COMMONLY USED STATISTICS IN MEDICAL RESEARCH PART II

دانتگاه علوم نرشکی و خدمات بهداشتی درمانی ایران

Nader Sadigh MD.

Ali Asghar Children's Hospital

EXPLORING ASSUMPTIONS

- 1 Normally distributed data:
- the rationale behind hypothesis testing relies on having something that is normally distributed
 - sampling distribution
 - errors in the model

× .

Testing whether a distribution is normal

- to see whether the distribution as a whole deviates from a comparable normal distribution.
- The Kolmogorov–Smirnov test and Shapiro– Wilk test
- compare the scores in the sample to a normally distributed set of scores with the same mean and standard deviation.
- If test is non-significant (p > .05) it tells us that the distribution of the sample is not significantly different from a normal distribution (i.e. it is probably normal).

Continue

Cancel

Help

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Siq.	Statistic	df	Sig.
Percentage on SPSS exam	.102	100	.012	.961	100	.005
Numeracy	.153	100	.000	.924	100	.000

a. Lilliefors Significance Correction

2 Homogeneity of variance:

- variances should be the same throughout the data.
- In designs in which you test several groups of participants this assumption means that each of these samples comes from populations with the same variance.
- In correlational designs, this assumption means that the variance of one variable should be stable at all levels of the other variable.

Levene's test

 tests the null hypothesis that the variances in different groups are equal (i.e. the difference between the variances is zero).

Computer literacy [comp	Dependent List: Percentage on SPSS ex Numeracy [numeracy] Eactor List: University [uni] Label Cases by:	Statistics Plots Options	Boxplots Eactor levels together	Descriptive Stem-and-leaf Histogram
Display	Reset Cancel He	slp	Iransformed Power: Untransformed Continue Cances	latural log atural log /square root eciprocal iquare root iquare cube

Test of Homogeneity of Variance

		Levene Statistic	df1	df2	Sig.
Percentage on SPSS exam	Based on Mean	2.584	1	98	.111
	Based on Median	2.089	1	98	.152
	Based on Median and with adjusted df	2.089	1	94.024	.152
	Based on trimmed mean	2.523	1	98	.115
Numeracy	Based on <u>Mean</u>	7.368	1	98	.008
	Based on Median	5.366	1	98	.023
	Based on Median and with adjusted df	5.366	1	83.920	.023
	Based on trimmed mean	6.766	1	98	.011

- 3 Interval data:
- Data should be measured at least at the interval level. This assumption is tested by common sense and so won't be discussed further

• 4 Independence:

- like that of normality, is different depending on the test you're using.
- data from different participants are independent
 - the behaviour of one participant does not influence the behaviour of another.
 - In repeated-measures designs (in which participants are measured in more than one experimental condition), we expect scores in the experimental conditions to be non-independent for a given participant, but behaviour between different participants should be independent.

Correcting problems in the data

- Dealing with outliers:
 - 1 Remove the case
 - **2** *Transform the data*:
 - **3** Change the score:
 - (a) The next highest score plus one
 - (b) Convert back from a z-score

• Dealing with non-normality and unequal variances

Choosing a transformation

trial and error

How do we measure relationships?

- The correlation coefficient has to lie between -1 and +1.
- A coefficient of +1 indicates a perfect positive relationship, a coefficient of -1 indicates a perfect negative relationship, a
- coefficient of 0 indicates no linear relationship at all.
- The correlation coefficient is a commonly used measure of the size of an effect:
 - values of ±.1 represent a small effect,
 - ±.3 is a medium effect
 - ±.5 is a large effect.

• warning about interpretation: causality

Pearson's correlation coefficient

• assumptions of Pearson's r

Pearson's correlation requires only that data are interval

- if you want to establish whether the correlation coefficient is significant, then more assumptions are required:
 - sampling distribution has to be normally distributed: both variables to be normally distributed

Corre	lat	tio	ns
00110			

-		Exam performance (%)	Exam Anxiety	Time spent revising
Exam performance (%)	Pearson Correlation	1.000	441**	.397**
	Sig. (1-tailed)		.000	.000
-	N	103	103	103
Exam Anxiety	Pearson Correlation	441**	1.000	709**
	Sig. (1-tailed)	.000	3.922	.000
	N	103	103	103
Time spent revising	Pearson Correlation	.397**	709**	1.000
	Sig. (1-tailed)	.000	.000	12
	N	103	103	103

**. Correlation is significant at the 0.01 level (1-tailed).

Participant Code [Code] Gender [Gender]	Variable:	s: m Performance (m Anxiety [Anxie Spent Revising	%) (ty] [Re	ons.
Correlation Coefficients — ✓ Pearson □ Kendall's tau	-b Spearman			
Test of Significance				
Elag significant correlations				

using R² for interpretation

- The correlation coefficient squared (known as the coefficient of determination, R²) is a measure of the amount of variability in one variable that is shared by the other.
- These two variables had a correlation of -0.4410 and so the value of R² will be (-0.4410)² = 0.194. This value tells us how much of the variability in exam performance is shared by exam anxiety.

Spearman's correlation coefficient

- r_s, is a non-parametric statistic and so can be used when the data have violated parametric assumptions such as nonnormally distributed data
- Spearman's test works by first ranking the data

Partial correlation

• A correlation between two variables in which the effects of other variables are held constant is known as a partial correlation.

Partial Correlation

 Partial correlation between exam anxiety and exam performance while 'controlling' for the effect of revision time..

 Running this analysis has shown us that exam anxiety alone does explain some of the variation in exam scores, but there is a complex relationship between anxiety, revision and exam performance that might otherwise have been ignored.

Control Variables			Exam Performance (%)	Exam Anxiety	Time Spent Revising
-none-ª	Exam Performance (%)	Correlation	1.000	441	.397
		Significance (1-tailed)	1.145	.000	.000
		df	0	101	101
	Exam Anxiety	Correlation	441	1.000	709
		Significance (1-tailed)	.000	18	.000
		df	101	0	101
	Time Spent Revising	Correlation	.397	709	1.000
		Significance (1-tailed)	.000	.000	æ
		df	101	101	0
Time Spent Revising	Exam Performance (%)	Correlation	1.000	247	
		Significance (1-tailed)		.006	
		df	0	100	
	Exam Anxiety	Correlation	247	1.000	
		Significance (1-tailed)	.006	8.	
		df	100	0	

Correlations

a. Cells contain zero-order (Pearson) correlations.

How to report correlation coefficents

 There was a significant relationship between the number of adverts watched and the number of packets of sweets purchased, r = .87, p (one-tailed) < .05.

An introduction to regression

- we looked at how to measure relationships between two variables.
- Step further:
 - predict one variable from another.
 - predict levels of stress from the amount of time until you have to give a talk.
- Fit a model to our data and use it to predict values of the dependent variable from one or more independent variables.
- Predicting an outcome from one predictor (simple regression) or several predictor (multiple regression).

outcome = (model) + error

 $Y_i = (b_0 + b_1 X_i) + \varepsilon_i$

Assessing the goodness of fit: sums of squares, R and R2

 $\ensuremath{\mathsf{SS}_\mathsf{M}}$ uses the differences between the mean value of Y and the regression line

 R: because there is only one predictor, this value represents the simple correlation between advertising and record sales

 R2: advertising expenditure can account for 33.5% of the variation in record sales

- The ANOVA tells us whether the model, overall, results in a significantly good degree of prediction of the outcome variable.
- Our regression model results in significantly better prediction of record sales than if we used the mean value of record sales. In short, the regression model overall predicts record sales significantly well

How do I interpret *b* values?

- b0 was the Y intercept and this value is the value B for the constant
- meaning that when no money is spent on advertising (when X = 0), the model predicts that 134,140 records will be sold.
- *b*1 from the table and this value represents the gradient of the regression line.
- the change in the outcome associated with a unit change in the predictor.
- *t*-test tells us whether the *b*-value is different from 0. Coefficients*

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Siq.
1	(Constant)	134.140	7.537	U DA BUDA - 13	17.799	.000
9	(thousands of pounds)	.096	.010	.578	9.979	.000

a. Dependent Variable: Record Sales (thousands)

Using the model

record sales_i = $b_0 + b_1$ advertising budget_i = 134.14 + (0.096 × advertising budget_i)

Multiple regression: the basics

- Multiple regression is a logical extension of these principles to situations in which there are several predictors.
- $Y_i = (b_0 + b_1 X_{i1} + b_2 X_{i2} + \ldots + b_n X_n) + \varepsilon_i$

An example of a multiple regression model

record sales_i = $b_0 + b_1$ advertising budget_i + b_2 airplay_i + ε_i

Comparing two means ..

Assumptions of the t-test

- The sampling distribution is normally distributed. In the dependent *t*-test this means that the sampling distribution of the *differences* between scores should be normal, not the scores themselves
- Data are measured at least at the interval level.
- The independent *t*-test, because it is used to test different groups of people, also assumes:
 - Variances in these populations are roughly equal (*homogeneity of variance*).
 - Scores are independent (because they come from different people)

dependent t-test

Confidence Inter	val: 95	%
-Missing Valu	es	
Exclude ca	ses analysis by	analysis
O Exclude ca	ses listwise	

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Picture of Spider	40.00	12	9.293	2.683
	Real Spider	47.00	12	11.029	3.184

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	Picture of Spider & Real Spider	12	.545	.067

Paired Samples Test

	11		Pa	ired Difference	IS				
					95% Confider of the Diff	nce Interval erence			
5		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2- tailed)
Pair 1	Picture of Spider - Real Spider	-7.000	9.807	2.831	-13.231	769	-2.473	11	.031

On average, participants experienced significantly greater anxiety to real spiders (M = 47.00, SE = 3.18) than to pictures of spiders (M = 40.00, SE = 2.68), t(11) = -2.47, p < .05

The independent t-test

Group Statistics					
	Spider or Picture?	N	Mean	Std. Deviation	Std. Error Mean
Anxiety	Picture	12	40.00	9.293	2.683
	Real Spider	12	47.00	11.029	3.184

Independent Samples Test

On average, participants experienced greater anxiety to real spiders (M = 47.00, SE = 3.18) than to pictures of spiders (M = 40.00, SE = 2.68). This difference was not significant t(22) = -1.68, p > .05;

