

[Computational](#page-40-0) Geometry

Line Segment Intersection

1389-2

[Line Segment](#page-0-0) Intersection

[Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

Problem

Line segment intersection problem:

Given two sets of line segments, compute all intersections between a segment from one set and a segment from the other.

 $*$ We consider the segments to be closed.

[Computational](#page-0-0) **Geometry**

Problem

Line segment intersection problem:

Given two sets of line segments, compute all intersections between a segment from one set and a segment from the other.

 $*$ We consider the segments to be closed.

[Computational](#page-0-0) **Geometry**

1st algorithm

- The brute-force algorithm clearly requires $\mathcal{O}(n^2)$ time.
- In a sense this is optimal: when each pair of

[Computational](#page-0-0) **Geometry**

1st algorithm

- The brute-force algorithm clearly requires $\mathcal{O}(n^2)$ time.
- In a sense this is optimal: when each pair of segments intersects any algorithm must take $\Omega(n^2)$ time, because it has to report all intersections.

[Computational](#page-0-0) **Geometry**

[Plane sweep algorithm](#page-7-0)

Definition:

An algorithm whose running time depends not only on the number of segments in the input, but also on the number of intersection points.

[Computational](#page-0-0) **Geometry**

Definition:

An algorithm whose running time depends not only on the number of segments in the input, but also on the number of intersection points.

In our case:

We want an algorithm that runs faster when the number of intersections is sub-quadratic.

[Computational](#page-0-0) **Geometry**

y -intervals

- \bullet Define the y -interval of a segment to be its orthogonal projection onto the y -axis.
- When the y -intervals of a pair of segments do not overlap then they cannot intersect.
- \bullet To find segments whose y-intervals overlap we use a **Plane sweep algorithm**.

イロト イ押 トイヨ トイヨト

[Computational](#page-0-0) **Geometry**

[Line Segment](#page-0-0) Intersection [Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

 Ω

Plane sweep algorithm

- \bullet We imagine sweeping a line ℓ downwards over the plane, starting from a position above all segments.
-
-

[Computational](#page-0-0) **Geometry**

Plane sweep algorithm

- \bullet We imagine sweeping a line ℓ downwards over the plane, starting from a position above all segments.
- While we sweep the imaginary line, we keep track of all segments intersecting it so that we can find the pairs we need.
-

[Computational](#page-0-0) **Geometry**

Plane sweep algorithm

- \bullet We imagine sweeping a line ℓ downwards over the plane, starting from a position above all segments.
- While we sweep the imaginary line, we keep track of all segments intersecting it so that we can find the pairs we need.
- The **status** of the sweep line is the set of segments intersecting it.

[Computational](#page-0-0) **Geometry**

when the sweep line reaches an event point:

- If the event point is the upper endpoint of a segment, then a new segment starts intersecting the sweep line and must be added to the status.
- If the event point is a lower endpoint, a segment stops intersecting the sweep line and must be deleted from the status.
- If the algorithm test pairs of segments for which there is a horizontal line that intersects both segments. (still quadratic).

[Computational](#page-0-0) **Geometry**

New algorithm:

- Order the segments from left to right as they intersect the sweep line.
-
-

[Computational](#page-0-0) **Geometry**

New algorithm:

- Order the segments from left to right as they intersect the sweep line.
- Test adjacent segments in the horizontal ordering for intersection.
-

[Computational](#page-0-0) **Geometry**

New algorithm:

- Order the segments from left to right as they intersect the sweep line.
- Test adjacent segments in the horizontal ordering for intersection.
- To maintain the sorted list, we need to take care of new event points.

[Computational](#page-0-0) **Geometry**

[Line Segment](#page-0-0) Intersection [Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

 Ω

Do we still find all intersections?

Lemma 2.1 Let s_i and s_j be two non-horizontal segments whose interiors intersect in a single point p , and assume there is no third segment passing through p . Then there is an event point above p where s_i and s_j become adjacent and are tested for intersection.

[Computational](#page-0-0) **Geometry**

Do we still find all intersections?

Lemma 2.1 Let s_i and s_j be two non-horizontal segments whose interiors intersect in a single point p , and assume there is no third segment passing through p . Then there is an event point above p where s_i and s_j become adjacent and are tested for intersection.

[Computational](#page-0-0) **Geometry**

Handling event points:

The event point is the upper endpoint of a segment:

- Insert the new segment in the sorted list.
- Check for intersection between the new segment and the segment before and after it in the sorted list.

[Computational](#page-0-0) **Geometry**

Handling event points:

The event point is the upper endpoint of a segment:

- Insert the new segment in the sorted list.
- Check for intersection between the new segment and the segment before and after it in the sorted list.

[Computational](#page-0-0) **Geometry**

[Line Segment](#page-0-0) Intersection [Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

 Ω

Handling event points:

The event point is an intersection:

- Change the order of intersected segments in the sorted list.
- For each intersected segment, check for intersection between the segment and the new neighbor in the sorted list.

[Computational](#page-0-0) **Geometry**

Handling event points:

The event point is an intersection:

- Change the order of intersected segments in the sorted list.
- **•** For each intersected segment, check for intersection between the segment and the new neighbor in the sorted list.

[Computational](#page-0-0) **Geometry**

[Line Segment](#page-0-0) Intersection [Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

 Ω

Handling event points:

The event point is a lower endpoint:

- Remove the segments from the sorted list.
- check for intersection between the neighboring segments.

[Computational](#page-0-0) **Geometry**

Handling event points:

The event point is a lower endpoint:

- Remove the segments from the sorted list.
- check for intersection between the neighboring segments.

[Computational](#page-0-0) **Geometry**

[Line Segment](#page-0-0) Intersection [Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

 QQ

A data structure for handling event:

We need an event queue Q such that:

- \bullet find and removes the next event that will occur from Q . If two event points have the same y -coordinate, then the one with smaller x -coordinate will be returned.
-

[Computational](#page-0-0) **Geometry**

A data structure for handling event:

We need an event queue Q such that:

- \bullet find and removes the next event that will occur from Q . If two event points have the same y -coordinate, then the one with smaller x -coordinate will be returned.
- 2 Insert an event point in Q. An insertion must be able to check whether an event is already present in Q.

[Computational](#page-0-0) **Geometry**

Implementation of the event queue:

- **■** Define an order \prec on event points: $p \prec q$ if and only if $p_y > q_y$ holds or $p_y = q_y$ and $p_x < q_x$ holds.
-
-

[Computational](#page-0-0) **Geometry**

Implementation of the event queue:

- **■** Define an order \prec on event points: $p \prec q$ if and only if $p_y > q_y$ holds or $p_y = q_y$ and $p_x < q_x$ holds.
- 2 We store the event points in a balanced binary search tree, ordered according to ≺.
-

[Computational](#page-0-0) **Geometry**

Implementation of the event queue:

- **■** Define an order \prec on event points: $p \prec q$ if and only if $p_y > q_y$ holds or $p_y = q_y$ and $p_x < q_x$ holds.
- ² We store the event points in a balanced binary search tree, ordered according to \prec .
- ³ Fetching the next event and inserting an event and testing whether a given event is already present in Q take $\mathcal{O}(\log m)$ time, where m is the number of events in Q .

[Computational](#page-0-0) **Geometry**

To maintain the sorted list of segments (status of the algorithm):

- **1** The status structure must be dynamic: segments must be inserted into or deleted from the structure.
-
-

[Computational](#page-0-0) **Geometry**

To maintain the sorted list of segments (status of the algorithm):

- The status structure must be dynamic: segments must be inserted into or deleted from the structure.
- ² We use a balanced binary search tree as status structure.
-

[Computational](#page-0-0) **Geometry**

To maintain the sorted list of segments (status of the algorithm):

- The status structure must be dynamic: segments must be inserted into or deleted from the structure.
- ² We use a balanced binary search tree as status structure.
- ³ At each internal node, we store the segment from the rightmost leaf in its left subtree.

[Computational](#page-0-0) **Geometry**

To search in T for the segment immediately to the left of some point p :

- **1** Traverse the tree until you meet a leaf.
- ² This leaf, or the leaf immediately to the left of it, stores the segment we are searching for.

イロト イ押 トイヨ トイヨト

³ Therefore each update and neighbor search operation takes $\mathcal{O}(\log n)$ time.

[Computational](#page-0-0) **Geometry**

[Line Segment](#page-0-0) Intersection [Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

 Ω

To search in T for the segment immediately to the left of some point p :

- **1** Traverse the tree until you meet a leaf.
- This leaf, or the leaf immediately to the left of it, stores the segment we are searching for.
- ³ Therefore each update and neighbor search operation takes $\mathcal{O}(\log n)$ time.

[Computational](#page-0-0) **Geometry**

Algorithm FINDINTERSECTIONS(S)

Input: A set S of line segments in the plane.

- **Output:** The set of intersection points among the segments in S , with for each intersection point the segments that contain it.
- 1. Initialize an empty event queue \mathcal{Q} . Next, insert the segment endpoints into Q ; when an upper endpoint is inserted, the corresponding segment should be stored with it.
- 2. Initialize an empty status structure \mathcal{T} .
3 while \mathcal{O} is not empty
- 3. **while** Q is not empty
4. Determine the
- Determine the next event point p in Q and delete it.
- 5. HANDLEEVENTPOINT (p)

[Computational](#page-0-0) **Geometry**

Algorithm HANDLEEVENTPOINT(p)

- 1. $U(p) \leftarrow$ segments whose upper endpoint is *p*;
2. Find all segments stored in T that contain *n*:
- Find all segments stored in T that contain p; $L(p) \leftarrow$ segments found whose lower endpoint is p;
	- $C(p) \leftarrow$ segments found that contain p in their interior.
- 3. **if** $|L(p) \cup U(p) \cup C(p)| > 1$
4. **then** Report *p* as an inte
- **then** Report p as an intersection, together with $L(p)$, $U(p)$, and $C(p)$.
- 5. Delete the segments in $L(p) \cup C(p)$ from T.
6. Insert the segments in $U(p) \cup C(p)$ into T.
- Insert the segments in $U(p) \cup C(p)$ into T.

7. if
$$
U(p) \cup C(p) = \emptyset
$$

- 8. **then** s_l and s_r \leftarrow the left and right neighbors of p in T. 9. FINDNEWEVENT (s_l, s_r, p)
- 10. **else** s'←the leftmost segment of $U(p) \cup C(p)$ in T .

```
s_l←the left neighbor of s' in T.
```
- 11. FINDNEWEVENT (s_l, s', p)
- $12.$ $s'' \leftarrow$ the rightmost segment of $U(p) \cup C(p)$ in \mathcal{T} .
- 13. $s_r \leftarrow$ the right neighbor of s'' in T.
- 14. FINDNEWEVENT (s'', s_r, p) (s'', s_r, p)

[Computational](#page-0-0) **Geometry**

Algorithm FINDNEWEVENT (s_l, s_r, p)

1. **if** s_i and s_r intersect below the sweep line, or on it and to the right of the current event point p , and the intersection is not yet present as an event in \mathcal{Q}

イロト イ押 トイヨ トイヨト

2. **then** Insert the intersection point as an event into Q.

[Computational](#page-0-0) **Geometry**

[Line Segment](#page-0-0) Intersection [Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

 Ω

Lemma 2.2

Algorithm FINDINTERSECTIONS computes all intersection points and the segments that contain it correctly.

[Computational](#page-0-0) **Geometry**

Lemma 2.3

The running time of Algorithm FINDINTERSECTIONS for a set S of n line segments in the plane is $\mathcal{O}(n \log n + I \log n)$, where I is the number of intersection points of segments in S.

[Computational](#page-0-0) **Geometry**

Theorem 2.4

Let S be a set of n line segments in the plane. All intersection points in S , with for each intersection point the segments involved in it, can be reported in $\mathcal{O}(n \log n + I \log n)$ time and $\mathcal{O}(n)$ space, where I is the number of intersection points.

[Computational](#page-0-0) **Geometry**

[Computational](#page-0-0) Geometry

[Line Segment](#page-0-0) Intersection [Problem](#page-1-0) [Plane sweep algorithm](#page-7-0)

THE END.

K ロ K K 日 K K 社 X X 社 主 → H X O Q Q Q