Chapter 6: Force and Motion-II

\checkmark Forces of Friction
\checkmark Drag Force
\checkmark Centripetal Force
\checkmark Motion in Accelerated Frames

Chapter 6: Force and Motion-II

Session 12:

\checkmark Drag Force
\checkmark Centripetal Force
\checkmark Motion in Accelerated Frames

Drag Force

$>$ A fluid is anything that can flow, generally either a gas or a liquid (air, water).
$>$ When there is a relative velocity between a fluid and a body, the body experiences a drag force that opposes the relative motion.

$\vec{D}=-b \overrightarrow{\mathbf{v}}$
$\vec{D}=-b v^{2}(\hat{\mathbf{v}})$

Drag Force

$$
D=\frac{1}{2} c \rho A v^{2}
$$

$$
v=0 \quad a=g
$$

- \mathbf{C} is a dimensionless empirical quantity (drag coefficient).
- ρ is the density of air.
- A is the cross-sectional area of the object.
- v is the speed of the object.

$$
\begin{gathered}
F_{y, n e t}=m g-\frac{1}{2} c \rho A v_{T}^{2}=m a \approx 0 \\
v_{T}=\sqrt{\frac{2 m g}{c \rho A}}
\end{gathered}
$$

430

Object	Terminal Speed $(\mathrm{m} / \mathrm{s})$	95% Distance $^{a}(\mathrm{~m})$
Shot (from shot put)	145	2500
Sky diver (typical)	60	430
Baseball	42	210
Tennis ball	31	115
Basketball	20	47
Ping-Pong ball	9	10
Raindrop (radius $=1.5 \mathrm{~mm})$	7	6
Parachutist (typical)	5	3

Table 6-1 Some Terminal Speeds in Air

Ex 6: (Problem 6.33 Halliday)

A $1000 \mathbf{k g}$ boat is traveling at $90 \mathbf{k m} / \mathbf{h}$ when its engine is shut off. The magnitude of the frictional force between boat and water is proportional to the speed \boldsymbol{v} of the boat: $\mathrm{f}_{\mathrm{k}}=\mathbf{7 0 v}$, where \boldsymbol{v} is in meters per second and $\mathbf{f}_{\mathbf{k}}$ is in newtons. Find the time required for the boat to slow to 45 km/h.

$$
\begin{aligned}
& \mathrm{F}_{n e t}=\mathrm{ma} \square-f_{k}=m \mathrm{a} \\
& \frac{d v}{d t}=-\frac{70}{1000} v \square-70 v=m \frac{d v}{d t}=1000 \frac{d v}{d t} \\
& \ln \frac{v_{f}}{v_{i}}=-\frac{7}{100}\left(t_{f}-t_{i}\right)=-\frac{7}{100} \Delta t \square \int_{v_{i}} \frac{d v}{v}=-\frac{7}{100} d t \square \int_{t_{i}}^{v_{f}}\left(-\frac{7}{100}\right) d t \\
&
\end{aligned}
$$

Centripetal Force

A particle is in uniform circular motion if it travels around a circle or a circular arc at constant (uniform) speed.

The particle is accelerating because the velocity changes in direction.

$$
\text { Centripetal Acceleration } a_{c}=\frac{v^{2}}{r}
$$

Centripetal Force

$$
F_{C}=m a_{c}=m \frac{v^{2}}{r}
$$

Ex 7: A 1500-kg car moving on a flat, horizontal road negotiates a curve as shown in Figure. If the radius of the curve is 35.0 m and the coefficient of static friction between the tires and dry pavement is $\mathbf{0 . 5 2 3}$, find the maximum speed the car can have and still make the turn successfully.

$$
\left[\begin{array}{l}
f_{s}=m \frac{v^{2}}{r} \\
N=m g
\end{array}\right.
$$

$$
\mu_{s} N=\mu_{s} m g=m \frac{v_{\max }{ }^{2}}{r} \square v_{\max }=\sqrt{\mu_{s} r g}=13.4 \mathrm{~m} / \mathrm{s}
$$

$$
\left\{\begin{array}{l}
N_{x}=N \sin \theta=m \frac{v^{2}}{r} \\
N_{y}=N \cos \theta=m g
\end{array} \square \tan \theta=\frac{v^{2}}{r g}\right.
$$

$$
\theta=\tan ^{-1}\left(\frac{v^{2}}{r g}\right)=\tan ^{-1}\left(\frac{13.4^{2}}{35 \times 9.8}\right)=27.6^{\circ}
$$

Ex 8: A child of mass m rides on a Ferris wheel as shown in Figure. The child moves in a vertical circle of radius $\mathbf{1 0 . 0} \mathbf{~ m}$ at a constant speed of $\mathbf{3 . 0 0} \mathbf{~ m} / \mathrm{s}$. Determine the force exerted by the seat on the child (a) at the bottom of the ride, (b) at the top of the ride. (Express your answer in terms of the weight of the child, $\boldsymbol{m g}$)

$$
F_{c}=m \frac{v^{2}}{R}
$$

Bottom

$$
\begin{aligned}
& N_{B}-m g=m \frac{v^{2}}{R} \square N_{B}=m g+m \frac{v^{2}}{R}=m g\left(1+\frac{v^{2}}{R g}\right) \quad \square N_{B}=(1.09) m g \\
& m g-N_{T}=m \frac{v^{2}}{R} \square N_{T}=m g-m \frac{v^{2}}{R}=m g\left(1-\frac{v^{2}}{R g}\right) \quad \square N_{T}=(0.91) m g
\end{aligned}
$$

Motion in Accelerated Frames

* The real force are always interactions between two objects.
* The fictitious force is due to observations made in an accelerated frame.

$$
\begin{aligned}
& F_{x, \text { net }}=T \sin \theta=m a \\
& F_{y, \text { net }}=T \cos \theta-m g=0
\end{aligned}
$$

$$
\left\{\begin{array}{l}
F_{x, \text { net }}^{\prime}=T \sin \theta-F_{\text {fictitious }}=0 \\
F_{y, \text { net }}^{\prime}=T \cos \theta-m g=0
\end{array}\right.
$$

$$
F_{\text {fictitious }}=m a
$$

Motion in Accelerated Frames

> From the frame of the passenger, a force appears to push her toward the door (Centrifugal Force).
$>$ From the frame of the Earth, the car applies a leftward force on the passenger (Frictional Force)

