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Preface

Bayesian methods are increasingly becoming attractive to researchers in many
fields. Econometrics, however, is a field in which Bayesian methods have had
relatively less influence. A key reason for this absence is the lack of a suitable
advanced undergraduate or graduate level textbook. Existing Bayesian books are
either out-dated, and hence do not cover the computational advances that have
revolutionized the field of Bayesian econometrics since the late 1980s, or do not
provide the broad coverage necessary for the student interested in empirical work
applying Bayesian methods. For instance, Arnold Zellner’s seminal Bayesian
econometrics book (Zellner, 1971) was published in 1971. Dale Poirier’s influ-
ential book (Poirier, 1995) focuses on the methodology and statistical theory
underlying Bayesian and frequentist methods, but does not discuss models used
by applied economists beyond regression. Other important Bayesian books, such
as Bauwens, Lubrano and Richard (1999), deal only with particular areas of
econometrics (e.g. time series models). In writing this book, my aim has been
to fill the gap in the existing set of Bayesian textbooks, and create a Bayesian
counterpart to the many popular non-Bayesian econometric textbooks now avail-
able (e.g. Greene, 1995). That is, my aim has been to write a book that covers a
wide range of models and prepares the student to undertake applied work using
Bayesian methods.

This book is intended to be accessible to students with no prior training in
econometrics, and only a single course in mathematics (e.g. basic calculus). Stu-
dents will find a previous undergraduate course in probability and statistics useful;
however Appendix B offers a brief introduction to these topics for those without
the prerequisite background. Throughout the book, I have tried to keep the level
of mathematical sophistication reasonably low. In contrast to other Bayesian and
comparable frequentist textbooks, I have included more computer-related mate-
rial. Modern Bayesian econometrics relies heavily on the computer, and devel-
oping some basic programming skills is essential for the applied Bayesian. The
required level of computer programming skills is not that high, but I expect that
this aspect of Bayesian econometrics might be most unfamiliar to the student
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brought up in the world of spreadsheets and click-and-press computer packages.
Accordingly, in addition to discussing computation in detail in the book itself, the
website associated with the book contains MATLAB programs for performing
Bayesian analysis in a wide variety of models. In general, the focus of the book
is on application rather than theory. Hence, I expect that the applied economist
interested in using Bayesian methods will find it more useful than the theoretical
econometrician.

I would like to thank the numerous people (some anonymous) who gave me
helpful comments at various stages in the writing of this book, including: Luc
Bauwens, Jeff Dorfman, David Edgerton, John Geweke, Bill Griffiths, Frank
Kleibergen, Tony Lancaster, Jim LeSage, Michel Lubrano, Brendan McCabe,
Bill McCausland, Richard Paap, Rodney Strachan, and Arnold Zellner. In addi-
tion, I would like to thank Steve Hardman for his expert editorial advice. All
I know about Bayesian econometrics comes through my work with a series of
exceptional co-authors: Carmen Fernandez, Henk Hoek, Eduardo Ley, Kai Li,
Jacek Osiewalski, Dale Poirier, Simon Potter, Mark Steel, Justin Tobias, and
Herman van Dijk. Of these, I would like to thank Mark Steel, in particular, for
patiently responding to my numerous questions about Bayesian methodology and
requests for citations of relevant papers. Finally, I wish to express my sincere
gratitude to Dale Poirier, for his constant support throughout my professional
life, from teacher and PhD supervisor, to valued co-author and friend.



1
An Overview of Bayesian

Econometrics

1.1 BAYESIAN THEORY

Bayesian econometrics is based on a few simple rules of probability. This is
one of the chief advantages of the Bayesian approach. All of the things that an
econometrician would wish to do, such as estimate the parameters of a model,
compare different models or obtain predictions from a model, involve the same
rules of probability. Bayesian methods are, thus, universal and can be used any
time a researcher is interested in using data to learn about a phenomenon.

To motivate the simplicity of the Bayesian approach, let us consider two ran-
dom variables, A and B.' The rules of probability imply:

p(A, B) = p(A|B)p(B)

where p(A, B) is the joint probability> of A and B occurring, p(A|B) is the
probability of A occurring conditional on B having occurred (i.e. the conditional
probability of A given B), and p(B) is the marginal probability of B. Alterna-
tively, we can reverse the roles of A and B and find an expression for the joint
probability of A and B:

p(A, B) = p(B|A)p(B)

Equating these two expressions for p(A, B) and rearranging provides us with
Bayes’ rule, which lies at the heart of Bayesian econometrics:

p(A|B)p(B)
B|A) = ———— 7 1.1
p(B|A) () (1.1)

IThis chapter assumes the reader knows the basic rules of probability. Appendix B provides a
brief introduction to probability for the reader who does not have such a background or would like
a reminder of this material.

2We are being slightly sloppy with terminology here and in the following material in that we
should always say ‘probability density’ if the random variable is continuous and ‘probability function’
if the random variable is discrete (see Appendix B). For simplicity, we simply drop the word ‘density’
or ‘function’.




2 BAYESIAN ECONOMETRICS

Econometrics is concerned with using data to learn about something the re-
searcher is interested in. Just what the ‘something’ is depends upon the con-
text. However, in economics we typically work with models which depend upon
parameters. For the reader with some previous training in econometrics, it might
be useful to have in mind the regression model. In this model interest often
centers on the coefficients in the regression, and the researcher is interested in
estimating these coefficients. In this case, the coefficients are the parameters
under study. Let y be a vector or matrix of data and 6 be a vector or matrix
which contains the parameters for a model which seeks to explain y.> We are
interested in learning about 6 based on the data, y. Bayesian econometrics uses
Bayes’ rule to do so. In other words, the Bayesian would replace B by 6 and A
by y in (1.1) to obtain:

pOly) = LLOPO) (12)
()

Bayesians treat p(f|y) as being of fundamental interest. That is, it directly
addresses the question “Given the data, what do we know about 6?”. The treat-
ment of # as a random variable is controversial among some econometricians.
The chief competitor to Bayesian econometrics, often called frequentist econo-
metrics, says that 6 is not a random variable. However, Bayesian econometrics
is based on a subjective view of probability, which argues that our uncertainty
about anything unknown can be expressed using the rules of probability. In this
book, we will not discuss such methodological issues (see Poirier (1995) for more
detail). Rather, we will take it as given that econometrics involves learning about
something unknown (e.g. coefficients in a regression) given something known
(e.g. data) and the conditional probability of the unknown given the known is
the best way of summarizing what we have learned.

Having established that p(@|y) is of fundamental interest for the econometri-
cian interested in using data to learn about parameters in a model, let us now
return to (1.2). Insofar as we are only interested in learning about 6, we can
ignore the term p(y), since it does not involve 6. We can then write:

p@ly) o< p(y|60) p(6) (1.3)

The term p(0|y) is referred to as the posterior density, the p.d.f. for the data
given the parameters of the model, p(y|0), as the likelihood function and p(0)
as the prior density. You often hear this relationship referred to as “posterior
is proportional to likelihood times prior”. At this stage, this may seem a little
abstract, and the manner in which priors and likelihoods are developed to allow
for the calculation of the posterior may be unclear. Things should become clearer
to you in the following chapters, where we will develop likelihood functions and
priors in specific contexts. Here we provide only a brief general discussion of
what these are.

3 Appendix A contains a brief introduction to matrix algebra.
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The prior, p(0), does not depend upon the data. Accordingly, it contains any
non-data information available about 6. In other words, it summarizes what you
know about 6 prior to seeing the data. As an example, suppose 6 is a parameter
which reflects returns to scale in a production process. In many cases, it is
reasonable to assume that returns to scale are roughly constant. Thus, before you
look at the data, you have prior information about 6, in that you would expect it
to be approximately one. Prior information is a controversial aspect of Bayesian
methods. In this book, we will discuss both informative and noninformative priors
for various models. In addition, in later chapters, we will discuss empirical Bayes
methods. These use data-based information to choose the prior and, hence, violate
a basic premise of Bayesian methods. Nevertheless, empirical Bayes methods are
becoming increasingly popular for the researcher who is interested in practical,
objective, tools that seem to work well in practice.*

The likelihood function, p(y|@), is the density of the data conditional on the
parameters of the model. It is often referred to as the data generating process.
For instance, in the linear regression model (which will be discussed in the next
chapter), it is common to assume that the errors have a Normal distribution. This
implies that p(y|6) is a Normal density, which depends upon parameters (i.e. the
regression coefficients and the error variance).

The posterior, p(6]y), is the density which is of fundamental interest. It sum-
marizes all we know about 6 after (i.e. posterior to) seeing the data. Equation (1.3)
can be thought of as an updating rule, where the data allows us to update our
prior views about 6. The result is the posterior which combines both data and
non-data information.

In addition to learning about parameters of a model, an econometrician might
be interested in comparing different models. A model is formally defined by a
likelihood function and a prior. Suppose we have m different models, M; for
i = 1,...,m, which all seek to explain y. M; depends upon parameters 6.
In cases where many models are being entertained, it is important to be explicit
about which model is under consideration. Hence, the posterior for the parameters
calculated using M; is written as

; p(y|0%, M) p(6'|M;)
0'ly, M;) = 1.4
p@'|y, M;) SOIM) (1.4)

and the notation makes clear that we now have a posterior, likelihood, and prior
for each model.

The logic of Bayesian econometrics suggests that we use Bayes’ rule to derive
a probability statement about what we do not know (i.e. whether a model is a
correct one or not) conditional on what we do know (i.e. the data). This means
the posterior model probability can be used to assess the degree of support for

4Carlin and Louis (2000) is a good reference for the reader interested in developing a deeper
understanding of empirical Bayes methods.


Dr.Mehara
Highlight

Dr.Mehara
Highlight


4 BAYESIAN ECONOMETRICS
M;. Using (1.1) with B = M; and A = y, we obtain

M;) p(M;
p(ily) = LR (1.5)
p()

Of the terms in (1.5), p(M;) is referred to as the prior model probability. Since it
does not involve the data, it measures how likely we believe M; to be the correct
one before seeing the data. p(y|M;) is called the marginal likelihood, and is cal-
culated using (1.4) and a few simple manipulations. In particular, if we integrate
both sides of (1.4) with respect to ', use the fact that fp(0i|y, M)do' = 1
(since probability density functions integrate to one), and rearrange, we obtain:

p(yIM;) = /p(yw", M) p(0'|M;)do’ (1.6)

Note that the marginal likelihood depends only upon the prior and the likelihood.
In subsequent chapters, we discuss how (1.6) can be calculated in practice.

Since the denominator in (1.5) is often hard to calculate directly, it is common
to compare two models, i and j, using the posterior odds ratio, which is simply
the ratio of their posterior model probabilities:

o _ pWMily) _ pOy[Mi)p(M;)

Y pMjly)  p(IMy) p(M;)
Note that, since p(y) is common to both models, it cancels out when we take the
ratio. As we will discuss in subsequent chapters, there are special techniques in
many cases for calculating the posterior odds ratio directly. If we calculate the
posterior odds ratio comparing every pair of models, and we assume that our set
of models is exhaustive (in that p(M{|y) + p(M3|y) + - - -+ p(M,,|y) = 1), then
we can use posterior odds ratios to calculate the posterior model probabilities
given in (1.5). For instance, if we have m = 2 models then we can use the two
equations

(1.7)

p(Mqly) + p(Ma]y) =1

and
PO, — p(Mily)
p(Maly)
to work out
p(Myly) = D
1+ PO
and

p(Mzly) =1 — p(Mily)

Thus, knowledge of the posterior odds ratio allows us to figure out the posterior
model probabilities.

To introduce some more jargon, econometricians may be interested in model
comparison when equal prior weight is attached to each model. That is, p(M;) =

p(M;) or, equivalently, the prior odds ratio which is 11; é%’; is set to one. In this
J
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AN OVERVIEW OF BAYESIAN ECONOMETRICS 5

case, the posterior odds ratio becomes simply the ratio of marginal likelihoods,
and is given a special name, the Bayes Factor, defined as:
- POIM)
Y pIM))

Finally, econometricians are often interested in prediction. That is, given the
observed data, y, the econometrician may be interested in predicting some future
unobserved data y*. Our Bayesian reasoning says that we should summarize our
uncertainty about what we do not know (i.e. y*) through a conditional probability
statement. That is, prediction should be based on the predictive density p(y*|y)
(or, if we have many models, we would want to make explicit the dependence of
a prediction on a particular model, and write p(y*|y, M;)). Using a few simple
rules of probability, we can write p(y|y*) in a convenient form. In particular,
since a marginal density can be obtained from a joint density through integration
(see Appendix B), we can write:

pPOY*ly) = /p(y*,Gly)dG

However, the term inside the integral can be rewritten using another simple rule
of probability:

(1.8)

PO ly) = /p(y*ly, 0)p(6]y)do 1.9

As we shall see in future chapters, the form for the predictive in (1.9) is quite
convenient, since it involves the posterior.

On one level, this book could end right here. These few pages have outlined all
the basic theoretical concepts required for the Bayesian to learn about parameters,
compare models and predict. We stress what an enormous advantage this is. Once
you accept that unknown things (i.e. 6, M; and y*) are random variables, the rest
of Bayesian approach is non-controversial. It simply uses the rules of probability,
which are mathematically true, to carry out statistical inference. A benefit of this
is that, if you keep these simple rules in mind, it is hard to lose sight of the
big picture. When facing a new model (or reading a new chapter in the book),
just remember that Bayesian econometrics requires selection of a prior and a
likelihood. These can then be used to form the posterior, (1.3), which forms
the basis for all inference about unknown parameters in a model. If you have
many models and are interested in comparing them, you can use posterior model
probabilities (1.5), posterior odds ratios (1.7), or Bayes Factors (1.8). To obtain
any of these, we usually have to calculate the marginal likelihood (1.6). Prediction
is done through the predictive density, p(y*|y), which is usually calculated using
(1.9). These few equations can be used to carry out statistical inference in any
application you may wish to consider.

The rest of this book can be thought of as simply examples of how (1.5)—(1.9)
can be used to carry out Bayesian inference for various models which have been
commonly-used by others. Nevertheless, we stress that Bayesian inference can be
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6 BAYESIAN ECONOMETRICS

done with any model using the techniques outlined above and, when confronting
an empirical problem, you should not necessarily feel constrained to work with
one of the off-the-shelf models described in this book.

1.2 BAYESIAN COMPUTATION

The theoretical and conceptual elegance of the Bayesian approach has made it an
attractive one for many decades. However, until recently, Bayesians have been in
a distinct minority in the field of econometrics, which has been dominated by the
frequentist approach. There are two main reasons for this: prior information and
computation. With regards to the former, many researchers object to the use of
‘subjective’ prior information in the supposedly ‘objective’ science of economics.
There is a long, at times philosophical, debate about the role of prior information
in statistical science, and the present book is not the place to attempt to summarize
this debate. The interested reader is referred to Poirier (1995), which provides a
deeper discussion of this issue and includes an extensive bibliography. Briefly,
most Bayesians would argue that the entire model building process can involve
an enormous amount of non-data information (e.g. econometricians must decide
which models to work with, which variables to include, what criteria to use to
compare models or estimate parameters, which empirical results to report, etc.).
The Bayesian approach is honest and rigorous about precisely how such non-data
information is used. Furthermore, if prior information is available, it should be
used on the grounds that more information is preferred to less. As a final line
of defense, Bayesians have developed noninformative priors for many classes of
model. That is, the Bayesian approach allows for the use of prior information if
you wish to use it. However, if you do not wish to use it, you do not have to do
so. Regardless of how a researcher feels about prior information, it should in no
way be an obstacle to the adoption of Bayesian methods.

Computation is the second, and historically more substantive, reason for the
minority status of Bayesian econometrics. That is, Bayesian econometrics has
historically been computationally difficult or impossible to do for all but a few
specific classes of model. The computing revolution of the last 20 years has
overcome this hurdle and has led to a blossoming of Bayesian methods in many
fields. However, this has made Bayesian econometrics a field which makes heavy
use of the computer, and a great deal of this book is devoted to a discussion of
computation. In essence, the ideas of Bayesian econometrics are simple, since
they only involve the rules of probability. However, to use Bayesian econometrics
in practice often requires a lot of number crunching.

To see why computational issues are so important, let us return to the basic
equations which underpin Bayesian econometrics. The equations relating to model
comparison and prediction either directly or indirectly involve integrals (i.e. (1.6)
and (1.9) involve integrals, and (1.6) is a building block for (1.7) and (1.8)). In
some (rare) cases, analytical solutions for these integrals are available. That is,
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you can sit down with pen and paper and work out the integrals. However, we
usually need the computer to evaluate the integrals for us, and many algorithms
for doing so have been developed.

The equation defining the posterior does not involve any integrals, but pre-
sentation of information about the parameters can often involve substantial com-
putation. This arises since, although p(6|y) summarizes all we know about 6
after seeing the data, it is rarely possible to present all the information about
p(@|y) when writing up a paper. In cases where p(f|y) has a simple form
or 6 is one-dimensional, it is possible to do so, for instance, by graphing the
posterior density. However, in general, econometricians choose to present var-
ious numerical summaries of the information contained in the posterior, and
these can involve integration. For instance, it is common to present a point esti-
mate, or best guess, of what 0 is. Bayesians typically use decision theory to
justify a particular choice of a point estimate. In this book, we will not dis-
cuss decision theory. The reader is referred to Poirier (1995) or Berger (1985)
for excellent discussions of this topic (see also Exercise 1 below). Suffice it to
note here that various intuitively plausible point estimates such as the mean,
median, and mode of the posterior can be justified in a decision theoretical
framework.

Let us suppose you want to use the mean of the posterior density (or pos-
terior mean) as a point estimate, and suppose 6 is a vector with k elements,
0 = (01, ...,06). The posterior mean of any element of 9 is calculated as (see
Appendix B)

E@ily) = /9ip(9ly)d9 (1.10)

Apart from a few simple cases, it is not possible to evaluate this integral analyt-
ically, and once again we must turn to the computer.

In addition to a point estimate, it is usually desirable to present a measure of
the degree of uncertainty associated with the point estimate. The most common
such measure is the posterior standard deviation, which is the square root of the
posterior variance. The latter is calculated as

var(;1y) = E@71y) — (E@|y))*
which requires evaluation of the integral in (1.10), as well as
E©]1y) = f 67 p(61y)d6

Depending on the context, the econometrician may wish to present many other
features of the posterior. For instance, interest may center on whether a particular
parameter is positive. In this case, the econometrician would calculate

p©; = 0]y) =f0 pO1y)do

and, once again, an integral is involved.
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8 BAYESIAN ECONOMETRICS

All of these posterior features which the Bayesian may wish to calculate have
the form:

E[g0)y]l = /8(9)p(9|y)d9 (1.11)

where g(0) is a function of interest. For instance, g(6) = 6; when calculating the
posterior mean of 6; and g(6) = 1(6; > 0) when calculating the probability that
0; is positive, where 1(A) is the indicator function which equals 1 if condition
A holds and equals zero otherwise. Even the predictive density in (1.9) falls in
this framework if we set g(6) = p(y*|y, ). Thus, most things a Bayesian would
want to calculate can be put in the form (1.11). The chief exceptions which do
not have this form are the marginal likelihood and quantiles of the posterior
density (e.g. in some cases, one may wish to calculate the posterior median and
posterior interquartile range, and these cannot be put in the form of (1.11)). These
exceptions will be discussed in the context of particular models in subsequent
chapters.

At this point, a word of warning is called for. Throughout this book, we focus
on evaluating E[g(6)|y] for various choices of g(.). Unless otherwise noted, for
every model and g(.) discussed in this book, E[g(6)|y] exists. However, for some
models it is possible that E[g(6)|y] does not exist. For instance, for the Cauchy
distribution, which is the t distribution with one degree of freedom (see Appendix
B, Definition B.26), the mean does not exist. Hence, if we had a model which
had a Cauchy posterior distribution, E[6]y] would not exist. When developing
methods for Bayesian inference in a new model, it is thus important to prove that
E[g(0)]y] does exist. Provided that p(6|y) is a valid probability density function,
quantiles will exist. So, if you are unsure that E[g(8)|y] exists, you can always
present quantile-based information (e.g. the median and interquartile range).

In rare cases, (1.11) can be worked out analytically. However, in general, we
must use the computer to calculate (1.11). There are many methods for doing
this, but the predominant approach in modern Bayesian econometrics is posterior
simulation. There are a myriad of posterior simulators which are commonly
used in Bayesian econometrics, and many of these will be discussed in future
chapters in the context of particular models. However, all these are applications
or extensions of laws of large numbers or central limit theorems. In this book,
we do not discuss these concepts of asymptotic distribution theory in any detail.
The interested reader is referred to Poirier (1995) or Greene (2000). Appendix B
provides some simple cases, and these can serve to illustrate the basic ideas of
posterior simulation.

A straightforward implication of the law of large numbers given in Appendix
B (see Definition B.31 and Theorem B.19) is:

Theorem 1.1: Monte Carlo integration

Let 6 for s = 1,...,S be a random sample from p(@|y), and
define
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P
I =5 > g0 (1.12)
s=1

then gg converges to E[g(68)|y] as S goes to infinity.

In practice, this means that, if we can get the computer to take a random
sample from the posterior, (1.12) allows us to approximate E[g(6)|y] by simply
averaging the function of interest evaluated at the random sample. To introduce
some jargon, this sampling from the posterior is referred to as posterior simula-
tion, and 6©) is referred to as a draw or replication. Theorem 1.1 describes the
simplest posterior simulator, and use of this theorem to approximate E[g(6)|y]
is referred to as Monte Carlo integration.

Monte Carlo integration can be used to approximate E[g(6)|y], but only if
S were infinite would the approximation error go to zero. The econometrician
can, of course, choose any value for S (although larger values of S will increase
the computational burden). There are many ways of gauging the approximation
error associated with a particular value of S. Some of these will be discussed in
subsequent chapters. However, many are based on extensions of the central limit
theorem given in Appendix B, Definition B.33 and Theorem B.20. For the case
of Monte Carlo integration, this central limit theorem implies:

Theorem 1.2: A numerical standard error
Using the setup and definitions of Theorem 1.1,

VS{2s — E[g(0)y]} = N(0,0;) (1.13)

as S goes to infinity, where ng = var[g(©)|y].

Theorem 1.2 can be used to obtain an estimate of the approximation error in a
Monte Carlo integration exercise by using properties of the Normal distribution.
For instance, using the fact that the standard Normal has 95% of its probability
located within 1.96 standard deviations from its mean yields the approximate
result that:

(o2 (o8
Pr|—1.96—%~ < 35— E[g(®)]|y] < 1.96—g] =0.95
[ NG gs g@ly 75

By controlling S, the econometrician can ensure that gs— E[g(#)|y] is sufficiently
small with a high degree of probability. In practice, o, is unknown, but the
Monte Carlo integration procedure allows us to approximate it. The term %
is known as the numerical standard error, and the econometrician can simply
report it as a measure of approximation error. Theorem 1.2 also implies, for
example, that if § = 10000 then the numerical standard error is 1%, as big as
the posterior standard deviation. In many empirical contexts, this may be a nice
way of expressing the approximation error implicit in Monte Carlo integration.

Unfortunately, it is not always possible to do Monte Carlo integration. Algo-
rithms exist for taking random draws from many common densities (e.g. the



10 BAYESIAN ECONOMETRICS

Normal, the Chi-squared).5 However, for many models, the posteriors do not
have one of these common forms. In such cases, development of posterior simu-
lators is a more challenging task. In subsequent chapters, we describe many types
of posterior simulators. However, we introduce Monte Carlo integration here so
as to present the basic ideas behind posterior simulation in a simple case.

1.3 BAYESIAN COMPUTER SOFTWARE

There are several computer software packages that are useful for doing Bayesian
analysis in certain classes of model. However, Bayesian econometrics still tends
to require a bit more computing effort than frequentist econometrics. For the
latter, there are many canned packages that allow the user to simply click on
an icon in order to carry out a particular econometric procedure. Many would
argue that this apparent advantage is actually a disadvantage, in that it encourages
the econometrician to simply use whatever set of techniques is available in the
computer package. This can lead to the researcher simply presenting whatever
estimates, test statistics, and diagnostics that are produced, regardless of whether
they are appropriate for the application at hand. Bayesian inference forces the
researcher to think in terms of the models (i.e. likelihoods and priors), which
are appropriate for the empirical question under consideration. The myriad of
possible priors and likelihoods make it difficult to construct a Bayesian computer
package that can be used widely. For this reason, many Bayesian econometricians
create their own programs in matrix programming languages such as MATLAB,
Gauss, or Ox. This is not that difficult to do. It is also well worth the effort, since
writing a program is a very good way of forcing yourself to fully understand an
econometric procedure. In this book, the empirical illustrations are carried out
using MATLAB, which is probably the most commonly-used computer language
for Bayesian econometrics and statistics. The website associated with this book
contains copies of the programs used in the empirical illustrations, and the reader
is encouraged to experiment with these programs as a way of learning Bayesian
programming. Furthermore, some of the questions at the end of each chapter
require the use of the computer, and provide another route for the reader to
develop some basic programming skills.

For readers who do not wish to develop programming skills, there are some
Bayesian computer packages that allow for simple analysis of standard classes of
models. BUGS, an acronym for Bayesian Inference Using Gibbs Sampling (see
Best et al., 1995), handles a fairly wide class of models using a common posterior
simulation technique called Gibbs sampling. More directly relevant for econome-
tricians is Bayesian Analysis, Computation and Communication (BACC), which
handles a wide range of common models (see McCausland and Stevens, 2001).

SDraws made by the computer follow a particular algorithm and, hence, are not formally random.
It is more technically correct to call draws generated by the computer pseudo-random. Devroye
(1986) provides a detailed discussion of pseudo-random number generation.
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The easiest way to use BACC is as a dynamically linked library to another popu-
lar language such as MATLAB. In other words, BACC can be treated as a set of
MATLAB commands. For instance, instead of programming up a posterior sim-
ulator for analysis of the regression model discussed in Chapter 4, BACC allows
for Bayesian inference to be done using one simple MATLAB command. Jim
LeSage’s Econometrics Toolbox (see LeSage, 1999) also contains many MAT-
LAB functions that can be used for aspects of Bayesian inference. The empiri-
cal illustrations in this book which involve posterior simulation use his random
number generators. At the time of writing, BUGS, BACC, and the Economet-
rics Toolbox were available on the web for free for educational purposes. Many
other Bayesian software packages exist, although most are more oriented towards
the statistician than the econometrician. Appendix C of Carlin and Louis (2000)
provides much more information about relevant software.

1.4 SUMMARY

In this chapter, we have covered all the basic issues in Bayesian econometrics
at a high level of abstraction. We have stressed that the ability to put all the
general theory in one chapter, involving only basic concepts in probability, is
an enormous advantage of the Bayesian approach. The basic building blocks
of the Bayesian approach are the likelihood function and the prior, the product
of these defines the posterior (see (1.3)), which forms the basis for inference
about the unknown parameters in a model. Different models can be compared
using posterior model probabilities (see (1.5)), which require the calculation of
marginal likelihoods (1.6). Prediction is based on the predictive density (1.9). In
most cases, it is not possible to work with all these building blocks analytically.
Hence, Bayesian computation is an important topic. Posterior simulation is the
predominant method of Bayesian computation.

Future chapters go through particular models, and show precisely how these
abstract concepts become concrete in practical contexts. The logic of Bayesian
econometrics set out in this chapter provides a template for the organization
of following chapters. Chapters will usually begin with a likelihood function
and a prior. Then a posterior is derived along with computational methods for
posterior inference and model comparison. The reader is encouraged to think in
terms of this likelihood/prior/posterior/computation organizational structure both
when reading this book and when beginning a new empirical project.

1.5 EXERCISES

1.5.1 Theoretical Exercises

Remember that Appendix B describes basic concepts in probability, including
definitions of common probability distributions.
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. Decision Theory. In this book, we usually use the posterior mean as a point
estimate. However, in a formal decision theoretic context, the choice of a
point estimate of 6 is made by defining a loss function and choosing the point
estimate which minimizes~expected loss. Thus, if C (@, 0) is the loss (or cost)
associated with choosing 6 as a point estimate of 6, then we would choose 6
which minimizes E[C(0, 8)|y] (where the expectation is taken with respect
to the posterior of ¢). For the case where ¢ is a scalar, show the following:
(a) Squared error loss function. If C(,0) = (6 — 6)? then 6 = E(0]y).

(b) Asymmetric linear loss function. If

c1l6 —0)if6 <6

c@.0={ _ -
|0 —0]if0 >0

4]

where ¢; > 0 and ¢ > 0 are constants, then 6 is the s

p@ly).
(c) All-or-nothing loss function. If

th quantile of

- {cﬁ5¢9

c,0) = -
0ife =0
where ¢ > 0 is a constant, then g is the mode of p@ly).
. Let y = (y1,...,yn) be a random sample where p(y;10) = fc(3i19,2).
Assume a Gamma prior for 8: p(0) = f(016, v):
(a) Derive p(0|y) and E(O]y).
(b) What happens to E(f|y) as v — 0? In what sense is such a prior ‘nonin-
formative’ ?

. Let y = (y1,...,yn) be a random sample, where

01 —-6)if0<y <1
p(il0) = ,
0 otherwise

(a) Derive the posterior for 8 assuming a prior 8 ~ U (0, 1). Derive E(0]|y).
(b) Repeat part (a) assuming a prior of the form:

LCatp)

— = A-0f1lifo<o <1
p® = T(T(P)

0 otherwise

where o and B are prior hyperparameters.
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1.5.2 Computer-Based Exercises

4. Suppose that the posterior for a parameter, 6, is N (0, 1):

(a) Create a computer program which carries out Monte Carlo integration (see
(1.12)) to estimate the posterior mean and variance of 6. (Note: Virtually
any relevant computer package such as MATLAB or Gauss will have a
function which takes random draws from the standard Normal.)

(b) How may replications are necessary to ensure that the Monte Carlo esti-
mates of the posterior mean and variance are equal to their true values of
0 and 1 to three decimal places?

(c) To your computer program, add code which calculates numerical standard
errors (see (1.13)). Experiment with calculating posterior means, standard
deviations, and numerical standard errors for various values of S. Do the
numerical standard errors give a reliable indication of the accuracy of
approximation in the Monte Carlo integration estimates?
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2
The Normal Linear Regression Model

with Natural Conjugate Prior
and a Single Explanatory Variable

2.1 INTRODUCTION

The regression model is the workhorse of econometrics. A detailed motivation
and discussion of the regression model can be found in any standard econometrics
text (e.g. Greene (2000), Gujarati (1995), Hill, Griffiths and Judge (1997), or
Koop (2000). Briefly, the linear regression model posits a relationship between
a dependent variable, y, and k explanatory variables, x1, ... , xi, of the form:

y=p1+pxa+ -+ Prxr + ¢

where ¢ is the regression error, and x; is implicitly set to 1 to allow for an
intercept.

It is not hard for any economist to think of many examples where a particular
variable depends upon others. For instance, an individual’s wage depends upon
her education, experience, and other characteristics. The level of GDP in a country
depends upon the size and quality of its workforce, its capital stock, and many
other characteristics. The production costs of a firm depends upon the amount
of outputs produced, as well as input prices, etc. The empirical example used in
the next chapter involves data on houses in Windsor, Canada. Interest centers on
the factors which influence house prices, the dependent variable. The explanatory
variables are the lot size of the property, the number of bedrooms, number of
bathrooms, and number of storeys in the house. Note that this example (like most
in economics) involves many explanatory variables and, hence, we have many
parameters. With many parameters, the notation becomes very complicated unless
matrix algebra is used. To introduce the basic concepts and motivation for the
linear regression model with minimal matrix algebra, we begin with a simple
case where there is only one explanatory variable. Subsequently, in Chapter 3,
we move to the general case involving many explanatory variables.
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2.2 THE LIKELIHOOD FUNCTION

Let y; and x; denote the observed data on the dependent and explanatory vari-
ables, respectively, for individual i fori = 1,..., N. We use the term ‘individ-
ual’ to denote the unit of observation, but we could have data on firms, products,
time periods, etc. To simplify the mathematics, we do not allow for an intercept
and, hence, the linear regression model becomes:

yi = Bxi +¢&; 2.1

where ¢; is an error term. There are many justifications for inclusion of an error
term. It can reflect measurement error, or the fact that the linear relationship
between x and y is only an approximation of the true relationship. More simply,
you can imagine the linear regression model as fitting a straight line with slope g
through an XY-plot of the data. In all but the most trivial cases, it is not possible
to fit a straight line through all N data points. Hence, it is inevitable that error
will result.

Assumptions about ¢; and x; determine the form of the likelihood function.
The standard assumptions (which we will free up in later chapters) are:

1. &; is Normally distributed with mean 0, variance o2, and &; and ¢; are inde-
pendent of one another for i # j. Shorthand notation for this is: &; is i.i.d.
N (O, 02), where i.i.d. stands for ‘independent and identically distributed’.

2. The x; are either fixed (i.e. not random variables) or, if they are random vari-
ables, they are independent of &; with a probability density function, p(x;|A)
where A is a vector of parameters that does not include g and o2.

The assumption that the explanatory variables are not random is a standard
one in the physical sciences, where experimental methods are common. That is,
as part of the experimental setup, the researcher chooses particular values for x
and they are not random. In most economic applications, such an assumption is
not reasonable. However, the assumption that the distribution of x is independent
of the error and with a distribution which does not depend upon the parameters
of interest is often a reasonable one. In the language of economics, you can think
of it as implying that x is an exogenous variable.

The likelihood function is defined as the joint probability density function
for all the data conditional on the unknown parameters (see (1.3)). As shorthand
notation, we can stack all our observations of the dependent variable into a vector
of length N:

Y1
»
y =

YN
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LINEAR REGRESSION MODEL WITH A SINGLE VARIABLE 17

or, equivalently (and more compactly), y = (y1, y2, ..., yn)'. Similarly, for the
explanatory variable, we define x = (xq, x2, ..., xy)’. The likelihood function
then becomes p(y, x|B, 02, 1). The second assumption above implies that we
can write the likelihood function as:

Py, xIB, 0% 0) = p(ylx, B, 0P p(x|)

Insofar as the distribution of x is not of interest, we can then work with the likeli-
hood function conditional on x, p(y|x, B, o). For simplicity of notation, we will
not explicitly include x in our conditioning set for the regression model. It should
be remembered that the regression model (whether handled using Bayesian or
frequentist methods) implicitly involves working with the conditional distribution
of y given x, and not the joint distribution of these two random vectors.

The assumptions about the errors can be used to work out the precise form of
the likelihood function. In particular, using some basic rules of probability and
(2.1), we find:

e p(yilB, 02) is Normal (see Appendix B, Theorem B.10).
o E(yilB, 0?) = Bx; (see Appendix B, Theorem B.2).
e var(yi|B, 02) =02 (see Appendix B, Theorem B.2).

Using the definition of the Normal density (Appendix B, Definition B.24) we
obtain

p(yilB, 0% =

L[ Gi=Bx
V2mo? P 202

Finally, since, for i # j, &; and ¢; are independent of one another, it follows
that y; and y; are also independent of one another and, thus, p(y|B, 0?) =
]_[lN:l p(3i1B, ) and, hence, the likelihood function is given by:

1
POy, 0%) = ———ex [ Z(y, ﬂxl} 22)

Q2m)zoN

For future derivations, it proves convenient to rewrite the likelihood in a
slightly different way. It can be shown that:!

N R N
> i = pri)? = vt + (B — By x?
i=1 i=1

where
v=N-1 (2.3)

sz;y : (2.4)

To prove this, write Y (y; — Bxi)? = i — ,Bxl) - (B - /3),\6,}2 and then expand out the
right-hand side.
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and

. B2
SZZM (2.5)

For the reader with a knowledge of frequentist econometrics, note that ,E, 52
and v are the Ordinary Least Squares (OLS) estimator for 8, standard error and
degrees of freedom, respectively. They are also sufficient statistics (see Poirier,
1995, p. 222) for (2.2). Furthermore, for many technical derivations, it is easier
to work with the error precision rather than the variance. The error precision is
defined as: h = ﬁ

Using these results, we can write the likelihood function as:

_ 1 1 PR 3 _ v
p(yw,h)—(zﬂ)g {h exp{ (BB ,§=1:Xi]}{h exp[ 25_2]}
(2.6)

For future reference, note that the first term in curly brackets looks like the kernel
of a Normal density for 8, and the second term looks almost like a Gamma density
for h (see Appendix B, Definitions B.24 and B.22).

2.3 THE PRIOR

Priors are meant to reflect any information the researcher has before seeing the
data which she wishes to include. Hence, priors can take any form. However,
it is common to choose particular classes of priors that are easy to interpret
and/or make computation easier. Natural conjugate priors typically have both
such advantages. A conjugate prior distribution is one which, when combined
with the likelihood, yields a posterior that falls in the same class of distribu-
tions. A natural conjugate prior has the additional property that it has the same
functional form as the likelihood function. These properties mean that the prior
information can be interpreted in the same way as likelihood function informa-
tion. In other words, the prior can be interpreted as arising from a fictitious data
set from the same process that generated the actual data.

In the simple linear regression model, we must elicit a prior for 8 and #,
which we denote by p(8, h). The fact that we are not conditioning on the data
means that p(8, k) is a prior density, the posterior density will be denoted by
p(B, h|y). It proves convenient to write p(B,h) = p(Blh)p(h) and think in
terms of a prior for S|k and one for 4. The form of the likelihood function in
(2.6) suggests that the natural conjugate prior will involve a Normal distribution
for B|h and a Gamma distribution for /. This is indeed the case. The name given
to a distribution such as this which is a product of a Gamma and a (conditional)
Normal is the Normal-Gamma. Appendix B, Definition B.26 provides further
details on this distribution. Using notation introduced in Appendix B, if

Blh~ N(@B, h~'V)
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and
h~G(s2 )

then the natural conjugate prior for 8 and A is denoted by:
B.h~ NGB,V s v) 2.7)

The researcher would then choose particular values of the so-called prior hyper-
parameters B, V,s~2 and v to reflect her prior information. The exact interpre-
tation of these hyperparameters becomes clearer once you have seen their role
in the posterior and, hence, we defer a deeper discussion of prior elicitation until
the next section.

Throughout this book, we use bars under parameters (e.g. 8 ) to denote param-
eters of a prior density, and bars over parameters (e.g. 8) to denote parameters
of a posterior density.

2.4 THE POSTERIOR

The posterior density summarizes all the information, both prior and data-based,
that we have about the unknown parameters, 8 and A. It is proportional to (see
(1.3)) the likelihood (2.2) times the prior density (see (2.7)). For the sake of
brevity, we do not provide all the algebraic details here. Poirier (1995, p. 527)
or Zellner (1971, pp. 60-61) provide closely related derivations. Messy, but
conceptually straightforward, manipulations can be used to show that the posterior
density is also of Normal-Gamma form, confirming that the prior of the previous
section is indeed a natural conjugate one.
Formally, we have a posterior of the form

B.hly ~NG(B,V,57,v) (2.8)
where B .
V= VTS (2.9)
B=VV'B+BY x) (2.10)
V=v+N (2.11)

and 5 2 is defined implicitly through
(B - B)>

(s

In regression modeling, the coefficient on the explanatory variable, 8, is usually
the primary focus, since it is a measure of the marginal effect of the explanatory

V82 = vs? +vs? + (2.12)
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variable on the dependent variable. The posterior mean, E(8]y), is a commonly-
used point estimate, and var(B|y) is a commonly-used metric for the uncer-
tainty associated with the point estimate. Using the basic rules of probability, the
posterior mean can be calculated as:

E@Bly) = / / Bp(B, hly)dhdp = / Bp(Bly)dp

This equation motivates interest in the marginal posterior density, p(8|y). For-
tunately, this can be calculated analytically using the properties of the Normal-
Gamma distribution (see Appendix B, Theorem B.15). In particular, these imply
that, if we integrate out h (i.e. use the fact that p(Bly) = [ p(B, hly)dh), the
marginal posterior distribution for 8 is a t distribution. In terms of the notation
of Appendix B, Definition B.25:

Bly ~ t(B.5°V, ) (2.13)
and it follows from the definition of the t distribution that
EBly) =8 (2.14)
and P
var(Bly) = —=V (2.15)
v—2

The error precision, A, is usually of less interest than S, but the properties of
the Normal-Gamma imply immediately that:

hly ~ G2, D) (2.16)
and hence that
E(hly) =572 2.17)
and
252
var(h|y) = — (2.18)

Equations (2.9)—(2.18) provide insight into how Bayesian methods combine
prior and data information in a very simple model and, hence, it is worth dis-
cussing them in some detail. Note, first, that the results the Bayesian econometri-
cian would wish to report all can be written out analytically, and do not involve
integration. In Chapter 1, we stressed that Bayesian inference often required pos-
terior simulation. The linear regression model with Normal-Gamma natural con-
jugate prior is one case where posterior simulation is not required.

The frequentist econometrician would often use §, the ordinary least squares
estimate of 8. The common Bayesian point estimate, f, is a weighted average
of the OLS estimate and the prior mean, 8. The weights are proportional to
le? and V™!, respectively. The latter of these reflects the confidence in the
prior. For instance, if the prior variance you select is high, you are saying you
are very uncertain about what likely values of B are. As a result, V~'will be


Dr.Mehara
Highlight

Dr.Mehara
Highlight


LINEAR REGRESSION MODEL WITH A SINGLE VARIABLE 21

small and little weight will be attached to B, your best prior guess at what g
is. The term lez plays a similar role with respect to data-based information.
Loosely speaking, it reflects the degree of confidence that the data have in its
best guess for 8, the OLS estimate . Readers knowledgeable of frequentist
econometrics will recognize o xz)’1 as being proportional to the variance of
,3 Alternative intuition can be obtained by considering the simplest case, where

xi=1fori =1,...,N. Then Zx N, and the weight attached to ,3 will
simply be the sample size, a reasonable measure for the amount of information
in the data. Note that, for both prior mean and the OLS estimate, the posterior
mean attaches weight proportional to their precisions (i.e. the inverse of their
variances). Hence, Bayesian methods combine data and prior information in a
sensible way.

In frequentist econometrics, the variance of the OLS estimator for the regres-
sion model given in (2.1) is sz(z xl.z)_l. This variance would be used to obtain
frequentist standard errors and carry out various hypothesis tests (e.g. the fre-

quentist t-statistic for testing B = 0 is 2
NEZIOD xl.z)*1
posterior variance of 8 given in (2.15), which has a very similar form, but incor-
porates both prior and data information. For instance, (2.9) can be informally
interpreted as saying “posterior precision is an average of prior precision (V1)
and data precision () xiz)”. Similarly, (2.12) has an intuitive interpretation of
“posterior sum of squared errors (v52) is the sum of prior sum of squared errors
(vs?), OLS sum of squared errors (vs?), and a term which measures the conflict
between prior and data information”.

The other equations above also emphasize the intuition that the Bayesian pos-
terior combines data and prior information. Furthermore, the natural conjugate
prior implies that the prior can be interpreted as arising from a fictitious data
set (e.g. v and N play the same role in (2.11) and (2.12) and, hence, v can be
interpreted as a prior sample size).

For the reader trained in frequentist econometrics, it is useful to draw out the
similarities and differences between what a Bayesian would do and what a fre-
quentist Would do. The latter might calculate ,6 and its variance, sz(z x2) ! and
estimate o2 by s2 The former might calculate the posterior mean and variance of

). The Bayesian analogue is the

B (e B and < 752 V) and estimate & = o 2 by its posterior mean, 5 ~2. These are
very similar strateg1es except for two important differences. First, the Bayesian
formulae all combine prior and data information. Secondly, the Bayesian inter-
prets B as a random variable, whereas the frequentist interprets 8 as a random
variable.

The fact that the natural conjugate prior implies prior information enters in
the same manner as data information helps with prior elicitation. For instance,
when choosing particular values for 8, V,s~2 and v it helps to know that 8 is
equivalent to the OLS estimate from an imaginary data set of v observations with
an imaginary lez equal to V! and an imaginary s> given by s%. However,
econometrics is a public science where empirical results are presented to a wide
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variety of readers. In many cases, most readers may be able to agree on what
a sensible prior might be (e.g. economic theory often specifies what reasonable
parameter values might be). However, in cases where different researchers can
approach a problem with very different priors, a Bayesian analysis with only a
single prior can be criticized. There are two main Bayesian strategies for sur-
mounting such a criticism. First, a prior sensitivity analysis can be carried out.
This means that empirical results can be presented using various priors. If empir-
ical results are basically the same for various sensible priors, then the reader is
reassured that researchers with different beliefs can, after looking at the data,
come to agreement. If results are sensitive to choice of prior, then the data is
not enough to force agreement on researchers with different prior views. The
Bayesian approach allows for the scientifically honest finding of such a state of
affairs. There is a substantive literature which finds bounds on, for example, the
posterior mean of a parameter. We do not discuss this so-called extreme bounds
analysis literature in any detail. A typical result in this literature is of the form:
“for any possible choice of V, B must lie between specified upper and lower
bounds”. Poirier (1995, pp. 532-536) provides an introduction to this literature,
and further references (see also Exercise 6 in Chapter 3).

A second strategy for prior elicitation in cases where wide disagreement about
prior choice could arise is to use a noninformative prior. The Bayesian litera-
ture on noninformative priors is too voluminous to survey here. Poirier (1995,
pp- 318-331) and Zellner (1971, pp. 41-53) provide detailed discussion about
this issue (see also Chapter 12, Section 12.3). Suffice it to note here that, in many
cases, it is desirable for data information to be predominant over prior informa-
tion. In the context of the natural conjugate prior above, it is clear how one can
do this. Given the ‘fictitious prior sample’ interpretation of the natural conjugate
prior, it can be seen that setting v small relative to N and V to a large value
will ensure that prior information plays little role in the posterior formula (see
(2.9)—(2.12)). We refer to such a prior as a relatively noninformative prior.

Taking the argument in the previous paragraph to the limit suggests that we
can create a purely noninformative prior by setting v = 0 and V~! = 0 (i.e.
V — o0). Such choices are indeed commonly made, and they imply 8, h|y ~
NG(B,V,572,7), where

V= lez 2.19)

B=8 (2.20)

T=N 2.21)
and

V52 = vs? (2.22)

With this noninformative prior, all of these formulae involve only data informa-
tion and, in fact, are equal to ordinary least squares results.
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LINEAR REGRESSION MODEL WITH A SINGLE VARIABLE 23

In one sense, this noninformative prior has very attractive properties and, given
the close relationship with OLS results, provides a bridge between the Bayesian
and frequentist approaches. However, it has one undesirable property: this prior
‘density’ is not, in fact, a valid density, in that it does not integrate to one. Such
priors are referred to as improper. The Bayesian literature has many examples
of problems caused by the use of improper priors. We will see below problems
which occur in a model comparison exercise when improper priors are used.

To see the impropriety of this noninformative prior, note that the posterior
results (2.19)—(2.22) can be justified by as combining the likelihood function
with the following ‘prior density’:

1

where & is defined over the interval (0, co). If you try integrating this ‘prior
density’ over (0, c0), you will find that the result is oo, not one as would occur
for a valid p.d.f. Bayesians often write this prior as:

1
p(B, h) x 7 (2.23)

but it should be stressed that this notation is not formally correct, since p(f8, h)
is not a valid density function.

It is worth digressing and noting that noninformative priors tend to be improper
in most models. To see why this is, consider a continuous scalar parameter 6,
which is defined on an interval [a, b]. A researcher who wishes to be noninforma-
tive about 6 would allocate equal prior weight to each equally sized sub-interval
(e.g. each interval of width 0.01 should be equally likely). This implies that a
Uniform prior over the interval [a, b] is a sensible noninformative prior for 6.
However, in most models we do not know a and b, so they should properly be
set to —oo and oo, respectively. Unfortunately, any Uniform density which yields
non-zero probability to a finite bounded interval will integrate to infinity over
(—o00, 00). Formally, we should not even really speak of the Uniform density in
this case, since it is only defined for finite values of a and b. Thus, any Uniform
‘noninformative’ prior will be improper.

2.5 MODEL COMPARISON

Suppose we have two simple regression models, M| and M5, which purport to
explain y. These models differ in their explanatory variables. We distinguish the
two models by adding subscripts to the variables and parameters. That is, M; for
j = 1,2 is based on the simple linear regression model:

yi = Bjxji +¢ji (224

fori =1,..., N. Assumptions about ¢j; and x;; are the same as those about &;
and x; in the previous section (i.e. ¢j; is i.i.d. N (O, hj_l), and xj; is either not
random or exogenous for j = 1, 2).
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24 BAYESIAN ECONOMETRICS

For the two models, we write the Normal-Gamma natural conjugate priors as:

which implies posteriors of the form:
Bi.hjly, Mj ~ NG(B;, V;,57%,V)) (2.26)
where
— 1
Vi=—F—~—> (2.27)
Vit ) X
B; ZV,(KJ.”Q]. +8 Y 2% (2.28)
vi=v;+N (2.29)
and Ej_z is defined implicitly through
B -8
VJEJZ- = gjgjz» + vjsj2 +— (2.30)

o (s9)

,4’3;-, sj2 and v; are OLS quantities analogous to those defined in (2.3)—(2.5). In
other words, everything is as in (2.7)—(2.12), except that we have added j sub-
scripts to distinguish between the two models.

Equations (2.26)—(2.30) can be used to carry out posterior inference in either
of the two models. However, our purpose here is to discuss model comparison.
As described in Chapter 1, a chief tool of Bayesian model comparison is the
posterior odds ratio:

_ pOIM)p(MY)
p(yIM2)p(M>)
The prior model probabilities, p(M;) for i = 1, 2, must be selected before seeing

the data. The noninformative choice, p(M1) = p(M3) = %, is commonly made.
The marginal likelihood, p(y|M;), is calculated as:

PO

p(yIMy) = /f P18 b p(Br. h)d Bidh; 231)

Unlike with many models, in the Normal linear regression model with natu-
ral conjugate prior, the integrals in (2.31) can be calculated analytically. Poirier
(1995, pp. 542-543) or Zellner (1971, pp. 72—75) provide details of this calcu-
lation, which allows us to write:

Vi)’ v
pOYIM)) = ¢; (V—f> w5772 (2.32)

—
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vj 2%
r (3) (vjs5)2
2

and T'() is the Gamma function.” The posterior odds ratio comparing M| to M»
becomes:

for j =1, 2, where

(2.33)

Cj =

1

Vl 2 |
c1 <V—) @151~z p(My)
PO, = ——L_ (2.34)
123 N
& —) (1253) "% p(M3)
v,

The posterior odds ratio can be used to calculate the posterior model proba-
bilities, p(M;|y), using the relationships:

(Mi]y) = 2212
PR =1 PoL,
and
Myly) = ——
p(Mazly) 11 POL,

A discussion of (2.34) offers insight into the factors which enter a Bayesian
comparison of models. First, the greater is the prior odds ratio, ﬁ E%;;, the higher
the support for M;. Note, secondly, that VjEZ- contains the term v]-sj2 which is
the sum of squared errors (see (2.3) and (2.5)). The sum of squared errors is a
common measure of the model fit, with lower values indicating a better model fit.
Hence, the posterior odds ratio rewards models which fit the data better. Thirdly,
other things being equal, the posterior odds ratio will indicate support for the
model where there is the greatest coherency between prior and data information
(i.e. (,B\j — éj)z enters FjEjz). Finally, (“j—:) is the ratio of posterior to prior
variances. This term can be interpreted as saying, all else being equal, the model
with more prior information (i.e. smaller prior variance) relative to posterior
information receives most support.

As we shall see in the next chapter, posterior odds ratios also contain a reward
for parsimony in that, all else being equal, posterior odds favor the model with
fewer parameters. The two models compared here have the same number of
parameters (i.e. B8; and h;) and, hence, this reward for parsimony is not evident.

However, in general, this is an important feature of posterior odds ratios.

2See Poirier (1995, p. 98) for a definition of the Gamma function. All that you need to know
here is that the Gamma function is calculated by the type of software used for Bayesian analysis
(e.g. MATLAB or Gauss).
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26 BAYESIAN ECONOMETRICS

Under the noninformative variant of the natural conjugate prior (i.e. v; = 0,
KJ._I = 0), the marginal likelihood is not defined and, hence, the posterior odds
ratio is undefined. This is one problem with the use of noninformative priors for
model comparison (we will see another problem in the next chapter). However, in
the present context, a common solution to this problem is to set v; = v, equal to
an arbitrarily small number and do the same with Zfl and V., ! Also, set g% = g%.
Under these assumptions, the posterior odds ratio is defined and simplifies and
becomes arbitrarily close to:

1

1\, LW
5 | s zpMy)
qu

POy = (2.35)

1

1\, LW
=5 | (s 2p(M)
szi

In this case, the posterior odds ratio reflects only the prior odds ratio, the rela-
tive goodness of fit of the two models, and the ratio of terms involving ﬁ,
ji

which reflect the precision of the posterior for M;. However, as we shall see in
the next chapter, this solution to the problem which arises from the use of the
noninformative prior will not work when the number of parameters is different
in the two models being compared.

In this section, we have shown how a Bayesian would compare two models.
If you have many models, you can compare any or all pairs of them or calculate
posterior model probabilities for each model (see the discussion after (1.7) in
Chapter 1).

2.6 PREDICTION

Now let us drop the j subscript and return to the single model with likelihood
and prior defined by (2.6) and (2.7). Equations (2.8)—(2.12) describe Bayesian
methods for learning about the parameters 8 and &, based on a data set with
N observations. Suppose interest centers on predicting an unobserved data point
generated from the same model. Formally, assume we have the equation:

v = Bx* + ¥ (2.36)

where y* is not observed. Other than this, all the assumptions of this model
are the same as for the simple regression model discussed previously (i.e. &*
is independent of &; for i = 1,..., N and is N(0, h~1), and the B in (2.36)
is the same as the B in (2.1)). It is also necessary to assume x* is observed.
To understand why the latter assumption is necessary, consider an application
where the dependent variable is a worker’s salary, and the explanatory variable
is some characteristic of the worker (e.g. years of education). If interest focuses
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on predicting the wage of a new worker, we would have to know her years of
education in order to form a meaningful prediction.
As described in Chapter 1, Bayesian prediction is based on calculating:

= / / p(O* 1y, B. ) p(B. hiy)dB dh 237)

The fact that £* is independent of &; implies that y and y* are independent of one
another and, hence, p(y*|y, 8, h) = p(y*|B, h). The terms inside the integral in
(2.37) are thus the posterior, p(B, k|y), and p(y*|8, k). Using a similar reasoning
to that used for deriving the likelihood function, we find that

p(y*IB, h) =

h
r exp [—E(y* - ﬁx*)z} (2.38)
(2m)2
Multiplying (2.38) by the posterior given in (2.8) and integrating as described in
(2.37) yields (Zellner, 1971, pp. 72-75):

PO & [T+ (vF — Bx*)25 2(1 + V)™= T (2.39)

It can be verified (see Appendix B, Definition B.25) that this is a univariate

p— =) =
t-density with mean Bx*, variance =5 (1 + Vx*?), and degrees of freedom v. In
other words,

Yy ~ t(Bx*, 52{1 + Vx*?}, D) (2.40)

These results can be used to provide point predictions and measures of uncertainty
associated with the point prediction (e.g. the predictive standard deviation).

Our discussion of prediction is a logical place to introduce an important
Bayesian concept: model averaging. In the previous section, we have shown
how to calculate posterior model probabilities, p(M;|y), for j = 1, 2. These can
be used to select one of the two models to work with. However, it is not always
desirable to simply choose the one model with highest posterior model proba-
bility and throw away the other (or others). Bayesian model averaging involves
keeping all models, but presenting results averaged over all models. In terms of
the rules of probability, it is simple to derive:

p*ly) = p(y*ly, M) p(Mily) + p(y*ly, M2) p(Ma]y) (2.41)

In words, insofar as a interest centers on p(y*|y), you should not simply choose
one model and work with, e.g., p(y*|y, M), but rather average results over the
two models with weights given by the posterior model probabilities. Using the
properties of the expected value operator (see Appendix B, Definition B.8), it
follows immediately that:

E(y*|y) = E(y*ly, M) p(Mi|y) + E(y*|y, M2) p(M2]y)
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28 BAYESIAN ECONOMETRICS

which can be used to calculate point predictions averaged over the two models. If
g(.) is any function of interest (see (1.11)), then the preceding result generalizes to

E[g(y")Iyl = Elg(y")ly, Milp(M1ly) + E[g(y)|y, Molp(Maly)  (2.42)

which can be used to calculate other functions of the predictive such as the
predictive variance.

These results can be generalized to the case of many models and to the case
where the function of interest involves parameters instead of y*. Bayesian model
averaging is discussed in much greater detail in Chapter 11.

2.7 EMPIRICAL ILLUSTRATION

The regression model outlined in this chapter is probably too simple to be used
for any serious empirical work. For one thing, to simplify the algebra, we have
not included an intercept in the model. Furthermore, virtually any serious appli-
cation will involve several explanatory variables. Hence, to illustrate the basic
concepts discussed in this chapter, we will work with a data set artificially gen-
erated by the computer. That is, we set N = 50. We begin by generating values
of the explanatory variable, x;, which are i.i.d. draws from the N (0, 1) distri-
bution for i = 1,...,50. We then generate values for the errors, &;, which
are N (0, h~1). Finally, we use the explanatory variables and errors to generate
the dependent variable y; = Bx; +¢;. We set B = 2 and h = 1. We use two
priors, the noninformative one given in (2.23) and the informative natural con-
jugate prior given in (2.7) with § = 1.5, V. = 0.25, v = 10 and s> = 1. The
choices of data generating process and prior hyperparameter values are purely
illustrative.

Tables 2.1 and 2.2 present prior and posterior properties of the model param-
eters, B and h, respectively, using (2.7)—(2.22). Figure 2.1 plots posteriors for
B under the informative and noninformative priors as well as the informative
prior itself (the noninformative prior for 8 is simply a flat line). From (2.13)
it follows that the plotted p.d.f.s are all t-densities. Posterior properties based
on the noninformative prior reflect only likelihood function information and are
equivalent to frequentist OLS quantities (see (2.19)—(2.22)). For this reason, the

Table 2.1 Prior and Posterior Properties of

Prior Posterior
Using Noninformative Using Informative
Informative Prior Prior
Mean 1.50 2.06 1.96

St. Deviation 0.56 0.24 0.22
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Table 2.2 Prior and Posterior Properties of &

Prior Posterior
Using Noninformative Using Informative
Informative Prior Prior
Mean 1.00 1.07 1.04
St. Deviation 0.45 0.21 0.19
I I I I I I I I I
| == Prior |
— Posterior
| ---- Likelihood | |
- L -
‘@
2L -
(9]
©
s i
E
3
o -~ |
a | L
L -
S s ——
1 12 14 16 18 2 22 24 26 28 3

Figure 2.1 Marginal Prior and Posteriors for

marginal posterior for 8 under the noninformative prior is labeled ‘Likelihood’
in Figure 2.1.

The tables and figure show clearly how Bayesian inference involves combin-
ing prior and data information to form a posterior. For instance, in Figure 2.1,
it can be seen that the posterior based on the informative prior looks to be
an average of the prior density and the likelihood function. Tables 2.1 and 2.2
show that the posterior means of both parameters, E(8|y) and E(h|y), using the
informative prior lie between the relevant prior mean and the likelihood-based
quantity (i.e. the posterior mean using the noninformative prior). The prior we
have selected contains less information than the data. This can be seen either
in the figure (i.e. the prior p.d.f. is more dispersed than the likelihood) or in
the tables (i.e. the prior standard deviations are larger than the likelihood-based
quantities).
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30 BAYESIAN ECONOMETRICS

Remember that, since the data set has been artificially created, we know that
the true parameter values are 8 = 2 and & = 1. You would, of course, never
expect a point estimate like a posterior mean or an OLS quantity to be pre-
cisely equal to the true value. However, the posterior means are quite close to
their true values relative to their posterior standard deviations. Note also that
the posterior standard deviations using the informative prior are slightly smaller
than those using the noninformative prior. This reflects the intuitive notion that,
in general, more information allows for more precise estimation. That is, it is
intuitively sensible that a posterior which combines both prior and data infor-
mation will be less dispersed than one which uses a noninformative prior and is
based only on data information. In terms of the formulae, this intuitive notion
is captured through (2.9) being smaller than (2.19) if V > 0. Note, however,
that this intuition is not guaranteed to hold in every case since, if prior and
data information are greatly different from one another, then (2.12) can become
much bigger than (2.22). Since both V and s> enter the formula for the pos-
terior standard deviation of B, it is possible (although unusual) for the poste-
rior standard deviation using an informative prior to be larger than that using a
noninformative prior.

To illustrate model comparison, let us suppose we are interested in comparing
the model we have been discussing to another linear regression model which
contains only an intercept (i.e. in this second model x; = 1 fori = 1, ..., 50).
For both models, we use the same informative prior described above (i.e. both
priors are NG(1.5,0.25, 1, 10)). Assuming a prior odds ratio equal to one, (2.34)
can be used to calculate the posterior odds ratio comparing these two models. Of
course, we know our first model is the correct one and, hence, we would expect
the posterior odds ratio to indicate this. This does turn out to be the case, since
we find a posterior odds ratio of 3749.7. In words, we are finding overwhelming
support for our correct first model. It is almost 4000 times more likely to be true
than the second model. In terms of posterior model probabilities, the posterior
odds ratio implies that p(M;|y) = 0.9997 and p(M>|y) = 0.0003. If we were to
do Bayesian model averaging using these two models, we would attach 99.97%
weight to results from the first model and only 0.03% weight to results from the
second (see (2.41)).

Predictive inference can be carried out using (2.40). We illustrate how this is
done by selecting the point x* = 0.5. Using the informative prior, it turns out
that

y*|y ~ 1(0.98, 0.97, 60)
Using the noninformative prior, it turns out that
y*|ly ~ 1(1.03, 0.95, 50)

Either of these probability statements can be used to present point predictions,
predictive standard deviations, or any other predictive function of interest you
may wish to calculate.


Dr.Mehara
Highlight

Dr.Mehara
Highlight

Dr.Mehara
Highlight


LINEAR REGRESSION MODEL WITH A SINGLE VARIABLE 31

2.8 SUMMARY

In this chapter, we have gone through a complete Bayesian analysis (i.e. likeli-
hood, prior, posterior, model comparison and prediction), for the Normal linear
regression model with a single explanatory variable and a so-called natural con-
jugate prior. For the parameters of this model, 8 and #, this prior has a Normal-
Gamma distribution. The natural conjugate nature of the prior means that the
posterior also has a Normal-Gamma distribution. For this prior, posterior and
predictive inference and model comparison can be done analytically and no pos-
terior simulation is required. Other themes introduced in this chapter include the
concept of a noninformative prior and Bayesian model averaging.

2.9 EXERCISES

2.9.1 Theoretical Exercises

1. Prove the result in (2.8). Hint: This is a standard derivation proved in many
other textbooks such as Poirier (1995, p. 527) or Zellner (1971, pp. 60-61),
and you may wish to examine some of these references if you are having
trouble.

2. For this question, assume the likelihood function is as described in Section

2.2 with known error precision, =1, and x; =1 fori =1,..., N.
(a) Assume a Uniform prior for 8 such that 8 ~ U (a, y). Derive the posterior
P(Bly).

(b) What happens to p(B8|y) as ¢ - —oc and y — o0?

(c) Use the change-of-variable theorem (Appendix B, Theorem B.21) to
derive the prior for a one-to-one function of the regression coefficient,
g(B), assuming that B has the Uniform prior given in (a). Sketch the
implied prior for several choices of g() (e.g. g(B) = log(B), g(B) =
el g(B) = exp(B), etc.).

(d) Consider what happens to the priors in part (c) asa — —oo and y — oo.

(e) Given your answers to part (d), discuss whether a prior which is ‘nonin-
formative’ when the model is parameterized in one way is also ‘noninfor-
mative’ when the model is parameterized in a different way.

2.9.2 Computer-Based Exercises

Remember that some data sets and MATLAB programs are available on the
website associated with this book.

3. Generating artificial data sets. This is an important skill since they can be
used to understand the properties of models and investigate the performance
of a particular computer algorithm. Since you have chosen the values for
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parameters, you know roughly what answer you would hope your econometric

methods should give.

(a) Generate several artificial data sets from the Normal linear regression
model by using the following steps: (i) Choose values for 8, # and N (e.g.
B=2,h=1and N = 100); (ii) Generate N values for the explanatory
variable from a distribution of your choice (e.g. take N = 100 draws from
the U (0, 1) distribution); (iii) Generate N values of the errors by taking N
i.i.d. draws from the N (0, 2~1); and (iv) Construct data on the dependent
variables using your chosen value for 8 and the data generated in steps
(ii) and (iii) (i.e. use y; = Bx; +¢; fori =1,..., N).

(b) Make XY-plots of each data set to see how your choices of 8, h, and N
are reflected in the data.

. Bayesian inference in the Normal linear regression model: prior sensitivity.

(a) Generate an artificial data set with 8 =2, h = 1 and N = 100 using the
U (0, 1) distribution to generate the explanatory variable.

(b) Assume a prior of the form 8, h ~ NG(B,V,s 2, v) with 8 =2,V =
1,s72 = 1,v = 1, and calculate the posterior means and standard devi-
ations of 8 and h. Calculate the Bayes factor comparing the model with
B = 0 to that with 8 # 0. Calculate the predictive mean and standard
deviation for an individual with x = 0.5.

(c) How does your answer to part (b) change if V = 0.01? What if V = 0.1?
What if V = 10? What if V = 100? What if V = 1000 000?

(d) How does your answer to part (b) change if v = 0.01? What if v = 0.1?
What if v = 10? What if v = 100? What if v = 1000000?

(e) Set the prior mean of 8 different from the value used to generate the data
(e.g. B = 0) and repeat part (c).

(f) Set the prior mean of £ far from its true value (e.g. s —2 = 100) and repeat
part (d).

(g) In light of your findings in parts (b) through (f) discuss the sensitivity of
posterior means, standard deviations and Bayes factors to changes in the
prior.

(h) Repeat parts (a) through (g) using more informative (e.g. N = 1000) and
less informative (e.g. N = 10) data sets.

(i) Repeat parts (a) through (h) using different values for § and & to generate
artificial data.



3
The Normal Linear Regression

Model with Natural
Conjugate Prior and Many
Explanatory Variables

3.1 INTRODUCTION

In this chapter, we extend the results of the previous chapter to the more reason-
able case where the linear regression model has several explanatory variables.
The structure of this chapter is very similar to the previous one. The primary
difference is that this chapter uses matrix algebra. Despite what many students
beginning their study of econometrics might think, matrix algebra is a great
simplifier. It offers a useful compact notation for writing out and manipulating
formulae and simplifies many derivations. Appendix A offers a very brief intro-
duction to the parts of matrix algebra which will be used in this book. The reader
who is unfamiliar with matrix algebra should read this appendix before reading
this chapter. Poirier (1995), Greene (2000), or Judge et al. (1985) all have good
chapters on matrix algebra (and additional references), and the reader is referred
to these for further detail.

The steps and derivations in this chapter are, apart from the introduction of
matrix algebra, virtually identical to those in the previous chapter. Hence, some
readers may find it useful to flip back and forth between this chapter and the
previous one. That is, it is easier to understand or motivate derivations or results
in matrix form if you first understand them without matrix algebra. Throughout
this chapter, we point out similarities between the matrix formulae and their
counterparts in the previous chapter as a way of easing the transition to matrix
algebra.
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3.2 THE LINEAR REGRESSION MODEL IN MATRIX

NOTATION
Suppose we have data on a dependent variable, y;, and k explanatory variables,
Xi1, ... xjx fori =1,..., N. The linear regression model is given by
yi = B1+ Baxio + - - -+ BrXik + € (3.1)

Our notation is such that x;; is implicitly set to 1 to allow for an intercept. This
model can be written more compactly in matrix notation by defining the N x 1
vectors:

Y1
y2

YN

and

the k x 1 vector

B1]
B2

B |
and the N x k matrix

1 x12 .. X1

1 xp0 .. X2k
X =

1 XN2 . . XNk
and writing
y=XB+¢ (3.2)

Using the definition of matrix multiplication (see Appendix A, Definition A.4),
it can be verified that (3.2) is equivalent to the N equations defined by (3.1).
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3.3 THE LIKELIHOOD FUNCTION

The likelihood can be derived in the same manner as in the previous chapter,
with the exception that we use matrix notation. Assumptions about ¢ and X
determine the form of the likelihood function. The matrix generalizations of the
assumptions in the previous chapter are:

1. & has a multivariate Normal distribution with mean Oy and covariance matrix
021y, where Oy is an N-vector with all elements equal to 0, and Iy is the
N x N identity matrix. Notation for this is: & is N (O, h=1Iy) where h = o 2.

2. All elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of ¢ with a probability
density function, p(X|X), where X is a vector of parameters that does not

include 8 and h.

The covariance matrix of a vector is a matrix that contains the variances of all
the elements of the vector on the diagonal and the covariances between different
elements filling out the rest of the matrix. In the present context, this means:

var(ey) cov(ey, &) ... cov(ey, en)
cov(ey, &) var(ep)
var(e) = . cov(ey, €3) ...
. . ...cov(en—_1,&N)
| cov(er, eN) . ... var(ey)
[h=1 0 .. 0
0 hl..
.. .. 0
0 . .0h!

In other words, the statement that var(s) = h~— 'y is a compact notation for
var(g;) = h~! and cov(g;,gj) =0fori,j=1,...,Nandi # j.

The second assumption implies that we can proceed conditionally on X and
treat p(y|X, B, h) as the likelihood function. As in the previous chapter, we drop
the X from the conditioning set to simplify the notation.

Using the definition of the multivariate Normal density, we can write the
likelihood function as:

h2 h
pWyIB, h) = ¥ {eXp [—E(y - XB)'(y — Xﬁ)“ (3.3)

(2m)>2

Comparing this equation to (2.2), it can be seen that (y — X8)'(y — X) enters in
the same manner as Y _(y; — Bx;)?, and it can be confirmed that matrix constructs
of the form a’a, where a is a vector, are sums of squares.
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It proves convenient to write the likelihood function in terms of OLS quantities
comparable to (2.3)—(2.5). These are (see Greene (2000), or any other frequentist
econometrics textbook which uses matrix algebra):

b= N —k (3.4)
B=XX)""X'y (3.5)
and

2 _O-XP'G - XP)
v

(3.6)

Using a matrix generalization of the derivation in Chapter 2 (see the material
between (2.2) and (2.6)), it can be shown that the likelihood function can be
written as

1 1 h A~y ~ v ]’ZU
pIB. h) = = {hz exp[——(ﬁ— )Xx(ﬁ_,sz“{hz exp[___z}}
n)2 2 2s
3.7

3.4 THE PRIOR

The form of (3.7) suggests that the natural conjugate prior is Normal-Gamma,
and this is indeed the case. In other words, if we elicit a prior for 8 conditional
on h of the form

Blh ~ N(B,h~'V)
and a prior for & of the form
h~G(s2, v)

then the posterior will also have these forms. In terms of the notation for the
Normal-Gamma distribution, we have

B.h~NG@B.V.s7%v) (3.8)

Note that (3.8) is identical to (2.7), except that B is now a k-vector containing
the prior means for the k regression coefficients, Bi,..., Bx, and V is now a
k x k positive definite prior covariance matrix. The notation for the prior density

is p(ﬂv h) = fNG(ﬂv hlﬁv Z’ 5_29 k)

3.5 THE POSTERIOR

The posterior is derived by multiplying the likelihood in (3.7) by the prior in
(3.8), and collecting terms (see Exercise 2). Doing so yields a posterior of the
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form
B.hly ~NG(B.V.57%,7) (3.9)
where
V=w"'+xx)"! (3.10)
B=VV '8+ X'XPB) (3.11)
vV=v+N (3.12)

and 5 2 is defined implicitly through
752 = v’ + st + B =BV + X' X)) B - ) (3.13)

The previous expressions describe the joint posterior distribution. If we are
interested in the marginal posterior for 8, we can integrate out / as in Chapter 2
(see (2.13)). The result is a multivariate t distribution. In terms of the notation
of Appendix B

Bly ~ t(B.5°V. ") (3.14)
and it follows from the definition of the t distribution that
EBly) =B (3.15)
and
vs? —
var(Bly) = = \% (3.16)
v—2
The properties of the Normal-Gamma distribution imply immediately that:
hly ~ G2, 7) (3.17)
and, hence, that
E(hly) =52 (3.18)
and
2572
var(hly) = — (3.19)

These expressions are very similar to (2.8)—(2.18), except that now they are
written in terms of matrices or vectors instead of scalars. For instance, 8 is now a
vector instead of a scalar, the matrix (X’X)~! plays the role that the scalar lez

1
did in Chapter 2, V is now a k x k matrix, etc. The interpretation of these formulae
is also very similar. For instance, in Chapter 2 we said that the posterior mean
of B, E, was a weighted average of the prior mean, 8, and the OLS estimate,
where the weights reflected the strength of information in the prior (V') and
the data (Z xl.2). Here, the same intuition holds, except the posterior mean is a
matrix-weighted average of prior and data information (see also Exercise 6).
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The researcher must elicit the prior hyperparameters, 8, V, s 2, v. In many
cases, economic theory, common sense, or a knowledge of previous empirical
studies using different data sets will allow her to do so. The fact that the natu-
ral conjugate prior can be treated as though it comes from a fictitious data set
generated from the same process as the actual data facilitates prior elicitation.
Alternatively, the researcher may try a wide range of priors in a prior sensitivity
analysis or work with a relatively noninformative prior. For instance, one could
set v to a value much smaller than N and V to a ‘large’ value. When we are
dealing with matrices, the interpretation of the term ‘large’ is not immediately
obvious. The matrix generalization of the statement, a > b, where a and b are
scalars, is usually taken to be A— B is positive definite, where A and B are square
matrices. One measure of the magnitude of a matrix is its determinant. Hence,
when we say ‘A should be large relative to B’, we mean that A — B should be a
positive definite matrix with large determinant (see Appendix A, Definitions A.10
and A.14 for definitions of the determinant and positive definiteness).

Taking the argument in the previous paragraph to the limit suggests that we
can create a purely noninformative prior by setting v = 0 and setting V™! to a
small value. There is not a unique way of doing the latter (see Exercise 5). One
common way is to set V! = ¢I;, where ¢ is a scalar, and then let ¢ go to zero.
If we do this we find 8, h|y ~ NG(E, V, E_z, V), where

V=Xx)"! (3.20)
B=pB (3.21)
v=N (3.22)
and
V52 = vs> (3.23)

As we found for the simpler model in the previous chapter, all of these formulae
involve only data information, and are equal to ordinary least squares quantities.

As for the case with a single explanatory variable, this noninformative prior is
improper and can be written as:

1
p(B, h) ’ (3.24)

3.6 MODEL COMPARISON

The linear regression framework with k explanatory variables allows for a wide
variety of models to be compared. In this section, we consider two sorts of model
comparison exercise. In the first, models are distinguished according to inequality
restrictions on the parameter space. In the second, models are distinguished by
equality restrictions.
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3.6.1 Model Comparison Involving Inequality Restrictions

In some cases, interest might focus on regions of the parameter space. Consider,
for instance, a marketing example where the dependent variable is sales of a
product, and one of the explanatory variables reflects spending on a particular
advertising campaign. In this case, the econometrician might be interested in
finding out whether the advertising campaign increased sales (i.e. whether the
coefficient on advertising was positive). In a production example, the econome-
trician could be interested in finding out whether returns to scale are increasing or
decreasing. In terms of a regression model, increasing/decreasing returns to scale
could manifest itself as particular combination of coefficients being greater/less
than one. Both examples involve an inequality restriction involving one or more
of the regression coefficients.
Suppose the inequality restrictions under consideration are of the form:

RB>r (3.25)

where R is a known J X k matrix and r is a known J-vector. Equation (3.25)
allows for any J linear inequality restrictions on the regression coefficients, 8. To
ensure that the restrictions are not redundant, we also must assume rank(R) = J.
We can now define two models of the form:

MliRﬁZr
and
Mz:R,Bzr

where the notation in the equation defining M> means that one or more of the J
inequality restrictions in M7 are violated.

For models defined in this way, calculating posterior odds ratios is typically
quite easy, and the use of noninformative priors is not a problem. That is,
_ p(Mily)  p(RB =rl|y)

p(Maly)  p(RB Zrly)

Since the posterior for 8 has a multivariate t distribution (see (3.14)), it fol-
lows that p(RfB|y) also has a t distribution (see Appendix B, Theorem B.14).
Computer packages such as MATLAB allow for simple calculation of interval
probabilities involving the t distribution and, hence, p(RB > r|y) can easily be

calculated. Alternatively, if J = 1, statistical tables for the univariate t distribu-
tion can be used.

PO >

(3.26)

3.6.2 Equality Restrictions

Model comparison involving equality restrictions is slightly more complicated,
and additional issues arise with the use of noninformative priors. There are typi-
cally two types of model comparison exercise which fall into this category. First,
the researcher might be interested in comparing M7 which imposes RS = r to
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M, which does not have this restriction. M; is an example of a model that is
nested in another model (i.e. M is obtained from M, by placing the restrictions
RB = r on the latter’s parameters). Secondly, the researcher might be interested
in comparing My : y = X 1B1)+€1 to My : y = X»B2)+€2, where X and X, are
matrices containing completely different explanatory variables. We use the nota-
tion B(;) to indicate the regression coefficients in the jth model (for j =1, 2),
since we have already used the notation fB; to indicate the scalar regression
coefficients in (3.1). This is an example of non-nested model comparison.'

Both these categories involving equality restrictions can be dealt with by writ-
ing the two models to be compared as:

M;:y; = X;B+ ¢ (3.27)

where j = 1, 2 indicates our two models, y; will be defined below, X; is an N xk;
matrix of explanatory variables, B(; is a k;j-vector of regression coefficients and
€j is an N-vector of errors distributed as N (Oy, hj_] Iy).

The case of non-nested model comparison can be dealt with by setting y; = y;.
The case of nested model comparison involves beginning with the unrestricted
linear regression model in (3.2). M, is simply this unrestricted model. That is,
we set y» =y, Xo = X and By = B. My, which imposes Rf = r, can be dealt
with by imposing the restrictions on the explanatory variables. This may imply
a redefinition of the dependent variable. A detailed discussion of how to do this
at a high level of generality is given in Poirier (1995, pp. 540-541). However,
a consideration of a few examples should be enough to show that restrictions
of the form RB = r can always be imposed on (3.2) by suitably redefining the
explanatory and dependent variables. Restrictions of the form B, = 0 imply
that X is simply X with the mth explanatory variable omitted. Restrictions of
the form B, = r imply that X is simply X with the mth explanatory variable
omitted, and y; = y —rx,, where x,, is the mth column of X. The restriction 8, —
B3 = 0 can be handled by deleting the second and third explanatory variables, and
inserting a new explanatory variable which is the sum of these deleted variables.
Multiple and/or more complicated restrictions can be handled by generalizing the
concepts illustrated by these simple examples in a straightforward way.

We denote the Normal-Gamma priors for the two models by:

-2
Buiys hjIMj ~ NGB, V.57, 1)) (3.28)
for j = 1, 2. The posteriors take the form

Bijy: hilyj ~ NG(B;, Vj,5.%,7)) (3.29)

"Non-nested model comparison problems can be put into the form of nested model comparison
problems by defining M3, which has explanatory variables X = [X, X»]. If we did this, M; and
M5 would both be nested in M3.
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where
V= + XX (3.30)
Bj=Vi(V; ', + X;X;B)) (3.31)
vi=y;+N (3.32)

and Ej_z is defined implicitly through

U5 = sy visi + B = BV, + (XGXpTTT B - B)  (333)
B}, sj2 and v; are OLS quantities analogous to (3.4)—(3.6).

The derivation of the marginal likelihood for each model and, hence, the pos-
terior odds ratio, proceeds along the same lines as in the previous chapter (see
(2.31)—(2.34)). In particular, the marginal likelihood becomes

1

r(jIM)) = ¢; (:v]:) v; ‘2)” (3.34)
for j =1, 2, where
Z) s
¢ = (22 7 (3.35)
r(%)x*

The posterior odds ratio comparing M; to M> is

V1]
PO, — c1 (W) 157~ 7 P(Ml)

(3.36)

o ()" @57 p)

The factors which affect the posterior odds ratio were discussed in Chapter 2.
In particular, the posterior odds ratio depends upon the prior odds ratio, and
contains rewards for model fit, coherency between prior and data information
and parsimony.

The issue of the reward for parsimony relates closely to problems involved with
use of noninformative priors. When discussing posterior inference, we considered
a prior where v = 0 and V~! = cI;, where ¢ was a scalar. We then defined a
noninformative prior as one where ¢ was set to zero. Loosely speaking, setting
v = 0 implies there is no prior information about the error precision, %, and letting
¢ go to zero implies there is no prior information about the regression coefficients,
B. In this section, we consider these two steps for becoming noninformative
separately. An important result will be that it is reasonable to use noninformative
priors for h; for j = 1, 2, but it is not reasonable to use noninformative priors
for B(j). The reason is that the error precision is a parameter which is common
to both models, and has the same interpretation in each. However, B(1) and B2
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are not the same and, in cases where k| # kj, the use of noninformative priors
causes serious problems for Bayesian model comparison using a posterior odds
ratio. These considerations motivate an important rule of thumb: When comparing
models using posterior odds ratios, it is acceptable to use noninformative priors
over parameters which are common to all models. However, informative, proper
priors should be used over all other parameters. This rule of thumb is relevant
not only for the regression model, but for virtually any model you might wish
to use.

To justify the statements in the previous paragraph, consider first what happens
if we set v, = v, = 0.2 The formula for the posterior odds ratio in (3.36)
simplifies substantially since c¢; = c;. However, the posterior odds ratio still has
a sensible interpretation involving model fit (i.e. s7), the coherency between
prior and data information (see the last term in (3.33)), etc. In short, using
a noninformative prior for the error precisions in the two models is perfectly
reasonable.

However, using noninformative priors for the fB(;)’s causes major problems
which occur largely when k1 # k. In the case of non-nested model comparison,
we have two models which have different explanatory variables and it is clear that
the dimension and interpretation of B(1) and B(2) can be different. For the case of
nested model comparison, the restrictions imposed under M; will ensure that (1)
is of lower dimension than B2y and, hence, k; < k». Thus, having ky # k> is quite
common. The problem with interpreting posterior odds ratios in this case occurs
because of the term |V ;|. If we set V. =cly, then |V;| = —. If we then let ¢
go to zero, an examination of (3.36) should convince you that terms involving ¢
will not cancel out. In fact, provided the prior odds ratio is positive and finite, if
k1 < kp, PO1;, becomes infinite, while if k1 > k>, P O12 goes to zero. In other
words, the posterior odds ratio will always lend overwhelming support for the
model with fewer parameters, regardless of the data. In the limit, the reward for
parsimony becomes completely dominant and the more parsimonious model is
always selected! Clearly, this is unreasonable and provides a strong argument for
saying that informative priors should always be used for B(1) and B(z), at least
for coefficients that are not common to both models.

You may think that you are safe when k; = k, as, in this case, the noninfor-
mative prior yields a posterior odds ratio of:

po,, = (XiX1DEsH ™ F i) 537

(1X, X2)2 (1252) ™2 p(My)

Note, however, that this expression depends upon units of measurement. For
instance, if your explanatory variables in M) are measured in dollars and you
decide to change this and measure them in thousands of dollars, leaving X,
unchanged, your posterior odds ratio will change. This is a very undesirable
feature which makes many Bayesians reluctant to use posterior odds based on

>To be mathematically precise, we should let them go to zero at the same rate.
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noninformative priors, even in the case where k| = k». When the researcher elic-
its an informative prior, this problem does not arise. For instance, in the empirical
illustration in the next section, the dependent variable is house price (measured
in dollars) and one of the explanatory variables, x;, is the lot size (measured in
square feet). The coefficient, B>, can be interpreted through a statement of the
form: “An extra square foot of lot size will tend to add B, dollars to the price of a
house, holding other house characteristics constant”. The researcher would choose
a prior for B, with this interpretation in mind. However, if the units of measure-
ment of x; were changed to hundreds of square feet, then the interpretation would
be based on a statement of the form: “An extra hundred square feet of lot size
will tend to add B dollars to the price of a house, holding other house character-
istics constant”. B, has a very different interpretation if the units of measurement
of x; are changed and, hence, the researcher would use a very different prior.
In other words, when the researcher elicits an informative prior, she is implicitly
taking into account the units of measurement. However, with a noninformative
prior the researcher does not take into account such considerations.

An important message of this section is that, when doing model comparison,
it is important to elicit informative priors for parameters which differ or are
restricted across models. With the other activities that an econometrician might
do (i.e. estimation and prediction) noninformative priors are an acceptable path
to take for the Bayesian who seeks to remain ‘objective’ and not introduce prior
information. However, when calculating posterior odds ratios, a noninformative
path may not be acceptable.

The ideas in this section have all been developed for the case of two models
but can be extended to the case of many models in a straightforward way (see
the discussion after (1.7) in Chapter 1). We also stress that posterior odds ratios
can be used to form the posterior model probabilities which are necessary for
Bayesian model averaging (see (2.42)).

3.6.3 Highest Posterior Density Intervals

Standard Bayesian model comparison techniques are based on the intuitively
appealing idea that p(M;|y) summarizes all of our knowledge and uncertainty
about M; after seeing the data. However, as we have seen, calculating meaning-
ful posterior model probabilities typically requires the elicitation of informative
priors. For the Bayesian who wants to do model testing or comparison with a non-
informative prior, there are some other techniques which can be used. However,
these techniques are not as intuitively appealing as Bayesian model probabili-
ties and have only ad hoc justifications. In later chapters, we discuss some of
these techniques. In this subsection, we introduce the idea of a Highest Posterior
Density Interval (HPDI), and show how it can be used in an ad hoc fashion to
compare nested models.

Before discussing model comparison, we begin with some definitions of basic
concepts. We define these concepts in the context of the parameter vector 8 in
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the Normal linear regression model, but they are quite general and can be used
with the parameters of any model. Suppose that the elements of the vector of
regression coefficients, 8, can each lie anywhere in the interval (—oo, co), which
is denoted by 8 € R¥. Let w = g(B) be some m-vector of functions of g which
is defined over a region, €2, where m < k. Let C be a region within €2, denoted
by C C Q.

Definition 3.1: Credible Sets
The set C € Q2 is a 100(1 — )% credible set with respect to p(w|y) if:

p(w e Cly) = /Cp(wly)dw =l-0a

As an example, suppose w = g(8) = f;, a single regression coefficient. Then
a 95% credible interval for §; is any interval, [a, b] such that:

b
pa=py=bn = [ p@inap =095

There are typically numerous possible credible intervals. Suppose, for instance,
that B;j|y is N(0, 1). Then, using statistical tables for the standard Normal,
we find that [—1.96, 1.96] is a 95% credible interval, as is [—1.75, 2.33] and
[—1.64, 00), etc. To choose from among the infinite number of credible inter-
vals, it is common to choose the one with smallest area. In the standard Normal
example, [—1.96, 1.96] is the shortest credible interval. The name given for such a
choice is a Highest Posterior Density Interval. This is formalized in the following
definition.

Definition 3.2: Highest Posterior Density Intervals

A 100(1 — )% highest posterior density interval for w is a 100(1 — )% credible
interval for w with the property that it has a smaller area than any other 100(1 —
)% credible interval for w.

It is common to present highest posterior density intervals in addition to point
estimates when doing Bayesian estimation. For instance, the researcher might
report a posterior mean plus a 95% HPDI of ;. The researcher is 95% sure that
B; lies within the HPDI. HPDIs can also be used in an ad hoc manner to do
model comparison. Consider, for instance, two Normal linear regression models
as in (3.2), and that interest centers on deciding whether the jth explanatory
variable should be included. Thus, the two models under consideration are

MllﬂjZO
and
Mziﬁj#o

Posterior inference under M» can be performed as outlined in (3.28)—(3.33), and
an HPDI can be calculated for 8; using the properties of the t distribution. If
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this HPDI does not include zero, then this is evidence against M. A finding that
the HPDI does include zero is taken as evidence in favor of Mj. Such a strategy
can be generalized in the obvious way to the case where we are interested in
investigating whether R = r.

The reader who knows frequentist econometrics will recognize the similarity
of this approach with common hypothesis testing procedures. For instance, a fre-
quentist test of the hypothesis that 8; = 0 can be done by calculating a confidence
interval for g;. If this confidence interval contains zero, then the hypothesis is
accepted. If it does not, the hypothesis is rejected. We stress, however, that this
similarity only holds far enough to provide some very crude intuition. Confidence
intervals have a very different interpretation from HPDIs.

HPDIs are a very general tool in that they will exist any time the posterior
exists. Thus, they can be used with the noninformative prior discussed previously.
However, the justification for using them to compare models, although sensible,
is an informal one which, in contrast to posterior odds, is not rooted firmly in
probability theory.

3.7 PREDICTION

Prediction for the case of the Normal linear regression model with a single
explanatory variable is outlined in Chapter 2 (2.36)—(2.40). The case of several
explanatory variables is a simple extension of this material. Suppose we have a
Normal linear regression model as in (3.2), with likelihood and prior given in
(3.3) and (3.8). Posterior inference can be carried out using (3.9). We want to
carry out predictive inference on 7 unobserved values of the dependent variable,
which we denote by y* = (y{, ..., y})’, which are generated according to

V= X*B +&* (3.38)

where ¢* is independent of ¢ and is N (O, h='I7) and X* is a T x k matrix
analogous to X, containing the k explanatory variables for each of the T out-of-
sample data points.

The steps in deriving the predictive density for y* are simple generalizations
of those outlined in (2.37)—(2.40). That is, for the Bayesian prediction is based
on

pOFly) = / / pO* 1y, B. W) p(B. hly)dB dh

The fact that ¢* is independent of ¢ implies that y and y* are independent of one
another and, hence, p(y*|y, B, h) = p(y*|B, h). The latter term can be written
as
S
* h? h * % N/ [k *
p(y'IB. h) = sexp =" = X"B) (Y —X"p) (3.39)
(2m)> 2
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Multiplying (3.38) by the posterior given in (3.9) and integrating yields a multi-
variate t predictive density of the form

Yy ~ 1(X*B, 52 {Ir + X*VX*'}, 7) (3.40)

This result can be used to carry out predictive inference in the Normal linear
regression model with natural conjugate prior.

3.8 COMPUTATIONAL METHODS: MONTE CARLO
INTEGRATION

Model comparison, prediction and posterior inference about B can all be done
analytically using the results in previous sections. Furthermore, since the marginal
posterior for 8 is a multivariate t distribution, linear combinations of 8 are also
multivariate t (see Appendix B, Theorem B.14). Thus, if R is defined as in (3.25),
posterior inference on RS can be carried out using the multivariate t distribution.
Since the marginal posterior of & is Gamma, the properties of this well-known
distribution can be used to make inferences about the error precision.

However, there are some cases where interest centers not on §, nor on Rp,
but on some nonlinear function of 8 which we will call f(8). We will assume
f () is a scalar function, but the techniques in this section can be extended to
several functions by simply handling one function at a time.

In general, the posterior for f(8) will not lie in the class of densities with well-
known analytical properties. This, then, is a convenient place to start discussing
posterior simulation. As described in Chapter 1, even if we do not know the
properties (e.g. mean, standard deviation, etc.) of a density, it is possible to
figure them out on the computer using simulation. The simplest algorithm for
doing posterior simulation is called Monte Carlo integration. In the context of
the Normal linear regression model, we can write the basic theorem underlying
Monte Carlo integration (see Theorem 1.1) as:

Theorem 3.1: Monte Carlo Integration

Let B for s = 1,..., S be a random sample from p(B|y) and g(.) be any
function and define

O
g =<2 8B (3.41)
r=1

then g converges to E[g(B)|y] as S goes to infinity.

Do not be confused by the introduction of two functions f(.) and g(.). By set-
ting g(.) = f(.), we can obtain an estimate of E[ f(8)|y] for any f(.). However,
we may wish to calculate other posterior properties of f(8) and this requires the
introduction of the function g(.). For instance, the calculation of var[f(8)|y]
involves setting g(.) = f(.)* and using (3.41) to calculate E[f(B)*|y]. As
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described in Chapter 1, by suitably redefining g(.) we can calculate a variety
of posterior properties of our function of interest, f(.).

Equation (3.41) says that, given random draws from the posterior for 8, infer-
ence about any function of the parameters can be done. Here Monte Carlo inte-
gration requires computer code which takes random draws from the multivariate
t distribution. This is available in many places. For instance, MATLAB code
relating to the following empirical illustration is available on the website associ-
ated with this book. This shows how Monte Carlo integration is done in practice.
The structure of the code is as follows:

Step 1: Take a random draw, 8¢) from the posterior for B given in (3.14) using
a random number generator for the multivariate t distribution.

Step 2: Calculate g(8)) and keep this result.

Step 3: Repeat Steps 1 and 2 S times.

Step 4: Take the average of the S draws g(BV), ..., g(8®).

These steps will yield an estimate of E[g(8)|y] for any function of interest.

It is worth stressing that Monte Carlo integration yields only an approxima-
tion for E[g(B)|y] (since you cannot set S = oo). However, by selecting S,
the researcher can control the degree of approximation error. Furthermore, as
described in Chapter 1 (see (1.13)), we can obtain a numerical measure of the
approximation error using a central limit theorem. In particular, we obtain

VS{gs — Elg(B)Iyl} > N(0,07) (3:42)

as § goes to infinity, where (7; = var(g(B)|y). The latter quantity can itself
be estimated using Monte Carlo integration, and we shall call such an estimate
6\;. Using this estimate, (3.42) and the properties of the Normal density we can
write:

0y

NG

We can then rearrange the probability statement in (3.43) to find an approximate
95% confidence interval for E[g(8)|y] of the form ng?s ~ 196 %, 25 + 1.96%].
The researcher can present this as a measure of how accurate her estimate of
E[g(B)ly] is or to use it as a guide for selecting S. Alternatively, the numerical
standard error, %, can be reported as implicitly containing the same information
in a more compact form.

Pr {E[g(,B)|y] — 1.960—2 <gs < E[g(B)ly]l+ 1.96 } ~ 095 (343)

3.9 EMPIRICAL ILLUSTRATION

To illustrate Bayesian inference in the multiple regression model, we use a data
set containing the sales price of N = 546 houses sold in Windsor, Canada in
1987. Further details about this data set are provided in Anglin and Gencay
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(1996). Interest centers on finding out which factors affect house prices and,
hence, sales price is our dependent variable. We use four explanatory variables:
the size of the lot the house is on, the number of bedrooms, number of bathrooms
and number of storeys. Thus, we have:

e y; = sales price of the ith house measured in Canadian dollars,
e x;» = the lot size of the ith house measured in square feet,

e x;3 = the number of bedrooms in the ith house,

e x;4 = the number of bathrooms in the ith house,

e x;5 = the number of storeys in the ith house.

Presumably, a researcher doing work with this data set would have knowledge
of the Windsor real estate market, and could use such knowledge to elicit a
reasonable informative prior. Or, the researcher could ask a local real estate
agent to help provide prior information. For instance, the researcher could ask
the real estate agent a series of questions of the form: “How much would you
expect a house with a lot of size 4000 square feet, with two bedrooms, one
bathroom and one storey to cost?”’; “How much would you expect a house with
a lot of size 6000 square feet, with three bedrooms, two bathrooms and two
storeys to cost?”, etc. Since there are five unknown regression coefficients, the
answers to five questions of this form would give the researcher five equations
in five unknowns. She could then solve these equations to find the real estate
agent’s implicit guesses as to what the regression coefficients are. These guesses
could be used as the prior mean for B.

For illustrative purposes, here we will use only a crudely elicited informative
prior. House prices in Windsor in 1987 showed a wide variation, but most houses
sold for prices in the $50000—-$150000 region. A regression model which fits
well might have errors that typically are of the order of magnitude of a few
thousand dollars and maybe $10000 at most. This suggests that o might be
roughly 5000. That is, since the errors are Normally distributed with mean zero,
if 0 = 5000 then 95% of the errors will be less than 1.96 x 5000 = $9800 in
absolute value. Since h = ﬁ, this suggests that a reasonable prior guess for &
would be W = 4.0 x 1078, Thus, we set s = 4.0 x 1078, However, this is a
very crude guess and, hence, we want to attach little weight to it by setting v to a
value which is much smaller than N. Since N = 546, setting v = 5 is relatively
noninformative. Loosely speaking, we are saying our prior information about &
should have about 1% of the weight as the data information (i.e. % ~ 0.01).

For the regression coefficients, we set:

0.0

10

B =1 5000
N 10000
10000
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Remember that regression coefficients can be interpreted as saying “if explana-
tory variable j is increased by one unit and all other explanatory variables are
held constant, the price of the house tends to increase by B; dollars”. Hence,
our prior mean implies statements of the form “if we compare two houses which
are identical except the first house has one bedroom more than the second, then
we expect the first house to be worth $5000 more than the second” or “if the
number of bathrooms is increases by one, holding all other house characteristics
constant, we expect the price of the house go up by $100007, etc.

All these guesses about the regression coefficients are rather crude, so it makes
sense to attach a relatively large prior variance to each of them. For instance,
suppose our prior information about the intercept is very uncertain. In this case,
we might want var(8;) = 10 0002 (i.e. the prior standard deviation is 10000
and, hence, we are attaching approximately 95% prior probability to the region
[—20000, 20 000] which is a very wide interval).3 If we think it highly probable
that the effect of lot size would be between 0 and 20, we would choose var () =
25 (i.e. choose a prior standard deviation for B, of 5). For the other regression
coefficients, we choose var(B3) = 2500% and var(Bs) = var(Bs) = 50007
These hyperparameter values say, for instance, that our best prior guess of B4 is
10000 and we think it very likely that it lies in the interval [0, 20 000].

Given these choices, we can figure out the prior covariance matrix. The prop-
erties of the Normal-Gamma distribution imply that the prior covariance matrix
for S has the form:

vs2
var(f) = —-V
v—2
Since ;%22 = 41666 666%, our choices for var(g;) for j =1,...,5 imply:

2.40 0 0O 0 O
0 60x1077 0 0 0
V= 0 0 015 0 0
0 0 0 0.60 O

0 0 0 0 0.60

Note that we have set all the prior covariances to zero. This is commonly done,
since it is often hard to make reasonable guesses about what they might be. It
implies that your prior information about what plausible values for 8; might be
are uncorrelated with those for 8; for i # j. In many cases, this is a reasonable
assumption. This completes our specification of an informative natural conjugate
prior for the parameters of our model.

The preceding paragraphs illustrate how prior elicitation might be done in prac-
tice. As you can see, prior elicitation can be a bit complicated and involve a lot of

3Here we are using a useful approximate rule-of-thumb that says that roughly 95% of the proba-
bility in a density is located within two standard deviations of its mean. This approximation works
best for the Normal distribution or distributions which have a similar shape to the Normal (e.g. the
t distribution).
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guesswork. However, it is a very useful exercise to carry out, since it forces the
researcher to think carefully about her model and how its parameters are inter-
preted. For the researcher who has no prior information (or does not wish to use
it), is also possible to carry out a noninformative Bayesian analysis using (3.24).

Tables 3.1 and 3.2 present prior and posterior results for both the informative
and noninformative priors. Posterior results based on the informative prior can
be calculated using (3.9)—(3.19), and those based on the noninformative prior
use (3.20)—(3.23). Table 3.1 confirms that our prior is relatively noninformative,
since posterior results based on the informative prior are quite similar to those
based on the noninformative prior. In the previous chapter, we saw that the pos-
terior mean of the single regression coefficient using the informative prior lay
between the prior mean and the OLS estimate. In Table 3.1, there is also a ten-
dency for the posterior mean based on the informative prior to lie between the
prior mean and the OLS estimate. Remember that the OLS estimate is identical
to the posterior mean based on the noninformative prior (see (3.21)). However,
not every posterior mean based on the informative prior lies between the prior
mean and the OLS estimate (see results for 81). This is because the posterior
mean is a matrix weighted average of the prior mean and the OLS estimate (see
(3.11)). The matrix weighting does not imply that every individual coefficient
lies between its prior mean and OLS estimate.

Table 3.2 presents prior and posterior results for 4. For this parameter, too,
it can be seen that data information dominates prior information. That is, pos-
terior results using the informative prior are quite similar to those using the
noninformative prior.

A written summary of results in Tables 3.1 and 3.2 proceeds in the stan-
dard way, based on the interpretation of regression parameters. For instance,
the researcher might write statements such as: “Regardless of whether we use
the informative or noninformative priors, we find the posterior mean of S4 to
be roughly 17000. Thus, our point estimate indicates that, if we compare two
houses which are the same except the first house has one more bathroom than
the second, we would expect the first house to be worth roughly $17 000 more
than the second.” Or, more tersely, “the point estimate of the the marginal effect
of bathrooms on house price is roughly $17 000”.

Table 3.3 contains results relating to the various methods of model comparison
discussed in this chapter. All results can be used to shed light on the question
of whether an individual regression coefficient is equal to zero. The column
labelled p(B; > O|y) uses (3.14) and the properties of the t distribution to
calculate the probability that each individual coefficient is positive. The use-
fulness of such probabilities is described in Section 3.6.1. The column labelled
‘Posterior Odds in Favor of B; = 0’ contains the posterior odds ratio compar-
ing a model which restricts the appropriate element of 8 to be zero against
the unrestricted alternative. That is, it uses the methods outlined in Section
3.6.2 to calculate the posterior odds ratio comparing two regression models:
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Table 3.1 Prior and Posterior Means for 8 (standard deviations in parentheses)

Prior Posterior
Using Noninformative Using Informative
Informative Prior Prior
0 —4009.55 —4035.05
Bi
(10000) (3593.16) (3530.16)
10 5.43 5.43
B2
(5 0.37) (0.37)
5000 2824.61 2886.81
B3
(2500) (1211.45) (1184.93)
10000 17105.17 16965.24
B4
(5000) (1729.65) (1708.02)
10000 7634.90 7641.23
Bs
(5000) (1005.19) (997.02)

Table 3.2 Prior and Posterior Properties of h

Prior Posterior

Using Noninformative  Using Informative

Informative Prior Prior
Mean 4.0 x 1078 3.03 x 1079 3.05 x 1079
St. Deviation 1.6 x 1078 3.33 x 107 3.33 x 107

My : B =0to My : B # 0. The restricted model uses an informative prior
which is identical to the unrestricted prior, except that 8 and V become 4 x 1
and 4 x 4 matrices, respectively, with prior information relating to B; omit-
ted. A prior odds ratio of one is used. The last two columns of Table 3.3.
present 99% and 95% Highest Posterior Density Intervals for each B; using
the noninformative prior. As described in Section 3.6.3, HPDIs can be used
to carry out tests of equality restrictions. Remember that these have a sensi-
ble, but ad hoc, justification even when a noninformative prior is used. Don’t
forget that posterior odds ratios usually require the use of informative priors
(at least over parameters which are common to the two models being com-
pared). Hence, we do not present posterior odds ratios using the noninforma-
tive prior.
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Table 3.3 Model Comparison Involving 8

Informative Prior

Posterior Odds

p(B; > 0ly) 95% HPDI 99% HPDI for ; =0
B 0.13 [—10957, 2887] [—13 143, 5073] 4.14

B2 1.00 [4.71,6.15] [4.49, 6.38] 2.25 x 1073
B3 0.99 [563.5,5210.1] [—170.4, 5944] 0.39

Ba 1.00 [13616,20314] [12558,21372] 1.72 x 1019
Bs 1.00 [5686, 9596] [5069, 10214] 1.22 x 1071

Noninformative Prior

Posterior Odds

p(B; > Oly) 95% HPDI 99% HPDI for B =0
Bi 0.13 [—11055,3036] [—13280, 5261] —
B 1.00 [4.71,6.15] [4.48, 6.38] —
Bs 0.99 [449.3, 5200] [—301.1, 5950] —
Ba 1.00 [13714,20497] [12642, 21 568] —
Bs 1.00 [5664, 9606] [5041, 10228] —

The results in Table 3.3 are consistent with those in Table 3.1. In the latter
table, we saw that the posterior means of 7, B4 and B5 were all positive and very
large relative to their posterior standard deviations, providing strong evidence that
all these coefficients are non-zero and positive. Regardless of whether we use
the informative or noninformative priors, Table 3.3 indicates p(B; > Oly) is 1
(to several decimal places) for j = 2,4, 5, and none of the HPDIs contains O.
For the informative prior, the posterior odds ratios comparing M; : 8; = 0 to
M; : B; # 0 for j = 2,4,5, are all very small, indicating that the unrestricted
model receives massively more probability than the restricted model. Results for
B1 and B3 are more mixed. For instance, most of the evidence indicates that
B3 # 0. However, the 99% HPDI for this parameter does include zero. Hence, if
we were to use the model selection strategy outlined in Section 3.6.3, our results
would depend upon precisely which HPDI we chose. A 95% HPDI would imply
that B3 # 0, whereas the 99% HPDI would imply 83 = 0. This uncertainty is
reflected in the posterior odds ratio, which indicates that the restricted model is
0.39 times as likely as the unrestricted model. If we use this posterior odds ratio
to calculate a posterior model probability we find that p(M; : 83 = 0]y) = 0.28.
In words, there is a 28% chance that 3 = 0 and 72% chance that it is not.
When such uncertainty is present, it may make sense to consider Bayesian model
averaging. The alternative is to choose either the unrestricted or the restricted
model. In either case, there is a substantial probability that you are choosing the
wrong model.

To illustrate how prediction can be done using the Normal linear regression
model, we consider the case where the researcher is interested in predicting the
sales price of a house with a lot size of 5000 square feet, two bedrooms, two
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bathrooms and one storey. Using (3.40), we can work out that the predictive
distribution in the case of the informative prior is 7 (70468, 3.33 x 108, 551). For
the noninformative prior, the predictive distribution is 7 (70631, 3.35 x 108, 546).
The researcher might use either of these predictive densities to present informa-
tion to a client wishing to sell a house with the characteristics listed above. For
instance, she might say that her best guess of the sales price is slightly over
$70000, but that there is a large uncertainty associated with this guess (i.e. the
predictive standard deviation is roughly $18 000).

Section 3.8 introduces Monte Carlo integration. As discussed in that section,
Monte Carlo integration is not required for the Normal linear regression model
with natural conjugate prior, unless interest centers on nonlinear functions of the
regression coefficients. That is, we already know the posterior properties of B
(see Table 3.1), so there is no need to do Monte Carlo integration here. However,
to illustrate how Monte Carlo integration is carried out, we will use it to calculate
the posterior mean and standard deviation of 8;. From Table 3.1, we know that
these should be 5.43 and 0.37, respectively. This gives us a benchmark to see
how well Monte Carlo integration works. For the sake of brevity, we calculate
results only for the informative prior.

Monte Carlo integration can be implemented by taking random draws from
the posterior distribution of 8 and then averaging appropriate functions of these
draws (see (3.41)). From (3.14), we know that the p(B|y) is a t density. Thus,
we can write a program which repeatedly takes random draws from (3.14) and
averages them.

Table 3.4 presents the posterior mean and standard deviation for f, calculated
in various ways. The row labelled ‘Analytical’ is the exact result obtained using
(3.14)—(3.16). The other rows present results calculated using Monte Carlo inte-
gration with different numbers of replications. These rows also present numerical
standard errors (see the discussion at end of Section 3.8) which give insight into
the accuracy of the Monte Carlo approximation of E(8;]y).

As expected, the accuracy of approximation of both the posterior mean and
standard deviation gets better and better as the number of replications is increased.*
In an empirical context, the exact choice of S will depend upon the accuracy
desired by the researcher. For instance, if the researcher is doing a preliminary
exploration of the data, then perhaps a rough estimate will do and setting S = 10
or 100 may be enough. However, to get highly accurate estimates (perhaps for
the final results written up in a report), then the researcher may set S = 10000
or even 100000. The numerical standard error does seem to give a good idea

4We remind the reader that the computer programs for calculating the results in the empirical
illustrations are available on the website associated with this book. If you use these programs (or
create your own programs), you should be able to exactly reproduce all tables up to and including
Table 3.3. However, since Monte Carlo integration involves taking random draws, you will not be
able to exactly reproduce Table 3.4. That is, your random draws will be different from mine and,
hence, your results may differ slightly from mine. Formally, the random generator requires what is
called a seed to get started. The seed is a number and it is usually taken from the computer’s clock.
Hence, programs run at different times will yield different random draws.
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Table 3.4 Posterior Results for 8, Calculated Various Ways

Standard Numerical Standard
Mean Deviation Error
Analytical 5.4316 0.3662 —
Number of
Replications
S=10 5.3234 0.2889 0.0913
S =100 5.4877 0.4011 0.0401
S = 1000 5.4209 0.3727 0.0118
S =10000 5.4330 0.3677 0.0037
S = 100000 5.4323 0.3664 0.0012

of the accuracy of each approximation in that approximate posterior means are
rarely much more than one numerical standard error from the true posterior mean
given in the row labelled ‘Analytical’.

It is also worth noting that, although increasing S will increase the accuracy
of the Monte Carlo approximation of E(B>|y), the increase is not linear in S.
For instance, Table 3.4 shows that results with § = 100000 are not ten times as
accurate as those with § = 10000. Analytically, the numerical standard error,

%g 1 ; —
75’ decreases at a rate of 75 Thus, results with S = 100000 should only be

roughly +/10 = 3.16 times as accurate as those with S = 10000.

3.10 SUMMARY

In this chapter, we have gone through a complete Bayesian analysis (i.e. likeli-
hood, prior, posterior, model comparison and prediction) for the Normal linear
regression model with natural conjugate prior and k explanatory variables. This
chapter is mostly the same as the previous one, except that matrix notation is used
throughout to accommodate the complications caused by k > 1 explanatory vari-
ables. The concept of a highest posterior density interval was introduced. We also
showed how Monte Carlo integration, a topic first discussed in Chapter 1, can
be used to carry out posterior inference on nonlinear functions of the regression
parameters.

3.11 EXERCISES

3.11.1 Theoretical Exercises

1. For the Normal linear regression model, show that the likelihood function in
(3.3) can be written in terms of OLS quantities as in (3.7).
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2. Assuming the prior for 8 and h is NG (B, V, s~2, v), derive the posterior for
B and h and, thus, show that the Normal-Gamma prior is a conjugate prior
for this model.

3. Show that (3.13) can be written in the following alternative ways:

5% = vs? + s> + (B — B I(X'X)VV (B - B)
=us’ + (= XBY G~ XB)+B-p'V (B~ P
4. Suppose you have a Normal linear regression model with partially informative
natural conjugate prior, where prior information is available only on J < k
linear combinations of the regression coefficients, and the prior for & is the
noninformative one of (3.24). Thus, Rk ~ N(r, h_lxr), where R and r are

defined after (3.25) and V, is a J x J positive definite matrix. Show that the
posterior is given by

B.hly ~ NGB, V,572,7)
where
=RV 'R+ X'X)7!
VR'V'B+ X'XP)
N

= ™ N
I

and
VS = s’ + (B - BYX'X(B—B)+ (RE -V, (RB—1)

5. Problems with Bayes Factors using Noninformative Priors. Consider compar-
ing two models using Bayes factors based on noninformative priors in the
setup of Section 3.6.2. The Bayes factor can be obtained using (3.34) for the
two models:

(a) Consider a noninformative prior created by setting v; = 0, Zj_l = cly,

and letting ¢ — 0 for j = 1, 2. Show that the Bayes factor comparing M
to M, reduces to:

0 if k] > k2
! N\ Y
IX{ X172 vis{ . _
() () 7 =k
00 if ki <k
(b) Consider a noninformative prior created by setting v, = 0, K]._l =

1
(ckf ) Iy; and letting ¢ — O for j = 1,2. Show that the Bayes factor

reduces to:
_1 -
|:|X/1X1|:| 2 l)1sl2
|X/2X2| v2s22

vl
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(c) Consider a noninformative prior created by setting v; = 0, Kj_l =

1
(ck.f> X}Xj and letting ¢ — 0 for j = 1, 2. Show that the Bayes factor

vys?
1% S22

Ellipsoid Bound Theorems. Consider the Normal linear regression model with

natural conjugate prior, 8, h ~ NG(8, V,s 2, v):

(a) Show that for any choice of V, the posterior mean of  must lie in the
ellipsoid:

reduces to:

=

B—B'X'X(B - B)
4

(B - ,Bave)/X/X(E - .Bave) =
where

1 ~
ﬂave = E(ﬂ +é)

(b) For the case where k = 1, show that the result of (a) implies the posterior
mean must lie between the prior mean and OLS estimate.

(c) Suppose the prior covariance matrix is bounded between V| <V < V,,
in the sense that V, — V and V — V| are both positive definite matrices.
Derive an ellipsoid bound analogous to that of (a).

(d) Discuss how the results in (a) and (c) can be used to investigate the
sensitivity of the posterior mean to prior assumptions.

Note: You may wish to read Leamer (1982) or Poirier (1995, pp.
526-537) for help with answering this question or more details about
ellipsoid bound theorems.

Multicollinearity. Consider the Normal linear regression model with likeli-

hood, prior and posterior as described Sections 3.3, 3.4 and 3.5, respectively.

Assume in addition that Xc¢ = O for some non-zero vector of constants c.

Note that this is referred to as a case of perfect multicollinearity. It implies

the matrix X is not of full rank and (X’X)~! does not exist (see Appendix A

on matrix algebra for relevant definitions):

(a) Show that, despite this pathology, the posterior exists if V is positive
definite. Define

a=cV7'p
(b) Show that, given h, the prior and posterior distributions of « are both
identical and equal to:
N(C/Z_léy h—]c/z—lc)

Hence, although prior information can be used to surmount the problems
caused by perfect multicollinearity, there are some combinations of the
regression coefficients about which learning does not occur.
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3.11.2 Computer-Based Exercises

Remember that some data sets and MATLAB programs are available on the website
associated with this book. The house price data set is available on this website or
in the Journal of Applied Econometrics Data Archive listed under Anglin and
Gencay (1996)

(http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/)

8.

10.

11.

(a) Generate an artificial data set of size N = 100 for the Normal linear
regression model with an intercept and one other explanatory variable.
Set the intercept to 0, the slope coefficient to 1.0 and # = 1.0. Gener-
ate the explanatory variable by taking random draws from the U (0, 1)
distribution (see Chapter 2, Exercise 1 for more information on how to
artificially generate data sets).

(b) Calculate the posterior mean and standard deviation for this data set using
a Normal-Gamma prior with 8 = (0, 1),V = I, gfz =1lv=1.

(c) Graph the posterior of f5.

(d) Calculate the Bayes factor comparing the model M; : B = 0 with
M, : B # 0.

(e) Plot the predictive distribution for a future observation with x; = 0.5.

(f) Carry out a prior sensitivity analysis by setting V = cI, and repeating
parts (b), (d) and (e) for values of ¢ = 0.01, 1.0, 100.0, 1 x 10°. How
sensitive is the posterior to changes in prior information? How sensitive
is the Bayes factor? How sensitive is the predictive distribution?

(g) Calculate the posterior mean and standard deviation of 8 using a nonin-
formative prior.

(h) Calculate a 99% HPDI for B, using the noninformative prior and use it
for investigating whether o = 0. Compare your results with those of
part (d).

. Repeat Exercise 8 for different choices of N and % to investigate the role

of sample size and error size in Bayesian estimation, model comparison and
prior sensitivity for the Normal linear regression model.

Repeat Exercise 8 (b) using Monte Carlo integration for various values of S.
How large does S have to be before you reproduce the results of Exercise 8
(b) to two decimal places?

Using the house price data set described in the Empirical Illustration, carry
out a prior sensitivity analysis using various priors of your choice. Are the
results presented in the text robust to reasonable changes in the prior?
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4
The Normal Linear Regression Model

with Other Priors

4.1 INTRODUCTION

In the previous chapter, we developed Bayesian methods for estimation, model
comparison and prediction for the Normal linear regression model with natural
conjugate prior. In this chapter, we go through the same steps for the Normal
linear regression model with two different priors. We do this partly since the
natural conjugate prior may not accurately reflect the prior information of a
researcher in a particular application. Hence, it may be desirable to have available
Bayesian methods using other priors. However, we also develop methods for
these new priors to introduce some important concepts in Bayesian computation.
It is hoped that, by introducing them in the context of the familiar Normal linear
regression model, the basic concepts will become clear. These concepts will then
be used repeatedly throughout the book for many different models.

Remember that, with the natural conjugate prior, 8 and & were not independent
of one another (see the discussion around (2.7)). In the present chapter, we begin
with the Normal linear regression model with an independent Normal-Gamma
prior. As we shall see, the minor change from having g and & dependent to
independent has major implications for Bayesian computation. In particular, the
posterior, posterior odds ratio and predictive no longer have convenient analytical
forms like (3.9), (3.36) and (3.40), respectively. Hence, we need to use posterior
simulation methods. We introduce the concept of a Gibbs sampler, and show
how it can be used to carry out posterior and predictive inference. We show
how calculation of the posterior odds ratio for nested model comparison can be
done using something called the Savage—Dickey density ratio and output from
the Gibbs sampler.

The second prior introduced in this section is of great practical use in many con-
texts. It is one which imposes inequality restrictions on 8. Economists are often
interested in imposing such constraints. For instance, in the context of production
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function estimation, the restriction that increasing an input will increase output
is typically an inequality constraint of the form g; > 0. In this chapter, we show
how such constraints can be imposed through the prior and a technique called
importance sampling used to carry out Bayesian inference.

The likelihood function used with both these priors will be the same as that
used in the previous chapter. Hence, unlike previous chapters, we will not have
a separate section discussing the likelihood function. The reader is referred
to (3.3)—(3.7) for a reminder of what it looks like.

4.2 THE NORMAL LINEAR REGRESSION MODEL WITH
INDEPENDENT NORMAL-GAMMA PRIOR

4.2.1 The Prior

The Normal linear regression model is defined in Chapter 3 (see (3.2)—(3.7)),
and depends upon the parameters 8 and h. In that chapter, we used a natural
conjugate prior where p(B|h) was a Normal density and p(h) a Gamma density.
In this section, we use a similar prior, but one which assumes prior independence
between § and h. In particular, we assume p(8, h) = p(B)p(h) with p(B) being
Normal and p(h) being Gamma:

p(B) =

1 1
[V|~Zexp [—5(/3 -pv B - @} (4.1)

(2m)?

and

hy =o' h'T hy 42
p(h) =cg exp T2 (4.2)

where cg is the integrating constant for the Gamma p.d.f. given in Appendix B,
Definition B.22. For simplicity, we are using the same notation as in the previous
chapters. That is, § = E(f]y) is still the prior mean of 8 and the prior mean and
degrees of freedom of & are still s~2 and v, respectively. However, be careful
to note that V is now simply the prior covariance matrix of 8, whereas in the
previous chapter we had var(8|h) = h1v.

4.2.2 The Posterior

The posterior is proportional to the prior times the likelihood. Hence, if we
multiply (3.2), (4.1) and (4.2) and ignore terms that do not depend upon 8 and
h, we obtain:

p(B. hly) o {exp [ {n(y = XBY (v = XB) + B =YV (B~ g)}“

1
2
N+v-2

B exp [_ u } 4.3)
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This joint posterior density for § and & does not take the form of any well-
known and understood density and, hence, cannot be directly used in a simple
way for posterior inference. For instance, a researcher might be interested in
presenting the posterior mean and variance of . Unfortunately, there is not a
simple analytical formula for these posterior features which can be written down
and, hence, posterior simulation is required.

If we treat (4.3) as a joint posterior density for § and #, it does not take a
convenient form. The conditionals of the posterior are, however, simple. That is,
p(Bly, h) can be obtained by treating (4.3) as a function of 8 for a fixed value
of h.! If we do matrix manipulations similar to those used in derivation of the
posterior for the natural conjugate prior, we can write the key term in the first
line of (4.3) as:

h(y —XB)'(y — XB)+ (B—BYV ' (B—B)
—B-BV B-B+0
where
V= "+rx'x)" (4.4)
V(V'B+hX'y) (4.5)

=|
Il

and
O=hyy+BV'p—FV 'B

Plugging this expression into (4.3) and ignoring the terms that do not involve S
(including Q), we can write

1 - —1 —
p(Bly, h) xexp [_5(’3 -V (B- /3)] (4.6)
which is the kernel of a multivariate Normal density. In other words,
Bly.h ~ N(@B.V) 4.7)
p(h|y, B) is obtained by treating (4.3) as a function of 4. It can be seen that
N4v-2 h ’ 2
plhly. B och™ 3 exp| =2 {( = XB) (v — XB) + s’

By comparing this with the definition of the Gamma density (see Appendix B,
Definition B.22) it can be verified that

hly, B~ GGE2,7) (4.8)

!Formally, the rules of probability imply p(B|y, h) = ”;‘Zh}"v‘i) However, since p(h|y) does not

depend upon B, p(B, h|y) gives the kernel of p(B|y, h). Since a density is defined by its kernel,
examination of the form of p(B, h|y), treating & as fixed, will tell us what p(B|y, h) is.
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where

<|

Il
=
4
I<

4.9)
and

2 _ (y — XB)'(y — XB) + vs?
v

(4.10)

These formulae look quite similar to those for the Normal linear regression
model with natural conjugate prior (compare with (3.9)—(3.13)). Indeed, at an
informal level, the intuition for how the posterior combines data and prior infor-
mation is quite similar. However, it must be stressed that (4.4)—(4.10) do not
relate directly to the posterior of interest, p(8, k|y), but rather to the conditional
posteriors, p(Bly. h) and p(hly, B). Since p(B, hly) # p(Bly, h)p(hly. B), the
conditional posteriors in (4.7) and (4.8) do not directly tell us everything about
p(B, h|y). Nevertheless, there is a posterior simulator, called the Gibbs sampler,
which uses conditional posteriors like (4.7) and (4.8) to produce random draws,
,B(S) and h® for s = 1, ..., S, which can be averaged to produce estimates of
posterior properties just as with Monte Carlo integration.

4.2.3 Bayesian Computation: The Gibbs Sampler

The Gibbs sampler is a powerful tool for posterior simulation which is used in
many econometric models. We will motivate the basic ideas in a very general
context before returning to the Normal linear regression model with independent
Normal-Gamma prior. Accordingly, let us temporarily adopt the general notation
of Chapter 1, where 6 is a p-vector of parameters and p(y|0), p(f) and p(6|y)
are the likelihood, prior and posterior, respectively. In the linear regression model,
p=k+1land 6 = (/3/, h)'. Furthermore, let § be partitioned into various blocks

as 6 = (6(/1), (’2), .. ,9(’3))’, where 6j) is a scalar or vector, j = 1,2,..., B.
In the linear regression model, it is convenient to set B = 2 with 6y = B
and 9(2) =h.

Remember that Monte Carlo integration involves taking random draws from
p(@|y) and then averaging them to produce estimates of E[g(6)|y] for any func-
tion of interest g(0) (see Chapter 3, Theorem 3.1). In many models, including
the one discussed in the present chapter, it is not easy to directly draw from
p(@ly). However, it often is easy to randomly draw from p(0(1)|y, 62, - .. , O(B)),
p(9(2)|y, 9(1), 9(3), 000 g 9(3)), 500 g p(9(3)|y, 9(]), 000 g 9(3_1)). The preceding dis-
tributions are referred to as full conditional posterior distributions, since they
define a posterior for each block conditional on all the other blocks. In the Normal
linear regression model with independent Normal-Gamma prior p(8|y, k) is Nor-
mal and p(h|y, B) is Gamma, both of which are simple to draw from. It turns out
that drawing from the full conditionals will yield a sequence 80, 6 ... 6®
which can be averaged to produce estimates of E[g(6)|y] in the same manner
as did Monte Carlo integration.
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To motivate the Gibbs sampler, consider the case B = 2, and suppose that
you have one random draw from p(6(2)|y). Call this draw 0((%). Don’t forget our
notational convention, where we are using superscripts to indicate draws and
subscripts to indicate blocks. Since p(6|y) = p(Bm)ly, 62)) p(62)1y), it follows

that a random draw from p (9(1)|y, 0((%)) is a valid draw of 61y from p(8]y).?

Call this draw 6(}). Since p(@ly) = p(B)ly. 61)p©)ly). it follows that a

random draw from p (9(2)| v, 0((11))) is a valid draw of 6(2) from p(6|y). Hence,

@17

’ "N/
oM = (9(1) ol ) is a valid draw from p(€|y). You can continue this reasoning
indefinitely. That is, 9((12)), a random draw from p (9(1)|y, 98;), will be a valid

draw of 61y from p(8]y); 9(%) , a random draw from p (9(2)| v, 0((]2 ))) will be a

valid draw of ) from p(6]y), etc. Hence, if you can successfully find @)
then sequentially drawing from the posterior of 6(1y conditional on the previous
draw for 6(), then 62y given the previous draw for (1), will yield a sequence
of draws from the posterior. This strategy of sequentially drawing from the full
conditional posterior distributions is called Gibbs sampling.

The problem with such a motivation is that it is typically not possible to find
such an initial draw 9(3). After all, if we knew how to easily take random draws
from p(6(2)|y), we could use this and p(6(1)|6(2), ) to do Monte Carlo integration
and have no need for Gibbs sampling. However, it can be shown that subject to
weak conditions,3 the initial draw 9((%) does not matter in the sense that the Gibbs
sampler will converge to a sequence of draws from p(60]y). Hence, it is common
to choose 9(;) ) in some manner and then run the Gibbs sampler for S replications.
However, the first Sy of these are discarded as so-called burn-in replications and
the remaining S; retained for the estimate of E[g(6)|y], where Sp + S = S.

The preceding motivation for the Gibbs sampler was written for the case of
two blocks, but can be extended in a simple manner to more blocks. Formally,
the Gibbs sampler involves the following steps.

Step 0: Choose a starting value, 0O,
Fors=1,...,8S:

K s—1 s—1 s—1
Step 1: Take a random draw, 9<(f)) from p (9(1)|y, 98) ) 98) ). ,983) )>.

2This statement follows from the fact that p(8(1), 82)|y) = p(O1)ly, 62)) p(B2)|y) implies that
first drawing from the marginal posterior density of 6, then drawing from the posterior of 61
conditional on the draw of 62 is equivalent to directly drawing from the joint posterior of 61y and
9(2).

3In the interests of keeping this book focused on Bayesian econometric practice, we do not discuss
the precise nature of these conditions. Geweke (1999) provides a description of them and further
references for readers interested in more mathematical rigor. All the Gibbs samplers developed in this
book will satisfy these weak conditions. The prime case where these conditions are not satisfied is if
the posterior is defined over two different regions which are not connected with one another. Then
the Gibbs sampler can provide draws from only one region. Of course, for common distributions
like the Normal and Gamma, this is not a problem.


Dr.Mehara
Highlight

Dr.Mehara
Highlight

Dr.Mehara
Highlight

Dr.Mehara
Highlight

Dr.Mehara
Highlight


64 BAYESIAN ECONOMETRICS

-1 -1
Step 2: Take a random draw, 98 from p (9(2)| y, 98‘)), 9((;) ), 9((; ) )>.
S K K s—1 s—1
Step 3: Take a random draw, 9(%) from p (9(3)|y, 98, 9((5)), 9((2) ). ,9((1;) )).
Step B: Take a random draw, 9((;)) from p (G(B)ly, 9(%), 9((;)), e 9((;)_1))
Following these steps will yield a set of S draws, 6¢) fors = 1,..., S. After

dropping the first Sy of these to eliminate the effect of #¥), the remaining S
draws can be averaged to create estimates of posterior features of interest. That
is, just as with Monte Carlo integration, a weak law of large numbers can be
invoked to say that, if g(.) is a function of interest and

PR
g =— Y. gO“) (4.11)
St s=Sp+1

then §51 converges to E[g(6)|y] as S1 goes to infinity.

This strategy will work for any choice of blocking. However, for many econo-
metric models, a natural choice of blocking suggests itself. In the Normal linear
regression model with independent Normal-Gamma prior, p(B|y, k) is Normal
and p(h|y, B) is Gamma. This suggests that the blocking mentioned previously,
with 61y = B and 6oy = h is a natural one. With this choice, a Gibbs sampler
can be set up which involves sequentially drawing from the Normal and Gamma
distributions using (4.7) and (4.8).

Any posterior simulation approach such as Gibbs sampling provides us with g,
which is an estimate of E[g(6)|y]. By choosing S sufficiently large, the approxi-
mation error implicit in the estimate can be made as small as the researcher wants.
In the case of Monte Carlo integration, we showed (see (3.42) and (3.43)) how
a central limit theorem can be used to obtain the numerical standard error which
is a sensible measure of the degree of approximation error. In the case of Gibbs
sampling, we can do something similar. However, two issues arise with Gibbs sam-
pling which did not arise previously. First, with Gibbs sampling we have to make
sure the choice of © is not having an effect on results. Secondly, unlike with
Monte Carlo integration, the sequence of draws produced, ) fors =1, ..., S,
is not i.i.d. In particular, #©) and #~1 will not be independent from one another.
This can be seen most simply by considering the steps above. In general, the draw
of 98; depends upon 0((13)71) forj=1,...,B—1andl > j. The practical impor-
tance of these two differences is that, typically, more draws are required with Gibbs
sampling than with Monte Carlo integration to achieve a given level of accuracy.

4.2.4 Bayesian Computation: Markov Chain Monte Carlo Diagnostics

Formally, the fact that the state of the Gibbs sampler at draw s (i.e. 0)) depends
on its state at draw s — 1 (i.e. 6¢~1) means that the sequence is a Markov chain.
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There are many other posterior simulators which have this property. Some of
these we will discuss in later chapters. Such posterior simulators have the general
name of Markov Chain Monte Carlo (MCMC) algorithms. Associated with these
are numerous measures of the approximation error in the MCMC algorithm and
various other diagnostics to see whether the estimated results are reliable. We
will call all of these MCMC diagnostics, and discuss some of them here in
the context of the Gibbs sampler. We stress that these diagnostics will also be
useful in other MCMC algorithms to be discussed in future chapters. This is a
fairly recent field of research in the Bayesian statistics literature, and many of
the important results are available only in journal articles. Some of the more
accessible sources for more detailed discussion of MCMC diagnostics include
Markov Chain Monte Carlo in Practice, edited by Gilks ef al. (see the papers
Raftery and Lewis (1996) and Gelman (1996)) and Geweke (1999). Zellner and
Min (1995) is also an important reference in this field. Computer programs for
many of these diagnostics are available over the web. CODA is a set of S-
Plus programs associated with the computer package BUGS which implements
some of these (see Best et al., 1995). MATLAB versions are available from
James LeSage’s Econometrics Toolbox (LeSage, 1999). BACC (McCausland and
Stevens, 2001) also provides some MCMC diagnostics.

The first MCMC diagnostic is the numerical standard error which was dis-
cussed in previous chapters (see the discussion after (1.13) or (3.43)). Remember
that the numerical standard error was derived through the use of a central limit
theorem. In the context of MCMC methods, a numerical standard error can be
derived, but the fact the draws are not independent means that a different central
limit theorem must be used. The reader interested in precise details is referred
to Geweke (1992). Briefly, under the weak conditions necessary for the Gibbs
sampler to converge to a sequence of draws from p(6|y), we obtain a central
limit theorem of the familiar form:

VS1(s, — Elg@)yl} — N (0, 02) 4.12)

as S; goes to infinity. However, 05? has a more complicated form than in (3.43),
and no fully-justifiable way of estimating it has been developed in the literature.
Intuitively, aé? has to compensate for the fact that 6¢) for s = 1,...,S is a
correlated sequence. Geweke (1992) uses this intuition to draw on ideas from the
time series literature to develop an estimate of aé? of the form

~ S0

oy = S, (4.13)
The justification for this estimate is informal rather than rigorous, but it does
seem to work well in practice. For the reader who knows time series methods,
S(0) is the spectral density of the sequence 6¢) for s = So+ 1, ..., S evaluated
at 0. For the reader who does not know what this means, do not worry. The key
point to stress here is that an estimate of 05? is available (and can be calculated
using the computer programs discussed above). It is thus possible to calculate a
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numerical standard error, j—é_l Its interpretation is the same as that described in
the previous chapter.

Geweke (1992) suggests another diagnostic based on the intuition that, if a
sufficiently large number of draws have been taken, the estimate of g(6) based
on the first half of the draws should be essentially the same as the estimate based
on the last half. If these two estimates are very different, this indicates either than
too few draws have been taken (and estimates are simply inaccurate), or that the
effect of initial draw, 0(0), has not worn off and is contaminating the estimate
which uses the first draws. More generally, let us divide our S draws from the
Gibbs sampler into an initial Sp which are discarded as burn-in replications and
the remaining S; draws which are included. These latter draws are divided into
a set first set of S4 draws, a middle set of Sp draws and a last set of S¢

draws. That is, we have 6©) for s = 1, ... , S which are divided into subsets
ass=1,...,8,8+1,..., S+ Sa,S0o+Sa+1,...,85+ Sa+ Sg, So+
Sa+Sp+1,...,8 + Sa+ Sg+ Sc. In practice, it has been found that setting

S4 =0.181, Sp = 0.55; and S¢ = 0.4S5; works well in many applications. For
the purposes of calculating the MCMC diagnostic, we drop out the middle set of
Sp replications. By dropping out this middle set, we make it likely that our first
and last set of draws are independent of one another. Let g5, and gs. be the
estimates of E[g(@)]y] using the first S4 replications after the burn-in and last
Sc replications, respectively, using (4.11). Define % and jg_ be the numerical
standard errors of these two estimates. Then a central limit theorem analogous
to (4.12) can be invoked to say

CD — N(,1)
where CD is the convergence diagnostic given by
’g\ g Sc
UA + O'C
VSa /s
In an empirical application involving the Gibbs sampler, this convergence diag-
nostic can be calculated and compared to critical values from a standard Normal
statistical table. Large values of CD indicate gs, and gs. are quite different
from one another and, hence, that you have not taken enough replications. If
the convergence diagnostic indicates that a sufficiently large number of draws
has been taken, then final results can be calculated based on the complete set of
Sy draws.

The previous MCMC diagnostics are likely to be quite informative in assess-
ing whether your Gibbs sampler is working well and whether you have taken a
sufficiently large number of replications to achieve your desired degree of accu-
racy. However, they are not foolproof and, in some unusual models it is possible
that the MCMC diagnostics will indicate all is well when they should not. The

leading example of such a case occurs where the posterior is bimodal. As a pre-
cise example, consider a case where the posterior involves is a mixture of two

CD = (4.14)
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Normal distributions which are located in different parts of the parameter space.
It is possible that a Gibbs sampler, if started out near the mean of one of these
Normals, will just stay there, yielding all replications from the region where the
first of the Normals allocates appreciable probability. Numerical standard errors
may look reasonable, the convergence diagnostic in (4.14) may indicate conver-
gence has been achieved, but in reality all your results would be missing one
of the two Normals that comprise the posterior. This cannot happen in the case
of the Normal linear regression model with independent Normal-Gamma prior,
nor for virtually all the models considered in this book. However, some of the
mixtures of Normals models of Chapter 10 do allow for multi-modal posteriors.

A second case where the Gibbs sampler could yield misleading results and
the MCMC diagnostics not warn you of the problem occurs when your initial
replication, 0, is extremely far away from the region of the parameter space
where most of the posterior probability lies. If the degree of correlation in your
Gibbs draws is very high, it might take an enormous number of draws for the
Gibbs sampler to move to the region of higher posterior probability. In most
cases, the convergence diagnostic CD will catch this problem, since gs, and
gs.will tend to be different from one another as the Gibbs sampler gradually
moves away from 6O but in unusual cases it may not.

It is common to hear Bayesians refer to Gibbs samplers as ‘wandering’ or
‘ranging’ over the posterior distribution, taking most draws in regions of high
probability and fewer in regions of low probability. In the previous two cases,
the Gibbs sampler is not wandering over the entire posterior distribution and this
will imply the MCMC diagnostics considered so far are unreliable. After all, the
Gibbs sampler cannot provide us with meaningful diagnostics about regions of
the parameter space it has never visited.

These two cases both occur because the effect of the initial replication has
not worn off. Informally, a common practice is for the researcher to run the
Gibbs sampler several times, each time using a different value for 0O If these
different runs of the Gibbs sampler all yield essentially the same answer, the
researcher is reassured that sufficient replications have been taken (and enough
burn-in replications discarded) for the effect of the initial replication to vanish.
These ideas were first discussed and formalized in an MCMC convergence diag-
nostic described in Gelman and Rubin (1992). Gelman (1996), which is Chapter 8
of Markov Chain Monte Carlo in Practice, offers a detailed explanation of the
derivations below. To explain the intuition underlying this and related diagnos-
tics, let 6O for ;i = 1,...,m denote m initial values which are taken from
very different regions of the parameter space. In the jargon of this literature,
these should be overdispersed starting values. Let 69 for s =1,...,§ denote
the S Gibbs sampler draws from the ith starting value and §§'I) denote the cor-
responding estimate of E[g(6)|y] using (4.11). Intuitively, if the effect of the
starting value has been removed, each of these m sequences should be the same
as one another. Hence, the variance calculated across the sequences should be
not be too large relative to the variance within a sequence. A common estimate
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of the variance of a sequence is

I XS: [(9(“)) A(’)] (4.15)

Si—1 s=So+1

which is referred to as the within-sequence variance. We can now define the
average of the within-sequence variances as

T
2
= — E S; (4.16)
i=1

Similarly, it can be shown (see Gelman, 1996) that the between-sequence variance
can be estimated by

— 1 Z(A(l) @2 (4.17)
where
1 m
— >z (4.18)
m =

i=1

Note that W is an estimate of var[g(6)| y] It can be shown that

— M 1
var[g0)|y] = —W + —B (4.19)
S S1

is also an estimate of var[g(0)|y]. However, if the Gibbs sampler has not con-
verged then W will underestimate var[g(0)|y]. Intuitively, if the Gibbs sampler
has wandered over only part of the posterior then it will underestimate its vari-
ance. B, however, is based on sequences with overdispersed startinya\lues. This
overdispersion implies that, if the Gibbs sampler has converged, var[g(6)|y] is an
overestimate of var[g(6)|y]. Thus, a commonly-presented MCMC convergence
diagnostic:

7 varlg©@)lyl 4.20)

w

will tend to be greater than one, with values near one indicating that the Gibbs
sampler has successfully converged. VR is called the estimated potential scale
reduction. It can be interpreted as a bound on how far off estimates of the standard
deviation of g() might be due to poor convergence. In Chapter 8 of Markov
Chain Monte Carlo in Practice it is suggested that values of R greater than 1.2
indicate poor convergence.

It would be nice to provide a deeper understanding of R, however this would
involve lengthy derivations which are beyond the scope of this book. The inter-
ested reader is referred to the above references. For the practical Bayesian, this
MCMC convergence diagnostic_can easily be calculated using (4.15)-(4.20).
Using the rule-of-thumb that R should be less than 1.2 should not lead the
practical Bayesian wrong.
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4.2.5 Model Comparison: The Savage—Dickey Density Ratio

Just as posterior inference cannot be done analytically, no analytical form for the
marginal likelihood exists for the Normal linear regression model with indepen-
dent Normal-Gamma prior. That is, the marginal likelihood is given by

p(y) = / / p(yIB. ) p(B. ) dB dh

where p(B, h) is given in (4.1) and (4.2) and p(y|B, h) is the likelihood given
in (3.3). If you multiply prior and likelihood together and attempt to work out
the integrals in the previous equation, you will find that this is impossible to do
analytically. This suggests that posterior simulation methods should be investi-
gated. In the next chapter, we will introduce a generic simulation method for
calculating the marginal likelihood due to Gelfand and Dey (1994). This method
is totally general in that it can be used for any model, including any variant on
the linear regression model. However, the Gelfand—Dey method can be some-
what complicated. Hence, in this chapter, we describe a method which is much
simpler, but is not as general. This simpler method is really just another way
of writing the Bayes factor for comparing nested models. It is referred to as the
Savage—Dickey density ratio. It can only be used when comparing nested mod-
els, and is only applicable with certain types of priors, but in cases where it is
applicable it offers a very simple way of calculating the Bayes factor and, thus,
the posterior odds ratio.

The Savage—Dickey density ratio is potentially applicable in a wide variety
of applications and, hence, we derive the essential ideas using general notation
before applying it to the regression model. Suppose the unrestricted version of
a model, M», has a parameter vector § = (', ¥’)’. The likelihood and prior for
this model are given by p(y|w, ¥, M>) and p(w, ¥|M>). The restricted version
of the model, M1, has w = wy where wy is a vector of constants. The parameters
in ¢ are left unrestricted in each model. The likelihood and prior for this model
are given by p(y|y, My) and p(y¥|M;). Since w is simply equal to wg under
M, we do not need to specify a prior for it. As usual when discussing model
comparison, we include M; and M; as conditioning arguments in probability
densities in order to be explicitly clear about which model is referred to.

Theorem 4.1: The Savage—Dickey Density Ratio

Suppose the priors in the two models satisfy:

p(Wlw = wo, M2) = p(y| M) (4.21)

then B F1;, the Bayes factor comparing M) to M3, has the form

= M
BFyy = plw = agly, M2) 4.22)

plw = wo|M3)
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where p(w = wgly, M2) and p(w = wg|M>) are the unrestricted posterior and
prior for w evaluated at the point wy.

Equation (4.22) is referred to as the Savage—Dickey density ratio. The proof
of this theorem and a more complicated expression for the Bayes factor in the
case where the priors do not satisfy (4.21) is given in Verdinelli and Wasserman
(1995); see also Exercise 1.

Note that the conditions on the prior under which the Savage—Dickey density
ratio can be used to calculate the Bayes factor are very sensible in most situations.
That is, in most cases it is reasonable to use the same prior for parameters
which are the same in each model (i.e. p(¥|M3) = p(y|My)). Such a choice
implies (4.21). In fact, (4.21) is a much weaker condition, saying the prior for
¥ in the restricted and unrestricted models must be the same only at the point
w = w.

The Savage—Dickey density ratio can be a big help in calculating the Bayes
factor. For one thing, the Savage—Dickey density ratio involves only M> so you
do not have to worry about developing methods for posterior inference using M.
For another thing, (4.22) involves only prior and posterior densities and these
are often easy to manipulate. Direct calculation of the marginal likelihood is not
required. As we shall see in the next chapter, direct calculation of the marginal
likelihood can be difficult.

Let us now return to the Normal linear regression model with independent
Normal-Gamma prior. As an illustration of how the Savage—Dickey density ratio
is useful, consider the case where the restricted model, M, imposes 8 = Bp.
The case of other equality restrictions such as R = r is a simple extension. The
unrestricted model, M>, is the one discussed in the earlier part of this chapter,
with likelihood given by (3.3) and prior given by (4.1) and (4.2). The Bayes
factor comparing these two models is given by

_ p(B=PBoly, M)

BFi» = 4.23
2= B = BolMa) (*423)

The denominator of this expression can be easily calculated, since the marginal
prior for B is Normal. Using (4.1), the denominator is

1 1
p(B = BolM2) = |V|™2exp [—E(ﬁo - é)/K_l(ﬁo - ﬁ):| (4.24)

(am)*
which can be evaluated directly.

The numerator of (4.23) is slightly more difficult to evaluate since, although
we know p(B|y, h, M>) is Normal, we do not know what p(8|y, M>) is. How-
ever, using the rules of probability and output from the Gibbs sampler, p(f =
Boly, M) can be estimated in a straightforward fashion. The Gibbs sampler will
provide output, 8 ) and K for s = So+1,...,S, and, it turns out, that simply
averaging p(8 = Poly, h®), M>) across the draws h®) will yield an estimate of
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p(B = Boly, M>). To be precise,

S

> p(B=Poly. h. My) > p(B = Poly, Ma) (4.25)

Sl s=Sp+1

as S; goes to infinity. Remember that S| = § — Sp is the number of draws
retained after discarding Sp initial draws. Since

1 — 1 1 _ _

p(B=Bol,y, h9, M) = k|vrfexp[—5<ﬂo—ﬁ)/v l(ﬂo—ﬂ)}
(2m)2

(4.26)

the average of the right-hand side of (4.25) can be calculated in a simple fashion.
To understand why (4.25) holds, note that the rules of probability imply

p(B = Boly. M2) = / p(B = Poly, h, M2)p(hly, M2)dh

However, since p(8 = Poly, h, M>) does not have B in it (since we have plugged
in the value Bp), the only random variable inside the integral is 4. Hence, we
can write

p(B = Poly, M2) = /g(h)p(hly)dh = E[g(h)|y]

where g(h) = p(B = Boly, h, M>). But as we have stressed before, posterior
simulators are developed precisely to calculate things like E[g(h)|y]. Hence,
(4.25) will give an estimate of p(8 = Boly, M>) for exactly the same reason that
(1.12) or (4.11) provided estimates of E[g(0)|y] for any parameter vector 6 and
any function of interest g(0).

It is worth noting that there is a myriad of models for which Gibbs sampling
can be done in a straightforward manner. For such models, the Savage—Dickey
density ratio is almost always easy to calculate by using a step like (4.25). The
Savage—Dickey density ratio is, thus, a very powerful and widely-used tool for
Bayes factor calculation.

4.2.6 Prediction

Prediction with the Normal linear regression model with natural conjugate prior
is described in equations (3.38)—(3.40), and we will use the same notation as
adopted there. That is, we want to carry out predictive inference on T unobserved
values of the dependent variable, which we will denote by y* = (y{, ..., y?)/ ,
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which are generated according to:
y =X"B+¢* (4.27)

where &* is independent of ¢ and is N (0, h='I7) and X* is an T x k matrix
analogous to X, containing the k explanatory variables for each of the T out-of-
sample data points.

The predictive density is calculated as

pOFly) = / / pO* 1y, B. W) p(B. hly) dB dh 4.28)

The fact that ¢* is independent of ¢ implies that y and y* are independent of one
another and, hence, p(y*|y, 8, h) = p(y*|B, h), which can be written as
T
* h7 h * * / * *
p(Y*IB. h) = Fexp| =5 (" =X B)(y" = X"B) (4.29)
(2n)? 2

With the natural conjugate prior, the integral in (4.28) could be solved analytically
and the predictive turned out to be a multivariate t density. Unfortunately, with
the independent Normal-Gamma prior this integral cannot be solved analytically.
Nevertheless, simulation methods allow for predictive inference to be carried out
in a straightforward fashion.

Virtually any predictive feature of interest can be written in the form E[g(y*)|y]
for some function g(.). For instance, calculating the predictive mean of y; implies
g(y*) =y}, calculating the predictive variance requires knowledge of the pre-
dictive mean and E [yl?kz| y] and, hence, g(y*) = yl?kz is of interest, etc.. Thus,
interest centers on calculating

Elg(yM)lyl = /g(y*)p(y*ly) dy* (4.30)

Hopefully by now, equations like (4.30) will look familiar to you. That is, we
have stressed that virtually anything the Bayesian may wish to calculate about
the parameter vector 8 will have the form

E[g(®)]y] =/g(9)p(9|y)d9 (4.31)

for some g(0). Except for the replacement of 6 by y*, (4.30) is identical to (4.31).
Furthermore, our discussions of Monte Carlo integration and Gibbs sampling
showed that, if 6©) for s = 1, ..., S are draws from the posterior, then

S

~ 1
g =<2 80"

s=1
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will converge to E[g(6)|y] as S increases.* This line of reasoning suggests that,
if we can find y*© for s = 1, ..., S which are draws from p(y*|y), then

S )
g =5 80" (4.32)

s=1

will converge to E[g(y*)|y]. This is indeed the case.

The following strategy will provide the required draws of y*. For every 8¢) and
h®) provided by the Gibbs sampler, take a draw, y*©® from p(y*|y, 8¢), h®).
Since the latter density is Normal (see (4.29)), such a strategy is quite simple.
We now have ,B(S), h®) and y*(s) for s = 1,...,S. The rules of probability
say that p(B, h, y*|y) = p(y*|y, B, h) p(B, h|y) and, hence, the strategy of first
drawing from the posterior, then drawing from p(y*|y, 8, k) will yield draws
from p(B, h, y*|y). Hence, our set of draws ), A1) and y*®) thus created
can be used to evaluate any posterior feature of interest using (4.11) and any
predictive feature of interest using (4.32).

The strategy outlined in this section can be used for any model where a pos-
terior simulator is used to provide draws from p(6]y) and p(y*|y, #) has a form
that is easy to work with. Almost all of the models discussed in the remainder
of this book fall in this category. Hence, in future chapters you will often see
a very brief discussion of prediction, including a sentence of the form ‘Predic-
tive inference in this model can be carried out using the strategy outlined in
Chapter 4°.

4.2.7 Empirical Illustration

We use the house price data set introduced in Chapter 3 to illustrate the use
of Gibbs sampling in the Normal linear regression model with independent
Normal-Gamma prior. The reader is referred to Chapter 3 (Section 3.9) for a
precise description of the dependent and explanatory variables for this data set.
Section 3.9 discusses prior elicitation using a natural conjugate prior. This dis-
cussion implies that sensible values for the hyperparameters of the independent
Normal-Gamma prior would be v = 5 and s 2 = 4.0 x 1078, and

0.0
10
B = 5000
~ 10000
10000

4As discussed above, with Gibbs sampling you may wish to omit some initial burn-in draws and,
hence, the summation would go from Sy + 1 through S.

S5This result uses the general rule that, if we have draws from the joint density p(@, y*|y), then
the draws of 0 considered alone are draws from the marginal p(f|y) and the draws of y* considered
alone are draws from p(y*|y).
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These values are identical to those used in the previous chapter, and have the
same interpretation. However, we stress that V has a different interpretation in
this chapter than the previous one. With the independent Normal-Gamma prior
we have

var(p) =V

while with the natural conjugate prior we had

2

Vs
var(g) = ——V

Accordingly, to have a prior comparable to that used in the previous chapter,
we set

10000> 0 0 0 0
0 52 0 0 0
V= 0 0 2500° 0 0
0 0 0 50002 0
0 0 0 0 50002

Note that, with the independent Normal-Gamma prior, it is usually easy to elicit
V, since it is simply the prior variance of §. With the natural conjugate prior, the
prior dependence between 8 and & means that the prior variance of 8 depends
upon the prior you have elicited for /4 as well as V.

Bayesian inference in this model can be done using Gibbs sampling. Most
common Bayesian computer software (e.g. Jim LeSage’s Econometrics Tool-
box or BACC; see Section 1.3 of Chapter 1) allows for a thorough analysis of
this model. The interested reader, at this stage, may wish to download and use
this software. Alternatively, for the reader with some knowledge of computer
programming, writing your own programs is a simple option. The website asso-
ciated with this book contains MATLAB code for such a program (although
for the MCMC convergence diagnostics a function from Jim LeSage’s Econo-
metrics Toolbox has been used). The structure of this program is very simi-
lar to the Monte Carlo integration program of the previous chapter, although
it sequentially draws from p(B|y, h) and p(h|y, B), instead of simply drawing
from p(Bly).

Table 4.1 contains empirical results relating to B, including MCMC conver-
gence diagnostics, for the Normal linear regression model with the independent
Normal-Gamma prior specified above. We set the initial draw for the error pre-
cision to be equal to the inverse of the OLS estimate of o2 (e hO = Siz).
We discard an initial So = 1000 burn-in replications and include S; = 10000
replications. For the sake of brevity, we do not present results for /.

The posterior means and standard deviations are similar to those in Table 3.1,
reflecting the fact that we have used similarly informative priors in the two
chapters. The column labelled ‘NSE’ contains numerical standard errors for the
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Table 4.1 Prior and Posterior Results for 8 (standard deviations in parentheses)
Geweke’s Post. Odds

Prior Posterior NSE CD for B; =0
0 —4063.08
B 28.50 —0.68 1.39
(10000) (3259.00)
10 5.44
B2 0.0029 0.11 6.69 x 10742
5) 0.37)
5000 3214.09
B3 12.45 —0.57 0.18
(2500) (1057.67)
10000 16132.78
B4 15.56 0.55 2.06 x 10719
(5000) (1617.34)
10000 7680.50
Bs 8.44 1.22 3.43 x 10712
(5000) (979.09)

approximation of E(B;|y) for j = 1,...,5, calculated using (4.13).% They can
be interpreted as in the previous chapter, and indicate that our estimates are quite
accurate. Of course, if a higher degree of accuracy is desired, the researcher
can increase S;. The column labeled ‘Geweke’s CD’ is described in (4.14), and
compares the estimate of E(B;|y) based on the first 1000 replications (after the
burn-in replications) to that based on the last 4000 replications. If the effect
of the initial condition has vanished and an adequate number of draws have
been taken, then these two estimates should be quite similar. Noting that CD is
asymptotically standard Normal, a common rule is to conclude that convergence
of the MCMC algorithm has occurred if CD is less than 1.96 in absolute value
for all parameters. Using this rule, Table 4.1 indicates that convergence of the
MCMC algorithm has been achieved.

Table 4.1 also contains posterior odds ratios comparing two regression models:
My : Bj = 0to My : B; # 0. As in Chapter 3, the restricted model uses
an informative prior, which is identical to the unrestricted prior, except that 8
and V become 4 x 1 and 4 x 4 matrices, respectively, with prior information
relating to B; omitted. A prior odds ratio of one is used. The model comparison
information in Table 4.1 is qualitatively similar to that in Table 3.1. That is, there
is overwhelming evidence that 8>, B4 and fs are non-zero, but some uncertainty
as to whether 1 and B3 are zero. Note, however, that, if we compare empirical

For the reader who knows spectral methods, S(0) is calculated using a 4% autocovariance
tapered estimate.
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results in Table 4.1 with those in Chapter 3, the model comparison results are
more different than the posterior means. This is a common finding. That is, prior
information tends to have a bigger effect on posterior odds ratios than it does
on posterior means and standard deviations. Hence, the slight difference in prior
between Chapters 3 and 4 reveals itself more strongly in posterior odds ratios
than in posterior means.

Working out the predictive density of the price of a house with given character-
istics can be done using the methods outlined in Section 4.2.6. As in the previous
chapter, we consider the case where the researcher is interested in predicting the
sales price of a house with a lot size of 5000 square feet, two bedrooms, two
bathrooms and one storey. Unlike with the natural conjugate prior, with the inde-
pendent Normal-Gamma prior analytical results for the predictive distribution are
unavailable. Nevertheless, the properties of the predictive can be calculated by
making minor modifications to our posterior simulation program. That is, if we
add one line of code which takes a random draw of y*®) conditional on B
and A using (4.29) and save the resulting draws, y*(s) fors =Sp+1,...,85,
we can then calculate any predictive property we wish using (4.32). Using these
methods, we find that the predictive mean of a house with the specified charac-
teristics is $69 750 and the predictive standard deviation is 18 402. As expected,
the figures are quite close to those obtained in the previous chapter.

For one (or at most two) dimensional features of interest, graphical methods
can be a quite effective way of presenting empirical results. Figure 4.1 presents
a plot of the predictive density. This figure is simply a histogram of all the
draws, y*(s) for s = Sop+1,...,S. The approximation arises since a histogram

-2 0 2 4 6 8 10 12 14
House price x 10*

Figure 4.1 Predictive Density
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is a discrete approximation to the continuous predictive density. This graph not
only allows the reader to make a rough guess at the predictive mean, but also
show the fatness of the tails of the predictive distribution. The graph shows
that this data set does not allow for very precise predictive inference. Although
the researcher’s best prediction of the price of a house with a lot size of 5000
square feet, two bedrooms, two bathrooms and one storey is roughly $70 000,
the predictive allocates non-negligible probability to the house price being less
than $30000 or more than $110 000.

4.3 THE NORMAL LINEAR REGRESSION MODEL
SUBJECT TO INEQUALITY CONSTRAINTS

In this section, we discuss imposing inequality constraints on the coefficients
in the linear regression model. This is something that the researcher may often
wish to do. For instance, it may be desirable to impose concavity or monotonicity
on a production function. In a model with autocorrelated errors (see Chapter 6,
Section 6.5) the researcher may wish to impose stationarity. All such cases can
be written in the form B € A, where A is the relevant region. Bayesian analysis
of the regression model subject to such restrictions is quite simple since we
can simply impose them through the prior. To carry out posterior inference, we
use something called ‘importance sampling’. It is worth noting that, for some
types of inequality constraints (e.g. linear inequality constraints such as 8; > 0),
slightly simpler methods of posterior analysis are available. However, importance
sampling is reasonably simple and works for any type of inequality constraint.
Furthermore, importance sampling is a powerful tool which can be used with a
wide variety of models, not only those with inequality constraints. Hence, we
introduce the concept of importance sampling here, in the context of the familiar
regression model. However, we stress it is a useful tool that works with many
models. We remind the reader that the likelihood function for this model is the
familiar one given in (3.3) or (3.7).

4.3.1 The Prior

It is convenient to introduce inequality restrictions through the prior. That is,
saying 8 € A is equivalent to saying that a region of the parameter space which
is not within A is a priori impossible and, hence, should receive a prior weight
of 0. Such prior information can be combined with any other prior information.
For instance, we can combine it with an independent Normal-Gamma or a natural
conjugate prior. Here we combine it with the natural conjugate prior given in
(3.8). Remember that a special case of this is the noninformative prior given
in (3.24). Such a noninformative prior is useful in the common case where the
researcher wishes to impose an inequality constraint on §, but has no other prior
information.
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Accordingly, our prior is given by
p(B.h) o« fng(B.hIB. V.52, )I(B € A) (4.33)

where B, V,s~2, v are prior hyperparameters to be selected by the researcher
(see (3.8)) and 1(B € A) is the indicator function, which equals 1 if 8 € A and
0 otherwise.

For future reference, note that, when the natural conjugate prior is used, the
marginal prior for 8 has a t distribution for the same reasons that the marginal
posterior does (see (3.14)). Hence, we can write the marginal prior for 8 as

p(B)  fi(BIB, s*V, W1(B € A) (4.34)
The noninformative variant of the natural conjugate prior involves setting v = 0,
V~! = cI} and letting ¢ go to zero. This implies a prior of the form
1
p(B, h) pUB €4 (4.35)

4.3.2 The Posterior

The derivation of the posterior is the same as in Chapter 3, except we must impose
the inequality constraints. Remember that, with the natural conjugate prior, we
obtained a Normal-Gamma posterior for 8 and & (see (3.9)) and a multivariate
t marginal posterior for B (see (3.14)). The noninformative prior was a special
case of the natural conjugate prior. Here we obtain the same results, except these
densities are truncated. Thus, p(B8, h|y) is Normal-Gamma truncated to the region
B € A and p(B|y) is multivariate t truncated to the region 8 € A. Using the
notation of Appendix B, Definition B.25, we obtain

p(Bly)  f(BIB, 52V, D)1(B € A) (4.36)

where B, 52,V and 7 are defined in (3.10)—(3.13). The noninformative prior
yields a posterior of the same form, except that B,5%, V and v are defined in
(3.20)—(3.23).

Combining inequality restrictions with the independent Normal-Gamma prior
would imply that the formula for p(B|y, k) in (4.6) would be multiplied by

1(B € A).

4.3.3 Bayesian Computation: Importance Sampling

For some choices of A, analytical posterior results are available. For others, Gibbs
sampling can be used, but for general choice of A, neither of these approaches
work. Hence, we introduce a posterior simulation approach referred to as impor-
tance sampling. Because it is a generic method, we describe the basic ideas using
our general notation, where 6 is a vector of parameters and p(y|6), p(0) and
p(@|y) are the likelihood, prior and posterior, respectively.
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Monte Carlo integration involved taking random draws from p(6|y), but with
many models this is not easy to do. Suppose instead, that random draws, 6
for s = 1,...,S, are taken from a density, g(6), which is easy to draw from.
This density is referred to as an importance function. Of course, simply taking
draws from the importance function and averaging them in the familiar way is
not appropriate. In particular,

1 S
s~ e(s)
8= ;:1 g0’

will not converge to E[g(0)|y] as S —> oo. For some intuition, consider the
case where ¢ (@) and p(0|y) have similar means, but g(0) has a higher variance
than p(@|y). If random draws from ¢(0) are taken, there will be too many of
them out in the tails of p(f|y) and too few near the mean of p(0|y). What
importance sampling does is correct for this by giving little weight to the former
draws and giving more weight to the latter. In other words, instead of taking a
simple average, importance sampling takes a weighted average.

Formally, the following theorem underlies importance sampling (see Geweke
(1989) for more details and a proof; Kloek and van Dijk (1978) and Bauwens
(1984) are important early references).

Theorem 4.2: Importance Sampling

Let 9 for s = 1,..., S be a random sample from ¢(6) and define
N
Z w(g(s))g(g(s))
s = " (4.37)
> w®e®)
s=1
where
6 =060
we®y = PO =0"1) (4.38)

then gs converges to E[g(8)|y] as S goes to infinity (under weak conditions).

In fact, because the weights appear in both the numerator and denominator of
(4.38), we only need to be able to evaluate the kernels of p(6|y) and g(6). To
be precise, if p*(0]y) « p(@|y) and g*(0) x q(0), (4.38) can be replaced by

PO =06%y)

00y =
WO = e =60

(4.39)

and the theorem still holds.

"These conditions essentially amount to ¢ (6) having support which includes the support of p(8]y)
and E[g(0)|y] existing.
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At first glance, importance sampling seems a marvellous solution to any posterior
simulation problem. After all, it seems to say that you can just randomly sample
from any convenient density, g (9), and simply weight using (4.37) to obtain an esti-
mate of E[g(6)|y]. Unfortunately, in practice, things are not this easy. Unless g ()
approximates p(0|y) reasonably well, you can find cases where w(6®)) is virtually
zero for almost every draw. This means the weighted average implicitly involves
very few draws. Thus, S may have to be enormous to obtain reasonably accurate
estimates of E[g(6)|y]. Thus, importance sampling may be infeasible unless g (6)
is very carefully chosen. Since selection of g () can involve a lot of work and
a different ¢ (0) is typically required for every class of models, most people use
other strategies such as Gibbs sampling if at all possible. After all, once a particular
blocking is chosen, Gibbs sampling simply involves drawing from the conditional
posteriors (and monitoring convergence). Importance sampling involves hunting
for and justifying a convenient class of important functions (e.g. the Normal class),
and then fine tuning within this class (e.g. choosing the mean and variance of the
Normal) to approximate p(6|y). Particularly if 6 is high-dimensional it can be
extremely difficult to find a good importance function. Geweke (1989) discusses a
reasonably general strategy for choosing importance functions and the interested
reader is referred to this paper for more details. Richard and Zhang (2000) discuss
a more generic strategy for getting good importance functions.

Fortunately, for the Normal linear regression model subject to inequality res-
trictions, an obvious importance function springs to mind and importance sampling
can be carried out in a straightforward manner. Consider what happens if we set

q(B) = fi(BIB.5°V,7) (4.40)

This importance function, since it is multivariate t, is easy to draw from. Fur-
thermore, using (4.36) and (4.39), the weights can be calculated as

w(B®) =18 € A)

and (4.37) can be used to estimate E[g(8)|y] for any function of interest, g(.).
Note that all these weights are either 1 (if B) € A) or 0 (if ) ¢ A). In other
words, this strategy simply involves drawing from the unrestricted posterior and
discarding draws which violate the inequality restrictions (i.e. the latter draws are
given a weight of zero, which is equivalent to simply discarding them). Hence,
it is very simple to implement (unless A is such a small region that virtually all
the draws are discarded).
A numerical standard error can be calculated using a central limit theorem.

Theorem 4.3: A Numerical Standard Error
Using the setup and definitions of Theorem 4.2,

VS{gs — E[g(©)y]} - N(0,07) (4.41)
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as S goes to infinity, where ag2
3 [wE 6™ - 8]
S

~ =1
="

8 | s 2
[5 wa(‘”)}

s=1

can be consistently approximated by:

can be calculated to guide the researcher

73
i \/E’

Thus, a numerical standard error
in choosing S.

4.3.4 Model Comparison

The inequality restrictions usually make it impossible to calculate the marginal
likelihood for this model directly. Depending upon the exact form of the models
being compared, some of the model comparison techniques discussed above can
be used. Alternatively, the generic method for marginal likelihood calculation
which we will discuss in the next chapter can be used.

Here we discuss two particular sorts of model comparison. Consider first the
case where M| is the model considered in this section where inequality restric-
tions are imposed on the Normal linear regression model with natural conjugate
prior (i.e. B € A). Let M, be the same model except that the inequality restric-
tions are violated (i.e. § ¢ A). Since inequality restrictions are often implied
by economic theory, comparing models of this form is often of interest. That
is, a particular economic theory might imply 8 € A and, hence, p(Mi|y) is the
probability that the economic theory is correct.

A particular example of model comparison of this sort, for the case of linear
inequality restrictions, is given in Chapter 3 (Section 6). As described in this pre-
vious material, model comparison involving such inequality restrictions is quite
easy (and use of noninformative priors is not a problem). In practice, we can use
the unrestricted Normal linear regression model with natural conjugate prior, and
calculate p(Mi|y) = p(B € Aly) and p(Mz|y) = 1 — p(M]y). If the inequality
restrictions are linear, p(B € A|y) can be calculated analytically. Alternatively,
the importance sampling strategy outlined in (4.40) allows for its simple calcu-
lation. That is, with the unrestricted model, p(8 € Aly) = E[g(0)|y], where
g(@) = 1(B € A). But as we have stressed, posterior simulation is designed
precisely to evaluate such quantities. Hence, we can take random draws from the
unrestricted posterior density (which is f; (8|8, 52V, v)) and simply calculate the
proportion which satisfy § € A. This proportion is an estimate of p(8 € Aly).
But taking draws from f;(B|B,5°V,V) is precisely what we advocated in the
importance sampling strategy outlined in (4.40). Hence, by doing importance
sampling and keeping a record of how may draws are kept and how many
are discarded (i.e. receive weight of zero), you can easily calculate p(M;|y)
and p(Mzly).
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The Savage—Dickey density ratio can be used to compare nested models where
both have the same inequality restrictions imposed. That is, we now let M, be
the model given in this section (i.e. the Normal linear regression model with
natural conjugate prior with inequality restrictions imposed and posterior given
by equation 4.36) and let M be equal to M, except that B = By is imposed.
If the same prior is used for the error precision, 4, in both models then the
Savage—Dickey density ratio says that the Bayes factor can be calculated as

BFj> = p(B = Boly, M>)

p(B = PolM2)
Unfortunately, evaluating this Bayes factor is not as easy as it looks, since the
results in (4.34) and (4.36) only provide the prior and posterior kernels (i.e. these
equations have proportionality signs, not equality signs). Formally, the prior and
posterior densities have the form

p(B) = cfi(BIB.s*V. )1(B € A)

and

p(Bly) =¢f,(BIB,5*V, D)1(B € A)

where ¢ and ¢ are prior and posterior integrating constants which ensure the
densities integrate to one. The Savage—Dickey density ratio thus has the form

F,, = CJiB=FlB.5V. D)
cfi(B = PolB,s?V,v)

Note that this involves evaluating two multivariate t densities at the point 8 =
Bo and calculating ¢ and ¢. For some hypotheses, it is easy to obtain ¢ and
c. Consider, for instance, the case of univariate inequality restrictions such as
Bj > 0. In this case, we can simply use statistical tables for the t distribution
(or their computer equivalent) to obtain these integrating constants. For more
general inequality restrictions, the method outlined in the previous paragraph can
be used. That is, this method calculated p(M1|y) which was the probability that
the restriction 8 € A held. But, ¢ = since

(4.42)

1
p(Mily)
1

E:
f FBIB.FV. DB € A)dp

and p(M1|y) = f fi(BIB, 2V, V)1(B € A)dp. Calculation of ¢ can be done in
an analogous manner, except that importance sampling must be done on the prior
instead of the posterior.

4.3.5 Prediction

The strategy outlined in (4.27) to (4.32) to carry out prediction can be imple-
mented here with only slight modifications. With importance sampling, the draws
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from the importance function must be weighted as described in (4.37) and (4.38).
In terms of our generic model notation, let ) be a random draw from an impor-

tance function, and y*(s) be a random draw from p(y*|y, 9(5)) fors=1,...,8.
Then
N
> w@)g ()
—~ s=1
gy == (4.43)

Z w(@®)

s=1

converges to E[g(y*)|y] as S goes to infinity, where w(@®) is given in (4.38)
or (4.39). This strategy for calculating predictive features of interest can be used
anywhere importance sampling is done, including the Normal linear regression
model with natural conjugate prior subject to inequality constraints.

4.3.6 Empirical Illustration

We continue with our empirical illustration using the house price data set. Re-
member that the dependent variable is the sales price of a house, and the explana-
tory variables are lot size, number of bedrooms, number of bathrooms and number
of storeys. We would expect all of these explanatory variables to have a positive
effect on the price of a house. Furthermore, let us suppose the researcher knows
that 8, > 5, B3 > 2500, B4 > 5000 and Bs > 5000 and wishes to include this
information in her prior. In terms of the terminology of (4.33), this defines the
region A. The prior in (4.33) is the product of 1(8 € A) and a Normal-Gamma
density and, hence, requires the elicitation of hyperparameters 8, V, s~ and v.
We choose the same values for these hyperparameters as in Chapter 3. That is,
we set 5—2 =4.0x 10_8, V=3,

0.0
10
g = 5000
- 10000
10000
and
2.40 0 0 0 0
0 60x1077 0 0 0
Vv=1| 0 0 015 0 0
0 0 0 060 0
0 0 0 0 0.60

We use importance sampling to carry out inference in this model.® The com-
puter code necessary to do this is a simple extension of the computer code used

8Note that, for simple restrictions of the sort considered in this empirical illustration, it would be
possible to use Monte Carlo integration based on draws from the truncated Normal distribution.
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to do Monte Carlo integration in the empirical illustration in Chapter 3. That
is, we can use (4.40) as the importance function, but this importance function
is precisely the same as the posterior in Chapter 3. The importance sampling
weights are then calculated as (4.36). As described above (see the discussion
after (4.38)), for this choice of importance function, the importance sampling
weights are either equal to one (if the draw satisfies the constraints) or zero (if
it does not). By taking weighted averages of the importance sampling draws,
as in (4.35), we can calculate the posterior properties of B. Numerical stan-
dard errors can be calculated using the results in Theorem 4.3. Table 4.2 con-
tains posterior means, standard deviations and NSEs of 8 along with a poste-
rior odds ratio for comparing a model with 8; = B. against the model with
only the inequality restrictions imposed. This choice of models to compare is
purely illustrative, and the posterior odds ratio is calculated using (4.42). Since
Bj = B. is a univariate restriction, ¢ and ¢ can be calculated using the properties
of the univariate t distribution. Table 4.2 is based on 10000 replications (i.e.
S = 10000).

The results in Table 4.2 are quite close to those presented in Tables 3.1 or 4.1.
Note that, for B4 and Bs, the inequality restrictions we have imposed have little
impact. That is, the unrestricted posterior means (standard deviations) for 4 and
Bs in Table 3.1 are 16 965 (1708) and 7641 (997), respectively. Thus virtually all of
the posterior probability is in the region where 84 > 5000 and 85 > 5000. Imposing
the latter inequality restrictions through the prior thus has a minimal effect on the
posterior. Intuitively, the data already tell us that 84 > 5000 and 85 > 5000, so
incorporating these restrictions to the prior does not add any new information.

The inequality restrictions do, however, affect f» and B3, increasing their
posterior means somewhat. By cutting off the regions of the posterior with 8 <
5 and B3 < 2500, it is not surprising that the means increase. The posterior
standard deviations in Table 4.2 are somewhat smaller than those in Table 3.1,
indicating that the additional information provided in the prior decreases our
posterior uncertainty about what the coefficients are.

The numerical standard errors indicate that we are achieving reasonably pre-
cise estimates and, as with any posterior simulator, if you wish more accurate
estimates you can increase S. A careful comparison, however, with Table 3.4,
indicates that NSEs (and, hence, approximation errors) are somewhat larger with

Table 4.2 Posterior Results for

Standard Post. Odds
Mean Deviation NSE for B; = éj
Bi1 —5645.47 2992.87 40.53 1.20
B2 5.50 0.30 0.0041 1.36 x 1072°
B3 3577.58 782.58 10.60 0.49
Ba 16 608.02 1666.26 22.56 5.5x 10~

Bs 7469.35 936.63 12.68 0.22
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importance sampling than with Monte Carlo integration. For instance, with an
identical number of replications, 10000, the NSE relating to the estimation of
E(B2]y) was 0.0037 with Monte Carlo integration and 0.0041 with importance
sampling. Since Monte Carlo integration involves drawing directly from the pos-
terior, and importance sampling involves drawing from an approximation to the
posterior, the latter is less numerically efficient than the former.

The posterior odds ratios are in line with the evidence provided by posterior
means and standard deviations. Except for the intercept, there is no strong evi-
dence that B; = B.. However, for 83 and Bs the posterior odds ratios attach a
little bit of probability to the restrictions. Since, for these coefficients, the pos-
terior means are not that far from B; (relative to posterior standard deviations),
the evidence of the posterior odds ratios is sensible.

The predictive density of the price of a house with given characteristics can
be calculated as described in Section 4.3.5. That is, at each importance sampling
draw for using the methods outlined in Section 4.2.6 can be used to take a random
draw, y*® for s = 1,...,S. These draws can then be averaged as described
in (4.43) to obtain any predictive feature of interest. In the previous empirical
illustration in Section 4.2.7, we took draws from p(y*|8*), h®)). This was simple
to do since the latter density was Normal. It is straightforward to adopt the same
strategy here, although we would have to extend our importance function to
provide draws for 4(). The Normal-Gamma posterior in (3.9) would be a logical
importance function for such a case. Alternatively, techniques analogous to those
used to go from (3.39) to (3.40) imply that

p(*ly, B) = p(y*IB) = f:(Y*IX*B, 5717, V)

Hence, draws from p(y*|8*)) can be taken from the t distribution. In case you
are wondering where the inequality restrictions on § have gone to, note that
our predictive draws taken from p(y*|8®)) are conditional on the importance
sampling draws from S. The latter draws already have the inequality restrictions
imposed on them. If we use this method to work out the predictive density of
the sales price of a house with a lot size of 5000 square feet, two bedrooms, two
bathrooms and one storey, we find the predictive mean and standard deviation
to be 69408 and 18 246, respectively. These results are similar to those we have
found in previous empirical illustrations using this data set.

4.4 SUMMARY

In this chapter, we have described Bayesian methods for posterior and predictive
analysis and model comparison for the Normal linear regression model with two
priors. The first of these is an independent Normal-Gamma prior and the second a
natural conjugate prior subject to inequality restrictions. These priors were partly
introduced because they are useful in many empirical settings. However, another
reason for discussing them is that they allowed us to introduce important methods
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of computation in a familiar setting. The first of these computational methods is
Gibbs sampling. In contrast to Monte Carlo integration, which involved drawing
from the joint posterior distribution, Gibbs sampling involves sequentially draw-
ing from the full posterior conditional distributions. Such draws can be treated
as though they came from the joint posterior, although care has to be taken since
Gibbs draws are not independent of one another, and can be dependent on the
initial point chosen to start the Gibbs sampler. MCMC diagnostics are described
which can be used to ensure that these two problems are overcome.

The second computational method introduced is importance sampling. This
algorithm involves taking random draws from an importance function and then
appropriately weighting the draws to correct for the fact that the importance
function and posterior are not identical. This chapter also introduces the Sav-
age—Dickey density ratio, which is a convenient way of writing the Bayes factor
for nested model comparison.

At this stage, we have three posterior simulation algorithms: Monte Carlo
integration, Gibbs sampling and importance sampling. The question of which
one to use is a model-specific one. If it is easy to draw from the posterior,
then Monte Carlo integration is the appropriate tool. If direct simulation of the
posterior is difficult, but simulation from posterior conditionals is simple, then
Gibbs sampling suggests itself. If neither Monte Carlo integration nor Gibbs
sampling is easy, but a convenient approximation to the posterior suggests itself,
then importance sampling is a sensible choice.

4.5 EXERCISES

4.5.1 Theoretical Exercises

1. The Savage—Dickey density ratio.

(a) Prove Theorem 4.1. (Hint: If you are having trouble with this problem,
the proof is provided in Verdinelli and Wasserman, 1995.)

(b) How would your answer change if the condition p({¥|o = wy, M2) =
p(|My) did not hold?

2. For the Normal linear regression model with natural conjugate prior, the Bayes
factor for comparing M;: ;i = 0 to My: B; # 0 (where the B; is a single
regression coefficient and the same prior is used for / in both models) can be
obtained from Chapter 3 (3.34). Alternatively, this Bayes factor can be derived
using the Savage—Dickey density ratio. Show that these two approaches lead
to the same result.

4.5.2 Computer-Based Exercises

Remember that some data sets and MATLAB programs are available on the
website associated with this book.
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3. The purpose of this question is to learn about the properties of the Gibbs
sampler in a very simple case. Assume that you have a model which yields a
bivariate Normal posterior,

()~ ((s] [»1])

where |p| < 1 is the (known) posterior correlation between 6 and 6,.

(a) Write a program which uses Monte Carlo integration to calculate the
posterior means and standard deviations of 8; and 6;.

(b) Write a program which uses Gibbs sampling to calculate the posterior
means and standard deviations of 6; and 6,. (Hint: Use the properties
of the multivariate Normal in Appendix B, Theorem B.9 to work out the
relevant conditional posterior distributions.)

(c) Set p = 0 and compare the programs from parts (a) and (b). How many
replications from each posterior simulator are necessary to estimate pos-
terior means and standard deviations of 6; and 6, to two decimal places?

(d) Repeat part (c) of this question for p = 0.5, 0.9, 0.95, 0.99 and 0.999.
Discuss how the degree of correlation between 61 and 6, affects the per-
formance of the Gibbs sampler.

(e) Modify your Monte Carlo and Gibbs sampling programs to include numer-
ical standard errors and (for the Gibbs sampling program) Geweke’s con-
vergence diagnostic. Repeat the parts (c) and (d) of this question. Do
the numerical standard errors provide a correct view of the accuracy of
approximation of the posterior simulators? Does the convergence diagnos-
tic accurately indicate when convergence of the Gibbs sampler has been
achieved?

4. The purpose of this question is to learn about the properties of importance
sampling in a very simple case. Assume you have a model which a single
parameter, 0, and its posterior is N (0, 1).

(a) Write a program which calculates the posterior mean and standard devia-
tion of 6 using Monte Carlo integration.

(b) Write a program which calculates the posterior mean and standard devi-
ation of 6 using importance sampling, calculates a numerical standard
error using Theorem 4.3 and calculates the mean and standard deviation
of the importance sampling weights. Use the f;(0]0, 1, vg) density as an
importance function.

(c) Carry out Monte Carlo integration and importance sampling with vg = 1,
3,5, 10, 20, 50 and 100 for a given number of replications (e.g. S = 1000).
Compare the accuracy of the estimates across different algorithms and
choices for vy. What happens to the mean and standard deviation of the
importance sampling weights as vg increases?

(d) Redo part (c) using f;(0]2, 1, vg) as an importance function.
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5
. The Nonlinear Regression Model __

5.1 INTRODUCTION

In previous chapters, we worked with the linear regression model:

yi = B1+ Boxio + -+ Brxix + &

where data was available on i = 1,..., N individuals. This model is useful
not only when the relationship between the dependent and explanatory variables
is a linear one, but also in cases where it can be transformed to linearity. For
instance, the Cobb—Douglas production function relating an output, y, to inputs
X2, ..., X is of the form

y = otlez, ... ,x,’f"
If we take logs of both sides of this equation and add an error term, we obtain
a regression model:

In(y;) = B1 + B2 In(x;2) + -+ - + B In(xix) + &

where 1 = In(a1). This specification is now linear in logs of the dependent and
explanatory variables and, with this small difference, all the techniques of the
previous chapters apply. The translog production function is another example of
a nonlinear relationship which can be transformed to linearity.

There are, however, some functional forms which cannot be transformed to
linearity. An example of an intrinsically nonlinear functional form is the constant
elasticity of substitution (CES) production function, which is of the form

1
k y Y+
k+1
Yi = E ViXij
j=1

In this chapter, we consider Bayesian inference in regression models where the
explanatory variables enter in an intrinsically nonlinear way. The empirical illus-
tration will focus on the CES production function and, for this case, our nonlinear
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regression model will have the form:

k ol
vi= (D) vl +éi (5.1)
Jj=1

We use the same notation as before (e.g., see the discussion at the beginning
of Chapter 3), and let ¢ and y be N-vectors stacking the errors and observa-
tions of the dependent variable, respectively, and let X be an N X k matrix
stacking the observations of the k explanatory variables. We make the standard
assumptions that:

1. eis N(Oy, h~'Iy).

2. All elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of ¢ with a probability
density function p(X|X), where A is a vector of parameters that does not
include any of the other parameters in the model.

The basic ideas discussed in this chapter will hold for the general nonlinear
regression model:

yi=fXi,y) +s

where X; is the ith row of X, f(-) is a function which depends upon X; and
a vector of parameters, y. With some abuse of notation, we write this model in
matrix form as:

y=fX,y)+e (5.2)

where f(X,y) is now an N-vector of functions with ith element given by
f(X;, y). The exact implementation of the posterior simulation algorithm will
depend upon the form of f(-) and, hence, we discuss basic concepts using (5.2)
before discussing (5.1).

The nonlinear regression model is an important one in its own right. However,
we also discuss it here, since it will give us a chance to introduce a number
of techniques which are applicable in virtually any model. The linear regression
model was a very special one in the sense that it was possible, in some cases,
to obtain analytical posterior results (see Chapters 2 and 3). Even with priors
which preclude the availability of analytical results, some special techniques are
available for the Normal linear regression model (e.g. Gibbs sampling and the
Savage—Dickey density ratio discussed in Chapter 4). However, many models do
not allow for such specialized methods to be used and it is important to develop
generic methods which can be used in any model. The nonlinear regression
model allows us to introduce such generic methods in a context which is only a
slight extension on our familiar linear regression model. With regards to posterior
simulation we introduce a very important class of posterior simulators called the
Metropolis—Hastings algorithms. These algorithms will be used in later chapters.
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We will also introduce a generic method for calculating the marginal likelihood
developed in Gelfand and Dey (1994), and a metric for evaluating the fit of a
model called the posterior predictive p-value.

5.2 THE LIKELIHOOD FUNCTION

Using the definition of the multivariate Normal density, we can write the likeli-
hood function of the nonlinear regression model as

h2 h
pOyly. h) = x {eXp [——{y - XYy - X, y)}]} (5.3)
(2m)> 2
With the linear regression model, we were able to write this expression in terms of
OLS quantities which suggested a form for a natural conjugate prior (see (3.7)).
Here, no such simplification exists unless f(-) takes very specific forms.

5.3 THE PRIOR

Prior choice will depend upon what f(-) is and how y is interpreted. For instance,
with the CES production function in (5.1), yx4; is related to the elasticity of
substitution between inputs. The researcher would likely have prior information
about what plausible values for this parameter might be. Hence, prior elicitation
is likely to be very dependent on the particular empirical context. In this section,
some of the discussion proceeds at a completely general level, with the prior
simply denoted by p(y, h), and some of the discussion uses a prior which was
noninformative for the linear regression model:

1
plysh) o (5.4

This prior is Uniform for y and In(%#). In many cases, this might be a sensible
noninformative prior for the parameters of the nonlinear regression model.

5.4 THE POSTERIOR

The posterior density is proportional to the likelihood times prior and can be
written as
h? h )
p(y, hly) o« p(y, )—7 yexp | —5{y — (X, »}{y — f(X, ¥)} (5.5)
(2m)2 2

In general, there is no way to simplify this expression, which will depend upon the
precise forms for p(y, h) and f(-) and does not take the form of any well-known
density. When the noninformative prior in (5.4) is used, the error precision, #,
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can be integrated out analytically in a step analogous to that required to derive
(3.14). The resulting marginal posterior for y is

POy <[y — FX Yy — FX N F (5.6)

In the case where f(-) was linear, this expression could be rearranged to be
put in the form of the kernel of a t distribution, but here it does not take any
convenient form.

5.5 BAYESIAN COMPUTATION:
THE METROPOLIS-HASTINGS ALGORITHM

The lack of analytical results relating to the posterior suggests that a posterior
simulator is required. For some forms of f(-) it may be possible to derive a
Gibbs sampler. In some cases, a convenient approximation to p(y|y) may suggest
itself and, if so, importance sampling may be used. Here we introduce a third
possibility, the Metropolis—Hastings algorithm. This can actually be thought of
as a whole class of algorithms which can be used to create posterior simulators
for a wide variety of models. As we have done previously when introducing a
new algorithm, we adopt the general notation where 6 is a vector of parameters
and p(y|0), p(@) and p(6|y) are the likelihood, prior and posterior, respectively.

The Metropolis—Hastings algorithm has some similarities with importance
sampling. Both are useful in cases where the posterior itself is hard to take
random draws from, but another convenient possibility exists. In importance sam-
pling, we called the latter an importance function, with the Metropolis—Hastings
algorithm we call it the candidate generating density. Let 6* indicate a draw
taken from this density, which we denote as ¢(6“~";0). This notation should
be interpreted as saying that a candidate draw, 6%, is taken of the random vari-
able & whose density depends upon ¢~V In other words, as with the Gibbs
sampler (but unlike importance sampling), the current draw depends on the pre-
vious draw. Thus, the Metropolis—Hastings algorithm, like the Gibbs sampler, is
a Markov Chain Monte Carlo (MCMC) algorithm and the drawn values (i.e. 6
fors =1,...,5) are often referred to as a chain.

With importance sampling, we corrected for the fact that the importance func-
tion differed from the posterior by weighting the draws differently from one
another. With Metropolis—Hastings, we weight all draws equally, but not all the
candidate draws are accepted. In other words, if g(-) is our function of interest,
we can obtain an estimate of E[g(#)|y], which we label gg, by simply averaging
the draws in the familiar way:

P TN
g =5 80" (5.7)
r=1
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The Metropolis—Hastings algorithm always takes the following form:

Step 0: Choose a starting value, 9O,

Step 1: Take a candidate draw, 6* from the candidate generating density,
q(6u=D:6).

Step 2: Calculate an acceptance probability, a(6¢~1, 6%).

Step 3: Set 0) = 6* with probability (¢~ 6*) and set 6¢) = 66~ with
probability 1 —a(0¢~D, 6%).

Step 4: Repeat Steps 1, 2 and 3 S times.

Step 5: Take the average of the S draws g(01), ..., g(@®).

These steps will yield an estimate of E[g(6)|y] for any function of interest.

As with Gibbs sampling, the Metropolis—Hastings algorithm usually requires
the choice of a starting value, 9O To make sure that the effect of this starting
value has vanished, it is usually wise to discard Sy initial draws. The MCMC diag-
nostics presented for the Gibbs sampler can be used with the Metropolis—Hastings
algorithm to make sure an adequate number of draws are taken and enough initial
draws discarded (see Chapter 4, Section 4.2.4, for details).

We give a precise formula for the acceptance probability, (8¢~ §*), shortly.
But first, it is useful to discuss the properties that a good acceptance probability
should have.

In the previous chapter we introduced the intuition that one can interpret an
MCMC algorithm as wandering over the posterior, taking most draws in areas
of high posterior probability and proportionately fewer in areas of low posterior
probability. The candidate generating density is not identical to the posterior and,
hence, if left to wander freely, will not take the right number of draws in each
area of the parameter space. What the Metropolis—Hastings algorithm does is
correct for this by not accepting every candidate draw. It derives an acceptance
probability which is highest in areas where posterior probability is highest and
lowest in areas where posterior probability is lowest. Intuitively, if ¢~ is in an
area of low posterior probability the algorithm will tend to move quickly away
from 6¢~D (i.e. the current location of the chain is in a region of low probability
so candidate draws, which move you away from the current location, are likely
to be accepted). However, if 8¢~ is in an area of high posterior probability
the algorithm will tend to stay there (see Step 3, and note that the algorithm
can stay at a particular point by setting 6¢) = #¢~1). By staying at this point
of high posterior probability the algorithm is implicitly giving it more weight
in an intuitively similar manner as importance sampling weights draws. Similar
considerations hold with respect to the candidate draw, 6*. For a given 9“_1),
we want a candidate draw, 0%, to be accepted with high probability if it is in
a region of higher posterior probability than 6¢~D. Candidate draws of 6* in
lower probability areas we want to be rejected with high probability.
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The previous paragraph has provided intuition for an acceptance probability
which depends on 6* and 6~ in a manner which tends to move the chain away
from areas of low posterior probability towards higher. Of course, we stress that
the word ‘tends’ in the previous sentence is quite important. You do not want a
chain which always stays in regions of high posterior probability, you want it to
visit areas of low probability as well (but proportionately less of the time). The
way the acceptance probability is constructed means that the chain will usually,
but not always, move from areas of low posterior probability to high.

Chib and Greenberg (1995) is an excellent introduction to the Metropo-
lis—Hastings algorithm and includes a derivation of the acceptance probability
which ensures that the Metropolis—Hastings algorithm converges to the poste-
rior. The reader is referred to this paper or Gilks, Richardson and Speigelhalter
(1996a)! for more details. It turns out that the acceptance probability has the form

0 = 60*|y)q(6*;6 =6~
p( 1»)q( ) 1 (5.8)
pO =06=D]y)gOt=D:0 = 6%)

a YD %) = min|:

Remember that p(6 = 6*|y) is our notation for the posterior density evaluated
at the point & = 0%, while g(6*;60) is a density for random variable 6 and,
hence, g(6*;6 = 6©¢~D) is this density evaluated at the point & = ¢~V It can
be verified that this acceptance probability has the intuitively desirable proper-
ties discussed above. The ‘min’ operator in (5.8) is included to ensure that the
acceptance probability is not greater than 1.

Like importance sampling, the Metropolis—Hastings algorithm, at first glance,
seems a marvellous solution to any posterior simulation problem. After all, it
seems to say that you can just randomly sample from any convenient density,
q(0©~1;0), and accept or reject candidate draws using (5.8) to obtain a sequence
of draws, 0 for s = 1, ..., S, which can be used to produce an estimate of
E(g()|y). Unfortunately, in practice, things are not this easy. If the candidate
generating density is not well-chosen, virtually all of the candidate draws will be
rejected and the chain will remain stuck at a particular point for long periods of
time. Hence, care must be taken when choosing the candidate generating density
and the MCMC diagnostics described in Chapter 4 should always be used to
verify convergence of the algorithm. There is a myriad of possible strategies
which can be used for choosing candidate generating densities. In the following,
we discuss two of the more common ones.

5.5.1 The Independence Chain Metropolis—Hastings Algorithm

As its name suggests, the Independence Chain Metropolis—Hastings algorithm
uses a candidate generating density which is independent across draws. That
is, g(0¢~V;0) = ¢*(0) and the candidate generating density does not depend
upon #U~D_ Such an implementation is useful in cases where a convenient

ITierney (1996) is also relevant for the reader interested in mathematical rigor.
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approximation exists to the posterior. This convenient approximation can be
used as a candidate generating density. If this is done, the acceptance probability
simplifies to

(5.9)

— B%v)a* (O — gG—1D
a(g(sn,@*)zmin[pw 6*1)q" (6 =6 )1}

pO =06"Dy)g* (O = 6%)°

The Independence Chain Metropolis—Hastings algorithm is closely related to
importance sampling. This can be seen by noting that, if we define weights
analogous to the importance sampling weights (see Chapter 4 (4.38)):

6 =04
w(@A) _ Do [v)
q*(0 = 64)
the acceptance probability in (5.9) can be written as
6= g%y — min | 20D _
ad ,0 )—mln[w(e(x_])),

In words, the acceptance probability is simply the ratio of importance sampling
weights evaluated at the old and candidate draws.

In terms of the nonlinear regression model, the usefulness of this algorithm
depends on whether f(-) is of a form such that a convenient approximating
density can be found. There is no completely general procedure for choosing an
approximating density. However one is chosen, the MCMC diagnostics described
in Chapter 4 should be used to verify that the resulting algorithm has converged.

One common procedure involves the use of frequentist maximum likelihood
results as a basis for finding a good ¢*(6). The purely Bayesian reader may wish
to skip the remainder of this paragraph and go to the bottom line recommendation
for empirical practice given in the next. The frequentist econometrician will know
that (subject to mild regularity conditions) the maximum likelihood estimator,
Oy, 1s asymptotically Normal with asymptotic covariance matrix given by

var@yr) = 1)~

where I(f) is the information matrix defined as the negative of the expected
value of the second derivative of the log of the likelihood function (where the
expectation is taken with respect to y):

0000’

In words, if the sample size is large, the inverse of the information matrix is
going to give you a good idea of the shape of p(y|f). Even if the informa-
tion matrix cannot be directly calculated, % can be calculated (either
by hand or through numerical differentiation procedures which are available in

computer packages such as MATLAB) and used to obtain an approximation

2
o [a ln(p(yw»}

to var(é\ML) which we shall denote by var(é\ML). To introduce some additional
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2
FIntpO19) i referred to as the Hessian, and you will often hear the phrase

30907 iy
‘negative inverse Hessian’ to indicate the estimate var(é\ML).
For the Bayesian, the discussion in the previous paragraph implies that, if
sample size is reasonably large and the prior relatively noninformative, then
the posterior might be aﬂ)@imately Normal with mean 6y;; and covariance

jargon

matrix approximately var(gML). For some models, computer software exists
which allows for direct calculation of such maximum likelihood quantities. Alter-
natively, computer packages such as MATLAB have associated routines which
can optimize a user-specified function. These can be used to calculate maximum
likelihood quantities. If you need to program up the routine which maximizes the

likelihood function and finds var(é\ML), you may wish to maximize the posterior
(i.e. find Opayx, the posterior mgde) and take second-derivatives of the posterior to
find an approximation to var (fmax), instead. If you are using an informative prior,
such a strategy will approximate your posterior a bit better. That is, awmic

results suggest that the posterior might be approximately fy (9|§max, var(gmax)).
In the following material, we will base our approximation on maximum like-

lihood results, but they can be replaced by ’G\max and var(gmax) if these are
available. .

Setting g*(0) = fn (9|§ML, var(é\ML)) can work well in some cases. However,
it is more common to use twistribution as a candidate generating density

and set g*(0) = ﬁ(9|§ML, var(é\ML), v). The reason for this is that, in practice,
researchers have found that it is quite important for the candidate generating
density to have tails which are at least as fat as those of the posterior. Geweke
(1989) motivates why this is so for the case of importance sampling, but the same
reasoning holds for the Independence Chain Metropolis—Hastings algorithm. The
interested reader is referred to this paper for more detail.

The Normal density has very thin tails. The t-density has much fatter tails,
especially for small values of v. Useful properties of the t distribution are that,
as v — oo, it approaches the Normal, and as v gets small its tails get very fat. In
fact, the t distribution with v = 1 is the Cauchy, a distribution with such fat tails
that its mean is infinite (even though its median and mode are finite). In some
cases it is possible, through examination of the posterior, to find a value for v
which ensures that the tails of the candidate generating density dominate those
of the posterior. In general, however, a careful researcher will choose a small
value for v and use MCMC diagnostics to ensure the algorithm has converged.

It is important to stress that there are cases where use of a t-density to generate
candidate draws is inappropriate. For instance, if the posterior is multi-modal then
the unimodal t-density will usually not work well. Also, if the posterior is defined
over a limited range (e.g. the Gamma density is defined only over the positive
real numbers), then the t-density (which is defined over all the real numbers)
might not work well (unless the posterior is sharply defined in the interior of
its range).
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In the case of the nonlinear regression model, maximizing the likelihood
function (posterior) W(El_d\ involve writing a program which evaluates (5.3)

(or (5.5)). Obtaining var(é\ML) would either involve second differentiating (5.3)
or using a numerical differentiation subroutine available with most relevant com-
puter packages. These steps would be dependent upon the precise form of f(-), so
we will not say anything more about the nonlinear regression model at this stage.

From the previous discussion, you can see that finding an approximating den-
sity for use with either an Independence Chain Metropolis—Hastings algorithm
or with importance sampling can be a bit of an art. Nevertheless, for most models
asymptotic results exist which say that, as sample size goes to infinity, the poste-
rior becomes Norm;alior models in this class, if your sample size is reasonably

large, ﬁ(9|§ML, var(é\ML), v) should approximate the posterior reasonably well.
The empirical illustration below uses this strategy to estimate the CES model
given in (5.1).

5.5.2 The Random Walk Chain Metropolis—Hastings Algorithm

The Random Walk Chain Metropolis—Hastings algorithm is useful when you
cannot find a good approximating density for the posterior. Intuitively, with the
Independence Chain Metropolis—Hastings algorithm (like importance sampling),
you take draws from a density which is similar to the posterior and the accep-
tance probability (or weighting, in the case of importance sampling) is used to
correct for the difference between the posterior and approximating densities. With
the Random Walk Chain Metropolis—Hastings algorithm, no attempt is made to
approximate the posterior, rather the candidate generating density is chosen to
wander widely, taking draws proportionately in various regions of the posterior.

Formally, the Random Walk Chain Metropolis—Hastings algorithm generates
candidate draws according to

0* =00~ 4 (5.10)

where z is called the increment random variable. For the reader familiar with
time series methods, the assumptions in (5.10) imply that candidates are generated
according to a random walk. That is, candidates are drawn in random directions
from the current point. The acceptance probability ensures that the chain moves
in the appropriate direction. Note that * and ¢~ enter symmetrically in (5.10)
and, hence, it will always be the case that g(6*;6 = =Dy = q(G(S_l); 0 = 0%).
This means that the acceptance probability simplifies to

p® =6"y) }
PO =066="Dly)’
and it can be clearly seen that the random walk chain tends to move towards
regions of higher posterior probability.

The choice of density for z determines the precise form of the candidate gen-
erating density. A common and convenient choice is the multivariate Normal. In

a®CD 0% = min[ (5.11)
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this case, (5.10) determines the mean of the Normal (i.e. 6¢~1 is the mean) and
the researcher must choose the covariance matrix, which we shall denote by X.
In terms of our notation for the Normal density:

q(e(s—l);g) — fN(0|9(S_1)7 %) (5.12)

With this approach, all that the researcher needs to select is X. This should be
selected so that the acceptance probability tends to be neither too high nor too
low. If the acceptance probability is usually very small, then candidate draws are
almost always rejected and the chain tends to move only rarely. This is not a
good situation as it will imply S must be huge if the chain is to move over the
entire posterior. Small acceptance probabilities indicate that X is too large and
most candidate draws are being generated far out in the tails of the posterior in
regions which the posterior indicates are quite improbable. At the other extreme,
it is not good to have the acceptance probability always being near one as this
indicates that X is too small. That is, if ¥ is very small, then 6* and 6= will
tend to be very close to one another the acceptance probability will be near one
(see (5.11)). In this case, too, S may have to be unfeasibly large to ensure that
the chain explores the entire posterior.

There is no general rule which gives the optimal acceptance rate. In the special
case where the posterior and candidate generating density are both Normal, the
optimal acceptance rate has been calculated to be 0.45 in one-dimensional prob-
lems with slightly lower values in higher dimensional problems. As the number
of dimensions approaches infinity, the optimal acceptance probability approaches
0.23. Another rule of thumb often-mentioned is that the acceptance probability
should be roughly 0.5. In general, if you choose X to ensure that your accep-
tance probability is roughly in this region, you are unlikely to go too far wrong.
However, you should always use the MCMC diagnostics discussed in Chapter 4
to verify that your algorithm has converged.

Saying that ¥ should be chosen to ensure that the average acceptance prob-
ability is in the region 0.2 to 0.5 is enough information to select it in the case
where 6 (and, hence, X) is a scalar. In this case, you can simply experiment,
running your Random Walk Metropolis—Hastings algorithm with various values
for ¥ until you find one which yields reasonable acceptance probabilities. In
cases where 6 is p-dimensional such an approach can be much harder since X
will have w elements. In such cases, it usually works well to set ¥ = cQ
where ¢ is a scalar and €2 is an estimate of the posterior covariance matrix of
6. Then you can experiment with different values of ¢ until you find one which
yields a reasonable acceptance probability. This approach requires you to find €2,
an estimate of var(@|y). This can be done in two ways. From the point of view
of the researcher, the simplest way is to begin with ¥ = cI, and try and find a
value for ¢ which does not imply completely useless values for the acceptance
probabilities (i.e. if they are such that candidate draws are accepted at a rate of
0.000001 or 0.99999 they are likely to be completely useless, unless you have
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enough computing power to easily take billions of draws). This value of ¢ can
then be used to get a very crude estimate of 2. You can then set ¥ = ¢€2 and try
and find a new value for ¢ which yields a slightly more reasonable acceptance
probability. Results for this case can be used to get a better 2 which can then be
used to find a better value for X, etc. This process can be repeated until a good
value of ¥ is found. Such an approach is simple for the researcher since, once the
basic computer code for the Random Walk Metropolis—Hastings algorithm has
been created, no additional programming is required. However, it can be quite
demanding in terms of the computer’s time.

—

An alternative approach is to set Q2 equal to var (@), the estimate of the
variance of the maximum likelihood estimate described above in the discussion
of the Independence Chain Metropolis—H/asti\ngs algorithm. Such an approach,

of course, requires the calculation of var(gML) which will require additional
programming by the researcher.

In the empirical illustration we compare the Random Walk to Independence
Chain Metropolis—Hastings algorithm in an application involving the CES pro-
duction function.

5.5.3 Metropolis-within-Gibbs

The Metropolis—Hastings algorithm provides a posterior simulator for p(6|y). In
Chapter 4, we introduced another posterior simulator called the Gibbs sampler
which, in the case of two blocks where 6 = (9(’] ) 9(’2))/ , involved sequentially
drawing from p(6(1)ly, 682)) and p(8)ly, 61)). For the Normal linear regres-
sion model with independent Normal-Gamma prior, a Gibbs sampler was sim-
ple to implement since p(B|y, h) was a Normal density and p(h|y, ) was a
Gamma density. In the nonlinear regression model, a noninformative or indepen-
dent Gamma prior for 4 will imply that p(h|y, y) is a Gamma density. However,
p(yly, h) will be proportional to (5.5) and, hence, will not take the form of a
density which is convenient to draw from. At first sight, this seems to imply
that a Gibbs sampler involving p(h|y, y) and p(y|y, k) cannot be set up for the
nonlinear regression model. However, it can be shown that, if we use a Metropo-
lis—Hastings algorithm for p(y|y, k), the resulting simulated draws, y) and
h) fors = 1,...,S, are valid posterior simulator draws. Formally, using a
Metropolis—Hastings algorithm for either (or both) of the posterior conditionals
used in the Gibbs sampler, p(6(1)ly, 62)) and p(62)ly, 6(1)), is perfectly accept-
able. This statement is also true if the Gibbs sampler involves more than two
blocks. Such Metropolis-within-Gibbs algorithms are fairly common since many
models have posteriors where most of the conditionals are easy to draw from,
but one or two conditionals do not have a convenient form. For the latter condi-
tionals, Metropolis—Hastings algorithms can be used. The empirical illustration
below will show how this can be done in the case of the nonlinear regres-
sion model.
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5.6 A MEASURE OF MODEL FIT: THE POSTERIOR
PREDICTIVE P-VALUE

The typical Bayesian method of model comparison is the posterior odds ratio,
which is the relative probability of two completely specified models. However,
there are some cases where the researcher is interested in investigating the per-
formance of a model in some absolute sense, not relative to a specific alternative
model. Also, there are many cases in which the researcher might want to use an
improper, noninformative, prior and, as discussed in Chapter 3, posterior odds
can be meaningless if such a prior is used on parameters which are not common
to all models. In both such situations, the posterior predictive p-value approach
is a sensible alternative to the posterior odds ratio. The reader interested in more
details about this approach is referred to Gelman and Meng (1996). For some
innovative extensions on the basic approach outlined below, the reader is referred
to Bayarri and Berger (2000).

To motivate the posterior predictive p-value approach, it is important to dis-
tinguish between y, the data actually observed, and yT, observable data which
could be generated from the model under study (i.e. y* is an N x 1 random vector
with p.d.f. p(y"|6) where the latter is the likelihood function without y plugged
in). Let g(-) be some function of interest. p(g(y")|y) summarizes everything
our model says about g(y") after seeing the data. In other words, it tells us the
types of data sets that our model can generate. For the observed data we can
directly calculate g(y). If g(y) is in the extreme tails of p(g(yT)| y), then the
model cannot do a good job of explaining g(y) (i.e. g(y) is not the sort of data
characteristic that can plausibly be generated by the model). Formally, we can
obtain tail area probabilities in a manner similar to frequentist p-value calcula-
tions. In particular, the posterior predictive p-value is the probability of a model
yielding a data set with more extreme properties than that actually observed (i.e.
analogous to a frequentist p-value. You may wish to present either a one-tailed
or two-tailed p-value).

p(g(yM|y) can be calculated using simulation methods in a manner which is
very similar to the one we used for predictive inference. That is, analogous to
(4.28) and the discussion which follows it, we can write

POy = / p(g(y116. y)p(@ly) d6 = / PO @O (5.13)

where the last equality follows from the fact that, conditional on 6, the actual data
provides no additional information about y'. The posterior simulator provides
draws from p(6|y) and we can simulate from p(g(y")|@) by merely simulating
artificial data from the model for a given parameter value in a manner identical
to that used for prediction (see (4.30)—(4.32) of Chapter 4).

Posterior predictive p-values can be used in two different ways. First, they can
be used as a measure of fit, of how likely the model was to have generated the
data in an absolute sense. Secondly, they can be used to compare different models.
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That is, if one model yields posterior predictive p-values which are much lower
than another, this is evidence against the former model. However, most Bayesians
prefer posterior odds ratios for the latter unless the use of noninformative priors
makes the posterior odds ratios meaningless or difficult to interpret.

The posterior predictive p-value approach requires the selection of a function
of interest, g(-). The exact choice of g(-) will vary depending upon the empirical
application. To take a practical example, let us return to the nonlinear regression
model. For this model, we have

y;f =f(Xi,y) +e&

fori =1,..., N. Alternatively, given the assumptions we have made about the
erTors,

POy ) = ivOTIFX, y), R ) (5.14)

where f(X, y) is the N-vector defined in (5.2). Note that, for given values of
the parameters of the model, simulating values for y' is quite simple, involving
only taking draws from the multivariate Normal. This simplicity iS common to
many models, making the posterior predictive p-value easy to calculate in a wide
variety of cases.

For the nonlinear regression model with noninformative prior given in (5.4),
(5.14) can be simplified even further, since & can be integrated out. In particular,
using a derivation virtually identical to that required to go from (5.5) to (5.6), it
can be shown that

pOY) = £GTF(X, y), 52N, N) (5.15)
where

2 [y = fX, 'y = f(X, )] (5.16)
N

Hence, conditional on y, draws of yT can be taken using the multivariate t
distribution. These draws can be interpreted as reflecting the sorts of data sets
that this model can generate. The posterior predictive p-value approach uses the
idea that, if the model is a reasonable one, the actual observed data set should
be of the type which is commonly generated by the model. Finding out at what
percentile the point g(y) lies in the density p(g (yT)|y) is the formal metric used.
To make things more concrete, let us digress briefly to motivate a few choices
for g(). It is common to evaluate the fit of a model through residual analysis. The
frequentist econometrician might calculate OLS estimates of the errors, &;, and
call these residuals. The properties of these residuals can then be investigated to
shed light on whether the assumptions underlying the model are reasonable. In

the Bayesian context, the errors are given, fori = 1,..., N, by

&=y — f(Xi,y)

We have assumed these errors to have various properties. In particular, we have
assumed them to be i.i.d. N(0, 2~!). These assumptions might be unreasonable
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in a particular data set and, hence, the researcher may wish to test them. The
brief statement ‘the errors are i.i.d. Normal’ involves many assumptions (e.g.
the assumption that the errors are independent of one another, that they have a
common variance, etc.), and the researcher might choose to investigate any of
them. Here we will focus on aspects of the Normality assumption. Two of the
properties of the Normal are that it is symmetric, and its tails have a particular
shape. In terms of statistical jargon, the Normal distribution does not exhibit
skewness and its tails have a particular kurtosis (see Appendix B, Definition B.8).
Skewness and kurtosis are measured in terms of the third and fourth moments of
the distribution and, for the standard Normal (i.e. the N (0, 1)) the third moment
is zero and fourth moment is three. The Normality assumption thus implies that
the following commonly-used measures of skewness and excess kurtosis should
both be zero:

N
VN e}
i=l1

B

Skew = 5.17)

i=1
and

N
N Z 5?
Kurt = —=L— 3 (5.18)
N
2]
i=1
These measures of skewness and excess kurtosis cannot be calculated directly
since ¢; is unobserved. The frequentist econometrician would replace ¢; by the
appropriate OLS residual in the preceding formulae and use the result to carry
out a test for skewness or excess kurtosis. A finding that either skewness or
excess kurtosis in the residuals indicates that the Normality assumption is an
inappropriate one.
A Bayesian analogue to this frequentist procedure would be to calculate the
expected value of either (5.17) and (5.18) and see whether they are reasonable.
Formally,

N
VN Y Iy — fXi, P
i=1

E[Skew|yl = FE =y
N 2

|:Z[)’i - f(Xi, y)]z}
i=1

is something that we can calculate in a straightforward fashion once we have a
posterior simulator. That is, Skew is simply a function of the model parameters
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(and the data) and, hence, its posterior mean can be calculated in the same
way as the posterior mean of any function of interest can be calculated (e.g.
see (5.7)). E[Kurt|y] can be calculated in the same fashion. If the Normality
assumption is a reasonable one, E[Kurt|y] and E[Skew|y] should both be roughly
zero.

Let us now return to the topic of posterior predictive p-values which can
be used to formalize the ideas of the previous paragraph. As stressed in the
previous paragraph, E[Skew|y] and E[Kurt|y] are functions of the observed data
and can be calculated using the posterior simulator. For any observable data,
yT, E[Skew| yT] and E[Kurt| y*] can be calculated in the same fashion. If we
calculate these latter functions for a wide variety of observable data sets, we
can obtain distributions of values for skewness and excess kurtosis, respectively,
that this model is able to generate. If either E[Skew|y] or E[Kurt|y] lie far out
in the tails of the distribution of E[Skew| y%] and E[Kurt| yT] this is evidence
against the assumption of Normality. It is worth stressing that E[Skew|y] or
E[Kurt|y] are both simply numbers whereas E [Skew|y*] and E [KurtlyT] are
both random variables with probability distributions calculated using (5.13). In
terms of our previous notation, we are setting g(y) = E[Skew|y] or E[Kurt|y]
and g(y") = E[Skew|y'] or E[Kurt|y'].

In practice, a program which calculates posterior predictive p-values for skew-
ness for the nonlinear regression model using the noninformative prior would
involve the following steps. The case of excess kurtosis (or any other function
of interest) can be done in the same manner. These steps assume that you have
derived a posterior simulator (i.e. a Metropolis—Hastings algorithm which is pro-
ducing draws from the posterior). Details for how such a posterior simulator can
be programmed up are given in the previous section.

Step 1: Take a draw, y*), using the posterior simulator.
Step 2: Generate a representative data set, y'®), from p(y'|y®)) using (5.15).

Step 3: Set e = y; — f(X;, y®) fori = 1,..., N and evaluate (5.17) at this
point to obtain Skew').
Step 4: Set sj(s) =y © _ f(X;,y®) fori =1,..., N and evaluate (5.17) at

this point to obtain Skew').
Step 5: Repeat Steps 1, 2, 3 and 4 S times.

Step 6: Take the average of the S draws SkewD), ... Skew> to give an esti-
mate of E[Skew|y]. '
Step 7: Calculate the proportion of the S draws SkewT(l), . ,SkewT(S) which

are smaller than your estimate of E[Skew|y] from Step 6. If this number
is less than 0.5 then it is your estimate of the posterior predictive p-value.
Otherwise the posterior predictive p-value is one minus this number.

There is no hard and fast rule for exactly what value of the posterior predictive
p-value should be taken as evidence against a model. A useful rule of thumb is to
take a posterior predictive p-value of less than 0.05 (or 0.01) as evidence against
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a model. Remember that, if the posterior predictive p-value for skewness is equal
to 0.05, then we can say “This model generates measures of skewness greater
than the one actually observed only five percent of the time. Hence, it is fairly
unlikely that this model generated the observed data.”

5.7 MODEL COMPARISON:
THE GELFAND-DEY METHOD

If it is sensible to elicit informative priors and there are two or more competing
models you wish to investigate, then posterior odds ratios remain the preferred
method of model comparison. In the case of the nonlinear regression model, you
may wish to compare different choices for f(-). This would typically involve non-
nested model comparison. Alternatively, you may wish to compare a nonlinear
to a linear regression model. After all, the linear regression model is, as we have
seen in previous chapters, much easier to work with. Hence, you may only wish
to work with a nonlinear model if the extra complexity is really worth it. In the
case of the CES production function given in (5.1), the model reduces to linearity
if %41 = | and the linear model would be nested in the nonlinear one. That is,
we would have M| : yx4+1 = 1 and M : y unrestricted. When comparing nested
models of this sort, the Savage—Dickey density ratio is often a convenient tool
(see Chapter 4, Theorem 4.1). For the nonlinear regression model, if the prior
for y is of a simple form, then the Savage—Dickey density ratio can often be
easily calculated (i.e. the posterior for y, which must be evaluated at the point
vk+1 = 1 in the Savage—Dickey density ratio, will typically be easy to work
with so the ease of calculation depends crucially on the prior).? For instance, if
the prior is of the form:
()

Jh) o ——
p(y, h) x Y

then the posterior for y will be of the form given in (5.6) times p(y). However,
if the prior is more complicated then it may be impossible to easily evaluate the
Savage—Dickey density ratio.

In sum, for non-nested model comparison, or for nested model comparison
where the Savage—Dickey density ratio cannot be easily evaluated, there is a
need for another, more general, method for calculating the posterior odds ratio.
A method due to Gelfand and Dey (1994) can be used in such cases. Indeed, it can
be used in virtually any model, including those in previous and future chapters in
this book. Computer software to implement this algorithm is available in BACC

%It is also worth noting in passing that there exist algorithms which, given posterior simulator
output, y® fors = 1,...,8, can approximate p(y|y). Such an approximation can be used to
calculate the numerator of the Savage—Dickey density ratio. However, such algorithms, which fall
in the general area of nomparametric density estimation, typically require specialized knowledge
beyond the scope of the present book and, hence, we do not discuss their use further. However, the
reader familiar with nonparametric methods may wish to consider their use.



THE NONLINEAR REGRESSION MODEL 105

(see McCausland and Stevens, 2001) and, hence, researchers using this software
can use the Gelfand—Dey method in an automatic fashion.

The Gelfand—Dey method is based on the fact that the inverse of the marginal
likelihood for a model, M;, which depends upon parameter vector, 6, can be
written as E[g(0)|y, M;] for a particular choice of g(-). In addition, as we
have stressed throughout this book, posterior simulators such as the Metropo-
lis—Hastings algorithm are designed precisely to estimate such quantities. The
following theorem provides the necessary choice of g(-).

Theorem 5.1: The Gelfand—Dey Method of Marginal Likelihood Calculation

Let p(6|M;), p(y|6, M;) and p(f|y, M;) denote the prior, likelihood and poste-
rior, respectively, for model M; defined on the region ®. If f(0) is any p.d.f.
with support contained in ®, then

E [ /©® y, M,-] _ (5.19)
pO|M;)p(y|0, M;) p(yIM;)
Proof
E[ AC) Vs Mi] =/ 1) p@ly, M;)do
pO|M;)p(y|0, M;) pO|M;)p(y|0, M;)
2/ f(©®) p(GIMi)p(yIG,Mi)d9
pO|M;)p(y|0, M;) p(yIM;)
1
= 0)do
p(yle-)/f( )
1
- pOyIMy)

This theorem seems remarkably powerful in that it says for any p.d.f. (),
we can simply set:

0
g®) = /@ (5.20)

p@IM;)p (160, M;)

and use posterior simulator output to estimate E[g(0)|y, M;] in the same way
as for any posterior feature of interest. However, for the Gelfand—Dey method
to work well, f(0) must be chosen very carefully. For instance, as discussed
in Geweke (1999), the asymptotic theory underlying the Gelfand—Dey method
implies that W must be bounded from above (i.e. it must be finite for
every possibfe value of 6). Just as importance sampling required careful selection
of an importance function and the Metropolis—Hastings algorithm required care-
ful selection of a candidate generating density, the Gelfand—Dey method requires
careful selection of f(9).

Geweke (1999) recommends the following strategy for choosing f(8), which
has been found to work well in practice. This strategy involves letting f(-) be
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a Normal density with the tails chopped off. The justification for this truncation
is that it is often difficult to verify that m is finite out in the tails
of the Normal density. By cutting off the tails, f(¢) is set to zero in these
potentially problematic regions. Formally, let 6 and X be estimates of E(0|y, M;)
and var(6|y, M;) obtained from the posterior simulator. Furthermore, for some
probability, p € (0, 1), let ® denote the support of f(8) which is defined by

O=1{0:0-0E7'0-0) <xi_,k) (5.21)

where Xlz_ p(k) is the (1 — p)th percentile of the Chi-squared distribution with k
degrees of freedom and k is the number of elements in 6 (see Appendix B, Def-
inition B.22). Then Geweke (1999) recommends letting f(¢) be the multivariate
Normal density truncated to the region ©,

0 = ! ISz exp [—1@— YT '@ - 9)] 10 € ®) (5.22)
p@2m)? 2

where 1( ) is the indicator function. We would expect small values of p (e.g.
p = 0.01) to work best, since then more draws will be included when estimating
the marginal likelihood. However, as Geweke (1999) points out, the additional
cost of trying several different values for p is very low. As with any posterior
feature of interest estimated using a posterior simulator, a numerical standard
error can be calculated in the standard way (see, for instance, Chapter 4, (4.12)
and (4.13)) and used to evaluate the accuracy of the Gelfand—Dey marginal
likelihood estimate. BACC contains a subroutine which implements this version
of the Gelfand—Dey method and provides numerical standard errors for one or
more values of p chosen by the researcher.

We stress that the general Gelfand—Dey method for calculating the marginal
likelihood outlined in Theorem 5.1, works for virtually any model. In practice,
the only real requirements are that a posterior simulator is available, and that
p(@|M;) and p(y|0, M;) are known. The latter are non-trivial requirements, since
in some cases, you may only know the kernels of the prior and/or likelihood, not
the full p.d.f.’s. In such cases, the Gelfand—Dey method cannot be used. Geweke
(1999)’s implementation of the Gelfand—Dey method works only if the support
of the posterior contains the region defined in (5.21) (i.e. ® € ®). If this is not
the case, Geweke (1999) provides some suggestions for how this implementation
can be changed in minor ways. The reader is referred to Geweke (1999) for
additional details. The Geweke implementation of the Gelfand—Dey method is,
thus, a little less generic, but still can be used for a wide array of models (and
virtually any model discussed in this book).

5.8 PREDICTION

Predictive inference in this model can be carried out using the strategy outlined in
Chapter 4. That is, draws from p(y|y) are provided by the Metropolis—Hastings
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algorithm and, conditional on these, draws from p(y*|y, y®)) can be taken and
averaged as in (4.32) to provide an estimate of any predictive function of interest.
For instance, for the noninformative prior given in (5.2), and using techniques
analogous to those used to derive (3.40), it can be verified that

POy, v) = HGHF(X*, ), 52 1, N)

where 52 is defined in (5.16). Hence, draws from y* conditional on y can easily
be obtained.

5.9 EMPIRICAL ILLUSTRATION

We use a microeconomic application to illustrate Bayesian inference in a nonlin-
ear regression model. We use data from N = 123 companies on output, y, and
the inputs labor, x1, and capital, x,. So as not to have to worry about units of mea-
surement, the dependent and explanatory variables are all standardized to have
standard deviation one. That is, we divide each variable by its standard deviation.
Such standardization is sometimes done since the interpretation of coefficients
is now in terms of standard deviations of variables. For instance, in a linear
regression context a coefficient, 8;, can be interpreted as saying: “If explanatory
variable j increases by one standard deviation, the dependent variable will tend
to increase by B; standard deviations.”
We assume a production function of the CES form given in (5.1):

1
yi =y + (nx)l +yxHn + &

The choice of an additive intercept is motivated by the consideration that a simple
restriction, y4 = 1, yields the linear regression model.

We begin by comparing posterior inference in this model using Indepen-
dence Chain and Random Walk Chain Metropolis—Hastings algorithms using
the noninformative prior given in (5.4). We focus on the marginal posterior for
y =(l,...,ys), given in (5.8). To construct the candidate generating densities
for these two algorithms, we first use an optimization subroutine to find P.x, the
mode of p(y|y). The optimization subroutine (taken from Jim LeSage’s Econo-
metrics Toolbox, although most optimization subroutines will provide similar
info/r@tion) provides an estimate of the Hessian which can be used to construct
var (Pmax), as described in Section 5.5.1.

Table 5.1 presents results based on a fairly crude implementation of both
algorithms. A computer program for implementing these algorithms follows the
steps spelled out in Section 5.5. The two algorithms differ only in their candi-
date generating densities and, hence, in their acceptance probabilities (see (5.9)
and (5.11)). wdependence Chain algorithm takes candidate draws from the
fr (¥ [Pmax, var (Vmax), 10) density and _the Random Walk algorithm takes can-
didate draws from the fy (y|y“ ™V, var Hnax)) density. These implementations
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Table 5.1 Posterior Properties Using Two M-H Algorithms

Independence
Chain Random Walk
Mean St. Dev Mean St. Dev.
Y1 1.04 0.05 1.02 0.06
2 0.73 0.08 0.72 0.12
V3 0.97 0.12 1.00 0.16
V4 1.33 0.23 1.36 0.29

can, undoubtedly, be improved upon by experimenting with different covariance
mziri&cs in either candidate generating density. For instance, we could replace
var (Pmax) by an approximation of var(y|y) obtained using/ar_l\initial run of
either Metropolis—Hastings algorithm. Or we could use cvar(Pmax) in either
candidate generating density and then experiment with various values of the
scalar ¢ to improve algorithm performance. For the Independence Chain Metropo-
lis—Hastings algorithm, we could experiment with different values of the degrees
of freedom parameter in the candidate generating density. In both cases, we set
S =25000.

For the Independence Chain and Random Walk algorithms, 7.4% and 20.6%,
respectively, of the candidate draws were accepted. Table 5.1 indicates that
even these crude implementations of two different algorithms yield roughly
the same results. Relative to the posterior standard deviations, the estimated
posterior means are very close to one another. The estimated posterior stan-
dard deviations differ a bit more across algorithms, but are still fairly close.
Of course, if the researcher wishes more accurate estimates, she could either
fine tune the candidate generating densities or could increase the number of
replications.’

The results in Table 5.1 are obtained using an improper, noninformative prior
and, hence, we cannot use posterior odds ratios to compare this model to another.
Instead, we will use posterior predictive p-values to provide some indication of
how well our model is fitting the data. Section 5.6 describes how to calculate
them and includes a list of steps that the computer program follows. Briefly, at
each replication, an artificial data set is drawn from (5.15) and the measures of

3Using a 500 MHz Pentium computer, the program which produced all the results in Table 5.1
took under five minutes to run. We could easily take several hundred thousand draws (i.e. start the
program running and come back after lunch to find it completed) or even several million draws (i.e.
start the program running before leaving the office in the evening and coming back the next morning
to find it completed). As computers get faster and faster, it is becoming easier and easier to take
large numbers of replications. This has implications for empirical research, in that the researcher who
wants to achieve a certain degree of accuracy often has a choice between improving her posterior
simulation algorithm or simply make do with a less efficient algorithm, but take more replications.
When making such a choice, it is worth noting that improving an algorithm usually involves the
researcher’s time, while taking more replications involves the computer’s time. Most researchers
value their own time more than their computers’ and, hence, it is common to see a researcher
presenting results which are based on an algorithm which is ‘good enough’, rather than one which
is ‘the best’.
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skewness and excess kurtosis calculated using (5.17) and (5.18). The posterior
predictive density for these measures can then be obtained. Formally, we are
calculating E [SkewlyT] and E[Kurt| yT] which are random variables, since yT
is random. We can also calculate the measures and skewness and kurtosis for
our observed data, E[Skew|y] and E[Kurt|y], which are not random variables
since y is not random. The location of E[Skew|y] and E[Kurt|y] in the posterior
predictive densities for E[Skew|y'] and E[Kurt|y'] provides insight into how
well the model is fitting the data.

Figures 5.1 and 5.2 graph approximations to these posterior predictive
densities. These figures are simply histograms of the draws we called
Skew™ ™ . ,SkewT(S) and Kurtm), - ,KurtT(S) in Section 5.6. We have also
labeled E[Skew|y] and E[Kurt|y] on these graphs as ‘Observed skewness’ and
‘Observed kurtosis’, respectively. In words, the posterior predictive density for
skewness (or kurtosis) tells you what values for skewness (or kurtosis) the model
under study tends to generate. For instance, Figure 5.1 indicates that the nonlin-
ear regression model used in this empirical illustration virtually always generates
data sets with skewness measures that are less than one in absolute value. If the
actual data had generated a skewness value which is greater than one in absolute
value, this would be evidence that the model is not suitable for use with this data
set. In fact, E[Skew|y] = 0.17 which lies near the center of the density plotted
in Figure 5.1. The corresponding p-value is 0.37, indicating that 37% of artificial
data sets generated with this model will exhibit a greater degree of skewness than
the actual data. Thus, our actual data set exhibits a degree of skewness which is

Observed
skewness

-2 -1.5 -1 -0.5 0 0.5 1 1.5
Skewness

Figure 5.1 Posterior Predictive Density for Skewness
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(Observed
kurtosis
L I [ !
-2 -1 0 1 2 3 4 5 6

Kurtosis

Figure 5.2 Posterior Predictive Density for Kurtosis

consistent with the nonlinear regression model. Similar considerations hold for
the posterior predictive density for excess kurtosis. The observed data yields a
kurtosis measure of E[Kurt|]y] = —0.37 which is consistent with the types of
kurtosis measures that this model can generate. In fact, the posterior predictive
p-value is 0.38 indicating that 38% of artificial data sets generated from this
model have more extreme degrees of kurtosis. Accordingly, we conclude that
the nonlinear regression model used in this empirical illustration does fit the data
well (at least in terms of skewness and kurtosis).

So far, we have focused our empirical illustration on y and said nothing about
the other parameter, A. If we wish to do posterior inference relating to 4, we need
a posterior simulator which provides draws, #*). Furthermore, the Gelfand—Dey
method of marginal likelihood calculation (as described in Theorem 5.1), requires
draws from the entire parameter vector, § = (y’, h)’. For these reasons (and sim-
ply to illustrate another posterior simulation algorithm), we will shortly derive a
Metropolis-within-Gibbs algorithm (see Section 5.5.3), which sequentially draws
from p(hly, y) and p(y|y, h).

We illustrate model comparison using posterior odds by investigating whether
a linear regression model is adequate. Hence, our restricted model is M; : y4 = 1.
Our unrestricted model is M, : y4 #% 1. To calculate the posterior odds ratio com-
paring these two models an informative prior is required. We use the independent
Normal-Gamma prior for both models (see Chapter 4, Section 4.2). For M», our
prior for y is independent of the prior for 4 and the former is

y~N(Cy,V,)



THE NONLINEAR REGRESSION MODEL 111

while the latter is
h~G(s7%v)

We choose y= (1,1,1,1),V = 0.2514,v = 12 and 5’2 = 10.0. Given the likely
magnitudes of the marginal products of labor and capital and the way we have
standardized the data, these choices are sensible, but relatively noninformative.

For M| we use the same prior, except that y now has only three elements and,
thus, y and V have their last row and row and column, respectively, omitted.

For the linear regression model, My, Chapter 4, Section 4.2, provides all the
necessary details for posterior inference, including development of a Gibbs sam-
pler for posterior simulation. For the nonlinear regression model with this prior
we will derive a Metropolis-within-Gibbs algorithm. To construct such an algo-
rithm, we must first derive p(h|y, y) and p(y|y, h). Using the same techniques
as for (4.8) through (4.10), we find that

hly,y ~ GG 2, 7) (5.23)
where
vV=N+v

and

2 _ b /X Iy - X p)] + vs?
v

Using (5.5) and noting that p(y|y, h) o p(y, hly), it can be seen that

h
p(yly, h) ocexp [—5 {y— X, v¥{y—rix, y)}]

1
exp |:—5(V -V iy - Z)} (5.24)

This conditional posterior density does not have a form that can be directly drawn
from in a simple manner. However, we can use a Metropolis—Hasting algorithm
for p(y|y, h) which, combined with draws from the Gamma distribution given in
(5.23), provides us with a Metropolis-within-Gibbs algorithm. In this empirical
application, we use a Random Walk Chain Metropolis—Hastings algorithm to
draw from (5.24). This algorithm is identical to that used to create the numbers
in the last two columns of Table 5.1, except that the acceptance probability is
calculated using (5.24).

Given output from posterior simulators such as we have developed for M and
M, it is relatively straightforward to calculate the marginal likelihoods using the
method of Gelfand and Dey. Section 5.7 provides the details. Briefly, once draws
from the posterior simulator have been obtained, we must evaluate the likelihood
and prior at these draws (see (5.20)). Since, for both models, the priors are
independent Normal-Gamma the prior evaluation component is straightforward
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to do. For M the likelihood function is given in (3.3) and for M> it is given in
(5.3). It is not hard to write computer code which evaluates these at the posterior
draws. The function labeled f (@) in (5.20) is also simple to program up, involving
only (5.21) and (5.22). Once the prior, likelihood and f(-) are evaluated at every
posterior draw, we can calculate g(-) as given in (5.20) and average the result to
provide us with an estimate of the marginal likelihood. As with every empirical
illustration, computer code for obtaining the marginal likelihoods for the linear
and nonlinear regression models is available on the website associated with this
book.

The two posterior simulators (i.e. the Gibbs sampler for the linear model and the
Metropolis-within-Gibbs for the nonlinear model) were run using Sp = 2500 burn-
in replications and S; = 25000 included replications. The marginal likelihoods
were calculated using p = 0.01,0.05 and 0.10 (see (5.21)). The resulting esti-
mates of the Bayes factors for these three truncation values were 1.067, 1.075 and
1.065, respectively. The fact that these three different estimates are so close to one
another provides informal evidence that our posterior simulators are giving reliable
results. Of course, the MCMC convergence diagnostics discussed in Chapter 4 (see
Section 4.2.4) can be used to provide more formal evidence of MCMC convergence.

The Bayes factors are very near one, indicating that the linear and nonlinear
regression models are receiving roughly equal support. Given that the posterior
mean of yy is a little more than one standard deviation from 1.0 (see Table 5.1),
this finding is quite reasonable.

5.10 SUMMARY

In this chapter, Bayesian methods for inference in the nonlinear regression model
are described. The nonlinear aspect means that analytical results are unavailable,
even when simple noninformative priors are used. It is also not possible, in gen-
eral, to develop a Gibbs sampler for posterior simulation. These features are used
to motivate the introduction of a new class of very general algorithms for posterior
simulation: the Metropolis—Hastings class of algorithms. Two commonly-used
variants, the Independence Chain and Random Walk Chain Metropolis—Hastings
algorithms are described in detail. The former works well in cases where a con-
venient approximation to the posterior exists, while the latter can be used if such
an approximation cannot be found. We also use the nonlinear regression model
as a framework for introducing a new method for evaluating a model or models,
the posterior predictive p-value. This is a general tool for measuring the fit of
a model. A general tool for marginal likelihood calculation, the Gelfand—Dey
method, is also described.

At this stage, we have introduced virtually all of the basic tools and con-
cepts used in the remainder of this book. In terms of posterior simulators, we
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have covered Monte Carlo integration, importance sampling, Gibbs sampling and
the Metropolis—Hastings algorithm. For model comparison, we have covered
the Gelfand—Dey method for marginal likelihood calculation as well as eas-
ier, but less generic, methods such as the Savage—Dickey density ratio. The
posterior predictive p-value approach has also been described. This approach
is best interpreted as a way of measuring model fit, but it can also be used
to compare models. The remaining chapters of this book are mostly concerned
with adapting these general tools and concepts to particular models. It is worth
stressing that we now have a wide variety of tools and, for some models,
more than one can be used. For instance, in the nonlinear regression model,
it is possible to use either importance sampling or a Metropolis—Hastings algo-
rithm. For model comparison, it is possible to use a posterior odds ratio or
use posterior predictive p-values. The precise tool chosen can be a matter of
preference or convenience and, in this book, we make particular choices. The
choices we make are not intended to be the only (or even the best) ones for a
given model.

5.11 EXERCISES

5.11.1 Theoretical Exercises

1. Which of the following regression functions is intrinsically linear? For those
which are intrinsically linear, write out a linear regression model in terms of
(possibly transformed) dependent and explanatory variables and discuss what
the properties of the regression errors are. Assume y; and x; are scalars and
g is N, h) fori =1,...,N.

(a)
yi = pixl2ei.
(b) |
yi = <,31 +,32—> &;.
Xi
(c) | |
—=p+h—+e.
Yi Xi
(d) X
yi = exp (,31 + ,32; + 8i) .
(e)

1
yi = exp (/31 +,32;> + &
1
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2. Consider the Normal regression model which is partly linear and partly non-
linear:

yi = B1+ Baxia+ -+ Brxik + f Kik+1s -+ s Xiktps V)t Ei

(a) Using a noninformative prior, derive the marginal posterior p(y|y).

(b) Discuss how you might derive a posterior simulator if you wished to carry
out Bayesian inference solely on y.

(c) Discuss how you might derive a posterior simulator if you wished to carry
out Bayesian inference on y and By, ..., B.

5.11.2 Computer-Based Exercises

Remember that some data sets and MATLAB programs are available on the
website associated with this book.

3. Use the house price data set and the Normal linear regression model with
natural conjugate prior described in the Empirical Illustration to Chapter 3.4
Use the posterior predictive p-value approach (see Section 5.6) to see whether
this model can reasonably capture the skewness and kurtosis in the data.

4. Use the house price data set and the Normal linear regression model which
is partly nonlinear and partly linear described in Exercise 2. You may use
whatever prior you wish for 8 and y provided it is informative. Normal
priors will be the most convenient.

(a) Using your results from Exercise 2, write and run a program for poste-
rior simulation which allows for the explanatory variables lot size and
number of bedrooms to have a nonlinear effect on house price. Assume
the other explanatory variables enter linearly and f() has a CES form
(see (5.1)).

(b) Do posterior results indicate that lot size and number of bedrooms have
a nonlinear effect on house price?

(c) Use the Savage—Dickey density ratio to calculate the Bayes factor for
testing whether there is nonlinearity in the regression relationship (see the
discussion at the beginning of Section 5.7).

(d) Re-do part (d) using the Gelfand—Dey method.

5. Re-do this chapt/er’i empirical illustration using importance sampling using

the f; (0|§ML, var(gML), v) as an importance function.

4The house price data set is available on the website associated with this book or in the Journal
of Applied Econometrics Data Archive listed under Anglin and Gencay (1996)
(http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/).
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6. Investigate the performance of Independence Chain and Random Walk Chain
Metropolis—Hastings algorithms using artificial data. The artificial data should
be generated from (5.1) using various values for y and h. You should exper-
iment with different candidate generating densities and different numbers of
replications. This chapter’s empirical illustration contains a simple example
of how you might compare algorithms.
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6
The Linear Regression Model

with General Error
Covariance Matrix

6.1 INTRODUCTION

In this chapter we return to the linear regression model
y=XB+e¢ (6.1)

In previous chapters, we assumed ¢ to be N(Oy, h~!Iy). This statement is really
a combination of several assumptions, some of which we might want to relax.
The assumption that the errors have mean zero is an innocuous one. If a model
has errors with a non-zero mean, this non-zero mean can be incorporated into
the intercept. To be precise, a new model, which is identical to the old except
for the intercept, can be created which does have mean zero errors. However,
the assumption that the covariance matrix of the errors is =!Iy might not be
innocuous in many applications. Similarly, the assumption that the errors have
a Normal distribution is one which might be worth relaxing in many cases.
In this chapter, we consider several empirically-relevant ways of relaxing these
assumptions and describe Bayesian inference in the resulting models.

All the models in this chapter are based on (6.1) and the following assumptions:

1. & has a multivariate Normal distribution with mean Oy and covariance matrix
h~'Q, where Q is an N x N positive definite matrix.

2. All elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of & with a probability
density function, p(X|X), where A is a vector of parameters that does not
include g8 and h.

Note that these assumptions are identical to those made in Chapters 2, 3 and
4, except for the assumption about the error covariance matrix. However, as we
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shall show in this chapter, assumptions about this error covariance matrix are
closely related to distributional assumptions. Hence, we can use this framework
to free up the assumption that the errors are Normally distributed.

The various models we discuss differ in the precise form that Q2 takes. After
discussing some general theory which is relevant for any choice of €2, we exam-
ine several specific choices which arise in many applications. We begin by con-
sidering heteroskedasticity, which is the name given for cases where the error
variances differ across observations. We consider two types of heteroskedastic-
ity: one where its form is known and one where it is unknown. The latter case
allows us to free up the Normality assumption, and we discuss, in particular,
how a certain model with heteroskedasticity of unknown form is equivalent to
a linear regression models with Student-t errors. This model allows us to intro-
duce the concept of a hierarchical prior, which will be used extensively in the
remainder of this book. Subsequently, we consider a case where the errors are
correlated with one another. In particular, we discuss the Normal linear regres-
sion model with autoregressive or AR errors. In addition to being of interest
in and of themselves, AR models are important time series models and provide
us with a convenient starting point for an introduction to time series methods.
The final model considered in this chapter is the seemingly unrelated regres-
sions or SUR model. This is a model which has several equations corresponding
to multiple dependent variables and is a component of models considered in
future chapters.

6.2 THE MODEL WITH GENERAL £

6.2.1 Introduction

Before discussing the likelihood function, prior, posterior and computational
methods, we present a general result which has implications for both interpre-
tation and computation for this model. Since €2 is a positive definite matrix, it
follows from Appendix A, Theorem A.10 that an N x N matrix P exists with
the property that PQ P’ = Iy. If we multiply both sides of (6.1) by P, we obtain
a transformed model

y =X*B+¢* (6.2)

where y* = Py, X* = PX and ¢* = Pe. It can be verified that £* is N(Oy,
h~'Iy). Hence, the transformed model given in (6.2) is identical to the Normal
linear regression model discussed in Chapters 2, 3 and 4. This has two impor-
tant implications. First, if €2 is known, Bayesian analysis of the Normal linear
regression model with nonscalar error covariance matrix is straightforward. The
researcher can transform her data and carry out Bayesian inference using the
methods of earlier chapters. Secondly, if 2 is unknown, (6.2) suggests methods
for Bayesian computation. That is, conditional on €2, (6.2) implies that the pos-
teriors of B8 and & will be of the same form as in previous chapters and, hence,
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these earlier results can be used for derivations relating to 8 and h. If the prior
for B and h is NG(B, V,s 2, v), then all the results of Chapters 2 and 3 are
applicable conditional upon Q and we can draw upon these results to derive a
posterior simulator. For instance, (3.14) can be used to verify that p(8|y, 2) is
a multivariate t distribution and this, combined with a posterior simulator for
p(L2|y) can be used to carry out posterior inference on 8 and 2. This is done
in Griffiths (2001) for the noninformative limiting case of the natural conju-
gate prior. In this chapter we use a prior of the independent Normal-Gamma
form of Chapter 4, Section 4.2, and a Gibbs sampler which sequentially draws
from p(Bly, h, 2), p(hly, B, ) and p(2|y, B, h) can be set up. The first two of
these posterior conditionals will be Normal and Gamma, as in Section 4.2.2 of
Chapter 4, while p(<2|y, 8, h) depends upon the precise form of 2. Hence, the
only new derivations which are required relate to this latter distribution. Similar
considerations hold for priors which impose inequality constraints (see Chapter 4,
Section 4.3).

6.2.2 The Likelihood Function

Using the properties of the multivariate Normal distribution, the likelihood func-
tion can be seen to be:
N

2

1 h
p(yIB, h, Q) = v 1$2072 {CXP [—5()’ - XpyQ'(y - Xﬂ)]} (6.3)

(2m)
or, in terms of the transformed data,

2
pOY*IB. h, Q) = " 5 {eXp [—ﬁ(y* - X*B) (v - X*ﬁ)” (6.4)
(2m)2 2

In Chapter 3, we showed how the likelihood function could be written in terms
of OLS quantities (see (3.4)—(3.7)). Here an identical derivation using the trans-
formed model yields a likelihood function written in terms of Generalized Least
Squares' (GLS) quantities:

v=N—k (6.5)
B\(Q) — (X*/X*)—lx*/y* — (X/Q_lX)_lX/Q_ly (6.6)
and
2 = O XB@)0" — X*B@) 67
Vv
_ 0 —XB@yQ (v - XB(Q)
Vv

IFor the reader unfamiliar with the concept of a Generalized Least Squares estimator, any fre-
quentist econometrics textbook such as Green (2000) will provide a detailed discussion. Knowledge
of this material is not necessary to understand the material in this chapter.
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as:

(2m)2

1 h ~ ~
X {h2 exp [_E(ﬂ —BEQYX'Q'X(B - ,3(9)):| } (6.8)

v hv
5 {hz exp [_2s<sz>—2“

6.2.3 The Prior

Here we use an independent Normal-Gamma prior for 8 and & (see Chapter 4,
Section 4.2.1), and use the general notation, p(€2), to indicate the prior for €2. In
other words, the prior used in this section is

p(B. h, Q) = p(B)p(h)p()

where

pB) = fn(BIB. V) (6.9)

and

p(h) = fe(hlv,s™2) (6.10)

6.2.4 The Posterior

The posterior is proportional to the prior times the likelihood and is of the form

p(B, h, Qly) «x p(S2)

1
x {exp [‘E{h(y* — X*B) (y* — X*B)
+B-PV (B —@}“ (6.11)

h N+23—2 hk
X —
exXp 2£_2

This posterior is written based on the likelihood function expressed as in (6.4).
Alternative expressions based on (6.3) or (6.8) can be written out. However, we
do not do this, since this joint posterior density for 8, & and 2 does not take the
form of any well-known and understood density and, hence, cannot be directly
used in a simple way for posterior inference. At least some of the conditionals
of the posterior are, however, simple. Proceeding in the same manner as in
Chapter 4 (see (4.4)—(4.10) and surrounding discussion), it can be verified that
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the posterior of B, conditional on the other parameters of the model is multivariate
Normal:

Bly.h.Q~N(B,V) (6.12)
where -
V=wl4+nxao'x)! (6.13)
and o R
B=VV'B+hX'Q ' XB(Q) (6.14)
The posterior for & conditional on the other parameters in the model is Gamma:
hly, 8,2~ G2, 7) (6.15)
where
vV=N+v (6.16)
and

o _ =Xy — XPB) + vs”
B v
The posterior for €2 conditional on 8 and 4 has a kernel of the form

(6.17)

h
p(Qly, B.h) & p(Q)|QI 2 {CXP [_E(y - XpyQ'(y - Xﬂ)]} (6.18)

In general, this conditional posterior does not take any easily recognized form.
In future sections of this chapter we consider particular forms for 2 and derive
appropriate posterior simulators. At this stage, we only note that, if we could
take posterior draws from p(2|y, 8, h), then a Gibbs sampler for this model
could be set up in a straightforward manner, since p(B|y, h, 2) is Normal and
p(hly, B, Q) is Gamma.

6.3 HETEROSKEDASTICITY OF KNOWN FORM

6.3.1 Introduction

Heteroskedasticity is said to occur if the error variances differ across observa-
tions. The models in previous chapters all had error variances which were iden-
tical across observations and were, thus, homoskedastic. A couple of examples
will serve to motivate how heteroskedasticity might arise in practice. Consider
first a microeconomic example where the dependent variable is company sales.
If errors are proportionate to firm size, then errors for small firms will tend to
smaller than those for large firms. Secondly, heteroskedasticity might arise in a
study involving data from many countries. Since developed countries have better
agencies for collecting statistics than developing countries, it might be the case
that errors are smaller in the former countries.
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In terms of our regression model, heteroskedasticity occurs if

w; 0 - 0
0 w 0 - .
Q= . o - - . (6.19)
. . .. 0
0 . . 0 wN

In other words, the Normal linear regression model with heteroskedastic errors is
identical to that studied in Chapters 2—4, except that we now assume var(g;) =
h_la),- fori=1,...,N.

The examples above indicate that we often know (or at least suspect), what
form this heteroskedasticity will take. For instance, w; might depend upon wheth-
er firm i is small or large or whether country i is developing or developed. Here
we will assume that

w; = h(z;,a) (6.20)

where /() is a positive function which depends on parameters « and a p-vector of
data, z;. z; may include some or all of the explanatory variables, x;. A common
choice for /(), which ensures that the error variances are positive is:

h(zi,o) = (1 +oyzi1 +a2zip + -+ ot,,zip)z (6.21)

but the discussion of this section works for other choices.

The prior, likelihood and posterior for this model are simply those in Section 6.2
with the expression for €2 given in (6.19) plugged in. Accordingly, we do not write
them out here. Note, however, that in the present section €2 depends upon « and,
hence, the formulae below are written as depending on «.

To carry out Bayesian inference in the present heteroskedastic model, a pos-
terior simulator is required. The previous discussion suggests that a Metropolis-
within-Gibbs algorithm (see Section 5.5.3) might be appropriate. In particular, as
noted in (6.12) and (6.15), p(Bly, h, @) is Normal and p(h|y, B, @) is Gamma,
and we require only a method for taking draws from p(«|y, B, h) to have a
complete posterior simulator. Unfortunately, if we plug (6.19) and (6.20) into
(6.18) to obtain an expression for p(«|y, B, h) the result does not take the form
of any convenient density. Nevertheless, a Metropolis—Hastings algorithm can
be developed. In the empirical illustration which follows, a Random Walk Chain
Metropolis—Hastings algorithm (see Section 5.5.2 of Chapter 5) is used although
other algorithms are possible. Bayes factors for any hypothesis of interest (e.g.
a) = --- = ap = 0 which is the hypothesis that heteroskedasticity does not
exist) can be calculated using the Gelfand—Dey approach. Alternatively, poste-
rior predictive p-values or HPDIs can be calculated to shed light on the fit and
appropriateness of the model. Predictive inference in this model can be carried
out using the strategy outlined in Chapter 4, Section 4.2.6.
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6.3.2 Empirical Illustration: Heteroskedasticity of a Known Form

We use the house price data set introduced in Chapter 3, to illustrate the use
of Gibbs sampling in the Normal linear regression model with heteroskedas-
ticity of known form. The reader is referred to Section 3.9 of Chapter 3 for
a precise description of the dependent and explanatory variables for this data
set. We assume the heteroskedasticity takes the form given in (6.21) and that
zi = (xi2, ..., xix)". The priors for 8 and h are given in (6.9) and (6.10) and we
use the same values for hyperparameters as in Chapter 4, Section 4.2.7. We use
a noninformative prior for « of the form

pa) o« 1

Note that this prior is improper and, hence, we cannot calculate meaningful Bayes
factors for hypotheses involving the elements of «. Accordingly, we present 95%
HPDIs along with posterior means and standard deviations in Table 6.1.

The posterior simulator is a Metropolis-within-Gibbs algorithm, with draws of
B and h taken from (6.12) and (6.15), respectively. Draws from p(«|y, B, h) are
taken using a Random Walk Chain Metropolis—Hastings algorithm with a Normal
increment random variable (see Chapter 5, (5.10)). p(«|y, B8, h) is given in (6.18)
with (6.21) providing the precise form for 2. Equation (6.18), evaluated at old and
candidate draws, is used to calculate the acceptance probability (see Chapter 5,
(5.11)). The variance of the proposal density, labelled X in (5.12), is chosen by
first setting ¥ = ¢/ and experimenting with different values of the scalar ¢ until
a value is found which yields reasonable acceptance probabilities. The posterior
simulatg_is\then run using this value Meld an estimate of the posterior variance
of o, var(a|y). We then set ¥ = cvar(o|y) and experiment with different values
of ¢ until we find one which yields an average acceptance probability of roughly
0.50. Then a final long run of 30 000 replications, with 5000 burn-in replications

Table 6.1 Posterior Results for 8, h and o

Standard

Mean Deviation 95% HPDI
B —5453.92 2976.04 [—10310, 557]
B> 6.12 0.40 [5.42, 6.82]
B3 3159.52 1025.63 [1477, 4850]
Ba 14459.34 1672.43 [11742, 17224]
Bs 7851.11 939.34 (6826, 9381]
h 1.30 x 1077 4.05 x 1078 [7%x1078,2 x 1077]
ol 5.49 x 1074 1.36 x 10~ [3x 1074 8 x 1074
o 0.68 0.32 [0.21, 1.26]
o3 0.70 0.42 [0.08, 1.40]

a4 —0.35 0.33 [—0.89, 0.18]
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discarded, is taken. MCMC diagnostics indicate convergence of the Metropolis-
within-Gibbs algorithm and numerical standard errors indicate an approximation
error which is small relative to posterior standard deviations of all parameters.

Table 6.1 indicates that heteroskedasticity does seem to exist for this data set.
That is, the 95% HPDIs do not include zero for «, o» and «3 indicating that lot
size, number of bedrooms and number of bathrooms have significant explanatory
power in the equation for heteroskedasticity. The fact that all of these coefficients
are positive indicates that the error variance for large houses tends to be bigger
than for small houses. In previous chapters, we ignored heteroskedasticity when
working with this data set. To see what effect this omission had, you may wish to
compare the results in Table 6.1 with those in Table 4.1. The latter table contains
results for the homoskedastic version of the model, but uses the same data and the
same prior for § and A. It can be seen that including heteroskedasticity has some
effect on the posterior of 8. For instance, the posterior mean of 84 was 16 133 in
the homoskedastic model and is 14 459 in the heteroskedastic one. However, for
many purposes, such differences might be fairly small and the researcher might
conclude that the incorporation of heteroskedasticity has not had an enormous
effect on results relating to S.

6.4 HETEROSKEDASTICITY OF AN UNKNOWN FORM:
STUDENT-t ERRORS

6.4.1 General Discussion

In the previous section, we assumed that the heteroskedasticity was of a form
given by (6.20). The question arises as to how to proceed if you suspect het-
eroskedasticity is present, but of unknown form. In other words, you are will-
ing to assume (6.19), but unwilling to assume a functional form as in (6.20).
With N observations and N + k 4 1 parameters to estimate (i.e. B, h and w =
(w1, ... ,wy)"), treatment of heteroskedasticity of unknown form may sound
like a difficult task. However, as we shall see, it is not too difficult to extend the
techniques of the previous sections of this chapter to be applicable to this model.
Furthermore, the method developed to handle this case is quite important for two
reasons. Firstly, the method involves the use of a hierarchical prior. This is a
concept we will use again and again throughout the remainder of this book. Hier-
archical priors have played a big role in many recent developments in Bayesian
statistical theory and are gradually becoming more popular in econometrics as
well. They are commonly used as a way of making flexible, parameter-rich mod-
els more amenable to statistical analysis.> Secondly, this model also allows us to

2Frequentist econometricians also work with models that are hierarchical in structure and very
similar to ones discussed in this book. However, the frequentist statistical theory surrounding these
models is often quite difficult. Accordingly, Bayesian methods are particularly popular in this area
of the statistical literature.
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introduce concepts relating to flexible econometric modelling (see Chapter 10)
and, in particular, allows us to free up the assumption of Normal errors that we
have used so far.

We begin by eliciting p(w), the prior for the N-dimensional vector w. As in
previous chapters, it proves convenient to work with error precisions rather than
variances and, hence, we define A = (A1, A2, ..., Ay) = (col_] , a)z_l, ,a);,l)’.
Consider the following prior for A:

N
p) =[] fo@ill, va) (6.22)
i=1
Note that the prior for A depends upon a hyperparameter, v, , which is chosen by
the researcher and assumes each A; comes from the same distribution. In other
words, (6.22) implies that the A;s are i.i.d. draws from the Gamma distribution.
This assumption (or something similar) is necessary to deal with the problems
caused by the high-dimensionality of A. Intuitively, if we were to simply treat
Al,s ..., Ay as N completely independent and unrestricted parameters, we would
not have enough observations to estimate each one of them. Equation (6.22) puts
some structure which allows for estimation. It allows for all the error variances
to be different from one another, but says they are all drawn from the same
distribution. Thus, we can have a very flexible model, but enough structure is
still imposed to allow for statistical inference.

You may be wondering why we chose the particular form given in (6.22). For
instance, why should the A;s be i.i.d. draws from the Gamma distribution with
mean 1.0? Rather remarkably, it turns out that this model, with likelihood given
by (6.3) and prior given by (6.9), (6.10) and (6.22) is exactly the same as the
linear regression model with i.i.d. Student-t errors with v, degrees of freedom.
In other words, if we had begun by assuming

pe) = fi(ei0, A", 1) (6.23)

fori =1,..., N, derived the likelihood and used (6.9) and (6.10) as priors for
B and h, respectively, we would have ended up with exactly the same posterior.
We will not formally prove this statement and the interested reader is referred
to Geweke (1993) for proofs and further explanation. Note, however, the power
and convenience of this result. The Student-t distribution is similar to the Nor-
mal, but has fatter tails and is more flexible. In fact, the Normal distribution is a
special case of the Student-t which occurs as v) — oo. Thus, we have a model
that allows for a more flexible error distribution, but we have achieved this result
without leaving our familiar Normal linear regression model framework. Fur-
thermore, we can draw on the computational methods derived above to develop
a posterior simulator for the linear regression model with independent Student-t
errors. For this reason, an explicit statement of the likelihood function for this
model is not given here.

In Chapter 10 we discuss several ways of making models more flexible. How-
ever, it is worthwhile briefly noting that the model discussed here involves a
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mixture of Normals distribution of a particular sort. Intuitively, if a Normal
distribution is too restrictive, you can create a more flexible distribution by taking
a weighted average of more than one Normal distribution. As more and more
Normals are mixed, the distribution becomes more and more flexible and, as
discussed in Chapter 10, can approximate any distribution to a high degree of
accuracy. Thus, mixtures of Normals models are a powerful tool for use when
economic theory does not suggest a particular form for the likelihood function and
you wish to be very flexible. Our treatment of heteroskedasticity of an unknown
form is equivalent to a scale mixture of Normals. This means that the assump-
tion that &; are independent N (0, h_lki_]) with prior for A; given in (6.22) is
equivalent to the assumption that the error distribution is a weighted average (or
mixture) of different Normal distributions which have different variances (i.e.
different scales) but the same means (i.e. all errors have mean zero). When this
mixing is done using fg(A;|1, vy) densities, the mixture of Normals ends up
being equivalent to the t distribution. However, using densities other than the
fc(Ai|l,vy) will yield other distributions more flexible than the Normal. See
Chapter 10 for further details.

The previous discussion assumed that v, was known. In practice, this would
usually not be a reasonable assumption, and it is, thus, desirable to treat it as
an unknown parameter. In the Bayesian framework, every parameter requires
a prior distribution and, at this stage, we will use the general notation p(v,).
Note that, if we do this, the prior for X is specified in two steps, the first being
(6.22), the other being p(v,). Alternatively, the prior for A can be written as
p(X|vy)p(vy). Priors written in two (or more) steps in this way are referred to
as hierarchical priors. Writing a prior as a hierarchical prior is often a conve-
nient way of expressing prior information and many of the models discussed
in future chapters will be written in this way. However, we do stress the con-
venience aspect of hierarchical priors. It is never necessary to use a hierar-
chical prior, since the laws of probability imply that every hierarchical prior
can be written in a non-hierarchical fashion. In the present case, the result
ph) = f p(Avy) p(vi)dv, could be used to derive the non-hierarchical version
of our prior for A.

In all of the previous empirical illustrations, we have presented posterior means
as point estimates of parameters and posterior standard deviations as measures
of the uncertainty associated with the point estimates. However, as mentioned
in Chapter 1, means and standard deviations do not exist for all valid probabil-
ity density functions. The present model is the first one we have considered
where means and standard deviations do not necessarily exist. In particular,
Geweke (1993) shows that if you use a common noninformative prior for 8
(i.e. p(B) o 1 on the interval (—oo, 00)), then the posterior mean does not
exist, unless p(v,) is zero on the interval (0, 2]. The posterior standard devi-
ation does not exist unless p(v,) is zero on the interval (0, 4]. Hence, the
researcher who wants to use a noninformative prior for B8 should either use
a prior which excludes small values for v, or present posterior medians and
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interquartile ranges (which will exist for any valid p.d.f.). With an informative
Normal prior for g8 like (6.9), the posterior mean and standard deviation of
will exist.

It is also risky to use a noninformative prior for v,. A naive researcher who
wishes to be noninformative might use an improper Uniform prior:

p(,) o« 1 for vy, € (0, co)

thinking that it would allocate equal prior weight to every interval of equal
length. But the Student-t distribution with v, degrees of freedom approaches the
Normal distribution as vy — oo. In practice, the Student-t is virtually identical
to the Normal for v, > 100. Our naive ‘noninformative’ prior allocates virtually
all its weight to this region (i.e. %5:88; = 0). So this prior, far from being
noninformative, is extremely informative: it is saying the errors are Normally
distributed! This illustrates one of the problems with trying to come up with
noninformative priors. There is a large Bayesian literature on how to construct
noninformative priors (Zellner, 1971, provides an introduction to this). A detailed
discussion of this issue is beyond the scope of the present book (although see
Chapter 12, Section 12.3). However, it is worth noting that extreme care must
be taken when trying to elicit a noninformative prior.

6.4.2 Bayesian Computation

In this subsection, we develop a Gibbs sampler for posterior analysis of 8, &, A
and v,. The Gibbs sampler requires the derivation of the full conditional pos-
terior distributions of these parameters. We have already derived some of these
as p(Bly, h,A) and p(h|y, B, A) are given in (6.12) and (6.15), respectively.3
Hence, we focus on p(A|y, B, h,v)) and p(v,|y, B, h, A). The former of these
can be derived by plugging the prior given in (6.22) into the general form for
the conditional posterior given in (6.18). An examination of the resulting den-
sity shows that the A;s are independent of one another (conditional on the other
parameters of the model) and each of the conditional posteriors for X; has the
form of a Gamma density. Formally, we have

N
POy, B, b)) = pGuily, B, b, va) (6.24)

i=1

and

vy + 1
pGily. B.hovi) = fo [ Mil——. v + 1 (6.25)
he; + v,

Note that, conditional on knowing B, ¢; can be calculated and, hence, the param-
eters of the Gamma density in (6.25) can be calculated in the Gibbs sampler.

3Formally, the full conditionals to be used in the Gibbs sampler should be p(Bly, &k, A, v;)
and p(hly, B, A, v;). However, conditional on X, v, adds no new information and, thus,
pBly, h, A, v) = p(Bly, h, 1) and p(hly, B, A, vz) = p(hly, B, A).
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Up until now, we have said nothing about the prior for v, and its precise form
has no relevance for the posterior conditional for the other parameters. However,
the form of p(v,) does, of course, affect p(vy|y, B, h, A) and, hence, we must
specify it here. Since we must have v, > 0, we use an exponential distribution
for the prior. As noted in Appendix B, Theorem B.7, the exponential density is
simply the Gamma with two degrees of freedom. Hence, we write

p(i) = foaly,,2) (6.26)

Other priors can be handled with small changes in the following posterior simu-
lation algorithm.

pily, B, h, 1) is relatively easy to derive, since v, does not enter the like-
lihood and it can be confirmed that p(v,|y, 8, h, L) = p(vy|)1). It follows from
Bayes theorem that

pld) o p(Ava) p(vi)

and, thus, the kernel of the posterior conditional of v, is simply times (6.22)
times (6.26). Thus, we obtain

Ny,
i\ 2 v\ N
pnly Bohny o (5) T T(F)  expl=ma) (6.27)
where
l +IXN:[1 A+ 2]
= — — n . i
1 12N 2 i—1 l l

This density is a non-standard one. Hence, we will use a Metropolis—Hastings
algorithm to take draws from (6.27). However, it should be mentioned in passing
that Geweke (1993) recommends use of another useful computational technique
called acceptance sampling. This technique is very useful when the non-standard
distribution that the researcher wishes to draw from is univariate and can be
bounded. We will not discuss it here, but Geweke (1993) provides more detail
on acceptance sampling as it relates to the present model (see also Chapter 12,
Section 12.1). Devroye (1986) offers a thorough discussion of acceptance sam-
pling in general.

For many hypotheses (e.g. B; = 0) the Savage—Dickey density ratio can
be used for model comparison. It can be calculated as described in Chapter 4,
Section 4.2.5. However, not all hypotheses are easily calculated using the Sav-
age—Dickey ratio. For instance, in many cases you might be interested in seeing
whether there is any evidence of departures from Normality. In this case, you
would wish to compare Mi: vy, — oo to M>: v, is finite. These models do
not easily fit in the nested model comparison framework for which the Sav-
age—Dickey density ratio is suitable. However, the Bayes factor comparing these
two models can be calculated using the Gelfand—Dey approach. Note that this
would require a posterior simulator for each model (i.e. the posterior simulator
in Chapter 4, Section 4.2 for M; and the one described in this section for M>).
Alternatively, posterior predictive p-values or HPDIs can be calculated to shed
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light on the fit and appropriateness of the model. Predictive inference in this
model can be carried out using the strategy outlined in Chapter 4, Section 4.2.6.

6.4.3 Empirical Illustration: The Regression Model with Student-t Errors

We return to our familiar house price data set introduced in Chapter 3 to illus-
trate the use of Gibbs sampling in the linear regression model with independent
Student-t errors (or, equivalently, the Normal linear regression model with het-
eroskedasticity of unknown form). The reader is referred to Section 3.9 for a
precise description of the dependent and explanatory variables for this data set.
The priors for B and A are given in (6.9) and (6.10) and we use the same val-
ues for hyperparameters as in Chapter 4, Section 4.2.7. The prior for v, depends
upon the hyperparameter v,, its prior mean. We set v, = 25, a value which
allocates substantial prior weight both to very fat-tailed error distributions (e.g.
vy < 10), as well as error distributions which are roughly Normal (e.g. vy > 40).

The posterior simulator is a Metropolis-within-Gibbs algorithm, with draws of
B and h taken from (6.12) and (6.15), respectively. Draws from p(X1|y, B, k, v).)
are taken using (6.25). For p(vy|y, B, h,A), we use a Random Walk Chain
Metropolis—Hastings algorithm with a Normal increment random variable (see
Chapter 5, (5.10)) . Equation (6.27), evaluated at old and candidate draws, is used
to calculate the acceptance probability (see Chapter 5, (5.11)). Candidate draws
of v, which are less than or equal to zero have the acceptance probability set to
zero. The variance of the proposal density, labelled ¥ in (5.12), is chosen by first
setting ¥ = ¢ and experimenting with different values of the scalar c until a value
is found which yields reasonable acceptance probabilities. The posterior simula-
tor is ﬁei run using this value to }Leld\ an estimate of the posterior variance of
vy, var(v,|y). We then set X = cvar(v,|y) and experiment with different values
of c until we find one which yields an average acceptance probability of roughly
0.50. Then a final long run of 30 000 replications, with 5000 burn-in replications
discarded, is taken. MCMC diagnostics indicate convergence of the Metropolis-
within-Gibbs algorithm and numerical standard errors indicate an approximation
error which is small relative to posterior standard deviations of all parameters.

Table 6.2 contains posterior results for the key parameters and it can be seen
that, although posteriors for the elements of 8 are qualitatively similar to those
presented in Tables 4.1 and 6.1, the posterior for v, indicates the errors exhibit
substantial deviations from Normality. Since this crucial parameter is univariate,
we also plot a histogram approximation to its posterior. Figure 6.1 indicates that
p(v,.]y) has a shape which is quite skewed and confirms the finding that virtually
all of the posterior probability is allocated to small values for the degrees of
freedom parameter. Note, however, that there is virtually no support for extremely
small values which would imply extremely fat tails. Remember that the Cauchy
distribution is the Student-t with v, = 1. It has such fat tails that its mean does
not exist. There is no evidence for this sort of extreme behavior in the errors for
the present data set.
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Table 6.2 Posterior Results for g and v,

Standard

Mean Deviation 95% HPDI
Bi —413.15 2898.24 [—5153, 4329]
B 5.24 0.36 [4.65, 5.83]
B3 2118.02 972.84 [501, 3709]
Ba 14910.41 1665.83 [12 188, 17631]
Bs 8108.53 955.74 [6706, 9516]
vy 4.31 0.85 [3.18, 5.97]

2 3 4 5 6 7 8 9
Degrees of freedom

Figure 6.1 Posterior Density for Degrees of Freedom

6.5 AUTOCORRELATED ERRORS

6.5.1 Introduction

Many time series variables are correlated over time due to factors such as habit
persistence or the time taken for adjustments to take place. This correlation
between values of a variable at different times can spill over to the error. It
is thus desirable to consider forms for the error covariance matrix which allow
for this. In earlier chapters we assumed & to be N(Oy, h=1Iy). In the previous
sections of the present chapter, we relaxed this to allow for the error covariance
matrix to be diagonal. However, so far, we have always assumed the errors to
be uncorrelated with one another (i.e. E(g;¢j) =0 for i # j). In this section, we
consider a model which relaxes this assumption.

Following common practice, we will use a subscript ¢ to indicate time. That
is, y; for t = 1,..., T indicates observations on the dependent variable from
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period 1 through T (e.g. annual observations on GDP from 1946-2001). A simple
manner of allowing for the errors to be correlated is to assume they follow an
autoregressive process of order 1 or AR(1) process:

& = p&r—1 + U; (6.28)

where u; is i.i.d. N(0, h~1). This specification allows for the error in one period
to depend on that in the previous period.

The time series literature has developed a myriad of tools to aid in a more
formal understanding the properties of various time series models and we digress
briefly to introduce a few of them here using a general notation, z, to indicate
a time series.* In this section, we set z; = &, but the concepts are generally
relevant and will be used in later chapters. It is standard to assume that the
process generating the time series has been running from time period —oo and
will run until period co. The econometrician observes this process for periods
t=1,...,T. z; is said to be covariance stationary if, for every ¢ and s:

E(z;) = E(zi—s) = 1
var(z;) = var(z,—s) = Yo

and
cov(Zs, Zi—s) = Vs

where , yo and y; are all finite. In words, a time series is covariance stationary
if it has a constant mean, variance and the covariance between any two observa-
tions depends only upon the number of periods apart they are. Many time series
variables in economics do seem to be stationary or, if not, can be differenced to
stationarity. The first difference of z; is denoted by Az; and is defined by

Azp =2t — 2141
In a similar fashion, we can define mth order differences for m > 1 as
AmZt — Am_th _ Am_lZz_l

To understand the economic relevance of differencing, suppose that z; is the
log of the price level, then Az, is (approximately) the percentage change in
prices which is inflation. A%z, would then be the percentage change in the
rate of inflation. Any or all of these might be important in a macroeconomic
model.

A common tool for examining the properties of stationary time series vari-
ables is y; which is referred to as the autocovariance function. Closely related
is the autocorrelation function, which calculates correlations between observa-
tions s periods apart (i.e. it is defined as y—(‘) for s = 0,...,00). These are
both functions of s and it is common to plot either of them to see how they

4Space precludes a detailed discussion of time series methods. Bauwens, Lubrano and Richard
(1999) provide an excellent Bayesian discussion of time series methods and the reader is referred to
this book for more detail. Enders (1995) is a fine non-Bayesian book.
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change as s increases. For instance, with macroeconomic variables we typically
find autocorrelation functions decrease with s since recent happenings have
more impact on current macroeconomic conditions than things that happened
long ago.

Let us now return to the AR(1) process for the errors given in (6.28). To figure
out its properties it is convenient to write & in terms of u,_; for s =0, ..., co.
This can be done by noting &;,_1 = p&;—> + u;_1 and substituting this expression
into (6.28), yielding

& = per—+ pus—1 +u;

If we then substitute in the expression for &;,_ we obtain an equation involving
&—3 which we can substitute in for. Successively substituting in expressions for
&;_s in this manner, (6.28) can be written as

o0
&= Puis (6.29)
s=0

Written in this form, you can see that problems will occur if you try and calculate
the mean, variance and covariance of &; since p° will become infinite if |p| > 1.
Even if p = 1, such calculations will involve infinite sums of finite terms. In
fact, |p| < 1 is required for the time series to be stationary.

If we impose |p| < 1 it can be confirmed that E(s;) =0

o0
1
yo=var(e) =h""Y p¥=— >
’ ; h(1 = p?)
and
,OS
Vs = cov(és, &—5) = h(sz)

Note that, since |p| < 1, the autocovariance function y; declines as s increases.
Intuitively, with an AR(1) process, the influence of the past gradually dies away.

These results can be used to write the covariance matrix of & as A1,
where

1 P ;02 . pT—l
p 1 p . .
1 2 2
Q= P P P (6.30)
1—p2
. . . . p
,OT_I . /02 p 1

The AR(1) model can be extended to include more past time periods or lags.
We can define the autoregressive process of order p or AR(p) process as

& = P1&—1+ -+ Pp&r—p T Us (6.31)

and methods similar to those above can be used to calculate the mean, variance
and autocovariance function. As will be shown in the next section, we do not
need to know the exact form of the autocovariance function in order to do
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Bayesian inference with the AR(p) process. Hence, we do not write it out here.
The interested reader is referred to a time series book such as Enders (1995) for
detail. Suffice it to note here that the AR(p) process has similar properties to the
AR(1), but is more flexible.

This is a convenient place to introduce some more time series notation. The
lag operator is denoted by L and has the property that Le; = &_1 or, more
generally, L&, = &;_,,. The AR(p) model can thus be written as

(I=pil == ppL?) & = u,
or
p(L)er = uy
where p(L) = (1 — piL —--- — p,L?) is a polynomial of order p in the lag

operator. It can be verified that an AR(p) process is stationary if the roots of
the equation p(z) = O are all greater than one in absolute value. For future
reference, define p = (p1, ..., pp) and let ® denote the stationary region for
this model.

6.5.2 Bayesian Computation

A posterior simulator which allows for Bayesian inference in the Normal linear
regression model with AR(p) errors can be developed by adapting the formulae
for the general case with 2 unspecified given in (6.12), (6.15) and (6.18). If
we make one approximation, these posterior conditionals assume a simple form.
This approximation involves the treatment of the initial conditions. To understand
what is meant by this statement, consider how we would transform the model as
in (6.2). We can do this by working out the form of 2 when AR(p) errors are
present and then deriving the matrix P such that PQP’ = I. Alternatively, let
us write the regression model as

V= xt/lB + & (6.32)

where x; = (1, x12, ..., x;x). Multiplying both sides of (6.32) by p(L) and
defining y; = p(L)y; and x;" = p(L)x, we obtain

v =x"B+u (6.33)

We have assumed that u; is i.i.d. N (O, h_l) and, thus, the transformed model
given in (6.33) is simply a Normal linear regression model with i.i.d. errors.
Note, however, what happens to this transformation for values of ¢ < p. y{, for
instance, depends upon Yo, ..., y1—p. Since our data runs from t = 1,...,T,
these so-called initial conditions, yo, ... , y1—p, are not observed. The treatment
of initial conditions is a subtle issue, especially if the AR process is non-stationary
or nearly so. The interested reader is referred to Bauwens, Lubrano and Richard
(1999) or Schotman (1994) for more detail. Here, we will assume stationarity of
errors, so the treatment of initial conditions is of less importance. Accordingly,
we will follow a common practice and work with the likelihood function based
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on data from ¢t = p+1,...,T rather than r = 1,..., T. Provided p is small
relative to T, this will result in an approximate likelihood which is quite close to
the true likelihood. Since y; and x; fort = p + 1,..., T do not depend upon

unobserved lagged values, the transformation given in (6.33) can be done in a
straightforward fashion.

To keep the notation as simple as possible, we will not introduce a new notation
for the likelihood, posterior, etc. for data from t = p+1,..., T. Instead, for the
remainder of this section, we will simply interpret y, y*, & and ¢* as (T — p)-
vectors (i.e. the first p elements have been removed). X and X* will be (T —p) xk
matrices. With these changes, a Gibbs sampling algorithm can be derived in
a straightforward fashion using previous results. Intuitively, p(B8|y, h, p) and
p(hly, B, p) are given in (6.12) and (6.15). p(p|y, B, h) can be derived by noting
that, conditional on 8 and &, &; fort = p+1, ..., T is known and (6.31) is simply
a Normal linear regression model (with known error variance) with coefficients
given by p. Thus, standard Bayesian results from previous chapters can be used
to derive p(ply, B, h).

Formally, using the independent Normal-Gamma prior for 8 and A given in
(6.9) and (6.10), the results of Section 6.2 can be modified to the present case as

Bly,h,p~ N(@B,V) (6.34)
where -
V=W"4+nrxx""! (6.35)
and o
B=VV'B+hx*y*) (6.36)
The posterior for & conditional on the other parameters in the model is Gamma:
hly.p.p~ GG 7) (6.37)
where
v=T—-p+v (6.38)
and

2 _ 0T =X - X+ 52
v

(6.39)

The posterior for p depends upon its prior which, of course, can be any-
thing which reflects the researcher’s non-data information. Here we assume it is
multivariate Normal, truncated to the stationary region. That is,

p(p) < fn(plp. V )1(p € @) (6.40)

where 1(p € ®) is the indicator function which equals 1 for the stationary region
and zero otherwise. With this prior, it is straightforward to derive

pply, B, ) o fu(plp, V,)1(p € ®) (6.41)
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where .
Vo=, +hE'E)"! (6.42)
p=Vp(V, 'p+hE's) (6.43)
and E is a (T — p) x k matrix with tth row given by (g,_1, ..., &_)).

The Gibbs sampler involves sequentially drawing from (6.34), (6.37) and
(6.41). The fact that (6.41) is truncated multivariate Normal, rather than sim-
ply multivariate Normal adds a slight complication. However, drawing from
the truncated multivariate Normal distribution can be done by drawing from
the untruncated variant and simply discarding the draws which fall outside the
stationary region. Provided p lies within (or not too far outside) the station-
ary region, this strategy should work well. Alternatively, a Metropolis—Hastings
algorithm can be derived or the methods of Geweke (1991) for drawing from
the truncated multivariate Normal can be used. Predictive inference in this model
can be carried out using the strategy outlined in Chapter 4, Section 4.2.6. Poste-
rior predictive p-values or HPDIs can be calculated to shed light on the fit and
appropriateness of the model. Bayes factors for any hypothesis of interest can
be calculated using either the Savage—Dickey density ratio or the Gelfand—Dey
approach. The fact that (6.41) provides only the kernel of p(pl|y, B, h) makes
the use of the Savage—Dickey density ratio a little more complicated. Remember
(see Chapter 4, Section 4.2.5) that the Savage—Dickey density ratio requires you
to know the complete densities (not just the kernel), p(pl|y, B, h) or p(p|y). For
p = 1, the integrating constant can be easily calculated since p(pl|y, 8, h) is a
univariate truncated Normal and the properties of this univariate density are well
known (see Poirier, 1995, p. 115). However, for p > 1 the stationary region is
nonlinear and p(p|y, B, h) is harder to work with analytically. Nevertheless, it is
straightforward to calculate the necessary integrating constant through posterior
simulation. That is, the density corresponding to (6.41) is

NGB, Vo)l(p € ®)
[o fN(olP. Vp)dp

p(ply, B, h) =

A common posterior simulator involves drawing from fx(p|p Vp) and dis-
carding draws outside the stationary region. But, f(b fn(olp, Vp)d,o is sim-
ply the proportion of draws retained. This can be estimated by, at every pass
through the Gibbs sampler, calculating the number of rejected draws before
an acceptable one is found. 1 — fq, In(polp, Vp)a'p is approximated by the
number of rejected draws divided by the number of rejected draws plus one.
As the number of Gibbs replications goes to infinity, the approximation error
will go to zero. In general, the integrating constant of any truncated density
can always be found by drawing from its untruncated counterpart and calcu-
lating the proportion of draws within the truncated region. Depending on the
prior used, such a strategy may be necessary for calculating its integrating
constant.
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6.5.3 Empirical Illustration: The Normal Regression Model
with Autocorrelated Errors

To illustrate Bayesian inference in the Normal regression model with autocor-
related errors, we use a data set pertaining to baseball. The dependent variable
is the winning percentage of the New York Yankees baseball team every year
between 1903 and 1999. Interest centers on explaining the Yankees’ performance
using various measures of team offensive and defensive performance. Thus

y; = winning percentage (PCT) in year ¢t = wins/(wins + losses),
Xrp = team on-base percentage (OBP) in year ¢,

xy3 = team slugging average (SLG) in year ¢,

Xxr4 = team earned run average (ERA) in year 7.

A knowledge of baseball is not necessary to understand this empirical example.
You need only note that the explanatory variables are all measures of team per-
formance. We would expect x;» and x;3 to be positively associated with winning
percentage while x;4 should exhibit a negative association. Despite the prior
information revealed in the previous sentence, we use a noninformative prior
for B and set V™! = Og.x. We also use a noninformative prior for the error
precision and set v = 0. With these choices, the values of A and s> are irrele-
vant. We use the technique described in the previous subsection to calculate the
Savage—Dickey density ratios comparing models with p; =0 for j =1,...,p
to unrestricted models. This requires an informative prior for p and, thus, we
set p=0and V , = cl},. Various values of ¢ are chosen below in a prior sensi-
tivity analysis. Throughout, we set p = 1. In preliminary runs with larger values
of p, Bayes factors and HPDIs provided no evidence for autocorrelation of an
order higher than one. To help provide intuition, note that the stationarity condi-
tion with p = 1 implies |p1| < 1 and values of p; near one can be considered
as implying a large degree of autocorrelation.

All results are based on 30 000 replications, with 5000 burn-in replications dis-
carded and 25 000 replications retained. MCMC diagnostics indicate convergence
of the Gibbs sampler, and numerical standard errors indicate an approximation
error which is small relative to posterior standard deviations of all parameters.

Table 6.3 presents posterior results for 8 with ¢ = 0.09, a reasonably small
value reflecting a prior belief that autocorrelation in the errors is fairly small (i.e.
the prior standard deviation of p; is 0.3). It can be seen that the results are as
expected in that OBP and SLG are positive and ERA is negatively associated
with winning.

At the beginning of the book, we emphasized the importance of doing prior
sensitivity analysis. For the sake of space, our previous empirical illustrations
did not include any investigation of prior sensitivity. However, we will do one
here with regards to the AR(1) coefficient. Table 6.4 contains results from a prior
sensitivity analysis where various values of ¢ are used. This table reveals that
prior information has little affect on the posterior, unless prior information is
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Table 6.3 Posterior Results for

Standard
Mean Deviation 95% HPDI
Bi 0.01 0.07 [—0.11,0.12]
B 1.09 0.35 [0.52, 1.66]
B3 1.54 0.18 [1.24,1.83]
Ba —0.12 0.01 [—0.13, —0.10]

Table 6.4 Posterior Results for p;

Standard Bayes Factor
Mean Deviation 95% HPDI for p1 =0
c=0.01 0.10 0.07 [—0.02,0.23] 0.49
c=0.09 0.20 0.10 [0.03, 0.36] 0.43
c=0.25 0.21 0.11 [0.04, 0.39] 0.56
c=1.0 0.22 0.11 [0.05, 0.40] 0.74
c =100 0.22 0.11 [0.05, 0.40] 0.84

extremely strong as in the ¢ = 0.01 case. This can be seen by noting that pos-
terior means, standard deviations and HPDIs are almost the same for all values
of ¢ between 0.09 and 100. The latter is a very large value which, to all intents
and purposes, implies that the prior is flat and noninformative over the station-
ary region. The Bayes factors are also fairly robust to changes in the prior. As
an aside, it is worth noting that this robustness of the Bayes factor is partly to
do with the fact that the prior is truncated to a bounded interval —the stationary
region. Don’t forget the problems that can occur with Bayes factors when you
use noninformative improper priors on parameters whose support is unbounded
(e.g. see Chapter 3, Section 3.6.2).

6.6 THE SEEMINGLY UNRELATED
REGRESSIONS MODEL

6.6.1 Introduction

The final model considered in this chapter is the Seemingly Unrelated Regressions
(SUR) model. It is a multiple equation model which is both interesting in and
of itself and is a component of other common models. In economics, multiple
equation models arise in many contexts. For instance, in a study of consumption,
the researcher may wish to estimate an equation for each category of consumption
(i.e. food, consumer durables, non-durables, etc.). In a microeconomic application,
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the researcher may wish to estimate a factor demand equation for each factor of
production.’ In many cases, simply working with one equation at a time using
the techniques of previous chapters will not lead the researcher too far wrong.
However, working with all the equations together can improve estimation. This
section discusses how to do so.

The SUR model can be written as

Ymi = x;m'ﬁm + Emi (644)

with i = 1,..., N observations for m = 1,..., M equations. y,; is the ith
observation on the dependent variable in equation m, x,; iS a k,-vector con-
taining the ith observation of the vector of explanatory variables in the mth
equation and S, is a k,,-vector of regression coefficients for the mth equation.®
Note that this framework allows for the number of explanatory variables to dif-
fer across equations, but some or all of them may be the same in different
equations.

We can put the SUR model in a familiar form. To do this we stack all equations

into vectors/matrices as y; = (V1j, ..., ymi)s & = (€1iy -+ » €mi)’
B1
B=|
Bm
x; 0 - 0
0 x5 O .
X; = : )
0
0 0 xp

and define k = Znﬁle k. Using this notation, it can be verified that (6.44) can
be written as

yi=XiB+ei (6.45)
We now stack all the observations together as
Vi
v=| -
YN

SFor the reader with additional knowledge of econometrics, the reduced form of a simultaneous
equations model is in the form of a SUR model. Similarly, a Vector Autoregression or VAR is also
a SUR model (see Chapter 12, Section 12.4).

%Note that we have slightly changed notation from that used previously. In this section, x,,; is a
vector and the first subscript indicates the equation number. Previously, x;; was a scalar indicating
the ith observation on the jth explanatory variable.
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&1
g =
EN
X1
x=|
Xy
and write
y=XB+e¢

Thus, the SUR model can be written as our familiar linear regression model.

So far we have said nothing about error properties of this model. If we were
to assume &,,; to be i.i.d. N(0, h~") for all i and m, then we would simply have
the Normal linear regression model of Chapters 2, 3 and 4. However, in many
applications, it is common for the errors to be correlated across observations
and, thus, we assume &; to be i.i.d. N(O, H ') fori = 1,..., N where H is
an M x M error precision matrix. With this assumption it can be seen that ¢ is
N (0, ) where 2 is an NM x N M block-diagonal matrix given by

H™! o - - 0
0 H! .
Q= . . .. . (6.46)
. . . . 0
0 . .0 H!

Hence, the SUR model lies in the class of models being studied in this chapter
and the prior, likelihood and posterior have been discussed in Section 6.2. One
minor issue you may have noticed is that there is no % in this model. This is not
a substantive difference in that 4 was merely a scalar that was factored out for
convenience in the previous sections. In this model, it is not convenient to factor
out a scalar in this way (although we could have done this if we had wanted to).

6.6.2 The Prior

It is worthwhile to briefly discuss prior elicitation in the SUR model as this is a
topic which has received a great deal of attention in the literature. In this section,
we will use an extended version of our familiar independent Normal-Gamma
prior, the independent Normal-Wishart prior:

p(B, H) = p(B)p(H)

where

p(B) = fn(BIB, V) (6.47)
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and
p(H) = fw(H|v, H) (6.43)

The Wishart distribution, which is a matrix generalization of the Gamma distri-
bution, is defined in Appendix B, Definition B.27. For prior elicitation, the most
important things to note are that E(H) = vH and that noninformativeness is
achieved by setting v = 0 and H~' = 0y » (see Appendix B, Theorem B.16).

However, many other priors have been suggested for this model. In particular,
a Normal-Wishart natural conjugate prior exists for this model analogous to that
used in Chapter 3. This prior has the advantage that analytical results are available
so that a posterior simulator is not required. However, the natural conjugate prior
for the SUR model has been found by many to be too restrictive. For instance, it
implies that the prior covariances between coefficients in each pair of equations
(i.e. B and B; for j # m) are all proportional to the same matrix. For this reason,
only the noninformative variant of the natural conjugate prior has received much
attention in empirical work. Furthermore, there have been various attempts to
derive extended versions of the natural conjugate prior which are less restrictive.
Readers interested in learning more about this area of the literature are referred
to Dreze and Richard (1983) or Richard and Steel (1988).

6.6.3 Bayesian Computation

Bayesian computation in this model can be implemented with a Gibbs sampler
using (6.12) and (6.18) based on the prior given in (6.47) and (6.48). However,
both of these posterior conditionals involving inverting the NM x N M matrix
2, which is computationally difficult. However, the block-diagonal structure of
Q allows the matrix inversion to be partly done analytically. If we do this,
p(Bly, H) and p(H|y, B) take convenient forms. In particular,

Bly. H~ N(B,V) (6.49)

where
N -1
V= ([1 +y X,-’HXI-) (6.50)
i=1
and

N
B:V(z"ngZx;Hy,-) (6.51)

i=1
The posterior for H conditional on 8 is Wishart:
Hly,p~ W@, H) (6.52)

where
v=~N+v (6.53)
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and

N —1
H= [ﬂ_l + 3 00— XiB) (i — xim} (6.54)
i=1

Since random number generators for the Wishart distribution are available (e.g.
a MATLAB variant is available in James LeSage’s Econometrics Toolbox), a
Gibbs sampler which successively draws from p(8|y, H) and p(H|y, B) can
easily be developed.

Predictive inference in this model can be carried out using the strategy out-
lined in Chapter 4, Section 4.2.6. Posterior predictive p-values or HPDIs can be
calculated to shed light on the fit and appropriateness of the model. The Sav-
age—Dickey density ratio is particularly easy to calculate should you wish to
calculate posterior odds ratios.

6.6.4 Empirical Illustration: The Seemingly Unrelated Regressions Model

To illustrate Bayesian inference in the SUR model we use an extended version of
the baseball data set used in the autocorrelated errors example. In that example,
we chose one baseball team, the Yankees, and investigated how team winning
percentage (PCT) depended upon team on-base percentage (OBP), slugging aver-
age (SLG) and earned run average (ERA). The former two of these explanatory
variables are measures of offensive performance, the last defensive performance.
In the current example, we add a second equation for a second team, the Boston
Red Sox (the arch-rivals of the Yankees). Hence, we have two equations, one for
each team, with explanatory variables in each equation being the relevant team’s
OBP, SLG and ERA. Section 6.5.3 provides further detail about the data.

We use a noninformative prior for H and set v = 0 and H -1 = 0242. For the
regression coefficients, we set § = O and V = 41;. This prior reflects relatively
noninformative prior beliefs. That is the regression coefficients are all centered
over points which imply the explanatory variable has no effect on the dependent
variable. But each coefficient has prior standard deviation of 2, a value which
allows for the explanatory variables to have quite large impacts on the dependent
variable.

Table 6.5 presents posterior results obtained from 30000 replications from
the Gibbs sampler outlined above, with 5000 burn-in replications discarded and
25000 replications retained. MCMC diagnostics indicate convergence of the
Gibbs sampler and numerical standard errors indicate an approximation error
which is small relative to the posterior standard deviations of all parameters.
Instead of presenting posterior results for H, which may be hard to interpret, we
focus on the correlation between the errors in the two equations (i.e. corr(gy;, £2;)
which is assumed to be the same for alli = 1, ..., N). If this correlation is equal
to zero, then there is no benefit to using the SUR model over simply doing pos-
terior inference on each equation separately. As we have emphasized throughout
this book (see, e.g., Chapter 1, Section 1.2 or Chapter 3, Section 3.8), posterior
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Table 6.5 Posterior Results for 8 and Error Correlation

Mean Standard Deviation 95% HPDI

Yankees Equation

A1 0.03 0.06 [—0.06, 0.13]
B 0.92 0.30 [0.43, 1.41]
B3 1.61 0.15 [1.36,1.86]
Ba —0.12 0.01 [—0.13, —0.10]

Red Sox Equation

Bs —0.15 0.06 [—0.26, —0.05]
Be 1.86 0.28 [1.41,2.32]
B7 1.24 0.15 [0.99, 1.50]
Bs —0.11 0.01 [—0.12, —0.10]

Cross-equation Error Correlation

corr(eg, €2) —0.01 0.11 [—0.18,0.17]

simulator output can be used to do posterior inference on any function of the
parameters of the model. Hence, the Gibbs draws of H can be used to derive
posterior properties of corr(ey;, €2;). It can be seen that, with this data set, the cor-
relation between the errors in the two equations is very near to zero. Thus, there
is minimal benefit to working with the SUR model. If we had used an informative
prior for H, we could have calculated a Bayes factor using the Savage—Dickey
density ratio. This Bayes factor would have provided more formal evidence in
favor of the hypothesis that the errors in the two equations are uncorrelated.
The regression coefficients measure the impacts of OBP, SLG and ERA on
team performance. For both teams, results are sensible, indicating that higher
OBP and SLG and lower ERA are associated with a higher team winning per-
centage. A baseball enthusiast might be interested in whether these coefficients
are different in the two equations. After all, baseball wisdom has it that in some
stadiums it is important to have power hitters, in others pitching is a relatively
important key to success, etc. An examination of Table 6.5 indicates that, with
one exception, the posterior means of comparable regression coefficients are
roughly the same across equations, relative to their standard deviations. Further-
more, 95% HPDIs for comparable coefficients in different equations exhibit a
large degree of overlap. The one exception is OBP where B, and B¢ are quite
different from one another. The question of whether comparable coefficients are
different in the two equations can be formally addressed by calculating Bayes
factors comparing: M;: B; — Br,+; =0 for j =1,..., ki against M, where the
coefficients are left unrestricted. This can be calculated using the Savage—Dickey
density ratio implemented as outlined in Chapter 4, Section 4.2.5. Since the prior
and conditional posterior of 8 are both Normal (see (6.47) and (6.49)), the prior
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and conditional posterior of any linear combination of the elements of g will also
be Normal. This implies that the Savage—Dickey density ratio can be calculated
in a simple fashion using only the Normal density. Bayes factors in favor of
the models which impose equality of each pair of coefficients across equations
are 2.84, 0.45, 3.05 and 255.84, respectively, for the four explanatory variables.
Although these results are not overwhelming, they do provide additional support
for the fact that it is only OBP which impacts differently in the two equations.
Given that the coefficient on OBP is lower and that on SLG higher for the
Yankees (although the latter finding is not statistically significant), a baseball
researcher might conclude that the Yankees’ success has been disproportionately
associated with power hitting teams. A historian of baseball would remember
great Yankees teams of the past and likely find this conclusion sensible.

It is worth noting that this example is purely illustrative. In a more serious
application, the researcher would no doubt wish to use data on other baseball
teams and have other explanatory variables. For instance, Yankees performance
probably depends not only on Yankees OBP, SLG and ERA, but also on these
variables for other teams they are competing against. Furthermore, the results of
the previous section suggest that the model should have allowed for errors to be
autocorrelated.

6.7 SUMMARY

In this chapter, we have considered Bayesian inference in the Normal linear
regression model with errors distributed as N (0, h~'2). This structure incorpo-
rates many special cases of empirical relevance. After discussing the general case,
Bayesian inference in the following special cases were considered: heteroskedas-
ticity of known and unknown forms, autocorrelation and the seemingly unrelated
regressions model. Posterior computation involved either a Gibbs sampler or a
Metropolis-within-Gibbs algorithm.

The Normal linear regression model with heteroskedasticity of unknown form
was of particular importance, since it turned out that this model was identical
to a Normal linear regression model with independent Student-t errors. This
is a simple example of a mixture of Normals distribution. Such mixtures are
commonly used as a way of freeing up distributional assumptions and will be
discussed in more detail in Chapter 10. This model also allowed us to introduce
the notion of a hierarchical prior which we will use repeatedly in subsequent
chapters.

The Normal linear regression model with autocorrelated errors and the SUR
model also enabled us to explain a few building blocks which we use in future
chapters. For the former model, some basic time series concepts were introduced.
For the latter, the multiple equation framework introduced will be used in several
places in the future, including the multinomial Probit and state space models (see
Chapters 8 and 9).



144 BAYESIAN ECONOMETRICS

It is worth stressing that the modular nature of the Gibbs sampler and related
algorithms makes it easy to combine and extend models. In Chapter 9, we will
see how the Gibbs sampler for the SUR model forms two blocks of a more
complicated Gibbs sampler for an extended variant of the SUR model called
the multinomial Probit model. If you wanted to work with a linear regression
model with independent Student-t errors which were autocorrelated, you could
simply combine the posterior simulator for the regression model with Student-t
errors with that for the model with autocorrelated errors. If you wanted a SUR
model with heteroskedastic errors of known form, you could combine results
from Sections 6.3 and 6.6. By incorporating a posterior simulator from Chapter 5
with ones from Sections 6.3 and 6.5 you could create a posterior simulator for a
nonlinear regression model with autocorrelated Student-t errors. The possibilities
are virtually endless. In general, this modularization which lies at the heart of
most posterior simulators is an enormous advantage and allows for the simple
extension of Bayesian methods into new areas.

6.8 EXERCISES

6.8.1 Theoretical Exercises

1. (a) Section 6.2 contains results for the Normal linear regression model with
error covariance matrix €2 using the independent Normal-Gamma prior of
(6.9) and (6.10). Show how posterior results would change if the natural
conjugate Normal-Gamma prior of Chapter 3, Section 3.4 were used for
B and h.

(b) Using your result from part (a), show how posterior simulation in the het-
eroskedastic model of Section 6.3 would be altered if the natural conjugate
Normal-Gamma prior were used.

(c) Using your result from part (a), show how posterior simulation in the
regression model with Student-t errors of Section 6.4 would be altered if
the natural conjugate Normal-Gamma prior were used.

(d) Using your result from part (a), show how posterior simulation in the regres-
sion model with autoregressive errors of Section 6.5 would be altered if the
natural conjugate Normal-Gamma prior were used.

2. Discuss how posterior simulation could be done for all the models in this chapter
if they were modified to have nonlinear regression functions as described in
Chapter 5.

3. Derive a posterior simulator for the linear regression model with independent
Student-t errors and AR(p) errors. (Hint: If you are having difficulty, the
answer to this question is given in Chib, 1993.)

6.8.2 Computer-Based Exercises

The exercises in this chapter are closer to being small projects than standard
textbook questions. Remember that some data sets and MATLAB programs are
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available on the website associated with this book. The house price data set is
also available in the Journal of Applied Econometrics Data Archive listed under
Anglin and Gencay (1996) (http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-
gencay/).

4. Use the house price data set for this question. Remember that in Chapter 4 we
carried out Bayesian inference using this data and a Normal linear regression
model, in the present chapter we added heteroskedasticity of a known form
(see Section 6.3.2) and independent Student-t errors (see Section 6.4.3). In all
cases, we used an independent Normal-Gamma prior for 8 and & with values
for hyperparameters as in Chapter 4, Section 4.2.7. Use this prior through-
out this question. For the other parameters (i.e. o for the heteroskedasticity
extension and v, for the Student-t errors extension) use an informative prior
of your choosing.

(a) Write programs for carrying out Bayesian inference in these three models
(or obtain programs from the website associated with this book and modify
as appropriate). Suppose interest centers on the marginal effect of lot
size on house price (i.e. B;). Calculate the posterior mean and standard
deviation of this marginal effect using Bayesian model averaging.

Background : Bayesian model averaging is briefly described in Chapter 2,
equation 2.42 for the case of prediction. Chapter 11 will discuss it in more
detail. Briefly, if g(B2) is a function of f;, the rules of conditional proba-
bility imply that

R
E[g(B)Iy] = > Elg(B)ly. M/ 1p(M;|y)
r=I1
and, thus, the Bayesian should calculate E[g(B2)|y] by averaging results
obtained from all models where the weights in the average are given by
p(Mr|y).

(b) Write a program which incorporates all of the extensions of part (a) into
one model. That is, develop a posterior simulator for the linear regression
model with Student-t errors which exhibit heteroskedasticity of a known
form. Use this program to calculate the posterior mean and standard devi-
ation of 8. Compare your result with that of part (a).

5. For this exercise obtain any relevant time series data set (e.g. the Yankees
data set of Section 6.5.3 or an artificially generated data set).

(a) Write a program which carries out posterior simulation for the Normal
linear regression model with AR(p) errors (or obtain from the website
associated with this book the program used to do the empirical illustration
in Section 6.5.3 and study and understand it).

(b) Based on your derivations in Exercise 3, write a program which carries out
posterior simulation for the independent Student-t linear regression model
with AR(p) errors. Use the posterior simulator to calculate posterior means
and standard deviations for all model parameters.
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(c) Add to your program in part (b) code to calculate Bayes factors which
can be used for choosing p, the lag length of the AR(p) model. Use the
Savage—Dickey density ratio. Use this program to choose an optimal value
for p for your data set.

(d) Add to your programs in parts (a) and (b) code for calculating the marginal
likelihood using the Gelfand—Dey method. Use these programs to decide
whether Normal or Student-t errors are preferred for your data set.



7
The Linear Regression Model

with Panel Data

7.1 INTRODUCTION

In previous chapters, we have mostly considered the case where one data point
was available for each observational unit. For instance, y; was a scalar which
contained a single observation of the dependent variable. However, in economics
and related fields, there are many cases where several observations on each vari-
able exist. In a microeconomic example of firm production, is it common to
have several years of data on output and inputs for many firms. In the economic
growth literature, data on many countries for many years is often available. In
a financial example, the share price of many companies for many days might
be used. In a marketing example, the purchases of many consumers on many
visits to a store might be collected. All such examples are characterized by the
availability of T observations for each of N individuals or firms. In economet-
rics, such data is referred to as panel data, although in the statistical literature
it is referred to as longitudinal data. In this chapter, we discuss models and
methods of Bayesian inference which are appropriate when the researcher has
panel data. This chapter does not involve any new methods of computation.
Instead, we combine aspects of various models and methods of posterior simu-
lation from previous chapters. We also build upon the notion of a hierarchical
prior introduced in the previous chapter. The chapter is organized according to
the structure placed on the regression coefficients. We begin by assuming that
the regression coefficients are the same for all individuals (the pooled model).
We then work with a model where the regression intercepts are allowed to
vary across individuals (the individual effects model), before proceeding to a
model where all regression coefficients can vary across individuals (the ran-
dom coefficients model). A special case of the individual effects model, called
the stochastic frontier model, is of great empirical relevance and, hence, is dis-
cussed in detail. We also introduce a new method for calculating the marginal
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likelihood which we refer to as the Chib method, since it was introduced in
Chib (1995). This method is applicable when posterior simulation is done using
a Gibbs sampler and is often useful when the dimensionality of the parameter
space is high.

We begin by extending the notation of previous chapters to deal with panel data
(and warn the reader to exercise caution, since some notation differs slightly from
previous chapters). Let y;; and ¢;; denote the ¢th observations (fort =1,...,T)
on the dependent variable and error, respectively, for the ith individual for i =
1,...,N.y; and g will now denote vectors of 7 observations on the dependent
variable and error, respectively, for the ith individual. In some of the regression
models in this chapter, it is important to distinguish between the intercept and
slope coefficients. Hence, we define X; to be a T x k matrix containing the T
observations on each of the k explanatory variables (including the intercept) for
the ith individual. X; will be the T x (k — 1) matrix equal to X; with the intercept
removed. Hence, X; = [ir X;]. If we stack observations for all N individuals
together, we obtain the TN-vectors:

Y1 €1
y = and ¢ =
YN EN

Similarly, stacking observations on all explanatory variables together yields the
TN x K matrix:

X1
Xy
7.2 THE POOLED MODEL

In the pooled model, it is assumed that the same linear regression relationship
holds for every individual and, hence,

yi=XiB+e (7.1

fori = 1,..., N where 8 is the k-vector of regression coefficients, including
the intercept.

The form of the likelihood function depends upon assumptions made about the
errors. In this chapter we will assume for i, j =1,..., N:

1. & has a multivariate Normal distribution with mean O7 and covariance matrix
hlr T.
2. g and ¢; are independent of one another for i # j.
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3. All elements of X; are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of ¢; with a probability
density function, p(X;|A) where A is a vector of parameters that does not
include 8 and h.

These assumptions are much the same as those made in previous chapters.
Note, however, that we are allowing ¢;; and ¢;; to be independent of one another
for t # s. In words, we are allowing the T errors for a specific individual
to be independent of one another. This might not be sensible if, for instance,
the same individual made a consistent mistake in reporting data in every time
period. If this is the case, then the researcher may wish to assume ¢; to have
covariance matrix 2. This case can be dealt with in a straightforward fashion
by using ideas very similar to those used for the SUR model (see Chapter 6,
Section 6.6).

The assumption that errors are independent over all individuals and time peri-
ods implies that the model simply reduces to a linear regression model of the
sort discussed in Chapters 2, 3 and 4. That is, data for all individuals and time
periods is simply pooled together in one big regression. Thus, we will not discuss
the pooled model in any detail.

To be precise, the previous assumptions imply a likelihood function of the form

N

h2 h ,
pGIB. ) =] T {eXp [_E()’i — XiB) (yi —Xiﬁ)“

i=1 2m)z

However, this likelihood can be written as

h2 h
p(yIB. h) = o {eXP [—E(y - XB) (y — Xﬁ)“

2mw) 2

which is the likelihood function used in Chapters 3 and 4 (e.g. see Chapter 3,
(3.3)) modified to account for the fact that we now have TN observations. Thus,
the techniques of Chapters 3 and 4 can be used directly to carry out Bayesian
inference in this model.

In the empirical illustration below we will use an independent Normal-Gamma
prior with B ~ N(8,V) and h ~ G(s~2,v) and, thus, methods described in
Chapter 4, Section 4.2 are relevant.

7.3 INDIVIDUAL EFFECTS MODELS

The pooled model assumes the same regression relationship holds for every indi-
vidual in every time period. In many empirical contexts, this assumption is unrea-
sonable. Consider, for instance, a marketing example where y;; is sales of soft
drink brand i in period ¢. The sales of a soft drink may depend on explanatory
variables which are easy to observe, such as price, but also depend on more
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elusive quantities such as brand loyalty. Accordingly, a model of the form
Yie = @i + Bxit + it

(where x;j; is price of soft drink i in period ¢) might be appropriate. The fact
that the intercept varies across soft drink brands (i.e. «; has an i subscript)
incorporates the effect of brand loyalty. That is, it allows for two soft drinks
with an identical price to have different expected sales. It is not hard to come up
with other examples which imply that the intercept should vary across individ-
uals. We shortly study the stochastic frontier model and see how the economic
theory underlying this model implies that the intercept should vary across indi-
viduals. We refer to models of this sort as individual effect models, with «; being
referred to as the individual effect. Similar terminology is used in the frequentist
econometric literature, with random effects and fixed effects models being two
popular types of individual effects models.

7.3.1 The Likelihood Function

The likelihood function for this model is based on the regression equation:
i = air + XiB + & (7.2)

where the notation makes clear that we are using «; to denote the intercept of ith
individual’s regression equation and f to denote the vector of slope coefficients
(which is assumed to be the same for all individuals). Equation (7.2), along with
the error assumptions given after (7.1), imply a likelihood function of the form

- NoopT h _ _
pOle, Bomy =] 7 {GXP [_E()’i —ai — Xif) (yi —aoi — Xiﬂ)]}
i=1 2m)?
(7.3)
where o = (aq, ..., an).

7.3.2 The Prior

In a Bayesian analysis one can, of course, use any sort of prior, including a non-
informative one. Here we consider two types of priors which are computationally
simple and commonly used.

A Non-hierarchical Prior

To motivate our first class of priors, note that the regression in (7.2) can be
written as

y=X*B*+e (7.4)
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where X* is a TN x (N + k — 1) matrix given by

ir Or -- O X,
Ty - 1
X =|.0p-- - -
D07
OT-"LT)?N
and

o

B =
UN

B

Written in this way, it is clear that the individual effects model can be written
as a regression model of the sort used in Chapters 3 and 4 and any of the
priors introduced in those chapters can be applied to (8*, k). For those trained
in frequentist econometrics, Bayesian analysis with such a non-hierarchical prior
leads to a model which is analogous to the fixed effects model. To see this, note
that X* is the matrix, which includes the explanatory variables attached to a
matrix containing a dummy variable for each individual.

In this chapter, we will use the independent Normal-Gamma prior of Chapter 4,
Section 4.2 and, thus, assume B* and & are a priori independent of each other with

B*~ N, V) (7.5)
and

h~G(s2 ) (7.6)

A Hierarchical Prior

In modern statistics, interest increasingly centers on models where the parameter
vector is of high dimension. As discussed in Chapter 6, Section 6.4, Bayesian
methods are gaining in popularity due to the fact that hierarchical priors can
surmount some of the problems caused by high dimensional parameter spaces.
The individual effects model is a model with a parameter space which contains
N + k parameters (i.e. N intercepts in o, k — 1 slope coefficients in B plus the
error precision, /). If T is small relative to N, the number of parameters is quite
large relative to sample size.! This suggests that a hierarchical prior might be
appropriate and it is indeed the case that such priors are commonly used.

"Panel data methods are often used with survey data collected by the government. These typically
involve questioning a large number of people (e.g. N = 10000) every few years (e.g. T = 5) on
various topics (e.g. their expenditure or work histories). In such cases N is invariably huge relative
toT.
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A convenient hierarchical prior assumes that, fori =1,... , N,
o ~ N(Mae Va) (77)

with ; and «; being independent of one another for i # j. The hierarchical struc-
ture of the prior arises if we treat i, and V,, as unknown parameters which require
their own prior. We assume p, and V, to be independent of one another with

Mo ~ N, 00) (7.8)
and
v, l~cw, ' v (7.9)

Both the hierarchical and non-hierarchical priors allow for every individual
to have a different intercept. However, the hierarchical prior places more struc-
ture in that it assumes all intercepts are drawn from the same distribution. This
extra structure (if consistent with patterns in the data) allows for more accurate
estimation.

For the remaining parameters, we assume a non-hierarchical prior of the inde-
pendent Normal-Gamma variety. Thus,

B~ NP, Vy) (7.10)
and
h~G(s™2,v) (7.11)

For those trained in frequentist econometrics, Bayesian analysis with such a
hierarchical prior leads to a model which is analogous to the frequentist random
effects model.

7.3.3 Bayesian Computation
Posterior Inference under the Non-hierarchical Prior

Under the non-hierarchical prior given in (7.5) and (7.6), we have a linear regres-
sion model with independent Normal-Gamma prior. Hence, posterior inference
can be carried out using the methods described in Chapter 4. In particular, a
Gibbs sampler can be set up which takes sequential draws from

B*ly.h ~ N(B*, V) (7.12)
and
hly, B* ~ G2, 7) (7.13)
where
V=" +hx"x""!
Br =V B +hx"y)
v=1TN +v
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and

N
Y i — ity = XiB) (i — ity — XiB) + vs®

— i—1
S2 =

v

The convergence and degree of approximation implicit in the Gibbs sam-
pler can be calculated using the MCMC diagnostics described in Chapter 4,
Section 4.2.4. Predictive inference in this model can be carried out using the
strategy outlined in Chapter 4, Section 4.2.6 and model comparison can be done
using any of the methods described in previous chapters.

Numerical problems can arise if N is very large since V is an (N +k—1) x (N+
k — 1) matrix which must be inverted. Computer algorithms for matrix inversion
can become unreliable if the dimension of the matrix is large. In such cases, theo-
rems for the inverse of a partitioned matrix (e.g. Appendix A, Theorem A.9) can
be used to reduce the dimension of the matrices for which inversion is required.

Posterior Inference under the Hierarchical Prior

The derivation of the posterior under the hierarchical prior given in (7.7) through
(7.11) is straightforward and details will not be provided here. The derivation
involves multiplying prior times likelihood and then examining the result for each
of ﬁ, h, a, uy and V,, to find the kernels of each conditional posterior distribution.
A Gibbs sampler which sequentially draws from these posterior conditionals can
then be used for posterior simulation.

The relevant posterior distributions for B and h, conditional on «, are derived
in the same fashion as those for the linear regression model with independent

Normal-Gamma prior and, hence,?

Bly. h,a, jta, Va ~ N(B, Vp) (7.14)
and

hly, B, o, fta, Vo ~ G52, D) (7.15)
where

N -1
V/g = (ZEI +hZXl/X’>

i=1

N
B=V <K§1E+ hYy Xilyi — OlilT]>

i=1
T=TN +v

2Note that in the following equations p(8|y, h, @, fia, Ve) and p(hly, B, &, ita, V) do not depend
upon iy, and V,, and thus are equivalent to p(ﬂly, h,a) and p(hly, ﬂ «). We adopt the more
complete notation here and in later sections to emphaqze that Gibbs sampling involves drawing
from the full posterior conditional distributions (see Chapter 4, Section 4.2.3).
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and

N

> i — ity = XY (i — citr — Xif) + vs®
] i—1
2 =

v
The conditional posterior for each «; is independent of «; for i # j and is
given by

iy, B, 1, pra, Vo ~ N@;, V) (7.16)
where
— Vyh™!
T TVe + il
and

= VaOi— XiB)ir +h o
’ (T Vo +h~1)
Finally, the conditional posteriors for the hierarchical parameters, p, and
Vy, are

Mollyv B5hv(x7 Vﬂl NN(EOME[%) (717)
and
- ~ —1 _
Vol Boho, pa ~ GV, Da) (7.18)
where
) Voo,
0=
Vo + Nog
N
Valt +Q§, o
- i=1
IJ’D( Va—l—Ngg[
Vo =V, + N
and
N

D (@i — i)’ + Yy,
Voz — i=1

Vo
Note that the Gibbs sampler, involving (7.14)—(7.18), requires only random
number generation from the Normal and Gamma distributions. Thus, although
the formulae look a bit messy, it is not hard to write a program which carries
out posterior simulation in this model. Predictive analysis can be done using the
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methods described in Chapter 4 and MCMC diagnostics can be used to verify
convergence of the Gibbs sampler.

7.4 THE RANDOM COEFFICIENTS MODEL

The pooled model assumed that the same regression line was appropriate for
all individuals, while the individual effects models assumed all individuals had
regression lines with the same slopes, but possibly different intercepts. In some
cases, it is desirable to free up the common slope assumption of the latter class
of models and work with

yi = Xipi +¢€i (7.19)
where §; is a k-vector of regression coefficients including intercept as well as
slopes. Equation (7.19) holds for i = 1, ..., N and, thus, the entire model con-

tains Nk + 1 parameters (i.e. k regression coefficients for each of N individuals
plus the error precision, /). Unless T is large relative to N it is very difficult to
estimate all the parameters in this model with any degree of precision. Hence,
it is common to use a hierarchical prior for the regression coefficients. Such a
model is referred to as a random coefficients model.

To motivate this model, let us return to the marketing example, where the
dependent variable is sales of a particular soft drink and X; contains an intercept
and the price of the soft drink. Since g; differs over soft drink brands, the model
allows for two brands with identical prices to have different expected sales (i.e.
due to different intercepts). Furthermore, it allows for the marginal effect of price
on sales to vary across brands (i.e. due to different slope coefficients). If brand
loyalty is important, then such cross-brand differences might occur. The use of a
hierarchical prior places some structure on these differences by modeling them as
coming from a common distribution. Informally speaking, the random coefficients
model allows for every individual brand to be different, but the hierarchical prior
means they are not too different. Such a model might be reasonable in many
applications.

7.4.1 The Likelihood Function

Our error assumptions (see the discussion after (7.1)) plus (7.19) yields a likeli-
hood function of the form

N r
hz h
I8 =]]— {exp [‘E(” — XiBi) (i — Xiﬂ,-)“ (7.20)
i=1 (2m)2
where we will let 8 = (ﬁi, e, ,3;\,)’ denote all the regression coefficients for

all individuals stacked together.
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7.4.2 A Hierarchical Prior for the Random Coefficients Model

A convenient hierarchical prior is one which assumes that g; fori =1,... , N
are independent draws from a Normal distribution and, thus, we assume
Bi ~ N(up, Vg) (7.21)
The second stage of the hierarchical prior is given by
tp~ Npg, Xg) (7.22)
and
Vg~ W Vg (7.23)

Remember that the Wishart distribution, which was first introduced in Chapter 6,
Section 6.6, in the context of the SUR model, is a matrix generalization of the
Gamma distribution (see Appendix B, Definition B.27). The distribution in (7.23)
is parameterized so that £ (Vﬂ_ 1) =v ﬂzgl. Remember also that noninformative-
ness is achieved by setting v = 0.

For the error precision, we use our familiar Gamma prior:

h~G( %) (7.24)

7.4.3 Bayesian Computation

As in the individual effects models, posterior inference can be carried out by
setting up a Gibbs sampler. Since the Gibbs sampler requires only the full con-
ditional posterior distributions we proceed directly to these. The derivation of
these is relatively straightforward and can be done by multiplying the likelihood
in (7.20) by the prior given in (7.21)—(7.24). An examination of the resulting
expression reveals the kernels of all the relevant posterior conditional distribu-
tions. The conditional posteriors for the 8;’s are independent of one another, for
i=1,...,N, with

ﬁib’, h9 I’L,B9 Vﬂ NN(BhV[) (725)
where

Vi=(hX]X; + V/g_l)_l

and

Bi = VithXjyi + V' up)

For the hierarchical parameters, g and Vg, the relevant posterior condition-
als are

1gly. B.h, Vg ~ N(tig, Zp) (7.26)

and

Vi 'ly. Boh g ~ W (g, [VsVp] ™) (7.27)
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where
_ -1
Sp= (M5l +55")

N

— ) —1 -1
g =g (V,g Y Bi+Z; gﬁ)
=1

1=

- N
Vo= (Bi—up)Bi —1up) +Vy
i=1

and Z,N= 1 Bi should be understood to be the k-vector containing the sums of the
elements of f;.
The posterior conditional for the error precision has the familiar form:

hly, B, up, Vg ~ G2, 7) (7.28)
where
v=1N +vy
and

N
> i — XiB) (i — XiB) + vs®
i—1

EZ

v
The Gibbs sampler, involving (7.25)—(7.28), requires only random number
generation from the Normal, Gamma and Wishart distributions. Thus, it is not
hard to write a program which carries out posterior simulation in this model.
Predictive analysis can be done using the methods described in previous chapters
and MCMC diagnostics can be used to verify convergence of the Gibbs sampler.

7.5 MODEL COMPARISON: THE CHIB METHOD
OF MARGINAL LIKELIHOOD CALCULATION

You may have noticed that little has been said so far about model comparison
in this class of models. For many types of models one might wish to compare,
the methods used in the previous chapter can be used. For instance, investigat-
ing exact restrictions involving B in the individual effects models can be done
using the Savage—Dickey density ratio as in Chapter 4, Section 4.2.5. For the
researcher who does not wish to calculate posterior odds (e.g. if she is using a
noninformative prior), HPDIs and posterior predictive p-values can be calculated.
Some types of model comparison are, however, difficult to carry out in the mod-
els introduced in this chapter. Suppose, for instance, that you wish to compare
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the individual effects model with hierarchical prior to the pooled model. It can be
seen that the latter model is simply the former with V,, = 0 imposed. The fact that
one model is nested within the other suggests that the Savage—Dickey density
ratio might be an appropriate tool for Bayes factor calculation. An examination of
(7.18), however, shows the problem with this approach. That is, one would have
to set Va_] = 00 to calculate the Savage—Dickey density ratio. One might handle
this problem by setting Va_1 to a large finite value, but this would provide at
best a rough approximation of the true Bayes factor. Hence, the Savage—Dickey
density ratio would likely be unsatisfactory. The researcher might then consider
using the Gelfand—Dey approach. In theory, this should be an acceptable method
of calculating the marginal likelihood. However, in high-dimensional problems
the Gelfand—Dey method can be inaccurate due, especially, to the difficulties in
making a good choice for the function we called f(6) (see Chapter 5, (5.21) and
(5.22)). In general, marginal likelihood calculation can be hard when the dimen-
sionality of the parameter space is high and Raftery (1996) (which is Chapter 10
in Gilks et al., 1996, pp. 173—176) discusses various approaches to this prob-
lem. In this section, we describe one approach which, in many cases, allows for
efficient calculation of the marginal likelihood in cases where the dimensionality
of the parameter space is high.

As we have done previously when introducing a new concept, we adopt our
general notation where 6 is a vector of parameters and p(y|@), p(8) and p(6|y)
are the likelihood, prior and posterior, respectively. Chib’s method for marginal
likelihood calculation, outlined in Chib (1995), begins with a very simple obser-
vation. Bayes rule says

p(10)p®)

P
This equation can be rearranged to give an expression for the marginal likelihood,
pOy):

p@ly) =

_ p(y10)p(0)
pO1y)

But p(y) does not depend upon 6, so that the right-hand side of the previous
equation can be evaluated at any point, 6*, and the result will be the marginal
likelihood. Thus, for any point 6*, we obtain

_ p(16%)p(6%)

p©*[y)

which Chib refers to as the basic marginal likelihood identity. Note that all the
densities on the right-hand side of (7.29) are evaluated at a point. For instance,
p(6*) is short-hand notation for p(6 = 6*). Thus, if we know the exact forms
of the likelihood function, prior and posterior (i.e. not just their kernels, but the
exact p.d.f.s), we can calculate the marginal likelihood by simply evaluating them
at any point and using (7.29). In most cases, we do know the exact form of the

pP(y)

p(y) (7.29)



THE LRM wiTH PANEL DATA 159

likelihood and prior, but we do not know the exact form of the posterior. Thus,
to implement Chib’s method, we need to figure out how to evaluate the posterior
at a point (i.e. calculate p(6*|y)), and Chib’s paper describes methods for doing
this in various cases. Here we describe some setups of particular relevance for
the models introduced in the present chapter.

Many models used by econometricians have a structure where the parameter
vector breaks down into a low-dimensional vector, 6, and a high-dimensional
vector, z. In many cases, z can be interpreted as latent data and, thus, a poste-
rior simulation procedure which sequentially draws from p(@|y, z) and p(z]y, 6)
is sometimes referred to as Gibbs sampling with data augmentation. In future
chapters, we will come across cases where z does have such a latent data inter-
pretation, but in the present chapter think of z as being the individual effects (i.e.
z = «) or random coefficients (i.e. z = 8 in the random coefficients model). In
such cases, we can use (7.29) directly to calculate the marginal likelihood. That
is, we can integrate out the high-dimensional parameter vector z and work only
with the low-dimensional vector, 6. To do this, note that the rules of probability
imply that

p@*ly) = / p@*ly, D) p(zly)dz (7.30)
Equation (7.30) can be evaluated in the context of the Gibbs sampler by simply
calculating p(6*|y, 7)) for each draw (i.e. fors = 1,...,S) and averaging the

result. To be precise, the weak law of large numbers which is used to justify the
Gibbs sampler (see Chapter 4, Section 4.2.3) implies that, if ®fors=1,...,8
are draws from the Gibbs sampler, then

J— 18
pO* 1) =53 p@* 1y, 2" (7.31)
s=1

converges to p(6*|y) as S goes to infinity.

Thus, if p(y|6*), p(6*) and p(6*|y, z) can all be calculated (i.e. not just the
kernels, but the exact p.d.f.s are known), then output from a Gibbs sampler with
data augmentation can be used as described in (7.31) to obtain the marginal
likelihood. In theory, any point, 6%, can be chosen. However, in practice, the
Chib method works much better if 6* is chosen to be in an area of appreciable
posterior probability. Setting 6* to be the posterior mean, based on an initial run
with the Gibbs sampler, is a common practice.

Unfortunately, the Chib method as described above does not work with the
our panel data models since p(6*|y, z) is not known. However, it can be gen-
eralized to deal with our case. Suppose the parameter vector is broken up into
two blocks, 0; and 6, (i.e. = (61, 6;)") and that a Gibbs sampler is available
which sequentially draws from p(0ily, z, 62), p(62]y, z,601) and p(z|y, 01, 62).
Thus, we have posterior simulator output, 913), 92(5) and z® fors =1, ... , S,
To use the Chib method, we must calculate p(0}, 6;|y) where 6] and 65 are any
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points. The rules of probability imply that

P65, 651) = p@}1y)p(E1y. 67) (1.32)
POy = [ [ pOf1y. 02 2p(02. 213 dondz (7.33)

and
PO}y, 07) = / pE51y. 67 D p(aly. 67) d (7.34)

In the same way as (7.31) provides an estimate for p(6*|y), we can use the Gibbs
sampler output to provide an estimate of p(6|y). That is, (7.33) and the weak
law of large numbers implies

s
pO;ly) = é > p@;ly. 29, 05 (7.35)
s=1
converges to p(0]|y) as S goes to infinity.

To use (7.32), we now need to figure out how to calculate p(65|y, ;). This can
be done separately through Gibbs sampling. That is, if we set up a second Gibbs
sampler which sequentially draws from p(6:|y, z, 6) and p(zly, 6, 62) we can
use this posterior simulator output to obtain an estimate of p(65 |y, 6]). That is, if
92(3*) and 709, for s* = 1,..., S*, is posterior simulator output from the second
Gibbs sampler, then (7.34) and the weak law of large numbers imply that

P@31y. 00 = 5 D p®3ly. <4067 (7.36)

s*=1

converges to p(05|y, 6;) as S* goes to infinity. p(027|y\,0f‘) and p@f\w) can be
multiplied together to provide the estimate of p(6;, 65|y) needed to calculate
(7.29).

Note that the disadvantage of the Chib method in this case is that it requires
two Gibbs samplers to be run and, thus, increases the computational burden.
However, the actual programming costs are quite low. Once you have writ-
ten computer code for the basic Gibbs sampler which sequentially draws from
p©G1ly, z,02), p(B2]y, z,01) and p(z|y, 61, 6), little additional coding is required
to do the Chib method. That is, (7.35) and (7.36) each only require the evaluation
of a p.d.f. which typically requires one line of code. The second Gibbs sampler
is virtually identical to the first. All that is required is to remove the code which
draws from p(0;ly, z, 62) and replace it with a line which sets 68 = Gf. So
although the Chib method looks a bit complicated, it is in fact reasonably easy
to implement in practice.

The ideas outlined above can be extended to the case where the Gibbs sampler
involves blocking @ into B segments (i.e. 6 = (f],...,0p)"). That is, we can
use the fact that

p©;. 03, ..., 05ly) = pO71y)p©31y, 07) ... p(Oply. 07, ... . 0p_))



THE LRM wiITH PANEL DATA 161

and use the original Gibbs sampler to calculate p(6;|y), a second Gibbs sampler
to calculate p(65|y, 6;), all the way up to a Bth Gibbs sampler to calculate
pOzly,0f,...,05 ;). Once again, the Chib method can be computationally
demanding, but writing code is quite easy since all the B Gibbs samplers have
essentially the same structure.

In the individual effects model with hierarchical prior, we have B = 4 (i.e. 0] =
,5, 6 =h, 03 = g, 04 = Va_l) and z = «. In the random coefficients model, we
have B =3 (i.e. 0y =h,0, = g, 03 = Vﬁ_l) and z = B. Since all the conditional
posteriors are of known form (see Sections 7.3 and 7.4), estimates of p(6*|y)
can be calculated as outlined above. To use the Chib method to calculate the
marginal likelihood for these models, we must also evaluate p(6*) and p(y|0%).
The prior can be calculated directly using (7.8)—(7.11) for the individual effects
and (7.22)—(7.24) for the random coefficients model. Evaluation of the likelihood
function is a little harder since the expressions given in (7.3) and (7.20) give, in
terms of our general notation, p(y|6, z) rather than the p(y|0) which is required
for the Chib method. However, the integration necessary to move from p(y|6, z)
to p(y|6) can be done analytically using the properties of the multivariate Normal
distribution. For the individual effects model with hierarchical prior, we have

POIB A, e Vi) = TSy pOilB, 1y o, Vi), where
VilBohy b Vo '~ N (i, Vi)
where
i = polr + Xi B
and
Vi = Votrty + 7ty
For the random coefficients model, a similar derivation implies p(yl|h, g,
Vi) =TI, pGilh, g, Vi), where
vilh, g, V'~ NQui, Vi) (737)
where
mi = Xilg
and
Vi =X;VeXi +hIr

Thus, the Chib method can be used to calculate the marginal likelihood of any
of the models described in this chapter. Chib and Jeliazkov (2001) shows how
this method of marginal likelihood calculation can be extended to work with out-
put from a Metropolis—Hastings algorithm. However, if the added complication
required to use this method are not warranted, the researcher may wish to use
other methods of model comparison. Methods of model selection and comparison
in models with high-dimensional parameter spaces (e.g. caused by the presence
of latent data) is a topic of current research interest in the statistics literature.
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The interested reader is referred to Carlin and Louis (2000, Section 6.5) for
more detail.

7.6 EMPIRICAL ILLUSTRATION

In this section, we illustrate empirical inference in the pooled, individual effects
with non-hierarchical and hierarchical prior and random coefficients models, which
we label My, ..., My, respectively, using several different artificial data sets. The
use of artificial data means that we know what process has generated the data and,
thus, can see how well our Bayesian analysis works in a controlled setting. Gibbs
samplers to carry out posterior inference in all models are described above and the
method of Chib is used to calculate the marginal likelihood. Posterior results for all
models are based on 30 000 replications, with 5000 burn-in replications discarded
and 25 000 replications retained. MCMC diagnostics indicate convergence of all
the Gibbs samplers and numerical standard errors indicate an approximation error
which is small relative to posterior standard deviations of all parameters.

We use two artificial data sets generated from the individual effects model
with an intercept and one other explanatory variable (i.e. kK = 2). In both we set
N=100,T =5, 5 =2 and h = 25. In the first data set we draw the intercepts
independently from the Normal distribution with

a; ~ N(0,0.25)

a large degree of intercept variance relative to the error variance and magnitude of
the coefficients. The second data set is generated with o; = —1 with 25% proba-
bility and o; = 1 with 75% probability. Such a specification might be reasonable
in a labor economics application where there are two groups of individuals and
the difference between groups manifests itself through the intercept.

With regards to the prior, for the error precision we use the same prior hyper-
parameter values for all four models, s™> = 25 and v = 1. For M| we set the
remaining prior hyperparameters to § = 0, and V. = I,. For M, we set the
remaining prior hyperparameters to ,3_* =0y41 and V = Iy41. For M3 we set

the remaining prior hyperparametersto 8 =0, V. =1, ", = =0,0;=1, V_1 =1
and v, = 2. For My we set the remaining prior hyperparameters to w Ky = = 0y,
Xp =D, Z =1 and v g = = 2. An examination of these choices reveals that

they are all relatively noninformative (i.e. degrees of freedom parameters are all
set to very small values relative to sample size and prior variances and covari-
ance matrices are relatively large), and are roughly consistent with the true data
generating processes.

These models have many parameters and, for the sake of brevity, we present
results only for a few key ones. Note that the slope coefficient is common to
Mj, M, and M3 and we simply label it 5 in the tables below. Under My, ug is
the parameter most comparable to B, and thus we present results for these two
parameters in the same row.
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Table 7.1 Posterior Results for First Artificial Data Set

M M, M3 My
E(Bly) or E(ugly) 2.04 2.04 2.04 2.04
Jvar(Bly) or \Jvar(ugly) 0.08 0.03 0.03 0.04
E(h]y) 3.61 28.41 27.86 30.20
Jvar(hly) 0.23 1.98 2.07 225
log[p(y)] —407 -3 x 10* —66 —9]

Table 7.2 Posterior Results for Second Artificial Data Set

M, M, M3 My
E(Bly) or E(ugly) 1.88 2.03 2.01 2.00
\/ var(B|y) or \/ var(Bly) 0.14 0.04 0.04 0.05
E(hly) 1.25 24.12 23.75 27.17
Jvar(hly) 0.08 1.67 1.73 2.08
log[p()] —669 -2 x 10* —152 —168

Table 7.1, which presents results for the first artificial data set, indicates that
all four models provide good estimates of the slope coefficient (remember that
the slope coefficient was set to 2 when the data was generated). For the error pre-
cision, M, M3 and My all provide good estimates (remember that this parameter
was set to 25 when the data was generated), although the estimate under M is
much too small. Since M; does not allow for any variation in the intercept, all
such variation is assigned to the error variance. Thus, under M|, the estimate of
the error variance is much too large (and, thus, the error precision is much too
small). These findings are mostly repeated in Table 7.2, which provides results for
the second data set. Note, though, that under M the posterior mean of the slope
coefficient is too low. This illustrates how ignoring coefficient variation can lead
to misleading inferences. That is, a researcher examining Table 7.1 might say “If
I am only interested in the slope coefficient, it does not matter whether I properly
allow for variation in the intercept”, but Table 7.2 indicates that this is not the
case. In fact, even for parameters which are not of key interest to the researcher, it
is important to model variation correctly in order to avoid misleading inferences
with regard to other coefficients.

Figures 7.1 and 7.2 present information about the intercepts using the first
artificial data set. In particular, for M, and M3, these figures take E(«;|y) for
i=1,...,N and plot a histogram.

These figures look very similar to one another, indicating that the hierarchical
and non-hierarchical priors are providing basically the same estimates of the
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Figure 7.1 Histogram of Posterior Means of Alpha(i)s, Non-hier. Prior
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Figure 7.2 Histogram of Posterior Means of Alpha(i)s, Hierarchical Prior
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Figure 7.3 Histogram of Posterior Means of Alpha(i)s, Non-hier. Prior

intercepts. Furthermore, the data generating process used to produce the first
data set had o; ~ N(0, 0.25) and the figures above look to be replicating this
pattern quite accurately.

Figures 7.3 and 7.4 repeat Figures 7.1 and 7.2 using posterior means calculated
using the second artificial data set. These figures look quite similar to one another
and are replicating the data generating process quite well. Remember that, in this
second data set, intercepts are generated with o; = —1 with 25% probability and
a; = 1 with 75% probability. Figure 7.4 is particularly interesting in that the
hierarchical prior assumes that intercept variation is Normally distributed. But,
given the relatively noninformative prior used for M3, this model is able to pick
up the very non-Normal intercept variation pattern in the data.

An examination of all of these figures indicates that both of our individual
effects models are doing a very good job of picking out the variation in the
intercepts. Results for the random coefficients model (not presented here), indicate
a similarly fine performance.

So far our Bayesian methods seem to be doing a good job at finding compli-
cated patterns in the data. However, an oddity arises when we turn to the issue
of model comparison. The logs of the marginal likelihoods for each model are
presented in the last row of Tables 7.1 and 7.2. For both data sets, the individ-
ual effects model with hierarchical prior is favored with the highest marginal
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Figure 7.4 Histogram of Posterior Means of Alpha(i)s, Hierarchical Prior

likelihood, with the random coefficients model being the second choice. This is
sensible in that both data sets have been generated so as to have substantial vari-
ation in the intercept, but no variation in the slope coefficient. Thus, M}, which
allows for no variation in the intercept does poorly, while M4, which allows for
additional (unnecessary) variation in the slope is unable to beat M3. The oddity
in both tables is why M», which looks similar to M3 except that it does not have
a hierarchical prior, does so poorly. An examination of the Tables 7.1 and 7.2
as well as Figures 7.1 and 7.2 indicate that these two individual effects models
are yielding very similar posterior results in every regard except for the marginal
likelihood. Furthermore, M3 assumes the intercepts to be Normally distributed
whereas, for the second data set, this assumption is incorrect. Surely, M3, which
does not use the Normality assumption, should be preferred to M3? But, in fact,
M3 has a higher marginal likelihood, even for this second data set.

The explanation of this oddity relates to the dimensionality of the parameter
space and the problems associated with the use of Bayes factors with nonin-
formative priors. Remember that, in Chapter 3, Section 3.6.2, we showed how
when comparing two models, one of which was nested in the other, great care
had to be taken in prior elicitation. For instance, if M4 was an unrestricted model
and Mp was equal to M4 except that the restriction 8; = 0 was imposed, then
a noninformative prior for 6; could lead to nonsensical results (e.g. Mp would
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always be preferred, regardless of what the data was). As a concrete example, let
us suppose that the true value is 6; = 100 and, under M4, a prior for 6; is used
which is Uniform over (—oo, o). Some intuition is provided by remembering
that, for the Bayesian, the model involves the likelihood function and the prior.
Under My, the prior allocates virtually all prior weight to ridiculous values for
01. For instance, the prior implies 1’; E:g”igggggg%ﬁ; ~ 1 so that almost all prior
probability is located in the region |0;| > 1000000. Very loosely speaking, the
Bayesian approach looks at M4 and says “the data says 6; should be around
100, but the prior is saying |61] > 1000 000, this model is silly so it cannot be
correct”. The Bayesian approach then looks at Mp and says “this model says
01 = 0. This is at odds which the data, but even so the model is not as silly as
M 4, hence Mp should be supported.” This example considers a case where the
prior is completely noninformative, but similar considerations hold less strongly
in cases where priors are relatively noninformative.

To return to our panel data models, note that the use of hierarchical priors
effectivelg means that the parameter spaces for My, M3 and M4 are k+ 1,k + 2
and k(kTH + k + 1, respectively. However, the parameter space for M, is N +k
dimensional. In our examples (and in most applications), N is much larger than
k so that the dimensionality of M; is much higher than the other models. Here
we are using a relatively noninformative 102 dimensional prior in M5, whereas
in M3 we are using a 4-dimensional prior. A careful consideration of this issue
raised in the previous paragraph shows that the problem caused by the use of
relatively noninformative priors will increase with the dimensionality of the prior.
When comparing models which are of similar dimension, this problem can often
be ignored. However, M; is of such higher dimensionality that it cannot be
ignored here.

The discussion of the previous two paragraphs was intuitive and informal. Even
if the reader is having difficulty understanding the points made, the following
rule of thumb, which builds on the one in Chapter 3, should be remembered.
When comparing models using posterior odds ratios, it is acceptable to use non-
informative priors over parameters which are common to all models. However,
informative, proper priors should be used over all other parameters. If the two
models being compared have a similar number of parameters, then it is often
acceptable for these proper priors to be weakly informative priors of convenience.
However, the use of weakly informative priors of convenience should be avoided
if the dimensionality of the two models is very different.

In our empirical example, the reason M, has such a low marginal likelihood
is the prior was 8* ~ N(B8*, V), and we chose V = Iy;. In many contexts, it
is hard to imagine the researcher having stronger prior beliefs. In such contexts,
it is probably best to avoid the use of posterior odds ratios altogether (at least
for model comparisons involving M>) and rely on alternative model comparison
techniques. For instance, for the second data set the posterior predictive p-value
approach would clearly indicate that M3 (with a Normal hierarchical prior) is
not modeling the variation in intercepts in an appropriate way (see Figure 7.4).
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In contrast, this approach would indicate that M, (which does not assume the
variation in intercepts follows a Normal distribution) is appropriate. Even more
informally, an examination of histograms like Figures 7.1-7.4 would show that
M3 is suitable for the first data set, but M, would be preferred for the second.
Alternatively, methods of model selection and comparison in models with high-
dimensional parameter spaces (e.g. caused by the presence of latent data) is a
topic of current research interest in the statistics literature and Carlin and Louis
(2000, Section 6.5) suggest some interesting approaches.

7.7 EFFICIENCY ANALYSIS AND THE STOCHASTIC
FRONTIER MODEL

In this section, we draw on some economic theory to develop the stochastic
frontier model, which falls into the class of individual effects models, but with a
different hierarchical prior than the one in Section 7.3.2. This model is important
in its own right, as it is used in studies where interest centers on the efficiency or
productivity of a firm or individual. Furthermore, the derivation of the stochastic
frontier model is a good illustration of how the applied economist can take
economic theory and use it to construct an econometric model.

7.7.1 Introduction to the Stochastic Frontier Model

The ideas underlying this class of models can be demonstrated using an economic
model of production where output of firm i at time ¢, Y}, is produced using a
vector of inputs, Xj;, i=1,..., N,t =1,...,T). Firms have access to a
common best-practice technology for turning inputs into output. This technology
depends upon a vector of unknown parameters, §, and is given by:

Yu = f(X;: ) (7.38)

This so-called production frontier measures the maximum amount of output that
can be obtained from a given level of inputs. In practice, actual output of a firm
may fall below the maximum possible. The deviation of actual from maximum
feasible output is a measure of inefficiency and is the focus of interest in many
applications. Formally, (7.38) can be extended to

Yi = f (X3 B)i (7.39)

where 0 < 7; < 1 is a measure of firm-specific efficiency and t; = 1 indicates
firm i is fully efficient. A value of, say, 7; = 0.75 means that firm i is producing
only 75% of the output it could have if it were operating according to best-practice
technology. In this specification, we have assumed each firm has a particular
efficiency level which is constant over time. This assumption can be relaxed, and
the reader is referred to Koop and Steel (2001) for details.
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Following standard econometric practice, we allow for a random error in the
model, &;;, to capture measurement (or specification) error, resulting in

Yie = f (X3 B)tidin (7.40)

The inclusion of measurement error makes the frontier stochastic, hence the
name stochastic frontier model. If the production frontier, f(), is log-linear (e.g.
Cobb—Douglas or translog) we can take logs and write (7.40) as

Yie = XyB +&ir — 2 (7.41)

where B = (B1,...., B0 yi = In(Yiy), & = In(Cy), zi = —In(z;) and X is
the counterpart of X} with the inputs transformed to logarithms. z; is referred to
as inefficiency and, since 0 < 7; < 1, it is a non-negative random variable. X;;
is assumed to contain an intercept and S is its coefficient. Note that this model
is of the form of an individual effects model. That is, 81 — z; plays the same role
that «; did in Section 7.3.2. However, in the stochastic frontier model, economic
theory gives us some guidance in selecting a hierarchical prior.

It is worth noting in passing that, if the production function is not log-linear
(e.g. the constant elasticity of scale production function), then Bayesian inference
can be done by combining the techniques developed in Chapter 5 with those
presented here.

Equation (7.41) can be written as

yi=X;B+e —zir (7.42)

if we stack all variables into matrices as described at the beginning of this chapter
(see Section 7.1). Remember that (7 is our notation for a T-vector of ones.

7.7.2 The Likelihood Function

The form of the likelihood function depends upon assumptions made about the
errors. In addition to the standard error assumptions set out at the beginning of
the chapter (see Section 7.1), we also assume that z; and ¢; are independent of
one another for all i and j. The resulting likelihood function is

N L h
pIB. b =] 7 {exp |:__()’i — Xif +zitr) (vi — XiBi + ZitT)]}
=1 (2m)7 2
(7.43)
where z = (z1,...,2n) .

In this specification, we are treating z as a vector of unknown parameters
which enter the likelihood function. In frequentist analyses, the likelihood would
be defined as p(y|B, h,0) = [ p(y|B, h, 2)p(z|0) dz, where p(z|0) is a distribu-
tional assumption for the inefficiencies, which depends upon a vector of unknown
parameters, 6. But such a procedure is mathematically equivalent to the Bayesian
procedure of using p(z|0) as a hierarchical prior. In other words, in models such
as this one, the choice as to what we label the ‘likelihood function’ and what we
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label the ‘hierarchical prior’ is a purely semantic one which has no implications
for statistical inference. The reader interested in more discussion of this point is
referred to Bayarri, DeGroot and Kadane (1988).

7.7.3 A Hierarchical Prior for the Stochastic Frontier Model

For the coefficients in the production frontier and the error precision, we use our
familiar independent Normal-Gamma prior:

B~N@B.Y) (7.44)
and
h~G(s™% ) (7.45)

For the inefficiencies, we use a hierarchical prior. Since z; > 0, the Normal hier-
archical prior of Section 7.3.2 is not suitable. In the literature, common choices
for this prior include the truncated-Normal and members of the family of Gamma
distributions. Here we illustrate Bayesian inference in stochastic frontier mod-
els using the exponential distribution, which is the Gamma with two degrees of
freedom (see Definition B.22 and Theorem B.7). Thus, we assume that z; and z;
are a priori independent for i # j with

zi ~ Gz, 2) (7.46)

The hierarchical nature of the prior means that we treat the mean of the ineffi-
ciency distribution as a parameter which requires its own prior. Since z; > 0, it
follows that p, > 0. In the same way that working with the error precision (h),
instead of the error variance (o2) allows us to stay in the familiar class of error
distributions, it proves easier to work with /rz_l instead of .. Hence, we take a
prior of the form

P~ Gty (7.47)

The hyperparameters K and v, can often be elicited through consideration of
the efficiency distribution. That i is, researchers may often have prior information
about the location of the efficiency distribution. Let t* denote the prior median
of this distribution. If the researcher expects the firms in her sample to be quite
efficient, she may set 7* to a high value (e.g. 0.95). If she expects many firms
to be inefficient she may set it to a lower value. As shown in van den Broeck
et al. (1994), setting v, = 2 implies a relatively noninformative prior, and settmg
n_=—In(r") 1mplles ‘the median of the prior efficiency distribution is t*

This illustrates a common strategy for prior elicitation. The researcher ellcits
a prior in terms of hyperparameters which are easy to interpret in terms of the
underlying economic theory (i.e. in this case, t*), then transforms back to find
values for the hyperparameters used in the model (i.e. in this case, z and v).

Another point worth stressing is that economic theory often provides restrictions
that can be imposed through the prior. For instance, the researcher might wish to
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impose the restriction that the production frontier is monotonically increasing in
inputs. In other variants of the stochastic frontier model, it may be desirable to
impose the restriction that a cost function is concave or that technological regress
is impossible. All of these are inequality restrictions on the parameters which can
be imposed using the methods of Chapter 4, Section 4.3.

7.7.4 Bayesian Computation

As in the individual effects models, posterior inference can be carried out by
setting up a Gibbs sampler. Since the Gibbs sampler requires only the full con-
ditional posterior distributions, we do not present the posterior itself. Rather we
present only the relevant conditional distributions which, except for the ones
relating to z and p, are the same as those of the individual effects model with
hierarchical prior.

For the parameters in the production frontier, we obtain

Bly.h,z,u; ~ N(B, V) (7.48)
where
N -1
V= ([‘ +h ZX;XZ->
i=1
and
L N
B=V (z“g+ Ry Xilyi+ m])
i=1
For the error precision, we have the standard result:
hly, Bz, u: ~ G(E 2, 7) (7.49)
v=TN +v
and

N

Z()’i + zitr — XiB) i + zitr — XiB) + vs®
2 i—1
2 —

v

The posterior conditionals for the inefficiencies are independent of one another
(i.e. z; and z; are independent for i # j) and are each Normal, truncated to be
positive with p.d.f. given by

pilyi, Xiy By by 112) o fy(zil XiB = 5; — (Thu) ™', (Th)™H1(z; = 0)
(7.50)

T . p—
where y; = @ and X; is a (I x k) matrix containing the average value
of each explanatory variable for individual i. Remember that 1(z; > 0) is the
indicator function which equals 1 if z; > 0 and is otherwise equal to zero.
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The posterior conditional for /Lz_l given by

u 'y, B.h 2~ G(,. V) (7.51)
V=2N+y,
and
N+ =
Mz

A Gibbs sampler which involves sequentially drawing from (7.48) through
(7.51) can be used to carry out Bayesian inference in the stochastic frontier model.
Note that drawing from the truncated Normal distribution (see (7.50)) can either
be done by drawing from the corresponding Normal and simply discarding draws
for which z; < 0. Alternatively, algorithms for drawing from this distribution are
available. One such algorithm, programmed in MATLAB is available on the
website associated with this book. Predictive analysis can be done using the
methods described in Chapter 4, Section 4.2.6 and MCMC diagnostics can be
used to verify convergence of the Gibbs sampler. Model comparison can be done
using the methods described in previous sections and chapters. For instance, the
Chib method can be used to calculate the marginal likelihood.

It is worthwhile noting in passing that the cross-sectional version of this model
(i.e. with T = 1) is often used and all the methods described above are still
relevant. However, in the 7 = 1 case it is not acceptable to use certain improper
noninformative priors as this leads to an improper posterior. Intuitively, if 7 = 1
the number of parameters in the entire model is larger than sample size (i.e.
Z, Wz, B and h together contain N 4 k 4 2 parameters and we have only N
observations) which precludes meaningful posterior inference in the absence of
prior information. Issues relating to the use of noninformative priors in stochastic
frontier models are discussed in Fernandez, Osiewalski and Steel (1997).

7.7.5 Empirical Illustration: Efficiency Analysis with Stochastic
Frontier Models

To illustrate Bayesian inference in the stochastic frontier model, artificial data
was generated from

vir = 1.04+0.75x2,;; +0.25x3 ;s — z; + ¢€ir

for i = 1,...,100 and r+ = 1,...,5. We assume &; ~ N(0,0.04), z; ~
G(—In[0.85],2), x24 ~ U(0,1) and xp; ~ U(0,1) where all the random
variables are independent of one another and independent over all i and 7. Note
that in a production frontier example, x; ;; and x3 ;; would be inputs. This moti-
vates the selection of 0.75 and 0.25 for these coefficients as these values imply
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constant returns to scale. The inefficiency distribution is selected so as to imply
the median of the efficiency distribution is 0.85.
The required priors are given (7.44), (7.45) and (7.47). We choose

0.0
g=105
~ 105
and
100.0 0.0 0.0
V=1| 00 025 0.0
0.0 0.0 0.252

These values are chosen to be relatively noninformative about the intercept, but
are slightly more informative about the slope coefficients. In particular, they
reflect a belief that large deviations from constant returns to scale are unlikely.
For the error precision, we make the noninformative choice of v = 0, which
makes the choice of s irrelevant. As described above, we make the relatively
noninformative choice of v, = 2 with K= —In(0.85) which implies the median
of the prior efficiency dlstrlbutlon is 0.85.

Posterior results for all models are based a Gibbs sampler using (7.48) through
(7.51). We take 30 000 replications, with 5000 burn-in replications discarded and
25000 replications retained. MCMC diagnostics indicate convergence of all the
Gibbs samplers and numerical standard errors indicate an approximation error
which is small relative to posterior standard deviations of all parameters. To
focus on the efficiencies, we do not carry out a model comparison exercise in
this section.

Table 7.3 contains posterior means and standard deviations for the param-
eters of the stochastic frontier model. With stochastic frontier models, inter-
est often centers on the firm-specific efficiencies, t; for i = 1,..., N. Since
7; = exp(—z;), and the Gibbs sampler yields draws of z;, we can simply trans-
form them and average to obtain estimates of E(t;|y) in the usual way (see
Chapter 4, Section 4.2.3). For the sake of brevity, we do not present results for
all N = 100 efficiencies. Rather we select the firms which have the minimum,
median and maximum values for E(t;|y). These are labelled Tmin, Tmeq and Tmax
in Table 7.3.

It can be seen that the posterior means of all parameters are quite close to the
true values used to generate the data set (note that —/n(0.85) = 0.16) and they are
all accurately estimated. The posterior means of the efficiencies are reasonable,
although their posterior standard deviations are relatively large (a point which
we will return to shortly). In a policy study, the researcher might report the
posterior means of the efficiencies (e.g. “we estimate that the least efficient firm
in the sample is producing only 56% of what it could if it was on the production
frontier”). A histogram such as Figure 7.5, which uses the posterior means of
the efficiencies of all 100 firms, might be presented to give a rough idea of how
efficiencies are distributed across firms.
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Table 7.3 Posterior Results for
Artificial Data Set from Stochastic
Frontier Model

Standard

Mean Deviation
B1 0.98 0.03
B2 0.74 0.03
B3 0.27 0.03
h 26.69 1.86
e 0.15 0.02
Tmin 0.56 0.05
Timed 0.89 0.06
Tmax 0.97 0.03

8.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Efficiency

Figure 7.5 Histogram of Posterior Means of Efficiencies

An important issue in efficiency analysis is whether point estimates can be
treated as a reliable guide to the ranking of firms. After all, important policy
recommendations may hang on a finding that firm A is less efficient than firm
B. However, Table 7.3 indicates that efficiency point estimates can have large
standard deviations associated with them. This is common in empirical studies
involving stochastic frontier models. Simply relying on point estimates which
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indicate that firm A is less efficient than firm B may lead to inappropriate policy
advice. Gibbs sampler output can be used in a straightforward manner to shed
light on this issue. For instance, p(t4 < tg|y) is the probability firm A is less
efficient than firm B. This is a function of the models parameters and can be
calculated in the standard way. To be precise, p(t4 < Tp|y) can be written as
E[g(r)|y] for a particular choice of g() and the Gibbs sampler is designed to
calculate such quantities (see Chapter 4, Section 4.2.3).

In our data set, we find p(Tmax > Tmea|y) = 0.89, p(Tmax > Tminly) = 1.00
and p(Tyed > Tminly) = 1.00. In words, we are 100% sure that the firm which
appears least efficient truly is less efficient than the median or most efficient
firms. We are 89% sure that the firm which appears most efficient truly is more
efficient than the median efficient firm. Thus, we can conclude that firms which
are ranked far apart in terms of their efficiency estimates do truly differ in effi-
ciency. However, it is likely the case that, for example, the researcher would be
very uncertain about saying the 12th ranked firm is more efficient than the 13th
ranked. Figure 7.6 plots the full posteriors for Tpin, Tmeq and Tmax. It can be seen
that these posteriors are fairly spread out.

The fact that efficiencies (or, more generally, individual effects) are hard to
estimate precisely is a common finding in empirical studies. Stochastic frontier
models are sometimes referred to as composed error models as they can be
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Figure 7.6 Posteriors of Min/Med/Max Efficient Firms
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interpreted as having an error composed of two parts: ¢;; and z;. Decomposing
a single error into two parts is hard to do statistically, particularly if 7 is small.
Nevertheless, stochastic frontier models are quite popular and, if used with care,
can be used to shed light on issues relating to efficiency.

7.8 EXTENSIONS

The panel data models introduced in this chapter are useful for modeling hetero-
geneity of various sorts. In many fields of economics, there is a growing interest
in unobserved heterogeneity of the individual under study. For instance, in labor
economics, individuals may vary in many ways that cannot be directly observed
by the econometrician (e.g. they may differ in their returns to schooling, their
value of leisure, their productivity, etc.). This motivates a growing interest in
the models introduced in this section, which can be extended in many directions
in a straightforward manner. With the exception of the pooled model, all of the
models involve heterogeneity across individuals or firms (i.e. variation is over
the i subscript). But similar methods can be used to model heterogeneity across
time (i.e. variation over the ¢ subscript is easy to handle). For instance, in the
stochastic frontier model the researcher may want to have the production frontier
shifting over time to represent technical progress. Koop, Osiewalski and Steel
(2000) presents such a model which allows for variation over both i and ¢ in
model parameters. The case where T varies across individuals is quite common
(e.g. country i has data available for 20 years, country j only has data available
for 10 years) and data of this form is referred to as an unbalanced panel. Deal-
ing with this case requires only minor alterations in the formulae for the Gibbs
samplers.

The stochastic frontier model has been extended in many other ways. With
slight changes in definitions, it can be used with a cost frontier instead of a
production frontier. Furthermore, explanatory variables can be included in the
inefficiency distribution in an attempt to model why some firms are more efficient
than others (see Koop, Osiewalski and Steel (1997) for a discussion of these two
extensions).

Any of the ideas introduced in earlier chapters can also be used with panel
data. The modular nature of many of the posterior simulators we have used means
combining pieces of different models is particularly easy. For instance, Bayesian
inference in a stochastic frontier model with a nonlinear production function
can be done using a Metropolis-within-Gibbs simulator combining algorithms
introduced here and in Chapter 5. Various error assumptions can be relaxed using
the methods described in Chapter 6. At the time of writing, there is a great deal
of interest in dynamic panel data models where T is large and independence over
time is not a reasonable assumption. As we shall discuss in the next chapter, time
series models add some complications we have not yet discussed. However, crude
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versions of dynamic panel data models can be easily handled either by including
lagged dependent variables in X; or by allowing for autocorrelated errors. The
first of these extensions is trivial, the second can be done by combining aspects of
the Gibbs sampler introduced in Chapter 6, Section 6.5.2 with the Gibbs sampler
introduced in the present chapter.

7.9 SUMMARY

In this chapter, we have introduced several models which are used with panel
data. These models differed in the degree of variability they allowed in the
parameters across individuals. The first model, the pooled model, allowed no such
variation and was equivalent to the Normal linear regression model discussed in
previous chapters. The second class comprised individual effects models. This
class allowed for the intercept to vary across individuals. Two variants were
considered, one of which had a hierarchical and the other a non-hierarchical prior.
The distinction between hierarchical and non-hierarchical priors is analogous to
the frequentist econometric distinction between random and fixed effects panel
data models. The third model was the random coefficient model which allowed for
both intercept and slope coefficients to vary across individuals. A fourth model,
the stochastic frontier model, was also introduced, although it really belongs in
the class of individual effects models. Stochastic frontier models are used for
efficiency analysis and the ‘efficiency of firm i’ is essentially equivalent to ‘the
individual effect of firm i’.

Posterior inference in all of these models can be done using Gibbs sampling
and, thus, no new methods of posterior simulation were introduced in this chapter.
However, a new method of marginal likelihood calculation was introduced: the
Chib method. This method can be computationally intensive, but it does work
well in some cases where the dimensionality of the parameter space is very high
and, thus, the Gelfand—Dey method is hard to implement.

This chapter also stressed how many extensions can be handled in straightfor-
ward fashion by adding posterior simulation ideas from earlier chapters to the
Gibbs samplers introduced for panel data models.

7.10 EXERCISES

7.10.1 Theoretical Exercises

1. Some general results for Normal linear hierarchical regression models (see
Lindley and Smith (1972) for more details).

Let y be an N-vector and 0, 6> and 63 be parameter vectors of length k1,

ko and k3, respectively. Let X, W and Z be known N X k1, k| x kp and kp X k3
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matrices and Cq, C; and C3 be ki x ki, ka X k2 and k3 x k3 known positive
definite matrices. Assume

Y161, 62,03 ~ N(X6;, C1)
01162, 03 ~ N(Wb,, C2)
and
62163 ~ N(Z63, C3)

Throughout this exercise, we will treat 63 as known (e.g. as a vector of
prior hyperparameters selected by the researcher).
(a) Show that

162,65 ~ N(XW6, C; + XC2 X))

and, thus, that this Normal linear regression model with hierarchical prior
can be written as a different Normal linear regression model with non-
hierarchical prior.

(b) Derive p(61]y, 63). What happens to this density as C; LN Ok xk3?

(c) Derive p(63]y, 63).

2. Consider a model which combines some elements of the individual effects
model and some elements of the pooled model. The intercept and some of the
regression coefficients vary across individuals, but other regression coefficients
do not. That is,

yi = XiBi + Wiy +¢;

where the explanatory variables with varying coefficients are located in X; and
the explanatory variables with constant coefficients are located in W;. Write
out a Gibbs sampler for carrying out Bayesian inference in this model. Discuss
how you might test which explanatory variables have constant coefficients.

3. Suppose you have an unbalanced panel. That is, for each individual data for
T; periods is available.

(a) Describe how the posterior simulators for the individual effects models
(see Section 7.3.3) would be altered by the unbalanced panel.

(b) Describe how the posterior simulators for the random coefficients model
(see Section 7.4.3) would be altered by the unbalanced panel.

4. Panel data with T = 1 reduces to the cross-sectional data sets used in previous
chapters. The pooled model is identical to the Normal linear regression model
of Chapters 3 and 4. But the other models in this chapter differ from those in
earlier chapters even if 7 = 1. Discuss Bayesian inference in both individual
effects models (i.e. with hierarchical and non-hierarchical priors) when 7 = 1.

5. Consider the individual effects model with hierarchical prior with likelihood
given in (7.3), prior given in (7.7)—(7.11) and posterior conditionals given in
(7.14) through (7.18). Extend these results to allow for independent Student-t
errors (see Chapter 6, Section 6.4).



THE LRM wiITH PANEL DATA 179

6. The posterior simulator for the stochastic frontier model (see Section 7.7.4)
used an exponential inefficiency distribution (i.e. z; ~ G(u, 2)). Derive a
posterior simulator for the case where z; ~ G(u;, 4) and z; ~ G(uz, 6).

Note: The Gamma distribution with (known) degrees of freedom equal to
an even integer (i.e. v = 2,4,6,...) is referred to as the Erlang distribu-
tion. Bayesian inference in stochastic frontier models with Erlang inefficiency
distribution using importance sampling is described in van den Broeck, Koop,
Osiewalski and Steel (1994). Inference using Gibbs sampling is described in
Koop, Steel and Osiewalski (1995). Bayesian inference in the unrestricted Gamma
case (z; ~ G(uz, v) where v is an unknown parameter) is described in Tsionas
(2000). If you are having difficulty with this question you may wish to take a
look at some of these references.

7.10.2 Computer-Based Exercises

The exercises in this chapter are closer to being small projects than standard
textbook questions. Remember that some data sets and MATLAB programs are
available on the website associated with this book.

7. (a) Write a computer program which uses your answer to Exercise 5 to carry
out posterior simulation in the individual effects model with hierarchical
prior and independent Student-t errors.

(b) Using artificial data sets simulated as in the empirical illustration of
Section 7.6, test your program of part (a).

(c¢) Add computer code which does an informal test for Normality of errors
by calculating p(v > 30|y) and use this on the artificial data set.

(d) Repeat parts (b) and (c) using different artificial data sets, including some
with Student-t errors.

8. The empirical illustration for the stochastic frontier model (see Section 7.7.5)

used an exponential inefficiency distribution (i.e. z; ~ G(u;, 2)).

(a) Repeat the empirical illustration assuming z; ~ G(u;,4) and z; ~
G(uz, 6) using your answer to Exercise 6.

(b) Write up computer code which uses the Chib method to calculate the
marginal likelihood for three models which differ in their inefficiency
distributions with My: z; ~ G(u, 2), My: z; ~ G(u,,4) and M3: z; ~
G (u;, 6). Use this code to compare the three models.

(c) Repeat parts (a) and (b) using various artificial data sets generated using
different inefficiency distributions.
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8
Introduction to Time Series: State

Space Models

8.1 INTRODUCTION

Time series data is, as its name suggests, ordered by time. It commonly arises
in the fields of macroeconomics (e.g. one might have data on the unemployment
rate observed every quarter since 1960) and finance (e.g. one might have data on
the price of a particular stock every day for a year). There is a huge literature on
econometric methods for time series, and it is impossible to do it justice in just one
chapter. In this chapter we offer an introduction to one class of models referred
to as state space models which are commonly-used with time series data. We
make this choice for three reasons. First, as we shall see, state space models are
hierarchical in nature. As was stressed in the previous chapter, Bayesian methods
with hierarchical priors are particularly attractive. Secondly, Bayesian analysis
of the main alternative approach! to time series econometrics has already been
covered in detail in a recent textbook: Bauwens, Lubrano and Richard (1999). To
avoid overlap, the present book offers a different way of looking at time series
issues. Thirdly, state space models are not so much a different class of models
than is used in Bauwens, Lubrano and Richard (1999), but rather offer a different
way of writing the same models.”> Hence, by using state space models, we can
address all the same issues as Bauwens, Lubrano and Richard (1999), but stay in
a hierarchical framework which is both familiar and computationally convenient.

We have already introduced many time series concepts in Chapter 6,
Section 6.5, which discussed the linear regression model with autocorrelated
errors. You may wish to review this material to remind yourself of basic concepts
and notation. For instance, with time series we use ¢ and 7 instead of i and N, so
that y, for t = 1,..., T indicates observations on the dependent variable from

IFor readers with some knowledge of time series methods, note that this alternative approach
includes autoregressive moving average (ARMA) models and extensions to dynamic regression
models which allow for the discussion of issues like unit roots and cointegration.

ZFor instance, there is a state space representation for any ARMA model.
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period 1 through 7. Before discussing state space models, it is worth briefly
mentioning that the techniques discussed in Chapter 6 (Section 6.5) can take you
quite far in practice. For instance, the linear regression model with autocorre-
lated errors is a time series model which may be appropriate in many cases. This
model has the errors, ¢;, following an AR(p) process. A common univariate time
series model (i.e. a model for investigating the behavior of the single time series
y) has y; following an AR(p) process:

(L= piL == ppLP)y, =y (8.1)

Computational methods for Bayesian analysis of this model are a straightforward
simplification of those presented previously. In fact, (8.1) is really just a lin-
ear regression model where the explanatory variables are lags of the dependent
variable

Ve =P1Yi—1+ -+ ppYi—p + U (8.2)

Thus, all the basic regression techniques discussed in previous chapters are rele-
vant. Equation (8.2) can even be extended to include other explanatory variables
(and their lags) while still remaining within the regression framework:

Ve =p1Yi—1+ -+ ppYe—p + Boxr + Birxi—1 + -+ BgXi—g +ur (8.3)

However, several complications arise in this regression-based approach. Loosely
speaking, a good deal of the time series literature relates to placing restrictions
on (or otherwise transforming) the coefficients of (8.3). There are also some
important issues relating to prior elicitation which do not arise in cross-sectional
contexts.

Even if we stay within the class of state space models, we cannot possibly
offer more than a superficial coverage of a few key issues in a single chapter.
Accordingly, we will begin with the simplest univariate state space model called
the local level model. Most of the basic issues involving prior elicitation and
computation can be discussed in the context of this model. We then proceed to
a more general state space model. For readers interested in more detail West
and Harrison (1997) is a popular Bayesian textbook reference in this field.* Kim
and Nelson (1999) is another Bayesian book which introduces and extends state
space models.

In this chapter, we also use state space models to introduce empirical Bayes
methods. These methods are increasingly popular with hierarchical models of all
sorts. They provide a data-based method for eliciting prior hyperparameters. For
the researcher who does not wish to subjectively elicit informative priors and

3In addition to Bauwens, Lubrano and Richard (1999), the reader interested in more detail is
referred to the papers in themed issues of Econometric Theory (volume 10, August/October, 1994)
and the Journal of Applied Econometrics (volume 6, October/December, 1991).

4A few other recent journal articles on Bayesian analysis of state space models are Carlin, Polson
and Stoffer (1992), Carter and Kohn (1994), de Jong and Shephard (1995), Fruhwirth-Schnatter
(1995), Koop and van Dijk (2000) and Shively and Kohn (1997). Durbin and Koopman (2001) is a
good textbook source which has some Bayesian content.
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does not wish to use a noninformative prior (e.g. since Bayes factors are hard to
interpret with improper priors), empirical Bayesian methods offer an attractive
alternative.’

8.2 THE LOCAL LEVEL MODEL

The local level model is given by
Vr = 0y + & (84)

where &, is i.i.d. N(0, A~ 1). The unique aspect of this model is the term «; which
is not observed and is assumed to follow a random walk

O] = O + Uy (85)

where u, is ii.d. N(0, nh~") and & and u, are independent of one another for
all s and ¢. In (8.4) ¢ runs from 1 through 7" while in (8.5) it runs from 1 through
T — 1. Equation (8.5) does not explicitly provide an expression for «j, which is
referred to as an initial condition. Equation (8.4) is referred to as the observation
(or measurement) equation, while (8.5) is referred to as the state equation.

Before discussing Bayesian inference in the local level model, it is worth-
while to spend some time motivating this model. In Chapter 6, Section 6.5, we
discussed the AR(1) model, and noted that if the coefficient on the lagged depen-
dent variable, p, equalled one then the time series was nonstationary. Here it can
be seen that (8.5) implies that «; is nonstationary. In particular, it implies that o
has a stochastic trend. The term stochastic trend arises from the fact that models
such as (8.5) imply that a series can wander widely (i.e. trend) over time, but
that an element of randomness enters the trend behavior. That is, in contrast to
a deterministic trend such as

oy = o+ Pt

where the variable is an exact function of time, a stochastic trend involves a
random error, u;. The fact that (8.5) implies that «; exhibits trend behavior can
be seen by noting that (8.5) can be written as

1—1
o = o) + Zul (8.6)
j=1

and, thus (ignoring the initial condition) var(e;) = (t — 1)nh~!. In addition,
o; and o;_1 tend to be close to one another (i.e. E(a;|o;—1) = 0). In words,
the stochastic trend term has variance which is increasing with time (and thus
can wander over an increasing wide range), but «; changes only gradually over

5Carlin and Louis (2000) provides an excellent introduction to empirical Bayesian methods,
although it is a statistics as opposed to econometrics textbook.
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time. This is consistent with the intuitive concept of a trend as something which
increases (or decreases) gradually over time.

To return to the local level model, we can see that (8.4) decomposes the
observed series, y;, into a trend component, «;, and an error or irregular compo-
nent, u;.% In general, state space models can be interpreted as decomposing an
observed time series into various parts. In the local level model, there are two
components, a trend and an error. In more complicated state space models, the
observed series can be decomposed into more components (e.g. trend, error and
seasonal components).

It is worth mentioning that the local level model has been used for measuring
the relative sizes of the trend and irregular components. This motivates the way
that we have written the variances of the two errors (i.e. error variances are
written as A~' and nh~'). In this manner, 7 is directly interpreted as the size
of the random walk relative to the error variance in the measurement equation.
That is, it can be seen that if » — 0, then the error drops out of (8.5) and
oy = «aq for all ¢ and (8.4) becomes y; = « +¢;. In this case, y; exhibits random
fluctuations around a constant level, «1, and is not trending at all. However, as
n becomes larger (i.e. the variance of u, becomes larger), then the stochastic
trend term plays a bigger role. Examining 7 is, thus, a nice way of measuring
the importance of trend behavior in an economic time series. For the reader with
previous knowledge of time series econometrics, note that the test of whether
n = 0 is one way of testing for a unit root. We will not discuss unit root testing
in any detail here. Suffice it to note that, unit root testing has played an important
role in modern empirical macroeconomics, and that state space models allow for
this to be done in an intuitive and straightforward manner.

Another way of interpreting (8.4) and (8.5) is by noting that «; is the mean
(or level) of y;. Since this mean is varying over time, the terminology local
level model is used. Interpreting «; in this way, as a parameter, is natural in a
Bayesian setup. That is, (8.4) can be interpreted as a very simple example of a
linear regression model involving only an intercept. The innovative thing is that
the intercept varies over time. Thus, the local level model is a simple example
of a time varying parameter model. More sophisticated state space models can
allow for time varying regression coefficients or time varying error variances. If
a = (ay,...,ar) is interpreted as a vector of parameters then, as Bayesians,
we must elicit a prior for it. But (8.5) provides us with such a prior. That is, (8.5)
can be interpreted as defining a hierarchical prior for «. Note that, with such an
interpretation, the local level model is very similar to the individual effects panel
data model of Chapter 7 (Section 7.3) with T = 1. Of course, the individual
effects model has an intercept which varies across individuals, while the local
level model has an intercept which varies across time, but the basic structure of

SFor the macroeconomist, some imperfect intuition for this would be that the trend term captures
the long run trend growth of the economy (e.g. due to growth of the labor force, building up of
capital stock and gradual technical improvements), whereas the irregular component reflects the
random short term shocks hitting the economy (e.g. business cycle effects).
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the two models is the same. Thus, the basic tools developed in Chapter 7 using
an independent Normal-Gamma prior can be used here with some modifications.
For this reason, in this section we do something new. We use a natural conjugate
prior and introduce a new type of prior elicitation procedure.

That is, Bayesian methods using an independent Normal-Gamma prior are
very similar to those described in Chapter 7, so we do not repeat them here.
In particular, a Gibbs sampler with data augmentation can be developed as in
Chapter 7. In Section 8.3 we develop such an algorithm in the context of a more
general state space model. This can be used for the local level model and the
reader interested in using the independent Normal-Gamma prior is referred to
Section 8.3. In the present section, we will use a natural conjugate framework to
introduce empirical Bayesian methods.

8.2.1 The Likelihood Function and Prior

If we define y = (y1,...,yr) and ¢ = (&1,...,¢er), then we can write the
local level model in matrix notation as

y=Ira+e¢ (8.7)

If we make the standard error assumptions, that ¢ has a multivariate Normal
distribution with mean 07 and covariance matrix 2 ~!I7, then this model is sim-
ply a Normal linear regression model where the matrix of explanatory variables
is the identity matrix (i.e. X = I7) and « is the T-vector of regression coeffi-
cients. Thus, the likelihood function has the standard form for the Normal linear
regression model (e.g. see Chapter 3, (3.3)).

Of course, as in any Bayesian exercise, we can use any prior we wish. How-
ever, the state equation given in (8.5) suggests a hierarchical prior. We use one
involving natural conjugate form. To draw out the similarities with results in
Chapter 3 for the Normal linear regression model with natural conjugate prior, it
is convenient to write this model in a slightly different way. To do this we begin
by defining the (T — 1) x T first difference matrix:

-1 1 0 0 - ... 0
p=| 0t o0 (8:8)
0O --- ... 0 0 -1 1

To draw out the connections with the state space model, note that
o) — o
Do =
or —or—]
and thus the state equation given in (8.5) can be written as:

Do =u
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where u = (u1, ... ,ur—1)". The assumption that u is Normal can thus be inter-
preted as saying that the state equation is defining a Normal hierarchical prior
for Da.

To specify a complete prior for all the parameters in the model, we also need
to specify a prior for 4 and «1. To do this, we first write (8.7) as

y=W0+¢ (8.9
where
o
) — o]
6 =
or — o]
and

wo 1 o
lT—1 C

where t7_1 is an (T — 1)-vector of ones. Direct matrix multiplication can be
used to verify that (8.9) is exactly equivalent to (8.7). Direct matrix inversion
can be used to show that C is a (T — 1) x (T — 1) lower triangular matrix with
all non-zero elements equalling one (it is the inverse of D with its first column
removed). That is, C has all elements on or below the diagonal equalling 1, and
all elements above the diagonal equalling O.

We begin by eliciting a natural conjugate prior for 6 and h:

0,h~NG®,V,s % v) (8.10)

The reader is referred to Chapter 3 for a reminder of notation and properties of
this Normal-Gamma prior.

We consider a particular structure for § and V which embodies the prior
information contained in the state equation:

9,
0
o=1 - (8.11)
0
|4 0’
Or—1 nlr—y

Note that this prior implies a; 1 — &; is N(0, nh~'), which is exactly what we
assumed at the beginning of this section. The fact that this prior depends upon
the parameter n makes it hierarchical. In addition, we have provided a prior for
the initial condition, o, as being N (6, h_lzn).
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At this point it is worth summarizing what we have done. We have written
the local level model as a familiar Normal linear regression model with natural
conjugate prior. The fact that this is a time series problem involving a state
space model manifests itself solely through the prior we choose. In a Bayesian
paradigm, the interpretation of the state equation as being a prior is natural and
attractive. However, it is worth mentioning that the non-Bayesian econometrician
would interpret our hierarchical prior as part of a likelihood function. As stressed
in the previous chapter, in many models there is a degree of arbitrariness as to
what part of a model is labelled the ‘likelihood function’ and what part is labelled
the ‘prior’.

8.2.2 The Posterior

Using standard results for the Normal linear regression model with natural con-
Jugate prior (see Chapter 3), it follows that the posterior for ¢ and &, denoted by
p(6, hly) is NG(@, V,572,7) where

6=V o+ Wy (8.13)
V=w'l+ww)! (8.14)
V=v+T (8.15)
and
T2 = vt + (y WO (Y- WO+ @ -V '@ -0 (8.16)

The properties of the Normal-Gamma distribution imply that it is easy to trans-
form back from the parameterization in (8.9) to the original parameterization
given in (8.7). That is, p(0]h, y) is Normal and we know linear combinations
of Normal are Normal (see Appendix B, Theorem B.10). Thus, if the posterior
for (6, h) is NG, V, 5_2, V) then the posterior for («, 7) is NG(«, Vo, 5_2, D)
where

a=Wo (8.17)
and
Ve=WVW (8.18)

Since we have used a natural conjugate prior, analytical posterior results are
available and there is no need for a posterior simulator. It is also interesting
to note that the local level model is a regression model where the number of
regression coefficients is equal to the number of observations. In a regression
analysis, it is usually the case that the number of regression coefficients is much
less than the number of observations (i.e. in the notation of previous chapters
k < N). However, the local level model shows that prior information can, in
many cases, be used to provide valid posterior inferences even in models with a
huge number of parameters. Expressed in another way, the question arises as to
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why we don’t just obtain a degenerate posterior distribution at the point o = y.
After all, setting o; = y; for all ¢+ would yield a perfectly fitting model in the
sense that &, = O for all 7. It can be verified that the likelihood is infinite at
this point. However, the Bayesian posterior is not located at this point of infinite
likelihood because of prior information. The state equation says that o1 and o
are close to one another, which pulls the posterior away from the point of perfect
fit. In the state space literature, this is referred to as smoothing the state vector.

Since the model considered here is simply a Normal linear regression model
with natural conjugate prior, model comparison and prediction can be done using
methods outlined in Chapter 3.

8.2.3 Empirical Bayesian Methods

In previous chapters, we have either elicited priors subjectively or used noninfor-
mative priors. In the present context, this would mean choosing values for 9, V,
s72, v or setting them to their noninformative values (see Chapter 3, Section 3.5)
of v =0and V~! = 07,7.” However, both of these approaches had potential
drawbacks. Subjective elicitation of priors may be difficult to do, or it may
be subject to criticism by other researchers with different priors. Noninforma-
tive priors often make it difficult to do Bayesian model comparison since the
resulting marginal likelihood may be undefined. Accordingly, some Bayesians
use so-called empirical Bayes methods which surmount these two problems.
The local level model is a convenient place to introduce empirical Bayes meth-
ods because some interesting issues arise in its application. However, empirical
Bayes methods can be used with any model and are particularly popular with
hierarchical prior models such as those of Chapter 7 and the present chapter. It
should be noted, however, that empirical Bayesian methods have been criticized
for implicitly double-counting the data. That is, the data is first used to select
prior hyperparameter values. Once these values are selected, the data are used a
second time in a standard Bayesian analysis.

Empirical Bayesian methods involve estimating prior hyperparameters from
the data, rather than subjectively choosing values for them or setting them to
noninformative values. The marginal likelihood is the preferred tool for this. In
particular, for any choice of prior hyperparameters a marginal likelihood can
be calculated. The values of the prior hyperparameters which yield the largest
marginal likelihood are those used in an empirical Bayes analysis. However,
searching over all possible prior hyperparameters can be a very difficult thing
to do. Accordingly, empirical Bayes methods are often used on one or two key
prior hyperparameters. Here we show how this might be done for the local level
model.

The prior for the local level model specified in (8.10), (8.11) and (8.12) depends
upon four hyperparameters n, 6, V, 572 and v. Of these, 7 is almost invariably
the most important and seems a candidate for the empirical Bayes approach. After

TRemember that, with these noninformative choices, the values of 6 and §72 are irrelevant.
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all, it can be interpreted as relating to the size of the random walk component
in the state space model and it may be hard to elicit subjectively a value for it.
Furthermore, setting it to an apparently ‘noninformative’ limiting value, n — oo,
makes little sense since this implies the stochastic trend term completely domi-
nates the irregular component. This is not ‘noninformative’, but rather quite infor-
mative. Accordingly, we focus on 1. We will begin by assuming the researcher
is able to subjectively elicit values for 6, V , s~2 and v.

The results of Chapter 3 (see (3.34)) imply that the marginal likelihood for the

present model takes the form
1
B (|V|> L T
pOI =c| | s)?2 (8.19)
04
where
v 2\%
c= L(V_STP (8.20)
r(z)=?

The notation in (8.19) makes clear that we are treating the marginal likelihood
as a function of n (i.e. in previous chapters we used notation p(y) or p(y|M;)
to denote the marginal likelihood, but here we make explicit the dependence
on 7). The standard way of carrying out an empirical Bayes analysis would be
to choose, 7, the value of 1 which maximizes p(y|n) in (8.19). 7 would then
be plugged in (8.12), and posterior analysis could then be done in the standard
way using (8.13)—(8.18). In the present model, 7 could be found by using grid
search methods. That is, the researcher could simply try every value for » in
some appropriate grid and choose 7 as being the value which maximizes p(y|n).

A more formal way of carrying out empirical Bayesian estimation would
involve explicitly treating n as a parameter and using the laws of conditional
probability to carry out Bayesian inference. If 7 is treated as an unknown param-
eter, then Bayes theorem implies p(n|y) o« p(y|n)p(n) where p(n) is a prior

and we can write
1

VIV o3
p(ly) oce (m (5°) "2 p(n) (8.21)
This posterior can be used to make inferences about ». If interest centers on the
other parameters in the model, then we can use the fact that

p@, h,nly) = p@@, hly,n)pnly)

Since p(6, h|y, n) is Normal-Gamma (i.e. conditional on a specific value for 5
the posterior results in (8.13)—(8.18) hold) and p(n|y) is one-dimensional, Monte
Carlo integration can be used to carry out posterior inference in this model. That
is, drawing from p(n|y) o« p(y|n) p(n) and, conditional upon this draw, drawing
from p(@, h|y, n) yields a draw from the joint posterior. As an aside, just how
one draws from p(n|y) depends on the exact form of p(n). However, a simple
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way of drawing from any univariate distribution involves approximating it by a
discrete alternative. That is, evaluating p(n|y) at B different points on a grid,

N, ... ,np, willyield p(n1]y), ..., p(nply). Draws of n taken from the resulting
discrete distribution (i.e. the distribution defined by p(n = ;) = p(n;ly) fori =
1, ..., B), will be approximately equal to draws from p(n|y). As B increases, the

quality of the approximation will get better. In the empirical illustration below,
we use this crude but effective strategy for carrying out Bayesian inference in
the local level model.

The empirical Bayes methods for the local level model as described so far
requires the researcher to choose 0, Z”,g’z and v (and p(n) for the second
approach outlined in the preceding paragraph). It is common to make noninfor-
mative choices for such prior hyperparameters and, for most models with hier-
archical priors (e.g. the panel data models of Chapter 7), such a strategy works
well. However, with the local level model, such a strategy does not work. It is
worthwhile to discuss in detail why this is so, as it illustrates a problem which
can occur in Bayesian inference in models with large numbers of parameters.

Consider first what happens when we set v and Xl_ll to their limiting values
Vv = K]_ll = 0. With these choices, the values of s* and 0, are irrelevant.
For these noninformative choices, it can be directly verified that p(6, o 2|y, n)
is a well-defined posterior. However, with regards to the marginal likelihood,
two problems arise. First, the integrating constant in (8.20) is indeterminate.
This is the standard problem we have discussed previously (e.g. see Chapter 2,
Section 2.5). Insofar as interest centers on 5, or the marginal likelihood is used
for comparing the present model to another with the same noninformative prior
for the error variance, this first problem is not a serious one. The constant c either
does not enter or cancels out of any derivation (e.g. a Bayes factor) and can be
ignored. Secondly, the term Ts> goes to zero as 1) — o0o. To see this, note that
with all the hyperparameters set to noninformative values 6 = (W'W)~!W’y
and y — WO = O7. We will not provide a formal proof, but it is the case
that this degeneracy is enough to imply that the marginal likelihood in (8.10)
becomes infinite as n — 0o. Hence, an empirical Bayes analysis will set 7 —
oo for any data set. It can be shown that this implies E(x¢|y) = y and no
smoothing of the state vector occurs. Thus, empirical Bayes methods fail in
the local level model when we set v and Kfll to noninformative values. This
problem (which does not arise in most models) occurs because the number of
explanatory variables in the linear regression model given in (8.7) is equal to
the number of observations and, thus, it is possible for the regression line to fit
perfectly. The general point to note here is that, in models with a large number
of parameters, the researcher must be very careful when working with improper
noninformative priors.

In the local level model, we have seen that we cannot use empirical Bayes
methods with v = Kl_ll = 0. However, it can be verified that if we set either
v>0or Kfll > 0 (and make an appropriate choice for s or 6 1), then we can
use empirical Bayes methods. Intuitively, either of these will stop 752 in (8.16)
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from going to zero as n — oo. It is worth stressing that empirical Bayes methods
work in the present model if either v > 0 or Zl_ll > 0, it is not necessary to
have an informative prior for both 4 and 6;.

In the alternative approach which involves treating n as a parameter (see (8.21)),
a similar pathology occurs if we set v = Zﬂl = 0 and use an improper
prior for n. For instance, if we set v = Kl_ll = 0 and choose p(n) to be an
improper Uniform distribution over the interval (0, co) then it turns out that
p(nly) is not a valid probability density function (i.e. it is improper). However,
if we either set v > 0 or Kﬂl > 0 or choose p(n) to be a proper p.d.f. then
p(n|y) is a valid posterior density. Thus, if we treat n as an unknown parameter,
Bayesian inference can be carried out if prior informative about n or A or 6 is
available.

8.2.4 Empirical Ilustration: The Local Level Model

To illustrate empirical Bayesian inference in the local level model, we artificially
generated data from the model given in (8.4) and (8.5) with n =1, h = 1 and
0y = a; = 1. For a prior we use 6,h ~ NG(0, V,s™ 2, v) with  and V as
described in (8.11) and (8.12). We begin by considering four priors. The first
of these is weakly informative for all parameters and sets v = 0.01, s~2 = 1,
0, = 1 and V|, = 100. Note that this prior is centered over the values used
to generate the data (i.e. s~> = 1 and 6, = 1), but expresses extreme uncer-
tainty about these values. That is, the prior for & contains as much information
as 0.01 of an observation and the prior variance for the initial condition is 100.
The second prior is the same as the first, except that it is completely noninfor-
mative for i (i.e. v = 0). The third prior is the same as the first, except that
it is completely noninformative for 6; (i.e. Zl_]l = 0). The fourth prior is com-
pletely noninformative for both parameters (i.e. v = Zl_ll = 0). Of course, the
preceding discussion implies that empirical Bayesian methods should fail for this
last prior.

Figure 8.1 plots the marginal likelihoods for a grid of values of 1 between
0 and 10. The plots corresponding to the four priors are very similar to one
another. For the first three priors, we find empirical Bayes estimates of 1 being
7 =0.828, 7 = 0.828 and 7 = 0.823, respectively. In fact, even the completely
noninformative case (which has 77 — o0) would yield 7 = 0.829 if we limit
consideration to the interval (0, 10). The pathology noted with the use of a
completely noninformative prior only occurs for extremely large values of .
Equation (8.21) can be used to derive p(n|y) and, since we have not specified
p(n), our empirical illustration implicitly holds for the case where p(n) is an
improper Uniform prior over the interval (0, co). Interpreted in this manner, our
empirical illustration shows that if we use a completely noninformative prior
for all parameters, p(n|y) is a skewed (improper) distribution. It has a mode at
the point n = 0.829, but then gradually increases to infinity as n — oo. Using
results solely based on Figure 8.1 is equivalent to using a Uniform prior over
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Figure 8.1 Marginal Likelihoods for Four Different Priors

the interval (0, 10) for 5. Using such a prior for n is enough to ensure sensible
empirical Bayes results.

In summary, users of empirical Bayes methods are often interested in focusing
on one parameter and using noninformative priors over the rest. In the local level
model with natural conjugate prior, this amounts to setting v = Zl_ll = 0 and
using empirical Bayesian methods to estimate 5. In the previous subsection we
have shown that, in theory, this is not possible to do since we will always obtain
7 — oo. However, in practice, the empirical illustration shows that this pathology
is probably not an important problem. That is, only a minuscule amount of prior
information about either 4 or the initial condition or 5 is required to ensure
empirical Bayesian methods will work.

So far we have focused exclusively on 7, however it is often the case that
interest centers on the state equation and, in particular, estimating the stochastic
trend in the model. To investigate how well empirical Bayes methods work in
this regard, we focus on the second prior of the previous section which uses a
minuscule amount of prior information about i (i.e. v = 0.01, 5_2 = 1), but
is noninformative in all other respects. The other priors yield virtually identical
results. We simulate four artificial data sets all of which have 2 =1 and 6; = 1
but have n =0, 0.1, 1 and 100, respectively.

Figures 8.2a—8.2d plot the four data sets along with E(«|y) obtained using
(8.17) for the value of n chosen using empirical Bayes methods. E(«|y) is
referred to as the ‘Fitted Trend’ in the figures. Remember that « can be interpreted
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as the stochastic trend in the time series, and is often of interest in a time series
analysis. Before discussing the stochastic trend it is worthwhile to discuss the
data itself. A wide variety of values for n have been chosen to show its role in
determining the properties of the data. In Figure 8.2a we see how time series
with no stochastic trend (n = 0) exhibit random fluctuations about a mean. How-
ever, as 7 increases, the trend behavior becomes more and more apparent. As 7
becomes very large (see Figure 8.2d), the stochastic trend becomes predominant
and the series wanders smoothly over a wide range of values.

The estimates of 1 selected by empirical Bayes are similar to those used to
generate the artificial data and the resulting fitted trends are quite sensible. In
Figure 8.2a, where there is no trend, the fitted stochastic trend is almost non-
existent (i.e. it is close to simply being a horizontal line). In Figure 8.2d, where
the trend predominates, the fitted stochastic trend matches the data very closely
(indeed it is hard to see the difference between the two lines in Figure 8.2d).
Figures 8.2b and 8.2c present intermediate cases.
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N | s l‘"'\ aa
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h " ||| 1 e ren | 2 Itte ren
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Figure 8.2 (a) Data Set with n = 0; (b) Data Set with n = 0.1; (c) Data Set with

n = 1; (d) Data Set with n = 100
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8.3 A GENERAL STATE SPACE MODEL

In this section, we discuss a more general state space model which we will simply
refer to it as the state space model and write as

Vi =XiB+ Zioy + & (8.22)
and
a1 = Troy +uy (8.23)

This model uses slightly different notation from the local level model, in that we
allow o, to be a p x 1 vector containing p state equations. We assume &; to be
iid. N, A=), but u, is now a p x 1 vector which is i.i.d. N (O, H~ ') and ¢ and
ug are independent of one another for all s and 7. X; and Z; are | xk and 1 X p
vectors, respectively, containing explanatory variables and/or known constants.
T; is a p x p matrix of known constants. The case where 7; contains unknown
parameters can be handled in a straightforward fashion, as noted below.

This state space model is not the most general possible (see the next section
for a discussion of extensions), but it does encompass a wide variety of models.
To understand the types of behavior the state space model allows for, it is useful
to discuss several special cases. First, the local level model is a special case
of (8.22) and (823)if p =1,k =0, T, = 1 and Z; = 1 and, thus, this
model can be used decompose a time series into a stochastic trend and irregular
component. Secondly, (8.22) can reduce to a Normal linear regression model
of the sort considered in Chapters 3 and 4 if Z; = 0. Thirdly, it can reduce to
a Normal linear regression model with time varying parameters if Z, contains
some or all of the explanatory variables. Fourthly, there are many so-called
structural time series models which can be put in the form of (8.22) and (8.23).
The reader is referred to Durbin and Koopman (2001, Chapter 3) for a discussion
of such models, including issues such as seasonality, and how commonly-used
Autoregressive Integrated Moving Average (or ARIMA) models can be put in
state space form. Here we will show how one common structural time series
model referred to as the local linear trend model can be put in state space form.
This model is similar to the local level model, but allows the trend to evolve
over time. Thus,

Ve =Mt + &
el = My + 0 + &
and
Vil = U + &

where &; is i.i.d. N(0, 052), g isiid. N(O, 02) and all the errors are independent
of one another. It can be seen that this local linear trend model can be put in the
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form of the state space model by setting

(&
”’_(z,
11
Tf:(o 1)
Zi=(1 0)

2
o 0

H:( 5 2)
0 of

and B = 0. In short, a wide variety of useful regression and time series models
can be written as state space models.

8.3.1 Bayesian Computation in the State Space Model

We have stressed throughout this book that an advantage of Bayesian inference
is that it is often modular in nature. Methods for posterior computation in many
complicated models can be developed by simply combining results from simpler
models. The state space model is a good example of how this can be done. Hence,
rather than go through the steps of writing out the likelihood, prior and posterior,
we jump straight to the issue of Bayesian computation, and show how we can
draw on results from earlier chapters to carry out Bayesian inference in this
model. As we shall see, a complication for posterior simulation arises since the
posterior conditional for « analogous to Chapter 7 (7.17) will not be independent
across time (i.e. (8.23) implies that o; and o;_; will not be independent of
one another). Thus, we cannot easily draw from the o;s one at a time and a
direct implementation of the Gibbs sampler would involve drawing from a 7T'-
dimensional Normal distribution. In general, this can be a bit slow, but De Jong
and Shephard (1995) describe an efficient method for Gibbs sampling in this
class of models.

An examination of (8.22) reveals that, if o, for t = 1,..., T were known
(as opposed to being unobserved), then the state space model would reduce to a
Normal linear regression model:

y=XB+e

where y/ = y; — Z;0;. Thus, all the results of previous chapters for the Normal
linear regression model could be used, except the dependent variable would be
y; instead of y. This suggests that a Gibbs sampler with data augmentation can
be set up for the state space model. That is, depending on the prior chosen,
p(B, hly, a1, ... ,ar) will have one of the simple forms given in Chapters 3 or
4. Similarly, if oy for t = 1, ..., T were known then the state equations given in
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(8.23) are a simple variant of the Seemingly Unrelated Regression (SUR) linear
regression model discussed in Chapter 6 (Section 6.6) and p(H|y, o1, ... ,aT)
has a familiar form.® Thus, if we can derive a method for taking random draws
from p(ay, ... ,arly, B, h, H) then we have completely specified a Gibbs sam-
pler with data augmentation which allows for Bayesian inference in the state
space model. In the following material, we develop such a Gibbs sampler for a
particular prior choice, but we stress that other priors can be used with minor
modifications.

Here we will use an independent Normal-Gamma prior for 8 and A, a Wishart

prior for H and the prior implied by the state equation for «, ..., a7. In par-
ticular, we assume a prior of the form
p(B.h,H,ai,... ,ar) = pB)ph)p(H)p(ai, ... ar|H)

where

p(B) = fn(BIB. V) (8.24)

p(h) = fg(hls™, v) (8.25)
and

p(H) = fw(H|vy, H) (8.26)

For the elements of the state vector we treat (8.23) as a hierarchical prior. If we
treat the time index for (8.23) as beginning at 0 (i.e.t =0, 1, ..., T) and assume

ap = 0, then the state equation even provides a prior for the initial condition.
Formally, this amounts to writing this part of the prior as

plat, ... arlH) = p(ai|H)p(azlar, H) ... plarlar—1, H)
where, fort =1,..., 7T —1
playtiley, H) = fn(ary1|Tioy, H) (8.27)
and
plai|H) = fn(a10, H) (8.28)

Note that H is playing a similar role to # in the local level model. However,
H is a p x p matrix, so it would be difficult to use empirical Bayes methods
with this high dimensional model. Furthermore, we are no longer using a natural
conjugate prior so that the analytical results of Section 8.2 no longer hold.

The reasoning above suggests that our end goal is a Gibbs sampler
with data augmentation which sequentially draws from p(Bly, a1, ..., ar),
pthly, a1, ... ,ar), p(H|y,a1,...,ar) and p(aq,...,ar|y, B, h, H). The
first three of these posterior conditional distributions can be dealt with by using

8The case where 7, contains unknown parameters would involve drawing from p(H, Ty, ...,
Trl|y,oq,...,ar) which can usually be done fairly easily. In the common time-invariant case
where T\ = --- = Ty, p(H,T1,...,Tr|y, o1, ... ,ar) will have precisely the form of a SUR
model.
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results from previous chapters. In particular, from Chapter 4 (Section 4.2.2)
we find

Bly, h,ai, ... ,ar ~N(B,V) (8.29)
and
hly,B,al, ... ,ar ~ GE"2,7) (8.30)
where
T —1
V= (zl +hZX;X,) (8.31)
=1
_ . T
B=V (K_lﬁ+ h ZX;()’t - Ztat)) (8.32)
t=1
v=T+v (8.33)
and

T
Z(yt - X8 - Zo)? + Ez

52 = =1 _ (8.34)
v

Using results for the SUR model (with no explanatory variables) from
Chapter 6 (Section 6.6.3) we obtain

Hly,ai,...,ar ~ W@y, H) (8.35)
where
ve=T+vy (8.36)
and
T-1 -1
H= [ﬂ_l + 3 @41 — T (@1 — Ttom/} (8.37)
t=0
To complete our Gibbs sampler, we need to derive p(«y,...,arl|y, B8, h, H)

and a means of drawing from it. Although it is not hard to write out this mul-
tivariate Normal distribution, it can be hard to draw from it in practice since it
is T-dimensional, and its elements can be highly correlated with one another.
Accordingly, there have been many statistical papers which seek to find efficient
ways of drawing from this distribution (Carter and Kohn (1994) and DeJong
and Shephard (1995) are two prominent contributions to this literature). Here we
present the method described in DeJong and Shephard (1995), which has been
found to work very well in many applications. The reader interested in proofs
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and derivations can look at this paper. DeJong and Shephard (1995) works with
a slightly more general version of our state space model, written as

i = XiB+ Zias + Gy (8.38)
and
a1 = Trar + Jrvy (8.39)

forr =1,...,T in(838)andt =0,...,T in (8.39) and o9 = 0. v; is i.i.d.
N@©O,h~ 11 p+1). Other variables and parameters are as defined for our state space
model. It can be see that our state space model is equivalent to the one given in

(8.38) and (8.39) if we set
_( ¢
()

G, to be a (p + 1) row vector given by
G=(1 0 . . 0)
and J; to be a p X (p 4+ 1) matrix given by
[0, A]

where A is a p x p matrix implicitly defined by

H! = lAA’
h

Since the Gibbs sampler involves drawing from p(«q,...,arly, B, h, H),
everything in (8.38) and (8.39) except for «; and v; can be treated as known.
The contribution of DeJong and Shephard (1995)° was to develop an efficient
algorithm for drawing from n, = F;v; for various choices of F;. Draws from
n; can then be transformed into draws from o;. We set out their algorithm for
arbitrary F;, but note that the usual choice is to set F; = J;, as this yields draws
from the state equation errors which can be directly transformed into the required
draws from o;.

DeJong and Shephard (1995) refer to their algorithm as the simulation smoother.
The simulation smoother begins by setting a; = 0, P; = JoJ;; and calculating for
t=1,...,T the quantities:10

er =y — XiB — Ziay (8.40)
D, =Z/PZ, + GG, (8.41)
K, = (TP, Z; + J,G})D, (8.42)
ar+1 = Trar + Ky (8.43)

9There are other advantages of the algorithm proposed by DeJong and Shephard (1995) involving
computer storage requirements and avoiding certain degeneracies which will not be discussed here.

10For readers with some knowledge of the state space literature, these calculations are referred to
as running the Kalman filter.
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and
Py =T, P(T, — K: Z) + J;(J; — K,G,) (8.44)

and storing the quantities e;, D; and K;. Then a new set of quantities are cal-
culated in reverse time order (i.e. t = T,T — 1,..., 1). These begin by setting
rr = 0 and Ur = 0, and then calculating

C,=F{ - G;D;IG, —J; — K:G,J U J; — K,G,])Ft/ (8.45)

& ~N©O,h'C) (8.46)
Vi = Ft(G;D,_IZt +[J; — Kth]/Ul[Tt - KtZl]/) (8-47)
re1=2Z,D e, + (T — K. Z))'r, — V/C7 g, (8.48)

U1 =Z,D7' Z, + (T, — K, Z)'U(T, — K, Z) + V/C7'V,  (8.49)
and
m = F(G,D; e, + [J; — K,G,1'r1) + & (8.50)

where Go = 0. This algorithm will yield n = (59, ... , n7)’, and it can be proved
that this is a random draw from p(nl|y, B8, h, H). Depending on the form for F;,
this can be transformed into the required random draw of oy to¢r = 1,..., T. For
the common choice of F; = J;, this algorithm provides draws from the errors in
the state equation (i.e. n; = J;v;) which can be transformed into draws from o;
using (8.39) and the fact that og = 0.

These formulae may look complicated. However, the algorithm is simply a
series of a calculations involving matrices that are of low dimension plus random
draws from the Normal distribution to get &;. This greatly speeds up computation
since manipulating high dimensional (e.g. T x T) matrices is very slow indeed.
Furthermore, for most applications the matrices F;, G;, J; and T; will have simple
forms, and thus the previous equations will simplify. Thus, with a bit of care,
programming up this component of the Gibbs sampler is a straightforward task.

In summary, a Gibbs sampler with data augmentation which sequentially
draws from p(8ly, «1,...,ar), pthly,ay,...,ar), p(H|y, a1, ... ,ar) and
p(ay, ... ,arly, B, h, H) has been derived using results from previous chapters
along with an algorithm developed in DeJong and Shephard (1995). Given out-
put from such a posterior simulator, posterior inference can be carried out as
in previous chapters (see Chapter 4, Sections 4.2.3 and 4.2.4). Predictive infer-
ence in this model can be carried out using the strategy outlined in Chapter 4,
Section 4.2.6. Posterior predictive p-values or HPDIs can be calculated to shed
light on the fit and appropriateness of the model. The marginal likelihood for the
state space model can be calculated using the method of Chib (see Chapter 7,
Section 7.5). The implementation of the Chib method is similar to that described
for the individual effects model of Chapter 7 with «1, ..., ar being treated as
latent data.
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8.3.2 Empirical Illustration: The State Space Model

To illustrate Bayesian methods in the state space model, we use one of the data
sets and some of the models analyzed in Koop and Potter (2001). The data set
has been used by economic historians interested in epochs such as the industrial
revolution and the Great Depression (e.g. see Greasley and Oxley, 1994). It
consists of the annual percentage change in UK industrial production from 1701
to 1992. There are many questions of interest which can be investigated with this
data set. In this empirical illustration, we will focus on the question of whether
the basic structure of the time series model driving the growth in industrial
production is changing over time. To this end we consider an AR(p) model with
time varying coefficients:

Ve =00 F oY1+ T 0 Vi—p + &t (8.51)
where fori =0,...,p
it+1 = Q¢ + Ujy (8.52)

We assume &, to be i.i.d. N0, A1) and u;, to i.i.d. N(O, A;h~1) where &, uj,
and u;, are independent of one another for all s, 7, , 7 and j. In words, this is
an autoregressive model, but the autoregressive coefficients (and the intercept)
may be gradually evolving over time. It can be seen that this model is a special
case of the state space model in (8.22) and (8.23) if we exclude X;, and define

ot
(2313
oy =
Olpt
Uuor
Uiy
Uy =
upl‘
Zt=( O L )
and set T; = I,y and
o 0 O 0
0 »
H'=np! 0 .
. . .. 0
0 . .0

We choose p = 1 to illustrate results for this model, although our previous work
with this data set indicates larger values of p should be used in a serious piece of
empirical work. To simplify issues relating to initial conditions, for our dependent
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variable we use data beginning in 1705. This means that the y,_4 term in (8.51)
will always be observed.

We use an informative prior for the parameters # and A; for i =0, ..., p.!!
For h we use the Gamma prior from (8.25) with v = 1 and 5—2 = 1. Since the
data is measured as a percentage change, the prior for /4 is centered over a value
which implies over 95% of the errors are less than 2%. However it is relatively
noninformative, since the prior contains the same information as one data point
(i.e. v = 1). Note that if H were not a diagonal matrix we would probably want
to use a Wishart prior for it, here we have assumed the state equations to have
errors which are uncorrelated with one another and, hence, we only need elicit
p + 1 univariate priors for the A;s. Thus, the Wishart prior for H given in (8.36)
simplifies here to

PO = fo AT vy

fori =0,..., p. We choose the relatively noninformative values of v, = 1 for
all i, but center the prior for A; over 1 by setting A; = 1. Since AR(p) coefficients
tend to be quite small (e.g. in the stationary AR(1) case the coefficient is less
than one in absolute value), this prior allows for fairly substantive changes in the
coefficients over time. With this prior, the conditional posterior for H given in
(8.35) simplifies to

_ 1.1 _
POy, ar, . ar) = foT R LT
fori =0,..., p, where
and
T—1
h Y (@1 — i) (@iip1 — o) + vk
- t=0
A= —
Vi

Table 8.1 contains posterior results for the state space model using the data
and prior discussed above. The Gibbs sampler was run for 21 000 replications,
with 1000 burn-in replications discarded and 20000 replications retained. The
last column of Table 8.1 presents Geweke’s convergence diagnostic which indi-
cates that convergence of the posterior simulator has been achieved. Posterior
means and standard deviations for Ay and A indicate that a substantial amount
of parameter variation occurs both in the intercept and the AR(1) coefficient.
Thus, in addition to there being a stochastic trend in the growth in industrial

Note that we are not using the natural conjugate prior and, hence, the results relating to non-
informative prior which we derived for the local level model do not apply here. The results of
Fernandez, Osiewalski and Steel (1997) are relevant, and imply that a proper prior is required for
these parameters if we are to obtain a proper posterior.
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Table 8.1 Posterior Results for State Space Model

Mean Stand. Dev. Geweke’s CD
h 0.17 0.04 0.99
Ao 0.93 0.16 0.28
M 0.61 0.11 0.64

1.6 1.8 2

0.2 0.4 0.6 0.8 1 12 1.4 1.6
(b)

Figure 8.3 (a) Posterior Density for Ag; (b) Posterior Density for A

production, the AR process itself is changing over time. These findings are sup-
ported by an examination of Figures 8.3a and 8.3b which plot the entire posterior
densities of each of these parameters.'?

8.4 EXTENSIONS

The state space model introduced in (8.22) and (8.23) covers a wide range of
interesting time series models (e.g. the local linear trend model, time varying
parameter models, models with seasonality, etc.). However, there are numerous

12We stress that this is only an illustration of Bayesian methods in the state space models and
should not necessarily be taken to imply a particular model for industrial production. A serious piece
of empirical work involving this time series would involve a consideration of other models (e.g. a
model with a structural break).
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extensions of this model that can be made in a straightforward manner. Some
of these extensions can be handled using methods outlined in this book. For
instance, we have discussed the Normal state space model, but extending this to
the Student-t state space model can be done by adding one block to the Gibbs
sampler. That is, the Gibbs sampler of Chapter 6, Section 6.4 for handling the
linear regression model with Student-t errors can be combined with the Gibbs
sampler developed in this chapter.

Other important extensions cannot be directly handled using the methods out-
lined in this book, but a small amount of additional reading or thought would
suffice to create methods for Bayesian inference in these models. Examples of
this sort include various nonlinear, regime shifting or structural break models (see
Kim and Nelson (1999), Bauwens, Lubrano and Richard (1999) or Chapter 12,
Section 12.4.1 for a discussion of some of these models). In finance, a partic-
ularly important model, known as the stochastic volatility model, is a modest
extension of that discussed in this chapter. The stochastic volatility model has
time varying error variances of the sort that seem to occur in stock returns and
many other financial time series (see Jacquier, Polson and Rossi (1994) for the
first Bayesian work on this model). It can be written as

Yt = &t
where ¢; is i.i.d. N (0, atz)
log(07) = log(0?) + Blog(o; ) + us

where u; is i.i.d. N(O, 1). If we define o; = log(atz), then it can be seen that this
is a state space model where the state equation relates to the conditional variance
of the error as opposed to the conditional mean. A Gibbs sampler which can
be used to carry out Bayesian inference in this model is very similar to the
one we have developed in this chapter. In fact, the algorithm of DeJong and
Shephard (1995) can be directly used to draw from the posterior of the states,
a;, conditional on the other parameters in the model. Hence, all that is required
is an algorithm to draw from the other parameters conditional on the states. But
this is relatively straightforward (see DeJong and Shephard, 1995, for details).
Perhaps the most important extension of the state space model discussed in this
chapter is to allow y; to be a vector instead of a scalar. After all, economists are
usually interested in multivariate relationships between time series. This extension
is very easy since (8.22) can be re-interpreted with y,; being a g-vector containing
q different time series and very little will change in the development of the pos-
terior simulator. In fact, the DeJong and Shephard (1995) model and algorithm
in (8.38)—(8.50) has been deliberately written so as to hold in the multivariate
case. Thus, these equations can be used to draw from p(«y, ..., arl|y, B, h, H)
in a posterior simulator. p(H|y, «p, ..., ar) will be similarly unaffected by the
move from a univariate to a multivariate state space model. A Gibbs sampler
for the multivariate model can be completed by drawing on methods for the
SUR model (see Chapter 6, Section 6.6.3) to derive p(Bly,a1,...,ar) and



204 BAYESIAN ECONOMETRICS

p(hly, a1, ... ,ar). Thus, Bayesian inference in the multivariate state space
model involves only minor alterations of the methods of Section 8.3.

As an aside, we should mention that multivariate state space models can be
used to investigate the presence of cointegration in time series. Cointegration
is an important concept in empirical macroeconomics and relates to the number
of stochastic trends which are present in a set of time series. To motivate this
concept further, consider the following multivariate state space model:

Ve =Zioy + & (8.53)
and
O] =0 + Uy (8.54)

where y; is a g-vector of g time series and «; is a p-vector of state equations and
H is a diagonal matrix. If p = g and Z; = I, then this becomes a multivariate
local level model. In this case, each of the g time series contains a stochastic
trend. That is, we can write

Yir = O + €ir
and
O r+1 = Ui + Ujs
for i = 1,...,q and each individual time series follows a local level model.

There are ¢ independent stochastic trends driving the g time series.

Consider what happens, however, if p < ¢ and Z; is a ¢ x p matrix of
constants. In this case, there are p stochastic trends driving the ¢ time series.
Since there are fewer stochastic trends than time series, some of the trends must
be common to more than one time series. For this reason, if p < g this model
is referred to as a common trends model. Other ways of expressing this common
trend behavior is to say the ¢ time series are trending together or co-trending or
cointegrated.

The macroeconometric literature on cointegration is very voluminous; suffice
it to note here that cointegration is thought to hold in many economic time series.
That is, many economic time series seem to exhibit stochastic trend behavior.
However, economic theory also suggests many time series variables should be
related through equilibrium concepts. In practice, these two considerations sug-
gest cointegration should occur. Suppose, for instance, that y;; and yp; are two
time series which should be equal to one another in equilibrium. In reality, we
expect perturbations and random shocks to imply that equilibrium is rarely, if
ever, perfectly achieved. A bivariate local level model with a single stochastic
trend would fit with this theoretical expectation. That is, both time series would
exhibit stochastic trend behavior. Furthermore, (8.53) and (8.54) with g = 2,
p =1 and Z; = 1 can be written as

Yie =yu + (€1 — &2)
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Hence, y|; = yy; apart from a random equilibrium error (¢1; — &2;). Thus, it can
be argued that cointegration is how macroeconomic equilibrium concepts should
manifest themselves empirically. Economic theories used to justify cointegration
include purchasing power parity, the permanent income hypothesis and various
theories of money demand and asset pricing.

Cointegration is, thus, a potentially important thing to look for in a wide
variety of applications in macroeconomics and finance. In multivariate state space
models the number of common trends can be directly investigated by comparing
models with different numbers of state equations. For instance, a researcher could
calculate the marginal likelihood for the model described in (8.53) and (8.54) for
various values of p. If substantial posterior probability is assigned to models with
P < q, then the researcher could conclude that evidence exists for cointegration.

8.5 SUMMARY

In this chapter, we have introduced a fairly general state space model along
with an interesting special case referred to as the local level model. State space
models are commonly used when working with time series data and are suitable
for modeling a wide variety of behaviors (e.g. trending, cycling or seasonal).
State space models are especially attractive for the Bayesian since they can be
interpreted as flexible models with hierarchical priors. Thus, the interpretation
and computational methods are similar to those for other models such as the
individual effects or random coefficients panel data models.

For the local level model, we used a natural conjugate prior and showed how
this allowed for analytical results. We introduced a new method for prior elici-
tation referred to as empirical Bayes. This method, which is especially popular
in models involving hierarchical priors, chooses as values for prior hyperparam-
eters those which maximize the marginal likelihood. Such an approach allows
the researcher to avoid subjective elicitation of prior hyperparameters or using
a noninformative prior. An empirical illustration involving artificial data showed
how the empirical Bayes approach could be implemented in practice.

For the more general state space model, we used an independent Normal-
Gamma prior and showed how this, along with a hierarchical prior defined by
the state equation, meant that a posterior simulator was required. Such a poste-
rior simulator was developed by combining results for the Normal linear regres-
sion model, and the SUR model along with a method developed in DeJong and
Shephard (1995) for drawing from the states (i.e. oy for + = 1,...,T). The
state space model thus provides a good illustration of the modular nature of
Bayesian computation where model extensions often simply involve adding a
new block to a Gibbs sampler. An application of interest to economic historians,
involving a long time series of industrial production and an AR(p) model with
time varying coefficients, was used to illustrate Bayesian inference in the state
space model.
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The chapter ended with a discussion of several possible extensions to the
state space models considered in this chapter. Of particular importance were
the stochastic volatility model and multivariate state space models. The former
of these extensions is commonly used with financial time series while the lat-
ter can be used in macroeconomic applications to investigate cointegration and
related issues. We stressed how Bayesian analysis of these extensions can be
implemented through minor modifications of the posterior simulator described in
Section 8.3.

Time series econometrics is such a huge field that a single chapter such
as the present one necessarily skips over many important issues. Chapter 12
(Section 12.4.1) provides a brief discussion of some additional time series topics.

8.6 EXERCISES

The exercises in this chapter are closer to being small projects than standard
textbook questions. Remember that some data sets and MATLAB programs are
available on the website associated with this book.

1. (a) Use the derivations in Section 8.2 and Chapter 6, Section 6.4 to obtain a
posterior simulator for the local level model with independent Student-t
errors. You may use whatever prior you wish for the model parameters
(although the natural conjugate one of Section 6.4 will be the easiest).

(b) Write a program which uses your result from part (a) and test the program
on either real data (e.g. the industrial production data from the empiri-
cal illustration in Section 8.3.2) or artificial data generated according to
various data generating processes.

(c) Add to your program code for calculating the marginal likelihood for the
local level model with independent Student-t errors. For your data set(s)
calculate the Bayes factor comparing the local level model with Normal
errors to the local level model with Student-t errors.

2. Unit root testing with the local level model. To do this exercise, use either
real data (e.g. the industrial production data from the empirical illustration in
Section 8.3.2) or artificial data generated according to various data generating
processes of your choice. Use the local level model with natural conjugate
Normal-Gamma prior described in Section 8.2 with the second variant on the
empirical Bayesian methodology described in Section 8.2.3. That is, treat n
as an unknown parameter, choose a prior for n of your choice (e.g. a Gamma
or Uniform prior) and obtain p(n|y). Remember that a unit root is present in
the model M; : n > 0, but is not present in the model M, : n = 0. You want
to calculate the Bayes factor comparing M| to M>.

(a) Derive the formula for the marginal likelihood of M.

(b) Using your result for part (a), write a program for calculating the required
Bayes factor and test the program using your data set(s).
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(c) Consider an approximate strategy where you calculate the Bayes factor
comparing My to M3 : n = a where a is a very small number. Using the
Savage—Dickey density ratio, derive a formula for calculating the Bayes
factor comparing M; to M.

(d) For your data set(s) compare the approximate Bayes factor of part (c) to
that obtained in part (b) for various values of a (e.g. a = 0.01, 0.0001,
0.0000001, etc.). How well does the approximate strategy work?

3. Use the methods of Section 8.3 for the general state space model to answer
this question. Use either real data (e.g. the industrial production data from the
empirical illustration in Section 8.3.2) or artificial data generated according to
various data generating processes of your choice.

(a) Write a program which carries out posterior simulation in the local level
model described in Section 8.3.

(b) Write a program which carries out posterior simulation in the local linear
trend model described in Section 8.3.

(c) Test the programs you have written in parts (a) and (b) using your data
set(s).

(d) Modify your programs to calculate the marginal likelihood for each model
and, hence, calculate the Bayes factor comparing the local level model to
local linear trend model and test your program using your data set(s).
Remember that meaningful marginal likelihoods can only be calculated
with informative priors and, hence, choose informative priors of your
choice.

(e) Carry out a prior sensitivity analysis to investigate which aspects of prior
elicitation seem to be most important for model comparison involving the
local level and local linear trend models.
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9
Qualitative and Limited Dependent

Variable Models

9.1 INTRODUCTION

The Normal linear regression model is a very powerful one that can be used
with a wide variety of data. However, it requires the distribution of y given X to
be Normal. There are many applications where this assumption is unreasonable.
In this chapter, we will discuss several different types of data where it is not
appropriate to use the Normal linear regression model. However, we will show
how minor extensions of the Normal linear regression model can be developed
which are appropriate for use with such non-standard data types. The types of
non-standard data we have in mind are those where the dependent variable is
qualitative or limited in some way. Concrete examples will be provided below.
However, to provide some intuition consider a transportation economics applica-
tion where the researcher is interested in investigating why some people choose
to travel to work by car and others choose to travel by public transport. The
data available to the researcher is based on a survey where commuters are asked
whether they traveled by car or public transport and provide personal character-
istics (e.g. distance to work, salary level, etc.). If the researcher tried to construct
a regression model, the explanatory variables would be these personal character-
istics. However, the dependent variable would be gualitative. That is, it would
be a dummy variable (i.e. 1 if commuter travelled by car, 0 if commuter trav-
elled by public transport). It would not make sense to assume that such a 0-1
dummy variable (conditional on the explanatory variables) followed a Normal
distribution.

As a second example, consider a theoretical model which relates the desired
investment level of a firm to its characteristics. The corresponding empirical
model would have desired investment being the dependent variable and the
firm characteristics being explanatory variables. However, in practice, data on
desired investment is rarely available. Instead, actual investment is observed. If
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negative investment is impossible, then actual investment is only equal to desired
investment if the latter is positive. Negative values of desired investment become
zero values of actual investment. Hence, if the researcher used actual investment
as the dependent variable in a regression, she would be using the wrong depen-
dent variable. In this case, the dependent variable would be censored. This is an
example of a limited dependent variable.

As we shall see, both of these examples imply that there is some underly-
ing latent dependent variable for which it is reasonable to assume Normality. In
the first example, this latent data is related to the utility associated with each
commuting choice. In the second example, it is desired investment. Unfortu-
nately, in neither example do we perfectly observe the latent data. In the first
example, we only observe the choice actually made, not the utility associated
with the choice. In the second, we observe the latent variable with censoring.
However, interpreting these examples as relating to latent data hints at how
Bayesian inference can be carried out. Conditional on the latent data, each of
the two examples is a Normal linear regression model and the techniques of
previous chapters can be used to carry out posterior simulation. If we can derive
the posterior of the latent data conditional on the actual data and model param-
eters, then a Gibbs sampler with data augmentation can be used to carry out
Bayesian inference. This is how we proceed in the models considered in this
chapter.

In the next section of this chapter, we begin with a more formal statement of
the strategy outlined in the preceding paragraph. We then show how this general
strategy can be implemented in three models known as fobit, probit and ordered
probit. We then consider the case where the dependent variable is multivariate
and focus on a model known as multinomial probit. Bayesian analysis of the tobit,
probit and ordered probit models involves combining methods for the Normal
linear regression model with a model linking latent to observed data. Bayesian
analysis of the multinomial probit model is the same except that the Normal linear
regression model component is replaced with the seemingly unrelated regressions
(SUR) model of Chapter 6 (Section 6.6).

In this chapter, we keep the Normal linear regression as a key component
of all our models. This requires us to focus on models in the tobit and probit
classes. However, it is worth mentioning that there are many other models that
are used for working with qualitative and limited dependent variables which are
not as closely related to the Normal linear regression model. Some of these are
mentioned in the course of this chapter. For the reader interested in delving deeper
into Bayesian analysis of qualitative and limited dependent variable models, a
few key references include: Chib (1992) for tobit; Albert and Chib (1993) for
many extensions including ordered probit; Geweke, Keane and Runkle (1997),
McCulloch and Rossi (1994), McCulloch, Polson and Rossi (2000) and Nobile
(2000) for multinomial probit. Multinomial probit models with panel data are also
commonly used in the field of marketing. Allenby and Rossi (1999) provides a
good introduction to this literature.
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9.2 OVERVIEW: UNIVARIATE MODELS FOR
QUALITATIVE AND LIMITED DEPENDENT VARIABLES

We will take as our starting point the Normal linear regression model discussed
in Chapters 3 and 4. We make one minor change in notation and let y* =

(yf+--.,yy) denote the dependent variable. Thus we can write the model as
yi =x{B+e 9.1)
where x; = (1, xj2, ... , xjx)’ or, in matrix notation,
y'=XB8+¢ 9.2)

As in Chapters 3 and 4, we assume

1. & has a multivariate Normal distribution with mean Op and covariance matrix
hl N

2. all elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of ¢ with a probability
density function, p(X|A), where A is a vector of parameters that does not
include g8 and h.

If y* were observed, then analysis would proceed as in Chapters 3 or 4. For
instance, if a Normal-Gamma natural conjugate prior for 8 and i were used
(or its noninformative limiting case) then analytical posterior results would be
obtained from (3.10)—(3.13) in Chapter 3. The marginal likelihood necessary for
model comparison is given in (3.34). If an independent Normal-Gamma prior
were used for 8 and h, then the Gibbs sampler which sequentially draws from
p(Bly*, h) and p(h|y*, B) could be used to carry out posterior inference. These
two densities are specified in (4.6) and (4.8), respectively, of Chapter 4.

In this chapter, we assume that y* is unobserved, latent data which is related to
the actual, observed data, y in some manner. The following sections give some
important examples. For the methods described here to work, the relationship
between y* and y should be such that p(8, h|y*, y) = p(B, h|y*) (when working
with the natural conjugate prior of Chapter 3) or p(8|y*, y, h) = p(B8ly*, k) and
p(hly*,y, B) = p(h|y*, B) (when working with the independent Normal-Gamma
prior of Chapter 4). Intuitively, what these conditions are saying is “if you knew
y*, there would be no added information provided by knowing y as well”. As
we shall see, this holds for all the models in this chapter (and for many others
not discussed in this book).

If the relationship between y and y* satisfies the condition outlined in the pre-
ceding paragraph, then a Gibbs sampler with data augmentation can be used to
carry out Bayesian inference. In the case of the natural conjugate prior (or its non-
informative variant), the posterior simulator sequentially draws from p(8, h|y*)
and p(y*|y, B, h). In the case of the independent Normal-Gamma prior, the poste-
rior simulator sequentially draws from p(8|y*, h), p(h|y*, B) and p(y*|y, B, h).
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In both cases, the only new derivation that is required is p(y*|y, 8, k). That is,
p(B, hly*) is exactly as described in Chapter 3, Section 3.5 and p(B|y*, h) and
p(h|y*, B) are exactly as described in Chapter 4, Section 4.2. Accordingly, in
the following discussion we will not explicitly write out these latter posterior
conditional densities, and focus on p(y*|y, B, h).

9.3 THE TOBIT MODEL

The tobit model is a simple example of a model which can be used when the
data is censored. The example given at the beginning of this chapter, with actual
investment being a censored observation of desired investment, is a leading case
where such censoring occurs. This means that the relationship between y and y*
takes the form

yi=y; ifyf>0

Wi=0 iy <0 ©3)

It can immediately be seen that if y* were known then y would also be known.
Hence, p(B8, h|y*) = p(B, hly, ¥y*) and, as described in the preceding section, we
can use results from either Chapter 3 or Chapter 4 to take draws from the poste-
rior of the parameters, conditional on y*. Thus, we need only derive p(y*|y, 8, h)
and a method for drawing from it to complete the specification of a Gibbs sampler
for carrying out posterior inference in the tobit model.

The posterior for the latent data, conditional on the parameters of the model,
can be derived in a straightforward fashion. Note first that we have assumed the
errors to be independent of one another and, hence, the latent data will exhibit
the same property. Thus we can write

N
pGHly. B =[] pOFlyi. B, )

i=1

and focus on p(y7|yi, B, h). Two cases must be considered: y; > 0 and y; = 0.
The first of these is simple: if y; > 0 then we have y/ = y;. Formally, if y; > 0,
then the conditional posterior for y/ is a degenerate density with all probability
located at the point y* = y;. The second case can be dealt with by combining
(9.1) (i.e. that, unconditionally, y/ is Normal) with the fact that y; = 0 implies
y; < 0. That is, y* has a truncated Normal distribution if y; = 0. Formally, we
can write p(y|yi, B, h) as

=i if yy >0

* / —1 * . (94)
Yilyis Boh~ N, h= )1y <0) if y; =0

where 1(yF < 0) is the indicator function which equals 1 if y* < 0, and equals
zero otherwise.
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Thus, posterior inference in the tobit model can be carried out using a Gibbs
sampler which combines results from previous chapters with (9.4). All the tools
developed in previous chapters for model comparison and prediction when an
MCMC algorithm is used apply here. For instance, the Savage—Dickey den-
sity ratio can be used to calculate Bayes factors comparing various models
(see Chapter 4, Section 4.2.5). Alternatively, the marginal likelihood for the tobit
model can be calculated using the Chib method (see Chapter 7, Section 7.5). Pre-
dictive inference can be implemented as described in Chapter 4, Section 4.2.6.
Of course, as with any Gibbs sampling algorithm, the MCMC diagnostics of
Chapter 4, Section 4.2.4, should be used to confirm convergence and provide
insight into the degree of approximation error.

In this section, we have considered the case where the censoring of the depen-
dent variable occurs at zero. It is worth mentioning that allowing censoring to
occur at some known value, c, is a trivial extension of the present model. Simi-
larly, allowing for upper and lower known censoring points can be handled. All
such extensions merely changing the truncation point(s) in (9.4). The case where
censoring is known to occur at some value c, but ¢ is an unknown parameter,
is a somewhat more substantive extension of the present model. Nevertheless, it
can be handled by adding an extra block to the Gibbs sampler (see Exercise 1).
As an example of an application which involves an extension of a tobit model,
the interested reader is referred to Li (1999).

9.3.1 Empirical Illustration: The Tobit Model

We use artificial data to illustrate Bayesian inference in the tobit model. We
organize the illustration around the question of how important the treatment of
censoring is. If censoring occurs, the Normality assumption of the Normal linear
regression model is going to be violated. However, if this violation causes only
minor problems the researcher might be tempted to stick with the familiar and
simpler Normal regression model, rather than move to the more complicated tobit
model. We shall see that the importance of the tobit model increases with the
degree of censoring.

The artificial data sets are generated by independently drawing x; from the
U(a, 1) distribution and &; from the N (0, 0.25) distribution for i =1, ..., 100.
We then set

yvi=2xi +¢

and use (9.3) to construct y;. To investigate the effect of the degree of censoring,
we generated four artificial data sets using different values for a. In addition to
the tobit model, we also present results for the Normal linear regression model
with natural conjugate prior. For both models, we choose noninformative prior
hyperparameter values. For the Normal linear regression model, posterior infer-
ence can be carried out analytically as described in Chapter 3 (see (3.9)—(3.13)
with v = 0 and V™! = Op,). For the tobit model, we use the Gibbs sampler
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Table 9.1 Posterior Results for Slope Coefficient in the Tobit and Normal Linear
Regression Models

Normal Linear

Data Set Tobit Model Regression Model
Prop. of
Censored Stand. Stand.
a Observations Mean Dev. Mean Dev.
-1 0.52 2.02 0.19 0.95 0.08
—-0.5 0.24 1.96 0.15 1.47 0.10
0 0.09 2.09 0.19 1.95 0.17
0.5 0.00 1.97 0.37 1.97 0.37

with data augmentation described above and set Sp = 1000 and S; = 10000.
MCMC diagnostics confirm this is an adequate number of burn-in and included
replications to ensure convergence and accurate results.

For both models we include an intercept and the artificially generated explana-
tory variable. Table 9.1 presents the posterior mean and standard deviation of
the slope coefficient (i.e. the second element of B) along with the proportion
of observations which are censored in each data set. It can be seen that, by
increasing a, fewer observations are censored. However, regardless of the degree
of censoring, posterior results using the tobit model are quite accurate in that
posterior means of the slope coefficient are quite close to 2, the true value used
to generate the data sets. However, for the first two data sets, where 52% and
24% of the observations are censored, posterior results from the Normal linear
regression model are far different from what they should be. Clearly, there are
large benefits to using the tobit model when the degree of censoring is high.
However, if the degree of censoring is low, the Normal linear regression model
is very similar to the tobit model. The last row to Table 9.1 shows that, if no
censoring occurs, the tobit and Normal linear regression models are identical to
one another.

9.4 THE PROBIT MODEL

The probit model is commonly used when the dependent variable is a qualitative
one indicating an outcome in one of two categories (e.g. an individual either
commutes by car or takes public transport). It is usually motivated as arising
when an individual is making a choice. Here we use such motivation, but stress
that the probit model can be used in other contexts where the dependent variable
is a 0-1 dummy.

Assume that an individual has to make a choice between two alternatives. An
economist would formalize such a situation by specifying a utility function. Let
Uj; be the utility that individual i (for i = 1, ..., N) associates with choice j
(for j = 0, 1). The individual makes choice 1 if U;; > Uy and makes choice
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0 otherwise. Thus, the choice depends upon the difference in utilities across the
two alternatives and we define this difference as

yi = Ui — Uy,

The probit model assumes that this difference in utilities follows the Normal
linear regression model given in (9.1) or (9.2). That is, the individual’s utility
difference depends on observed characteristics contained in x; (e.g. distance to
work, salary level, etc.) plus an error which is assumed to be Normally distributed.
Because of this random error the probit model, and other similar models, are
referred to as random utility models.

The econometrician does not observe y directly, but only the choice actually
made by individual i. However, just as with the tobit model, y* can be treated
as latent data and a Gibbs sampler with data augmentation can be used to carry
out Bayesian inference. For the reasons discussed in Section 9.2, all we need to
derive is p(y*|y, B, h).

For the probit model, the relationship between y and y* takes the form

yi=1 ifyf =0

9.5
yi=0 ify* <0 ©)

It can immediately be seen that if y* were known then y would also be known.
Hence, p(B, h|y*) = p(B, hly, y*) and the posterior for the model parameters
(conditional on the latent data and depending on the prior selected) takes one of
the forms discussed in Chapters 3 and 4.

The form for p(y*|y, B, h) can be derived in a similar manner as in the tobit
model. Independence across individuals implies that

N
pGFly, B0 = [ pOFlyi, B, 1)
i=1

and thus, we can focus on p(y|y;, B, k). The assumptions of the Normal linear
regression model imply that p(y/|B, k) is Normal. To obtain p(y7|y;, B, h), we
combine this Normality result with information contained in y;. If y; = 1 we
obtain a Normal distribution truncated to the left at 0. If y; = 0 we obtain a
Normal distribution truncated to the right at 0. To be precise,

yilyi, Boh ~ NIB, h~DH1(yF >0) ify; =1

* / -1 * . (9.6)
yi |J’i7,37h"’N(xi,3,h )l(yl <O) lf)’i:()

Posterior inference in the probit model can be carried out using a Gibbs sampler
with data augmentation which sequentially draws from (9.6) and p(8, h|y*). As
outlined above, results from Chapter 3 or Chapter 4 can be used to draw from
the latter density. Model comparison and prediction can be implemented using
the standard tools we have used throughout this book.

In addition to parameter estimates, it is often useful to present information
about the choice probabilities. These can be derived from the posterior of the
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parameters by noting that, for any particular values of the parameters,
Pr(y; = 1|8, h) = Pr(y; = 018, h) 0.7
= Pr(x/B + & > 0|8, h) = Pr(v/'he; > —/hx/B|B, h)

Since the errors are assumed to be Normally distributed, the last term in (9.7)
is simply one minus the cumulative distribution function of the standard Normal
(i.e. vhe; is N(0, 1)). If we define ®(a) as the cumulative distribution function
of the standard Normal distribution, then the probability of choosing alternative
lis 1 — ®(—vhx!p).

The terms in (9.7) are functions of the parameters of the model and, hence,
their posterior properties can be calculated using Gibbs sampler output in the
standard way. That is, using the notation of Chapter 4, Section 4.2.3, the terms
in (9.7) are simply g(0) for a particular choice of g().

Equation (9.7) illustrates an identification problem that was not present in the
tobit model. An identification problem is said to occur if multiple values for the
model parameters give rise to the same value for the likelihood function. In the
probit model, there are an infinite number of values for 8 and # which yield
exactly the same model. This can be seen by noting that Pr(x;8 +¢; > 0|8, h) =
Pr(xlfc,B + ce; > 0|8, h) for any positive constant c. Since ce; is a N (O, c2h™h,
the model is still the same probit model, but with different coefficients and
error precision. An equivalent way of showing this would be to write out the
likelihood function (see Exercise 2). It can be seen that the value of the likelihood
function is the same when the values (8 = Bo, h = hg) are plugged in as when
(ﬂ =cfo, h = %) are plugged in (where By and hg are any arbitrary values
chosen for B and k). In words, the probit model cannot distinguish 8 and h
separately, but only the product S+/h. For the economist, this should not be
surprising as the same property exists with utility functions (e.g. if U(x) is a
utility function defined over a set of goods, x, then cU(x) will yield identical
consumer preferences across goods).

In the probit model, the standard solution to this problem is to set &4 = 1.
We adopt this solution in the empirical illustration. An alternative solution is
to set one element of B to a fixed number (e.g. set one of the coefficients to
1). However, this alternative solution requires the researcher to know the sign
of the relevant coefficient. That is, setting one coefficient to 1 implies that this
explanatory variable will have a positive effect on utility (i.e. high values of this
variable will increase the probability of making choice 1). In practice, this kind
of sign information is rarely available and, hence, the normalization &7 = 1 is
usually preferred.

9.4.1 Empirical Illustration: The Probit Model

To illustrate Bayesian inference in the probit model we generate an artificial data
set by independently drawing x; from the N (0, 1) distribution and ¢; from the
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N (0, 1) distribution for i =1, ..., 100. We then set
i =05x; + ¢

and use (9.5) to construct y;. We estimate the model with an intercept included,
use a noninformative prior for B and impose the identification restriction 4 = 1
throughout. The Gibbs sampler with data augmentation described above is used
to provide posterior simulator output. We set So = 1000 and S; = 10000 and
use MCMC diagnostics to confirm that this is an adequate number of burn-in
and included replications to ensure convergence and accurate results.

Table 9.2 presents the posterior mean and standard deviation for the intercept
and slope coefficients. These indicate that the posterior is located near the true
values of 0 and 0.5 used to generate the data. However, due to the identification
problem, it is difficult to interpret these coefficients. For instance, > measures the
marginal effect of the explanatory variable on the difference in utility between the
two alternatives. But this may be hard for a researcher to interpret. Furthermore,
this interpretation is subject to the normalization 7 = 1. Identification could
have been imposed by setting ~ to any other number and 8 would have been
scaled proportionately. Put another way, the fact that E(8,|y) = 0.42 is positive
tells us that increasing the explanatory variable will tend to increase the utility
of choice 1 relative to choice 0. Thus, individuals with high values for the
explanatory variable will be more likely to make choice 1. However, the precise
value of this estimate (i.e. 0.42) does not directly tell us anything. For this
reason, with qualitative choice models it is useful to provide direct evidence on
how the explanatory variables influence the probability of choosing a particular
alternative. The bottom half of Table 9.2 contains a simple example of how this
might be done. Three representative individuals have been chosen with high,
average and low values of the explanatory variable. Since x; is N (0, 1), we have
chosen values of 2, 0 and —2, respectively. In empirical work involving real data,
such individuals can be chosen either through a consideration of the interpretation
of the explanatory variables or based on the sample mean and standard deviation.
The posterior mean and standard deviation of the probability of making choice
1 are calculated as described in (9.7). Such choice probabilities are simple to

Table 9.2 Posterior Results for Probit Model

Posterior Mean Posterior St. Dev.
Bi -0.10 0.28
B 0.42 0.48

Probability of Making Choice 1

Individual with x; =2 0.73 0.28
Individual with x; =0 0.46 0.11
Individual with x; = —2 0.27 0.20
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interpret, such as “The point estimate indicates that there is a 73% chance that
an individual with x; = 2 will choose alternative 1”. Note that such statements
can also be interpreted as predictive choice probabilities for individuals with
x; =2,00r =2.

9.5 THE ORDERED PROBIT MODEL

The probit model allows for only two alternatives (e.g. the commuter chooses
between car or public transport). However, many empirical applications involve
three or more alternatives (e.g. the commuter chooses between car, public trans-
port or bicycle). In the next section, we introduce the multinomial probit model
which allows for many alternatives of a general nature. Before we discuss this
general model, we introduce the ordered probit model, which is a simple exten-
sion of the probit model introduced in the previous section. The ordered probit
model allows for many alternatives. However, these alternatives must take a par-
ticular form. In particular, they must be ordered. For most applications, such an
ordering is not reasonable. However, in some cases there is a logical ordering of
the alternatives and, if so, then ordered probit may be a sensible model to use.
For instance, in marketing surveys, consumers are often asked for their impres-
sion of a product and must choose from alternatives Very Bad, Bad, Indifferent,
Good, Very Good. In this case, the five choices have a logical ordering from
Very Bad through Very Good. In labor economics, ordered probit has been used
for the analysis of on-the-job injuries, with injured workers being graded based
on the severity of their injuries (e.g. the data sets contain many categories from
severe injury through superficial injury).

To describe the ordered probit model, we must generalize the notation of the
previous section. The model can be interpreted as a Normal linear regression
model where the dependent variable is latent (as in (9.2)). As with the previous
models considered in this chapter, the relationship between y* and y is crucial.
With the ordered probit model, y; can take on values {j =1, ..., J}, where J
is the number of ordered alternatives, and we have

yvi=Jjifyj1 <y <y 9-8)

where y = (yo, Y1, -- - » ]/])/ is a vector of parameters with y5 < --- < y;.

In the same manner as in (9.7), we can use the Normality assumption of the
regression model for the latent data to work out the probability of choosing
a particular alternative. As with the probit model, identifying restrictions are
required. Hence, we impose the identifying restriction 27 = 1 for the rest of this
section (and discuss further identification issues below). Thus,

Pr(y; = jIB, v) =Pr(yj_1 < ¥/ < vjlB.y) = 9.9)
Pr(yj—1 < x;B+¢& <ylB,y) =Pr(yj_1 —x/B <& <y —x.BIB, V)
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Since ¢; is N (0, 1), the choice probabilities relate to the cumulative distribution
function of the standard Normal distribution. In particular, using notation defined
after (9.7) we have

Pr(yi = jlIB.y) = ®(yj — xiB) — P(yj—1 — x;) (9.10)
Thus, ordered probit calculates choice probabilities for any individual by taking
a Normal distribution (which integrates to one) and choosing 3y, ... , ¥ in such

a way as to divide up the probability across choices. Using this intuition, it can
be seen that more identifying restrictions are required. Consider, for instance, the
case where J = 3 and probability must be allocated across three alternatives.
Visualize a Normal distribution where you are free to choose the mean (i.e. x; B)
and four points in the range of the Normal (i.e. yp, y1, ¥2 and y3). There are many
different ways of choosing these parameters so as to yield a given allocation of
probabilities across alternatives. Suppose, for instance, that x; contains only an
intercept and you want Pr(y; = 1|8, y) = 0.025, Pr(y; = 2|8, y) = 0.95 and
Pr(y; = 3|8, y) = 0.025. This can be achieved by setting 8 = 0, yp = —o0,
y1 = —1.96, y» = 1.96 and y3 = oo. However, 8 = 1, yp = —o0, y1 = —0.96,
y2 = 2.96 and y3 = oo will also yield the same choice probabilities (as will
many other combinations of parameter values). Thus, there is an identification
problem. The standard way of solving this problem is to set yyp = —o0, y; =0
and yj = oo.

An alternative way of seeing the necessity of the identifying restriction is to
consider the probit model of the previous section. This is equivalent to the ordered
probit model with J = 2. It can be verified that (9.8) and (9.9) reduce to their
probit equivalents in (9.5) and (9.7) if yp = —o0, 1 = 0 and y», = oo, which
are precisely the identifying restrictions introduced in the preceding paragraph.

In the same manner as for the probit model, y* can be interpreted as utility.
Because the alternatives are ordered, it is sensible to model the choice proba-
bilities based on this latent utility as being integrals of sequential regions of the
Normal distribution. To see this, consider a marketing example where consumers
are asked questions relating to the utility obtained from consuming a product and
must choose from alternatives Very Bad, Bad, Indifferent, Good or Very Good.
Suppose y’, the utility of consumer 7, is such that she says the product is ‘Bad’.
If the utility of this consumer increases very slightly, then the ordering of the
categories means she will now say the product is ‘Indifferent’ (or stay with the
‘Bad’ choice). With the ordered probit model, there is no way a slight change in
utility can induce the consumer to suddenly say the product is ‘Very Good’. We
stress that restricting utility in this way only makes sense if the categories are
ordered. When the consumer is choosing between several unordered alternatives,
then the multinomial probit model (to be discussed shortly) is the appropriate
choice.

Bayesian inference in the ordered probit model can be done using a Gibbs
sampler with data augmentation which sequentially draws from p(B8|y*, y),
p(yly*, v, B) and p(y*|y, B, y). As with the probit model, p(B|y;,y) will be
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a Normal density if a Normal or noninformative prior is used for 8 (e.g., see
Chapter 3, Section 3.5, with & = 1 imposed). p(y;|y;, B, y) is a truncated Nor-
mal density which is a simple extension of (9.6):

Yilyi = j. By ~ NxiB, D1(yj—1 < ¥/ < 7)) .11

The new feature of the ordered probit model is p(y |y, y;, B). We use a flat,
improper prior for each of these parameters (i.e. p(y;) o c) below, although other
priors can be added with minor modifications. It proves easier to draw from the
components of y one at a time. Remembering that identification requires yy =
—00, ¥1 = 0 and y; = o0, it is convenient to draw from p(y;|y*, y, B, v(—j))
for j = 2,...,J — 1. The notation y_j, denotes y with y; removed (i.e.
Yi—j) = (W05 -+ s ¥j=1, Vj+1, - - -, vs)". The density p(y;|y*, y, B, v(—j)) can be
derived by combining a few simple facts. First, we are conditioning on y(_j)
and, thus, we know y; must lie in the interval [y;_1, ¥j+1]. Secondly, we are
conditioning on both y and y* and, thus, can figure out which values of the latent
data correspond to which values for the actual data. Thirdly, the conditioning
arguments provide no other information about y;. These facts imply a Uniform
distribution:

V]|y*, Y, /31 y(*]) ~ U(?j—l??j-{-l) (912)
for j =2,...,J — 1, where

7,1 = max{max{y} : y; = j}, yj-1}

and

Y41 = min{min{y; : y; = j + 1}, yj+1}

The notation max{y/ : y; = j} denotes the maximum value of the latent data
over all individuals who have chosen alternative j. min{y’ : y; = j + 1} is
defined in an analogous fashion.

In summary, posterior inference in the ordered probit model can be carried
out using a Gibbs sampler with data augmentation which sequentially draws
from (9.11), (9.12) and p(B|y*). This last density is Normal under a nonin-
formative or Normal prior (see Chapter 3, Section 3.5, with 2 = 1 imposed).
Model comparison and prediction can be implemented using the standard tools
we have used throughout this book. Depending upon which models are being
compared, the Savage—Dickey density ratio (see Chapter 4, Section 4.2.5) or
the Chib method (see Chapter 7, Section 7.5) may be of particular use with the
ordered probit model. Predictive inference can be implemented as described in
Chapter 4, Section 4.2.6. The MCMC diagnostics of Chapter 4, Section 4.2.4,
should be used to confirm convergence of the Gibbs sampler and provide insight
into the degree of approximation error.

The basic issues faced by the empirical researcher when doing Bayesian ana-
lysis of probit and ordered probit are very similar. Hence, we do not provide a
separate empirical illustration for the ordered probit model.
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9.6 THE MULTINOMIAL PROBIT MODEL

There are many cases where individuals choose between several alternatives, but
no logical ordering of the alternatives exists. For the reasons discussed in the
previous section, it is not appropriate to use ordered probit in these cases. In this
section, we introduce the multinomial probit model, which is probably the most
commonly-used model when several unordered alternatives are involved.

We slightly modify the setup of the earlier sections by assuming that y; can take
on values {j =0, ..., J}. That is, there are J 4 1 alternatives indexed by {j =
0,...,J} where J > 1. To motivate the multinomial probit model, it is useful to
extend the random utility framework of Section 9.4. As discussed in that earlier
section, the choice an individual makes does not depend upon the absolute utility
associated with an alternative, but on the utility relative to other alternatives. Let
Uj; be the utility of individual i when she chooses alternative j (fori =1,... , N
and j =0,...,J). All information relating to what choices were actually made
is provided in utility differences relative to some base alternative. We choose
alternative 0 as this base choice and define the latent utility difference variable as

yii = Uji — Ui
for j = 1,...,J. The multinomial probit model assumes this utility difference
follows a Normal linear regression model:

Yi =X Bj + &ji (9.13)

where x;; is a kj-vector containing explanatory variables that influence the utility
associated with choice j (relative to choice 0), §; is the corresponding vector of
regression coefficients and ¢;; is the regression error.

Since (9.13) involves J equations, our posterior simulator will combine results
for the Seemingly Unrelated Regressions (SUR) model with a method for drawing
the latent utility differences. Hence, it proves useful to put (9.13) in the form
of a SUR model (see Chapter 6, Section 6.6). Thus, we stack all equations into

vectors/matrices as y; = (y;, ..., ¥5) s & = (€1, ..., €5i)s
B
p-|
By
Xy, 0 . . 0
0 xh 0
X; =
0
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and define k = Zjlzl ky and write

i =XiB+si (9.14)
If we further define

"

=1
N
€1

|-
EN
X

x=|
Xy

and can write the multinomial probit model (in terms of the latent utility differ-
ences) as

V= Xpte 9.15)

Equation (9.15) is in the form of a SUR model, and we use the standard error
assumptions for the SUR model. That is, we assume ¢; to be i.i.d. N (O, H™) for
i=1,...,N, where H is the J x J error precision matrix. An alternative way
of expressing this is to say € is N (0, €2), where 2 is an NJ x N J block-diagonal
matrix given by

H' 0 0
0 Hl . . .
Q= . . .. . (9.16)
. . . 0
0 . .0 H!

The econometrician does not observe y;-‘i directly, but rather observes y; where

— 1 *
Vi 0 %f max(yl*) < 0* ©.17)
yi=j if maX(yl-)=y,-j >0
where max(y;) is the maximum of the J-vector y/. In words, the individual
chooses the alternative which maximizes her utility, and the econometrician
observes only this choice.
Remember that the univariate probit model combined the Normal linear regres-
sion model with a specification for the latent data, y*. A Gibbs sampler with data
augmentation which sequentially drew from p(B8|y*) and p(y*|y, 8) was used to
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carry out Bayesian inference. With the multinomial probit model, we use a simi-
lar strategy which combines results from the SUR model with a specification for
the latent data, y*. Thus, a Gibbs sampler can be derived which uses results from
Chapter 6, Section 6.6 (to provide p(B8|y*, H) and p(H|y*, B)) and a truncated
multivariate Normal form for p(y*|y, 8, H).

Methods for drawing from p(y*|y, 8, H) can be developed in a similar man-
ner as for the tobit or probit models. That is, independence across individuals
implies that

N
POy, B H) = [ [ PO 1yi. B. H)
i=1

and, thus, we can focus on p(y/|y;, 8, H). Equation (9.14) implies p(y|8, H)
is a Normal density. Combining this with the information contained in y; yields
a truncated Normal density. Thus,

y¥lyi, B, H ~ N(X\B, H~1)1(max(y}) < 0) if y =0

* / -1 * * . . (9.18)
Vi |vi, B, H~ N(X;8, H )1(max(y,')=y,'j >0) ify=

for j=1,...,J.

Econometric analysis of the multinomial probit model (whether Bayesian or
frequentist) was held back for many years by computational difficulties relating
to the truncated Normal distribution. Bayesian analysis requires taking draws
from the truncated multivariate Normal, frequentist analysis required calculating
integrals over various regions of the parameter space of the multivariate Normal
distribution. Until recently, both of these things were very difficult to do if the
number of alternatives was large. However, recent advances in computational
algorithms and computer hardware now make it easy to do Bayesian (or fre-
quentist) inference in the multinomial probit model. Early papers which discuss
computational issues relating to the multivariate Normal density include Geweke
(1991), McCulloch and Rossi (1994) and Geweke, Keane and Runkle (1994).
However, the applied Bayesian econometrician can now simply download com-
puter code for drawing from the multivariate Normal subject to linear inequality
restrictions from many places. For instance, the website associated with this book
has MATLAB code based on Geweke (1991).

Thus, if an independent Normal-Wishart prior is used for 8 and H, Bayesian
inference can be carried out through a posterior simulator which involves sequen-
tially drawing from p(y*|y, 8, H) (using (9.18)), p(B|y*, H) (which is Normal,
see Chapter 6 (6.50)) and p(H|y*, B) (which is Wishart, see Chapter 6 (6.53)).
However, one important new problem arises with the multinomial probit model,
and this relates to identification. With the univariate probit model, the restric-
tion = 1 was required to identify this model. This restriction was easy to
impose, and actually simplified computation. With the multinomial probit model,
imposing the identification restriction is more difficult to do and complicates
computation. The reason why the multinomial probit model is unidentified is the
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same as that presented for the probit model (see Section 9.4). If we define the
error covariance matrix as ¥ = H~! and let oi;j denote the ijth element of X,
then the standard method of imposing identification is to set o) = 1. However,
with this restriction imposed p(H|y*, B) no longer has a Wishart distribution,
and the results for the SUR model of Chapter 6 can no longer be directly used.
Several ways of addressing this problem have been proposed in the literature.
For instance, McCulloch and Rossi (1994) simply ignore the identification issue
and do not impose o1; = 1. In this case, p(H|y*, B) is Wishart and computa-
tion is straightforward. Instead of presenting empirical results for 8, the authors
present results for the identified combination of parameters: % However, some
researchers feel uncomfortable working with unidentified models. For reasons we
will discuss in the empirical illustration, it is hazardous to use noninformative
priors, and computational complications can occur (see Nobile (2000) and Hobert
and Casella (1996)). Nevertheless, Bayesian analyses of the multinomial probit
model, using informative priors, but ignoring the identification restriction are
common.

For the researcher who wishes to work only with identified models, McCulloch,
Polson and Rossi (2000) offer a useful approach. The underlying regression model
in (9.14) assumes that ¢; is N (0, ¥). Remember that any joint distribution can be
written in terms of a marginal and a conditional distribution. McCulloch, Polson
and Rossi (2000) use this insight and partition ¢; as

e1;
8[=|:1l]
Vi

where v; = (g2, ...,&y;). X is also partitioned in a conformable manner as

_|1on1 (3/
Y= [ 5 EJ (9.19)

The laws of probability imply p(g;) = p(e1;) p(vile1;). The properties of the
multivariate Normal distribution (see Appendix B, Theorem B.9) can be used to
show that p(ey;) and p(v;le1;) are both Normal. In particular,

e1; ~ N(0,011) (9.20)

and
)
viler ~ N( —¢1i, q)) (9.21)
on

where ® = X, — i—‘y Instead of working directly with the J x J error covariance
matrix, %, we can work with the parameters o1, 6 and ®. We can simply set
011 = 1, put priors over § and ® and develop a Gibbs sampler.

It is convenient to assume a Normal prior for § and a Wishart prior for ®~!.
That is, we take

p@, @ =p@)p@")
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where

p(®) = fn (18, Vs) 9.22)

and
p(@7") = fw(@ g, @7 h (9.23)

With these priors, McCulloch, Polson and Rossi (2000) show that the posterior
conditionals necessary for the Gibbs sampler are

pGIy*, @, 8) = fn(8I8, V5) (9.24)

and
p@7 |y, 8, 8) = fw (@ Ve, B ) (9.25)

The terms in these densities are given by
N -1
Vs = <151 + ! Zg%,)
i=1
N
3=V; (zg‘éJr o Zv,-el,)

i=1

N —1
' = {9+ > i —eud) (i — 81[5)/:|
i=1

and
Vp =ve + N

Note that these densities are conditional on y* and 8 and, thus, we can use (9.14)
and treat &; = (g1;, v})" as known.

In summary, Bayesian inference in the multinomial probit can be implemented
using a Gibbs sampler with data augmentation. If identification issues are ignored,
then this Gibbs sampler involves sequentially drawing from (9.15) and from
Chapter 6 (6.49) and (6.52). If the identification restriction o1; = 1 is imposed,
then the Gibbs sampler involves sequentially drawing from (9.15), (9.24), (9.25)
and from Chapter 6 (6.49). In either case, model comparison and prediction can
be implemented using the standard tools we have used throughout this book.

In the empirical example below, these Gibbs sampling algorithms both work
very well. However, it should be mentioned that some researchers have found
convergence to be quite slow in certain applications. Thus, several Bayesian
statisticians have sought to develop more efficient computational algorithms for
this and related models. The reader interested in this literature is referred to Liu
and Wu (1999), Meng and van Dyk (1999) and van Dyk and Meng (2001).

In this section, we have discussed two different priors for the error covariance
matrix in the multinomial probit model. There are several other priors which
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are commonly used in empirical work (see McCulloch and Rossi, 2000). The
multinomial probit model is sometimes criticized for being over-parameterized.
That is, if the number of alternatives is large, then ¥ contains many parameters.
This may lead to inaccurate estimation. This has lead researchers to consider
restricted versions of the multinomial model or develop informative priors which
impose additional structure on the model. For instance, Allenby and Rossi (1999)
restrict X to be a diagonal matrix. If such restrictions are sensible, they can greatly
reduce the risk of over-parameterization and simplify computation.

9.6.1 Empirical Illustration: The Multinomial Probit Model

In this empirical illustration, we investigate the implications for Bayesian infer-
ence of imposing the identifying restriction o117 = 1. To this end, we estimate
the multinomial probit model with and without imposing identification. We use
a data set taken from a marketing application. The interested reader is referred
to Paap and Franses (2000) and Jain, Vilcassim and Chintagunta (1994) for more
details about this application. Here we note only that we use a subset of their data
comprising N = 136 households in Rome, Georgia. For each household data is
available on which of four brands of crackers, Sunshine, Keebler, Nabisco and
Private label, was purchased. The data was taken from supermarket optical scan-
ners. Thus, the data set contains four alternatives. ‘Private label’ is the omitted
alternatives (i.e. the latent data, y*, contains the difference in utility between the
other three brands and Private label). For every alternative, we use an intercept
and the price of all four brands of crackers in the store at time of purchase as
explanatory variables. Thus, k| = ky = k3 = 5.

For the case where identification is not imposed, we use the independent
Normal-Wishart prior with p(8) = fy(B818,V) and p(H) = fw(H|v, H) (see
Chapter 6 (6.47) and (6.48)). It is not acceptable to use an improper, noninfor-
mative, prior.! However, we choose the following prior hyperparameter values
which are very close to being noninformative: 8 = O, V. = 10000/, v = 0.0001
and H = %Ik. For the case where identification is imposed, we use the fully non-
informative limiting case of the prior p(8) = fn (8|8, V) combined with (9.22)
and (9.23). Thus, K_] = kak,zs_l = 0j—1)x@—1) and vy = 0. We should
mention, however, that McCulloch, Polson and Rossi (2000) are critical of this
‘noninformative’ prior. Even though it is noninformative for the parameters &
and @, they show it is strongly informative about some aspects of the error

!Formally, with an improper prior, the resulting posterior will be improper. To see this, remember

that % is identified. B and o7 are not individually identified. Thus, p (ylﬁ, o11, \/L = c) is

o1l
f

simply a constant for any c. The posterior along the line Tom =€ is p (,3, o11ly, \/% = c) 4

P (ﬂ,am% = c) P (ms,g”, £ = c>. If the prior along this line, p (,s,gm\/% = c>, is
improper then the posterior will be constant along the line % = c. The integral along this line

over the interval (—oo, 00) is co. Thus, the posterior is improper and not a valid p.d.f.
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Figure 9.1 Gibbs Draws of Identified and Non-identified Parameters

covariance matrix. In particular, they show it is actually extremely informative
about the smallest eigenvalue of X.

For the model with non-identified parameters, a Gibbs sampler with data aug-
mentation which sequentially draws from (9.18), (6.49) and (6.52) is used to
provide posterior simulator output. For the model with identified parameters, we
sequentially draw from (9.18), (6.49), (9.24) and (9.25). For both cases, we use
1000 burn-in replications and 10000 included replications. MCMC diagnostics
indicate the adequacy of these choices.

Before comparing results for the two models, it is instructive to consider the
implications of the lack of identification for posterior computation. Figure 9.1
plots 100 of the Gibbs draws of oy, 811 and the identified combination ﬁTlil
(labeled ‘Identified coefficient’ in Figure 9.1), where 1] is the first element of
Bi1. It can be seen that the draws of o) and 811 wander widely (and their posteri-
ors exhibit enormous variance). However, the draws for the identified coefficient

do not wander widely, and always remain close to its posterior mean. Loosely
Bii_ and 101998,

. . _\/0-11 101004/0'11 )
the only thing stopping posterior draws of 0| and B;; from wandering off to enor-

mous numbers is the small amount of information contained in the prior. How-
ever, the likelihood function provides reasonably precise information about what

likely values of ﬁly_il are. Thus, o011 and B, although they can wander widely,
Bui

must wander in a manner which implies Jor is fairly well-defined. Figure 9.1

speaking, the likelihood says

are equally plausible and, thus,
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Table 9.3 Posterior Results for Multinomial Probit Models

Non-identified Model Identified Model
Mean Standard Deviation Mean Standard Deviation

Sunshine
B —-3.92 3.17 —2.94 2.96
B2 -3.10 2.79 —2.69 2.51
B13 2.79 2.98 1.96 2.21
Bla 0.33 1.81 0.39 1.84
Bis 2.31 2.21 2.36 2.80
Keebler
B —1.59 5.76 —2.17 4.54
B —2.43 3.52 —2.48 3.33
B2z —2.74 3.98 —1.56 4.03
Boa 1.21 4.63 0.44 3.36
Bas 3.01 4.85 2.31 4.20
Nabisco
B31 —-2.59 2.43 —2.28 2.59
B32 —0.37 1.02 —0.48 1.27
B33 2.02 2.05 1.73 2.09
B3a —0.33 0.98 502 —0.47 1.36
Bss 1.78 1.60 2.21 1.97

also makes it clear why noninformative priors are unacceptable. Without infor-
mation in the prior, there is nothing stopping draws of Bi; and oq; going to
infinity (and, thus, posterior moments going to infinity).

Because of the identification problem, posterior properties of 8 and H are hard
to interpret in the case where o1 = 1 is not imposed. Hence, Table 9.3 reports the
identified coefficients for both cases (i.e. % for the case where identification
is not imposed and B for the case where it is imposed). It can be seen that
the identified and non-identified models are leading to very similar posteriors
for the identified parameters (at least relative to the very large posterior standard
deviations).2 Remember that B1; for j = 1,..., 5 are coefficients which measure
how the explanatory variables affect the probability that a consumer will choose
the Sunshine brand of crackers. Thus, the point estimate indicates that raising this
brand’s own price has a negative effect on this probability (i.e. E(B12|y) < 0).
However, raising the price of the other cracker brands (i.e. Keebler, Nabisco or

2The fact that the posterior standard deviations are quite large for all parameters is likely due to
the very small data set used here. The original data set used in Paap and Franses (2000) and Jain,
Vilcassim and Chintagunta (1994) is a panel involving roughly 20 observations per household. Here
we are using only one observation per household.
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Private label) will increase the probability of choosing the Sunshine brand (i.e.
E(B13]y) > 0, E(B14ly) > 0 and E(B15]y) > 0). Similar sensible patterns tend
to emerge for the other cracker brands. With some exceptions, raising a brand’s
own price makes it less likely that brand will be bought, but raising the other
brands’ prices will make it more likely the brand will be bought.

We could have presented this information in a different way by presenting
choice probabilities for several representative cases. For instance, we could have
calculated the predictive choice distribution when all prices are set at their sample
means, then calculated the predictive choice distribution with the price of one
brand set at a higher level. The comparison between these two cases would have
shed light on how price effects the probability of choosing a particular brand.

9.7 EXTENSIONS OF THE PROBIT MODELS

There are many extensions of the probit, ordered probit and multinomial probit
models which brevity precludes us discussing in any detail. Perhaps the most
important of these involve the use of panel data. Marketing is a field where
such data is often available. With supermarket scanners, it is possible to observe
the choices made during many supermarket visits by many people. Furthermore,
individuals vary in their utility functions. This suggests the use of the random
coefficients model in Chapter 7 (Section 7.4) for the latent utility differences
used with the probit model. For instance, in the case where two alternatives are
possible (i.e. a particular product is either purchased or not purchased) and panel
data is available, the equation for the Normal linear regression model with latent
dependent variable (see (9.1)) can be written as

Vi = X Bi + €ir (9.26)

The methods developed in Chapter 7, involving a hierarchical prior for §; to
model consumer heterogeneity, can be used to derive p(B;|y*) fori =1,..., N.
The expression for p(y}|yi:, B;) is a simple extension of (9.6). Thus, a Gibbs
sampler with data augmentation for the random coefficients panel probit can be
set up in a straightforward fashion (see Exercise 4). Bayesian inference in the
random coefficients panel multinomial probit model can be carried out in a sim-
ilar fashion by combining derivations for the multinomial probit (Section 9.6),
random coefficients (Chapter 7, Section 7.4) and SUR (Chapter 6, Section 6.6)
models. The reader interested in learning more about Bayesian inference in mar-
keting applications using extensions of multinomial probit models is referred to
Allenby and Rossi (1999) and Rossi, McCulloch and Allenby (1996). The panel
probit model can also be extended to allow for treatment of time series con-
siderations (e.g. to allow for autocorrelated errors). Geweke, Keane and Runkle
(1997) discusses a particular so-called multinomial multiperiod probit model.
The fact that Bayesian analysis of panel probit and multinomial probit models
involves combining Gibbs sampler blocks from various simpler models illustrates
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yet again an important message of this book. Bayesian inference is usually imple-
mented using posterior simulators and these often work in terms of blocks of
parameters conditional on other blocks. The modular nature of such posterior sim-
ulators means combining pieces of different models is particularly easy. Hence,
any of the probit (or tobit) models can be combined with any of the models of
the previous chapters. So, for instance, a probit (or tobit) model with nonlin-
ear regression function, or with autocorrelated errors, or with heteroskedastic-
ity, etc., can be developed by combining results from the present chapter with
results from another chapter of this book. In the next chapter, we will discuss
even more extensions of the probit model: mixtures-of-Normals probit and semi-
parametric probit. All such extensions exploit the modular nature of the Gibbs
sampler.

9.8 OTHER EXTENSIONS

In this chapter, we have focused on models where suitably-defined latent data
can be assumed to follow a Normal linear regression model. However, there
is a myriad of other popular models which cannot be put into this form. Most
of these can be categorized as involving a linear regression model with errors
following a non-Normal distribution. For instance, if the dependent variable is
a count (e.g. the number of patents filed by a firm, the number of deaths fol-
lowing a particular health intervention), then assuming Normal errors is often
unreasonable and a regression model involving the Poisson distribution is com-
monly used. If the dependent variable is a duration (e.g. the number of weeks
a spell of unemployment lasts), then it is common to use regression-based mod-
els involving the exponential or Weibull distributions. Some of these exten-
sions will be briefly discussed in the last chapter of this book (see Chapter 12,
Section 12.4.3).

With regards to qualitative choice data, the class of logit models is a popular
competitor to the probit class. In fact, there are logit counterparts to every probit
model considered in this chapter (e.g. in addition to the logit model, there is
the rank ordered logit model and the multinomial logit model). These models
have the same random utility model motivation as do probit models and the only
difference is that they assume a logistic distribution for the model errors instead
of the Normal assumption of probit models. We will not define the logistic distri-
bution here. However, a crucial property of this distribution is that an analytical
expression exists for its cumulative distribution function. This property does not
hold for the Normal distribution. Thus, until the development of posterior simu-
lators such as that described in Geweke (1991) (see Section 9.6), computational
difficulties precluded estimation of the multinomial probit model if the number
of alternatives was at all large. The multinomial logit model, with an analytical
expression for the c.d.f. which forms a key part of the likelihood function, did
not suffer from this problem.



QUALITATIVE AND LIMITED DEPENDENT VARIABLE MODELS 23]

Bayesian inference in variants of the multinomial logit model is well-
developed. Bayesian inference in the logit model is described in Zellner and Rossi
(1984). The multinomial case, with emphasis on informative prior elicitation and
computation, is discussed in Koop and Poirier (1993). Bayesian inference in the
rank-ordered logit model is discussed in Koop and Poirier (1994). Poirier (1994)
discusses logit models with noninformative priors.

The logit class of models offers an attractive alternative to the probit class and,
of course, the usual Bayesian tools (e.g. posterior odds and posterior predictive p-
values) can be used to choose between them. However, when there are more than
two alternatives, the multinomial logit model has a property which is unattractive
in many applications. The choice probabilities implied by the multinomial logit
model must satisfy an Independence of Irrelevant Alternatives (or IIA) property.
This means that the ratio of probabilities of any two choices will be the same,
regardless of what the other alternatives are. Suppose, for instance, that the com-
muter can choose between taking the bus (y = 1) or the car (y = 0) and the
alternatives are equally likely (i.e. 2 Ey :(1); = 1). Now suppose that a bicycle lane
is constructed so that the commuter can now bicycle to work. The HA property
says that the addition of this alternative does not alter the fact that £ Ey :1) =1.In
this example, it is possible (although unlikely) that the IIA property is reasonable.
Originally we have assumed p(y = 0) = p(y = 1) = 0.50. Suppose there is
a 20% chance that the commuter will cycle to work following the introduction
of the bicycle lane. This is consistent with p(y = 0) = p(y = 1) = 040,
which still implies 22=2 =0 — 1 However, to illustrate where the IIA prop-

0)
ply=D —
erty is unreasonable, Tetonometricians tweak the previous example to create the

so-called Red Bus-Blue Bus problem. This assumes that the commuter origi-
nally has a choice between taking a Red Bus (y = 1) or a car (y = 0) to
work. If a new bus company with blue buses starts operating on the com-
muter’s route (y = 2), then it is not reasonable to assume ITA holds. Sup-
pose, for instance, that initially p(y = 0) = p(y = 1) = 0.50 and, thus,
g ()_1) = 1. Since the Blue Bus is virtually identical to the Red Bus, the intro-
duction of this alternative would likely leave the commuter just as likely to take
the car to work and, thus, p(y = 0) = 0.50 and p(y = 1) = f(y =2) =
0.25. Hence, the introduction of the new alternative 1mphes —1 2. Such
changes are a violation of IIA, and are not allowed for by the multinomial logit
model.

Several variants of logit models have been developed to surmount this restric-
tive property of the multinomial logit model. One popular variant is the nested
logit model, which assumes a nested structure for the decision-making process.
For instance, in the Red Bus-Blue Bus example, the econometrician would use a
logit model for a commuter who makes a choice between car and public trans-
portation. If the latter choice is made, then a second logit model is used for the
commuter’s choice between the Red Bus and the Blue Bus. Hence, a logit model
is nested within another logit model. Poirier (1996) discusses Bayesian inference
in nested logit models.
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9.9 SUMMARY

In this chapter, we have introduced several models which can be used when the
dependent variable is qualitative or censored. We have focused on cases which can
be written in terms of a Normal linear model with a latent dependent variable.
Conditional on this latent data, results from Chapters 3 and 4 for the Normal
linear regression model apply. Bayesian inference in a wide class of models can
be carried out by developing a Gibbs sampler with data augmentation which
combines results for the Normal linear regression model (conditional on latent
data) with a distribution for the latent data (conditional on the observed data and
parameters).

The first model of this form discussed in this chapter was the tobit model. This
model involves a dependent variable which is censored. The form of the censoring
determines the distribution for the latent data conditional on the observed data
and model parameters.

The rest of the models discussed in this chapter fall in the class of probit
models. These can be used when the dependent variable is qualitative in nature.
Qualitative dependent variables often occur in applications where an individual
chooses from a set of alternatives. Thus, they can be motivated in terms of the
individual making a utility maximizing choice. The difference in utility between
each alternative and a base alternative determines which choice the individual
makes. If this unobserved utility difference is the dependent variable in a Nor-
mal linear regression model, then a probit model results. This utility difference
becomes the latent data in a Gibbs sampler with data augmentation.

This chapter considered several probit models. It began with the standard probit
model (which involves two alternatives), before proceeding to the ordered probit
model (which involves many alternatives which are ordered) and the multinomial
probit model (which involves many unordered alternatives). Model extensions
relevant for panel data were discussed. The chapter concluded with a brief dis-
cussion of other related models (e.g. in the logit class) which cannot be written
in terms of a Normal linear regression model with latent dependent variables.

9.10 EXERCISES

Except for Exercise 2, the exercises in this chapter are closer to being small
projects than standard textbook questions. Except where otherwise noted, feel
free to use whatever priors you want. It is always useful to test any programs
you write using artificial data. Feel free to experiment with different artificial
data sets. Remember that some data sets and MATLAB programs are available
on the website associated with this book.

1. Consider the tobit model with an unknown censoring point. All model details
and assumptions are as in the body of the chapter (see (9.1) and (9.2)), except
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that (9.3) is replaced by

yi=y' ifyf>c
yi=0 ifyf=<c

and c is an unknown parameter known to lie in the interval (0, 1).

(a)

(b)

2. (a)

(b)

3. (a)

(b)

4. (a)

(b)
(c)
(d)

Assuming a U (0, 1) prior for ¢, show how the Gibbs sampler with data
augmentation described in Section 9.3 can be modified to allow for pos-
terior inference about c.

Write a program which uses your result from part (a) to carry out Bayesian
inference in the tobit model with unknown censoring point. Use your
program on an artificial data set of the sort described in Section 9.3.1.

Note: p(c|y*, B, h) might not have a convenient form, but ¢ is a scalar
and will be defined over a restricted interval so even very crude meth-
ods might work well. For instance, an independence chain Metropo-
lis—Hastings algorithm which uses a U (0, 1) candidate generating density
would be very simple to program. Investigate whether such an algorithm
is efficient. Can you come up with a more efficient algorithm?

Derive the likelihood function for the probit model. Hint: Remember that
the likelihood function is H,N=1 p(ilB, h) and use (9.7).

Verify that the identification problem discussed in Section 9.4 occurs with
the probit model.

Write a program which carries out posterior simulation for the simple
probit model of Section 9.3 (or take the program from the website associ-
ated with this book and make sure you understand it) using an informative
Normal prior for 8. Use artificial data to confirm your program is working.
Extend your program of part (a) to calculate Bayes factors for testing
whether individual coefficients are equal to zero using both the Sav-
age—Dickey density ratio (see Chapter 4, Section 4.2.5) and the Chib
method (see Chapter 7, Section 7.5). How many Gibbs sampler repli-
cations are necessary to ensure that these two methods give the same
estimate of the Bayes factor (to two decimal places)?

Derive the conditional posterior distributions necessary to set up a Gibbs
sampler with data augmentation for the random coefficients panel probit
model introduced (9.26).

Program up the Gibbs sampler described in part (a) and test your program
using artificial data.

How would your answer to part (a) and program in part (b) change for
the random coefficients panel multinomial probit model?

Using artificial data or the full cracker data set (available on the web-
site associated with this book or at the Journal of Applied Economet-
rics data archive, http://qed.econ.queensu.ca/jae/, listed under Paap and
Franses, 2000) carry out Bayesian inference in the random coefficients
panel probit model.
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10
Flexible Models: Nonparametric

and Semiparametric Methods

10.1 INTRODUCTION

All the models considered in previous chapters involved making assumptions
about functional forms and distributions. For instance, the Normal linear regres-
sion model involved the assumptions that the errors were Normally distributed,
and the relationship between the dependent and explanatory variables was a linear
one. Such assumptions are necessary to provide the likelihood function, which
is a crucial component of Bayesian analysis. However, economic theory rarely
tells us precisely what functional forms and distributional assumptions we should
use. For instance, in a production example economic theory often tells us that a
firm’s output in increasing in its inputs and eventually diminishing returns to each
input will exist. Economic theory will not say “a constant elasticity of substitu-
tion production function should be used”. In practice, a careful use of the model
comparison and fit techniques described in previous chapters (e.g. posterior pre-
dictive p-values and posterior odds ratios) can often be used to check whether
the assumptions of a particular likelihood function are reasonable. However, in
light of worries that likelihood assumptions may be inappropriate and have an
effect on empirical results, there is a large and growing non-Bayesian literature
on nonparametric and semiparametric methods." To motivate this terminology,
note that likelihood functions depend on parameters and, hence, making partic-
ular distributional or functional form assumptions yields a parametric likelihood
function. The idea underlying the nonparametric literature is to try and get rid of
the such parametric assumptions either completely (in the case of nonparametric
methods) or partially (in the case of semiparametric methods).”

Horowitz (1998) and Pagan and Ullah (1999) provide good introductions to this literature.

2This noble goal of “letting the data speak” is often hard to achieve in practice since it is necessary
to place some structure on a problem in order to get meaningful empirical results. Nonparametric
methods do involve making assumptions, so it is unfair to argue that likelihood-based inference
‘makes assumptions’ while nonparametric inference ‘lets the data speak’. The issue at heart of the
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Bayesian inference is always based on a parametric likelihood function and,
hence, in a literal sense we should not refer to Bayesian ‘nonparametric’ or
‘semiparametric’ methods. This is the reason why the main title to this chapter
is ‘Flexible Models’. Nevertheless, there are many Bayesian models which are
similar in spirit to non-Bayesian nonparametric methods and, thus, there is a large
and growing literature which uses the name Bayesian nonparametrics. This field is
too large to attempt to survey in a single chapter and, hence, we focus on two sorts
of Bayesian nonparametric approaches which are particularly simple and can be
done using the methods of previous chapters. The interested reader is referred to
Dey, Muller and Sinha (1998) for a broader overview of Bayesian nonparametrics.

To motivate the Bayesian nonparametric approaches discussed here, it is useful
to consider the assumptions underlying the Normal linear regression model. The
researcher may wish to relax the assumption of a linear relationship (i.e. relax a
functional form assumption) or relax the assumption of Normal errors (i.e. relax
a distributional assumption). The two approaches described here relate to these
two aspects. The section called Bayesian non- and semiparametric regression
relaxes functional form assumptions, and the section on modeling with mix-
tures of Normals relaxes distributional assumptions. As we shall see, we can
do Bayesian semiparametric regression using only techniques from Chapter 3 on
the Normal linear regression model with natural conjugate prior. Modeling with
mixtures of Normals can be done using a Gibbs sampler which is an extension
of the one introduced in Chapter 6 (Section 6.4) for the regression model with
Student-t errors.

10.2 BAYESIAN NON- AND SEMIPARAMETRIC
REGRESSION

10.2.1 Overview
In Chapter 5, we discussed the nonlinear regression model
vi = f(Xi,y)+ &

where X; is the ith row of X, f(-) is a known function which depends upon
X; and a vector of parameters, y. In this section, we begin with a very similar
starting point in that we write the nonparametric regression model as

i = f(Xi) + & (10.1)

but f(-) is an unknown function. Throughout this section, we make the standard
assumptions that

distinction between nonparametric and likelihood-based methods is what kind of assumptions are
made. For instance, a nonlinear regression model makes the assumption “the relationship between y
and x takes a specific nonlinear form”, whereas a nonparametric regression model makes assumptions
relating to the smoothness of the regression line. The question of which sort of assumptions are more
sensible can only be answered in the context of a particular empirical application.
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1. eis N(Oy, h=1y).

2. All elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of ¢ with a probability
density function p(X|A), where A is a vector of parameters that does not
include any of the other parameters in the model.

Before discussing nonparametric regression, it is worth mentioning that non-
linear regression methods using extremely flexible choices for f(X;,y) allow
the researcher to achieve a goal similar to the nonparametric econometrician
without the need for any new methods. For instance, by using one of the com-
mon series expansions (e.g. a Taylor series, Fourier or Muntz—Szatz expansion)
one can obtain a parametric form for f(X;,y) which is sufficiently flexible to
approximate any unknown function. The choice of a truncation point in the series
expansion allows the researcher to control the accuracy of the approximation.’

Nonparametric regression methods hinge on the idea that f() is a smooth
function. That is, if X; and X; are close to one another, then f(X;) and f(X;)
should also be close to one another. Nonparametric regression methods, thus,
estimate the nonparametric regression line by taking local averages of nearby
observations. Many nonparametric regression estimators of f(X;) have the form

FX) =" wy (10.2)
JEN;

where w; is the weight associated with the jth observation and N; denotes
the neighborhood around X;. Different approaches vary in how the weights and
neighborhood are defined. Unfortunately, if there are many explanatory variables,
then nonparametric methods suffer from the so-called curse of dimensionality.
That is, nonparametric methods average over ‘nearby’ observations to approx-
imate the regression relationship. For a fixed sample size, as the dimension of
X; increases ‘nearby’ observations become further and further apart, and non-
parametric methods become more and more unreliable. Thus, it is rare to see the
nonparametric regression model in (10.1) directly used in applications involving
many explanatory variables. Instead, various models which avoid the curse of
dimensionality are used. In this section, we discuss two such models, beginning
with the partial linear model.

10.2.2 The Partial Linear Model

The partial linear model divides the explanatory variables into some which are
treated parametrically (z) and some which are treated nonparametrically (x). If
x is of low dimension, then the curse of dimensionality can be overcome. The
choice of which variables receive a nonparametric treatment is an application-
specific one. Usually, x contains the most important variable(s) in the analysis
for which it is crucial to correctly measure their marginal effect(s). Here we

3Koop, Osiewalski and Steel (1994) is a paper which implements such an approach.
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assume x is a scalar, and briefly discuss below how extensions to nonscalar x
can be handled.
Formally, the partial linear model is given by

yi=zip+ f(xi)+é&i (10.3)

where y; is the dependent variable, z; is a vector of k explanatory variables, x; is
a scalar explanatory variable and f(-) is an unknown function. Note that z; does
not contain an intercept, since f(x;) plays the role of an intercept. We refer to
f O as the nonparametric regression line.

The basic idea underlying Bayesian estimation of this model is that f(x;) for
i =1,...,N can be treated as unknown parameters. If this is done, (10.3) is
a Normal linear regression model (albeit one with more explanatory variables
than observations). A Bayesian analysis of this model using a natural conjugate
prior can be done exactly as described in Chapter 3. Thus, it is simple and
straightforward to carry out Bayesian inference in the partial linear model.

We begin by ordering observations so that x; < x» < --- < xpy. Since the
data points are independent of one another, their precise ordering is irrelevant
and choosing to order observations in ascending order makes the definition of
what a ‘nearby’ observation is clear. Stack all variables into matrices in the usual
way as y = (yi,...,yN) s Z=1(z1,"...,2y) and ¢ = (g1, ... ,en)". If we let

y =&, ..., fan),
W=I[Z:1y]
and 8§ = (B, '), then we can write (10.3) as
y=Ws+e (10.4)

Note first that y is an N-vector containing each point on the nonparametric
regression line. At this stage, we have not placed any restrictions on the elements
of y. Hence, we are being nonparametric in the sense that f(x;) can be anything
and f () is a completely unrestricted unknown function. Secondly, (10.4) is simply
a regression model with explanatory variables in the N x (N + k) matrix W.
However, (10.4) is an unusual regression model, since there are more unknown
elements in § than there are observations, i.e. N +k > N. An implication of this
is that a perfect fit is available such that the sum of squared errors is zero. For
instance, if we had an estimate of § of the form

()

then the resulting errors would all be zero. Note that ’S\implies the points on the
nonparametric regression line are estimated as f(x;) = y;. Hence, this estimate
implies no smoothing at all of the nonparametric regression line. In terms of
(10.2), the implied weights are w; = 1 and w; = 0 for j % i. Such an estimator
is unsatisfactory. Prior information can be used to surmount this pathology.
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In the nonparametric regression literature, estimators are based on the idea
that f() is a smooth function. That is, x; and x;_1 are close to one another, then
f(x;) should also be close to f(x;—1). In a Bayesian analysis, such information
can be incorporated in a prior. There are many ways of doing this, but here
we implement one simple approach discussed in Koop and Poirier (2002). We
assume a natural conjugate Normal-Gamma prior for 8, y and h. By adopting
such a choice, we are able to obtain simple analytical results which do not require
posterior simulation methods. To focus on the nonparametric part of the partial
linear model, we assume the standard noninformative prior for 4 and 8:

p(B, h) xh (10.5)

For the coefficients in the nonparametric part of the model, we use the partially
informative prior (see Chapter 3, Exercise 4) on the first differences of y:

RS ~ NOy_1, h~'V(n) (10.6)

where V() is a positive definite matrix which depends upon a hyperparameter
n (which will be explained later), and R = [Ov—_1)xk : DI, where D is the
(N — 1) x N first-differencing matrix:

-1 1.0 0 --- --. 0
o-11 0 ... .-+ 0

D= | cor i i e e (10.7)
0 - v --- 0 0 —1 1

Note that this structure implies that we only have prior information on f(x;) —
f(xi—1). The fact that we expect nearby points on the nonparametric regression
line to be similar is embedded in (10.6) through the assumption that E[ f (x;) —
f(xi—1)] = 0. V() can be used to control the expected magnitude of f(x;) —
f(x;—1) and, thus, the degree of smoothness in the nonparametric regression line.

In this discussion of prior information, it is worth mentioning that the researcher
sometimes wants to impose inequality restrictions on the unknown function
describing the nonparametric regression line. For instance, the researcher may
know that f() is a monotonically increasing function. This is simple to do using
the techniques described in Chapter 4 (Section 4.3).

Before presenting the posterior for this model, a brief digression on two points
is called for. First, the perceptive reader may have noticed that the structure of
the partial linear model is almost identical to the local level model of Chapter 8.
In fact, if we omit the parametric term (i.e. drop Z) and change the i subscripts
in this chapter to ¢ subscripts, then this nonparametric regression model is iden-
tical to the state space model. This is not surprising once one recognizes that
both models have ordered data and the structure in the state equation of (8.5) is
identical to that of the prior given in (10.6). The fact that state space methods can
be used to carry out nonparametric regression has been noted in several places
(e.g. Durbin and Koopman, 2001). Everything written in Chapter 8 (Section 8.2)
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is thus relevant here. For instance, empirical Bayes methods can be used as
described in Section 8.2.3 if the researcher does not wish to elicit prior hyper-
parameters such as 1. Secondly, the reader with a mathematical training may be
bothered by the fact that we have referred to (10.6) as controlling ‘the degree of
smoothness’ in the nonparametric regression line through prior information about
first differences. Usually, the degree of smoothness of a function is measured by
its second derivative, which would suggest we use prior information about sec-
ond differences (i.e. [ f(xi+1) — f(xi)] — [f(xi) — f(xi—1)]). Prior information
about second differences can be incorporated in a trivial fashion by redefining D
in (10.7) to be a second-differencing matrix.

It is straightforward to prove (see Chapter 3, Exercise 4), that the posterior
for the Normal linear regression model with partially noninformative Normal-
Gamma prior is

8, hly ~ NG, V.,572,%) (10.8)
where
V=RV 'R+WW)! (10.9)
§=V(W'y) (10.10)
V=N (10.11)
and
T2 = (y — W8 (y — W8) + (RS)' V()" " (RS) (10.12)

Furthermore, the posterior is a valid p.d.f., despite the fact that the number
of explanatory variables in the regression model is greater than the number of
observations. Intuitively, prior information about the degree of smoothness in
the nonparametric regression function suffices to correct the perfect fit pathology
noted above.

In an empirical study, interest usually centers on the nonparametric part of the
model. Using (10.8) and the properties of the multivariate Normal distribution
(see Appendix B, Theorem B.9), it follows that

E(yly) =Mz +D' V() 'DI"'M,y (10.13)

where My = Iy — Z(Z'Z)~'Z’. Equation (10.13) can be used as an estimate
of f(), and we refer to it as the ‘fitted nonparametric regression line’. To aid
in interpretation, note that Mz is a matrix which arises commonly in frequentist
studies of the linear the regression model. M7y are the OLS residuals from the
regression of y on Z. Hence, (10.13) can be interpreted as removing the effect
of y on Z (i.e. since M7y are residuals) and then smoothing the result using the
matrix [Mz + D'V ()~ D]~!. Note also that in the purely nonparametric case
(i.e. Z does not enter the model), if the prior in (10.6) becomes noninformative
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Ge. Vi)~ ! - On—1,n—1), then E(y|y) = y and the nonparametric part of the
model merely fits the observed data points (i.e. there is no smoothing).

So far, we have said nothing about V (n), and many different choices are pos-
sible. A simple choice, reflecting only smoothness considerations (i.e. f(x;) —
f(xi_1) is small), would be to take V() = nly_;.* This prior depends only
upon the scalar hyperparameter n, which can be selected by the researcher to con-
trol the degree of smoothness. To provide more intuition on how the Bayesian
posterior involves an averaging of nearby observations, it is instructive to look
at E(yly, y(i)), where y(i) = Wi1,---,Yi-1, Yi+1,--- » ¥Yn). For the pure non-
parametric regression case (i.e. where Z does not enter), it can be shown that:

E(ily,y") = m(ym + Vit1) + e

fori =2,...,N—1. E(y;ly, y®) is a weighted average of y; and the closest
points on the nonparametric regression curve above and below i (i.e. ;1 and
¥i+1). Since n controls the degree of smoothness we wish to impose on f(-),
it makes sense that as n — oo we obtain E(y;|y, y)) = y; (i.e. no smoothing
whatsoever). As 7 — 0 we obtain E (y;|y, y@) = %(Vi—l + ¥i+1). Furthermore,

. 2
it can be shown that var(y;|y, y@) = gT'r’) which goes to zero as n — 0. Thus,

the limiting case of n — 0 yields y; = %(yi,l + ¥i+1), and the nonparametric
regression component is merely a straight line.

In summary, Bayesian inference in the partial linear model can be carried
out using the familiar Normal linear regression model with natural conjugate
prior if we treat the unknown points on the nonparametric regression line as
parameters. Despite the fact that the number of explanatory variables in the
partial linear model is greater than the number of observations, the posterior is
proper. Model comparison and prediction can be done in exactly the same manner
as in Chapter 3.

In many cases, the researcher may be willing to choose a particular value for
n. Or, as in the following application, empirical Bayes methods as described in
Chapter 8 (Section 8.2.3) can be used to estimate . However, it is worthwhile to
briefly mention another method for selecting a value for » in a data-based fashion.
This new method, which is commonly used by nonparametric statisticians, is
referred to as cross-validation. The basic idea of cross-validation is that some
of the data is withheld. The model is estimated using the remaining data and
used to predict the withheld data. Models are compared on the basis of how
well they predict the withheld data.> In the present context, we could define a

4In small data sets, the distance between x; and x;_; may be large, and it might be desirable to
incorporate this into the prior. A simple way of doing this would be to use a prior involving V (n)
being a diagonal matrix with (i, i)th elements equal to v; = n(x; — xj_1).

31t is worth mentioning that cross-validation can be used as a model comparison/evaluation tool
for any model, not just nonparametric ones.
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cross-validation function as
1 & .
CVn) =+ D i = Eily™))
i=1

where y(i) = (Y1, Vi1, Yi+1s--. » YN) . That is, we delete one observation at
a time and calculate the fitted nonparametric regression line using the remaining
data. We then use (y; — E (yily(i), n))? as a metric of how well the resulting
nonparametric regression line fits the left out data point. n is chosen so as to
minimize the cross-validation function.

Empirical lllustration: The Partial Linear Model

To illustrate Bayesian inference in the partial linear model, we use an artificial
data set using a very nonlinear data generating mechanism. Fori =1, ..., 100
we generate

vi = xjcos(4mx;) + & (10.14)

where ¢; is i.i.d. N(0,0.09) and x; is i.i.d. U (0, 1). The data is then re-ordered
so that x| < xp <--- < X100-

For simplicity, we assume a purely nonparametric model (i.e. do not include
Z). The partially informative prior, given in (10.5) and (10.6), requires us to
select a value for 1. Once a value for 7 is selected, posterior inference about the
nonparametric regression line can be done based on (10.8)—(10.13). Here we use
the empirical Bayes methods described in Chapter 8 (Section 8.2.3) to estimate
n. As stressed in Section 8.2.3, (very weak) prior information about n, y; or
h is required to do empirical Bayes methods in this model. Here we use prior
information about », and assume

n~G(p v,

and choose nearly noninformative values of v, = 0.0001 and = 1.0.
Remember that empirical Bayes estimation involves finding t?le maximum of
the marginal likelihood times p(n) (see Chapter 8 (8.21)). With the partially
informative prior, the integrating constant is not defined. However, insofar as
we are interested in comparing models with different values for 5, such integrat-
ing constants are irrelevant, since they cancel out in the Bayes factors. These
considerations suggest that we should choose the value of n which maximizes

- 1Y
p@ly) o p(yImp@) o (VIIR'V() ™' RD2 T2 fo(nlp, . v,)

We do the one-dimensional maximization of p(#n|y) through a grid search. The
reader who finds this brief discussion of implementing empirical Bayes meth-
ods confusing is urged to re-read Chapter 8 (Section 8.2.3) for a more thorough
explanation.
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Figure 10.1 True and Fitted Nonparametric Regression Lines

The value of n chosen by the empirical Bayes procedure is 0.1648. Figure 10.1
plots the fitted nonparametric regression line using this choice for 1 along with
the actual data and the true regression line given in (10.14) used to generate
the data. It can be seen that the fitted nonparametric regression line tracks the
(very nonlinear) shape of the true regression line quite well. If an empirical
application requires a smoother curve, then a prior on the second differences,
[f(xit1) — f(x)] = [f(xi) — f(xi—1)], can be used.

Since Chapter 3 already contains an empirical illustration using the Normal
linear regression model with natural conjugate prior, no further empirical results
will be presented here. Of course, all the tools presented there can be used to carry
out further posterior inference (e.g. HPDIs can be presented at each point on the
nonparametric regression line), model comparison (e.g. Bayes factors comparing
this model to a parametric model can be calculated) or prediction. Furthermore,
the perceptive reader may have noticed that this figure looks very similar to
Figure 8.2, and it is worth stressing yet again that state space and nonparametric
regression methods are very similar.

Extensions: Semiparametric Probit and Tobit

In this book we have emphasized the modular nature of Bayesian modeling,
especially in terms of posterior simulation. In the present context, the partial linear
regression model can serve as one component of a more complicated non- or
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semiparametric model. Many models can be written in terms of a parameter vector
(possibly including latent data) 6, and the partial linear model (with parameters
S and h). Hence, the results derived in this section can be used in an MCMC
algorithm to carry out Bayesian inference. That is, many models can be written
such that p(8, k|y, ) is Normal-Gamma, and either p(6|y) or p(8|y, §, h) can
conveniently be sampled from. The list of models which can be put in this form
is huge. Here we show how Bayesian semiparametric methods for probit and
tobit can be developed.

Bayesian methods for a semiparametric probit model can be derived by com-
bining the ideas of this section with results from Section 9.4 of Chapter 9 on the
probit model. The semiparametric probit model can be written as

yi=zB+ f(x)+e (10.15)
or
yi=Ws+e (10.16)

where all model assumptions are the same as for the partial linear model, except
that y* = (y},..., %)’ is unobserved. Instead, we observe

yi=1if y7 >0
(10.17)
yi=0if yf <0
Bayesian inference for this model proceeds by noting that p(8, h|y*) is pre-
cisely that given in (10.8)—(10.13) except that y is replaced by y* in these for-
mulae. In fact, if we make the usual identifying assumption that 2 = 1, the
conditional posterior distribution for § is simply Normal. Furthermore,

N
pO* 1y, 8, 1) =] pOilyi. 8, 1)
i=1
and p(y|yi,d,h) is truncated Normal (see Chapter 9, Section 9.4). Hence, a
simple Gibbs sampler with data augmentation which involves only the Normal
and truncated Normal distributions can be used to carry out Bayesian inference.
To be precise, the MCMC algorithm involves sequentially drawing from
Sly* ~ N, V) (10.18)
and, fori =1,..., N,
Yilyid, B~ NGB +vyi, DIy =0) if yi=1
) (10.19)
Y yi, 8, B~ N(ziB+vi, DI(y} <0) otherwise

where 1(A) is the indicator function which equals 1 if condition A is true and
otherwise equals 0.

Bayesian methods for a semiparametric tobit model can be derived along sim-
ilar lines to semiparametric probit by combining the techniques for the partial
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linear model with those for parametric tobit models (see Chapter 9, Section 9.3).
Comparable to (10.16) and (10.17), the semiparametric tobit model can be
written as

yi=zB+ fxi)+e (10.20)
or
Yi=Ws§+e (10.21)
where y* = (yT, e, y}t,)/ is unobserved. In the tobit model, we observe

yi=y; ifyf>0
(10.22)
yi=0 ifyf <0
Bayesian inference for this model proceeds by noting that our results for the
partial linear model provide us with p(8, h|y*). Furthermore,

N
pGH1y 8. b =] [ pO}lyi. 8. )
i=1

and p(y?|yi, 8, h) is either simply y; or truncated Normal. Hence, a simple Gibbs
sampler with data augmentation can be used to carry out Bayesian inference.
Formally, the MCMC algorithm involves sequentially drawing from

8, h|ly* ~NG@B,V,572,7) (10.23)
and, fori=1,..., N,
yi=yi ify>0
Yy, 8, B h ~ NG+ vy, h DIy <0) ify; =0

Hence, Bayesian semiparametric probit or tobit (as well as many other models)
can be carried out in a straightforward fashion using MCMC methods that com-
bine the results for the partial linear model with some other model component.

It is also worth mentioning briefly that there is a myriad of other ways to
do Bayesian non- or semiparametric regression. One particular class of model
which does much the same thing as nonparametric regression is the class of spline
models. We do not discuss them here, but refer the interested reader to Green and
Silverman (1994), Silverman (1985), Smith and Kohn (1996) or Wahba (1983).
There are many other methods for flexible modeling on a regression function
which are not discussed in this book. The interested reader is referred to Dey,
Muller and Sinha (1998) for a discussion of some of these models and methods.

(10.24)

10.2.3 An Additive Version of the Partial Linear Model

Thus far we have assumed x; to be a scalar in the partial linear model. In this
scalar case, the prior used to impose smoothness on the nonparametric regres-
sion line involved simply reordering the observations so that x; < --- < xp.
As discussed at the beginning of this chapter, when x; is a vector the curse
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of dimensionality may preclude sensible nonparametric inference. However, if
x; is of low dimension, then it may be possible to implement Bayesian infer-
ence by using a nearest neighbor algorithm to measure the distance between
observations. The data can then be reordered according to the distance between
observations and the posterior given in (10.8) used to carry out Bayesian infer-
ence. For instance, a common definition of the distance between observations i
and j is

P
. 2
dist; j = E (xit — xj1)
I=1

where x; = (xj1,...,xj,)" is a p-vector. The procedure for ordering the data
involves selecting a first observation (e.g. the observation with the minimum
value for the first element of x). The second observation is the one which is
closest to the first observation. The third observation is the one closest to the
second (after deleting the first observation), etc. Once the data have been ordered,
the Bayesian procedure described above can be used. However, if p is large (e.g.
p > 3), then this procedure may work very poorly (and may be sensitive to
the choice of first observation and the definition of distance between observa-
tions). Accordingly, many variants of the partial linear model have been proposed
which place restrictions on f() to break the curse of dimensionality. Here we
describe one common model, and develop Bayesian methods for carrying out
econometric inference.
The additive version of the partial linear model is given by

yi =ziB+ filxin) + fo(xi2) + -+ fr(xip) + & (10.25)

where f;(-) for j = 1,..., p are unknown functions. In other words, we are
restricting the nonparametric regression line to be additive in p explanatory
variables:

f&x) = filtxin) + olxin) + -+ fp(xip)

In many applications, such an additivity assumption may be sensible, and it is
definitely much more flexible than the linearity assumption of standard regression
methods.

Extending the notation described between (10.3) and (10.4), we can write this
model as

y=ZB+yvi+nt+-+yte (10.26)

where y; = (y1j,...,vn) = [fi(x1)), ..., fi(xn;)]. In other words, the N
points on the nonparametric regression line corresponding to the jth explanatory
variable are stacked in y; for j = 1,..., p. The data are ordered according to
the first explanatory variable so that xi; < x7; < --- < xy1. We refer to this
ordering below as the ‘correct’ ordering.

In the case where x was a scalar, we used the simple intuition that, if we ordered
the data points so that x; < x» < ... < xy, then it was sensible to put a prior
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on f(x;)— f(xi—1). Here we have p explanatory variables which can be used to
order the observations, so there is not one simple ordering which can be adopted.
However, remember that the ordering information was only important as a way of
expressing prior information about the degree of smoothness of the nonparametric
regression line. If we express prior information for each of yp,...,y, with
observations ordered according to its own explanatory variable, then transform
back to the correct ordering, we can carry out Bayesian inference in a manner
virtually identical to that in Section 10.2.2. To emphasize the intuition, let me
repeat the econometric strategy in slightly different words. With independent data,
it does not matter how the data is ordered, provided all variables are ordered in
the same way. Here we have our observations ordered as x1; < xp1 < --- < xn|.
However, prior information on the degree of smoothness for f;() should be
elicited with observations ordered so that x1; < x2; < --- < xy;. But this means
that, for j = 2,..., p, the prior will be elicited with the observations ordered
incorrectly (i.e. the correct ordering does not have x1; < x2; < --- < xp;, but
rather has x11 < xp1 < --- < xn1). How do we solve this problem? After eliciting
each prior, we simply re-order the data back to the correct ordering. Once we
have done this, we are back in the familiar world of the Normal linear regression
model with natural conjugate prior.

To write out this strategy formally, some new notation is required. Remember
that our previous notation (e.g. y1, ... , ¥p) used an ordering of observations such
that x;; < x31 < --- < xn1. Define y.(] ) as being equal to y; with observations
ordered according to the jth explanatory variable (i.e. all data is ordered so that
xX1j <xpj <--- < xy; for j =2,..., p). For individual elements of yj(J) we
use the notation

()

Yij
)
)/2] )/(j)
L) _ _ "
J (%)
Yj
)
VNj

That is, we have isolated out the first point on the jth component of the non-
parametric regression line (y1 ) from all the remaining points which we stack

in an (N — 1)-vector yj(] *) We define a similar notation when the observations

are ordered according to the first explanatory variable with yj(*) equaling y; with
one element deleted. This element is the one corresponding to the smallest value
of the jth explanatory variable.

Before formally deriving the requisite posterior, it is important to note that there
is an identification problem with the additive model, in that constants may be
added and subtracted appropriately without changing the likelihood. For instance,
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the models y; = fi(xi1) + f2(xi2) + & and y; = g1(x;1) + g2(xi2) + & are
equivalent if g1(x;1) = fi(xi1) + ¢ and g2(xj2) = f>(x;2) — ¢, where ¢ is any
constant. Insofar as interest centers on the marginal effect of each variable on
y (i.e. on the shapes of fj(x;) for j = 1,..., p) or the overall fit of the
nonparametric regression model, the lack of identification is irrelevant. Here we
impose identification in a particular way, but many other choices can be made,
and the interpretation of the empirical results will not change in any substantive
way. We impose identification by setting yl(j) =0for j =2,...,p (e. all
except the first additive functions are restricted to have intercepts equalling zero).

For y1, B and h we use the same partially informative prior as before. In
particular, the noninformative prior for g and 4 is given in (10.5) and, for y; (i.e.
the nonparametric regression line corresponding to the first explanatory variable)
we use the prior on the degree of smoothness

Dy1 ~ NOy—1, ="'V (m)) (10.27)

where D is the first-differencing matrix defined in (10.7). For yj(j ) for j=2,...,p
the smoothness prior can be written as

Dy ~ NOy-1.h~'V(n)) (10.28)
Alternatively, since we impose the identifying assumption y,(j )

= 0, we can write
(10.28) as

Dy ~ NOy-1. k™' V() (10.29)

where D* is an (N —1) x (N —1) matrix equal to D with the first column removed.
Note that, as desired (10.28) and (10.29) imply that if x; 1 ; and x;; are close to
one another, then fj(x;_ ;) and fj(x; ;) should also be close to one another. As
discussed previously, other priors can be used (e.g. D can be replaced with the
second-differencing matrix) with minimal changes in the following posteriors.

The prior in (10.28) is for j =2, ..., p, and is expressed using the observa-
tions ordered in an incorrect manner (i.e. they are ordered as x1; < xp; < --- <
xnj), so we have to re-order them before proceeding further. Hence, we define
D;, which is equivalent to D except that the rows and columns are re-ordered so
that observations are ordered correctly (i.e. as x1; < x21 < --- < xy1). We also
introduce the notation D]i* which is comparable to D*. That is, D]’." is equal to D;
with the column corresponding to the first point on the nonparametric regression
line removed.

A concrete example of how this works might help. Suppose we have N =5
and two explanatory variables which have values:

1

|9, I SOOI )
NN — B~ W
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The data has been ordered in the correct manner so that the first explanatory
variable is in ascending order, x1; < --- < x51. However, when observations are
ordered in this way, the second explanatory variable is not in ascending order.
The prior given in (10.28), written for the observations ordered according to
x12 < --- < x53, must be rearranged to account for this. This involves creating a
rearranged version of D:

0 0 -1 1 0
1 0 0 -1 0
D=\ 1 1 0o o0 o0
0 -1 0 0 1

It can be verified that D,y» defines the distance between neighboring values for
the second explanatory variable and, thus, it is sensible to put smoothness prior
on it. The identification restriction implies 3, = 0 and, hence,

0O 0 1 0

. 1 0 -1 o
D=\ 1 1 0 o
0 -1 0 1

In summary, with the additive model we use the same smoothness prior on
each of p unknown functions. Since the observations are ordered so that xj; <
- < xn1, the smoothness prior for y; can be written using the first difference

matrix D. However, for y», ..., y, the same smoothness prior must be written
in terms of a suitably rearranged version of D. We label these rearranged first
difference matrices D; for j = 2, ..., p. Imposing the identification restriction

involves removing the appropriate column of D;, and we label the resulting
matrix D7.

One more piece of notation relating to the imposition of the identification
restriction is required. Let I equal the N x N identity matrix with one column
deleted. The column deleted is for the observation which has the lowest value
for the jth explanatory variable.

With this notation established, we can proceed in a similar manner as for the
partial linear model. The model can be written as a Normal linear regression
model:

y=W§+e¢ (10.30)
where
W:[Z:IN:IZ*:...:I;]
and § = (B, yl’,yz(*),,... ,y,§*>')’ contains K = k+ N+ (p—-1)x (N—-1)

regression coefficients. The prior for this model can be written in compact nota-
tion as

RS ~ N(Opv—1), h~'V) (10.31)
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where
On-yyx« D O - - O
Onv—nxk 0 D3 .
R — . ) S0
. ) .0 - 0
ON—1)xk - - 0 - Dy
and
V() 0
0 )
V= _ 0
0 0 V)

At this point, it is useful to stress that, although the notation has become
complicated due to questions of identification and the ordering of observations,
this is still simply a Normal linear regression model with natural conjugate prior.
Thus, all of the familiar results and techniques for this model are relevant, and
we have

8, hly ~NG(@, V,572,7) (10.32)
where
V=RV IR+WW)! (10.33)
§=VW'y) (10.34)
T=N (10.35)
and
55 = (y — W8) (y — Wd) + (RS)' V"1 (RS) (10.36)

Bayesian inference in this additive model is complicated by the fact that it
is potentially difficult to elicit prior hyperparameters in a data-based fashion.
Note that the prior allows for a different degree of smoothing in each unknown
function (i.e. we have n; for j = 1,..., p). In some cases, the researcher may
have prior information that allows her to choose values for each n;. However,
in many cases it will be sensible to smooth each unknown function by the same
amount (i.e. setting n; = --- = n, = n will be reasonable), and only one prior
hyperparameter needs to be chosen. Empirical Bayesian inference can be carried
out exactly as for the partial linear model. Model comparison and prediction can
be carried out using the familiar methods for the Normal linear regression model.
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Hlustration: An Additive Model

To illustrate Bayesian inference in the partial linear model with additive non-
parametric regression line, we generate artificial data from

yi = filxiD) + fo(xiz) + &

fori =1,...,100, where ¢; is i.i.d. N(0, 0.09) and x;; and x, are i.i.d. U (O, 1).
We take

f1(xi1) = x; cos(dmx;y)
and

f2(xi2) = sin(2m x;2)

The partially informative prior in (10.31) requires elicitation of prior hyperpa-
rameters 1 and 1y. We set n = n; = 1, and use the same empirical Bayesian
methods as for the partial linear model to select a value for 5. This value for
n is then used to make posterior inference about the two components of the
nonparametric regression line using (10.32)—(10.36).

As in the previous section, we use (very weak) prior information about 7. In
particular, we assume

n~G(p, v,

and choose nearly noninformative values of v, = 0.0001 and B, = 1.0. We
choose the value of n which maximizes

~ 1 _v
p@ly) o p(yln)p®) o VIRV R)2 (V5% 2 fe(lp, . vy

The value of n chosen by the empirical Bayes procedure is 0.4210. Figures 10.2a
and b plot the fitted and true nonparametric regression lines for each of the two addi-
tive functions in our nonparametric regression model (i.e. E(y;|y) and f;(x;;) for
J =1, 2). These figures indicate that we are successfully estimating f;(-). Remem-
ber that the identifying restriction means we can only estimate the functions up to
an additive constant. This is reflected in the slight shifting of the two components
of the fitted nonparametric regression lines in Figures 10.2a and b. As noted in our
illustration of the partial linear model, if the researcher requires a smoother curve,
then a prior on the second differences, [ f (x;j+1) — f (xi)] —[f (xi) — f(xi—1)], can
be used. Furthermore, in a serious empirical application other posterior features
(e.g. HPDIs), model comparison tools (e.g. Bayes factors comparing this model to
a parametric model) or predictive distributions could be presented.

Extensions

With the partial linear model we noted that many extensions were possible that
would allow for Bayesian inference in, for example, semiparametric probit or
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Figure 10.2 True and Fitted Lines for (a) First and (b) Second Additive Term

tobit models. With the additive variant of the partial linear model, the exact
same extensions can be done in the same manner.

10.3 MIXTURES OF NORMALS MODELS

10.3.1 Overview

The partial linear model and its additive variant allowed for the regression line
to have an unknown functional form. There are also many techniques for allow-
ing whole distributions to have unknown forms. Here, we describe one such
set of techniques. The basic idea underlying the model in this section is that
a very flexible distribution can be obtained by mixing together several distribu-
tions. The resulting flexible distribution can be used to approximate the unknown
distribution of interest. In this section, we discuss mixtures of Normal distribu-
tions, since these are commonly used and simple to work with. However, it
should be mentioned that any set of distributions can be mixed, resulting in a
more flexible distribution than would be obtained by simply choosing a single
distribution.

The models considered in this section are not ‘nonparametric’, in the sense that
they cannot become any unknown distribution. This is because they are so-called
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finite mixtures of Normals. For instance, a distribution which mixes five different
Normal distributions, although very flexible, cannot accommodate any possible
distribution. Thus, finite mixtures of Normals should be considered only as an
extremely flexible modeling strategy. However, we note that infinite mixtures are,
to all intents and purposes, nonparametric. Infinite mixtures of Normals will not
be discussed here. Robert (1996), which is Chapter 24 of Markov Chain Monte
Carlo in Practice, provides an introduction to this area of Bayesian statistics.
A particular infinite mixture model involving Dirichlet process priors is very
popular. Escobar and West (1995) and West, Muller and Escobar (1994) provide
thorough discussions of this model.

We have already seen one particular example of a mixture of Normals model.
Chapter 6 (Section 6.4) considered the case of the linear regression model with
independent Student-t errors, and showed how it could be obtained using a par-
ticular mixture of Normals. Since the Student-t distribution is more flexible than
the Normal (i.e. the Normal is a special case of the Student-t which arises when
the degrees of freedom parameter goes to infinity), Section 6.4 provides a sim-
ple example of how mixing Normals can lead to a more flexible distribution.
Here we consider more general mixtures of Normals in the context of the lin-
ear regression model. However, the basic concepts can be used anywhere the
researcher wishes to make a flexible distributional assumption. For instance, the
panel data models in Chapter 7 assumed hierarchical priors having particular
distributions for the individual effects (e.g. Normal in (7.7) and exponential in
(7.46) for the stochastic frontier model). Mixtures of Normals can be used to
make these hierarchical priors more flexible. Posterior simulation can be done
by combining the relevant components of the Gibbs sampler outlined below with
the appropriate Gibbs sampler from Chapter 7. Geweke and Keane (1999) offers
another nice use of mixtures of Normals in that it develops a mixtures of Normals
probit model.

10.3.2 The Likelihood Function
The linear regression model can be written as
y=XB+e¢ (10.37)

where the notation is the same as in previous chapters (e.g. see Chapter 3,
Section 3.2). The likelihood function for the Normal linear regression model
was based on the assumptions that

1. g isiid N©,h~Yfori=1,...,N.

2. All elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of ¢ with a probability
density function, p(X|A) where A is a vector of parameters that does not
include B and h.
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Here we replace the first assumption with one where &; is a mixture of m
different distributions. That is,

mn 1
g=) ey (a,- +h} nl-,-) (10.38)

j=1

where n; is iid. N(,1) fori =1,... ,N, j =1,...,m and ¢;, oj and
h; are all parameters. ¢;; indicates the component in the mixture that the ith
error is drawn from. That is ¢; = O or 1 for j =1,... ,m and Z;-”:l ej = 1.

Since n;; is Normal, it follows that (ct; + h._in,-j) is a Normal random variable
with mean «; and precision h;. Thus, (10.38) specifies that the regression error
is a weighted average of m different distributions. Each of these component
distributions is N («;, hj_l). This motivates the terminology mixture of Normals.
The special case where a;j = 0 for all j is referred to as a scale mixture of
Normals. The special case where hy = --- = h,, is referred to as a mean
(or location) mixture of Normals. The mixture of Normals used in Chapter 6
(Section 6.4) was a scale mixture of Normals involving a particular hierarchical
prior. To simplify notation, we stack these new parameters into vectors in the

usual way: @ = (aq,...,an),h = (hy, ..., hy), & = (ei1,...,em) and
’
e=(e,...,ey).
In practice, it is unknown which component the ith error is drawn from and,
thus, we let p; for j = 1,...,m be the probability of the error being drawn

from the jth component in the mixture. That is, p; = P(e;; = 1). Formally, this
means that e; are i.i.d. draws from the Multinomial distribution (see Appendix B,
Definition B.23):

e; ~ M(1, p) (10.39)

where p = (p1, ..., pm)’. Remember that, since p is a vector of probabilities,
we must have 0 < p; < land 377_, p; = 1.

As with many models, there is some arbitrariness as to what gets labeled ‘prior’
information and what gets labeled ‘likelihood’ information. Equation (10.39)
could be interpreted as a hierarchical prior for ¢;. However, following standard
practice, here we refer to B, h, o« and p as the parameters of the model and
p(y|B, h, a, p) as the likelihood function. The component indicators, e; for i =
I,..., N, will be treated as latent data (and will prove useful in the Gibbs
sampling algorithm outlined below). Since p; is the probability of the error
being drawn from the jth component in the Normal mixture, it can be seen that
the likelihood function is

1 N m h
PGB, by a, p) = H{ij/h’jexp [—g(yi —aj —ﬁ’xif“

N
Qm) 7 i=t j=1

(10.40)

where x; is a k-vector containing the explanatory variables for individual i.
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10.3.3 The Prior

As with any Bayesian model, any prior can be used. Here we describe a
commonly-used prior which allows for convenient computation and is flexible
enough to accommodate a wide range of prior beliefs. However, before describ-
ing precise forms for prior densities, there are two underlying issues which must
be discussed.

First, the mixtures of Normals model is an example of a model where the
likelihood function is unbounded.® This means that the standard frequentist the-
ory underlying maximum likelihood estimation breaks down. For the Bayesian,
the pathology implies that the researcher should not use a noninformative
prior. Bayesian inference with an informative prior, however, can be done in
the usual way.’

Secondly, there is an identification problem in this model, in that multiple sets
of parameter values are consistent with the same likelihood function. For instance,
consider a mixture with two components (i.e. m = 2). The probabilities associated
with each component are p; = 0.25 and p, = 0.75. The first distribution in the
mixture has «; = 2.0 and /& = 2.0, while the second has o> = 1.0 and 4y = 1.0.
This distribution is identical to one where the labeling of the two components is
reversed. That is, it is exactly the same as one with parameter values p; = 0.75,
p2 =025 a1 = 1.0, hy = 1.0, ap = 2.0 and hp = 2.0. Because of this, it is
necessary for the prior to impose a labelling restriction, such as

aj—1 < aj (10.41)

hj_1 <h; (10.42)
or

Pj-1 < Pj (10.43)
for j = 2,...,m. Only one such restriction need be imposed. Here (10.41)

will be chosen, although imposing (10.42) or (10.43) will only cause minor
modification in the following material.

We begin with a prior for 8 and &, which is a simple extension of the familiar
independent Normal-Gamma prior (see Chapter 4, Section 4.2). In particular,

B~N(B.V) (10.44)
and we assume independent Gamma priors for A for j =2,... ,m,
hj ~ GG v)) (1045)

To see this, set B to E , the OLS estimate, hj_l to the OLS estimate of the error variance and

1—c
m—1

aj = 0 for j = 2,...,m. For some ¢ > 0 set p; = c and p; = for j =2,...,m.If

ar = — E/xl), then the likelihood function goes to infinity as h; — oco.

7A proof of this statement is provided in Geweke and Keane (1999) for the prior used in this
section.
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The Dirichlet distribution (see Appendix B, Definition B.28) is a flexible and
computationally convenient choice for parameters such as p which lie between
zero and one and sum to one (remember that 0 < p; < I and Z}"zl pj = 1.

Thus, we take
p~ D(p) (10.46)

where p is an m-vector of prior hyperparameters. Appendix B, Theorem B.17
lists some properties which show how p can be interpreted.

Here we impose the labeling restriction through . Hence, we assume the prior
for this parameter vector to be Normal with the restrictions in (10.41) imposed:

pla) o fy(ala, V )l(ar <ay < -+ < ap) (10.47)

Remember that 1(A) is the indicator function equalling 1 if condition A holds
and otherwise equalling zero.

10.3.4 Bayesian Computation

As with many other models in this book, Bayesian inference can be carried
out using a Gibbs sampler with data augmentation. Intuitively, if we knew
which component in the mixture each error was drawn from, then the model
would reduce to the Normal linear regression model with independent Normal-
Gamma prior (see Chapter 4, Section 4.2). Thus, treating e as latent data will
greatly simplify things. This intuition motivates a Gibbs sampler which sequen-
tially draws from the full posterior conditional distributions p(B|y, e, h, p, o),
p(hly.e. B, p, ), p(ply,e, B, h,a), p(aly, e, B, h,p) and p(ely, B, h, p,a).
Below we derive the precise form for each of these distributions. These deriva-
tions are relatively straightforward, involving multiplying the appropriate prior
times p(yle, B, h, a, p) and re-arranging the result. Using methods comparable
to those used to derive (10.40), it can be shown that

1 N m h
pOle. B.h.a, p) = — {Zeij\/h_jeXP [—;’(yi —aj —ﬂ’xiﬁ”
2m)2 i=1 \j=1
(10.48)
Conditional on e, p(8|y, e, h, p, @) and p(hj|y,e, B, p,a) for j =1,... ,m

simplify, and results from Chapter 4, Section 4.2 can be applied directly. In
particular, p(8ly, e, h, p, @) does not depend upon p and

Bly,e,h,a ~ N(B,V) (10.49)

where

. N m -1
V = (K_l + ZZeijhjx,-xl{>
i=1 j=1
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and
_ _ n m
B=V (z—‘g+ YN ehxilyi — aj])
i=1 j=I
Furthermore, for j = 1,... ,m, the posterior conditionals for the &;s are inde-
pendent of one another and simplify to
hjly, e, B,a ~ G(;7,7)) (10.50)
where
N
UEDITESY
i=1
and

5]? -
vj

N
Zeij()’i —a; = x(B) (vi — aj — x{p) +Ej£2j
i=1

To aid in interpretation, remember that e;; is an indicator variable equalling 1 if
the ith error comes from the jth component in the mixture. Hence, Zth 1 €ij
simply counts the number of observations in the jth component, the term
>N > ity ejhjxix; is comparable to the term 2X'X in Chapter 4 (4.4), but
for the ith observation it picks out the appropriate /;. Other terms have similar
1ntuition.

Noting that «; enters in the role of an intercept from a Normal linear regression
model in (10.48) and (10.47) describes a Normal prior (subject to the labelling
restrictions), it can be seen that the conditional posterior of « is Normal (subject
to the labeling restrictions). In particular,

plaly, e, B, h) o« fn(ala, Vo)l(og <ap < -+ < o) (10.51)
where
. N m -1
Vo= <K¢;l _|_Z {Zeuh]}Qel)
i=1 |j=1
and

m

=V, [ Vila+ ) {Ze,,-hj} ei (yi — ﬂ/xi)}
i=1 j=1

These formulae may look somewhat complicated, but they are calculated using

methods which are minor modifications of those used for the Normal linear

regression model. The term {Z;":] ejjh;j} picks out the relevant error precision

for observation i.
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Multiplying (10.46) by (10.48) yields the kernel of the conditional posterior,
p(ply, e, B, h,a). Straightforward manipulations show that this only depends
upon e, and has a Dirichlet distribution

p ~ D(p) (10.52)

where

N
5=£+Zei
i=1

Remember that e; shows which component in the mixture the ith error is drawn
from. It is an m-vector containing all zeros except for a 1 in the appropriate
location. Thus Zth 1 € 1s an m-vector containing the number of observations
drawn from each Normal distribution in the mixture.

The last block in the Gibbs sampler is p(e|y, 8, h, p, «). The rules of condi-
tional probability imply p(e|y, B, h, p, o) o p(yle, B, h, p,a)p(e|B, h, p, ).
The prior independence assumptions imply p(e|B,h, p,a) = p(e|p) and,
thus, p(ely, B, h, p,«) can be obtained by multiplying (10.48) by (10.39)
and re-arranging. If this is done, we find that p(el|y, B, h, p,a) =
]_[lN:l p(eily, B, h, p, ), and each of the p(e;|y, B, h, p, ®) is a Multinomial
density (see Appendix B, Definition B.23). To be precise,

eily, B, h,p,a ~

/
pifvGilan + B xi, hh P SN ilotm + B'xi b )

m ’ > m
D pifnGile + Bxi b
j=1 j=1

M1,

pifnOiley + Bxi b

(10.53)

Posterior inference in the linear regression model with mixture of Normals
errors can be carried out using a Gibbs sampler which sequentially draws from
(10.49), (10.50), (10.51), (10.52) and (10.53).

10.3.5 Model Comparison: Information Criteria

All the model comparison methods described in previous chapters can be used
with mixtures of Normals. With this class of model, an important issue is the
selection of m, the number of components in the mixture. This can be done by cal-
culating the marginal likelihood for a range of values for m and choosing the value
which yields the largest marginal likelihood. Either the Gelfand—Dey method (see
Chapter 5, Section 5.7) or the Chib method (see Chapter 7, Section 7.5) can be
used to calculate the marginal likelihood. A minor complication arises, since
both these methods require the evaluation of prior densities, and the labeling
restriction means that (10.47) only gives us the prior kernel for «. However, the
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necessary integrating constant can be calculated using prior simulation. A crude
prior simulator would simply take draws from fy(a|a, V) and calculate the
proportion of draws which satisfy o] < @y < --- < oy,. One over this propor-
tion is the required integrating constant. More efficient prior simulators can be
developed using algorithms for drawing from the truncated Normal.

However, calculating marginal likelihoods can be computationally demanding
and care has to be taken with prior elicitation (e.g. marginal likelihoods are usu-
ally not defined when using noninformative priors). Accordingly, interest exists
in shortcut methods for summarizing the data evidence in favor of a model. Moti-
vated by this consideration, various information criteria have been developed. In
this section, a few of these will be introduced. Their advantage is that they are
easy to calculate, and typically do not depend on prior information. Their dis-
advantage is that it is hard to provide a rigorous justification for their use. That
is, the logic of Bayesian inference says that a model should be evaluated based
on the probability that it generated the data. Hence, for the pure Bayesian, the
posterior model probability should be the tool for model comparison. Information
criteria do not have such a formal justification (at least from a Bayesian perspec-
tive). However, as noted below, they can often be interpreted as approximations
to quantities which have a formal Bayesian justification.

Information criteria can be used with any model. Accordingly, let us temporar-
ily adopt the general notation of Chapter 1, where 6 is a p-vector of parameters
and p(y|0), p(0) and p(0|y) are the likelihood, prior and posterior, respectively.
Information criteria typically have the form

1C(0) =2In[p(y|0)] — g(p) (10.54)

where g(p) is an increasing function of p. The traditional use of information
criteria involves evaluating /C (0) at a particular point (e.g. the maximum likeli-
hood value for 6) for every model under consideration, and choosing the model
with the highest information criteria. Most information criteria differ in the func-
tional form used for g(p). This is a function which rewards parsimony. That it,
it penalizes models with excessive parameters.

In Bayesian circles, the most common information criterion is the Bayesian
Information Criterion (or BIC)

BIC(0) = 21n[p(y|0)] — pIn(N) (10.55)

As shown in Schwarz (1978), twice the log of the Bayes factor comparing two
models is approximately equal to the difference in BICs for the two models. Two
other popular information criteria are the Akaike Information Criterion (or AIC),
given by

AIC(0) =2In[p(y|0)] —2p (10.56)
and the Hannan—Quinn Criterion (or HQ)

HQ@©O) =2In[p(y|9)] — PCHo In[In(N)] (10.57)
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In (10.57) cgp is a constant. HQ is a consistent model selection criterion® if
CHQ > 2.

These are the most popular of the many information criteria which exist. There
are many places where the interested reader can find out more. The discussion
and citations in Poirier (1995, p. 394) provide a good starting point. Kass and
Raftery (1995) is a fine survey paper on Bayes factors which, among many
other things, draws out the relationship between Bayes factors and information
criteria. Carlin and Louis (2000) include much relevant discussion, including a
newly developed information criterion called the Deviance Information Criterion,
which is designed to work well when models involve latent data and hierarchical
priors. In this book, we note only that a quick and dirty method of model selection
is to choose the model with the highest value for an information criterion. In the
following empirical illustration, we investigate how effective this strategy is in
selecting the number of components in a Normal mixture.

10.3.6 Empirical Illustration: A Mixture of Normals Model

We illustrate the mixtures of Normals model using two artificial data sets. To
focus on the mixtures of Normals aspect of the model, we do not include any
explanatory variables (i.e. B does not enter the model). The two data sets are,
thus, all generated from

Vi =&

where ¢; takes the mixtures of Normals form of (10.38). All three data sets have
N = 200. The data sets are given by:

1. Data Set 1 has m = 2. The first Normal has «y = —1, h; = 16 and p; = 0.75.
The second Normal has oy = 1, hp =4 and p, = 0.25.

2. Data Set 1 has m = 3. The first Normal has o = —1, h; =4 and p; = 0.25.
The second Normal has ap = 0, i, = 16 and pp = 0.5. The third Normal has
a3 = 1,h3 = 16 and p3 = 0.25.

Histograms of these data sets are given in Figures 10.3a and b. These figures
are included to show just how flexible mixtures of Normals can be. By mixing
just two or three Normals together, we can get distributions which are very
non-Normal. Mixtures of Normals can be used to model skewed, fat-tailed or
multi-modal distributions.

We use a prior which is proper but very near to being noninformative. In par-
ticular, using the prior in (10.45), (10.46) and (10.47) we set o = 0,,,V,, =
(10000%)I,,,, _;2 =1, V= = 0.01 and p = vy, where ¢, is an m-vector of ones.
Bayesian inference is carrled out using the Gibbs sampler involving (10.49),
(10.50), (10.51), (10.52) and (10.53). For each data set, Bayesian inference is

8 A consistent model selection criterion is one which chooses the correct model with probability
one as sample size goes to infinity.
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Figure 10.3 Histogram of (a) Data Set 1, (b) Data Set 2

done using m = 1, 2 and 3. The information criteria are evaluated at the posterior
mean of the parameters in the model. The Gibbs sampler was run for 11 000 repli-
cations, with 1000 burn-in replications discarded and 10 000 replications retained.
MCMC diagnostics indicate that this is an adequate number of replications to
ensure convergence of the Gibbs sampler.

Tables 10.1 and 10.2 contain information criteria for Data Sets 1 and 2, respec-
tively. The information criteria are consistent with one another and conclusive.
For Data Set 1 (which was generated with m = 2), all of the information criteria
select m = 2 as the preferred model. For Data Set 2, the information criteria all
select the correct value of m = 3. Thus, at least for these data sets, informa-
tion criteria do seem to be useful for selecting the number of components in a
Normal mixture.

Table 10.3 presents posterior means and standard deviations of all parameters
for the selected model for each data set. A comparison of posterior means with the
values used to generate the data sets indicate that we are obtaining very reliable

Table 10.1 Information Criteria for Data Set 1
Model AIC BIC HQ
—174.08 —183.98 —183.09

m=1
m=2 92.41 77.62 74.40
m=3 —52.24 —81.92 —79.25
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Table 10.2 Information Criteria for Data Set 2

Model AIC BIC HQ

m=1 —120.99 —130.88 —130.00
m=2 —103.72 —123.51 —121.23
m=23 —76.77 —106.35 —103.69

Table 10.3 Posterior Results for Two Data Sets

Data Set 1 Data Set 2

Mean St. Dev. Mean St. Dev.
o] —1.01 0.02 —0.86 0.22
o) 1.02 0.06 —0.04 0.04
o3 — — 1.02 0.04
hi 18.43 2.14 3.38 