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Who could fault an approach that offers 
greater credibility at reduced cost?

By Daniel Jackson

Software plays a  fundamental role in our  
society, bringing enormous benefits to all fields.  
But because many of our current systems are  
highly centralized and tightly coupled,33 we  
are also susceptible to massive and  
coordinated failure.

A Chicago hospital lost its entire pharmacy 
database one night, and it was only able 
to reconstruct medication records for its 
patients by collecting paper printouts 
from nurses’ stations. In their report on 
this incident,6 Richard Cook and Michael 
O’Connor concluded: “Accidents are 
signals sent from deep within the system 
about the sorts of vulnerability and 
potential for disaster that lie within.” 
Similar signals have been  
asent, for example, in the fields of 
electronic voting,24 air traffic control,13 
nuclear power,25 and energy distribution.34 

The growing tendency to embed  
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should instead produce direct evidence 
of their software’s dependability. The 
potential advantages of this approach 
are greater credibility (as the claim is 
not contingent on the effectiveness of 
the practices) and reduced cost (because 
development resources can be focused 
where they have the most impact).

The Need for a Direct Approach
A dependable system is one you can 
depend on—that is, you can place your 
trust in it. A rational person or organiza-
tion only does this with evidence that the 
system’s benefits far outweigh its risks. 
Without such evidence, a system cannot 
be depended on, in much the same way 
that a download from an unknown Web 
site cannot be said to be “safe” just be-
cause it happens not to harbor a virus.

Perhaps in the future we will know 
enough about software-development 
practices that the very use of a particu-
lar technique will constitute evidence 
of the resulting software’s quality. 
Today, however, we are far from that 
goal. Although individual companies 
can predict defect rates within product 
families based on historical data, in-

dustrywide data collection and analy-
sis barely exist.

Contrast software systems with cars, 
for example. In the U.S., the National 
Highway Traffic Safety Administra-
tion (NHTSA) maintains several data-
bases that include records of all fatal 
accidents—approximately 40,000 a 
year—and data about how particular 
models fare in crashes. Researchers 
can use this data to correlate risk with 
design features. NHTSA also receives 
data from auto companies regarding 
warranty claims, defects, and customer 
complaints. Similarly, the National 
Transportation Safety Board (NTSB), 
best known for its work in aviation, 
analyzes highway accidents and issues 
reports on, among other things, the ef-
ficacy of safety devices such as seatbelts 
and airbags.

The software industry has no com-
parable mechanism, and as a society 
we have almost no data on the causes 
or effects of software failure. Producers 
of software therefore cannot benefit 
from industry data that would improve 
their designs and development strate-
gies, and consumers cannot use such 

software in powerful and in-
vasive physical devices brings 

greater risk, especially in medi-
cine, where software can save lives 

but also kill.36 Software problems 
led to the recall of 200,000 implanted 

pacemakers and defibrillators between 
1990 and 2000.30 In the 20 years prior to 
2005, the U.S. Food and Drug Adminis-
tration (FDA) recorded 30,000 deaths 
and 600,000 injuries from medical-
device failures.9 How many of these in-
cidents can be attributed to software is 
unclear, though separate studies have 
found that about 8% of medical-device 
recalls are software-related. Moreover, 
few of the device failures that occur—
perhaps only 1 in 40—are actually re-
ported,12 so the actual incidence of in-
juries is likely to be higher. 

What would it take to make soft-
ware more dependable? Until now, 
most approaches have been indirect, 
involving practices—processes, tools, or 
techniques—believed to yield depend-
able software. The case for dependability 
has thus rested on the extent to which 
the developers adhered to these prac-
tices. This article argues that developers I

l
l

u
s

t
r

a
t

i
o

n
 b

y
 M

i
k

a
e

l
 C

h
r

i
s

t
e

n
s

e
n



80    communications of the acm    |   april 2009  |   vol.  52  |   no.  4

review articles

data to make informed purchasing de-
cisions. 

Actually, where data is collected, it 
is often suppressed; many companies 
withhold even basic information about 
the number and severity of defects 
in their products, even when issuing 
patches that purport to resolve them. 
And no government agency is charged 
with investigating software failures or 
even recording software-related fatal 
accidents. When an accident report 
does implicate software, it rarely in-
cludes enough information to allow 
any general lessons to be learned.

Over the past few decades we have 
developed approaches and technolo-
gies that can dramatically improve the 
quality of software. They include better 
platforms (safe programming languag-
es, operating systems with address-
space separation, virtual machines), 
better development infrastructure 
(configuration control, bug tracking, 
traceability), better processes (spiral 
and agile models, prototyping), and 
better tools (integrated environments, 
static analyzers, model checkers). 
Moreover, we have made progress in 
understanding the fundamentals, for 
example, of problem structuring, de-
sign modeling, software architecture, 
verification, and testing. All of these 
advances can be misused, however, 
and none of them guarantees success. 
The field of empirical software develop-
ment is attempting to fill the gap and 
provide scientific measures of efficacy, 
but there is still no evidence compel-
ling enough that simply using a given 
approach establishes with confidence 
the quality of the resulting system.

Many certification standards were 
devised with the good intent of enforc-
ing best practices, but they have had 
the opposite effect. Instead of encour-
aging the selection of the best tool for 
the job, and directing attention to the 
most critical aspects of a system and 
its development, they impose burden-
some demands to apply the same—of-
ten outdated—techniques uniformly, 
resulting in voluminous documenta-
tion of questionable value. The Com-
mon Criteria security certification that 
Microsoft obtains for its operating sys-
tems, for example, costs more than its 
internally devised mitigations but is 
believed by the company to be far less 
effective.

competence. More extensive testing 
can only improve the quality of soft-
ware, and many researchers are rec-
ognizing the potential for harnessing 
computational resources to increase 
the power of testing yet further. At the 
same time, however, despite the fa-
mous pronouncement of Edsger Dijk-
stra that testing can be used to show 
the presence of errors but not their ab-
sence, there is a widespread folk belief 
that testing is sufficient evidence for 
dependability.

Everything we know about testing 
indicates that this belief is false. Al-
though some small components can be 
tested exhaustively, the state space of 
an entire system is usually so huge that 
the proportion of scenarios executed 
in a typical test is vanishingly small. 
Software is not continuous, so a suc-
cessful test for one input says nothing 
about the system’s response to a simi-
lar but distinct input. In practice, it is 
very difficult even to achieve full code 
coverage—that is, with every statement 
of the code being executed.

An alternative approach is to gener-
ate tests in a distribution that matches 
the expected usage profile, adjusted 
for risk so that most of the testing ef-
fort is spent in the most critical areas of 
functionality. But the number of tests 
required to obtain high confidence 
(even with some dubious statistical 
assumptions) is far larger than one 
might imagine. For example, to claim a 
failure rate of one input in a thousand 
to a 99% confidence, about 5,000 test 
cases are needed, assuming no bugs 
are found.28 If testing reveals 10 bugs, 
nearer to 20,000 subsequent tests with-
out failure are needed. Contrary to the 
intuition of many programmers, find-
ing bugs should not increase confi-
dence that fewer bugs remain; indeed, 
it is evidence that there are more bugs 
to be found.

Thus while testing may provide ad-
equate confidence that a program is 
good for a noncritical application, it be-
comes increasingly difficult and expen-
sive as higher levels of assurance are 
demanded; under such circumstances, 
testing cannot deliver the confidence 
required at a reasonable cost. Most 
systems will be tested more thoroughly 
by their users than by their developers, 
and will often be executing in unchart-
ed territory, exploring combinations of 

Government agencies are often in 
the unfortunate position of having to 
evaluate complex software systems 
solely on the basis of evidence that 
some process, however arbitrary, was 
adhered to and some amount of test-
ing, whether conclusive or not, was per-
formed. Not surprisingly, certified sys-
tems sometimes fail catastrophically. 
A particularly tragic example was the 
failure of an FDA-certified radiation-
therapy machine in Panama in 2001;20 
fatal overdoses resulted from poorly en-
gineered software in an incident remi-
niscent of the Therac failures of 15 years 
earlier. Even the most highly regarded 
standards demand expensive practices 
whose value is hard to assess. DO178B, 
for example, the safety standard used in 
the U.S. for avionics systems, requires a 
level of test coverage known as MCDC 
that is extremely costly and whose ben-
efits studies have yet to substantiate.14

A very different approach, some-
times called “goal-based” or “case-
based” certification, is now gaining 
currency. Instead of particular prac-
tices being mandated, the developer 
is instead called upon to provide direct 
evidence that the particular system sat-
isfies its claimed dependability goals. 
In the U.K., the Ministry of Defence has 
dramatically simplified its procure-
ment standards for software under this 
approach, with contractors providing 
“software reliability cases” to justify 
the system. Even in the early stages, a 
reliability case is required to defend 
the proposed architecture and to show 
that the contractor is capable of mak-
ing a case for the development itself.31

This direct approach has not yet 
been adopted by American certifiers 
and procurers. Recently, however, a 
number of government agencies, spear-
headed by the High Confidence Soft-
ware and Systems Coordinating Group, 
funded a National Academies study to 
address widespread concerns about 
the costs and effectiveness of existing 
approaches to software dependability.22 
The direct approach recommended by 
the study is the basis of this article.

Why Testing Isn’t Good Enough
Testing is a crucial tool in the software 
developer’s repertoire, and the use of 
automated tests—especially “regres-
sion tests” for catching defects intro-
duced by modifications—is a mark of 
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As in all engineering 
enterprises, 
dependability is a 
trade-off between 
benefits and risks, 
with the level of 
assurance (and the 
quality and cost of 
the evidence) being 
chosen to match  
the risk at hand.  

state components that were not tested 
and perhaps not even considered dur-
ing design. 

Nevertheless, most certification re-
gimes still rely primarily on testing. 
Developers and certifiers sometimes 
talk self-assuredly about achieving “five 
nines” of dependability, meaning that 
the system is expected to survive 100,000 
commands or hours before failing. The 
mismatch between such claims and the 
reality of software failures led one pro-
curer to quip “It’s amazing how quickly 
105 hours comes around.”

A Direct Approach
The direct approach, by definition, is 
straightforward. The desired depend-
ability goal is explicitly articulated as a 
collection of claims that the system has 
some critical properties. An argument, 
or dependability case, is constructed 
that substantiates the claims. The re-
mainder of this article develops these 
notions and outlines some of their 
implications, but first we turn to the 
fundamental questions of what con-
stitutes a system and what it means for 
the system to be dependable.

What is a system? An engineered 
product that is introduced to solve a 
particular problem and that consists 
of software, the hardware platform on 
which the software runs, the peripher-
al devices through which the product 
interacts with the environment, and 
any other components that contribute 
to achieving the product’s goals (in-
cluding human operators and users) 
is considered a system. In many cases, 
the system’s designers must assume 
that its operators behave in a certain 
way. An air traffic management sys-
tem, for example, cannot prevent a 
midair collision if a pilot is deter-
mined to hit another aircraft; elimi-
nating this assumption would require 
a separation of aircraft that would not 
be economically feasible. When a sys-
tem’s dependability is contingent on 
assumptions about its operators, they 
should be viewed as a component of 
the system and the design of operat-
ing procedures regarded as an essen-
tial part of the overall design.

What does “dependable” mean? A sys-
tem is dependable if can be depended 
on—that is, trusted—to perform a par-
ticular task. As noted earlier, such trust 
is only rational when evidence of the 

system’s ability to act without exhibit-
ing certain failures has been assessed. 
So a system cannot be dependable with-
out evidence, and dependability is thus 
not merely the absence of defects or 
the failures that may result from them 
but the presence of concrete informa-
tion suggesting that such failures will 
not occur.

As in all engineering enterprises, 
dependability is a trade-off between 
benefits and risks, with the level of as-
surance (and the quality and cost of 
the evidence) being chosen to match 
the risk at hand. Our society is not will-
ing to tolerate the failure of a nuclear 
power plant, air traffic control center, 
or energy distribution network, so 
for such systems we will be willing to 
absorb larger development and certi-
fication costs. Criticality depends, of 
course, on the context of use. A spread-
sheet program becomes critical if it is 
used, say, for calculating radiotherapy 
doses. And there are systems, such as 
GPS satellites and cellphone networks, 
on which so many applications depend 
that widespread failure could be cata-
strophic.

Dependability is not a metric that 
can be measured on a simple numeric 
scale, because different kinds of fail-
ures have very different consequences. 
The cost of preventing all failures will 
usually be prohibitive, so a dependable 
system will not offer uniform levels of 
confidence across all functions. In fact, 
a large variance is likely to be a charac-
teristic of a dependable system. Thus 
a dependable radiotherapy system 
may become unavailable but cannot 
be allowed to overdose a patient; a de-
pendable e-commerce site may display 
advertisements incorrectly, give bad 
search results, and perhaps lose shop-
ping-cart items over time, but it must 
never bill the wrong amount or leak 
customers’ credit card details; a de-
pendable file synchronizer may report 
spurious conflicts but should never si-
lently overwrite newer versions of files.

Together, these considerations im-
ply that the first steps in developing a 
dependable system involve drawing 
its boundaries—deciding which com-
ponents in addition to the software, 
physical and human, will be relied on; 
identifying the critical properties; and 
determining what level of confidence 
is required.
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Properties and where they reside. So 
far I have talked loosely about a de-
pendable system performing some 
functions or tasks. But for articulating 
claims about a system’s desired be-
havior, this level of granularity is too 
coarse. It is preferable instead to focus 
on critical properties. Some will be as-

sociated with individual functions, but 
more often a property will crosscut sev-
eral functions.

For dependability, focusing on 
properties is generally better than fo-
cusing on functions because the prop-
erties are what matter. Moreover, they 
can usually be separated more cleanly 

from one another, and they retain their 
meaning as the set of functions offered 
by the system changes over its lifetime. 
A critical property of a crime database, 
for example, may be that every access to 
the database by a user is logged in some 
file. Identifying instead some critical 
subset of logging functions would be 
inferior, as the full correctness of these 
functions would likely be neither nec-
essary nor sufficient for establishing 
the logging property. Common Crite-
ria, a certification scheme for security, 
makes this mistake; it focuses atten-
tion on the security functions alone, 
despite the fact that many attacks suc-
ceed precisely because they exploit 
loopholes in other functions that were 
not thought to be security-related.

Some software systems provide an 
entirely virtual service, but most in-
teract with the physical world. When 
the purpose of a system is to produce, 
control, or monitor particular physi-
cal phenomena, they should form 
the vocabulary for expressing critical 
properties. This might seem obvious, 
but there is long tradition of writing 
requirements in terms of interfaces 
closer to the software, perhaps because 
it’s easier or because of a division of 
labor that isolates software engineers 
from system-level concerns. In a ra-
diotherapy application, for example, 
a critical property is not that the emit-
ted beam has a bounded intensity, or 
that the right signal is conveyed to the 
beam-generating device, or that the 
beam settings are computed correctly 
in the code. It is that the patient does 
not receive an excessive dose.

There is a chain of events connect-
ing the ultimate physical effects of the 
system at one end back through the sig-
nals of the peripherals in the middle to 
the instructions executed in the code 
at the other end. The more the critical 
property is formulated using phenom-
ena closer to the software and further 
away from the ultimate effects in the 
real world, the more its correlation to 
the fundamental concerns of the users 
is weakened. 

An infamous accident illustrates the 
potentially dire consequences of this 
too-close-to-the-software tendency. An 
Airbus A320 landing at Warsaw Airport 
in 1993 was equipped with an interlock 
intended to prevent the pilot from ac-
tivating reverse thrust while airborne. I
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Unfortunately, the software had been 
designed to meet a requirement that 
reverse thrust be disabled unless wheel 
pulses were being received (indicating 
that the wheels were turning and thus 
in contact with the ground). Because of 
rain on the runway, the aircraft aqua-
planed when it touched down, and the 
wheels did not turn, so the software 
dutifully disabled reverse thrust and 
the aircraft overran the runway. Had 
the critical property been expressed 
in terms of being on the ground rather 
than receiving wheel pulses, the invalid 
assumption that they were equivalent 
may have been scrutinized more care-
fully and the flaw detected. (This ac-
count is simplified; for the full incident 
report see Ladkin26).

This view of requirements is due 
to Michael Jackson23 and has been ad-
opted by Praxis in its REVEAL require-
ments engineering method.17 More 
specialized variants of the idea have 
appeared before, most notably in Da-
vid Parnas’s Four Variable Model.32

The dependability case. The evidence 
for dependability takes the form of 
a dependability case—an argument 
that the software, in concert with other 
components, establishes the critical 
properties. What exactly comprises the 
case—such as how detailed it should 
be and what mix of formal and infor-
mal arguments is appropriate —will 
vary between developments, but cer-
tain features are essential.

First, the case should be auditable 
so that it can be evaluated by a third-
party certifier, independent both of 
developer and customer. The effort of 
checking that the case is sound should 
be much less than the effort of build-
ing the case in the first place. In this 
respect, a dependability case may be 
like a formal proof: hard to construct 
but easy to check. To evaluate a case, 
a certifier should not need any expert 
knowledge of the developed system or 
of the particular application, although 
it would be reasonable to assume ex-
pertise in software engineering and fa-
miliarity with the domain area.

Second, the case should be complete. 
This means that the argument that the 
critical properties apply should con-
tain no holes to be filled by the certi-
fier. Any assumptions that are not justi-
fied should be noted so that it is clear 
to the certifier who will be responsible 

from the very outset of development. 
By focusing on the case, the developer 
can make decisions that ease its con-
struction, most notably by designing 
the system so that critical properties 
are easier to establish. Decoupling and 
simplicity, discussed later, offer per-
haps the greatest opportunities here.

This is the key respect in which 
the direct approach to dependabil-
ity demands a sea change in attitude. 
Rather than just setting in place some 
practices or disciplines that are in-
tended to improve dependability, the 
developers are called upon, every step 
of the way, to consider their decisions 
in the light of the system’s depend-
ability and to view the evidence that 
these decisions are sound as a work 
product that is as integral to the final 
system as the code itself.

Procurement. A change to a direct ap-
proach affects not only developers but 
also procurers, and the goals set at the 
start must be realistic in terms both of 
their achievement and demonstration. 

The Federal Aviation Administration 
specified three seconds of downtime 
per year for the infamous Advanced Au-
tomation System for air-traffic control 
(which was ultimately canceled after 
an expenditure of several billion dol-
lars), even though it would have taken 
10 years just to obtain the data for sub-
stantiating such a requirement.5 It was 
later revised to five minutes.

More fundamentally, however, our 
society as a whole needs to recognize 
that the enormous benefits of soft-
ware inevitably bring risks and that 
functionality and dependability are 
inherently in conflict. If we want more 
dependable software, we will need to 
stop evaluating software on the basis 
of its feature set alone. At the same 
time, we should be more demanding, 
and less tolerant of poor-quality soft-
ware. Too often, the users of software 
have been taught to blame themselves 
for its failures and to absorb the costs 
of workarounds.

After the failure of the USS York-
town’s onboard computer system, in 
which the ship’s entire control and 
navigation network went down after an 
officer calibrating a fuel valve entered 
a zero into a database application (in 
an attempt to overwrite a bad value 
that the system had produced), blame 
was initially placed on software. After 

for discharging them. For example, the 
dependability case may assume that a 
compiler generates code correctly; or 
that an operating system or middle-
ware platform transports messages 
reliably, relying on representations by 
the producers of these components 
that they provide the required proper-
ties; or that users obey some protocol, 
relying on the organization that fields 
the system to train them appropriately. 
For a product that is not designed with 
a particular customer in mind, the as-
sumptions become disclaimers, for 
example, that an infusion pump may 
fail under water or that a file synchro-
nizer will work only if applications do 
not subvert file modification dates. As-
sumptions made to simplify the case, 
and that are no more easily substanti-
ated by others, are suspect. Suppose 
an analysis of a program written in C, 
for example, contains an assumption 
that array accesses are within bounds. 
If this assumption cannot readily be 
checked, the results of the analysis 
cannot be trusted.

Third, the case should be sound. It 
should not, for example, claim full cor-
rectness of a procedure on the basis of 
nonexhaustive testing; or make unwar-
ranted assumptions that certain com-
ponents fail independently; or reason, 
in a program written in a language with 
a weak memory model that the value 
read from a shared variable is the value 
that was last written to it.

Implications
On the face of it, these recommenda-
tions—that developers express the 
critical properties and make an explicit 
argument that the system satisfies 
them—are hardly remarkable. If fol-
lowed, however, they would have pro-
found implications for how software is 
procured, developed, and certified.

Dependability case as product. In 
theory, one could construct a depend-
ability case ex post facto, when the en-
tire development had been completed. 
In practice, however, this would be 
near impossible and, in any case, un-
desirable. Constructing the case is eas-
ier and more effective if done hand-in-
hand with other development activities, 
when the rationale for development 
decisions is fresh and readily available. 
But there is a far more important rea-
son to consider the dependability case 
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an investigation, however, the Navy 
cited human error. The ship’s com-
manding officer reported that ‘Man-
agers are now aware of the problem of 
entering zero into database fields and 
are trained to bypass a bad data field 
and change the value if such a problem 
were to occur again’.

With the indirect approach to cer-
tification, it has been traditional that 
procurers give detailed prescriptions 
for how the software should and should 
not be developed and which technolo-
gies should be used. By contrast, the 
direct approach frees the developer to 
use the best available means to achieve 
the desired goal; constraints on the de-
velopment are evaluated by the objec-
tive measure of whether they improve 
dependability or not.

Structuring requirements. How re-
quirements are approached sets the 
tone of the development that follows. 
A cursory nod to analyzing the problem 
can result in functionality so unrelated 
to the users’ needs that the develop-
ers become mired in endless cycles 
of refactoring and modification. On 
the other hand, a massive and windy 
document can overwhelm the design-
ers with irrelevant details and tie their 
hands with premature design deci-
sions. Ironically, what a requirements 
document says can do as much dam-
age as what it fails to say.

In the context of dependability, the 
approach to requirements is especially 
important. The standard criteria of 
course apply: that the developers listen 
carefully to the stakeholders to under-
stand not merely the functions they say 
they want but also, more deeply, the 
purposes they believe these functions 
will enable them to accomplish; that 
the requirements be expressed precise-
ly and succinctly; and that great care be 
taken to avoid making irrevocable de-
cisions when they could be postponed 
and made later on the basis of much 
fuller information.

Two other criteria take on greater 
significance, however. Deciding which 
requirements are critical (and how crit-
ical they are) is the first and most vital 
design step, determining in large part 
the cost of the system and the contexts 
in which it will usable. The architec-
ture of the system will likely be based 
on these requirements, because (as ex-
plained later) the most feasible way to 

Decoupling is the key to achieving 
locality. Two components are decou-
pled if the behavior of one is unaffected 
by that of the other. Maximizing decou-
pling is a guiding principle of software 
design in general, but it is fundamental 
to dependability. It is addressed first 
during requirements analysis by defin-
ing functions and services so that they 
are self-contained and independent 
of one another. Then, during design, 
decoupling is addressed by allocat-
ing functionality to particular compo-
nents, which allows key invariants to be 
localized and the minimization of com-
munication; and by crafting interfaces 
that do not expose the internals of a 
service to its clients and do not connect 
clients to each other unnecessarily. Fi-
nally, the decoupling introduced in the 
design must be realized in the code by 
using appropriate language features to 
protect against errors that might com-
promise it. 

The design of an e-commerce system, 
for example, might enforce a rigorous 
separation between billing and other 
subsystems; in that way, more complex 
(and less dependable) code can be writ-
ten for less critical features (such as 
product search) without compromising 
essential financial properties. 

Decoupling is an important way of 
securing simplicity, and its benefits, in 
system design. As Tony Hoare famous-
ly said in his Turing Award lecture (dis-
cussing the design of Ada): “[T]here 
are two ways of constructing a soft-
ware design: One way is to make it so 
simple there are obviously no deficien-
cies; and the other way is to make it so 
complicated that there are no obvious 
deficiencies.” Many practitioners are 
resistant to the claim that simplicity is 
possible (and some even to the claim 
that it is desirable). They tend to think 
that the advocates of simplicity do not 
recognize the inherent complexity of 
the problems solved by computer sys-
tems or that they imagine that simplic-
ity is easily achieved.

Simplicity is not easy to achieve, 
and, as Alan Perlis noted in one of his 
famous aphorisms, it tends to follow 
complexity rather than precede it. The 
designer of a system that will work in a 
complicated and critical domain faces 
difficult problems. The question is not 
whether complexity can be eliminated 
but whether it can be tamed so that the 

offer high dependability at reasonable 
cost is to exploit modularity to estab-
lish critical properties locally.

Second, it is important to clearly 
record any assumptions made about 
the software’s operating environment 
(including the behavior of human op-
erators). These assumptions will be an 
integral part of the dependability case, 
influence the design, and become crite-
ria for evaluating the contexts in which 
the software can be deployed.

These two criteria are hardly new, 
but they are not always followed. Per-
haps under pressure from customers 
to provide an extensive catalog of fea-
tures, analysts often express require-
ments as a long list of functions. In a 
radiotherapy application, for example, 
the analyst—aware of the risk of deliv-
ering incorrect doses or of unauthor-
ized access—might include sections 
describing the various functions or use 
cases associated with selecting doses or 
logging in but might neglect the more 
important task of describing the most 
critical properties explicitly—such as 
that the delivered dose corresponds to 
the prescribed dose and that access be 
restricted to certain staff.

Sometimes developers appreciate 
the value of prioritization but have been 
shy to make the bold decisions neces-
sary for downgrading (or eliminating) 
noncritical requirements. Rather than 
asking “What are the critical proper-
ties?” we might instead ask “What 
properties are not critical?” If we have 
trouble answering this latter question, 
the properties that are critical have 
probably not been identified correctly.

Decoupling and simplicity. How 
much the cost of developing a system 
will increase if a particular critical 
property is to be assured depends on 
how much of the system is involved. 
If the critical property is not local-
ized, the entire codebase must be ex-
amined to determine whether or not 
it holds—in essence, all of the code 
becomes critical. But if the property 
is localized to a single component, at-
tention can be focused on that com-
ponent alone, and the rest of the code-
base can be treated as noncritical. Put 
another way, the cost of making a sys-
tem dependable should vary not with 
the size of the whole system but with 
the extent and complexity of the criti-
cal properties.
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resulting system is as simple as possi-
ble under the circumstances. The cost 
of simplicity may be high, but the cost 
of lowering the floodgates to complex-
ity is higher. Edsger Dijkstra explained: 
“The opportunity for simplification is 
very encouraging, because in all exam-
ples that come to mind the simple and 
elegant systems tend to be easier and 
faster to design and get right, more effi-
cient in execution, and much more re-
liable than the contrived contraptions 
that have to be debugged into some de-
gree of acceptability.”8

Process and culture. While process 
may not be sufficient for dependability, 
it is certainly necessary. A rigorous pro-
cess will be needed to ensure that atten-
tion is paid to the dependability case 
and to preserve the chain of evidence 
as it is constructed. In the extreme, if 
there is no credible process, a certi-
fier has no reason to believe that the 
deployed software even corresponds 
to the software that was certified. For 
example, in a well-known incident in 
2003 an electronic voting system was 
certified for use in an election but a 
different version of the system was in-
stalled in voting booths.39

A rigorous process need not be a 
burdensome one. Because every en-
gineer involved in a project is expect-
ed to be familiar with the process, it 
should be described by a brief and eas-
ily understood handbook, tailored if 
necessary to that project. Rather than 
interfering with the technical work, 
the process should eliminate a mass 
of small decisions, thereby freeing 
the engineers to concentrate on the 
more creative aspects of the project. 
Standards for machine-processable 
artifacts—especially code—should be 
designed to maximize opportunities 
for automation. For example, a coding 
standard that mandates how variables 
are named and how specification com-
ments are laid out can make it possible 
to extract all kinds of cross-referencing 
and summarization information with 
lexical tools alone. Bill Griswold has 
observed that the more the program-
mer embeds semantic information in 
the naming conventions of the code, 
the more readily it can be exploited.15

One of the paradoxes of software cer-
tification is that burdensome processes 
(such as requiring MCDC test coverage) 
do seem to be correlated with more de-

pendable software, even though there 
is little compelling evidence that the 
processes themselves achieve their 
stated aims. This may be explained 
by a social effect. The companies that 
adhere to the strictest processes tend 
to attract and reward employees who 
are meticulous and risk-averse. Hav-
ing a strong “safety culture” can be 
the major factor in determining how 
safe the products are, and in fact one 
study of formal methods found that 
their success may be due more to the 
culture surrounding them than to any-
thing more direct.35 Efforts to build 
and maintain a strong safety culture 
can pay dividends. Richard Feynman, 
in his dissenting report following the 
Challenger inquiry,10 was effusive in his 
praise of the constructively adversarial 
attitude among NASA’s software engi-
neers, to which he ascribed the high 
dependability of their software.

Advances in software-verification 
technology may tempt us to imagine 
(in a Leibnizian fantasy) that one day 
we will be able to check the depend-
ability of software simply by running it 
through a machine. But dependability 
cases will always contain informal ele-
ments that cannot be verified mecha-
nistically; truth will have to be assessed 
by an impartial review not only of the 
case itself but also of the credibility of 
the organization that produced it. An 
entirely product-based certification ap-
proach thus makes no more sense than 
one based entirely on process. Given 
that the organization that produces 
the software and the software itself are 
intertwined, attempts at improving de-
pendability, and efforts to measure it, 
must take both into account.

Robust foundations. Just as a sky-
scraper cannot easily be built on sand, 
a robust software system cannot be 
built on a foundation of weak tools 
and platforms. Fifty years after the in-
vention of static typing and automatic 
memory management, the decision to 
use an unsafe programming language 
such as C or C++ (which provide nei-
ther) requires serious justification, and 
for a critical system the benefits that 
are obtained in compensation for the 
loss of safety have to be extraordinarily 
compelling. Arguments against safety 
based on performance are usually over-
stated. And with Java and C# now wide-
ly known and available, and equipped 

The question is  
not whether 
complexity can 
be eliminated but 
whether it can  
be tamed so that  
the resulting 
system is as  
simple as possible 
under the 
circumstances.  
The cost of 
simplicity may be 
high, but the cost 
of lowering the 
floodgates  
to complexity  
is higher.
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1975.27 When it was realized that these 
features were essential, it was too late 
to incorporate them cleanly. It may be 
curmudgeonly to complain about Java, 
especially because it brings so many 
good ideas to mainstream program-
ming—in particular, strong typing—
that might otherwise have languished 
in obscurity. And, to be fair, Java incor-
porates features of older languages in 
a more complex setting; subtyping, in 
particular, makes it much harder to 
incorporate other features (such as ge-
nerics). Nevertheless, it does seem sad 
that the languages adopted by industry 
often lack the robustness and clarity of 
their academic predecessors.

It is important to recognize that de-
pendability was not the primary goal in 
the design of most programming lan-
guages. Java was designed for platform 
independence, and its virtual machine 
includes a class loader that absorbs 
much of the complexity of installation 
variability. As a result, however, a simple 
call to a constructor in the source code 
sets in motion a formidable amount of 
machinery that could compromise the 
system’s dependability.

The choice of computing plat-
form—such as operating system, mid-
dleware, and database—must also be 
carefully considered. A platform that 
has been widely adopted for general 
applications usually has the advan-
tage of lower cost and a larger pool of 
candidate developers. But commodity 
platforms are not usually designed for 
critical applications. Thus when high 
dependability is required, enthusiasm 
for their use should be tempered by 
the risks involved.

The (in)significance of code. A de-
pendability argument is a chain with 
a variety of links. One link may argue 
that a software component has some 
property, another that a peripheral be-
haves in a certain way, yet another that 
a human operator obeys some proto-
col, and together they might establish 
the end-to-end dependability require-
ment. But the overall argument is only 
as strong as the chain’s weakest link. 

Many software engineers and re-
searchers are surprised to learn that 
the correctness of the code is rarely 
that weakest link. In an analysis of fa-
tal accidents that were attributed to 
software problems, Donald MacKenzie 
found that coding errors were cited as 

with impressive libraries, there is no 
longer a reason to consider safe lan-
guages as boutique technologies.

The value of static typing is often 
misunderstood. It is not that type er-
rors don’t occur during execution. 
They do, because most statically typed 
languages are sufficiently complex that 
some checks are inevitably postponed 
to runtime. Similarly, the value of 
strong typing is not that runtime type 
errors are more acceptable than other 
kinds of failure. An unanticipated fail-
ure is never good news. Moreover, run-
time type checking can make things 
worse: the Ariane 5 rocket might not 
have been lost had an arithmetic over-
flow in an irrelevant module not been 
propagated to the top level.

Strong typing has two primary ben-
efits. First, it prevents a module from 
writing to regions of memory that it 
cannot name (through local and global 
variables and sequences of field access-
es). This means that a syntactic depen-
dence analysis can determine the po-
tential couplings between modules and 
can be used to establish that one mod-
ule is decoupled from another, thus 
making it possible to ignore the latter 
when analyzing the behavior of the for-
mer. Second, strong typing makes run-
time failures happen earlier, as soon 
as a type error occurs, rather than later 
when the failure is likely to be harder 
to diagnose and may have done more 
damage. Static typing provides the im-
portant additional advantage of catch-
ing many type errors at compile time. 
This is extremely valuable, because 
type errors are often symptoms of seri-
ous mistakes and structural flaws.

Complexity in a programming lan-
guage can compromise dependability 
because it increases the chance that the 
program will behave differently from 
what the programmer envisaged. It is 
important to avoid obscure mecha-
nisms, especially those that have a 
platform-dependent interpretation. 
Coding standards can be very helpful in 
taming dangerous language features.18, 19 

Progress in language design has 
produced major improvements, but 
old lessons are easily forgotten. The 
original design of Java, for example, 
lacked iterators (as a control construct) 
and generics, and it did not unify prim-
itive types and objects, even though 
these features had been part of CLU in 
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be reduced 
accordingly.
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causes only 3% of the time.29 Problems 
with requirements and usability dwarf 
the problems of bugs in code, suggest-
ing that the emphasis on coding prac-
tices and tools, both in academia and 
industry, may be mistaken. Exploiting 
tools to check arguments at the design 
and requirements level may be more 
important; and it is often more feasi-
ble, as artifacts at the higher level are 
much smaller.21

Nevertheless, the correctness of 
code is a vital link in the dependabil-
ity chain. Even if the low incidence of 
failures due to bugs reflects success in 
improving code quality, the cost is still 
unacceptable,11 especially when very 
high assurance is required. Note too 
that in the arena of security, code vul-
nerabilities are responsible for a much 
higher proportion of failures than in 
the safety arena.

Testing and analysis. Testing is a cru-
cial part of any software-development 
process, and its effectiveness can be 
amplified by liberal use of runtime as-
sertions, by formulating tests early on, 
by creating tests in response to bug re-
ports, and by integrating testing into 
the build so that tests are run frequent-
ly and automatically. But as discussed 
above, testing cannot generally deliver 
the high levels of confidence that are 
required for critical systems. Thus 
analysis is needed to fill the gap.

Analysis might involve any of a va-
riety of techniques, depending on the 
kind of property being checked and 
the level of confidence required. In the 
last decade, dramatic advances have 
been made in analyses that establish 
properties of code fully automatically 
through the use of theorem proving, 
static analysis, model checking, and 
model finding.

How well these techniques will work 
and how widely they will be adopted 
remain to be seen. But a number of 
industrial successes demonstrate that 
the approaches are at least feasible 
and, in the right context, effective. 
Microsoft, for example, now includes 
a sophisticated verification compo-
nent in its driver development toolkit;3 
Praxis has achieved extraordinarily low 
defect rates using a variety of formal 
methods;16 and Airbus has used static 
analysis to show the absence of low-lev-
el runtime errors in the A340 and A380 
flight-control software.7

these faults is correlated with the ab-
sence of other faults.

Among analysis tools, mathematical 
proof is generally believed to offer the 
highest level of confidence. An analysis 
substantiated with a proof can be cer-
tified independently by examining the 
proof in isolation, thereby mitigating 
the concern that the tool that produced 
the proof might have been faulty.

Proof is not foolproof, however. 
When a bug was reported in his own 
code (part of the Sun Java library), Josh-
ua Bloch found4 that the binary search 
algorithm—proved correct many years 
before (by, amongst others Jon Bentley 
in his Communications column) and 
upon which a generation of program-
mers had relied—harbored a subtle 
flaw. The problem arose when the sum 
of the low and high bounds exceeded 
the largest representable integer. Of 
course, the proof wasn’t wrong in a tech-
nical sense; there was an assumption 
that no integer overflow would occur 
(which was reasonable when Bentley 
wrote his column, given that comput-
er memories back then were not large 
enough to hold such a large array). In 
practice, however, such assumptions 
will always pose a risk, as they are often 
hidden in the very tools we use to rea-
son about systems and we may not be 
aware of them until they are exposed.

Closing Thoughts
The central message of this article is that 
it is not rational to believe that a software 
system is dependable without good rea-
son. Thus any approach that promises 
to develop dependable software must 
provide such reason. A clear and explicit 
articulation is needed of what “depend-
able” means for the system at hand, and 
an argument must be made that takes 
into account not only the correctness of 
the code but also the behavior of all the 
other components of the system, includ-
ing human operators.

Is this approach practical? The cost 
of constructing a dependability case, 
after all, may be high. On the other 
hand, such construction should focus 
resources, from the very start of the 
development, where they bring the 
greatest return, and the effort invested 
in obtaining a decoupled design may 
reduce the cost of maintenance later. 
The experience of Praxis shows that 
many of the approaches that the indus-

Until these approaches are more 
widely adopted, many development 
teams will choose to rely instead on 
manual code review. In any case, it is 
important to realize that arguments 
that are not mechanically checked are 
likely to be flawed, so their credibility 
must suffer and confidence in any de-
pendability claims that rely on them 
must be reduced accordingly.

The credibility of tools. Tools are 
enormously valuable, but the glamour 
of automation can sometimes over-
whelm our better judgment. A symp-
tom of this is our tendency to invest 
terms used to describe tools with more 
significance than their simple mean-
ing. For example, inventors of program 
analyses have long classified their 
creations as “sound” or “unsound.” A 
sound analysis establishes a property 
with perfect reliability. That is, if the 
analysis does not report a bug, then 
there is no possible execution that can 
violate the property. This notion help-
fully distinguishes verifiers from bug 
finders—a class of tools that are very 
effective at catching defects, especially 
in low-quality software, but that usually 
cannot contribute evidence of depend-
ability because they tend to be heuris-
tic and therefore unsound.

But the assumption that sound tools 
are inherently more credible is danger-
ous. Alex Aiken found that an unsound 
tool uncovered errors in a codebase 
that a prior analysis, using a sound tool, 
had failed to catch. The much higher 
volume of false alarms produced by 
the sound tool overwhelmed its users 
and made the real defects harder to 
identify.1 In recent years, developers of 
analysis tools have come to realize that 
the inclusion of false positives is just 
as problematic as the exclusion of true 
positives and that more sophisticated 
measures are needed.

Even if an analysis establishes a 
property with complete assurance, the 
question of whether the property itself 
is sufficient still remains. For example, 
eliminating arithmetic overflows and 
array bounds errors from a program is 
certainly progress. But knowing that 
such faults are absent may not help 
the dependability case unless there is 
either: a chain of reasoning connect-
ing this knowledge to assertions about 
end-to-end properties; or some strong 
statistical evidence that the absence of 
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try regards as too costly (such as for-
mal specification and static analysis of 
code) can actually reduce overall cost.2

Similarly, even though the augmen-
tation of testing with more ambitious 
analysis tools will require greater ex-
pertise than is available to many teams 
today, this avenue does not necessarily 
increase the cost either. When low lev-
els of confidence suffice, testing may be 
the most cost-effective way to establish 
dependability. As the required level of 
confidence rises, though, testing soon 
becomes prohibitively expensive, and 
the use of more sophisticated methods 
is likely to be more economical. Invari-
ants may be harder to write than test 
cases, but a single invariant defines an 
infinite number of test cases, so a de-
cision to write one (and use a tool that 
checks all the cases it defines) will pay 
off very soon.

Efforts to make software more de-
pendable or secure are inherently con-
servative and therefore risk retarding 
progress, and many practitioners under-
standably see certification schemes and 
standards as millstones around their 
necks. But because a direct approach 
based on dependability cases gives de-
velopers an incentive to use whatever 
development methods and tools are 
most economic and effective, the ap-
proach therefore rewards innovation.
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