
78 communications of the acm | april 2009 | vol. 52 | no. 4

doi:10.1145/1498765.1498787

Who could fault an approach that offers
greater credibility at reduced cost?

By Daniel Jackson

Software plays a fundamental role in our
society, bringing enormous benefits to all fields.
But because many of our current systems are
highly centralized and tightly coupled,33 we
are also susceptible to massive and
coordinated failure.

A Chicago hospital lost its entire pharmacy
database one night, and it was only able
to reconstruct medication records for its
patients by collecting paper printouts
from nurses’ stations. In their report on
this incident,6 Richard Cook and Michael
O’Connor concluded: “Accidents are
signals sent from deep within the system
about the sorts of vulnerability and
potential for disaster that lie within.”
Similar signals have been
asent, for example, in the fields of
electronic voting,24 air traffic control,13
nuclear power,25 and energy distribution.34

The growing tendency to embed

A Direct Path
to Dependable
Software

review articles

april 2009 | vol. 52 | no. 4 | communications of the acm 79

should instead produce direct evidence
of their software’s dependability. The
potential advantages of this approach
are greater credibility (as the claim is
not contingent on the effectiveness of
the practices) and reduced cost (because
development resources can be focused
where they have the most impact).

The Need for a Direct Approach
A dependable system is one you can
depend on—that is, you can place your
trust in it. A rational person or organiza-
tion only does this with evidence that the
system’s benefits far outweigh its risks.
Without such evidence, a system cannot
be depended on, in much the same way
that a download from an unknown Web
site cannot be said to be “safe” just be-
cause it happens not to harbor a virus.

Perhaps in the future we will know
enough about software-development
practices that the very use of a particu-
lar technique will constitute evidence
of the resulting software’s quality.
Today, however, we are far from that
goal. Although individual companies
can predict defect rates within product
families based on historical data, in-

dustrywide data collection and analy-
sis barely exist.

Contrast software systems with cars,
for example. In the U.S., the National
Highway Traffic Safety Administra-
tion (NHTSA) maintains several data-
bases that include records of all fatal
accidents—approximately 40,000 a
year—and data about how particular
models fare in crashes. Researchers
can use this data to correlate risk with
design features. NHTSA also receives
data from auto companies regarding
warranty claims, defects, and customer
complaints. Similarly, the National
Transportation Safety Board (NTSB),
best known for its work in aviation,
analyzes highway accidents and issues
reports on, among other things, the ef-
ficacy of safety devices such as seatbelts
and airbags.

The software industry has no com-
parable mechanism, and as a society
we have almost no data on the causes
or effects of software failure. Producers
of software therefore cannot benefit
from industry data that would improve
their designs and development strate-
gies, and consumers cannot use such

software in powerful and in-
vasive physical devices brings

greater risk, especially in medi-
cine, where software can save lives

but also kill.36 Software problems
led to the recall of 200,000 implanted

pacemakers and defibrillators between
1990 and 2000.30 In the 20 years prior to
2005, the U.S. Food and Drug Adminis-
tration (FDA) recorded 30,000 deaths
and 600,000 injuries from medical-
device failures.9 How many of these in-
cidents can be attributed to software is
unclear, though separate studies have
found that about 8% of medical-device
recalls are software-related. Moreover,
few of the device failures that occur—
perhaps only 1 in 40—are actually re-
ported,12 so the actual incidence of in-
juries is likely to be higher.

What would it take to make soft-
ware more dependable? Until now,
most approaches have been indirect,
involving practices—processes, tools, or
techniques—believed to yield depend-
able software. The case for dependability
has thus rested on the extent to which
the developers adhered to these prac-
tices. This article argues that developers I

l
l

u
s

t
r

a
t

i
o

n
 b

y
 M

i
k

a
e

l
 C

h
r

i
s

t
e

n
s

e
n

80 communications of the acm | april 2009 | vol. 52 | no. 4

review articles

data to make informed purchasing de-
cisions.

Actually, where data is collected, it
is often suppressed; many companies
withhold even basic information about
the number and severity of defects
in their products, even when issuing
patches that purport to resolve them.
And no government agency is charged
with investigating software failures or
even recording software-related fatal
accidents. When an accident report
does implicate software, it rarely in-
cludes enough information to allow
any general lessons to be learned.

Over the past few decades we have
developed approaches and technolo-
gies that can dramatically improve the
quality of software. They include better
platforms (safe programming languag-
es, operating systems with address-
space separation, virtual machines),
better development infrastructure
(configuration control, bug tracking,
traceability), better processes (spiral
and agile models, prototyping), and
better tools (integrated environments,
static analyzers, model checkers).
Moreover, we have made progress in
understanding the fundamentals, for
example, of problem structuring, de-
sign modeling, software architecture,
verification, and testing. All of these
advances can be misused, however,
and none of them guarantees success.
The field of empirical software develop-
ment is attempting to fill the gap and
provide scientific measures of efficacy,
but there is still no evidence compel-
ling enough that simply using a given
approach establishes with confidence
the quality of the resulting system.

Many certification standards were
devised with the good intent of enforc-
ing best practices, but they have had
the opposite effect. Instead of encour-
aging the selection of the best tool for
the job, and directing attention to the
most critical aspects of a system and
its development, they impose burden-
some demands to apply the same—of-
ten outdated—techniques uniformly,
resulting in voluminous documenta-
tion of questionable value. The Com-
mon Criteria security certification that
Microsoft obtains for its operating sys-
tems, for example, costs more than its
internally devised mitigations but is
believed by the company to be far less
effective.

competence. More extensive testing
can only improve the quality of soft-
ware, and many researchers are rec-
ognizing the potential for harnessing
computational resources to increase
the power of testing yet further. At the
same time, however, despite the fa-
mous pronouncement of Edsger Dijk-
stra that testing can be used to show
the presence of errors but not their ab-
sence, there is a widespread folk belief
that testing is sufficient evidence for
dependability.

Everything we know about testing
indicates that this belief is false. Al-
though some small components can be
tested exhaustively, the state space of
an entire system is usually so huge that
the proportion of scenarios executed
in a typical test is vanishingly small.
Software is not continuous, so a suc-
cessful test for one input says nothing
about the system’s response to a simi-
lar but distinct input. In practice, it is
very difficult even to achieve full code
coverage—that is, with every statement
of the code being executed.

An alternative approach is to gener-
ate tests in a distribution that matches
the expected usage profile, adjusted
for risk so that most of the testing ef-
fort is spent in the most critical areas of
functionality. But the number of tests
required to obtain high confidence
(even with some dubious statistical
assumptions) is far larger than one
might imagine. For example, to claim a
failure rate of one input in a thousand
to a 99% confidence, about 5,000 test
cases are needed, assuming no bugs
are found.28 If testing reveals 10 bugs,
nearer to 20,000 subsequent tests with-
out failure are needed. Contrary to the
intuition of many programmers, find-
ing bugs should not increase confi-
dence that fewer bugs remain; indeed,
it is evidence that there are more bugs
to be found.

Thus while testing may provide ad-
equate confidence that a program is
good for a noncritical application, it be-
comes increasingly difficult and expen-
sive as higher levels of assurance are
demanded; under such circumstances,
testing cannot deliver the confidence
required at a reasonable cost. Most
systems will be tested more thoroughly
by their users than by their developers,
and will often be executing in unchart-
ed territory, exploring combinations of

Government agencies are often in
the unfortunate position of having to
evaluate complex software systems
solely on the basis of evidence that
some process, however arbitrary, was
adhered to and some amount of test-
ing, whether conclusive or not, was per-
formed. Not surprisingly, certified sys-
tems sometimes fail catastrophically.
A particularly tragic example was the
failure of an FDA-certified radiation-
therapy machine in Panama in 2001;20
fatal overdoses resulted from poorly en-
gineered software in an incident remi-
niscent of the Therac failures of 15 years
earlier. Even the most highly regarded
standards demand expensive practices
whose value is hard to assess. DO178B,
for example, the safety standard used in
the U.S. for avionics systems, requires a
level of test coverage known as MCDC
that is extremely costly and whose ben-
efits studies have yet to substantiate.14

A very different approach, some-
times called “goal-based” or “case-
based” certification, is now gaining
currency. Instead of particular prac-
tices being mandated, the developer
is instead called upon to provide direct
evidence that the particular system sat-
isfies its claimed dependability goals.
In the U.K., the Ministry of Defence has
dramatically simplified its procure-
ment standards for software under this
approach, with contractors providing
“software reliability cases” to justify
the system. Even in the early stages, a
reliability case is required to defend
the proposed architecture and to show
that the contractor is capable of mak-
ing a case for the development itself.31

This direct approach has not yet
been adopted by American certifiers
and procurers. Recently, however, a
number of government agencies, spear-
headed by the High Confidence Soft-
ware and Systems Coordinating Group,
funded a National Academies study to
address widespread concerns about
the costs and effectiveness of existing
approaches to software dependability.22
The direct approach recommended by
the study is the basis of this article.

Why Testing Isn’t Good Enough
Testing is a crucial tool in the software
developer’s repertoire, and the use of
automated tests—especially “regres-
sion tests” for catching defects intro-
duced by modifications—is a mark of

review articles

april 2009 | vol. 52 | no. 4 | communications of the acm 81

As in all engineering
enterprises,
dependability is a
trade-off between
benefits and risks,
with the level of
assurance (and the
quality and cost of
the evidence) being
chosen to match
the risk at hand.

state components that were not tested
and perhaps not even considered dur-
ing design.

Nevertheless, most certification re-
gimes still rely primarily on testing.
Developers and certifiers sometimes
talk self-assuredly about achieving “five
nines” of dependability, meaning that
the system is expected to survive 100,000
commands or hours before failing. The
mismatch between such claims and the
reality of software failures led one pro-
curer to quip “It’s amazing how quickly
105 hours comes around.”

A Direct Approach
The direct approach, by definition, is
straightforward. The desired depend-
ability goal is explicitly articulated as a
collection of claims that the system has
some critical properties. An argument,
or dependability case, is constructed
that substantiates the claims. The re-
mainder of this article develops these
notions and outlines some of their
implications, but first we turn to the
fundamental questions of what con-
stitutes a system and what it means for
the system to be dependable.

What is a system? An engineered
product that is introduced to solve a
particular problem and that consists
of software, the hardware platform on
which the software runs, the peripher-
al devices through which the product
interacts with the environment, and
any other components that contribute
to achieving the product’s goals (in-
cluding human operators and users)
is considered a system. In many cases,
the system’s designers must assume
that its operators behave in a certain
way. An air traffic management sys-
tem, for example, cannot prevent a
midair collision if a pilot is deter-
mined to hit another aircraft; elimi-
nating this assumption would require
a separation of aircraft that would not
be economically feasible. When a sys-
tem’s dependability is contingent on
assumptions about its operators, they
should be viewed as a component of
the system and the design of operat-
ing procedures regarded as an essen-
tial part of the overall design.

What does “dependable” mean? A sys-
tem is dependable if can be depended
on—that is, trusted—to perform a par-
ticular task. As noted earlier, such trust
is only rational when evidence of the

system’s ability to act without exhibit-
ing certain failures has been assessed.
So a system cannot be dependable with-
out evidence, and dependability is thus
not merely the absence of defects or
the failures that may result from them
but the presence of concrete informa-
tion suggesting that such failures will
not occur.

As in all engineering enterprises,
dependability is a trade-off between
benefits and risks, with the level of as-
surance (and the quality and cost of
the evidence) being chosen to match
the risk at hand. Our society is not will-
ing to tolerate the failure of a nuclear
power plant, air traffic control center,
or energy distribution network, so
for such systems we will be willing to
absorb larger development and certi-
fication costs. Criticality depends, of
course, on the context of use. A spread-
sheet program becomes critical if it is
used, say, for calculating radiotherapy
doses. And there are systems, such as
GPS satellites and cellphone networks,
on which so many applications depend
that widespread failure could be cata-
strophic.

Dependability is not a metric that
can be measured on a simple numeric
scale, because different kinds of fail-
ures have very different consequences.
The cost of preventing all failures will
usually be prohibitive, so a dependable
system will not offer uniform levels of
confidence across all functions. In fact,
a large variance is likely to be a charac-
teristic of a dependable system. Thus
a dependable radiotherapy system
may become unavailable but cannot
be allowed to overdose a patient; a de-
pendable e-commerce site may display
advertisements incorrectly, give bad
search results, and perhaps lose shop-
ping-cart items over time, but it must
never bill the wrong amount or leak
customers’ credit card details; a de-
pendable file synchronizer may report
spurious conflicts but should never si-
lently overwrite newer versions of files.

Together, these considerations im-
ply that the first steps in developing a
dependable system involve drawing
its boundaries—deciding which com-
ponents in addition to the software,
physical and human, will be relied on;
identifying the critical properties; and
determining what level of confidence
is required.

82 communications of the acm | april 2009 | vol. 52 | no. 4

review articles

Properties and where they reside. So
far I have talked loosely about a de-
pendable system performing some
functions or tasks. But for articulating
claims about a system’s desired be-
havior, this level of granularity is too
coarse. It is preferable instead to focus
on critical properties. Some will be as-

sociated with individual functions, but
more often a property will crosscut sev-
eral functions.

For dependability, focusing on
properties is generally better than fo-
cusing on functions because the prop-
erties are what matter. Moreover, they
can usually be separated more cleanly

from one another, and they retain their
meaning as the set of functions offered
by the system changes over its lifetime.
A critical property of a crime database,
for example, may be that every access to
the database by a user is logged in some
file. Identifying instead some critical
subset of logging functions would be
inferior, as the full correctness of these
functions would likely be neither nec-
essary nor sufficient for establishing
the logging property. Common Crite-
ria, a certification scheme for security,
makes this mistake; it focuses atten-
tion on the security functions alone,
despite the fact that many attacks suc-
ceed precisely because they exploit
loopholes in other functions that were
not thought to be security-related.

Some software systems provide an
entirely virtual service, but most in-
teract with the physical world. When
the purpose of a system is to produce,
control, or monitor particular physi-
cal phenomena, they should form
the vocabulary for expressing critical
properties. This might seem obvious,
but there is long tradition of writing
requirements in terms of interfaces
closer to the software, perhaps because
it’s easier or because of a division of
labor that isolates software engineers
from system-level concerns. In a ra-
diotherapy application, for example,
a critical property is not that the emit-
ted beam has a bounded intensity, or
that the right signal is conveyed to the
beam-generating device, or that the
beam settings are computed correctly
in the code. It is that the patient does
not receive an excessive dose.

There is a chain of events connect-
ing the ultimate physical effects of the
system at one end back through the sig-
nals of the peripherals in the middle to
the instructions executed in the code
at the other end. The more the critical
property is formulated using phenom-
ena closer to the software and further
away from the ultimate effects in the
real world, the more its correlation to
the fundamental concerns of the users
is weakened.

An infamous accident illustrates the
potentially dire consequences of this
too-close-to-the-software tendency. An
Airbus A320 landing at Warsaw Airport
in 1993 was equipped with an interlock
intended to prevent the pilot from ac-
tivating reverse thrust while airborne. I

l
l

u
s

t
r

a
t

i
o

n
 b

y
 M

i
k

a
e

l
 C

h
r

i
s

t
e

n
s

e
n

review articles

april 2009 | vol. 52 | no. 4 | communications of the acm 83

Unfortunately, the software had been
designed to meet a requirement that
reverse thrust be disabled unless wheel
pulses were being received (indicating
that the wheels were turning and thus
in contact with the ground). Because of
rain on the runway, the aircraft aqua-
planed when it touched down, and the
wheels did not turn, so the software
dutifully disabled reverse thrust and
the aircraft overran the runway. Had
the critical property been expressed
in terms of being on the ground rather
than receiving wheel pulses, the invalid
assumption that they were equivalent
may have been scrutinized more care-
fully and the flaw detected. (This ac-
count is simplified; for the full incident
report see Ladkin26).

This view of requirements is due
to Michael Jackson23 and has been ad-
opted by Praxis in its REVEAL require-
ments engineering method.17 More
specialized variants of the idea have
appeared before, most notably in Da-
vid Parnas’s Four Variable Model.32

The dependability case. The evidence
for dependability takes the form of
a dependability case—an argument
that the software, in concert with other
components, establishes the critical
properties. What exactly comprises the
case—such as how detailed it should
be and what mix of formal and infor-
mal arguments is appropriate —will
vary between developments, but cer-
tain features are essential.

First, the case should be auditable
so that it can be evaluated by a third-
party certifier, independent both of
developer and customer. The effort of
checking that the case is sound should
be much less than the effort of build-
ing the case in the first place. In this
respect, a dependability case may be
like a formal proof: hard to construct
but easy to check. To evaluate a case,
a certifier should not need any expert
knowledge of the developed system or
of the particular application, although
it would be reasonable to assume ex-
pertise in software engineering and fa-
miliarity with the domain area.

Second, the case should be complete.
This means that the argument that the
critical properties apply should con-
tain no holes to be filled by the certi-
fier. Any assumptions that are not justi-
fied should be noted so that it is clear
to the certifier who will be responsible

from the very outset of development.
By focusing on the case, the developer
can make decisions that ease its con-
struction, most notably by designing
the system so that critical properties
are easier to establish. Decoupling and
simplicity, discussed later, offer per-
haps the greatest opportunities here.

This is the key respect in which
the direct approach to dependabil-
ity demands a sea change in attitude.
Rather than just setting in place some
practices or disciplines that are in-
tended to improve dependability, the
developers are called upon, every step
of the way, to consider their decisions
in the light of the system’s depend-
ability and to view the evidence that
these decisions are sound as a work
product that is as integral to the final
system as the code itself.

Procurement. A change to a direct ap-
proach affects not only developers but
also procurers, and the goals set at the
start must be realistic in terms both of
their achievement and demonstration.

The Federal Aviation Administration
specified three seconds of downtime
per year for the infamous Advanced Au-
tomation System for air-traffic control
(which was ultimately canceled after
an expenditure of several billion dol-
lars), even though it would have taken
10 years just to obtain the data for sub-
stantiating such a requirement.5 It was
later revised to five minutes.

More fundamentally, however, our
society as a whole needs to recognize
that the enormous benefits of soft-
ware inevitably bring risks and that
functionality and dependability are
inherently in conflict. If we want more
dependable software, we will need to
stop evaluating software on the basis
of its feature set alone. At the same
time, we should be more demanding,
and less tolerant of poor-quality soft-
ware. Too often, the users of software
have been taught to blame themselves
for its failures and to absorb the costs
of workarounds.

After the failure of the USS York-
town’s onboard computer system, in
which the ship’s entire control and
navigation network went down after an
officer calibrating a fuel valve entered
a zero into a database application (in
an attempt to overwrite a bad value
that the system had produced), blame
was initially placed on software. After

for discharging them. For example, the
dependability case may assume that a
compiler generates code correctly; or
that an operating system or middle-
ware platform transports messages
reliably, relying on representations by
the producers of these components
that they provide the required proper-
ties; or that users obey some protocol,
relying on the organization that fields
the system to train them appropriately.
For a product that is not designed with
a particular customer in mind, the as-
sumptions become disclaimers, for
example, that an infusion pump may
fail under water or that a file synchro-
nizer will work only if applications do
not subvert file modification dates. As-
sumptions made to simplify the case,
and that are no more easily substanti-
ated by others, are suspect. Suppose
an analysis of a program written in C,
for example, contains an assumption
that array accesses are within bounds.
If this assumption cannot readily be
checked, the results of the analysis
cannot be trusted.

Third, the case should be sound. It
should not, for example, claim full cor-
rectness of a procedure on the basis of
nonexhaustive testing; or make unwar-
ranted assumptions that certain com-
ponents fail independently; or reason,
in a program written in a language with
a weak memory model that the value
read from a shared variable is the value
that was last written to it.

Implications
On the face of it, these recommenda-
tions—that developers express the
critical properties and make an explicit
argument that the system satisfies
them—are hardly remarkable. If fol-
lowed, however, they would have pro-
found implications for how software is
procured, developed, and certified.

Dependability case as product. In
theory, one could construct a depend-
ability case ex post facto, when the en-
tire development had been completed.
In practice, however, this would be
near impossible and, in any case, un-
desirable. Constructing the case is eas-
ier and more effective if done hand-in-
hand with other development activities,
when the rationale for development
decisions is fresh and readily available.
But there is a far more important rea-
son to consider the dependability case

84 communications of the acm | april 2009 | vol. 52 | no. 4

review articles

an investigation, however, the Navy
cited human error. The ship’s com-
manding officer reported that ‘Man-
agers are now aware of the problem of
entering zero into database fields and
are trained to bypass a bad data field
and change the value if such a problem
were to occur again’.

With the indirect approach to cer-
tification, it has been traditional that
procurers give detailed prescriptions
for how the software should and should
not be developed and which technolo-
gies should be used. By contrast, the
direct approach frees the developer to
use the best available means to achieve
the desired goal; constraints on the de-
velopment are evaluated by the objec-
tive measure of whether they improve
dependability or not.

Structuring requirements. How re-
quirements are approached sets the
tone of the development that follows.
A cursory nod to analyzing the problem
can result in functionality so unrelated
to the users’ needs that the develop-
ers become mired in endless cycles
of refactoring and modification. On
the other hand, a massive and windy
document can overwhelm the design-
ers with irrelevant details and tie their
hands with premature design deci-
sions. Ironically, what a requirements
document says can do as much dam-
age as what it fails to say.

In the context of dependability, the
approach to requirements is especially
important. The standard criteria of
course apply: that the developers listen
carefully to the stakeholders to under-
stand not merely the functions they say
they want but also, more deeply, the
purposes they believe these functions
will enable them to accomplish; that
the requirements be expressed precise-
ly and succinctly; and that great care be
taken to avoid making irrevocable de-
cisions when they could be postponed
and made later on the basis of much
fuller information.

Two other criteria take on greater
significance, however. Deciding which
requirements are critical (and how crit-
ical they are) is the first and most vital
design step, determining in large part
the cost of the system and the contexts
in which it will usable. The architec-
ture of the system will likely be based
on these requirements, because (as ex-
plained later) the most feasible way to

Decoupling is the key to achieving
locality. Two components are decou-
pled if the behavior of one is unaffected
by that of the other. Maximizing decou-
pling is a guiding principle of software
design in general, but it is fundamental
to dependability. It is addressed first
during requirements analysis by defin-
ing functions and services so that they
are self-contained and independent
of one another. Then, during design,
decoupling is addressed by allocat-
ing functionality to particular compo-
nents, which allows key invariants to be
localized and the minimization of com-
munication; and by crafting interfaces
that do not expose the internals of a
service to its clients and do not connect
clients to each other unnecessarily. Fi-
nally, the decoupling introduced in the
design must be realized in the code by
using appropriate language features to
protect against errors that might com-
promise it.

The design of an e-commerce system,
for example, might enforce a rigorous
separation between billing and other
subsystems; in that way, more complex
(and less dependable) code can be writ-
ten for less critical features (such as
product search) without compromising
essential financial properties.

Decoupling is an important way of
securing simplicity, and its benefits, in
system design. As Tony Hoare famous-
ly said in his Turing Award lecture (dis-
cussing the design of Ada): “[T]here
are two ways of constructing a soft-
ware design: One way is to make it so
simple there are obviously no deficien-
cies; and the other way is to make it so
complicated that there are no obvious
deficiencies.” Many practitioners are
resistant to the claim that simplicity is
possible (and some even to the claim
that it is desirable). They tend to think
that the advocates of simplicity do not
recognize the inherent complexity of
the problems solved by computer sys-
tems or that they imagine that simplic-
ity is easily achieved.

Simplicity is not easy to achieve,
and, as Alan Perlis noted in one of his
famous aphorisms, it tends to follow
complexity rather than precede it. The
designer of a system that will work in a
complicated and critical domain faces
difficult problems. The question is not
whether complexity can be eliminated
but whether it can be tamed so that the

offer high dependability at reasonable
cost is to exploit modularity to estab-
lish critical properties locally.

Second, it is important to clearly
record any assumptions made about
the software’s operating environment
(including the behavior of human op-
erators). These assumptions will be an
integral part of the dependability case,
influence the design, and become crite-
ria for evaluating the contexts in which
the software can be deployed.

These two criteria are hardly new,
but they are not always followed. Per-
haps under pressure from customers
to provide an extensive catalog of fea-
tures, analysts often express require-
ments as a long list of functions. In a
radiotherapy application, for example,
the analyst—aware of the risk of deliv-
ering incorrect doses or of unauthor-
ized access—might include sections
describing the various functions or use
cases associated with selecting doses or
logging in but might neglect the more
important task of describing the most
critical properties explicitly—such as
that the delivered dose corresponds to
the prescribed dose and that access be
restricted to certain staff.

Sometimes developers appreciate
the value of prioritization but have been
shy to make the bold decisions neces-
sary for downgrading (or eliminating)
noncritical requirements. Rather than
asking “What are the critical proper-
ties?” we might instead ask “What
properties are not critical?” If we have
trouble answering this latter question,
the properties that are critical have
probably not been identified correctly.

Decoupling and simplicity. How
much the cost of developing a system
will increase if a particular critical
property is to be assured depends on
how much of the system is involved.
If the critical property is not local-
ized, the entire codebase must be ex-
amined to determine whether or not
it holds—in essence, all of the code
becomes critical. But if the property
is localized to a single component, at-
tention can be focused on that com-
ponent alone, and the rest of the code-
base can be treated as noncritical. Put
another way, the cost of making a sys-
tem dependable should vary not with
the size of the whole system but with
the extent and complexity of the criti-
cal properties.

review articles

april 2009 | vol. 52 | no. 4 | communications of the acm 85

resulting system is as simple as possi-
ble under the circumstances. The cost
of simplicity may be high, but the cost
of lowering the floodgates to complex-
ity is higher. Edsger Dijkstra explained:
“The opportunity for simplification is
very encouraging, because in all exam-
ples that come to mind the simple and
elegant systems tend to be easier and
faster to design and get right, more effi-
cient in execution, and much more re-
liable than the contrived contraptions
that have to be debugged into some de-
gree of acceptability.”8

Process and culture. While process
may not be sufficient for dependability,
it is certainly necessary. A rigorous pro-
cess will be needed to ensure that atten-
tion is paid to the dependability case
and to preserve the chain of evidence
as it is constructed. In the extreme, if
there is no credible process, a certi-
fier has no reason to believe that the
deployed software even corresponds
to the software that was certified. For
example, in a well-known incident in
2003 an electronic voting system was
certified for use in an election but a
different version of the system was in-
stalled in voting booths.39

A rigorous process need not be a
burdensome one. Because every en-
gineer involved in a project is expect-
ed to be familiar with the process, it
should be described by a brief and eas-
ily understood handbook, tailored if
necessary to that project. Rather than
interfering with the technical work,
the process should eliminate a mass
of small decisions, thereby freeing
the engineers to concentrate on the
more creative aspects of the project.
Standards for machine-processable
artifacts—especially code—should be
designed to maximize opportunities
for automation. For example, a coding
standard that mandates how variables
are named and how specification com-
ments are laid out can make it possible
to extract all kinds of cross-referencing
and summarization information with
lexical tools alone. Bill Griswold has
observed that the more the program-
mer embeds semantic information in
the naming conventions of the code,
the more readily it can be exploited.15

One of the paradoxes of software cer-
tification is that burdensome processes
(such as requiring MCDC test coverage)
do seem to be correlated with more de-

pendable software, even though there
is little compelling evidence that the
processes themselves achieve their
stated aims. This may be explained
by a social effect. The companies that
adhere to the strictest processes tend
to attract and reward employees who
are meticulous and risk-averse. Hav-
ing a strong “safety culture” can be
the major factor in determining how
safe the products are, and in fact one
study of formal methods found that
their success may be due more to the
culture surrounding them than to any-
thing more direct.35 Efforts to build
and maintain a strong safety culture
can pay dividends. Richard Feynman,
in his dissenting report following the
Challenger inquiry,10 was effusive in his
praise of the constructively adversarial
attitude among NASA’s software engi-
neers, to which he ascribed the high
dependability of their software.

Advances in software-verification
technology may tempt us to imagine
(in a Leibnizian fantasy) that one day
we will be able to check the depend-
ability of software simply by running it
through a machine. But dependability
cases will always contain informal ele-
ments that cannot be verified mecha-
nistically; truth will have to be assessed
by an impartial review not only of the
case itself but also of the credibility of
the organization that produced it. An
entirely product-based certification ap-
proach thus makes no more sense than
one based entirely on process. Given
that the organization that produces
the software and the software itself are
intertwined, attempts at improving de-
pendability, and efforts to measure it,
must take both into account.

Robust foundations. Just as a sky-
scraper cannot easily be built on sand,
a robust software system cannot be
built on a foundation of weak tools
and platforms. Fifty years after the in-
vention of static typing and automatic
memory management, the decision to
use an unsafe programming language
such as C or C++ (which provide nei-
ther) requires serious justification, and
for a critical system the benefits that
are obtained in compensation for the
loss of safety have to be extraordinarily
compelling. Arguments against safety
based on performance are usually over-
stated. And with Java and C# now wide-
ly known and available, and equipped

The question is
not whether
complexity can
be eliminated but
whether it can
be tamed so that
the resulting
system is as
simple as possible
under the
circumstances.
The cost of
simplicity may be
high, but the cost
of lowering the
floodgates
to complexity
is higher.

86 communications of the acm | april 2009 | vol. 52 | no. 4

review articles

1975.27 When it was realized that these
features were essential, it was too late
to incorporate them cleanly. It may be
curmudgeonly to complain about Java,
especially because it brings so many
good ideas to mainstream program-
ming—in particular, strong typing—
that might otherwise have languished
in obscurity. And, to be fair, Java incor-
porates features of older languages in
a more complex setting; subtyping, in
particular, makes it much harder to
incorporate other features (such as ge-
nerics). Nevertheless, it does seem sad
that the languages adopted by industry
often lack the robustness and clarity of
their academic predecessors.

It is important to recognize that de-
pendability was not the primary goal in
the design of most programming lan-
guages. Java was designed for platform
independence, and its virtual machine
includes a class loader that absorbs
much of the complexity of installation
variability. As a result, however, a simple
call to a constructor in the source code
sets in motion a formidable amount of
machinery that could compromise the
system’s dependability.

The choice of computing plat-
form—such as operating system, mid-
dleware, and database—must also be
carefully considered. A platform that
has been widely adopted for general
applications usually has the advan-
tage of lower cost and a larger pool of
candidate developers. But commodity
platforms are not usually designed for
critical applications. Thus when high
dependability is required, enthusiasm
for their use should be tempered by
the risks involved.

The (in)significance of code. A de-
pendability argument is a chain with
a variety of links. One link may argue
that a software component has some
property, another that a peripheral be-
haves in a certain way, yet another that
a human operator obeys some proto-
col, and together they might establish
the end-to-end dependability require-
ment. But the overall argument is only
as strong as the chain’s weakest link.

Many software engineers and re-
searchers are surprised to learn that
the correctness of the code is rarely
that weakest link. In an analysis of fa-
tal accidents that were attributed to
software problems, Donald MacKenzie
found that coding errors were cited as

with impressive libraries, there is no
longer a reason to consider safe lan-
guages as boutique technologies.

The value of static typing is often
misunderstood. It is not that type er-
rors don’t occur during execution.
They do, because most statically typed
languages are sufficiently complex that
some checks are inevitably postponed
to runtime. Similarly, the value of
strong typing is not that runtime type
errors are more acceptable than other
kinds of failure. An unanticipated fail-
ure is never good news. Moreover, run-
time type checking can make things
worse: the Ariane 5 rocket might not
have been lost had an arithmetic over-
flow in an irrelevant module not been
propagated to the top level.

Strong typing has two primary ben-
efits. First, it prevents a module from
writing to regions of memory that it
cannot name (through local and global
variables and sequences of field access-
es). This means that a syntactic depen-
dence analysis can determine the po-
tential couplings between modules and
can be used to establish that one mod-
ule is decoupled from another, thus
making it possible to ignore the latter
when analyzing the behavior of the for-
mer. Second, strong typing makes run-
time failures happen earlier, as soon
as a type error occurs, rather than later
when the failure is likely to be harder
to diagnose and may have done more
damage. Static typing provides the im-
portant additional advantage of catch-
ing many type errors at compile time.
This is extremely valuable, because
type errors are often symptoms of seri-
ous mistakes and structural flaws.

Complexity in a programming lan-
guage can compromise dependability
because it increases the chance that the
program will behave differently from
what the programmer envisaged. It is
important to avoid obscure mecha-
nisms, especially those that have a
platform-dependent interpretation.
Coding standards can be very helpful in
taming dangerous language features.18, 19

Progress in language design has
produced major improvements, but
old lessons are easily forgotten. The
original design of Java, for example,
lacked iterators (as a control construct)
and generics, and it did not unify prim-
itive types and objects, even though
these features had been part of CLU in

It is important
to realize that
arguments that
are not
mechanically
checked are
likely to be flawed,
so their credibility
must suffer and
confidence in
any dependability
claims that rely
on them must
be reduced
accordingly.

review articles

april 2009 | vol. 52 | no. 4 | communications of the acm 87

causes only 3% of the time.29 Problems
with requirements and usability dwarf
the problems of bugs in code, suggest-
ing that the emphasis on coding prac-
tices and tools, both in academia and
industry, may be mistaken. Exploiting
tools to check arguments at the design
and requirements level may be more
important; and it is often more feasi-
ble, as artifacts at the higher level are
much smaller.21

Nevertheless, the correctness of
code is a vital link in the dependabil-
ity chain. Even if the low incidence of
failures due to bugs reflects success in
improving code quality, the cost is still
unacceptable,11 especially when very
high assurance is required. Note too
that in the arena of security, code vul-
nerabilities are responsible for a much
higher proportion of failures than in
the safety arena.

Testing and analysis. Testing is a cru-
cial part of any software-development
process, and its effectiveness can be
amplified by liberal use of runtime as-
sertions, by formulating tests early on,
by creating tests in response to bug re-
ports, and by integrating testing into
the build so that tests are run frequent-
ly and automatically. But as discussed
above, testing cannot generally deliver
the high levels of confidence that are
required for critical systems. Thus
analysis is needed to fill the gap.

Analysis might involve any of a va-
riety of techniques, depending on the
kind of property being checked and
the level of confidence required. In the
last decade, dramatic advances have
been made in analyses that establish
properties of code fully automatically
through the use of theorem proving,
static analysis, model checking, and
model finding.

How well these techniques will work
and how widely they will be adopted
remain to be seen. But a number of
industrial successes demonstrate that
the approaches are at least feasible
and, in the right context, effective.
Microsoft, for example, now includes
a sophisticated verification compo-
nent in its driver development toolkit;3
Praxis has achieved extraordinarily low
defect rates using a variety of formal
methods;16 and Airbus has used static
analysis to show the absence of low-lev-
el runtime errors in the A340 and A380
flight-control software.7

these faults is correlated with the ab-
sence of other faults.

Among analysis tools, mathematical
proof is generally believed to offer the
highest level of confidence. An analysis
substantiated with a proof can be cer-
tified independently by examining the
proof in isolation, thereby mitigating
the concern that the tool that produced
the proof might have been faulty.

Proof is not foolproof, however.
When a bug was reported in his own
code (part of the Sun Java library), Josh-
ua Bloch found4 that the binary search
algorithm—proved correct many years
before (by, amongst others Jon Bentley
in his Communications column) and
upon which a generation of program-
mers had relied—harbored a subtle
flaw. The problem arose when the sum
of the low and high bounds exceeded
the largest representable integer. Of
course, the proof wasn’t wrong in a tech-
nical sense; there was an assumption
that no integer overflow would occur
(which was reasonable when Bentley
wrote his column, given that comput-
er memories back then were not large
enough to hold such a large array). In
practice, however, such assumptions
will always pose a risk, as they are often
hidden in the very tools we use to rea-
son about systems and we may not be
aware of them until they are exposed.

Closing Thoughts
The central message of this article is that
it is not rational to believe that a software
system is dependable without good rea-
son. Thus any approach that promises
to develop dependable software must
provide such reason. A clear and explicit
articulation is needed of what “depend-
able” means for the system at hand, and
an argument must be made that takes
into account not only the correctness of
the code but also the behavior of all the
other components of the system, includ-
ing human operators.

Is this approach practical? The cost
of constructing a dependability case,
after all, may be high. On the other
hand, such construction should focus
resources, from the very start of the
development, where they bring the
greatest return, and the effort invested
in obtaining a decoupled design may
reduce the cost of maintenance later.
The experience of Praxis shows that
many of the approaches that the indus-

Until these approaches are more
widely adopted, many development
teams will choose to rely instead on
manual code review. In any case, it is
important to realize that arguments
that are not mechanically checked are
likely to be flawed, so their credibility
must suffer and confidence in any de-
pendability claims that rely on them
must be reduced accordingly.

The credibility of tools. Tools are
enormously valuable, but the glamour
of automation can sometimes over-
whelm our better judgment. A symp-
tom of this is our tendency to invest
terms used to describe tools with more
significance than their simple mean-
ing. For example, inventors of program
analyses have long classified their
creations as “sound” or “unsound.” A
sound analysis establishes a property
with perfect reliability. That is, if the
analysis does not report a bug, then
there is no possible execution that can
violate the property. This notion help-
fully distinguishes verifiers from bug
finders—a class of tools that are very
effective at catching defects, especially
in low-quality software, but that usually
cannot contribute evidence of depend-
ability because they tend to be heuris-
tic and therefore unsound.

But the assumption that sound tools
are inherently more credible is danger-
ous. Alex Aiken found that an unsound
tool uncovered errors in a codebase
that a prior analysis, using a sound tool,
had failed to catch. The much higher
volume of false alarms produced by
the sound tool overwhelmed its users
and made the real defects harder to
identify.1 In recent years, developers of
analysis tools have come to realize that
the inclusion of false positives is just
as problematic as the exclusion of true
positives and that more sophisticated
measures are needed.

Even if an analysis establishes a
property with complete assurance, the
question of whether the property itself
is sufficient still remains. For example,
eliminating arithmetic overflows and
array bounds errors from a program is
certainly progress. But knowing that
such faults are absent may not help
the dependability case unless there is
either: a chain of reasoning connect-
ing this knowledge to assertions about
end-to-end properties; or some strong
statistical evidence that the absence of

88 communications of the acm | april 2009 | vol. 52 | no. 4

review articles

18.	H atton, L. and Safer C. Developing Software in High-
Integrity and Safety-Critical Systems. McGraw-Hill,
1995.

19.	H olzmann, G. The power of ten: Rules for developing
safety critical code. IEEE Computer 39, 6, (June
2006).

20.	IAEA. Investigation of an Accidental Exposure
of Radiotherapy Patients in Panama: Report of a
Team of Experts. (Vienna, Austria, May 26–June 1,
2001); www-pub.iaea.org/MTCD/publications/PDF/
Pub1114_scr.pdf.

21.	J ackson, D. Dependable software by design.
Scientific American (June 2006); www.sciam.com/
article.cfm?id=dependable-software-by-de&collD=1.

22.	J ackson, D., Thomas, M., and Millett, L., Eds.
Software For Dependable Systems: Sufficient
Evidence? National Research Council. National
Academies Press, 2007; books.nap.edu/openbook.
php?isbn=0309103940.

23.	J ackson, M. Problem Frames: Analysing and
Structuring Software Development Problems.
Addison-Wesley, 2001.

24.	Gross, G. E-voting vendor: Programming errors
caused dropped votes. Network World (Aug. 22,
2008); www.networkworld.com/news/2008/082208-
e-voting-vendor-programming-errors-caused.html.

25.	K rebs, B. Cyber incident blamed for nuclear power
plant shutdown. Washington Post (June 5, 2008);
www.washingtonpost.com/wp-dyn/content/
article/2008/06/05/AR2008060501958_pf.html.

26.	L adkin, P.,Transcriber. Transcription of Report on the
Accident of Airbus A320-211 Aircraft in Warsaw on
Sept. 14, 1993. Main Commission Aircraft Accident
Investigation Warsaw; www.rvs.uni-bielefeld.de/
publications/Incidents/DOCS/ComAndRep/Warsaw/
warsaw-report.html.

27.	L iskov, B. A history of CLU. ACM SIGPLAN Notices
28, 3 (Mar. 1993).

28.	L ittlewood, B. and Wright, D. Some conservative
stopping rules for the operational testing of safety-
critical software. IEEE Transactions on Software
Engineering 23, 11 (Nov. 1997).

29.	M acKenzie, D. Mechanizing Proof: Computing, Risk,
and Trust. MIT Press, 2001.

30.	Maisel, W., Sweeney, M., Stevenson, W., Ellison, K.,
and Epstein, L. Recalls and safety alerts involving
pacemakers and implantable cardioverter-
defibrillator generators. Journal of the American
Medical Association 286, 7 (Aug. 15, 2001).

31.	M inistry of Defence. Defence Standard 00-42:
Reliability And Maintainability Assurance Guides,
Part 2: Software, 1997.

32.	 Parnas, D. and Madey, J. Functional documentation
for computer systems. Science of Computer
Programming 25, 1 (1995).

33.	 Perrow, C. Normal Accidents, Princeton University
Press, 1999.

34.	Perrow, C. The Next Catastrophe: Reducing our
Vulnerabilities to Natural, Industrial, and Terrorist
Disasters. Princeton University Press, 2004.

35.	 Pfleeger, S. and Hatton, L. Investigating the
influence of formal methods. Computer 30, 2 (Feb.
1997).

36.	Rockoff, J. Flaws in medical coding can kill: Spread
of computers creates new dangers, FDA officials
warn. Baltimore Sun (June 30, 2008); http://pqasb.
pqarchiver.com/baltsun/access/1502776681.html?d
ids=1502776681:1502776681&FMT=ABS&FMTS=A
BS:FT&type=current&date=Jun+30%2C+2008&aut
hor=Jonathan+D.+Rockoff&pub=The+Sun&desc=FL
AWS+IN+MEDICAL+CODING+CAN+KILL.

37.	S alvadori, M. Why Buildings Stand Up: The Strength
of Architecture. Norton, 1980. See also Levy, M.
and Salvadori, M. Why Buildings Fall Down: How
Structures Fail. Norton, 1992.

38.	Slabodkin, G. Navy: Calibration flaw crashed
Yorktown LAN. Government Computing News (Nov.
9, 1998); www.gcn.com/print/17_30/33914-1.html.

39.	Zetter, K. E-voting undermined by sloppiness. Wired
(December 17, 2003); www.wired.com/politics/
security/news/2003/12/61637.

Daniel Jackson (dnj@mit.edu) is a professor of
computer science at the Massachusetts Institute
of Technology and a principal investigator at MIT’s
Computer Science and Artificial Intelligence Lab,
Cambridge, MA.

© 2009 ACM 0001-0782/09/0400 $5.00

try regards as too costly (such as for-
mal specification and static analysis of
code) can actually reduce overall cost.2

Similarly, even though the augmen-
tation of testing with more ambitious
analysis tools will require greater ex-
pertise than is available to many teams
today, this avenue does not necessarily
increase the cost either. When low lev-
els of confidence suffice, testing may be
the most cost-effective way to establish
dependability. As the required level of
confidence rises, though, testing soon
becomes prohibitively expensive, and
the use of more sophisticated methods
is likely to be more economical. Invari-
ants may be harder to write than test
cases, but a single invariant defines an
infinite number of test cases, so a de-
cision to write one (and use a tool that
checks all the cases it defines) will pay
off very soon.

Efforts to make software more de-
pendable or secure are inherently con-
servative and therefore risk retarding
progress, and many practitioners under-
standably see certification schemes and
standards as millstones around their
necks. But because a direct approach
based on dependability cases gives de-
velopers an incentive to use whatever
development methods and tools are
most economic and effective, the ap-
proach therefore rewards innovation.

Acknowledgments
The key ideas in this article come from
a National Academies study22 that I
chaired. I am very grateful to the mem-
bers of my committee—Joshua Bloch,
Michael DeWalt, Reed Gardner, Peter
Lee, Steven Lipner, Charles Perrow,
Jon Pincus, John Rushby, Lui Sha, Mar-
tyn Thomas, Scott Wallsten, and David
Woods; to our study director Lynnette
Millett; to Jon Eisenberg, director of
the Academies’ Computer Science
and Telecommunications Board; and
to our sponsors, especially Helen Gill,
who was instrumental in making the
case for the study. John Rushby and
Martyn Thomas deserve recognition
for having been long and eloquent ad-
vocates of the direct approach. Many
of the opinions expressed in this arti-
cle, however, are my own and have not
been approved by the committee or by
the Academies.

Thanks too to Butler Lampson,
Shari Lawrence Pfleeger, and Derek

Rayside, who gave extensive and help-
ful suggestions on an initial draft of the
article; to the anonymous reviewers;
and to Hari Balakrishnan, Bill Maisel
and Andrew Myers who gave valuable
feedback and shared their expertise on
particular topics.

A version of this article with a fuller
list of references is available at http://
sdg.csail.mit.edu/publications.html.	

References
1.	A iken, A. and Xie, Y. Context- and path-sensitive

memory leak detection. Proceedings of the 5th
Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (Sept.
2005).

2.	A mey, P. Correctness by construction: Better can
also be cheaper. CrossTalk: The Journal of Defense
Software Engineering (Mar. 2002); www.praxis-his.
com/pdfs/c_by_c_better_cheaper.pdf.

3.	B all, T. and Rajamani, S. The SLAM project:
Debugging system software via static analysis.
In Proceedings of the 29th ACM Symposium on
Principles of Programming Languages (Portland,
Oregon, Jan. 16–18), 2002.

4.	B loch, J. Extra, extra—read all about it: Nearly
all binary searches and mergesorts are broken;
googleresearch.blogspot.com/2006/06/extra-extra-
read-all-about-it-nearly.html.

5.	C one, E. The ugly history of tool development at the
FAA. Baseline Magazine 4, 9 (Apr. 8, 2002).

6.	C ook, R. and O’Connor, M. Thinking about accidents
and systems. In Medication Safety: A Guide to
Health Care Facilities, H.R. Manasse and K.K.
Thompson, Eds. American Society of Health-System
Pharmacists, Washington, DC, 2005; www.ctlab.org/
documents/ASHP_chapter.pdf.

7.	C ousot, P. Proving the absence of run-time errors
in safety-critical avionics code. In Proceedings of
the Seventh ACM & IEEE International Conference
on Embedded Software. (Salzburg, Austria, Sept.
30–Oct. 3), ACM Press, New York, 2007.

8.	 Dijkstra, E.W. The tide, not the waves. In Beyond
Calculation: The Next Fifty Years of Computing,
Denning, P. and Metcalfe, R., Eds. Copernicus
(Springer-Verlag), 1997.

9.	F DA. Ensuring the safety of marketed medical
devices: CDRH’s medical device post-market safety
program, 2006.

10.	F eynman, R.P. Appendix F: Personal observations
on the reliability of the shuttle. In Report of the
Presidential Commission on the Space Shuttle
Challenger Accident, 1986; science.ksc.nasa.gov/
shuttle/missions/51-l/docs/rogers-commission/
Appendix-F.txt.

11.	G allaher, M. and Kropp, B. Economic Impacts of
Inadequate Infrastructure for Software Testing,
National Institute of Standards and Technology,
2002.

12.	GAO . Medical Devices: Early Warning of Problems Is
Hampered by Severe Under-reporting. Publication
PEMD-87-1, U.S. Government Printing Office, 1986.

13.	G eppert, L. Lost radio contact leaves pilots on their
own. IEEE Spectrum 41, 11 (Nov. 2004); www.
spectrum.ieee.org/nov04/4015.

14.	G erman, A. and Mooney, G. Air vehicle software static
code analysis—Lessons learnt. In Proceedings of the
Ninth Safety-Critical Systems Symposium, F. Redmill
and T. Anderson, Eds. Springer-Verlag, Bristol, U.K.,
2001.

15.	G riswold, W. Coping with crosscutting software
changes using information transparency. In
Reflection 2001: The Third International Conference
on Metalevel Architectures and Separation of
Crosscutting Concerns (Kyoto, Sept. 25–28, 2001).

16.	H all, A. Using formal methods to develop an ATC
information system. IEEE Software 13, 2 (Mar.
1996).

17.	H ammond, J., Rawlings, R., and Hall, A. Will it work?
In Proceedings of the 5th International Symposium
on Requirements Engineering (Toronto, Aug. 27–31,
2001).

