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Introduction to Bayesian Econometrics

This concise textbook is an introduction to econometrics from the Bayesian view-
point. It begins with an explanation of the basic ideas of subjective probability and
shows how subjective probabilities must obey the usual rules of probability to
ensure coherency. It then turns to the definitions of the likelihood function, prior
distributions, and posterior distributions. It explains how posterior distributions are
the basis for inference and explores their basic properties. The Bernoulli distribution
is used as a simple example. Various methods of specifying prior distributions are
considered, with special emphasis on subject-matter considerations and exchange
ability. The regression model is examined to show how analytical methods may fail
in the derivation of marginal posterior distributions, which leads to an explanation
of classical and Markov chain Monte Carlo (MCMC) methods of simulation. The
latter is proceeded by a brief introduction to Markov chains. The remainder of the
book is concerned with applications of the theory to important models that are used
in economics, political science, biostatistics, and other applied fields. These include
the linear regression model and extensions to Tobit, probit, and logit models; time
series models; and models involving endogenous variables.

Edward Greenberg is Professor Emeritus of Economics at Washington Uni-
versity, St. Louis, where he served as a Full Professor on the faculty from
1969 to 2005. Professor Greenberg also taught at the University of Wiscon-
sin, Madison, and has been a Visiting Professor at the University of Warwick
(UK), Technion University (Israel), and the University of Bergamo (Italy). A
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The Labor Market and Business Cycle Theories (1989), Advanced Economet-
rics (1983, revised 1991), and Regulation, Market Prices, and Process Innova-
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the American Economic Review, Econometrica, Journal of Econometrics, Jour-
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Preface

To Instructors and Students

THIS BOOK IS a concise introduction to Bayesian statistics and econometrics. It
can be used as a supplement to a frequentist course by instructors who wish to
introduce the Bayesian viewpoint or as a text in a course in Bayesian econometrics
supplemented by readings in the current literature.

While the student should have had some exposure to standard probability theory
and statistics, the book does not make extensive use of statistical theory. Indeed,
because of its reliance on simulation techniques, it requires less background in
statistics and probability than do most books that take a frequentist approach. It is,
however, strongly recommended that the students become familiar with the forms
and properties of the standard probability distributions collected in Appendix A.

Since the advent of Markov chain Monte Carlo (MCMC) methods in the early
1990s, Bayesian methods have been extended to a large and growing number
of applications. This book limits itself to explaining in detail a few important
applications. Its main goal is to provide examples of MCMC algorithms to enable
students and researchers to design algorithms for the models that arise in their
own research. More attention is paid to the design of algorithms for the models
than to the specification and interpretation of the models themselves because we
assume that the student has been exposed to these models in other statistics and
econometrics classes.

The decision to keep the book short has also meant that we have taken a stand on
some controversial issues rather than discuss a large number of alternative methods.
In some cases, alternative approaches are discussed in end of chapter notes.

Exercises have been included at the end of the chapters, but the best way to learn
the material is for students to apply the ideas to empirical applications of their
choice. Accordingly, even though it is not explicitly stated, the first exercise at the
end of every chapter in Part III should direct students to formulate a model; collect
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xiv Preface

data; specify a prior distribution on the basis of previous research design and, if
necessary, program an algorithm; and present the results.

A link to the Web site for the course may be found at my Web site: http://edg.
wustl.edu. The site contains errata, links to data sources, some computer code, and
other information.
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Chapter 1

Introduction

THIS CHAPTER INTRODUCES several important concepts, provides a guide to
the rest of the book, and offers some historical perspective and suggestions for
further reading.

1.1 Econometrics

Econometrics is largely concerned with quantifying the relationship between one or
more more variables y, called the response variables or the dependent variables, and
one or more variables x, called the regressors, independent variables, or covariates.
The response variable or variables may be continuous or discrete; the latter case
includes binary, multinomial, and count data. For example, y might represent the
quantities demanded of a set of goods, and x could include income and the prices
of the goods; or y might represent investment in capital equipment, and x could
include measures of expected sales, cash flows, and borrowing costs; or y might
represent a decision to travel by public transportation rather than private, and x

could include income, fares, and travel time under various alternatives.
In addition to the covariates, it is assumed that unobservable random variables

affect y, so that y itself is a random variable. It is characterized either by a prob-
ability density function (p.d.f.) for continuous y or a probability mass function
(p.m.f.) for discrete y. The p.d.f. or p.m.f. depends on the values of unknown pa-
rameters, denoted by θ . The notation y ∼ f (y|θ, x) means that y has the p.d.f. or
p.m.f. f (y|θ, x), where the function depends on the parameters and covariates. It
is customary to suppress dependence on the covariates when writing the p.d.f. of y,
so we write y ∼ f (y|θ ) unless it is necessary to mention the covariates explicitly.

The data may take the form of observations on a number of subjects at the
same point in time – cross section data – or observations over a number of time
periods – time series data. They may be a combination of cross-section and time-
series observations: data over many subjects over a relatively short period of time

3
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– panel data – or data over a fairly small number of subjects over long periods
of time – multivariate data. In some models, the researcher regards the covariates
as fixed numbers, while in others they are regarded as random variables. If the
latter, their distribution may be independent of the distribution of y, or there may
be dependence. All of these possibilities are discussed in Part III.

An important feature of data analyzed by econometricians is that the data are
almost always observational, in contrast to data arising from controlled experi-
ments, where subjects are randomly assigned to treatments. Observational data
are often generated for purposes other than research, for example, as by-products
of data collected for governmental and administrative reasons. Observational data
may also be collected from surveys, some of which may be specially designed for
research purposes. No matter how collected, however, the analysis of observational
data requires special care, especially in the analysis of causal effects – the attempt
to determine the effect of a covariate on a response variable when the covariate is
a variable whose value can be set by an investigator, such as the effect of partici-
pating in a training program on income and employment or the effect of exercise
on health. When such data are collected from observing what people choose to do,
rather than from a controlled experiment in which they are told what to do, there is
a possibility that people who choose to take the training or to exercise are different
in some systematic way from people who do not. If so, attempting to generalize
the effect of training or exercise on people who do not freely choose those options
may give misleading answers. The models discussed in Part III are designed to deal
with observational data.

Depending on the nature of the data, models are constructed that relate response
variables to covariates. A large number of models that can be applied to particular
types of data have been developed, but, because new types of data sets may require
new models, it is important to learn how to deal with models that have not been
previously analyzed. Studying how Bayesian methodology has been applied to a
variety of existing models is useful for developing techniques that can be applied
to new models.

1.2 Plan of the Book

Part I of the book sets out the basic ideas of the Bayesian approach to statisti-
cal inference. It begins with an explanation of subjective probability to justify the
application of probability theory to general situations of uncertainty. With this back-
ground, Bayes theorem is invoked to define the posterior distribution, the central
concept in Bayesian statistical inference. We show how the posterior distribution
can be used to solve the standard problems of statistical inference – point and
interval estimation, prediction, and model comparison. This material is illustrated
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with the Bernoulli model of coin tossing. Because of its simplicity, all relevant
calculations can be done analytically.

The remainder of Part I is devoted to general properties of posterior distributions
and to the specification of prior distributions. These properties are illustrated with
the normal distribution and linear regression models. For more complicated models,
we turn to simulation as a way of studying posterior distributions because it is
impossible to make the necessary computations analytically.

Part II is devoted to the explanation of simulation techniques. We start with the
classical methods of simulation that yield independent samples but are inadequate
to deal with many common statistical models. The remainder of Part II describes
Markov chain Monte Carlo (MCMC) simulation, a flexible simulation method that
can deal with a wide variety of models.

Part III applies MCMC techniques to models commonly encountered in econo-
metrics and statistics. We emphasize the design of algorithms to analyze these
models as a way of preparing the student to devise algorithms for the new models
that will arise in the course of his or her research.

Appendix A contains definitions, properties, and notation for the standard prob-
ability distributions that are used throughout the book, a few important probability
theorems, and several useful results from matrix algebra. Appendix B describes
computer programs for implementing the methods discussed in the book.

1.3 Historical Note and Further Reading

Bayesian statistics is named for the Rev. Thomas Bayes (1702–1761), and important
contributions to the ideas, under the rubric of “inverse probability,” were made by
Pierre-Simon Laplace (1749–1827). Stigler (1986) is an excellent introduction
to the history of statistics up to the beginning of the twentieth century. Another
important approach to inference, the frequentist approach, was largely developed
in the second half of the nineteenth century. The leading advocates of the approach
in the twentieth century were R. A. Fisher, J. Neyman, and E. Pearson, although
Fisher’s viewpoint differs in important respects from the others. Howie (2002)
provides a concise summary of the development of probability and statistics up
to the 1920s and then focuses on the debate between H. Jeffreys, who took the
Bayesian position, and R. A. Fisher, who argued against it.

The application of the Bayesian viewpoint to econometric models was pioneered
by A. Zellner starting in the early 1960s. His early work is summarized in his highly
influential book, Zellner (1971), and he continues to contribute to the literature. An
important breakthrough in the Bayesian approach to statistical inference occurred
in the early 1990s with the application of Markov chain Monte Carlo simulation to
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statistical and econometric models. This is an active area of research by statisticians,
econometricians, and probabilists.

Several other recent textbooks cover Bayesian econometrics: Poirier (1995),
Koop (2003), Lancaster (2004), and Geweke (2005). The book by Poirier, unlike
the present book and the others mentioned earlier, compares and contrasts Bayesian
methods with other approaches to statistics and econometrics in great detail. The
present book focuses on Bayesian methods with only occasional comments on the
frequentist approach. Two textbooks that emphasize the frequentist viewpoint –
Mittelhammer et al. (2000) and Greene (2003) – also discuss Bayesian inference.

Several statistics books take a Bayesian viewpoint. Berry (1996) is an excellent
introduction to Bayesian ideas. His discussion of differences between observational
and experimental data is highly recommended. Another fine introductory book is
Bolstad (2004). Excellent intermediate level books with many examples are Carlin
and Louis (2000) and Gelman et al. (2004). At a more advanced level, the following
are especially recommended: O’Hagan (1994), Robert (1994), Bernardo and Smith
(1994), Lee (1997), and Jaynes (2003).

Although directed at a general statistical audience, three books by Congdon
(2001, 2003, 2005) cover many common econometric models and utilize Markov
chain Monte Carlo methods extensively. Schervish (1995) covers both Bayesian
and frequentist ideas at an advanced level.
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Chapter 2

Basic Concepts of Probability and Inference

2.1 Probability

SINCE STATISTICAL INFERENCE is based on probability theory, the major
difference between Bayesian and frequentist approaches to inference can be traced
to the different views that each have about the interpretation and scope of probability
theory. We therefore begin by stating the basic axioms of probability and explaining
the two views.

A probability is a number assigned to statements or events. We use the terms
“statements” and “events” interchangeably. Examples of such statements are

• A1 = “A coin tossed three times will come up heads either two or three times.”
• A2 = “A six-sided die rolled once shows an even number of spots.”
• A3 = “There will be measurable precipitation on January 1, 2008, at your local airport.”

Before presenting the probability axioms, we review some standard notation:

The union of A and B is the event that A or B (or both) occur; it is denoted by A ∪ B.
The intersection of A and B is the event that both A and B occur; it is denoted by AB.
The complement of A is the event that A does not occur; it is denoted by Ac.

The probability of event A is denoted by P (A). Probabilities are assumed to
satisfy the following axioms:

Probability Axioms

1. 0 ≤ P (A) ≤ 1.

2. P (A) = 1 if A represents a logical truth, that is, a statement that must be true; for
example, “A coin comes up either heads or tails.”

3. If A and B describe disjoint events (events that cannot both occur), then P (A ∪
B) = P (A) + P (B).

7
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4. Let P (A|B) denote “the probability of A, given (or conditioned on the assumption)
that B is true.” Then

P (A|B) = P (AB)

P (B)
.

All the theorems of probability theory can be deduced from these axioms,
and probabilities that are assigned to statements will be consistent if these rules
are observed. By consistent we mean that it is not possible to assign two or
more different values to the probability of a particular event if probabilities are
assigned by following these rules. As an example, if P (A) has been assigned
a value, then Axioms 1 and 2 imply that P (Ac) = 1 − P (A), and P (Ac) can
take no other value. Assigning some probabilities may put bounds on others. For
example, if A and B are disjoint and P (A) is given, then by Axioms 1 and 3,
P (B) ≤ 1 − P (A).

2.1.1 Frequentist Probabilities

A major controversy in probability theory is over the types of statements to
which probabilities can be assigned. One school of thought is that of the “fre-
quentists.” Frequentists restrict the assignment of probabilities to statements
that describe the outcome of an experiment that can be repeated. Consider A1:
we can imagine repeating the experiment of tossing a coin three times and
recording the number of times that two or three heads were reported. If we
define

P (A1) = lim
n→∞

number of times two or three heads occurs

n
,

we find that our definition is consistent with the axioms of probability.
Axiom 1 is satisfied because the ratio of a subset of outcomes to all possible

outcomes is between zero and one. Axiom 2 is satisfied if the probability of a
logically true statement such as A4 = “either 0, 1, 2, or 3 heads appear” is computed
by following the rule since the numerator is then equal to n. Axiom 3 tells us that
we can compute P (A ∪ B) as P (A) + P (B) since, for disjoint events, the number
of times A or B occurs is equal to the number of times A occurs plus the number of
times B occurs. Axiom 4 is satisfied because to compute P (A|B) we can confine
our attention to the outcomes of the experiment for which B is true; suppose there
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are nB of these. Then

P (A|B) = lim
nB→∞

number of times A and B are true

nB

= lim
n,nB→∞

number of times A and B are true

n
÷ nB

n

= p(AB)

p(B)
.

This method of assigning probabilities, even to experiments that can be repeated
in principle, suffers from the problem that its definition requires repeating the
experiment an infinite number of times, which is impossible. But to those who
believe in a subjective interpretation of probability, an even greater problem is
its inability to assign probabilities to such statements as A3, which cannot be
considered an outcome of a repeated experiment. We next consider the subjective
view.

2.1.2 Subjective Probabilities

Those who take the subjective view of probability believe that probability theory
is applicable to any situation in which there is uncertainty. Outcomes of repeated
experiments fall in that category, but so do statements about tomorrow’s weather,
which are not the outcomes of repeated experiments. Calling the probabilities
“subjective” does not imply that they may be assigned without regard to the ax-
ioms of probability. Such assignments would lead to inconsistencies. de Finetti
(1990, chap. 3) provides a principle for assigning probabilities that does not rely
on the outcomes of repeated experiments, but is consistent with the probability
axioms.

de Finetti developed his approach in the context of setting odds on a bet
that are fair in the sense that, in your opinion, neither you nor your oppo-
nent has an advantage. In particular, when the odds are fair, you will not find
yourself in the position that you will lose money no matter which outcome
obtains. de Finetti calls your behavior coherent when you set odds in this
way. We now show that coherent behavior implies that probabilities satisfy the
axioms.

First, let us review the standard betting setup: in a standard bet on the event
A, you buy or sell betting tickets at a price of 1 per ticket, and the money you
receive or pay out depends on the betting odds k. (We omit the currency unit in this
discussion.) In this setup, the price of the ticket is fixed and the payout depends
on the odds. We denote the number of tickets by S and make the convention that
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S > 0 means that you are betting that A occurs (i.e., you have bought S tickets on
A from your opponent) and S < 0 means that you are betting against A (i.e., you
have sold S tickets on A to your opponent). If you bet on A and A occurs, you
receive the 1 that you bet plus k for each ticket you bought, or S(1 + k), where k

is the odds against A:

k = 1 − P (A)

P (A)

(see Berry, 1996, pp. 116–119). If A occurs and you bet against it, you would
“receive” S(1 + k), a negative number because S < 0 if you bet against A.

In the de Finetti betting setup, the price of the ticket, denoted by p, is chosen by
you, the payout is fixed at 1, and your opponent chooses S. Although you set p, the
fact that your opponent determines whether you bet for or against A forces you to
set a fair value. We can now show the connection between p and P (A). If the price
of a ticket is p rather than one as in the standard betting situation, a winning ticket
on A would pay p + pk = p(1 + k). But in the de Finetti setup, the payout is one;
that is, p(1 + k) = 1, or k = (1 − p)/p, which implies p = P (A). Accordingly,
in the following discussion, you can interpret p as your subjective belief about the
value of P (A).

Consider a simple bet on or against A, where you have set the price of a
ticket at p and you are holding S tickets for which you have paid pS; your
opponent has chosen S. (Remember that S > 0 means that you are betting on
A and S < 0 means you are betting against A.) If A occurs, you pay pS and
collect S. If A does not occur, you collect pS. Verify that these results are
valid for both positive and negative values of S. We summarize your gains in
the following table, where the rows denote disjoint events and cover all possible
outcomes:

Event Your gain

A S − pS = (1 − p)S
Ac −pS

We can now show that the principle of coherency restricts the value of p you set.
If p < 0, your opponent, by choosing S < 0, will inflict a loss (a negative gain) on
you whether or not A occurs. By coherency, therefore, p ≥ 0. Similarly, if you set
p > 1, your opponent can set S > 0, and you are again sure to lose. Axiom 1 is
therefore implied by the principle of coherency.
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If you are certain that A will occur, coherency dictates that you set p = 1: you
will have zero loss if A is true, and the second row of the loss table is not relevant,
because Ac is impossible in your opinion. This verifies Axiom 2.

To examine the subjective assignment of P (A1 ∪ A2) if A1 and A2 are disjoint,
consider the table of gains when you set prices p1, p2, p3, and your opponent
chooses S1, S2, and S3, respectively, on the events A1, A2, and (A1 ∪ A2). A
positive (negative) S1 again means that you are betting on (against) A1, and the
same for S2 and S3.

Event Your gain

A1 (1 − p1)S1 − p2S2 + (1 − p3)S3
A2 −p1S1 + (1 − p2)S2 + (1 − p3)S3
(A1 ∪ A2)c −p1S1 − p2S2 − p3S3

As before, the events listed in the first column are a disjoint set that cover all
possible outcomes. Verify that the three rows in the second column of the table
express your winnings (or your losses if the values are negative) as a function of
the values of p1, p2, and p3 that you choose and the values of S1, S2, and S3 that
your opponent chooses:

W1 = (1 − p1)S1 − p2S2 + (1 − p3)S3,

W2 = −p1S1 + (1 − p2)S2 + (1 − p3)S3,

W3 = −p1S1 − p2S2 − p3S3.

Your opponent can now set each of W1, W2, and W3 to negative values and solve
for the values of S1, S2, and S3 that create those losses for you. But you can prevent
this by choosing p1, p2, and p3 in such a way that the equations cannot be solved.
This requires that the determinant of the system be set to zero; that is,∣∣∣∣∣∣∣

1 − p1 −p2 1 − p3

−p1 1 − p2 1 − p3

−p1 −p2 −p3

∣∣∣∣∣∣∣ = 0.

By computing the determinant, you will find that p1 + p2 = p3, which is the third
axiom.
Finally, consider Axiom 4: P (A|B) = P (AB)/P (B). For this case, we assume that
the bet on A|B is cancelled if B fails to occur. Consider the three sets of events,
prices, and stakes (AB, p1, S1), (B, p2, S2), and (A|B, p3, S3). These imply the
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following payoff table in which the rows cover all possible outcomes and are
disjoint:

Event Your gain

AB (1 − p1)S1 + (1 − p2)S2 + (1 − p3)S3
BAc −p1S1 + (1 − p2)S2 − p3S3
ABc −p1S1 − p2S2
(A ∪ B)c −p1S1 − p2S2

Since the third and fourth payoffs are identical, we can consider only the three
distinct equations. As above, to prevent your opponent from being able to win
regardless of the outcome you will need to set∣∣∣∣∣∣∣

1 − p1 1 − p2 1 − p3

−p1 1 − p2 −p3

−p1 −p2 0

∣∣∣∣∣∣∣ = 0.

It is easily verified that p1 = p2p3, which is Axiom 4.
The point of this discussion is that the assignment of subjective probabilities

must follow the standard axioms if a person is to be coherent in the sense of not
setting probabilities in a way that is sure to result in losses. As mentioned above,
probability theory is about the consistent setting of probabilities. Calling probabil-
ities “subjective” does not imply that they can be set arbitrarily, and probabilities
set in accordance with the axioms are consistent.

We now turn to the statistical implications of the subjective view of probability.

2.2 Prior, Likelihood, and Posterior

In this section, we introduce the fundamental idea of the posterior distribution and
show how it can be computed from the likelihood function and the prior distribution.
In the next chapter, we explain how the posterior distribution can be used to analyze
the central issues in inference: point estimates, interval estimates, prediction, and
model comparisons.

To understand the implications for statistical inference of adopting a subjective
view of probability, it is useful to consider a simple example. Let y = 1 if a coin
toss results in a head and 0 otherwise, and let P (y = 1) = θ , which is assumed to
be constant for each trial. In this model, θ is a parameter and the value of y is the
data. Under these assumptions, y is said to have the Bernoulli distribution, written
as y ∼ Be(θ ). We are interested in learning about θ from an experiment in which
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the coin is tossed n times yielding the data y = (y1, y2, . . . , yn), where yi indicates
whether the ith toss resulted in a head or tail.

From the frequentist point of view, probability theory can tell us something about
the distribution of the data for a given θ because the data can be regarded as the out-
come of a large number of repetitions of tossing a coin n times. The parameter θ is
an unknown number between zero and one. It is not given a probability distribution
of its own, because it is not regarded as being the outcome of a repeated experiment.

From the subjective point of view, however, θ is an unknown quantity. Since there
is uncertainty over its value, it can be regarded as a random variable and assigned
a probability distribution. Before seeing the data, it is assigned a prior distribution
π (θ ), 0 ≤ θ ≤ 1. Bayesian inference centers on the posterior distribution π (θ |y),
which is the distribution of the random variable θ , conditioned on having observed
the data y. Note that in the coin-tossing example, the data yi are discrete – each is
0 or 1 – but the parameter θ is continuous.

All the models we consider in this book have one or more parameters, and an
important goal of statistical inference is learning about their values. When there is
more than one parameter, the posterior distribution is a joint distribution of all the
parameters, conditioned on the observed data. This complication is taken up in the
next chapter.

Before proceeding, we explain some conventions about notation for
distributions.

Notation for Density and Distribution Functions

• π (·) denotes a prior and π (·|y) denotes a posterior density function of parameters;
these densities are continuous random variables in the statistical models we discuss.

• p(·) denotes the probability mass function (p.m.f.) of a discrete random variable;
P (A) denotes the probability of event A.

• f (·) denotes the probability density function (p.d.f.) for continuous data. F (·) denotes
the (cumulative) distribution function (d.f.) for continuous data; that is, F (y0) =
P (Y ≤ y0).

• When the distinction between discrete and continuous data is not relevant, we employ
the f (·) notation for both probability mass and density functions.

The posterior density function π (θ |y) is computed by Bayes theorem, which
follows from Axiom 4: from P (A|B) = P (AB)/P (B), we can infer P (B|A) =
P (BA)/P (A). But since P (AB) = P (BA), we have Bayes theorem:

P (A|B) = P (B|A)P (A)

P (B)
.
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By setting A = θ and B = y, we have for discrete y

π (θ |y) = p(y|θ )π (θ )

p(y)
, (2.1)

where p(y) = ∫
p(y|θ )π (θ ) dθ . The effect of dividing by p(y) is to make π (θ |y)

a normalized probability distribution: integrating Equation (2.1) with respect to θ

yields
∫

π (θ |y) dθ = 1, as it should.
For continuous or general y, we rewrite (2.1) as

π (θ |y) = f (y|θ )π (θ )

f (y)
, (2.2)

where f (y) = ∫
f (y|θ )π (θ ) dθ . Equation (2.2) is the basis of Bayesian statistics

and econometrics. It is necessary to understand it thoroughly. The left-hand side
has been interpreted as the posterior density function of θ |y. Now consider the
right-hand side. The first term in the numerator is f (y|θ ), the density function for
the observed data y when the parameter value is θ . Take the coin-tossing experiment
as an example. Suppose the coin is tossed three times and (H, T , H ) results, so
that y = (1, 0, 1). If the probability of a head is θ ,

P (1, 0, 1|θ ) = P (1|θ )P (0|θ )P (1|θ ) = θ (1 − θ )θ = θ2(1 − θ ).

From this expression, and in general, we see that f (y|θ ) is a function of θ once
the data are known. As a function of θ , f (y|θ ) is called the likelihood function;
it plays a central role in both frequentist and Bayesian statistics. It is important to
note that the likelihood function is not a p.d.f. for θ ; in particular, its integral over
θ is not equal to one, although its integral (in this case, a sum) over y is.

The second term in the numerator of (2.2), the prior density π (θ ), embodies our
beliefs about the distribution of θ before seeing the data y. These beliefs are based
on the researcher’s knowledge of the problem at hand; they may be based on theo-
retical considerations or on previous empirical work. The prior distribution usually
depends on parameters, called hyperparameters, which may either be supplied by
the researcher or given probability distributions.

We have already remarked that the denominator of (2.2), f (y), normalizes the
posterior distribution. Since it is independent of θ , however, it is often convenient
to write the posterior distribution as

π (θ |y) ∝ f (y|θ )π (θ ), (2.3)

that is, the posterior distribution is proportional to the likelihood function times the
prior distribution. In this form, the right side of the equation does not integrate to
one, but as a function of θ , it has the same shape as π (θ |y).
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For the Bayesian, the posterior distribution is central to inference because it
combines in one expression all the information we have about θ . It includes in-
formation about θ before the current data through the prior distribution and the
information contained in the current data through the likelihood function.

It is useful to think of (2.3) as a method of updating information, an idea that
is reinforced by the prior–posterior terminology. Before collecting the data y, our
information about θ is summarized by the prior distribution π (θ ). After observing
y, our information about θ is summarized by the posterior distribution π (θ |y).
Equation (2.3) tells us how to update beliefs after receiving new data: multiply the
prior by the likelihood to find an expression proportional to the posterior.

We illustrate these ideas with the coin-tossing example. The likelihood function
for a single toss of a coin can be written as p(yi |θ ) = θyi (1 − θ )1−yi , which implies
P (yi = 1|θ ) = θ and P (yi = 0|θ ) = 1 − θ . For n independent tosses of a coin, we
therefore have

p(y1, . . . , yn|θ ) = θy1 (1 − θ )1−y1 · · · θyn(1 − θ )1−yn

=
∏

θyi (1 − θ )1−yi

= θ
∑

yi (1 − θ )n−∑ yi . (2.4)

To complete the specification of the model, we need a prior distribution. Since
0 ≤ θ ≤ 1, the prior should allow θ to take on any value in that interval and not
allow it to fall outside that interval. A common choice is the beta distribution
Beta(α, β) discussed in Section A.1.9:

π (θ ) = �(α + β)

�(α)�(β)
θα−1(1 − θ )β−1, 0 ≤ θ ≤ 1, α, β > 0.

Note that α and β are hyperparameters. Why choose the beta distribution? First, it
is defined in the relevant range. Second, it is capable of producing a wide variety
of shapes, some of which are displayed in Figure 2.1. Depending on the choice of
α and β, this prior can capture beliefs that indicate θ is centered at 1/2, or it can
shade θ toward zero or one; it can be highly concentrated, or it can be spread out;
and, when both parameters are less than one, it can have two modes.

The shape of a beta distribution can be understood by examining its mean and
variance:

E(θ ) = α

α + β
, Var(θ ) = αβ

(α + β)2(α + β + 1)
.

From these expressions you can see that the mean is 1/2 if α = β, a larger α (β)
shades the mean toward 1 (0), and the variance decreases as α or β increases. It is
also useful to note that we may first specify E(θ ), and Var(θ ) and then find the α

and β that correspond to the moments. These relationships may be found in (A.7).
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Figure 2.1. Beta distributions for various values of α and β.

A third reason for choosing this distribution is that the beta prior in combination
with the likelihood function of (2.4) yields a posterior distribution that has a
standard form, which is convenient for analyzing the properties of the posterior.
In fact, we next show that the posterior distribution for a model in which data
are generated by the Bernoulli distribution with a Beta(α0, β0) prior is also a beta
distribution. This is an example of a conjugate prior, where the posterior distribution
is in the same family as the prior distribution. From (2.3),

π (θ |y) ∝ p(y|θ )π (θ )

∝ θ
∑

yi (1 − θ )n−∑ yi θα0−1(1 − θ )β0−1

∝ θ (α0+∑ yi )−1(1 − θ )(β0+n−∑ yi )−1.

In this expression, the normalizing constant of the beta distribution has been ab-
sorbed into the proportionality constant because the constant does not depend
on θ . As promised, π (θ |y) is in the form of a beta distribution with parameters
α1 = α0 +∑ yi and β1 = β0 + n −∑ yi .
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The way in which α0 and β0 enter this expression is useful in interpreting these
parameters and in determining the values to assign to them. Note that α0 is added to∑

yi , the number of heads. This means that α0 can be interpreted as “the number of
heads obtained in the experiment on which the prior is based.” If, for example, you
had seen this coin tossed a large number of times and heads appeared frequently,
you would set a relatively large value for α0. Similarly, β0 represents the number
of tails in the “experiment” on which the prior is based. Setting α0 = 1 = β0 yields
the uniform distribution. This prior indicates that you are sure that both a head
and tail can appear but otherwise have no strong opinion about the distribution
of θ . Choosing α0 = 0.5 = β0 yields a bimodal distribution with considerable
probability around zero and one, indicating that you would not be surprised if the
coin were two-headed or two-tailed.

It is easy to compute the mean of the posterior distribution from the properties
of the beta distribution:

E(θ |y) = α1

α1 + β1

= α0 +∑ yi

α0 + β0 + n

=
(

α0 + β0

α0 + β0 + n

)
α0

α0 + β0
+
(

n

α0 + β0 + n

)
ȳ,

(2.5)

where ȳ = (1/n)
∑

yi . The last line expresses E(θ |y) as a weighted average of the
prior mean α0/(α0 + β0) and the maximum likelihood estimator (MLE) ȳ; that is, ȳ
is the value of θ that maximizes p(y|θ ). This result shows how the prior distribution
and the data contribute to determine the mean of the posterior distribution. It is a
good illustration of the way Bayesian inference works: the posterior distribution
summarizes all available information about θ , both from what was known before
obtaining the current data and from the current data y.

As the sample size n becomes large, the weight on the prior mean approaches
zero, and the weight on the MLE approaches one, implying that E(θ |y) → ȳ.
This is an example of a rather general phenomenon: the prior distribution be-
comes less important in determining the posterior distribution as the sample size
increases. We graph in Figure 2.2 the prior, likelihood, and posterior for the cases
n = 10,

∑
yi = 3, α0 = 2, β0 = 2 and n = 50,

∑
yi = 15, α0 = 2, β0 = 2. (The

likelihood has been normalized to integrate to one for easier comparison with the
prior and posterior.) You can see how the larger sample size of the second example,
reflected in the tighter likelihood function, causes the posterior to move further
away from the prior and closer to the likelihood function than when n = 10.
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Figure 2.2. Prior, likelihood, and posterior for coin-tossing example.

Although the preceding discussion shows that the beta prior is a “natural” prior
for Bernoulli data and that the choice of the two parameters in the beta prior can
capture a wide variety of prior beliefs, it is important to note that it is not necessary
to adopt a beta prior if no combination of parameters can approximate the prior
you wish to specify. Beta priors, for example, do not easily accommodate bimodal
distributions. We describe methods later in the book that can approximate the
posterior distribution for any specified prior, even if the prior information does not
lead to a posterior distribution of a standard form.

2.3 Summary

In this chapter, we first showed that subjective probabilities must satisfy the standard
axioms of probability theory if you wish to avoid losing a bet regardless of the
outcome. Having established that subjective probabilities must satisfy the usual
axioms of probability theory and, therefore, the theorems of probability theory, we
derived the fundamental result of Bayesian inference: the posterior distribution of
a parameter is proportional to the likelihood function times the prior distribution.
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2.4 Further Reading and References

Section 2.1.2 Excellent discussions of subjective probability may be found in
Howson and Urbach (1993) and Hacking (2001).

2.5 Exercises

2.1 Prove the theorem P (A ∪ B) = P (A) + P (B) − P (AB) in two ways. First, write A ∪
B = ABc ∪ AcB ∪ AB, and then use A = ABc ∪ AB and B = AB ∪ AcB. Second,
apply coherency to a betting scheme like those in Section 2.1.2, where the four possible
outcomes are ABc, AcB, AB, and (A ∪ B)c, and the bets, prices, and stakes are
(A,p1, S1), (B,p2, S2), (AB,p3, S3), and (A ∪ B,p4, S4), respectively.

2.2 The Poisson distribution has probability mass function

p(yi |θ ) = θyi e−θ

yi!
, θ > 0, yi = 0, 1, . . . ,

and let y1, . . . , yn be a random sample from this distribution.
(a) Show that the gamma distribution G(α, β) is a conjugate prior distribution for the

Poisson distribution.
(b) Show that ȳ is the MLE for θ .
(c) Write the mean of the posterior distribution as a weighted average of the mean of

the prior distribution and the MLE.
(d) What happens to the weight on the prior mean as n becomes large?

2.3 The density function of the exponential distribution is

f (yi |θ ) = θe−θyi , θ > 0, yi > 0,

and let y1, . . . , yn be a random sample from this distribution.
(a) Show that the gamma distribution G(α, β) is a conjugate prior distribution for the

exponential distribution.
(b) Show that 1/ȳ is the MLE for θ .
(c) Write the mean of the posterior distribution as a weighted average of the mean of

the prior distribution and the MLE.
(d) What happens to the weight on the prior mean as n becomes large?

2.4 Consider the uniform distribution with density function f (yi |θ ) = 1/θ , 0 ≤ yi ≤ θ ,
and θ unknown.
(a) Show that the Pareto distribution,

π (θ ) =
{

akaθ−(a+1), θ ≥ k, a > 0,

0, otherwise,

is a conjugate prior distribution for the uniform distribution.
(b) Show that θ̂ = max(y1, . . . , yn) is the MLE of θ , where the yi are a random sample

from f (yi |θ ).
(c) Find the posterior distribution of θ and its expected value.
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Chapter 3

Posterior Distributions and Inference

The first section of this chapter discusses general properties of posterior distri-
butions. It continues with an explanation of how a Bayesian statistician uses the
posterior distribution to conduct statistical inference, which is concerned with
learning about parameter values either in the form of point or interval estimates,
making predictions, and comparing alternative models.

3.1 Properties of Posterior Distributions

In this section, we discuss general properties of posterior distributions, starting
with the choice of the likelihood function. We continue by generalizing the concept
to include models with more than one parameter and go on to discuss the revision
of posterior distributions as more data become available, the role of the sample
size, and the concept of identification.

3.1.1 The Likelihood Function

As we have seen, the posterior distribution is proportional to the product of the like-
lihood function and the prior distribution. The latter is somewhat controversial and
is discussed in Chapter 4, but the choice of a likelihood function is also an important
matter and requires discussion. A central issue is that the Bayesian must specify
an explicit likelihood function to derive the posterior distribution. In some cases,
the choice of a likelihood function appears straightforward. In the coin-tossing
experiment of Section 2.2, for example, the choice of a Bernoulli distribution
seems natural, but it does require the assumptions of independent trials and a
constant probability. These assumptions might be considered prior information,
but they are conventionally a part of the likelihood function rather than of the prior
distribution.

20
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In other cases, it may be more difficult to find a natural choice for the likelihood
function. The normal linear regression model, discussed in detail later, is a good
example. A special case is the simple model

yi = µ + ui, ui ∼ N(0, σ 2), i = 1, . . . , n.

In this model, there are n independent observations on a variable y, which is
assumed to be normally distributed with mean µ and variance σ 2. E. T. Jaynes
offers arguments for adopting the normal distribution when little is known about
the distribution. He takes the position that it is a very weak assumption in the sense
that it maximizes the uncertainty of the distribution of yi , where uncertainty is
measured by entropy. Others argue that the posterior distribution may be highly
dependent on the choice of a likelihood function and are not persuaded by Jaynes’s
arguments. For example, a Student-t distribution with small degrees of freedom
puts much more probability in the tail areas than does a normal distribution with
the same mean and variance, and this feature may be reflected in the posterior
distribution. Since for large degrees of freedom, there is little difference between
the normal and t distributions, a possible way to proceed is to perform the analysis
with several degrees of freedom and choose between them on the basis of posterior
odds ratios (see Section 3.2.4). In addition, distributions more general than the
normal and t may be specified; see Section 8.3 for further references.

Distributional assumptions also play a role in the frequentist approach to sta-
tistical inference. A commonly used estimator in the frequentist literature is the
MLE, which requires a specific distribution. Accordingly, a frequentist statistician
who employs that method must, like a Bayesian, specify a distribution. Of course,
the latter is also required to specify a prior distribution. Other approaches used
by frequentist econometricians, such as the generalized method of moments, do
not require an explicit distribution. But, since the finite-sample properties of such
methods are rarely known, their justification usually depends on a large-sample
property such as consistency, which is invoked even with small samples. Although
this type of analysis is more general than is specifying a particular distribution, the
assumptions required to derive large-sample properties are often very technical and
difficult to interpret. The limiting distribution may also be a poor approximation
to the exact distribution. In contrast, the Bayesian approach is more transparent
because a distributional assumption is explicitly made, and Bayesian analysis does
not require large-sample approximations.

To summarize:

• The assumed form of the likelihood function is a part of the prior information and requires
some justification, and it is possible to compare distributional assumptions with the aid
of posterior odds ratios if there is no clear choice on a priori grounds.
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• Several families of distributions can be specified and analyzed with the tools discussed
in Parts II and III.

3.1.2 Vectors of Parameters

The single-parameter models we have studied thus far are now generalized to a
model with d parameters contained in the vector θ = (θ1, θ2, . . . , θd). The previous
definitions of likelihood, prior, and posterior distributions still apply, but they are
now, respectively, the joint likelihood function, joint prior distribution, and joint
posterior distribution of the multivariate random variable θ .

From the joint distributions, we may derive marginal and conditional distri-
butions according to the usual rules of probability. Suppose, for example, we are
primarily interested in θ1. The marginal posterior distribution of θ1 can be found by
integrating out the remainder of the parameters from the joint posterior distribution:

π (θ1|y) =
∫

π (θ1, . . . , θd |y) dθ2 . . . dθd.

It is important to recognize that the marginal posterior distribution is different from
the conditional posterior distribution. The latter is given by

π (θ1|θ2, . . . , θd, y) = π (θ1, θ2, . . . , θd |y)

π (θ2, . . . , θd |y)
,

where the denominator on the right-hand side is the marginal posterior distribution
of (θ2, . . . , θd) obtained by integrating θ1 from the joint distribution. In most appli-
cations, the marginal distribution of a parameter is more useful than its conditional
distribution because the marginal takes into account the uncertainty over the values
of the remaining parameters, while the conditional sets them at particular values.
To see this, write the marginal distribution as

π (θ1|y) =
∫

π (θ1|θ2, . . . , θd, y)π (θ2, . . . , θd |y) dθ2 . . . dθd.

In this form, we see that all values of θ2, . . . , θd contribute to the determination
of π (θ1|y) in proportion to their probabilities computed from π (θ2, . . . , θd |y). In
other words, the marginal distribution π (θ1|y) is an average of the conditional
distributions π (θ1|θ2, . . . , θd, y), where the conditioning values (θ2, . . . , θd) are
weighted by their posterior probabilities.

In some cases, it may be of interest to examine the marginal distribution of
two parameters, say, θ1 and θ2. This may be found as above by integrating out the
remaining parameters. The resulting distribution is a joint distribution because it
involves two variables, and it is a marginal distribution because it is determined
by integrating out the variables θ3, . . . , θd . It is thus a joint marginal posterior
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distribution, but it is called a marginal posterior distribution. While the marginal
posterior distributions for any number of parameters can be defined, attention
is usually focused on one- or two-dimensional distributions because these can be
readily graphed and understood. Joint distributions in higher dimensions are usually
difficult to summarize and comprehend.

Although it is easy to write down the definition of the marginal posterior distri-
bution, performing the necessary integration to obtain it may be difficult, especially
if the integral is not of a standard form. Parts II and III of this book are concerned
with the methods of approximating such nonstandard integrals, but we now discuss
an example in which the integral can be computed analytically.

Consider the multinomial distribution Mn(·), which generalizes the Bernoulli
example discussed above. In this model, each trial, assumed independent of the
other trials, results in one of d outcomes, labeled 1, 2, . . . , d, with probabilities
θ1, θ2, . . . , θd, where

∑
θi = 1. When the experiment is repeated n times and

outcome i arises yi times, the likelihood function is

p(y1, . . . , yd |θ1, . . . , θd) = θ
y1
1 θ

y2
2 · · · θyd

d ,
∑

yi = n.

A simple example is the toss of a single die, for which d = 6. If the die is fair,
θi = 1/6 for each possible outcome. It is easy to see that the Bernoulli distribution
discussed in Chapter 2 is the special case where d = 2 and n = 1.

The next step is to specify a prior distribution. To keep the calculations manage-
able, we specify a conjugate distribution that generalizes the beta distribution em-
ployed for the Bernoulli model. It is the Dirichlet distribution (see Section A.1.10):

π (θ1, . . . , θd) = �
(∑

αi

)∏
�(αi)

θ
α1−1
1 θ

α2−1
2 · · · θαd−1

d , αi > 0,
∑

θi = 1,

or θ ∼ D(α), where α = (α1, . . . , αd). The αi are chosen to represent prior beliefs
about the likely values of the θi . As in the Bernoulli model of Chapter 2, each
αi can be interpreted as the number of times outcome i has appeared in previous
experiments, and

∑
αi represents the total number of trials on which the prior is

based. Setting αi = α for every i treats each outcome symmetrically and setting∑
αi equal to a small value is equivalent to weak prior information.
Following our usual procedure, we find the posterior distribution given the data

y = (y1, . . . , yd):

π (θ |y) ∝ θ
α1−1
1 · · · θαd−1

d θ
y1
1 · · · θyd

d

∝ θ
y1+α1−1
1 · · · θyd+αd−1

d .

Since this is D(y + α), where y = (y1, . . . , yd), we can see that the Dirichlet prior
is a conjugate prior for the multinomial model.
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We can now find the marginal distribution for any of the θi , for example, θ1.
From the result given in Section A.1.10,

π (θ1|y) ∝ Beta

(
y1 + α1,

∑
i 
=1

(yi + αi)

)
,

which is a beta distribution. In the die-throwing example, the probability of the 1
spot appearing when a single die is thrown is given by the beta distribution:

θ1 ∼ Beta

(
y1 + α1,

6∑
i=2

(yi + αi)

)
.

Note that this result is equivalent to considering the 1-spot as one outcome and the
other die faces as a second outcome, transforming the multinomial model into a
binomial model.

To summarize, when dealing with a model that contains more than one pa-
rameter, simply redefine the parameter as a vector. Then, all the definitions and
concepts discussed in Section 2.1.2 apply to the vector of parameters. In addition,
the marginal and conditional distributions of individual parameters or groups of
parameters can be found by applying the usual rules of probability.

3.1.3 Bayesian Updating

This section explains a very attractive feature of Bayesian inference – the way in
which posterior distributions are updated as new information becomes available.
Let θ represent one parameter or a vector of parameters, and let y1 represent the
first set of data obtained in an experiment. As an example, you may think of y1

as the number of heads found in tossing a coin n1 times, where the probability of
heads is θ . As usual,

π (θ |y1) ∝ f (y1|θ )π (θ ).

Next, suppose that a new set of data y2 is obtained, and we wish to compute the
posterior distribution given the complete data set π (θ |y1, y2). By the usual rules of
probability,

π (θ |y1, y2) ∝ f (y1, y2|θ )π (θ )

= f (y2|y1, θ )f (y1|θ )π (θ )

= f (y2|y1, θ )π (θ |y1). (3.1)

If the data sets are independent, f (y2|y1, θ ) simplifies to f (y2|θ ).
Whether or not the data sets are independent, however, note that (3.1) has the

form of a likelihood times a density for θ , but that the latter density is π (θ |y1): the
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posterior distribution based on the initial set of data occupies the place where a prior
distribution is expected. It is now easy to verify that, if more new data y3 become
available, π (θ |y1, y2, y3) has π (θ |y1, y2) where you would expect to see π (θ ). Thus,
as new information is acquired, the posterior distribution becomes the prior for the
next experiment. In this way, the Bayesian updates the prior distribution to reflect
new information. It is important to emphasize that this updating is a consequence of
probability theory and requires no new principles or ad hoc reasoning. Updating also
justifies our interpretation of the prior distribution as being based on previous data,
if such data are available, or on the equivalent of previous data in the researcher’s
view.

As a simple example of updating, consider data generated from the Bernoulli
example. Assume a beta prior with parameters α0 and β0. Suppose the first exper-
iment produces n1 trials and set s1 = ∑

y1i ; let the second experiment produce
n2 trials and set s2 = ∑

y2i . We can then compute the posterior based on the first
experiment as

f (θ |s1) ∝ θα0−1(1 − θ )β0−1θs1 (1 − θ )n1−s1,

or

θ |s1 ∼ Beta(α0 + s1, β0 + (n1 − s1)).

If we take the latter as the prior for the second experiment, we find

f (θ |s1, s2) ∝ θα0+s1 (1 − θ )β0+(n1−s1)θs2 (1 − θ )n2−s2,

or

θ |s1, s2 ∼ Beta(α0 + (s1 + s2), β0 + (n1 + n2) − (s1 + s2)).

The latter distribution is implied by a Beta(α0, β0) prior and obtaining s1 + s2 ones
on n1 + n2 trials.

To summarize, when data are generated sequentially, the Bayesian paradigm
shows that the posterior distribution for the parameter based on new evidence
is proportional to the likelihood for the new data, given previous data and the
parameter, times the posterior distribution for the parameter, given the earlier data.
This is an intuitively reasonable way of allowing new information to influence
beliefs about a parameter, and it appears as a consequence of standard probability
theory.

3.1.4 Large Samples

Although the concepts of Bayesian inference hold true for any sample size, it
is instructive to examine how the posterior distribution behaves in large samples.
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This analysis offers important insights about the nature of the posterior distribution,
particularly about the relative contributions of the prior distribution and likelihood
function in determining the posterior distribution.

Consider the case of independent trials, where the likelihood function L(θ |y) is

L(θ |y) =
∏

f (yi |θ )

=
∏

L(θ |yi);

L(θ |yi) is the likelihood contribution of yi . Also define the log likelihood function
l(θ |y) as

l(θ |y) = log L(θ |y)

=
∑

l(θ |yi)

= nl̄(θ |y),

where l(θ |yi) is the log likelihood contribution of yi and l̄(θ |y) = (1/n)
∑

l(θ |yi)
is the mean log likelihood contribution.

The posterior distribution can be written as

π (θ |y) ∝ π (θ )L(θ |y)

∝ π (θ ) exp[nl̄(θ |y)].

We can now examine the effect of the sample size n on the posterior distribution,
which is proportional to the product of the prior distribution and a term that
involves an exponential raised to n times a number. For large n, the exponential
term dominates π (θ ), which does not depend on n. Accordingly, we can expect
that the prior distribution will play a relatively smaller role than do the data, as
reflected in the likelihood function, when the sample size is large. Conversely, the
prior distribution has relatively greater weight when n is small.

As an example of this phenomenon, recall the coin-tossing example of
Section 2.2. It was shown that

E(θ |y) =
(

α + β

α + β + n

)
α

α + β
+
(

n

α + β + n

)
ȳ,

which is a weighted average of the mean of the prior α/(α + β) and the sample
mean ȳ. For large n, the weight of the prior mean is small compared to that of the
sample mean.

This idea can be taken one step further. If we denote the true value of θ by θ0, it
can be shown that

lim
n→∞ l̄(θ |y) → l̄(θ0|y).
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Accordingly, for large n, the posterior distribution collapses to a distribution with
all its probability at θ0. This property is similar to the criterion of consistency in
the frequentist literature and extends to the multiparameter case.

Finally, we can use these ideas to say something about the form of the posterior
distribution for large n. To do this, take a second-order Taylor series approximation
of l(θ |y) around θ̂ , the MLE of θ :

l(θ |y) ≈ l(θ̂ |y) − n

2
(θ − θ̂ )2[−l̄′′(θ̂ |y)]

= l(θ̂ |y) − n

2v
(θ − θ̂ )2,

where l̄′′(θ̂ |y) = (1/n)
∑

k l′′(θ̂ |yk) and v = [−l̄′′(θ̂ |y)]−1. The term involving
the first derivative l̄′(θ̂ |y) vanishes because l(θ |y) is maximized at θ = θ̂ , and
l̄′′(θ̂ |y) < 0 for the same reason. The posterior distribution can therefore be written
approximately as

π (θ |y) ∝ π (θ ) exp
[
− n

2v
(θ − θ̂ )2

]
.

The second term is in the form of a normal distribution with mean θ̂ and variance
v/n, and it dominates π (θ ) because of the n in the exponential. If π (θ̂) 
= 0, π (θ |y)
is approximately a normal distribution with mean θ̂ for large n.

The requirement that π (θ ) does not vanish at θ̂ should be stressed. It is interpreted
as a warning that the prior distribution should not be specified so as to rule out
values of θ that are logically possible. Such values of θ may be strongly favored
by the likelihood function, but would have zero posterior probability if π (θ̂) = 0.

In the multiparameter case, the second-order Taylor series is

l(θ |y) ≈ l(θ̂ |y) − n

2
(θ − θ̂)′[−l̄′′(θ̂ |y)](θ − θ̂)

= l(θ̂ |y) − n

2
(θ − θ̂)′V −1(θ − θ̂), (3.2)

where l̄′′(θ̂ |y) = (1/n)
∑

k{ ∂2l(θ̂ |yk)
∂θi∂θj

} is the mean of the matrix of second derivatives

of the log likelihood evaluated at the MLE and V = [−l̄′′(θ̂ |y)]−1. For large n, we
can therefore approximate π (θ |y) by a multivariate normal distribution with mean
θ̂ and covariance matrix (1/n)V .

In summary, when n is large, (1) the prior distribution plays a relatively small role
in determining the posterior distribution, (2) the posterior distribution converges to
a degenerate distribution at the true value of the parameter, and (3) the posterior
distribution is approximately normally distributed with mean θ̂ .
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3.1.5 Identification

In this section we discuss the idea of identification and the nature of the poste-
rior distribution for unidentified parameters. Our starting point is the likelihood
function, which is also used by frequentist statisticians to discuss the concept. To
define identification, we suppose that there are two different sets of parameters θ

and ψ such that f (y|θ ) = f (y|ψ) for all y. In that case, the two models are said to
be observationally equivalent. This means that the observed data could have been
generated by the model with parameter vector θ or by the model with parameter
vector ψ , and the data alone cannot determine which set of parameters generated
the data. The model or the parameters of the model are not identified or unidentified
when two or more models are observationally equivalent. The model is identified
(or the parameters are identified) if no model is observationally equivalent to the
model of interest.

A special case of nonidentifiability arises when f (y|θ1, θ2) = f (y|θ1). In that
case, the parameters in θ2 are not identified. A familiar example of this situation and
how to deal with it is the specification of a linear regression model with a dummy
(or indicator) variable. It is well known that a complete set of dummy variables
cannot be included in a model along with a constant, because the set of dummies
and the constant are perfectly correlated; this is a symptom of the nonidentifiability
of the constant and the coefficients of a complete set of dummies. The problem is
solved by dropping either one of the dummies or the constant.

The discussion of identification to this point has been based on the specification
of the likelihood function, what we might call “identification through the data,”
but the Bayesian approach also utilizes a prior distribution. Consider the likelihood
function f (y|θ1, θ2) = f (y|θ1). It is clear that the data have no information about
θ2 when θ1 is given, but what can be said about the posterior distribution π (θ2|y)?
Although we might expect that it is equal to π (θ2) since the data contain no
information about θ2, consider the following calculation:

π (θ2|y) =
∫

π (θ1, θ2|y) dθ1

=
[ ∫

f (y|θ1, θ2)π (θ1)π (θ2|θ1) dθ1

]/
f (y)

=
[ ∫

f (y|θ1)π (θ1)π (θ2|θ1) dθ1

]/
f (y)

=
∫

π (θ1|y)π (θ2|θ1) dθ1.

If the prior distribution of θ2 is independent of θ1, that is, π (θ2|θ1) = π (θ2), then
π (θ2|y) = π (θ2), implying that knowledge of y does not modify beliefs about θ2.
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But if the two sets of parameters are not independent in the prior distribution,
information about y modifies beliefs about θ2 by modifying beliefs about θ1.

This last result is the main point of our discussion of identification: since the
data are only indirectly informative about unidentified parameters – any difference
between their prior and posterior distributions is due to the nature of the prior
distribution – inferences about such parameters may be less convincing than are
inferences about identified parameters. A researcher should know whether the
parameters included in a model are identified through the data or through the prior
distribution when presenting and interpreting posterior distributions.

There are some situations when it is convenient to include unidentified param-
eters in a model. Examples of this practice are presented at several places later in
the book, where the lack of identification will be noted.

3.2 Inference

We now show how the posterior distribution serves as the basis for Bayesian
statistical inference.

3.2.1 Point Estimates

Suppose that the model contains a scalar parameter θ that we wish to estimate. The
Bayesian approach to this problem uses the idea of a loss function L(θ̂ , θ ). This
function specifies the loss incurred if the true value of the parameter is θ , but it is
estimated as θ̂ . Examples are the absolute value loss function L1(θ̂ , θ ) = |θ̂ − θ |,
the quadratic loss function L2(θ̂ , θ ) = (θ̂ − θ )2, and the bilinear loss function

L3(θ̂ , θ ) =
{

a|θ̂ − θ |, for θ > θ̂,

b|θ̂ − θ |, for θ ≤ θ̂ ,

where a, b > 0. For these loss functions, loss is minimized if θ̂ = θ , and increases
as the difference between θ̂ and θ increases. The Bayes estimator of θ is the value
of θ that minimizes the expected value of the loss, where the expectation is taken
over the posterior distribution of θ ; that is, θ̂ is chosen to minimize

E[L(θ̂ , θ )] =
∫

L(θ̂ , θ )π (θ |y) dθ.

Under quadratic loss, we minimize

E[L(θ̂ , θ )] =
∫

(θ̂ − θ )2π (θ |y) dθ.
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This is easily done by differentiating the function with respect to θ̂ and setting
the derivative equal to zero (it is assumed that the order of differentiation and
integration can be interchanged), yielding

2
∫

(θ̂ − θ )π (θ |y) dθ = 0,

or

θ̂ =
∫

θπ (θ |y) dθ.

From the last expression, we see that θ̂ = E(θ |y): the optimal point estimator for
θ under quadratic loss is the mean of the posterior distribution of θ . It is left for an
exercise to derive the optimal estimators under the absolute value and bilinear loss
functions. Another exercise considers a loss function that yields the mode of the
posterior distribution as the optimal estimator.

It is enlightening to contrast the Bayesian approach to point estimation with
that of a frequentist statistician. The frequentist stipulates one or more criteria that
an estimator should satisfy and then attempts to determine whether a particular
estimator satisfies those criteria. One such criterion is that of unbiasedness: an
estimator θ̂ , which is a function of the observed data, is unbiased for θ if E(θ̂) = θ .
For many models, it is impossible to determine whether an estimator is unbiased;
in such cases, a large-sample property, such as consistency, is often substituted.
For other models, there is more than one unbiased estimator, and a criterion such
as efficiency is added to choose between them.

Although both frequentist and Bayesian approaches to point estimation involve
an expected value, it is important to recognize that the expectations are taken
over different probability distributions. The Bayesian calculation is taken over the
posterior distribution of the parameter, which is conditioned on the observed data
y. In contrast, the frequentist expectation to determine the expected value of an
estimator is taken over the distribution of the estimator, which is conditioned on
the unknown parameter θ .

The coin-tossing example illustrates this difference. Consider the estimator θ̂ =
(1/n)

∑
yi = ȳ. To determine whether this estimator is unbiased, we find the

distribution of ȳ, given the assumed Bernoulli model, and compute its expected
value over the distribution of ȳ:

E(ȳ) =
∫

ȳf (ȳ|θ ) dȳ.

This calculation considers every possible value of ȳ, which arises from every
possible value of the data that might have been observed, not just the data that
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are actually observed. In contrast, Bayesian calculations are based on the posterior
distribution, which is conditioned only on data that have been observed.

There is another very important difference between the approaches. In the fre-
quentist approach, it is necessary to propose one or more estimators that are then
tested to see whether they satisfy the specified criteria. There is no general method
of finding candidates for estimators that are sure to satisfy such criteria. In con-
trast, the Bayesian approach is mechanical: given a loss function, the problem
is to find the estimator that minimizes expected loss. Under quadratic loss, for
example, it is necessary to find the mean of the posterior distribution. While the
details of finding the mean may be difficult in some cases, the goal is clear. It
is not necessary to devise an estimator for every type of model that might be
encountered.

3.2.2 Interval Estimates

In addition to reporting a point estimate of a parameter θ , it is often useful to report
an interval estimate of the form

P (θL ≤ θ ≤ θU ) = 0.95,

which tells us that θL ≤ θ ≤ θU with a probability of 0.95. Of course, 0.95 can be
replaced by another value. Bayesians call such intervals credibility intervals (or
Bayesian confidence intervals) to distinguish them from a quite different concept
that appears in frequentist statistics, the confidence interval. For a Bayesian, values
of θL and θU can be determined to obtain the desired probability from the posterior
distribution. If more than one pair is possible, the pair that results in the shortest
interval may be chosen; such a pair yields the highest posterior density interval
(h.p.d.). This procedure is possible because probability statements can be made
about the values of a parameter.

In contrast, frequentists define a confidence interval, which does not involve
the probability distribution of a parameter. As in the case of point estimators,
this approach makes use of unobserved data. Consider, for example, a confidence
interval for the mean µ of a N(µ, 1) distribution based on n observations. The
claim that (x̄ − 1.96/

√
n, x̄ + 1.96/

√
n) is a 95% confidence interval for the mean

follows from the result that 95% of all possible sample means x̄ lie in the interval
(µ − 1.96/

√
n, µ + 1.96/

√
n). This calculation involves sample means that are

not observed. The Bayesian approach, based on the posterior distribution, con-
ditions on the observed data points and does not make use of data that are not
observed.
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3.2.3 Prediction

Another basic issue in statistical inference is the prediction of new data values. To
fix ideas, consider the coin-tossing example. Suppose that the data y = (y1, . . . , yn)
have been observed, and we wish to predict the outcome of the next toss, yn+1.
From the Bayesian viewpoint, we can compute P (yn+1 = 1|y), the probability that
the next toss results in a head, given the data previously observed; the probability
of a tail is one minus this probability. We compute this probability by making use
of the identity

P (yn+1 = 1|y) =
∫

f (yn+1 = 1, θ |y) dθ

=
∫

P (yn+1 = 1|θ, y)π (θ |y) dθ

=
∫

P (yn+1 = 1|θ )π (θ |y) dθ.

Notice carefully what we have done. Following the rules of probability, we write
P (yn+1 = 1|y) as an integral in which θ is first introduced into and then integrated
out of the joint density f (yn+1 = 1, θ |y). In the second line, the joint distribution is
written as the product of a distribution conditioned on θ and y, P (yn+1 = 1|θ, y),
and a distribution of θ conditioned on the previous data y, π (θ |y). In the third line,
we drop y from the conditioning set of P (yn+1 = 1|θ, y) because of the assumption
of the Bernoulli model that the yi are independent given θ . The expressions in the
last line are the probability P (yn+1 = 1|θ ) and the posterior distribution of θ .
You can think of computing this integral as repeating the following calculation
a large number of times: first draw a value of θ from its posterior distribution
π (θ |y) and then compute P (yn+1 = 1|θ ) using this value of θ . The average of
these probabilities is P (yn+1 = 1|y).

The general case has the same form. In predicting a new value of y, say yf ,
whether θ is a scalar or a vector representing several parameters, we write

f (yf |y) =
∫

f (yf |θ, y)π (θ |y) dθ,

where y is retained in the first expression under the integral to allow for the
possibility that yf is not independent of y. This situation arises in some models for
time series.

Consider prediction in the coin-tossing example. The posterior distribution of θ

is in the form of a beta distribution:

π (θ |y) = �(α1 + β1)

�(α1)�(β1)
θα1−1(1 − θ )β1−1.
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Since P (yn+1 = 1|θ ) = θ , we have

P (yn+1 = 1|y) = �(α0 + β0 + n)

�(α0 +∑ yi)�(β0 + n −∑ yi)

×
∫

θ θα0+∑ yi−1(1 − θ )β0+n−∑ yi−1 dθ

= �(α0 + β0 + n)

�(α0 +∑ yi)�(β0 + n −∑ yi)

×
∫

θα0+∑ yi (1 − θ )β0+n−∑ yi−1 dθ

= �(α0 + β0 + n)

�(α0 +∑ yi)�(β0 + n −∑ yi)

× �(α0 +∑ yi + 1)�(β0 + n −∑ yi)

�(α0 + β0 + n + 1)

= α0 +∑ yi

α0 + β0 + n
,

where we have used �(α) = (α − 1)�(α − 1). Since we found in (2.5) that

E(θ |y) = α0 +∑ yi

α0 + β0 + n
,

our estimate of P (yn+1 = 1|y) is the mean of the posterior distribution of θ . This
should not be surprising, because, for a Bernoulli variable,

E(y|θ ) = P (y = 1|θ ) = θ.

3.2.4 Model Comparison

A fourth aspect of statistical inference is to determine which of the several compet-
ing models is better supported by our information. Suppose that we wish to compare
two models: Model 1, M1, consists of a prior probability P (M1) = p1 that M1 is
the true model, a set of parameters θ1, a prior for those parameters π1(θ1), and a
likelihood function f1(y|θ1). Model 2, M2, consists of p2, θ2, π2(θ2), and f2(y|θ2).
Two models may differ in their priors, their likelihoods, or their parameters. In
linear regression, for example, two models might differ by which covariates are
included, which corresponds to two different specifications of the parameter vector
θ . This difference also implies different priors and different likelihood functions.

The Bayesian approach to this inferential problem is to compute P (Mi |y),
i = 1, 2, which is interpreted as “the probability that Model i is the correct model,
given the data.” If we have only two models, then P (M2|y) = 1 − P (M1|y). To
compute P (M1|y), use Bayes theorem and the approach taken in deriving the
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predictive distribution; that is, introduce the parameters and then integrate them
out:

P (M1|y) = P (M1)f1(y|M1)

f (y)

= p1
∫
f1(y, θ1|M1) dθ1

f (y)

= p1
∫
f1(y|θ1, M1)π1(θ1|M1) dθ1

f (y)
,

where

f (y) = p1

∫
f1(y|θ1, M1)π1(θ1|M1) dθ1 + p2

∫
f2(y|θ2, M2)π2(θ2|M2) dθ2.

(3.3)
Each term of f (y) is the integral of a likelihood function with respect to a prior
distribution,

mi(y) =
∫

fi(y|θi, Mi)πi(θi |Mi) dθi. (3.4)

It is called the marginal likelihood for model i and can be interpreted as the
expected value of the likelihood function with respect to the prior distribution.
From the definition of the posterior distribution in (2.2),

π (θ |y) = f (y|θ )π (θ )

f (y)

= f (y|θ )π (θ )∫
f (y|θ )π (θ ) dθ

,

we see that the marginal likelihood is equal to the inverse of the normalizing
constant of the posterior distribution. It is important to include the normalizing
constants of f (y|θ ) and π (θ ) when computing the marginal likelihood.

In comparing two models, it is often instructive to compute the odds ratio in
favor of Model 1 over Model 2, given the data,

R12 = P (M1|y)

P (M2|y)

=
(

p1

p2

)(∫
f1(y|θ1, M1)π1(θ |M1) dθ1∫
f2(y|θ2, M2)π2(θ |M2) dθ2

)
=
(

p1

p2

)(
m1(y)

m2(y)

)
.

The first term on the right-hand side is the prior odds ratio, the ratio of the prior
probability of M1 to the prior probability of M2. The second term, the ratio of
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Table 3.1. Jeffreys Guidelines.

log10(R12) > 2 Decisive support for M1
3/2 < log10(R12) < 2 Very strong evidence for M1
1 < log10(R12) < 3/2 Strong evidence for M1
1/2 < log10(R12) < 1 Substantial evidence for M1
0 < log10(R12) < 1/2 Weak evidence for M1

the marginal likelihoods of the two models, is called the Bayes factor. Note that
f (y) of (3.3) has dropped out of this expression because it has the same value
for both P (M1|y) and P (M2|y). A large value of R12 is evidence that M1 is better
supported than is M2 by the data and the prior information, and a small value is
evidence that M2 is better supported; values around 1 indicate that both models are
supported equally well. Such pairwise comparisons can also be made when there
are more than two models. It is convenient to present log10(R12) rather than R12

because the ratio is often very large or very small, and the logarithm to base 10
is immediately interpreted as powers of 10. Table 3.1 presents guidelines for the
interpretation of log10(R12) suggested by Jeffreys (1961, p. 432). It should be clear
that these values are arbitrary, as is the 5% level of significance often employed
by frequentist statisticians.

If you are reluctant to specify the prior odds ratio, the burden falls on the
Bayes factor to discriminate between models. If, for example, it is found that
log10(R12) = 2, a value of p1/p2 less than 1/100 would be required to result in a
posterior odds ratio in favor of M2. This indicates that the results favor M1 unless
you think M1 to be very improbable a priori compared to M2.

Model choice can be implemented in terms of loss functions for making correct
and incorrect choices, but, in practice, models are often informally compared
by their Bayes factors or their posterior odds ratios. One possible outcome of
such comparisons is that one or more models are effectively eliminated from
consideration because other models have much greater support on the basis of
these criteria. Another possibility is that several models that are not eliminated
have pairwise Bayes factors or posterior odds ratios close to one (or zero on the
log scale). In this case, it would be reasonable to conclude that two or more models
are consistent with the data and prior information and that a choice between them
must be delayed until further information becomes available.

When a prediction is to be made and more than one model is being considered,
the technique of model averaging can be applied. If, for example, m models have
been specified, a prediction may be formed as a weighted average of the predictions
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from each of the models under consideration:

f (yf |y) =
m∑

i=1

p(Mi |y)fi(yf |y, Mi)

=
m∑

i=1

p(Mi |y)
∫

fi(yf |θi, y, Mi)πi(θi |y, Mi) dθi.

From this expression, you can see that models with small values of p(Mi |y)
contribute little to predictions.

The frequentist approach to model comparison makes use of hypothesis tests.
In this approach, the null hypothesis H0 is rejected in favor of the alternative
hypothesis HA if the value of a statistic computed from the data falls in the critical
region. The critical region is usually specified to set the probability that H0 is
rejected when it is true at a small value, where the probability is computed over
the distribution of the statistic. As mentioned before, this calculation depends on
values of the statistic that were not observed.

An important advantage of the Bayesian approach to model comparison over the
frequentist approaches is that the former can easily deal with nonnested hypotheses,
especially with models that deal with different representations of the response
variable. A common example is the choice between y and log(y) as the response
variable. In general, suppose that under M1, the likelihood function is f1(y|θ1), and
under M2, it is f2(z|θ2), where z = g(y) and g′(y) 
= 0. Since y and g(y) contain
the same information, the posterior odds ratio should not depend on whether we
compute

P (M1|y)/P (M2|y)

or

P (M1|z)/P (M2|z),

and it does not. Since, by the usual transformation of variables rule,

f (zi |θ ) = f (yi |θ )

∣∣∣∣dyi

dzi

∣∣∣∣ ,
it is easy to see that the Bayes factor is independent of whether the response
variable is y or z = g(y) because the Jacobian term cancels. Note also that this
result generalizes to multivariate y and z, where the absolute value of the derivative
is replaced by the absolute value of the Jacobian of the transformation.
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It is instructive to examine the effect of the sample size on the Bayes factor.
Exponentiate (3.2) and substitute into (3.4) to obtain

mi(y) ≈ Li(θ̂i |y)
∫

exp
[
−n

2
(θi − θ̂i)

′V −1
i (θi − θ̂i)

]
πi(θi) dθi

≈ Li(θ̂i |y)πi(θ̂i)
∫

exp
[
−n

2
(θi − θ̂i)

′V −1
i (θi − θ̂i)

]
dθi,

where πi(θi) is approximated by πi(θ̂i) because the exponential term dominates the
integral in the region around θ̂i . The integration yields

mi(y) ≈ Li(θ̂i |y)πi(θ̂i)(2π )di/2|n−1Vi |1/2

≈ Li(θ̂i |y)πi(θ̂i)(2π )di/2n−di/2|Vi |1/2,

where di is the dimension of θi ; that is, the number of parameters in Mi . We can
now approximate the logarithm of the Bayes factor for comparing models 1 and 2:

log(B12) ≈
[

log

(
L1(θ̂1|y)

L2(θ̂2|y)

)
− d1 − d2

2
log(n)

]

+
[

log

(
π1(θ̂1)

π2(θ̂2)

)
+ 1

2
log

( |V1|
|V2|

)
+ d1 − d2

2
log(2π )

]
.

Since the second square-bracketed term does not depend on n, its importance may
be neglected for large n. The first term in the first square bracket is the logarithm of
the likelihood ratio. It will tend to become large if M1 is the true model and small
if M2 is true. The second term shows that the log Bayes factor penalizes models
with larger numbers of parameters, where the penalty is log(n) times the difference
in the number of parameters divided by two.

We return to the coin-tossing example to illustrate the use of Bayes factors for
model comparison. To specify two competing models, consider the following vari-
ation on our basic experiment. A coin is tossed m times by Michaela and then tossed
m times by Lila. Suppose we believe it possible that the different ways in which
the girls toss the coin result in different probabilities. Let θ1 be the probability of a
head when Michaela tosses the coin and θ2 
= θ1 be the corresponding probability
when Lila tosses it. We also consider a model in which there is no difference in
the probabilities. Specifically, θ1 = θ2 = θ in M1, and θ1 
= θ2 in M2. To simplify
calculations, assume that π1(θ1) = Beta(1, 1) = π2(θ2). Verify that this choice of a
prior implies π (θ ) = 1, 0 ≤ θ ≤ 1.

Let ȳ1 be the proportion of heads when Michaela tosses the coin, ȳ2 be Lila’s
proportion, and ȳ = (ȳ1 + ȳ2)/2 be the overall proportion. The marginal likelihood
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Table 3.2. Bayes Factors for Selected Possible
Outcomes

Michaela Lila log10(Bayes factor)

Proportion heads Proportion heads m = 10 m = 100

0.1 0.9 −2.506 −30.775
0.2 0.8 −1.200 −15.793
0.3 0.7 −0.348 −6.316
0.4 0.6 0.138 −0.975
0.5 0.5 0.297 0.756

under M1 is ∫
θ2mȳ(1 − θ )2m−2mȳ = �(2mȳ + 1)�(2m − 2mȳ + 1)

�(2m + 2)
.

As an exercise, verify that the marginal likelihood under M2 is

�(mȳ1 + 1)�(m − mȳ1 + 1)

�(m + 2)

�(mȳ2 + 1)�(m − mȳ2 + 1)

�(m + 2)
. (3.5)

We list in Table 3.2 the log10(Bayes factors) for selected values of outcomes and
for two different sample sizes, 10 and 100. Note that the Bayes factor in favor of
M1 increases as the proportion of heads for both girls approaches 0.5. You can see
that M1 is decisively rejected when there are large differences between Michaela’s
and Lila’s results and that results are much sharper for the larger sample size.

3.3 Summary

We began by exploring the posterior distribution in more detail. In particular,
we considered models with more than one parameter, updating posterior distribu-
tions as additional data become available, how the posterior distribution behaves
as sample size increases, and the concept of identification. We then explained
how posterior distributions can be used to find point and interval estimates, make
predictions, and compare the credibility of alternative models.

3.4 Further Reading and References

Section 3.1.1 Jaynes’s arguments may be found in Jaynes (2003, chap. 7). Zellner
has proposed the Bayesian Method of Moments when there are difficulties in for-
mulating a likelihood function. The method can be employed to compute postdata
moments of parameters and future values of variables without a likelihood function,
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prior density, and use of Bayes theorem. See Zellner (1997) for further discussion
and references.

Section 3.2 For critical discussions of hypothesis testing and comparisons with
the Bayesian approach, see Howson and Urbach (1993, chaps. 8 and 9), Poirier
(1995, chap. 7), Jaynes (2003, chaps. 16 and 17), and Christensen (2005).

Section 3.2.4 See Kadane and Lazar (2004) for a discussion of various methods of
model comparison from Bayesian and frequentist viewpoints and Gelman, Carlin,
Stern, and Rubin (2004, sec. 6.7) for critical comments about the use of Bayes
factors and for alternative approaches. Our discussion of the effect of sample size
and the dimension of θ on the Bayes factor follows O’Hagan (1994, pp. 194–
195). O’Hagan also explains the relations among the Bayes factor, the Akaike
information criterion, and the Schwartz criterion.

3.5 Exercises

3.1 Consider the following two sets of data obtained after tossing a die 100 and 1000 times,
respectively:

n 1 2 3 4 5 6
100 19 12 17 18 20 14

1000 190 120 170 180 200 140

Suppose you are interested in θ1, the probability of obtaining a one spot. Assume your
prior for all the probabilities is a Dirichlet distribution, where each αi = 2. Compute the
posterior distribution for θ1 for each of the sample sizes in the table. Plot the resulting
distribution and compare the results. Comment on the effect of having a larger sample.

3.2 Compute the predictive distribution for yn+1 if the yi have independent Poisson dis-
tributions with parameter θ , given that the first n experiments yielded y1, y2, . . . , yn

events, respectively. Assume the prior distribution G(α, β).
3.3 Compute the predictive distribution for yn+1 if the yi have independent normal distri-

butions N (µ, 1), where the prior distribution for µ is N (µ0, σ
2
0 ).

3.4 Explicitly verify the updating feature of the posterior distribution for the case where y

has a Poisson distribution with parameter θ . Choose G(α, β) as the prior distribution,
and consider observing a total of s1 events in the first of two independent experiments
and s2 in the second.

3.5 Show that the median of the posterior distribution minimizes loss under the absolute
value loss function.

3.6 The zero–one loss function is defined as

L3(θ̂ , θ) = 1(|θ̂ − θ | > b),
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where 1(A) is the indicator function that equals 1 if A is true and 0 otherwise. Verify
that θ̂ goes to the mode of π (θ |y) as b → 0.

3.7 Verify Equation (3.5).
3.8 Suppose the number of typographical errors per page has a Poisson distribution P (θ ).

Sam types the first m pages of a manuscript and makes e1 errors in total, and Levi types
the last m pages and makes e2 errors. Let Sam’s error rate be θ1 and Levi’s error rate
be θ2. To compare model M1 : θ1 = θ2 = θ with model M2 : θ1 
= θ2, produce a table
like Table 3.2 for m = 100 with 10 total errors and for m = 200 with 20 total errors
and Sam’s error proportions of 0.9, 0.8, 0.7, 0.6, and 0.5. Take G(1, 1) as a prior for θ1

and θ2.
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Prior Distributions

THE NECESSITY OF specifying a prior distribution in Bayesian inference has
been regarded by some as an advantage of the approach and by others a disadvan-
tage. On the one hand, the prior distribution allows the researcher to include in a
systematic way any information he or she has about the parameters being studied.
On the other hand, the researcher’s prior information may be very limited or dif-
ficult to quantify in the form of a probability distribution, and, as we have seen
in Chapter 3, the prior distribution plays a large role in determining the posterior
distribution for small samples.

This chapter puts forth, in general terms, some ideas on how to specify prior
distributions. The topic is revisited in connection with specific models in Part III.
The normal linear regression model, described next, is the primary example for the
topics in this chapter.

4.1 Normal Linear Regression Model

The normal linear regression model is the workhorse of econometric, and more
generally, statistical modeling. We consider it here because of its wide applicability
and because it is a relatively easy model with which to illustrate the specification
of hyperparameters.

Let yi , i = 1, . . . , n, be an observation on a variable that we wish to explain or
predict, called the response or dependent variable, and let x ′

i = (xi1, xi2, . . . , xiK )
be a vector of K covariates that are believed to be related to yi through the linear
model

yi = β1xi1 + β2xi2 + · · · + βKxiK + ui

= x ′
iβ + ui,

where β = (β1, . . . , βK )′ is a vector of unknown regression coefficients and ui is
an unobserved random variable, called the disturbance or error term. We further

41
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assume that ui |xi ∼ N(0, σ 2), where σ 2 is unknown. Under these assumptions,
yi |xi, β, σ 2 ∼ N(x ′

iβ, σ 2). The assumption E(ui |xi) = 0 implies that E(ui) = 0
and Cov(ui, xi) = 0. Under the further assumption of joint normality of (ui, xi),
the previous assumption implies that each xik is independent of ui . Such covariates
are said to be exogenous. We discuss in Chapter 11 how to proceed when the
assumption of independence is untenable.

In writing the likelihood function, we invoke the additional assumption that the
probability distributions of the covariates do not depend on any of the parameters in
the equation for yi . This assumption is relaxed when the covariates include lagged
values of yi , as in the time series models of Section 10.1 and the dynamic panel
models of Section 10.4.

Vector–matrix notation can be utilized to write the model for all n observations
in a compact fashion,

y = Xβ + u,

where y = (y1, . . . , yn)′, X is the n × K matrix of covariates,

X =


x11 x12 . . . x1K

x21 x22 . . . x2K

...
...

...
...

xn1 xn2 . . . xnK

 ,

and u = (u1, . . . , un)′.
Inference in this model finds point estimates for the unknown parameters β and

σ 2, constructs interval estimates for the parameters, compares models that contain
different sets of covariates, and predicts a value of yi for a given set of covariate
values.

The first covariate xi1 is often set equal to 1 for all observations, in which case
β1 is called the intercept. The other regression coefficients have the interpretation

βk = ∂E(yi |xi)

∂xik

,

if xik is a continuous variable. We may therefore think of βk as the effect on the
expected value of yi of a small change in the value of the covariate xik. If xik is
a dummy variable, βk is the shift in the intercept associated with a change from
xik = 0 to xik = 1. Prior distributions are placed on each of the βk, which should
be based on the researcher’s knowledge of how E(yi |xi) responds to a change in
xik. The remainder of this chapter is devoted to methods for doing this, but we first
derive the likelihood function for this model.
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Given a sample of size n and assuming that the ui are independent, we can
write the probability density for the observed sample, which is also the likelihood
function for the unknown parameters, as

f (y1, . . . , yn|β, σ 2) = f (y1|β, σ 2)f (y2|β, σ 2) · · · f (yn|β, σ 2)

=
(

1

2πσ 2

)n/2

exp

[
− 1

2σ 2

∑
(yi − x ′

iβ)2

]
=
(

1

2πσ 2

)n/2

exp

[
− 1

2σ 2
(y − Xβ)′(y − Xβ)

]
∝
(

1

σ 2

)n/2

exp

[
− 1

2σ 2
(y − Xβ)′(y − Xβ)

]
. (4.1)

To derive this expression, we have used the normality of ui and the transformation
of random variables from ui to yi based on yi − x ′

iβ = ui , which has a Jacobian of
one. In the last line, we absorbed the (2π )−n/2 into a proportionality constant. This
is done to focus attention on the important terms in the expression and is possible
because it is a multiplicative term that does not contain the unknown parameters β

and σ 2. Here and in the following, we follow the convention of usually not explicitly
including the covariates X in the conditioning set of the posterior distribution.

4.2 Proper and Improper Priors

There have been many efforts to specify, in mechanical ways, prior distributions
that reflect complete ignorance about parameter values. Many such specifications
imply improper prior distributions, which are distributions that are not integrable;
that is, their integral is infinite. In contrast, we assume that the researcher has
sufficient knowledge to specify a proper prior, one that integrates to unity, even if
it is highly dispersed.

As an example of an improper prior, consider data generated by a normal
distribution with unknown mean µ. If there are no known restrictions on µ, a
possible way to show prior ignorance about it is to assume a uniform distribution,
π (µ) ∝ c, c > 0, −∞ < µ < ∞. This prior is improper: its integral is unbounded,
and it cannot be normalized to one.

Another example is the beta distribution prior discussed in connection with the
coin-tossing example of Section 2.2. Setting α = 0 or β = 0 results in an improper
prior that has a mode at zero (if α = 0) or one (if β = 0). As an exercise, you
can verify that the posterior distribution for the Bernoulli parameter θ is proper if
0 <

∑
yi < n, even if the prior is improper (α = 0 or β = 0).
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For the normal linear regression model, a uniform prior on β, that is, π (β) ∝ c,
c > 0, is improper, as is the Jeffreys prior on σ , π (σ ) ∝ 1/σ . The latter corresponds
to a uniform prior on log(σ ).

We assume that, in a particular application, either (1) finite, but possibly wide,
bounds can be placed on µ or (2) the probability of extremely large or small
values is sufficiently small that a proper distribution can be specified, even though
the possible values are unbounded. In our view, a researcher should be able to
provide enough information to specify a proper prior. In the regression model, for
example, it is hard to believe that a researcher is so ignorant about a phenomenon
that the probability of a regression coefficient falling in any interval of equal length
from minus to plus infinity is equal. In addition, a number of methods to aid in the
elicitation of prior probabilities from experts in the subject matter of the inquiry
have been developed; see the references in Section 4.11.

The ability to specify proper prior distributions is crucial for the use of Bayes
factors and posterior odds ratios for comparing models. Since an improper prior
is not normalizable, cπ (·), c > 0, is equivalent to the prior specified by π (·). But
this means that a marginal likelihood based on an improper prior depends on the
arbitrary value of c,

f (y|M) =
∫

f (y|θ,M)cπ (θ |M) dθ,

so that the marginal likelihood can be set to any desired positive number by choice
of c. Note what this implies for the Bayes factor: if two models are being compared,
both of which have improper priors, the Bayes factor can be written as

B12 =
∫

f1(y|θ1, M1)c1π1(θ |M1) dθ1∫
f2(y|θ2, M2)c2π2(θ |M2) dθ2

= c1

c2

∫
f1(y|θ1, M1)π1(θ |M1) dθ1∫
f2(y|θ2, M2)π2(θ |M2) dθ2

.

Since c1 and c2 are arbitrary, the Bayes factor can take any value chosen by the
researcher, and this is true even if only one of the prior distributions is improper.
When the prior is proper, the value of the marginal likelihood is well defined.
Accordingly, we assume proper priors.

4.3 Conjugate Priors

We now consider the conjugate priors that have been mentioned in Sections 2.2
and 3.1.2. A conjugate prior distribution for the parameters of the normal linear
regression model is the one for which the posterior distribution π (β, σ 2|y) is in the
same family of distributions as the prior π (β, σ 2). Two different distributions are
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in the same family when they have the same form and different parameters. For
the model we are studying, where the likelihood function has the form of (4.1), a
conjugate prior distribution, called the normal-inverse gamma conjugate prior, is
given by

π (β, σ 2) = π (β|σ 2)π (σ 2)

= NK (β|β0, σ
2B0) IG(σ 2|α0/2, δ0/2), (4.2)

where the hyperparameters α0, δ0, β0, B0 are assumed to be known. How to specify
values for these parameters is discussed later; as of now, we concentrate on the
mechanics of showing this is a conjugate prior and on some properties of the
posterior distribution. In this formulation, it is important to note that the prior for β

depends on σ 2. We present a prior that does not have this property in Section 4.9.
From the definition of the posterior distribution, we have

π (β, σ 2|y) = f (y|β, σ 2)π (β|σ 2)π (σ 2)

∝
(

1

σ 2

)n/2

exp

[
− 1

2σ 2
(y − Xβ)′(y − Xβ)

]
×
(

1

σ 2

)K/2

exp

[
− 1

2σ 2
(β − β0)′B−1

0 (β − β0)

]
(4.3)

×
(

1

σ 2

)α0/2+1

exp

[
− δ0

2σ 2

]
=
(

1

σ 2

)(n+α0)/2+1( 1

σ 2

)K/2

× exp

[
− 1

2σ 2

{
(y − Xβ)′(y − Xβ) + (β − β0)′B−1

0 (β − β0) + δ0
}]

.

(4.4)

By expanding the term in curly braces in (4.4) and completing the square in β

(see Section A.1.12), you should verify that

π (β, σ 2|y) ∝
(

1

σ 2

)K/2

exp

[
− 1

2σ 2
(β − β̄)′B−1

1 (β − β̄)

]
×
(

1

σ 2

)α1/2+1

exp

[
− δ1

2σ 2

]
, (4.5)

where the updated parameters are

B1 = (X′X + B−1
0 )−1

β̄ = B1(X′y + B−1
0 β0)

α1 = α0 + n

δ1 = δ0 + y ′y + β ′
0B

−1
0 β0 − β̄ ′B−1

1 β̄. (4.6)
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We recognize the product of the first two terms as proportional to the density
of a K-dimensional normal distribution for β, NK (β̄, σ 2B1), and the product of
the second two terms as proportional to an inverted gamma distribution for σ 2,
IG(α1/2, δ1/2). This shows that the prior specified in (4.2) is a conjugate prior for
the normal linear regression model.

The conjugate prior for this model allows us to find analytically the marginal
posterior distributions of σ 2 and β. Indeed, this is the last model considered in the
book where this is possible. First, it is easy to integrate out β since it appears only
in the first term as a normally distributed variable. Doing so will leave us with only
the third and fourth terms, from which we immediately have

π (σ 2|y) = IG(α1/2, δ1/2).

Since this is a known form for which the normalizing constant is known, we
can find its moments, derive interval estimates, and plot it. Deriving the posterior
distribution for β requires integration with respect to σ 2:

π (β|y) =
∫

π (β, σ 2|y) dσ 2

∝
∫ (

1

σ 2

)(K+α1)/2+1

exp

[
− Q

2σ 2

]
dσ 2,

where Q = δ1 + (β − β̄)′B−1
1 (β − β̄). Since the integrand has the form of an in-

verted gamma function, integration yields the reciprocal of the constant of that
function, �([K + α1]/2)(Q/2)−(K+α1)/2, but only Q contains β. Accordingly, we
have

π (β|y) ∝ Q−(K+α1)/2

∝ [δ1 + (β − β̄)′B−1
1 (β − β̄)]−(K+α1)/2

∝
[

1 + 1

α1
(β − β̄)′[(δ1/α1)B1]−1(β − β̄)

]−(K+α1)/2

.

Finally, by comparing the last equation to that of the multivariate t distribution (see
Section A.1.15), we find that

π (β|y) = tK (α1, β̄, (δ1/α1)B1). (4.7)

Because this distribution has been intensively studied, its marginal distributions
and their moments are well known. Discussion of further properties of this model
and its marginal likelihood is pursued in the exercises.

Before continuing, we note that many authors work with a different, but equiva-
lent, parameterization of the model. Define the precision of a scalar random variable
as the reciprocal of its variance: h = 1/σ 2. If it is decided to work with h rather than
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σ 2, all of the results obtained previously are still valid if the prior distribution for
h is G(α0/2, β0/2), rather than the inverse gamma distribution. In short, a gamma
distribution for h is equivalent to an inverse gamma for 1/h = σ 2. The concept of
precision extends to covariance matrices in the case of multivariate random vec-
tors. Thus, if 
 is the covariance matrix of the vector z, then 
−1 is its precision
matrix. In the linear regression model discussed earlier, the posterior variance of
β is [X′X + B−1

0 ]−1, and its precision matrix is X′X + B−1
0 . Both precisions and

variances are used in later chapters of this book.

4.4 Subject-Matter Considerations

Consider what is involved in specifying a prior distribution for the parameters of
the normal linear regression model in the context of the conjugate family of priors
discussed before. The regression parameters βk are assumed to be normal with
mean βk0 and variance σ 2Bkk,0, where βk0 is the kth row of β0 and Bkk,0 is the kkth
element of B0. To specify a prior, the researcher should utilize whatever information
can be found from previous studies and theoretical subject-matter considerations to
specify βk0 and express uncertainty about this value in the choice of the variance.
Since information is not likely to be available about prior covariances, researchers
will often take those to be zero and restrict attention to diagonal B0. We continue
by discussing typical applications to illustrate these ideas.

A common use of linear regression is to investigate the effects of prices and
income on demand or supply for some product. For example, if xik is the price
of bread and yi is the quantity of bread purchased by household i, then βk is the
change in quantity demanded associated with a one-unit change in price. In this
case, a reparameterization of the model is likely to facilitate the assignment of a
prior. Thus, if we work with log(price) and log(quantity), βk is the price elasticity;
that is, the percentage change in quantity associated with a 1% change in price.
This parameterization frees us from concern about units of measurement of y,
currency units, and absolute price levels; moreover, such elasticities have been
estimated in many studies for various types of data sets. Furthermore, the Gaussian
assumption on the additive errors is consistent with both positive and negative
values for the dependent variable log(price), but is inconsistent with price, which
must be nonnegative, as the dependent variable.

If no information is available for a particular product, it is reasonable to start
from the assumption that βk0 = −1, the borderline between elastic and inelastic
demand. Given a mean, the properties of the normal distribution can be used. Thus,
a researcher may be very sure that the elasticity is between −1.5 and −0.50. If
“very sure” is interpreted as a probability of 0.99, then the properties of the normal
distribution can be used to estimate the variance: the mean plus and minus three
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standard deviations includes 99.73% of the area of a normal curve; this implies
for our example that three standard deviations equals 0.5, or the standard deviation
is 1/6. We therefore set σ 2Bk0 = 1/36. If, on the basis of previous studies or
other information, the researcher believes that the demand for bread is inelastic,
then setting βk0 = −0.5 with a variance of 1/36 will confine the prior distribution
of the coefficient to the interval (−1, 0) with a probability of 0.99. Similarly, an
assumption about the income elasticity might start with a prior mean of 1.

For the prior distribution of the variance parameter σ 2, assumed to be inverted
gamma, we use (A.5) to specify (α0, δ0) from its moments. In our bread demand
example, on the basis of prior information, we might believe that the quantity
of bread consumed per week, controlling for household size and other variables,
does not exhibit great variation. If the quantity of bread purchased averages about
4 pounds per week (log(4) = 1.3863), and few families are expected to consume
much more than 6 pounds per week (log(6) = 1.7918), a standard deviation about
0.2, or a variance of 0.04, would seem reasonable. We take this as the mean of
the prior for σ 2. Finally, uncertainty over this value can be maximized by taking
the smallest value of the first parameter of the inverted gamma distribution that
leads to a finite variance: α0/2 = 3. From (A.4) and (A.5), we obtain α0 = 6 and
β0 = 0.16. These calculations are rough – we have taken the mean of the logarithm
to be the logarithm of the mean – but, in many cases, it suffices to get orders of
magnitude right.

If y is in logarithm terms and xd is a dummy variable, then y1/y0 − 1 ≈ βd , for
small βd , where y1 is the value of y when xd = 1 and y0 is the value when xd = 0.

This example illustrates how knowledge of the subject matter can be used in a
family of conjugate prior distributions to specify hyperparameters for the prior. In
most research areas, there are likely to be previous studies that can be used to shed
light on likely values for the means and variances of the regression coefficients
and the variance. Since some element of subjectivity is inevitably involved, the
sensitivity of results to different prior specifications, as discussed later, should be
included in any empirical research.

As an empirical example, we consider the effect of union membership on wages.
The data are derived from Vella and Verbeek (1998), but we work with a highly
simplified version of their ambitious and sophisticated model. The data are taken
from the Youth sample of the National Longitudinal Survey and consist of 545
observations on young men. The response variable y is the logarithm of hourly
wages. The log transformation is made to allow us to think in terms of proportional,
rather than absolute, effects, and the transformed variable is consistent with the
assumption of additive Gaussian errors. The covariate of interest is a dummy
(indicator) variable for union membership. The remaining 31 covariates include
an intercept, indicator variables for race, marital status, rural area, section of the
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United States, health, industry of employment, occupation, and variables measuring
years of schooling and experience. Important specification issues taken up in the
article are neglected here to present a simple example and to focus on the main
point of this discussion.

We proceed to specify the prior parameters, beginning with the distribution of
σ 2. To specify values for α0 and δ0, consider the variance of y = log(wage) without
any covariates. The average hourly wage in 1987 was $9.10, and log(9.10) = 2.21.
The minimum wage in that year was $3.35, and log(3.35) = 1.21. If we assume
that 90% of the work force earned more than the minimum wage, the difference
between 2.21 and 1.21 should represent about 1.28 standard deviations, implying
a standard deviation of about 0.78 and a variance of about 0.60. With 31 covariates
other than the intercept, we expect the variance of u to be considerably smaller
than the variance of y, say about 0.10. Accordingly, we assume E(σ 2) = 0.10.
We take the smallest possible value for α, which is 3; this results in the largest
possible variance, reflecting our uncertainty. Accordingly, from (A.4), we find
δ = 2 × 0.10 = 0.20. These values for α and δ yield α0 = 6 and δ0 = 0.40.

We next turn to the prior distribution of the coefficient of the union indicator
variable βU . On the basis of many previous studies of this issue, we think that the
mean, βU0, should be about 0.10 and that it is very likely to be less than 0.20. If
we interpret “very likely” as a 95% probability, a normal prior distribution implies
a standard deviation of about 0.06 or a variance of 0.0036. For the conjugate prior
we have adopted, the variance of βU0 is proportional to σ 2. Since the variance
of βU is σ 2BUU,0, where BUU,0 is the value in B0 corresponding to βU , from our
assumption that E(σ 2) = 0.10 we set BUU,0 = 0.036. For the remaining regression
coefficients, we assume a mean of 0 and values in B0 of 1. This assumption takes
a neutral stance about the sign of the coefficient and allows each to have a fairly
small impact.

This specification of the prior illustrates that choosing hyperparameter values
in the context of a particular application can be done without appealing to devices
that attempt to capture completely uninformative priors. In many, if not most
applications, there is relevant information. A specialist in labor economics should
be able to assign more appropriate values than we have. We consider later the
sensitivity of the results to the prior specification. Also, note that the conjugate prior
assumption requires us to consider σ 2, which is the variance of u, when assigning
a prior variance to the regression coefficients. The independent assignment of the
two variances is considered in Section 4.9.

We can now compute the distribution of βU with the result in (4.7) and the
formula for the marginal distribution of a subset of multivariate t variates in (A.12).
The posterior mean is 0.1347, and we plot the posterior distribution along with the
prior in Figure 4.1. The posterior distribution is considerably tighter than the prior;
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Figure 4.1. Prior and posterior distributions for coefficient of union membership.

the former indicates an almost certainly positive union effect, whereas the prior
included negative values.

4.5 Exchangeability

Our discussion of prior distributions has focused on the use of subject-matter
knowledge to specify parameters of distributions that are conjugate to the assumed
form of the likelihood function. This approach is often computationally convenient
and is widely applied in Part III. Another approach to specifying prior distributions
takes advantage of a type of symmetry that appears in some models. That symmetry,
called exchangeability, generalizes the property of statistical independence when
applied to observable random variables, as we first explain. We then show how the
idea may be applied in specifying a prior for unknown parameters.

The formal definition of exchangeability, a concept proposed by de Finetti, is in
terms of the joint distribution of a set of random variables zi : the random variables
z1, z2, . . . , zn are finitely exchangeable if f (z1, z, . . . , zn) is invariant to permu-
tations in the indices 1, 2, . . . , n. (Exchangeability requires that this relationship
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hold for all n.) For example, if n = 3, the random variables z1, z2, and z3 are
exchangeable if

f (z1, z2, z3) = f (z1, z3, z2)

= f (z2, z1, z3)

= f (z2, z3, z1)

= f (z3, z1, z2)

= f (z3, z2, z1).

Exchangeability generalizes the concept of independence: identically distributed
and mutually independent random variables are exchangeable, but exchangeability
does not imply independence. de Finetti and others have shown the power and
implications of this idea, but we use it in a more informal way.

Loosely speaking, a set of random variables is exchangeable if nothing other than
the observations themselves distinguishes any of the zis from any of the others.
For example, if a coin is tossed three times and two heads appear, the possible
outcomes are HHT, HTH, or THH. If the only information we have is that three
tosses resulted in two heads, then exchangeability requires that we assign the same
probability to each of these three outcomes.

As an example of exchangeability applied to prior distributions, consider the
problem of heteroskedasticity in the linear regression model that arises when the
assumption that Var(ui) is the same for all i is untenable. Suppose that the linear
regression model is

f (yi |β, σ 2, λi) = N(x ′
iβ, λ−1

i σ 2), (4.8)

and we further specify

β ∼ NK (β0, B0),

σ 2 ∼ IG(α0/2, δ0/2),

λi ∼ G(ν/2, ν/2).

(4.9)

A gamma prior distribution is appropriate for λi because it is a precision param-
eter and therefore positive; the choice of parameters (ν/2, ν/2) is explained later.
This assumption about the distribution of λi embodies exchangeability: each i is
associated with a particular λi , but the λi are drawn independently from the same
gamma distribution. Knowing the value of i gives us no additional information
about the value of λi . Although each observation has its own variance λ−1

i σ 2, all
we know about these variances is that they are drawn from the same distribution.
This assumption about the variance can be contrasted with the assumption that
E(yi) = x ′

iβ, where the fact that each observation has its own covariate vector xi
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implies different expected values for each observation; that is, knowing the value
of i gives us covariate values xi that provide information about the mean level of yi .

While the heteroskedastic regression model is an example of specifying an
exchangeable prior, it is of interest in its own right as an extension of the linear
model. You should verify that the prior family is not conjugate and that the posterior
distribution is not of a standard form that permits analytic integration to obtain the
marginal posterior distribution of β and σ 2. But the model has an interesting
property that is exploited in Section 8.1.2. From our assumptions that ui |λi, σ

2 ∼
N(0, λ−1

i σ 2) and λi ∼ G(ν/2, ν/2), we can write

f (ui, λi |σ 2) ∝ λ
1/2
i exp

[
− λi

2σ 2
u2

i

]
λ

ν/2−1
i exp

[
−νλi

2

]
∝ λ

(ν+1)/2−1
i exp

[
−λi(u2

i + νσ 2)

2σ 2

]
.

The marginal distribution f (ui |σ 2) is found by integrating (or marginalizing) over
λi using the fact that λi |u2

i , σ
2 has the distribution G[(ν + 1)/2, (u2

i + νσ 2)/2σ 2].
Its normalizing constant is therefore proportional to (u2

i + νσ 2)−(ν+1)/2, from which
we have

(u2
i + νσ 2)−(ν+1)/2 ∝

(
1 + u2

i

νσ 2

)−(ν+1)/2

,

the kernel of the Student-t distribution t(ν, 0, σ 2). We conclude that the aforemen-
tioned assumption about the distribution of λi and the normality of ui |λi, σ

2 is
equivalent to assuming that the ui |σ 2 have a t-distribution with ν degrees of free-
dom. We can say that the distribution of ui is conditionally heteroskedastic because
the variance of ui |λi, σ

2 = λ−1
i σ 2, but the distribution of ui |σ 2 is homoskedastic.

4.6 Hierarchical Models

The models we have examined to this point contain two elements: a density function
for the observed data conditioned on a vector of parameters and a prior distribu-
tion for the parameters, in turn conditioned on a vector of hyperparameters. In
a hierarchical model, we add one or more additional levels, where the hyperpa-
rameters themselves are given a prior distribution depending on another set of
hyperparameters; for example,

y ∼ f (y|θ ), (4.10)

θ ∼ π (θ |α0), (4.11)

α0 ∼ π (α0|α00), (4.12)



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

4.7 Training Sample Priors 53

where α00 is specified. Other levels may be added, but this is rarely done. Before
turning to an example, we make a few comments. First, α0 is not identified from the
data, because f (y|θ, α0) = f (y|θ ). Second, α0 can be eliminated from the problem
because

π (θ |α00) =
∫

π (θ |α0)π (α0|α00) dα0.

Accordingly, α0 is neither identified nor necessary for analyzing the model; it is
introduced to facilitate computations or modeling.

As an example, consider the heteroskedastic linear model of Section 4.5. The
distribution of λi is given a gamma distribution depending on the parameter ν,
which turns out to be the degrees of freedom parameter of a t-distribution. In
that formulation, ν is chosen by the researcher. In a hierarchical version of the
model, a prior distribution is placed on ν to reflect uncertainty over its value. Since
0 < ν < ∞, any distribution confined to positive values could serve. Examples
are the gamma distribution, a distribution over a finite set of ν values, or the
Poisson distribution truncated to ν > 0, where parameters would be chosen to
reflect prior views. It is helpful to recall that the t-distribution approaches the
normal as ν increases, and the approximation is very close for the central part of
the distribution when ν ≈ 30 or larger. We return to this model in Section 4.9.

4.7 Training Sample Priors

The device described in this section can be applied when the researcher has very
little information on which to base a prior distribution, but has a large number of
observations. The idea is to take advantage of the Bayesian updating discussed
in Section 3.1.3. A portion of the sample is selected as the training sample. It
is combined with a relatively uninformative prior to yield a first-stage posterior
distribution. In turn, this the prior for the remainder of the sample. By a rela-
tively uninformative prior, we mean a prior with a large variance and a mean of
zero.

A limiting case of an uninformative prior is a flat, improper prior for the regres-
sion coefficients, π (β) ∝ c, and a flat, improper prior on log(σ ), π (σ ) ∝ 1/σ . These
choices lead to π (β|σ 2, y) = NK (β|β̂, σ 2(X′X)−1), where β̂ = (X′X)−1X′y, the
ordinary least squares estimator, and π (σ 2|y) = IG(σ 2|(n − K)/2, S2/2], where
S2 = (y − Xβ̂)′(y − Xβ̂), the usual sum of squared residuals. Note that, in this
case, the joint posterior distribution of (β, σ 2) is proper, despite the improper prior
distribution.
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Table 4.1. βU as a Function of Hyperparameters
βU0 and BUU,0.

BUU,0

βU0 0.010 0.036 0.050

0.050 0.095 0.123 0.128
0.100 0.122 0.135 0.137
0.200 0.174 0.158 0.155

4.8 Sensitivity and Robustness

Results should be checked for their sensitivity to the assumptions about prior
distribution, especially when hyperparameters for those priors have been selected
with considerable uncertainty. We illustrate a sensitivity check with the Vella–
Verbeek union data discussed in Section 4.4. We focus on the prior mean of the
union dummy coefficient βU0 and the term proportional to its variance BUU,0.
Table 4.1 displays the results.

The table shows some sensitivity around our benchmark result of 0.1347. When
results seem rather sensitive to the prior mean, the researcher should attempt to
justify the choice for this value by referring to the relevant literature. Another
possibility of refining this choice might be to take a training sample approach. The
Vella–Verbeek data set contains information on the same young men for 8 years.
One possibility might be to take an earlier year as a training sample. Because they
are the same people, however, the assumption of independence across samples
would not be acceptable, and finding the distribution of the 1987 data, given a
previous year’s data, might be difficult. A rough compromise might involve taking
the data for the earliest year as the training sample. While these data are not likely
to be completely independent, the degree of independence may not be too great.
There is sensitivity also to the value of BUU,0, but this seems to be most serious
when it is set to a small value of 0.01.

4.9 Conditionally Conjugate Priors

We now show the importance of assuming that the prior variance of β is proportional
to σ 2. Suppose instead that we assume independent priors, which is more realistic
in most cases. We continue to assume normal and inverse gamma distributions, but
now

π (β, σ 2) = π (β)π (σ 2)

∝ exp

[
− 1

2
(β − β0)′B−1

0 (β − β0)

](
1

2σ 2

)α0/2+1

exp

[
− δ0

2σ 2

]
.
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To derive the posterior distribution, the prior is multiplied by the likelihood function
of (4.1). In this distribution, the parameters β and σ 2 are so interwoven that
we cannot separate them into the product of two marginal distributions or of a
marginal and conditional distribution. The distribution is not a standard form, and
its normalizing constant is not known. Accordingly, even for one of the most basic
models in applied statistics, the apparent slight change in the prior distribution
results in a model for which the desired marginal posterior distributions cannot be
derived analytically.

But there is something interesting about this form: consider the conditional
posterior distributions π (β|σ 2, y) and π (σ 2|β, y). To derive the former, we consider
only the terms in the posterior that contain β. After some simplification, you should
verify that

π (β|σ 2, y) ∝ exp

[
− 1

2
(β − β̄)′B−1

1 (β − β̄)

]
,

where

B1 = [
σ−2X′X + B−1

0

]−1
,

β̄ = B1
[
σ−2X′y + B−1

0 β0
]
.

We see that the conditional posterior distribution π (β|σ 2, y) is multivariate normal
with mean β̄ and covariance matrix B1. When the conditional posterior distribution
is in the same family as the prior, the prior is said to be conditionally conjugate or
semiconjugate.

It is important to be aware of how we found the conditional distribution because
the method is used frequently later in the book. We first wrote down the expres-
sion for the joint distribution of all parameters by the usual likelihood times prior
formulation. We then picked out only the terms involving the parameters whose
conditional distribution we wish to determine. All terms that do not involve these
parameters are relegated to the proportionality constant. The remaining expres-
sion, which contains the parameters of interest, is proportional to the conditional
distribution of those parameters.

The idea is now applied to π (σ 2|β, y). To find this distribution, collect the terms
in the joint posterior distribution that include σ 2 to obtain

π (σ 2|β, y) ∝
(

1

σ 2

)α1/2+1

exp

[
− δ1

2σ 2

]
,

where α1 = α0 + n and δ1 = δ0 + (y − Xβ)′(y − Xβ). We now see that the con-
ditional posterior distribution of σ 2|β, y is IG(α1/2, δ1/2), another example of a
conditionally conjugate prior distribution.
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As another example of conditionally conjugate priors, consider the heteroskedas-
tic linear regression model specified in (4.8) and (4.9). We adopt a hierarchical ap-
proach to that model by taking ν as an additional parameter. You should verify that
π (β|σ 2, λ, y) is normal, π (σ 2|β, λ, ν, y) is inverted gamma, and π (λi |β, σ 2, ν, yi)
is gamma, where λ = (λ1, . . . , λn). Note that, in each case, we have included in
the conditioning set only those variables that actually appear in the conditional
distributions, rather than including all variables. To complete the analysis, a prior
for ν must be specified and an expression for its conditional distribution derived.
For the prior, we assume that ν takes on J values, ν1, ν2, . . . , νJ , with probabilities
p10, p20, . . . , pJ0, respectively. For example, the values of ν might be set to 5, 15,
30, and 50 to allow a range of possibilities. At 50, the t-distribution is very close
to a normal distribution.

To derive the conditional posterior distribution of the probabilities, we write the
joint posterior distribution of all parameters as

π (β, σ 2, λ, ν|y) ∝ π (β)π (σ 2)
n∏
i

(
λi

σ 2

)1/2

exp

[
− λi

2σ 2
(yi − x ′

iβ)2

]

× λ
ν/2−1
i

1

�(ν/2, ν/2)
exp

[
−νλi

2

] J∑
j

pj01(ν = νj ),

(4.13)

where 1(A) is the indicator function that equals 1 if A is true and 0 otherwise. Note
that only the last four terms involve ν, and these involve no parameters other than
the λi . This reflects the fact that ν is not identified by the data, although it depends
on y through the λi . We can therefore write

π (νj |λ) ∝ pj0λ
νj /2−1
i

1

�(νj/2, νj/2)
exp

[
−νj

∑
i λi

2

]
, j = 1, . . . , J. (4.14)

The requirement that
∑

j π (νj |λ) = 1 is enforced by dividing the individual terms
in (4.14) by their sum.

While we have no interest in conditional distributions per se, the conditional
distributions derived in this chapter can be exploited to find the marginal posterior
distributions of β and σ 2. How to do this is taken up in Part II and applied in
Part III.

4.10 A Look Ahead

Methods of assigning prior distributions have been presented in this chapter along
with the basics of the linear normal regression model. We have seen that the con-
jugate prior distribution leads to a standard form for the joint posterior distribution
of β and σ 2, leading to analytic results for the marginal posteriors of β and σ 2.
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In Exercise 4.3, you will find that the distributions of β and σ 2 can also be found
analytically when the priors for β and σ 2 have the improper prior distributions
specified there.

We have seen that when a conditionally conjugate prior is used, however, the
resulting joint distribution does not have a standard form. The result is that the
marginal distributions of β and σ 2 cannot be found analytically. This is a serious
limitation because we are usually interested in the marginal posterior distribution
of a few of the βks, and an inability to find these threatens the usefulness of the
Bayesian approach. If we cannot find marginal distributions for the most commonly
used model of econometrics and other fields, of what use is the approach?

There are several possible ways of dealing with this issue. One possibility is
numerical integration, a traditional method of evaluating integrals that do not have
analytic solutions. But this method is useful only in low-dimensional problems.
The union example discussed in Section 4.4 contains 32 regression parameters
and one variance parameter. Numerical integration would not allow us to find the
marginal distribution of the union regression coefficient.

Another approach utilizes the ability of computers to generate pseudorandom
numbers that are used to draw a sample from a distribution. A sample drawn this
way is called a “simulated sample” or a “simulation.” With a large sample from a
distribution, it is possible to approximate the marginal distribution of the param-
eters and of any continuous function of the parameters, including their moments.
Simulation is an alternative to integration that can be used in high-dimensional
problems, and simulation can be applied to standard and nonstandard distributions.
The insight that simulation can help us learn about marginal distributions greatly
extends the reach of Bayesian inference, but to take advantage of this idea we
must learn how to simulate samples from whatever joint distribution we encounter.
New approaches to simulation have made this possible. Part II of the book ex-
plains general methods of simulating samples from both standard and nonstandard
distributions.

4.11 Further Reading and References

Section 4.2 See Garthwaite et al. (2005) for a summary of methods for eliciting
probability distributions. O’Hagan et al. (2006) is a book-length treatment of the
elicitation of experts’ probability judgments. It explains and evaluates numerous
methods of elicitation and provides examples and many further references.

Section 4.5 See Bernardo and Smith (1994, chap. 4) and O’Hagan (1994, sec. 4.39–
4.50, 6.36–6.38) for a detailed discussion of exchangeability, and Albert and Chib
(1993b) and Geweke (1993) for further discussion of the heteroskedastic model.
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4.12 Exercises

4.1 Show that (4.6) can be rewritten as

δ1 = δ0 + (y − Xβ̂)′(y − Xβ̂) + (β0 − β̂)′[(X′X)−1 + B0]−1(β0 − β̂),

where β̂ = (X′X)−1X′y, the ordinary least squares estimator of β for the frequentist
statistician in the normal linear regression model. (Hint: use (A.18).)

4.2 Let yi ∼ N (µ, 1) and take µ ∼ N (µ0, σ
2
0 ) as the prior distribution, which becomes

improper as σ 2
0 → ∞. Derive π (µ|y), where y is a random sample of size n. Discuss

how the posterior distribution behaves as σ 2
0 → ∞.

4.3 This question refers to the expression for β̄ in Section 4.3 and generalizes Exercise 4.2.
Some authors suggest that weak prior information can be modeled as large prior
variances for β. For example, suppose that B0 is a matrix with large values on the main
diagonal and zeros elsewhere, and consider what happens to β̄ as the variances go to
infinity. Interpret this result in terms of the weight assigned to the data and to the prior
in determining the posterior distribution.

4.4 In Section 4.3, we showed that β|y has a multivariate t-distribution. Equations (A.12)–
(A.14) give the marginal distribution and its moments for a subset of the parameters.
Choose a data set that includes at least two covariates and find a 95% interval estimate
for β2.

4.5 Since the posterior distribution of (β, σ 2) in Section 4.3 is of known form, it is possible
to compute its marginal likelihood analytically. Start from the definition of the marginal
likelihood:∫

f (y|β, σ 2)π (β, σ 2) dβ dσ 2

=
∫ (

1

2πσ 2

)n/2

exp

[
− 1

2σ 2
(y − Xβ)′(y − Xβ)

](
1

2πσ 2

)K/2

× 1

|B0|1/2
exp

[
− 1

2σ 2
(β − β0)′B−1

0 (β − β0)

]
× (δ0/2)α0/2

�(α0/2)

(
1

σ 2

)α0/2+1

exp

[
− δ0

2σ 2

]
dβ dσ 2

=
(

1

2π

)n/2 (δ0/2)α0/2

�(α0/2)

1

|B0|1/2

∫ {(
1

2πσ 2

)K/2

× exp

[
− 1

2σ 2
(β − β̄)′B−1

1 (β − β̄)

]
dβ

}{(
1

σ 2

)α1/2+1

exp

[
− δ1

2σ 2

]
dσ 2

}
,

where we have used (4.5). Now integrate the first pair of curly braces as a multivariate
normal and the second as an inverted gamma to find this expression for the marginal
likelihood: (

1

π

)n/2 |B1|1/2

|B0|1/2

�(α1/2)

�(α0/2)

δ
α0/2
0

δ
α1/2
1

.
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4.6 Show that i.i.d. variables are exchangeable.
4.7 Suppose that an urn contains R red balls and B blue balls and that three balls are

removed at random without replacement. Let Bi (respectively Ri) denote that a blue
(respectively red) ball is removed at the ith draw, i = 1, 2, 3. Show that

P (R1, B2, B3) = P (B1, R2, B3) = P (B1, B2, R3),

but that P (R1) 
= P (R1|B2). Conclude that this distribution is finitely exchangeable
and that the draws are not independent.
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Simulation
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Chapter 5

Classical Simulation

AS WE MENTIONED at the end of the previous chapter, simulation has greatly
expanded the scope of Bayesian inference. In this chapter, we review methods
for generating independent samples from probability distributions. The methods
discussed here form the basis for the newer methods discussed in Chapter 7 that
are capable of dealing with a greater variety of distributions but do not generate
independent samples.

All major statistics packages contain routines for generating random variables
from such standard distributions as those summarized in the appendix. The exam-
ples presented here are intended to illustrate methods of generating samples. We
do not claim that the algorithms are the best that can be designed, and we do not
study the methods in great detail. Our goal for the chapter is to present the standard
techniques of simulation and explain the kinds of questions that simulated samples
can help answer.

Many of the applications discussed later can be regarded as attempts to approx-
imate a quantity such as E[g(X)] where X ∼ f (X), but the necessary integral,∫

g(x)f (x) dx, cannot be computed analytically. This problem includes the com-
putation of expected values (where g(X) = X) and other moments, as well as
P (c1 ≤ X ≤ c2), for which we set g(X) = 1(c1 ≤ X ≤ c2).

5.1 Probability Integral Transformation Method

The most basic method of generating samples takes advantage of the ability of
computers to generate values that can be regarded as drawn independently from a
uniform distribution on (0,1), U (0, 1). For this discussion, we adopt the convention
that a capital letter such as Z represents a random variable and the corresponding
small letter z represents a particular value of that random variable.

Suppose we wish to draw a sample of values from a random variable that has
d.f. F (·), assumed to be nondecreasing. Consider the distribution of Z, which

63
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is obtained by drawing U from U (0, 1) and setting Z = F−1(U ), which implies
U = F (Z):

P (Z ≤ z) = P (F (Z) ≤ F (z))

= P (U ≤ F (z))

= F (z),

where the first line relies on the fact that the d.f. is nondecreasing and the last
line uses the property of the uniform distribution that P (U ≤ u) = u. (If F (·) is
constant over one or more intervals of Z, it is evaluated at the smallest value of each
such interval.) We conclude that the random variable Z computed in this fashion
can be regarded as a draw from the d.f. F (·). This method, the probability integral
transformation (PIT) method, takes its name from the fact that U = F (Z) is called
the probability integral transformation. It is also called the inverse d.f. method. Note
that a multivariate random variable cannot be simulated by this method, because
its d.f. is not one-to-one and therefore not invertible.

In algorithmic form, we have the following.

Algorithm 5.1: Probability integral transform method

5.1 Draw u from U (0, 1).
5.2 Return y = F−1(u) as a draw from f (y).

Implementing this method requires that the d.f. be known completely (i.e., its
normalizing constant is known as well as its kernel) and that F−1(·) can be readily
computed. Because accurate approximations to the inverse function have been
computed for standard distributions and are available in many computer program,
the latter requirement can be met even if the inverse function cannot be computed
analytically.

As our first example, suppose we desire to sample from U (a, b), a generalization
of the uniform distribution. Since

f (z) =
{

1
b−a

, if a ≤ z ≤ b,

0, otherwise,

we find F (z) = (z − a)/(b − a)1(a ≤ z ≤ b). If U ∼ U (0, 1), then U = (Z −
a)/(b − a), and Z = a + (b − a)U is a draw from U (a, b).

As another example, suppose we wish to draw a sample from a random variable
with density function

y ∼ f (y) =
{

3
8y

2, if 0 ≤ y ≤ 2,

0, otherwise.
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We first find the d.f. for 0 ≤ y ≤ 2 by computing

F (y) = 3

8

∫ y

0
t2 dt = 1

8
y3.

The next step is to draw a value U from U (0, 1) and set U = (1/8)Y 3. We then
solve to find Y = 2U 1/3, which is a draw from f (Y ).

An important application of this method is to the problem of sampling from a
truncated distribution. Suppose that X has d.f. F (X) and that we wish to generate
values of X restricted to c1 ≤ X ≤ c2. The distribution of the truncated values is
[F (X) − F (c1)]/[F (c2) − F (c1)] for c1 ≤ X ≤ c2. Following our usual procedure,
we generate U ∼ U (0, 1) and set

U = F (X) − F (c1)

F (c2) − F (c1)
,

which implies that

X = F−1(F (c1) + U [F (c2) − F (c1)]) (5.1)

is a drawing from the truncated distribution. This method is routinely used to
sample from univariate truncated normal or Student-t densities because accurate
approximations to the inverse d.f.s are available and included in statistics packages.

5.2 Method of Composition

The method of composition uses the relationship

f (x) =
∫

g(x|y)h(y) dy,

where f , g, and h are densities. The method is useful when we know how to sample
y from h(y) and x from g(x|y). By drawing a y from h(y) and then an x from
g(x|y), the value of x is a drawing from f (x).

We have seen an example of this idea in Section 4.5 in connection with the
heteroskedastic linear regression model. It was shown that if ui |λi ∼ N(0, λ−1

i σ 2),
λi ∼ G(ν/2, ν/2), and

f (ui |σ 2) =
∫

g(ui |λi, σ
2)h(λi) dλi,

where g(ui |λi, σ
2) is the density function of N(ui |0, λ−1

i σ 2) and h(λi) is the density
function of G(λi |ν/2, ν/2), then f (ui |σ 2) is the density function of t(ν, 0, σ 2). This
result shows that we can simulate draws from a t-distribution with ν degrees of
freedom if we know how to simulate draws from a gamma distribution and from a
normal distribution: draw a value of λi from the gamma distribution and then draw



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

66 Chapter 5. Classical Simulation

a value of ui from the normal distribution conditional on the value of λi . This result
generalizes to simulation from t-distributions with nonzero means.

The method of composition can be thought of as a mixture distribution, where the
density of interest can be written as the marginal distribution of a joint distribution,

f (x) =
∫

g(x, y) dy.

In this form, g(·, ·) is not explicitly written as the product of a conditional and a
marginal density. The mixture distribution idea can be used when it is convenient
to sample a joint distribution. The expression implies that the values of x are a
sample from its marginal distribution when a sample (x, y) is generated from their
joint distribution.

It is sometimes possible to write a p.d.f. in the form of a finite mixture distribution,

f (x) =
k∑
i

Pifi(x),

where
∑

Pi = 1 and each fi(x) is a p.d.f. If it is known how to sample from each
of the fi(·), a sample from f (·) can be obtained by choosing i with probability Pi

and then generating a value from fi . See Exercise 5.3 for an example.

5.3 Accept–Reject Algorithm

The accept–reject (AR) algorithm can be used to simulate values from a density
function f (·) if it is possible to simulate values from a density g(·) and if a number
c can be found such that f (Y ) ≤ cg(Y ), c ≥ 1, for all Y in the support of f (·). The
density f (Y ) to be sampled is called the target density, the distribution g(y) that
is simulated is called the majorizing, instrumental, or proposal density, and cg(·)
is called the majorizing function or dominating density. The target density must be
dominated over the entire support of Y , which is often difficult to achieve in the
multivariate case.

The AR algorithm proceeds as follows.

Algorithm 5.2: Accept–reject method

5.1 Generate a value y from g(·).
5.2 Draw a value u from U (0, 1).
5.3 Return y as a draw from f (·) if u ≤ f (y)/cg(y). If not, reject it and return to step 1.

(The effect of this step is to accept y with probability f (y)/cg(y).)

The procedure is continued until the desired number of draws is obtained.
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Here is a proof to show the method works. Consider the distribution of the
accepted values of y, h[y|u ≤ f (y)/cg(y)]. By Bayes theorem and the property of
the uniform distribution that P (u ≤ t) = t , 0 ≤ t ≤ 1, we have

h[y|u ≤ f (y)/cg(y)] = P [u ≤ f (y)/cg(y)|y]g(y)∫
P [u ≤ f (y)/cg(y)|y]g(y) dy

= [f (y)/cg(y)]g(y)

(1/c)
∫

f (y) dy

= f (y).

We have shown that the distribution of the accepted values has the distribution
of the random variable from which we wish to sample. Note that∫

P (u ≤ f (y)/cg(y)|y)g(y) dy = 1/c

is the probability that a generated value of y is accepted. This implies that we
should choose c as small as possible to maximize the probability of acceptance
because rejected values use computer time without adding to the sample.

Before proceeding with examples, we point out an interesting feature of the AR
algorithm that is useful when the normalizing constant of f (·) is unknown; that is,
f (·) = kr(·) and r(·) is known but k is not. Let c be chosen so that r(y) ≤ cg(y).
You can verify that if a value of y generated from g(y) is accepted with probability
r(y)/cg(y), the accepted values of y are a sample from f (y). This method can
therefore be used even if the normalizing constant of the target distribution is
unknown; in this case, it is no longer required that c ≥ 1.

As our first example, consider the problem of sampling from Beta(3, 3) with
U (0, 1) as the proposal density. The maximum of the target density occurs at y =
1/2, where the density function equals 1.8750. Accordingly, we set c = 1.8750, and
the probability of accepting a draw is 1/c = 0.5333. You can see from Figure 5.1
why this proposal density is not a particularly good choice. It generates values
uniformly along the horizontal axis, but the target density is far from uniform.
Since values near zero and one are oversampled by the proposal density, they
are accepted with low probability to compensate for the oversampling. The figure
shows that a value of 0.15 generated by the proposal is accepted with probability
0.4877/1.875 = 0.2601.

The algorithm to implement this procedure may be summarized as follows.

Algorithm 5.3: Beta distribution

5.1 Draw u1 and u2 from U (0, 1).
5.2 If

u2 ≤ Beta(3, 3)−1u2
1(1 − u1)2

1.8750
,

return y = u1 as a draw from the target distribution. Otherwise reject it and return to 1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.4877

1.875

f(y)=Beta(3,3)

cg(y)=1.875 U(0,1)

Figure 5.1. Target and proposal density to sample from Beta(3, 3).

As a second example, let the target density be N(0, 1) and the proposal density
be the Laplace distribution, g(y) = (1/2) e−|y|. Since both of these are symmetric
about zero, we first sample from the exponential distribution, e−y , y > 0, and
accept or reject the value with the AR algorithm. If the proposal is accepted, it
is assigned a positive value with probability one half and a negative value with
probability one half. This algorithm can be used for general normal distributions:
if Y ∼ N(0, 1), then X = µ + σY ∼ N(µ, σ 2). To determine c verify that the
maximum of (

√
2π)−1 e−y2/2/e−y occurs at y = 1, implying that c = √

e/2π and
that the probability of acceptance is 1/c = 0.6577. Figure 5.2 displays the target
and proposal densities. In algorithmic form, we have the following.

Algorithm 5.4: Normal distribution

5.1 Generate u1, u2, and u3 from U (0, 1).
5.2 Sample from the exponential distribution g(x) = e−x by the method of Section 5.1:

from g(x) = e−x , verify that G(x) = 1 − e−x . Accordingly, write u1 = 1 − e−x or
x = −log(1 − u1), which is equivalent to x = −log(u1) since u1 and 1 − u1 have the
same distribution.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 y

 f(y)

 cg(y)

Figure 5.2. Target and proposal density to sample from N (0, 1).

5.3 If

u2 ≤ 1√
2π

e−x2/2

/
ce−x

= 1√
2π

e−x2/2

/√
e

2π
e−x (5.2)

= ex−x2/2−1/2,

return y = x if u3 ≤ 1/2 and y = −x if u3 > 1/2. If (5.2) is not satisfied, reject x and
return to step 1.

The AR method may appear to be similar to the Metropolis–Hastings (MH)
algorithm, discussed in the next chapter, because both involve a rejection step,
but there are important differences. First, the MH method is more general than
the AR method, in the sense that it can be employed to sample from a greater
variety of distributions. Second, the MH method generates correlated, rather than
independent, samples. Independent samples are, in general, preferred to positively
correlated samples because they have a smaller variance and therefore provide more
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information from a given sample size. Although negatively correlated samples have
an even smaller variance than do independent samples, the MH method tends to
produce positively correlated samples. Moreover, there are no known methods that
are sure to generate independent or negatively correlated samples.

5.4 Importance Sampling

Suppose that X ∼ f (X) and we wish to estimate

E[g(X)] =
∫

g(x)f (x) dx,

but the integral is not computable analytically and the method of composition is not
available, because we cannot sample from f (x). The importance sampling method,
a type of Monte Carlo integration, works as follows. Let h(X) be a distribution
from which we know how to simulate and consider the integral

E[g(X)] =
∫

g(x)f (x)

h(x)
h(x) dx.

This integral can be approximated by drawing a sample of G values from h(X),
with values X(g), and computing

E[g(X)] ≈ 1

G

∑
g(X(g))

f (X(g))

h(X(g))
.

This expression can be regarded as a weighted average of the g(X(g)), where the
importance weights are f (X(g))/h(X(g)).

The main issue in implementation of importance sampling is the choice of
h(·). To find a suitable distribution we examine the variance of the estimate. Since
Var(ĝ) = E(ĝ2) − E(ĝ)2 and the latter converges to E[g(X)]2, we may concentrate
on

E(ĝ2) =
∫

g(x)2

(
f (x)

h(x)

)2

h(x) dx.

This integral is large when f (x)/h(x) is large, a situation that tends to occur when
the tail values of h(·) are very small compared to the tail values of f (·). Since the
normal distribution tends to zero very quickly, it is often not a good choice for h(·).
In general, Var(ĝ) is small when f (·)/h(·) does not vary greatly.

As an example of importance sampling, we approximate E[(1 + x2)−1], where
x ∼ exp(1), truncated to [0, 1]; that is, we approximate the integral

1

1 − e−1

∫ 1

0

1

1 + x2
e−x dx.



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

5.4 Importance Sampling 71

We choose as an importance function Beta(2, 3) because it is defined on [0, 1] and
because, for this choice of parameters, the match between the beta function and
the target density is good over part of the [0, 1] interval. By applying the following
algorithm and setting G = 10,000, we obtained an estimate of 0.8268 and an
approximate standard error of 0.0030. An approximation by numerical integration
yields 0.8302.

Algorithm 5.5: Truncated exponential

5.1 Generate a sample of G values, X(1), . . . , X(G) from Beta(2, 3).
5.2 Calculate

1

G

G∑
1

(
1

1 + (X(g))2

)(
e−X(g)

1 − e−1

)(
B(2, 3)

X(g)(1 − (X(g))2)

)
.

As a second example, we approximate P (a1 < X1 ≤ b1, a2 < X2 ≤ b2), where
(X1, X2) ∼ N2(µ, 
), µ = (µ1, µ2)′, and 
 = {σij }. The desired integral is

P (a1 < X1 ≤ b1, a2 < X2 ≤ b2) =
∫ b1

a1

∫ b2

a2

f (x1, x2) dx1 dx2,

where f (x1, x2) is the density function of the bivariate normal distribution. The first
step is to rewrite the joint density in marginal-conditional form, f (x1)f (x2|x1) using
the results (see Section A.9) that x1 ∼ N(µ1, σ11) and that x2|x1 ∼ N(µ′

2, σ
′
22),

where

µ′
2 = µ2 + (σ12/σ11)(x1 − µ1),

σ ′
22 = σ22 − σ 2

12/σ11.

Now let

y1 = (x1 − µ1)/
√

σ11, y2 = (x2 − µ′
2)/
√

σ ′
22,

a′
1 = (a1 − µ1)/

√
σ11, a′

2 = (a2 − µ′
2)/
√

σ ′
22,

b′
1 = (b1 − µ1)/

√
σ11, b′

2 = (b2 − µ′
2)/
√

σ ′
22.

With this transformation, y1 and y2|y1 have standard normal distributions, enabling
us to write

P (a1 < x1 ≤ b1, a2 < x2 ≤ b2) =
∫ b′

1

a′
1

∫ b′
2

a′
2

φ(y1)φ(y2|y1) dy1 dy2

=
∫ b′

1

a′
1

φ(y1)
∫ b′

2

a′
2

φ(y2|y1) dy2 dy1

=
∫ b′

1

a′
1

φ(y1)[�(b′
2|y1) − �(a′

2|y1)] dy1.
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The algorithm is now implemented by choosing the standard normal distribution
truncated to (a′

1, b
′
1) as the importance distribution; that is, draw Y

(g)
1 from the

truncated standard normal using (5.1). With this choice for the importance function,
we have

P (a1 < X1 ≤ b1, a2 < X2 ≤ b2)

≈ 1

G

∑[
�
(
b′

2

∣∣Y (g)
1

)− �
(
a′

2

∣∣Y (g)
1

)][
�
(
b′

1

)− �
(
a′

1

)]
. (5.3)

5.5 Multivariate Simulation

We have seen an example of simulating from a multivariate distribution in the
previous section. In general, as might be expected, sampling from multivariate
distributions is more difficult than is sampling from univariate distributions.

The multivariate distribution most studied is the multivariate normal Np(µ, 
).
Independent samples generated from the univariate normal can be transformed into
samples from the multivariate normal. To draw a sample from Np(µ, 
), first draw
p values from N(0, 1) and place them in a p × 1 vector Z, so that Z ∼ Np(0, Ip).
Next, write 
 = C ′C, where C is a p × p upper-triangular Cholesky matrix. (The
Cholesky matrix for a given 
 is computed in many statistical packages, although
some provide a lower-triangular version.) Finally, compute X = µ + C ′Z. You can
now verify that X ∼ Np(µ, 
).

Although algorithms to simulate from all the multivariate distributions discussed
in the appendix are available in the major statistical packages, designing an algo-
rithm to generate independent samples from a nonstandard distribution can be
extremely challenging. The AR and importance sampling methods can be used
in principle, but their implementation may be difficult: the AR requires finding
a dominating density over the whole support, and importance sampling requires
finding a distribution with sufficiently heavy tails.

5.6 Using Simulated Output

A sample of size G generated from f (Y ), where the individual values are denoted
by Y (g), g = 1, . . . , G, can be used to investigate properties of the distribution
in many ways. For example, we can graph the histogram or a kernel-smoothed
version of the histogram to see the shape of the distribution; we can approximate
the distribution of any continuous function of the sample, including moments; and
we can approximate the quantiles of a distribution.

As an example, suppose we are interested in the distribution of Z = XY , where
X ∼ Beta(3, 3) and Y ∼ Beta(5, 3), independently. A search turned up no analytic
solution to the distribution of Z, so we proceed by generating samples from X and
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Figure 5.3. Simulation results for Z = XY , where X ∼ Beta(3, 3) and Y ∼ Beta(5, 3).

Y , X(g) and Y (g), respectively, and then computing Z(g) = X(g)Y (g). The resulting
Z(g)s are a sample from the target distribution. Figure 5.3 displays results for a
sample of G = 5,000. The left panel is a histogram of the results, and the right
panel is a kernel-smoothed histogram. The sample mean, Z̄ = G−1∑Z(g), an
estimate of E(Z), is 0.3146. The sample variance,

1

G − 1

∑
(Z(g) − Z̄)2,

is an estimate of Var(Z); it is 0.0215 in our simulation.
The numerical standard error (n.s.e.) is an estimate of the variation that can be

expected in computing the mean of some function of the observations Z = h(Y )
over different simulations of the same length. It is defined as

√
Var(Z)/G and

equals 0.0021 for this simulation. Note that the n.s.e. can be controlled by varying
the simulation sample size G.

By finding the 5,000 × 0.025th ordered value and the 5,000 × 0.975th ordered
value of the sample, we can approximate an interval in which Z lies with probability
0.95. In our example, this interval is (0.0719, 0.6279).
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A major use of simulated data is to study the marginal distribution of a variable.
This is especially important for Bayesian inference. Suppose that the target distribu-
tion is the posterior distribution π (θ |y) of a vector of parameters θ = (θ1, . . . , θd)
and that we have generated a sample of size G from that distribution, arrayed as
follows:

θ
(1)
1 θ

(1)
2 · · · θ

(1)
d

θ
(2)
1 θ

(1)
2 · · · θ

(2)
d

...
...

...
...

θ
(G)
1 θ

(G)
2 · · · θ

(G)
d .

Each row is a draw from the joint posterior distribution, but what can be said about
the columns? Let us focus on the first column as an example. From the definition
of the marginal distribution,

π (θ1|y) =
∫

π (θ |y) dθ2· · · dθd ,

we see that the values in the first column are a draw from π (θ1|y), the values in
the second column are draws from π (θ2|y), and so on. This is a remarkable result:
drawing a sample from the joint distribution provides samples from each of the
marginal distributions without computing any integrals. This result extends to the
methods presented in the next chapter with the difference that the samples from
each of the marginal distributions are not independent, because the draws from the
joint distribution are not independent.

5.7 Further Reading and References

Section 5 The increasing importance of learning about simulation is high-
lighted by noting that the only new chapter in the third edition of a widely
used statistics text, DeGroot and Schervish (2002), is about simulation. Use-
ful references are Rubinstein (1981), Devroye (1986), Ripley (1987), Robert
and Casella (2004), and Gentle (2003). The Devroye book is freely available
at cgm.cs.mcgill.ca/∼luc/rnbookindex.html.

Section 5.2 See Robert and Casella (2004, p. 45) for the mixture distribution idea.

Section 5.3 The example in which a normal is approximated by a Laplace is based
on an exercise in DeGroot and Schervish (2002, p. 726, ex. 6).

Section 5.4 Importance sampling is discussed in several of the books cited before.
An important reference to the subject in the econometrics literature is Geweke
(1989). The truncated exponential algorithm is based on an example in DeGroot
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and Schervish (2002, pp. 728–729), where different importance functions are used.
The GHK algorithm, which generalizes the bivariate normal example, is named
for J. Geweke, V. Hajivassiliou, and M. Keane. It is described in Greene (2003,
pp. 932–933) and in Train (2003, sec. 5.6.3)

5.8 Exercises

5.1 Use the probability integral transformation method to simulate from the distribution

f (x) =
{

2
a2 x, if 0 ≤ x ≤ a,

0, otherwise,

where a > 0. Set a value for a, simulate various sample sizes, and compare results to
the true distribution.

5.2 Use the probability integral transformation method to simulate 500 values from the
logistic distribution,

f (x) = e−x

(1 + e−x)2
, −∞ < x < ∞.

Compare your simulated values to the true distribution. Explore how the simulation
improves with larger sample sizes. Generalize your result to the general form of the
distribution,

f (x) = exp[−(x − α)/β]

β(1 + exp[−(x − α)/β])2
, −∞ < x < ∞, α, β > 0.

5.3 Generate samples from the distribution

f (x) = 2

3
e−2x + 2 e−3x

using the finite mixture approach. Hint: Note that the p.d.f. can be written as

f (x) = 1

3
(2 e−2x) + 2

3
(3 e−3x).

5.4 Draw 500 observations from Beta(3, 3) using algorithm 5.3. Compute the mean and
variance of the sample and compare them to the true values.

5.5 Draw 500 observations from N (2, 4) using Algorithm 5.4. Compute the mean and
variance of the sample and compare them to the true values. Overlay a histogram of
the sample values on a graph of the true distribution and discuss how well the sample
approximates the true distribution.

5.6 Verify Equation (5.3).
5.7 Use importance sampling to compute P (0.2 < x1 ≤ 2,−1 < x2 ≤ 5), where

(x1, x2) ∼ N2(µ,
), µ = (1,−0.5)′, and


 =
(

2 1
1 3

)
.
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Chapter 6

Basics of Markov Chains

WE HAVE SEEN in the previous chapter that there exist methods to generate
independent observations from the standard probability distributions, including
those described in the appendix. But we still have the problem of what to do when
faced with a nonstandard distribution such as the posterior distribution of parame-
ters of the conditionally conjugate linear regression model. Although the methods
described before can, in principle, deal with nonstandard distributions, doing so
presents major practical difficulties. In particular, they are not easy to implement in
the multivariate case, and finding a suitable importance function for the importance
sampling algorithm or a majorizing density for the AR algorithm may require a very
large investment of time whenever a new nonstandard distribution is encountered.

These considerations impeded the progress of Bayesian statistics until the devel-
opment of Markov chain Monte Carlo (MCMC) simulation, a method that became
known and available to statisticians in the early 1990s. MCMC methods have
proved to be extremely effective and have greatly increased the scope of Bayesian
methods. Although a disadvantage of this family of methods is that it does not
provide independent samples, it has the great advantage of flexibility: it can be
implemented for a great variety of distributions without having to undertake an
intensive analysis of the special features of the distribution. We note, however, that
an analysis of the distribution may shed light on the best algorithm to use when
more than one is available.

Since these methods rely on Markov chains, a type of stochastic process, this
chapter presents some basic concepts of the theory, and the next chapter utilizes
these concepts to explain MCMC methods.

6.1 Finite State Spaces

Consider a stochastic process indexed by t , Xt, that takes values in the finite set
S = {1, 2, . . . , s}. The index t is interpreted as time or iterate. For any pair of

76
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integers i, j ∈ S, pij is defined as the probability that Xt+1 = j given that Xt = i,

that is,

pij = P (Xt+1 = j |Xt = i), i, j ∈ S. (6.1)

The pij are transition probabilities. The assumption that the probability distribution
at time t + 1 depends only on the state of the system at t is called the Markov
property, and the resulting stochastic process is a Markov process. A Markov
process is more general than is an independent process, but does not include all
stochastic processes. We further assume, implicit in the notation, that the pij do
not depend on t. This type of stochastic process is called a homogeneous Markov
chain. These simple definitions and assumptions generate a powerful and elegant
mathematical theory.

Since the pij are probabilities, we have pij ≥ 0, and since the process remains
in S,

s∑
j=1

pij = 1.

It is convenient to define the s × s transition matrix P = {pij }. The ith row of P ,
(pi1, . . . , pis), specifies the distribution of the process at t + 1, given that it is in
state i at t .

For example, the transition matrix,

P =
(

0.750 0.250

0.125 0.875

)
, (6.2)

specifies that the process remains in state 1 with probability 0.750 and moves to
state 2 with probability 0.250 if it starts in state 1. And, if it starts in state 2, it moves
to state 1 with probability 0.125 and remains in state 2 with probability 0.875.

Now consider the distribution of the state at t + 2, given that it is in i at t . This
distribution is denoted by p

(2)
ij and can be computed as follows: to go from state i

to state j in two steps, the process goes from i at t to any other state k at time t + 1
and then from k to j at t + 2. This transition occurs with probability

p
(2)
ij =

∑
k

pikpkj . (6.3)

You can verify that the matrix of the p
(2)
ij is given by PP ≡ P 2. Having done so, you

can show by induction that the values of p
(n)
ij are the ij th entries in the matrix P n,

where n is any integer. It is convenient to define p
(0)
ij as 1 if i = j and 0 otherwise.

We will be mostly concerned with what happens to p
(n)
ij as n becomes large. Before

doing so, we present an example and a few definitions.
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A simple example is that of completely random motion or independence: let all
rows of P be identical, that is, pij = pj for all i. In this case, the probability of
moving from state i to state j depends only on j . An independent coin tossing
experiment is an example. Let heads be state 1 and tails be state 2. Let p1 = 2/3
and p2 = 1/3. Verify that each row of the transition matrix is the same.

If p
(n)
ij > 0 for some n ≥ 1, we say j is accessible from i and write i → j.

If i → j and j → i, we say i and j communicate, and write i ↔ j. It can be
shown that the communication relationship between states defines an equivalence
relationship; that is, i ↔ i (reflexivity); i ↔ j ⇐⇒ j ↔ i (symmetry); and i ↔
j and j ↔ k ⇒ i ↔ k (transitivity).

This equivalence relationship places the states into equivalence classes within
which the states communicate. A very important idea in the theory can now be
defined: a Markov process is irreducible if there is just one equivalence class.
What this means is that starting from state i, the process can reach any other state
with positive probability. Suppose, for example, P takes the form

PR =
(

P1 0
0 P2

)
, (6.4)

where P1 and P2 are m × m. Then it should be easy to see that if the process starts
in any of the first m states, it will never leave them. And, of course, if it starts in
one of the states m + 1, . . . , 2m, it will never leave them either. The process PR is
not irreducible, and the state at which the process begins has a very large effect on
its subsequent path.

Another important property of a chain is periodicity. Consider a transition matrix
of the form

PP =
(

0 P1

P2 0

)
, (6.5)

where P1 and P2 are m × m. If at t = 1, the process is in one of the first m states,
it must go to one of the second m at t = 2, whereupon it must return to the first m

states at t = 3, and so on. Positive probabilities of returning to a state in either of
the two subsets exist only at even values of n. This is described by saying the period
is of the chain is 2. If the period is 1 for all states, the chain is said to be aperiodic.
More formally, if i → i, then the period of i is the greatest common divisor of
the integers in the set A = {n ≥ 1 : p

(n)
ii > 0}. In words, if di is the period of i,

then p
(n)
ii = 0 whenever n is not a multiple of di , and di is the largest integer with

this property. Note that a chain is aperiodic if p
(n)
ii > 0 for all i and for sufficiently

large n.
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MCMC methods are based on the next definition. The probability distribution
π = (π1, . . . , πs)′ is an invariant distribution for P if π ′ = π ′P , or

πj =
∑

i

πipij , j = 1, . . . , s. (6.6)

The right-hand side of this equation is the probability that the process is in state j

at any t marginalized over the states at t − 1; it can be interpreted as the probability
of starting the process at state i with probability πi and then moving to state j with
probability pij . The fact that the resulting value is πj is what makes π an invariant
distribution: if the states are chosen according to π , the probability is πj that the
system is in state j at any time. Note that π ′ is a characteristic vector of P with a
characteristic root equal to 1.

For an example of an invariant distribution, consider the transition matrix of
Equation (6.2). From π ′P = π ′, we have

(π1, π2)

(
0.750 0.250
0.125 0.875

)
= (π1, π2),

or

0.750π1 + 0.125π2 = π1,

and, since π2 = 1 − π1,

π1 = 0.750π1 + 0.125(1 − π1),

which implies π = (1/3, 2/3). This example is generalized in Exercise 6.2.
An important topic in Markov chain theory is the existence and uniqueness of

invariant distributions. We can see immediately that irreducibility is a necessary
condition for P to have a unique invariant distribution: in PR mentioned earlier,
let π1 satisfy π ′

1P1 = π ′
1 and π2 satisfy π ′

2P2 = π ′
2. Then it is easy to verify that

π = (wπ1, (1 − w)π2), 0 ≤ w ≤ 1, is an invariant distribution for P , which shows
that the invariant distribution is not unique.

A special case of an irreducible and aperiodic Markov chain is one in which all
pij > 0. For these, we have the following theorem.

Theorem 6.1 Suppose S is finite and pij > 0 for all i, j. Then there exists a
unique probability distribution πj , j ∈ S, such that

∑
i πipij = πj for all j ∈ S.

Moreover,

|p(n)
ij − πj | ≤ rn, (6.7)

where 0 < r < 1, for all i, j and n ≥ 1.

A proof may be found in Bhattacharya and Waymire (1990, p. 126).
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The theorem tells us that, in a finite state space with all probabilities positive,
not only is there a unique invariant distribution, but also that p

(n)
ij converges at a

geometric rate (rn) to πj . What is interesting about the latter result is that for large
enough n, the initial state i plays almost no role. Another way of putting it is to
note that the result implies that P n converges quickly to a matrix whose rows are
all π ′. Recall that this is the property of an independent process. We illustrate this
property of P n with the transition matrix of (6.2) by computing

P 10 =
(

0.339 0.661
0.330 0.670

)
,

and

P 20 =
(

0.333 0.667
0.333 0.667

)
,

from which we see that P n has already reached its invariant distribution to three
decimal places when n = 20.

This theorem, in more general forms, is the basis for MCMC methods. It tells
us that if a Markov chain satisfies certain conditions, the probability distribution
of its nth iterate is, for large n, very close to its invariant distribution; that is, if
drawings are made from the nth, (n + 1)st, . . . iterate of the process, for large n

the probability distribution of the drawings is the invariant distribution. This fact
has an important implication for simulation: if we can find a Markov process for
which the invariant distribution is the target distribution, we can simulate draws
from the process to generate values from the target distribution.

As an example, we may simulate values from the transition matrix of (6.2) by
arbitrarily choosing the starting state (1 or 2) and then choosing subsequent states
according to the probabilities of the transition matrix. After generating a large
number of draws in this fashion, the proportion of the time the process is in state 1
is an estimate of π1; see Exercise 6.3.

The restriction pij > 0 for all i, j is unnecessarily restrictive. The theorem can
be generalized to the following theorem.

Theorem 6.2 Let P be irreducible and aperiodic over a finite state space. Then
there is a unique probability distribution π such that

∑
i πipij = πj for all j ∈ S

and

|p(n)
ij − πj | ≤ rn/ν,

for all i, j ∈ S, where 0 < r < 1, for some positive integer ν.
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A proof may be found in Bhattacharya and Waymire (1990, p. 128). The proof
involves making estimates of the difference between successive values of |p(n)

ij −
πj | and showing these go to zero with n.

Rather than prove the theorem, let us see what happens when the assumptions
are violated. First consider the reducible transition matrix PR. We have already
noted that it does not have a unique invariant distribution. Since

P n
R =

(
P n

1 0
0 P n

2

)
,

its nth iterate does not have the same probability distribution in each of its rows
and does not converge to anything useful for MCMC purposes. Next consider the
irreducible but periodic matrix PP : we have

P 2
P =

(
P1P2 0

0 P2P1

)
,

and

P 3
P =

(
0 P1P2P1

P2P1P2 0

)
.

Since this alternating pattern continues for every iterate, P n
P does not converge to

a matrix with identical rows. Thus, irreducibility and aperiodicity are necessary
conditions for the theorem.

Although Theorem 6.2 states that irreducibility and aperiodicity are sufficient
to yield a result that justifies the MCMC method for finite state spaces, we need to
consider more general state spaces because most applications involve continuous
distributions. Before turning to these and the additional complications they bring,
we briefly examine Markov chains with a countable number of states.

6.2 Countable State Spaces

An example of a countable state space is the simple random walk. In this process,
S = {0, ±1, ±2, . . .}, and the transition probabilities are

pij =


p, if j = i + 1,

q, if j = i − 1,

0, otherwise,

where 0 < p < 1 and q = 1 − p. The possible states are all positive and negative
integers, a countable space.

Irreducibility and aperiodicity no longer imply the existence of a unique invariant
distribution when S is countable but not finite. Another concept, recurrence, must
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Figure 6.1. Random walk, p = q = 0.5.

be introduced. To see the problem, consider the Markov chain defined by the
following transition probabilities:

pij =


p, if j = i + 1,

r, if j = i,

q, if j = i − 1.

This process is called a random walk. Starting from i, it moves to i + 1 with
probability p, to i − 1 with probability q, and stays at i with probability r, where
p + q + r = 1 and p, q, r ≥ 0. If all three probabilities are positive, it should be
verified that the process is irreducible and aperiodic. Figure 6.1 illustrates the first
500 values generated from a random walk with p = q = 0.5. Note that the process
drifts with no clear pattern.

Suppose now that p and q are positive and p > q. Figure 6.2 illustrates the case
p = 0.55, q = 0.45. You can see how the process trends upward. It can be shown
that the process drifts off to +∞ in the sense that p

(n)
ij → 0 for all i, j. This means

that, starting from i, the probability that any finite value of j will be reached goes
to zero, which implies that this process has no invariant probability distribution.
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Figure 6.2. Random walk, p = 0.55, q = 0.45.

To salvage a counterpart of Theorems 6.1 and 6.2, the concept of recurrence is
needed.

Let Pj (A) denote the probability that event A occurs, given that the process
starts at j . Then state j is called recurrent if

Pj (Xn = j i.o.) = 1,

where i.o. means “infinitely often.” In words, the definition states that the process
returns to state j an infinite number of times with probability 1. If a state is not
recurrent, it is transient. In the random walk with p > q, none of the states are
recurrent. Because the process drifts off to infinity with probability 1, the probability
of an infinite number of returns to any state is not one. It can be proved that if a
process is irreducible, all states are either transient or recurrent. In the random walk
example, all states are recurrent if p = q.

Recurrence is not strong enough to imply a unique invariant distribution. To
specify a stronger condition, let τ

(1)
j be the time it takes for the process to make its

first return to state j :

τ
(1)
j = min{n > 0 : Xn = j}.
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A state j is called positive recurrent if Eτ
(1)
j < ∞. Otherwise, it is null recurrent.

We can now state a theorem.

Theorem 6.3 Assume that the process is irreducible. Then

6.1 If all states are recurrent, they are either all positive recurrent or all null recurrent.
6.2 There exists an invariant distribution if and only if all states are positive recurrent. In

that case, the invariant distribution π is unique and is given by

πj = (Ejτ
(1)
j )−1.

6.3 In case the states are positive recurrent, for any initial distribution, if Eπ |f (X1)| < ∞,

lim
n→∞

1

n

n∑
m=1

f (Xm) = Eπf (X1).

For a proof, see Bhattacharya and Waymire (1990, p. 145).
This theorem has many implications for MCMC methods and generalizes readily

to continuous state spaces. Under the conditions stated in the theorem, we know
that there is a unique invariant distribution and that averages of functions evaluated
at sample values converge to their expected values under the invariant distribution.
Since a possible function is the indicator function 1(Xn = i), which has expected
value πi, this value can be estimated from sample data. A central limit theorem
may also be proved in this setup; see Bhattacharya and Waymire (1990, p. 149).

Convergence of P n to a matrix whose rows are the invariant distribution requires
aperiodicity.

Theorem 6.4 If P is an aperiodic recurrent chain, limn→∞ P n exists. If P is an
aperiodic positive-recurrent chain, then limn→∞ P n = A, where A is a matrix
whose rows are the invariant distribution.

For a proof, see Kemeny et al. (1976, p. 153).
Markov chain theory, as presented here and in most textbooks, starts with the

transition probabilities P and determines conditions under which the rows of P n

converge to an invariant distribution. In contrast, MCMC theory starts with an
invariant distribution and finds a P that converges to it. Since the existence of an
invariant distribution is not in doubt, we can quote another theorem that covers this
case.

Theorem 6.5 Suppose P is π -irreducible and that π is an invariant distribution
for P . Then P is positive recurrent and π is the unique invariant distribution of P .
If P is also aperiodic, then for π -almost all x,

‖P n(x, ·) − π‖ → 0.
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In this theorem, which also applies to the continuous case, π -irreducible means
that for some n, P n(x, A) > 0 for any set A such that π (A) > 0. The implication
for our discussion is that recurrence need not be assumed explicitly if it is known
that an invariant distribution exists. The distribution mentioned in the theorem must
be a proper (normalizable) distribution. Generalizations to some nonnormalizable
distributions are given in Meyn and Tweedie (1993).

6.3 Continuous State Spaces

Now suppose that the states of a Markov process take values in R. The counterpart
of the transition probabilities is the transition kernel or transition density p(x, y).
The notation p(x, y) is used because the kernel is the continuous counterpart of
pij , but it is more instructive to interpret it as the conditional density p(y|x). The
Markov property is captured by assuming that the joint density, conditional on the
initial value X0 = x0, is given by

f(X1,...,Xn|X0=x0)(x1, . . . , xn) = p(x0, x1)p(x1, x2) · · ·p(xn−1, xn).

Given that the process is currently at state x, the probability that it moves to a point
in A ⊆ R is given by

P (x, A) =
∫

A

p(x, y) dy. (6.8)

The nth step ahead transition is computed analogously to Equation (6.3),

P (n)(x, A) =
∫

R

P (x, dy)P (n−1)(y, A).

An invariant density π (y) for the transition kernel p(x, y) is a density that satisfies

π (y) =
∫

R

π (x)p(x, y) dx. (6.9)

As an example of an invariant density, consider the autoregressive process of
order 1,

yt = θyt−1 + ut ,

where |θ | < 1 and ut ∼ N(0, σ 2). This process is taken up in more detail and gener-
ality in Section 10.1, where it is shown that E(yt ) = 0 and Var(yt ) = σ 2/(1 − θ2).
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We now verify that the invariant distribution is Gaussian with those parameters:

π (yt ) =
∫

π (yt−1)f (yt−1, yt ) dyt−1

∝
∫

exp

[
−1 − θ2

2σ 2
y2

t−1

]
exp

[
− 1

2σ 2
(yt − θyt−1)2

]
dyt−1

∝
∫

exp

[
− 1

2σ 2
[(1 − θ2)y2

t−1 + y2
t − 2θyt−1yt + θ2y2

t−1]

]
dyt−1

∝
∫

exp

[
− 1

2σ 2
[(yt−1 − θyt )

2 + (1 − θ2)y2
t ]

]
dyt−1

∝ exp

[
−1 − θ2

2σ 2
y2

t

]
,

the last expression is that of a N(0, σ 2/(1 − θ2)) distribution as was to be shown.
For processes in continuous state spaces, the definitions of irreducibility and

aperiodicity are as before, with p(x, y) in place of pij . To define recurrence for
continuous state spaces, let Px(A) denote the probability of event A given that the
process started at x. Then, a π -irreducible chain with invariant distribution π is
recurrent if for each B with π (B) > 0,

Px(Xn ∈ B i.o.) > 0, for all x,

Px(Xn ∈ B i.o.) = 1, for π -almost all x.

The chain is Harris recurrent if Px(Xn ∈ B i.o.) = 1 for all x.

The following theorems use the total variation distance between two measures,
defined as follows. The total variation norm of a bounded, signed measure λ

is ‖λ‖ = supA λ(A) − infA λ(A), and the total variation distance between two
such measures λ1 and λ2 is ‖λ1 − λ2‖. Tierney (1994, p. 10) states the following
theorems.

Theorem 6.6 Suppose that P is π -irreducible and that π is an invariant distribu-
tion for P . Then P is positive recurrent and π is the unique invariant distribution
of P. If P is also aperiodic, then for π -almost all x,

‖P n(x, ·) − π‖ → 0,

with ‖ · ‖ denoting the total variation distance. If P is Harris recurrent, then the
convergence occurs for all x.

Theorem 6.7 If ‖P n(x, ·) − π‖ → 0 for all x, the chain is π -irreducible, aperi-
odic, positive recurrent, and has invariant distribution π.

These theorems form the basis of MCMC methods. In practice, the researcher
attempts to construct an irreducible, aperiodic, and positive recurrent transition
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kernel for which the invariant distribution is the target distribution. Several sets of
sufficient conditions appear in the literature to guarantee this, some of which are
quoted in Chapter 7.

We conclude by noting that all of the aforementioned results generalize im-
mediately to the case in which the random variables Xn are vectors. Thus, in the
finite and countable cases, the states over which the Xn are defined may be vector
valued. In the continuous case, the Xn can be vectors in d-dimensional space, so
that Xn ∈ Rd under a suitably defined norm.

6.4 Further Reading and References

Chapter 6 Most introductions to Markov chain theory – an excellent one is Norris
(1997) – do a thorough job on finite and countable state spaces but provide little on
continuous state spaces. Bhattacharya and Waymire (1990) has some material on
both, and Billingsley (1986) is an excellent source for the discrete and countable
case; we also referred to Kemeny, Snell, and Knapp (1976). Meyn and Tweedie
(1993) cover the continuous case.

6.5 Exercises

6.1 Consider the transition matrix P ,

P =



1
3

2
3 0 0 0 0

0 0 1 0 0 0
1
4 0 0 1

4
1
2 0

0 0 0 1
8

7
8 0

0 0 0 0 0 1

0 0 0 0 1 0


,

and let i = 1, . . . , 6.
(a) Find the states accessible from state i.
(b) Find the states with which state i communicates.
(c) Identify the equivalence classes of this process.
(d) Is this process irreducible?
(e) Compute P 100 and P 101 (use a computer!), and explain the probabilities that you

find.
6.2 Let

P =
(

1 − α α

β 1 − β

)
. (6.10)

(a) Find the invariant distribution if 0 < α, β < 1. Is the process aperiodic? Is it
irreducible? What is lim P n in this case?
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(b) Suppose α = β = 0. Is there a unique invariant distribution? Is the process aperi-
odic? Is it irreducible? What is lim P n?

(c) Suppose α = β = 1. Is there a unique invariant distribution? Is the process aperi-
odic? Is it irreducible? What is lim P n?

6.3 Consider the transition matrix of (6.2).
(a) Compute and interpret P 2.
(b) Write a program to generate states {1, 2} of the chain using the probabilities from

the matrix. For example, P (st = 1|st−1 = 1) = 3/4. Allow the process to run for a
number of iterations, called the burn-in period, and then keep track of the generated
states. Compute the fraction of the iterations in which the chain is in state 1, and
compare your result to the invariant distribution. Experiment with the number of
burn-in and total iteration values to see how well the approximation works.

6.4 Write a computer program to generate 500 state values from the random walk with
parameters p = 0.3, q = 0.3, r = 0.4. Vary the values of p, q, and r to see how the
process behaves.

6.5 We can examine the speed of convergence to an invariant distribution with some matrix
algebra. Let P have a unique invariant distribution π , which implies that π ′ is a
characteristic vector with a characteristic root of unity. Let the rows of V contain the
characteristic vectors of P ,

V =


v′

1

v′
2
...
v′

s

 ,

and set � = diagonal(λ1, . . . , λs), assumed to be distinct.
(a) Verify that VP = �V .
(b) Verify that P t = V −1�tV and that the j th row of P t , p

(t)′
j = ∑

k vjkλt
kv

′
k , where

vjk is the jkth element of V −1.
(c) Show that p

(t)′
j → π ′ and that, by setting v′

1 = π ′, we have |λk| < 1, k = 2, . . . , s.

Conclude that we can write p
(t)′
j = π ′ +∑k=2 vjkλt

kv
′
k and that the speed of con-

vergence is governed by the characteristic root with the second largest absolute
value.

(d) Apply the result of the previous question to examine the speed of convergence of
Equation (6.10): verify that λ2 = 1 − α − β. Show that the rate of convergence
is maximized when α + β = 1. What does P equal in that case and why does
convergence take place so quickly? Discuss values of α and β that lead to slow
convergence.

6.6 (Norris, 1997, Example 1.3.3) Suppose you enter a casino with $i and win $1 with
probability p and lose $1 with probability q = 1 − p on each play of the game. The
transition probabilities are pi,i+1 = p, pi,i−1 = q. We compute hi = P (hit 0|W = i),
where W is your wealth; this is the probability that you lose all your money. (It is
assumed that the casino cannot go broke.)
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(a) Argue that h0 = 1 and hi = phi+1 + qhi−1.
(b) Show that, if p 
= q, hi satisfies the recurrence relation hi = A + B(q/p)i .
(c) If p < q, which is the usual case, argue that B = 0 and A = 1. (Remember that

hi ≤ 1. Why?)
(d) If p = q, show that hi = A + Bi, and argue that hi = 1.

6.7 Let

P =
 0 0.4 0.6

0.3 0 0.7
0.8 0.2 0

 .

Do the zeros on the main diagonal imply periodicity? Explain.
6.8 (Bhattacharya and Waymire, 1990, p. 216) Show that

π (y) = 2(1 − y), 0 ≤ y ≤ 1

is an invariant density for the transition kernel

p(x, y) =
{

e1−x, if y < x,

e1−x − ey−x, if y > x.
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Chapter 7

Simulation by MCMC Methods

THE BASIS OF an MCMC algorithm is the construction of a transition kernel (see
Section 6.3), p(x, y), that has an invariant density equal to the target density. Given
such a kernel, the process can be started at x0 to yield a draw x1 from p(x0, x1),
x2 from p(x1, x2), . . . , and xG from p(xG−1, xG), where G is the desired number
of simulations. After a transient period, the distribution of the xg is approximately
equal to the target distribution. The question is how to find a kernel that has the
target as its invariant distribution. It is remarkable that there is a general principle
for finding such kernels, the Metropolis–Hastings (MH) algorithm. We first discuss
a special case – the Gibbs algorithm or Gibbs sampler – and then explain a more
general version of the MH algorithm.

It is important to distinguish between the number of simulated values G and the
number of observations n in the sample of data that is being analyzed. The former
may be made very large – the only restriction comes from computer time and
capacity, but the number of observations is fixed at the time the data are collected.
Larger values of G lead to more accurate approximations. MCMC algorithms
provide an approximation to the exact posterior distribution of a parameter; that is,
they approximate the posterior distribution of the parameters, taking the number
of observations to be fixed at n. In contrast, frequentist procedures that invoke
such criteria as consistency are concerned with the effects of letting n become
large.

A brief comment on notation: when discussing simulation techniques in this
chapter, we follow the literature in denoting random variables by such symbols
as x, which usually denotes the current value of the chain, and y, which usually
denotes the next value, and the target distribution by f (·). For applications to
Bayesian inference, the random variables of interest are parameters θ and the
target is the posterior distribution π (θ |y), where y represents the data. We utilize
the latter notation in Part III.

90
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7.1 Gibbs Algorithm

7.1.1 Basic Algorithm

The Gibbs algorithm is a special case of the MH algorithm that can be used when it
is possible to sample from each conditional distribution. For example, suppose we
wish to sample from a nonstandard joint distribution f (x1, x2), where the variables
appear in two blocks, both of which may be vectors. Further suppose that the
two conditional distributions f (x1|x2) and f (x2|x1) are distributions for which
simulation algorithms are known. Then consider the following algorithm.

Algorithm 7.1: Gibbs algorithm with two blocks

7.1 Choose a starting value x
(0)
2 .

7.2 At the first iteration, draw

x
(1)
1 from f (x1|x(0)

2 ),

x
(1)
2 from f (x2|x(1)

1 ).

7.3 At the gth iteration, draw

x
(g)
1 from f (x1|x(g−1)

2 ),

x
(g)
2 from f (x2|x(g)

1 ),

until the desired number of iterations is obtained. (The roles of x1 and x2 may be
interchanged.)

Because the starting value is not drawn from the invariant distribution, some portion
of the initial sample must be discarded; this portion is the transient or burn-
in sample. The burn-in sample size B is usually set at several hundred to several
thousand, and checks can be made to see whether the choice matters; in most cases,
there are no theorems that indicate what B should be. For g > B, the distribution of
the draws is approximately the target distribution. We denote by G the sample size
after discarding the first B observations. Convergence diagnostics are discussed in
Section 7.3.

We now show that the invariant distribution of the Gibbs kernel is the target
distribution. To simplify the notation, let x = (x1, x2) be the values of the random
variables at the beginning of one iteration of the algorithm and y = (y1, y2) be the
values at the end of the iteration. The Gibbs kernel is

p(x, y) = f (y1|x2)f (y2|y1),
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from which we can compute∫
p(x, y)f (x) dx =

∫
f (y1|x2)f (y2|y1)f (x1, x2) dx1 dx2

= f (y2|y1)
∫

f (y1|x2)f (x2) dx2

= f (y2|y1)f (y1)

= f (y),

which proves that f (·) is the invariant distribution for the Gibbs kernel p(x, y).
Proof that the invariant distribution of the Gibbs kernel is the target distribution

is a necessary, but not sufficient condition for the kernel to converge to the target.
Such conditions are very technical and difficult to verify for particular cases, but
some general results are available. For example, Tierney (1994, p. 1712) states that
most Gibbs samplers satisfy the conditions of the following theorem.

Theorem 7.1 Suppose P is π -irreducible and has π as its invariant distribution.
If P (x, ·) is absolutely continuous with respect to π for all x, then P is Harris
recurrent.

Extending Gibbs sampling to d blocks of variables is possible when all of the
conditional densities f (xi |x−i) are distributions from which random draws can be
generated, where x−i are all the variables in the joint distribution other than xi . The
algorithm proceeds as follows (the ordering of the xi is arbitrary).

Algorithm 7.2: Gibbs algorithm with d blocks

7.1 Choose x
(0)
2 , . . . , x

(0)
d .

7.2 Draw

x
(1)
1 from f (x1|x(0)

2 , . . . , x
(0)
d )

x
(1)
2 from f (x2|x(1)

1 , x
(0)
3 , . . . , x

(0)
d )

...

x
(1)
d from f (xd |x(1)

1 , . . . , x
(1)
d−1).

7.3 At the gth iteration, draw

x
(g)
1 from f (x1|x(g−1)

2 , . . . , x
(g−1)
d )

x
(g)
2 from f (x2|x(g)

1 , x
(g−1)
3 , . . . , x

(g−1)
d )

...

x
(g)
d from f (xd |x(g)

1 , . . . , x
(g)
d−1).
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Since many applications of Gibbs sampling are presented in Part III, we offer only
two examples here.

Let yi ∼ N(µ, h−1), i = 1, . . . , n, be independently distributed, where the dis-
tribution has been parameterized in terms of the precision. We assume the condi-
tionally conjugate priors µ ∼ N(µ0, h

−1
0 ) and h ∼ G(α0/2, δ0/2). Verify that this

model is a special case of the normal linear regression model. From this specifica-
tion, we have

π (µ, h|y) ∝ hn/2 exp

[
−h

2

∑
(yi − µ)2

]
exp

[
−h0

2
(µ − µ0)2

]
× hα0/2−1 exp

[
−δ0h

2

]
.

From here, it is easy to derive the conditional posterior distribution of h,

π (h|µ, y) ∝ h(α0+n)/2−1 exp

[
−h

δ0 +∑(yi − µ)2

2

]
. (7.1)

Equation (7.1) is recognized as the density function of G[(α0 + n)/2, (δ0 +∑(yi −
µ)2)/2], which is available for sampling in all statistical packages.

We complete the square in µ to obtain

π (µ|h, y) ∝ exp

[
−h0 + hn

2

(
µ − h0µ0 + hnȳ

h0 + hn

)2
]

, (7.2)

which should be recognized as N[(h0µ0 + hnȳ)/(h0 + hn), (h0 + hn)−1] and is
available for sampling in all statistical packages. In algorithmic form,

Algorithm 7.3: Mean and precision for normal model

7.1 Choose a starting value for µ = µ(0).
7.2 Sample h(1) from G(α1/2, δ1/2), where α1 = α0 + n and δ1 = δ0 +∑(yi − µ(0))2.
7.3 At the gth iteration, draw

µ(g) from N [(h0µ0 + h(g−1)nȳ)/(h0 + h(g−1)n), (h0 + h(g−1)n)−1],

h(g) from G
[
α1/2,

(
δ0 +

∑
(yi − µ(g))2

)
/2
]
.

If desired, the sampling can begin with h(0) and the algorithm modified accordingly.
As a second example, we consider a more general version of the Poisson model

with changing parameters that is described in Exercise 3.8. We assume that

p(yi) =


e−θ1θ

yi

1

yi!
, for i = 1, . . . , k,

e−θ2θ
yi

2

yi!
, for i = k + 1, . . . , n,

(7.3)
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where yi = 0, 1, . . . , and the switch point k is unknown. The specification is
completed by assigning the conditionally conjugate priors,

θ1 ∼ G(α10, β10), θ2 ∼ G(α20, β20), π (k = j ) = 1/n, j = 1, . . . , n. (7.4)

We have assigned gamma distributions to θ1 and θ2 because they are posi-
tive and the discrete uniform distribution to k over the values 1, . . . , n, which
includes the possibility that no change occurs; that is, k = n. The details of
the algorithm are taken up in Exercise 7.3, and references may be found in
Section 7.4.

Although the Gibbs sampler usually works well in practice, there are some
situations in which it does not. If there is a high correlation between one or more
of the random variables in different blocks, the algorithm may not “mix well.”
This means that the sampler fails to traverse the full support of the sample space,
generating iterations from only a limited portion. For a large enough number of
iterations, it will traverse the space, but it may fail for the number of iterations
generated in practice.

As an example, consider the problem of sampling X = (X1, X2) from the bi-
variate normal distribution N2(0, 
), where


 =
(

1 ρ

ρ 1

)
.

We emphasize that most statistical packages allow efficient and independent sam-
pling from the bivariate normal distribution, and the method we examine is not used
in practice. We employ the Gibbs sampler with X1 and X2 as our two blocks. You
should verify that f (X1|x2) ∼ N(ρx2, 1 − ρ2) and f (X2|x1) ∼ N(ρx1, 1 − ρ2).
This algorithm performs badly if ρ ≈ 1, which implies that the conditional vari-
ance of both variables (1 − ρ2) is close to zero. Accordingly, in each iteration, the
sampler generates values that are very close to the value of the previous iteration,
which implies that the initial value x

(0)
1 or x

(0)
2 can play a large role in the gen-

erated sample. Since the marginal distribution is known to be X1 ∼ N(0, 1), we
can compare the results of a Gibbs sampler, where G = 5,000 and N = 500, to
the true distribution. With ρ = 0.999 we find that x̄1 = 1.084 when x

(0)
2 = 1 and

x̄1 = −0.623 when x
(0)
2 = −2. Note that the mean is greatly affected by the starting

value of the algorithm. In contrast, when ρ = 0.5, the starting value of −2 has little
effect, yielding a mean of 0.0587. We discuss in Section 7.3 some methods for
detecting poor mixing.
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7.1.2 Calculation of Marginal Likelihood

We next consider the problem of computing the marginal likelihood when working
with a nonstandard distribution. In Section 3.2.4, we point out that the marginal
likelihood is the inverse of the normalizing constant of the posterior distribution.
The normalizing constant is unknown when working with nonstandard distribu-
tions, but it is not needed for the implementation of the Gibbs and MH algorithms.
It is, however, needed for computing Bayes factors. Several methods have been
proposed, and we describe Chib’s widely used approach to estimating the marginal
likelihood when a sample is generated from a Gibbs algorithm.

The Chib method begins with the identity

π (θ∗|y) = f (y|θ∗)π (θ∗)

f (y)
,

where θ∗ is a particular value of θ and f (y) is the marginal likelihood. For numerical
accuracy, θ∗ is usually chosen to be the mean of the sample values. The identity
can be written as

f (y) = f (y|θ∗)π (θ∗)

π (θ∗|y)
,

and the Chib method computes the right-hand side from the output of a Gibbs
sampler. The terms in the numerator of the right-hand side are readily computed;
they are the likelihood function and prior distribution, respectively, evaluated at θ∗.
The main problem is to compute π (θ∗|y), for which the normalizing constant is
not known.

Consider the simple case where the Gibbs algorithm is run in two blocks, denoted
by θ1 and θ2. We may write

π (θ∗
1 , θ∗

2 |y) = π (θ∗
1 |θ∗

2 , y)π (θ∗
2 |y).

The first term on the right can be evaluated immediately because the conditional
distributions are known when running the Gibbs sampler. To compute the second,
Chib employs the identity

π (θ∗
2 |y) =

∫
π (θ1, θ

∗
2 |y) dθ1

=
∫

π (θ∗
2 |θ1, y)π (θ1|y) dθ1,

which can be approximated by

π̂(θ∗
2 |y) = 1

G

∑
π (θ∗

2 |θ (g)
1 , y),

where the values of θ
(g)
1 are taken from the Gibbs output.
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When there are three or more blocks, the computation requires additional sim-
ulations. Taking the three-block case as an example, we start with the identity

f (y) = f (y|θ∗
1 , θ∗

2 , θ∗
3 )π (θ∗

1 , θ∗
2 , θ∗

3 )

π (θ∗
1 , θ∗

2 , θ∗
3 |y)

.

The numerator is readily available, and we write the denominator as

π (θ∗
1 , θ∗

2 , θ∗
3 |y) = π (θ∗

1 |y)π (θ∗
2 |θ∗

1 , y)π (θ∗
3 |θ∗

1 , θ∗
2 , y).

The Gibbs output can be used to approximate the first term as

π̂ (θ∗
1 |y) = 1

G

∑
π
(
θ∗

1 |θ (g)
2 , θ

(g)
3 , y

)
.

For the second term, we use

π (θ∗
2 |θ∗

1 , y) =
∫

π (θ∗
2 |θ∗

1 , θ3, y)π (θ3|θ∗
1 , y) dθ3.

Then

π̂ (θ∗
2 |θ∗

1 , y) = 1

G

∑
π
(
θ∗

2 |θ∗
1 , θ

(g)
3 , y

)
,

where the θ
(g)
3 are generated from a “reduced run,” in which θ

(g)
2 and θ

(g)
3 are

sampled from π (θ2|θ∗
1 , θ3, y) and π (θ3|θ∗

1 , θ2, y), respectively, and θ1 is fixed at θ∗
1 .

Computations for the reduced run can use the same code as the original run, but
θ1 is held constant at θ∗

1 . Finally, the value of π (θ∗
3 |θ∗

1 , θ∗
2 , y) is available directly

from the conditional distribution.
Since many of the models discussed in Part III use only the Gibbs algorithm,

readers interested in applications may proceed to Section 7.3 and then to Part III,
returning to Section 7.2 when the MH algorithm is encountered.

7.2 Metropolis–Hastings Algorithm

7.2.1 Basic Algorithm

The MH algorithm is more general than the Gibbs sampler because it does not
require that the full set of conditional distributions be available for sampling.
Although it can be used in blocks, we first explain it in the one-block case. To
generate a sample from f (X), where X may be a scalar or vector random variable,
the first step is to find a kernel p(X, Y ) that has f (·) as its invariant distribution.
Since the Gibbs sampler is of no use when one or more of the conditionals are
not available for sampling, a different approach to finding a kernel is necessary. To
that end, we introduce the idea of a reversible kernel, defined as a kernel q(·, ·) for
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which

f (x)q(x, y) = f (y)q(y, x).

If q is reversible,

P (y ∈ A) =
∫

A

∫
Rd

f (x)q(x, y) dx dy

=
∫

A

∫
Rd

f (y)q(y, x) dx dy

=
∫

A

f (y) dy.

This shows that f (·) is the invariant distribution for the kernel q(·, ·) because the
probability that y is contained in A is computed from f (·).

The fact that a reversible kernel has this property can help in finding a kernel that
has the desired target distribution. Chib and Greenberg (1995b) show how this can
be done when starting with a nonreversible proposal density. We now follow their
derivation of the algorithm. The trick is to make an irreversible kernel reversible.
If a kernel is not reversible, for some pair (x, y) we have

f (x)q(x, y) > f (y)q(y, x).

The MH algorithm deals with this situation by multiplying both sides by a function
α(·, ·) that turns the irreversible kernel q(·, ·) into the reversible kernel p(x, y) =
α(x, y)q(x, y):

f (x)α(x, y)q(x, y) = f (y)α(y, x)q(y, x). (7.5)

The expression α(x, y)q(x, y) is interpreted as follows: if the present state of the
process is x, generate a value y from the kernel q(x, y) and make the move to y

with probability α(x, y). If the move to y is rejected, the process remains at x. We
call q(x, y) the proposal density because of its analogous role in the AR algorithm,
but the MH algorithm is very different from the latter. In the AR case, the algorithm
continues to generate values until a candidate is accepted. In contrast, in the MH
algorithm, the procedure returns the current state of the process as the next state
when a candidate is rejected and continues to the next iteration; this implies that
values may be repeated in a simulation run. Note that this transition kernel combines
a continuous kernel q(x, y) and a probability mass function α(x, y).

How to define α(x, y) is the next question. Suppose that

f (x)q(x, y) > f (y)q(y, x).

Roughly speaking, this means that the kernel goes from x to y with greater prob-
ability than it goes from y to x. Accordingly, if the process is at y and the kernel
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proposes a move to x, that move should be made with high probability. This can be
done by setting α(y, x) = 1. But then, α(x, y) is determined because, from (7.5),

f (x)q(x, y)α(x, y) = f (y)q(y, x)

implies

α(x, y) =
min

{
f (y)q(y, x)

f (x)q(x, y)
, 1

}
, if f (x)q(x, y) 
= 0,

0, otherwise.
(7.6)

The condition that f (x)q(x, y) 
= 0 is usually satisfied in practice because the
starting value is always chosen in the support of the distribution and the kernel
usually generates values in the support of the distribution. In some cases, however,
it is convenient to generate values outside the support. As an example, draws from
an untruncated proposal distribution are sometimes used to generate values from
a truncated distribution because it is difficult to specify an appropriate truncated
proposal density.

It is important to recognize that, in computing α(·, ·), an unknown constant in the
target distribution is not needed, because it cancels out via the fraction f (y)/f (x).

To summarize in algorithmic form:

Algorithm 7.4: MH algorithm

7.1 Given x, generate Y from q(x, y).
7.2 Generate U from U (0, 1). If

U ≤ α(x, Y ) = min

{
f (Y )q(Y, x)

f (x)q(x, Y )
, 1

}
,

return Y . Otherwise, return x and go to 1.

Although we have shown that the MH kernel has the desired target distribution,
this is only a necessary condition for convergence to the target. For Metropolis
kernels, Tierney (1994, p. 1713) provides the following theorem.

Theorem 7.2 Suppose P is a π -irreducible Metropolis kernel. Then P is Harris
recurrent.

The next implementation issue is how to choose the proposal density q(·, ·). In
many cases, there are several possible choices, and which is best is often a matter
of judgment. Several considerations enter into this decision. On the one hand,
the kernel should generate proposals that have a reasonably good probability of
acceptance; if not, the same value will be returned often, and the algorithm will
mix poorly. On the other hand, there may be a high acceptance rate if the kernel
generates only proposals that are close to the current point, but the sampling may
then be confined to a small part of the support, again leading to poor mixing.
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Two straightforward, but not necessarily good, kernels are the random-walk
kernel and the independence kernel. For the former, the proposal y is generated
from the current value x by the addition of a random variable or vector u, y = x + u,
where the distribution of u is specified. If that distribution is symmetric around
zero, that is, h(u) = h(−u), the kernel has the property that q(x, y) = q(y, x),
which implies that α(x, y) = f (y)/f (x). Accordingly, with a random-walk kernel,
a move from x to y is made for certain if f (y) > f (x). A move from a higher
density point to a lower density point is not ruled out, but the probability of such a
move f (x)/f (y) is less than one.

The independence kernel has the property q(x, y) = q(y); that is, the proposal
density is independent of the current state of the chain. For this type of kernel

α(x, y) = f (y)/q(y)

f (x)/q(x)
,

and our comments about the probability of a move are similar to those about the
random-walk chain if f (·) is replaced by f (·)/q(·).

As a simple example of an independence chain, we generate data from a
Beta(3, 4) distribution with U (0, 1) as the proposal density. In algorithm form,
we have the following.

Algorithm 7.5: MH for Beta(3, 4) with U(0, 1) proposal

7.1 Set x(0) equal to a number between zero and one.
7.2 At the gth iteration, generate U1 and U2 from U (0, 1).
7.3 If

U1 ≤ α(x(g−1), U2) = U 2
2 (1 − U2)3

(x(g−1))2(1 − x(g−1))3
,

set x(g) = U2. Otherwise set x(g) = x(g−1).
7.4 Go to 2 and continue until the desired number of iterations is obtained.

Figure 7.1 displays results for 5,000 iterations after discarding the first 500; it
indicates a good fit between the generated values, plotted as a histogram, and the
true distribution, plotted as a solid line. The acceptance probability is 0.57, meaning
that 57% of the proposals were accepted. The mean of the sample values is 0.4296,
compared to the theoretical mean of 3/7 = 0.4286.

We recommend a “tailored” kernel: construct a kernel that approximates the
target distribution. This may be done by choosing a fat-tailed distribution, such as
the multivariate t with small ν, whose mean and scale matrix are chosen to coincide
with the mode and negative inverse of the second-derivative matrix at the mode,
respectively. An example of a tailored kernel may be found in Section 9.2. If there
is just one parameter block, the tailored kernel is an independence kernel. If there
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Figure 7.1. Simulation results for MH sampling of Beta(3, 4) with U (0, 1) proposal.

is more than one block, the tailored kernel for the block being updated may depend
on the current values of parameters in the other blocks.

Implementation of the MH algorithm is often facilitated by blocking, as in the
Gibbs sampler. Blocking allows sampling for a few variables at a time, which
may make it easier to find suitable proposal densities. Thus, if the target density
f (X1, X2) has two blocks, we can use the MH algorithm to generate from each
block.

Algorithm 7.6: MH algorithm with two blocks

7.1 Let the state be (x1, x2) at the gth iteration and (y1, y2) at the g + 1st iteration. Draw

Z1 from q1(x1, Z1|x2) and U1 from U (0, 1).

7.2 If

U1 ≤ α(x1, Z1|x2) = f (Z1, x2)q1(Z1, x1|x2)

f (x1, x2)q1(x1, Z1|x2)
,

return y1 = Z1. Otherwise return y1 = x1.
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7.3 Draw

Z2 from q2(x2, Z2|y1) and U2 from U (0, 1).

7.4 If

U2 ≤ α(x2, Z2|y1) = f (y1, Z2)q2(Z2, x2|y1)

f (y1, x2)q2(x2, Z2|y1)
,

return y2 = Z2. Otherwise return y2 = x2.

In this algorithm, the kernel q1(x1, Y1|x2) is analogous to q(x, Y ); it generates
a value Y1 conditional on the current value x1 in the same block and the current
value x2 in the other block. If “tailored” proposal densities are used, new densi-
ties are specified for q1(x1, Z1|x2) and q2(x2, Z2|y1) for each value of x2 and y1,
respectively. This algorithm can be extended to an arbitrary number of blocks.

Having introduced blocks of parameters, we can show that the Gibbs sampler is
a special case of the MH algorithm. Consider α(·, ·) when the kernel for moving
from the current value x1 to the proposal value Y1 is the conditional distribution
f (x1|x2), which is assumed to be available for sampling. Then

α(x1, Y1|x2) = f (Y1, x2)f (x1|x2)

f (x1, x2)f (Y1|x2)
,

but, since f (Y1|x2) = f (Y1, x2)/f (x2) and f (x1|x2) = f (x1, x2)/f (x2), it follows
that α(x1, Y1|x2) = 1, showing that the Gibbs algorithm is an MH algorithm where
the proposal is always accepted.

When implementing the MH algorithm to blocks of parameters, Gibbs sampling
may be employed in any blocks for which the conditional distributions are available
for sampling. In the remaining blocks, the MH algorithm may be employed in
the usual way, that is, by finding suitable proposal densities and accepting with
probability α(x, y). At each iteration, the algorithm works through the blocks,
either moving to a new value or retaining the current value of the variables in the
block. Examples of such algorithms appear in Part III.

7.2.2 Calculation of Marginal Likelihood

Chib and Jeliazkov (2001) have developed a modification of the Chib method for
computing the marginal likelihood from MH output. We explain it for the one-block
case; extensions may be found in their article. The method again starts with the
identity

f (y) = π (y|θ∗)π (θ∗)

π (θ∗|y)
,
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where computing the denominator on the right-hand side is the biggest problem.
From (7.5),

α(θ, θ∗|y)q(θ, θ∗|y)π (θ |y) = α(θ∗, θ |y)q(θ∗, θ |y)π (θ∗|y),

from which we find

π (θ∗|y) =
∫

α(θ, θ∗|y)q(θ, θ∗|y)π (θ |y) dθ∫
α(θ∗, θ |y)q(θ∗, θ |y) dθ

.

The numerator of this expression can be estimated directly from the MH output
θ (g) as

1

G

∑
g

α
(
θ (g), θ∗|y)q(θ (g), θ∗|y),

and the denominator can be estimated by drawing θ (j ) from q(θ∗, θ |y), j =
1, . . . , J ; that is, generate J values from the proposal density, all of which are
conditioned on θ∗, and then compute

1

J

∑
j

α(θ∗, θ (j )|y).

It is important for this computation that α(θ (g), θ∗|y) be computed from (7.6) as
the minimum of 1 and the fraction in the curly braces.

7.3 Numerical Standard Errors and Convergence

The n.s.e. is defined in Section 5.6 as
√

Var(Z)/G. For independent samples, the
variance can be estimated as

V̂ar(Z) = 1

G − 1

∑
(z(g) − z̄)2.

When the sample is not independent, as in the case of MCMC output, this ex-
pression is not valid. For nonindependent samples, the expectation of the sum of
squared deviations from the mean includes covariance terms that must be taken
into account, which the aforementioned expression fails to do. Several methods
have been proposed to do this; we present the “batch means” method and refer to
others in Section 7.4.

The logic behind the batch means method applied to MCMC output is that the
autocorrelations of high-enough order tend to zero. By examining the empirical
autocorrelations, we can determine a lag at which the autocorrelation is small
enough that it can be neglected; a cutoff value of 0.05 is often adopted. Let j0 be a
lag length such that the absolute value of the autocorrelation at lag j0 is less than
0.05. Then divide the sample of G observations into G/j0 = N groups or batches,
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adjusting j0 or G if necessary to get an integer value for N . Compute the mean of
the simulated output in batch b, b = 1, . . . , N , and then estimate the variance by

V̂ar(Z̄b) = 1

N − 1

N∑
b=1

(Z̄b − Z̄)2,

where Z̄b is the mean of batch b and Z̄ is the overall mean. The n.s.e. is then

computed as
√

V̂ar(Z̄b)/N .
Since positive autocorrelation leads to a larger variance than would be obtained

with independent samples, several measures have been proposed to compare the
variances as an indication of the cost of being forced to work with correlated
samples. One is the relative numerical efficiency (r.n.e.), defined as

r.n.e. =
√∑

g(Z(g) − Z̄)2

G

/ V̂ar(Z̄b)

N
.

Small values indicate substantial autocorrelation in the chain. The inefficiency
factor or autocorrelation time is defined as the reciprocal of the r.n.e. Large values
of the inefficiency factor indicate the cost of working with correlated samples.

Knowing when an MCMC chain has converged is, at this writing, as much an
art as a science. Although there are a few indicators of nonconvergence, there are
no widely applicable theorems to compute the length of the burn-in period. Several
indicators have been proposed, many of which are concerned with attempting
to measure the amount of mixing that is taking place as the sampler runs. The
justification is that a well-mixing sampler is likely to provide a good approximation
to the target distribution. Although this justification may not work in all cases, in
practice it seems adequate. A measure of the degree of mixing is the autocorrelation
function, which is the estimated autocorrelation of the series at various lags. If the
algorithm is mixing well, we would expect that the autocorrelation would drop
off to zero within a few lags; in contrast, a poorly mixing algorithm may have
substantial correlation at very large lags.

As an example, consider the bivariate normal sampling problem of Section 7.1.
Figure 7.3 presents autocorrelations. As we saw previously, there is extremely poor
mixing when ρ = 0.999. The autocorrelations for these cases show this clearly: they
are over 0.900 even at lag 20. In contrast, the absolute values of the autocorrelations
for the ρ = 0.50 case are less than 0.05 at lag 3.

7.4 Further Reading and References

Chapter 7 Robert and Casella (2004) presents the material covered in this chapter
at a reasonable level. An advanced book, used as the source for much of the
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Figure 7.2. Autocorrelations of X(g).

research in this area, is Nummelin (1984). It is heavy going, and the pertinent
material is scattered throughout the book. An excellent book that covers much of
the same material is Meyn and Tweedie (1993). It takes up many applications of
the theory and is somewhat difficult, but well worth the effort for those who wish
to go more deeply into these topics. Two summary articles for MCMC methods
in econometrics are Chib (2001) and Geweke and Keane (2001); the former’s
approach is closer to the one taken in this book.

Section 7.1 The Poisson model with an unknown switch point is analyzed from
the Bayesian viewpoint in Carlin et al. (1992a); they consider prior distributions
more general than those we have specified and take up more complex versions of
the model, including multiple switch points and the hidden Markov switch point
model. An alternative approach to computations for the latter is presented in Chib
(1998).

If there are at least two blocks of parameters, say (θ1, θ2), and we are interested
in estimating the marginal density function of one of the blocks, say π (θ2|y), it is
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sometimes preferable to compute it by averaging π (θ2|θ1, y), which is known when
a Gibbs algorithm is employed, over the realizations of θ1 than to kernel-smooth
the realizations of θ2. A good discussion of this idea, called Rao–Blackwellizing,
can be found in Lancaster (2004, sec. 4.4.5–4.4.6).

Chib (1995) shows how to compute the marginal likelihood from the Gibbs
output.

Section 7.2 The MH algorithm first appears in Metropolis et al. (1953), but in a
nonstatistical application. Hastings (1970) applies the method to statistical prob-
lems, and Gelfand and Smith (1990) show its power for Bayesian inference. An
expository article about the MH algorithm is Chib and Greenberg (1995b), and Chib
and Jeliazkov (2001) contains the modification of Chib’s method for MH chains
and applications of the method to multiple blocks. Hitchcock (2003) presents a brief
history of the MH algorithm. Tierney (1994) is an important contribution to the
theory of MH algorithms. Tailored proposal densities are proposed and explained
in Chib and Greenberg (1994).

An interesting MH algorithm, called ARMH, uses an AR step to generate candi-
dates for an MH algorithm. It is described in Tierney (1994, p. 1707) and Chib and
Greenberg (1995b, sec. 6.1). A method for computing the marginal likelihood for
data generated by the ARMH algorithm is presented in Chib and Jeliazkov (2005).

Section 7.3 The numerical standard error is proposed in Geweke (1989), and the
inefficiency factor is used by Chib (2001). Details about estimating the autocovari-
ance function may be found in Geyer (1992), Ripley (1987, chap. 6), and Priestley
(1981, chaps. 5–7). The latter is particularly strong on window estimation and
spectral methods. Ripley discusses the batch means method.

Robert and Casella (2004, chap. 12) is a clear and thorough discussion of
convergence issues, and it contains many further references. Programs to compute
convergence diagnostics for MCMC simulations are contained in coda at its Web
site, http://www-fis.iarc.fr/coda/.

7.5 Exercises

7.1 Verify (7.1) and (7.2).
7.2 Download the data in “Birth weight I,” from the StatLabs Web site, www.stat.berkeley.

edu/users/statlabs/labs.html. Specify a prior distribution for the average birth weight
and the variance of birth weights, and then implement Algorithm 7.3 to generate a
sample from the joint distribution. Compute the n.s.e. for your output. (It would be
good practice to program this algorithm yourself; otherwise the calculations can be
done in BACC or one of the other packages discussed in Appendix B.)



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

106 Chapter 7. Simulation by MCMC Methods

7.3 Construct a Gibbs algorithm to analyze the Poisson model with unknown switch point.
Given the specification in Equations (7.3) and (7.4), show that

π (θ1, θ2, k|y) ∝ θ
α10−1
1 e−β10θ1θ

α20−1
2 e−β20θ2

k∏
i=1

e−θ1 θ
yi

1

n∏
i=k+1

e−θ2 θ
yi

2 ,

and verify that

θ1|y, k ∼ G
(
α10 +

k∑
1

yi, β10 + k
)
,

θ2|k, y ∼ G
(
α20 +

n∑
k+1

yi, β20 + n − k
)
,

π (k|y, θ1, θ2) = ek(θ2−θ1)(θ1/θ2)
∑ k

1 yi∑n
k=1 ek(θ2−θ1) (θ1/θ2)

∑ k
1 yi

, k = 1, . . . , n.

Apply your algorithm to the mining disaster data analyzed by Carlin et al. (1992a);
the data may be found in the article. Your analysis should generate marginal posterior
distributions for θ1, θ2, p(k), and the marginal likelihood computed by the method
of Chib (1995). For simplicity, set α10 = α20 = 0.5 and β10 = β20 = 1.0. (Curiously,
although these data have been analyzed from the Bayesian viewpoint in several papers,
none of them present historical material that might shed light on when changes in
parameters took place. For example, changes in government regulation, technology,
or the location of mines might be expected to affect the probability of a disaster. A
more general version of the model permits multiple switch points if necessary.)

7.4 Derive α(x, y) for Algorithm 7.5.
7.5 Construct a random walk MH sampler to generate a sample of 10,000 from the Laplace

distribution, f (x) = (1/2) e−|x|, −∞ < x < ∞. Use u ∼ N (0, σ 2) to generate
proposals y = x(g−1) + u. Compare the mean, variances, and autocorrelations of the
generated series for various values of σ 2.

7.6 Estimate the mean of a Beta(3.7, 4.8) distribution with (1) an AR algorithm and
a Beta(4, 5) proposal density (you will need to determine the value of c needed in
Algorithm 5.2); (2) an MH algorithm with a Beta(4, 5) proposal density. After the
break-in sample, graph the values of the mean against the iteration number to monitor
convergence. Compare your answers to the true value.

7.7 Consider the model

yi = βxi + ui, ui ∼ N (0, 1), i = 1, . . . , n,

with the gamma prior distribution β ∼ G(2, 1), β > 0. Verify the posterior distribution

π (β|y) ∝ β exp[−β] exp

[
−1

2

n∑
i=1

(yi − βxi)
2

]
1(β > 0).

Note that this distribution does not have a standard form. Construct an MH algorithm
to sample from this distribution with an independence kernel, where the kernel is a
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Student-t distribution truncated to the region (0,∞), with five degrees of freedom,
mean equal to the value of β that maximizes the posterior distribution (β̂), and scale
factor equal to the negative inverse of the second derivative of the log posterior
distribution evaluated at β̂. Verify that

β̂ =
(∑

xiyi − 1
)+

√(∑
xiyi − 1

)2 + 4
∑

x2
i

2
∑

x2
i

and that the scale factor is (1/β̂2 +∑ x2
i )−1. Generate a data set by choosing n = 50,

xi from N (0, 1), and a value of β from its prior distribution. Write a program to
implement your algorithm and see how well β is determined. You may try larger
values of n to explore the effect of sample size, and, depending on the acceptance rate,
you may wish to change the scale factor.

7.8 Generalize Exercise 7.7 to allow for an unknown variance, ui ∼ N (0, σ 2), with prior
distribution σ 2 ∼ IG(5/2, 3/2). Verify that σ 2|y, β has an inverse gamma distribution,
but that the distribution of β|y, σ 2 is not standard. Devise a two-block algorithm in
which σ 2|y, β is generated in a Gibbs step and β is generated by a tailored kernel
where β̂ depends on σ 2, so that the mean and scale factor of the truncated Student-t
distribution must be recomputed at each step. Choose a value of σ 2 from its prior
distribution, and generate and analyze a data set as in Exercise 7.7.
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Chapter 8

Linear Regression and Extensions

THE FIRST PART of this chapter concludes the discussion of the normal linear
regression model with the conditionally conjugate prior presented in Sections 4.1
and 4.9. This is a model for continuous, unrestricted data. The second part of the
chapter takes up several models in which y is restricted, but the linear regression
framework can be used by the device of introducing latent data.

8.1 Continuous Dependent Variables

This section presents an MCMC algorithm for the linear regression model with
Gaussian errors and continues with a discussion of the model with Student-t errors.

8.1.1 Normally Distributed Errors

In the model of Section 4.9, the observed data y = (y1, . . . , yn)′ have the distribu-
tion

y ∼ Nn(Xβ, σ 2In),

with prior distributions

β ∼ NK (β0, B0) and σ 2 ∼ IG(α0/2, δ0/2). (8.1)

As a consequence of these assumptions, we find that

β|σ 2, y ∼ NK (β̄, B1), (8.2)

where

B1 = [
σ−2X′X + B−1

0

]−1
,

β̄ = B1
[
σ−2X′y + B−1

0 β0
]
,

111
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and that

σ 2|β, y ∼ IG(α1/2, δ1/2), (8.3)

where

α1 = α0 + n,

δ1 = δ0 + (y − Xβ)′(y − Xβ).

Since both conditional posterior distributions are standard, the Gibbs sampler
may be applied to find the posterior distribution of (β, σ 2). The elements of β

are sampled in one block, which is desirable because of the possibility of high
correlations between them, and experience has shown that β and σ 2 tend to be
relatively uncorrelated. In algorithmic form,

Algorithm 8.1: Gibbs algorithm for normal linear regression model

8.1 Choose a starting value σ 2(0).
8.2 At the gth iteration, draw

β(g) ∼ NK

(
β̄(g), B

(g)
1

)
σ 2(g) ∼ IG

(
α1/2, δ(g)/2

)
,

where

B
(g)
1 = [

σ−2(g−1)X′X + B−1
0

]−1
,

β̄(g) = B
(g)
1

[
σ−2(g−1)X′y + B−1

0 β0
]
,

δ(g) = δ0 + (y − Xβ(g)
)′(

y − Xβ(g)
)
.

8.3 Go to 2 until g = B + G, where B is the burn-in sample and G is the desired sample
size.

The values of β (g) and σ 2(g), g = B + 1, . . . , B + G, produced by the algorithm
are an approximation to the posterior distribution of β and σ 2, respectively. The kth
row of β (g) is a drawing from the marginal posterior density of βk. The drawings
may be graphed as histograms or smoothed histograms to provide a picture of the
marginal density, and their moments and quantiles may be computed to estimate
the corresponding distribution values.

As an example we return to the Vella–Verbeek data discussed in Section 4.4.
For the reasons discussed there, we set α0 = 6, δ0 = 0.40, βU0 = 0.10, βk0 = 0 for
the coefficients of variables other than the union membership indicator, BUU,0 =
0.0036, and Bkk,0 = 1 for the variances of the βk other than the union membership
indicator. We employed the BACC “nlm” procedure (see Appendix B) to generate
1000 burn-in observations and a sample of 10,000.
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Figure 8.1. Posterior distributions of βU and σ 2, Gaussian errors.

The results for βU and σ 2 are graphed in Figure 8.1. The mean and standard
deviation of βU are 0.129 and 0.036, respectively, and the mean and standard devi-
ation of σ 2 are 0.165 and 0.010. A 95% credibility interval for βU is (0.059, 0.198);
this interval reinforces the impression from the graph that βU is very likely to be
positive, but not larger than 2. The n.s.e. for βU , computed by the batch means
method (100 batches of 100 observations), is 3.666 × 10−4. This is close to the
value reported by BACC, which uses a different method. Figure 8.2 presents the
autocorrelations of the sample values of βU and σ 2 as convergence diagnostics.
Note that the autocorrelations for both drop off very quickly, an indication that
convergence has taken place. From an r.n.e. of 0.931 and an inefficiency factor of
1.074, we see that the penalty for working with a nonindependent sample is small
because of the low autocorrelations.

BACC reports a log10 marginal likelihood of −152.78. To illustrate the use of
the Bayes factor, we specify a model in which βU is set to zero; that is, a model
in which being a union member has no effect on log(wages). The log10 marginal
likelihood for this model is −158.17 with an n.s.e. of 0.030. The log10 Bayes
factor in favor of the original model is 5.390, which is strong evidence that union
membership is important in determining wages.
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Figure 8.2. Autocorrelations of βU and σ 2, Gaussian errors.

8.1.2 Student-t Distributed Errors

As explained in Section 4.5, we can modify the assumption made about the error
term to obtain conditionally heteroskedastic errors, a model equivalent to assuming
that the errors are marginally distributed as Student-t with a specified number of
degrees of freedom. For this model, we assume

f (yi |β, σ 2, λi) = N
(
x ′

iβ, λ−1
i σ 2

)
, λi ∼ G(ν/2, ν/2), ν known. (8.4)

Prior distributions for β and σ 2 are those of Equation (8.1). In contrast to Equation
(4.13), we are here assuming that ν is known.

With this specification we develop a Gibbs algorithm to generate a sample from
the joint distribution (β, σ 2, λ), where λ = (λ1, . . . , λn). We include the λi in the
sampler to make it possible to simulate β and σ 2 from standard distributions. After
the sample is generated, we marginalize over the λi by reporting only the posterior
distributions of β and σ 2. In Exercise 8.2 you are asked to verify that the direct
way of specifying this model does not permit the use of the Gibbs algorithm and
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that a Student-t prior for β does not yield conditional distributions that permit a
Gibbs algorithm.

As usual, we start with the product of the likelihood and prior distribution,

π (β, σ 2, λ|y) ∝ π (β)π (σ 2)

[ n∏
i

λ
ν/2−1
i exp

[
−νλi

2

](
λi

σ 2

)1/2 ]

× exp

[
−
∑

i

λi

2σ 2
(yi − x ′

iβ)2

]
.

To develop the algorithm, first verify that∑
i

λi

2σ 2
(yi − x ′

iβ)2 = 1

2σ 2
(y − Xβ)′�(y − Xβ),

where � = diagonal(λi). It follows that

β|y, λ, σ 2 ∼ NK (β̄, B1),

σ 2|y, β, λ ∼ IG(α1/2, δ1/2),

λi |y, β, σ 2 ∼ G(ν1/2, ν2i/2), i = 1, . . . , n,

where

B1 = (
σ−2X′�X + B−1

0

)−1
,

β̄ = B1
(
σ−2X′�y + B−1

0 β0
)
,

α1 = α0 + n,

δ1 = δ0 + (y − Xβ)′�(y − Xβ),

ν1 = ν + 1,

ν2i = ν + σ−2(yi − x ′
iβ)2.

This algorithm was run on the Vella–Verbeek data with ν = 5, a specification
that allows for much heavier tails in the likelihood than those of the Gaussian
distribution. Results are graphed in Figure 8.3. The mean of βU is 0.128, with
a standard deviation of 0.033, and a 95% credibility interval is (0.062, 0.192);
these are close to those obtained for the Gaussian errors. The n.s.e. (batch means
method) is 3.730 × 10−4 yielding an r.n.e. of 0.785 and an inefficiency factor of
1.274. Figure 8.4 shows that the autocorrelations drop off rather quickly, but the
autocorrelation at lag 1 is considerably larger than for the Gaussian model. The
larger n.s.e. obtained in this case arises because the sampling for λi introduces
additional correlation. The posterior distribution of σ 2 has a mean of 0.105 and a
standard deviation of 0.008.
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Figure 8.3. Posterior distributions of βU and σ 2, Student-t errors.

The Chib method for computing the marginal likelihood for this problem is
based on the identity

f (y) =
∏

f (yi |β∗, σ 2∗)π (β∗)π (σ 2∗)

π (β∗, σ 2∗|y)
,

where f (yi |β∗, σ 2∗) is Student-t with mean x ′
iβ

∗, scale parameter σ 2∗, and ν

degrees of freedom. Note that the right-hand side of this expression does not involve
the latent λi ; these have been marginalized out to obtain a Student-t distribution for
y. The gth draw from the posterior distribution in the denominator utilizes reduced
run samples from σ 2|β∗, λ(g−1), y, which is distributed as IG(α1/2, δ

(g−1)
1 /2), where

δ
(g−1)
1 = δ0 + (y − Xβ∗)′�(g−1)(y − Xβ∗),

and from λi |β∗, σ 2(g), y, which is distributed as G(ν1/2, ν
(g)
2i /2), where

ν
(g)
2i = ν + σ−2(g)

(
yi − x ′

iβ
∗)2

.

For the Vella–Verbeek data, the Student-t model has a log10 marginal likelihood
of −147.95. The resulting Bayes factor in favor of the Student-t model is 4.83, a
strong evidence in its favor.
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Figure 8.4. Autocorrelations of βU and σ 2, Student-t errors.

8.2 Limited Dependent Variables

This section takes up several models that have the usual normal linear regression
form,

y∗
i = x ′

iβ + ui, ui ∼ N(0, σ 2), (8.5)

but some or all of the y∗
i , the latent data, are not observed. The ways in which the

observed yi depend on the latent data give rise to several models. We consider the
Tobit and the binary choice models in the remainder of this chapter and show that
the extension to Student-t errors is straightforward.

8.2.1 Tobit Model for Censored Data

Censored data are data for which values of y in a given range are reported as a
single value; we use the censored regression model, often called the Tobit model,
for such data. There are two primary examples of this type of data.
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8.1 Top coded data: the values of yi are reported when yi ≤ Y ; the value Y is reported
for observation i if yi > Y . This case arises as a result of the sampling scheme. An
example is income data, where incomes over some value, say $200,000, are reported
as $200,000. The observations in this case are a mixture of data that are modeled
continuously for yi ≤ Y and of a mass of probability at the point Y . In this model, it
is assumed that the covariate vector xi is observed for all i. Data sets in which neither
yi nor xi are observed when yi > Y are called truncated data. A third type of data
structure, incidentally truncated data, is discussed in Section 11.3. In that setup, yi and
the selection variable si have a joint distribution, yi is observed only when si > 0, and
at least some of the xi are observed for all i.

8.2 Corner solution outcomes: the values of yi are bounded by a constraint. As examples,
expenditures on durable goods are nonnegative, and the demand for tickets at a ball
game is limited by the capacity of the stadium. In the former case, a large number
of households report zero expenditures on durable goods; in the latter, the capacity
attendance is reported on sellout days.

In what follows we discuss data with a lower limit at zero; the modifications
for an upper constraint or for lower and upper constraints are straightforward. The
model is written as

yi =
{

x ′
iβ + ui, if x ′

iβ + ui > 0,

0, otherwise,

where ui ∼ N(0, σ 2) and i = 1, . . . , n. The model can be written as yi =
y∗

i 1(x ′
iβ + ui > 0) or as yi = max(0, x ′

iβ + ui). Let the set of observations for
which yi = 0 be denoted by C = {i : yi = 0}. The likelihood function is

f (y|β, σ 2) =
∏
i∈C

�(−x ′
iβ/σ )

∏
i∈Cc

φ([yi − x ′
iβ]/σ ),

where φ(·) and �(·) are the p.d.f. and d.f., respectively, of the standard normal
distribution. Since the model is very similar to the linear regression model, the
normal prior for β and inverse gamma prior for σ 2 can be justified for the reasons
discussed before. With these assumptions about the priors and likelihood function,
you should verify that the form of the posterior distribution is very complex. But
there is a way to specify the likelihood function that greatly simplifies the problem
of designing an algorithm.

To do so, the latent data are included in the sampler as in Chib (1992). These
are denoted by y∗

Ci and are defined only for i ∈ C. We also define the scalars

y∗
i =

{
y∗

Ci, if i ∈ C,

yi, if i ∈ Cc,
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and the vectors y∗
C , which contains the yCi , and y∗ = (y∗

1 , . . . , y∗
n)′. The likelihood

contribution of the ith observation is

f (yi |β, σ 2, y∗
Ci) = 1(yi = 0)1(y∗

Ci ≤ 0) + 1(yi > 0)N(yi |x ′
iβ, σ 2),

where N(·|µ, σ 2) is the density function of the N(µ, σ 2) distribution. The joint
prior for the parameters and y∗

C is

π (β, σ 2, y∗
C) = π (y∗

C |β, σ 2)π (β)π (σ 2),

where

π (y∗
C |β, σ 2) =

∏
i∈C

N(y∗
Ci |x ′

iβ, σ 2).

The prior distributions for β and σ 2 are the usual conditionally conjugate priors,
β ∼ N(β0, B0) and σ 2 ∼ IG(α0/2, δ0/2).

We can now write the posterior distribution,

π (β, σ 2, y∗
C |y) =

n∏
i

[1(yi = 0)1(y∗
Ci ≤ 0) + 1(yi > 0)N(yi |x ′

iβ, σ 2)]

× π (y∗
C |β, σ 2)π (β)π (σ 2)

=
n∏
i

[1(yi = 0)1(y∗
Ci ≤ 0) + 1(yi > 0)]N(y∗

i |x ′
iβ, σ 2)

× π (β)π (σ 2)

∝
n∏
i

[1(yi = 0)1(y∗
Ci ≤ 0) + 1(yi > 0)]

×
(

1

σ 2

)n/2

exp

[
− 1

2σ 2
(y∗ − Xβ)′(y∗ − Xβ)

]
× exp

[
−1

2
(β − β0)′B−1

0 (β − β0)

](
1

σ 2

)α0/2−1

exp

[
− δ0

2σ 2

]
,

(8.6)

since π (y∗
Ci |β, σ 2) = N(y∗

i |x ′
iβ, σ 2). The posterior distribution for the parameters

of interest, β and σ 2, can be recovered by integrating out y∗
C . This is done by

ignoring their draws.
From (8.6), we can derive the full conditional distributions. For β and σ 2,

these are (8.2) and (8.3), respectively, with y∗ in place of y. Note that β and σ 2

are independent of the observations y, given y∗. To complete the Gibbs sampler
we need π (y∗

C |β, σ 2). From (8.6) we see that y∗
Ci is N(x ′

iβ, σ 2) truncated to the
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range (−∞, 0]. (See Section A.1.13.) Sampling from this distribution is easily
accomplished with the result in (5.1).

In algorithmic form,

Algorithm 8.2: Tobit model
At the gth step,

8.1 Draw β(g) from NK (β̄(g), B
(g)
1 ), where

B
(g)
1 = [

σ−2(g−1)X′X + B−1
0

]−1
,

β̄(g) = B
(g)
1

[
σ−2(g−1)X′y∗(g−1) + B−1

0 β0
]
.

8.2 Draw σ 2(g) from IG(α1/2, δ
(g)
1 /2), where

α1 = α0 + n,

δ
(g)
1 = δ0 + (y∗(g−1) − Xβ(g)

)′(
y∗(g−1) − Xβ(g)

)
.

8.3 Draw y
∗(g)
i for i ∈ C from TN(−∞,0](x ′

iβ
(g), σ 2(g)).

The Student-t version of this model is specified by assuming yi = y∗
i 1(y∗

i >

0), y∗
i ∼ N(x ′

iβ, λ−1
i σ 2), and λi ∼ G(ν/2, ν/2). As mentioned before, ν may be

specified or a hierarchical setup may be employed. With the usual priors on β and
σ 2, Algorithm 8.2 is easily modified to handle this case.

As an example, we analyze the Mroz (1987) data set, which consists of data
for 753 married women from the University of Michigan Panel Study of Income
Dynamics. The response variable is hours worked in the year 1975, and 428 reported
nonzero hours worked. A Tobit model is desirable because of the large number of
women who worked zero hours. The original study is concerned with important
issues of endogeneity and sample selection, but these are neglected here to provide
a simple example. We return to these data in Section 11.3 as an example of a model
that accounts for sample selection. In addition to the constant, the covariates are
a dummy variable for children less than 6 years old at home (childl6), a dummy
variable for children 6 years old or more (childge6), the woman’s age (age), and
the husband’s hourly wage (huswage).

We next specify the prior distributions. First, β1 is hours worked for someone
with no children and huswage of zero, if age is neglected. On the assumption that
such a person works virtually full time, the prior mean of β1 is set to 2,000, and
a rather large standard deviation of 400 is assumed. Since having young children
present is likely to reduce hours, we set β02 = −500, with a variance of 2,000 to
reflect considerable uncertainty. The presence of older children also reduces hours,
but not as much; accordingly, we set β03 = −300, with a variance of 2,000. For
the effect of age, consider a person with no children present as she ages from 50
to 60. We assume this results in reduction of 500 hours, implying β04 = −50, and
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Table 8.1. Summary of Posterior Distribution: Tobit Model, Mroz Data.

Coefficient Mean S.D. n.s.e. Lower Upper

β1 2,079.264 116.237 1.321 1,846.449 2,303.242
β2 −556.363 41.093 0.456 −637.937 −477.806
β3 −191.708 28.894 0.331 −248.486 −136.099
β4 −27.159 3.338 0.041 −33.630 −20.588
β5 −29.732 11.825 0.151 −53.298 −6.642
σ 1,293.170 47.017 0.823 1,205.395 1,389.020

set a large variance of 2,000. Finally, consider a husband’s wage increasing from
$5 to $10 per hour. We assume this change reduces labor input by 500 hours, so
that β05 = −50. The variance is again set at 2,000 to reflect uncertainty. For σ 2 we
assume a standard deviation of 1,200 yielding E(σ 2) = 1,400,000, and Var(σ 2) =
100,000. Since the parameters are α/2 and β/2, the result in (A.2) is modified
to α = 2[E(σ 2)]2/ Var(σ 2) and δ = 2E(σ 2)/ Var(σ 2). Given the aforementioned
numbers, we have α = 39,200,000 and δ = 28.

Results are in Table 8.1 and Figure 8.5. Coefficient means are consistent with
our expectations, and their distributions seem relatively symmetric. Note that none
of the 95% credibility bounds include zero, which suggests that all of the covariates
contribute to the explanation of the response variable. The autocorrelations, which
are not reported, drop off quickly, indicating that the chain converged.

It is instructive to examine the predictive distribution implied by the Tobit model
for these data. We generate y∗ for two sets of covariates: x ′

l6 = (1, 1, 0, 40, 7.5)
and x ′

g6 = (1, 0, 1, 40, 7.5). The first describes a 40-year-old woman with children
under 6 years of age present and no children 6 years old or older, whose husband
earns $7.50 hourly. The second has children 6 or more years of age present, with
the same age and husband’s wage as the first. The predictive distribution, given the
first set of covariates, is found by generating G observations, with the gth drawn
from

y
∗(g)
l6 ∼ N

(
x ′

l6β
(g), σ 2(g)

)
, g = 1, . . . , G,

and the predictive distribution for the second set is found analogously. The hours
worked for i is set to zero if negative values of y

∗(g)
l6 or y

∗(g)
g6 are generated. The results

are summarized in Figure 8.6. The probability of working zero hours for women
with younger children is estimated to be 0.431 compared to 0.328 for women with
older children. (Note that zero hours are combined with small numbers of hours
in the histograms.) The overall average hours worked is about 214 for women
with small children and about 587 for women with older children, a difference
approximately equal to β̄2 − β̄3. If we condition on working positive hours, the



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

122 Chapter 8. Linear Regression and Extensions

β
2

π(
β 2|y

)

400 300 200 100 0
β

3

π(
β 3|y

)

50 40 30 20 10
β

4

π(
β 4|y

)

80 60 40 20 0 20
β

5

π(
β 5|y

)

Figure 8.5. Posterior distributions of β: Tobit model, Mroz data.

mean is about 1,284 h for women with small children and 1,105 for women with
older children. In summary, having older rather than younger children increases
the probability of working positive hours by about 0.100, and, for those who work,
the average number of hours is increased by about 180 h.

8.2.2 Binary Probit Model

The binary probit model is designed to deal with situations in which yi can take
one of two values, coded as 0 and 1. For example, if y denotes union membership,
let yi = 0 if person i does not belong to a union and yi = 1 if he or she does. Or yi

could denote a choice of one of the parties in a two-party election. Finally, yi might
equal 1 if subject i receives a treatment and 0 if not. Since y has the character of
a Bernoulli variable, we model its probability mass function, p(y), rather than y

itself.
There is an interesting relationship between the linear regression model and a

model for binary data. The linear regression model assumes E(yi) = x ′
iβ. This

assumption can be generalized to what statisticians call the generalized linear
model (GLM) by specifying E(yi) = G(x ′

iβ), where G(·) is called the link function
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Figure 8.6. Predictive distributions of hours worked: Tobit model, Mroz data. Left: women
with young children; right: women with older children.

and is chosen to reflect the nature of the data being modeled. The linear regression
model for continuous data is the special case in which G(·) is the identity function;
that is, G(x ′

iβ) = x ′
iβ. When y is a binary variable, E(y) = P (y = 1). In this case,

the identity link function is not suitable for the binary probit model, because x ′
iβ is

not restricted to the (0, 1) interval required for a probability.
A convenient way to restrict 0 ≤ G(x ′

iβ) ≤ 1 is to choose G(·) to be a distribution
function. The binary probit version of this model assumes

P (yi = 1) = �(x ′
iβ), (8.7)

where �(z), the link function, is the d.f. of the standard normal distribution evalu-
ated at z; we explain next why σ 2 = 1. This model is a GLM with G(·) = �(·).

The model can be written with latent data to simplify the design of an algorithm:

y∗
i = x ′

iβ + ui, ui ∼ N(0, 1), (8.8)

yi =
{

0, if y∗
i ≤ 0,

1, otherwise,
(8.9)
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or yi = 1(y∗
i > 0). You should verify that the latent data form of the model is

equivalent to (8.7). The latent data formulation makes clear why we assume ui ∼
N(0, 1), rather than the more general assumption N(0, σ 2). Since it is only the sign
of y∗

i that determines the observed yi , both sides of (8.8) can be multiplied by any
nonnegative constant and still be consistent with the observed data, which shows
that the pair (β, σ 2) is not identified. A simple way to achieve identification is to
set σ 2 = 1.

Determining the prior distribution for β is not as straightforward as it is in
the linear regression case, where βk is interpreted as ∂E(y)

∂xk
for continuous data. In

general,

∂E(y∗
i )

∂xik

= βk

∂G(x ′
iβ)

∂xik

,

and for the Gaussian link function,

∂E(y∗
i )

∂xik

= βkφ(x ′
iβ),

where φ(·) is the p.d.f. of the Gaussian distribution. The effect of xik on E(yi)
therefore depends on the vector xi and all of the elements of β. One way to
approach the problem of assigning a prior distribution for β is to consider the
value of x ′

iβ at which xik has the largest effect on yi . For the normal distribution,
this occurs at x ′

iβ = 0, where φ(·) is maximized. Since φ(0) = 1/
√

2π = 0.3989,
the largest effect of xk on y is approximately 0.4βk; this fact may help to put a
prior mean and variance on β. Note that P (yi = 1|β) = 0.5 at x ′

iβ = 0. Another
approach is to think about P (yi = 1|β) at various values of the covariates and set
parameter values accordingly. This approach is illustrated in the example described
later.

To specify a Gibbs algorithm for this problem, we add the latent data y∗ to the
sampler as in Albert and Chib (1993b) and write the likelihood contribution of the
ith observation as

p(yi |y∗
i ) = 1(yi = 0)1(y∗

i ≤ 0) + 1(yi = 1)1(y∗
i > 0),

because yi = 0 ⇐⇒ y∗
i ≤ 0. Assuming the usual Gaussian prior distribution for

β, we can write the posterior distribution of β and y∗ = (y∗
1 , . . . , y∗

n)′ as

π (β, y∗|y) =
∏

p(yi |y∗
i )f (y∗

i |β)π (β)

=
∏

[1(yi = 0)1(y∗
i ≤ 0) + 1(yi = 1)1(y∗

i > 0)]

× Nn(y∗|Xβ, I )NK (β|β0, B0).

In algorithmic form, we have the following.



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

8.2 Limited Dependent Variables 125

Algorithm 8.3: Gibbs algorithm for binary probit

8.1 Choose a starting value β(0).
8.2 At the gth iteration, draw

y
∗(g)
i ∼

{
TN(−∞,0](x ′

iβ
(g−1), 1), if yi = 0,

TN(0,∞)(x ′
iβ

(g−1), 1), if yi = 1,
i = 1, . . . , n,

β(g) ∼ NK (β̄(g), B1),

where

B1 = [
X′X + B−1

0

]−1
,

β̄(g) = B1
[
X′y∗(g)

i + B−1
0 β0

]
.

Note that B1 is not updated, because σ 2 = 1.
Before turning to an example, we consider a model in which the link function

is the Student-t distribution with ν degrees of freedom. From our discussion in
Section 8.1.2, it should be clear that this can be accomplished by the model

y∗
i = x ′

iβ + ui, ui ∼ N
(
0, λ−1

i

)
, λi ∼ G(ν/2, ν/2).

The analysis proceeds by including λi and y∗
i in the sampler.

We illustrate the probit model for binary data by applying it to computer owner-
ship data collected by the U.S. Census Bureau and the Bureau of Labor Statistics
from a survey of a large number of U.S. households. This survey contains informa-
tion on whether the household owns a computer, yi = 1, and detailed demographic
information about the household. We extracted a random sample of 500 house-
holds from the large number contained in this survey. The first task is to specify
the covariates for the model. We assume that computer ownership is influenced by
whether the person is a college graduate and the household’s income, measured
as the weekly wage of the household in thousands of dollars. We therefore define
the covariates xi2 as the weekly wage of household i and xi3 = 1 if the head of
household i is a college graduate and zero if not. Since the observations are a
random sample of households, it is reasonable to assume that they are independent.
Accordingly, the likelihood function is the product of the likelihood functions for
each household.

The next step is to specify the prior distribution of β. Consider a household
with a zero weekly wage headed by a person who did not graduate college. We
assume a low probability, 0.10, that such a household contains a computer. Ac-
cordingly,

∫ β1

−∞ φ(t) dt = 0.10. This implies β1 = −1.2816, which we take as β01.
On the assumption that this probability is very likely to be less than 0.3, we solve∫ β1

−∞ φ(t) dt = 0.3 to find β1 = −0.5244. Interpreting “very likely” to mean a prob-
ability of 0.95, we have (−0.5244 + 1.2816)/

√
B0,11 = 1.96, or B0,11 = 0.1492.
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For β02, consider a household that earns $2,000 weekly, in which the head is not a
college graduate. We assume a probability of 0.8 that such a household has a com-
puter. Setting β1 = β01, we solve

∫ −1.2816+2β02

−∞ φ(t) dt = 0.8 and find β02 = 1.0616.
We further assume it very likely that the probability is at least 0.6 that such a
household owns a computer. Accordingly, we solve

∫ −1.2816+2β2

−∞ φ(t) dt = 0.6 to
find β2 = .7674, and then find B0,22 = 0.0225. To specify a prior for β3, we assume
the probability that a household with zero weekly wage is 0.4 for a household with
a college degree and have previously assumed the probability is 0.1 for a household
without a college degree. Computations similar to those mentioned before imply
β03 = 1.0283 and B0,33 = 0.2752. To summarize,

β0 =
β01

β02

β03

 =
−1.2816

1.0616
1.0283

 ,

and

B0 =

0.1492 0 0

0 0.0225 0

0 0 0.2752

 .

We generated 10,000 draws from the joint posterior distribution and analyzed
the last 9,000. The summary statistics in Table 8.2 and Figure 8.7 point to positive
effects for both covariates. The coefficient of weekly wage is determined rather
precisely.

8.2.3 Binary Logit Model

The binary logit model is another model for binary data. It is based on

P (yi = 1) = Pi = exp[x ′
iβ]

1 + exp[x ′
iβ]

,

Table 8.2. Summary of Posterior Distribution: Probit Model, Computer
Example.

Coefficient Mean S.D. n.s.e Lower Upper

β1 −0.705 0.074 0.001 −0.853 −0.558
β2 0.879 0.106 0.002 0.669 1.086
β3 0.524 0.154 0.002 0.222 0.824
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Figure 8.7. Posterior distributions of β: computer ownership example, probit model.

which implies the link function G(x ′
iβ) = exp[x ′

iβ]/(1 + exp[x ′
iβ]). This model

can be written in the form of latent data as

y∗
i = x ′

iβ + ui,

where ui has the logistic distribution, P (Ui ≤ ui) = �(ui) = eui /(1 + eui ) and
density function λ(ui) = eui /(1 + eui )2.

This model has the interesting property that

logit(Pi) ≡ log

(
P (yi = 1)

P (yi = 0)

)
= log

(
Pi

1 − Pi

)
= x ′

iβ,

that is, the logarithm of the odds ratio is a linear function of the covariates.
This feature may be useful for setting prior distributions because it implies that
∂ logit(Pi )

∂xik
= βk, which permits the use of subject-matter based knowledge about the

effect on the log odds ratio of a change in a covariate. In addition, the general
result ∂Pi

∂xik
= βk

∂G(x ′
iβ)

∂xik
implies that ∂Pi

∂xik
= βkPi(1 − Pi) for the logit model. Since

this expression is maximized at Pi = 1/2, the largest effect of covariate k on the
probability is βk/4, a fact that may be helpful in specifying a prior distribution for
βk. This calculation also allows a rough comparison between the coefficients of a
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probit and logit model fit to the same data. We saw in Section 8.2.2 that ∂Pi

∂xik
is max-

imized at 0.4βpk, where βpk is the coefficient from a probit equation. Equating the
maximum effects, we have 0.4βpk = βlk/4, or the logit coefficient βlk = 1.6βpk.
This approximation should be reasonably good in the neighborhood of x ′

iβ = 0.
Placing a normal prior on β results in a model that is not conditionally conjugate;

see Exercise 8.8. Since the conditional posterior distribution of β is not a standard
form, we utilize the general form of the MH algorithm to approximate it. A possible
proposal generator is the random walk, in which a scaled normal or Student-t
variable is added to the current value; another possibility is an independence chain,
where the proposal density is a Student-t distribution centered at the maximum
of the posterior distribution with scale matrix proportional to the negative of the
inverted Hessian at the maximum.

We illustrate the logit model by returning to the computer ownership data dis-
cussed earlier. That discussion leads us to specify the likelihood function

Pi = exp[β1 + β2xi2 + β3xi3]

1 + exp[β1 + β2xi2 + β3xi3]
,

where the covariates are defined earlier. The likelihood function for the sample is
again the product of the individual likelihoods.

To specify prior distributions for the βk, we start with the result that logit(Pi) =
x ′

iβ and consider a household with zero income and a head of household who
is not a college graduate. In that case logit(Pi) = β1. We assume that such a
household has a small probability of owning a computer, say 0.1, implying that
log(1/9) = −2.1972, which is taken as the mean of the prior distribution for β1.
If we consider it very unlikely that the probability is greater than 0.3, log(3/7) =
−0.8473 is taken to be the upper end of the interval that contains 95% of the
probability distribution of β1. This implies a prior standard deviation of β1 of√

B0,11 = [−0.8473 − (−2.1972)]/1.96 = 0.6887, or a variance B0,11 = 0.4743.
For β2, let us consider a household with a weekly wage of $2,000 and a head

of household who is not a college graduate. We assume the probability is 0.8 that
such a household owns a computer. Since the wage is measured in thousands,
log(8/2) = −2.1972 + 2β2, which implies β02 = 1.7917. If we take 0.6 as the
lower limit of a 95% credibility interval for the probability that a household earning
$2,000 per week owns a computer, we find that the variance of the prior density of
β2, B0,22, is 0.2504.

The last coefficient gives the effect of being a college graduate. Assume again
a household with a weekly income of zero and consider the logit of a household
in which the head has a college degree, β1 + β3, compared to one in which the
head does not have a degree, β1. We have taken the latter to be 1/9 and assume
the former to be 0.4; these imply that β3 = 0.3. On the assumption that this effect



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

8.3 Further Reading and References 129

is not likely to be greater than 0.5, we find an implied standard deviation of one.
Accordingly, B0,33 = 1.

In summary, under the assumption that the parameters are independent and
normally distributed, our prior distribution is

π (β0) = N(β|β0, B0), (8.10)

where

β0 =
β01

β02

β03

 =
−2.1972

1.7917
0.3000

 ,

and

B0 =

0.4743 0 0

0 0.2504 0

0 0 1.000

 .

We generate a sample of 10,000 from the posterior distribution and discard 1,000
as the burn-in. The autocorrelations are very low, resulting in values of both r.n.e.
and autocorrelation time close to one. A summary of the output is in Table 8.3,
and Figure 8.8 presents histograms of the posterior distributions of β2 and β3. The
sample results yield P (β2 > 0|y) = 0.98 and P (β3 > 0|y) = 0.88, which suggests
that income almost certainly has an effect but that the positive effect on computer
ownership of being a college graduate is less clear.

8.3 Further Reading and References

Chapter 8 Appendix B contains comments on computer programs for performing
the computations discussed in this chapter.

Section 8.1.1 Special algorithms have been devised to deal with the problem of
model selection when a researcher contemplates a linear regression model with
a large number of possible covariates and little prior information about which of
these to include. The overall model in this case includes a possibly large number of

Table 8.3. Summary of Posterior Distribution: Logit Model, Computer Example.

Coefficient Mean S.D. n.s.e. Lower Upper

β1 −1.081 0.382 0.004 −1.818 −0.305
β2 1.299 0.636 0.007 0.027 2.557
β3 0.786 0.745 0.007 −0.703 2.230
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Figure 8.8. Posterior distributions of β: computer ownership example, logit model.

submodels. An algorithm that samples from such models must allow for sampling
within and across submodels, which presents special problems. The reversible jump
algorithm has been developed to deal with such cases; it is particularly associated
with P. J. Green; see, for example, Green (1995). A thorough discussion of this
algorithm and others is in Robert and Casella (2004, chap. 11).

Section 8.1.2 The use of Student-t errors is one of several possible ways to gen-
eralize the assumption of Gaussian errors in regression models. The t errors allow
thicker tails than does the normal and is more general in the sense that it is close
to the normal distribution for large degrees of freedom. The relationship between
the normal and t is an example of a more general idea, that of representing a distri-
bution by continuous mixtures of another family of distributions; the concept was
discussed in Section 5.2 in connection with simulation. In the more general case,
f (y) = ∫

g(y|θ )λ(θ ) dθ , where f (y) is represented as a mixture of g(y|θ ) and the
weights for the values of θ are determined by λ(θ ). Another approach is to repre-
sent a random variable by a finite mixture, for example f (yi) = ∑

j λjpj (yi |θj ),
where λi is the probability that the observation yi is drawn from “state” j with
probability λj . Finite mixtures of normal distributions with different means and
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variances can display a wide variety of shapes. See Gelman et al. (2004, chap. 18)
and Geweke (2005, sec. 6.4) for more discussion of such mixtures. The latter
discusses estimation of the model by procedure “fmn ullm” in BACC.

Another general approach to modeling error terms flexibly is the Dirichlet mix-
ture process. See Escobar and West (1995) for a discussion and references and an
MCMC approach to simulation. A method of computing the marginal likelihood
for such models is presented in Basu and Chib (2003).

Section 8.2 Greene (2003, chaps. 21 and 22) presents the Tobit and binary probit
models in a frequentist setting, including explicit formulas for the Hessian matrices
and a comparison of the coefficients of probit and logit models. Wooldridge (2002,
chaps. 15 and 16) also covers these models in great detail. He points out an
important difference between the top-coded and boundary solution versions of the
Tobit model: the values of β are of interest in the former because E(y∗|x) = x ′β
can be interpreted as an expectation in the absence of top coding, and so β has its
usual interpretation as a partial derivative. In contrast, for the boundary solution
case, interest usually centers on E(y|x), E(y|x, y > 0), or P (y = 0|x), rather than
β, because values of y∗ < 0 have no meaning. An exception arises in the utility
maximization model, where β may depend on parameters of the utility function.
The probit and logit models are thoroughly covered by Train (2003), who includes
a Bayesian analysis of the latter.

Tanner and Wong (1987) introduce the idea of introducing missing data in a
two-block Gibbs sampling algorithm. In the first application of MCMC methods
to econometrics, Chib (1992) analyzes the Tobit model. The use of latent data in
a Gibbs algorithm by Albert and Chib (1993b) for the binary probit model and
the ordered probit and Student-t versions of the model has become the standard
approach to categorical responses from a Bayesian perspective. Chib and Greenberg
(1998) show how the approach extends to correlated binary data.

An interesting variation of the binary probit model appears in the political
science literature in the form of the spatial voting model, which is equivalent to
the two-parameter item response model used in educational testing. The statistical
model takes the form

P (yij = 1) = �(β ′
j xi − αj ), (8.11)

where yij is 1 if legislator i votes yea on issue j and 0 otherwise, i = 1, . . . , n,
j = 1, . . . , m. The d × 1 vector xi represents i’s “ideal point,” which is the primary
object of interest of the analysis. The only data observed are the yij , and d(d + 1)
restrictions must be imposed on X = (x ′

1, . . . , x
′
n)′ to identify the remainder of X,

the βj , and the αj . The Bayesian approach to the spatial voting model is explained
in Clinton et al. (2004) who assume Gaussian priors for the xi , βj , and αj . A
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dynamic version of this model is analyzed in Martin and Quinn (2002), where the
ideal points are given a time index, xit , and are allowed to evolve. Models in which
parameters evolve over time are discussed in Section 10.3.

Generalizations of the binary probit and logit models to data sets in which an
individual chooses among three or more possibilities are discussed in Section 9.4.

8.4 Exercises

8.1 Download the data in “Birth weight II” from the StatLabs Web site, www.stat.berkeley.
edu/users/statlabs/labs.html. The variables are birth weight (ounces, 999 unknown),
gestation (length of pregnancy in days, 999 unknown), parity (0 = firstborn, 9 is
unknown), age (mother’s age in years), height (mother’s height in inches), weight
(mother’s prepregnancy weight in pounds), smoke (0 not now, 1 yes now, 9 = un-
known).

Specify a linear regression, where the response variable is birth weight, and the
covariates are a constant and the remaining variables in the data set. Eliminate ob-
servations for which you do not have complete information on the variables. Specify
prior distributions for the coefficients and the variance (or precision). Summarize the
results for the dummy variable for smoking. Does smoking by the mother appear to
affect the baby’s birth weight?

8.2 Verify that specifying the model of (8.4) by a Student-t likelihood function on ν

degrees of freedom for y, a normal prior for β, and an inverse gamma prior for σ 2

does not permit use of the Gibbs algorithm. Verify that a Student-t likelihood function
on ν degrees of freedom for y and a Student-t prior for β do not yield conditional
distributions that permit a Gibbs algorithm.

8.3 Repeat Exercise 8.1 for errors distributed as Student-t with five degrees of freedom.
Compute marginal likelihoods and compare the models.

8.4 Study the sensitivity of the results for the union coefficient by varying the prior mean
and variance.

8.5 Write out an algorithm to sample for β, σ 2, and λ for the linear regression model with
Student-t errors of Section 8.1.2.

8.6 Write out an algorithm to sample for β, σ 2, y∗
Ci , and λ for the Tobit model of

Section 8.2.1 with Student-t errors.
8.7 Write out an algorithm to sample for β, y∗, and λ for the binary data model with

Student-t errors of Section 8.2.2.
8.8 Verify that the posterior distribution of the logit model with a normal prior (Sec-

tion 8.2.3) has the form

π (β|y) ∝
∏(

exp[x ′
iβ]

1 + exp[x ′
iβ]

)yi
(

1

1 + exp[x ′
iβ]

)1−yi

× exp

[
− 1

2
(β − β0)′B−1

0 (β − β0)

]
,
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and show that including the latent data in the sampler does not simplify the posterior
distribution.

8.9 Write out an algorithm to estimate the parameters of (8.11) under the Gaussian prior.
Compare your algorithm to the one in Clinton et al. (2004).

8.10 Another type of discrete data is count data, where the observations yi are equal to
zero or a positive integer; that is, yi ∈ {0, 1, . . . }. Such data are often modeled by
the Poisson distribution,

p(yi |θi) = e−θi θ
yi

i

yi!
, θi = exp(x ′

iβ).

The model is discussed in detail from the frequentist viewpoint in Wooldridge
(2002, chap. 19) and Winkelmann (1997); the latter also discusses the Bayesian
approach. Find an expression for the posterior distribution β|y on the assumption
that π (β) = N (β0, B0), and discuss possible ways to simulate from this distribution.
(See Winkelmann, 1997, sec. 5.2.1.)
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Multivariate Responses

IN THIS CHAPTER, we consider three examples of models in which the response
variable is a vector, rather than a scalar, random variable: the “seemingly unrelated
regression” (SUR) model, the multivariate probit (MVP) model, and a model for
panel data.

9.1 SUR Model

The SUR model was introduced in Zellner (1962) and has been applied extensively.
Before turning to examples we specify the model formally. Since the response
variable is multivariate, the observations and error terms are written with two
subscripts:

ysj = x ′
sjβs + usj , s = 1, . . . , S, j = 1, . . . , J, (9.1)

where xsj is Ks × 1 and βs = (βs1, βs2, . . . , βsKs
)′. The j th observation on the

vector of responses is contained in the S × 1 vector yj = (y1j , y2j , . . . , ySj )′. To
specify a model for yj , we define the S × K matrix, K = ∑

Ks ,

Xj =


x ′

1j . . . 0

0 x ′
2j . . . 0

...

0 0 . . . x ′
Sj

 ,

the K × 1 vector β = (β ′
1, . . . β

′
S)′, and the S × 1 vector uj = (u1j , u2j , . . . uSj )′;

these definitions and the model specification imply

yj = Xjβ + uj . (9.2)

The defining characteristic of the SUR model is the assumption that uj |X ∼
NS(0, 
), where X = (X1, . . . , XJ ) and 
 = {σst}. The covariances permit

134



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

9.1 SUR Model 135

nonzero correlations for disturbances with the same second subscript,

Cov(usj , utk|X) =
{

σst , if j = k,

0, otherwise.

These nonzero covariances explain the phrase “seemingly unrelated.” If the co-
variances were all zero, each of the equations in (9.2) would be unrelated to the
others. But the nonzero covariances tie the individual regressions into a system of
equations that can be analyzed together. Finally, note that the model allows the
disturbance variances σss to differ across firms and that the uj |X are independent
across j , that is,

f (u1, . . . , uJ |X) = f (u1|X) · · · f (uJ |X).

Here are examples of data sets to which the model has been applied:

9.1 Let ysj be the investment expenditures of firm s in year j , where all of the firms are in
the same industry. In that case, usj represents unobserved disturbances that affect firm
s at time j . Since the firms are in the same industry, it is reasonable to assume that
a disturbance in a particular period affects all the firms to some degree, which can be
modeled by assuming that the covariance σst between the disturbances of firms s and
t at time j is not zero. Finally, the specification assumes that the disturbances across
time for a given firm are independent.

9.2 Let ysj represent the score on the sth of one of several medical or intelligence tests taken
by individual j . The specification permits the scores to be correlated for a particular
individual, perhaps representing some unobserved genetic factor, but the scores across
individuals are independent.

9.3 Let ysj represent the expenditures by household s on product j . The specification allows
the disturbance to expenditures across product categories for a particular household to
be correlated, but assumes zero correlation across households.

Before turning to the analysis of this model, we note a special case,

ysj = x ′
sjβ + usj ,

where xsj is defined as before, but β is a K × 1 vector. This specification differs
from (9.1) by assuming that all the βs are equal to the common value β. The special
case is still a SUR model because of the assumption that σst 
= 0. By defining

Xj =


x ′

1j

x ′
2j

...

x ′
Sj

 ,

and β = (β1, . . . , βk)′, verify that (9.2) is still valid.
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From the specification of the SUR model and the definition of the multivariate
normal distribution in Section A.1.12, the likelihood function for the data y =
(y1, . . . , yJ ) is

f (y|β, 
) ∝ 1

|
|J/2
exp

−1

2

∑
j

(yj − Xjβ)′
−1(yj − Xjβ)

 . (9.3)

We next specify a conditionally conjugate prior for this model. The regression
coefficients are assumed to have a Gaussian prior, β ∼ NK (β0, B0). For the pre-
cision matrix 
−1, we assume a generalization of the gamma distribution, the
Wishart distribution described in Section A.1.16: 
−1 ∼ WS(ν0, R0). (We could
have equivalently assumed an inverted Wishart distribution for the covariance
matrix 
.)

With these assumptions, the posterior distribution is

π (β, 
|y) ∝ 1

|
|J/2
exp

−1

2

∑
j

(yj − Xjβ)′
−1(yj − Xjβ)


× exp

[
−1

2
(β − β0)′B−1

0 (β − β0)

]
× 1

|
|(ν0−S−1)/2
exp

[
−1

2
tr(R−1

0 
−1)

]
.

It is then straightforward to determine the conditional distribution,

β|y, 
 ∼ NK (β̄, B1),

where

B1 =
[∑

j

X′
j


−1Xj + B−1
0

]−1

,

β̄ = B1

[∑
j

X′
j


−1yj + B−1
0 β0

]
.

(9.4)

To derive the conditional distribution of 
|y, β we use the properties of the trace
operator z′Az = tr(z′Az) = tr(zz′A), where z is a column vector, to obtain∑

j

(yj − Xjβ)′
−1(yj − Xjβ) = tr
∑

j

(yj − Xjβ)(yj − Xjβ)′
−1,
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from which we immediately have 
|y, β ∼ WS(ν1, R1), where

ν1 = ν0 + J,

R1 =
[
R−1

0 +
∑

j

(yj − Xjβ)(yj − Xjβ)′
]−1

.
(9.5)

In algorithmic form, we have the following.

Algorithm 9.1: Gibbs algorithm for SUR model

9.1 Choose a starting value 
(0).
9.2 At the gth iteration, draw

β(g) ∼ NK

(
β̄(g), B

(g)
1

)

−1(g) ∼ WS

(
ν1, R

(g)
1

)
,

where β̄(g) and B
(g)
1 are given in (9.4) with 
−1 replaced by 
−1(g−1), and ν1 and R

(g)
1

are given in (9.5) with β replaced by β(g).

As an application of this model, we consider the Grunfeld (1958) study of
investment behavior as discussed in Boot and de Wit (1960), where the data may
be found. In this model, gross investment including repairs and maintenance (It )
is the response variable, and the covariates are a constant, the market value of
the firm (Ft ), and the firm’s capital stock (Ct ). The variables are deflated by
appropriate price indices, and the data are for the years 1935–1954 for five large
manufacturing companies: General Motors (GM), Chrysler (C), General Electric
(GE), Westinghouse (W), and U.S. Steel (USS). We consider the SUR version of
the model M1, where the βs differ for each firm and contemporaneous correlations
are permitted, and a version M2 in which the βs differ, but contemporaneous
correlations are forced to equal zero. For a third model, M3, we assume zero
contemporaneous correlations and the same βs for each firm.

Boot and de Wit (1960, p. 8) offer a few comments about parameter values for βsF

and βsC that can be used to form prior distributions. On the basis of their discussion,
we assume each βsF ∼ N(0, 0.33) and each βsC ∼ N(0.25, 0.17). These imply that
−1 ≤ βF ≤ 1.0 with probability 0.997 and that 0 ≤ βC ≤ 1 with probability 0.997.
There is little prior information about the constant term. We assume β1 ∼ N(0, 100)
as an uninformative prior. To allow for uncertainty in the distribution of 
, we set
ν0 = 6, and we set R0 = 400I5 to allow for large variances of the disturbances. For
M2 and M3, we assume the precision is distributed as G(1, 1/400), and the priors
for the βs are the same as those of M1.

The results for M1 in Figures 9.1 and 9.2 and Tables 9.1–9.3 indicate considerable
variation in βF and βC across firms and values of contemporaneous correlations
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Figure 9.1. Summary of βF .

ranging in absolute value from 0.029 to 0.599. The β values for M2 show compa-
rable variation. The marginal likelihood values are −708.60 for M1, −593.01 for
M2, and −651.75 for M3. By this criterion, the data strongly favor M2, a model that
allows each firm to have a different set of regression coefficients, but imposes zero
contemporaneous correlations. Another model that might be examined is one in
that permits different regression coefficients and different variances for each firm.
This possibility is included as an exercise.

One reason why M1 lost so decisively to M2 may have to do with the number of
parameters in the model, as discussed in Section 3.2.4. Both M1 and M2 contain 15
regression coefficients, but the former also contains 5 variances and 10 covariances,

Table 9.1. Summary of Posterior Distribution of βF : Grunfeld Data, SUR Model.

Firm Mean S.D. n.s.e. Lower Upper

GM 0.084 0.008 0.000 0.069 0.099
C 0.071 0.012 0.000 0.047 0.094
GE 0.030 0.007 0.000 0.017 0.045
W 0.052 0.008 0.000 0.036 0.068
USS 0.153 0.020 0.000 0.114 0.191
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Figure 9.2. Summary of βC .

whereas M2 includes only one variance. The latter model therefore entails 14 fewer
parameters than does the former. Although we might expect the likelihood ratio
to favor the model with more parameters, M1, the effect from this source was
apparently not enough to offset the larger number of parameters. In contrast,
M3, which contains only four parameters, is decisively beaten by M2 with its 16
parameters.

9.2 Multivariate Probit Model

The multivariate probit (MVP) model is a SUR model in which all response vari-
ables are binary choices: yij = 1 indicates that individual i chooses 1 on decision

Table 9.2. Summary of Posterior Distribution of βC: Grunfeld Data, SUR Model.

Firm Mean S.D. n.s.e. Lower Upper

GM 0.394 0.037 0.000 0.322 0.469
C 0.309 0.028 0.000 0.254 0.364
GE 0.114 0.026 0.000 0.062 0.163
W 0.032 0.042 0.000 −0.052 0.112
USS 0.337 0.114 0.002 0.116 0.566
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Table 9.3. Means of Posterior Distribution of Contemporaneous
Correlations: Grunfeld Data, SUR Model.

1.000 0.073 −0.151 −0.370 0.556
0.073 1.000 0.126 0.029 −0.297

−0.151 0.126 1.000 −0.562 −0.091
−0.370 0.029 −0.562 1.000 −0.599

0.556 −0.297 −0.091 −0.599 1.000

j , and yij = 0 indicates that individual i chooses 0 on decision j , i = 1, . . . , n,
j = 1, . . . , J . It is applied to data sets in which decision maker i makes binary
choices over J decisions that are believed to be related through unobserved random
variables. The model is most easily represented and analyzed by the latent variable
representation,

y∗
ij = x ′

ijβj + uij ,

where xij and βj are Kj × 1, and let K = ∑
Kj . The observed choices are the yij ,

which are related to the latent data through

yij =
{

0, if y∗
ij ≤ 0,

1, otherwise.

Upon defining y∗
i = (y∗

i1, . . . , y
∗
iJ )′,

Xi =

x ′
i1 0 . . . 0

0 x ′
i2 . . . 0

0 0 . . . x ′
iJ

 ,

β = (β ′
1, . . . , β

′
J )′, and ui = (ui1, . . . , uiJ )′, we can write

y∗
i = Xiβ + ui.

Note that the observations are grouped by the first subscript in contrast to the SUR
model, where they were grouped by the second subscript. Grouping by the first
subscript simplifies the writing of the likelihood function.

As an example of this model, consider individual i who makes two binary
choices: (1) send his or her child to a public or private school and (2) vote for or
against a school tax increase. We might expect these choices to be related even
after controlling for such covariates as income and family size.

We now continue with the specification of the model. The “probit” in MVP
arises from the assumption that ui ∼ NJ (0, 
). The covariance matrix 
 is not
identified for the MVP model, because only the signs of the latent variables are
identified through the likelihood function. In Section 8.2.2, we resolved the lack
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of identification by setting σ11 = 1. In the present case, we have J variances that
are not identified. One possibility is to set σjj = 1, j = 1, . . . , J . If J = 3, for
example,


 =

 1 σ12 σ13

σ12 1 σ23

σ13 σ23 1

 .

With ones on the main diagonal, 
 is a correlation matrix, and, because it
is symmetric, there are J (J − 1)/2 unique unknown σij . We denote these by
σ = (σ12, σ13, . . . , σJ−1,J )′. In addition, the positive definiteness of 
 imposes
restrictions on σ .

We assume a Gaussian prior, β ∼ NK (β0, B0). For the elements of σ , we propose
a normal prior, truncated to the region C
 in which 
 is positive definite, so that
1(
 ∈ C
) = 1 if 
 is positive definite and 0 otherwise. Then

π (σ ) ∝ 1(
 ∈ C
) exp

[
− 1

2
(σ − σ0)′
−1

0 (σ − σ0)

]
.

We can therefore write the posterior distribution as

π (β, 
, y∗|y) ∝ 1

|
|n/2
exp

[
−1

2

∑
i

(y∗
i − Xiβ)′
−1(y∗

i − Xiβ)

]
×
∏
i,j

[1(yij = 1)1(y∗
ij > 0) + 1(yij = 0)1(y∗

ij ≤ 0)]

× exp

[
−1

2
(β − β0)′B−1

0 (β − β0)

]
× 1(
 ∈ C
) exp

[
− 1

2
(σ − σ0)′
−1

0 (σ − σ0)

]
,

which implies

β|y, 
, y∗, y ∼ NK (β̄, B1), (9.6)

where

B1 =
[∑

i

X′
i


−1Xi + B−1
0

]−1

,

β̄ = B1

[∑
X′

i

−1y∗

i + B−1
0 β0

]
.

(9.7)

The regression parameter β can therefore be simulated from its conditional distri-
bution in a Gibbs step.
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The conditional posterior distribution for σ is

π (σ |y, y∗, β) ∝ 1(
 ∈ C
)
1

|
|n/2
exp

[
−1

2

∑
i

(y∗
i − Xiβ)′
−1(y∗

i − Xiβ)

]

× exp

[
−1

2
(σ − σ0)′
−1

0 (σ − σ0)

]
. (9.8)

This distribution can be sampled by a tailored MH algorithm. The proposal density
at the gth iteration is a Student-t distribution with ν degrees of freedom (e.g.,
ν = 5), with mean at the value of σ that maximizes the logarithm of Equation (9.8)
given the current values of β and y∗. The scale matrix is taken to be the negative
of the inverse Hessian at the maximum. A draw from the distribution that violates
the positive definiteness of 
 is immediately rejected, and the current value of 
 is
retained. If the draw results in positive-definite 
, the proposed value replaces the
current value with the usual MH probability. Details are given in the next algorithm.

The y∗
i are drawn from their full conditional posterior distributions, which are

independent truncated multivariate normal distributions, NJ (Xiβ, 
), truncated to
the left at zero for j such that yij = 1 and to the right at zero for j such that
yij = 0. To make this draw we employ a Gibbs algorithm that cycles through the
full conditionals for i = 1, . . . , n,

f (y∗
i1|y∗

i2, . . . , y
∗
iJ )

...
f (y∗

ij |y∗
i1, . . . , y

∗
i,j−1, y

∗
i,j+1, . . . , y

∗
iJ )

...
f (y∗

i,J |y∗
i1, . . . , y

∗
i,J−1),

(9.9)

where updated values of y∗
ij are entered into the conditioning set as they are

generated. Each of these is a truncated univariate normal distribution with mean
and variance given by the conditional distribution of (A.9).

In algorithmic form, we have

Algorithm 9.2: MH algorithm for MVP model

9.1 Select starting values y∗(0) and β(0).
9.2 At the gth iteration,

(a) Maximize

− n

2
log |
| − 1

2

∑
i

(
y

∗(g−1)
i − Xiβ

(g−1)
)′


−1
(
y

∗(g−1)
i − Xiβ

(g−1)
)

− 1

2
(σ − σ0)′
−1

0 (σ − σ0)
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with respect to σ . Denote the maximizing value by σ̂ (g) and denote the negative of
the inverse Hessian matrix at the maximizing value by Ŝ(g).

(b) Draw σ ∗ from tJ (J−1)/2(ν, σ̂ (g), Ŝ(g)) and set

α(σ (g−1), σ ∗) =
( ∏

i NJ (yi |Xiβ,
∗)∏
i NJ (yi |Xiβ,
(g−1))

)(
NJ (J−1)/2(σ ∗|σ0, 
0)

NJ (J−1)/2(σ (g−1)|σ0, 
0)

)
×
(

tJ (J−1)/2(σ ∗|ν, σ̂ (g), Ŝ(g))

tJ (J−1)/2(σ (g−1)|ν, σ̂ (g), Ŝ(g))

)
.

In these expressions, NJ (z|µ,
) denotes the density function of the J -dimensional
normal distribution with mean vector µ and covariance matrix 
 evaluated at z;
tD(t |ν, µ,
) denotes the density function evaluated at t of the D-dimensional
Student-t distribution with ν degrees of freedom, location vector µ, and scale matrix

; and 
∗ is the covariance matrix obtained from the covariances in σ ∗.

(c) Draw U from U (0, 1). If U ≤ α(σ (g−1), σ ∗), set σ (g) = σ ∗; otherwise, set σ (g) =
σ (g−1). Note that a drawing of σ ∗ that leads to a 
 that is not positive definite is
always rejected.

(d) Draw β(g) from (9.6), with 
 = 
(g) and y∗ = y∗(g−1) in (9.7).
(e) Draw y∗(g)|y, β(g), 
(g) following the strategy described around (9.9).

As an example, we consider a data set analyzed by Rubinfeld (1977). Ninety-
five individuals report on whether they send at least one of their children to a
public school (yi1) and whether they voted in favor of a school tax increase (yi2).
These decisions are modeled in the multivariate probit form. The covariates for the
first decision are a constant, log(income), and log(property taxes); for the second,
they are a constant, log(income), log(property taxes), and the number of years the
responder has lived in the city.

Some experimentation indicated considerable sensitivity of results to the prior
distributions of the parameters. This is not surprising in view of the small sample
size. For this reason, we decided to impose highly uninformative priors: β0 =
0, B0 = 100I7, and σ12 ∼ N(0, 0.5). We generated 5,500 observations, of which
500 were discarded, and found autocorrelations at lag 20 to be very small. The
prior and posterior distributions are summarized in Table 9.4. The 95% credibility
intervals of most parameters range from negative to positive values, except that
β22 seems clearly positive and β23 clearly negative. It appears that a higher income
is associated with a higher probability of voting for a tax increase, while a higher
property tax works in the opposite direction. Little can be said about the effects of
the other covariates in the model.
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Table 9.4. Summary of Prior and Posterior Distributions of β and σ12: Rubinfeld
Data.

Coefficient Prior Posterior

Mean S.D. Mean S.D. n.s.e. Lower Upper

β11 0.000 10.000 −4.543 3.761 0.230 −12.846 2.304
β12 0.000 10.000 0.129 0.439 0.040 −0.698 0.994
β13 0.000 10.000 0.620 0.607 0.037 −0.627 1.784
β21 0.000 10.000 −0.634 3.762 0.309 −8.145 6.231
β22 0.000 10.000 1.113 0.443 0.044 0.282 1.997
β23 0.000 10.000 −1.437 0.546 0.050 −2.495 −0.367
β24 0.000 10.000 −0.018 0.015 0.000 −0.048 0.013
σ12 0.000 0.707 0.085 0.185 0.023 −0.302 0.455

9.3 Panel Data

Panel data consist of observations on the same unit over several time periods. The
response variable is denoted yit , which denotes an observation on unit i at time t .
Since the first of the examples of SUR data mentioned in Section 9.1 also involves
individual units across time, we discuss how the models differ before presenting
the panel data model in detail.

The SUR model is usually applied to data for which the number of time periods
is large and the number of units is small, and the panel data model is applied to
datasets with a small number of time periods and a large number of units. The
first subscript of the response variable in the SUR model is usually associated
with an identifiable unit whose behavior is expected to differ from that of other
units, and such differences are of interest. In the investment data, for example,
the s subscript identifies one of a small number of firms, and differences in the
investment behavior of the firms are of interest in the research. The j subscript
indicates a year, and it is assumed that there are a large number of observations
for the investment expenditures of each firm. In fact, there are usually enough
observations to estimate individual regressions for each firm. As we have pointed
out, it is the correlation across firms in a particular year that distinguishes the SUR
model from other models for multivariate data.

Although our other examples for SUR data do not involve time series cross-
section data, they have the same general structure: in the test score example, there
are a fairly small number of tests and a large number of individuals, and we assume
correlation across test results for a particular individual; we are also likely to believe
that each covariate has a different effect on each test, which is indicated by different
values of βs . In the household expenditure example, there are a relatively small
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number of expenditure categories, indexed by s, and a large number of households,
indexed by j , and we expect correlation across categories for a given household;
again, the covariates are likely to affect each product differently. These cases have
in common the idea that the first subscript of ysj is of particular interest and that
the second indexes a relatively large number of observations.

In contrast, a typical panel data set consists of a large number of units, usually
firms or households, often over a time period that is too short to estimate a separate
regression for each unit. The identity of the individual units is of no inherent
interest; they are chosen randomly from a very large population and are regarded as
exchangeable. The large number of units makes it impractical to estimate individual
variances for each unit and covariances for each pair of units. This model assumes
further that the behavior of the units is independent at each time period, but that
there are differences across individuals that persist over time. These differences are
called heterogeneity, and they are modeled by a nonzero covariance between the
disturbances of a particular firm or household across time.

Here are a few examples of panel data:

9.1 In a famous study, Mundlak (1961) considered agricultural production functions al-
lowing for the possibility of unobserved differences in the quality of management or
land that do not change over time.

9.2 Hausman (1978) considered log wages as a function of demographic variables in a
panel of 629 observations over 6 years.

9.3 The Vella and Verbeek (1998) study, discussed in earlier chapters, is based on panel
data; the sample includes observations on 545 young men over 8 years.

A general version of the model may be written as

yit = x ′
itβ + w′

it bi + uit , i = 1, . . . , n, t = 1, . . . , T , (9.10)

where xit and β are K1 × 1 and wit and bi are K2 × 1. The i subscript of bi

allows each of the variables in wit to have a different effect on each observation
unit; these different effects are a way to model heterogeneity. It is assumed that
uit ∼ N(0, h−1

u ) and that Cov(uit , ujs) = 0 unless i = t and j = s. Note that the
distribution of uit has been parameterized in terms of the precision rather than
the variance. We assume that the covariates in wit are a subset of those in xit . In
the statistical literature, the elements of β, which do not differ across i, are called
fixed effects, and the bi , which do differ across i, are called random effects. This
terminology differs from that found in most econometric discussions of panel data
models. In that literature, the bi are regarded either as random variables and called
“random effects,” or as nonrandom, but unknown, parameters and called “fixed
effects.” Since, from the Bayesian viewpoint, both β and the bi are regarded as
random variables, the econometric terminology does not distinguish between the
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two types of parameters. We therefore adopt the definitions found in the statistics
literature.

To illustrate how to apply the Bayesian approach to panel data, we specify a
basic model and then discuss several ways in which it may be extended. First,
define yi = (yi1, . . . , yiT )′, Xi = (xi1, . . . , xiT )′, ui = (ui1, . . . , uiT )′, and Wi =
(wi1, . . . , wiT )′. Then the basic model is

yi = Xiβ + Wibi + ui,

ui |hu ∼ NT (0, h−1
u IT ),

β ∼ NK1 (β0, B0),

hu ∼ G(α0/2, δ0/2),

bi |D ∼ NK2 (0, D),

D−1 ∼ WK2 (ν0, D0).

(9.11)

From the result that the posterior distribution is proportional to the likelihood
function times the prior distribution, we have

π (β, b, hu, D|y) ∝ hnT/2
u exp

[
−hu

2

∑
(yi − Xiβ − Wibi)

′(yi − Xiβ − Wibi)

]
× exp

[
−1

2
(β − β0)′B−1

0 (β − β0)

]
hα0/2−1

u exp

[
−δ0hu

2

]
× |D|−K2/2 exp

[
−1

2

∑
b′

iD
−1bi

]
× |D|−(ν0−K2−1)/2 exp

[
−1

2
tr(D−1

0 D−1)

]
,

where b = (b1, . . . , bn). It is now straightforward to see that

hu|y, β, b, D ∼ G(α1/2, δ1/2), (9.12)

where

α1 = α0 + nT ,

δ1 = δ0 +
∑

(yi − Xiβ − Wibi)
′(yi − Xiβ − Wibi),

and

D−1|b ∼ WK2 (ν1, D1), (9.13)
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where

ν1 = ν0 + K2,

D1 =
[
D−1

0 +
∑

bib
′
i

]−1

.

It is preferable to sample β and b in one block as π (β, b|y, hu, D), rather than in
two blocks π (β|y, b, hu, D) and π (b|y, β, hu, D), because of possible correlation
between them. This is conveniently done by using

π (β, b|y, hu, D) = π (β|y, hu, D)π (b|y, β, hu, D)

= π (β|y, hu, D)
∏

π (bi |y, β, hu, D).

The first term on the right-hand side can be found by integrating out the bi from
π (β, b|y, hu, D). For the second, set ỹi = yi − Xiβ and complete the square in bi

to obtain

bi |y, β, D, hu ∼ NK2 (b̄i , D1i), (9.14)

where D1i = [huW
′
i Wi + D−1]−1 and b̄i = D1i[huW

′
i ỹi]. To find the conditional

posterior distribution for β, we write yi = Xiβ + (Wibi + ui) and integrate out the
bi and ui :

Cov(yi) = E[(Wibi + ui)(Wibi + ui)
′] = WiDW ′

i + h−1
u IT ≡ B1i ,

which implies yi |β, hu, D ∼ NT (Xiβ, B1i). It follows that

π (β|y, D, hu) ∝ exp

[
−1

2

∑
(yi − Xiβ)′B−1

1i (yi − Xiβ)

]
× exp

[
−1

2
(β − β0)′B−1

0 (β − β0)

]
,

from which we have

β|y, hu, D ∼ NK1 (β̄, B1), (9.15)

where

B1 =
[∑

X′
1iB

−1
1i Xi + B−1

0

]−1
,

β̄ = B1

[∑
X′

iB
−1
1i yi + B−1

0 β0

]
.

The algorithmic form of our sampler for panel data is the following.
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Algorithm 9.3: Gibbs sampler for model (9.11)

9.1 Choose β(0), b(0).
9.2 At the gth iteration, sample

hu ∼ G(α1/2, δ
(g)
1 /2),

D−1 ∼ WK2 (ν1,D
(g)
1 ),

bi ∼ NK2 (b̄(g)
i , D

(g)
1i ), i = 1, . . . , n,

β ∼ NK1 (β̄(g), B
(g)
1 ),

where

δ
(g)
1 = δ0 +

∑(
yi − Xiβ

(g−1) − Wib
(g−1)
i

)′(
yi − Xiβ

(g−1) − Wib
(g−1)
i

)
,

D
(g)
1 =

[
D−1

0 +
∑

b
(g−1)
i b

(g−1)′
i

]−1
,

D
(g)
1i = [h(g)

u W ′
i Wi + (D(g))−1]−1,

b̄
(g)
i = D

(g)
1i [h(g)

u W ′
i (yi − Xiβ

(g−1))],

B
(g)
1i = WiD

(g)W ′
i + h−1

u IT ,

B
(g)
1 =

[∑
X′

i(B
(g)
1i )−1Xi + B−1

0

]−1
,

β̄ (g) = B
(g)
1

[∑
X′

i

(
B

(g)
1i

)−1
yi + B−1

0 β0

]
.

An approximation to the joint posterior distribution of the parameters of interest,
π (β, hu, D|y), is provided by the simulated output of those parameters, ignoring
the simulated values of b.

This model may be extended in several directions. Consider first the model for
E(bi). The simplest assumption is E(bi) = 0, which assumes exchangeability and
the independence of the bi and the covariates in Xi . Since in many applications
this assumption seems overly strong, dependence between bi and covariates ai :
r × 1, possibly including covariates in Xi , may be introduced in a hierarchical
fashion by assuming bi ∼ NK2 (Aiγ, h−1

b D0), where Ai = IK2 ⊗ a′
i is K2 × rK2,

D0 is K2 × K2, and γ is rK2 × 1. This hierarchical specification is an assumption
of exchangeability given ai . The model specification is completed by placing a
prior distribution on γ , for example γ ∼ NrK2 (γ0, G0). A second extension is
to specify hierarchical prior distributions, rather than values, for some or all of
the hyperparameters with a subscript of zero. Another possible extension is to
substitute a Student-t distribution for the Gaussian. This can be done in the usual
way, by assuming ui |hu, λi ∼ NT (0, (λihu)−1IT ) and then adding the λi to the
sampler. Similarly, the normal distribution for bi can be replaced by a Student-t
distribution by assuming bi |D, ηi ∼ NK2 (b0, η

−1
i D) and a gamma distribution for
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Table 9.5. Summary of Posterior Distribution: Panel
Data Model, Vella–Verbeek Data.

Coefficient Mean S.D. n.s.e. Lower Upper

βU 0.090 0.044 0.000 0.006 0.179
σ 2

u 1.527 2.121 0.049 0.280 6.379
Mean(b2) 0.058 0.010 0.000 0.038 0.078
D22 12.568 37.340 0.449 1.340 61.473

ηi ; see Exercise 9.3. Finally, it may be desirable to model the time series features
of yi , a topic taken up in Section 10.4.

We conclude with an example based on the Vella–Verbeek data discussed in
Sections 4.4 and 8.1.1. The intercept and the experience variable are assigned to
Wi (random effects), and the remaining covariates, including the union membership
dummy variable, are placed in Xi (fixed effects). The results are summarized in
Table 9.5 and Figure 9.3. The coefficient on the union dummy variable based
on all 8 years of data is somewhat smaller than that based on only the 1987 data.
Mean(b2) indicates the mean of the n values of bi2, the random effect of experience.
On average, a year of experience adds about 6% to wage, but the likely effect varies
between 3.85 and 7.82%.

9.4 Further Reading and References

Section 9.2 The sampling of the MVP model is explained in more detail in Chib
and Greenberg (1998); it is based on the latent data approach of Albert and Chib
(1993b).

In contrast to the MVP model, which models data where an individual makes
more than one binary choice, are models for data in which an individual makes
one choice from more than two possibilities. These models generalize the binary
probit and logit models discussed in Sections 8.2.2 and 8.2.3. One version, called
the ordered probit model, arises when the choices have a natural order such as the
rating assigned to a corporate bond. An MCMC algorithm for this case is presented
in Chib (2001, pp. 3606–7).

For unordered data, we model the probability that decision maker i chooses
alternative j , P (yi = j |xi), where j ∈ {0, 1, . . . , J } and xi is a vector of covari-
ates. Since

∑
j=0 P (yi = j |xi) = 1, we need model only J probabilities. There

are several variants of this model, depending on the nature of the data. In the
multinomial probit model, the covariates are the same for all choices, but specific
to an individual. For example, the alternatives are occupational choices, and the
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Figure 9.3. Posterior distributions of βU and mean(b2).

covariates include the individual’s years of education and race. The latent data for
this model are specified as y∗

ij = x ′
iβj + uij , j = 1, . . . , J , and ui ∼ NJ (0, 
),

where ui = (ui1, . . . , uiJ ), and the observed data

yij =
{

1, if max{y∗
i1, . . . , y

∗
iJ } = y∗

ij > 0,

0, if max{y∗
i1, . . . , y

∗
iJ } ≤ 0.

In the conditional probit model, the covariates are individual and choice specific.
For example, an individual chooses between taking a bus, taking a train, or driving
a car to work, and the covariates might include the commuting time for individual
i when taking transportation choice j or the cost to i when choosing j . The latent
data are specified as y∗

ij = x ′
ijβ + uij , j = 1, . . . , J , and ui ∼ NJ (0, 
), where

ui and yij are defined as in the multinomial probit model. The model is called a
mixed probit model when data for both types of covariate are available. A clear
explanation of the various models appears in Kennedy (2003, sec. 15.2). For other
authors, such as Train (2003), the word “mixed” refers to models that include
individual-specific parameters as discussed in Section 9.3.

An algorithm for the multinomial probit model requires drawing from an inverted
Wishart distribution under the constraint, required for identification, that σ11 = 1.
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It is possible to do the simulation as a Gibbs algorithm by setting Y11 = σ11 = 1
and applying (A.15). See McCulloch et al. (2000) for details. Also see Rossi et al.
(2006, sec 4.2).

The logit model may also be extended to more than two choices. The ordered
logit model, which is applicable when the choices have a natural ordering, is
discussed from the frequentist viewpoint in Train (2003, sec. 7.4). Conditional
logit, multinomial logit, and mixed logit models are specified as the corresponding
probit versions. As in the case of the mixed probit model, some authors reserve the
mixed logit model to refer to models in which individual-specific effects appear.
The various models differ in the way identification constraints are introduced, and
the references mentioned before discuss this issue in more detail. The multinomial
logit model is analyzed from a Bayesian viewpoint in Chib and Jeliazkov (2005).

Section 9.3 Excellent recent books on panel data, primarily from the frequentist
view, are Arellano (2003), Hsiao (2003), and Baltagi (2001); Hsiao’s book also
contains some Bayesian material. From the Bayesian viewpoint, Chib (in press-b)
discusses panel data in great detail and presents more general models than those we
have considered, and Chib and Carlin (1999) introduce Algorithm 9.3 and suggest
alternative blocking strategies for panel data models.

9.5 Exercises

9.1 Show that the SUR model with multivariate t errors can be analyzed by introducing
latent data. Specifically, consider the model

yj = Xjβ + uj , uj |
, λj ∼ NS

(
0, λ−1

j 

)
, λj ∼ G(ν/2, ν/2).

By integrating out λj , show that yj |Xj, β,
 ∼ tS(ν,Xjβ,
). Let the prior distribu-
tions for β and 
 be those in Section 9.1. Specify a Gibbs algorithm to sample from
this model.

9.2 Explain how to analyze a panel data set where the response variable is binary, that
is, yit ∈ {0, 1}, the latent data are determined by y∗

it = x ′
itβ + w′

it bi + uit , and the
remainder of the specification is given in (9.11). (Note: Chib and Carlin (1999)
provide several algorithms for this model.)

9.3 The basic panel data model of Equation (9.11) can be modified to specify Student-t
errors for either or both of ui and bi . To do so for both, make the following changes
and additions to those equations:

ui |hu, λi ∼ NT (0, (λihu)−1IT ),

λi ∼ G(νl/2, νl/2),

bi |D, ηi ∼ NK2 (0, η−1
i D),

ηi ∼ G(νh/2, νh/2).
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Show that, in the modified model,

ui |hu ∼ tT (νl, 0, IT ) and bi |D ∼ tK2 (νh, 0,D).

Develop an algorithm to sample from π (β, hu,D|y).
9.4 Explain how to analyze panel and SUR data sets when the response variable is

censored, as in Section 8.2.1. Use a latent data formulation.
9.5 Specify a multivariate logit model and discuss estimation.
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Chapter 10

Time Series

THE ANALYSIS OF TIME SERIES data has generated a vast literature from
both frequentist and Bayesian viewpoints. We consider a few standard models to
illustrate how they can be analyzed with MCMC methods. Section 10.5 provides
references to more detailed explanations and additional models.

10.1 Autoregressive Models

This section is concerned with models of the general form

yt = x ′
tβ + εt ,

εt = φ1εt−1 + φ2εt−2 + · · · + φpεt−p + ut ,
(10.1)

where t = 1, . . . , T and ut ∼ N(0, σ 2
u ). The disturbance εt is said to be autore-

gressive of order p, denoted by εt ∼ AR(p). We assume that the stochastic process
defining εt is second-order stationary, which implies that the mean E(εt ) and all
covariances E(εsεt ) of the process are finite and independent of t and s, although
the covariances may depend on |t − s|. Note that the variance is the special case of
the covariance where t = s and is therefore finite and independent of time.

The stationarity property imposes restrictions on the φs. To state these, we define
the lag operator L. It operates on time-subscripted variables as Lzt = zt−1, which
implies that Lrzt = zt−r for integer values of r . We can now write εt in terms of
the polynomial in the lag operator

�p(L) = 1 − φ1L − · · · − φpLp,

as �p(L)εt = ut . The stationary restriction implies that all roots of the polynomial
�(z) lie outside the unit circle. A simple example is the AR(1) model, which
leads to the first-order polynomial �(z) = 1 − φ1z. Its single root is the solution to
1 − φ1z = 0, or z = 1/φ1. Stationarity requires |1/φ1| > 1, or |φ1| < 1. Although

153
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in the AR(1) model there is a clear connection between the root of the equation
and the parameter of the model, the connection is less obvious for autoregressive
models of higher order.

This model is a way to capture the possibility that disturbances in a particular
time period continue to affect y in later time periods, a property that characterizes
many time series in economics and other areas. A special case of some importance
is one in which there are no covariates; that is, yt = εt , from which we have

yt = φ1yt−1 + · · · + φpyt−p + ut ,

in which case yt ∼ AR(p). It is easy to accommodate a constant term. If

zt = µ + φ1zt−1 + · · · + φpzt−p + ut , (10.2)

then

E(zt ) = µ + φ1E(zt−1) + · · · + φpE(zt−p).

But, by stationarity, E(zt ) = E(zt−1) = · · · = E(zt−p), which implies that

E(zt ) = µ

1 − φ1 − · · · − φp

,

if
∑

φi 
= 1. After subtracting this expression for E(zt ) from both sides of (10.2)
and defining yt = zt − E(zt ), you can verify that yt ∼ AR(p) and E(yt ) = 0.

We now return to the model with covariates specified in (10.1). Given a sample
of T observations, we want the posterior distribution of β, φ = (φ1, . . . , φp)′, and
σ 2

u . The likelihood function may be written as

f (y1, . . . , yT ) = f (Yp)f (yp+1 |Yp)f (yp+2 |Yp+1) · · · f (yT |YT −1),

where Yr = (yr, yr−1, . . . , yr−p+1). To implement an MCMC algorithm, we first
write the likelihood function so that β appears as a regression coefficient given φ

and then write it so that φ appears as a regression coefficient given β.
To isolate β, multiply both sides of (10.1) by �p(L):

�p(L)yt = �p(L)x ′
tβ + �p(L)εt

= �p(L)x ′
tβ + ut ,

or

ŷt = x̂ ′
tβ + ut ,

where ŷt = �p(L)yt and x̂t = �p(L)xt . This expression is valid for t > p, for
which it implies ŷt |Yt−1, β, φ, σ 2 ∼ N(x̂ ′

tβ, σ 2), but it is not valid for the p

observations in Yp, because observations in periods before t = 1 are not available.



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

10.1 Autoregressive Models 155

The stationarity property can be exploited to find the distribution of Yp. To do so,
we write the model in state space form:

yt = x ′
tβ + e′

1Et (observation equation),

Et = GEt−1 + e1ut (state equation),
(10.3)

where

G =


φ1 φ2 . . . φp

0

Ip−1
...

0

 ,

and e1 is a p × 1 vector with a one in the first row and zeros elsewhere. We can
now express Yp as

Yp = Xpβ + Ep,

where, for integer r ,

Xr =


x ′

p

x ′
p−1

...

x ′
r−p+1

 .

It follows that

�p ≡ Var(Yp)

= Var(Ep)

= Var(GEp−1 + upe1)

= G Var(Ep−1)G′ + σ 2
u e1e

′
1

= G�pG′ + σ 2
u e1e

′
1,

because Var(Ep) = Var(Ep−1) by stationarity and up and Ep−1 are independent.
Finally, it is convenient to define 
p = (1/σ 2

u )�p, implying that Yp ∼ Np(Xpβ,

σ 2
u
p). By (A.19) we can write 
p explicitly in terms of φ:

vec(
p) = vec(G
pG′) + vec(e1e
′
1)

= (G ⊗ G) vec(
p) + vec(e1e
′
1)

= [I − (G ⊗ G)]−1 vec(e1e
′
1).
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The joint posterior distribution of the parameters in a form that is convenient for
simulating β and σ 2

u is

π (β, φ, σ 2
u | y) ∝

(
1

σ 2
u

)p/2 1

|
p|p/2
exp

[
− 1

2σ 2
u

(Yp − Xpβ)′
−1
p (Yp − Xpβ)

]

×
(

1

σ 2
u

)(T −p)/2

exp

[
− 1

2σ 2
u

T∑
p+1

(ŷt − x̂ ′
tβ)′(ŷt − x̂ ′

tβ)

]
× π (β)π (σ 2

u )π (φ).

On the assumption β ∼ NK (β0, B0), it is straightforward to show that β | y, σ 2
u , φ ∼

NK (β̄, B1), where

B1 =
[
σ−2

u

(
X′

p
−1
p Xp +

T∑
p+1

x̂t x̂
′
t

)
+ B−1

0

]−1

,

β̄ = B1

[
σ−2

u

(
X′

p
−1
p Yp +

T∑
p+1

x̂t ŷt

)
+ B−1

0 β0

]
.

The derivation of π (σ 2
u | y, β, φ) is also straightforward on the assumption that

the prior distribution for hu = 1/σ 2
u is G(α0/2, δ0/2); then hu | y, β, φ ∼ G(α1/2,

δ1/2), where

α1 = α0 + T ,

δ1 = δ0 + (Yp − Xpβ)′
−1
p (Yp − Xpβ) +

T∑
p+1

(ŷt − x̂ ′
tβ)′(ŷt − x̂ ′

tβ).

The conditional posterior distributions of β and σ 2
u can therefore be simulated by

Gibbs steps, but that of φ requires an MH step.
We write 
p(φ) to reflect the dependence of 
p on φ and rewrite the likelihood

function to make clear the role of φ. To do so, let y∗
t = yt − x ′

tβ. Starting again
from �p(L)yt = �p(L)x ′

tβ + ut , we find

y∗
t = φ1y

∗
t−1 + · · · + φpy∗

t−p + ut

= Y ∗
t−1φ + ut .
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Accordingly, for t > p, y∗
t ∼ N(Y ∗

t−1φ, σ 2). The conditional posterior distribution
of φ is therefore

φ | y, β, σ 2
u ∝ 1

|
p(φ)|T/2
exp

[
− 1

2σ 2
u

(Yp − Xpβ)′
p(φ)−1(Yp − Xpβ)

]

× exp

− 1

2σ 2
u

T∑
p+1

(y∗
t − Y ∗

t−1φ)′(y∗
t − Y ∗

t−1φ)


×π (φ)1(φ ∈ Sφ), (10.4)

where Sφ is the region in which the process is stationary. This distribution is clearly
nonstandard, but it can be sampled with an MH algorithm after specifying the prior
distribution of φ; for example, φ ∼ Np(φ0, �0). A possible proposal generating
density is the distribution obtained by multiplying π (φ) by the terms involving y∗

t ,
t > p, in (10.4); that distribution is N(φ̂, �̂), where

�̂ =
σ−2

u

T∑
p+1

Y ∗′
t−1Y

∗
t−1 + �−1

0

−1

,

φ̂ = �̂

σ−2
u

T∑
p+1

Y ∗′
t−1y

∗
t + �−1

0 φ0

 .

Draws of φ from that distribution are made until one is found that is in the stationary
region; it is then subjected to the usual MH acceptance criterion.

As an example, we examine the expectations augmented Phillips curve model as
presented in Wooldridge (2006, pp. 390–391). The data are monthly observations on
inflation and the unemployment rate for the period 1948 January to 2005 November,
and the model is

yt = x ′
tβ + ut , (10.5)

ut = ρut−1 + εt , (10.6)

where εt ∼ N(0, σ 2), yt is the change in inflation rate, and xt includes a constant
and the unemployment rate. We employ the training sample approach to specify hy-
perparameters for the priors, where the training period is January 1948 to December
1952. The hyperparameters are estimated from a regression of y on x that allows
for first-order autocorrelated errors. We set α0 = 2.001 to allow for a large variance
and set B0 at the estimated variance from the training sample.

The results are shown in Table 10.1. The coefficient of unemployment, β2, is
clearly negative; its 95% credibility interval is (−0.082, −0.036), and its mean
of −0.059 is in the middle of the interval. The autocorrelation parameter φ is
clearly positive. Its mean of 0.234, along with the fairly tight credibility interval,
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Table 10.1. Summary of Posterior Distribution: AR(1) Errors.

Coefficient Mean S.D. n.s.e. Lower Upper

β1 0.343 0.069 0.001 0.206 0.480
β2 −0.059 0.012 0.000 −0.082 −0.036
σ 2 0.109 0.006 0.000 0.098 0.122
φ 0.234 0.037 0.000 0.161 0.308

suggests a moderate amount of autocorrelation. To check this, we ran the same
specification without an autocorrelation parameter, where the priors are taken from
a regression on the training-sample data, assuming independent errors. The log10

of the marginal likelihood for the AR(1) model is −89.028 compared to −94.543
for the model that assumes independent errors, which is a strong evidence in favor
of the autocorrelated model.

10.2 Regime-Switching Models

This section takes up the regime-switching (or hidden Markov) model popularized
in econometrics by Hamilton (1989) and first studied from a Bayesian MCMC
perspective by Albert and Chib (1993a). We consider the AR(0) version presented
in Kim and Nelson (1999, chap. 9). The model is given by

yt = µ0 + µ1st + ut , t = 1, . . . , T ,

where ut ∼ N(0, σ 2
st

). The hidden variable st indicates the two states or regimes
of the model, 0 and 1. The probability of being in state st is given by a Markov
process,

P (st = 0 | st−1 = 0) = 1 − a,

P (st = 1 | st−1 = 0) = a,

P (st = 0 | st−1 = 1) = b,

P (st = 1 | st−1 = 1) = 1 − b.

The intercept shifts from µ0 in state 0 to µ0 + µ1, µ1 > 0, in state 1, while the
variance shifts from σ 2

0 to σ 2
1 . In a typical macroeconomics application, yt , the

growth rate of GDP, is modeled as being in one of two states – the larger mean of
state 1 identifies a period of rapid growth and the smaller mean of state 0 identifies
a period of slow growth or recession. The condition µ1 > 0 is a way to identify the
model. If µ1 could be negative, we could relabel the pair (µ0, σ

2
0 ) to be the state 1

parameters and the pair (µ0 + µ1, σ
2
1 ) to be those of state 0.
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The posterior distributions to be estimated are those of µ = (µ0, µ1), P =
(a, b), σ 2 = (σ 2

0 , σ 2
1 ), and S = (s1, . . . , sT ). The values P (st = 1 | y) estimate the

probability that the economy is not in recession for each of the time periods in
the sample. The model can be extended by assuming u ∼ AR(p), by including
covariates in the form x ′

tβ, and by specifying more than two states.
Given S, the likelihood function can be written as the product of terms when the

process is in state 0 times the product of terms when the process is in state 1:

f (y | S, µ, σ 2) ∝
(

1

σ 2
0

)T0/2

exp

[
− 1

2σ 2
0

∑
t :st=0

(yt − µ0)2

]

×
(

1

σ 2
1

)T1/2

exp

[
− 1

2σ 2
1

∑
t :st=1

(yt − µ0 − µ1)2

]
,

where T1 = ∑
t st and T0 = T − T1. By assuming the usual conditional conjugate

distributions for µ0 and σ 2 and a truncated normal distribution for µ1, it is straight-
forward to devise a sampler for µ and σ 2. Moreover, if we are given S and beta
prior distributions for a and b

π (a) ∝ aa0−1(1 − a)a1−1,

π (b) ∝ bb0−1(1 − b)b1−1,

then the conditional posterior distributions of a and b are independent of YT , and
π (a | ST ) is a beta distribution with parameters a0 + S01 and a1 + S00, where Sij is
the number of transitions from state i to state j . An analogous calculation can be
made for π (b | ST ).

The interesting part of the analysis of this model lies in the sampling for S;
our discussion follows Chib (1996). The derivations that follow illustrate two
important aspects of algorithm design: (1) all of the steps utilize the standard rules
of probability and (2) the derivations require considerable ingenuity and care.

Begin by defining St = (s1, . . . , st ) and St+1 = (st+1, . . . , sT ), and, analogously,
Yt and Yt+1. In addition, let θ = (µ, σ 2, P ). We wish to find π (ST |YT , θ ). By Bayes
theorem,

π (ST | YT , θ ) = p(sT |YT , θ )p(ST −1 |YT , sT , θ )

= p(sT |YT , θ ) × · · · × p(st |YT , St+1, θ ) × · · · × p(s1 |YT , S2, θ ).
(10.7)
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Except for the first, the terms in this expression have the form p(st |YT , St+1, θ ).
Again by Bayes theorem,

p(st | YT , St+1, θ ) ∝ p(st |Yt , θ )f (Y t+1, St+1 |Yt , st , θ )

∝ p(st |Yt , θ )p(st+1 | st , θ )f (Y t+1, St+2 |Yt , st , st+1, θ )

∝ p(st |Yt , θ )p(st+1 | st , θ ).

The last step follows from the independence of (Y t+1, St+2) and st , given st+1 and
θ . Incorporating the proportionality constant, we have

p(st |YT , St+1, θ ) = p(st |Yt , θ )p(st+1 | st , θ )∑
st

p(st |Yt , θ )p(st+1 | st , θ )
. (10.8)

The next step is to use (10.8) to generate a sample of ST . The term p(st+1 | st , θ )
can be evaluated by the Markov model for st given a and b, but p(st |Yt , θ ) requires
a recursion. By the law of total probability,

p(st | Yt−1, θ ) =
∑

k

p(st | st−1 = k, θ )p(st−1 = k |Yt−1, θ ), (10.9)

this expression is the “prediction step”: it predicts st on the basis of information Yt−1

available before period t . Next is the “update step,” which updates the probability
of st on the basis of Yt :

p(st |Yt , θ ) = p(st |Yt−1, θ )f (yt |Yt−1, st , θ )∑
st

p(st |Yt−1, θ )f (yt |Yt−1, st , θ )
.

We begin the recursion of (10.9) with p(s1 |Y0, θ ) by sampling s1 from the invariant
distribution as a function of a and b. In the two-state case, we find the invariant
distribution from (6.6),

p(s1 = 0) = b

a + b
and p(s1 = 1) = a

a + b
.

We next compute p(s2 |Y1, θ ) from the prediction step and p(s2 |Y2, θ ) from the
update step. The recursion continues for t = 3, . . . , T . At the last step of this
recursion, the “forward” recursion, a value of sT is simulated from p(sT |YT , θ ).
Given this value of sT , the “backward” recursion samples st−1 |YT , St+1, θ , for
t = T , T − 1, . . . , 2, as in (10.7) and (10.8).

As an example, we apply the data to real GDP from the first quarter of 1952 to the
third quarter of 1995. Results appear in Table 10.2 and Figure 10.1, where we plot
the posterior means of the probability that the economy is in recession, 1 − st . The
table indicates a substantial difference in recessionary (µ0) and nonrecessionary
growth rates (µ1). The results also indicate an asymmetry in the probability of
changing states: an economy in recession has a probability of 0.742 of remaining
in recession, but an economy that is not in recession has a probability of 0.926 of
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Table 10.2. Parameter Estimates for GDP Data.

Parameter Mean S. D. Median

µ0 −0.353 0.266 −0.339
µ1 1.334 0.232 1.322
σ 2 0.579 0.076 0.572
1 − a 0.742 0.085 0.751
1 − b 0.926 0.034 0.930

not going into recession. The figure suggests a fairly clear-cut distinction between
recessionary and nonrecessionary periods since only a few of the 175 observations
are around 0.5.

10.3 Time-Varying Parameters

The model discussed in this section assumes that regression coefficients evolve ran-
domly through time. It is written in state–space form and consists of the observation
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Figure 10.1. Probability of recession.
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equation

yt = x ′
tβt + ut , (10.10)

and the transition equation

βt = βt−1 + εt , (10.11)

where t = 1, . . . , T , yt and ut are scalars, xt , βt , and εt are K × 1 vectors, ut ∼
N(0, σ 2), and εt ∼ NK (0, 
). We further assume that the ut and εt are independent
of each other and through time. The initial state β0 can be given a fixed value or can
be assumed to have a normal distribution with known mean and variance. Another
possibility is to specify a hierarchical model for β0. For simplicity, we take β0 to
be a known vector. This model can be generalized to a vector autoregression by
allowing yt to be a vector.

To analyze this model we define

Y = (yT , yT −1, . . . , y1)′,

β = (βT , βT −1, . . . , β1)′,

u = (uT , uT −1, . . . , u1),

ε = (εT , εT −1, . . . , ε1)′,

X =


x ′

T 0 0 0

0 x ′
T −1 . . . 0

...
...

. . . 0

0 0 . . . x ′
1

 .

The likelihood function is

f (y | β, σ 2) ∝
(

1

σ 2

)T/2

exp

[
− 1

2σ 2
(y − Xβ)′(y − Xβ)

]
.

The transition equation leads to a prior distribution for β: by defining the KT × KT

matrix H

H =



IK −IK 0 . . . 0

0 IK −IK . . . 0
... 0 IK

. . . 0
... 0

. . . . . . 0

0 0 0 0 IK


,
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we can write Hβ = β̃0 + ε, where β̃0 is a TK × 1 vector with β0 in the last K rows
and zeros elsewhere. It follows that β = H−1β̃0 + H−1ε, from which we conclude
that

β ∼ NK (H−1β̃0, H
−1(IT ⊗ 
)(H−1)′).

We adopt standard priors for the remaining parameters: 1/σ 2 ∼ G(α0/2, δ0/2) and

−1 ∼ WK (ν0, S0). The joint posterior distribution is

π (β, σ 2, 
 | y) ∝
(

1

σ 2

)T/2

exp

[
− 1

2σ 2
(y − Xβ)′(y − Xβ)

]
1

|
|T/2

× exp

[
− 1

2
(β − H−1β̃0)′H ′(IT ⊗ 
−1)H (β − H−1β̃0)

]

×
(

1

σ 2

)α0/2−1

exp

[
− δ0

2σ 2

]
1

|
|(ν0−K−1)/2
exp

[
− 1

2
tr(S−1

0 
−1)

]
,

where we have used |H ′(IT ⊗ 
−1)H | = |H ′||IT ⊗ 
−1||H |, |H | = 1, and
(A.20).

A Gibbs algorithm can be used because the conditional posterior distributions
are available for sampling:

β|y, σ 2, 
 ∼ NT K (β̄, B1),

(1/σ 2)|y, β, 
 ∼ G(ν1/2, δ1/2),


−1 ∼ WK (ν1, S1),

where

B1 = [
(1/σ 2)X′X + H ′(IT ⊗ 
−1)H

]−1
,

β̄ = B1
[
(1/σ 2)X′y + H ′(IT ⊗ 
−1)β̃0

]
,

α1 = α0 + T ,

δ1 = δ0 + (y − Xβ)′(y − Xβ),

ν1 = ν0 + T ,

S1 =
[
S−1

0 +
T∑

t=1

(βt − βt−1)(βt − βt−1)′
]−1

.
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The expression for S1 follows from

(β − H−1β̃0)′H ′(IT ⊗ 
−1)H (β − H−1β̃0) = (Hβ − β̃0)′(I ⊗ 
−1)(Hβ − β̃0)

=

βT − βT −1
...

β1 − β0


′



−1 0 0 0
0 
−1 0 0
...

. . .
...

0 0 0 
−1


βT − βT −1

...
β1 − β0



=
T∑

t=1

(βt − βt−1)′
−1(βt − βt−1)

= tr

[
T∑

t=1

(βt − βt−1)(βt − βt−1)′
−1

]
.

This algorithm must be modified for large KT because B1 is the inverse of a
KT × KT matrix that may be too large to invert rapidly and accurately. The matrix
inversion can be avoided by sampling βt with the same type of recursive scheme
utilized in sampling for st in Section 10.2.

As an example of this model, we return to the Phillips curve model discussed
in Section 10.1, but we now assume that βt follows a random walk, rather than
being constant, and that ut is not autocorrelated. The model is that of Equations
(10.10) and (10.11), where yt is the change in the inflation rate and xt consists of
a constant and the unemployment rate. The priors are again based on the first 5
years of data employed as a training sample, and βt is taken as a constant over the
training sample to specify the hyperparameters.

Table 10.3 and Figure 10.2 contain results, where the lower and upper limits
refer to a 90% credibility interval. Results are based on 20,000 draws from the
posterior distribution after 1,000 burn-in iterations. The log10 marginal likelihood
value is −92.506. The AR(1) model has a larger marginal likelihood despite the
large variation in the values of βt displayed in Figure 10.2.

Table 10.3. Summary of Posterior Distribution: Time Varying
Parameter Model.

Coefficient Mean S.D. Lower Upper

σ11 0.006 0.003 0.003 0.010
σ12 −0.001 0.001 −0.002 −0.001
σ22 0.000 0.000 0.000 0.000
σ 2 0.103 0.006 0.096 0.111
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2

1

β t2

Figure 10.2. Time-varying slope.

10.4 Time Series Properties of Models for Panel Data

A number of models have been proposed to capture the time series nature of panel
data; we examine two of these. For both models, we set i = 1, . . . , n, and t = 1,

. . . , T .
First, consider the dynamic panel model

yit = β1yi,t−1 + bi + uit , |β1| < 1, uit ∼ N(0, σ 2). (10.12)

For simplicity, we condition on yi1 rather than specify its distribution. The likeli-
hood function for yi2, . . . , yiT can be written as

f (yi2, . . . , yiT | yi1) = f (yi2 | yi1)f (yi3 | yi2) · · · f (yiT | yi,T −1)

∝
(

1

σ 2

)(T −1)/2

exp

[
− 1

2σ 2

∑
t=2

(yit − β1yi,t−1 − bi)
2

]
.

By defining yi = (yi2, . . . , yiT )′, Xi = (yi1, . . . , yi,T −1)′, β = β1, wit = 1, and
ui = (ui2, . . . , uiT )′, the dynamic model (10.12) is equivalent to the static panel
model of (9.11), along with the prior distributions specified there and the added re-
quirement that |β1| < 1. Accordingly, the algorithm specified for the earlier model
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is applicable, except that the sampling for β1 is from a normal distribution truncated
to (−1, 1).

Second, consider a model that includes unit-specific regression coefficients and
an AR(1) disturbance term:

yit = x ′
itβ + w′

it bi + εit , εit = ρεi,t−1 + uit , |ρ| < 1, (10.13)

where uit ∼ N(0, σ 2) independent over i and t . A standard analysis shows that

Cov(εit , εi,t−s) = σ 2

1 − ρ2
ρs,

which implies that yi |β, bi, ρ, σ 2 ∼ N(Xiβ + Wibi,
σ 2

1−ρ2 �), where

� =


1 ρ ρ2 . . . ρT −1

ρ 1 ρ . . . ρT −2

...
...

... . . .
...

ρT −1 ρT −2 . . . ρ 1

 .

We may again utilize the specification in (9.11) by adding a prior distribution
for ρ, say ρ ∼ TN(−1,1)(ρ0, R0), and modifying the likelihood function to

f (y | β, b, σ 2, ρ) ∝
(

σ 2

1 − ρ2

)−T/2
1

|�|T/2

× exp

[
−1 − ρ2

2σ 2

∑
i

(yi −Xiβ−Wibi)
′�−1(yi −Xiβ−Wibi)

]
.

We leave the details of the algorithm as an exercise.

10.5 Further Reading and References

Chapter 10 Useful sources for time series, primarily from the frequentist view-
point, are Hamilton (1994) and Harvey (1989). Such standard texts as Greene
(2003, chaps. 12, 20) also cover the basic ideas.

Secton 10.1 Chib (1993) considers the AR(p) model conditioned on the first p

observations in which case all the updates are in closed form and no MH step is
required. The general ARMA(p, q) model without conditioning is covered from
the Bayesian viewpoint in Chib and Greenberg (1994). The Phillips curve example
was estimated with the “AR” model in the BACC program. See Geweke (2005,
sec. 7.1) for details.
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Section 10.2 State–space models are discussed from a Bayesian viewpoint by
Carlin et al. (1992b), Carter and Kohn (1994), Frühwirth-Schnatter (1994), de Jong
and Shephard (1995), Chib and Greenberg (1995a), and Kim and Nelson (1999);
the latter provide downloadable Gauss software. The results contained in the text
were computed with their program GIBS MS0.PRG. Further discussion of the
hidden Markov model from the Bayesian viewpoint may be found in Chib (2001,
sec. 8.8), which builds on Albert and Chib (1993a) and Chib (1996).

The regime-switching model is a mixture model,

yt ∼ P (st = 0)N(µ0, σ
2
0 ) + P (st = 1)N(µ0 + µ1, σ

2
1 ).

As noted before, this model is not identified without a restriction such as µ1 > 0,
because the state labels and all parameters could be switched. The restriction has
the effect of forcing the mean of the distribution in state 1 to be greater than the
mean in state 0. Without such a restriction, the sampler would generate a bimodal
distribution for the means and variances. More generally, the question of how
to deal with label switching has been studied extensively. While the solution we
have adopted works well in the regime-switching model, the question of how to
deal with models with more states and more parameters is not settled. For an
introduction, suggested solutions, and further references, see Celeux et al. (2000)
and Frühwirth-Schnatter (2001).

Section 10.3 More details and references to an MCMC algorithm for this model is
in Chib (2001, sec. 8.9); a discussion and downloadable programs are in Kim and
Nelson (1999, chap. 9). A model that combines regime switching and time-varying
parameters, along with downloadable programs, is described in Kim and Nelson
(1999, chap. 10).

Section 10.4 The panel data model with correlated errors is discussed in Chib
(in press-b).

10.6 Exercises

10.1 Verify that the state–space form (10.3) reproduces the AR(p) model of (10.1).
10.2 Explain how to find the predictive distribution for yT +1 if yt ∼ AR(p), given a sample

of draws from the posterior distributions of β, φ, and σ 2
u .

10.3 Provide the details of an algorithm to analyze the model of (10.13).
10.4 Modify the SUR model to include first-order autocorrelation, and describe an algo-

rithm for estimating parameters.
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Chapter 11

Endogenous Covariates and Sample Selection

THIS CHAPTER IS CONCERNED with data sets for which the assumption made
about the exogeneity of covariates in Chapter 4 and subsequent chapters is unten-
able. Covariates that are correlated with the disturbance term are called endogenous
variables in the econometrics literature. We take up three types of models in which
endogeneity may be present: treatment models, unobserved covariates, and sample
selection subject to incidental truncation.

11.1 Treatment Models

Treatment models are used to compare responses of individuals who belong either
to a treatment or a control group. If the assignment to a group is random, as in
many of the clinical trials that arise in biostatistical applications, the assignment
may be regarded as independent of any characteristics of the individual. But in
many economic applications and in clinical trials in which compliance is not
guaranteed, whether an individual is in the treatment or control group may depend
on unobserved covariates that are correlated with the response variable. Such
unobserved covariates are called confounders in the statistical literature; in the
econometrics literature, the treatment assignment is called endogenous when it is
not independent of the response variable. As an example, let the response variable be
wages and the treatment be participation in a job training program. We might expect
that people with sufficient motivation to participate in training would earn higher
wages, even without participating in the program, than those with less motivation.
The problem may be less serious if individuals are randomly assigned to the training
program, but there may still be confounding. For example, individuals assigned
to the program may choose not to participate, and individuals not assigned to the
program may find a way to participate. Inferences drawn from models that ignore
confounding may yield misleading results.

168
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To model this situation, we suppose that the response variable is related to the
covariates and the treatment assignment through

y0i = x ′
iβ0 + u0i ,

y1i = x ′
iβ1 + u1i ,

(11.1)

where xi is a K1 vector of covariates, a 0 subscript indicates assignment to the con-
trol group, and 1 indicates assignment to the treatment group. The group assignment
is determined by the binary variable si ,

si =
{

0, if i is assigned to control group,

1, if i is assigned to treatment group.

An important objective of such studies is to determine the effect of the treatment
on the response. The average treatment effect is a measure of this effect; it is defined
as

ATE = E(y1i − y0i |xi) = x ′
i(β1 − β0).

Because an individual is assigned to either the treatment or control group, how-
ever, only one of y0i and y1i are observed. In the presence of confounding, the
data provide information about E(y1i |si = 1) and E(y0i |si = 0), but the difference
between these is not the ATE, because of the correlation between y0i and si and
between y1i and si :

E(y1i |si = 1) − E(y0i |si = 0) = x ′
i(β1 − β0) + [E(u1i |si = 1) − E(u0i |si = 0)],

and the bracketed term is not equal to zero in the presence of confounding.
One approach to solving the problem caused by confounders is to model the

assignment decision. We consider a method that uses one or more instrumental
variables (IVs). These are variables that have two properties:

11.1 They are independent of u0i and u1i .
11.2 They are not independent of si .

In the wage–job training program example, a possible IV is the score on an intelli-
gence test: we would not expect the test score itself to affect wages, and we would
not expect the decision to participate to be independent of intelligence. By their in-
dependence from the confounders, the IVs introduce an element of randomization
into data that were not generated by random assignment. In particular, we assume

s∗
i = x ′

iγ1 + z′
iγ2 + vi,

si =
{

1, if s∗
i > 0,

0, if s∗
i ≤ 0,

(11.2)
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and set

yi = (1 − si)y0i + siy1i , (11.3)

where zi is a K2 × 1 vector of instrumental variables. The latent data value s∗
i

for the treatment indicator si is modeled as a binary probit variable. Confounding
or endogeneity appears in this model if there is a correlation between u0i and vi

and between u1i and vi . We regard the correlation as arising from an unobserved
covariate that affects both the observed response yi and whether or not i receives
the treatment. The covariance matrices are

Cov(u0i , vi) ≡ 
0 =
(

σ00 σ0v

σ0v 1

)
, Cov(u1i , vi) ≡ 
1 =

(
σ11 σ1v

σ1v 1

)
,

where σvv = 1 because of the probit specification.
We now develop a Gibbs algorithm to draw a sample from the posterior distri-

bution of the parameters. First, some definitions and notation. For the remainder of
the section, j = 0, 1 indicates the untreated and treated groups, respectively. Let
β = (β ′

0, β
′
1, γ

′
1, γ

′
2)′, γ = (γ ′

1, γ
′
2)′,

Xji =
(

(1 − j )x ′
i jx ′

i 0 0
0 0 x ′

i z′
i

)
,

y, X, Z, respectively, are the observations on yi , xi , and zi , s∗ represents the la-
tent data s∗

i , N0 = {i : si = 0}, N1 = {i : si = 1}, and n0 and n1, respectively, are
the number of observations in N0 and N1. We assume a Gaussian prior distribu-
tion for β ∼ Np(b0, B0), where p = 3K1 + K2. To expedite the simulation, we
reparameterize the variances in 
j as ωjj = σjj − σ 2

jv, which is positive because
ωjj = |
j | and 
j is positive definite. We define ψj = (ωjj , σjv) and specify the
prior distributions

π (ψj ) = π (ωjj )π (σjv|ωjj )

= IG(νj0/2, dj0/2)N (mj0, ωjjMj0).

The posterior distribution has the form

π (β,ψ0, ψ1, s
∗|y, s) = π (β)π (ψ0)π (ψ1)

∏
i

[[1(si = 0)1(s∗
i ≤ 0) + 1(si = 1)

× 1(s∗
i > 0)]N2(yi, s

∗
i |X0iβ,
0))1−si (N2(yi, s

∗
i |X1iβ,
1))si ],

and the Gibbs algorithm proceeds in four blocks: ψ0, ψ1, β, and s∗.
The ψj blocks may be sampled by the method of composition,

π (ψj |β, s∗, y, X, Z) = π (σjv|ωjj , β, s∗, y, X, Z)π (ωjj |β, s∗, y, X, Z).
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For the first of these, you will be asked to show in Exercise 11.1 that

yji |s∗
i , βj , γ, ψj ∼ N(x ′

iβj + σjvei, ωjj ), (11.4)

where ei = s∗
i − x ′

iγ1 − z′
iγ2. Let Yj , Xj , Zj , S∗

j , and Ej , respectively, contain the
values of yji , xi , zi , s∗

i , and ei for i ∈ Nj . Then

Yj |S∗
j , βj , γ, ψj ∼ Nnj

(
Xjβj + σjvEj , ωjj Inj

)
. (11.5)

Because σjv appears in (11.5) as a regression parameter, its conditional posterior
distribution is easily obtained. The next step is to obtain the conditional posterior
distribution of ωjj after marginalizing out σjv with respect to its prior distribution.
From (11.5), you will verify in Exercise 11.2 that

E(Yj |S∗
j , βj , γ, ωjj ) = Xjβj + mj0Ej , (11.6)

Var(Yj |S∗
j , γ, ωjj ) = ωjj

(
Inj

+ EjMj0E
′
j

)
. (11.7)

Equation (11.5) is multiplied by the prior distribution of ωjj to obtain its conditional
posterior distribution, which has the form of an inverse gamma distribution.

In the second block, we sample for β conditioned on all other parameters and the
data. This step uses the SUR setup of Section 9.1. In the third block, s∗ is sampled
from the usual truncated normal distributions. You are asked to supply the details
of the distributions in Exercise 11.4.

In algorithmic form, we have the following.

Algorithm 11.1: Gibbs algorithm for treatment model (Chib, in press-a)

11.1 Sample ψj conditioned on (y, s∗, X,Z, β)
(a) Drawing ωjj marginalized over σjv from

IG

(
νj0 + nj

2
,
dj0 + dj

2

)
,

where

dj = (Yj − Xjβj − mj0Ej )′
(
Inj

+ EjMj0E
′
j

)−1
(Yj − Xjβj − mj0Ej ),

(b) Drawing σjv conditioned on ωjj from N (cj , ωjjCj ), where

cj = Cj

[
M−1

j0 mj0 + E′
j (Yj − Xjβj )

]
,

Cj = (
M−1

j0 + E′
jEj

)−1
.

11.2 Sample β conditioned on (y, s∗, ψ0, ψ1) from Np(β̂, B), where

β̂ = B

(
B−1

0 b0 +
∑
i∈N0

X′
0i


−1
0 y∗

i +
∑
i∈N1

X′
1i


−1
1 y∗

i

)
,

B =
(

B−1
0 +

∑
i∈N0

X′
0i


−1
0 X0i +

∑
i∈N1

X′
1i


−1
1 X1i

)−1

,
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and y∗
i = (yi, s

∗
i )′.

11.3 Sample s∗ conditioned on (y,X,Z, β,ψ0, ψ1) by drawing

s∗
i from

{
TN(−∞,0)

(
µ0i , φ

2
0

)
, if si = 0,

TN(0,∞)
(
µ1i , φ

2
1

)
, if si = 1,

where

µji = x ′
iγ1 + z′

iγ2 + σjvσ
−1
jj (yji − x ′

iβj ),

φ2
j = 1 − σ 2

jvσ
−1
jj .

We compute the marginal likelihood for this model by the Chib method of
Section 7.1.2; it uses the fact that the log of the marginal likelihood m(y, s|X, Z)
can be written as

log m(y, s|X,Z) = log f (y, s|X,Z, β∗, ψ∗
0 , ψ∗

1 ) + log π (β∗, ψ∗
0 , ψ∗

1 )

− log π (β∗, ψ∗
0 , ψ∗

1 |y, s,X,Z),

where (β∗, ψ∗
0 , ψ∗

1 ) is, say, the posterior mean of the parameters from the MCMC
run, the first term is the log likelihood, the second is the log prior, and the third is
the log posterior, and all are evaluated at (β∗, ψ∗

0 , ψ∗
1 ). The second term is available

directly. The first term is∑
i∈N0

log f (y0i , si = 0|xi, zi, β
∗, ψ∗

0 ) +
∑
i∈N1

log f (y1i , si = 1|xi, zi, β
∗, ψ∗

1 ).

For j = 0, we have

f (y0i , si = 0|xi, zi, β, ψ0) = f (y0i |xi, zi, β, ψ0)
∫ 0

−∞
f (s∗

i |y0i , xi, zi, β, ψ0) ds∗
i

= N (y0i |x ′
iβ0, σ00)�

(
−µ0i

φ0

)
.

A similar analysis for j = 1 (see Exercise 11.3), shows that both cases can be
written as

f (yji, si = j |xi, zi, β, ψj ) = N(yji |x ′
iβj , σjj )�

(
(2j − 1)

µji

φj

)
. (11.8)

The third term can be estimated by decomposing it as

π (β∗, ψ∗
0 , ψ∗

1 |y, s, X, Z) = π (ψ∗
0 , ψ∗

1 |y, s, X, Z)π (β∗|y, s, X, Z, ψ∗
0 , ψ∗

1 ),

from which π (ψ∗
0 , ψ∗

1 |y, s, X, Z) is obtained by averaging the product of the
inverse gamma and normal densities in step 1 of Algorithm 11.1 over the MCMC
draws and π (β∗|y, s, X, Z, ψ∗

0 , ψ∗
1 ) is obtained by fixing (ψ0, ψ1) at (ψ∗

0 , ψ∗
1 ),

running the MCMC algorithm with the remaining unknowns, and averaging the
normal density in step 2 over the resulting draws.



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

11.2 Endogenous Covariates 173

11.2 Endogenous Covariates

In the econometrics literature, the endogenous covariate is often continuous, rather
than binary as in the treatment variables discussed in the previous section. We
examine a simple example to understand the nature of the problems caused by the
presence of endogenous covariates. Let

yi = x ′
iβ1 + βsxis + ui, i = 1, . . . , n,

and suppose that the K1 covariates in xi are independent of ui , but that ui and xis

have a joint normal distribution,(
ui

xis

)
∼ N2

((
0

E(xis)

)
,

(
σ11 σ12

σ12 σ22

))
,

where σ12 
= 0. Equation (A.9) implies that the distribution of yi |xi, xis is Gaussian
with parameters

E(yi |xi, xis) = x ′
iβ1 − σ12

σ22
E(xis) +

(
βs + σ12

σ22

)
xis,

Var(yi) = σ11 − σ 2
12

σ22
.

This result has an important implication. Since ∂E(yi )
∂xis

= βs + σ12
σ22

, the likelihood
function contains information about βs + σ12

σ22
, not βs ; equivalently, in the absence

of observations on ui , βs is not identifiable. We have no way of separating βs from
βs + σ12

σ22
.

As an example of how this situation may arise, let yi be the hourly wage of
individual i, xi be a vector of covariates that control for demographic and economic
factors, and xis be i’s years of schooling. Let us assume that an unobserved variable,
call it intelligence, affects both wages and schooling; that is, an individual with
higher intelligence would tend to earn a higher wage for any level of schooling
and attain a higher level of education (σ12 > 0) than an individual with lower
intelligence. In that case, the coefficient on education measures both the direct
effect of schooling through βs and the indirect effect through the relationship
between schooling and intelligence σ12

σ22
.

If the relation between education and intelligence is ignored, the effect of edu-
cation on wages of schooling is overestimated by σ12

σ22
. This may be important for

public policy. Suppose it is decided to choose people randomly from the population
to receive an additional year of schooling. Being chosen randomly, some of the
people receiving the additional year will be of lower intelligence levels than those
in the first sample who made their schooling decisions without the policy inter-
vention. The increase in wages for the group will be closer to βs than to βs + σ12

σ22
,
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and the policy may appear to be unsuccessful. It is thus important to find a way to
estimate βs more accurately.

As was done before, we employ IVs to model the endogenous variable xis .
Consider the system

yi = x ′
iβ1 + βsxis + ui, (11.9)

xis = x ′
iγ1 + z′

iγ2 + vi, (11.10)

where the K2 covariates in zi are the instrumental variables, assumed to be ex-
ogenous to the system in the sense that they are independent of ui and vi .
On the assumption that (ui, vi) ∼ N2(0, 
), where 
 = {σij }, this system, con-
ditional on xi and zi , reproduces the correlation between ui and xis specified
before.

The next step is to devise an MCMC algorithm to sample the parameters β =
(β ′

1, βs)′, γ = (γ ′
1, γ

′
2)′, and 
. We begin with the latter and adopt a Wishart prior

for 
−1 ∼ W2(ν0, R0). Since (ui, vi) ∼ N2(0, 
), we may write

π (
|β, γ, y) ∝ |
|−n/2 exp

[
−1

2

∑
(yi − X′

iβ, xis − Z′
iγ )
−1

(
yi − X′

iβ

xis − Z′
iγ

)]
×|
|−(v0−3)/2 exp

[
−1

2
tr
(
R−1

0 
−1
)]

,

whereX′
i = (x ′

i , xis) and Z′
i = (x ′

i , z
′
i).

To sample β, we use f (yi, xis |θ ) = f (xis |θ )f (yi |xis, θ ), where θ = (β, γ, 
),
and specify a Gaussian prior NK1+1(β0, B0). By the properties of conditional dis-
tributions of normal distributions, we have

yi |xis, θ ∼ N

(
X′

iβ + σ12

σ22
(xis − Z′

iγ ), ω11

)
,

where ω11 = σ11 − σ 2
12/σ22. From these considerations, we may write

π (β|γ,
, y) ∝ exp

[
− 1

2ω11

∑(
yi − σ12

σ22
(xis − Z′

iγ ) − X′
iβ

)2
]

× exp

[
−1

2
(β − β0)′B−1

0 (β − β0)

]
.

To obtain the posterior distribution for γ , we make use of the decomposition
f (yi, xis |θ ) = f (yi |θ )f (xis |yi, θ ) and note that γ appears only in the second ex-
pression. The standard results for conditional distributions of joint normal distri-
butions yield

xis |yi, θ ∼ N

(
Z′

iγ + σ12

σ11
(yi − X′

iβ), ω22

)
,
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where ω22 = σ22 − σ 2
12/σ11. We specify a Gaussian prior NK1+K2 (γ0, G0) and

obtain

π (γ |β,
, y) ∝ exp

[
− 1

2ω22

∑(
xis − σ12

σ11
(yi − X′

iβ) − Z′
iγ

)2
]

× exp

[
−1

2
(γ − γ0)′G−1

0 (γ − γ0)

]
.

It is now straightforward to derive the conditional posterior distributions for
specifying a Gibbs algorithm:


 ∼ W2(ν1, R1),

β ∼ N (β̄, B1),

γ ∼ N (γ̄ , G1),

where
ν1 =ν0 + n,

R1 =
[
R−1

0 +
∑(

yi − X′
iβ

xis − Z′
iγ

)
(yi − X′

iβ, xis − Z′
iγ )

]−1

,

B1 =
[
B−1

0 + ω−1
11

∑
XiX

′
i

]−1

,

β̄ =B1

(
B−1

0 β0 + ω−1
11

∑
Xi

[
yi − σ12

σ22
(xis − Z′

iγ )

])
,

G1 =
[
G−1

0 + ω−1
22

∑
ZiZ

′
i

]−1

,

γ̄ =G1

(
G−1

0 γ0 + ω−1
22

∑
Zi

[
xis − σ12

σ11
(yi − X′

iβ)

])
.

11.3 Incidental Truncation

Incidental truncation arises when the response variable yi is not observed for all
units, and whether it is observed depends on the value of a “selection” variable si .
Part or all of the covariate data xi are observed for all sample units. A well-known
example of this situation is a model designed to explain the wage rate of married
women on the basis of demographic and economic variables, where no wage rate
is observed for women who do not work in the time period of observation, but part
or all of the demographic and economic variables may be observed. The factors
determining the decision to work, which is the binary variable si = 1 if individual i

works and 0 otherwise, may not be independent of the wage rate, so that including
in the sample only those women who work is likely to result in a poor estimate of
the effects of the covariates of interest. As another example, si may be a Tobit-type
variable rather than a binary variable, where yi is observed when si > 0. In the
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wage rate example, si may be the hours worked, which is bounded below at zero,
rather than a binary variable for labor force participation. In other cases, yi may be
a binary variable. For continuous yi , we assume

yi = x ′
iβ1 + ui,

where xi is a K1 vector observed for all i, and yi is not observed if si = 0 and is
observed if si = 1. For the units that are observed,

E(yi |xi, si = 1) = x ′
iβ1 + E(ui |xi, si = 1).

The last term on the right may not equal zero, because of correlation between ui and
si , and a model based on the specification of a zero expected value is misspecified.

To deal with sample selection, we assume that we have K2 instrumental variables
contained in the vector zi and that zi and xi are observed for all units. The model
is specified by

yi = x ′
iβ1 + ui,

s∗
i = x ′

iγ1 + z′
iγ2 + vi,

si =
{

0, if s∗
i ≤ 0,

1, if si > 0,

where (ui, vi) ∼ N2(0, 
) and


 =
(

σ11 σ12

σ12 1

)
.

The restriction σ22 = 1 arises from the binary probit model for si ; see Section 8.2.2.
Letting N0 = {i : si = 0}, N1 = {i : si = 1}, and θ denote the parameters of the

model, we can write the contribution of i ∈ N0 to the posterior distribution as

π (s∗
i , θ |si = 0)∝P (si = 0|s∗

i , θ )π (s∗
i |θ )π (θ )

∝1(si = 0)1(s∗
i ≤ 0)π (s∗

i |θ )π (θ ),

and of i ∈ N1,

π (s∗
i , θ |si = 1, yi)∝f (si = 1, yi |θ, s∗

i )π (s∗
i |θ )π (θ )

∝f (si = 1, yi, s
∗
i |θ )π (θ )

∝f (yi, s
∗
i |θ )P (si = 1|s∗

i , yi, θ )π (θ )

∝f (yi, s
∗
i |θ )1(si = 1)1(s∗

i > 0)π (θ ).

The posterior distribution is therefore

π (s∗, θ |s, y)∝π (θ )
∏
i∈N0

π (s∗
i |θ )1(si = 0)1(s∗

i ≤ 0)

×
∏
i∈N1

f (yi, s
∗
i |θ )1(si = 1)1(s∗

i > 0). (11.11)
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We begin the development of an MCMC algorithm to approximate the posterior
distribution by deriving the conditional posterior distribution of β = (β ′

1, γ
′
1, γ

′
2)′.

Defining

ηi =
{

(0, s∗
i )′, i ∈ N0,

(yi, s
∗
i )′, i ∈ N1,

Xi =
(

x ′
i 0 0

0 x ′
i z′

i

)
, J =

(
0 0
0 1

)
,

we may write the likelihood terms involving β in SUR form as

π (β|y, s∗, 
) ∝ exp

[
− 1

2

∑
i∈N0

(ηi − Xiβ)′J ′J (ηi − Xiβ)

]

× exp

[
− 1

2

∑
i∈N1

(ηi − Xiβ)′
−1(ηi − Xiβ)

]
.

Note that the first row of ηi − Xiβ is zero after premultiplication by J . With the
prior distribution β ∼ NK1+K2 (β0, B0), we have

β|y, s∗, 
 ∼ NK1+K2 (β̄, B1),

where

B1 =
[∑

i∈N0

X′
iJXi +

∑
i∈N1

X′
i


−1Xi + B−1
0

]−1

,

β̄ = B1

[∑
i∈N0

X′
iJ ηi +

∑
i∈N1

X′
i


−1ηi + B−1
0 β0

]
,

and we have used J ′J = J .
We next turn to the sampling of the covariance matrix parameters σ12 and ω11 =

σ11 − σ 2
12, which appear in the likelihood function only for i ∈ N1. Sampling for ω11

is restricted to positive values and automatically yields a positive σ11 = ω11 + σ 2
12.

We assume the prior distribution ω−1
11 ∼ G(α0/2, δ0/2) and write f (yi, s

∗
i |θ ) =

f (yi |s∗
i , θ )f (s∗

i |θ ) to find

π (ω11|y, β, σ12) ∝
(

1

ω11

)n1/2

exp

[
− 1

2ω11

∑
i∈N1

[yi − x ′
iβ1 − σ12(s∗

i − x ′
iγ1 − z′

iγ2)]2

]

×
(

1

ω11

)α0/2−1

exp

[
− δ0

2ω11

]
,

since ω11 does not appear in f (s∗
i |θ ). This implies ω−1

11 |y, β, σ12 ∼ G(α1/2, δ1/2),
where

α1 = α0 + n1,

δ1 = δ0 +
∑
i∈N1

[yi − x ′
iβ1 − σ12(s∗

i − x ′
iγ1 − z′

iγ2)]2.
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To sample σ12|y, β, ω11 we assume the prior distribution σ12 ∼ N(s0, S0) and
find

π (σ12|y, β, ω11) ∝ exp

[
− 1

2ω11

∑
i∈N1

[yi − x ′
iβ1 − σ12(s∗

i − x ′
iγ1 − z′

iγ2)]2

]

× exp

[
− 1

2S0
(σ12 − s0)2

]
,

which implies σ12|y, β, ω11 ∼ N(ŝ, Ŝ), where

Ŝ =
[
ω−1

11

∑
(s∗

i − x ′
iγ1 − z′

iγ2)2 + S−1
0

]−1
,

ŝ = Ŝ
[
ω−1

11

∑
(s∗

i − x ′
iγ1 − z′

iγ2)(yi − x ′
iβ1) + S−1

0 s0

]
.

To sample the s∗
i , use (11.11) and write, for i ∈ N1,∏

i∈N1

f (yi, s
∗
i |θ )1(si = 1)1(s∗

i > 0) =
∏
i∈N1

f (s∗
i |yi, θ )f (yi |θ )1(si = 1)1(s∗

i > 0),

which implies that the s∗
i are drawn from truncated normal distributions:

s∗
i ∼


TN(−∞,0](x ′

iγ1 + z′
iγ2, 1), for i ∈ N0,

TN(0,∞)

(
x ′

iγ1 + z′
iγ2 + σ12

ω11 + σ 2
12

(yi − x ′
iβ1),

ω11

ω11 + σ 2
12

)
, for i ∈ N1.

Although the sampler generates values of the latent data s∗
i , it does not generate

values of the “missing” yi for i ∈ N0.
As an example, we utilize the Mroz data described in Section 8.2.1. In this

example, we treat hours of work as a binary variable for whether an individual is in
(si = 1) or out (si = 0) of the labor force. The response variable yi is log(wage),
which is observed only for employed women. We follow the specification of
Wooldridge (2002, pp. 468, 565) in setting

x ′ = (constant, educ, experience, experience squared),

z′ = (nwifeinc, age, childlt6, childge6),

where educ is the wife’s education and nwifeinc is household income other than
that earned by the wife.

Except for the constant terms in β we set prior means of 0 and variances of
1 in the belief that the effect of each of these variables on log(wages) would be
fairly small and knowing that the mean log wage for the sample is slightly larger
than 1. We set a 0 mean and variance of 10 for the constant terms because of
greater uncertainty. The variance of log(wages) in the sample is slightly over 0.5,
suggesting that σ11 = ω11 + σ 2

12 is of order of magnitude 1, which we split between
the two components equally to obtain a value of 0.5 for ω11. With a gamma prior
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Table 11.1. Summary of Posterior Distribution: Probit Selection
Model, Mroz Data.

Coefficient Mean SD Lower Upper Corr time

β11 −0.529 0.263 −1.035 −0.004 7.357
β12 0.108 0.015 0.078 0.137 2.389
β13 0.042 0.015 0.012 0.071 4.512
β14 −0.001 0.000 −0.002 0.000 2.955
γ11 0.226 0.502 −0.756 1.207 2.990
γ12 0.132 0.025 0.083 0.181 3.154
γ13 0.124 0.019 0.087 0.161 3.202
γ14 −0.002 0.001 −0.003 −0.001 3.042
γ21 −0.012 0.005 −0.022 −0.002 3.566
γ22 −0.052 0.008 −0.069 −0.036 3.437
γ23 −0.856 0.119 −1.090 −0.626 3.419
γ24 0.037 0.043 −0.048 0.122 3.186
ω11 0.444 0.031 0.386 0.507 1.514
σ11 0.454 0.032 0.396 0.520 1.406
ρ12 0.009 0.147 −0.292 0.279 14.353

distribution on 1/ω11 ≈ 2, from (A.1) we have E(1/ω11) = 2.0 = α/δ, and a small
value of δ is associated with a larger variance. Accordingly, we set δ = 2, or δ0 = 4
to obtain a large variance and α = 4, or α0 = 8 to obtain the desired mean. We
assumed σ12 ∼ N(0, 1) to take a neutral stance on its sign and to set a fairly large
variance. For the simulation, we set a burn-in of 10,000 and keep 40,000 generated
values. A large number of iterations is chosen because of the complexity of the
model.

Summary results are in Table 11.1, and Figure 11.1 displays histograms of the
coefficient β12 of education on log(wages) and ρ12 = σ12/

√
σ11. The means of

the marginal posterior distributions are very similar to the estimates obtained by
Wooldridge in the work cited earlier. We note that the distribution of β12 appears
symmetric, and its mean of 0.108 summarizes it well. It is clearly positive in view
of the 95% credibility interval of (0.078, 0.137). The distribution of ρ12 is rather
uninformative about the possibility of a sample selection bias. Its mean is close to
zero, and its 95% credibility interval includes negative and positive values fairly
symmetrically about zero. The relatively large correlation time of ρ12 suggests that
the algorithm did not mix well for this parameter.

11.4 Further Reading and References

Section 11.1 The econometric literature on treatment effects in connection with
the implementation of public policy was pioneered by James J. Heckman. A recent
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Figure 11.1. Selected coefficients: incidental truncation model, Mroz data.

convenient reference is Heckman and Vytlacil (2005), which includes many ref-
erences to the literature and definitions of other treatment effects. The Bayesian
specification in this section is based on Chib (in press-a), which also treats more
general cases. One feature of Chib’s approach is that it does not model the corre-
lation between ui and vi . This is desirable because yi0 and yi1 cannot be observed
for the same individual, which implies that there is no sample information that can
identify those correlations. Poirier and Tobias (2003) argue that the positive def-
initeness constraint on the joint distribution of (u0i , u1i , vi) provides information
about the unidentified covariance between u0i and u1i and present an algorithm to
sample the regression coefficients and the 3 × 3 covariance matrix.

Section 11.2 The frequentist approach to this model is developed in Wooldridge
(2002, chap. 5).

Section 11.3 The model for incidental truncation is estimated from the frequentist
viewpoint in Heckman (1979). Wooldridge (2002, chap. 17) is an informative
discussion from the frequentist viewpoint with many references to the literature.

11.5 Exercises

11.1 Verify (11.4).
11.2 Verify (11.6) and (11.7).
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11.3 Verify (11.8).
11.4 Verify the conditional posterior distributions used in Algorithm 11.1.
11.5 Show how to analyze the model of Section 11.1 if the response variables y0i and

y1i are binary variables, modeled by a binary probit formulation. Equation (11.1)
specifies latent data in that case.

11.6 Redo the model of Section 11.2 on the assumption that yi is a binary variable.
11.7 Redo the model of Section 11.2 with Student-t errors.
11.8 Redo the model of Section 11.3 on the assumption that the selection variable is

censored as in a Tobit model.
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Appendix A

Probability Distributions and Matrix Theorems

A.1 Probability Distributions

THE STANDARD DISTRIBUTIONS are described in most textbooks in mathe-
matical statistics. We recommend DeGroot and Schervish (2002). Other excellent
sources are Zellner (1971, apps. A and B), Press (1972), and Berger (1985, app. 1).
For the distributions that arise in Bayesian econometrics, we particularly recom-
mend Zellner (1971) and Press (1972). The matricvariate normal distribution and
related distributions are discussed in Drèze and Richard (1983, app. A). In consult-
ing these or other references, you should be aware that some authors parameterize
distributions differently from the way they are parameterized here.

A.1.1 Bernoulli

The variable x has the Bernoulli distribution with parameter θ , x ∼ Be(θ ), if
x = {0, 1}, 0 ≤ θ ≤ 1, and p(x|θ ) = θx(1 − θ )1−x .

Then E(x) = θ and Var(x) = θ (1 − θ ).

A.1.2 Binomial

Let xi , i = 1, . . . , n, be independently distributed, and xi ∼ Be(θ ). Then y = ∑
xi

has the binomial distribution, y ∼ Bi(n, θ ), if

p(y|n, θ ) =
(

n

y

)
θy(1 − θ )n−y, y = 0, 1, . . . , n.

For the binomial distribution,

E(y) = nθ and Var(y) = nθ (1 − θ ).

182
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Note that n is regarded as fixed, and the random variable is the number of trials y

for which xi = 1. For the negative binomial distribution described next, y is taken
as fixed and the random variable is the number of trials required to obtain y.

A.1.3 Negative Binomial

Let n = r, r + 1, . . . , and let p(xi = 1|θ ) = θ. Assume the xi are independent.
Then n has the negative binomial distribution, n ∼ NB(r, θ ), if n trials are required
to achieve r successes. The probability mass function is

p(n|r, θ ) =
(

n − 1

r − 1

)
θr (1 − θ )n−r ,

E(n) = r(1 − θ )

θ
and Var(n) = r(1 − θ )

θ2
.

As mentioned before, in contrast to the binomial distribution, the number of
successes is fixed and the number of trials is the random variable.

A.1.4 Multinomial

The variable x = (x1, . . . , xp) has the multinomial distribution, x ∼ MN(n; θ1, . . . ,

θp), if xi ∈ {0, 1}, i = 1, . . . , p,
∑

θi = 1,
∑

xi = n, and

p(x|n; θ1, . . . , θp) =
(

n

x1, . . . , xp

)
θ

x1
1 θ

x2
2 · · · θxp

p .

The marginal distribution of each xi is Bi(n, θi).

A.1.5 Poisson

The variable x has the Poisson distribution with parameter θ > 0, x ∼ P (θ ), if

p(x|θ ) = e−θ θx

x!
, x = 0, 1, . . . .

The first two moments are

E(x) = θ and Var(x) = θ.

A.1.6 Uniform

The variable x has the uniform distribution with parameters α and β, β > α,
denoted by x ∼ U (α, β), if

f (x) = 1

β − α
, α ≤ x ≤ β.

Then E(x) = (α + β)/2 and Var(x) = (β − α)2/12.
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A.1.7 Gamma

The gamma function �(α, β) is defined by∫ ∞

0
xα−1e−βx dx = �(α)

βα
, α, β > 0,

where �(α) ≡ �(α, 1). The random variable x has the gamma distribution, x ∼
G(α, β), if 0 ≤ x and

f (x|α, β) = βα

�(α)
xα−1e−βx.

For the gamma distribution,

E(x) = α

β
,

Var(x) = α

β2
.

(A.1)

Alternatively, we may determine α and β from E(x) and Var(x):

α = [E(x)]2/ Var(x),

β = E(x)/ Var(x).
(A.2)

A special case of the gamma distribution is the χ2 distribution with ν degrees
of freedom, χ2

ν . We say that x ∼ χ2
ν if x ∼ G(ν/2, 1/2).

Another special case is the exponential distribution, G(1, β): x ∼ Exp(β) if

f (x|β) = βe−βx, β > 0, x > 0. (A.3)

If x ∼ Exp(β), then E(x) = 1/β and Var(x) = 1/β2 .

A.1.8 Inverted or Inverse Gamma

Let x ∼ G(α, β) and y = 1/x. Then y has the inverted gamma distribution, y ∼
IG(α, β), and

f (y|α, β) = βα

�(α)

1

yα+1
e−β/y, y > 0.

The first two moments are

E(y) = β

α − 1
, if α > 1,

Var(y) = β2

(α − 1)2(α − 2)
, if α > 2,

(A.4)
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or

α = [E(y)]2

Var(y)
+ 2,

β = E(y)

(
[E(y)]2

Var(y)
+ 1

)
.

(A.5)

A.1.9 Beta

The beta function is defined as

B(α, β) =
∫ 1

0
xα−1(1 − x)β−1 dx, α, β > 0.

It can be shown that the beta function is related to the gamma function by

B(α, β) = �(α)�(β)

�(α + β)
.

The variable x has the beta distribution, x ∼ Beta(α, β), if 0 ≤ x ≤ 1 and

f (x|α, β) = 1

B(α, β)
xα−1(1 − x)β−1.

= �(α + β)

�(α)�(β)
xα−1(1 − x)β−1.

For the beta distribution

E(x) = α

α + β
,

Var(x) = αβ

(α + β)2(α + β + 1)
,

(A.6)

or

α = E(x)[E(x)(1 − E(x)) − Var(x)]

Var(x)
,

β = (1 − E(x))[E(x)(1 − E(x)) − Var(x)]

Var(x)
.

(A.7)

A.1.10 Dirichlet

The Dirichlet distribution generalizes the beta distribution. Let x = (x1, x2, . . . ,

xp), 0 ≤ xi ≤ 1,
∑

xi = 1. Then x ∼ D(α1, . . . , αp) if

f (x|α1, α2, . . . , αp) = �
(∑

αi

)∏
�(αi)

x
α1−1
1 x

α2−1
2 · · · xαp−1

p , αi > 0.
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Marginally, xi ∼ B(αi,
∑

k 
=i αk).

A.1.11 Normal or Gaussian

The variable x ∼ N(µ, σ 2) if

f (x|µ, σ 2) = 1√
2πσ 2

exp

[
− 1

2σ 2
(x − µ)2

]
.

Then

E(x) = µ and Var(x) = σ 2.

The case µ = 0 and σ 2 = 1 is called the standard normal distribution; its p.d.f.
is denoted by φ(x) and its d.f. by �(x).

A.1.12 Multivariate and Matricvariate Normal or Gaussian

Let x = (x1, . . . , xp). Then x has the p-dimensional multivariate normal or Gaus-
sian distribution, x ∼ Np(µ, 
), if

f (x|µ, 
) = 1

(2π )p/2|
|1/2
exp

[
−1

2
(x − µ)′
−1(x − µ)

]
,

where µ = (µ1, µ2, . . . , µp)′ is the mean vector and 
 is the symmetric, positive-
definite covariance matrix,


 =


σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p

...
...

...
...

σp1 σp2 · · · σpp

 .

The standard multivariate normal is the special case µ = 0 and 
 = Ip.
The p × q matrix X has the matricvariate normal distribution, X ∼ MNp×q(X̄,

� ⊗ P ) if

f
p×q
MN (X|X̄,� ⊗ P ) = [

(2π )pq |�|p|P |q]−1/2

× exp

[
− 1

2
tr{�−1(X − X̄)′P −1(X − X̄)}

]
.

The multivariate normal distribution is the special case q = 1 of the matricvariate
distribution.
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Marginal Distributions

Let x(1) be a p1 vector, p1 < p, containing the first p1 variables in x, where x ∼
Np(µ, 
). (By renumbering the variables in x we may include any of the variables
in x(1).) Then the marginal distribution of x(1) is Np1 (µ1, 
11), where µ1 contains the
first p1 rows of µ and the matrix 
11 is the p1 × p1 submatrix implicitly defined by


 =
(


11 
12


21 
22

)
. (A.8)

Conditional Distributions

To specify the conditional distributions, define x(1) as before and let x(2), (p − p1) ×
1, be the remaining elements of x. Then the conditional distribution, x(1)|x(2) is

Np1

(
µ1 + 
12


−1
22

(
x(2) − µ2

)
, 
11 − 
12


−1
22 
21

)
, (A.9)

where µ2 contains the last p − p1 elements of µ and the remaining matrices are
defined in (A.8).

Completing the Square

The standard form of the multivariate normal distribution has in its exponent the
quadratic form (x − µ)′
−1(x − µ). When computing the posterior distribution
for a normal likelihood and a normal prior distribution, it is necessary to combine
terms from the likelihood and the prior, a process known as completing the square.
To see how this is done, we expand the quadratic form to obtain

(x − µ)′
−1(x − µ) = x ′
−1x − 2x ′
−1µ + µ′
−1µ.

From this expression, we note that 
−1 is the expression between x ′ and x and that
µ is 
−1 times the coefficient of −2x ′. To find µ, we therefore premultiply the
coefficient of −2x ′ by 
.

For example, if x ∼ Np(µ, 
), µ ∼ N(µ0, B0), and 
 is known, the posterior
distribution π (µ|
, x) is

π (µ|
, x) ∝ exp

[
−1

2
(x − µ)′
−1(x − µ)

]
exp

[
−1

2
(µ − µ0)′B−1

0 (µ − µ0)

]
.

Consider the expressions in the exponentials (ignoring the −1/2 term):

(x − µ)′
−1(x − µ) + (µ − µ0)′B−1
0 (µ − µ0)

= x ′
−1x − 2µ′
−1x + µ′
−1µ + µ′B−1
0 µ − 2µ′B−1

0 µ0 + µ′
0B

−1
0 µ0

= µ′(
−1 + B−1
0

)
µ − 2µ′(
−1x + B−1

0 µ0
)+ x ′
−1x + µ′

0B
−1
0 µ0. (A.10)
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Since we are concerned with the distribution of µ and 
 is assumed to be known,
all terms that do not involve µ are absorbed into the proportionality constant.
Applying the idea of completing the square to (A.10), we have

π (µ|
, x) ∼ Np(µ1, B1), (A.11)

where B1 = (
−1 + B−1
0 )−1 and µ1 = B1(
−1x + B−1

0 µ0).

A.1.13 Truncated Normal

The scalar random variable x has the truncated normal distribution with mean µ

and variance σ 2, truncated to the region (a, b), if

f (x) =
(

1

H (b) − H (a)

)(
1√

2πσ 2

)
exp

(
− 1

2σ 2
(y − µ)2

)
, a ≤ x ≤ b,

or x ∼ TN(a,b)(µ, σ 2), where H (z) is the d.f. of N(µ, σ 2) evaluated at z. Note that
µ and σ 2 are parameters of the untruncated normal distribution; expressions for
the mean and variance of x may be found in Greene (2003, p. 759).

A.1.14 Univariate Student-t

The scalar random variable x has the Student-t distribution with ν > 0 degrees of
freedom, location parameter µ, and scale parameter σ 2 > 0, x ∼ t(ν, µ, σ 2) if

f (t |ν, µ, σ 2) = �[(ν + 1)/2]

(σ 2νπ )1/2�(ν/2)

(
1 + (x − µ)2

νσ 2

)−(ν+1)/2

.

The first two moments are

E(x) = µ, if ν > 1 and Var(x) = νσ 2

ν − 2
, if ν > 2.

The case µ = 0 and σ 2 = 1 is the standard Student-t distribution.

A.1.15 Multivariate t

This distribution generalizes the univariate t . The p-dimensional vector x =
(x1, . . . , xp)′ has the multivariate t distribution (MVT) with ν > 0 degrees of
freedom, location parameter µ = (µ1, . . . , µp)′, and positive definite scale matrix

, x ∼ tp(ν, µ, 
), if

f (x|ν, µ, 
) = �[(ν + p)/2]

|
|1/2(νπ )p/2�(ν/2)

(
1 + 1

ν
(x − µ)′
−1(x − µ)

)−(ν+p)/2

.



P1: KAE

0521858717pre CUNY1077-Greenberg 0 521 87282 0 August 8, 2007 20:46

A.1 Probability Distributions 189

The mean vector and covariance matrix are

E(x) = µ, if ν > 1 and Var(x) = ν

ν − 2

, if ν > 2.

Marginal Distributions

Let x(1) be a p1 vector, p1 < p, containing the first p1 variables in x, where
x ∼ tp(ν, µ, 
). (By renumbering the variables in x we may include any of the
variables in x(1).) Also let µ(1) be the first p1 rows of µ. Then

x(1) ∼ tp1

(
ν, µ(1), 
11 − 
12


−1
22 
21

)
, (A.12)

where 
 is partitioned as in (A.8), and

E
(
x(1)
) = µ(1), ν > 1, (A.13)

Var
(
x(1)
) = ν

ν − 2

(

11 − 
12


−1
22 
21

)
, ν > 2. (A.14)

From (A.17) you should recognize 
11 − 
12

−1
22 
21 as the inverse of the first p1

rows and columns of 
−1.
Conditional distributions may be found in Zellner (1971, App. B.2).

A.1.16 Wishart

Let X = {xij } be a p × p symmetric positive definite matrix. Then X has the p-
dimensional Wishart distribution with ν ≥ p degrees of freedom and symmetric
positive definite scale matrix R, X ∼ Wp(ν, R), if

f (X|ν, R) ∝ |X|(ν−p−1)/2

|R|ν/2
exp

[
−1

2
tr(R−1X)

]
.

The first two moments of the xij are given by

E(xij ) = νσij ,

Var(xij ) = ν
(
σ 2

ij + σiiσjj

)
,

Cov(xij , xkl) = ν(σikσjl + σilσjk).

For p = 1, X ∼ G(ν/2, R−1/2).

Marginal Distributions

Partition X and R as

X =
(

X11 X12

X21 X22

)
and R =

(
R11 R12

R21 R22

)
,
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where X11 and R11 are p1 × p1, X12 and R12 are p1 × p2, X21 and R21 are p2 × p1,
and X22 and R22 are p2 × p2. Then

X11 ∼ Wp1 (ν, R11).

A.1.17 Inverted or Inverse Wishart

The p × p symmetric positive definite matrix Y has the p-dimensional inverted
Wishart distribution with ν ≥ p degrees of freedom and symmetric positive definite
scale matrix R, Y ∼ IWp(ν, R), if

f (Y |ν, R) ∝ |R|ν/2

|Y |(ν+p+1)/2
exp

[
−1

2
tr(Y−1R)

]
.

There is an important relationship between the Wishart and inverted Wishart
distributions. If X ∼ Wp(ν, R), then Y = X−1 ∼ IWp(ν + p + 1, R−1).

For p = 1, Y ∼ IG(ν/2, R/2).

Marginal and Conditional Distributions

Partition Y and R as

Y =
(

Y11 Y12

Y21 Y22

)
and R =

(
R11 R12

R21 R22

)
,

where Y11 and R11 are p1 × p1, Y12 and R12 are p1 × p2, Y21 and R21 are p2 × p1,
and Y22 and R22 are p2 × p2. Then

Y11 ∼ IWp1 (R11, ν − p2).

Moreover, let Y22.1 = Y22 − Y21Y
−1
11 Y12 and R22.1 = R22 − R21R

−1
11 R12. Then

f
(
Y11, Y

−1
11 Y12, Y22.1

) = f (Y11)f
(
Y−1

11 Y12|Y22.1
)
f (Y22.1), (A.15)

where Y11 ∼ IWp1 (R11, ν − p2), Y−1
11 Y12|Y22.1 ∼ MNp1×p2 (R

−1
11 R12), R22.1 ⊗ R−1

11 ),
and Y22.1 ∼ IWp2 (R22.1, ν).

A.1.18 Multiplication Rule of Probability

Let f (x1, x2, . . . , xn) be the joint distribution for the xi . The multiplication rule
tells us that, for example,

f (x1, x2, . . . , xn) = f (x1)f (x2|x1)f (x3|x1, x2) · · · f (xn|x1, . . . , xn−1).
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A more general statement of the theorem is

f (x1, x2, . . . , xn) = f
(
xi1

)
f
(
xi2 |xi1

)
f
(
xi3 |xi1, xi2

) · · · f (xin |xi1, . . . , xin−1

)
,

(A.16)
where (xi1, xi2, . . . , xin) is any rearrangement of the variables in x. That is, you can
write f (x) as a product of the marginal of any of the xi times the appropriate condi-
tionals, as long as you condition on any of the xi that already appear in the product.

A.2 Matrix Theorems

A good source for matrix algebra relevant for statistics is Schott (1997).

A.1 If

A =
(

A11 A12

A21 A22,

)
,

then

A−1 =
(

G1 −A−1
22 A21G1

−G1A12A
−1
22 A−1

22

(
I + A21G1A12A

−1
22

)) , (A.17)

where G1 = (A11 − A12A
−1
22 A21)−1.

A.2 If A and C are nonsingular, then

[A + BCB ′]−1 = A−1 − A−1B[C−1 + B ′A−1B]−1B ′A−1, (A.18)

where all matrices are conformable.
A.3 The vec operator vec(A) applied to the m × n matrix A produces the mn × 1 vector a,

vec(A) = a =


a1

a2
...

an

 ,

where ai is the ith column of A. Then

vec(αA + βB) = α vec(A) + β vec(B)

vec(ABC) = (C ′ ⊗ A) vec(B),
(A.19)

where α and β are scalars and all matrices are conformable for addition or multiplica-
tion.

A.4 Let A be p × p and B be m × m. Then

|A ⊗ B| = |A|m|B|p. (A.20)
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Appendix B

Computer Programs for MCMC Calculations

THE MODELS DISCUSSED in this book are rather easy to program, and students
are encouraged to do some or all of the exercises by writing their own programs.
The Gauss and Matlab programs are good choices.

If you program in Matlab, you should be aware of a few differences between
the program and our presentation.

B.1 The inverted gamma function is not available. Instead, sample for 1/σ 2, which has a
gamma distribution with the same parameters.

B.2 The Matlab version of the gamma function defines the second parameter as the
inverse of our version; that is, in our notation, G(α, δ1), is interpreted by Matlab as
G(α, δ2) where δ2 = 1/δ1.

B.3 In the univariate normal distribution, Matlab expects N (µ, σ ); that is, it expects the
standard deviation as the second argument rather than the variance. (In Matlab’s
multivariate normal function, the second argument is the covariance matrix.)

A number of free programs are available through the Internet that implement
the Gibbs sampler for some of the models studied in this book. We mention three:

• BACC is supported by the National Science Foundation. Its authors request that the
following acknowledgments and reference be included.
Computations reported in this paper were undertaken [in part] using the Bayesian Anal-
ysis, Computation and Communication software (http://www.econ.umn.edu/ bacc) de-
scribed in Geweke (1999, with discussion and rejoinder).
The Web site provides detailed instructions for downloading, installing, and running the
program. Versions are available for Linux/Unix S-PLUS and R, Windows S-PLUS and
R, and Matlab.
BACC is described extensively in Geweke (2005). See also Geweke (1999), Koop (1999),
and McCausland (2004).

• WinBUGS is available through the Web site http://www.mrc-bsu.cam.ac.uk/bugs/
welcome.shtml.
BUGS code for many models is provided in Congdon (2001, 2003, 2005).

192
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There are a few other implementations of the BUGS language. One that runs easily and
compiles on Unix is JAGS, http://www-fis.iarc.fr/ martyn/software/jags/.
There is also another project called OpenBUGS, http://mathstat.helsinki.fi/openbugs/.

• Econometrics Toolbox by James P. LeSage is available at http://www.spatial-
econometrics.com/. It runs on Matlab.

Andrew Martin maintains a Web site that reviews Bayesian software written in R,
which has become the primary program for Bayesian work in political science, so-
ciology, and much of applied statistics: http://cran.r-project.org/src/contrib/Views/
Bayesian.html

Two packages for model fitting in R are as follows:

• bayesm, by P. E. Rossi, G. Allenby, and R. McCulloch. It is available at http://gsbwww.
uchicago.edu/fac/peter.rossi/research/bsm.html. See also Rossi, Allenby, and McCulloch
(2006).

• MCMCpack is available at http://mcmcpack.wustl.edu. It is Andrew Martin’s NSF sup-
ported package, which contains some of the models discussed in this book as well as
some additional measurement and ecological inference models of interest to political
scientists. See http://adm.wustl.edu/working/RnewsWorking.pdf.
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