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Abstract
Biking is one of the most efficient and environmentally

friendly ways to control weight and commute. To precisely
estimate caloric expenditure, bikers have to install a bike
computer or use a smartphone connected to additional sen-
sors such as heart rate monitors worn on their chest, or ca-
dence sensors mounted on their bikes. However, these pe-
ripherals are still expensive and inconvenient for daily use.
This work poses the following question: is it possible to
use just a smartphone to reliably estimate cycling activ-
ity? We answer this question positively through a pocket
sensing approach that can reliably measure cadence using
the phone’s on-board accelerometer with less than 2% error.
Our method estimates caloric expenditure through a model
that takes as inputs GPS traces, the USGS elevation service,
and the detailed road database from OpenStreetMap. The
overall caloric estimation error is 60% smaller than other
smartphone-based approaches. Finally, the smartphone can
aggressively duty-cycle its GPS receiver, reducing energy
consumption by 57%, without any degradation in the accu-
racy of caloric expenditure estimates. This is possible be-
cause we can recover the bike’s route, even with fewer GPS
location samples, using map information from the USGS and
OpenStreetMap databases.

1 Introduction
A biking renaissance has been underway over the past two

decades in North America [34]. During this time, the an-
nual number of bike trips increased from 1.7 billion to 4 bil-
lion while the number of daily bike commuters in the United
States nearly doubled [16].

This higher rate of biking has diverse benefits including
improved health and well-being for bikers, reduced trans-
portation costs and road congestion, and lower energy costs
and environmental impact [16]. Especially from a health per-
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spective, biking is one of the best exercises for improving
one’s health and fitness, giving the heart and circulatory sys-
tem a vigorous workout [23].

This ever-increasing class of biking enthusiasts has been
prompted by the availability of low-cost fitness devices,
GPS receivers, and cellphones to track their outdoor biking
trips and calculate their performance, including calories con-
sumed, during those trips. Of particular interest are smart-
phone applications that use GPS tracks to allow users to an-
alyze their trips and compare their efforts with their friends.
For example, MapMyRIDE [9], a popular biking applica-
tion (or app), has been downloaded more than 500,000 times
from the Android Market. In addition to tracking the routes
and distance traveled during bike trips some of the cellphone
apps estimate the calories consumed during those trips [6, 9].
At a high level, these estimates are calculated by looking up
the biker’s weight and average travel speed in a standardized
caloric expenditure table.

Nevertheless, precise measurement of cycling activity is
still a challenging task. Specifically, existing GPS-only bik-
ing apps do not directly measure the cyclist’s activities such
as the number of revolutions of the bike’s crank per minute
(known as cadence). Moreover, the inherent altitude errors in
GPS measurements complicate the slope change estimations
during a bike trip significantly. Put together, these shortcom-
ings lead to imprecise estimates of caloric expenditure. Our
measurements, detailed in Section 4, suggest that the errors
can be significant.

A straightforward approach to increase accuracy would
be to include sensors that measure the biker’s effort directly.
Examples of such sensors include power meters, cadence
sensors, and heart rate monitors. Together with an on-bike
computer or smartphone, these sensors not only report accu-
rate caloric expenditure, but can also show bikers their real-
time biking power and help them remain in their target heart
rate zone for best training results. Furthermore, those sen-
sors can also measure cadence and thereby let the bikers stay
in an RPM range that is safe for their knees, which can be
especially valuable during long rides [17].

Unfortunately, such an on-bike sensing system is still ex-
pensive (can cost above $1,000) and can be cumbersome for
daily use. The question we want to answer in this work is:
is it possible to use just a smartphone to reliably provide all
this biking information?

We describe our efforts to answer this question through



the development of a precise and smartphone-only biking
tracking solution which only requires bikers to wear a smart-
phone in their front pant pockets during their bike trips. The
smartphone uses its on-board accelerometer to sense the pe-
riodic movement of the bikers’ legs as they pedal, thereby
eliminating the need for a separate cadence sensor. In ad-
dition, the smartphone provides a precise three-dimensional
trace of the biker’s route. This trace is reconstructed by
processing raw GPS samples with information about the
road network and detailed elevation maps provided by Open-
StreetMap [11] and the US Geological Service (USGS) [18].
The smartphone inputs all this information along with real-
time weather reports to a model that estimates biking power
and caloric expenditure.

Results from a total of 30 km bike trips using our bike
sensing system (shown in Fig.2) show that the smartphone
can reliably infer the cadence from the accelerometer data
with an overall error of less than 2%. Furthermore, results
from 20 bikers using 7 bikes over 70 bike trips show that the
model-based approach can accurately estimate caloric ex-
penditure and reduce error by 60% compared to other smart-
phone based approaches. Finally, the smartphone can ag-
gressively duty-cycle its GPS receiver without any degra-
dations in the accuracy of caloric expenditure estimations.
Doing so reduces its energy consumption by up to 57%.
This is possible because we can recover the bike’s route,
even with fewer GPS samples, using a robust route recov-
ery mechanism that takes as input detailed map information
from OpenStreetMap and USGS.

We make three contributions: (1) we propose a pocket
sensing approach to accurately sense biking activity that re-
places expensive on-bike hardware; (2) we compare and ana-
lyze major elevation services. We find the “bridge elevation”
error on both USGS and Google Maps services and mini-
mize this error to provide highly precise elevation for biking
caloric expenditure calculation; (3) we show that leveraging
detailed map information from USGS and OpenStreetMap
enables very aggressive duty-cycling of the GPS receiver
thereby saving a significant amount of energy.

This paper has six more sections. Section 2 outlines ex-
isting caloric expenditure techniques and Section 3 describes
the mechanisms and techniques we explored in our work. In
Section 4 we evaluate the accuracy of the proposed system’s
different components and compare them with existing tech-
niques for caloric expenditure. Section 5 discusses the fea-
sibility of implementing the proposed method as a real-time
smartphone app and presents some of the lessons learned.
We introduce the related work in Section 6 and conclude in
Section 7 with a summary.

2 Background and Motivation
There is currently a strong trend to use biking as a way

of controlling or reducing one’s weight. Cyclists are there-
fore interested in knowing their caloric expenditures while
riding outside. A straightforward approach is to outfit one’s
bike with a power meter that converts the power required
to move the bike into caloric expenditure. Professional bik-
ers use this method but power meter cranksets are expensive
(the costs are usually higher than $1,000 [13]) and therefore

Speed 130 lbs 155 lbs 190 lbs
<10mph, leisure 236 281 345
10-11.9mph, light effort 354 422 518
12-13.9mph, mod. effort 472 563 690
14-15.9mph, vig. effort 590 704 863
16-19mph, very fast 708 844 1035
>20mph, racing 944 1126 1380

Table 1. Calories burned per hour while biking (origi-
nally from [14]).

unlikely to be used by amateurs. Instead, several caloric ex-
penditure models have been developed that approximate the
actual calories burned. In what follows we introduce four
caloric expenditure estimators.

2.1 Search Table
Several healthcare and sports institutes provide caloric ex-

penditure tables that bikers can use to estimate their caloric
consumption [20, 14]. Energy expenditure is tabulated ac-
cording to average speed, trip duration, and the biker’s
weight. For example, according to Table 1, originally found
in [14], biking at 13 mph burns 563 calories per hour if you
weigh 155 lbs and 690 calories per hour if you weigh 190 lbs.

This estimation method is used by multiple mobile sport
and dietary tracking applications [5, 6, 7, 9]. These applica-
tions track users through the phone’s GPS receiver during cy-
cling or let them manually input the distance and their speed
after the trips, and then estimate calories burned. While easy
to use this method has low accuracy: lacking elevation in-
formation, it overestimates calories burned on downhill trips
during which effort is low but speed is high and underesti-
mates calories burned on uphill ones.

2.2 Cadence and Speed Sensing
Cadence and speed sensing is another way to estimate

caloric expenditure while biking. In addition to recording
the bike’s cruising speed, this method uses a cadence sensor
to measure pedaling speed in revolutions per minute (RPM).
Such sensors are commercially available including ones with
Bluetooth or ANT+ radios. According to (1), found in [22],
given bike velocity V and pedaling speed S the oxygen con-
sumption VO2 in liters per min is given by:

VO2 = 0.00494(0.261V 3 +0.671mV )0.589S0.168 (1)

where m is the total mass of the rider and the bike in kilos.
Then, we can estimate the calories burned by multiplying

VO2 in l/min by a factor of 5 [22]. For example, suppose
that V = 25 km/h, S = 60 rpm, m = 70 kg and the cyclist is
adopting the touring posture. Then (1) results in VO2 = 1.53
l/min which is equivalent to 7.66 Kcal/min.

Compared to the search table method, estimating caloric
expenditure using cadence and speed sensing avoids count-
ing calories when the rider is not pedaling, thereby signifi-
cantly decreasing the overestimation of calories burned dur-
ing downhill trips. On the other hand, cadence and speed
sensing tends to underestimate caloric expenditure during
uphill trips during which pedaling and bike speed are low.



2.3 Heart Rate Monitoring
Heart rate monitors, most commonly found in the form of

chest straps, are a popular and accurate method of estimat-
ing calories burned while exercising. Keytel et al. proposed
a model which takes heart rate as input and estimates calo-
ries burned while biking after adjusting for age, gender, body
mass, and fitness level [28].

Their experiments showed that the correlation coefficient
between the actual and estimated energy expenditure was
0.913 [28]. According to their model, caloric expenditure de-
pends on a variety of factors, but primarily the biker’s heart
rate and VO2 max. VO2 max is the maximum oxygen con-
sumption rate which is a good measure of aerobic condition-
ing. To estimate VO2 max, bikers need to perform a Cooper
VO2 max test which requires them to run as far as possible in
12 minutes. The VO2 max estimate then is:

VO2 max = (D−504.9)/44.73 (2)

where D is the distance covered in meters. Taking a male
biker as an example, we can calculate caloric expenditure as:

Calories =[(0.380 ·VO2 max)+(0.450 ·BPM)

+(0.274 · age)+(0.0468 ·weight)−59.3954]
· time/4.184

(3)

where BPM is the heart rate in beats/min.
The heart rate monitoring approach enables bikers to es-

timate calories burned with high accuracy at an affordable
price. However, wearing a chest strap may be too cumber-
some for daily use. An informal survey among the 20 vol-
unteers that participated in our evaluation (see Sec.4) con-
firmed this intuition. Furthermore, the chest strap has to be
worn properly (e.g., tight against the bare chest) for heart
rate measurements to be accurate. Ensuring proper use can
be non-trivial in practice. In fact, some recent studies have
shown that the adoption of heart rate monitors is severely
limited by the deficient ergonomics of the chest straps [21].

Unfortunately, heart rate monitors using chest straps are
still by far the most convenient and accurate solution for out-
door exercise. Other popular types of heart rate monitors
either require both hands to touch the device [12] or need a
finger clip [10], both impractical and uncomfortable for out-
door biking.
2.4 Power Measurement

The heart rate monitor approach estimates caloric expen-
diture by directly measuring changes in the biker’s physiol-
ogy. The power measurement approach on the other hand
leverages the observation that the number of calories burned
is linearly related to the total amount of work necessary to
move the combined mass of the biker and the bike from start
to finish. James et al. showed that cycling power can be ac-
curately predicted by a mathematical model with very high
accuracy (R2 = 0.97) [32]. In what follows we describe this
model step by step.

According to the laws of Mechanics the power P that a
rider needs to generate to maintain a constant ground speed
Vg is equal to:

P = FVg (4)

(a) Side view. (b) Top view.

Figure 1. Forces related to determining the power nec-
essary to move a bike at constant speed Vg given wind
vector Vw and road slope s.

where F is the force generated by the rider along the direc-
tion of movement.

Based on Newton’s First and Third Laws of Motion, F
is equal to the total resistance which has the following three
components:

F = Fr +Fg +Fa (5)

where Fr is the rolling resistance from the bike, Fg is the
component of gravity along the direction of movement, and
Fa is the force of aerodynamic drag. Analyzing these forces
further, we have:

Fr = mgCr (6)
Fg = mgs (7)

Fa = ρ(T )CaV 2
a (8)

According to (6) the force Fr due to rolling resistance is
the product of the combined mass of the rider and the bike
m, the acceleration g due to Earth’s gravity, and the lumped
coefficient of rolling resistance Cr which accounts for tires,
bearings, chain, and so on. Fg, that represents the component
of the gravitational force along the direction of movement, is
given by (7). The slope s is a equal to ∆h/∆d (cf. Fig.1).
Finally, (8) is the total aerodynamic drag force which is re-
lated to the frontal area and shape of the bike and rider and to
the air density and air velocity. As illustrated in Figure 1(b),
we have Va =Vg +Vw cosα, where Vw is wind velocity. ρ(T )
is the temperature dependent air density and Ca is a lumped
constant for aerodynamic drag.

Substituting F in (4) with the results from (5), (6), (7),
and (8) we have:

P =
(
mg · (Cr + s)+ρ(T ) ·CaV 2

a
)
·Vg (9)

Given P, one can estimate the number of calories burned
per second by multiplying it with the mechanical efficiency
of the human body while cycling. This efficiency is found to
be ≈ 25% [33].

In practice, estimating P requires measuring the road’s
slope s accurately and accounting for the variations across
bikers and bikes, reflected in the constants Ca and Cr.

The rest of the paper describes our efforts in implement-
ing the four caloric expenditure mechanisms and comparing
their accuracy across different routes, bikes, and bikers.



Figure 2. System overview: (1) on-bike smartphone col-
lecting data from cadence, pressure, and heart rate sen-
sors via Bluetooth; (2) on-body smartphone collecting
data from on-board accelerometer and GPS; (3) Baro-
metric pressure sensor (red board) connected to mote
with Bluetooth radio inside enclosure; (4) Cadence sen-
sor made by magnet and reed switch; (5) heart rate mon-
itor worn around the biker’s chest.

3 System Design
We built a modular sensing testbed that continuously

monitors key physical processes related to biking. We use
this system to compare the different caloric expenditure es-
timation methods from the previous section. As Figure 2 il-
lustrates, the system consists of five major components: a
cadence sensor, a barometric pressure sensor, a heart rate
sensor, and two smartphones.

The central hub of the sensing system is a smartphone
mounted on the bike’s handlebar, shown as Item 1 in Fig-
ure 2. This smartphone wirelessly collects data from the ca-
dence sensor, the barometric pressure sensor, and the heart
rate sensor via Bluetooth. The second smartphone, shown
as Item 2 in Figure 2, is placed inside the biker’s front pant
pocket and captures the movements of the biker’s leg using
its accelerometer sensor. This smartphone also continuously
logs data from the GPS receiver providing detailed route and
speed information for every bike trip. We note that these
five components are needed to evaluate the different caloric
expenditure estimation techniques. As we will show in Sec-
tion 4, just one smartphone in the biker’s pocket is enough to
accurately estimate caloric expenditure.

While the off-the-shelf heart rate sensor already has a
built-in Bluetooth module, neither the cadence nor the baro-
metric pressure sensor has such an interface. Therefore,
we connect these two sensors to a custom mote equipped
with a Bluetooth module. Specifically, the pressure sensor is
mounted on the bike’s frame (Item 3 in Figure 2) inside an
opaque plastic container. The container protects the sensor
from the effects of wind and light, allowing more accurate
barometric pressure measurements. We use an off-the-shelf
Bosch BMP085 digital pressure sensor which provides mea-
surements with ±1.0 hPa absolute accuracy and ±0.2 hPa

Route Dist.(km) Road Conditions
R1 1.5 neighborhood, uphill
R2 2.1 neighborhood, uphill
R3 0.8 neighborhood, downhill
R4 0.8 neighborhood, uphill
R5 2.1 neighborhood, downhill
R6 1.1 neighborhood, downhill
SMDN 1.5 woods, river valley,
& SMDS ups and downs, winding path
SMDC 2.4 woods, river valley,

ups and downs, winding path
DL 2.5 lakeside, flat, open field
WW 1.7 bridges, ups and downs
WE 1.7 bridges, ups and downs
HJ 2.9 neighborhood, bridge, downhill
JH 2.9 neighborhood, bridge, uphill
C 3.9 flat, circle, open field

Table 2. Bike routes used in caloric estimation experi-
ments.

relative accuracy at 25◦C from 700 to 1100 hPa [3]. The
sensor is connected to the mote via the I2C bus.

The cadence sensor has two components, a magnet at-
tached to one of the bike’s crank arms and a small circuit
board on the chain that hosts two parallel reed switches and
a capacitor (see Item 4 in Figure 2). The reed switches are
connected to ground and a GPIO pin with an internal pull-
up resistor on the mote. Therefore, when the magnet moves
close to the board, the reed switches close the circuit and the
mote reads a logic ‘0’; when the magnet moves away from
the board, the reed switches open and the mote will read a
logic ‘1’ due to the internal pull-up resistor.

We use a Zephyr BioHarness [19] as the heart rate sen-
sor, shown as Item 5 in Figure 2. This sensor has to be worn
tightly around the biker’s bare chest and reports the mea-
sured beats-per-minute (BPM) data to the smartphone via its
Bluetooth module once per second.

Although the two smartphones run separately, we imple-
mented a single Android application to configure and sam-
ple these sensors as a background service. We have used the
Motorola Droid, Samsung Nexus S, and Samsung Galaxy 2
phones running Android 2.2.2 to 2.3.6.
3.1 Data collection

We used this system to collect data from 15 bike routes
located around Johns Hopkins University’s Homewood cam-
pus in Baltimore, MD from January to April 2012. All the
routes can be completed within 20 minutes and therefore we
assume that weather conditions remain stable during each
trip. Table 2 lists the routes’ characteristics. While the routes
consist mostly of paved road segments, they include flat, up-
hill, and downhill sections. The routes’ surroundings include
urban areas, wooded areas, and open fields.

The system samples the GPS, pressure sensor, and heart
rate monitor once per second and the accelerometer at 50 Hz.
3.2 Cadence Sensing in the Pocket

Cadence, defined as the number of revolutions of the
bike’s crank per minute, can be a key component in deter-
mining exercise intensity. For example, (1) uses cadence
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(a) Raw accelerometer data collected using a Google Nexus S phone during a bike ride. The phone samples all three accelerometer channels at 50 Hz.
Regions related to putting the phone in and out of the pocket, pedaling, and coasting are evident in the sensor streams.
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(d) Type-(II) (T2) and Type-(III) (T3) vibrations clustered based on their amplitude between 88 and 94 seconds.

Figure 3. Data processing steps taken to estimate cadence from raw accelerometer samples.

and speed to estimate the number of calories burned dur-
ing bike trips. In addition, knowing the cadence in real-time
helps bikers burn calories efficiently by maintaining the ideal
rhythm (60-80 RPM for most people [17]).

Existing cadence sensing schemes use a cadence sensor
mounted on the bike’s frame which communicates wirelessly
with a cycling computer or a smartphone. While effective,
this approach requires purchasing and mounting the sensor
on the bike and periodically replacing the sensor’s batteries.
Instead, we introduce a mechanism that does not require a
separate hardware sensor but estimates cadence indirectly by
sensing the periodic movements of the biker’s leg.

The proposed method requires bikers putting their cell-
phones in one of their front pant pockets. We then use the
phone’s accelerometer to track the leg’s periodic movement
as the biker pushes the pedals and estimate the number of
crank revolutions per minute. In addition to saving the cost
of an external cadence sensor, the software-only approach
reduces the phone’s energy consumption since no commu-
nication with an external sensor is necessary and the energy
consumption of the accelerometer is low (e.g., 0.2mA on the
Google Nexus S according to the Android Sensor API [1]).

Figure 3(a) presents an example of raw accelerometer

data collected during a 350 second trip sampled at 50Hz.
Three distinct vibration types are present in the figure: (I)
sharp fluctuations during the beginning and the end of the
trip, reflecting the person moving the phone in and out of his
pocket; (II) severe vibrations (e.g., interval between 210 and
260 seconds) which reflect the biker moving his legs as he
is pedaling; (III) minor vibrations (e.g., period between 130
and 160 seconds) corresponding to intervals during which
the biker is not pedaling. Vibrations during these periods are
due to the bike’s interaction with the road and the biker’s
general movement unrelated to pedaling.

This example suggests that in order to detect movement
associated with pedaling we need to filter out patterns (I) and
(III) as well as random noise. Type-(I) patterns are easy to
remove via a time threshold filter that removes the first and
last x seconds of data during a bike trip. One can also use
the speed information from the GPS receiver to remove ac-
celerometer data collected when the biker’s speed is zero.

Separating Type-(II) from Type-(III) vibrations is more
challenging. The first step is to select among the three ac-
celerometer axes the one which simplifies the distinction be-
tween Type-(II) and (III) vibrations the most. As Figure 3(b)
shows, we choose the axis with the largest variance after



removing Type-(I) vibrations. Intuitively, this acceleration
axis captures the up-down movement of the biker’s leg as he
pushes the crank. Next, we use a low pass filter to remove
noise and Type-(III) vibrations.

Given that the selected accelerometer axis is aligned with
the direction that the biker’s leg moves the most, every revo-
lution of the crank will result in a local maximum and mini-
mum. We calculate the first derivative of the acceleration sig-
nal and detect these extrema by recording the zero crossings
(we only consider the zero crossing from positive to negative
here). We then estimate the cadence by counting the number
of zero crossings per minute.

However, as one can see in Figure 3(c), Type-(III) vibra-
tions persist in the signal even after applying the low pass fil-
ter and calculating the first derivative. Therefore we cannot
include all zero crossings in the cadence estimation. Fortu-
nately, Type-(III) vibrations have much smaller accelerations
than Type-(II) vibrations. Based on this observation we uti-
lize the k-means algorithm to cluster the local maxima to one
of the two types based on the amplitude of the immediately
previous peak in time. Figure 3(d) shows an example of this
process. The first Type-(II) vibration is detected because it
follows a local peak (maximum) whose high value classifies
it in the Type-(II) cluster.

In Section 4.1 we compare the proposed cadence sensing
algorithm with the hardware cadence sensor from Section 3.

3.3 Elevation measurement
According to (9), elevation is a crucial factor in estimating

caloric expenditure. The digital barometric pressure sensor
described earlier can be used to calculate absolute altitude
using the international barometric formula:

altitude = 44330 · (1− (
p
p0

)
1

5.255
)

where p0 is the pressure at sea level, i.e., 1013.25hPa at
15◦C. Thus, a pressure change of ∆p = 1hPa corresponds
to 8.43m at sea level. Since the BMP085 measures pressure
with an relative accuracy of ±0.2hPa, this translates into an
elevation error within 2 meters.

We note that the absolute altitude calculated from this for-
mula is affected by weather conditions such as temperature
and humidity. Since all our trips last less than 20 minutes, we
treat the weather conditions as constant. Furthermore, since
we are interested in the relative altitudes of neighboring lo-
cations along the bike route rather than the absolute altitude,
biases in the absolute altitude can be ignored.

Similar to estimating cadence, we consider methods to in-
fer the value of interest (i.e., altitude) indirectly. In this case
we explore the data collected from the phone’s GPS receiver.
Although the GPS receiver already provides altitude estima-
tions directly, as our evaluation below shows, these estimates
are less accurate than the estimated longitude and latitude.

Instead, we use the latitude and longitude coordinates to
query a Geographic Information System (GIS) that provides
highly accurate elevation data. In this study we use the ser-
vices provided by the U.S. Geological Survey (USGS) [18]
and Google Maps [15]. The USGS elevation service pro-
vides an HTTP interface to the National Elevation Dataset

(NED), which covers all of the United States with 10-meter
resolution and most of the densely populated areas within
the United States with 3-meter resolution. The Baltimore
metropolitan area in our experiments is part of the 3-meter
resolution dataset. In comparison, Google only provides a
19-meter resolution dataset for the same metropolitan area.

Figure 4(a) illustrates the performance of the four dif-
ferent elevation estimation techniques over a sample path.
The estimate from the pressure sensor in this example is
shown after it was processed with a moving average to re-
move noise, while the GPS curve corresponds to raw read-
ings from the GPS receiver on the phone. It is evident that
the elevation estimates from the pressure sensor, USGS, and
Google elevation services are close to each other, while the
directly measured GPS estimates are both an order of mag-
nitude less accurate and precise.

The most interesting part of this path is around the mid-
dle of the trip when the biker crossed a 10-meter long bridge.
Figure 4(b) zooms in to this section where it is obvious that
elevation data from the pressure sensor, USGS and Google
do not match in this particular region. The pressure sensor
in this case reflects the real elevation changes on the bridge,
while querying the USGS elevation service returns the el-
evation of the terrain (i.e. the riverbed under the bridge).
Estimates from the Google elevation data are particularly in-
accurate in this location due to the averaging effect generated
by the database’s low resolution.

The first step towards refining the elevation data derived
from the USGS and Google services is to minimize the er-
ror propagated from the GPS-provided latitude and longi-
tude, which themselves are error prone. To do so, we assume
that all bike trips take place on either marked paths or roads.
We then use the open source GIS, OpenStreetMap (http:
//www.openstreetmap.org/), to match the collected GPS
trace to the nearest roads forming a route (map matching)
and subsequently project each GPS coordinate to the nearest
point on this route (map snapping).

Specifically, we represent a particular GPS trace as a se-
quence of points P = (p0, ..., pn−1) and project each point pi
from this trace to a route Q = (q0, ...,qn−1) matching road
segments via the following steps:

1. Download all street segments in the vicinity (100 me-
ters) of each pi ∈ P from OpenStreetMap.

2. For each pi ∈ P find the nearest road segment, Li.

3. If the distance from pi to the previous point’s (pi−1)
road segment, Li−1, is smaller than the GPS reported
accuracy, set Li−1 as the new Li, otherwise keep the old
one.

4. Project pi onto the line segment Li and store the point as
qi in Q (in case the projection exceeds the line segment,
set qi as the nearest endpoint).

Through this process, every coordinate from the GPS trace
is fitted to a road segment.

While generally useful, the road fitting mechanism cannot
remove the “bridge error” shown in Figure 4(c) completely.
Instead, we treat data from the USGS and Google elevation
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(a) Estimated elevation across sample bike path
from different services.
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(USGS, Google) fail when meeting a bridge.
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Figure 4. Comparison of elevation estimates calculated by four different elevation services over the same path. Altitude
estimates provided by the GPS receiver are the least accurate, while smoothed versions of data provided by the elevation
services can be as accurate as the altitude derived from the pressure sensor.

services over the bridge section of the path as outliers and
smooth it using a robust local regression method [8] which
is not influenced by these outliers. Specifically, we use a
quadratic polynomial model to fit the elevation data and set
the span to be nine data points. The robust weights for each
data point in the span are given by the bisquare function,

wi =

{
(1− (ri/6MAD)2)2, |ri|< 6MAD,

0, |ri| ≥ 6MAD,

where ri is the residual of the i-th data point produced by
the quadratic polynomial smoothing and MAD is the median
absolute deviation of the residuals, i.e, MAD = median(|r|).
So if ri is larger than 6MAD, we treat it as an outlier.

The curve named USGS fitted & smoothed in Figure 4(c)
is the smoothed version of the USGS fitted curve and reduces
the “bridge error” completely without introducing new er-
rors. On the other hand, even though smoothing with the ro-
bust regression method can reduce the “bridge error” in the
Google elevation data, the inherent error from the elevation
service is more difficult to eliminate.

Section 4.2 compares the accuracy of the caloric expen-
diture estimations based on these two GPS-derived elevation
estimates with the estimates achieved by using the directly
measured elevations (GPS and pressure sensor).

3.4 Calibration of Power Measurement
With the help of the location and elevation services de-

scribed in the previous sections we can determine the speed
of the bike at regular sample points and the slope of the road
between successive sample points. Moreover, the total mass
of the biker and the bike can easily be measured.

The factors missing from (9) are then the lumped coeffi-
cients of rolling resistance Cr and aerodynamic drag Ca and
the weather conditions, including temperature, wind speed,
and wind direction. This weather information can be ac-
cessed from online weather services or from local weather
stations. In our experiments we use the Weather Under-
ground (http://www.wunderground.com/) station that is
closest to our campus.

We designed a simple procedure to estimate the lumped
coefficient of rolling resistance Cr: the biker needs to find a

flat straight path that is 50 meters or longer, (e.g., an outdoor
parking lot), and activate GPS tracking. The biker then needs
to follow three simple steps: (1) accelerate the bike before
the start of the 50-meter path by pedaling, (2) stop pedaling
and keep the bike straight on the path without braking, and
(3) stop the bike at the end of the path.

Assuming no wind, the only force that applies on the bike
along the direction of movement, when the biker is not ped-
aling, is the rolling resistance. From Newton’s Second Law
of Motion we have Fr = ma where a is the acceleration. Re-
placing Fr with (6) and solving for Cr we have:

Cr =
a
g
=

∆v
∆tg

(10)

where ∆v it the change in speed over the time interval ∆t.
Given the conditions of the experiment, the change in speed
is a direct result of the rolling resistance and by using (10) we
can find Cr for any specific bike and rider by collecting this
calibration trace. In our calibration tests, using seven bikes
of different types including road bikes and mountain bikes,
we found Cr to be between 0.07 and 1.15.

The lumped coefficient of aerodynamic drag Ca is harder
to estimate, requiring a wind tunnel to be measured accu-
rately. Instead, we use an empirical reference value for Ca.
Depending on the biker and bike type, Ca varies from 0.185
to 0.299 (whereas the drag coefficient varies from 0.7 to
1.15) [2]. According to the UK’s National Cyclists’ Orga-
nization [24], the drag coefficient for an everyday average
biker is 1.0 and the aerodynamic drag is Ca = 0.26. We adopt
this value for our calorie expenditure estimator.

4 Evaluation
In the first half of this section we evaluate the quality of

the software-based sensors and compare them against their
hardware counterparts. The second half compares the differ-
ent caloric expenditure models against the heart rate based
one and evaluates the impact that each of the different sen-
sors have on the estimation error.
4.1 Cadence Sensing

We use the hardware cadence sensor mounted on the bike
as ground truth and compare its results to the in-the-pocket



Relative error per trip (%) 0.19±1.59
Error per kilometer −0.09±3.40

Table 3. Errors in estimated crank rotations between the
hardware cadence sensor and the accelerometer-based
software approach.

sensing method from Section 3.2. The traces are collected on
roads around the JHU campus that include features such as
uphill and downhill segments and sharp turns. Since these
roads are public, several real-life situations may happen,
such as changing traffic lights and yielding to traffic.

The cumulative length of the traces used in this compari-
son is 30.3 km, totaling 5,377 crank revolutions. The traces
were collected by two volunteers over 29 different bike runs.
In all cases we sample the accelerometer at 50 Hz1. Table
3 shows the difference between the software-based sensor
and the hardware cadence sensor. The first row represents
the relative error with respect to the total revolutions of the
hardware sensor over a single trip, while the second row cor-
responds to the error per kilometer. We note that both the
mean error and standard deviation are extremely low which
means the error we introduce by replacing the physical ca-
dence sensor with the software method will be negligible.
4.2 Elevation Services

Elevation Service R RMS (m)
USGS 0.9993 0.9
USGS fitted 0.9995 0.7
USGS fitted & smoothed 0.9997 0.6
Google 0.9957 2.4
Google fitted 0.9958 2.4
Google fitted & smoothed 0.9960 2.3
GPS 0.9540 39

Table 4. Correlation coefficient (R) and Root Mean
Square Error (RMS) of different elevation services when
compared against elevation from barometric pressure
sensor.

In order to compare the different elevation methods we
collected pressure measurements and GPS coordinates from
15 trips on 12 different routes throughout March and April
of 2012. The barometric pressure and GPS receiver were
sampled at 1 Hz and we collected a total of 4,780 GPS and
pressure sample pairs.

Table 4 shows the correlation coefficient, R, and the Root
Mean Square (RMS) error between the barometric elevation
and different elevation services. As expected, both map fit-
ting and outlier smoothing increase the correlation coeffi-
cient and decrease the error. The reason why fitting works
so well lies in the distance between the raw and fitted GPS
coordinates, which on average is 4±3 meters. On a flat ter-
rain, this difference has no impact on the elevation lookups,
but in an area with varying terrain this uncertainty can result
in a large elevation error even when the value reported by

1In Android, we used the rate suitable for games, i.e., SEN-
SOR DELAY GAME, which is approx. 50 Hz.
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Figure 5. CDF of RMS from the USGS and Google eleva-
tion services. While smoothing and fitting benefit the ac-
curacy of the data derived from both services, the USGS
service consistently outperforms the Google service.

the elevation service is accurate. For instance, the RMS for
the elevation over the SMD route (cf. Table 2) decreases by
40% by fitting the GPS coordinates to the road, while the cor-
responding decrease on the R1 route is only 10% since the
former route lies along a creek while the latter goes through
a flat residential area.

Figure 5 presents the CDF of the RMS errors for the
USGS and Google Maps services. Regardless of the post-
processing applied, the USGS elevation service is clearly su-
perior to Google Maps. After fitting and smoothing, 95%
of USGS’s RMS are less than 1.2 m, while 95% of Google
Maps’ RMS are less than 5.4 m.

In order to verify that the USGS elevation service is in-
deed the best to use we perform Welch’s t-test [39]. The
p-values for the fitted and smoothed USGS, Google Maps,
and GPS elevation data sets were 0.9606, 0.2301, and 0, re-
spectively thereby confirming our hypothesis.
4.3 Caloric Expenditure Estimation for a Sin-

gle Biker
We start our caloric expenditure evaluation with a sin-

gle bike and biker to better illustrate the different methods
and introduce the terminology. The next section expands the
evaluation to multiple bikers on multiple bikes.

The biker traveled 14 trips with his bike, totaling 24.8
km on all the different types of routes in the evaluation. The
data collected from these trips are used to estimate the caloric
expenditure using the following approaches:

• Search Table (TAB): we add up all the distances be-
tween neighboring fitted GPS samples and use this sum
as the trip distance. Together with the trip duration and
the biker’s weight, we can easily get a calorie estima-
tion by looking up these parameters at a search table
similar to Table 1.

• Cadence and Speed Sensing (CAD): we calculate the
RPM during each trip from the software cadence sensor
in the pocket and average the speed over every minute
using the GPS samples. We then apply (1) to find the
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Figure 6. Overall RMS error of different caloric expenditure estimation methods using a heart rate monitoring method
as ground truth.

estimated caloric expenditure.

• Power measurement: we calculate the power required
each second by using the speed from the GPS, find-
ing the road slope using the elevation from neighboring
GPS samples, and the current weather conditions (tem-
perature, wind speed, and direction) from the Weather
Underground weather station. We note that all bikes
used throughout the evaluation have been calibrated be-
fore traveling.

• Heart rate monitoring as ground truth: we follow the
method mentioned in [28] using BPM to calculate calo-
ries, which only accounts for calories when the BPM is
greater than 90 using (3). The single biker’s VO2 max
is estimated by a 12-minute Cooper test.

Throughout the evaluation, we use TAB as shorthand for
the search table method and CAD for cadence and speed
sensing. For the power measurement method, the Pressure
tag means we used the barometric pressure for elevation data,
USGS for USGS’s elevation service, and Google for Google
Maps’ elevation service. Furthermore, +F and +S mean fit-
ted location and smoothed elevation, respectively. +W stands
for including weather information, i.e., temperature, wind
speed, and direction.

Figure 6 compares the nine different caloric expenditure
methods and shows the overall RMS errors for each method.
The figure shows that with precise elevation and weather
information, the power measurement approach can achieve
much higher accuracy than both the search table and cadence
methods. Likewise, the fitted and smoothed USGS elevation
data performs on par with the barometric pressure elevation,
although the variance of the former is slightly higher than
the latter. On the other hand, using the fitted and smoothed
Google Maps elevation data does not perform well due to the
inherent error and low resolution of the underlying service.
Interestingly, we note that the fitting and smoothing steps
both decrease the error when applied sequentially showing
that both processing steps are important.

As we will show later, the reason why TAB has much
higher variance than USGS+FSW is because it overestimates
calories during downhill stretches and underestimates calo-
ries during uphill segments. CAD, on the other hand, per-
forms worse than TAB during uphill stretches but works well
in most downhill trips.

It appears from this figure that including wind informa-
tion does not improve the accuracy of the power measure-
ment method at all. The reasons are two fold: first, the
wind speed during these trips is low (the Beaufort number is
≤ 3, i.e., gentle breeze); second, if we look at the trips pass-
ing through SMD (including SMDN, SMDS, and SMDC),
we see that the wind correction actually increases the error
slightly instead of decreasing it. This is caused by SMD be-
ing in a low-lying river valley with both sides of the road
covered by tall trees, effectively reducing wind significantly.
For trips that do not pass through SMD the RMS error de-
creases by 13% when we apply the wind correction. Last,
we do not include the power measurement achieved by us-
ing the GPS elevation directly since the RMS errors of this
method are an order of magnitude larger.

4.4 Caloric Expenditure Estimation for Mul-
tiple Bikers

To evaluate the scalability of our method on different
bikes and bikers, we recruited 17 male and 3 female healthy
student volunteers from our university. Their ages are be-
tween 24 and 32 and the weights from 110 to 175 lbs. In
total, 7 bikes are calibrated and used in our evaluation in-
cluding 3 road bikes, 4 cruiser bikes, and 1 mountain bike.
The coefficient of rolling resistance Cr on these bikes ranges
from 0.07 to 0.21. We set Ca to 0.26 for all bikes and bikers,
as explained in Section 3.4, due to the average bike qual-
ity and our bikers’ casual clothing. During our multi-biker
evaluation, all volunteers completed at least three trips, and
in total 70 trips were collected during one week. Volunteers
wear a heart rate strap on their chest and a smartphone in
their pocket. To enable heart rate based caloric expenditure
estimation as the ground truth, we also need the 12-minute
Cooper test for every biker. However, since only a few of
them were able to provide a precise number, we used ap-
proximate values based on each individual’s physical shape
using the standard values from the Cooper Test [4] for those
particular volunteers.

We first demonstrate the evaluation results from some typ-
ical routes. Starting with Route DL — a circular bike lane
around Druid Lake. The total length of this route is 2.4 km.
We collected 10 trips from 7 bikers on this route on differ-
ent days. As Figure 7 shows, even on a flat route like this
one the errors from CAD and TAB are more than three times
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Figure 7. RMS error of different caloric expenditure es-
timation methods on Route DL — a flat and open field.
Wind correction limits the error within a short range.
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Figure 8. RMS error of different caloric expenditure
estimation methods on Route R1 — an uphill path.
Power measurement can estimate calories burned on up-
hill routes accurately while both CAD and TAB underes-
timate the caloric expenditure uphill.

higher than USGS+FSW. Google does not perform well be-
cause of the low elevation resolution, causing the elevation
to be averaged with the lake.

The figure also shows that the smoothing process recov-
ers the outliers by using USGS only. In addition, even if
the wind is not strong during all the trips, the wind correc-
tion decreases the variance compared to USGS+FS. So, even
on flat terrain, the power-based caloric expenditure method
achieves higher accuracy than both CAD and TAB.

Next, Figure 8 shows the same comparison but on an up-
hill route — Route R1, a 1.8 km one-direction route with a
bike lane through a residential area. The elevation difference
between the start and the end is 36 meters. We performed 12
trips with 10 bikers on this particular route. The figure shows
that both CAD and TAB fail to provide an accurate caloric
expenditure estimation for uphill trips, especially CAD. Dur-
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Figure 9. RMS error of different caloric expenditure es-
timation methods on Route R6 — a downhill path. CAD
works well on downhill routes. Figure 8 and 9 shows our
method is adaptive to both downhill and uphill routes.

ing uphill trips, our bikers can only maintain a low RPM and
speed, which CAD erroneously treats as a low caloric ex-
penditure situation. In this particular case, Google+FSW has
a similar accuracy as USGS+FSW, because the slope of the
surrounding area is similar to the road, which means the ele-
vation average from Google Maps is close to the USGS one.

To test the opposite case, Route R6 is the downhill route
parallel to R1. Eight bikers exercised this route over a total
of 11 trips. From the results shown in Figure 9, we see that
although CAD performs best, the power measurement meth-
ods are only slightly worse, illustrating their ability to adapt
to both uphill and downhill stretches.

Figure 10 shows the results from all the trips passing the
SMD which is a winding road along a river valley. The el-
evation difference between the two sides of the road can be
as much as 10 meters due to a steep slope at the edge of
the road. We have 11 trips crossing SMD across 8 bikers.
Since the surrounding terrain of the route is complicated and
always changing, we see that direct use of the USGS data re-
sults in large errors. However, our fitting method eliminates
most of the errors in this situation. On the other hand, Google
elevation still does not perform well on this route. TAB per-
forms surprisingly well because bikers ride both uphill and
downhill on this route resulting in any over- and underesti-
mation errors canceling each other out.

Figure 11 shows the results from all the trips passing the
route between our campus and Druid Lake. This 1.7 km
route passes two bridges, one is 67 meters long and the other
is 140 meters long, with a height difference of 15 meters be-
tween the road and the bottom of the bridge. For this route
we have 10 trips driven by 8 bikers. Obviously, without
smoothing, the USGS does not perform well as the figure
shows. Fortunately, our smoothing method corrects most of
the elevation errors without adding additional ones.

Last, Figure 12 shows the overall RMS error for all 70
trips, for each caloric expenditure estimation method. We
find that averaged across all the different bikers and all the
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Figure 10. RMS error of different caloric expenditure es-
timation methods on Route SMD — winding route. Re-
sults show our fitting method on USGS works well. How-
ever, Google Maps’ elevation API does not perform well
on complicated and changing terrain because of its inher-
ent error and low resolution.

different routes, USGS+FSW achieves the lowest error. Es-
pecially when compared to Figure 6, the single biker case,
there is no significant increase in the RMS for USGS+FSW
while all the other methods have higher medians and vari-
ance. This illustrates the strength of our calibration since our
method is able to adapt to a wide range of bikes and bikers,
which none of the other methods are capable of.

4.5 Reducing GPS Power Consumption

Sampling Interpolation EnAcq Power
Interval (s) (RMS) (RMS) (%)

0 28.6 28.6 100
5 31.6 28.5 100

10 34.7 27.8 100
15 36.7 30.5 83
20 42.6 29.8 65
25 55.0 31.1 54
30 72.1 34.4 43

Table 5. Error and power consumption for different GPS
sampling intervals and route reconstruction methods.

In order to increase the usefulness of our application and
decrease the power it consumes on the user’s smartphone,
we investigate the impact of duty-cycling the GPS receiver
on caloric expenditure accuracy.

Considering that GPS duty-cycling has been studied ex-
tensively and is not directly related to our main topic, we
only consider two extreme cases: (1) the most simplistic ap-
proach in which we reconstruct the missing bike route points
by interpolating between the known points, and (2) we sim-
ulate the effect of applying a state-of-the-art map matching,
route reconstruction algorithm [27]. In both cases we com-
pare the calorie estimation errors with the non-duty-cycled
case. We use the original R1-6 datasets as ground truth and

0

5

10

15

20

25

30

35

40

45

50

55

CAD TAB
Google
+ FSW

USGS
USGS

+ F
USGS
+ FS

USGS
+ FSW

R
M

S

Figure 11. RMS error of different caloric expenditure
estimation methods on Route W — a route crossing two
bridges. Our smoothing algorithm successfully corrects
the “bridge error” in this extreme case and ensures that
the power measurement based method works properly.
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Figure 12. RMS error of different caloric expenditure es-
timation methods using heart rate monitoring as ground
truth, across all 70 bike trips.

down-sample test sets for both algorithms. Figures 13(a)-
13(c) show three examples of such down-sampled datasets
and the interpolated speed. As the figures show, the longer
the sampling interval the more route features are lost.

We use the EnAcq algorithm by Fang et al. [27] as the
state-of-the-art route reconstruction mechanism. This algo-
rithm reconstructs the route between two consecutive GPS
samples by matching the most likely route taken given the
available roads on a map and snaps the position to the clos-
est point on this road. To detect turns, acceleration and com-
pass readings are fed into a Hidden Markov Model and then
used to select the most probable direction to take. When the
selected road later leads to an improbable route the system
automatically backtracks and tries the next most probable al-
ternative. Given the route reconstructed by EnAcq we pro-
ceed as described in Section 2 with the online weather and
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Figure 13. Increasing loss of speed accuracy as the interval between GPS samples increases.

elevation lookup. For the missing speeds, we use the average
speed between the two GPS samples that we have and apply
them to the reconstructed route between these two points.

Table 5 shows the error and power consumption for the
different sampling intervals s as a percentage of the non-
duty-cycled case (s = 0). We use the PowerTutor smart-
phone application [40] to measure the relative power con-
sumption across the different sampling intervals. Since the
Android API does not allow direct GPS instrumentation, but
handles duty cycling itself, it is not possible to turn on the
GPS for less than 10 seconds at a time. This is why the power
column shows no reduction in power consumption until the
sampling interval increases to 15 seconds. The largest GPS
sampling interval that does not significantly increase the er-
ror of the naive route interpolation method is s = 15s, lead-
ing to a potential reduction in power consumption by 17%.
There is no appreciable difference in error when we use
the EnAcq reconstructed route for calorie estimation. Since
Fang et al. report that EnAcq can successfully reconstruct
routes with less than 4% mismatch from 30 second sample
intervals we could potentially achieve a 57% power reduc-
tion by adopting the EnAcq route reconstruction scheme.

5 Discussion
In the first half of this section we discuss the feasibility

of implementing our method as a real-time smartphone app.
The second half presents the lessons that we learned from
this work.
5.1 Towards a smartphone application

Although our evaluation is based on offline data analysis,
it is feasible to implement the cadence sensing and power
measurement approaches in a real-time bicycling app. Such
an app will offer higher accuracy than existing smartphone-
only caloric expenditure calculators at zero cost for most
smartphone users. When a biker wants to track a trip, he can
open the tracking app and click start. If he just wants to track
his caloric expenditure, he can mount his phone on his bike’s
handlebar, or anywhere he wants, e.g, in the backpack. Since
the caloric expenditure calculation is based on accumulating
the caloric expenditure during every time unit, the applica-
tion can show current raw calorie consumption on the screen
or by voice. In addition, if he also needs to track his cadence
in RPM, he only needs to click a button to enable the cadence

sensing function and put the phone in his front pocket. When
reaching his destination, the biker can stop tracking his route
and upload the raw trace to the server. In power saving mode,
the application can choose a low frequent sampling rate on
GPS, and the elevation fitting and smoothing can be done on
the server. Finally, the server can provide an accurate caloric
expenditure estimation for the biker.

Ideally, calibration only needs to be done once when a
biker first uses this application or changes his bike. Even bet-
ter, with more statistical results on the coefficient of rolling
resistance Cr and the lumped constant for aerodynamic drag
Ca, auto-calibration can be setup for easier use. For exam-
ple, a biker inputs his weight, height, and the bike model, the
application can setup these parameters for him.

Last, with such an easy way to accurately track bikers’
caloric expenditure, more interesting functions can be en-
abled. For instance, with the collection of bikers traces on a
server, the application can provide caloric expenditure pre-
diction for a particular route in the database; in turn, with a
calorie input, e.g., 500 Kcal, the application can calculate the
best route for the biker.
5.2 Lessons Learned

As Figure 2 illustrates, we started this work with modular
design that included multiple on-bike and on-body sensors
to estimate caloric expenditure during biking. Nevertheless,
the evaluation process proved that just using a smartphone
provides comparable accuracy to the best method that uses
external sensors. This has been possible by combining the
phone’s sensors (accelerometer and GPS), its high speed In-
ternet access, and Web accessible databases. We believe this
shift from physical to virtual or software sensors will find
other applications in quantifying people’s daily lives and ac-
tivities.

6 Related Work
As we pointed out in the introduction, more and more

people have started to ride their bikes which has lead to re-
search in sensor networks on and for bikes. Similar to this
work, the primary focus of this line of research has been on
attaching sensors to the bike and collecting measurements
from bike rides.

One of these data collection networks, BikeNet by Eisen-
man et al. [25, 26] used TMote Invent and Nokia N80 smart-



phones to collect samples from a broad range of sensors, in-
cluding accelerometers for tilt measurements and reed relays
for cadence and wheel rotation counts. Although BikeNet
also collected GPS samples, they were not used to estimate
elevation but rather for route tracking. Moreover, BikeNet
was primarily designed for data collection from a broad
range of sensors with minimal analysis of each modality.
Our goal on the other hand is to sample as few sensors as
possible and yet still estimate caloric expenditure accurately.

Lu et al. proposed the Jigsaw sensing engine for mobile
phone applications [31]. Jigsaw continuously monitors and
classifies user activity and infers context. Activities such as
walking, cycling, running, etc. can be inferred using the ac-
celerometer. Unlike Jigsaw, we do not seek to infer activities
such as biking, but rather quantify the physical aspects of the
biking activity, i.e., cadence and calories burned. To the best
of our knowledge, our approach is the first to infer cadence
from accelerometer data.

Thepvilojanapong et al. mounted an Android phone on
the bike’s handlebar and collected data from the phone’s
accelerometer and magnetometer sensors in addition to the
GPS receiver [37]. Based on these data, they developed a
Hidden Markov Model to recognize the biking states such as
going straight or turning left. While we use the GPS receiver
to estimate the route bikers took, their work could be used as
an alternative method for tracking the bike’s route with the
added benefit of conserving energy.

Our route based approach is similar to Biketastic by
Reddy et al. [35] and BISCAY by Sugo et al. [36]. The for-
mer uses accelerometers and microphones mounted on bikes
to gauge the roughness of a route, while the latter uses gyro-
scopes to estimate the comfort of a ride based on the smooth-
ness of the turns. Both papers use the collected data to in-
fer the relative and qualitative characteristics of a bike route;
our goal is to provide an absolute and quantitative calorie es-
timate that rivals heart rate monitors and surpasses simpler
empirical formulas.

Several methods have been proposed to estimate caloric
expenditure based on sensor measurements. Vyas et al. use a
regression model to find a correlation between the measured
skin temperature and conductivity, heat flux, ambient tem-
perature, and acceleration to energy expenditure [38]. Liu
et al. use Support Vector Machines to classify acceleration
and respiration measurements [30]. However, both of these
methods require bikers to wear hardware sensors that are as,
if not more, intrusive than the chest-worn heart rate monitors
described in Section 2.

The work closest to ours, to the best of our knowledge, is
by Lester et al. [29]. The authors use a smart phone to collect
acceleration measurements and GPS samples while walking
and running. They also evaluate the effect of different ele-
vation methods based on the route taken, but do not correct
for the elevation discrepancies reported by elevation services
such the one provided by the USGS. Moreover, they rely on
an empirical formula that does not take wind into account.
On the other hand, we use a physics-based model with in-
dividually calibrated constants that also takes aerodynamic
drag into account. The results presented in Section 4 show
that discounting the wind’s contribution can lead to signifi-

cant errors in certain cases.

7 Conclusion
Biking is one of the most effective and environmental

friendly exercises for improving one’s health and fitness. On-
bike sensors and computers, although expensive, can signif-
icantly improve the overall biking experience. For example,
knowing the exact number of calories burned during each
bike trip provides a positive feedback loop for the biker who
immediately sees the rewards from exercising and thereby
schedules future bike trips. Likewise, knowing the biking
power in real time helps bikers remain in their target heart
rate zones for best training results. Finally, knowing their
cadence allows bikers to stay in a safe and efficient RPM
range to protect their knees, which is especially important
for long rides.

In this work, we systematically evaluated whether bik-
ers can get all this information by using only a smartphone,
carried in their pant pockets. Extensive experimental results
from 20 bikers over 70 bike trips confirmed that the smart-
phone can reliably measure the cadence with the on-board
accelerometer, and accurately calculate the caloric expendi-
ture by combining the GPS data, the USGS elevation service,
and the detailed road database from OpenStreetMap.

With the rapidly increasing popularity of smartphones,
this work immediately gives millions of bikers a zero-cost
solution towards significantly improved biking experience,
and hopefully a higher quality of life in the long run.
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