
Journal of Mechanics 1 
DOI :  
Copyright © 2017 The Society of Theoretical and Applied Mechanics 

 

SMALL-SCALE EFFECTS ON THE BUCKLING OF SKEW NANOPLATES 
BASED ON NON-LOCAL ELASTICITY AND SECOND-ORDER STRAIN 

GRADIENT THEORY 

B. Shahriari* 

Department of Mechanical and Aerospace Engineering 
Malek Ashtar University of Technology 

Isfahan, Iran 

S. Shirvani 

Department of Mechanical Engineering 
Sirjan University of Technology 

Sirjan, Iran 
 

ABSTRACT 

In recent years, nanostructures have been used in a vast number of applications, making the study of 
the mechanical behaviour of such structures important.  In this paper, two different constitutive equa-
tions including first-order strain gradient and simplified differential non-local are employed to model the 
buckling behaviour of skew nanoplates.  The Galerkin method is used for solving the equations in order 
to obtain buckling load.  Using this method, the influence of different parameters consisting of 
non-classical properties, boundary conditions, and geometrical parameters such as length and angle on the 
buckling load, are studied.  The results showed that small-scale effects are very important in skew gra-
phene sheets and their inclusion results in smaller buckling loads.. 
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1.  INTRODUCTION 

Nowadays, small size structures such as micro and 
nanoplates are used in Micro and Nano Electro Me-
chanical Systems (MEMS/NEMS) as actuators and sen-
sors.  The more realistic modelling of such elements, 
the more reliable predictions of their performance is pro-
vided under different working conditions. 

Due to the difficulty in fabrication of nanostructures at 
certain sizes, and the implementation of experimental 
setup and applying boundary conditions, more investiga-
tion on the theoretical approaches is required to under-
stand both the concept and revealing possible correla-
tions.  In this regard, two categories of theoretical stud-
ies consisting of molecular dynamics and continuum- 
based approaches can be followed for the above-men-
tioned purposes.  Although molecular dynamics meth-
ods can be employed in this field, it does not provide a 
parametric viewpoint for the problem, and to understand 
each parameter dependency, several computer runs 
should be done, which might take long time.  On the 
other hand, continuum-based approaches are good can-
didates to model the nanostructures providing possibili-

ties for parametric studies [1]. 
The literature review indicates that GS has a high 

number of potential applications in various fields of 
technology, so that it can be considered as a forehand 
nanostructure.  In this regard, more scientific investiga-
tions are necessary in order to understand the properties 
of this element and predict its behaviour in different 
situations.  Indeed, the more realistic the modelling of 
such elements, the more reliable the predictions of their 
performance under different working conditions.  This 
is a strong motivation for researchers to investigate this 
subject. 

Referring to the previously reported studies it can be 
concluded that a few theories considering size effects 
such as Eringen's integral non-local and differential 
non-local [2], strain gradient [3], modified strain gradient 
[4], couple stress [5], stress gradient [6, 7] and surface 
energy [8], have been developed for modeling purposes.  
Lu et al. [9] studied the effect of surface properties and 
size-dependent mechanical behaviour of nanoplates by 
using the theory of generalized Kirchhoff and Mindlin 
plate theory.  Sakhaee-Pour [10] studied the buckling of 
single layer graphene sheets by use of the molecular dy-
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namic method.  Pradhan et al. [11] analysed the buck-
ling of rectangular single layer graphene sheets under 
biaxial compression by use of the non-local elasticity 
theory of Eringen.  Murmu et al. [12] studied the elastic 
buckling behaviour of orthotropic small scale plates un-
der biaxial compression by use of the non-local elasticity 
theory of Eringen.  Sheng et al. [13] analysed the three 
dimensional elasticity of nanoplates, using the theory of 
laminated structures.  Babaei et al. [14] analysed buck-
ling of the quadrilateral nanoplates based on nonlocal 
plate theory.  Malekzadeh et al. [15] investigated small- 
scale effects on the thermo-mechanical buckling charac-
teristics of orthotropic arbitrary straight-sided nanoplates 
embedded in an elastic medium by use of the non-local 
elasticity theory of Eringen.  Narendar [16] studied the 
buckling analysis of isotropic nanoplates by using the 
two variable refined plate theory and nonlocal parameter 
effects.  Arash et al. [17] reported a study on wave 
propagations in single layer graphene sheets by a devel-
oped nonlocal finite element model and molecular dy-
namic simulations.  Murmu et al. [18] reported an ana-
lytical study of the buckling of a double-nanoplate sys-
tem by use of non-local elasticity theory. 

Indeed, the size dependent constitutive equations (in-
cluding those employed in the above mentioned refer-
ences) provide extra coefficients as non-classical pa-
rameters, representing the size effects explicitly or im-
plicitly in addition to the classical elastic constants.  
The main aim of the current research is the application of 
different constitutive equations to study buckling analy-
sis of skew SLGS while exploring size dependency.  
Comparison of the obtained results of the employed 
formulations with those reported in the open literature, 
can help to reveal the potential of each constitutive equa-
tion for modelling of the nanoplates.  

According to the literature, the buckling of nanoplates 
has been studied only for particular geometry and boundary 
conditions, because of limitations of the methods used to 
solve such problems.  In this paper, governing differen-
tial equation is introduced before the solving of this 
equation using the Galerkin method.  The results show 
that the Galerkin method might be used as a powerful 
method for solving such problems.  In addition, higher 
convergence rate, analysis of different boundary condi-
tions, and exploration of various structural models, are 
the original contributions of the present work. 

2.  CONSTITUTIVE EQUATIONS 

Employing constitutive relations is the main part of 
developing governing equations of a mechanical problem, 
such as vibrational analysis focused on here.  In fact, 
these relations represent the behaviour of the medium 
relevant to its physical properties.  In the current re-
search, in addition to the classical Hook's law as the most 
well-known constitutive equation, two more constitutive 
equations including non-local and strain gradient theory 
are used for this purpose. 

2.1  Classical Theory 

Based on the classical theory of elasticity, the elastic 

energy density, u , for a Hookean solid depends on the 
symmetric part of the first-order deformation gradient 
(strain) tensor as follows: 

 
1

( )
2

ij ij iju u      (1) 

where, εij is the symmetric part of the first-order defor-
mation gradient tensor determined as below, named 
strain tensor, and σij is its work-conjugate, or in other 
words the Cauchy stress tensor. 

  , ,

1

2
ij i j j iu u    (2) 

For conciseness, the symbol "," is used here instead of 
the symbol of partial differentiate.  It is worth mention-
ing that the stress tensor can be determined by deriva-
tives of elastic energy with respect to the strain via use of 
the following equation: 

 ij
ij

u






 (3) 

On the other hand, based on the classical theory of 
elasticity, the relation between the stress and strain ten-
sors at each point of the medium is as follow for a gen-
eral anisotropic medium: 

 ij ijkl klC   (4) 

in which Cijkl is fourth order elastic stiffness tensor.  
Although for fully anisotropic media, 21 elastic constants 
exist, the above equation is simplified as follows for an 
isotropic material so that only two independent elastic 
constants remain: 

 2ij kk ij ij      (5) 

In this equation, λ and μare Lame's constants, and δij  
is Kronocker delta.  By definition of volumetric strain 
or dilation strain, εkk, and deviatoric strain tensor, 

1/3ij ij kk ij      , the above equation can be rewritten 

in the following form: 

 2ij kk ij ij       (6) 

In this equation, κ is bulk modulus and μ is shear 
modulus of the medium.  Substitution of Eqs. (4) and (6) 
into Eq. (1) gives the following alternatives for the den-
sity of elastic energy for anisotropic and isotropic media 
respectively. 

 
1

2
ijkl ij klu C    (7) 

 
1 1

2 2
ii jj ij ij ii jj ij iju              (8) 

From the above discussion, it is concluded that for an 
isotropic medium, two characteristics define the relation 
between stress and strain tensors in linear classical elas-
ticity.  As the elastic energy is known, applying the 
principle of virtual work means that the equilibrium 
equation is obtained as follows: 
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 , 0b
ij j iF    (9) 

In this equation, b
iF  is the vector of body force per 

unit volume. 

2.2  Second-Order Strain Gradient Theory (2ndSG) 

Second-order gradient of the strain tensor is taken into 
account to construct the constitutive equation.  In fact, 
the second-order deformation gradient (or in other words, 
the first-order strain gradient) is neglected, while the 
second-order gradient acts via operator 2 on the sym-
metric strain tensor as follows, which is a type of formu-
lation proposed by Aifantis [7].  In this regard, this ver-
sion of second-order strain gradient elasticity is labelled 
by 2ndSG in the current text. 

 2
ij ijkl kl ijkl klt C C     (10) 

where tij is non-classical stress tensor, Cijkl is classical 
elastic stiffness tensor, and ijklC  is anisotropic coeffi-

cient tensor of second-order strain gradients.  As a spe-

cial case, by redefining the last tensor as 2
ijkl ijklC C  , 

the above equation reads to the following form: 

 2 2
ij ijkl kl ijkl klt C C      (11) 

The parameter ξ is the extra coefficient for consider-
ing non-local effects.  Afterwards, substitution of Hook's 
law into equation 11, gives the following result as con-
stitutive equation in 2ndSG theory. 

 2 2(1 )ij ijt      (12) 

For an isotropic medium, the above equation is sim-
plified so that only two elastic stiffness and one length 
scale parameter remains, leading to the following form: 

 2 22 ( 2 )ij ij mm ij ij mm ijt             (13) 

Therefore, in this version of strain gradient theory, in 
addition to the elastic constants in the classical theory of 
elasticity, one extra length scale parameter is exhibited.  
As a matter of fact, spatial derivatives of strains are re-
lated to the differences between the strains at the refer-
ence point and its neighbours.  Therefore, the third term 
in the above equation represents the non-local effects. 

2.3 Simplified Differential Non-Local Theory 
 (SDNL) 

Based on the classical elasticity, stresses are related to 
the strains at the same point.  On the other hand, ac-
cording to original version of Eringen's non-local theory, 
stress at a point is related to the strains at all points of the 
medium as follows: 

 ( ) ( ) ( )ij ijkl kl
V

t dV     X X X X  (14) 

in which tij is non-classical stress tensor, βijkl is non-local 
stiffness kernel, X is position vector of entire points in- 
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Fig. 1  Skew SLGS. 

 
side the body, and X is the position vector of the refer-
ence point where the stress is determined.  If the as-
sumption of scalar non-local effects is applied, using the 
stress-strain relation in classical view, the above equation 
can be rewritten as follows: 

 
( ) ( ) ( )

( ) ( ) ( )

ij ijkl kl
V

ij
V

t C dV

dV

 

 

   

   




X X X X

X X X X
 (15) 

In the above, σkl is the classical stress tensor and 
α(|XX|) is the non-local modulus, having the dimension 
of L-3, and can be a characteristic of the medium which 
has been described as the length scale function in the 
literature [2].  Applying Fourier transform, the above 
integral can be converted to differential form.  After 
some manipulation, differential form of this equation 
becomes as follows [2]: 

 2 2 4 4
1 2(1 ) ij ijr r t       (16) 

The parameters r1 and r2 are characteristics constants, 
representing the length scale effects in the differential 
version of Eringen's non-local.  However, in the simpli-
fied form employed in most relevant studies (e.g., 
[19-22]) the last term of the left hand side of the equation 
(16) is neglected, leading to a formulation with only one 
length scale factor which is called simplified differential 
non-local (SDNL) theory, here.  Therefore, in this ver-
sion only one extra coefficient is added to the classical 
constants existed in the constitutive equation.  The 
symbol r1 is changed to ξ in order to make it similar to 
the other theories having one length scale, leading to the 
following constitutive equation: 

 2 2(1 ) ij ijt     (17) 

3.  GOVERNING EQUATIONS 

In the current section, the previously reported formu-
lations are employed to develop the buckling formulation 
of skew SLGS.  An initially flat, thin skew nanoplate of 
constant thickness h, length a, and width b is considered 
(Fig. 1). 
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To model a thin plate, Kirchhoff assumptions give the 
following displacement field: 

 

   

   

   

0

0

( , , )
, , , , ,

( , , )
, , , , ,

, , , , ,

w x y t
u x y z t u x y t z

x
w x y t

v x y z t v x y t z
y

w x y z t w x y t


 




 




 (18) 

where u = u1, v = u2 and w = u3 are displacement vector 
components along x-, y-, and z-directions respectively, 
and superscript '0' indicates values at midplane of the 
plate.  Substitution of these equations into the linear-
strain-displacement relations yields: 
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  
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 (19) 

To complete the rest of the formulation, constitutive 
equations introduced previously are employed to develop 
the governing equations of the skew nanoplate, as illus-
trated in the following subsections.  However, applying 
classical elasticity is omitted because it can be obtained 
easily from the other theories if the non-local parameter 
is set to zero. 

3.1  Applying 2ndSG Theory 

For the case of plane geometry, only three compo-
nents of stress and strains play roles in the modelling 
procedure, and the constitutive equation relevant to 
2ndSG theory for orthotropic medium becomes as fol-
lows: 
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         
  

 

  (20) 

In the above, engineering elastic constants E1 and E2 
are the Young’s moduli of the orthotropic graphene sheet 
along directions 1 and 2 as shown in Fig. 2, ν12 and ν21 
are the Poisson’s ratios, and G12 is the shear modulus. 

By substituting strain-displacement relations into the 
above, all stresses are obtained as functions of lateral 
displacement w and its derivatives.  Applying the prin-
ciple of virtual work, for a plate under in-plane loading 
and non-local elasticity illustrated above, the final gov-
erning equation is found as follows: 
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2 2 2
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2
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xy yyxx
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w w
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 (21) 
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Fig. 2  Orthotropic directions of a graphene sheet. 

 
 

Here, 'sijM  are equivalent non-local moment com-

ponents at each section of the nanoplate.  They are cal-
culated using the following integrations through the 
nanoplate thickness h: 

    
/ 2

xx xy

2

y

/

y,, ,,xx x

h

y yy

h

t z t z t dzM M M z




   (22) 

As mentioned previously, the stress components are 
known functions of deflection and its derivatives.  
Therefore, the above moments can be determined in 
terms of displacement as follows: 
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 (23) 

By these equations, moments are determined in terms 
of plate curvatures and the plate stiffness coefficients, Dij, 
which are functions of the plate properties and its thick-
ness via the following equations: 
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 (24) 

In the theory for a thin plate, however, we would like 
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to work with force quantities which depend on x and y 
alone.  This can be achieved by integrating the stresses 
in the z-direction, through the plate’s thickness, in order 
to obtain the following stress resultant quantities: 

 
/ 2

/ 2

z

ij ij
z

N dz


   

and the moment resultant quantities: 
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By substitution of Eq. (23) into Eq. (21), the govern-
ing differential equation of the skew nanoplate, in terms 
of the lateral deflection, is obtained as follows: 
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3.2  Applying SDNL Theory 

For the orthotropic nanoplate problem, the constitu-
tive equation relevant to the SDNL theory can be rewrit-
ten as: 
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  (26) 

Following similar details of subsection 2.1 for this 
case gives the following governing equation for the 
buckling of the skew nanoplate: 
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The governing PDEs must be solved to get the buck-
ling load of the skew nanoplate for each of these elastic-
ity theories. 

3.3  Boundary Conditions 

From a classical point of view, four boundary condi-
tions (BCs) including essential ones in which zeroth and 
first spatial derivatives of deflection function and natural 
BCs of forces and moments related to second and third 
derivatives of the deflection function are required to 
solve the fourth order governing equations.  However, 
as the order of PDE in the case of applying 2ndSG is six, 
two new types of BCs are required to solve the PDE 
which are termed non-classical boundary conditions.  
Two types of constraints, including simply supported 
(SSSS) and fully clamped (CCCC) edges, are considered 

here. 

3.3.1  Forth Order PDE 

For simply supported conditions and for the case of 
clamped edges, the BCs are as follows, respectively[23]: 
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which, for a rectangular plate are simplified to 
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3.3.2  Sixth Order PDEs 

For simply supported conditions and for the case of 
clamped edges, the BCs are as follows, respectively: 
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which for a rectangular plate are simplified to [24]. 
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4.  SOLUTION OF THE GOVERNING 
EQUATIONS 

For non-rectangular plates, if it is not impossible to 
solve the governing equation to the related boundary 
conditions analytically, then it is very difficult to obtain 
such a solution.  For this reason, most previous studies 
are limited to a rectangular geometry and analytical solu-
tion of the Navier. 

In this paper, however, a robust solution with a higher 
convergence speed is used.  In this study, Galerkin's 
method as a global technique is adopted for the case of 
skew SLGS.  In this method, the out-of-plane buckling 
displacement is approximated as weighted summation of 
a few base functions, ψk (x, y) in the following form: 

    
1 1

M N

m n m n
m n

w     
 

   
  

   (32) 

where M and N are the number of points in the ξ and η 
directions, respectively.  If any point (m, n) is assigned 
an integer k by the relationship [14]: 

  1k m N n        (33) 

then the flexural displacement may be defined by: 
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Here, ( , )k    is the kth base function weighted by 

Ak .  In this work, the following sets of trigonometric 
base functions are selected for simply supported and 
clamped boundary conditions, since they satisfy the es-
sential boundary conditions for relevant support cases. 
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   (35) 

By substitution of the above approximation functions into equations (25) and (27), the following eigenvalue prob-
lems in matrix form are obtained: 

   0S LK N K H            (36) 

Equation (36) is a standard eigenproblem that can be solved for the dimensionless buckling load parameter 
2

11( )N Na D  by using standard eigenvalue extraction techniques.  KS and KL are stiffness matrices.  These matri-

ces are given below for each of the theories: 
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The compression ratio (Γ = Nyy/Nxx) is assumed to be 
equal to unity for all cases unless specified otherwise.  
In the case that the material properties are known, the 
above matrices are determined and the eigenvalue prob-
lem of Eq. (36) can be solved. 

5.  NUMERICAL RESULTS AND DISCUSSION 

In terms of material properties, two types of material 
behaviours representing isotropic and orthotropic cases 
are considered for the medium, and their constants are  
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Table 1.  Properties of SLGS used in this study [25] 

material properties 

 Isotropic Orthotropic 

E1 (GPa) 1060 1766 

E2 (GPa) 1060 1588 

ν12 0.3 0.3 

ν21 0.3 0.27 
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Fig. 3 Convergence study and comparison of dimen-
sionless buckling load of simply supported iso-
tropic square SLGS subjected to biaxial loading, 
under the various numbers of meshes, based on 
non-local theory.  Note that (M = N) is chosen 
so that the rate of convergence of the proposed 
method can be compared with the other meth-
ods. 

 
presented in Table 1 which is adopted from [25].  In 
addition to the well-known material constants such as 
elastic coefficients, the small size factor (or non-local 
parameter) is considered as an extra medium constant.  
To address the significance of the non-classical theories, 
the results here are presented as the buckling load ratio 
PNC/PC in which PNC is the buckling load determined 
using each of the non-classical constitutive equations and 
PC is the same buckling load obtained using classical 
theory. 

5.1  Solution Convergence and Validation 

In this section, the convergence and accuracy of the 
Galerkin method is investigated.  Since there is no 
available result in the open literature for the buckling of 
the skew nanoplates based on second gradient theory, the 
verification of the method is conducted through exam-
ples for buckling analysis of square SLGS based on 
non-local theory. 

As can be seen, a fast rate of convergence and excel-
lent agreement exist between the results of this paper and 
other works.  Moreover, Fig. 3 shows that the rate of 

convergence of the present solution is much faster than 
previous numerical solutions. 

5.2  Effects of the Non-Local Parameter 

There is a fundamental question about the role of 
non-local parameters in the skew nanoplate behaviour 
when the theories 2ndSG and SDNL are employed as 
constitutive equations.  In Fig. 4, dependency of the 
buckling load ratio to the non-local parameter is drawn 
for different sizes of the skew nanoplate.  It is seen that 
when the nanoplate size is increased the dependency of 
buckling load to the non-local parameter is decreased.  
In other words, for large skew nanoplate sizes, all theo-
ries give almost identical results close to that of classical 
theory. 

It is known that the buckling load is directly propor-
tional to the stiffness of the structure.  Therefore, SDNL 
theory predicts that the skew nanoplate becomes softer 
when its size ratio becomes smaller, whereas the other 
theory predicts that the stiffness increases when its size 
ratio decreases.  Furthermore, as can be seen from the 
diagrams, the degree of softening and stiffening rises by 
increasing the non-local parameter. 

5.3  Effects of Boundary Condition 

Figure 5 indicates variation of dimensionless buckling 
load versus non-local parameter for two cases of simply 
supported and clamped skew nanoplate.  It shows that 
the dimensionless buckling load of the clamped plate is 
higher than in the simply supported one for all values of 
non-local parameter, as expected.  Moreover, it shows 
that the clamped condition is more affected by the 
non-local parameter in comparison to a simply supported 
condition. 

5.4  Effects of Skew Angle 

Figure 6 shows the variation of dimensionless buck-
ling load with skew angle for various values for a 
non-local parameter.  It is observed that the dimen-
sionless buckling load increases when skew angle in-
creases.  This phenomenon is attributed to the stress 
concentration (due singularity in corners). 

6.  CONCLUSIONS 

In this work, buckling governing equations of skew 
single layer graphene sheet employing non-conventional 
constitutive equations (including second order strain gra-
dient and simplified differential non-local elasticity theo-
ries) are developed.  In these theories, a non-classical 
property, called size effect or non-local parameter, ap-
pears in the equations in addition to the classical elastic 
constants.  It was seen that the order of governing dif-
ferential equation depended on the implemented consti-
tutive equation.  Accordingly, the forms of boundary 
conditions were also influenced.  Based on the obtained 
numerical results, using SDNL theory, the dimensionless 
buckling load of the skew nanoplate is decreased by in- 
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Fig. 4 Variation of buckling load ratio versus scale coefficient for different sizes of isotropic simply supported skew 

nanoplate obtained using (a) SDNL (b) 2ndSG theory. 
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 Fig. 5  Dependency of dimensionless buckling load to the boundary conditions and scale coefficient. 

   (a) SDNL (b) 2ndSG theory. 
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Fig. 6 Variation of dimensionless buckling load of skew SLGS with skew angles for different scale coefficient. 

(a) SDNL (b) 2ndSG theory. 
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creasing the non-local parameter, whereas an increasing 
trend is observed in the case of applying another theory.  
The literature review indicates that there is no unique 
agreement about modelling and understanding the size 
dependency of the nanoplate, and no perfect value can be 
assigned to the introduced non-classical property.  As a 
matter of fact, there is a lack of reliable experimental 
data to validate the theoretical methods.  However, no 
perfect judgment can be made about proposing a proper 
constitutive equation in the case of applying contin-
uum-based approaches.  The authors believe that a com-
bination of constitutive equations proposed here can be 
employed to model nanoplates.  Finally, it seems that 
much more investigation is required to develop adequate 
continuum-based theories that capture the behaviour of 
nanostructures properly. 
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