | [0.0516 , 0.0642]

jR takes into account both the variability of the responses observed at
dose d and the uncertainty about the calibration curve.

Bootstrap Calibration Interval We get the following result, based on B = 500
bootstrap simulations.

i T
0.0574 ‘ [0.0524 | 0.0648]

5.4.3 Nasturtium Assay Example
Model The regression function is

f(@,0) = 01/(1 + exp(02 + 310g(x))),

and the variances are homogeneous: Var(g;) = o2.

Method The parameters are estimated by minimizing the sum of squares,
C(0); see Equation (1.10).

Results The calibration curve is defined by the following equation:

7 (x 5) _ 897.86
") 1+ exp(—0.61 + 1.35 log(z))

and is shown in Figure 5.2.

Calculation of a Calibration Interval for the Unknown xoy Corresponding to
the Responses from the New Experiment (See Table 5.2) In the case of homo-
geneous variances, we proposed two calibration intervals. The first one, Equa-
tion (5.6), is based on bootstrap simulations; the second one, Equation (5.7),
is based on the computation of the likelihood ratio statistic.

Bootstrap Interval In this example, 500 simulations of bootstrap samples
(B = 500) are necessary to stabilize the values of the bootstrap percentiles.
The following calibration interval was obtained from 500 bootstrap simula-
tions:

) ‘ bo.o25 ‘ 50.975‘ I
226 | —155 | 1.50 | [1.88,2.73]
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Figure 5.2. Nasturtium example: Graph of observed and adjusted response values

Likelithood Ratio Interval

~

Zg ‘ Jr
2.26 | [1.95, 2.80]

The two methods do not yield the same result; but we have no argument
to prefer one calibration interval over the other. R

Note that in this example, the computation of the calibration interval Jy,
according to Equation (5.5), yields [1.80, 2.91], which is wider than Jg or Jg.
This is not always the case. As already mentioned, J, B or J, R is to be preferred,
both on theoretical grounds and from the results of simulation studies.

5.5 References

The theory underlying the construction of bootstrap and likelihood ratio cal-
ibration intervals can be found in [GHJ93] and [GJ94].

5.6 Using nls2

This section reproduces the commands and files used in this chapter to analyze
the examples using nls2.

The commands introduced in earlier “Using nls2” sections are assumed
to have already been executed.
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Pasture Regrowth Example: Prediction of the Yield at Time
Lo = 50

The results of estimation with the model defined in Section 5.4.1, page 142,
have been stored in the structure called pasture.nll (see Section 1.6,
page 19).

In order to compute prediction intervals, we need to evaluate f(xq, 5) and
S. The best way to do this is to compute a confidence interval for f(zo,6)
using the function confidence and obtaining f(zo, 5) and S as by-products.

Calculation of f(xo, 5) and S

The function of the parameters that we consider is the regression function f
at time xg = 50. It is described in a file called pasture.predict. The value
of z¢ is set by the key word pbispsi:

psi yield;

ppsi pl, p2, p3, p4;

pbispsi x0;

subroutine;

begin

yield = pl-p2*exp(-exp(p3+ps*log(x0)));
end

We use the function confidence to compute the values of f(xo, 5) and S

> pasture.conf.fx0<-confidence(pasture.nll,
file="pasture.predict",
pbispsi=50)

> # Print the results
> cat("Estimated value of f(xO,theta):", pasture.conf.fxO0$psi,"\n" )
> cat("Estimated value of S:", pasture.conf.fx0$std.error,"\n" )

Prediction Interval f/\/(:po) for yo, with Asymptotic Level 95%

From the previous results, we calculate the prediction interval 1) w (o) for yo
(see Equation (5.2), page 137):

> variance.y0 <- pasture.nll$sigma2 + pasture.conf.fxO$var.psi
> sqrt.var <- sqrt(variance.y0)

> lower.yO<- pasture.conf.fxO$psi + gnorm(0.025)*sqrt.var

> upper.y0<- pasture.conf.fx0$psi + qnorm(0.975)*sqrt.var

We display the values of gg, V 02 + §2, Vo.975, and fN(a:O):

> cat("Estimated value of yO0:",pasture.conf.fxO$psi,"\n" )
> cat("Estimated value of the std:", sqrt.var,"\n" )
> cat("nu_(0.975):", qnorm(0.975),"\n" )

> cat("Estimated value of In:",lower.y0O, upper.y0,"\n" )



5.6 Using nls2 147
Bootstrap Prediction Intervals for yq

To calculate a bootstrap prediction interval for yyg, Ip (z9), according to Equa-
tion (5.4), page 139, we use the function bootstrap with the following option:
method="calib". This function returns the bootstrap percentiles of T™:

> pasture.pred.yO<-bootstrap(pasture.nli,
n.loops=500,
method="calib",
file="pasture.predict",
ord=pasture.conf.fx0$psi,
pbispsi=50)
> lower.y0<- pasture.conf.fxO$psi +
pasture.pred.yO0$conf .bounds[1] *sqrt(variance.yO0)
> upper.y0<- pasture.conf.fxO$psi +
pasture.pred.yO$conf .bounds[2] *sqrt(variance.y0)

We display the values of gz), b0.025, 60_975, and fB (Io)i

> cat("Estimated value of y0:", pasture.conf.fx0$psi,"\n" )
> cat("b_0.025, b_0.975:",pasture.pred.y0$conf .bounds,"\n" )
> cat("Estimated value of Ib:",lower.yO,upper.y0,"\n" )

Note: The bootstrap method generates different numbers at each execu-
tion. Thus, results of these commands may vary slightly from those displayed
in Section 5.4.1.

Cortisol Assay Example

The results of estimation when the regression function is an asymmetric sig-
moidally shaped curve and the variances are heteroscedastic have been stored
in the structure corti.nl7 (see Section 4.6, page 125).

Likelihood Ratio Calibration Interval for xq, with Asymptotic Level 95%

We use the function calib to calculate the calibration interval J, r defined by
Equation (5.8), page 142, for the unknown dose d of hormone that corresponds
to the response values given in Section 5.4.2.

Before calling it, we have to:

1. Describe the inverse f~!(y,6) of the regression curve.
We define it in a file called corti.finv:

abs dose;

ord f;

paract n,d,a,b,g;
pbisabs minf,pinf;
aux al,a2,a3;
subroutine;
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begin

al = (f-n)/(d-n);

a2 = exp(-(1/g)*log(al));
a3 = (log(a2-1)-a)/b;

dose = if f >= d then minf else
if £ <= n then pinf else
exp(a3*log(10))

fi fi;

end

2. Generate the programs required by the function calib.

The operating system commands analDer, crCalib, and crInv are pro-

vided with the system nls2 to do that:

e analDer generates the program that calculates the regression model.

e crCalib generates the program that calculates d given fixed values of
the regression parameters.

e crlnv generates the program that calculates the inverse of the regres-
sion curve.

$ analDer corti.mod6
$ crCalib corti.mod6
$ crInv corti.finv

The programs required by the function calib are loaded into our S-Plus ses-
sion by loadnls2. The environment variable NLS2_DIR is equal to the path-
name of nls2. Then we apply calib. Using the option x.bounds, we specify
a research interval:

> loadnls2(model=c("corti.mod6.c","corti.mod6.dc.c"),
inv="corti.finv.c",
tomyown=paste(getenv("NLS2_DIR"),"/EquNCalib.o", sep=""))
> corti.calib<-calib(corti.nl7,
file="corti.finv",
x.bounds=c(0.02,0.08),
ord=c(2144,2187,2325,2330))

We display the values of d and J; R:

> cat("Estimated value of d:", corti.calib$x,"\n" )
> cat("Jr:",corti.calib$R.conf.int,"\n" )

(Results are given in Section 5.4.2; page 143)

Nasturtium Assay Example

The nasturtium assay example is a new example, introduced in this chapter.
We first create a data frame to store the experimental data. Then we estimate
the parameters, and, finally, we calculate calibration intervals.



5.6 Using nls2 149
Creating the Data

The experimental data (see Table 5.1, page 136) are stored in a data frame
called nasturtium:

> x.nas <-c(

.000,0.000,0.000,0.000,0.000,0.000,

.025,0.025,0.025,0.025,0.025,0.025,

.075,0.075,0.075,0.075,0.075,0.075,

.250,0.250,0.250,0.250,0.250,0.250,

.750,0.750,0.750,0.750,0.750,0.750,

.000,2.000,2.000,2.000,2.000,2.000,

.000,4.000,4.000,4.000,4.000,4.000)

> y.nas <-c(
920,889,866,930,992,1017,919,878,882,854,851,850,870,825,953,
834,810,875,880,834,795,837,834,810,693,690,722,738,563,591,
429,395,435,412,273,257,200,244,209,225,128,221)

> nasturtium<-data.frame(x=x.nas,y=y.nas)

BN O O O O O

Plot of the Observed Weights Versus the Log Concentration

We plot the observed weights versus the log concentration. The zero concen-
tration is represented by the value —5:

> log.nas<-c(rep(-5,6),log(x.nas[7:42]))

> plot(log.nas,y.nas,
xlab="log-concentration",ylab="response",
main="Nasturtium example",sub="Observed response")

(See Figure 5.1, page 136.)
Parameter Estimation

We describe the model defined by Equation (5.1), page 137, in a file called
nas.mod:

resp y;
varind x;

parresp t1,t2,t3;
subroutine;
begin
y = 1if x==0 then tl1 else

t1/ (1+exp (t2+t3*1log(x)))

fi;

end
To estimate the parameters, we apply the function nls2. We plot the

observed and fitted responses versus the log concentration using graphical
functions of S-Plus. A line joins the fitted values:
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> loadnls2() # reload the default programs

> nas.nl<-nls2(nasturtium,"nas.mod",c(900,-.5,1))

> plot(log.nas,y.nas,
xlab="log-concentration",ylab="response",
main="Nasturtium example",
sub="Observed and adjusted response")

> lines(unique(log.nas) ,nas.nl$response)

(See Figure 5.2, page 145.)
Likelihood Ratio Calibration Interval for x¢ with Asymptotic Level 95%

To calculate the likelihood ratio calibration interval J, r defined by Equa-
tion (5.7), page 141, for xo, the unknown concentration that corresponds to
the response values given in Table 5.2, page 136, we use the function calib.

In the cortisol example, additional programs were required to use calib.
Here, the variances are homogeneous, and no extra work is necessary. We only
have to describe the inverse of the regression function. We define it in a file
called nas.finv:

abs x;

ord y;

paract t1,t2,t3;

aux al;

subroutine;

begin

al = log( (t1/y) - 1) - t2;

x = if y >= t1 then 0 else
exp( a1l/t3 )
fi;

end

We apply the function calib and display the values of log 7y and J, R:

> nas.calib<-calib(nas.nl, file = "nas.finv",
ord=c (309, 296, 419))
> # Print the results
> cat("Estimated value of x0:", mnas.calib$x,"\n" )

> cat("Jr:", nas.calib$R.conf.int,"\n" )

The calibration interval .J, v mentioned in the remark at the end of Sec-
tion 5.4.3 is obtained as follows:

> cat("Jn:", nas.calib$S.conf.int,"\n" )
Bootstrap Calibration Interval for xg

The function whose confidence interval is requested, i.e., the regression func-
tion f, is described in a file called nas.psi. The variable to be calibrated is
introduced by the key word pbispsi:
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psi y;

ppsi t1,t2,t3;

pbispsi x0;

subroutine;

begin

y = t1/C1 + exp( t2 + t3 * log(x0)) );
end

To calculate a confidence interval .J, p for z according to Equation (5.6),
page 140, we first use the function bootstrap with the argument method set
to calib, which returns bootstrap percentiles, and then the function calib:

> nas.nl<-nls2(nasturtium,"nas.mod",c(900,-.5,1),renls2=T)

> nas.boot<-bootstrap(nas.nl,method="calib",file="nas.psi",
n.loops=500,
ord=c(309, 296, 419),
pbispsi=nas.calib$x)

> b0.025<-nas.boot$conf .bounds [1]

> b0.975<-nas.boot$conf.bounds[2]

> boot.calib<-calib(nas.nl,file="nas.finv",ord=c(309, 296, 419),

conf .bounds=c (as.numeric(b0.025) ,as.numeric(b0.975)))

We display the values of Zg, bg.o25, bo.975, and Tg:

> cat("Estimated value of x0:", boot.calib$x,"\n" )
> cat("b_0.025, b_0.975:",nas.boot$conf.bounds ,"\n" )
> cat("Estimated value of Jb:",boot.calib$S.conf.int,"\n" )

Results are displayed in Section 5.4.3, page 144. Note that bootstrap sim-
ulations generate different numbers at each execution, and the results of these
commands may be slightly different from those reported in Section 5.4.3.
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Binomial Nonlinear Models

This chapter extends the statistical methods used throughout the book to bi-
nomial response variables, with probability of response modeled as a nonlinear
function of the independent variables.

Logistic regression models are special cases of binomial nonlinear models,
where the probability of response is a monotone known function of a linear
combination of the explanatory variables. Several of the examples given in this
chapter fit into this framework, but they need a variety of extensions to the
basic logistic model: The equation linking the probability of response to the
independent variables is nonlinear in unknown parameters or the variance of
the observations is not well modeled by the binomial variance (overdispersion).
It is the aim of this chapter to present the extended models and show how to
use nls2 when dealing with them.

The text assumes a basic knowledge of estimation methods for general-
ized linear models based on maximum likelihood. Useful references are Col-
lett [Col91], McCullagh and Nelder [MN89], Aitkin et al. [AAFH89], Chambers
and Hastie [CH92], Venables and Ripley [VR94], and Dobson [Dob90].

6.1 Examples

6.1.1 Assay of an Insecticide with a Synergist: A Binomial
Nonlinear Model

A typical experiment for assessing the tolerance of individuals to a toxic sub-
stance consists of applying different concentrations of the substance to several
batches of individuals and recording the proportion of individuals giving an
expected response. The data for this example have been treated by McCullagh
and Nelder [MNR89, page 384]. The aim of the experiment is the estimation of
lowest-cost mixtures of insecticides and synergist. We observe the number Y;
of dead grasshoppers among N; grasshoppers exposed to some doses of insec-
ticide and synergist denoted, respectively, I; and S;. The results are reported
in Table 6.1.
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Table 6.1. Assay of an insecticide with a synergist

Dose of Number Total
Insecticide Synergist killed number
4 0.0 7 100
5 0.0 59 200
8 0.0 115 300
10 0.0 149 300
15 0.0 178 300
20 0.0 229 300
2 3.9 5 100
5 3.9 43 100
10 3.9 76 100
2 19.5 4 100
5 19.5 57 100
10 19.5 83 100
2 39.0 6 100
5 39.0 57 100
10 39.0 84 100

The following model is assumed: The number of grasshoppers killed Y; at
doses z; = (1;,5;) is distributed as a binomial variable with parameters N;
and p(z;,0), where p(x, ) describes the probability for an individual to die
at doses .

The model under study is the following:

In binomial linear models, it is assumed that the probability function p(x, 6)
is related to a linear predictor n through a one-to-one transformation v called
the link function. Namely, v(p(z,0)) = n(x, 0), where n(z, 8) is a linear func-
tion of #. For example, take for all p in the interval ]0, 1]

7(p) = logit(p) = log(p/(1 — p))

and
77(%,8) = 91 —+ 92] —+ 935

In our example, preliminary studies showed that the predictor n is not
linear and led us to model the function 7, as follows:

n(x,0) = logit (p(z,8)) = 01 + Oz log(I — 03) + 045/(05 + 5). (6.1)

Our aim is to estimate the parameters 61, ..., 605 and to evaluate the effect
of doubling the dose of insecticide on the odds of a Kkill.
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6.1.2 Vaso-Constriction in the Skin of the Digits: The Case of
Binary Response Data

Let us continue with an example from Finney [Fin78] analyzed by Aitkin et
al. [AAFHS89]. The aim of the experiment is to study the effect of the rate and
volume of air inspired on a transient vaso-constriction in the skin of the digits.
The data are listed in Table 6.2. Three subjects were involved in the study. For
each of them, the occurrence or nonoccurrence of vaso-constriction, as well as
the rate and volume of air inspired, is measured several times: The response
Y is set to 1 if vaso-constriction occurs and to 0 if not. For i = 1,...,k we
denote by Y; the response and by r; and v; the values of the variable rate and
volume.

Table 6.2. Vaso-constriction in the skin of the digits

Volume | Rate Response | Volume Rate Response
3.70 0.825 1 1.90 0.950 1
0.80 3.200 1 1.10 1.830 0
3.50 1.090 1 0.95 1.900 0
0.70 3.500 1 0.85 1.415 1
1.25 2.500 1 0.95 1.360 0
0.60 0.750 0 0.60 1.500 0
0.75 1.500 1 1.60 0.400 0
1.10 1.700 0 1.10 2.200 1
0.90 0.750 0 0.75 1.900 0
0.60 3.000 0 1.70 1.060 0
3.20 1.600 1 1.35 1.350 0
0.90 0.450 0 1.80 1.500 1
1.40 2.330 1 2.70 0.750 1
0.80 0.570 0 1.20 2.000 1
0.75 3.750 1 1.30 1.625 1
0.55 2.750 0 1.80 1.800 1
2.30 1.640 1 1.50 1.360 0
0.40 2.000 0 0.95 1.900 0
1.60 1.780 1 2.35 0.030 0

0.80 3.330 1

In this example the variable rate and volume are not fixed in advance
by the scientist but are the realization of random variables. Therefore we
model the distribution of the response Y conditionally to the variables (r,v)
as follows: Conditionally to the observed variable x; = (r;,v;), the response
Y; is distributed as a Bernoulli variable with parameter p(z;,6), where p(z, 6)
denotes the probability for the vaso-constriction to occur conditionally to the
fact that x is observed.

We will assume a logit-linear model, namely, logit(p(z, 8)) = n(x, #), where
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n(z,0) = 0y + 01 log(r) + 63 log(v).

This example has been extensively analyzed by Aitkin [AAFH89] and Preg-
ibon [Pre81], especially for illustrating the use of diagnostic measures to detect
lack of fit. We will only show how to estimate the parameters and compare
two nested models using nls2.

6.1.3 Mortality of Confused Flour Beetles: The Choice of a Link
Function in a Binomial Linear Model

Consider the following experiment that has already been extensively analyzed
in the literature: See, for example, Collett [Col91, pages 109 and 140]. In this
experiment, we observe the proportion of beetles killed versus the concentra-
tion of gaseous carbon disulphide (CSs). Duplicate batches of beetles were
used for each concentration. At the beginning of the experiment, for each i
equals 1 to k and for each replicate j = 1,2, IV;; beetles are exposed to a
concentration of CSsy equals to x;. At the end of a five-hour period, the num-
ber of beetles killed Y;; is recorded. The results are reported in Table 6.3 and
Figure 6.1.

Table 6.3. Number of beetles killed, Y, out of beetles exposed, N, versus concen-
tration of CSo

First Replicate | Second Replicate
Dose (mg/.1 ml) Y N Y N
49.06 2 29 4 30
52.99 7 30 6 30
56.91 9 28 9 34
60.84 14 27 14 29
64.76 23 30 29 33
68.69 29 31 24 28
72.61 29 30 32 32
76.54 29 29 31 31

The following model is assumed: The number of killed beetles Y;; at con-
centration x; is distributed as a binomial variable with parameters N;; and
p(zi,0), where p(z,0) describes the probability for an individual to die at
concentration z.

The model under study is the following:

In this example, a possible choice for p is the Weibull function, presented
in Section 1.1.1:
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Figure 6.1. Beetles example: Observed frequencies versus the dose of CS2

p(z,0) =1 — exp(—exp(f; + 63 log(x))).

This model is a binomial linear model, where the link function v is defined
as y(p) = log (—log(1 — p)) and the linear predictor 7 equals n(z,0) = 6, +
f2log(z). The function « is known as the complementary log-log function:
7(p) = cloglog(p).

If the aim of this experiment is to estimate a dose that produces an ex-
treme response, as, for example, the dose that produces death in 90% of the
individuals exposed to it (termed the LD90), it is important to choose a model
that fits the data well at extreme dose values. In this case, the choice of the
link function v may be of great importance. We will see how to choose 7y using
a family of parametric link functions. Namely, we will consider as link function

the function: .
1—p) % -1
(o 00) =g (=22, (©2)

It is easy to verify that this family contains the logit link function (take
03 = 1) and the cloglog link function (take 3 — 0). The parameter 5 being
unknown, the model is a binomial nonlinear model, and we will see how to
estimate simultaneously the parameters ¢; to 63 and to calculate confidence
intervals for the LD90.
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6.1.4 Mortality of Confused Flour Beetles 2: Survival Analysis
Using a Binomial Nonlinear Model

Hewlett [HewT74] originally presented the data given in Table 6.4, which de-
scribe the effect of an insecticide (Pyrethrins B) sprayed onto flour beetles
at four different concentrations. This experiment has been analyzed by Mor-
gan [Mor92, page 211]. The data differ from those in Table 6.3 in that observa-
tions are made at various intervals, rather than just one, and the genders are
distinguished. Thus, this example presents an analysis of survival time data,
and the interest lies in investigating differences between the genders in the
probability of surviving a dose of insecticide. Following Morgan [Mor92], we
consider a parametric model that specifies the probability distribution for the
survival times. We will model this data set with a binomial nonlinear model.

Table 6.4. Number of male (M) and female (F) beetles dying in successive time
intervals following spraying with four different concentrations of insecticide

Concentration (mg/cm? deposit)
Time 0.20 0.32 0.50 0.80
interval
(days) M| F| M| F| M| F| M| F
0-1 3 0 7 1 5 0 4 2
1-2 11 2 10 5 8 4 10 7
2-3 10 4 11 11 11 6 8 15
3-4 7 8 16 10 15 6 14 9
4-5 4 9 3 5 4 3 8 3
5—6 3 3 2 1 2 1 2 4
6-7 2 0 1 0 1 1 1 1
-8 1 0 0 1 1 4 0 1
8-9 0 0 0 0 0 0 0 0
9-10 0 0 0 0 0 0 1 1
10-11 0 0 0 0 0 0 0 0
11-12 1 0 0 0 0 1 0 0
12-13 1 0 0 0 0 1 0 0
No. treated 144 | 152 | 69 81 54 44 50 | 47

The observations are made of the number of male (M) and female (F) flour
beetles Y;; dying in the time interval (¢t;_1,t;) following spraying with a dose
x;, 1 =1,...,4 of insecticide. INV; beetles are exposed at dose z;. Let p(x;,t;,0)
describe the probability of a flour beetle dying at concentration x; in the time
interval (tj_1,t;). We assume that Y;; is distributed as a binomial variable
B(N;,p(z;,t;,6)). A possible choice for p proposed by Morgan [Mor92] is

p(.’l?i,tj,e) = H(xlvtjae) - H(x’utj - 170)7

where
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1 1

H . . = '
(@i,15,0) 1+ exp(—6, — O log(x;)) 1+ exp (03 — 04 1og(t;))

The interpretation of the model is as follows: At dose level z; a proportion
(1 + exp(—0; — 62 1log(x;))) "1 of beetles are killed. These susceptible beetles
will respond at various times, and the cumulative survival-time distribution
F(t) = {1 + exp(f3 — 041og(t))} ! for t > 0 and 6, > 0 is independent of the
dose.

We will see how to estimate the parameters and compare the distribution
of time to death between the genders. We will show how the computations of
this nonlinear survival analysis can be performed easily using nls2.

6.1.5 Germination of Orobranche: Overdispersion

We consider a data set originally presented by Crowder [Cro78]. The aim
of the experiment is to evaluate the factors affecting the germination of the
seed of two varieties of Orobranche cultivated in a dilution of two different
extracts, a bean root extract and a cucumber root extract. The data are given
in Table 6.5.

Table 6.5. Number of germinated seed, Y, out of N seeds

Species O. aegyptiaca 75 O. aegyptiaca 73
Extracts Bean Cucumber Bean Cucumber
Y N Y N Y N Y N
10 39 5 6 8 16 3 12
23 62 53 74 10 30 22 41
26 51 32 51 23 45 32 51
17 39 46 79 0 4 3 7
10 13

For 4 varying from 1 to 4 and for each replication j varying from 1 to n;,
we observe for the species S;, the number of seeds germinated, Y;;, among
N,; seeds brushed onto a plate containing a 1/125 dilution of an extract
denoted by E;. The variables (S, F) are qualitative variables defined as follows:
S = 0 when the species is Orobranche aegyptiaca 75 and S = 1 when the
species is Orobranche aegyptiaca 73, E = 0 if the Orobranche is cultivated
on the bean root extract and F = 1 if it is cultivated on the cucumber root
extract. In a first approach, the observation Y;; is assumed to be distributed
as a binomial variable B(N;;, p(z;,0)), where z; = (S;, E;). Some preliminary
analyses indicated that the main effects of species and extract as well as the
interaction term should be retained in the model (Collett [Col91, page 191]).
Therefore, the probability function corresponds to the saturated model in a
2 x 2 factorial experiment and is written as
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We will see that these data are overdispersed. This means that the variance of
the observation Y;; is greater than can be expected on the basis of binomial
sampling errors where

Var(Yij) = Nijp(mne)(l - p(xiﬂ 9))

We will show how to treat the problem of overdispersion using the quasi-
likelihood method available in nls2.

6.2 The Parametric Binomial Nonlinear Model

Let us introduce the following notation for defining the parametric binomial
nonlinear model.

First, we consider the case of binary response that is either a failure or a
success. Namely, we set Y = 1 when the response occurs and Y = 0 if not.
In Example 6.1.2, Y is the occurrence of the vaso-constriction in the skin of
the digit. In binary response data, for each value of the variable z;, ¢ varying
from 1 to k, the response Y; is observed. The variables Y;,i = 1,...,k, are
assumed to be independent and distributed as a Bernoulli variable, such that
Pr(Y; =1) = p(x;,0).

Second, we consider the case of binomial response data. For each value
of the variable z; and for each replicate j = 1,...,n;, the responses of N;;
individuals are considered: For each [ varying from 1 to IV;;, we denote by R;j;;
the response of individual j. The R;;;s are binary variables equal to 1 when the
response occurs and 0 if not. The observation Y;; = Zfi’i R;j; is the number
of individuals out of N;; for which the response occurs. In Example 6.1.1, ¢
varies from 1 to k = 15, the numbers of replicate n; are equal to 1, and N;
grasshoppers are exposed to some doses of insecticide and synergist x;. The
variable R;; equals 1 when a grasshopper dies, and Y; is the number of dead
grasshoppers among N;.

Ifforl =1,..., N;;, the responses R;;; are independent Bernoulli variables
with parameter p(z;,6), then the variable Y;; is distributed as a binomial
variable with parameters N; and p(z;,0):

Yij ~ B(Nij,p(24,0)). (6.3)

The probability function p(z, 8) depends on p unknown parameters 6. If p(x, 9)
is related to a linear predictor i through a known link function 7, namely,

v(p(z,0)) = n(z,0),

where 7 is a linear function of #, then the model is a binomial linear model.
This is the case in Examples 6.1.2 and 6.1.3 if the parameter f3 in Equa-
tion (6.2) is fixed to a known value. If such a relation does not exist, then the
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model is a binomial nonlinear model: In Example 6.1.1 the logit transform of
p(z, 0) is a nonlinear function of the parameters; in Example 6.1.3 the function
~ is known up to an unknown parameter 63; and in Example 6.1.4 the prob-
ability p(x,0) is directly modeled as a nonlinear function of the parameters.

6.3 Overdispersion, Underdispersion

Let us recall that a binomial variable with parameters N and p(z, ) is by defi-
nition the sum of N independent Bernoulli variables with parameter p(z, 6). It
follows that there are many reasons for model misspecifications. This problem
is discussed in detail by several authors (see, for example, Collett [Col91] and
McCullagh and Nelder [MN89]) and is beyond the scope of this book. We will
confine ourselves to making the link between the binomial nonlinear model
and the heteroscedastic nonlinear regression model given by equations (3.7).
Indeed, if we use a binomial nonlinear model to model the data set, then we
get the following:

E(Y;;) = Nijp(z;,0),
Var(Yi;) = Nijp(xi, 0) (1 — p(z;,0)) .

In some cases, it appears that the modeling of the variance function is not
correct, although it is not clear how to improve the modeling of the proba-
bility function. We are thus led to propose other variance functions. Several
models are proposed and briefly described here. They are illustrated with the
Orobranche Example 6.1.5 (see Collett [Col91, Chapter 6] for more details).

Modeling the Variability in the Probability Function

If the different batches of seed were not germinated in the same experimental
conditions, then the variance of the observation would increase by a constant
factor denoted o2,

Val"(Y;;j) = O'QNijp(l‘i, 0) (1 — p(xi, 9)) . (64)

More generally, if one relevant explanatory variable is not taken into account
in the modeling of the probability function then the variation of the responses
increases. To introduce variability in the probability function we consider a
set of independent variables (P, ..., Py), with E(P;) = p(z;,0) and Var(P;) =
p(24,0) (1 — p(x;,0)), and we assume that conditional on P; = p(x;,6), Y;;
is distributed as a binomial variable B (N;;, p(z;,0)).

Adding a random effect to the probability function leads us to consider a mixed
effect model, where the distribution of Y;; is a mixture of two distributions: The law of
Y;; is obtained by integrating the binomial distribution with respect to the law of the
variable P;. In fact we do not need to know the law of Y;; because we will not estimate
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the parameters by maximizing the likelihood. We will use the quasi-likelihood method
that requires knowledge of the moments of Y;; only.
Some simple calculations lead to the following results:

E(Ylg) = Nijp(xi,e),
Var(Y;;) = Nijp(x;,0) (1 — p(xi, 0)) [1 + 7(Nij — 1)] } : (6.5)

Several other models have been proposed; see Williams [Wil82]. For example,
P, is assumed to have a beta-distribution (Williams [Wil75], Crowder [Cro78])
leading to:

E(Yi;) = Nijp(zi,0),
Var(Yij) = N”p(.’L'“ 9) (1 — p(xue)) [1 + Ti(Nij _ 1)] } ) (66)

where 7, ..., 7 are unknown parameters to estimate, or logit(F;) is assumed
to have a Gaussian distribution with expectation n(z;,#) and variance 72
leading to:

E(Yi;) = Nijp(zi,0), }

Var(Yi;) ~ Nijp(xi,0) (1 = p(z,0)) [1 + 7(Nij — 1)p(xi,0) (1 —p(wiﬁ))g ’)

6.7

these last approximations are valid when the variance 7° is small. The variance
functions defined by Equations (6.5) to (6.7) are not relevant when we observe
binary data where all the IV;;s equal 1. In the same way, the variance function
defined by Equation (6.6) is relevant only if for each ¢ = 1,... k&, some of
the N;j;s are greater than 2. Indeed, if NV;; = 1 for all j, the parameter 7;
disappears and cannot be estimated.

2

Modeling Correlation in the Binary Individual Responses

If the germination of one seed in one particular batch promotes germination
of the other seeds in the same batch, then the individual binary responses,
Rij,l = 1,...,N;j, are correlated. Therefore the variable Y;; = l]il Rij
is no longer distributed as a binomial variable, and it can be shown that its
variance may increase or decrease. Namely, if 7 is the correlation coefficient
between R;j; and R;ji, then the expectation and the variance of Y;; are the

same as those given by Equation (6.5) (see Collett [Col91, page 195]).

6.4 Estimation

6.4.1 Case of Binomial Nonlinear Models

If we consider the binomial nonlinear model described in Section 6.2, it is
natural to estimate the parameters # by maximizing the likelihood, because
the distribution of the observations is known. We begin this section by intro-
ducing the deviance function because, in binomial linear models, it is more
common to work with the deviance function than with the likelihood.
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For i varying from 1 to k, the observed variables Y;; are independent bino-
mial variables with parameters N;; and p(x;, ). The case of binary response
data corresponds to n; =1 and N =1 foralli=1,...k.

The deviance is defined as:

o= (St (002,

=1 j=1
(6.8)
For a given set of observations (Y;;,7 = 1,...,n:,4 = 1,...,k), the de-
viance is a function of the parameters. It can be shown that the minimum
deviance estimator 6 is the maximum likelihood estimator and that it is de-
fined as a quasi-likelihood estimator (see Section 3.3.2). Namely, 0 satisfies
Ua(é) =0, fora=1,...,p, where

R T A

11]1

For calculating the maximum likelihood estimator of 8 using nls2, we will use
the quasi-likelihood method (see Section 6.7).

Let us briefly recall how the deviance is calculated in a binomial model. For Y a
random variable distributed as a B(XV, p), we set

Ly, N,p) =Pr(Y =y) = 7'!])?/(1 _p)N—y.

Let us denote by Y the vector of observations:
Y T
Y=, - . Yin, o Yer, oo, Yiny, ),

and by p the vector of probabilities. The components of p are denoted p;;, fori = 1,...,k

and j = 1,...,n,. Each p;; is the expectation of Y;;/N;;. When the probability function

is such that p;; = p(z;,0) forall j = 1,...,n,, then the quantities p(x;, 0) are replicated

n; times in order to compose a vector denoted by p(0) with n = 25:1 n; components.
The likelihood function is defined by the following formula:

HHK ij» Nijs pij) -

i=1j5=1
For i varying from 1 to k and for j from 1 to n;, let

Yi

T =

be the empirical frequencies. Note that in a binary response model, m; = Y;. Then,
for a given model of the probability function, p;; = p(x;, 8), the deviance is defined as
follows:

L (Y,5(6))

D(9) = —2log (YST)
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It is easy to verify that it is exactly what Equation (6.8) states. Moreover, it is clear that
minimizing D(6) is equivalent to maximizing L (}7,13(9)).

The link between minimum of deviance estimation and quasi-likelihood estimation
is done by noting that minimizing D(0) is equivalent to solving the estimating equations
defined by the following:

oD
89(1(9) =0, fora=1,...,p
Starting from Equation (6.8), we get
N;; —Yi; Op
’L] 0) — ij ij ; 0
ZZ p(x:,0 00 = 1= . o) 99, @000
i1 =1
It is easy to verify that
oD
£2(0) = ~20,(0),

where U, (0) is defined by Equation (6.9).

6.4.2 Case of Overdispersion or Underdispersion

We consider the nonlinear model defined by

E(Y;;) = Nz]p(xz70)7
Var(Y;;) = 0%g(x;, Nij; 0,7) [ ° (6.10)

where g is the variance function. If the Y;;s are binomial variables, then o2 =1,
g depends on 6 only, and

g(l‘,N;@,T) = g(x,N;H) = Np(l‘,e)(l 7p(1'70))'

Overdispersion or underdispersion for the binomial case may be treated by
estimating o2 and the additional parameter 7. In case (6.4), o2 is estimated
by the residual variance:

#_ L1y 3 (¥~ Nt )

n iS5 Nigp(xi, 0) (1 - p(i, 5)) .

(6.11)

In cases (6.5) to (6.7), 02 = 1 and ¢ parameters 7 have to be estimated, where
g = 1 in cases (6.5) and (6.7) and ¢ = k in case (6.6). For this purpose, we
use the quasi-likelihood method defined in Section 3.3.2. The quasi-likelihood
equations are given by the following formulas:

zy - z]p Ilae) ap
E E Nii—(x; f =1,...
I,,N 0 7_) 1) 80a (J)“e), or a 9 2

i=1 j=1 ijs

~ 0))* — 02g(xs, Nij;0,7) Og
9 7] qp L, iy 4Vig; 22 (24, Nij: 0
Vranl@:7) 2; g (w;, Niji6,7) r, (70 Mgt 0:7)
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forb=1,...,q.

The choice of the weights introduced in the quasi-likelihood equations can be ex-
plained as follows: For a = 1,...,p, the weight function g(zi, N;;;60,7) in Uy (0,7) is
proportional to the variance of Y;; — Ny;p(x;,6) (see Equation (6.10)); forb=1,...,q,
the choice of the weights in Upyy is justified by an asymptotic argument. It is known by
the central limit theorem that if Z is the sum of IV identically distributed variables with
expectation x and variance o2, then, when N is large, the distribution of (Z—Npu)/v/No
can be approximated by the centered Gaussian distribution with variance 1. Therefore
the quasi-likelihood equations are constructed as if the moments up to the order 4, of
the variables ¢;; defined as

E(ef;) = E ((Yij — Nigp(@:,6))") ,

for =1,...,4, were equal to the moments of centered Gaussian variables with variance
equal to a?g(X;, Nij; 0, 7). It follows that if N;; is large enough,

Var ((Y;J — Nijp(l‘i, 9))2) ~ 20’492()(1', Nij; 9,7’).

6.5 Tests and Confidence Regions

The methods for testing hypotheses or calculating confidence intervals for
models defined in Section 6.2 are similar to those described in Section 3.4
for heteroscedastic nonlinear models. For any continuous function of the pa-
rameters \(6, 02, 7) we can test hypothesis H: A\ = \¢ against the alternative
A: X # Ao using the Wald statistic Sy as described in Section 3.4.1.

The bootstrap estimation of A is based on estimates \* calculated exactly
as in Section 3.4.3.

The likelihood ratio tests for comparing nested models or calculating con-
fidence regions can be applied as in Sections 3.4.2 and 3.4.5. Nevertheless,
in binomial models the test statistic is usually calculated using the deviance
function. Therefore we will present the tests based on the deviance function
in this chapter.

Likelihood Ratio Tests and Confidence Regions Using the
Deviance Function

In Section 3.4.2, the likelihood ratio test statistic was introduced for the Gaus-
sian regression model. The same process applies to the binomial nonlinear
regression model using the deviance statistic in place of the likelihood ratio
statistic. We consider the model described in Equation (6.3), for some prob-
ability function p(z,6) that depends on p unknown parameters 6.

We consider the situation where a hypothesis H is described by a linear
constraint on a subset of the parameter vector #. The constraint is expressed
as A6 = Ly, where A is an r X p matrix (r < p) of rank r, and Ly is a constant
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vector with dimension r. Let A§H be the maximum likelihood estimator of 0
under hypothesis H, and let 6 be the maximum likelihood estimator under
the alternative that there is no constraint on the parameters. The likelihood
ratio test statistic is R R

S, = D(0y) — D(6).

Following Equation (6.8), this turns out to be:

SL:—2ZZYijlog (p(xz,93)> + (N;; = Y;;) log <1p(x1,0i{)>

i=1j=1 p(x;,0) 1 —p(z;,0)
Hypothesis H is rejected if Sy, > C, where C' is defined by
Pr{Z.<C}=1-aq.

Z, is distributed as a x? with r degrees of freedom, and « is the (asymptotic)
level of the test.

Let us specify what asymptotic means. If we observe binary data, then asymptotic
means that the number of observations k tends to infinity. If we observe binomial data,
then the meaning of asymptotic depends on the modeling of the probability function p.

Consider Example 6.1.1, where for each dose x;, i = 1,...,k, we observe Y;, the
number of dead grasshoppers among N;. The probability function described in Equa-
tion (6.1) depends on p parameters. This number p is fixed (p = 5) and does not increase
with k. Therefore we can consider two cases: Asymptotic means that the number of
observations k tends to infinity, or asymptotic means that for each ¢ = 1,...,k, N;
tends to infinity.

In Example 6.1.5, for ¢ varying from 1 to k (kK = 4) we observe for the modality
(Ss, E;) of the explanatory variables, n; replications of the number of seeds germi-
nated Y;;, among N;;. The probability function corresponds to the saturated model in a
2 x 2 factorial experiment and the number of parameters to estimate equals k: estimat-
ing the parameters 6, ..., 03 is equivalent to estimating the probabilities p((0,0),0),
p((0,1),0), p((1,0),6), and p((1,1),0). In that case asymptotic means that for each
i=1,...,k > " Nij tends to infinity. Note that in the case of no replication, when
n; = 1, then asymptotic means that N, tends to infinity.

In the same way we calculated confidence regions based on the maximum
likelihood approach in Section 3.4.5, we can compute confidence intervals
or confidence regions using the deviance. Let us denote by Sp,(Lg) the test
statistic of hypothesis H against alternative A, then the set of vectors Ly
with r components such that Sp,(Lg) > C' is a confidence region for A0 with
(asymptotic) level a.

The comparison of two nested models is done as in Section 4.3.1. Consider
hypothesis A, where the probability function p(z,6) depends on pa parame-
ters, and hypothesis H such that the model associated with H is nested into
the model associated with A and where the probability function p(z, ) de-
pends on py parameters, py < pa. In Example 6.1.3, for testing that the link
function is the logit function, we compare the model associated with hypoth-
esis A and defined by Equation (6.2) to the model associated with hypothesis
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H defined by the constraint 3 = 1. Let §H and 6, A be the maximum likelihood
estimators under hypotheses H and A, respectively, then the test statistic

equals: R R
St = D(0u) — D(6a), (6.12)

and hypothesis H is rejected if Sp, > C, where C' satisfies

Pr{Zz, <C}l=1-a.

A—PH

Goodness-of-Fit Test

Let us consider the binomial nonlinear model described in Equation (6.3)
where the dimension of the parameter 6 equals p, and where the maximum
likelihood estimator of the parameters is denoted by 6. Assume that for each
i=1,...,k and j = 1,...,n, the quantities IV;; are large.
Testing goodness of fit consists of testing the model (6.3) against the sat-
urated model defined by
Yrij NB(Nijvpij)7 (613)

where the p;;s are the n = Zle n; parameters of the model. The maxi-
mum likelihood estimators of the probabilities p;; are the empirical frequen-
cies 7;; = Y;;/N;;, and the likelihood ratio test statistic is simply the deviance
associated with model (6.3). Therefore the hypothesis that the model is de-
fined by (6.3) against the alternative that it is defined by (6.13) is rejected

~

when the deviance D(#) is greater than C' where C' satisfies
Pr{Z,_,<C}=1-a.

The properties of the goodness-of-fit test are known when for each i =1,...,k and
j =1,...,n4, Ni; tends to infinity. Then, the asymptotic level of the test is equal to
« and the power of the test tends to 1. Note that in the case of binary data, it is not
possible to test goodness of fit.

6.6 Applications

6.6.1 Assay of an Insecticide with a Synergist: Estimating the
Parameters

Model The observations are binomial variables, Y; ~ B(N;, p(z;,0)), and the
probability function is

logit (p(xi,0)) = 01 + 02 log(I; — 03) 4 04S;/ (05 + S;). (6.14)

The definition of the model is complete if the parameters 6 satisfy the following
constraints: I — #3 and 05 must be strictly positive.
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Method The parameters are estimated by minimizing the deviance D(0); see
Equation (6.8).

Results
Parameters Estimated Values Standard Error
01 —2.89 0.24
0 1.34 0.10
03 1.67 0.11
04 1.71 0.17
05 2.06 1.09

Goodness-of-Fit Test and Graphics for Diagnostic The minimum deviance
D(0) equals 18.7. Using the results of Section 6.5, we test the hypothesis
that the probability function is the function defined by Equation (6.14) with
p = 5 parameters against the alternative that p(z;,0) = m; with &k = 15
parameters. The condition that the IV;s are large is satisfied, because all the
N;s are greater than 100. The 95% quantile of a x? variable with k — p = 10
degrees of freedom being equal to 18.3, the goodness-of-fit test based on the
deviance with an asymptotic 5% level is rejected. This result would lead us
to reject model (6.14). Nevertheless, the value of the statistic is very close to
the critical value, and it is more appropriate to conclude by noting that the
probability for a x2 variable with ten degrees of freedom to be greater than
18.7 equals 4.5%.

As explained in Chapter 4, model misspecifications can be detected by
examining the data together with the results of the estimation (see Col-
lett [Col91, Chapter 5] for a complete description of model checking for bino-
mial data). The plot of fitted p(sc,a) versus x; or observed frequencies, and
the plots of residuals are useful tools for assessing the quality of the fit. The
deviance residuals and the Pearson residuals are usually calculated. They are
defined as follows: For each i and j, let

. Ni; — Nyip(zi, 0
Y;‘j IOg (pr(l‘l,tg)) + (NZJ — YVZ])IOg ( (¥ ljp(l'z )>‘| ,

dij = —2
! Nij =Yy

then the deviance residuals 7;; are defined by:
715 = sign(Yij — Nijp(z,0)\/dij. (6.15)

It is easy to verify that D(f) = Zl Py 1(73j)%. The Pearson residuals are
the standardized residuals defined as follows:

B Y;; — Nijp(z,0)
€ij =
\/N”p xl,tﬁ)) (1 - (xz,e))

The adjusted probability function, p(z, 0), versus the observed frequencies
is shown in Figure 6.2. The plots of deviance and Pearson residuals are shown
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in Figure 6.3. In this example the deviance and Pearson residuals are similar.
Two points have residuals greater than two in absolute value. They correspond
to a null dose of synergist and small doses of insecticide 4 and 5. These figures
do not show any particular model misspecification.

0.8 7]

fitted
0.6 7

probability
0.4 7

0.2 7

0.2 0.4 0.6 0.8

observed frequency

Figure 6.2. Assay of an insecticide with a synergist: Graph of adjusted probabil-
ities versus observed frequencies

Confidence Interval for the Odds Ratio When the Dose of Insecticide is Dou-
bled The odds of an insect dying when it is exposed to a dose z = (I, S) of
insecticide and synergist is

o(I,5) = p(z,0)/(1 — p(x,0))
= exp {91 + 04 log(I — 03) + 94S/(95 + S)}

The odds ratio when doubling the dose of insecticide is the ratio of the odds
of an insect exposed to a dose (2I,5) to the odds of an insect exposed to a
dose (I,S). Because the parameter 65 is nonnull, this ratio depends on I:

W(I;0s,605) = exp 1 05 log 21— 05 .
I— 0

For several values of I, we can estimate the effect of doubling the dose of
insecticide and calculate a confidence interval.
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Figure 6.3. Assay of an insecticide with a synergist: Deviance residuals (a) and
Pearson residuals (b) versus the fitted probabilities.

Confidence Interval for ¢ (I;0s,03) Based on the Wald Test Because 1 is a
positive quantity, it is generally preferable to calculating a confidence interval
for log(¥(I;62,03)). In the first step, we calculate Ixr(I), the 95% confidence
interval for log(1(I;02,63)), using the method described in Sections 3.4.1
and 3.4.4. Then we take the exponential of each bound of fN(I) to get a
95% confidence interval for ¢ (I; 602, 63).

Results We denote by log(i)(I)) the estimated value of log(1)(I)) and by S(I)
its estimated standard error. The 95% confidence interval for ¢ (I) is denoted

by exp (fN(I)):

L ee@) | Sy | vty | e | ex ()

2 2.64 0.276 | [2.09, 3.18] 14.04 | [8.16, 24.1]
4 1.34 0.078 | [1.19, 1.49] 3.84 [3.29, 4.47]
5 1.23 0.077 [1.08, 1.38] 3.43 [2.95, 3.99]
8 1.09 0.076 [0.95, 1.24] 3.00 [2.58, 3.48]
10 1.06 0.075 | [0.91, 1.20] 2.88 [2.49, 3.34]
15 1.01 0.074 [0.86, 1.16] 2.75 [2.38, 3.19]
20 0.99 0.074 | [0.84,1.13] 2.69 [2.33, 3.11]

We have represented the results in Figure 6.4. It appears that for large doses,
greater than 8, the effect of doubling the dose of insecticide is to increase the
odds of an insect dying by a factor approximatively equal to 2.8.
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Figure 6.4. Assay of an insecticide with a synergist: Estimated odds ratio when
doubling the dose of insecticide for several values of I

6.6.2 Vaso-Constriction in the Skin of the Digits: Estimation and
Test of Nested Models

Model The observations Y; are Bernoulli variables with probability function
p(x,0) modeled as

p(,0) = exp(n(x,0))/ {1 + exp(n(=,0))},
77(90, 9) =6p+6; log(r) + 65 log(v) } . (616)

Method The parameters are estimated by minimizing the deviance D(0); see
Equation (6.8).

Results
Parameters ‘ Estimated Values ‘ Standard Error
0o —2.87 1.32
01 5.18 1.86
02 4.56 1.84

~

The minimum deviance D(f) equals 29.23.

Because the estimated values of 6; and 65 are close together, we want to
test the hypothesis H that 6; = 0> against the alternative A that 6, # 0s.
For using the likelihood ratio test, we have to compare D(6), the minimum
deviance under A, to the minimum deviance under H.
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Model The observations Y; are Bernoulli variables with probability function
p(z,0) modeled as
logit(p(z, 0)) = 6 + b5 log(rv).

Method The parameters are estimated by minimizing the deviance D(0); see
Equation (6.8).

Results
Parameters ‘ Estimated Values ‘ Standard Error
0o -3.03 1.28
03 4.90 1.74

The minimum deviance D(fy) equals 29.52.

The value of the likelihood ratio test is St, = 0.29. This value must be com-
pared to 3.84, the 0.95 quantile of a x? with one degree of freedom. Hypothesis
H is not rejected.

6.6.3 Mortality of Confused Flour Beetles: Estimating the Link
Function and Calculating Confidence Intervals for the LD90

Model The observations Y;; are binomial variables with probability function
p(x,0) modeled as

(SU,Q) =1- (1 + 03 ex ( (xje)))*l/eg ’
];(% 0) = 61 + 6, log(x)p ! } : (6.17)

The definition of the model is complete if we assume that the parameters
satisfy the following condition:

1+ 63 exp(n(z,d)) > 0. (6.18)

If we assume that 63 is positive, clearly the condition is always fulfilled no
matter the values of x, 61, and 0.

Method The parameters are estimated by minimizing the deviance D(6); see
Equation (6.8).

Results
Parameters ‘ Estimated Values ‘ Standard Error
01 —10.78 1.75
02 0.174 0.031
03 0.186 0.279

We notice that the estimated standard error for parameter 05 is large
compared with the value of 83, leading us to suspect that 63 is not significantly
different from 0.
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Testing Nested Models Let us compare this model with two particular nested
models. The first one corresponds to the model using the logit link function
when 03 = 1, and the second one to the model using the cloglog link function
when 63 = 0.

Model We consider the following two models:

exp(n(z, 0))

)= —20 7 6.19
P ) = T expla. ) (649
based on the logit link model, and

p(x,ﬂ) =1—exp (7 eXP(U(%@))) ’ (620)

based on the cloglog link model. The function 7n(x,#) is linear in log(x) (see
Equation (6.17)).

Method The parameters are estimated by minimizing the deviance D(0); see
Equation (6.8).

Results Under the hypothesis that the link function is the logit function, we
get the following results:

Parameters ‘ Estimated Values ‘ Standard Error
01 —14.81 1.29
() 0.249 0.021

Under the hypothesis that the link function is the cloglog function, we get

Parameters ‘ Estimated Values ‘ Standard Error
01 —-9.75 0.82
0o 0.155 0.013

To compare the models defined by Equations (6.17), (6.19), and (6.20),
we use the likelihood ratio test described in Section 6.5 for nested models.
The values of the minimum deviance are:

| Model (6.17) | Model (6.19) | Model (6.20)
Deviance : D(6) | 819 | 12.5 | 8.37

The test statistic for testing that the model is defined by Equation (6.19)
against that the model is defined by Equation (6.17) equals 4.31, which must
be compared to 3.84, the value of the 0.95 quantile of a x? with one degree
of freedom. We thus conclude that the model based on the logit link function
is rejected. In contrast, there is no reason to reject the model based on the
cloglog link function because the difference in the deviance functions equals
0.18, which is smaller than 3.84. Therefore, to calculate a confidence interval
for the LD90, we will consider model (6.20).
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Confidence Interval Based on the Likelihood Ratio Test The LD90 is defined
as the dose of CSy such that the probability of a beetle dying equals 0.9.
Namely, considering model (6.20), the LD90 is defined as follows:

log (—1og(0.1)) — 64
0o '

LD90 =

To calculate a confidence interval using the likelihood ratio test statistic, we
have to introduce LD90 into the model of the probability function p(z,0) as
a parameter to estimate.

Model Doing so, we get the following model:

logl LD = log(—1 1 1 21
cloglog (p( LD90, ) = log(~ log(0.1)) — falog (1355) - (6:21)
Result
Parameters ‘ Estimated Values ‘ Standard Error
LD90 68.11 0.705
02 9.57 0.78

As explained in Section 3.5.1, we calculate a 95% confidence interval for
LD90 by calculating the set of values ¢ such that the likelihood ratio test at
level 5% of hypothesis Hy: LD90 = ¢, against the alternative A that there is
no constraint on the parameters is not rejected. R

For each ¢, the test statistic equals the difference between Dy, = D(6y,), the
minimum deviance under the constraint Hy, and D(é\) = 8.37 the minimum
deviance under the alternative A. Hypothesis Hy is rejected if Dy — D(é) is
greater than 3.84. The variations of Dy —D(g) versus £ are shown in Figure 6.5.
The horizontal line represents the threshold value equal to 3.84. The estimated
confidence interval with level 95% equals [66.8; 69.6] and is represented by the
two vertical segments.

6.6.4 Mortality of Confused Flour Beetles 2: Comparison of
Curves and Confidence Intervals for the ED50

Model The observations Y;; are binomial variables with probability function
p(x,t,0) modeled as

p(l‘,t,e) :H(Ivtag) ( 79)
H(x,t,0) = (1+exp(—¥0 92 log(ac))) L(1 + exp(f3 — 04 1log(t)))~?
(6.22)

Method The parameters are estimated by minimizing the deviance D(0); see
Equation (6.8).
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~

Figure 6.5. Beetles example: Values of the deviance test statistic D, — D(0) when
the parameter LD90 equals /¢

Results Under the hypothesis that the link function is the logit function, we
get the following results:

Parameters Estimated Values Standard Error
oM 5.10 1.48
oM 3.68 0.97
oM 2.69 0.22
oM 2.70 0.19
oF 2.47 0.66
oF 2.50 0.48
oF 4.03 0.35
oF 3.47 0.28

The minimum deviance D(f) equals 102.65.
Making Comparisons Fitting the same model to both male and female data
sets produced a deviance of 129.13. The likelihood ratio test statistic of the
hypothesis that 8 does not vary with gender is then 129.13 — 102.65 = 26.48,
to be compared to the quantile of a x? distribution on four degrees of freedom.
The hypothesis is rejected.

We can investigate the difference further by assuming that only (61,02)
does not vary with gender. The residual deviance is then 117.41, showing a
significant effect of gender on (61, 6).
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Conversely, if we assume that only (03,6,) does not vary with gender, the
residual deviance is 114.60, suggesting that the distribution of time to death
differs between the genders.

Frequently one might expect 637 = ¥ which is commonly called par-
allelism if the survival distributions are identical. In this example, we will
test whether the two logistic nonlinear curves can be taken to be comparable
by computing the likelihood ratio test statistic of the parallelism hypothesis:
103.99—-102.65 = 1.34. This number must be compared to 3.84, the 0.95 quan-
tile of a x? with one degree of freedom; the hypothesis is not rejected. Then
the mean effective dose ED50 may be used to provide a comparison between
males and females.

Estimates of the ED50 We can compute an estimate of the ED50, the dose
corresponding to 50% mortality. The ED50 for day ¢ = 13 is obtained by
solving the following equation:

0.5="Y p(log(ED50), t1,0),
k<13

which yields

log(ED50) = —gi(é} +log(2F (t13) — 1)), (6.23)
2

where F(t) = (1 + exp(fs — 04 log(t))) .
Confidence Interval for log(ED50) Based on the Wald Test

‘ log ED50 ‘ Standard Error ‘ 1) N ‘
Males —1.34 0.068 [—1.477, —1.210]
Females —1.023 0.078 [-1.176, —0.870]

The ratio of the two effective doses, p = ED50F /ED50M | is termed the
susceptibility ratio. We can calculate a Wald-type confidence interval of the
susceptibility ratio:

~

p ‘ Standard Error ‘ fN ‘
1.38 | 0.13 | [1.15, 1.65] |

The interval does not contain 1; males are more susceptible to the insec-
ticide as they have a lower ED50.

Confidence Interval for log(ED50) Based on the Likelihood Ratio Test To
calculate a confidence interval using the likelihood ratio test statistic, we have
to introduce E D50 into the modeling of p(z,t, ) as a parameter to estimate.

Model

p(xat79) :H(I7t’0)7H(x7t7170)’ } (6 24)
H(z,t,6) = F(t) {1+ (2F(t13) — 1) exp(~0a log(x/ED50))} " f * (©

where F(t) = (1 + exp(f3 — 04 log(t)))~!.
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Result
Parameters Estimated Values Standard Error
log ED50M —1.34 0.07
o 2.82 0.43
0:15” 2.70 0.22
oM 2.72 0.19
log ED50F —1.02 0.08
6F 2.82 0.43
95 4.02 0.35
oF 3.46 0.28

The likelihood ratio interval with level 95% equals [—1.474 — 1.208] for the
males and [—1.171 — 0.851] for the females.

6.6.5 Germination of Orobranche: Estimating Overdispersion
Using the Quasi-Likelihood Estimation Method

Let us estimate the parameters under the binomial linear model.

Model The observations are binomial variables, Y;; ~ B(Nj;, p(x;,6)), where
x; = (S;, E;) and the probability function is as

logit (p(Si, E;, 0)) =0p+615; + 0:FE; + 035, E;. (625)

Method The parameters are estimated by minimizing the deviance D(0); see
Equation (6.8).

Results
Parameters ‘ Estimated Values ‘ Standard Error
fo —0.558 0.126
01 0.146 0.223
0 1.318 0.177
03 —0.778 0.306

Goodness-of-Fit Test As already noted in Section 6.1.5, the model defined by
Equation (6.25) corresponds to the saturated model in a 2 x 2 factorial exper-
iment. Because for each modality of the explanatory variables x; = (.S;, E;),
we have several replications, we can test hypothesis H that this model is cor-
rect against alternative A that the observations are binomial variables with
parameters (N;;, p;;). Under A, the p;; are estimated as the empirical frequen-
cies m;; = Y;;/N;;. We apply the goodness-of-fit test described in Section 6.5
though some of the IV;;s are small. The minimum deviance under hypothesis

~

H, D(0), equals 33.27. This value must be compared to 27.59, the value of
the 0.95 quantile of a x? with 17 degrees of freedom. We conclude by reject-
ing hypothesis H. Because it is not possible to improve the model defined by
Equation (6.25), we conclude that the data are overdispersed, and we present
the parameter estimation under various modelings of the variance function.
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Modeling the Variance Function First we consider the case where the variance
function is proportional to the variance of a binomial variable.

Model The observations Y;; satisfy the following two equations:
E(Y;) = Nz_]p(xz70)7 (6 26)
Va’r()/l]) = UZNijp(xiv 9) (1 - p(ﬂf“ 0)) ’ .
where p(z;,0) is defined by Equation (6.25).

Method The estimation of the parameters 6 is done as in the binomial case.
The parameter o2 is estimated by the residual variance; see Equation (6.11).

Result The residual variance 52 equals 1.51. The estimated standard errors for
the parameters 6 are obtained by multiplying the estimated standard errors
under the binomial model by &:

Parameters ‘ Estimated Values ‘ Standard Error
0o —0.558 0.155
01 0.146 0.234
0 1.318 0.218
03 —0.778 0.376

Secondly, we consider the cases where the variability in the probability
function is modeled.

Model The observations Y;; satisfy the following two equations:

E(Yi;) = Nijp(zi,0),
Var(Y;;) = Nyjp(zi,0) (1 — p(x;,0)) [1 + 7(Ni; — 1)] } ) (6.27)

where p(x;, 0) is defined by Equation (6.25). When N;; = N foralli=1,...,k
and j = 1,...,n,, this model is the same as the preceding model.

Method The parameters 6 and 7 are estimated using the quasi-likelihood
method described in Section 6.4.2.

Results
Parameters Estimated Values Standard Error
0o —0.541 0.164
01 0.096 0.223
0 1.320 0.177
03 —0.798 0.306
T 0.0126 0.012

The following model is based on the assumption that the observations are
distributed as a beta-binomial variable.

Model The observations Y;; satisfy the following two equations:

E(YQ) = Nijp(l’i79),
Var(Y;;) = Nijp(zi,0) (1 — p(z;,0)) [1 + 7:(Nij — 1)) } ) (6.28)

where p(xz;,0) is defined by Equation (6.25).
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Method The parameters 6 and 7 = (11, ..., 7;) are estimated using the quasi-
likelihood method described in Section 6.4.2.
Results
Parameters Estimated Values Standard Error

0o —0.538 0.177

01 0.087 0.286

0 1.314 0.239

03 —0.743 0.371

T 0.0177 0.023

Ty 0.0102 0.017

T3 0.0161 0.035

T4 0.0016 0.021

Finally, we consider the model based on the assumption that the linear
predictor is a Gaussian random variable.

Model The observations Y;; satisfy the following two equations:

E(Yi;) = Nijp(wi, 0), }
Var(Yy;) = Nijp(@i, 0) (1 — p(z:,0)) [1 + 7(Nij — )p(zi,0) (1 — p(a, 9)()] )
6.29

where p(z;,0) is defined by Equation (6.25).

Method The parameters § and 7 are estimated using the quasi-likelihood
method described in Section 6.4.2.

Results
Parameters Estimated Values Standard Error
0o —0.540 0.164
01 0.095 0.273
0 1.319 0.234
03 —0.800 0.380
T 0.055 0.051

Confidence Interval for the Parameter of Overdispersion

Looking at the results, the overdispersion does not seem to be significant
in this data set. To appreciate if this is indeed the case, let us calculate a
confidence interval for 7 in the model defined by Equation (6.27).

Calculation of a Confidence Interval for T Using the Wald Statistic

Standard calculations lead to the following result:

7 S | voors | Iy
0.0126 | 0.0117 | 1.96 | [~0.0103, 0.0355]
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Calculation of a Confidence Interval for T Using the Bootstrap Method

We calculate a bootstrap confidence interval for 7 exactly as we did in Sec-
tion 3.5.1 for the parameter 3.
We get the following result, based on B = 500 bootstrap simulations:

T ‘ S ‘ bo.o25 ‘ b0,975‘ Is
0.0126 | 0.0117 | —4.225 | 0.815 | [0.00305, 0.0621]

The bootstrap interval does not contain 0, while the confidence interval
based on the Wald test does contain 0. We are thus led to conclude that the
overdispersion is light but significant.

6.7 Using nls2

This section reproduces the commands and files used in this chapter to analyze
the examples using nls2. For each example, we first create the data frame to
store the experimental data, then we estimate the parameters using the quasi-
likelihood method.

Assay of an Insecticide with a Synergist
Creating the Data

The experimental data (see Table 6.1, page 154) are stored in a data frame
called insect:

y <- c(7, 59, 115, 149, 178, 229, 5, 43, 76, 4, 57, 83, 6, 57, 84)
n <- c(100, 200, rep(300,4), rep(100,9))

DI <- c(4, 5, 8, 10, 15, 20, 2, 5, 10, 2, 5, 10, 2, 5, 10)

DS <- c(rep(0,6), rep(3.9,3), rep(19.5,3), rep(39,3))

insect <- data.frame(y=y,n=n,DI=DI,DS=DS)

vV V. V V VvV

Parameter Estimation by Minimizing the Deviance Function

We describe the model given by Equation (6.14), page 167, in a file called
insect.m:

% file insect.m
% logistic non-linear regression model
% with binomial distribution

resp y;

var v;

varind DI,DS,n;
aux eta,p;

parresp t1,t2,t3,t4,t5;
subroutine;
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begin
eta = t1+t2x1log(DI-t3)+t4*DS/(t5+DS);
p=exp(eta)/(1+exp(eta));

y = nxp;
v = nx(1-p)*p;
end

To find reasonable starting values for the parameters, we make a binomial
linear regression using the function glm in S-Plus. Namely, we model the linear
predictor n as follows:

n(z,0) = p1 + P2log(I) + B35.

> insect.glm <- glm(formula = cbind(y,n-y) ~ log(DI) + DS,
family=binomial)

Then we call n1s2 using its arguments as follows:

e The argument method—because minimizing the deviance D(6) is equiva-
lent to solving the quasi-likelihood equations, we will use nls2 by setting
the argument method to the value "QLT".

e The argument stat.ctx—it should be noted that in a binomial model,
the variance function can be written as follows:

var(Yi;) = o2g(xi, Nij; 0,7)

with 02 = 1 and g(x;, Nij;0,7) = Nijp(xi,0) (1 — p(x,0)). Therefore we
have to use the components sigma2.type and sigma2 of the argument
stat.ctx that describes the statistical context of the analysis. By setting
sigma2.type to the value "KNOWN" and sigma2 to the value 1, we specify
that o2 is known and equal to 1. Therefore o2 will not be estimated by
the residual variance, but will stay fixed to the value 1 throughout the
estimation process.
Moreover, the calculations of the maximum likelihood, the minimum de-
viance, and the deviance residuals will be done only if the component
family is set to the value "binomial" and if the component nameN con-
tains the name of the variable NV in the data frame containing the data.
e The argument model—the model defined by Equation (6.14) implicitly
assumes that the parameter 03 is smaller than 2, the smallest value of
the dose of insecticide, and that the parameter 05 is positive. These con-
straints on the parameters are specified using the components sup.theta
and inf.theta of the argument model:

> ctx <- list(theta.start=c(insect.glm$coeff[1:2],0,
insect.glm$coeff[3],1),
sigma2.type="KNOWN", sigma2=1,
family="binomial", nameN="n")
> mod <- list(file="insect.m",
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sup.theta=c(NaN,NaN,2,NaN,NaN),
inf .theta=c(NaN,NaN,NaN,NaN,0))
> insect.nll <- nls2( insect, mod, stat.ctx=ctx, method="QLT")

Then we display the result of the estimation process (see page 168):

> cat( "Result of the estimation process:\n ")
> print(summary(insect.nll))

The logarithm of the likelihood for binomial data and the minimum de-
viance (see Equation (6.8) and Section 6.4.1) are given, respectively, by the
components log.binomial and deviance of the output argument of nls2.
Besides, the deviance residuals defined by Equation (6.15) and the Pearson
residuals are given by the components dev.residuals and s.residuals. The
X2 of Pearson defined as X2 = Y5 2751 (€35)? is the residual sum of squares
and is given by the component rss:

> cat( "\nValue of the log-likelihood:\n ")

> print(insect.nli$log.binomial)

> cat( "\nvalue of the minimum deviance:\n ")
> print(insect.nli$deviance)

> cat( "\nDeviance residuals:\n ")

> print(insect.nli$dev.residuals)

> cat( "\nvalue of the X2 of Pearson:\n ")

> print(insect.nli$rss)

> cat( "\nPearson residuals:\n ")

> print(insect.nli$s.residuals)

Graphics for Diagnostic

The graphics of fitted probabilities versus the observed frequencies and the
graphics of residuals are done using the plot functions of S-Plus (see Fig-
ures 6.2 and 6.3):

> freq <- insect$y/insect$n

> proba <- insect.nll$response/insect$n

> plot( proba, freq, las=1,
xlab="observed frequency",ylab="fitted probability")

> abline(0,1)

> par (mfrow=c(1,2))

> plot( proba, insect.nll$dev.residuals,
ylab="deviance residuals", xlab="fitted probability",
type="n"

> text( proba, insect.nll$dev.residuals,
labels=insect$DI)

> plot( proba, insect.nll$s.residuals,
ylab="Pearson residuals", xlab="fitted probability",
type="n"

> text( proba, insect.nll$s.residuals,
labels=insect$DS)
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Confidence Interval for log(y(I)) Based on the Wald Test

For each value of I, we calculate the confidence interval I, A using the func-
tion confidence. We display the estimated values of log(1(I)) and Iy (see
page 169).

First, the function log(¢(I)) is described in a file called oddsRatio.m:

% file oddsRatio.m

% log-odds ratio as function of I
psi logpsi;

ppsi t2,t3;

varpsi I;

subroutine;

begin
logpsi=t2*log((2%¥I-t3)/(I-t3));
end

Then we apply the function confidence and display the results:

> I <- sort(unique(DI))

> loadnls2(psi="")

> ConfInt.logPsi <- confidence.nls2( insect.nll, file="oddsRatio.m",
varpsi = I)

Int <- cbind(ConfInt.logPsi$psi, ConfInt.logPsi$normal.conf.int)

cat("Estimated values of the log odds ratio:\n")

print (cbind(I,Int[,1]1))

cat("95% Confidence Interval for the log odds ratio:\n")

print (Int[,2:3])

V V. V V V

Finally, we get a confidence interval for ¥ (I), taking the exponential of the
confidence interval for log(¢(I)):

> Int <- cbind(I,exp(Int))

> dimnames(Int) <- list(NULL,c("I","Psi","Inf.Psi","Sup.Psi"))
> cat("Estimated values of the odds ratio:\n")

> cat("and Confidence Interval:\n")

> print(Int)

Vaso-Constriction in the Skin of the Digits

Binary data are treated in the same way as binomial data. Because for all 4
and j, N;; = 1, the values of the N;;s are not required.

Creating the Data

The experimental data (see Table 6.2, page 155) are stored in a data frame
called vaso:

> vol <- c(
3.70, 0.80, 0.90, 0.60, 3.20, 0.40, 1.60, 1.90, 1.10,
0.95, 3.50, 0.70, 0.90, 1.40, 0.85, 0.95, 0.60, 1.60,
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1. 0 1.25, 0.60, 0.80, 0.75, 1.70, 1.35, 1.80,
2.70, 1.20, 1.30, 0.75, 1.10, 0.55, 2.30, 1.80, 1.50,
2 0

0.95, 35, 0.80)

> rate <- c(
0.825, 3.200, 0.750, 3.000, 1.600, 2.000, 1.780, 0.950,
1.830, 1.900, 1.090, 3.500, 0.450, 2.330, 1.415, 1.360,
1.500, 0.400, 2.200, 1.900, 2.500, 0.750, 0.570, 3.750,
1.060, 1.350, 1.500, 0.750, 2.000, 1.625, 1.500, 1.700,
2.750, 1.640, 1.800, 1.360, 1.900, 0.030, 3.330)

>y <= c(
1, 1, 0, 0, 1, 0, 1, 1, 0, O, 1, 1, O, 1, 1, O, O, O, 1,
o, 1, 0,0,1,0,0,1,1,1, 1,1, 0, 0, 1, 1, 0, O, 0,1)

> vaso <- data.frame(vol=vol,rate=rate,y=y)
Description of the Model

The linear logistic regression model defined in Equation (6.16), page 171, is
described in a file called vaso.m:

% file vaso.m

% linear logistic regression model
h

resp y;

varind vol,rate;

aux eta,p;

var v;

parresp t0,t1,t2;

subroutine;

begin
eta=tO0+t1xlog(vol)+t2xlog(rate) ;
p=exp(eta)/(1+exp(eta));

y=p;

v = (1-p)*p;

end

Then we call n1s2 using the arguments method and stat.ctx as described
earlier (see page 181). The component family of the argument stat.ctx is set
to the value "bernoulli". We display the estimated values of the parameters,
their asymptotic standard errors, and the minimum deviance (see page 171):

> ctx <- list(theta.start=rep(0,3), sigma2.type="KNOWN", sigma2=1,
family="bernoulli")

vaso.nll <- nls2(vaso, "vaso.m", ctx, method="QLT")

cat( "Result of the estimation process:\n ")

print (summary(vaso.nll))

cat( "\nvalue of the minimum deviance:\n ")

print(vaso.nll$deviance)

vV V. V V VvV
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Likelihood Ratio Test of H: 01 = 0y Against A: 01 # 05

We estimate the parameters under the constraint that 6; = 65 and calculate
the corresponding minimum deviance. Then we display the estimated values of
the parameters, their asymptotic standard errors, and the minimum deviance.
We display the test statistic Sy, (see Equation (6.12), page 167) and the 0.95
quantile of a x? with one degree of freedom with which it should be compared
(see page 172):

> model <- list(file="vaso.m", eqp.theta=c(1,2,2))
> vaso.nl2 <- nls2(vaso, model, ctx, method="QLT")
> cat( "Result of the estimation process\n ")
> cat( "under the hypothesis A ‘‘t1=t2’’:\n ")
> print (summary(vaso.nl2))
> cat( "\nvalue of the minimum deviance\n ")
> cat( "under the hypothesis A ‘‘t1=t2’’:\n ")
> print(vaso.nl2$deviance)
> cat( "SL:",
(vaso.nl2$deviance - vaso.nli$deviance),
"X2(0.95,1):", qchisq(0.95,1), "\n\n")

Mortality of Confused Flour Beetles
Creating the Data

The experimental data (see Table 6.3, page 156) are stored in a data frame
called beetles:

> €S2 <- c(

49.06, 52.99, 56.91, 60.84, 64.76, 68.69, 72.61, 76.54)
>y<—c(

2, 7, 9, 14, 23, 29, 29, 29, 4, 6, 9, 14, 29, 24, 32, 31)
>n <- c(

29, 30, 28, 27, 30, 31, 30, 29, 30, 30, 34, 29, 33, 28, 32, 31)
> beetles <- data.frame(CS2=rep(CS2,2), y=y, n=n)

Estimating the Link Function

The model defined at Equation (6.17), page 172, is described in a file called
beetles.m:

% file beetles.m

%  General link function
resp y;

varind CS2,n;

aux p, eta;

var v;

parresp t1,t2,t3;
subroutine;
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begin
eta = t1 + t2xCS2;
p = 1-exp(-(log(1+t3*exp(eta))/t3));

y = nxp;
v = nx(1-p)*p;
end

We estimate the parameters using nls2, as described at page 181, for
the example with insecticide and synergists. We first estimate the parameters
under the constraint that #5 = 1 using the component eq.theta of the ar-
gument model. Then we estimate the parameters without any constraint on
3. We display the parameters and the corresponding minimum deviance (see
page 172):

ctx <- list(theta.start=c(0,0,1), sigma2.type="KNOWN", sigma2=1,
family="binomial", nameN="n"))

model <- list(file="beetles.m",eq.theta=c(NaN,NaN,1))

beetles.nll <- nls2(beetles, model,ctx,method="QLT")

cat( "\nResult of the estimation process:\n ")

print (summary(beetles.nll))

cat( "\nvalue of the minimum deviance:\n ")

print(beetles.nli$deviance)

ctx$theta.start <- beetles.nli$theta

beetles.nl2 <- nls2(beetles, "beetles.m", ctx, method="QLT")

cat( ":\nLogit model:\n")

cat( "Result of the estimation process:\n")

print (summary (beetles.nl2))

cat( "\nvalue of the minimum deviance:\n ")

print (beetles.nl2$deviance)

V V V V V V V V VYV YVVVVYV

Testing Nested Models

Though the cloglog model is nested in the general model defined by Equa-
tion (6.17), it cannot be described by the constraint 3 = 0. Therefore it is
necessary to use the file called beetles.mw to describe it:

% file beetles.mw
% weibull regression model
resp y;

varind CS2,n;

aux p, eta;

var v;

parresp t1,t2;
subroutine;

begin

eta = tl1 + t2% CS2;
p=1-exp(-exp(eta));
y = n*p;

v = n*x(1-p)*p;

end
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We estimate and display the parameters and the corresponding minimum
deviance (see page 173):

V V.V V V V VvV

ctx$theta.start <- c(0,0)

beetles.nl3 <- nls2(beetles, "beetles.mw",ctx,method="QLT")
cat( ":\ncloglog model:\n")

cat( "Result of the estimation process:\n")

print (summary (beetles.nl3))

cat( "\nvalue of the minimum deviance:\n ")
print(beetles.nl3$deviance)

We calculate and display the test statistic Sp (see Equation (6.12),

page

167) for each hypothesis we want to test: first to test that the model

is the logit model and second to test that the model is the cloglog model.
The 0.95 quantile of a y? with one degree of freedom, with which it should be
compared, is displayed:

V V.V V V V VvV
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cat( "\nvalue of the minimum deviance\n ")
cat( "under the general hypothesis:\n ")
print(beetles.nli$deviance)
cat( "\nvalue of the minimum deviance\n ")
cat( "under the logit hypothesis:\n ")
print(beetles.nl2$deviance)
cat( "SL:",
(beetles.nl1$deviance - beetles.nl2$deviance),
"X2(0.95,1):", qchisq(0.95,1), "\n\n")
cat( "\nvalue of the minimum deviance\n ")
cat( "under the cloglog hypothesis:\n ")
print(beetles.nl3$deviance)
cat( "SL:",
(beetles.nli$deviance - beetles.nl3$deviance),
"X2(0.95,1):", qchisq(0.95,1), "\n\n")

Confidence Interval for the LD90

To calculate the confidence interval based on the log-likelihood ratio, first we
have to plug the LD90 into the cloglog model as a parameter to estimate (see
Equation (6.21), page 174). The file called beetles.mLD90 describes the new
parameterization of the cloglog model:

% file beetles.mLD90

% weibull regression model

% new parametrisation : t2, LD90
resp y;

varind CS2,n;

aux p, eta;

var v;

parresp LD90,t2;

subroutine;
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begin
eta = log(-log(0.1))+ t2* (CS2 - LD90);
p=1-exp(-exp(eta));

y = nxp;
v = nx(1-p)*p;
end

Then we carry out the calculations done on page 174 and shown in Fig-
ure 6.5. The function conflike dealing with Gaussian errors cannot be used
for binomial likelihood:

V V. V V V
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ctx$theta.start <- c¢(70,0.2)
beetles.nld4 <- nls2(beetles, "beetles.mLD90", ctx, method="QLT")
LD90 <- beetles.nl4$thetal1]
cat ("Estimated value of LD90O:", LD90,"\n" )
cat ("Estimated value of S:",
summary (beetles.nl4)$std.error[1],"\n")
se.LD90 <- summary(beetles.nl4)$std.error[1]
grid <- seq(LD90-3*se.LD90,LD90+3*se.LDI0, length=50)
Diff <- rep(0,length(grid))
for (1 in 1:length(grid)) {
ctx$theta.start <- c(grid[1l],beetles.nl4$thetal2])
model <- list(file="beetles.mLD90", eq.theta=c(grid[1l],NaN))
Diff[1] <- nls2(beetles, model, ctx, method="QLT")$deviance
}
indl <- 1:(length(grid)/2)
ind2 <- (length(grid)/2):length(grid)
LD90Inf <- approx( Diff[indl]-beetles.nl3$deviance,
grid[ind1], xout=3.84)$y
LD90Sup <- approx( Diff[ind2]-beetles.nl3$deviance,
grid[ind2] ,xout=3.84)8$y
cat ("\n95% Confidence Interval:\n",
print (cbind (LD90Inf,LD90,LD90Sup))

Mortality of Confused Flour Beetles 2

Creating the Data The experimental data (see Table 6.4, page 158) are stored
in a data frame called fbeetles:

>
>
>
>

dose <- c(rep(0.2,13), rep(0.32,13), rep(0.5,13), rep(0.8,13))
tps <- rep(1:13,4)
curves <- c(rep("M",52), rep("F",52))

y <- c(38, 11, 10, 7, 4, 3, 2, 1, 0, 0, O, 1, 1,
7, 10, 11,16, 3, 2, 1, rep(0,6),
5, 8, 11,15, 4, 2, 1, 1, rep(0,5),
4, 10, 8,14, 8, 2, 1, 0, 0, 1, 0, 0, O,
0, 2, 4, 8,9, 3, rep(0,7),
1, 5, 11,10, 5, 1, 0, 1, rep(0,5),
o, 4, 6,6,3,1,1,4,0,0,0,1,1,
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2, 7,15, 9, 3, 4, 1,1, 0, 1, 0, 0, O
> n <- c(rep(144,13), rep(69,13), rep(54,13), rep(50,13),
rep(152,13), rep(81,13), rep(44,13), rep(47,13))
> fbeetles <- data.frame( logd=log(dose),
y=y, n=n, tps=tps, curves=curves)

Description of the Model The model defined in Equation (6.22), is described
in a file called fbeetles.m:

% file fbeetles.m

resp y;

var v;

varind logd,tps,n;

aux eta,Fplus,Fmoins,p;
parresp t1,t2,t3,t4;

subroutine;
begin
eta = - (t1l+t2xlogd);

Fplus=1/(1+exp(t3-t4*log(tps)));

Fmoins= if tps==1 then 0
else 1/(1+exp(t3-t4*log(tps-1)))
fi;

p=(Fplus-Fmoins)/(1+exp(eta));

y = n*p;

v = n*(1-p)*p;

end

We estimate the parameters using nls2, as described at page 181 for the
example with insecticide and synergists. The results of the estimation are
stored in the structure called fbeetles.nll:

> ctx <- list(theta.start=rep(c(4.5,3,2.5,3),2),
sigma2.type="KNOWN", sigma2=1,
family="binomial", nameN="n")

> fbeetles.nll <- nls2(fbeetles, "fbeetles.m", ctx, method="QLT")

> cat("\n Result of the estimation process: \n")

> print (summary(fbeetles.nll))

> cat("\n value of the minimum deviance: \n")

> print(fbeetles.nli$deviance)

Comparison of Curves We calculate the likelihood ratio statistics correspond-
ing to each test (see page 175). Estimation under each hypothesis is done by
setting equality constraints on a subset of the parameters using the component
eqp.theta of the argument model:

model <- list(file="fbeetles.m", eqp.theta=c(1,2,3,4,1,2,3,4))
fbeetles.nl2 <- nls2(fbeetles, model, ctx, method="QLT")
model$eqp.theta <- ¢(1,2,3,4,1,2,5,6)

fbeetles.nl3 <- nls2(fbeetles, model, ctx, method="QLT")
model$eqp.theta <- ¢(1,2,3,4,5,6,3,4)

fbeetles.nl4 <- nls2(fbeetles, model, ctx, method="QLT")

V V. V V Vv V
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> model$eqp.theta <- ¢(1,2,3,4,5,2,6,7)
> fbeetles.nlb5 <- nls2(fbeetles, model, ctx, method="QLT")

To test the equality of the two curves, we compare the test statistic to the
0.95 quantile of a y? with four degrees of freedom:

> cat("SL:", (fbeetles.nl2$deviance - fbeetles.nli$deviance),
"X2(0.95,4):", qchisq(0.95,4),"\n\n")

To test the hypothesis that (61, 62) does not vary with gender, we compare
the test statistic to the 0.95 quantile of a x? with two degrees of freedom:

> cat("SL:", (fbeetles.nl3$deviance - fbeetles.nli$deviance),
"X2(0.95,2):", qchisq(0.95,2),"\n\n")

To test the hypothesis that (3, 64) does not vary with gender, we compare
the test statistic to the 0.95 quantile of a x? with two degrees of freedom:

> cat("SL:", (fbeetles.nl4$deviance - fbeetles.nli$deviance),
"X2(0.95,2):", qchisq(0.95,2),"\n\n")

To test the hypothesis that 03/ = 65 | we compare the test statistic to the
0.95 quantile of a x? with one degree of freedom:

> cat("SL:", (fbeetles.nl5$deviance - fbeetles.nli$deviance),
"X2(0.95,1):", qchisq(0.95,1),"\n\n")

Wald Confidence Interval for the ED50 We describe log ED50M and log E D50
as functions of the parameters in two files fED50.mM and £ED50 .mF (see Equa-
tion (6.23) page 176):

% file fED50.mM

psi logpsi;

ppsi til_cl,t2_c1,t3_cl,t4_ci;
varpsi tps;

aux F,X;

subroutine;

begin
F=1/(1+exp(t3_c1l-t4_clxlog(tps)));
X=2*xF-1;

logpsi= (-t1l_cl-log(X))/t2_c1;
end

% file fED50.mF

psi logpsi;

ppsi tl_c2,t2_c1,t3_c2,t4_c2;
varpsi tps;

aux F,X;

subroutine;

begin
F=1/(1+exp(t3_c2-t4_c2*xlog(tps)));
X=2xF-1;

logpsi= (-t1_c2-log(X))/t2_cl;
end
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The function confidence is applied to the structure fbeetles.nl5, which
contains the results of estimation under the hypothesis 637 = 65 and the
confidence intervals for log(FD50) are displayed:

> loadnls2(psi="")
> temps <- unique(fbeetles$tps)
> ED50.conf.13M <- confidence.nls2( fbeetles.nl5,
file="fED50.mM", varpsi=temps[13])

> ED50.conf.13F <- confidence.nls2( fbeetles.nl5,

file="fED50.mF", varpsi=temps[13])
cat("\n Estimated value and standard error \n")
cat(" of the log ED50 for the males: \n")
print (c (ED50.conf.13M$psi,ED50. conf.13M$std.error))
cat("95% confidence interval of the log ED50 for the males: \n")
print (ED50.conf . 13M$normal . conf . int)
cat("\n Estimated value and standard error \n")
cat("of the log ED50 for the females: \n")
print (c(ED50. conf . 13F$psi,ED50.conf.13F$std.error))
cat("95) confidence interval of the log ED50 for the females: \n")
print (ED50.conf.13F$normal.conf.int)

Wald Confidence Interval for the Susceptibility Ratio We describe logp =
log(ED50" /ED50M) as a function of the parameters in a file fratio.m:

V VV V V V V V V.V

% file fratio.m

psi logpsi;

ppsi tl_cl,t2_cl,t3_cl,t4_cl,tl1_c2,t3_c2,t4_c2;
varpsi tps;

aux FM,XM,FF,XF;

subroutine;

begin

FM=1/(1+exp(t3_cl-t4_cl*log(tps)));

XM=2*FM-1;

FF=1/(1+exp(t3_c2-t4_c2*log(tps)));

XF=2%FF-1;

logpsi= (-t1_c2-log(XF))/t2_cl + (tl_cl+log(XM))/t2_cl ;
end

Then we apply the function confidence:

> ratio.conf.13 <- confidence.nls2( fbeetles.nl5,
file="fratio.m", varpsi=temps[13])

Finally, we obtain a confidence interval for p by taking the exponential of
the confidence interval for log p (see page 176):

> cat("\n Estimated value of the susceptibility ratio \n")

> print(c(exp(ratio.conf.13$psi),
exp(ratio.conf.13$psi)*ratio.conf.13$std.error))

> cat("95)% confidence interval of the susceptibility ratio: \n")

> print(exp(ratio.conf.13%$normal.conf.int))
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hood Ratio Confidence Interval for the ED50 To calculate the confidence

intervals based on the log-likelihood ratio, we must first plug the ED50 into
the model as a parameter to estimate, according to Equation (6.24) page 176.
The file called fbeetles.mED50 describes the model with the new parameter-
ization:

h
h

re

file feetles.mED50
new parametrisation : log(ED50), t2, t3, t4

Sp Ys

var v;
varind logd,tps,n;

aux eta,Fplus,Fmoins,p,F13;
parresp 1lED,t2,t3,t4;
subroutine;

be
F1
et

Fp

gin

3 = 1/(1+exp(t3-t4d*log(13)));

a = - t2x(logd-1ED)+log(2*F13-1);
lus=1/(1+exp(t3-t4*log(tps)));

Fmoins= if tps==1 then O

p=
y
v

else 1/(1+exp(t3-t4*xlog(tps-1)))
fi;

(Fplus-Fmoins)/(1+exp(eta));

= n*p;

= nx(1-p)*p;

end

Then we carry out similar calculations, as for Example 6.1.3 when calcu-
lating a confidence interval for the LD90 (see page 187) successively for males
and females:

VV V VVVVVVVVVVVYVVYVYV

ctx$theta.start <- c(-1.5,3,2.5,3),2)

model <- list(file="fbeetles.mED50", eqp.theta=c(1,2,3,4,5,2,6,7))
fbeetles.nl6 <- nls2(fbeetles, model, ctx, method="QLT")

cat("\n Result of the estimation process: \n")

print (summary(fbeetles.nl6))

ED50M <- fbeetles.nl6$thetal1]
se.ED50M <- summary(fbeetles.nl6)$std.error[1]
grid <- seq(ED50M-3*se.ED50M,ED50M+3*se.ED50M, length=50)
Diff <- rep(0,length(grid))
for (1 in 1:length(grid)) {
ctx$theta.start <- c(grid[1l],fbeetles.nl6$thetal[2:8])
model$eq.theta <- c(grid[1l],rep(NaN,7))
Diff[1] <- nls2(fbeetles, model, ctx, method="QLT")$deviance
}
ind1l <- 1:(length(grid)/2)
ind2 <- (length(grid)/2):length(grid)
ED50MInf <- approx( Diff[indl]-fbeetles.nl6$deviance,
grid[ind1], xout=3.84)$y
ED50MSup <- approx( Diff[ind2]-fbeetles.nl6$deviance,
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grid[ind2], xout=3.84)$y
cat("\n Likelihood Confidence interval for ED50M: \n")
cbind (ED50MInf ,ED50M, ED50MSup)

ED50F <- fbeetles.nl6$theta[5]
se.ED50F <- summary(fbeetles.nl6)$std.error[5]
grid <- seq(ED50F-3*se.ED50F,ED50F+3*se.ED50F, length=50)
Diff <- rep(0,length(grid))
for (1 in 1:length(grid)) {
ctx$theta.start=c(fbeetles.nl6$thetall:4],grid[1],
fbeetles.nl6$thetal[6:8])
model$eq.theta <- c(rep(NaN,4), grid[1l], rep(NaN,3))
Diff[1] <- nls2(fbeetles, model, ctx, method="QLT")$deviance
}
indl <- 1:(length(grid)/2)
ind2 <- (length(grid)/2):length(grid)
ED50FInf <- approx( Diff[ind1]-fbeetles.nl6$deviance,
grid[ind1], xout=3.84)$y
> ED50FSup <- approx( Diff[ind2]-fbeetles.nl6$deviance,
grid[ind2], xout=3.84)$y
> cat("\n Likelihood Confidence interval for ED50F: \n")
> cbind (ED50FInf ,ED50F ,ED50FSup)

V V.V V V V V VvV
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Germination of Orobranche

We first create the data frame to store the experimental data. Then we esti-
mate the parameters in the binomial linear model described in Equation (6.25)
using the function glm in S-Plus.

Creating the Data

The experimental data (see Table 6.5, page 159) are stored in a data frame
called orobranche:
>y <= c(
10, 23, 23, 26, 17, 5, 53, 55, 32, 46, 10, 8, 10, 8, 23, O,
3, 22, 15, 32, 3)
>n <~ c(
39, 62, 81, 51, 39, 6, 74, 72, 51, 79, 13, 16, 30, 28, 45, 4,
12, 41, 30, 51, 7)
> sp <- c( rep(0,11), rep(1,10))
> ex <- c( rep(0,5), rep(1,6), rep(0,5), rep(1,5))
> orobranche <- data.frame( y=y, n=n, sp=sp, ex=ex)

Estimating the Binomial Linear Model

First the data are fitted with the model described in Equation (6.25), page 177,
using the function glm in S-Plus. The results of the estimation are displayed,
and the minimum deviance is compared with the 0.95 quantile of a x? with
17 degrees of freedom:
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> orobranche.glm <- glm(cbind(y,n-y) ~ sp*ex, family=binomial)

> cat("\nEstimated parameters and standard errors:\n")

> print (summary (orobranche.glm)$coef)

> cat("\nvalue of the minimum deviance:", orobranche.glm$deviance,
"X2(0.95,17):", qchisq(0.95,17), "\n\n")

Introducing the Coefficient o2 in the Variance Function

We estimate the parameters in the model described in Equation (6.26) using
the function nls2. We describe the model in a file called orobranche.m1i:

% file orobranche.ml

% logistic linear regression model
% binomial variance

resp y;

varind sp,ex,n;

aux eta,p;

var v;

parresp a,b,c,d;

subroutine;

begin

eta=a + b*sp + c*ex + dksp*ex;
p=exp(eta)/(1+exp(eta));

y = n*p;
v = nx(1-p)*p;
end

Then we call nls2 using its arguments as follows.

The argument method is set to the value "QLT".

Because o2 is an unknown parameter that has to be estimated, the com-
ponents sigma2.type and sigma2 of the argument stat.ctx are set to
their default values.

The estimated parameters and their standard errors are displayed.

> orobranche.nlll <- nls2(orobranche, "orobranche.mi",
rep(0,4), method="QLT")

> cat( "Result of the estimation process:\n ")

> print (summary (orobranche.nl11))

Modeling the Variance Function as in Equation (6.27)

The model is described in a file called orobranche.m2:

% file orobranche.m2

% logistic linear regression model

% overdispersion : one parameter tau
resp y;

varind sp,ex,n;

aux eta,p;
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var v;

parresp a,b,c,d;

parvar tau;

subroutine;

begin

eta=a + bxsp + c*ex + d*spkex;
p=exp(eta)/(1+exp(eta));

Yy = n*p;
v = nx(1-p)*p*x(1+(n-1) *tau);
end

Then we call nls2 using its arguments as follows:

e The argument method. The parameters § and 7 are estimated by solving
the quasi-likelihood equations defined in Section 3.3.2. nls2 is used by
setting the argument method to the value "QLTB".

e The variance function can be written as follows:

var(Y;;) = 029<{L‘i, Nij;;0,7)

with 02 = 1. Therefore we have to use the components sigma2.type and
sigma?2 of the argument stat.ctx that describes the statistical context of
the analysis. By setting sigma2.type to the value "KNOWN" and sigma?2 to
the value 1, we specify that o2 is known and equal to 1. Therefore o2 will
not be estimated by the residual variance but will stay fixed to the value
1 throughout the estimation process:

> ctx <- list(theta.start=orobranche.nlli$theta,
beta.start=0,
sigma2.type="KNOWN", sigma2=1)
> orobranche.nl2 <- nls2(orobranche, "orobranche.m2", ctx,
method="QLTB")
cat( "Result of the estimation process:\n ")
> print (summary(orobranche.nl2))

4

Confidence Interval for T Using the Wald Test

We display the values of T, §, 1o.975, and TN:

tau <- orobranche.nl2$beta
Stau <- sqrt(orobranche.nl2$as.var[5, 5])
cat("Estimated value of tau:", tau,"\n" )
cat("Estimated value of S:", Stau,"\n" )
cat("nu_(0.975):", gqnorm(0.975),"\n" )
cat("Estimated value of In:",
c(tau-qnorm(0.975) *Stau,
tau+gnorm(0.975) *Stau)
,"\n" )

V V. V V Vv V
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Confidence Interval for T Using Bootstrap with Asymptotic Level 95%

To calculate the confidence interval I defined in Section 3.4.3, page 71, we
use the function bootstrap. Several methods of bootstrap simulation are pos-
sible. Here, we choose wild.2, which means that pseudoerrors are obtained
by multiplying the residuals by the independent random variables T defined
in Equation (3.15), page 72.

To initialize the iterative process of bootstrap, nls2 must be called with
the option renls2. We also set the option control so that intermediate results
are not printed. Finally, we call the function delnls2 to destroy any internal
structures:

> orobranche.nl2 <- nls2(orobranche, "orobranche.m2",
ctx, method="QLTB", renls2=T,
control=list(freq=0))

> conf.boot.nl2 <- bootstrap.nls2(orobranche.nl2,
method="wild.2",
n.loops=500)

> delnls2()

We calculate the 2.5% and 97.5% quantiles of the f*’b, b =1,. .. 500,
using the function quantile of S-Plus, and we display the values of 7, S,
bo.o25, bo.o7s, and Ip:

tauStar <- conf.boot.nl2$pStar[,5]

StauStar <- sqrt(conf.boot.nl2$var.pStar[,5])

qu <- quantile((tauStar-tau)/StauStar,c(0.025,0.975))
cat ("Estimated value of tau:", tau,"\n")

cat ("Estimated value of S:", Stau,"\n")
cat("b_(0.025):", qul1]l,"\n" )

cat("b_(0.975):", qul2],"\n" )

cat("Estimated value of Ib:",

tau + qu[1]*Stau,

tau + qu[2]*Stau,"\n")

V V. V V V V V VvV

Modeling the Variance Function as in Equation (6.28)

The model is described in a file called orobranche.m4:

% file orobranche.mé4

% logistic regression model

% overdispersion : beta-binomial variance
resp y;

varind sp,ex,n;

aux eta,p,tau;

var v;

parresp a,b,c,d;

parvar t00, tO01, t10, ti11;

subroutine;
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begin

eta=a + bxsp + c*ex + d*spk*ex;

p=exp(eta)/(1+exp(eta));

Yy = n*p;

tau=if ((sp==0)and(ex==0)) then t00 else
if ((sp==0)and(ex==1)) then t01 else
if ((sp==1 )and(ex==0)) then t10 else

t11
fi fi fi;
v = n*x(1-p)*p* (1+taux(n-1));

end
Then we call nls2 as in the preceding example:

> ctx <- list( theta.start=orobranche.nlli$theta,
beta.start=rep(0,4),
sigma2.type="KNOWN", sigma2=1)
> orobranche.nl4 <- nls2(orobranche, "orobranche.m4",
ctx, method="QLTB")
> cat( "Result of the estimation process:\n ")
> print (summary (orobranche.nl4))

Modeling the Variance Function as in Equation (6.29)

The model is described in a file called orobranche.m5:

% file orobranche.m5

% logistic linear regression model
% overdispersion : Gaussian random effect on eta
resp y;

varind sp,ex,n;

aux eta,p;

var v;

parresp a,b,c,d;

parvar tau;

subroutine;

begin

eta=a + bxsp + c*ex + dxsp*ex;
p=exp(eta)/(1+exp(eta));

y = n*p;
v = n*x(1-p)*xp*(1+(n-1) *tau*xpx (1-p));
end

Then we call nls2 as in the preceding example:

> ctx <- list( theta.start=orobranche.nlli$theta,
beta.start=0,
sigma2.type="KNOWN", sigma2=1)
> orobranche.nl5 <- nls2(orobranche, "orobranche.m5",
ctx, method="QLTB")
> cat( "Result of the estimation process:\n ")
> print (summary (orobranche.nl5))
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Multinomial and Poisson Nonlinear Models

In this chapter, we consider two additional statistical models that are very
useful for analyzing data sets in agronomy, medicine, and social sciences: The
multinomial model and the Poisson model.

The binomial model considered in the preceding chapter deals with re-
sponse variables with two categories: The occurrence or nonoccurrence of an
event is observed. The multinomial model considers multicategory response
variables. This topic is discussed in the first part of this chapter. Our objective
is not to provide a complete course on the multinomial model (see McCul-
lagh and Nelder [MN89] and Aitkin et al. [AAFH89] for an introduction to
this topic). We begin with two examples of multicategory response data and
describe the modeling of the probability functions and the quasi-likelihood
method for estimating the parameters. Then we demonstrate how to estimate
the parameters, calculate confidence intervals, and perform tests, taking full
advantage of the nls2’s facilities: The relationships between the probability
functions and the independent variables do not need to be log-linear; the sta-
tistical inference for any parameter function is carried out easily using the
same nls2 functions as for the nonlinear regression model.

The second part of the chapter is concerned with count data. We describe
how the data from the cortisol assay example presented in Chapter 1 can be
fitted using a Poisson nonlinear model. We show how we can easily adapt for
overdispersed data using nls2.

7.1 Multinomial Model

We illustrate the use of the multinomial model with two examples that have
already been analyzed in the literature. The first example, concerning the
study of pneumoconiosis among coal miners, has been analyzed by McCullagh
and Nelder [MN89, page 178] and by Aitkin et al. [MAHS&9, page 225] and
the second one, concerning a cheese tasting experiment by McCullagh and
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Nelder [MN89, page 175]. We refer to these books for a detailed treatment of
these data sets.

7.1.1 Pneumoconiosis among Coal Miners: An Example of
Multicategory Response Data

The aim of this experiment is to evaluate the degree of severity of pneumo-
coniosis in coal miners as a function of time spent working at the coal face.
The coal miners are classified by radiological examination into one of three
categories of pneumoconiosis: N when the radiological examination is normal,
M when it reveals a mild pneumoconiosis, and S for a severe pneumoconiosis.
The maximum time spent working at the coal face is 60 years. The interval
[0,60] is partitioned into k = 8 intervals and for ¢ = 1,...,k the midpoints
of these intervals are denoted by x;. The number of categories, denoted by 7,
equals 3, and for l = 1,...,7, Y;; is the number of miners classified in the cat-
egory [ whose time spent working equals z; (the covariate x takes the value x;
if the time spent working belongs to the interval ¢). The vector (Y;1,...,Y; )
is distributed as a multinomial variable with parameters (p; 1, ...,p;,) where
p;,1 denotes the probability of a miner being in category [ when the time spent
working equals x;. The results are reported in Table 7.1. As with the bino-
mial model, we describe the relationship between the probability of belonging
to one of the categories | versus the covariate x with a parametric function:
pi(x,0). This example is used to illustrate the modeling and estimation of
the probabilities p;;, I =1,...,7r, 4 =1,...,k based on the multinomial logit
model. We will describe how to estimate the parameters and calculate confi-
dence intervals for the probabilities p; ; using nls2.

Table 7.1. Pneumoconiosis among coal miners

Time Normal Mild Severe Total
5.8 98 0 0 98
15.0 51 2 1 54
21.5 34 6 3 43
27.5 35 5 8 48
33.5 32 10 9 51
39.5 23 7 8 38
46.0 12 6 10 28
51.5 4 2 5 11

7.1.2 A Cheese Tasting Experiment

This data set concerns the effect on taste of various cheese additives. Four
additives labeled A, B, C, and D are tested by 52 panelists. The nine response
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categories range from “strong dislike” (category I) to “excellent taste” (cat-
egory IX). The observation, Yj;, is the number of panelists that scored the
additive x; (x takes k = 4 values, A, B, C, D) in category I, I = 1,...,r, with
r = 9. For each i, the vector (Y;1,...,Y; ) is distributed as a multinomial
variable with parameters N = 52 and (pi1,...,pir), where p,; denotes the
probability of an additive x; receiving the score [. The results are reported in
Table 7.2. The same 52 panelists being involved in all four tests, the observa-
tions (Y;1,. .., Y, ) are not independent when i varies. Nevertheless this will be
ignored in the analysis (see the comments of McCullagh and Nelder [MN89]).

Table 7.2. Cheese tasting

Categories
Cheese I II IIT I\Y \Y% VI VII VIII IX
A 0 0 1 7 8 8 19 8 1
B 6 9 12 11 7 6 1 0 0
C 1 1 6 8 23 7 5 1 0
D 0 0 0 1 3 7 14 16 11

This example is used to illustrate the modeling of the probabilities p; ;,
l=1,...,r, i = 1,...,k in the case of ordered categories; the aim of the
analysis is to order the cheeses from best to worst.

7.1.3 The Parametric Multinomial Model

The model is the following. The response variable has r categories, and we
observe the response of individuals that belong to one, and only one, of these
categories. For each value of the variable z;, i = 1,...k, the responses of
N; individuals are considered: For each [ = 1,...,7, the observation Y;; is
the number of individuals out of IV; that belong to category [. For each i =
1,...,k, the vector (Y;1,...Y;,) is distributed as a multinomial variable with
parameters N; and (p;1,--.,DPir), where p; ; denotes the probability of being
in category [ when the covariate x equals x;. The probabilities p; ;, I =1,...,7,
satisfy the following constraint:

-
For each i=1,...k, me =1. (7.1)
=1

We first present a general modeling of the probability functions that in-
cludes the well-known multinomial logit model. Then we will consider the
model adapted to the case of ordered response categories, based on cumula-
tive probabilities.
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General Modeling of the Probability Function

Instead of modeling the probabilities p;; for [ = 1,...,r satisfying the con-
straint defined by Equation (7.1), we consider the quantities p;;/p; 1, or as
is usually done, their logarithm. The multinomial logit transformation of
Diis---,Pir is the set of parameters 1;1,...,n;,, called multinomial logits,
defined by 7;; = log(p;i/pi,1)- Let mi(x,#) be the function that describes the
log-ratio of the probability of being in category [ to the probability of being
in the reference category when the covariate equals x. The probabilities p; ;
are thus written:

Pig = pi(xi,0) = pi1exp (m(zs,0)),

where for each i = 1,...,k, n1(x;,60) = 0. The constraint defined by Equa-
tion (7.1) being equivalent to

Di1 Zexp (ﬂl(fmﬂ)) = ]-a

=1

the probability functions are written as follows:

_ ep(u(,6)
143 s exp (ns(xi,0))
The probability functions p;(x;,0) depend on p unknown parameters 6.

Usually, it is assumed that the functions 7; are linear in 6. For the miners
example, the following modeling is proposed: For [ = 2, 3,

pi(zi,0) with n(xi,0) = 0. (7.2)

m(z:,0) = 6,1 + 01, log(x;). (7.3)

As we will see in Section 7.1.8, nls2 allows us to estimate the parameters 6
for any parametric function 7;. The relation between 7; and x does not need
to be linear in the parameters 6.

Ordered Response Categories

The three categories considered in the miners example are naturally ordered:
There is no pneumoconiosis, the pneumoconiosis is mild, the pneumoconiosis
is severe. This is also clearly the case in the cheese tasting example: The
categories are ordered from the worst to the best. In the case of ordered
response categories, it may be of interest to model the cumulative probabilities
in place of the probabilities p; ;. Let us define the cumulative probabilities P; ;:

!
P, = E Di,s)
s=1

Pi,r =1L
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We immediately see that p;1 = P;1 and p;; = P, — Pijq for I =2,...,r.
For each | = 1,...,k, we denote by P,(x;,6) the probability of an individual
belonging to one of the categories among categories 1 to [, when the covariate
x equals x;. For i = 1,...,k, the functions P;(x;, 0) satisfy the following set

of constraints: (.0)
P’r‘ Ty, = 1a
Pi(z;,0) > Pi_1(x;,0) } ' (7.4)

Then the probability functions p;(x, ) are written as follows:

1(1‘,9) = Pl(lli,e)7
];l(g:,o) — Py(2,0) — Pr_y1(2,0), for 1 =2,... ,7’} : (7.5)

The program nls2 allows us to estimate the parameters 6 for any para-
metric function P;. Nevertheless let us recall some common methods of mod-
eling these cumulative probability functions. The most famous ones are using
the logit or cloglog transformation. It is assumed, for example, that:

logit (Py(z,0)) = 0y + 61 or (7.6)
cloglog (Pi(,0)) = 6o, + 61,

with g1 < ... < 0y (»—1). These models involve parallel regressions on the
logit or cloglog scale. The one defined by Equation (7.6) is called the propor-
tional odds model and is of interest when the aim of the analysis is to estimate
the odds ratio (see [McC80] for details).

Another important class of models considers the existence of a latent vari-
able Z. The latent variable Z is an underlying unobserved continuous random
variable with expectation p, variance exp(7), and distribution function de-
noted by F((z — )/ exp(7)). Let 21 < ... < z._1 be some fixed values of Z.
Then it is assumed that the probability of belonging to the category [ equals
the probability of Z belonging to the interval ]|z;_1, ], with zg = —oo and
2z, = +00. Therefore:

Pz(fag):F(e;M)'

If Z has the logistic distribution, then:

2] — u($7 9)
exp (7(z,0))

If 7(z,0) = 0 and p is linear in the parameters 6, for example, u(x,0) = 61z,
then we get the model defined at Equation (7.6), where the parameters 6
play the role of the thresholds z;. McCullagh and Nelder [MN89] proposed
considering the particular form where p and 7 are linear functions of the
parameters, for example, p(z,0) = 61z and 7(z,0) = Oyz.

logit (Py(,0)) =
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7.1.4 Estimation in the Multinomial Model

Let us recall that for each i = 1,..., k, the vector (Y;1,...Y;,) is distributed

as a multinomial variable with parameters N; = >, Y;; and (p;1,. .., pir).
The probabilities p;; are modeled as follows:
piy = pi(zi, 0) (7.7)

and satisfy the constraints
S pi0) = 1. (78)
1=

Because the distribution of the observation is known, the parameters are
estimated by maximizing the likelihood under the constraints (7.8). The de-
viance function is defined as

:7222}/”10 < 1pl(x1’9)>, (7.9)

i=1 [=1 ’l

where 6 denotes the vector of parameters to estimate. The minimum deviance
estimator of # under the constraints (7.8) is the maximum likelihood estimator
and is defined as follows: 0 satisfies U, (6) = 0, where fora =1,...,p

ZZ—” Nipi x“e)Nggl( 9). (7.10)

i—1 1—1 zpl xwo)

To calculate the maximum likelihood estimator of 6 using nls2, we use the
quasi-likelihood method (see Section 7.1.8).

Let us give some details on the estimating equations given by Equation (7.10).
For (Y1,...,Y:) a random variable distributed as a multinomial with parameters N =
Yo Yiand (p1,...,pr), we set

5(?/17---»ymN7p17---7pr):PT(Yl=y17--~, T—yr N'Hp

Let us denote by Y the vector of observations:

Y =Yia, .- Yie o Yer, o Yer),
and by p the vector of probabilities:

D= (P11s-sDlrseesPhls--yPhir)s

where p; ; is the probability of an individual whose covariate equals x; belonging to the
category [. The likelihood function is defined by the following formula:

k
L(}’;?@ = HZ(}/’L'JW' '7)/73,T3N7Lapi,13 e apiﬂ‘) .
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For i varying from 1 to k, and for [ from 1 to r, let

R Yiu
i, = Nz
be the empirical frequencies. Then, for a given modeling of the probability function, for
example, p;; = pi(x;,0), the deviance is defined as
L (V.50))
D(0) = —2log

L (17, %)
where the components of p(#) and 7 are, respectively, the quantities p;(x;,0) and ;.
It is easy to verify that we get the formula given in Equation (7.9). The link between the
minimum of deviance estimation and the estimating equations given at Equations (7.10)

is established by noting that minimizing D(6) is equivalent to solving the following

equations:
oD

00,
Starting from Equation (7.9), we get the following:

ZZ i };l 0 (xi’o)'

() =0, fora=1,...,p

Noting that constraint (7.8) implies that the derivatives of » | pi(i,6) with respect
to 6 equals 0, we find that: oD

E(é)) = —2U4(0)
where U, (0) is defined at Equation (7.10). Therefore, if 6 minimizes the deviance under
the constraint (7.8), then fora =1,...,p, Ua(g) =0.

Let us continue these methodological explanations with the link between the multino-
mial and Poisson likelihoods. First, if we compare Equation (7.10) with Equation (7.19)
it appears that the estimating equations in the multinomial model are the same as the
estimating equations in the Poisson model if f(x;,0) is replaced by N;p;(z;,0), Yi; by
Yi,1, and if the summation over the indices i and j is replaced by the summation over the
indices i and [. Minimizing the deviance in the multinomial model under the constraints
Z;:l pi(x;:,0) = 1 is thus equivalent to minimizing the deviance in the Poisson model.
Second, comparing Equation (7.9) with Equation (7.18), it appears that the minimum
deviance D(g) in the multinomial model is the same as the minimum deviance in the
Poisson model. These observations are the result of the following statistical argument.
Suppose that Z1, ..., Z, are independent Poisson variables with means Ai,. .., A,; then,
it can be proved that the joint distribution of (Z1,..., Z,) conditional on Z;:1 Z1 =N
is the multinomial distribution:

Pr|Zi=2,...,2, = 2/ z=N|=
<1 1 2 ) <Z:IANH

Setting Z; = Y;,; and \; = N;p; i, the link between the multinomial distribution and the
Poisson distribution is clear. People who are familiar with multicategory response data
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will be used to estimating the probability functions p;(z, ) using a Poisson model. By
setting

¥i = log(pin) = —log |1+ Zexp (ns(riﬁ))] ; (7.11)
s=2
then
pi = exp(¥; + m(wi, 0)). (7.12)
The probabilities p;; depend now on k + p parameters: The p parameters 6 used in
the modeling of the ratios p;,;/p;;1 and the k parameters 1, ..., ¢y, called nuisance

parameters because they are not of interest. If the function n;(z;, 0) is linear in 0 (see,
for example, Equation (7.3)), then the Poisson analysis based on a log-linear response
can be used for estimating the parameters in the multinomial model. We will come back
to the analogy between the Poisson and multinomial analyses later.

7.1.5 Tests and Confidence Intervals

We begin this section with the goodness-of-fit test. It is done exactly as in the
binomial model (see Section 6.5, page 167), assuming that for each value of
the variable z;, the total number of individuals N; is large.

Then we briefly present the calculation of confidence intervals for a func-
tion of the parameters, using the Wald test and the likelihood ratio test. We
will consider the case where the parameters of interest are the probabilities
pi,1. For people who are interested in technical backgrounds, we discuss the
way the estimated standard error of p;; is calculated, and we point out that
the standard outputs of the log-linear Poisson analysis cannot be used.

We do not propose any bootstrap method for calculating confidence inter-
vals in multinomial models.

Goodness-of-Fit Test

Let us consider the multinomial model defined in Equation (7.7) where the
dimension of the parameter 6 equals p. Assume that for each ¢ = 1,...,k the
quantities IV; are large.

Testing goodness of fit consists of testing the model (7.7) against the satu-
rated model defined as follows: For each ¢ = 1,. .., k, the vector (Y;1,...Y; ;)
is distributed as a multinomial variable with parameters N; = erzl Y;: and
(Pigy---spir). The pigs, fori=1,....,kand [ =1,...,r — 1 are the k(r — 1)
parameters of the model. The maximum likelihood estimators of the probabil-
ities p;; are the empirical frequencies m;; = Y;;/N;, and the likelihood ratio
test is the deviance associated with the model (7.7). Therefore the goodness-
of-fit test is rejected when D(é\) is greater than C, where C is the 1 —a quantile
of a x2 with k(r — 1) — p degrees of freedom.
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The likelihood ratio test

The likelihood ratio test for comparing two nested models is done exactly as
described for the binomial model, using the deviance statistic (see Section 6.5,
page 165). In the same way, we can calculate confidence regions or confidence
intervals for the parameters 6.

The Wald Test

The Wald test for comparing two nested models or calculating confidence
intervals for a function of the parameters is done exactly as in Section 3.4.1,
page 69.

Suppose that we want to calculate a confidence interval for a function of the pa-
rameters denoted A(6), for example, A\() = p1(x;,0) for some . The 95% confidence
interval based on the Wald statistic is defined as

In = X —1.965; X + 1.96:5'\} ,
where X = )\(5) = pl(aci,g), and S is an estimate of the standard error of A. If we test
hypothesis H: A = Ao against the alternative A: X\ # Ao, the Wald statistic is defined as

X — Ao)?
Sw = A 20),
g2
If the parameters are estimated by introducing the nuisance parameters i1, ..., ¥k

and using the link between the log-linear Poisson model and the multinomial model, then
A = exp(t);), and the estimated variance of A is approximated by exp(2;)Var(¢;). We
will show that we cannot use the standard outputs of the program minimizing the Poisson
likelihood for estimating the variance of ;.

Let us return to the general case where A = \(6). Because the estimated standard
error S of )\(67) is a function of the estimated covariance matrix of é\(see Equation (2.1),
page 32), let us see how this covariance matrix is calculated.

The programs solving the estimating equations defined in Equation (7.10) calculate

the estimated covariance matrix of # assuming that the variables Y; ;,l =1,...,r,i =
1,,...,k are independent with expectation and variance equal to N;p;(z;,6). Namely,
it is assumed that the covariance matrix of Y;;,{ = 1,...,r equals the diagonal matrix
W whose components on the diagonal equal N;p;(x:,8), for I =1,...,7.

In the case of multinomial observations, this is not true: The Y;;,l = 1,...,r are
not independent, and it is well known that the covariance matrix of Y; ;,l =1,...,r is
the matrix W whose components (I, s) are equal to Cov(Y;,;,Yis), forl,s =1,...,k
where

Var(Yi) = Nipi(z4,0)(1 — pu(i,0)),
Cov(Y;1,Yis) = —Nipi(xs, 0)ps(z4,0).
Nevertheless, it can be shown that:

1. the asymptotic covariance matrix of € is the same as the matrix we would have
obtained using W} in place of W, and
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2. if the modeling of the probability functions depends on nuisance parameters (see
Equations (7.11) and (7.12)), then the result is true for 6 but not for .

As a consequence, if the function A depends on 1) (for example, A = p; ;1 = exp(¢;))
the standard outputs of the program used for estimating the parameters in the Poisson
model cannot be used to calculate the estimated standard error S. It is thus of interest
to estimate the parameters 6 using nls2: This program does not require introducing
nuisance parameters in the estimation process and proposes an easy-to-use function
(see the function confidence.nls2, Section 7.1.8) for calculating confidence intervals
for any parameter function.

7.1.6 Pneumoconiosis among Coal Miners: The Multinomial Logit
Model

Model The observations (Y;1,...,Y;,), 4 =1,...,k are multinomial variables
with parameters N; and

_exp (m(s,0))
pi(i,0) = + > i (i, 0)

The model is the multinomial logit model, where the relationship between 7,
and log(x) is linear in 6:

T (xi,e) =0,
m(x;, 0) = 0o + 01, log(x;). for | =2,3 [~ (7.14)

(7.13)

Method The parameters are estimated by minimizing the deviance D(6) (see
Equation (7.9)).

Results
Parameters 3 | Estimated Values | Standard Error
00,2 —8.93 1.58
01 2 2.16 0.46
0o 5 ~11.9 2.00
014 3.07 0.56

Goodness-of-Fit Test and Graphics for Diagnostic The minimum deviance
D(0) equals 5.35. Using the results of Section 7.1.5, we test the hypothesis
that the probability function is the function defined by Equations (7.13) and
(7.14) with four parameters against the alternative that p;(z;,0) = p;; with
k(r — 1) = 16 parameters. Because the 0.95 quantile of a x? with 12 degrees
of freedom is equal to 21, the goodness-of-fit test is not rejected.

Let us now examine the observations together with the result of the es-
timation. We calculate the standardized residuals defined as in the binomial
model:

Yii— Nipiy

VNibi (1= piy)’

(7.15)

€il =
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~

where p; ; = pi(x;,6). The plot of residuals is shown in Figure 7.1. This figure
shows that the probability of having pneumoconiosis is overestimated when
the time spent working is less than 20 years. It does not show any other
particular model specification.

Standardised o normal °
. o mild
1.0 o |A severe 4 .
residuals
| o
0.5 o A
A A
o
0.0 7 °
8 2 o °
A
| o
-0.5
o A
-1.0 7 =
T T T T '
10 20 30 40 50

time spent working

Figure 7.1. Pneumoconiosis among coal miners example: Multinomial logit model

Figure 7.2 represents on the same graph the empirical frequencies, the
fitted probabilities, and their confidence intervals.

Calculation of Confidence Intervals for the Probabilities p;; Because the prob-
abilities are positive quantities, it is generally preferable to calculating confi-
dence intervals for their logarithm. We first calculate Ir(4,1), the confidence
interval for log(p;;). Then we take the exponential of each bound of this in-
terval.

Result

We denote by §(z, 1) the estimated standard error of log(p; ;). The 95% con-
fidence interval for p;(z;,0) is denoted by exp (f N(i,l)). To be brief: We

present the numerical results for only two values of the time spent working
in Table 7.3. All the results are presented in Figure 7.2. It appears that the
variability of the estimated probabilities is very large.
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Table 7.3. Pneumoconiosis among coal miners example: Confidence intervals for
pi,1 for z; equals 15 and 46

1.07

0.8 7

0.6 7

0.4 7

Time | Category | log@iy) | §,1) T (i 1) s | exp (TN(i,z))
=1 —0.07 | 002 | [-0.11; —0.03]| 0.93 | [0.9000 ; 0.970]
15 =2 -3.10| 0.36 [-3.8;—-2.4] | 0.043 | [0.0210 ; 0.088]
1=3 —3.70 | 0.48 [—4.7;—2.8] | 0.024 | [0.0093 ; 0.061]
=1 —0.84 | 0.12 [~1.1;—06] | 0.43 | [0.3400 ; 0.540]
46 1 =2 ~150 | 0.19 [-1.9;—1.1] | 0.23 | [0.1600 ; 0.330]
1=3 1.10 0.16 [—1.4; —0.77] | 0.34 | [0.2500 ; 0.460]
normal mild severe
0.5
037 1
0.4 7
7
027 , 037

JLA

0.0 00187

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Figure 7.2. Pneumoconiosis among coal miners example: Model based on cumu-
lative probabilities; empirical frequencies versus time spent working, fitted proba-
bilities, and estimated confidence intervals at level 95%

7.1.7 Cheese Tasting Example: Model Based on Cumulative
Probabilities

The observations (Y;1,...,Y;,), ¢ = 1,...,k are multinomial variables with
parameters N = 52 and p;(z;,6) defined in Equation (7.5). The function
Py(z,0) is the probability for an additive « having a score smaller than {. We
consider the model based on a latent variable with a logistic distribution with
expectation 6; ; and variance 1: For i =1,...,4,

logit(Pl(a:i,H)) = 90’1 - 91”‘, for [ = 1, .. .,8,
Pg(:l?,e) =1.
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The parameters 6§ must satisfy 6y ; < 6y ;41 for I =1,...,7. This constraint can
be taken into account in the estimation process by changing the parameteri-
zation: For example, by setting, p; = 0.1 + Zi:z exp(fa,), for 1 =2,...,8.
The parameters 0y 1,022, ..., 62 5 are then estimated in place of g 1,...,00 .
Moreover, the parameters 6 are defined up to a constant, and we will assume
that 2?21 01, = 0, such that the model is identifiable.

Method The parameters are estimated by minimizing the deviance D(0) (see
Equation (7.9)) under the constraints Py(z,6) = 1 and Z?Zl 61, =0.

Result The results are given in Table 7.4. The estimated value of the pa-
rameter 6y 4 is calculated from the estimations of (011,61 2,6013). We get
01,4 = —2.47, and the estimated standard error equals 0.27.

Table 7.4. Cheese tasting. Estimated values of the parameters and their standard
errors

Parameters 6 Estimated Values Standard Error
001 16 0.426
02,2 0.054 0.30
02,3 0.095 0.21
02,4 0.066 0.18
02,5 0.29 0.15
02,6 —0.049 0.18
0.7 0.41 0.15
0.5 0.44 0.18
011 ~0.86 0.23
01,2 2.49 0.27
01,3 0.85 0.23

Goodness-of-Fit Test and Graphics for Diagnostic Using the results of Sec-
tion 7.1.5, we test goodness of fit by comparing the preceding model with 11
parameters to the saturated model with 32 parameters, where the variables
(Yia,...,Yi,),i=1,..., k are multinomial variables with parameters NV and

-~

pir- The minimum deviance D(6) = 20.3 has to be compared to 32.7, the 0.95
quantile of a x? with 21 degrees of freedom. The goodness-of-fit test is not
rejected.

Because in this example we are interested in classifying the additives A,
B, C, and D, the functions of interest are the cumulative probabilities P,
rather than the probability functions p;. It is thus appropriate to represent
the cumulative observations together with the fitted cumulative probabilities
in order to appreciate the quality of the fit. The cumulative observations and
the cumulative fitted responses are defined here:
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l
Zi,l = E Y;757
s=1

131-11 :Pl(xi,,@\) forli=1,...,r—1,

~

P, =1
The cumulative residuals are then defined as follows:
Zig — Nzﬁi,z

Ll Z T g
NiPi (1 — Pyy)

/C\i,l = , = 1. (716)
Note that the ¢; s equal 0, because Z; , = N;. The plots of cumulative resid-

uals are shown in Figure 7.3. The cumulative observations and fitted cumula-

tive responses versus [ are shown in Figure 7.4. For each [ =1,...,r — 1 and
each i =1,...,k, we calculated a confidence interval for the fitted cumulative
probabilities.
1.5 7 o
o A
o B
1.0 a a
R A A
0.5 7 ° °
o o
o o
0.0 o 8 s
® A
< [e]
-4 0
-0.5 o °
A o
[u]
_ A a C
-1.0 o D
— (o]
-1.5 | T T |
2 4 6 8

Figure 7.3. Cheese tasting example: Cumulative residuals, ¢; ;, versus the score I.

~

Confidence Interval for P)(x;,0) Based on the Wald Test Because the func-
tions P are linear in the parameters through a logit transformation, it is natu-
ral to calculate In(i,1), the confidence interval for L;(z;,0) = logit(P,(z;,0)),
and then to transform each bound with the inverse logit function:

logit ™" () = m'
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The confidence interval for P;(x;, 5) is denoted I, N (Pig).

Results We denote by S(i,1) the estimated standard error of logit(P(x;, )).
To be brief, we present the numerical results for [ = 5 only, the whole anal-
ysis being represented in Figure 7.4. Even if the variability in the estimated
cumulative probabilities is large, it appears that the cheese additives can be
ordered from best to worst as follows: D, A, C, B. Because the confidence in-
tervals for the cumulative probabilities do not overlap, we can conclude that
the differences between the additives are significant.

Additive i | Lg(@,0)) | 8G,5) | In(i,5) | Ps(@:,0) | Tn(Pis)

A 0.9 027 | [—1.4; —0.4] 0.29 [0.19; 0.41]
B 2.4 0.34 [1.8; 3.1] 0.92 [0.86; 0.96]
C 0.8 0.27 [0.3; 1.3] 0.69 [0.57; 0.79]
D 2.5 034 | [-3.2; —1.8] | 0.074 | [0.039; 0.14]

score

Figure 7.4. Cheese tasting example: Cumulative empirical frequencies and fitted
probabilities versus the score [

7.1.8 Using nls2

If the relationships between the probability functions and the independent
variables are assumed to be log-linear then the functions glm and multinom in
S-Plus can be used. The program nls2 allows us to estimate the parameters for
any modeling of the probability functions p;(x;, 8) and to calculate confidence
intervals or perform tests for any function of the parameters.
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This section reproduces the commands and files used in the preceding
sections to analyze the examples using nls2. For each of them, first we create
the data frame to store the experimental data, and then we estimate the
parameters using the quasi-likelihood method.

Pneumoconiosis among Coal Miners
Creating the Data

The experimental data (see Table 7.1, page 200) are stored in a matrix called
miners.data. Before using nls2, this matrix is transformed in a data.frame
called miners with three independent variables, t contains the x;s replicated
r times, n is the N;s replicated r = 3 times, and cat is the categories [, each
value being replicated k = 8 times, and the variable of observed responses y
that contains the Yj s.

> miners.data <- t(matrix(c(5.8,98, 0, 0,15.0,51, 2, 1
,21.5,34, 6, 3,27.5,35, 5, 8
,33.5,32,10, 9,39.5,23, 7, 8
,46.0,12, 6,10
,51.5, 4, 2, 5), nrow=4,ncol=8))
> dimnames(miners.data) <- list(NULL,
c("period","normal","abnormal","severe"))
> miners <- data.frame( t = rep(miners.datal,1],3),
y = c(miners.datal,2:4]),
n = rep(apply(miners.datal, 2:4],1,sum),3),
cat = rep(1:3,rep(dim(miners.data) [1],3)))

Parameter Estimation by Minimizing the Deviance Function

In order to solve the quasi-likelihood Equations (7.10), we have to define the
regression and variance functions as follows. The regression function is defined
as follows:

[, Ni, 1;0) = Nipi (2, 0),

where the probability functions p; are given by Equation (7.13) and (7.14),
page 208. The variance function is defined as g(x;, N;,1;0) = f(x;, N;,1;0)
and 02 = 1.

We describe the model in a file called miners.m.

% file miners.m

% multinomial logit model
resp y;

varind t, n, cat;

aux p, eta, eta2, eta3;
var v;

parresp a2,b2,a3,b3;
subroutine;
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begin

eta3 = a3 + b3xlog(t) ;

eta2 = a2 + b2xlog(t) ;

eta = if (cat==3) then eta3 else
if (cat==2) then eta2 else

0
fi fi;
p = exp(eta)/(1+exp(eta2)+exp(etald)) ;
y = n*p;
vV = n*p;
end

We call n1s2 using its arguments as follows:

e The argument method—because minimizing the deviance D() is equiva-
lent to solving the quasi-likelihood equations defined by Equations (7.10),
we will use nls2 by setting the argument method to the value "QLT".

e The argument stat.ctx—we have to use the components sigma2.type

and sigma2 of the argument stat.ctx that describes the statistical con-
text of the analysis. By setting sigma2.type to the value "KNOWN" and
sigma2 to the value 1, we specify that o2 is known and equal to 1. There-
fore 02 will not be estimated by the residual variance but will stay fixed
to the value 1 throughout the estimation process.
Moreover, the calculations of the maximum likelihood, the minimum de-
viance, and the standardized residuals will be done only if the component
family is set to the value "multinomial" and if the component nameN
contains the name of the variable N in the data frame containing the
data:

> ctx <- list(theta.start=rep(0,4),
sigma2.type="KNOWN", sigma2=1,
family="multinomial", nameN="n")
> miners.nll <- nls2(miners, "miners.m", stat.ctx=ctx, method="QLT")

Then we display the result of the estimation process (see page 208):

> cat( "Result of the estimation process:\n ")
> print (summary(miners.nll))

Goodness-of-Fit Test

The minimum deviance is given in the output argument miners.nli$deviance.
We display its value and the 0.95 quantile of a x? with 12 degrees of freedom:

> cat( "Minimum deviance:", miners.nli$deviance,
"X2(0.95,12)", qchisq(0.95,12), "\n\n" )

Plots of the Residuals

The standardized residuals defined in Equation (7.15), page 208, are given in
the output argument miners.nli1$s.residuals. The graphic of residuals is
done using the graphical function plres (see Figure 7.1).
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Confidence Intervals for the Probabilities py(x;,0)

We describe the functions log(p;(z;,0)) in a file called miners.log.proba.m.
Because the probability functions depend on the independent variables, we
use the key word varpsi:

% file miners.log.proba.m

%  probabilities

psi logproba;

varpsi t, cat;

ppsi a2,b2,a3,b3;

aux eta3, eta2, eta;

subroutine;

begin

eta3 = a3 + b3x*log(t) ;

eta2 = a2 + b2xlog(t) ;

eta = if (cat==3) then eta3 else
if (cat==2) then eta2 else

0

fi fi;

logproba = eta - log(l+exp(eta2)+exp(etal)) ;

end

To calculate a confidence interval for log(p;(z;, 6)), we apply the confidence
function. Then we display the results of interest (see Table 7.3, page 210):

> loadnls2(psi="")

> lp.conf <- confidence(miners.nli,
file="mineurs.log.proba.m",
varpsi=as.matrix(miners[,c(1,4)1))

IN <- 1p.conf$normal.conf.int

exp.IN <- exp(IN)

result <- cbind(lp.conf$psi, lp.conf$std.error, IN,

exp(lp.conf$psi), exp.IN)
dimnames (result) <- list(NULL,c("log.p","Std.log.p","lower.IN",
"upper.IN","p","lower.exp.IN","upper.exp.IN"))
> cat("Confidence intervals:","\n")
> print(signif (result,digits=3))

vV V. V V VvV

The plots of empirical frequencies, fitted probabilities, and confidence in-
tervals versus the time spent working are drawn by the graphical functions of
S-Plus (see Figure 7.2):

p <~ miners.nli$response/miners$n
freq <- miners.datal,2:4]/apply(miners.datal,2:4],1,sum)
title <- c("normal", "mild", "severe")
time <- miners.datal,1]
par (mfrow=c(1,3))
for (1 in 1:3) {
plot(range(time),

V V. V V V Vv V
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type="n", xlab="", ylab="")
points(time, freq[,1], pch=rep(14+1,8))
lines( time, p[(1-1)*8+(1:8)], 1ty=1)
title(main=title[1])
segments(time, exp.IN[(1-1)*8+(1:8),1],
time, exp.IN[(1-1)*8+(1:8),2])

V V V V V V V VvV

Cheese Tasting

Creating the Data

range (c(freql,1],p[(1-1)*8+(1:8)]1,exp.IN[(1-1)*8+(1:8),]1)),

The experimental data (see Table 7.2, page 201) are stored in a matrix called
cheese.data. Before using nls2, this matrix is transformed in a data.frame
called cheese with two independent variables and the variable of observed
responses +y that contains the Y;;s. The two independent variables are ch,
which contains the z;s replicated r = 9 times, and cat, which contains the

categories [, each value being replicated k = 4 times:

> cheese.data <- t(matrix(c(0,0,1,7,8,8,19,8,1,
6,9,12,11,7,6,1,0,0,
1,1,6,8,23,7,5,1,0,
0,0,0,1,3,7,14,16,11) ,nrow=9,ncol=4))
> cheese <- data.frame(ch=rep(1:4,9),
y=c(cheese.datal,1:9]),
cat=rep(1:9,rep(4,9)))

Parameter Estimation by Minimizing the Deviance Function

In order to solve the quasi-likelihood Equations (7.10), we have to define the
regression and variance functions as described for the miners in the example

given page 214. We describe the model in a file called cheese.m:

%  file cheese.m
%  Cumulative probabilities multinomial model
resp y;
varind cat, ch;
aux p,beta,pcl,pc2,pc3,pc4,pch,pc6,pc7,pc8,pc,
b2,b3,b4,b5,b6,b7,b8;
var v;
parresp tetal,teta2,teta3,tetad,tetab,tetab,teta’?,
teta8,betal,beta2,beta3;
subroutine;
begin
beta = if (ch==1) then betal else
if (ch==2) then beta2 else
if (ch==3) then beta3 else



218 7 Multinomial and Poisson Nonlinear Models

-betal-beta2-beta3
fi fi fi;
b2 = tetal + exp(teta2);
b3 = b2 + exp(teta3);

b4 = b3 + exp(tetad);
b5 = b4 + exp(tetab);
b6 = b5 + exp(tetab);
b7 = b6 + exp(teta?);

b8 = b7 + exp(tetad);

pcl = exp(tetal+beta)/(1+exp(tetal+beta)) ;

pc2 = exp(b2+beta)/(1+exp(b2+beta)) ;

pc3 = exp(b3+beta)/(1+exp(b3+beta)) ;
pcd = exp(b4+beta)/(1+exp(bld+beta)) ;
pcb = exp(b5+beta)/(1+exp(bb+beta)) ;
pc6 = exp(b6+beta)/(1+exp(bb6+beta)) ;
pc7 = exp(b7+beta)/(1+exp(b7+beta)) ;
pc8 = exp(b8+beta)/(1+exp(b8+beta)) ;

pc9 = 1;

p = if (cat==2) then pc2-pcl else
if (cat==3) then pc3-pc2 else
if (cat==4) then pc4-pc3 else
if (cat==5) then pcb-pcéd else
if (cat==6) then pc6-pch else
if (cat==7) then pc7-pc6 else
if (cat==8) then pc8-pc7 else
if (cat==9) then pc9-pc8 else

pcl
fi fi fi fi fi fi fi fi;
y = 52%p;
v = 52%p;
end

We call n1s2 using its arguments as described page 215 for the miners
example:

The argument method is set to the value "QLT".

The components sigma2.type and sigma2 of the argument stat.ctx are
set to the values "KNOWN" and 1, respectively; the components family is
set to the value "multinomial"; and nameN is set to the value "n":

> ctx <- list(theta.start=c(-8,rep(0,7),rep(0,3)),
sigma2.type="KNOWN", sigma2=1,
family="multinomial", nameN="n")

> cheese.nll <- nls2(cheese, "cheese.m", stat.ctx=ctx, method="QLT")

Then we display the result of the estimation process (see Table 7.4,
page 211):

> cat( "Result of the estimation process:\n ")
> print(summary(cheese.nll))
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Calculation of a confidence interval for 01 4

The confidence interval based on the Wald test is calculated using the function
confidence. We describe the function 61 4 = A(f) = —611 — 612 — 613 in a
file called cheese.tetald.m:

% file cheese.tetald.m
psi t4;

ppsi betal,beta2,beta3;
subroutine;

begin

t4 = -betal-beta2-beta3;
end

We apply the confidence function and display the estimated value of 614,
its standard error, and confidence interval:

> loadnls2(psi="")
> tetald.conf <- confidence(cheese.nll,
file="cheese.tetald.m")
> result <- c(tetald.conf$psi, tetald.conf$std.error,
tetald.conf$normal.conf.int)
> names(result) <- c("tetal4", "std.tetald", "lower.IN", "upper.IN")
> cat("Confidence interval:","\n")
> print(result)

Goodness-of-Fit Test

The minimum deviance is given in the output argument cheese.nli$deviance.
We display its value and the 0.95 quantile of a x? with 21 degrees of freedom:

> cat( "Minimum deviance:", cheese.nli$deviance,
"X2(0.95,21)", gchisq(0.95,21), "\n\n" )

Plot of Cumulative Residuals

The standardized residuals defined in Equation (7.16), page 212, are calculated
and plotted using the S-Plus functions (see Figure 7.3):

> r <- length(unique(cheese$cat))
> k <- length(unique(cheese$ch))
> rep(52,length(cheese$ch))
> p <- cheese.nl6$response/n

> P <- rep(1,length(p))

> PI <- P
>

>

>

>

>

‘vto B W R
0

P[cheese$cat==1] <- p[cheese$cat==1]
PI[cheese$cat==1] <- cheese$y[cheese$cat==1]/n[cheese$cat==1]
for (1 in (2:r)) {
P[cheese$cat==1] <- P[cheese$cat==(1-1)] + plcheese$cat==1]
PI[cheese$cat==1] <- PI[cheese$cat==(1-1)] +
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cheese$y[cheese$cat==1]/n[cheese$cat==1]
}
RES <- (n*PI-n*P)/sqrt(nxP*(1-P))
RES [cheese$cat==r] <- 0
plot(c(1l,r), range(RES), type="n", xlab="score",
ylab="cumulative standardised residuals",las=1)
matpoints(1l:r, t(matrix(RES,nrow=k)), pch=15:18)
title <- c("A","B","C","D")
legend(x=0.8, y=1.4, legend=title, pch=15:18, col=1:4)

V V. V V V

vV V V

Confidence Intervals for the Cumulative Probabilities Pj(x;, )

We describe the functions logit(P;(x;, #)) in a file called cheese.logit.Proba.m.
Because the probability functions depend on the independent variables, we use
the key word varpsi:

% file cheese.logit.Proba.m
%  cumulative probabilities
psi 1Proba;
varpsi cat, ch;
ppsi tetal,teta2,teta3,tetad,tetab,tetab,teta?,
teta8,betal,beta,beta3;
aux beta, b2, b3, b4, b5, b6, b7, bS;
subroutine;
begin
beta = if (ind==1) then betal else
if (ind==2) then beta2 else
if (ind==3) then beta3 else
- betal- beta2-beta3
fi fi fi;
b2 = tetal + exp(teta2);
b3 = b2 + exp(tetal);
b4 = b3 + exp(tetad);

b5 = b4 + exp(tetab);
b6 = b5 + exp(tetab);
b7 = b6 + exp(teta?);
b8 = b7 + exp(tetad);

1Proba = if (cat==2) then b2+beta else
if (cat==3) then b3+beta else

if (cat==4) then b4d+beta else
if (cat==5) then b5+beta else
if (cat==6) then b6+beta else
if (cat==7) then b7+beta else
if (cat==8) then b8+beta else
if (cat==9) then 1 else
tetal+beta

fi fi fi fi fi fi fi £fi;

end
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To calculate a confidence interval for logit(P;(x;, 6)), we apply the confidence
function. Then we display the results of interest (see page 213):

> loadnls2(psi="")
> 1P.conf <- confidence( cheese.nll,
file="cheese.logit.Proba.m",
varpsi=as.matrix(don_as.matrix(cheese[,c(1,3)1)))
> conf.int <- 1P.conf$normal.conf.int
> IN <- exp(conf.int)/(1+exp(conf.int))
> result <- cbind(1P.conf$psi, 1P.conf$std.error,
1P.conf$normal.conf.int,
exp(1P.conf$psi)/(1+exp(1P.conf$psi)), IN)
> dimnames(result) <- 1list(NULL, c("logit.P", "std.logit.P",
"lower.logit.IN", "upper.logit.IN",
"P", "lower.l.IN", "upper.l.IN" ))
> cat("Confidence intervals:","\n")
> print(signif (result,digits=3)

The plots of cumulative empirical frequencies, fitted probabilities, and con-
fidence intervals versus the score are drawn by the graphical functions of S-
Plus (see Figure 7.4):

v

plot(c(1,r), range(c(PI,P,IN)), type="n",
xlab="score", ylab="", las=1)

> matpoints(l:r, t(matrix(PI,nrow=4)), pch=15:18)

> matlines(1l:r, t(matrix(P,nrow=4)), 1lty=1:4)

> legend(x=1, y=1, legend=title, 1lty=1:4, pch=15:18, col=1:4)
> for (1 in 1:k) {

>  segments(x0=1:r, yO=IN[cheese$ch==1,1],

> x1=1:r, y1=IN[cheese$ch==1,2],

> lty=1)

>}

7.2 Poisson Model

In Example 1.1.2, we estimated the calibration curve of a radioimmunolog-
ical assay of cortisol where, for known dilutions of a purified hormone, the
responses are measured in terms of radiation counts per minute (c.p.m.). In
Chapter 4, we concluded that a satisfying nonlinear regression model to ana-
lyze the cortisol assay data was based on an asymmetric sigmoidally shaped
regression function

0y — 61

0)=10
f(@.6) ot (1+ exp(fs + 9433))95

(7.17)

with heteroscedastic variances Var(e;;) = o2 f%(z;,6). The parameters were
estimated by the method of maximum likelihood.
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Because the observations are counts that can safely be assumed to be dis-
tributed as Poisson variables, we reanalyze the data using the Poisson model.
However, as mentioned earlier, departures from the idealized Poisson model
are to be suspected: Table 1.3 displays clear evidence that the responses are
more variable than the simple Poisson model would suggest. This was ac-
counted for in Chapter 4 by taking an estimate of the variance function pro-
portional to the square of the mean function. We will show how to treat
the problem of overdispersion in a Poisson model using the quasi-likelihood
method available in nls2.

7.2.1 The Parametric Poisson Model

The model is the following: For each value of the covariable x; and for each
replicate j = 1,...,n;, the responses Y;; are independent Poisson variables
with mean f(z;,6). The mean function is a nonlinear function of p unknown
parameters #. This modeling extends the log-linear models where the loga-
rithm of the mean is a linear function of 6.

In some situations, the dispersion of the data is greater than that predicted
by the Poisson model, i.e., Var(Y) > E(Y). This heterogeneity has to be
taken into account in the modeling of the variance function. For example,
if the mean of the observed count, namely p(z,0) = E(Y), is regarded as
a gamma random variable with expectation f(x,0) and variance f2(x,6),
then Y is distributed as a negative binomial distribution and the variance
function is quadratic instead of linear: Var(Y) = f(x,0) + f*(z,0)/r. For
more details on the modeling of overdispersion of count data, see McCullagh
and Nelder [MN89, page 198]. Following the modeling of the variance proposed
in Chapter 3, we will assume that the variance varies as a power of the mean
Var(Y) = o2 f7(x,0) and estimate 7.

7.2.2 Estimation in the Poisson Model
The deviance function is defined as follows:
9)
= *QZZYMI 0g + Y5 — f(@i,0). (7.18)
i=1 j=1

The minimum deviancg\ estimator of Q\ is the maximum likelihood estimator
and is defined as follows: 6 satisfies U,(6) = 0, where fora =1,...,p

Y; i,0) 0
ZZ J e ”; )59f (2:,0). (7.19)
=1 j=1 v

For calculating the maximum likelihood estimator of 8, we will use the
quasi-likelihood method, as in the binomial and multinomial models. In the
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case of overdispersion, the parameters o2 and 7 of the variance function have
to be estimated. We will use the quasi-likelihood method explained in Sec-
tion 3.3.2. These methods are illustrated in the following cortisol example.

The methods for testing hypotheses or calculating confidence intervals for
Poisson models are similar to those described in Section 3.4 for heteroscedastic
nonlinear models and are not detailed here.

7.2.3 Cortisol Assay Example: The Poisson Nonlinear Model

First we consider a Poisson nonlinear model where the observations Y;;, j =
1,...,n4, ¢ = 1,...,15, have their expectation and their variance equal to
f(z;,0) given by Equation (7.17).

Method The parameters are estimated by minimizing the deviance D(6) (see
Equation (7.18)).

Results
Parameters Estimated Values Standard Error
01 133.78 5.61
02 2760.3 23.8
03 3.1311 0.244
04 3.2188 0.151
05 0.6218 0.049

The graphic of the standardized residuals presented in Figure 7.5 clearly
shows that the dispersion of the residuals varies with the values of the fitted
response.

Modeling the Variance Function We consider the case where the variance
function is proportional to the variance of a Poisson variable: Var(Y;;) =
UQfT (l‘i, 9)

Method The parameters § and 7 are estimated using the quasi-likelihood
method described in Section 3.3.2.

Results
Parameters Estimated Values Standard Error

01 133.49 1.69
0 2757.8 28.2
03 3.2078 0.223
04 3.2673 0.163
05 0.6072 0.041
T 2.1424 0.026
o? 0.0003243

The graph of the standardized residuals presented in Figure 7.6 does not
suggest any model misspecification. Therefore this is the preferred model,
taking into account the overdispersion in the variance function, rather than
the Poisson model. Finally, let us remark that the estimated standard errors
of the parameters occurring in the regression function are modified when we
take into account the overdispersion of the data.
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Figure 7.5. Cortisol assay: Standardized residuals versus fitted values under the
Poisson model
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Figure 7.6. Cortisol assay: Standardized residuals versus fitted values under
heteroscedasticity
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7.2.4 Using nls2

We describe the Poisson model in a file called corti.mpois:

% file corti.mpois

% poisson regression model

resp cpm;

var v;

varind dose;

parresp n,d,a,b,g;

pbisresp minf,pinf;

subroutine;

begin

cpm= if dose <= minf then d else
if dose >= pinf then n else
n+(d-n) *exp (-gxlog(1l+exp(a+b*loglO(dose))))

fi fi;
v = cpm;
end

The data are stored in a data frame corti. We call nls2 using its arguments
as follows:

The argument method—because minimizing the deviance D(0) is equiva-
lent to solving the quasi-likelihood equations defined by Equations (7.18),
we will use nls2 by setting the argument method to the value "QLT".
The argument stat.ctx—we have to use the components sigma2.type
and sigma2 of the argument stat.ctx that describes the statistical con-
text of the analysis. By setting sigma2.type to the value "KNOWN" and
sigma2 to the value 1, we specify that o2 is known and equal to 1. There-
fore 02 will not be estimated by the residual variance but will stay fixed
to the value 1 throughout the estimation process.

Moreover, calculation of the maximum likelihood, the minimum deviance,
and the deviance residuals will be done only if the component family is
set to the value "poisson".

The starting values are set equal to the estimated values obtained with the
nonlinear heteroscedastic regression model; they have been stored in the struc-
ture corti.nl6 (see page 123):

> ctx <- list( theta.start=corti.nl6$theta,
sigma2.type="KNOWN", sigma2=1)
> model <- list(file="corti.mpois", gamf=c(0,10))
> corti.nlpois <- nls2(corti, model,ctx, method="QLT",
family="poisson")

Then we display the result of the estimation process:

> cat( "Result of the estimation process:\n ")
> print (summary(corti.nlpois))
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We plot the standardized residuals versus the fitted values of the response
using the function plres.

Modeling the Variance Function as a Power of the Mean

The model is described in a file called corti.mpois2:

% file corti.mpois2

% overdispersion : one parameter tau

resp cpm;

var v;

varind dose;

parresp n,d,a,b,g;

pbisresp minf,pinf;

parvar tau;

subroutine;

begin

cpm= if dose <= minf then d else
if dose >= pinf then n else
n+(d-n)*exp (-gxlog(1l+exp(a+b*loglO(dose))))

fi fi;
v = exp(tauxlog(cpm));
end

Then we call nls2 using its arguments as follows:

e The argument method—the parameters # and 7 are estimated by solving
the quasi-likelihood equations defined in Section 3.3.2. nls2 is used by
setting the argument method to the value "QLTB".

e Because o2 is an unknown parameter that has to be estimated, the com-
ponents sigma2.type and sigma2 of the argument stat.ctx are set to
their default values.

The estimated parameters and their standard errors are displayed:

> ctx <- list( theta.start=corti.nl6$theta,
beta.start=1, max.iters=500)

model <- list(file="corti.mpois2",gamf=c(0,10))

corti.nlpois2 <- nls2(corti,model,ctx,method="QLTB")

cat( "Result of the estimation process:\n ")

print (summary (corti.nlpois2))

vV V V VvV

We plot the standardized residuals versus the fitted values of the response
using the function plres.
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Statistical Tools for Nonlinear Regression, (Second Edition), presents
methods for analyzing data using parametric nonlinear regression models.
The new edition has been expanded to include binomial, multinomial and
Poisson non-linear models. Using examples from experiments in agronomy
and biochemistry, it shows how to apply these methods. It concentrates on
presenting the methods in an intuitive way rather than developping the the-
oretical backgrounds.

The examples are analyzed with the free software nls2 updated to deal
with the new models included in the second edition. The nls2 package is
implemented in S-Plus and R. Its main advantages are to make the model
building, estimation and validation tasks, easy to do. More precisely,

e complex models can be easily described using a symbolic syntax. The re-
gression function as well as the variance function can be defined explicitly
as functions of independent variables and of unknown parameters or they
can be defined as the solution to a system of differential equations. More-
over, constraints on the parameters can easily be added to the model. It is
thus possible to test nested hypotheses and to compare several data sets.

e several additional tools are included in the package for calculating con-
fidence regions for functions of parameters or calibration intervals, using
classical methodology or bootstrap. Moreover, some graphical tools are
proposed for visualizing the fitted curves, the residuals, the confidence
regions, and the numerical estimation procedure.

This book is aimed at scientists who are not familiar with statistical theory,
but have a basic knowledge of statistical concepts. It includes methods based
on classical nonlinear regression theory and more modern methods, such as
bootstrap, which have proved effective in practice. The additional chapters of
the second edition assume some practical experience in data analysis using
generalized linear models. The book will be of interest both for practitioners
as a guide and reference book, and for students, as a tutorial book.

Sylvie Huet and Emmanuel Jolivet are senior researchers and Annie Bou-
vier is computing engineer at INRA, National Institute of Agronomical Re-
search, France; Marie-Anne Poursat is Associate professor of statistics at the
University Paris XI.
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